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Abstract 

 

Problems caused by subsidence are very common in many areas of the world, 

and this kind of problems may be serious and threatening to living people in 

Louisiana. Adverse subsidence in Louisiana will cause serious problems, such as 

excessive wetland formation or land loss, if we can’t make appropriate treatments, 

and this topic will also be what we focus on in this research (Kent and Dokka 2012). 

For subsidence survey, we can use three kinds of common techniques, leveling, 

InSAR (Interferometric Synthetic Aperture Radar) and GPS observation (Lu, C. et al. 

2012). In this research, high accuracy of subsidence data in Louisiana has been 

collected by GPS, and Kriged-Kalman Filter (KKF) has been used to process such 

subsidence data (Mardia et al. 1998). Results by KKF have shown spatio-temporal 

distributions of subsidence rates from 2011 to 2013, and these results have also been 

validated by the Bayou Corne Sinkhole knowledge in this research (Cusanza 2013; 

Jones and Blom 2014; Jones and Blom 2015). 

Based on the validated KKF results in this research, we have used some 

geo-statistics models, such as Geographically Weighted Regression (GWR), the 

spatial-lag model and the spatial-error model, so as to find which main factors have 

caused adverse subsidence in the study site in 2013 (Fotheringham et al. 2002; Baller 

et al. 2001; Wang 2006; Wang et al. 2014). Modeling results have shown that, GWR, 

the spatial-lag model and the spatial-error model may all be suitable in this research, 

and Bayou Corne Sinkhole, sediment compaction, groundwater withdrawal and mass 
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loading of buildings may be the significant and explainable factors causing 

subsidence in the study site (Abdollahzadeh et al. 2013; Cusanza 2013). 

Thus, in this research, we have concluded that KKF, as a unique and valid model 

based on Kalman Filter, has been used to make an optimal prediction for large area of 

subsidence in Louisiana (Mardia et al. 1998; Kalman 1960; Zhang 2008; Lu, C. et al. 

2012). Besides, main factors for subsidence in the study site can be found by 

geo-statistics modeling, and these modeling results basically match the former 

research by the other people (Abdollahzadeh et al. 2013). 
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Chapter 1 Introduction 

 

1.1 Background 

The term “subsidence”, which refers to the downward movement of the Earth’s 

surface with respect to a reference point (Dokka 2006; Kent and Dokka 2012), can be 

produced by both the geophysical and anthropogenic factors (Kent and Dokka 2012). 

Subsidence may cause many adverse effects on our living space such as excessive 

wetland formation or land loss, if we fail to make appropriate treatments on irregular 

subsidence (Kent and Dokka 2012). 

Many areas all over the world are suffering from serious subsidence problems for 

relatively different reasons (Hung et al. 2011). For instance, Venice in Italy has been 

known as a classic city with subsidence phenomenon, because this historical city‘s 

local problems such as stability of buildings, waterways and coastal erosion have been 

contributing to such phenomenon year by year (Bitelli et al. 2000). The other classic 

areas emerging dramatic subsidence should include the lower Mississippi Valley and 

northern Gulf coast from USA, where the contributing factors are multiple such as 

groundwater withdrawal and pumping oil (Abdollahzadeh et al. 2013; Shinkle and 

Dokka 2004). And subsidence in this area as “slow disaster”, will threaten critical 

habitats, large and small cities, farms, and economic infrastructure in several states 

with eventual inundation by the Gulf of Mexico (Shinkle and Dokka 2004). 
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The state of Louisiana, which is also located in the lower Mississippi Valley and 

northern Gulf coast area, is undergoing evident subsidence gradually, especially in its 

coastal parishes causing a huge area of wetland. To account for this serious problem, 

the following figure shows the vertical displacement of height for a Louisiana ground 

point (point name: 1 LSU) in the whole period of 2012, based on the research 

methods by Shinkle and Dokka in 2004 (Dokka 2006; Shinkle and Dokka 2004): 

 

 

Figure 1 Height changes for one site (1LSU) in Louisiana in 2012, units: day 
(Horizontal axis), meter (Vertical axis) 

 

From this figure above, using the trendline slope (0.00005), we can calculate the 

annual subsidence rate which equals 18.3 mm. We should not lose sight of this rate 

calculated for a serious subsidence problem in such area, because the future 

cumulative subsidence in a long period, such as 50 to 100 years, will be estimated to a 

significant result if this subsidence rate is stable over years. Imaginably, at that time, 

the effects of this subsidence disaster will be felt by the entire country as inundation 
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gradually destroys America’s largest coastal wetland and ravages its energy 

production heartland (Shinkle and Dokka 2004). 

Hence, facing the serious situation for subsidence problem in Louisiana 

discussed above, relevant researchers should take more and more focus on many 

important topics of subsidence studies, such as subsidence prediction. Governments 

should also take powerful actions to control high speed of adverse subsidence if they 

feel necessary. And this research may be a potential and feasible attempt to monitor, 

predict and treat subsidence in Louisiana. 

 

1.2 Literature review 

The subsidence study can be done with many different academic backgrounds of 

methods, such as methods on geotechnical engineering, geology, geophysics, 

geography or Geographic Information System (GIS). As potential geographic 

researchers, we mainly focus on recent status of subsidence study from geography 

involved backgrounds, and the literature review results show that relevant papers on 

subsidence can be classified into two subsets for research topics as follows: how to 

make high accurate subsidence observation and prediction, and how to collect 

relevant contributing factors with modeling during dramatic subsidence. 

Subsidence observation and prediction: 

Generally speaking, until recently, three common kinds of techniques have been 

widely used in the process of subsidence observation: leveling, GPS observation and 

InSAR (Interferometric Synthetic Aperture Radar) (Lu, C. et al. 2012).  
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Early in 1950s, engineers and researchers started to make subsidence survey by 

means of leveling, usually quantifying the vertical displacement at benchmarks for 

land subsidence (Shinkle and Dokka 2004). With geodesy methods, the survey 

accuracy by leveling can be so high at millimeter level, while the temporal resolution 

is technically limited (Lu, C et al. 2012), and the conventional survey cycles usually 

exceed ten years. Then since the GPS technique emerged and began to develop widely, 

GPS survey has become another available method to quantify land subsidence, with 

millimeter-level point heights and relatively higher temporal resolution, whereas the 

survey point density will usually be relatively low (Lu, C. et al. 2012). After the new 

21st century, the InSAR technique provides an alternative to leveling and GPS 

observations due to the highly spatial density (Lu, C et al. 2012) (Extracted from: 

http://treuropa.com/technique/insar-evolution/). In the whole InSAR survey imaging 

process, the phase differences of microwaves from repeat-pass InSAR satellites 

should be recorded to calculating the displacements of ground downward movements 

as land subsidence (Extracted from: http://treuropa.com/technique/insar-evolution/), 

nevertheless, this imaging process will also definitely produce multiple categories of 

unwanted errors, especially atmosphere effect, topographic distortion, and 

de-correlation noise (Extracted from: http://treuropa.com/technique/insar-evolution/). 

Even if the new advanced InSAR technique, Differential InSAR (DInSAR) which 

involves differential method with the corresponding DEM (Digital Elevation Model) 

and emerges in recent years, can reduce or eliminate a lot of topographic distortions, 

the other errors including atmosphere effect may not be processed yet. Thus, each of 
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these 3 techniques, Leveling, GPS, and InSAR, has its evident advantages and flaws 

relatively, and the integration or combination of such techniques has been a common 

research trend necessarily for developing accurate land subsidence survey. 

At the beginning stage of techniques-integration study, the integration of 

Leveling and GPS observations had been completed by many researchers. Especially, 

a paper released in 2007 shows that the comparison of historical leveling and recent 

GPS data can reveal the subsidence rates on Thessaloniki Plain of Greece in the past 

50+ years (Psimoulis et al. 2007). Besides, around 2000, a data information system 

which can connect the leveling network with GPS data had been operated to monitor 

the ground subsidence in the Southern Po Valley (Bitelli et al. 2000). Also, The 

NOAA data report by Shinkle and Dokka in 2004 shows that the GPS observation 

data in the CORS (Continuously Operating Reference Station) had assisted the 

integrated leveling benchmark data from many epochs, calculating and interpolating 

the steady state of subsidence rates in the lower Mississippi Valley and Northern Gulf 

Coast (Shinkle and Dokka 2004; Kent and Dokka 2012), and the figure on 

interpolated subsidence rates is shown in Figure 2 as follows (Shinkle and Dokka 

2004; Kent and Dokka 2012): 
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Figure 2 Interpolated rates of leveling subsidence around Louisiana (Shinkle and 

Dokka 2004; Kent and Dokka 2012) 

 

Hence, this method on leveling and GPS combination can produce higher 

accuracy of subsidence data and extend the subsidence observation periods from the 

past to the future (Shinkle and Dokka 2004; Kent and Dokka 2012), never the less, it 

may be not so feasible to solve the low point density problem well, especially in cases 

that observation points are distributed less averagely or less randomly in the study 

area. 

Recently, over dozens of papers on subsidence show that the most acknowledged 

and popular method on subsidence survey, will involve the integration technique 

between InSAR (DInSAR) and GPS. In this whole integration process, DInSAR 

should be used instead of ordinary InSAR because DInSAR data has much less 



7 
 

topographic error by using the corresponding DEM (Extracted from: 

http://treuropa.com/technique/insar-evolution/). Moreover, many areas of land 

subsidence all over the world have been surveyed by this popular integration 

technique, especially for the case of Appin Township, southwest of Sydney, Australia 

(Linlin Ge et al. 2003). In this case, GPS data over the same study site had been used 

to geo-reference the DInSAR results, and what’s more, the differential tropospheric 

delay (atmosphere effect) will be estimated by the GPS data and it will be also 

interpolated into an image correcting the atmosphere disturbance in the InSAR results 

(Linlin Ge et al. 2003; Ge 2000) (Extracted from: 

http://treuropa.com/technique/insar-evolution/). 

Thus, DInSAR has been regarded as a popular technique to monitor land 

subsidence, especially combined by GPS, while, this technique may be subject to 

uncertainties caused by the atmosphere-induced error, satellite orbit error and terrain 

effect, also, the land coverage which has different surface properties over difference 

season will cause spatial de-correlation in DInSAR and degraded measurement 

accuracy (Hung et al. 2011; Hung et al. 2010). Permanent Scatterer Interferometry 

(PSI), has been proved to reduce the deficiency in DInSAR (Hooper et al. 2004; Hung 

et al. 2011). PSI can be a relatively recent development from conventional InSAR, 

relying on studying pixels which remain coherent over a sequence of interferograms, 

it will provide consistent and stable radar reflections (Burgmann et al. 2000). For the 

subsidence case over the Choushui River Alluvial Fan in Taiwan, PSI, which reduces 

errors affecting conventional DInSAR techniques, had been used for a data fusion 
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work with high precision and low point-density leveling data as a smoonthed 

correction to PSI result (Hung et al. 2011; Lu, C. et al. 2012). This fusion work can 

make the surveyed result more representative of overall deformation characteristics 

than PSI field only or leveling only (Hung et al. 2011), and it can also be a good and 

classic study instance on the integration of PSI (InSAR) and leveling..In this fusion 

process, a simple “draping” method had been used to merge the PSI result with the 

leveling one (Hung et al. 2011; Forsberg and Skourup 2005), and the main steps for 

this “draping” method have been shown as follows (Hung et al. 2011): 

Step 1 Interpolate pixel-wise vertical rates of PSI on a 250×250 m grid (Hung et al. 

2011); 

Step 2 Interpolate the vertical rates at the benchmarks from the grid (Hung et al. 

2011); 

Step 3 Subtract the PSI-derived rates from the leveling-derived rates at the 

benchmarks to obtain the differences (Hung et al. 2011); 

Step 4 Interpolate the differences on a 250×250 m grid (Hung et al. 2011); 

Step 5 Sum the grids of PSI (Step 1) and the grid of difference (Step 4) to form a grid 

of combined PSI-leveling vertical rates (Hung et al. 2011). 

The future studies on data fusion will include an employment of improved 

method that uses wavelet functions or spectral combination to represent various kinds 

of subsidence data (Hung et al. 2011; Addison 2002). 

In addition, some other kinds of techniques on subsidence survey except leveling, 

GPS and InSAR, had been used in recent research cases, such as AWC (analog 
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weather charts) applied to the high precision GPV-MSM (Grid point value of 

Meso-Scale Model) water vapor data (Zheng et al. 2014). In this case, the spatial 

distribution of atmospheric delay by water vapor was quantified using AWC, so the 

atmosphere effect of DInSAR data will reduced, making GPV-MSM data effective for 

DInSAR analysis (Zheng et al. 2014; Lu, C. et al. 2012). 

Although the integration of such techniques above can make a high accuracy of 

subsidence survey, recent news show that NASA is developing a new airborne 

interferometer system named UAVSAR, which will make much higher spatial 

resolution and accuracy for future subsidence survey than before (Blom et al. 2009). 

Furthermore, except the common techniques and their integration, some methods 

from geo-statistics models can also be used to process subsidence data for high 

accuracy of prediction, such as Kriged Kalman Filter (Mardia et al. 1998). Kriged 

Kalman Filter (KKF), which is regarded as a combination or integration of Kalman 

Filter and Kriging interpolation, can be used to process and predict spatio-temporal 

data, such as long term point data on subsidence (Kalman 1960; Mardia et al. 1998; 

Shang et al. 2011; Olea 1999). The long term GPS subsidence data can be especially 

applied to KKF because of its high temporal resolution and low point density 

characteristics, and based on GPS points input, a raster data can be produced and large 

areas of subsidence data near these scatter GPS points can be interpolated and 

predicted accurately in a long term period (Shang et al. 2011; Lu, C. et al. 2012). Thus, 

KKF may be a possible and accurate method for surveying and predicting long term 

subsidence data (Shang et al. 2011). 
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Modeling of factor data contributing to subsidence: 

The factors for subsidence can be classified as geophysical and anthropogenic 

(Kent and Dokka 2012), and recent study on subsidence in southern coastal Louisiana 

shows that sediment compaction, low-angle faulting and regional subsidence 

associated with mass loading appear to be the major factors controlling subsidence in 

the delta, and the coastal regions outside of the delta undergo slower subsidence, 

probably related to factors such as fluid withdrawal (ground water, petroleum and 

natural gas extraction) (Abdollahzadeh et al. 2013). In other words, the natural 

process of subsidence in many active areas can be mainly contributed to following 

factors: sediment compaction, faulting, anthropogenic mass loading, groundwater 

withdrawal, oil pumping and natural gas extraction (Abdollahzadeh et al. 2013; Kent 

and Dokka 2012). Thus, the methods on how to use appropriate model to establish 

relationships between subsidence and factors and how to quantify such factors, will be 

prevailing topics for recent subsidence researchers from a variety of academic 

backgrounds. 

For geophysical factors which contribute to subsidence (Kent and Dokka 2012), 

faulting that results from a series of dramatic crust movement, has become a good and 

popular study topic on subsidence, especially for geological and geophysical 

researchers (Abdollahzadeh et al. 2013; Dolezalova et al. 2009; Brodie et al. 2007). A 

good instance on fault is the evaluation project of mining subsidence located in 

Karvina, Czech Republic, using GPS data (Dolezalova et al. 2009). In this project, the 

subsidence depression from two years of GPS survey data shows the important 
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influence of the complicated tectonic situation on the behaviour of surface subsidence 

(Dolezalova et al. 2009). Also, tectonic faults had made the shape of subsidence 

depression evidently irregular, but on sites without tectonic fault, the subsidence 

depression had experienced a smooth and regular development, and this research 

instance can strongly prove the close correlation between the shape of subsidence and 

the characteristics of fault on the same site (Dolezalova et al. 2009). 

As a common and anthropogenic factor related to subsidence (Kent and Dokka 

2012), the groundwater withdrawal (Kent and Dokka 2012; Abdollahzadeh et al. 2013) 

has been favorable to researchers from many backgrounds, mainly because the 

groundwater can be the most direct factor than other factors which lead to subsidence 

(Shang et al 2011; Abdollahzadeh et al. 2013). A classic hydrology and GIS 

(Geographic Information System) case involves a spatial and temporal prediction 

system for groundwater flow and subsidence in Japanese coastal plain (Zhou et al. 

2003). In this case, using hydrology and GIS knowledge, the data required had been 

converted into GIS data in the database, and the surface water cycle had been 

simulated to obtain the spatial and temporal groundwater infiltration quantity (Zhou et 

al. 2003). Then a 3D groundwater flow model based on hydrology, had been 

established to simulate the groundwater flow and then calculate or predict the 

corresponding subsidence on different water pumping scenarios (Zhou et al. 

2003).Another recent GIS instance involving water withdrawal (Abdollahzadeh et al. 

2013) shows the spatial and temporal characteristics of subsidence induced by 

groundwater over-exploitation in Beijing (Chen et al. 2011; Abdollahzadeh et al. 
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2013). With data collected by GPS and InSAR, a model on the dynamic variation 

from hydro-dynamics had been established to analyze the subsidence response to 

groundwater withdrawal (Chen et al. 2011). 

Besides models form hydrology, many geo-statistics models can be much 

available for quantifying the factors related to subsidence, such as Geographically 

Weighted Regression (GWR) (Fotheringham et al. 2002). The most recent GWR case 

on subsidence had been released by a research group from Taiwan, and it also 

involves the groundwater factor for modeling (Shang et al 2011). 

In this GWR case from Taiwan, the study site was selected in Choshuichi 

Alluvial Fan, the ground subsidence data was collected by GPS observation, and the 

groundwater levels in 3 underground aquifers were obtained from Water Resources 

Agency (Shang et al. 2011). And by interpolation, the spatial distribution of 

subsidence in the study site and the groundwater levels at each GPS station can be 

estimated for GWR (Shang et al. 2011; Shepard and Donald 1968). 

In the GWR modeling process, the groundwater level changes in 3 aquifers were 

selected as predictors, and subsidence was the dependent variable (Shang et al 2011). 

GWR is more advantageous than other geo-statistics models for this case because the 

other models used for subsidence study usually involve a “global” approach, without 

considering spatial heterogeneity of data, while GWR is proved to show the spatial 

variation of predictors, with spatially varied coefficients of predictors (Shang et al. 

2011; Fotheringham et al. 2002). Thus, by GWR model, all of 4 spatially varied 

coefficients can be calculated, and using these coefficients, land subsidence in the 
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study site can be predicted (Shang et al 2011). Then an important comparison between 

the prediction result from GWR and the one from OLS (Ordinary Least Square) had 

been made, and it shows that GWR can better approach the real subsidence 

distribution, with higher accuracy and adjusted R-square (Shang et al 2011; Hayashi 

and Fumio 2000). While, this GWR case for subsidence can be classic, it still has 

many drawbacks including the lack of long-term or seasonal GPS data for showing a 

more detailed correlation between groundwater levels and subsidence (Shang et al. 

2011), also, multiple kinds of important factors except groundwater levels, may be 

collected to access to GWR for more accurate modeling results, and all of these 

drawbacks will be expected to improved in the future research (Shang et al. 2011; 

Fotheringham et al. 2002; Abdollahzadeh et al. 2013). 

Many of the above discussed subsidence cases almost refer to a natural process 

of subsidence, whereas, in some small areas of sites, subsidence may be produced by 

loadings from some special human activities, such as mining. And for such cases, 

especially for mining subsidence, the factors related to subsidence should be much 

different, such as depth and distance from drift, DEM and slope gradient, groundwater 

permeability, geology and land use (Kim et al. 2006; Kim et al. 2009; Oh and Lee 

2010; Oh et al. 2011). 

Hyun-Joo Oh’s groups from Korea had made a series of studies on mining 

subsidence, collecting relevant factor data, and using many classic models from 

general statistics (Kim et al. 2006; Kim et al. 2009; Oh and Lee 2010; Oh et al. 2011). 

The study sites for all of cases were located in abandoned coal mines, models such as 
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frequency ratio, logistic regression, weights of evidence and artificial neural network 

were tested successively to find the possible relationships between factor data and 

subsidence, calculating such factors’ ratings or weights to map the subsidence hazards 

by overlaying these ratings or weights, and results for nearly all of tested models 

show over 90% prediction accuracies at best (Kim et al. 2006; Kim et al. 2009; Oh 

and Lee 2010; Oh et al. 2011; Freedman 2009). This series of studies on mining 

subsidence have made big progress, while they also have evident drawbacks. All of 

tested models involve the “global” approach on subsidence prediction, so spatial 

heterogeneity of factors had not been considered yet (Shang et al 2011; Kim et al 

2006; Kim et al 2009; Oh and Lee 2010; Oh et al 2011). Moreover, the dependent 

variable, subsidence, had been regarded as a dichotomous one or categorical one 

(presence-absence), but subsidence is actually a numeric variable, so the modeling 

process by a dichotomous variable as subsidence may cause a coarse prediction with 

much less detailed information (Kim et al. 2006; Kim et al. 2009; Oh and Lee 2010; 

Oh et al. 2011; Freedman 2009). 

 

1.3 Research questions 

According to the flaws or drawbacks for recent techniques and methods on 

subsidence which have been discussed in the literature review chapter, KKF and 

GWR as two main methods of this research will be selected to process the Louisiana 

subsidence data. So we can propose two research questions as follows: 
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1. In the future research process, GPS subsidence data in the coastal area of Louisiana 

will be collected and processed by KKF, after that, some work will be done to validate 

these KKF raster results.  

Then, can these results by KKF, reflect the real spatio-temporal distribution of 

subsidence pattern in the study site well, or are these results by KKF valid or not in 

this research? 

2. In the modeling process of factors which contribute to subsidence, multiple kinds 

of factor data will be collected and GWR model will be selected to process these 

kinds of data, showing some possible relationships between subsidence and relevant 

factors. 

Then, can results by GWR reflect the spatial heterogeneity of Louisiana 

subsidence or not (Fotheringham et al. 2002; Shang et al. 2011)? With respect to 

modeling and prediction accuracies, are results by GWR better than or comparable 

against the ones by other geo-statistics models, such as the spatial-lag model or the 

spatial-error model (Wang 2006; Wang et al. 2014; Baller et al. 2001)? 

 

1.4 Research significance 

In this research, the KKF method will be used to process long term of GPS 

subsidence data in Louisiana, in order to overcome the flaw of low point density and 

predict large area of subsidence accurately, because KKF as the combination of 

Kalman Filter and Kriging interpolation, not only has features of Kriging interpolation, 

but also has features of Kalman Filter (Mardia et al. 1998; Lu, C. et al. 2012). So this 
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method can be unique with respect to subsidence survey and prediction, rather than 

some other common techniques such as InSAR, especially when large area of 

subsidence data is too hard to collect (Lu, C. et al. 2012). Besides, KKF may be 

advantageous to interpolate and predict subsidence accurately because of commonly 

large interpolation error in the well-known interpolation process such as Kriging 

(Mardia et al. 1998; Olea 1999; Kalman 1960). 
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Chapter 2 Research Methods 

 

2.1 Research workflow 

Based on the above proposed research questions, the research methods by 

Mardia et al. in 1998 and Fotheringham et al. in 2002, and the characteristics of data 

which we are able to collect, methods used in this research can be summarized into a 

research workflow as follows (Mardia et al. 1998; Fotheringham et al. 2002): 

Data collection and preprocessing    

↓ 
KKF processing of GPS subsidence data 

↓ 
Validation of results 

↓ 

Factor data modeling 

↓ 

Visualization of modeling results, accuracy evaluation, results 

analysis and comparisons 

Figure 3 Research workflow 
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2.2 Data collection 

In this research, the whole study site will be confined within the geographic 

boundaries of the state of Louisiana, USA. And the whole data collection work 

comprises of two parts as follows: GPS data collection and factor data collection. 

2.2.1. GPS data collection 

For GPS data collection on subsidence, a ftp server from National Geodetic 

Survey (NGS) websites is available online to download all sites of GPS data required 

since 1994 in this research, and the corresponding link can be shown as follows: 

ftp://www.ngs.noaa.gov/cors/rinex/ 

From this link and NGS websites, we can find that 18 GPS observation sites as a 

whole CORS (Continuously Operating Reference Station) system have been installed 

in Louisiana, and the distribution map of all GPS sites in the study area can be shown 

as follows: 

 

 
Figure 4 Distribution map for all GPS stations, green points: GPS stations 
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All of 18 stations of GPS data in last 5 years to now, will be planned to download 

by this NGS link, and the original format for this set of data is kept compressed Rinex 

and it is not available for a direct use on subsidence survey, thus, this original set of 

downloaded data should be preprocessed by geodetic software such as GIPSY by 

NASA JPL (Jet Propulsion Laboratory) to be converted to the format with longitude, 

latitude and height of sites. Changes of height will be used for quantifying the 

subsidence for GPS sites, and by using this GIPSY software by NASA JPL, the height 

accuracy for all GPS sites can be controlled within 2mm. 

2.2.2. Factor data collection 

According to the former research on subsidence factors in Louisiana, multiple 

kinds of data such as groundwater, oil, natural gas, sediment, faulting will be selected 

to collect (Abdollahzadeh et al. 2013).  

For groundwater collection, we can collect and record the data on groundwater 

levels for all of observation wells in Louisiana online, from the USGS website 

(Extracted from: http://groundwaterwatch.usgs.gov/). 

Besides, for factor data collection, the Louisiana Department of Natural 

Resources have provided a good website to collect required factor data in GIS format, 

such as oil, gas and sediment (Abdollahzadeh et al. 2013). This website is as follows: 

http://sonris.com 

Also, the distribution map of factor data such as oil and gas in Louisiana parish 

units can be shown in the following map, and maps for other kinds of factor data such 
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as sediment can be made as well. 

 
Figure 5 Distribution of oil and gas wells in Louisiana (Extracted from: 

http://sonris-www.dnr.state.la.us/gis/agsweb/IE/JSViewer/index.html?TemplateID=18
1) 
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Figure 6 Distribution of sediment measurement sites in Louisiana (Extracted from: 
http://sonris-www.dnr.state.la.us/gis/agsweb/IE/JSViewer/index.html?TemplateID=18

1) 

 

For factor data collection on anthropogenic mass loading, we can use the image 

data from the National Land Cover Database (NLCD) website to collect the data of 

buildings cover in Louisiana (Extracted from: http://www.mrlc.gov/nlcd2011.php), 

and extract useful information on mass loading, such as characteristics of huge city 

buildings in the study site (Abdollahzadeh et al. 2013; Kent and Dokka 2012). 

 

2.3 Main methods 

As is discussed in the research workflow above, the main methods used in this 

research will include 3 parts as follows: 
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2.3.1. KKF 

Kalman Filter, proposed by Kalman in 1960, can be a feasible method to process 

dynamic changing data in time series, calculating each state of the optimal estimation 

for this data (Kalman 1960; Zhang 2008; Mardia et al. 1998). It is a recursive process 

to make estimations in general state models, by minimizing the converged errors 

which data contains (Kalman 1960; Mardia et al. 1998; Zhang 2008). 

On the other side, Kriging interpolation method from geo-statistics can be used 

for estimating large area of spatial data from some spatial correlated scatter points 

nearby, so it can be a possible means to predict data in spatial domain (Mardia et al. 

1998; Zhang 2008; Olea 1999). 

Then, based on the respective characteristics for such two methods above, a 

combination work between Kalman filter and Krging interpolation may be possible 

for data prediction in spatio-temporal domain, and KKF (Kriged Kalman Filter) 

proves an applicable model to process spatio-temporal data (Mardia et al 1998; 

Kalman 1960; Zhang 2008; Olea 1999). 

The fundamental model of KKF: 

First we consider the state space model from Kalman Filter as follows (Mardia et 

al. 1998; Kalman 1960; Zhang 2008): 

x(t) = αααα(t) + εεεε(t) 

αααα(t) = P α(t - 1) + Kη(t) 

The upper equation is the observation equation, and the lower one is the system 

equation, also, x(t) is the observation variable at state t, h is the parameter p-vector, 
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α(t) is the state p-vector, ε(t) is the scalar observation error, P : p p is the 

transition matrix, K : p x d is the innovation coefficient matrix, and η(t) is the 

innovation (or system error or state noise) d-vector (Mardia et al. 1998; Kalman 

1960). 

Then in spatio-temporal domain, the observation variable x(t) should be extended 

to x(s, t) for spatio-temporal data (Mardia et al. 1998).  

Also, x(s, t) can be decomposed and expressed as follows (Mardia et al. 1998): 

x(s, t) = ｕｕｕｕ(s, t) + ε(s, t) 

ｕｕｕｕ( s , t ) = ( s ) ( t )    + ( s ) ( t ) + . . . + (s) ( t ) = 

αααα( t ) 

Thus, the observation equation of KKF can be shown as follows (Mardia et al. 

1998; Kalman 1960): 

x(s, t) = ( s ) ( t )    + ( s ) ( t ) + . . . + (s) ( t ) + ε(s, t) 

= αααα( t ) + ε(s, t) 

And the system equation of KKF can also be same as the one of classic Kalman 

Filter as follows (Mardia et al. 1960; Kalman 1960): 

αααα(t) = P α(t - 1) + Kη(t) 

Moreover, in the observation equation of KKF, the error term ε(s, t) should be 

spatial correlated (Mardia et al. 1998), and it is shown as follows (Mardia et al. 1998): 

cov(εεεε(s, t), εεεε(s', t' ) = 0 for t  t' all s, s' 
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These two important equations above, the KKF observation equation and the 

KKF system equation can be regarded as the general format of the KKF model 

(Mardia et al. 1998). While, for applications to process spatial temporal data, the 

principle fields should be calculated by the Kriging predictor, and the transition 

matrix and other parameters should also be specified by EM 

(Expectation–maximization) algorithm (Mardia et al. 1998; Dempster et al. 1977; 

Olea 1999). 

2.3.2. GWR modeling 

Geographically weighted regression (GWR) is proposed to solve problems on 

spatial heterogeneity in geo-statistics, using a linear multiple regression model with 

varied coefficients in different geographic areas (Fotheringham et al. 2002; Shang et 

al. 2011). By calculating varied coefficients as respective weights for predictors, 

GWR can also be a good tool to show relationships between the dependent variable 

and predictors, telling us which factor contribute to the dependent variable most in a 

special geographic area (Fotheringham et al. 2002; Shang et al. 2011). 

The fundamental model of GWR: 

As a linear multiple regression model, GWR can be shown as follows (Shang et 

al. 2011; Fotheringham et al. 2002): 

y(g) = (g)+ (g) + (g) +…+ (g) + ε 

The varied coefficients β can be calculated in the following way (Fotheringham 

et al. 2002; Shang et al. 2011): 
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β=   

W(g), is the Gaussian weight function (Fotheringham et al. 2002; Shang et al. 

2011) (Extracted from: http://www.cs.cmu.edu/~schneide/tut5/node12.html).  

GWR modeling on subsidence: 

In this research, multiple kinds of collected data with useful attribute information, 

which contribute to subsidence in Louisiana, such as groundwater, oil, natural gas, 

sediment, faulting and anthropogenic mass loading, should be totally quantified to 

numeric data as important inputs to predictors in GWR model, such as groundwater 

level of each aquifer in a certain site (Fotheringham et al. 2002; Shang et al. 2011; 

Abdollahzadeh et al. 2013). After GWR modeling, the varied coefficients as GWR 

results should be identified in census tract unit (Fotheringham et al. 2002; Shang et al. 

2011). 

The calculating process of GWR can be made by ArcGIS software, and the 

results on varied coefficients can be visualized as raster files (Fotheringham et al. 

2002; Shang et al. 2011). 

For analysis work of results, GWR results can be made a comparison with OLS 

ones, with respect to prediction accuracy on subsidence, expecting to show the 

advantage of GWR (Fotheringham et al. 2002; Shang et al. 2011; Hayashi and Fumio 

2000). Thus, after GWR modeling process in this research, we could know the 

possible distribution of main factors on fast subsidence rates for each census tract in 

the study site in Louisiana, which can be used for making special and correct 

treatments on subsidence in certain areas (Shang et al. 2011). 
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2.3.3 The spatial-lag model and the spatial-error model 

In this research, we will use the GWR model to show the spatial heterogeneity of 

factor data which contributes to subsidence in Louisiana (Fotheringham et al. 2002; 

Shang et al. 2011). While, if the GWR results can’t reflect the spatial heterogeneity so 

well and clearly, we will have to consider other geo-statistics models, such as the 

spatial-lag model or the spatial-error model, so as to make a better modeling process 

(Baller et al. 2001; Wang 2006; Wang et al. 2014). 

The fundamental model of OLS: 

In the modeling process of geographical data, when there is no clear spatial 

autocorrelation or spatial dependency for this set of data, we can simply use the OLS 

(Ordinary Least Square) model to show the relationships between the dependent 

variable and the independent varibles (Wang 2006; Wang et al. 2014; Hayashi and 

Fumio 2000; Knegt et al. 2010). And the fundamental model is as follows: 

yyyy    = = = = XXXXββββ    + + + + εεεε 

y is the dependent variable vector, and X is the independent variables vector, β

is the regression coefficients vector, and εis the errors vector (Hayashi and Fumio 

2000; Wang 2006; Wang et al. 2014). 

While, when there is spatial dependency for this set of geographical data, the 

residuals will not be independent each other and the OLS model will not be suitable 

(Hayashi and Fumio 2000; Wang 2006; Wang et al. 2014; Knegt et al. 2010). So the 

spatial-lag model should be introduced, considering spatial dependency (Baller et al. 

2001; Wang 2006; Wang et al. 2014; Knegt et al. 2010). The dependent variable mean 
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in neighboring areas named “spatial lag” will be added as an extra independent 

variable, based on the OLS model (Baller et al. 2001; Wang 2006; Wang et al. 2014; 

Knegt et al. 2010). So the fundamental model of spatial-lag is as follows: 

yyyy    = = = = ρρρρWyWyWyWy    + + + + XXXXββββ+ + + + εεεε 

ρ is the spatial lag regression coefficient, W is the weights matrix (Baller et al. 

2001; Wang 2006; Wang et al. 2014; Knegt et al. 2010). While, the spatial-lag model 

is not an autoregressive one in time-series analysis, so another model named 

spatial-error model should be introduced for time-series modeling (Baller et al. 2001; 

Wang 2006; Wang et al. 2014; Knegt et al. 2010). The error term will be regarded as 

autoregressive, based on the OLS model (Baller et al. 2001; Wang 2006; Wang et al. 

2014; Knegt et al. 2010). So the fundamental model of spatial-error is as follows: 

yyyy    = = = = XXXXββββ+ + + + uuuu 

uuuu    = = = = λλλλWuWuWuWu    + + + + εεεε 

λ is the spatial autoregressive coefficients vector, ε is independent (Baller et al. 

2001; Wang 2006; Wang et al. 2014; Knegt et al. 2010). 

Thus, like the GWR model, the spatial-lag model and the spatial-error model can 

be also used to make the factor data modeling process. In the modeling process, like 

GWR, the factor data will be the independent variables and the subsidence one will be 

the dependent variable (Fotheringham et al. 2002; Shang et al. 2011). 
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Chapter 3 Spatio-temporal Pattern Visualizations of Subsidence 

 

3.1 The general equations for KKF and main processing steps 

As the research workflow shows, the KKF processing for GPS subsidence data 

can be operated after data collection. And the chapter for research methods also shows 

the fundamental model of KKF as follows: 

x(s, t) = ( s ) ( t )    + ( s ) ( t ) + . . . + (s) ( t ) + ε(s, t) 

= αααα( t ) + ε(s, t) 

αααα(t) = P α(t - 1) + Kη(t) 

The upper equation above is the observation equation for KKF and the lower one 

is the state equation (Kalman 1960; Mardia et al. 1998), x(s, t) is the observation 

variable for spatio-temporal data, h is the parameter p-vector, α(t) is the state 

p-vector, ε(t) is the scalar observation error, P : p p is the transition matrix, K : p x 

d is the innovation coefficient matrix, and η(t) is the innovation (or system error or 

state noise) d-vector (Mardia et al. 1998; Kalman 1960). 

While, in the application for KKF processing, we should specify all of essential 

and intermediate parameters, such as our GPS subsidence data processing (Mardia et 

al. 1998). The past research work by Mardia et al. shows the specification method for 

the KKF model parameters, so from this method we can summarize that which 

essential variables or parameters should be summarized, and these essential 
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parameters are the covariance matrix, the bending energy matrix B, the principal 

fields, the parameter matrix h, the transition matrix P (Mardia et al. 1998; Kalman 

1960). 

Besides, based on these specified parameters, we can also summarize the main 

steps for KKF processing as follows (Mardia et al. 1998; Kalman 1960): 

Step 1: Based on the characteristics for our collected data, make a variogram and 

fit a model to this variogram (Mardia et al. 1998; Olea and Ricardo 1991). 

Step 2: Use the model from the last step to generate the covariance matrix for 

this set of data (Mardia et al. 1998; Olea and Ricardo 1991). 

Step 3: Use the covariance matrix from the last step to calculate the bending 

energy matrix B (Mardia et al. 1998). 

Step 4: Use the B matrix from the last step to generate the principal fields 

(Mardia et al. 1998). 

Step 5: Use the principal fields from the last step to calculate the parameter 

matrix h from Kalman Filter (Mardia et al. 1998). 

Step 6: Use Kalman Filter and EM algorithm to generate the transition matrix P, 

and also generate the spatio-temporal fieldα(s, t) (Mardia et al. 1998; Dempster et al. 

1977; Shumway and Stoffer 1982; Olea 1999). 

Step 7: Use the spatio-temporal fieldα(s, t) from the last step to make a 

interpolation in time series (Mardia et al. 1998; Dempster et al. 1977; Shumway and 

Stoffer 1982; Olea 1999). 
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Step 8: Use the interpolation result from the last step to make a raster, showing 

the distribution of subsidence rates in the study site (Mardia et al. 1998). 

Before we can process the collected data by GPS observation, this set of original 

data should be preprocessed by the geodetic software such as NASA’s GIPSY, and 

the final format of data by preprocessing will be longitude, latitude and height for the 

GPS station, then we can use the change of heights to calculate the subsidence rate. In 

this research, all of the preprocessing work by GIPSY (the version: 6.2) has been 

finished by Zhengsong Chen from Hubei Earthquake Administration in China. 

In this research, we plan to process the GPS subsidence data by KKF, so as to 

show the distribution of subsidence rates in the study site, thus, in the following, we 

will discuss how to generate the variogram model for our subsidence research, and 

also show the final processing results by KKF (Mardia et al. 1998; Olea and Ricardo 

1991). 

 

3.2 Variogram 

The semi-variogram (or variogram) modeling is essential for KKF processing, 

because KKF is a special type of Kriging interpolation method (Mardia et al. 1998; 

Olea and Ricardo 1991; Olea 1999). And the calculation formula for the 

semi-variogram (or variogram) is as follows: 

γ(h) =  ∑(  
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The variable h is the distance of each pair of points in the study site, N is the total 

number of point pairs (Olea and Ricardo 1991). 

In this research, we will collect GPS data from 18 coastal stations in Louisiana, 

and use this set of data to calculate the average subsidence rate each year from 2011 

to 2013. The distribution map of coastal stations in the study site is as follows: 

 

 
Figure 7 Distribution of 18 GPS stations in the study site, green points: GPS stations 

 

Next, after the whole set of original data has been preprocessed by GIPSY by 

Zhengsong Chen, we can start to calculate the average subsidence rate each year for 

each GPS station in the study site. The preprocessing results by GIPSY by Zhengsong 

Chen show the each day’s height value in one year for each GPS station, so we can 

use all of height values for one GPS station in one year to generate a straight line by 

Ordinary Least Square (OLS), and the slope for this straight line will be used to 

calculate the each year’s subsidence rate for the GPS station (Shinkle and Dokka 2004; 
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Hayashi and Fumio 2000). Thus, we can summarize the calculation formula for the 

subsidence rate as follows: 

Each year’s subsidence rate = the slope * one year 

(Shinkle and Dokka 2004; Hayashi and Fumio 2000) 

Based on this calculation formula and the research methods by Shinkle and 

Dokka in 2004, Hayashi and Fumio in 2000, we can calculate each year’s subsidence 

rate from 2011 to 2013 for all of GPS stations as follows (Shinkle and Dokka 2004; 

Hayashi and Fumio 2000): 

Table 1 Each year’s subsidence rate (2011-2013) for all of GPS stations in the study 
site, marked by Rate 2011, Rate 2012 and Rate 2013 (Unit: m/year) 

Site Longitude Latitude Slope 2011 Slope 2012 Slope 2013 Rate 2011 Rate 2012 Rate 2013 

1LSU -91.1803 30.40742 0.000002 -0.00005 -0.00003 0.00073 -0.0183 -0.01095 

AWES -90.983 30.10027 0.000005 -0.00002 -0.00003 0.001825 -0.00732 -0.01095 

BVHS -89.4064 29.33681 -0.000007 -0.000004 -0.000002 -0.002555 -0.001464 -0.00073 

CAMR -93.3251 29.7985 0.00009 0.000008 -0.000004 0.03285 0.002928 -0.00146 

COVG -90.0955 30.47591 0.000002 0.0000007 0.000003 0.00073 0.0002562 0.001095 

DQCY -93.4453 30.45118 0.00012 0.00002 -0.00002 0.0438 0.00732 -0.0073 

DSTR -90.3822 29.96456 0.000001 -0.00001 -0.000005 0.000365 -0.00366 -0.001825 

ENG5 -89.9417 29.87896 -0.000001 -0.000009 0.000009 -0.000365 -0.003294 0.003285 

ENG6 -89.9421 29.87918 0.0000003 -0.000008 -0.00001 0.0001095 -0.002928 -0.00365 

FSHS -91.5022 29.80531 -0.000004 0.000001 -0.00001 -0.00146 0.000366 -0.00365 

GRIS -89.9573 29.26553 -0.00002 -0.00002 0.00002 -0.0073 -0.00732 0.0073 

GVMS -90.9036 30.31439 0.000003 -0.000006 -0.000002 0.001095 -0.002196 -0.00073 

HAMM -90.4676 30.51308 0.00017 0.000005 0.000002 0.06205 0.00183 0.00073 

LMCN -90.6613 29.25498 -0.00002 -0.00002 0.00004 -0.0073 -0.00732 0.0146 

LWES -90.3494 29.90037 -0.00002 0.000002 0.00001 -0.0073 0.000732 0.00365 

MCNE -93.2177 30.18057 0.0000003 0.000007 -0.00002 0.0001095 0.002562 -0.0073 

THHR -92.0806 30.52935 0.00011 0.000009 0.0000002 0.04015 0.003294 0.000073 

TONY -92.0451 30.22138 0.000006 0.00002 0.000009 0.00219 0.00732 0.003285 

 

Based on calculation results for subsidence rates, and the research methods by 

Mardia et al. in 1998 and Olea and Ricardo in 1991, we can generate a 
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semi-variogram as follows, using the semi-variogram formula above (Mardia et al. 

1998; Olea and Ricardo 1991): 

 

Figure 8 Semi-variogram for calculated subsidence rates in the study site, blue points: 
averagedγvalues, red points: the fitted exponential model, the horizontal axis unit: 

degree 

 

For this semi-variogram, we have fixed the bin size and number of bins in the 

horizontal axis h, so as to calculate the average γ value in each bin (blue points in 

the above figure) (Olea and Ricardo 1991; Mardia et al. 1998). Then based on the 

points for these γ values, we can use a model to fit these points (red points in the 

above figure) (Olea and Ricardo 1991; Mardia et al. 1998). 

In this research, the bin size is fixed to 0.1, and the number of bins is fixed to 10. 

Then we choose the exponential model to fit, and the equation of fitted model is as 

follows (Olea and Ricardo 1991; Mardia et al. 1998): 

γ = 1.7316E-08 + 0.0002 (1 – ) 

 

3.3 Final processing results 

As chapter 3.1 shows, the above KKF process, including calculating and 

specifying all kinds of variables and parameters for collected spatio-temporal GPS 
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data can be coded into an executable program based on ArcGIS software. In this 

research, based on the above generated variogram and the research method by Mardia 

et al. in 1998, the coded program for KKF has been done to process subsidence rate 

data from GPS observation, with the help of ArcGIS software, and the final results are 

as follows (Mardia et al. 1998): 

 

 
Figure 9 Distribution of subsidence rates in 2011, green points: GPS stations (The 

map data for parishes is extracted from: http://atlas.lsu.edu) 
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Figure 10 Distribution of subsidence rates in 2012, green points: GPS stations (The 

map data for parishes is extracted from: http://atlas.lsu.edu) 

 

 
Figure 11 Distribution of subsidence rates in 2013, green points: GPS stations (The 

map data for parishes is extracted from: http://atlas.lsu.edu) 
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For each of 3 figures above (Figure 10, 11, 12), the dark color represents the area 

with the high subsidence rates, and the light one represents the area with low 

subsidence rates. From these 3 figures above on final processing results by KKF, we 

can find the spatio-temporal pattern of subsidence rates distributions in 2012 is similar 

to the one in 2013, and we can also find that there is a stable “subsidence dark valley” 

with relative high subsidence rates around New Orleans area. Besides, we can also 

estimate that, the subsidence rate within this “subsidence dark valley” from January 

1st 2012 to December 31st 2013 equals to about 10 mm per year. 

 

3.4 Validation of KKF results 

By KKF, the distributions of subsidence rates in 2011, 2012 and 2013, have been 

generated, while, are these KKF results valid in this research? Thus, some work 

should be done, so as to validate these KKF results.  

Firstly, we validate the model by using the cross-validation approach (Geisser 

and Seymour 1993). Each time, a spatio-temporal field was calculated by leaving one 

GPS station out, and compare the KKF modeled data with the GPS station data 

(Geisser and Seymour 1993). It is expected that if the surface motion rate data have 

strong spatial and temporal continuity, some GPS stations would be well replicated by 

the KKF model. The Root Mean Square Error (RMSE) was used to evaluate how the 

predicted surface motion rates were compared to the observed surface motion rates 

(Geisser and Seymour 1993). Figure 3 shows the RMSEs of the GPS stations, based 

on research methods by Geisser and Seymour in 1993 and Mardia et al. in 1998 
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(Geisser and Seymour 1993; Mardia et al. 1998). The GPS stations located inland 

have greater RMSE values (up to 40 mm/year), suggesting that those stations could 

not be replaced by model prediction. The reason might be in that the inland area is 

more directly related to human activities and therefore the land surface motion 

process could be very complex and hard to be predicted from the surrounding GPS 

stations. Therefore, more GPS stations need to be allocated towards the inland to 

capture the spatial continuity. The alternative to building more GPS stations is to use 

some regression models to enhance the spatio-temporal prediction model. 

The stations “LWES”, “BVHS”, and “LMCN” have quite low RMSE (~5 

mm/year). These stations are located where major wetlands and swaps of Louisiana 

are preserved. The spatio-temporal model predicted the land surface motion rate well 

even if there were some missing data. 

 
Figure 12 RMSE of the GPS stations from cross-validation 
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Sinkhole should be a threatening phenomenon, especially for people living in 

bayou areas all over the world. Indeed, such well-known phenomenon had emerged 

near Bayou Corne in Louisiana in August, 2012, and we term it “Bayou Corne 

Sinkhole” (Cusanza 2013; Jones and Blom 2014). The collapse of one cavern in the 

salt dome under the bayou had resulted in this sinkhole, and the sinkhole size had 

been increasing from 1 hectare (Cusanza 2013; Jones and Blom 2014). The 

government had given emergent warnings to people who were living near Bayou 

Corne, and many people were forced to evacuate (Cusanza 2013; Jones and Blom 

2014). 

For this sinkhole in Bayou Corne, the former study by experts shows that the 

sidewall collapse rather than faulting had formed this threatening sinkhole, which 

involves the disturbed rock zone filling the cavern void (Jones and Blom 2014; 

Louisiana Department of Natural Resources 2013b). Besides, by radar interferometry, 

experts had also detected the pre-event and post-formation surface deformation near 

Bayou Corne, showing the significant vertical and horizontal ground movement 

(Jones and Blom 2014; Jones and Blom 2015).  

On the other hand, this vertical downward surface movement detected by radar 

interferometry, can be observed in the form of subsidence, so we can use subsidence 

to signify sinkholes (Jones and Blom 2014; Jones and Blom 2015; Dokka 2006; Kent 

and Dokka 2012). Besides, the precursory surface movement detected by radar 

interferometry in Bayou Corne, means that the surrounding subsidence may be 

accelerated even prior to the sinkhole event (Jones and Blom 2014; Jones and Blom 
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2015). In fact, such accelerating subsidence near Bayou Corne had been surveyed by 

many organizations such as Fenstermaker and Itasca when the sinkhole emerged in 

2012, and these organizations are still monitoring the sinkhole (Jones and Blom 2014; 

Jones and Blom 2015; Fenstermaker 2014; Itasca 2013). 

In this research, so as to validate the generated KKF results, the Bayou Corne 

Sinkhole location should be added to the distribution maps of subsidence rates from 

2011 to 2013 as follows, based on the research methods by Mardia et al. in 1998, Kent 

and Dokka in 2012, Jones and Blom in 2014 and in 2015 (Mardia et al. 1998; Cusanza 

2013; Jones and Blom 2014; Jones and Blom 2015): 

 
Figure 13 Distribution of subsidence rates (Unit: mm/year) in the study site in 2011 

by KKF, green points: GPS stations, purple point: the Bayou Corne Sinkhole location 
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Figure 14 Distribution of subsidence rates (Unit: mm/year) in the study site in 2012 

by KKF, green points: GPS stations, purple point: the Bayou Corne Sinkhole location 

 

 
Figure 15 Distribution of subsidence rates (Unit: mm/year) in the study site in 2013 

by KKF, green points: GPS stations, purple point: the Bayou Corne Sinkhole location 

 

Figure 13 shows the spatial distribution of subsidence rate in the period of 2011, 

about one year prior to the Bayou Corne Sinkhole event. This distribution in 2011 

appears to be uniform, with no significantly high subsidence area. There was no 
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obvious subsidence in this area during the year 2011.The vertical motion rate (Kent 

and Dokka 2012) around Bayou Corne were positive, ranging from 0 to 0.005m per 

year (5 mm/year). It was consistent with the previous reports that the surface in this 

area had even made a slight upward movement in 2011 (Jones and Blom 2014). Thus, 

from Figure 4, we have not detected any significant precursory subsidence or vertical 

ground displacement around Bayou Corne Sinkhole in the period of 2011 (Dokka 

2006; Kent and Dokka 2012). In contrast to Figure 13, Figure 14 shows a much 

different and abnormal distribution of land vertical motion rates close to the sinkhole 

event (August 2012), with a significant accelerating subsidence to the north of Bayou 

Corne. The surface motion subsidence rate was about -15mm/year near Baton Rouge 

and north of Bayou Corne. Likewise, Figure 15 shows the spatial pattern of the 

surface motion in 2013 after the sinkhole event. The negative motion (subsidence) 

was found around Baton Rouge and the Bayou Corne Sinkhole (Dokka 2006; Cusanza 

2013). And it is interesting to see that the center of the negative motion area coincides 

with the sinkhole (Cusanza 2013). However, the relatively large RMSEs of the GPS 

stations around the sinkhole (Figure 12) suggest that to better monitor the abrupt 

changes such as sinkhole events, more GPS stations are required. 

Thus, from all of figures (Figure 13, 14, 15), we can confirm that the land area 

around Bayou Corne had experienced an abrupt change caused by the sinkhole event 

in August 2012. The upward motion rate (5 mm/year) in 2011 was changed to -14 

mm/year downward motion in 2013 because of the sinkhole. Many research 

organizations also reported the negative land vertical motion caused by Bayou Corne 
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Sinkhole. For example, Itasca measured the land subsidence rate near Bayou Corne at 

about -0.4 inch/year (about -10 mm/year) (Itasca 2013). Our result is consistent with 

the previously reported land vertical motion around the Bayou Corne (Louisiana 

Department of Natural Resources 2013b; Fenstermaker 2014; Jones and Blom 2014, 

2015). 

Besides, so as to validate KKF results in this research, for the same set of data, 

we can also use results by Empirical Bayesian Kriging to compare and show the 

differences (Extracted from: 

http://www.esri.com/news/arcuser/1012/empirical-byesian-kriging.html) (Olea 1999). 

Based on the research method by Kent and Dokka in 2012, the results by Emprical 

Bayesian Kriging are as follows, with contours and the Bayou Corne Sinkhole 

location (The interpolation method is extracted from: 

http://www.esri.com/news/arcuser/1012/empirical-byesian-kriging.html) (Cusanza 

2013; Kent and Dokka 2012): 
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Figure 16 Distribution of subsidence rates with contours (Unit: m/year) in 2011 by 
Empirical Bayesian Kriging, green points: GPS stations, purple point: the Bayou 

Corne Sinkhole location (The map data for parishes is extracted from: 
http://atlas.lsu.edu) 
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Figure 17 Distribution of subsidence rates with contours (Unit: m/year) in 2012 by 
Empirical Bayesian Kriging, green points: GPS stations, purple point: the Bayou 

Corne Sinkhole location (The map data for parishes is extracted from: 
http://atlas.lsu.edu) 
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Figure 18 Distribution of subsidence rates with contours (Unit: m/year) in 2013 by 
Empirical Bayesian Kriging, green points: GPS stations, purple point: the Bayou 

Corne Sinkhole location (The map data for parishes is extracted from: 
http://atlas.lsu.edu) 

Comparisons between Figure 13 and Figure 16 show that, in 2011, the result by 

Empirical Bayesian Kriging is a little similar to the one by KKF. From contours we 

can find that the distribution of subsidence rates in Figure 13 and the one in Figure 16 

are similar, while, we can also find some clear differences. We can find that in Figure 

13 the subsidence rates near Bayou Corne are positive, ranging from 0 to 0.005m/year, 

but in Figure 16 that these values are about zero. 

Comparisons between Figure 14 and Figure 17 show that, in 2012, the result by 

KKF and the one by Empirical Bayesian Kriging are also similar, while we can also 

find clear and big differences. One of these differences is that in Figure 14, we can 

find a subsidence area near Bayou Corne at about -0.01m/year, but in Figure 17 we 

can’t find such subsidence area near Bayou Corne. 
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Comparisons between Figure 15 and Figure 18 show that, in 2013, the result by 

KKF and the one by Empirical Bayesian Kriging are very different. The distribution 

of subsidence rates in Figure 15 shows there is a clear subsidence area near Bayou 

Corne at about -0.01m/year, while from contours in Figure 18, this distribution is so 

different that the subsidence rates near Bayou Corne are clearly less, ranging from 0 

to -0.005m/year. 

From the above comparisons, we can summarize that by Empirical Bayesian 

Kriging rather than KKF, the processed results in this research are very different 

because of significant interpolation error, and they can’t also be validated by the 

Bayou Corne Sinkhole knowledge (Olea 1999; Cusanza 2013; Jones and Blom 2014; 

Jones and Blom 2015). Thus, because of smaller interpolation error, KKF is 

advantageous to other models for processing subsidence data, and KKF results have 

been validated well in this research (Olea 1999; Mardia et al. 1998; Kalman 1960). 

 

3.5 Summary and discussion 

In this chapter, we have discussed the KKF model to process the GPS subsidence 

data. Based on the research work by Mardia et al. in 1998, the steps on how to 

calculate the essential parameters in the KKF model have been summarized (Mardia 

et al. 1998). Then based on our subsidence data collected, we have calculated each 

year’s subsidence rate for each of coastal observation stations, and as an application 

example, we have repeated the calculation process for essential parameters, and 

generated the final results by KKF processing (Mardia et al. 1998). From these final 
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results, we can summarize that in coastal Louisiana areas, from 2012 to 2013, the 

“subsidence dark valley”, which shows areas with clear high subsidence rates at about 

10 mm each year, was keeping almost near the same area (New Orleans area) in the 

coast of Louisiana. What’s more, so as to validate these KKF results, the disaster 

knowledge of Bayou Corne Sinkhole in 2012, have been used in this research. 

Subsidence near Bayou Corne had been accelerated during the sinkhole year (2012), 

and this accelerating subsidence area had also been expanding since 2012. What’s 

more, the subsidence rate near Bayou Corne had been stabilized at nearly 10mm per 

year during and after the sinkhole accident (2012-2013), and this stabilized 

subsidence rate is basically consistent with the measured subsidence rate at about 0.4 

inch/year near the Bayou Corne Sinkhole from the Itasca-Subsidence Report, 

validating our study by KKF (Itasca 2013; Jones and Blom 2014; Jones and Blom 

2015). Thus, we can conclude that the results by KKF are basically valid in this 

research. 

We can also summarize that, the first step of KKF processing, the variogram 

modeling can be so important to the final processing results (Mardia et al. 1998; 

Kalman 1960; Olea and Ricardo 1991; Olea 1999). Thus, in the variogram modeling 

process, we should fix a proper value for the bin size, and also a proper one for the 

number of bins, by observing the distances between the model line and the points for 

average variogram in each bin (Olea and Ricardo 1991). If these distances are mostly 

near, the variogram modeling process can be good (Olea and Ricardo 1991). 
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Chapter 4 Modeling of Factor Data Contributing to Subsidence 

 

4.1 The introduction of GWR and its application steps 

As the chapter for research methods shows, the fundamental equations for GWR 

(Geographically Weighted Regression) (Fotheringham et al. 2002; Shang et al. 2011) 

are as follows: 

y(g) = (g)+ (g) + (g) +…+ (g) + ε 

 

β=   

y is dependent variable, , ,…  are predictor variables, g is known 

coordinates for observation points (Fotheringham et al. 2002; Shang et al. 2011), β are 

the varied coefficients as the GWR results (Fotheringham et al. 2002; Shang et al. 

2011), and W(g), is the Gaussian weight function (Fotheringham et al. 2002; Shang et 

al. 2011) (Extracted from: http://www.cs.cmu.edu/~schneide/tut5/node12.html) 

Thus, in this research, the GWR modeling process for subsidence rates data can 

be summarized as the following steps: 

Step 1: Factors data collection and quantification (Fotheringham et al. 2002) 

Step 2: Data input as variables and operating GWR model in ArcGIS 

(Fotheringham et al. 2002) 

Step 3: Results visualization and accuracy evaluation (Fotheringham et al. 2002) 
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In the following, we will discuss these steps in details for this research, and show 

the results by GWR and evaluate the modeling accuracy. 

 

4.2 Factor data collection and quantification 

As the former research by Abdollahzadeh et al. in 2013 and the above data 

collection chapter for GWR modeling show, the types of factors data for subsidence 

rates in this research, should be groundwater withdrawal data, oil and gas pumping 

data, sediment data, faulting and mass loading data (Shang et al. 2011; Abdollahzadeh 

et al. 2013). Besides, as the last chapter shows, the disaster named “Bayou Corne 

Sinkhole”, which emerged in 2012, had caused accelerating subsidence in the study 

site after 2012, so we should collect and quantify the factor data for this well-known 

sinkhole in Louisiana (Cusanza 2013; Jones and Blom 2014; Jones and Blom 2015). 

In this research, we focus on the subsidence situations for the coastal census tracts in 

Louisiana, so all of coastal census tracts near GPS stations in the study site are the 

selected geographic units from which we will collect factor data for GWR. And for 

factor modeling in this research, the study site with all of selected census tracts can be 

mapped as follows: 
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Figure 19 Study site with 736 census tracts, green points: GPS stations (The map data 

for census tracts is extracted from: http://atlas.lsu.edu) 

 

Thus, in the following, for these 736 coastal census tracts in the study site in 

Louisiana, we will discuss how to collect and quantify these types of factor data in 

details. 

Groundwater withdrawal: 

The former research by Shang et al. in 2011 shows that, many areas of 

subsidence relates to the groundwater level variations very much, based on the GWR 

modeling results (Shang et al. 2011; Abdollahzadeh et al. 2013). Thus, for data 

collection of groundwater level changes, we should use the USGS website online to 

download data from all of available water wells in the study site above (Extracted 

from: http://groundwaterwatch.usgs.gov/) (Shang et al. 2011). In this research, we 

decide to record changes of the groundwater levels for all of available wells in the 
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period of 2013 (Shang et al. 2011), then based on these points of changes for 

groundwater levels in the study site, we will make an interpolation process by Inverse 

Distance Weighting (IDW) method (Shang et al. 2011; Shepard and Donald 1968). 

This interpolation raster result shows the predicted distribution for average changes of 

groundwater level in the study site. Then, for quantifying the groundwater data, we 

should record the average pixel value in each selected census tract as the average 

change of groundwater level in the period of 2013 for each census tract, and these 

recorded values are the quantified groundwater data as a factor for subsidence. 

So based on the research method by Shepard and Donald in 1968, the average 

change of groundwater level for each census tract in the study site can be mapped as 

follows (Shepard and Donald 1968): 

 
Figure 20 Average change of groundwater level for census tract (unit: feet) (The map 

data for census tracts is extracted from: http://atlas.lsu.edu) 
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Oil and gas pumping: 

For oil and gas data collection, we can use the SONRIS website as the above 

data collection chapter shows, and download the data on wells for oil and gas 

pumping in the study site (Abdollahzadeh et al. 2013)  (Extracted from: 

http://sonris.com & 

http://sonris-www.dnr.state.la.us/gis/agsweb/IE/JSViewer/index.html?TemplateID=18

1). 

Based on this data form the SONRIS website, we can calculate and map the 

density of pumping wells for each census tract in the study site as follows: 

 

 
Figure 21 Density of oil and gas pumping wells for census tract (The map data is 

extracted from: http://sonris.com & 
http://sonris-www.dnr.state.la.us/gis/agsweb/IE/JSViewer/index.html?TemplateID=18

1 & http://atlas.lsu.edu) 
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Sediment: 

For sediment data collection, the SONRIS website also provides sediment 

sampling data to download (Abdollahzadeh et al. 2013) (Extracted from: 

http://sonris-www.dnr.state.la.us/gis/agsweb/IE/JSViewer/index.html?TemplateID=18

1). After downloading this data, we can check the thickness of clay, sand and 

clay-sand mixture at each sampling site from the data attributes, and interpolate all 

sampling sites of data by Empirical Bayesian Kriging (Olea 1999) (Extracted from: 

http://sonris.com & 

http://sonris-www.dnr.state.la.us/gis/agsweb/IE/JSViewer/index.html?TemplateID=18

1 & http://www.esri.com/news/arcuser/1012/empirical-byesian-kriging.html): 

Then after the interpolation raster result is generated, for quantifying sediment 

data, in this research, we decide to record average pixel value as the average thickness 

of clay-sand mixture for each census tract, and map this quantification result in the 

study site as follows (the interpolation method is extracted from: 

http://www.esri.com/news/arcuser/1012/empirical-byesian-kriging.html): 
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Figure 22 Average thickness of clay-sand mixture sample for census tract (unit: feet) 

(The map data for sediment is extracted from: http://sonris.com & 
http://sonris-www.dnr.state.la.us/gis/agsweb/IE/JSViewer/index.html?TemplateID=18

1; the map data for census tracts is extracted from: http://atlas.lsu.edu) 

Faulting: 

As the above chapter for faulting data collection shows, we can download 

faulting data also from the USGS website, and by checking the map of faulting data 

and data attributes, we can find the rates, years and moving directions of faulting in 

Louisiana (Extracted from: http://earthquake.usgs.gov/hazards/qfaults/) 

(Abdollahzadeh et al. 2013). And from these data attributes, we can easily find that 

for all of coastal census tract in the study site, the faulting features are nearly the same, 

such as rate, moving direction and years. Thus, we will not consider the faulting data 

with no clear spatial heterogeneity as a factor, because the coefficients for the faulting 

data for different GPS station may be the same value, if we use GWR (Fotheringham 

et al. 2002; Shang et al. 2011). 
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Mass loading: 

In this research, the loading from buildings in the study site may produce 

subsidence (Abdollahzadeh et al. 2013). Thus, for loading data collection, we can use 

the image data after classification and extraction of buildings in the study site, from 

the National Land Cover Database (NLCD) website, to convert into the GIS map of 

buildings cover for all of census tracts as follows (Extracted from: http://atlas.lsu.edu/ 

& http://www.mrlc.gov/nlcd2011.php): 

 
Figure 23 Cover of buildings for each census tract in the study site (The map data is 

extracted from: http://atlas.lsu.edu/ & http://www.mrlc.gov/nlcd2011.php) 

Then by ArcGIS, we can check the data attribute and record the total area of 

buildings cover for each census tract. Then based on the recorded area value, we can 

calculate the percentage of building loading area for each census tract to quantify the 

mass loading data as a factor. So the mass loading data in the study site can be 

quantified and mapped as follows: 
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Figure 24 Percentage of buildings loading for each census tract (The map data is 

extracted from: http://atlas.lsu.edu/ & http://www.mrlc.gov/nlcd2011.php) 

 

Factors for the Sinkhole: 

The literature review in this research shows that some special human activities, 

such as mining accidents, can cause adverse subsidence in our living world (Kim et al. 

2006; Kim et al. 2009; Oh and Lee 2010; Oh et al. 2011). Besides, the former research 

by Korean experts shows that depth and distance from drift, DEM and slope gradient, 

groundwater permeability, geology and land use are the main factors for mining 

subsidence (Kim et al. 2006; Kim et al. 2009; Oh and Lee 2010; Oh et al. 2011; Coal 

Industry Promotion Board 1997; Coal Industry Promotion Board 1999). 

Likewise, as mining accidents which cause subsidence, sinkholes near bayou 

areas should also be caused by the collapse of underground caverns, and the last 

chapter shows that Bayou Corne Sinkhole by a cavern collapse, had been causing 
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accelerating subsidence in the study site after the sinkhole year (2012) (Kim et al. 

2006; Kim et al. 2009; Oh and Lee 2010; Oh et al. 2011; Cusanza 2013; Jones and 

Blom 2014; Jones and Blom 2015). The factors for sinkhole subsidence should be 

much similar to the ones for mining subsidence, and the former research also shows 

many factors such as distance to the sinkhole and sinkhole depth can contribute to 

accelerating subsidence (Kim et al. 2006; Kim et al. 2009; Oh and Lee 2010; Oh et al. 

2011; Cusanza 2013; Jones and Blom 2014; Jones and Blom 2015; Coal Industry 

Promotion Board 1997; Coal Industry Promotion Board 1999). Thus, besides the 

common factors, we should also collect and quantify factor data for sinkhole 

subsidence in the period of 2013, and in this research, we can calculate and record the 

inverse distance from the Bayou Corne Sinkhole location to the geographic center of 

each census tract in the study site, using ArcGIS (Kim et al. 2006; Kim et al. 2009; Oh 

and Lee 2010; Oh et al. 2011; Cusanza 2013; Coal Industry Promotion Board 1997; 

Coal Industry Promotion Board 1999). 

For factor data quantification, based on the research methods by Kim et al. in 

2006, Kim et al. in 2009, Oh and Lee in 2010, Oh et al. in 2011, Coal Industry 

Promotion in 1997 and 1999, we can map the inverse distances from the Bayou Corne 

Sinkhole location to the geographic center of each census tract as follows (Kim et al. 

2006; Kim et al. 2009; Oh and Lee 2010; Oh et al. 2011; Cusanza 2013; Coal Industry 

Promotion Board 1997; Coal Industry Promotion Board 1999): 
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Figure 25 Inverse distances from the Bayou Corne Sinkhole location to the 

geographic center of each census tract in the study site (unit: 1/km) (The map data for 
census tracts is extracted from: http://atlas.lsu.edu) 

 

4.3 GWR results 

After the above factor data quantification process, we can start GWR modeling. 

Firstly, we should fix which types of quantified factor data above should be input as 

the predictor variables in the GWR model, on the other hand, by KKF, the subsidence 

rates data in 2013 should be input as the dependent variable in the GWR model 

(Fotheringham et al. 2002). 

In this research, we decide to pick up 5 types of quantified factor data 

(groundwater, oil/gas, sediment, loading and inverse distance from the sinkhole 

location) as the predictor variables (Abdollahzadeh et al. 2013; Fotheringham et al. 

2002). And for the average subsidence rate for each census tract in 2013, based on the 



59 
 

research method by Mardia et al. 1998, we can use the processed result from last 

chapter, and record the average pixel value in each census tract as the dependent 

variable as follows (Mardia et al. 1998; Fotheringham et al. 2002): 

 

 
Figure 26 Average subsidence rate for each census tract in 2013 (unit: m per year) 

(The map data for census tracts is extracted from: http://atlas.lsu.edu) 

 

Next, GWR can be done in ArcGIS. In this research, based on the research 

method by Xu and Wang in 2015, Fotheringham et al. in 2002, the GWR results, the 

varied coefficients of factor data with the significance level (95%) and the local R 

square value for each census tract in the study site, will be calculated and mapped as 

follows (Fotheringham et al. 2002): 
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Figure 27 Local R square values for census tracts (The map data for census tracts is 

extracted from: http://atlas.lsu.edu) 

 

 

Figure 28 Intercept for census tracts (The map data for census tracts is extracted from: 
http://atlas.lsu.edu) 
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Figure 29 Oil/gas coefficients for census tracts (The map data for census tracts is 
extracted from: http://atlas.lsu.edu) 

 

 

Figure 30 Buildings loading coefficients for census tracts (The map data for census 
tracts is extracted from: http://atlas.lsu.edu) 
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Figure 31 Sediment coefficients for census tract (The map data for census tracts is 
extracted from: http://atlas.lsu.edu) 

 

Figure 32 Sinkhole coefficients (inverse distances to sinkhole location) for census 
tracts (The map data for census tracts is extracted from: http://atlas.lsu.edu) 



63 
 

 

Figure 33 Groundwater coefficients for census tracts (The map data for census tracts 
is extracted from: http://atlas.lsu.edu) 

 

4.4 Accuracy evaluation for GWR results 

Besides the GWR modeling results are generated, we should also evaluate the 

modeling accuracy. In this research, from the GWR output report we find that the total 

R square value is about 0.6650 (60.50%), and the adjusted R square value is about 

0.6583 (65.83%). Based on the GWR results, and the research methods by Shang et al. 

in 2011 and Xu and Wang in 2015, the spatially varied coefficients for all kinds of 

factor data are also calculated as follows (Shang et al. 2011; Xu and Wang 2015): 
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Table 2 Modeling results by GWR 

 25% quartile 50% quartile 75% quartile 

Intercept 0.010387 0.011762 0.012591 

Oil/gas -0.010249 0.011426 0.012289 

Buildings loading -0.003346 -0.002593 -0.002250 

Sediment -0.000247 -0.000232 -0.000220 

Sinkhole -0.123039 -0.118171 -0.100977 

Groundwater -0.001400 -0.000982 -0.000830 

Total R square 0.6650 

Adjusted R square 0.6583 

 

What’s more, likewise, we will use Ordinary Least Square (OLS) for modeling 

these above 5 types of factor data in this research (Hayashi and Fumio 2000). By the 

OLS method from Hayashi and Fumio’s research in 2000, the coefficients for all types 

of factor data can be generated as follows (Hayashi and Fumio 2000): 
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Table 3 Modeling results by OLS 

 Value P-value 

Intercept 0.001497 0.003253 

Oil/gas 0.032674 0.006506 

Buildings loading -0.001732 0.000009 

Sediment -0.000006 0.597827 

Sinkhole -0.127309 0.000000 

Groundwater -0.000226 0.020218 

R square 0.168077 - 

Adjusted R square 0.162379 - 

 

By contrasting the GWR results to the OLS ones, we can clearly find that the 

total R square value by GWR (about 0.6650) is much larger than and the total R 

square by OLS (about 0.1681), and the adjusted R square value by GWR (about 

0.6583) is also much larger than the adjusted R square value by OLS (about 0.1624). 

This means that nearly much more amount of subsidence rates data can be explained 

by the above 5 types of factor data, by using GWR rather than OLS (Shang et al. 2011; 

Xu and Wang 2015). Besides, the results by GWR (Figure 27) also show that, the 

local R square values for census tracts are spatially varied much. The local R square 

value in the study site can range from 0.350872 (about 35.09%) to 0.844445 (about 

84.44%), showing clear spatial heterogeneity for all census tracts (Fotheringham et al. 

2002; Shang et al. 2011; Xu and Wang 2015).  
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For each factor contributing to subsidence, such as groundwater, oil/gas, 

sediment, building loading and inverse distance from the sinkhole location, Table 2 

shows that all of coefficients for census tracts are spatially varied much, with clear 

spatial heterogeneity for the contributing factor weights, and maps for GWR results 

also show clear spatial clusters for each kind of coefficients, meaning that there may 

be spatial dependency for the subsidence data in this research (Shang et al. 2011; Xu 

and Wang 2015; Knegt et al. 2010).  

Next, we will discuss and explain the significance levels for all kinds of 

coefficients in these maps for GWR results as follows: 

From Figure 29, we can find that the oil/gas coefficients for nearly all of census 

tracts in the study site are not significant. While, this result does not match the former 

research by Abdollahzadeh et al. in 2013 because in the process of oil/gas data 

collection, we can’t collect the important production data and the density data of wells 

have to be collected and used in this research (Extracted from: http://sonris.com). So 

if we can collect much production data, the modeling results may show more 

coefficients with clearly significant levels. 

From Figure 30, we can find that for most of census tracts in the study site, the 

buildings loading coefficients are clearly significant. The green colored area in the 

figure shows that for census tracts in this area, the factor for buildings loading is not 

significant, and low percentage of buildings cover in this area may cause this result. 

Besides, the negative values for the coefficients in Figure 30 also show that, for all of 

census tracts in the study site, the subsidence rate and the buildings loading factor are 
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negatively correlated. This negative correlation can be explainable because more 

percentage of buildings loading area may mean more loading volume for the census 

tract, which contributes to subsidence in the coastal area of Louisiana (Abdollahzadeh 

et al. 2013). 

Figure 31 shows that for nearly all of census tracts in the study site, the sediment 

coefficient is significant, and this result basically match the former research by 

Abdollahzadeh et al. in 2013 (Abdollahzadeh et al. 2013). Besides, the negative value 

for the sediment coefficient shows that, the subsidence rate and the sediment factor 

are negatively correlated. This negative correlation can be explainable because in the 

process of sediment formation, more thickness for the sediment sample will mean 

more significant compaction process which can cause clear subsidence (Sclater and 

Christie 1980). 

Figure 32 shows that the sinkhole coefficient is very significant for nearly all of 

census tracts in the study site, except for some census tract which are too far from the 

Bayou Corne sinkhole (Cusanza 2013). For nearly all of census tracts with the 

significant levels, the negative correlation between the subsidence rate and the 

sinkhole factor can be explainable because in most situations, the nearer the area is 

from the sinkhole location (the larger inverse distance), the faster the subsidence rate 

in this area is, and this correlation can also be consistent with the real expanding 

situation for the Bayou Corne Sinkhole in the monitoring process from August 2012 

(Cusanza 2013; Jones and Blom 2014; Jones and Blom 2015). 
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Finally, from Figure 33, we can also find that the groundwater coefficients for 

nearly all of census tracts are clearly significant. The groundwater coefficients for the 

green colored area in the figure are not significant, because the small changes for 

groundwater levels in this area may cause less subsidence (Shang et al. 2011). Besides, 

unlike coefficients for the other factors, the groundwater coefficients show that the 

correlation between subsidence rate and the groundwater factor are clearly positive 

for many census tracts while this correlation is also clearly negative for the other 

census tracts in the study site. Either the positive correlation or the negative 

correlation can be explainable in this research because different layers of groundwater 

aquifers in the study site may cause different correlations (Shang et al. 2011). The 

former research by Shang et al. 2011 shows that, in the process of groundwater 

withdrawal, the correlation can be positive because the decreasing groundwater level 

will cause an increasing internal pressure for the unconfined aquifer which can make 

the aquifer compress and the ground move downward in the study site, and the 

correlation can also be negative because the confined aquifer may uplift because of 

decreasing loading of the unconfined aquifer (Shang et al. 2011; Dokka 2006; Kent 

and Dokka 2012). 

Thus, in this research, the modeling results by GWR are clearly better than the 

ones by OLS, showing the spatially varied R square values and factor coefficients 

with the significance levels for all of census tracts in the study site (Shang et al. 2011; 

Xu and Wang 2015). This means that the GWR model is suitable in this research, and 

the results by GWR can reflect the spatial heterogeneity for factor data which 
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contributes to subsidence in the study site (Fotheringham et al. 2002; Shang et al. 

2011). 

 

4.5 Results by the spatial-lag model and the spatial-error model 

In this research, the GWR results show that there is clear spatial heterogeneity 

for subsidence data in the coastal area of Louisiana, while the spatial dependency may 

not be considered much for this model (Fotheringham et al. 2002; Shang et al. 2011; 

Knegt et al. 2010). Thus, to consider spatial dependency for subsidence data in this 

research, some geo-statistics model such as the spatial-lag model and the spatial-error 

model will be considered to make factor modeling results (Baller et al. 2001; Wang 

2006; Wang et al. 2014; Knegt et al. 2010). 

For the spatial-lag modeling, like by GWR, we can also input the above 

quantified factor data as independent variables, and the above subsidence rates data as 

the dependent variable, likewise, for the spatial-error modeling, we will make the 

same inputting process for variables (Baller et al. 2001; Wang 2006; Wang et al. 

2014). 

The spatial-lag model and the spatial-error model can be used by GeoDa 

software (Anselin et al. 2006; Baller et al. 2001; Wang 2006; Wang et al. 2014). And 

based on the research methods by Baller et al. in 2001, Wang in 2006 and Wang et al. 

in 2014, the modeling results are as follows (Baller et al. 2001; Wang 2006; Wang et 

al. 2014): 
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Table 4 Modeling results by the spatial-lag model and the spatial-error model 

 Spatial-lag Spatial-error 

 Value P-value Value P-value 

Intercept 0.000111 0.10093 0.003880 0.65776 

Oil/gas 0.000453 0.76952 0.000683 0.65352 

Buildings -0.000115 0.02064 -0.000235 0.00566 

Sediment 0.000003 0.04730 -0.000155 0.00000 

Sinkhole -0.014953 0.00000 -0.020276 0.00001 

Groundwater 0.000032 0.01113 -0.000149 0.30124 

W 0.995309 0.00000 - - 

λ - - 0.998261 0.00000 

R square 0.986052 - 0.986781 - 

From the above table, we can easily find that the R square value by the 

spatial-lag model (about 0.986052) and the one by the spatial-error model (about 

0.986781) are nearly the same. The P-value for the coefficient W in the spatial-lag 

model is less than 0.00001 (much smaller than 0.05), showing that the coefficient W is 

very significant in this research, and the P-value for the coefficient λ in the 

spatial-lag model is also less than 0.00001 (much smaller than 0.05), also showing 

that the coefficient λ is significant in this research (Baller et al. 2001; Wang 2006; 

Wang et al. 2014). Thus, either the spatial-lag model or the spatial error model can be 

so valid and advantageous in this research, showing clear spatial dependency for the 

subsidence rates data as the dependent variable (Knegt et al. 2010). 
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On the other hand, the R square value by the spatial-lag model (about 0.986052) 

and the one by the spatial-error model (about 0.986781) in the above table show that, 

most percentage of subsidence rates data as the dependent variable, can be explained 

by 5 types of factor data (groundwater, oil/gas, sediment, building loading and the 

inverse distance from the sinkhole location) in this research (Abdollahzadeh et al. 

2013; Shang et al. 2011). Besides, from the P-values in the above table, we can easily 

find that for the spatial-lag model, all coefficients for factor data except the oil/gas 

and sediment coefficients, are clearly significant (clearly small than 0.05), while, for 

the spatial-error model, unlike the result by the spatial-lag model, the groundwater 

coefficient is not significant but the sediment coefficient is more clearly significant. 

Thus, from the above table, we can conclude that either the result by the 

spatial-lag model or the one by the spatial-error model may basically match the 

former research by Abdollahzadeh et al. in this research which shows that the 

groundwater, oil/gas, sediment and mass loading are the main factors for subsidence 

in the coastal area of Louisiana (Abdollahzadeh et al. 2013). And next, we will 

discuss and explain the significance levels for all of important independent variable 

coefficients as follows (Wang et al. 2014): 

Firstly, either in the spatial-lag model or in the spatial-error model, the P-value 

for the inverse distance coefficient (about or less than 0.00001, much smaller than 

0.05), shows that this coefficient is very significant in this research (Wang et al. 2014). 

This also means that the Bayou Corne Sinkhole should be the most important 

contributing factor for the accelerating subsidence in the study site in Louisiana, and 
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the minus value for the coefficient also means that the variable for subsidence rates in 

2013 and the one for the inverse distance from the sinkhole location are negatively 

correlated (Wang et al. 2014). In this research, we mark minus value as the downward 

ground movement or subsidence, so this negative correlation shows that the nearer the 

area is from the sinkhole location (the larger inverse distance), the faster the 

subsidence rate in this area is, and this correlation can also be consistent with the real 

expanding situation for the Bayou Corne Sinkhole in the monitoring process from 

August 2012 (Cusanza 2013; Jones and Blom 2014; Jones and Blom 2015). 

Secondly, either in the spatial-lag model or in the spatial-error model, the P-value 

for the buildings loading coefficient (clearly smaller than 0.05), shows that this 

coefficient is significant in this research (Wang et al. 2014). Like the sinkhole factor, 

the mass building loading should be also the important contributing factor for the 

accelerating subsidence in the study site in Louisiana, and the minus value for the 

coefficient also means that the variable for subsidence rates in 2013 and the one for 

the mass building loading level are negatively correlated (Wang et al. 2014). So in this 

research, the more area of loading percentage the buildings have in the census tract, 

the faster the subsidence rate in this area is. 

Thirdly, in the spatial-error model, the P-value for the sediment coefficient (less 

than 0.00001), shows that this coefficient is significant, and the sediment compaction 

process should be an important contributing factor for the accelerating subsidence in 

the study site in Louisiana (Wang et al. 2014). Besides, the negative value for the 

coefficient means that the variable for subsidence rates in 2013 and the one for the 
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sediment sample thickness are negatively correlated (Wang et al. 2014) (Extracted 

from: http://sonris.com). This negative correlation can be explainable because in the 

process of sediment formation, more thickness for the sediment sample will mean 

more significant compaction process which can cause clear subsidence (Sclater and 

Christie 1980). 

Fourthly, in the spatial-lag model, the P-value for the groundwater coefficient 

(about 0.01113, smaller than 0.05), shows that this coefficient is also significant, and 

the change of groundwater level should also be an important contributing factor for 

the accelerating subsidence in the study site in Louisiana (Wang et al. 2014; Shang et 

al. 2011). Besides, the positive value for the coefficient also means that the variable 

for subsidence rates in 2013 and the one for the change of groundwater level are 

positively correlated (Wang et al. 2014; Shang et al. 2011). This positive correlation 

can also be explainable because in the process of groundwater withdrawal, the 

decreasing groundwater level will cause an increasing internal pressure for the 

underground aquifer which can make the aquifer compress and the ground move 

downward in the study site (Shang et al. 2011; Dokka 2006; Kent and Dokka 2012). 

Finally, either in the spatial-lag model or the spatial-error model, the P-value for 

the oil/gas pumping coefficient (much larger than 0.05) shows that this coefficient is 

not significant, and the positive value for this coefficient also shows that the variable 

for subsidence rates in 2013 and the density of oil/gas wells are positively correlated 

(Wang et al. 2014). The former research by Abdollahzadeh et al. shows that oil/gas 

pumping is the main factor for subsidence in the coastal area of Louisiana, while, the 
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coefficient for the oil/gas factor is not significant in this research because the data 

collection for the oil/gas factor may not be so valid, and the production data for 

oil/gas wells may be more suitable and valid than the point density data, but we lack 

of production data in this research (Abdollahzadeh et al. 2013) (Extracted from: 

http://sonris.com). 

 

4.6 Summary and discussion 

In this chapter, based on the processed results by KKF from last chapter, we have 

used GWR to model the factor data which contribute to subsidence in the study site in 

Louisiana. The modeling results show that the GWR model can be suitable for factor 

modeling in this research, with the spatially varied local R square values and 

coefficients for each type of factor data (Xu and Wang 2015; Shang et al. 2011). We 

also use OLS to model the same factor data, comparing the modeling results with the 

ones by GWR. The results of comparisons show that the total R square value by GWR 

is much larger than the one by OLS, and the adjusted R square value by GWR is also 

much larger than the one by OLS, so we can conclude that there is clear spatial 

heterogeneity for subsidence data in 2013, in this research (Xu and Wang 2015; Shang 

et al. 2011; Fotheringham et al. 2002). 

Besides, so as to consider spatial dependency rather than spatial heterogeneity, 

we have used other geo-statistics models, such as the spatial-lag model and the 

spatial-error model in this research (Knegt et al. 2010). The modeling results show 

that either the spatial-lag model or the spatial-error model can be valid and 
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advantageous in this research, with the high significance level (Wang et al. 2014; 

Shang et al. 2011; Knegt et al. 2010). While, although the modeling results shows that 

either the spatial-lag model or the spatial-error model can be suitable to model factor 

data in this research, there are also some flaws in the factor modeling process. One 

big flaw can be that for quantifying the oil and gas data, we can only collect the wells 

data with the wells distribution, and we can’t collect the data on the production for 

each well which contributes to subsidence directly, thus, the density of wells rather 

than the production for oil/gas wells is considered as an independent variable in the 

factor modeling process, the modeling results show that the oil/gas coefficient is not 

significant and theses results doesn’t match the former research very much 

(Abdollahzadeh et al. 2013; Wang et al. 2014) (Extracted from: http://sonris.com). 
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Chapter 5 Research Conclusions and Final Summary 

 

5.1 Research conclusions 

As Chapter 4 and Chapter 5 show, this research consists of two main parts: in the 

first main part we have processed GPS data by KKF, and in the second main part we 

have modeled factor data by geo-statistics models. Thus, conclusions in this research 

can also be divided into two main parts as follows: 

5.1.1 Conclusions from KKF results 

In this research, by KKF, GPS data from Louisiana stations has been collected 

and processed, and distributions of subsidence rates in the coastal area from 2011 to 

2013 has also been generated. For KKF results, we have summarized three main 

conclusions as follows: 

The first conclusion is that Ordinary Least Square (OLS) can be a valid model to 

calculate each year’s subsidence rates for all of GPS stations in this research (Hayashi 

and Fumio 2000; Dokka and Shinkle 2004). In this research, the preprocessed result 

by NASA’s GIPSY shows each day’s longitude, latitude and height for all of GPS 

stations in the study site, so we must calculate each year’s subsidence rate validly, 

from the observed 365 or 366 days’ height values for each GPS station. By OLS, a 

straight line has been generated and this line can show the changing trend of height 

values in one year for each station, thus, the slope for this straight line can be used to 

calculate each year’s subsidence rate (Hayashi and Fumio 2000; Dokka and Shinkle 
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2004). The final KKF results in Chapter 3 which show the distribution of subsidence 

rates each year, have been validated by Bayou Corne Sinkhole knowledge, and this 

also means that the calculation of each year’s subsidence rate by OLS is valid 

(Cusanza 2013; Jones and Blom 2014; Jones and Blom 2015). Besides, in the former 

research, experts had used OLS to calculate the rate of water level changes in one 

period, and this similar calculation can also validate our calculation of each year’s 

subsidence rate (Dokka and Shinkle 2004). 

The second conclusion is that Kriged Kalman Filter (KKF) is suitable to process 

GPS data and predict the subsidence rates pattern each year in the study site, in this 

research. KKF can overcome the flaw of low density for GPS stations and predict 

large areas of subsidence rates around all of GPS stations in the study site (Mardia et 

al. 1998; Lu, C. et al. 2012). The KKF results show a significant accelerating 

subsidence area near Bayou Corne, and these results have been validated by Bayou 

Corne Sinkhole knowledge (Cusanza 2013; Jones and Blom 2014; Jones and Blom 

2015). Besides, KKF as an extended type of Kriging interpolation, has been used to 

interpolate and generate a raster of subsidence rates distribution in this study, thus, as 

the KKF results from Figure 13, 14 and 15 show, the distance of less than 10 miles 

between the dark colored accelerating subsidence area and the exact Bayou Corne 

location (the purple point), should be allowed because of the interpolation error by 

KKF (Mardia et al. 1998; Cusanza 2013; Olea and Ricardo 1991; Olea 1999). 

The third conclusion is that KKF results in this research can be useful for 

detecting and monitoring ground movement related disasters near bayou areas, such 
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as sinkholes (Jones and Blom 2014; Jones and Blom 2015). KKF results in Chapter 3 

show the subsidence rates patterns, and changes for these patterns will also signify 

vertical downward ground movement related to disasters (Jones and Blom 2014; 

Jones and Blom 2015; Dokka 2006). Besides, the KKF results have been validated by 

Bayou Corne Sinkhole knowledge, and this also means that we can use KKF results to 

not only visualize the distribution pattern of subsidence rates each year, but also 

signify the development situation for the sinkhole (Jones and Blom 2014; Jones and 

Blom 2015; Cusanza 2013). 

5.1.2 Conclusions from factor modeling results 

In this research, some geo-statistics models, such as GWR, have been used to 

model factor data contributing to subsidence in the study site of Louisiana. And for 

factor modeling results, we have also summarized three main conclusions as follows: 

The first conclusion is that GWR is suitable for modeling factor data in this 

research, because the modeling results show that there is clear spatial heterogeneity 

for subsidence data in the study site (Fotheringham et al. 2002; Shang et al. 2011). 

The local R square values for all of census tracts are spatially varied, and the 

coefficients for each type of factor data are also spatially varied (Xu and Wang 2015; 

Shang et al. 2011). Besides, the results by GWR are much different from the ones by 

OLS, and this also means that there is clear spatial heterogeneity for subsidence data 

and GWR is advantageous (Fotheringham et al. 2002; Shang et al. 2011). 

The second conclusion is that either the spatial-lag model or the spatial-error 

model is suitable for modeling factor data in this research. We have used the 
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spatial-lag model and the spatial-error model for factor modeling rather than GWR, 

and modeling results show that, a large R square value can be generated, and this 

means that most subsidence rates data can be explained by the spatial-lag model 

(Shang et al. 2011). 

The third conclusion is that Bayou Corne Sinkhole disaster, sediment compaction, 

loading of buildings, and groundwater withdrawal are four significant and explainable 

factors which contribute to subsidence in the study site in 2013 (Abdollahzadeh et al. 

2013; Cusanza 2013). As Chapter 4 shows, 5 types of factor data, groundwater, oil/gas, 

sediment, buildings loading and inverse distance from the sinkhole location have been 

used for modeling, results either by the spatial-lag model or by the spatial-error model 

show that the P-value for the inverse distance coefficient (about or less than 0.00001, 

much smaller than 0.05) is very significant, and the negative correlation between the 

subsidence rate and the inverse distance from the sinkhole can be explained that, the 

near the area is from the sinkhole location, the faster the subsidence rate in this area is 

(Cusanza 2013; Jones and Blom 2014; Jones and Blom 2015; Wang et al. 2014). 

Either in the spatial-lag model or in the spatial-error model, the P-value for the 

buildings loading coefficient is clearly smaller than 0.05, this means that buildings 

loading coefficient is significant in this research, and the negative correlation between 

the subsidence rate and the buildings loading can be explained that, the more loading 

percentage the buildings in the area have, the faster the subsidence rate in this area is 

(Wang et al. 2014). In the spatial-error model, the P-value for the sediment coefficient 

is less than 0.00001, this means that sediment compaction factor can also be 
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significant in the study site in 2013, and the negative correlation between the 

subsidence rate and the sediment sample thickness can be explained that, more 

sediment sample thickness will mean more significant sediment compaction process 

which can cause clear subsidence (Wang et al. 2014; Sclater and Christie 1980) 

(Extracted from: http://sonris.com). In the spatial-lag model, the P-value for the 

groundwater coefficient (about 0.01113) is smaller than 0.05, this also means that the 

groundwater coefficient is significant, and the positive correlation between the 

subsidence rate and the change of groundwater level can be explained that, in the 

groundwater withdrawal process, the decreasing groundwater level will cause an 

increasing internal pressure for the underground aquifer which can make the aquifer 

compress and the ground move downward in the study site (Wang et al. 2014; Shang 

et al. 2011; Dokka 2006; Kent and Dokka 2012). Besides, either in the spatial-lag 

model or in the spatial-error model, the P-value for the oil/gas coefficient (much 

larger than 0.05) shows that the oil/gas pumping factor is not significant in this 

research because we lack of production data for oil/gas wells (Wang et al. 2014) 

(Extracted from: http://sonris.com). 

 

5.2 Final summary and future work 

In this research, we focus on a popular topic in Louisiana: subsidence (Dokka 

2006). For this research topic, the adverse situation which subsidence produces, 

especially in coastal Louisiana, has been presented in the background chapter. Figures 

for heights of GPS observations assist the claim that the subsidence problem is 
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common in Louisiana (Hung et al. 2011), and based on the estimation from these 

figures, we can predict that Louisiana state will experience land loss in the form of 

wetland in the near future (Shinkle and Dokka 2004). Thus, from now on, we should 

focus on the subsidence study and take action to prevent serious subsidence for our 

coastal land. 

After the subsidence problem is presented, the literature review work has been 

done to show the recent research progress on subsidence by researchers. One big part 

of literature review involves subsidence observation and prediction. About this part, 

three kinds of common observation techniques, leveling, GPS and InSAR have been 

discussed with respect to their different advantages and flaws (Lu, C. et al. 2012). 

Besides, we focus on the techniques combinations to improve the observation levels 

on subsidence, and the KKF model has also been introduced as a new method to 

process subsidence data (Mardia et al. 1998). The other big part of literature review 

involves modeling of factors contributing to subsidence. In this part, the contributing 

factors on subsidence have been presented by the former research, groundwater 

withdrawal, oil and gas pumping, sediment compaction, faulting and mass loading 

(Abdollahzadeh et al. 2013). After that, we have discussed the former modeling 

methods on subsidence factors, and concluded that most of modeling process lack of 

local view or spatial heterogeneity, and we need some new methods such as GWR to 

solve this problem (Fotheringham et al. 2002; Shang et al. 2011). 

Then based on our literature review work, we have proposed research questions 

in this research, and also research workflow. The main research workflow involves 
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two important research techniques, KKF processing and factor modeling such as 

GWR. Thus, in the following chapters, we have discussed these two techniques and 

their application on subsidence data in details, showing how to use these techniques to 

process Louisiana subsidence data based on the workflow. 

Chapter 3 shows that KKF can be a good method to predict subsidence rates in 

coastal Louisiana, interpolating GPS data in time series (Mardia et al. 1998; Kalman 

1960). By this method, points of spatio-temporal data can be processed into a raster 

format for prediction in the study site, and the well-known Bayou Corne Sinkhole 

knowledge can be used to validate the prediction result by KKF (Mardia et al. 1998; 

Kalman 1960; Cusanza 2013; Jones and Blom 2014; Jones and Blom 2015). 

Chapter 4 shows the modeling process of factor data contributing to Louisiana 

subsidence such as GWR. Before factor modeling, the process of quantification for 

the factor data should be important, and the processed result by KKF from last chapter 

should be also the input data as the dependent variable (Fotheringham et al. 2002). 

Finally, the modeling results show that GWR can be suitable for factor modeling in 

this research, with clear spatial heterogeneity for subsidence data in 2013, and either 

the spatial-lag model or the spatial-error model can be also suitable for modeling 

factor data, with clearly significant coefficients (Xu and Wang 2015; Wang et al. 2014; 

Shang et al. 2011; Knegt et al. 2010; Fotheringham et al. 2002). 

Thus, in this research, we have introduced a new and unique model based on 

Kalman Filter, KKF, to make optimal and valid prediction for large area of subsidence, 

because Kalman Filter has a unique feature for the optimal prediction (Mardia et al. 
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1998; Kalman 1960; Zhang 2008; Lu, C. et al. 2012). Besides, many kinds of factor 

data, rather than only one kind in the former research, have been used for 

geo-statistics modeling, so as to find the main factors for subsidence, and theses 

modeling results basically match the former research by the other people 

(Abdollahzadeh et al. 2013; Shang et al. 2011). 

Although our work in this research has produced some new progress on 

subsidence research in coastal Louisiana, there are also some big flaws or 

disadvantages which are improvable in the future work. 

The first improvable point is that in the KKF processing, most point distances for 

the GPS observation points are not so near, and if we consider the subsidence 

prediction in the whole state area instead of the coastal one, good results by KKF may 

not be generated because the variogram model doesn’t fit the data so well with low 

spatial autocorrelation (Knegt et al. 2010; Mardia et al. 1998; Olea and Ricardo 1991). 

Thus, for future study, if we would like to predict subsidence rates in the whole 

Louisiana area by KKF, we should collect more points of GPS data and the point 

distances should also be much nearer (Knegt et al. 2010; Mardia et al. 1998; Olea and 

Ricardo 1991). 

The second improvable point is that in the oil and gas data collection for factor 

modeling, we can only collect the well data on the distribution online, while, if we can 

collect the production data for each well, the modeling results may reflect an 

explainable coefficient for the oil and gas pumping factor with a significant level 

(Extracted from: http://sonris.com) (Abdollahzadeh et al. 2013; Wang et al. 2014). 
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The last improvable point is that we don’t consider faulting data in the factor 

modeling process, because we can’t easily find spatial heterogeneity for faulting data 

in the study site, thus, we should focus on how to quantify the faulting data well with 

some other knowledge in the future study, and this improvement can produce more 

types of factor data in the factor modeling process and better modeling level or 

accuracy (Shang et al. 2011; Fotheringham et al. 2002; Abdollahzadeh et al. 2013). 
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