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ABSTRACT 

  Obesity has strong genetic determinants but the genetic composition of the 

population does not change rapidly. Thus in this study, the major changes in non-genetic factors 

such as the development of obesogenic environments and shifting socioeconomic status and 

lifestyle of individuals are hypothesized to increase the risk of obesity.  As the prevalence of 

obesity continue to increase worldwide with substantial attention in the US, a clearer 

understanding of how spatial associations between obesity and confounding factors are 

interrelated is crucial to better tackle the issue of obesity.   

 This study employs the ‘global’ and ‘local’ Exploratory Spatial Data Analysis (ESDA) 

methods including the Ordinary Least Squares (OLS) regression and Geographically Weighted 

Regression (GWR) to investigate obesity and its spatial associations with environmental, 

behavioral, socioeconomic, sociodemographic, and population based dynamics at the county 

level.  The results from this study have generated empirically-based and useful insights for the 

3,105 counties and county-equivalents across the 48 contiguous states, also known as the 

continental US. 

 A major contribution of this study is exploring obesity and its confounding associations 

with various factors not only spatially but also temporally for the first time, revealing the 

temporal changes from 2004 to 2007 and to 2010.  By utilizing the ESDA methods, a consistent 

answer obtained significantly indicates that positive spatial associations exist between obesity 

and physical inactivity (PIA), poverty, and population-weighted distance (PWD) to parks.  

Conversely, negative spatial associations exist between obesity and ratio of jobs to employed 

residents (JER) and population density.   
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 Another major contribution of this study is examining and revealing geographic 

variability in the association between obesity rates and various explanatory variables both 

nationwide and regionally at the county level for the entire US.  By utilizing the GWR, a 

significant spatial nonstationarity is identified.  This finding suggests that the strength of 

associations between obesity and each of the explanatory variables vary depending on the spatial 

location.  It is also revealed that the confounding variables PIA, high educational attainment, 

African-American population, and poverty are identified as the top four variables by having 

relatively stronger effects in explaining obesity rates at the county level both nationwide and 

regionally. 
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CHAPTER 1. INTRODUCTION 

Obesity kills.  According to the most widely as well as the most recently accepted 

estimates, the number of deaths that may be attributable to obesity each year makes obesity the 

second leading cause of preventable death in the US after smoking and it is likely to become the 

first unless this chronic issue is addressed successfully (Danaei et al., 2009; Flegal et al., 2005; 

Mokdad et al., 2004).  Obesity has already reached epidemic proportions across the nation and, 

most recently in 2013, it has been officially classified as a disease by the American Medical 

Association (AMA), the nation’s largest physician organization (AMA, 2013).  In addition to the 

population-wide obesity trends, it is known that the burden of obesity affects some groups, such 

as low-income and minority populations, more than others (Hill et al., 2014; Flegal et al., 2012).  

Similarly, disparities in obesity are also evident by geographic location, such as existence of 

higher rates of obesity in the southern states than elsewhere in the US (Hill et al., 2014).  

Compared to smoking, obesity is more prevalent, yet similar to smoking, obesity is also a risk 

factor for many chronic health conditions and is also highly associated with overall poor physical 

health (Sturm, 2001).  Therefore, obesity is seen as an important determinant of overall heath. 

In many different cultures around the world, the importance of being healthy is 

emphasized by the saying “the greatest wealth is health” yet people only give health value when 

they lose it.  Powerful and rather complex relationships exist between health and the factors 

affecting health.  The range of biological, demographic, behavioral, social, economic, and 

physical environmental factors that influence an individual’s or population’s health are known as 

determinants of health.  The examples of demographic, behavioral, social, economic, and 

physical environmental determinants of health, respectively include: race and ethnicity, age and 

gender; diet, physical activity, and alcohol and cigarette use; availability of resources to meet 
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daily needs such as educational/job opportunities, living wages, or healthy foods and exposure to 

crime and violence; poverty, income, and transportation options; geographic location, built 

environmental features, such as buildings, recreational settings, and public transportation, and 

natural environmental features, such as open spaces and weather or climate change (Healthy 

People 2020, 2014).  In the literature, the influence of such factors is also documented as notable 

determinants of obesity.    

When then US Secretary of Health and Human Services Margaret Heckler’s (1985) 

landmark report on minority health was released (Heckler, 1985), obesity was among the 

modifiable risk factors associated with leading causes of death.  With the release of this report, 

an overall message, pertaining to all risk factors including obesity, was framed in a way that “bad 

behavior” was the key issue and therefore changes in individuals’ behaviors were the ultimate 

solution.  In other words, if individuals change their behaviors, they would be able to modify risk 

factors and that would help disparities, which were experienced mostly by African-Americans 

and other minority Americans, to disappear.  However, when especially the last two decades are 

considered from the obesity point of view, the pervasiveness of disparities affecting diverse 

populations proved otherwise and showed that it was not simply a behavior issue but  there were 

also structural factors involved (Kumanyika, 2005).  Individuals’ behaviors and biology may 

govern individual risk, yet even the amalgamation of the two does not fully explain the dramatic 

increase in obesity prevalence over the past decades in the US (Huang and Glass, 2008). 

Health disparities among individuals of various demographics and socioeconomic status 

and across different geographic locations have been a topic attracting recent interest not only in 

academia but also in the public realm due to the increasing recognition of strong links between 

social, economic, and environmental factors and health and the widening disparities in such 
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factors (WHO, 2015).  The National Institutes of Health (NIH) developed the first official 

definition of health disparities in September 1999 in response to a White House initiative: 

“Health disparities are differences in the incidence, prevalence, mortality, and burden of diseases 

and other adverse health conditions that exist among specific population groups in the United 

States.”  In 2000, United States Public Law 106-525 (106th Congress, 2000) provided a legal 

definition of health disparities: “A population is a health disparity population if there is a 

significant disparity in the overall rate of disease incidence, prevalence, morbidity, mortality, or 

survival rates in the population as compared to the health status of the general population.”  In 

addition, Healthy People 2020 defined health disparity as “a particular type of health difference 

that is closely linked with social, economic, and/or environmental disadvantage (Healthy People 

2020, 2014).  Health disparities adversely affect groups of people who have systematically 

experienced greater obstacles to health based on their racial or ethnic group; religion; 

socioeconomic status; gender; age; mental health; cognitive, sensory, or physical disability; 

sexual orientation or gender identity; geographic location; or other characteristics historically 

linked to discrimination or exclusion.”   

These three definitions have several things in common and they define health disparities 

based on: 1) The differences in the overall rate of disease incidence, prevalence, morbidity, 

mortality or survival rates among different population groups; 2) The factors that contribute to 

health disparities.  Even though the term “disparities” is often interpreted to imply racial or 

ethnic disparities, many dimensions of health disparities exist in the US.  In other words, racial 

or ethnic background, sex, age, disability, socioeconomic status, physical environment, or 

geographic location all contribute to an individual’s ability to achieve good health and the effects 

of such differences are applicable to obesity as well. 
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Disparities in health outcomes among communities across the nation are a central 

concern in public health and epidemiology.  Due to the spatial aspects of health disparities issue, 

public health professionals and medical scholars have been increasingly seeking assistance from 

geographers.  Geographers utilize concepts and techniques to investigate the spatial patterns of 

health outcomes and the independent and alternate processes that lead to such spatial patterns.  

Detecting where events occur often yields valuable clues about why these events occur.  In other 

words, the identification of spatial patterns (or clusters) leads to creating hypotheses to better 

understand the underlying processes in effect.  Hence, the application of geographic methods and 

techniques in health-related research has been gaining popularity to tackle intricate health issues, 

and obesity is definitely as one such health issue.  Methods of exploratory spatial data analysis 

and geovisualization are widely used to provide insight into the patterns of health outcomes and 

to establish possible linkages to the built environmental, socioeconomic, and sociodemographic 

factors, which individually or in combination may play a role in the resulting health outcomes 

(Cromley and Cromley, 2009). 

Geographic Information Systems (GIS) are computer-based sets of procedures that 

capture, store, manipulate, analyze, model, and visualize data with spatial characteristics, 

therefore providing an excellent platform to study health-related spatial phenomena.  Although 

GIS was initially developed in the 1960s, the more modern version of GIS used today emerged 

in the 1980s (Foresman et al., 1998).  Over the last two decades, with the widespread use of GIS 

and increased demand for more sophisticated applications of GIS, computer-based geographic 

technologies and methods including remote sensing (RS), global positioning systems (GPS), 

mathematical models, and quantitative methods showed a tremendous growth (Brown et al., 

2005; Legates et al., 2005).  Especially in the 1990s some of the most remarkable developments 
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and improvements have taken place on hardware and software technologies (Legates et al., 2005; 

Goodchild, 1992).  As a result, GIS and spatial analysis and modeling have greatly benefited 

from these innovations (e.g., Fischer and Getis, 1997; Longley et al., 1997; Cho, 1996; 

Fotheringham and Rogerson, 1994; and Fischer and Nijkamp, 1993).  These progresses not only 

lowered the cost of data gathering, storing, and processing but also increased the speed and 

efficiency in both data processing and analyzing.  Furthermore, the establishment of academic 

GIS centers, organizations, conferences, and new journals has further accelerated the pace of 

spatial analysis research (Legates et al., 2005, 443).     

Even though GIS and spatial analysis initially started as two separate fields of research 

and application, over time they have become closer fields that support each other and add value 

to the other (Goodchild and Haining, 2004).  The advances in GIS and spatial analysis and 

modeling have not only transformed the field of geography but also brought geography into 

many other fields of research where geography did not exist before.  This has increased the 

appreciation and popularity of geography and its tools (e.g., GIS and spatial analysis methods 

and techniques) in solving spatial problems.  Health-related research has been one of the many 

academic fields of research that benefited greatly from such advances and collaborations 

(Gatrell, 2002). 

One of the biggest advantages of using GIS is its capability to analyze both temporally 

and spatially complex data sets.  The research proposed in this dissertation involves the use of 

GIS and Exploratory Spatial Data Analysis (ESDA) techniques to investigate the spatiotemporal 

distribution of obesity at the county level in the US and its associations with built environmental, 

socioeconomic, and sociodemographic factors.  A spatial database, a GIS mapping software, and 

a standalone spatial analysis platform designed to implement methods and techniques for ESDA 
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were used to capture, store, manipulate, edit, analyze, and visualize the outcomes and relations 

produced from the analyses conducted in this study. 

1.1 Problem Statement  

The Centers for Disease Control and Prevention (CDC) has reported substantial increases 

in obesity rates across all ages, genders, and racial and ethnic groups in every state in the US 

especially since 1991 (CDC, 2014; Flegal et al., 2010; Ogden and Carroll, 2010a, 2010b; 

Mokdad et al., 2001, 2000, 1999).  On the other hand, based on previous research, it is also 

evident that obesity has affected some groups and sub-populations more than others (Hill et al., 

2014; Flegal et al., 2012).  Hill and Trowbridge (1998) emphasized that “despite obesity having 

strong genetic determinants, the genetic composition of the population does not change rapidly.  

Therefore, the large increase in obesity must reflect major changes in non-genetic factors.”   

 The literature on obesity has been growing especially since 2002.  Although there are 

many publications examining the relationship between obesity and diverse key factors using 

various spatial and statistical methods, only a few studies have been detected at the county level 

for the entire US in the literature (e.g., Xu and Wang, 2015a; Xu and Wang, 2015b; and Chi et 

al., 2013).  There are obesity studies covering the entire US at the state level or the entire US at 

the county level but only for those counties included in the Metropolitan Statistical Area (MSA) 

regions (therefore not contiguous) or a whole state at the county/zip code/Traffic Analysis Zone 

(TAZ) levels or parts of a county at the census tract/neighborhood levels (Durand et al., 2011; 

Feng et al., 2010; Galvez et al., 2010; Li et al., 2009; Ewing et al., 2008; Mujahid et al., 2008; 

Drewnowski et al., 2007; Holt and Sui, 2007; Rundle et al., 2007; Schlundt et al., 2006).  Even 

though the contributions of such publications are essential to see the obesity phenomenon and its 

interactions at different scales, studying and documenting it at the county level is as valuable if 
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not more.  In addition, despite the numerous studies, the great heterogeneity across studies in 

terms of the key variables, statistical methods, and spatial extent used and the number and range 

of places compared has produced different results that are somewhat incomparable (Feng et al., 

2010).  

 Therefore, this dissertation aims to fill that gap and contribute to the literature on spatial 

analysis of obesity by documenting spatio-temporal interactions, patterns, and trends based on 

the obesity and the selected key variables using ESDA methods including the Geographically 

Weighted Regression (GWR) technique at the county level covering the entire US.  The main 

research questions include: How has obesity increased?  Where and what type of populations are 

most affected?  How does obesity relate to the built environment?  Considering the above 

overview, a spatial analysis of obesity based on the behavioral, built environmental, 

socioeconomic, and sociodemographic conditions at the county level is expected to provide a 

better understanding of the obesity epidemic and its previously overlooked or unknown 

confounding associations with these dynamics. 

1.2 Research Objectives  

 The goal of this research is to investigate the spatial associations between obesity and 

built environmental, socioeconomic, and sociodemographic dynamics in the US and to determine 

if such dynamics can explain disparities in obesity prevalence.  Addressing disparities has much 

to contribute to health research in general, and to obesity research, in particular.  Especially in 

recent years, inequities in the social and built environments have increasingly been the focus of 

research that aim to explain weight-related disparities, such as obesity (Kershaw et al., 2013; 

Powell et al., 2012; Wen and Kowaleski-Jones, 2012; Lovasi et al., 2009).  Therefore, the 

specific objectives of this dissertation research are: 
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1) To explore and identify spatio-temporal patterns and trends of obesity and its associations 

with respect to behavioral, environmental, socioeconomic, and sociodemographic 

conditions in the US using county level data. 

2) To examine whether these associations are based on clusters of occurrences or are 

randomly dispersed across space by applying a set of spatial and non-spatial analytical 

methods.  If statistically significant clusters exist, then additional research questions are: 

a) Where are these clusters located? b) Do they spatially converge? 

3) To identify predictors of obesity prevalence at the county level and to reveal how the 

effects of these predictors vary spatially. 

1.3 Research Hypotheses 

 The hypotheses of this research are: 

1) There is significant spatial clustering of high (or low) values of obesity or the selected 

environmental, socioeconomic, and behavioral variables. 

2) There are significant spatial clusters of obesity in areas with lower population density, 

poorer access to parks, and less mixed land use. 

3) There are significant spatial clusters of obesity in areas where poverty levels are high. 

4) There are significant spatial clusters of obesity in areas where the physical inactivity 

levels of the underlying population are high. 

5) Predictors of obesity prevalence and effects and variations of such factors across space at 

the county level can be identified and revealed by the GWR technique. 
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1.4 Expected Significance 

 The expected significance of this research is threefold: 

1) This dissertation will outline geographic areas where disparities in obesity occur to 

identify specific populations at risk at a county level for the entire US.  More particularly, 

this study identifies geographic clusters (hot spots) of obesity and therefore certain 

groups and/or subpopulations that require special attention.  Spatial clusters can reveal 

information about the underlying geographical process that generates the spatial pattern 

which can further assist in the comprehension of the underlying geographical process and 

its relationship with the phenomenon under investigation.  In order to develop successful 

public health interventions to reduce obesity disparities, one must thoroughly define 

spatial patterns and understand the forces that lead to such clustering. 

2) Part of the problem is that the causal factors behind obesity disparities or health 

disparities, more broadly, are complex and not fully understood.  Nonetheless, what may 

overall affect obesity risks and obesity outcomes lies beyond the medical model which 

focuses primarily on medical treatment options.  Therefore, in the literature regarding 

health disparities, an emerging focus has been the spatial context (Richardson et al., 

2013).  In other words, what role do individuals’ living environments play in explaining 

poorer health outcomes among certain groups and/or subpopulations?  This dissertation 

examines whether disparities in obesity can be linked to the contextual factors that refer 

to the characteristics of an area such as the features of the physical environment or the 

level of poverty in those particular geographic areas as well as to the population 

composition variables that refer to the characteristics of the underlying population such as 

income, educational level, race, or age.  Hence, the variables scrutinized in this study 
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were chosen carefully to depict the different aspects of such influences.  More 

specifically, this study will attempt to specify area-based built environmental, 

socioeconomic, and sociodemographic variables to identify predictors of obesity and how 

the effects of these predictors vary spatially across the US counties.  Understanding the 

possible linkages between obesity and its predictors can help reduce obesity prevalence 

throughout the nation.  Otherwise, the cumulative impact of these forces will leave a 

permanent mark in the obesity disparities that exist today. 

3) This study is among the first ones to use ESDA methods, including the GWR technique, 

to study obesity at the county level in the United States.   The results from this study will 

generate useful insights that will help generate new hypotheses and define study areas for 

further detailed scale studies. 

1.5 Chapter Organization 

 The current chapter provided an overview of this dissertation research including its 

objectives, hypotheses, and expected significance.  Chapter 2 documents the general trends in 

obesity and physical activity in the US to date, associations between various factors and obesity, 

built environmental characteristics including design standards and their effects on obesity and 

physical activity, and last but not least various public policies on food and urban planning and 

their effects on obesity.  Chapter 3 describes the study area, the data sources, and data used in 

this research along with the spatial and non-spatial analytical methods applied to this research.  

Chapter 4 analyzes the spatial distribution of obesity and the associated built environmental, 

socioeconomic, and behavioral factors to identify spatio-temporal patterns and trends at the 

county level in the US by employing ESDA techniques available in GeoDa 1.6.7 software 

(univariate and bivariate Moran’s I and LISA statistics).  Chapter 5 examines the obesity’s 
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associations with the built environmental, socioeconomic, and sociodemographic dynamics to 

identify predictors of obesity at the county level in the US by employing the GWR technique 

utilizing the GWR 4.0 software (https://geodacenter.asu.edu/gwr).   

 

 

 

 

https://geodacenter.asu.edu/gwr
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CHAPTER 2. LITERATURE REVIEW ON OBESITY, DIET, PHYSICAL ACTIVITY, 
AND BUILT AND SOCIAL ENVIRONMENT 

 
2.1 Obesity 

 
 Obesity is defined by the Body Mass Index (BMI) which is a measure of fat content in 

the human body based on both height and weight.  According to the World Health Organization 

(WHO), National Institute of Health (NIH), and the Centers for Disease Control and Prevention 

(CDC) guidelines, individuals having a BMI of 30kg/m2 or greater are considered obese, and 

those having a BMI between 25 kg/m2 and 29.9 kg/m2 are considered overweight.  The CDC 

calculates the BMI using the formula of (weight [kg] / height [m]2) and the self-reported height 

and weight information.  Table 2.1 presents more detailed definitions of the BMI according to 

WHO guidelines.  

Table 2.1 Definitions of the Body Mass Index (BMI) according to the World Health 
Organization (WHO) guidelines 
 

Categories Body Mass Index (BMI) in kg/m2 

Underweight                  <18.5 

Normal weight               18.5-24.9 

Overweight  ≥ 25.0 

Pre-obese  25-29.9 

Obesity  ≥ 30.0 

Obese class I  30-34.9 

Obese class II  35-39.9 

Obese class III  ≥ 40.0 

 
 There is an alternative and more accurate method to calculate the BMI which uses waist 

circumference to measure abdominal body fat (CDC, 2015; Hu, 2007; Janssen et al., 2002).  This 
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method also takes gender and age of individuals into account.  However, use of this method is 

not widespread since it is difficult to collect waist circumference data (CDC, 2015; Hu, 2007; 

Janssen et al., 2002).  Therefore, the CDC uses the above mentioned BMI formula.  With these 

definitions given, the majority of the population, both men and women, in the US may be 

categorized as either overweight or obese (Ogden et al., 2014).   

The burden of obesity is substantial both in the US and globally, and it is predicted that a 

rise in obesity prevalence is likely to continue to 2030 (Wang et al., 2011; Kelly et al., 2008).  

Rather high rates of obesity are observed in the US when compared to the rest of the world 

(https://www.cia.gov/library/publications/the-world-factbook/rankorder/2228rank.html).  

Although the obesity issue has captured the public’s attention especially in recent years due to 

the increasing prevalence of obesity reported, the obesity problem in the US is older than 

one might think.  National nutrition-monitoring data from 1976–1980 showed a gradual increase 

in the prevalence of adult obesity (Kuczmarski et al., 1994).  Over the last decades the 

Behavioral Risk Factor Surveillance System’s (BRFSS) survey data have revealed more recent 

obesity trends in the US.  The CDC has been conducting the BRFSS survey annually since 1984 

(http://www.cdc.gov/brfss/annual_data/all_years/states_data.htm).  There are a total of 31 

surveys to date.  The most recent survey was conducted in 2014.  The CDC has reported 

substantial increases in obesity rates in all ages, genders, races, and ethnic groups in every state 

since 1991 (CDC, 2014; Flegal et al., 2010; Ogden and Carroll, 2010a, 2010b; Mokdad et al., 

2001, 2000, 1999).   

Figure 2.1 presents an overview of obesity prevalence among adults in 1990, 2000, and 

2010 in the US.  In 1990, among the 45 states participating in the BRFSS’s survey, ten states had 

a prevalence of obesity less than 10% and no state had a prevalence equal to or greater than 15%.  

https://www.cia.gov/library/publications/the-world-factbook/rankorder/2228rank.html
http://www.cdc.gov/brfss/annual_data/all_years/states_data.htm
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Based on the surveys conducted, there has been an obvious increase in obesity prevalence in 

between the 1991-1998 periods (Mokdad et al., 2001, 2000, 1999).  Among respondents aged 18 

years and older, the obesity prevalence increased by around 50% (from 12% to 17.9%) between 

1991 and 1998 (Mokdad et al., 2001, 2000, 1999).  In addition, by 1999 13% of children aged 6 

to 11 and 14% of adolescents aged 12 to 19 were reported as overweight (Office of the Surgeon 

General, 2014).  The increase in obesity prevalence continued through 1999-2009 periods as well 

(CDC, 2010).   

2000

2010

1990

No Data           <10%           10%–14% 15%–19%           20%–24%          25%–29%            ≥30%

(Percentage of adults who have a BMI 30 indicating that they are obese)

 
Figure 2.1 Obesity prevalence rates at the state level in the US for 1990, 2000, and 2010 
 
 By 2000, no state had a prevalence of obesity less than 10%, twenty-three states had a 

prevalence between 20%-24%, and no state had a prevalence equal to or greater than 25% 

(Mokdad et al., 2001).  In 2010, no state had a prevalence of obesity less than 20%.  Thirty-six 

states had a prevalence equal to or greater than 25%.  Twelve of these thirty-six states (Alabama, 
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Arkansas, Kentucky, Louisiana, Michigan, Mississippi, Missouri, Oklahoma, South Carolina, 

Tennessee, Texas, and West Virginia) had a prevalence equal to or greater than 30% (CDC, 

2010). 

Figure 2.2 presents an overview of obesity prevalence among adults in 2011, 2012, 2013, 

and 2014 in the US.  Based on the surveys conducted in the 2011-2012 periods, 34.9% of US 

adults aged 18 years and older and 17% of US children and adolescents aged 2-19 years were 

obese (CDC, 2014; Ogden et al., 2014).  By 2013, for the first time ever in the US history, two 

states (Mississippi (35.1%) and West Virginia (35.1%)) had a prevalence of obesity above 35%.     

2012

2013

2011

20%–25%           25%–30%          30%–35%            ≥35%

(Percentage of adults who have a BMI 30 indicating that they are obese)

2014

 
Figure 2.2 Obesity prevalence rates at the state level in the US for 2011, 2012, 2013, and 2014 
 
In addition, based on the most recently conducted BRFSS survey in 2014, in no state was the 

prevalence of obesity less than 20%.  The prevalence of obesity ranged from 21.3% in Colorado 

to 35.9% in Arkansas.  The national median obesity prevalence was 29.5%.  These trends show 
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that overall, the prevalence of obesity among the individuals aged 18 years or older is more than 

1 in 4 in the US.  What is worse, more than 1 in 3 individuals aged 18 years or older are obese in 

Alabama, Louisiana, Mississippi, West Virginia, and Arkansas (CDC, 2015).  

Although one of the goals of the US government’s Healthy People 2000 initiative was to 

reduce the prevalence of obesity, it was evident by January 1994 that this goal was not being 

reached even when population surveys showed that more than half of the US population actively 

attempted weight loss or weight control during that period (Serdula et al., 1999; Russel et al., 

1995).  Following this, yet again obesity was listed as among the leading health indicators in 

Healthy People 2010 and 2020 initiatives (Healthy People 2020, 2014).  Unfortunately, in spite 

of the national efforts, the progress toward the goal of reducing the proportion of adults who are 

obese has been minimal during the Healthy People 2010 initiative yet the Healthy People 2020 

initiative still aims to reduce the proportion of obese adults by 10% (Heron et al., 2009).      

Despite the debates over the actual risks attributable to obesity and the factors leading to 

high obesity prevalence, the epidemic itself remains a major public health concern.  Being 

overweight or obese are considered risk factors for a number of health problems including 

chronic cardiovascular diseases, stroke, hypertension, dyslipidemia, type 2 diabetes, various 

cancer types, liver and gallbladder disease, osteoarthritis, lower-back and chronic neck pain, 

sleep apnea, and other respiratory problems, infertility, as well as poor general health and some 

cancers (CDC, 2014; Ahima and Lazar, 2013).  Also obesity is known to be associated with 

psychological disorders and mental health since there are social standards of appearance and 

attractiveness linked with body size and shape across cultures (Sutin et al., 2011).  Obesity’s 

distinct impact is mostly on morbidity and disability rather than on mortality.  However, studies 
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still confirm that obesity is a risk factor for all-cause mortality (Flegal et al., 2013; Whitlock et 

al., 2009).   

 As mentioned in the introduction section of this study, some 200,000 deaths may be 

attributable to obesity each year making obesity the second-leading cause of preventable death 

after smoking in the US.  It is likely to become the first unless this chronic issue is addressed 

successfully (Wang et al., 2011; Danaei et al., 2009; Flegal et al., 2005; Mokdad et al., 2004).  In 

addition, the total annual economic costs associated with obesity in the US were estimated to be 

in excess of $215 billion, with $147 billion in direct costs such as medical care expenditures and 

the rest in indirect costs including lost wages, productivity loss (due to absenteeism from the 

job), disability, premature deaths, health insurance, or transportation costs (Hammond and 

Levine, 2010; Finkelstein et al., 2009). 

 The above review frames obesity in terms of the definition of obesity, obesity trends in 

the US, and obesity’s health and economic burden along with projections for the future.  

Nonetheless, obesity is a complex issue and thus, a further understanding is needed especially in 

terms of the obesity’s confounding associations.  In industrialized societies, almost all 

individuals are exposed to an array of behavioral and environmental influences that provoke 

obesity.  There has been a great debate about the effects as well as the magnitude of such effects 

of the confounding factors’ on obesity such as individual behaviors, including diet and physical 

inactivity, and obesogenic environments, both within the built and social environmental context.  

Therefore, the main concepts relating to such confounding factors are essential to review and 

will be elaborated further. 
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2.2 Diet and Physical Activity 

 The causes of obesity are intricate.  However, it is known that poor diet and physical 

inactivity are major lifestyle contributors to obesity.  In fact, there is a rather simple equation.  

Weight gain is the outcome of more calories consumed than burned.  In other words, an 

individual’s excessive daily food intake gets converted to body fat and stored unless it is used 

through a recreational or utilitarian physical activity.  It is known that there is a global shift in 

diet toward increased consumption of energy dense foods that are low in vitamins and minerals 

and high in fat and sugars (Economos et al., 2015; WHO, 2015).  The relative costs of energy-

dense foods, composed of processed grains, sugar, and fat, have decreased while prices of fruits 

and vegetables have increased progressively in the more recent years (Popkin, 2011; Christian 

and Rashad, 2009).  Although a range of individuals from various income levels are affected due 

to this price structure, individuals with low income profile are affected more substantially 

(Hawkes et al., 2015; Maillot et al., 2010).  What is worse, those energy-dense foods and 

beverages have become easily accessible anywhere including vending machines, school 

cafeterias, pharmacies, book stores, and even hardware stores (Gordon-Larsen, 2014).  

Especially since the early 1980s, while energy intake has gradually increased, energy 

expenditure has decreased in the same rate if not more.  Also, the trend toward increasing portion 

sizes has started in the same years (early 1980s) and has gradually increased ever since (Barbara 

et al., 2014).  The increase in portion sizes is most evident and well documented in the US not 

only for eating out but also eating home among the adults, adolescents, and children alike 

(Barbara et al., 2014).  These trends led to growing energy imbalance which strongly reflects the 

high obesity rates in the US (Economos et al., 2015). 
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 In addition, a recent report by US Department of Agriculture and US Department of 

Health and Human Services claims that people are generally unaware of how many calories they 

need each day (http://health.gov/dietaryguidelines/dga2010/dietaryguidelines2010.pdf).  Also, 

many people are either unaware of or underestimate how many calories their snacks, beverages, 

and meals have.  Therefore, national improvements in dietary intake, in terms of food quality 

(i.e., healthy and nutritious foods), energy density, and portion size, have been identified as the 

main direction to prevent undesired weight gain and associated inverse health outcomes in the 

US (Karl and Roberts, 2014; Austin et al., 2011; Briefel and Johnson, 2004).  However, there is 

still a great debate on how to implement improvements in dietary intake in practice (Karl and 

Roberts, mediation 2014).  For instance, as documented by Hawkes et al. (2015) and Finkelstein 

et al. (2014), although the effects are modest, research suggests that food taxes and subsidies to 

encourage consumption of healthier foods and beverages may play an important role in reducing 

obesity especially when implemented along with other initiatives such as nutrition education and 

nutrition labeling on foods and beverages. 

 On the other hand, it is also important to emphasize that the type of ingredients (e.g., 

sugar types and many artificially produced additives and flavors) vary considerably across 

different foods and beverages (Pereira, 2014).  It is believed that the type of ingredients plays a 

central role for palatability and thus greatly influences individuals’ food selection (Johnson and 

Wardle, 2014).  However, the effect of food ingredients and the extent of such an effect on eating 

behavior, obesity, or overall health are still not fully understood (Pereira, 2014).  Therefore, food 

availability and convenient access to healthy (or unhealthy) food choices have received great 

attention recently in the obesity and nutrition literature (Gordon-Larsen, 2014).  Neighborhood 

environments that provide access to healthy and nutritious foods are hypothesized to improve 

http://health.gov/dietaryguidelines/dga2010/dietaryguidelines2010.pdf
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diet as well as weight outcomes of individuals living in such neighborhoods (Gordon-Larsen, 

2014; Walker et al., 2010; Sturm and Cohen, 2009).  Conversely, neighborhoods that limit access 

to healthy foods or food deserts have particularly received equal attention, if not more, in the 

literature. 

 Similar trends that strongly effects energy imbalance experienced by individuals also 

exist in terms of physical activity.  There is a trend toward decreased physical activity due to the 

modern and relatively recent conveniences provided with technological advances.  Immense 

improvements in science and technology made life much easier than it was a decade or two ago 

and people have become more inactive and automobile dependent.  In other words, the modern 

conveniences have brought many sedentary forms of working, schooling, traveling, cooking, and 

even eating, to name a few.  Therefore, some focus must be placed on different environments 

(e.g., social, physical, and cultural) that have an effect on individuals’ choices for food intake 

and physical activity. 

Since 1965, leisure time has increased more than 4 hours per week; time spent at 

productive activities such as working, cooking, cleaning, repairing things, and childcare has 

diminished; transportation time has increased to some extent; and time used for personal care 

including taking showers, getting dressed, and eating (roughly 2 hours a day) remained the same 

(Sturm and An, 2014; Finkelstein and Zuckerman, 2008).  Thus, there has not been much change 

except the increase in leisure time.  Nevertheless, according to various surveys, the majority of 

individuals tend to use much of their leisure time for sedentary activities rather than physical 

activities.  For example, according to the data from the American Time Use Survey (ATUS), 

most recently collected in 2014, the US individuals only spend 17 minutes of their daily leisure 

time in average to participate in sports, exercise, and recreation.  The total time for leisure and 
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sports (in average per day) is calculated to be 5.1 hours based on the 2014 survey.  The collected 

data include all days of the week and are annual averages for all persons 15 years and older 

(http://www.bls.gov/tus/charts/leisure.htm).  Considering the fact that individuals spend only 17 

minutes (out of 5.1 hours) to be physically active, it is quite insufficient in view of the expert 

recommendations.   

Experts currently recommend a minimum of 30 minutes of moderate physical activity for 

five days or more per week, or a minimum of 20 minutes of vigorous physical activity for three 

days or more per week (Goodman and Fuller, 2015).  Moderate physical activities cause small 

increases in breathing or heart rate and includes such activities as brisk walking, bicycling, 

vacuuming, and gardening.  Vigorous physical activities cause large increases in breathing or 

heart rate and include running, aerobics, and heavy yard work (CDC, 2015).  However, only less 

than half of the US adult population (48%) achieved those suggested levels of physical activity 

in between the 2001-2013 periods (CDC, 2015; Goodman and Fuller, 2015; NCHS, 2013).    

 As evident by the above review, lifestyle is one of the major contributors to the obesity 

epidemic.  Therefore, the social and more specifically, physical environments that greatly affect 

individuals’ lifestyle choices have become the focus to better understand the linkages that lead to 

obesity (Durand et al., 2011; Feng et al., 2010; Papas, 2007).  In this case, it is crucial to review 

the literature focusing on built and social environments and thus they are discussed further. 

2.3 Built and Social Environment  

 There is substantial and growing research linking characteristics of the built environment 

to health behaviors and outcomes such as diet, physical activity, and obesity.  The same research 

also associates characteristics of the built environment to the disproportionate burden of these 

health risks among certain groups and/or subpopulations (Ferdinand et al., 2012; Casagrande et 

http://www.bls.gov/tus/charts/leisure.htm
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al., 2011; Ruel et al., 2010; Franco et al., 2009; Harrington and Elliott, 2009; Larson et al., 2009; 

Lovasi et al., 2009; Sallis and Glanz, 2009; Story et al., 2008; Frank et al., 2007; Handy and 

Clifton, 2007; Papas et al., 2007; Yancey and Kumanyika, 2007; Lopez and Hynes, 2006; Nelson 

et al., 2006; Frumkin et al., 2004; Dannenberg et al., 2003; Ewing et al., 2003; Hill et al., 2003; 

Srinivasan et al., 2003; Hill and Peters, 1998).   

 A thorough and recent literature search reveals that the studies of Ewing et al. (2003), 

Saelens et al. (2003) and Handy et al. (2002) are fundamental and pioneer studies linking aspects 

of the built environment with obesity and/or physical activity.  It is also noticed that these studies 

have still been referred to by many recent studies.  Ewing et al. (2003) has discovered significant 

associations between obesity, physical activity and the county level sprawl index that they have 

created.  The study concludes that individuals living in densely populated counties weighted less, 

with lower BMI, than individuals residing in sprawling counties.  Saelens et al. (2003) has 

emphasized that more walkable environments are usually associated with higher physical activity 

and lower obesity rates (Kent and Thompson, 2014; Ferdinand et al., 2012; Durand et al., 2011; 

Brownson et al., 2009; Papas et al., 2007).  Furthermore, Ferdinand et al. (2012) have suggested 

that characteristics of the built environment are more likely to be associated with self reported 

than objectively measured physical activity.  Handy et al. (2002) has stated that urban plans 

adopting land use and transportation concepts that promote walking and/or bicycling would help 

create more active, healthier, and livable communities (Kent and Thompson, 2014; Durand et al., 

2011; Kaczynski et al., 2008).  In that regard, there are two core concepts: land use, which 

consists of density and land use mix; and transportation, which consists of automobile 

dependence and connectivity (Jordan et al., 2015; Kent and Thompson, 2014; Frank et al., 2006; 

Frumkin et al., 2004). 
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 Land use patterns are the main determinants of the proximity between different urban 

functional areas and therefore such patterns could be the key factors affecting individuals’ 

physical activity decisions and hence energy expenditure.  Density by definition is a 

measurement of the quantity of individuals, households, or businesses per unit of area such as an 

acre, a square mile, or a square kilometer.  In urban planning, higher density of urban 

development is generally associated with more frequent and shorter trips, reduced automobile 

ownership, increased transportation options, and increased walkability and walking compared to 

lower density development (Frank et al., 2006; Frank et al., 2005; Saelens et al., 2003).  The land 

use mix refers to the types of uses, such as housing, offices, retail, services, recreation, and so 

forth over an area.  High level of land use mix is usually associated with reduced automobile 

dependence, reduced travel needs to distant places, and increased walkability (Frumkin et al., 

2004; Saelens et al., 2003).    

Similarly, transportation characteristics can also be decisive factors shaping individuals’ 

physical activity decisions and hence alter energy expenditure.  Automobile dependence is 

generally determined by multiple factors such as proximity between destinations, availability of 

different modes of transportation, and quality of connectivity.  Transportation connectivity refers 

to how different destinations are linked through means of transportation.  A poor connectivity 

between destinations, such as poor street networks, can make even nearby destinations 

inconvenient to reach (Frumkin et al., 2004).  In planning, the number of intersections in an area 

is usually viewed as a good measure of connectivity (Saelens et al., 2003).  Higher connectivity 

is generally associated with shorter automobile trips, decreased automobile dependence, and 

increased walkability and walking (Saelens et al., 2003).     
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 Consequently, researchers in planning and transportation fields have identified land use 

mix, density, and connectivity as the key aspects to create walkability indices (Jordan et al., 

2015; Kent and Thompson, 2014; Frank et al., 2006; Frank et al., 2005; Leslie et al., 2005) while 

controlling potential confounding factors such as socioeconomic and sociodemographic 

attributes.  However, compared to adults, positive associations between density and walking are 

stronger and more consistent findings in youth while positive associations between land use mix 

and walking are stronger and more consistent findings in adolescents (Jordan et al., 2015).  On 

the other hand, positive associations between street connectivity and walking are weaker and less 

inconsistent findings (Ding et al., 2011; Kerr et al., 2007; Frank et al., 2007).  A number of 

studies have also highlighted other determinants of physical activity in the built environment in 

addition to those mentioned above, such as overall neighborhood design features, the presence 

and quality of nearby sidewalks and footpaths, the existence of enjoyable scenery, safety 

including lighting at night, and the presence of other individuals who are physically active 

(Durand et al., 2011; Ferdinand et al., 2012; Kaczynski et al., 2008; Frumkin et al., 2004).   

All these built environmental attributes of a place play an important role on individuals’ 

decisions about whether to engage in physical activity or not.  However, the research 

investigating the links between the built and social environments and health outcomes has been 

unable to confirm a causal relationship.  Because, individuals choose where to live and those 

who are conscious about certain health behaviors may be more likely to choose neighborhoods 

that provide better opportunities for physical activity and healthy diet.  Nonetheless, even after 

controlling for possible effects of individuals’ neighborhood choices, significant associations 

between characteristics of the built environment and health outcomes have been identified (Frank 

et al., 2007; Plantinga and Bernell, 2007).  Hence, these findings indicated that the features of the 
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built environment have an impact on individual behaviors and therefore on health outcomes 

(Frank et al., 2007; Plantinga and Bernell, 2007). 

As illustrated in Figure 2.3, adverse characteristics of the social environment such as 

poverty, lack of education, unemployment, and crime may act synergistically to produce a 

cumulative impact of various stressors in individuals that directly increase their risk of disease.  

On the other hand, adverse characteristics of the physical environment such as availability of 

parks, grocery stores, restaurants, and public transportation create the context in which individual 

behavioral choices are made concerning physical activity, nutrition, tobacco and alcohol use, and 

other health-related behaviors (Iton et al., 2010).  As a result poor health outcomes and thus 

health disparities becomes inevitable.  It is clear that health disparities are often produced by 

multiple and complex adverse effects such as racial or ethnic background, sex, age, disability, 

socioeconomic status, physical environment, or geographic location. 

Figure 2.3 Possible pathways through which social and physical environment effects may 
operate 
 

The cumulative effect of these built environmental, socioeconomic, and 

sociodemographic factors reflects the complex ways in which systematic inequalities and 

disadvantages translate into the places individuals live and the types and degrees of access to 

various resources and opportunities they have (Rossen and Pollack, 2012; Gordon-Larsen et al., 

2006; Schulz and Northridge, 2004).  For instance, low-income and some racial and ethnic 

subpopulations usually inhabit locations with greater access to fast-food restaurants, corner 
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stores, and unsafe or undesignated urban open spaces.  As a consequence, these subpopulations 

usually have limited access to preferable outlets such as healthy restaurants and supermarkets, 

gyms, or safe parks and playgrounds (Abercrombie et al., 2008; Franco et al., 2008; Gordon-

Larsen, et al., 2006; Zenk et al., 2005; Block et al., 2004). 

In addition, previous research also reported that individuals facing demographic, social, 

economic, environmental, and/or geographic (spatial) disadvantages are more likely to be 

vulnerable to risk factors and stressors (Lovasi et al., 2009; Wilson, 2009; Wilson et al., 2008).  

In return, being more vulnerable to risk factors in the social and built environments shapes an 

individual's propensity toward health and therefore contributes to numerous health disparities 

including disparities in obesity (Wilson, 2009; Wilson et al., 2008; Schulz  and Northridge, 

2004).  Consequently, a number of studies (e.g., Taveras et al., 2013; Wen and Kowaleski-Jones, 

2012; Wilson, 2009; Wilson et al., 2008; Drewnowski et al., 2007; and Swinburn et al., 1999) 

have emphasized that inequalities and disadvantages in the social and built environments 

underlie disparities in obesity risks and outcomes. 

Based on the literature review above that primarily focused on the US, it is clear that the 

large increase in obesity prevalence in the US may reflect variations in built environmental, 

behavioral, socioeconomic, and sociodemographic factors.  However, the extent to which these 

factors are causally related to the obesity phenomenon, in general and disparities in obesity, in 

particular is still poorly understood.  This study will investigate the spatial associations between 

obesity and built environmental, behavioral, socioeconomic, and sociodemographic dynamics at 

the county level in the US and will attempt to determine whether such dynamics can explain the 

current obesity epidemic and disparities in obesity.  Therefore, it is important to identify key 

variables to establish the possible spatial associations with obesity to reveal the pathways 
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through which the underlying effects operate.  The key variables used and the spatial and non-

spatial methods applied to this research are discussed in Chapter 3 in detail. 
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CHAPTER 3. DATA AND METHODS 

3.1 Study Area 

The datasets used in this study come from various resources.  The original datasets were 

at the county level for the entire US.  However, due to the spatial nature of this study, only the 

contiguous counties and county equivalents (i.e., parishes in Louisiana, the District of Columbia, 

and the independent cities in Virginia, Maryland, Missouri, and Nevada) within the continental 

US are included in the analyses.  The study area consists of the 3,105 counties and county-

equivalents across the 48 contiguous states, also known as the continental US (all except Alaska 

and Hawaii) (Figure 3.1).      

 

Figure 3.1 Study area showing the boundaries for counties, county-equivalents, and states for the 
continental US 
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3.2 Data 

 Thirteen datasets are used, as shown in Table 3.1.  The first set of data includes: 1) 

obesity; 2) physical inactivity (PIA); 3) poverty; 4) ratio of jobs to employed residents (JER); 5) 

population-weighted distance (PWD) to parks; and 6) population density (Table 3.1).  The 

secondary set of data includes: 1) obesity; 2) physical inactivity (PIA); 3) commute to work by 

car; 4) natural amenities index; 5) ratio of jobs to employed residents (JER); 6) fast-food 

restaurants per capita; 7) poverty; 8) African-American population; 9) high educational 

attainment; 10) rural population; and 11) native residents (Table 3.1). 

 The first set of data is mainly used to conduct the global and local Exploratory Spatial 

Data Analyses (ESDA) in Chapter 4.  The variables included in the first set of data are selected 

to explore especially the built environmental, as well as the behavioral (PIA) and socioeconomic 

(poverty), associations with obesity.  Based on the literature review as well as the earlier data 

exploration processes performed, these variables are indentified to represent such associations 

rationally at the county level.  On the other hand, the secondary set of data is used to perform the 

global Ordinary Least Squares (OLS) regression and the local Geographically Weighted 

Regression (GWR) in Chapter 5.  The variables included in the secondary set of data consist of 

only some of the same variables from the first set of data (i.e., obesity, PIA, poverty, and JER) 

and additional variables to capture sociodemographic and population associations with obesity as 

well.  Although it is more logical and common practice to include all variables from a primary 

analysis when conducting a secondary analysis (for this study, the global OLS regression and the 

local GWR), in this study some of the variables have either been excluded or replaced with new 

ones due to issues of multicollinearity and/or low explanation power.  Furthermore, a number of 

other variables (e.g., Gini index, per capita income, public transportation use, crime, female 



30 
 

Table 3.1 Description of the data sources 

Variable  Link to the Data  Data Produced by Year 

Obesity http://www.cdc.gov/diabetes/atlas/
countydata/County_ListofIndicato
rs.html  

Behavioral Risk Factor Surveillance 
System (BRFSS)  

2004, 2007, 
and 2010 

Physical Inactivity http://www.cdc.gov/diabetes/atlas/
countydata/County_ListofIndicato
rs.html  

Behavioral Risk Factor Surveillance 
System (BRFSS)  

2004, 2007, 
and 2010 

Poverty http://www.census.gov/did/www/s
aipe/data/statecounty/data/index.ht
ml 

US Census Small Area Income and 
Poverty Estimates (SAIPE) program  

2004, 2007, 
and 2010 

Ratio of Jobs to Employed Residents http://www.fhwa.dot.gov/planning
/census_issues/ctpp/data_products/
acsdataprod.cfm  

US Census Transportation Planning 
Products (CTPP) 

2010 

Population-weighted Distance to Parks http://www.esri.com/data/data-
maps/data-and-maps-dvd  

Environmental Systems Research 
Institute (ESRI), Redlands, CA 

2008 

Population Density http://www.census.gov/popest/data
/index.html 

US Census Population Estimates 
Program (PEP) 

2004, 2007, 
and 2010 

Commute to Work by Car http://factfinder.census.gov/faces/t
ableservices/jsf/pages/productview
.xhtml?pid=ACS_10_5YR_S0802
&prodType=table  

US Census 2010 American Community 
Survey (ACS) 5-Year Est. 

2010 

Natural Amenities Index http://www.ers.usda.gov/data-
products/natural-amenities-
scale.aspx  

US Department of Agriculture (USDA) 
Economic Research Service (ERS)  

1999 

Fast-food Restaurants Per Capita http://ers.usda.gov/data-
products/food-environment-
atlas/data-access-and-
documentation-downloads.aspx 

US Department of Agriculture (USDA) 
Food Environment Atlas  

2010 

African American Population http://factfinder.census.gov/faces/t
ableservices/jsf/pages/productview
.xhtml?pid=DEC_10_SF1_P3&pr
odType=table  

US Census 2010 Census Summary File 
1 (SF 1) 

2010 

High Educational Attainment http://factfinder.census.gov/faces/t
ableservices/jsf/pages/productview
.xhtml?pid=ACS_10_5YR_DP02
&prodType=table  

US Census 2010 American Community 
Survey (ACS) 5-Year Est.  

2010 

Rural Population http://factfinder.census.gov/faces/t
ableservices/jsf/pages/productview
.xhtml?pid=DEC_10_SF1_P2&pr
odType=table  

US Census 2010 Census Summary File 
1 (SF 1)  

2010 

Native Residents http://factfinder.census.gov/faces/t
ableservices/jsf/pages/productview
.xhtml?pid=ACS_10_5YR_DP02
&prodType=table  

US Census 2010 American Community 
Survey (ACS) 5-Year Est. 

2010 

State, County, and Parish Boundaries http://www.census.gov/geo/maps-
data/data/tiger-line.html  

US Census TIGER products 2010 

http://www.cdc.gov/diabetes/atlas/countydata/County_ListofIndicators.html
http://www.cdc.gov/diabetes/atlas/countydata/County_ListofIndicators.html
http://www.cdc.gov/diabetes/atlas/countydata/County_ListofIndicators.html
http://www.cdc.gov/diabetes/atlas/countydata/County_ListofIndicators.html
http://www.cdc.gov/diabetes/atlas/countydata/County_ListofIndicators.html
http://www.cdc.gov/diabetes/atlas/countydata/County_ListofIndicators.html
http://www.census.gov/did/www/saipe/data/statecounty/data/index.html
http://www.census.gov/did/www/saipe/data/statecounty/data/index.html
http://www.census.gov/did/www/saipe/data/statecounty/data/index.html
http://www.fhwa.dot.gov/planning/census_issues/ctpp/data_products/acsdataprod.cfm
http://www.fhwa.dot.gov/planning/census_issues/ctpp/data_products/acsdataprod.cfm
http://www.fhwa.dot.gov/planning/census_issues/ctpp/data_products/acsdataprod.cfm
http://www.esri.com/data/data-maps/data-and-maps-dvd
http://www.esri.com/data/data-maps/data-and-maps-dvd
http://www.census.gov/popest/data/index.html
http://www.census.gov/popest/data/index.html
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_S0802&prodType=table
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_S0802&prodType=table
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_S0802&prodType=table
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_S0802&prodType=table
http://www.ers.usda.gov/data-products/natural-amenities-scale.aspx
http://www.ers.usda.gov/data-products/natural-amenities-scale.aspx
http://www.ers.usda.gov/data-products/natural-amenities-scale.aspx
http://ers.usda.gov/data-products/food-environment-atlas/data-access-and-documentation-downloads.aspx
http://ers.usda.gov/data-products/food-environment-atlas/data-access-and-documentation-downloads.aspx
http://ers.usda.gov/data-products/food-environment-atlas/data-access-and-documentation-downloads.aspx
http://ers.usda.gov/data-products/food-environment-atlas/data-access-and-documentation-downloads.aspx
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=DEC_10_SF1_P3&prodType=table
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=DEC_10_SF1_P3&prodType=table
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=DEC_10_SF1_P3&prodType=table
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=DEC_10_SF1_P3&prodType=table
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_DP02&prodType=table
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_DP02&prodType=table
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_DP02&prodType=table
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_DP02&prodType=table
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=DEC_10_SF1_P2&prodType=table
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=DEC_10_SF1_P2&prodType=table
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=DEC_10_SF1_P2&prodType=table
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=DEC_10_SF1_P2&prodType=table
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_DP02&prodType=table
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_DP02&prodType=table
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_DP02&prodType=table
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_DP02&prodType=table
http://www.census.gov/geo/maps-data/data/tiger-line.html
http://www.census.gov/geo/maps-data/data/tiger-line.html
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employment, unemployment, occupation type, gender, median age, etc.) are also explored in the 

earlier phases of this study, however, not all are used due to various reasons including 

multicollinearity and/or low correlation with obesity. 

 The obesity and PIA data used in this study are basically the county level prevalence 

rates obtained from the CDC's Behavioral Risk Factor Surveillance System (BRFSS) 

(http://www.cdc.gov/diabetes/atlas/countydata/County_ListofIndicators.html).  The BRFSS has 

been established and administered by the Behavioral Surveillance Branch of the Centers for 

Disease Control and Prevention (CDC).  The CDC collaborates with states and other partners to 

provide health promotion, prevention, and preparedness and maintain national health statistics 

(CDC, 2014).  Established in 1984 by the CDC, the BRFSS is an ongoing state-based system of 

health surveillance tracking health conditions and risk behaviors of the adult population in the 

US (CDC, 2014).  The BRFSS collects the surveillance data through monthly telephone 

interviews from a random sample of adult population who are 18 years of age or older.  The 

BRFSS questionnaire used in the interviews consists of three parts: 1) the core component; 2) 

optional module; and 3) state-added questions (BRFSS, 2014).  The core component is a 

standard set of questions asked by all states and varies for each specific year.  The core variables 

that are common to each year within these periods include obesity (BMI), exercise (leisure time 

physical activity), general health status, heath care access, immunization, diabetes, asthma, 

HIV/AIDS, tobacco use, alcohol use, and demographic variables such as race, age, education 

level, and income.  The moderate physical activity and vigorous physical activity, two of the core 

variables, exist only in the odd years.  In addition, core variables such as women’s health, 

prostate cancer, colorectal cancer, nutrition, hypertension, disability, and so on are not common 

for each year yet exist in some of the years.  On the other hand, the optional module is a set of  

http://www.cdc.gov/diabetes/atlas/countydata/County_ListofIndicators.html
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questions submitted by the CDC for each specific year and the states elect which questions to be 

used in their questionnaires (BRFSS, 2014).  The optional module variables include oral health, 

heart attack and stroke, anxiety and depression, arthritis, family planning, home environment, 

and more.  In addition to the core component and optional module, the states can also develop 

their own questions for use in their questionnaire.  However, the CDC does not evaluate the 

state-added questions (BRFSS, 2014).   

Consequently, in this study the county level obesity and PIA prevalence rates depict the 

percentage of adult individuals who are obese and the percentage of adult individuals who are 

physically inactive, respectively.  The obesity and PIA rates do not include children and/or 

adolescents.  These prevalence rates are derived based on the responses to the questions 

regarding height, weight, and exercise in the above mentioned core component.  The respondents 

are considered obese if their body mass index (BMI) is 30 or greater.  The respondents are 

considered to be physically inactive if they answered "no" to the question, "During the past 

month, other than your regular job, did you participate in any physical activities or exercises 

such as running, calisthenics, golf, gardening, or walking for exercise?" (BRFSS, 2014).  The 

obesity prevalence rates are calculated by dividing the total number of adult individuals who are 

obese (having a BMI value greater than or equal to 30) in the county by the total county 

population (18 years and over) and then multiplying it by 100.  Similarly, the PIA prevalence 

rates are calculated by dividing the total number of adult individuals who are physically inactive 

(answered "no" to the physical activity question) in the county by the total county population (18 

years and over) and then multiplying it by 100.     

The poverty data used in this study are the county level prevalence rates acquired from 

the US Census Bureau's Small Area Income and Poverty Estimates (SAIPE) program 
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(http://www.census.gov/did/www/saipe/data/statecounty/data/index.html).  The official poverty 

thresholds do not vary geographically.  However, the thresholds are updated for inflation using 

Consumer Price Index (CPI-U) for each estimation period to classify impoverished individuals 

more rationally (https://www.census.gov/hhes/www/poverty/about/overview/measure.html).  

Otherwise, it is difficult to know that an increasing poverty rate really means that more people 

are impoverished.  The SAIPE program provides annual estimates of income and poverty 

statistics for all school districts, counties, and states in the United States.  The SAIPE program 

produces county estimates for the total number of people in poverty, number of related children 

ages 5 to 17 in families in poverty, number of children under age 18 in poverty, and median 

household income (US Census Bureau/SAIPE, 2014).  Therefore, in this study, the county level 

poverty prevalence rates represent the percentage of individuals living in poverty.  The poverty 

prevalence rates are calculated by dividing the total number of individuals who live in poverty in 

the county by the total county population and then multiplying it by 100. 

The JER data used in this study are the county level rates obtained from the US Census 

Transportation Planning Products (CTPP).  The CTPP is a set of special tabulations and uses the 

American Community Survey (ACS) sample to create the special tabulations 

(http://www.fhwa.dot.gov/planning/census_issues/ctpp/data_products/acsdataprod.cfm).  The 

CTPP data mainly consists of three parts: 1) residence-based tabulations summarizing worker 

and household characteristics; 2) workplace-based tabulations summarizing worker 

characteristics; and 3) worker flows between home and work, including travel mode.  The CTPP 

provides data at various geographic levels ranging from state to Transportation Analysis Zone 

(TAZ) levels (CTPP, 2014).  Hence, for this study the county level JERs are calculated based on 

the information on the number of jobs and employed residents available in the CTPP data.  The 

http://www.census.gov/did/www/saipe/data/statecounty/data/index.html
https://www.census.gov/hhes/www/poverty/about/overview/measure.html
http://www.fhwa.dot.gov/planning/census_issues/ctpp/data_products/acsdataprod.cfm
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county level JERs are calculated by dividing the total number of jobs in the county by the total 

number of employed residents in the county.   

In this study, the JER variable is used as a proxy to capture the degree of land use mix 

due to limitations in data availability to capture built environmental aspects at the county level.  

Although the JER variable may have its own limitations to use as a built environmental variable 

to capture the degree of mixed land use, it is hypothesized that higher JERs are associated with 

lower obesity rates especially considering use of the JER variable in various studies.  Higher 

mixed land uses decrease the average commute distances and per capita vehicle travel in general 

since with higher mixed land uses, proximity to various places to do daily activities such as 

commuting to work or school, shopping, and recreation reduce (Litman, 2008).  In that regard, 

Litman (2008) has used JER in an area to measure land use mix.  Furthermore, in urban growth 

and planning literature, JER is used as an important determinant for commuting times (Sultana, 

2002; Cervero, 1996).  Higher JER is found to be associated with a shorter residence commuting 

time and a longer workplace commuting time.  For instance, jobs are better supplied in the 

downtowns and that indicates a higher JER (Peng, 1997; Cervero, 1989).  In other words, a JER 

higher than 1 in an area indicates that it is a job rich area with commercial uses (i.e., high land 

use mix).  On the other hand, a JER lower than 1 in an area indicates that it is a job poor area 

with mostly residential land use (i.e., low land use mix).  Therefore, the JER variable is used as a 

proxy to capture the degree of land use mix. 

The PWD to parks data used in this study are the county level distances in miles 

constructed using the US park and US Census population data.  The US park data is obtained 

from the park GIS layer in the ArcGIS 9.3 Data DVD (Environmental Systems Research 

Institute (ESRI), Redlands, CA).  The particular data DVD, which was used to create the data 
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used in this research, was created in 2008.  An updated version of the data DVD exists with the 

release of ArcGIS 10.1 recently in 2010 (http://www.esri.com/data/data-maps/data-and-maps-

dvd).  The data DVD included 35,436 public park and/or forest units at various geographic 

levels, ranging from state to local, in the 50 states and DC.  Very small parks that are less than 

0.1 acres are not available in the dataset and therefore are not included in this study.  Thus, in 

this study the county level PWDs to parks provide a measure in terms of park accessibility.  Six 

sequential steps are involved in calculating and creating PWDs to parks at the county level.  As 

stated first by Zhang et al. (2011) and then by Wen et al. (2013), these steps include: 1) A 

Euclidean straight line distance between a census block centroid and a park centroid is 

calculated; 2) The access potential from a census block to a park is calculated as the ratio of park 

size and the squared distance between them; 3) A sum of a census block’s access potentials to its 

nearest seven parks is calculated as its spatial park access index  (based on cognitive research on 

choice set formation, seven is the most likely size for a spatial destination choice set); 4) The 

access probability from a census block to a park is calculated as the ratio of the access potential 

between them and the census block’s park access index (the sum of all seven access potentials); 

5) PWD to parks for a census block is calculated as the sum of census block population 

multiplied by access probability and distance for all its seven nearest parks; 6) A county’s PWD 

to parks is calculated as a sum of block PWD to parks multiplied by block population divided by 

total county population.  

The population density data used in this study are the county level density measures 

obtained from the US Census Bureau's Population Estimates Program (PEP).  Each year, the PEP 

uses current data to produce series of estimates of population, demographic components of 

change, and housing units (http://www.census.gov/popest/data/index.html).  These official 

http://www.esri.com/data/data-maps/data-and-maps-dvd
http://www.esri.com/data/data-maps/data-and-maps-dvd
http://www.census.gov/popest/data/index.html
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estimates of the population are at the national, state, county, and city and town levels, while the 

estimates of housing units are only at the state and county levels (US Census Bureau/PEP, 2014).  

The population densities are derived using the estimates of the population and corresponding 

land areas (in square miles) available in the PEP data.  Therefore, in this study the county level 

population densities show the number of individuals living per square mile.  The county level 

population densities are calculated by dividing the total number of individuals in the county by 

the total county land area (in square miles). 

The commute to work by car data used are the county level percentages obtained from 

the US Census Bureau’s 2010 American Community Survey (ACS) 5-Year Estimates 

(http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR

_S0802&prodType=table).  In this study, the county level commute to work by car percentages 

represent the percentage of individuals who commute to work by car, truck, or van, and drive 

alone.  The commute to work by car percentages are calculated by dividing the total number of 

individuals who commute to work by car in the county by the total county population (16 years 

and over) and then multiplying it by 100.  Furthermore, in US cities car is the main mode of 

transportation for all purposes but especially to commute to work.  Commute to work by car may 

be considered as a passive commuting type when compared to the act of walking or biking and 

even when compared to the use of public transportation to get to work (Zwald et al., 2014).  

Public transportation is considered as an active commuting type mainly because it is multimodal 

often involving walking or biking.  Thus, it is an important variable to assess both the behavioral 

and built environmental characteristics. 

The natural amenities index data used in this study are the county level measure of the 

physical characteristics of a county area obtained from the US Department of Agriculture’s 

http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_S0802&prodType=table
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_S0802&prodType=table
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(USDA) Economic Research Service (ERS) (http://www.ers.usda.gov/data-products/natural-

amenities-scale.aspx).  The USDA has assumed that the index is relatively constant since it is not 

expected to change much over time.  Thus, the USDA has not updated its data beyond the initial 

1999 construction.  The natural amenities index is mainly created as “a measure of the physical 

characteristics of a county area that enhance the location as a place to live” (USDA/ERS, 2015).  

The index is constructed by combining six measures of climate (i.e., warm winter, winter sun, 

temperate summer, and low summer humidity), topography (i.e., topographic variation), and 

water area (i.e., access to a body of water such as lakes, ponds, or oceanfront) that reflect 

environmental qualities that most people prefer, as USDA suggests.  The index ranges from 1 to 

6, where 1 is the lowest amenity score and therefore the least preferable while 6 is the highest 

score and thus the most preferable.  Consequently, in this study the county level natural 

amenities index represents the aspects of the natural environment.  The index for a specific 

county is calculated based on the standard deviation from the mean for all counties.  A county 

having a large negative value gets a much lower index score than a county with a large positive 

value which indicates the existence of natural environment superiority.  Furthermore, the natural 

amenities index variable is included in this study with the notion that it is an essential one for 

such study.  For example, Michimi and Wimberly (2012) found that recreational opportunities 

and therefore propensity for physical activity were positively correlated with natural amenities 

index.  It is also widely accepted that the aspects of environments that encourage walking and 

other physical activities have a great potential to reduce obesity.  While much of the literature 

has focused on urban form as well as planning characteristics, additional aspects of urban 

environments such as natural amenities should also be considered (Lovasi et al., 2012). 

http://www.ers.usda.gov/data-products/natural-amenities-scale.aspx
http://www.ers.usda.gov/data-products/natural-amenities-scale.aspx
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The fast-food restaurants per capita data used in this study are the county level rates 

acquired from the US Department of Agriculture’s (USDA) Food Environment Atlas 

(http://ers.usda.gov/data-products/food-environment-atlas/data-access-and-documentation-

downloads.aspx).  The USDA uses the US Census Bureau’s County Business Patterns (CBP) 

series to create the fast-food restaurants data.  CBP is an annual series that provides economic 

data by industry at the subnational scale.  This series includes data on the number of 

establishments, employment, first quarter payroll, and annual payroll (US Census Bureau/CBP, 

2015).  Fast-food restaurants include establishments which primarily provide food services 

(except snack and nonalcoholic beverage bars) where customers generally order or select items 

and pay before eating.  Food and drink may be consumed on premises, taken out, or delivered to 

the customer’s address (USDA/Fast Food Atlas, 2015).  Therefore, in this study the county level 

fast-food restaurants per capita rates show the number of fast-food restaurants in the county per 

1,000 county residents.  The fast-food restaurants per capita rates are calculated by dividing the 

total number of fast-food restaurants in the county by the total county population and then 

multiplying it by 1,000. 

The African-American population data used in this study are the county level percentages 

obtained from the US Census Bureau's 2010 Census Summary File 1 (SF 1) 

(http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=DEC_10_SF1

_P3&prodType=table).  SF 1 contains the data compiled from the questions asked of all people 

and about every housing unit.  The data collected include detailed information about age, sex, 

race, Hispanic/Latino origin, households, families, housing units, owner/renter status, and 

urban/rural identification (US Census Bureau/2010 Census SF 1, 2015).  Therefore, in this study 

the county level African-American population percentages represent the percentage of mono 

http://ers.usda.gov/data-products/food-environment-atlas/data-access-and-documentation-downloads.aspx
http://ers.usda.gov/data-products/food-environment-atlas/data-access-and-documentation-downloads.aspx
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=DEC_10_SF1_P3&prodType=table
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=DEC_10_SF1_P3&prodType=table
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racial Black or African-American individuals.  The African-American population percentages 

are calculated by dividing the total number of Black or African-American alone individuals in 

the county by the total county population and then multiplying it by 100. 

The high educational attainment data used are the county level percentages obtained from 

the US Census Bureau’s 2010 American Community Survey (ACS) 5-Year Estimates 

(http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR

_DP02&prodType=table).  The ACS is a nationwide survey that produces a detailed statistical 

portrait of the US social, economic, housing, and demographic characteristics through 1-year, 3-

year, and 5-year ACS products (US Census Bureau/2010 ACS 5-Year Estimates, 2015).  The 5-

year estimates have the largest sample size and include data for all counties.  Therefore, in this 

study the county level high educational attainment percentages represent the percentage of 

individuals who completed at least a Bachelor's degree or higher.  The high educational 

attainment percentages are calculated by dividing the total number of individuals who completed 

a Bachelor's degree or higher in the county by the total county population (18 years and over) 

and then multiplying it by 100. 

The rural population data used in this study are the county level percentages acquired 

from the US Census Bureau's 2010 Census Summary File 1 (SF 1) 

(http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=DEC_10_SF1

_P2&prodType=table).  SF 1 contains information about urban/rural status (US Census 

Bureau/2010 Census SF 1, 2015).  Therefore, in this study the county level rural population 

percentages show the percentage of individuals living in rural areas.  The rural population 

percentages are calculated by dividing the total number of individuals living in rural areas of the 

county by the total county population and then multiplying it by 100. 

http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_DP02&prodType=table
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_DP02&prodType=table
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=DEC_10_SF1_P2&prodType=table
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=DEC_10_SF1_P2&prodType=table
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The native residents data used in this study are the county level percentages acquired 

from the US Census Bureau’s 2010 American Community Survey (ACS) 5-Year Estimates 

(http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR

_DP02&prodType=table).  In this study, the county level native residents percentages show the 

percentage of individuals who were born in the state in which they reside.  The native residents 

percentages are calculated by dividing the total number of county residents who were born in the 

state in which they reside by the total county population and then multiplying it by 100. 

Many times, residents who reside in the state in which they were born address to 

themselves by expressions such as “homegrown” or “born and raised” to indicate that they have 

strong ties with the place in which they reside.  In this study, the main drive in using native 

residents as an explanatory variable stems from the idea that communities or places, to where 

individuals are belong, shape some lifestyle habits (e.g., eating, having fun, living, and working) 

through local culture.  Therefore, place of birth may be used to establish linkages between 

obesity outcomes and domestic immobility.  On the other hand, “native population” also includes 

return migrants.  Therefore, places with high percentages of return migrants (or boomerang 

migrants) may have more contamination of the characteristics captured with the “native 

residents” variable and thus, caution needed when interpreting analysis results. 

The state and county level boundary data used in this study are downloaded from the US 

Census Bureau's TIGER (Topographically Integrated Geographic Encoding and Referencing 

System) products (http://www.census.gov/geo/maps-data/data/tiger-line.html).  The TIGER 

products include various geodatabases and shapefiles for the entire US for mapping applications.  

Therefore, in this study these boundary files are used as a means to display the county level data 

(US Census Bureau/TIGER, 2014). 

http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_DP02&prodType=table
http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_DP02&prodType=table
http://www.census.gov/geo/maps-data/data/tiger-line.html
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3.3 Methods 

3.3.1 Main Concepts in Spatial Analysis 

Spatial data and spatial analysis concepts arise when dealing with problems of space.  

Spatial data are those that have a spatial component and combine locational information with 

attribute information recorded at a specific location.  Spatial analysis represent a step beyond 

simple cartography and mapping by comparing the spatial distribution of a set of features to a 

hypothetically-based random spatial distribution and by determining the relationship between the 

spatial distribution of variables over space (Mitchell, 2005).  Such spatial distributions or 

patterns are of crucial interest to many areas of geographic research mainly because they can 

help identify and quantify patterns of features in space so that the underlying processes that lead 

to the particular distribution can be determined (Fotheringham et al., 2002). 

One of the fundamental rationales behind using spatial analysis in geographic research, in 

general and in health-related research, in particular is the concept of “spatial autocorrelation.”  

The first law of geography, also known as Tobler’s first law, states that “Everything is related to 

everything else, but near things are more related than distant things” (Tobler, 1970).  Spatial 

autocorrelation, measured by various formal statistics, provides coefficients that quantify what 

this law states.  When locations with similar attribute values (high or low) are closely distributed 

in space, the spatial pattern is considered to exhibit positive spatial autocorrelation.  Conversely, 

if closely associated locations have dissimilar attribute values, the spatial pattern is considered to 

show negative spatial autocorrelation.  If no spatial relationship exists between attribute values 

and their locations, the spatial pattern is considered to exhibit zero spatial autocorrelation.  

According to Anselin and Bera (1998), of the three types (i.e., positive, negative, and neither) of 

spatial autocorrelation, positive autocorrelation is by far the most intuitive. 
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Spatial analysis can basically be classified into three major categories consisting of 

exploratory spatial data analysis (ESDA), visualization, and spatial modeling (Vinnakota, 2006).  

ESDA is one of the most prevalent methods of spatial analysis (Mitchell, 2005).  ESDA consists 

of a set of statistical and analytical methods and techniques designed to describe spatial 

distributions, identify spatial patterns and/or variations such as unusual locations or outliers, and 

discover spatial clusters (Munch et al., 2003).  However, ESDA methods and techniques attempt 

neither to explain the occurrence of patterns nor to make any causal assumptions.  These 

methods mainly attempt to assess and depict non-random and interesting spatial patterns (Gatrell, 

2002).  Therefore, ESDA is traditionally considered as a fundamental step in the spatial analysis 

of health-related phenomena.   

Visualization of spatial data is most commonly accomplished using a geographic 

information system (GIS).  GIS simply consists of computer based sets of procedures that 

capture, store, manipulate, analyze, model, and visualize data with spatial characteristics.   

Although GIS and spatial analysis initially started as two separate fields of research and 

application, they have become closer fields over time that each support and add value to the 

other (Goodchild and Haining, 2004).  Thus, GIS’s capabilities to analyze and visualize both 

temporally and spatially complex data sets make it an excellent platform to study health-related 

spatial phenomena. 

Spatial modeling used in the analysis of health-related patterns can be undertaken using a 

variety of spatial statistical techniques such as spatial clustering, spatial dispersion, spatial auto-

correlation, and Local Indicators of Spatial Association (LISA) (Vinnakota, 2006; Anselin, 

1995).  Spatial clustering techniques are designed primarily to detect spatial clusters of the 

phenomena under investigation across space.  In health-related research, the detection of clusters 
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through spatial analysis can offer crucial insights to tackle both causation and identification of 

potential risk factors.  A number of methods have been developed specifically to detect spatial 

clusters.  The main concern of the various cluster detection methods is to identify locations 

where there exists an unusually higher or lower number of events than expected (widely also 

known as hotspots and coldspots) (Lloyd, 2007).  Cluster detection methods may be divided into 

two groups: The ones formulated for identifying clusters and the ones formulated for statistical 

significance testing of clustering (Besag and Newell, 1991).  Futhermore, “tests may be either 

focused or general in nature,” depending on whether we have prior considerations for any links 

between locations and occurrence of events (Besag and Newell, 1991).  In the literature, cluster 

detection methods such as the geographical analysis machine (Openshaw et al., 1987), Besag-

Newell clustering test (Besag and Newell, 1991), spatial scan statistic (Kulldorff and 

Nagarwalla, 1995), and local indicators of spatial association (LISA) (Anselin, 1995) are 

fundamental in terms of detecting and testing clusters. 

3.3.2 Spatial Analysis Methods Applied to This Research 

Global and local ESDA techniques include the Moran’s I and local indicators of spatial 

association (LISA) as the primary spatial analysis methods and the Geographically Weighted 

Regression (GWR) as the secondary spatial analysis methods.  Both sets of techniques are 

applied to this research and will be described in the following section of this dissertation. 

 3.3.2.1 Global Moran’s I and Local Indicators of Spatial Association (LISA) 

ESDA consists of a set of techniques that are used to describe and visualize spatial 

distributions, identify atypical locations or spatial outliers, and discover patterns of spatial 

associations and clusters.  The process of ESDA starts with simple mapping and 
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geovisualization, moves on to exploration, and concludes with spatial autocorrelation analysis 

(Anselin, 2005). 

Several formal statistics are designed to measure spatial autocorrelation and these 

statistics include simple indices such as the Moran’s I, Geary’s C, and Getis-Ord G (Levine, 

2015).  However, of all three statistics, the Moran’s I is considered as a more powerful test than 

the other two simply because of its ability to correctly reject a false null hypothesis or in other 

words, to avoid a Type II error.  For instance, a data set for which the Moran’s I is barely 

statistically significant for positive spatial autocorrelation might simply fail to be statistically 

significant with the Geary’s C or the Getis-Ord G due to the fact that the Geary’s C and the 

Getis-Ord indices are not as powerful as the Moran’s I index (Levine, 2015).  On the other hand, 

only the Getis-Ord G can differentiate between high positive and low positive spatial 

autocorrelation.  High positive indicates that there are more zones with high values located near 

to other zones also with high values whereas low positive indicates the opposite case where low 

values are near to other low values.  The Moran’s I and Geary’s C statistics do not distinguish 

between these conditions.  Furthermore, of these three statistics, only the Moran’s I and Geary’s 

C can identify negative spatial autocorrelation (Levine, 2015).  In other words, the Getis-Ord G 

does not indicate a dispersion process, even if it is present in the data. 

When the advantages and disadvantages of all three formal statistics are weighted along 

with the diversity of the datasets under examination and the scope of this study, the Moran’s I 

appear to be a better test to use.  More specifically, the use of the Getis-Ord G is eliminated 

mainly because it cannot detect negative spatial autocorrelation.  Areas with negative spatial 

autocorrelation may reveal interesting associations that need further exploration and therefore 

such areas needs to be detected.  On the other hand, the Geary’s C is inversely related to Moran´s 
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I and thus the Geary’s ratio is similar to Moran’s I.  However, the Moran’s I is more of a global 

indicator whereas the Geary coefficient is more sensitive to differences in small neighborhoods.  

In other words, the Geary’s C emphasizes differences in values between pairs of observations, 

rather than the covariation between the pairs.  Therefore, use of the Moran’s I over the Geary’s C 

suits better to detect spatial autocorrelation at the county level for the entire US.  Last but not the 

least, based on the literature, it is also evident that the Moran’s I test (Moran, 1950) is one of the 

oldest and most commonly used indicators of spatial autocorrelation (Holt, 2007). 

The global Moran’s I statistic is a single measure that describes the general extent of 

spatial clustering of observed values across a region.  It indicates the relationship between a 

vector of observed values, y, and a weighted average of values that are contiguous to y, 

conditional on the specific neighborhood structure imbedded in the chosen weights matrix 

(Levine, 2015; Bailey and Gatrell, 1995; Ebdon, 1985; Moran, 1950).  The weighted average of 

values are generally referred to as the “spatial lag of y” and expressed as W_y.  The resulting 

value of Moran’s I is basically the slope of a linear regression of W_y on y (Anselin and Bera, 

1998; Anselin, 1988).  

Associations among locations are defined using a spatial weights matrix.  The weights 

matrix defines the neighbors for each location in the study area using either a distance matrix that 

contains distances between all possible pairs of locations or a contiguity matrix that evaluates 

and specifies common boundaries (e.g., rook contiguity, queen contiguity) (Martinez et al., 

2014).   

Formally, the global Moran’s I is defined as: 
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where n is the total number of observations, yi is the value of a variable at a particular location, 

the ith location, yj is the value of the same variable at another location, the jth location, (where i 

≠ j), ȳ is the mean of the variable, and wij is a weight applied to the comparison between location 

i and location j.  The weight variable, wij, is a contiguity matrix.  If locations i and j are adjacent 

wij =1 and zero otherwise (wii =0, a region is not adjacent to itself).  This type of contiguity is 

referred to as a “first-order contiguity.”  Therefore, the resulting I is used to test hypotheses 

concerning similarity. 

The global Moran’s I values range from -1.0 indicating the highest value for dissimilarity 

among neighbors (perfect dispersion or negative spatial autocorrelation) to +1.0, indicating the 

highest value for similarity (perfect clustering or positive spatial autocorrelation).  A value 

slightly below 0 (negative), but very close to 0 indicates a random spatial pattern (no spatial 

relationship).  Since the Moran’s I is considered as a special type of a slope coefficient of a 

correlation in that it compares the sum of the cross-products of values at different locations, the 

magnitude of the Moran’s I value itself is also important (Levine, 2015).  In general, when 

nearby areas have similar values, their cross product is high and conversely, when nearby areas 

have dissimilar values, their cross product is low.  Therefore, a Moran’s I statistic that is high is a 

sign of more spatial autocorrelation than a Moran’s I statistic that is low (Levine, 2015).  Tests 

for significance use z-scores. 

However, the “global” measure of spatial autocorrelation cannot identify the locations of 

spatial clusters or spatial outliers that are exhibited as a result of the spatial autocorrelation 

process.  The statistic only indicates the presence of spatial autocorrelation globally for the entire 

study area.  To generate statistics and map the location of spatial clusters, the Local Indicators of 

Spatial Association (LISA), the local counterpart of the Moran’s I,  has been developed (Anselin, 
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1995).  It is an important tool to gain an understanding of the localized extent and nature of 

spatial clustering in a dataset (Voss et al., 2006). 

The LISA provides a measure of spatial autocorrelation for every areal unit and it is 

formally defined as: 

                         
  Formula 3.2 

where n is the total number of observations, yi is the value of a variable at a particular location, yj 

is the value of the same variable at another location, ȳ is the mean of the variable, and wij is a 

weight applied to the comparison between location i and location j. 

With the utilization of the LISA statistic, cluster maps and corresponding significance 

maps are generated.  A cluster map is basically a special type of a choropleth map illustrating 

locations based on the significant local Moran’s I statistics.  These locations on the cluster map 

are classified by the type of spatial autocorrelation.  The high-high and low-low locations 

indicate clustering of similar values while the high-low and low-high show spatial outliers 

(dissimilar values that are close to each other).  Likewise, the significance map is a special type 

of choropleth map.  It shows the very same locations included in the cluster map but reclassifies 

them based on the significance levels.  Depending on the spatial distribution of the data and the 

number of permutation runs, the significance levels can be insignificant, p<0.05, p<0.01, 

p<0.001, and p<0.0001 (Anselin, 2003). 

The global Moran’s I and LISA tests can be either in the univariate or the bivariate form.  

Even though an univariate measure is used in most studies, it is also possible to get statistics 

based on bivariate measures.  When an univariate form is used, the Moran’s I and/or LISA 

statistics compare the value of a variable at any one location with the value of the same variable 

at all other locations.  On the other hand, the same two statistics compare the value of a variable 
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at any one location with the value of a second variable at all other locations when bivariate 

measures are used (Martinez et al., 2014; Levine, 2015).  In other words, in the univariate form 

of the Moran’s I and/or the LISA, the observed values, y, and the spatial lag of y are based on the 

same variable, whereas in the bivariate form, the observed values of a variable, y, are regressed 

on the spatial lag of the observed values of another variable, x. 

According to Anselin (1995), it is a good practice to supplement the assessment of global 

spatial autocorrelation by local measures of spatial dependence such as LISA, especially with 

larger data sets for thorough understanding of spatial associations and processes.   

In this study, the global Moran’s I and LISA algorithms both in the univariate and 

bivariate forms were employed using GeoDa 1.6.7  to compute global and local Moran’s I 

indices for each county and county equivalent in the continental US.  GeoDa 1.6.7 is a stand-

alone program developed by Luc Anselin and his team.  Both the most recent (GeoDa 1.6.7) and 

older (GeoDa 0.9.5-i that runs on Windows XP only) versions of the software can be 

downloaded from the GeoDa center at Arizona State University (ASU) 

https://geodacenter.asu.edu/software/downloads to do exploratory and confirmatory spatial data 

analyses.  It uses ESRI shapefiles as input and output coverage (Anselin, 2005).  It includes 

functionality for data manipulation, mapping, and spatial regression analysis, as well.  More 

specifically, GeoDa includes applications to perform both global Moran’s I and LISA along with 

other supporting analytical applications.  GeoDa is particularly useful for the analysis of area 

patterns, since the statistical applications included are mostly limited to performing polygon 

pattern analysis.  GeoDa can do analysis of lattice (polygon) data, but is very limited in the 

analysis of point data. 

https://geodacenter.asu.edu/software/downloads
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The GeoDa outputs for the global Moran’s I and LISA statistics also help to test 

hypotheses for clustering.  In hypothesis testing, the initial assumption is that the attribute 

distribution is one of complete spatial randomness (CSR).  In other words, the CSR assumption 

is set as the null hypothesis (H0: The spatial distribution of polygons and their attributes are 

spatially independent; HA: The spatial distribution of polygons and their attributes are not 

spatially independent) and the attribution distribution is compared against a set significance level 

to either accept or reject the null hypothesis (Eck et al., 2005).  If the z statistic lies beyond a 

critical value, then the null hypothesis is rejected.  In a case where the z-score is positive 

(positive spatial autocorrelation), the spatial distribution of locations with similar attribute values 

(high or low) is more spatially clustered than would be expected if underlying spatial processes 

were random.  Conversely, in a case where the z-score is negative (negative spatial 

autocorrelation), the spatial distribution of locations with high or low attribute values is more 

spatially dispersed than would be expected if underlying spatial processes were random. 

GeoDa uses permutations to calculate significance levels for both global and local spatial 

autocorrelation statistics.  Since the p-values are dependent on the number of permutation runs, 

they are pseudo p-values (pseudo significance levels).  In other words, permutations are used to 

determine how likely it would be to observe the existing spatial distribution of the data at hand, if 

the existing values are reshuffled over space under conditions of spatial randomness.  The 

number of permutations is specified by the user (Anselin, 2003).   

The pseudo significance level is derived from: 

             Formula 3.3 
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where M is the number of instances where a calculated statistic from the permutations equals or 

exceeds the observed value for positive Moran’s I or equal to or less than the observed value for 

negative Moran’s I and R is the number of permutation runs.   

As an example, if the observed Moran's I exceeds any of the randomly generated Moran's 

I values, meaning that M is equal to zero, the pseudo p-value would be 1/1000= 0.001 for 999 

permutations (R being equal to 999).  Similarly, the pseudo p-value would be 1/100= 0.01 under 

the same conditions except with 99 permutations (Anselin, 2003). 

All aspatial and spatial exploratory data analyses, particularly the tests for spatial 

autocorrelation, assist to answer various questions about a dataset including: 1) How are the 

features distributed? 2) What is the pattern created by the features? 3) Where are the clusters? 4) 

How do patterns and clusters of different variables compare to one another?  When patterns are 

explored both statistically and spatially as in global Moran’s I and LISA tests, this leads to a 

better understanding of geographic phenomena especially in terms of patterns and clusters. 

 3.3.2.2 Geographically Weighted Regression (GWR) 

There are various approaches to the analysis of spatial data.  However, logical and 

suggested steps in spatially analyzing event distributions include creating rate or event 

distribution maps, using spatial statistics to determine whether or not the events or rates are 

spatially autocorrelated, and detecting and identifying the locations of clusters (e.g., hot-spots or 

cold-spots) and spatial outliers (Wilson and Fotheringham, 2007).   These are considered the 

primary steps in Exploratory Spatial Data Analysis (ESDA).  In order to assess why clusters and 

outliers exist where they do as well as to assess the underlying processes that created such 

patterns through the relationships between the phenomenon and selected variables under 

investigation, secondary approaches, such as regression analysis or spatial data process models 
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are needed.  Examining “causality” through multiple regression analysis, specifically using the 

Geographically Weighted Regression (GWR), which is a local spatial statistical technique used 

to test for spatial nonstationarity, is one of the most commonly used techniques.  Spatial 

nonstationarity is a condition in which the relationships between influences and outcomes of 

interests are heterogeneous (not uniform) over the entire area under consideration (Goodchild 

and Janelle, 2010).  In other words, the relationships vary across the geographic area under 

investigation reflecting the spatial structure embedded within the covariates and the outcome 

variable.  Therefore the “global” models cannot explain such a geographically varying 

relationship.  The main concepts of the GWR will be introduced briefly. 

In a global model, the underlying assumption is that the relationships between the 

covariates and the outcome variable are homogeneous (or stationary) across space.  In other 

words, the global model assumes that the same stimulus provokes the same response across the 

entire study area.  However, the geographic phenomena and underlying processes and therefore 

the relationships between variables are often intrinsically spatial (space dependent) and vary 

geographically in ‘real-world’ situations (Fotheringham et al., 2002). 

Traditional global modeling techniques such as the ordinary least squares (OLS) linear 

regression or spatial regression methods cannot detect nonstationarity and therefore cannot 

adequately capture spatially varying relationships between the covariates and the outcome 

variable.   In this case, the parameters calculated by the OLS linear regression will likely be 

biased and generate low estimates of the confidence intervals and real variance (Ward and 

Gleditsch, 2008).  Therefore, in contrast to traditional linear regression models, the GWR 

technique was created and proposed in the geography literature to allow relationships in a 
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regression model to vary over space and be measured within a single modeling framework 

(Fotheringham et al., 2002). 

The GWR is a locally weighted, linear, and nonparametric estimation method and, 

therefore spatial effects from a local point of view can be examined utilizing the GWR 

(Brunsdon et al., 1996).  Using the GWR approach, the spatial variation of the regression 

coefficients can be captured for each event or area based on the attribute values of the 

neighboring observations.  This method uses a kernel function to determine the size of the 

window, which generates a subset of the data around a specific point.  Furthermore, the GWR 

method allows estimating local parameters rather than global ones through the allocation of 

weights. 

In summary, the GWR extends the capabilities of the OLS linear regression models by 

accounting for the spatial structure of the data.  It estimates a separate model as well as local 

parameter estimates for each geographic location based on a local subset of the data using a 

differential weighting scheme (Matthews and Yang, 2012).  

 In the literature, the GWR technique is applied to research in a wide range of academic 

fields.  Examples of research  topics include but not limited to the analysis of health and disease 

(Chen et al., 2010; Yang et al., 2009; Goovaerts, 2005; Nakaya et al., 2005), environmental 

equity (Mennis and Jordan, 2005), housing markets (Fotheringham et al., 2002), population 

density and housing (Mennis, 2006), poverty (Partridge and Rickman, 2005; Longley and Tobon, 

2004),  traffic models (Zhao and Park, 2004), as well as environmental conditions (Foody, 2003). 

Formally, the GWR model is defined as: 

                                 
 
     Formula 3.4 
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where yi is the value of the outcome variable at a particular location, the ith location; where (ui, 

vi) denote the coordinates, βo and βj represent the local estimated intercept and effect of variable j 

for location i, respectively.  The locations near i have a stronger influence in the estimation of βj 

(ui, vi) than locations farther from i.  Therefore, using this model, localized parameter estimates 

can be generated for any location i, which allows users to create a map showing a continuous 

surface of parameter values and to examine the spatial variability of these parameters (Matthews 

and Yang, 2012).  

 As an exploratory technique, GWR provides outcomes that are certainly powerful and 

offers significant advantages over simple linear regression procedures.  It provides users a set of 

location specific parameter estimates not only to map and visualize but also to interpret regarding 

the relationships between predictors and the outcome variable (Bitter et al., 2007; Wheeler and 

Tiefelsdorf, 2005). 

The global and local ESDA (Moran’s I and LISA) and GWR techniques described above 

in detail are applied to this study.  The additional methodological steps taken and the results of 

the spatial analyses are discussed in a greater detail in Chapter 4 and Chapter 5 of this 

dissertation.  In this dissertation, the explanations of the analysis results are written based on the 

US Census regions and division definitions as shown in Figure 3.2.  The West (combining the 

Pacific and Mountain divisions) includes Arizona, California, Colorado, Idaho, Montana, 

Nevada, Oregon, New Mexico, Utah, Washington, and Wyoming; the Midwest (combining the 

West North Central and East North Central divisions), Kansas, Illinois, Indiana, Iowa, Michigan, 

Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin; the 

Northeast (combining the New England and Middle Atlantic regions), Connecticut, Maine, 

Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and 
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Vermont; and the South (combining the West South Central, East South Central, and South 

Atlantic divisions), Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia, 

Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, 

Tennessee, Texas, Virginia, and West Virginia. 

 

 

Figure 3.2 Boundaries of the US regions and divisions based on the US Census 
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CHAPTER 4. A SPATIO-TEMPORAL ANALYSIS OF OBESITY AND CORRELATES 
OF PHYSICAL INACTIVITY, POVERTY, AND BUILT ENVIRONMENT IN THE US: 

A COUNTY-LEVEL ANALYSIS 

4.1. Introduction 

The obesity issue has captured the public’s attention especially in recent years due to the 

increasing prevalence of obesity reported worldwide yet it is particularly substantial in the US.  

A study published very recently shows that the obesity rates vary worldwide and it is estimated 

that there are 671 million obese individuals around the world as of 2013 (The GBD 2013 Obesity 

Collaboration et al., 2014).  More than half of these obese individuals live in the US, China, 

India, Russia, Brazil, Mexico, Egypt, Germany, Pakistan, and Indonesia.  Among these ten 

countries, the US alone accounts for more than 13% of the obese individuals while China and 

India account for 15% combined (The GBD 2013 Obesity Collaboration et al., 2014).  Despite 

the debates over the actual risks attributable to obesity and the factors leading to high obesity 

prevalence, the epidemic itself remains as a major public health concern in the US (CDC, 2014). 

Obesity has strong genetic determinants but the genetic composition of the population 

does not change rapidly.  Thus, the major changes in non-genetic factors such as the 

development of obesogenic environments and shifting socioeconomic status and lifestyles of 

individuals are hypothesized to increase the risk of obesity (Hill and Trowbridge, 1998).  The 

obesogenicity of an environment has been defined as “the sum of influences that the 

surroundings, opportunities, or conditions of life have on promoting obesity in individuals or 

populations” (Lake and Townsend, 2006). 

The etiology of obesity is multi-causal in nature and the causes leading to high obesity 

prevalence are mainly related to demographic factors, socioeconomic status, and lifestyle choices 

as well as  ”spatial” factors that determine the physical and social environments in which people 
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live.  The physical environment includes all individuals’ surroundings either designed or natural. 

The built environment is a part of the physical environment and it consists of places built or 

designed by humans including buildings, grounds around buildings, layout of communities, 

transportation infrastructure, and park and trails (Sallis et al., 2012). 

Consequently, the variables scrutinized in this study are chosen carefully to depict the 

different aspects of such influences.  The poverty and physical inactivity (PIA) variables were 

chosen to represent the socioeconomic status and lifestyle choices while the ratio of jobs to 

employed residents (JER), population-weighted distance (PWD) to parks, and population density 

variables were selected to characterize the built environment factors in relation to obesity for all 

counties and county equivalents in the continental US. 

The main objectives of this study are: 1) To explore and identify spatio-temporal patterns 

and trends of obesity and their associations with respect to the aforementioned variables; 2) To 

examine whether these associations are based on clusters of occurrences or they are dispersed 

randomly across space.  Furthermore, the main hypothesis aims to test whether a spatial 

component is involved in these temporal observations such as a significant spatial convergence 

of high obesity/PIA, poverty, JER, PWD to parks, and population density rates and/or low 

obesity/PIA, poverty, JER, PWD to parks, and population density rates. 

The relationships between obesity and each of the aforementioned variables were 

explored separately in both univariate and bivariate forms in three waves (2004, 2007, and 2010) 

to quantify and to gain a better understanding of their spatio-temporal interactions, patterns, and 

trends.  Exploratory spatial data analysis (ESDA) techniques available in GeoDa, in particular, 

univariate and bivariate Moran’s I and Local Indicators of Spatial Association (LISA) statistics 

were employed.  The results of univariate Moran’s I are used to determine whether statistically 
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significant clusters of obesity exist.  If obesity clusters exist, where they are spatially observed is 

mapped and documented using univariate LISA test results.  Likewise, the results of univariate 

spatial analyses for the other variables (e.g., PIA, poverty etc.) are also documented and mapped 

in the same way.  To explore the clustering patterns between obesity and each of the other 

variables further, two at a time, bivariate spatial analyses are conducted (e.g., between obesity 

and lagged poverty or between obesity and lagged PIA, and so on).  The results of bivariate 

Moran’s I are used to determine whether a general clustering of high or low attribute values 

exists for the pairs of variables analyzed.  If clustering exists, where and how they spatially 

converge are also mapped and documented by utilizing bivariate LISA test results.  

Therefore, the outcomes and insights of this study will be useful to identify and select the 

locations to further study and explicate the underlying processes involved in forming such spatial 

patterns (clusters and/or spatial outliers). 

4.2. Data and Methods 

4.2.1 Data 

The datasets used in this study come from various sources.  The original datasets are at 

the county level for the entire US mainly for three years, including 2004, 2007, and 2010.  

However, due to the spatial nature of this study, only the contiguous counties and county 

equivalents within the continental US are included in the analyses.  In other words, the study area 

consists of the 3,105 counties and county-equivalents across the 48 contiguous states, also 

known as the continental US (all except Alaska and Hawaii).   

As discussed in detail in Chapter 3 of this dissertation, there are mainly six types of 

datasets used in this study.  These datasets include: 1) obesity; 2) PIA; 3) poverty; 4) JER; 5) 

PWD to parks; and 6) population density. 
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4.2.2 Methods 

ESDA consists of a set of techniques that are used to describe and visualize spatial 

distributions, identify atypical locations or spatial outliers, and discover patterns of spatial 

associations and clusters.  The process of ESDA starts with simple mapping and 

geovisualization, moves on to exploration, and ends with spatial autocorrelation analysis 

(Anselin, 2005). 

 In this study, as an initial part of an ESDA process, choropleth maps were constructed, 

each using a specific type of data classification algorithm, to gain a better understanding of the 

data by describing the overall distribution and visually interpreting spatial patterns. 

 Choropleth mapping is a crucial step to visualize patterns and obtain a general picture of 

the spatial distribution of the phenomenon under examination across the defined geographic 

boundaries.  However, when interpreting choropleth maps caution is needed, since attention is 

often focused on either the relatively larger areas that tend to dominate maps or the areas that 

misleadingly stand out due to the improper use of classification methods.  Without statistical 

support, the interpretations can be subjective and/or simply inaccurate. 

 An alternative and complementary technique for exploring the spatial structure of a 

dataset is to utilize a statistical measure that accounts for the spatial locations of each data 

observation in conjunction with the observed data value at each location.  One family of such 

measures was developed to assess and quantify spatial autocorrelation (Holt, 2007).  The concept 

of spatial autocorrelation is based on the idea that observations that are located near each other 

are influenced by each other and thus not distributed in space by random chance alone. 

The notion of spatial autocorrelation can be defined as the coincidence of value similarity 

with locational similarity (Anselin and Bera, 1998).  In other words, if locations with similar 
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attribute values (high or low) are closely distributed in space, the spatial pattern is considered to 

exhibit positive spatial autocorrelation.  Conversely, if closely associated locations have 

dissimilar attribute values, the spatial pattern is considered to show negative spatial 

autocorrelation.  If no spatial relationship exists between attribute values and their locations, the 

spatial pattern is considered to exhibit zero spatial autocorrelation.  According to Anselin and 

Bera (1998), of the two types of spatial autocorrelation, positive autocorrelation is by far the 

more intuitive.  

The analyses for this study were performed in four steps: 1) Acquisition and 

manipulation of the data to be used in ArcGIS 10.3 and GeoDa 1.6.7; 2) Generation of 

descriptive statistics including histograms to see overall distribution of the data; 3) Creation of 

choropleth maps in ArcGIS 10.3 to visually interpret the spatial distribution of the data; and 4) 

Implementation of ESDA techniques (global Moran’s I and LISA) in GeoDa to determine if 

there was significant spatial clustering of variables at the county level.  

First of all, the datasets for all the variables used in this study were downloaded from 

various sources as explained above in the data section and imported into ArcGIS 10.3, where the 

data were joined to a geographic boundary file, also known as a shapefile, for 3,105 counties and 

county equivalents across the 48 contiguous states (all except Alaska and Hawaii), also known as 

the continental Unites States.  The data were joined using the common field of counties’ five-

digit Federal Information Processing Standards (FIPS) codes.  The final merged shapefile was 

projected using the Albers equal-area conic projection. 

The created shapefile was then imported into GeoDa to perform an initial exploration of 

the overall data distribution through the descriptive statistics, boxplots, and histograms.  The 

class intervals are calculated by dividing the range (i.e., highest value-lowest value) by the 
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number of classes (determined to be 25 classes for n=3,105) for each variable in each data 

period.  Even though GeoDa includes mapping functionality, it is somewhat outdated in terms of 

graphic representation and user friendliness when compared to ArcGIS 10.3.  Therefore, ArcGIS 

10.3 was utilized for the creation of the choropleth maps for all variables.  The county-level data 

for the variables were initially tested and mapped using various data classification methods to 

determine data cut points.  The data classification based on the standard deviation and natural 

breaks (Jenks’ optimal algorithm) methods gave better results in terms of the spatial 

representation of the data.  However, the finalized versions of the choropleth maps were derived 

using the standard deviation method to emphasize the distribution of the data in reference to the 

means of the datasets. 

In the final step, GeoDa was used to perform the advanced spatial analyses and illustrate 

the results in the form of Moran scatter plots and cluster maps.  Initially, a spatial weights matrix 

was generated based on contiguity using the US county boundaries in the joined shapefile.  

Contiguity-based spatial weights are chosen because the main interest lies in understanding the 

spatial interdependence at the areal level.  The spatial weights matrix was created using the first 

order “rook’s contiguity” which uses only common boundaries to define neighbors.  The global 

Moran’s I statistics were calculated in a traditional univariate form as well as in a bivariate form 

for all the variables for the years 2004, 2007, and 2010.  Following that, the LISA tests were 

conducted in univariate and bivariate forms for each year to see exactly where the spatial clusters 

and/or outliers are located and how pairs of variables are spatially associated in the bivariate 

form.  The number of permutations chosen to construct the reference distribution was 999 for 

both the global Moran’s I and LISA tests.  The corresponding Moran scatter plots based on the 
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global Moran’ I statistics and the cluster/significance maps based on the LISA statistics are 

presented in the results section.  The presented cluster maps are significant at the p < 0.05 level.  

All aspatial and spatial exploratory data analyses, particularly the tests for spatial 

autocorrelation, address various questions about a dataset including: 1) How are the features 

distributed? 2) How does the pattern created by the features appear? 3) Where are the clusters? 4) 

How do patterns and clusters of different variables compare to one another?  When patterns are 

explored both statistically and spatially as in global Moran’s I and LISA tests, this leads to a 

better understanding of the distribution of geographic phenomena, especially in terms of patterns 

and clusters. 

4.3. Results 

4.3.1 Descriptive Statistics and Basic Mapping of Variables 

The following findings document the overall data distribution and spatial patterns 

through descriptive statistics, histograms, and choropleth maps for all county-level variables for 

the three waves (2004, 2007, and 2010) explored in this research.  These basic maps visually 

support the descriptive statistics and mainly depict how the county specific rates vary from one 

county to another.  The spatial patterns of the county-level variables for the entire US start to 

emerge visually by examining these maps.   

 4.3.1.1 Obesity 

Among the counties, the obesity rates in 2004, 2007, and 2010 range from 12.30% 

(Boulder, Colorado) to 38.00% (Jefferson, Mississippi), from 12.50% (Boulder, Colorado) to 

43.50% (Greene, Alabama), and from 13.10% (Teton, Wyoming) to 47.90% (Greene, Alabama), 

respectively.  As expected, in all years, the highest obesity rates are observed in the South.  

Greene County in Alabama remains unchanged, having the highest obesity rate in both 2007 and 
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2010, while Boulder County in Colorado remains unchanged having the lowest obesity rate in 

both 2004 and 2007.  The mean obesity rates and the standard deviations are 25.29% (3.24), 

28.29% (3.61), and 30.58% (4.23) in 2004, 2007, and 2010, respectively, indicating that the 

mean obesity rate has increased continuously from 25.29% (2004) to 30.58% (2010).  The 

median obesity rates are 25.40, 28.50, and 30.70 over this time period (Table 4.1). 

Table 4.1 Descriptive statistics for county level obesity prevalence rates in the US for 2004, 
2007, and 2010  

 2004 2007 2010 
n 3,105 3,105 3,105 
Mean  25.29 28.29 30.58 
Std. Deviation  3.24 3.61 4.23 
Median 25.40 28.50 30.70 
Minimum  12.30 12.50 13.10 
Maximum  38.00 43.50 47.90 

 
The histograms (Figures 4.1, 4.2, and 4.3) below show the distribution of the county-level 

obesity prevalence rates for the years 2004, 2007, and 2010.  In all years, the histograms show 

approximately a symmetric (normal) distribution of the obesity rates (the skewness values are -

0.37, -0.47, and -0.33 respectively with a standard error of 0.04).  

In 2004, 56.65% of all counties have an obesity prevalence of 25% or more and 0.68% of 

all counties have an obesity prevalence of 35% or more (Figure 4.1).  In 2007, the percentages of 

the counties that have obesity prevalence above 25% and above 35% are 87.15% and 3%, 

respectively (Figure 4.2).  In 2010, 90.85% of all counties have an obesity prevalence exceeding 

25%, 12.59% have an obesity prevalence exceeding 35%, and 1.52% have an obesity prevalence 

exceeding 40% (Figure 4.3).  By 2010, it is already observed that 2 counties have obesity 

prevalence higher than 45%.  As presented by these findings, it is clear that the magnitude of 
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obesity prevalence rates has gradually increased at the county level for the period 2004, 2007, 

and 2010. 

 

 
Figure 4.1 Histogram of county level obesity prevalence rates in the US in 2004 

 
Figure 4.2 Histogram of county level obesity prevalence rates in the US in 2007 

 
Figure 4.3 Histogram of county level obesity prevalence rates in the US in 2010 
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Figures 4.4, 4.5, and 4.6 illustrate the county-level obesity prevalence rates for the years 

2004, 2007, and 2010 using the standard deviation classification method.  Overall, high obesity 

rates are seen in the Southern US while a large concentration of the low obesity rates are 

observed in the Western and the Northeastern US. 

 

Figure 4.4 Geographic distribution of obesity prevalence rates at the county level in the US for 
2004 

 
  

 In 2004, of all counties, 4.22% have obesity rates below -2 standard deviations (SD)s of 

the mean and 12.98% have obesity rates below -1 SD of the mean, while 11.63% have obesity 

rates above +1 SD of  the mean and 2.13% have obesity rates above +2 SDs of the mean (Figure 
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4.4).  In 2007, of all counties, 4.38% have obesity rates below -2 SDs of the mean and 12.11% 

have obesity rates below -1 SD of the mean, whereas 10.85% have obesity rates above +1 SD  of 

the mean and 2.35% have obesity rates above +2 SDs  of the mean (Figure 4.5).  In 2010, of all 

counties, 3.57% have obesity rates below -2 SDs of the mean and 13.59% have obesity rates 

below -1 SD of the mean while 13.27% have obesity rates above +1 SD of the mean and 2.03% 

have obesity rates above +2 SDs  of the mean (Figure 4.6). 

Figure 4.5 Geographic distribution of obesity prevalence rates at the county level in the US for 
2007 
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Figure 4.6 Geographic distribution of obesity prevalence rates at the county level in the US for 
2010 
 

 4.3.1.2 Physical Inactivity (PIA) 

 The physical inactivity (PIA) rates for the 3,105 US counties and county-equivalents 

range from 9.2% (Boulder, Colorado) to 42.4% (Mingo, West Virginia) in 2004, from 9.8% 

(Boulder, Colorado) to 44.4% (Pike, Kentucky) in 2007, and from 10.4% (Routt, Colorado) to 

44.9% (Wyoming, West Virginia) in 2010.  In all years, the highest PIA rates are seen in the 

South, while the lowest rates are observed in the West.  The state of West Virginia has the 

highest PIA rates in both 2004 and 2010 and the state of Colorado has the lowest PIA rates in all 

three years.  In addition, Boulder County in Colorado stands out by having the lowest PIA rate 

both in 2004 and 2007.  The mean PIA rates and the standard deviations are 25.98% (5.23) in 
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2004, 26.74% (5.09) in 2007, and 27.90% (5.28) in 2010.  The mean PIA rate has increased 

gradually from 25.98% in 2004 to 26.74% in 2007 and to 27.90% in 2010.  The medians are 

25.80, 26.80, and 28.10 in 2004, 2007, and 2010, respectively (Table 4.2).   

Table 4.2 Descriptive statistics for county level physical inactivity (PIA) prevalence rates in the 
US for 2004, 2007, and 2010 

 2004 2007 2010 
n 3,105 3,105 3,105 
Mean 25.98 26.74 27.90 
Std. Deviation  5.23 5.09 5.28 
Median 25.80 26.80 28.10 
Minimum  9.20 9.80 10.40 
Maximum  42.40 44.40 44.90 

 
The histograms below show approximately a symmetric (normal) distribution of the 

county-level PIA prevalence rates in all years (the skewness values are 0.11, -0.07, and -0.23, 

respectively with a standard error of 0.04) (Figures 4.7, 4.8, and 4.9). 

The observed trends indicate a gradual increase in PIA prevalence rates throughout the 

years 2004, 2007, and 2010.  In 2004, 56.65% of all counties have a PIA prevalence of 25% or 

more and 0.68% of all counties have a PIA prevalence of 35% or more (Figure 4.7).  In 2007, the 

percentages of the counties that have a PIA prevalence of 25% or more and 35% or more are 

87.15% and 3%, respectively (Figure 4.8).  In 2010, 90.85% of all counties have a PIA 

prevalence above 25% and 12.59% of all counties have a PIA prevalence above 35% (Figure 

4.9). 

 The following maps (Figures 4.10, 4.11, and 4.12) show the county-level PIA rates for 

the years 2004, 2007, and 2010 using the standard deviation classification method.  Overall, high 

PIA rates are observed in the Southern US, while a large concentration of low PIA rates are seen 
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in the Western and the Northeastern US.  These PIA rate patterns show a high similarity to those 

observed in the obesity rate maps.      

 
 
Figure 4.7 Histogram of county level physical inactivity (PIA) prevalence rates in the US in 2004 

 
 

Figure 4.8 Histogram of county level physical inactivity (PIA) prevalence rates in the US in 2007 

 
 

Figure 4.9 Histogram of county level physical inactivity (PIA) prevalence rates in the US in 2010 
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  Figure 4.10 Geographic distribution of physical inactivity (PIA) prevalence rates at the county level in the US   
  for 2004 
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  Figure 4.11 Geographic distribution of physical inactivity (PIA) prevalence rates at the county level in the US   
  for 2007 
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  Figure 4.12 Geographic distribution of physical inactivity (PIA) prevalence rates at the county level in the US   
  for 2010 
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 In 2004, of all counties, 2.09% have PIA rates below -2 SDs of the mean and 16.20% 

have PIA rates below -1 SD of the mean, while 16.30% have PIA rates +1 SD and higher than 

the mean and 2.35% have PIA rates +2 SDs and higher than the mean (Figure 4.10).  In 2007, of 

all counties, 2.54% have PIA rates below -2 SDs of the mean and 16.23% have PIA rates below -

1 SD of the mean, whereas 14.91% have PIA rates +1 SD and higher than the mean and 2.38% 

have PIA rates +2 SDs and higher than the mean (Figure 4.11).  In 2010, of all counties, 3.22% 

have PIA rates below -2 SDs of the mean and 15.88% have PIA rates below -1 SD of the mean, 

while 15.39% have PIA rates +1 SD and higher than the mean and 1.29% have PIA rates +2 SDs 

and higher than the mean (Figure 4.12). 

 4.3.1.3 Poverty 

 Among the counties for the years 2004, 2007, and 2010, the poverty rates range from 

2.6% (Falls Church, Virginia) to 39.4% (Ziebach, South Dakota) in 2004, from 2.4% (Douglas, 

Colorado) to 55.9% (Ziebach, South Dakota) in 2007, and from 3.1% (Falls Church, Virginia) to 

50.1% (Ziebach, South Dakota) in 2010 (Table 4.3).  In all years, the highest poverty rates are 

observed in Ziebach County in South Dakota.  Falls Church County in Virginia stands out having 

the lowest poverty rate both in 2004 and 2010.  The mean poverty rates and the standard 

deviations are 13.78% (5.14) in 2004, 15.13% (6.24) in 2007, and 16.80% (6.23) in 2010.  The 

medians are 13.00, 14.10, and 16.00 in 2004, 2007, and 2010, respectively. 

Table 4.3 Descriptive statistics for county level poverty prevalence rates in the US for 2004, 
2007, and 2010 

 2004 2007 2010 
n 3,105 3,105 3,105 
Mean 13.78 15.13 16.80 
Std. Deviation  5.14 6.24 6.23 
Median 13.00 14.10 16.00 
Minimum  2.60 2.40 3.10 
Maximum  39.40 55.90 50.10 
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 The histograms below show a positively skewed distribution of the county-level poverty 

rates in all years (the skewness values are 0.97, 1.22, and 0.98 respectively with a standard error 

of 0.04) (Figures 4.13, 4.14, and 4.15). 

 

 
Figure 4.13 Histogram of county level poverty prevalence rates in the US in 2004 

 

 
Figure 4.14 Histogram of county level poverty prevalence rates in the US in 2007 

 

 
Figure 4.15 Histogram of county level poverty prevalence rates in the US in 2010 
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 The trends throughout the years 2004, 2007, and 2010 indicate a slight increase in 

poverty prevalence rates.  The percentages of the counties that have a poverty prevalence of 25% 

or more are 3.22% in 2004, 6.73% in 2007, and 9.47% in 2010 (Figures 4.13, 4.14, and 4.15).  

Overall, the percentages of the counties that have a poverty prevalence of 35% or more are less 

than 1% in 2004 and slightly more than 1% in 2007 and 2010. 

 Figures 4.16, 4.17, and 4.18 illustrate the county-level poverty rates for the years 2004, 

2007, and 2010 using the standard deviation classification method.  As seen in the maps there is 

a distinctive separation between the northern and southern counties and county equivalents.  It is 

almost as if an imaginary horizontal line divides the US in the middle and this only applies to the 

eastern half of the US.  Overall, the counties in the southern half of this divide are dominated by 

higher poverty rates, while the counties in the northern half are dominated by lower poverty 

rates.  In 2004, of all counties, 0.13% have poverty rates below -2 SDs of the mean and 12.98% 

have poverty rates below -1 SD of the mean, whereas 14.56% have poverty rates +1 SD and 

higher than the mean and 3.74% have poverty rates +2 SDs and higher than the mean (Figure 

4.16).  In 2007, of all counties, 0.04% have poverty rates below -2 SDs of the mean and 12.79% 

have poverty rates below -1 SD of the mean, while 14.14% have poverty rates +1 SD and higher 

than the mean and 4.06% have poverty rates +2 SDs and higher than the mean (Figure 4.17).  In 

2010, of all counties, 0.16% have poverty rates below -2 SDs of the mean and 14.27% have 

poverty rates below -1 SD of the mean, whereas 14.17% have poverty rates +1 SD and higher 

than the mean and 3.96% have poverty rates +2 SDs and higher than the mean (Figure 4.18).
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  Figure 4.16 Geographic distribution of poverty prevalence rates at the county level in the US for 2004 
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  Figure 4.17 Geographic distribution of poverty prevalence rates at the county level in the US for 2007 
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  Figure 4.18 Geographic distribution of poverty prevalence rates at the county level in the US for 2010 
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 4.3.1.4 Ratio of Jobs to Employed Residents (JER) 

 In 2010, among the 3,105 counties in the US, the ratio of jobs to employed residents 

(JERs) range from 0.20 (Long, Georgia) to 3.92 (Tunica, Mississippi).  The mean JER is 0.89 

with a standard deviation of 0.24.  The median JER is 0.90 (Table 4.4). 

Table 4.4 Descriptive statistics for county level ratio of jobs to employed residents (JERs) in the 
US for 2010  

 2010 
n 3,105 
Mean 0.89 
Std. Deviation  0.24 
Median 0.90 
Minimum  0.20 
Maximum  3.92 

          

 The histogram below shows a positively skewed distribution of the county-level JERs in 

2010 (the skewness value is 2.40 with a standard error of 0.04) (Figure 4.19).  In 2010, more 

than half of the counties have JERs between 0.80 and 1.09.  In addition, only 27.15% of all 

counties have JERs equal to or greater than 1.00 (Figure 4.19).   

 

 
Figure 4.19 Histogram of county level ratio of jobs to employed residents (JER) in the US in 
2010 
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 Figure 4.20 shows the county-level JERs in 2010 using the standard deviation 

classification method.  This map shows how county specific JERs vary among the counties 

throughout the US.  As seen in Figure 4.20, the western half of the US has higher JERs 

compared to the eastern half.  In addition, the lower JERs are observed mostly in the South and 

the south of the Midwest region.   

 In 2010, of the 3,105 counties, 1.06% have JERs below -2 SDs of the mean and 13.49% 

have JERs below -1 SD of the mean, whereas 8.82% have JERs +1 SD and higher than the mean 

and 2.09% have JERs +2 SDs and higher than the mean (Figure 4.20). 

 
Figure 4.20 Geographic distribution of ratio of jobs to employed residents (JERs) at the county 
level in the US for 2010 
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 4.3.1.5 Population-Weighted Distance (PWD) to Parks

 In 2008, among the 3,105 counties, the population-weighted distances (PWDs) to parks 

range from 0.50 miles (Suffolk, Massachusetts) to 172.80 miles (Petroleum, Montana).  The 

mean PWD to parks is 18.86 with a standard deviation of 17.08.  The median PWD to parks is 

14.54 (Table 4.5). 

Table 4.5 Descriptive statistics for county level population-weighted distances (PWDs) to parks 
in the US for 2008  

 2008 
n 3,105 
Mean 18.86 
Std. Deviation  17.08 
Median 14.54 
Minimum  0.50 
Maximum  172.80 

 

 The histogram shows a positively skewed distribution of the county-level PWDs to parks 

(the skewness value is 2.65 with a standard error of 0.04) (Figure 4.21). 

 

Figure 4.21 Histogram of county level population-weighted distance (PWD) to parks in the US 
in 2008 
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 Figure 4.22 shows the county-level PWDs to parks in 2008 using the standard deviation 

classification method.  This map shows how county specific PWDs to parks differ among the 

counties throughout the United States.  As shown in Figure 4.22, the higher PWDs to parks are 

especially seen in the western half of the US and in the southern states.  In addition, the state of 

Maine stands out by having higher PWDs to parks than other states in the Northeast. 

Figure 4.22 Geographic distribution of population-weighted distances (PWDs) to parks at the 
county level in the US for 2008 
 
 In 2008, of the 3,105 counties, not a single county has PWD to parks below -2 SDs of the 

mean and 4.99% have PWDs to parks below -1 SD of the mean while 10.89% have PWDs to 

parks +1 SD and higher than the mean and 3.90% have PWDs to parks +2 SDs and higher than 

the mean (Figure 4.22). 
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 4.3.1.6 Population Density 

 Among the counties for the years 2004, 2007, 2010, the population densities range from 

0.08 (Loving, Texas) to 68,084.38 (New York, New York) in 2004, from 0.08 (Loving, Texas) to 

71,146.03 (New York, New York) in 2007, and from 0.12 (Loving, Texas) to 69,538.93 (New 

York, New York) in 2010.  In all years, the highest population densities are observed in New 

York County in New York in the Northeast while the lowest population densities are seen in 

Loving County in Texas in the South.  The mean population densities and the standard deviations 

are 248.35 (1689.27) in 2004, 254.70 (1742.84) in 2007, and 259.56 (1731.13) in 2010.  The 

medians are 44.41, 44.65, and 45.59 in 2004, 2007, and 2010, respectively (Table 4.6). 

Table 4.6 Descriptive statistics for county level population densities in the US for 2004, 2007, 
and 2010 

 2004 2007 2010 
n 3,105 3,105 3,105 
Mean 248.35 254.70 259.56 
Std. Deviation  1689.27 1742.84 1731.13 
Median 44.41 44.65 45.59 
Minimum  0.08 0.08 0.12 
Maximum  68084.38 71146.03 69538.93 

 
The histograms below show the distribution of the population densities in all years 

(Figures 4.23, 4.24, and 4.25).  The original data is transformed using the logarithmic 

transformation in order to better reveal the patterns in all three years.  

Figures 4.26, 4.27, and 4.28 illustrate the county-level population densities for the years 

2004, 2007, and 2010.  These maps show how county specific population densities vary 

throughout the US.  As seen in the maps, the highest population densities are observed in the 

metropolitan areas throughout the US, as expected.  In particular, the Megalopolis region that 
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stretches from Virginia in to New Hampshire emerges as the most distinctive areas having high 

population densities over 1,000.     

 

 
Figure 4.23 Histogram of county level population densities in the US in 2004 

 

 
Figure 4.24 Histogram of county level population densities in the US in 2007 

 

 
Figure 4.25 Histogram of county level population densities in the US in 2010 
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  Figure 4.26 Geographic distribution of population densities at the county level in the US for 2004 
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 Figure 4.27 Geographic distribution of population densities at the county level in the US for 2007 
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 Figure 4.28 Geographic distribution of population densities at the county level in the US for 2010 
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In all years, of all counties, not a single county has a population density below -2 SDs 

and/or below -1 SD of the mean.  In 2004, of all counties, 1.96% have population densities of +1 

SD higher than the mean and 0.81% have population density of +2 SDs higher than the mean 

(Figure 4.26).  In 2007, of all counties, 1.90% have population densities of +1 SD higher than the 

mean and 0.84% have population density of +2 SDs higher than the mean (Figure 4.27).  In 

2010, of all counties, 1.96% have population densities of +1 SD higher than the mean and 0.84% 

have population density of +2 SDs higher than the mean (Figure 4.28). 

4.3.2 Univariate Moran’s I and LISA Results 

The following findings are based on advanced spatial analyses performed in GeoDa for 

all county-level variables for the years 2004, 2007, and 2010.  The univariate global Moran’s I 

and LISA statistics were utilized and the results, in the forms of Moran scatter plots and cluster 

maps, are presented here.  While the global Moran’s I statistics describe the general extent of 

spatial clustering of observed values across the study area, the LISA statistics identify the 

locations of clusters or spatial outliers that are exhibited as a result of the spatial autocorrelation 

process.  In univariate forms of the Moran’s I and/or LISA, the tests compare the value of a 

variable at any one location with the value of the same variable at all other locations.  In other 

words, in the univariate forms of Moran’s I and/or LISA, the observed values, y, and the spatial 

lag of y were based on the same variable.   

The Moran scatter plots not only quantify the degree of clustering (positive spatial 

autocorrelation) in each year, but also show how the magnitude of clustering (positive spatial 

autocorrelation) has changed among the years studied.  The results of the univariate global 

Moran’s I are supported by the visual indications of clustering and/or dispersion at a localized 

extent in the LISA cluster maps.  With the utilization of the univariate LISA tests, cluster maps 
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were generated and the locations were classified and shown by the type of spatial correlation.  

Four resulting classifications are represented.  The high-high (areas in red) and low-low (areas in 

blue) locations indicate clustering of similar values (i.e., hot spots and cold spots, respectively).  

On the other hand, the high-low (areas in lighter red) and low-high (areas in lighter blue) 

locations illustrate spatial outliers (dissimilar values).  More specifically, the high-low locations 

are indicative of that high values are surrounded by low values whereas the low-high locations 

show where low values are surrounded by high values.  Only the statistically significant patterns 

are visualized on the maps (p<0.05) while  insignificant spatial associations are shown in light 

grey.  In addition, the corresponding significance maps are presented in Appendix A.     

 4.3.2.1 Obesity 

In Figure 4.29, the results of the univariate Moran’s I statistics for the county-level 

obesity rates in the US for the years 2004, 2007, and 2010 are presented.  In all years, the 

univariate Moran’s I statistics indicate positive spatial autocorrelation.  The results of the 

Moran’s I statistics are 0.68 (2004), 0.66 (2007), and 0.59 (2010) and based on the 999 

permutations run, they are significant (p<0.001).  These results reveal that there is continued 

spatial clustering of the high and/or low obesity rates at the county level in the US.  However, the 

statistics also indicate that the magnitude of spatial autocorrelation has decreased slightly during 

the seven-year observation period.  This decline suggests that the obesity rates between some 

counties and their neighbors have become less concentrated over the years.  This is applicable to 

both hot spot and/or cold spot cluster locations.  This indicates that obesity has become more 

prevalent over the years and thus it has become less concentrated.    
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Figure 4.29 Univariate Moran’s I scatter plots for county level obesity prevalence rates in the US 
for 2004, 2007, and 2010 

As shown in Figures 4.30, 4.31, and 4.32, the obesity rates are mapped and categorized 

based on the results of the univariate LISA statistics (p<0.05) to illustrate the localized extent 

and the nature of the spatial clustering in the obesity data for the years 2004, 2007, and 2010.  In 

all three years, the number of counties categorized as hot spot obesity clusters exceeds the 

number of counties categorized as cold spot obesity clusters.   

As seen in Figures 4.30, 4.31, and 4.32, in all years, overall clear high obesity clusters are 

mainly seen in the East South Central and South East (Atlantic) regions (excluding Texas and 

Florida) in the South.  Particularly, there are two distinguished and belt-like high obesity 

clusters, in the direction of southwest to southeast, that run almost parallel to each other.  The 

first one extends from Louisiana to Virginia covering Louisiana, Mississippi, Alabama, Georgia, 

South Carolina, North Carolina, and Virginia.  The second one runs through Oklahoma, 

Arkansas, Tennessee, Kentucky and West Virginia. These two parallel and belt-like clusters run 

mainly along the southern and northern boundaries of the South US.  The states included in these 

two belts largely represent cultural and geographical subregion of the American South and 

therefore they stand out as two separate but associated belts within the context of obesity. 
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 Figure 4.30 Univariate LISA cluster map for county level obesity prevalence rates in the US for 2004  
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 Figure 4.31 Univariate LISA cluster map for county level obesity prevalence rates in the US for 2007
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Figure 4.32 Univariate LISA cluster map for county level obesity prevalence rates in the US for 
2010 

 
There are also distinct high obesity clusters in the Dakotas region which are observed 

more predominantly in the state of South Dakota.  Over this time period, a growing cluster of 

high obesity is also observed in Oklahoma in the South and in Michigan and Indiana in the East 

North Central region in the Midwest.  On the other hand, slightly diminishing high obesity 

clusters are detected in the states of Georgia, North Carolina, and Kentucky in the South. 

In all three years, overall clear low obesity clusters are mainly seen in the West and 

Northeast.  In the South, Texas and Florida are the only states that showed a distinct low obesity 

clustering patterns throughout this time period.  Even though the Southern US is dominated by 

high obesity clusters, growing clusters of low obesity are also observed in Georgia, North 
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Carolina, and Virginia by 2010.  A similar growth pattern in the low obesity clusters is also seen 

in Minnesota in the West North Central region.  Further examination of the map reveals that 

these low obesity cluster growth areas correspond to the counties or county equivalents where 

metropolitan areas exist.  

 4.3.2.2 Physical Inactivity (PIA) 

In Figure 4.33, the results of the univariate Moran’s I statistics for the county-level PIA 

rates in the US for the years 2004, 2007, and 2010 are presented.  In all years, the univariate 

Moran’s I statistics indicate high positive spatial autocorrelation.  The results of the Moran’s I 

statistics are 0.76 (2004), 0.73 (2007), and 0.67 (2010) and based on the 999 permutations run, 

they are significant (p<0.001).  Similar to the Moran’s I results for the obesity rates, these results 

reveal that there is continued spatial clustering of the high and/or low PIA rates at the county 

level in the US.  However, the statistics also indicate that the magnitude of spatial 

autocorrelation has slightly decreased during the seven-year observation period.  This decline 

suggests that the spatial autocorrelation of the PIA rates between some counties and their 

neighbors have become less concentrated over the years.  This is applicable to both hot spot 

and/or cold spot cluster locations.   

 

Figure 4.33 Univariate Moran’s I scatter plots for county level physical inactivity (PIA) 
prevalence rates in the US for 2004, 2007, and 2010  



94 
 

Figures 4.34, 4.35, and 4.36 illustrate the mapped and categorized PIA rates based on the 

results of the univariate LISA statistics (p<0.05) for the period 2004, 2007, and 2010.  In all 

three years, the number of counties categorized as hot spot PIA clusters exceeds the number of 

counties categorized as cold spot PIA clusters. 

 

 
Figure 4.34 Univariate LISA cluster map for county level physical inactivity (PIA) prevalence 
rates in the US for 2004 

 

 



95 
 

 Figure 4.35 Univariate LISA cluster map for county level physical inactivity (PIA) prevalence rates in the US for  
  2007 
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 Figure 4.36 Univariate LISA cluster map for county level physical inactivity (PIA) prevalence rates in the US for  
  2010 
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 4.3.2.3 Poverty 

Figure 4.37 presents the results of the univariate Moran’s I statistics for the county-level 

poverty rates in the US for the years 2004, 2007, and 2010.  In all years, the univariate Moran’s I 

statistics indicate positive spatial autocorrelation.  The results of the Moran’s I statistics are 0.65 

in 2004, 0.59 in 2007, and 0.56 in 2010 and based on the 999 permutations run, they are 

significant (p<0.001).  These results reveal that there is continued spatial clustering of the high 

and/or low poverty rates at the county level in the US.  However, the statistics also indicate that 

the magnitude of spatial autocorrelation has decreased during the seven year observation period.  

This is a small decline, yet it still implies that the spatial correlation of the poverty rates between 

some counties and their neighbors have become less concentrated over the years for the hot spot 

and/or cold spot cluster locations. 

Figure 4.37 Univariate Moran’s I scatter plots for county level poverty prevalence rates in the US 
for 2004, 2007, and 2010 
 

Figures 4.38, 4.39, and 4.40 demonstrate the mapped and categorized poverty rates based 

on the results of the univariate LISA statistics (p< 0.05).   In all three years, the number of 

counties categorized as hot spot poverty clusters is lower than the number of counties 

categorized as cold spot poverty clusters as clearly shown in the maps. 
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 Figure 4.38 Univariate LISA cluster map for county level poverty prevalence rates in the US for 2004 
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 Figure 4.39 Univariate LISA cluster map for county level poverty prevalence rates in the US for 2007 
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Figure 4.40 Univariate LISA cluster map for county level poverty prevalence rates in the US for 
2010  
 
 4.3.2.4 Ratio of Jobs to Employed Residents (JER) 

 Figure 4.41 presents the results of the univariate Moran’s I statistic for the county-level 

JERs in the US for the year 2010.  The univariate Moran’s I statistic indicates a negative spatial 

autocorrelation.  The result of the Moran’s I statistic is -0.02 in 2010 and based on the 999 

permutations run, it is significant (p<0.001).  This result shows that the high and/or low JERs are 

spatially dispersed at the county level in the US.  Figure 4.42 illustrates the mapped and 

categorized JERs based on the results of the univariate LISA statistics (p<0.05).  Even though 

the magnitude of the univariate Moran’s I statistic is negative, suggesting a dispersed pattern, 

some clustering is still observed at the local level.   
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Figure 4.41 Univariate Moran’s I scatter plots for county level ratio of jobs to employed 
residents (JER) in the US for 2010  

 
Figure 4.42 Univariate LISA cluster map for county level ratio of jobs to employed residents 
(JERs) in the US for 2010 
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 4.3.2.5 Population-Weighted Distance (PWD) to Parks 

Figure 4.43 presents the results of the univariate Moran’s I statistic for the county-level 

PWD to parks in the US for the year 2008.  The univariate Moran’s I statistic indicates a positive 

spatial autocorrelation.  The result of the Moran’s I statistic is 0.64 in 2008 and based on the 999 

permutations run, it is significant (p<0.001).  This result shows that the high and/or low PWDs to 

parks are highly clustered at the county level in the US. 

 
Figure 4.43 Univariate Moran’s I scatter plots for county level population-weighted distance 
(PWD) to parks in the US for 2008  

Figure 4.44 illustrates the mapped and categorized PWD to parks based on the results of 

the univariate LISA statistics (p< 0.05). 

 4.3.2.6 Population Density  

 Figure 4.45 presents the results of the univariate Moran’s I statistics for the county-level 

population densities in the US for the years 2004, 2007, and 2010.  In all years, the univariate 

Moran’s I statistics indicate positive spatial autocorrelation.  The results of the Moran’s I 

statistics are 0.66 in 2004 and 0.65 in 2007 and in 2010 and based on the 999 permutations run, 

they are significant (p<0.001).  These results reveal that there is continued spatial clustering of
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Figure 4.44 Univariate LISA cluster map for county level population-weighted distances (PWDs) 
to parks in the US for 2008 
 

the high and/or low population densities at the county level in the US.  The statistics also indicate 

that the magnitude of spatial autocorrelation has decreased very slightly during the seven-year 

observation period (Figure 4.45). 

 Figures 4.46, 4.47, and 4.48 demonstrate the mapped and categorized population 

densities based on the results of the univariate LISA statistics (p<0.05).  In all three years, the 

number of counties categorized as hot spot population density clusters is lower than the number 

of counties categorized as cold spot population density clusters. 
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Figure 4.45 Univariate Moran’s I scatter plots for county level population densities in the US for 
2004, 2007, and 2010  

 

 
Figure 4.46 Univariate LISA cluster map for county level population densities in the US for 2004
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  Figure 4.47 Univariate LISA cluster map for county level population densities in the US for 2007 
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  Figure 4.48 Univariate LISA cluster map for county level population densities in the US for 2010  
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4.3.3 Bivariate Moran’s I and LISA Results 

To further test the hypothesis that the clustering of the obesity prevalence rates is 

spatially related to the clustering of the rates of the other (independent) variables, the bivariate 

global Moran’s I and LISA statistics are calculated in GeoDa.  Therefore, the following findings 

are based on the bivariate global Moran’s I and LISA statistics.  In the bivariate form of the 

Moran’s I and/or LISA, the tests compare the value of a variable at any one location with the 

value of a second variable at all other locations.  In other words, unlike in the univariate form, 

the observed values of a variable, y, are regressed with the spatial lag of the observed values of 

another variable, x, in the bivariate form. 

Similar to the univariate tests, the bivariate test results are shown in the forms of Moran 

scatter plots and cluster maps.  In the cluster maps, the hot spot (areas in red) and cold spot 

(areas in blue) locations indicate clustering of similar values while the two types of spatial outlier 

(areas in lighter red and in lighter blue) locations illustrate dissimilar values that are near each 

other.  Only the statistically significant patterns are visualized on the cluster maps with these 

colors (p<0.05), while insignificant spatial associations are shown in light grey.  In addition, the 

corresponding significance maps are presented in Appendix B. 

Initially, scatter plots are created to show the correlation between the obesity rates and 

each independent variable.  Scatter plots show both the type and magnitude of the relationship 

that exist between the two variables as shown in Table 4.7.  In all three years, obesity has a 

positive association with PIA, poverty, and PWD to parks while it has a negative association 

with JER and population density.  Obesity has clearly stronger relationships with PIA and 

poverty based on the correlation coefficients observed. 
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Table 4.7 Correlation coefficients between county level obesity prevalence rates and each 
independent variable in the US for 2004, 2007, and 2010   

 2004 2007 2010 
Obesity-Physical Inactivity (PIA) 0.68 0.69 0.70 
Obesity-Poverty 0.50 0.47 0.45 
Obesity- Ratio of Jobs to Employed Residents (JER) -0.11 -0.13 -0.13 
Obesity- Population-Weighted Distance (PWD) to Parks 0.09 0.08 0.10 
Obesity-Population Density -0.13 -0.13 -0.15 

 
 
 4.3.3.1 Spatial Association between Obesity and Physical Inactivity (PIA) 

 In Figure 4.49, the results of the bivariate Moran’s I statistics for the county-level obesity 

rates and PIA rates in the US for the years 2004, 2007, and 2010 are presented.  Similar to the 

univariate statistics, these results not only quantify the degree of spatial clustering (spatial 

autocorrelation) in each year, but also show how the magnitude of spatial clustering (spatial 

autocorrelation) varied among the years studied.  In all three years, the bivariate Moran’s I 

statistics indicate high positive spatial autocorrelation.  The results of the Moran’s I statistics are 

0.55 (2004), 0.54 (2007), and 0.52 (2010) and based on the 999 permutations run, they are 

significant (p<0.001).  These results reveal that there is continued spatial clustering of high 

and/or low rates at the county level in the US.  However, the statistics also indicate that the 

magnitude of spatial autocorrelation has slightly decreased during the seven-year observation 

period.  This decline suggests that the spatial autocorrelation between the obesity rates and PIA 

rates in some counties and their neighbors have become less spatially concentrated over the 

years.  This is applicable to both hot spot and/or cold spot cluster locations. 

 Figures 4.50, 4.51, and 4.52 illustrate the mapped and categorized rates (i.e., local 

associations between obesity rates and lagged PIA rates) based on the results of the bivariate 

LISA statistics (p<0.05) for the period 2004, 2007, and 2010.  In all years, the number of 
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counties categorized as hot spot clusters exceeds the number of counties categorized as cold spot 

clusters.   

 
Figure 4.49 Bivariate Moran’s I scatter plots for county level obesity prevalence rates and 
physical inactivity (PIA) prevalence rates in the US for 2004, 2007, and 2010 

In all three years, a distinct cluster of high obesity with high physical inactivity (PIA) is 

observed in the Southern US, especially the South Central region.  The high obesity and PIA 

clusters especially exist in Oklahoma, Arkansas, Louisiana, Mississippi, Alabama, Tennessee, 

Kentucky, and West Virginia.  In addition, Georgia, South Carolina, and North Carolina in the 

South East (Atlantic) region exhibit a cluster of high obesity and PIA in these three years.  There 

is not a distinct clustering of high obesity and PIA in Texas, except in 2007.  Furthermore, over 

this time period, a growing cluster of high obesity and PIA in Missouri, South Dakota, and North 

Dakota in the West North Central region in the Midwest are observed.  On the other hand, there 

is a diminishing high obesity and PIA cluster in the South East (Atlantic) region of the South, 

particularly in Georgia from 2004 to 2010 (Figures 4.50, 4.51, and 4.52).    

In all years, a constant and distinct cluster of low obesity and PIA is observed in 

Washington, Oregon, and California in the Pacific region in the West.  Another distinct cluster of 

low obesity and PIA is apparent in the Mountain region in the West despite the fact that there is a 

slight decrease in the number of clusters in Arizona and New Mexico from 2004 to 2010 period. 
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 Figure 4.50 Bivariate LISA cluster map for county level obesity prevalence rates and physical inactivity (PIA)   
  prevalence rates in the US for 2004  



111 
 

 Figure 4.51 Bivariate LISA cluster map for county level obesity prevalence rates and physical inactivity (PIA)   
  prevalence rates in the US for 2007 
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 Figure 4.52 Bivariate LISA cluster map for county level obesity prevalence rates and physical inactivity (PIA)   
  prevalence rates in the US for 2010  
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Over the same time period, a distinct cluster of low obesity and PIA is also observed in 

Minnesota, Wisconsin, and Michigan in the Midwest.  In addition, there is another distinct low 

obesity and PIA clustering shown in the Northeast, especially in the New England region.  

Moreover, from 2004 to 2010, a fairly distinct cluster of low obesity and PIA is apparent in 

Virginia and Maryland in the South.  While the South US is dominated by clusters of high 

obesity and PIA areas, growing clusters of low obesity and PIA areas are also observed in 

Virginia, Georgia, and Florida in the South East (Atlantic) region of the South from 2004 to 2010 

(Figures 4.50, 4.51, and 4.52).   

On the other hand, in all three years, high obesity with low PIA and low obesity with 

high PIA spatial outliers exist throughout the US.  The high obesity and low PIA spatial outliers 

are mostly found in the West and Midwest.  Washington, Oregon, and California in the West and 

the states of Minnesota, Wisconsin, and Michigan stand out having the most outliers in all three 

years.  The low obesity and high PIA spatial outliers are mainly observed in Texas, Oklahoma, 

Arkansas, Alabama, Tennessee, and Kentucky in the South in all three years and in Nebraska, 

South Dakota, and North Dakota in the Midwest, particularly in 2010 (Figures 4.50, 4.51, and 

4.52). 

 4.3.3.2 Spatial Association between Obesity and Poverty 

 In Figure 4.53, the results of the bivariate Moran’s I statistics for the county-level obesity 

rates and poverty rates in the US for the years 2004, 2007, and 2010 are presented.  In all three 

years, the bivariate Moran’s I statistics indicate positive spatial autocorrelation.  The results of 

the Moran’s I statistics are 0.36 (2004), 0.33 (2007), and 0.31 (2010) and based on the 999 

permutations run, they are significant (p<0.001).  These results reveal that there is continued 

spatial clustering of high and/or low rates at the county level in the US.  However, the statistics 
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also indicate that the magnitude of spatial autocorrelation has decreased slightly during the 

seven-year observation period.  This decline suggests that the spatial autocorrelation between the 

obesity rates and poverty rates in some counties and their neighbors have become less 

concentrated over the years.  This is applicable to both hot spot and/or cold spot cluster locations.   

  

 
Figure 4.53 Bivariate Moran’s I scatter plots for county level obesity prevalence rates and 
poverty prevalence rates in the US for 2004, 2007, and 2010  

Figures 4.54, 4.55, and 4.56 illustrate the mapped and categorized rates (i.e., local 

associations between obesity rates and lagged poverty rates) based on the results of the bivariate 

LISA statistics (p<0.05) for the period 2004, 2007, and 2010.  In all years, the number of 

counties categorized as hot spot clusters is lower than the number of counties categorized as cold 

spot clusters. 

In all three years, there is a distinctive north–south divide across the US in which the 

Southern US is dominated by high obesity with high poverty clusters, while the Northern US is 

dominated by low obesity with low poverty clusters.  More specifically, the high obesity and 

poverty clusters that are existent within the South are mostly observed in Texas, Louisiana, 

Mississippi, Alabama, Georgia, Florida, South Carolina, North Carolina, Virginia, West 

Virginia, Kentucky, Tennessee, Arkansas, and Oklahoma in the South and in New Mexico and 

Arizona in the West and in Missouri in the Midwest.  South Dakota, located in the West North 
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 Figure 4.54 Bivariate LISA cluster map for county level obesity prevalence rates and poverty prevalence rates in  
  the US for 2004  
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 Figure 4.55 Bivariate LISA cluster map for county level obesity prevalence rates and poverty prevalence rates in  
  the US for 2007  
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 Figure 4.56 Bivariate LISA cluster map for county level obesity prevalence rates and poverty prevalence rates in  
  the US for 2010  
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Central region has the only distinctive high obesity and poverty clusters within the 

abovementioned divide.  In addition, there is a growing cluster of high obesity and poverty in 

Florida in these periods, whereas the high obesity and poverty clusters are slightly diminished in 

Texas from 2004 to 2010.  Nonetheless, the majority of the high obesity and poverty clusters are 

confined to the South Central and South East (Atlantic) regions in the Southern US from 2004 to 

2010 (Figures 4.54, 4.55, and 4.56).   

Over this time period, distinct clusters of low obesity and poverty are observed in the 

abovementioned divide across the US.  These clusters extend from Maine in the Northeastern US 

to California in the far Western US, with low obesity and poverty clusters in every state except in 

Oregon along this path.  Based on Figures 4.54, 4.55, and 4.56, Georgia, Virginia, Maryland, and 

Delaware have the only distinctive low obesity and poverty clusters in the Southern US over this 

time period.  

On the other hand, the high obesity and low poverty spatial outliers are mostly confined 

to the Midwest yet existent to a certain level in the Mountain region of the West.  Pennsylvania 

in the Northeast and Delaware, Maryland, and Virginia in the South have also distinct high 

obesity and low poverty spatial outliers.  Distinctive low obesity  and high poverty spatial 

outliers are mainly observed in Texas, New Mexico, Arizona, Colorado, and  South Dakota 

(Figures 4.54, 4.55, and 4.56).   

 4.3.3.3 Spatial Association between Obesity and Ratio of Jobs to Employed Residents 
 (JER) 
 

Figure 4.57 presents the results of the bivariate Moran’s I statistics for the county-level 

obesity rates and JERs in the US for the years 2004, 2007, and 2010.  In all three years, the 

bivariate Moran’s I statistics indicate negative spatial autocorrelation.  The results of the Moran’s 

I statistics are -0.07 (2004), -0.07 (2007), and -0.06 (2010) and based on the 999 permutations 
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run, they are significant (p<0.001).  These results reveal that there is not spatial clustering of 

high and/or low values at the county level in the US.  The statistics also indicate that the 

magnitude of negative spatial autocorrelation remained nearly constant during the seven-year 

observation period. 

 
Figure 4.57 Bivariate Moran’s I scatter plots for county level obesity prevalence rates and ratio 
of jobs to employed residents (JERs) in the US for 2004, 2007, and 2010  

Figures 4.58, 4.59, and 4.60 illustrate the mapped and categorized rates (i.e., local 

associations between obesity rates and lagged JERs) based on the results of the bivariate LISA 

statistics (p<0.05) for 2004, 2007, and 2010.  In all years, the number of counties categorized as 

hot spot clusters is lower than the number of counties categorized as cold spot clusters.  In 

addition, the number of counties categorized as spatial outliers exceeds the number of counties 

categorized spatial clusters. 

Overall, the spatial association between obesity and JER is dispersed at the county level 

in all three years.  However, as observed in the LISA cluster maps, spatial clustering of high 

obesity with high JER and low obesity with low JER still exists to a certain degree.  In all three 

years, the clusters of high obesity and JER are distinctively observed in Louisiana and  

Mississippi in the South, in Pennsylvania in the Northeast, and in Nevada in the West.  Texas    
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  Figure 4.58 Bivariate LISA cluster map for county level obesity prevalence rates and ratio of jobs to employed   
  residents (JERs) in the US for 2004  
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  Figure 4.59 Bivariate LISA cluster map for county level obesity prevalence rates and ratio of jobs to employed   
  residents (JERs) in the US for 2007  
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  Figure 4.60 Bivariate LISA cluster map for county level obesity prevalence rates and ratio of jobs to employed   
  residents (JERs) in the US for 2010 
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and Virginia in the South and Illinois, Indiana, and Minnesota in the Midwest stand out having 

the most of the low obesity and JER clusters (Figures 4.58, 4.59, and 4.60). 

On the other hand, the high obesity and low JER spatial outliers are mainly observed in 

the Southern US while low obesity and high JER spatial outliers are mainly observed in the 

Western US in all three years.  More specifically, the high obesity and low JER spatial outliers 

are seen in Texas, Louisiana, Mississippi, Alabama, Georgia, South Carolina, North Carolina, 

Virginia, Kentucky, Tennessee, and Oklahoma in the South while the low obesity and high JER 

spatial outliers are observed in New Mexico, Colorado, Idaho, Nevada, and California in the 

West and in Texas in the South US.  In addition, high obesity and low JER spatial outliers are 

also detected in Kansas, Missouri, Indiana, and Ohio in the Midwest.  Overall for both the high 

obesity and low JER and low obesity and high JER spatial outliers, the observed spatial outliers 

in California, Nevada, Colorado, New Mexico in the West, in Texas, Mississippi, Alabama, 

Georgia, Virginia, Kentucky, and Tennessee in the South, and in Missouri in the Midwest stand 

out in terms of visual detection on the map (Figures 4.58, 4.59, and 4.60). 

 4.3.3.4 Spatial Association between Obesity and Population-Weighted Distance (PWD) 
 to Parks 
 

Figure 4.61 presents the results of the bivariate Moran’s I statistics for the county-level 

obesity rates and PWDs to parks in the US for the years 2004, 2007, and 2010.  In all three years, 

the bivariate Moran’s I statistics indicate positive spatial autocorrelation.  The results of the 

Moran’s I statistics are 0.07 (2004), 0.05 (2007), and 0.07 (2010) and based on the 999 

permutations run, they are significant (p<0.001).  These results reveal that there is continued 

spatial clustering of high and/or low values at the county level in the US.  However, the statistics 

also indicate that the magnitude of spatial autocorrelation has slightly decreased in between 2004 

and 2007 and increased back by 2010.  Overall, this decline followed by an increase suggests 
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that the spatial correlation between the obesity rates and PWDs to parks in some counties and 

their neighbors have become less concentrated by 2007 and then become more concentrated by 

2010.  This is applicable to both hot spot and/or cold spot cluster locations. 

 
Figure 4.61 Bivariate Moran’s I scatter plots for county level obesity prevalence rates and 
population-weighted distances (PWDs) to parks in the US for 2004, 2007, and 2010  

Figures 4.62, 4.63, and 4.64 illustrate the mapped and categorized rates (i.e., local spatial 

association between obesity rates and lagged PWDs to parks) based on the results of the bivariate 

LISA statistics (p< 0.05) for 2004, 2007, and 2010.  In all years, the number of counties 

categorized as hot spot clusters is lower than the number of counties categorized as cold spot 

clusters.   

Overall, in all three years, a distinct cluster of high obesity with high PWD to parks is mainly 

observed in the Mountain region of the West and in the West North Central region of the 

Midwest.  More specifically, the area consisting of Nevada, Montana, and Wyoming in the West 

and North Dakota, South Dakota, and Nebraska in the Midwest stands out having a very 

distinctive cluster of high obesity and high PWD to parks.  The clusters of high obesity and high 

PWD to parks are also seen in the South, mainly in Texas, Louisiana, Mississippi, Alabama, 

Georgia, and North Carolina.  Maine is the only state with a cluster of high obesity and high 

PWD to parks in the Northeast (Figures 4.62, 4.63, and 4.64). 
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  Figure 4.62 Bivariate LISA cluster map for county level obesity prevalence rates and population-weighted   
  distances (PWDs) to parks in the US for 2004  
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  Figure 4.63 Bivariate LISA cluster map for county level obesity prevalence rates and population-weighted   
  distances (PWDs) to parks in the US for 2007  
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  Figure 4.64 Bivariate LISA cluster map for county level obesity prevalence rates and population-weighted   
  distances (PWDs) to parks in the US for 2010  
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Conversely, in all three years, a fairly distinct cluster of low obesity and low PWD to 

parks is observed predominantly in the Northeast Megalopolis region that covers the District of 

Columbia and the states of Virginia, Maryland, Delaware, Pennsylvania, New Jersey, New York, 

Connecticut, Rhode Island, Massachusetts, Vermont, and New Hampshire.  In the Northeast, 

Maine is the only state that does not have clusters of low obesity and low PWD to parks. Another 

distinctive cluster of low obesity and low PWD to parks is seen in Minnesota, Iowa, Wisconsin, 

and Illinois in the East North Central region of the Midwest and in Washington, Oregon, and 

California in the Pacific region of the West.  Texas, Georgia, Florida, North Carolina, Tennessee, 

and Oklahoma in the South also have fairly distinct cluster of low obesity and low PWD to 

parks.  Overall, the observed patterns reveal that the clusters of high obesity with high PWD to 

parks are more prevalent in the rural counties and county equivalents while the clusters of low 

obesity with low PWD to parks are mainly seen in the urban counties and county equivalents 

(Figures 4.62, 4.63, and 4.64). 

On the other hand, the high obesity and low PWD to parks spatial outliers are most 

distinctively observed in the Midwest, particularly in Wisconsin, Iowa, Missouri, Illinois, 

Michigan, Indiana, and Ohio.  In addition, the high obesity and low PWD to parks spatial outliers 

are also seen in Pennsylvania and New Jersey in the Northeast, in Texas, Oklahoma, and 

Louisiana in the South, and in Washington and Oregon in the West.  On the contrary, the entire 

Mountain region of the West, North Dakota, South Dakota, Nebraska, and Kansas in the 

Midwest, and Texas in the South are covered by the low obesity high PWD to parks spatial 

outliers (Figures 4.62, 4.63, and 4.64).       

 

 



129 
 

 4.3.3.5 Spatial Association between Obesity and Population Density 

In Figure 4.65, the results of the bivariate Moran’s I statistics for the county-level obesity 

rates and population densities in the US for the years 2004, 2007, and 2010 are presented.  In all 

three years, the bivariate Moran’s I statistics indicate negative spatial autocorrelation.  The 

results of the Moran’s I statistics are -0.11 (2004), -0.10 (2007), and -0.12 (2010) and based on 

the 999 permutations run, they are significant (p<0.001).  These results reveal that the high 

and/or low values are dispersed at the county level in the US.  The statistics also indicate that the 

magnitude of negative spatial autocorrelation has slightly increased during the seven-year 

observation period. 

 
Figure 4.65 Bivariate Moran’s I scatter plots for county level obesity prevalence rates and 
population densities in the US for 2004, 2007, and 2010  

  Figures 4.66, 4.67, and 4.68 illustrate the mapped and categorized rates (i.e., local 

associations between obesity rates and lagged population densities) based on the results of the 

bivariate LISA statistics (p< 0.05) for the period 2004, 2007, and 2010.  In all years, the number 

of counties categorized as hot spot clusters is lower than the number of counties categorized as 

cold spot clusters.  

Similar to the results of bivariate global Moran’s I for the obesity and JER, the spatial 

association between obesity and population density is dispersed at the county level in all three 
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 Figure 4.66 Bivariate LISA cluster map for county level obesity prevalence rates and population densities in the  
  US for 2004  



131 
 

 Figure 4.67 Bivariate LISA cluster map for county level obesity prevalence rates and population densities in the  
  US for 2007  
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 Figure 4.68 Bivariate LISA cluster map for county level obesity prevalence rates and population densities in the  
  US for 2010  
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years.  However, as observed in the LISA cluster maps, spatial clustering of high obesity with 

high population density and low obesity with low population density still exists to a certain 

degree.  The clusters of high obesity and high population density are seen in Texas, Louisiana, 

Georgia, and Virginia in the South and in Illinois, Indiana, Michigan, and Ohio in the Midwest.  

However, a distinct cluster of low obesity and low population density is predominantly observed 

in the western half of the US.  More specifically, these clusters are mainly seen in the entire 

Western US, the West North Central region in the Midwest, and the West South Central region 

(Texas and Oklahoma) in the Southern US.  In addition, the clusters of low obesity and low 

population density exist in Wisconsin and Illinois in the East North Central region in the 

Midwest (Figures 4.66, 4.67, and 4.68). 

On the other hand, in all three years, the high obesity and low population density spatial 

outliers are observed in the entire West North Central region of the Midwest and in the entire 

West South Central region of the South.  The high obesity and low population density spatial 

outliers also foremost exist in the Mountain region in the West.  The other notable high obesity 

and low population density spatial outliers exist in Mississippi, Alabama, Georgia, and West 

Virginia in the South, in Maine in the Northeast, and in Wisconsin and Michigan in the East 

North Central region in the Midwest (Figures 4.66, 4.67, and 4.68). 

Over this time period (i.e., 2004, 2007, and 2010), the low obesity and high population 

density spatial outliers are predominantly seen in Massachusetts, Connecticut, New York, New 

Jersey, and Pennsylvania in the Northeast, in Maryland, Virginia, Florida, Georgia, and Texas in 

the South, in Ohio, Michigan, Illinois, Wisconsin, and Minnesota in the North Central region in 

the Midwest, and in Colorado and California in the West.  Of all these low obesity and high 

population density spatial outlier areas, the Northeast Megalopolis region that stretches from 
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Virginia in the South to New Hampshire in the Northeast and California in the West emerge as 

the most distinctive areas (Figures 4.66, 4.67, and 4.68). 

4.4. Discussion 

As a major contribution, this study examined the obesity issue simultaneously accounting 

for space and time (i.e., the temporal changes from 2004 to 2007 and to 2010) while exploring 

the complex interplay of physical inactivity (PIA), poverty, ratio of jobs to employed residents 

(JER), population-weighted distance (PWD) to parks, and population density with the obesity 

phenomenon at the county level in the US.  The main objectives of this study were to explore 

and identify spatio-temporal patterns and trends of obesity and their associations with the 

selected key variables, to examine whether these associations are based on clusters of 

occurrences or whether they are dispersed randomly across space, and to identify where these 

patterns have been manifested. 

The main hypothesis aimed to test whether there was a spatial component involved in 

these temporal observations such as a significant spatial convergence of high obesity/PIA, 

poverty, JER, PWD to parks, and population density rates and/or low obesity/PIA, poverty, JER, 

PWD to parks, and population density rates.  The more specific hypotheses included were: 1) 

There is a general clustering of high (or low) values of obesity and of the other tested variables; 

2) Areas with high rates of PIA are more likely to have high rates of obesity; 3) Areas with high 

rates of poverty are more likely to have high rates of obesity; 4) Areas with high JERs are more 

likely to have low rates of obesity; 5) Areas with high PWDs to parks are more likely to have 

high rates of obesity; and 6) Areas with high population densities are more likely to have low 

rates of obesity. 
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As presented in the results section, a consistent answer obtained in this study significantly 

indicated (p<0.001) that the high (or low) values of the obesity, PIA, poverty, PWD to parks, and 

population density at the county level in the US were spatially clustered while the high (or low) 

values of the JER were spatially dispersed.  These findings were yielded through univariate 

global Moran’s I tests and confirmed through LISA tests at the local level.  The term ‘local’ here 

refers to a scale for which a new set of results are obtained by utilizing the localized counterpart 

of the global Moran’s I, LISA.  For all variables, p-values were statistically significant and z-

scores were positive except for JER, which had negative z-scores.  Therefore, the null hypothesis 

that “the spatial distribution of polygons and their attributes are spatially independent” was 

rejected.  In other words, for the obesity, PIA, poverty, PWD to parks, and population density 

variables, the spatial distribution of high (or low) values in the dataset was more spatially 

clustered than would be expected if underlying spatial processes were random, while the spatial 

distribution of high (or low) values was more spatially dispersed for the JER.   

Further tests were conducted in a bivariate form to explore whether any spatially 

significant convergence of high (or low) obesity or the other tested variables exist.  The 

following findings were yielded through bivariate global Moran’s I tests and confirmed through 

LISA tests at the local level.  For all variables, the p-values were statistically significant and the 

z-scores were positive for the obesity/PIA, obesity/poverty, and obesity/PWD to parks 

combinations, whereas the z-scores were negative for the obesity/JER and obesity/population 

density combinations.  Therefore, the null hypothesis of spatial independence was rejected for all 

tested combinations.  These significant associations indicated that high (or low) (i.e., similar) 

rates of obesity, PIA, poverty, and PWD to parks were spatially associated.  In other words, areas 

with high (or low) rates of PIA or poverty or PWD to parks are more likely to have high (or low) 
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rates of obesity.  Conversely, it was also indicated that high (or low) rates of obesity, JER, and 

population density were spatially dispersed (i.e., inversely associated).  In other words, areas 

with high rates of JER or population density are more likely to have low rates of obesity and vice 

versa.  Furthermore, although all bivariate findings were statistically significant (p<0.001), the 

magnitudes of the spatial associations were higher for the obesity/PIA and obesity/poverty 

combinations than for the obesity/JER, obesity/PWD to parks, and obesity/population density 

combinations.  This was also evident in the LISA cluster maps by visual detection of spatial 

clusters and spatial outliers both in terms of quantity and location.  Consequently, all findings 

indicated that the actual spatial patterns of obesity and the selected key variables were strongly 

associated spatially and temporally with each other. 

Moreover, it should also be noted that in general the focus is given to the areas, which are 

the so-called spatial clusters as shown on the LISA cluster maps.  A cluster is classified as such 

when a value at a location, either high or low, is more similar to its neighbors, as calculated by 

averaging the neighboring values  (i.e., the spatial lag), than it would be under the case of 

Completer Spatial Randomness (CSR).  However, an equally high attention should be given to 

the areas which are the so-called outlier locations, where a value at a location is more dissimilar 

to its neighbors.  This is especially important in the bivariate form.   Such spatial outlier 

locations often reflect some type of competitive process and thus warrant further investigation to 

see if other factors are at work.  Therefore, in this study, spatial outlier locations on the LISA 

cluster maps were also identified and discussed.   

There are several key contributions of this study to the existing body of knowledge in 

obesity research.  First of all, a key contribution was that the global and local findings helped to 

quantify and map the spatial distribution of obesity and the selected variables and to identify 
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clusters (hot spots or cold spots) for all variables.  With the utilization of both univariate and 

bivariate forms of spatial analyses, the identification of clusters for each unique variable, as well 

as between variable pairs, was accomplished.  For instance, cluster locations for obesity (high or 

low obesity locations surrounded by neighboring locations with high or low obesity) in the 

univariate form and very similar cluster locations for obesity and PIA (high or low obesity 

locations surrounded by neighboring locations with high or low PIA) in the bivariate form were 

identified.  Second, another key finding of the study was the identification of locations that 

presented inconsistent and/or unexpected spatial relationships (i.e., negative for the obesity/PIA, 

obesity/poverty, and obesity/PWD to parks combinations and positive for the obesity/JER and 

obesity/population density combinations) between obesity and the other variables (e.g., the 

locations that exhibited high obesity but low PIA).  Last but not least, one of the gaps observed 

in the obesity literature was the lack of studies at the county level for the entire US.  Therefore, 

this study fills that gap by exploring obesity and its confounding associations at the county level 

for the entire US.  This study is a novel work especially by being the first study to explore 

obesity not only spatially but also temporally revealing the temporal changes from 2004 to 2007 

and to 2010. 

On the other hand, this study was subject to some limitations, as well.  First of all, the 

heights and weights that the BRFSS uses to calculate BMI values were based on telephone self-

reported information.  It is known that both men and women may underreport weight and men 

may over report height in telephone surveys (Merrill and Richardson, 2009).   Therefore, the 

prevalence of obesity rates used in this study should be considered somewhat conservative.  

Nonetheless, the very same BRFSS data are the most widely used obesity data and also assumed 

to present the best picture of the obesity epidemic in the US (BRFSS, 2014).  Second, the spatial 



138 
 

patterns of obesity identified may change depending on the spatial scale used, an issue also 

known as the Modifiable Areal Unit Problem (MAUP).  Similar to most geographic research, the 

results of this study were scale-dependent, as well.  Therefore, the findings were significant and 

important at the scale of counties and county equivalents within the US as a whole. 

In conclusion, this study verified that the application of the univariate and bivariate 

Moran's I and LISA tests, as advanced ESDA methods, was effective  in detecting clusters of 

obesity, as well as to identify obesity’s complex spatial interplay with the selected independent 

variables.  The identification of spatial clusters provided valuable information on the local 

geographical variation of obesity in the US and these findings can be very crucial to identify 

areas of elevated risk to tackle the problem of obesity.  In addition, the outcomes and insights 

from this study will be useful to further study and explicate the underlying processes involved in 

forming such spatial patterns (spatial clusters and/or spatial outliers) and the determinants of 

obesity on the spatially clustered areas. 

 Therefore, further research will be conducted utilizing geographically weighted 

regression (GWR) with the addition of other key variables.  So far, it was found that obesity and 

the selected variables were spatially autocorrelated.  In such cases, using analytical methods that 

rely upon assumptions of the independence of observations, such as ordinary least squares (OLS) 

regression, can create biased findings.  The data used in this study clearly violated that 

assumption and thus a spatial alternative to the traditional OLS method, such as the GWR, 

should be utilized.  The GWR method has been specifically developed to deal with such 

situations (Fotheringham et al., 2002). 
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CHAPTER 5. A SPATIAL ANALYSIS OF COUNTY-LEVEL OBESITY PREVALENCE 
AND ITS ASSOCIATIONS WITH THE ENVIRONMENTAL, BEHAVIORAL, 

SOCIOECONOMIC, AND SOCIODEMOGRAPHIC FACTORS IN THE US 

5.1. Introduction 

Obesity has already reached epidemic proportions across the US and recently in 2013 it 

has been officially classified as a disease by the American Medical Association (AMA), the 

nation’s largest physician organization (AMA, 2014).  As previously mentioned, approximately 

200,000 deaths that may be attributable to obesity each year makes obesity the second-leading 

cause of preventable death after smoking in the US and it is likely to become the first, unless this 

chronic issue is addressed successfully (Danaei et al., 2009; Flegal et al., 2005; Mokdad et al., 

2004).  In addition to this very serious issue, the total annual economic costs associated with 

obesity in the US were estimated to be in excess of $215 billion as of 2010 (Hammond and 

Levine, 2010). 

Based on the literature review in Chapters 1 and 2, it was clear that the large increase in 

obesity prevalence in the US, especially since 1991, may reflect variations in behavioral, built 

environmental, socioeconomic, and sociodemographic factors.  However, the extent to which 

these factors are related to the obesity phenomenon is still poorly understood.  While this study 

may not identify all causal factors of the obesity phenomenon, it will investigate the spatial 

associations between obesity and behavioral, natural and built environmental, socioeconomic, 

sociodemographic, and population based dynamics at the county level in the US. 

Behavioral factors play an important role as a major determinant of obesity by being 

associated with obesity risk throughout an individual’s life course.  More specifically, sedentary 

behaviors are often seen as causal factors and physical inactivity is by far the most commonly 

investigated factor in that regard.  In the literature, studies exist from neighborhood to national 
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levels and the common finding suggests that physical inactivity is positively associated with 

obesity (Schuurman et al., 2012; Durand et al., 2011; Sallis and Glanz, 2009; Ewing et al., 2008; 

Kim et al., 2006; Lopez and Hynes, 2006; Sturm, 2004; Saelens et al., 2003; Pate et al., 1995).  

Similarly, automobile dependency, which is considered as another form of sedentary behavior, 

has been found to act to discourage activity and therefore increases the risk of obesity (Lathey et 

al., 2009; Frank et al., 2007; Lopez and Hynes, 2006; Berrigan and Troiano, 2002). 

Environmental factors associated with obesity primarily include various aspects of the 

natural and built environments.  The natural and built environments consist of features such as 

green spaces, houses, businesses, and street networks that are quite stable and therefore have a 

great potential to affect health-related behaviors and thus health (Lovasi, 2012; Das, 2010).  

Previous research has highlighted that both the natural and built environmental factors such as 

availability of parks, recreational facilities, and dense mixed-use, therefore walkable, 

neighborhoods promote physical activity and thus they have been associated with lower rates of 

obesity (Jilcott Pitts et al., 2013; Lamichhane et al., 2012; Durand et al., 2011; McCormack and 

Shiell, 2011; Feng et al., 2010; Mujahid et al., 2008; Diez Roux et al., 2007).  However, there 

have also been other studies that concluded that the effect of the built environment on obesity is 

not as clear (Durand et al., 2011; Feng et al., 2010).  More specifically, features of the built 

environment can only encourage physical activity within the limitations and/or opportunities 

presented by the natural environment.  For instance, sidewalks may be used less in areas where 

the summer is very hot or the winter is very cold and a bicycle lane or trail may get little use in 

areas where the landscape is steeper than normal (von Hippel and Benson, 2014).  In other 

words, the characteristics of the natural environment may have power over the advantages of the 

built environment.  In addition, especially in the more recent literature, food environments have 
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been included as a part of the environmental determinants of obesity.  Studies concerning food-

related behaviors have concluded that disparities in the availability of restaurants and 

supermarkets are related to differences in caloric intake and therefore obesity rates across 

populations (Chi et al., 2013; Morland et al., 2012; Bodor et al., 2010; Cummins and Macintyre, 

2006).  On the other hand, there are mixed findings regarding the relationship between fast-food 

restaurant density and obesity.  For instance, significant positive associations between the density 

of fast-food restaurants and obesity are shown both at the state and neighborhood levels (Li et al., 

2009; Maddock, 2004).  Similarly, in another study, a significant positive association is observed 

across 26 advanced economies (De Vogli et al., 2011).  Conversely though, Ahern et al. (2011) 

found significant negative associations between the density of fast-food restaurants and obesity 

at the county level. 

Socioeconomic indicators including but not limited to education, income, and poverty 

have been linked to both obesity and physical activity at individual and area scales, yet in the 

literature, trends in these effects are still subject to debate (Cohen et al., 2013; Cheng, 2012; 

Bennett et al., 2011; Levine, 2011; Wen et al., 2010; McLaren, 2007).  Sociodemographic factors 

and population characteristics are also considered as important determinants of obesity in the 

literature.  Previous studies have shown differences in obesity prevalence rates among minority 

populations as well as urban and rural populations (Jackson et al., 2015; Michimi and Wimberly, 

2010; Ramsey and Glenn, 2002).  Moreover, native residency is used as one of the population 

characteristics in this study.  Interestingly, the use of this factor has not been detected in any 

obesity related studies in the literature. 

Based on the above review, it is evident that physical and social environments may be 

characterized as obesogenic environments by encouraging or discouraging individuals’ health 
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related behaviors and therefore they have been documented as the determinants of the obesity 

issue in the US.  For that reason, understanding which of these underlying factors contribute the 

most to the obesity issue in the US is crucial especially for determining possible prevention 

targets.  However, one of the biggest challenges in understanding the associations between these 

underlying factors and obesity is that all these components vary across the US.  Thus, the 

Geographically Weighted Regression (GWR) is an appropriate tool to further investigate the 

issue of obesity and its confounding relationships. 

In the light of the literature review, the variables scrutinized in this part of the study were 

chosen to depict the different aspects of the possible determinants of the obesity issue in the 

United States at the county level.  The physical inactivity (PIA) and commute to work by car 

variables were chosen to represent the behavioral factors, while the natural amenities index, ratio 

of jobs to employed residents (JER), and fast-food restaurants per capita variables were selected 

to characterize the natural and built environmental factors.  On the other hand, poverty, African-

American population, and high educational attainment were chosen to represent the 

socioeconomic and demographic factors, whereas rural population and native residents were 

selected to depict population characteristics. 

In conclusion, the main objective of this part of the study is to identify predictors of 

obesity prevalence at the county level and to reveal how the effects of these predictors vary 

spatially.  The main hypothesis aims to test whether predictors of obesity prevalence and effects 

and variations of such factors across space can be identified and revealed by the GWR technique 

at the county level.  Consequently, the results from this study will generate useful insights that 

will help national as well as local obesity programs and interventions to better target areas and/or 

populations and factors associated with high obesity prevalence across the US. 
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5.2. Data and Methods 

5.2.1 Data 

The datasets used in this part of the study come from various sources and they are 

integrated to perform the GWR analysis at the county level.  The original datasets are at the 

county level mainly for 2010.  As discussed in detail in Chapter 3 of this dissertation, there are 

mainly eleven types of datasets.  These datasets include: 1) obesity; 2) physical inactivity (PIA); 

3) commute to work by car; 4) natural amenities index; 5) ratio of jobs to employed residents 

(JER); 6) fast-food restaurants per capita; 7) poverty; 8)  African-American population; 9) high 

educational attainment; 10) rural population; and 11) native residents. 

5.2.2 Methods 

In this part of the study, the GWR is employed as a tool to further investigate the issue of 

obesity and its confounding relationship with various factors in the US.  As discussed in depth in 

Chapter 3, there are various approaches to the analysis of spatial data including the GWR.  

Chapter 4 mainly focused on ESDA to detect and identify locations of obesity clusters.  In order 

to assess why clusters and spatial outliers exist where they do, as well as to assess the underlying 

processes that created such patterns through the relationships between  obesity and selected 

independent variables under investigation, secondary (further) approaches, such as regression 

analysis or spatial data process models are needed.  These secondary approaches are equally 

important as the primary ESDA steps, if not more.  Hence, the GWR, which is one of the most 

increasingly used local spatial statistical techniques to test for spatial nonstationarity, is 

employed as the secondary approach in this study (Hipp and Chalise, 2015; Fraser et al., 2012; 

Maroko et al., 2009). 
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The geographic phenomena and underlying processes and therefore the relationships 

between variables are often intrinsically spatial (space dependent) and vary geographically in 

‘real-world’ situations (Fotheringham et al., 2002).  As an exploratory technique, the GWR 

provides outcomes that are certainly powerful and offers significant advantages over simple 

linear regression procedures.  It provides users a set of location specific parameter estimates not 

only to map and visualize, but also to interpret regarding the relationships between predictors 

and the outcome variable (Bitter et al., 2007; Wheeler and Tiefelsdorf, 2005). 

The GWR model building process for this study were performed in mainly four steps: 1) 

Acquisition and manipulation of the data to be used in the global OLS regression and the local 

GWR; 2) Creation of descriptive statistics in the SPSS 23 software (IBM Corporation, 2015) and 

choropleth maps in ArcGIS 10.3 to initially explore data and visually interpret the spatial 

distribution of the data; 3) Specification of a valid global OLS regression model in the SPSS 23 

software in order to identify variables to use in the GWR analysis; and 4) Implementation of the 

local GWR analysis in the GWR 4.0 software (https://geodacenter.asu.edu/gwr) to determine 

whether significant spatial heterogeneity is in effect at the county level and if so, to reveal spatial 

patterns by mapping parameter estimates in ArcGIS 10.3. 

First of all, the datasets for all variables used in this study were downloaded from various 

sources as explained in the data section in Chapter 3.  These data were imported into ArcGIS 

10.3, where the data were joined to a geographic boundary file, also known as a shapefile, for 

3,105 counties and county equivalents across the 48 contiguous states (all except Alaska and 

Hawaii) also known as the continental US.  The data were joined using the common field of the 

counties’ five-digit Federal Information Processing Standards (FIPS) codes.  The finally merged 

shapefile was projected using the Albers equal-area conic projection. 
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Data were then imported into the SPSS 23 software to perform an initial exploration of 

the overall data distribution.  To further explore the spatial distribution of the data, ArcGIS 10.3 

was utilized for the creation of choropleth maps for all variables.  The finalized versions of the 

choropleth maps were derived using the standard deviation method to emphasize the distribution 

of the data in reference to the means of the datasets.  At the end of these steps, all candidate 

variables to be used in the global OLS regression were defined. 

The specification of a valid global OLS regression model was accomplished in the SPSS 

23 software using the forward stepwise selection technique. At each step, the variable that 

provides the greatest additional improvement to the fit is added to the model.  These variables 

have also been further verified based on the review of the relevant literature.  Moreover, possible 

multicollinearity issues among the independent variables were examined through the Variance 

Inflation Factor (VIF).  The VIF is a measure that is commonly used to determine whether 

independent variables are multicollinear, in other words, if they are strongly intercorrelated and 

redundant from an information content point of view.  A VIF value above 7.5 exceeds the 

common threshold and is considered problematical.  Consequently, using the chosen variables, a 

valid and efficient Ordinary Least Squares (OLS) regression model has been fit to the data. 

The OLS regression is a common statistical method for testing relationships between 

variables.  Before modeling a spatial relationship it is always a good practice to start with an 

OLS regression, since OLS provides important diagnostic tests that inform the analyst whether a 

good model is achieved (Fotheringham et al., 2002). 

 Formally, an OLS regression model with multiple independent variables is defined as:  

                                Formula 5.1 
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where y is the dependent variable, Xis are the independent variables, βis are the parameters 

(coefficients) to be estimated, and  is the random error term (residuals).  The assumption is that 

the values of βis are constant across the entire study area.  

The OLS model is considered to be global, since one parameter is estimated for each 

variable included in the model.  In such a model, the relationship between the dependent and the 

independent variables is assumed to be stationary at all locations in the study area.  However, 

spatial data often violate the assumptions of OLS regression and thus further analysis is 

necessary to investigate whether significant spatial heterogeneity is in effect.  Under such 

circumstances, a local model has more relevance to the real-world problem in hand compared to 

an OLS model.  In other words, standard global modeling techniques, such as the OLS regression 

method, cannot identify nonstationarity and therefore utilizing such a method may obscure local 

variations in the relationships between predictors and the outcome variable (Matthews and Yang, 

2012).  Therefore, to deal with local variations in OLS regression models, methods that 

incorporate local variations into the regression model, such as the GWR, are essential.  The 

GWR provides a well-designed and easily comprehended means of modeling such relationships 

(Fotheringham et al., 2002). 

In the final step, the GWR analysis was implemented using the same set of variables as 

determined in the OLS regression by utilizing the GWR 4.0 software to determine whether 

significant spatial heterogeneity is in effect.  Similar to the global OLS regression, the GWR 4.0 

software calculates local parameter estimates for the independent variables as well as local R2 

statistics.  The adaptive kernel, which is produced using the bi-square weighting function, was 

used when conducting the GWR analysis.  The adaptive kernel approach uses varying spatial 

areas but with a fixed number of observations (although with different weights) for each 
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estimation.  This method is most appropriate when there is a large variation in the geographical 

density of the observed data as in the case of US counties (Fotheringham et al., 2002).  

Furthermore, the small sample bias corrected Akaike Information Criteria (AICc) was used to 

determine the optimal bandwidth size (Fotheringham et al., 2002).  Finally, all parameter 

estimates as well as local R2 statistics obtained from the GWR analysis were exported and 

mapped in ArcGIS 10.3 to reveal spatial patterns at the county level across the US. 

When using the GWR to model a phenomenon (the dependent variable), the general 

interest usually involves either predicting values or understanding the dynamics that contribute to 

dependent variable outcomes.  Another interest is examining how spatially consistent 

relationships between the dependent and each of the independent variable are across the entire 

study area.  Examining the coefficient distribution as a surface reveals where and how much 

variation is present.  In this study, the GWR analysis can help answer important questions 

including: 1) Is the general assumption made in the global modeling of spatial data, often without 

question, that the processes being modeled are stationary over space valid or not for obesity? 2) 

What is the relationship between obesity and the key factors investigated (behavioral, natural and 

built environmental, socioeconomic and demographic, and population characteristics) across the 

study area? 3) Are those relationships consistent across the study area? 4) Where are the specific 

areas within the study area in which ‘interesting’ relationships occur and therefore where further 

investigation is necessary? 
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5.3. Results 

5.3.1 Descriptive Statistics and Basic Mapping of Variables 

 Details of the summary statistics of the obesity and all selected variables investigated for 

the counties across the continental US are shown in Table 5.1.  The mean obesity rate among US 

adults and the standard deviation are 30.58% and 4.23, respectively (Table 5.1).   

Table 5.1 Descriptive statistics for dependent and independent variables 

  Minimum Maximum Mean Std. 
Deviation n 

 

Obesity 

 

13.10 

 

47.90 

 

30.58 

 

4.23 

 

3,105 
PIA 10.40 44.90 27.90 5.28 3,105 
Commute by Car 6.90 91.70 77.94 6.88 3,105 
Natural Amenities Index -6.40 11.17 0.05 2.28 3,105 
JER 0.20 3.92 0.89 0.24 3,105 
Fast-food Restaurants Per Capita 0.00 7.21 0.57 0.31 3,105 
Poverty 3.10 50.10 16.80 6.23 3,105 
African American Population 0.00 85.70 8.97 14.56 3,105 
High Educational Attainment 3.70 71.00 18.98 8.65 3,105 
Rural Population 0.00 100.00 58.55 31.42 3,105 
Native Residents 8.50 97.50 68.00 14.54 3,105 

 
  

 The highest rate of obesity is observed in Greene, Alabama (47.90%) while the lowest 

rate of obesity is observed in Teton, Wyoming (13.10%) (Table 5.1).  As previously noted, 

although the rates of obesity vary considerably among the counties across the entire US, the 

highest obesity rates are observed in the South while a large concentration of substantially lower 

obesity rates is observed in the West and Northeast (Figure 5.1).  
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Figure 5.1 Geographic distribution of obesity rates at the county level in the US for 2010  

In regard to the behavioral variables at the county level, the physical inactivity (PIA) 

rates among US adults range from 10.4% (Routt, Colorado) to 44.9% (Wyoming, West 

Virginia).  The mean PIA rate is 27.90% (Table 5.1).  Overall, higher PIA rates are seen in the 

South while lower rates are observed in the West (Figure 5.2).  Similarly, on average 77.94% of 

the total population chose to commute to work by car, which is another inactive behavior type 

(Table 5.1).  Higher rates of commute by car are mainly observed in the South and the East 

North Central Region in the Midwest (Figure 5.3).  On the other hand, lower rates are mostly 

found in the West and partly in the West North Central Region in the Midwest (Figure 5.3). 



150 
 

 

 

 

 

 

 

 

 

Figure 5.2 Geographic distribution of physical inactivity (PIA) rates at the county level in the US 
for 2010 

 

 

 

 

 
 

 

 

 

Figure 5.3 Geographic distribution of commute to work by car rates at the county level in the US 
for 2010  
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The natural and built environmental variable patterns are shown in Figures 5.4, 5.5, and 

5.6.  Based on the USDA’s measured scores, the mean natural amenities index is 0.05 (Table 

5.1).  Overall, higher index values are observed in the West as well as in the State of Florida 

while lower values are mainly seen in the Midwest (Figure 5.4).  The mean JER is 0.89 (Table 

5.1).  The JER composition of US counties varies considerably.  However, the lower JERs are 

mainly observed in the South as well as in the Midwest (Figure 5.5).  The average fast-food 

restaurant per capita was 0.57 (Table 5.1).  Although there is not a clear distribution pattern, 

relatively higher values are observed in the West (Figure 5.6). 

 
Figure 5.4 Geographic distribution of natural amenities index at the county level in the US for 
1999  
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Figure 5.5 Geographic distribution of ratio of jobs to employed residents (JERs) at the county 
level in the US for 2010  

 

 

 

 

 

 

 

 

 

 

 
Figure 5.6 Geographic distribution of fast-food restaurants per capita at the county level in the 
US for 2010 
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 Figures 5.7, 5.8, and 5.9 illustrate distribution patterns of the socioeconomic and 

demographic variables.  The average poverty rate is 16.80% at the county level (Table 5.1).  As 

seen in Figure 5.7, there is almost a horizontal line that divides the US in the middle and the 

counties in the southern half of this divide are dominated by higher poverty rates, while the 

counties in the northern half are dominated by lower poverty rates.  In addition, the counties in 

the Northeast emerge as areas with lower poverty rates (Figure 5.7).   

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 5.7 Geographic distribution of poverty at the county level in the US for 2010 
   

 On average about 9% of the total population is African-American (Table 5.1).  Jefferson 

County in Mississippi (85.7%) has the highest percentage of African-American population.  

According to Figure 5.8, the entire Southern US is heavily populated by African-American 

individuals at the county level.  The high educational attainment rate is 18.98% on average 

(Table 5.1).  Higher overall high educational attainment rates are clustered mostly in the 
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Northeast as well as in the West (Figure 5.9).  Conversely, lower rates of high educational 

attainment rates are clustered predominantly in the South and partly in the Midwest (Figure 5.9). 

 

 
 
 
 
 
 
 
 
 

 

 
 
Figure 5.8 Geographic distribution of African American population rates at the county level in 
the US for 2010 

 
 

 

 

 

 

 

 

 

 

 

Figure 5.9 Geographic distribution of high educational attainment rates at the county level in the 
US for 2010  
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In regard to population characteristics, on average 58.55% of the US population resides 

in rural areas (Table 5.1).  Overall though, the percentage of individuals residing in rural areas 

varies widely across the US without showing a clear clustering pattern (Figure 5.10).  In 

addition, Figure 5.11 shows the spatial distribution of the percentage of the native residents.  The 

average native resident rate is about 68% (Table 5.1).  Higher percentages of native residents are 

observed mostly in the South (especially in Louisiana and Mississippi), except in Florida, and in 

the Midwest extending through Pennsylvania and New York (Figure 5.11).  Lower rates of 

native residents are especially found in the entire West (especially in Nevada, Arizona, Colorado, 

and Wyoming), the New England Region of the Northeast, and in Florida in the South, 

suggesting that more people migrate to these areas (Figure 5.11). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 5.10 Geographic distribution of rural population rates at the county level in the US for 
2010 
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Figure 5.11 Geographic distribution of native residents rates at the county level in the US for 
2010 

5.3.2 Ordinary Least Squares (OLS) Regression 

 5.3.2.1 Nationwide OLS Results 

For this part of the study, the global estimates for the entire study area are shown in Table 

5.2.  The global OLS regression results show that the OLS model performs quite well and that 

the parameter signs are as expected.  All parameter estimates are significant based on the p-

values as shown in Table 5.2. 

As to the behavioral variables, the PIA variable has a positive coefficient (0.287), 

signifying that the relationship with obesity is positive.  More specifically, it indicates that 

obesity rates are higher in areas where higher PIA rates exist.  As the rate of PIA increases by 

one unit, the obesity rate increases by 0.287%.  Similarly, the commute by car variable has a 

positive coefficient (0.059), indicating that areas with residents who choose to commute by car 

are more likely to have higher rates of obesity.  In regard to the behavioral variable estimates at 
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the county level, it can be concluded that overall, more inactive behavior types trigger higher 

obesity rates. 

Table 5.2 Results of global ordinary least squares (OLS) regression for the US 

 Coefficient SE p-Value 

 

VIF 

 
 

Intercept 18.036 0.817 0.000 
 PIA 0.287 0.013 0.000 2.146 

Commute by Car 0.059 0.007 0.000 1.289 
Natural Amenities Index -0.369 0.025 0.000 1.543 
JER -0.420 0.191 0.028 1.396 
Fast-food Restaurants Per Capita -0.629 0.169 0.000 1.354 
Poverty 0.068 0.010 0.000 1.974 
African American Population 0.064 0.004 0.000 1.443 
High Educational Attainment -0.117 0.008 0.000 2.457 
Rural Population 0.005 0.002 0.010 1.899 
Native Residents 0.012 0.004 0.002 1.638 
Adjusted R-square 0.648 

   AIC 14,546.713 
   

      

In regard to the natural and built environmental variables, the negative sign of the natural 

amenities index variable suggests that areas with higher natural amenities index are more likely 

to have lower obesity rates.  More specifically, with every one unit increase in the natural 

amenities index, the obesity rate decreases by about 0.37%.  Similarly, the JER variable has a 

negative coefficient (-0.420), indicating that the relationship with obesity is negative.  It confirms 

that higher JER values are associated with lower obesity rates.  The coefficient for fast-food 

restaurant per capita is negative (-0.629) suggesting that areas with higher fast-food restaurant 

per capita rates possess lower obesity rates. 
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As to the socioeconomic and demographic variables, the poverty variable has a positive 

coefficient (0.068), indicating that the relationship is positive.  More specifically, it indicates that 

obesity rates are higher in areas where high poverty rates exist.  With every one unit increase in 

the poverty rate, the obesity rate increases by roughly 0.07%.  Likewise, the positive sign of the 

African-American population variable suggests that obesity rates are higher in areas where 

higher percentage of African-American individuals reside.  As the percentage of African-

Americans increases by one unit, the obesity rate increases by about 0.06%.  Conversely, the 

high educational attainment variable has a negative coefficient (-0.117), signifying that the 

relationship with obesity is negative.  This basically indicates that areas populated by highly 

educated residents are more likely to have lower obesity rates. 

In regard to the population characteristics, the positive sign of the rural population 

variable suggests that areas with higher rural populations are more likely to have higher obesity 

rates.  Similarly, the native residents variable has a positive coefficient (0.012), indicating that 

obesity rates are higher where native resident rates are higher.  Among all the variables, a change 

in the rate of the rural population or native residents’ variables by one unit generates the least 

change in obesity rates based on the ‘global’ OLS results. 

The VIF values for each variable are also shown in Table 5.2 and they do not suggest any 

multicollinearity among the independent variables.  The coefficient of determination, R2, is a 

measure of model performance.  However, it is a common practice to report adjusted R2.  The 

adjusted R2 is a modified version of R2 that has been adjusted based on the number of 

independent variables included in the model.  Values vary from 0.0 to 1.0, with higher values 

being preferable.  Thus, overall the ‘global’ OLS model is robust having an adjusted R2 at a 

satisfactory level of 0.648 and therefore explaining a significant amount of variance (almost 
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65%) in the obesity rates at the county level (p<0.001) (Table 5.2).  The Akaike Information 

Criterion (AIC) (Akaike, 1974) is a measure that is commonly used to verify the relative quality 

of statistical models (Matthews and Yang, 2012).  The AIC comparisons among different models 

reveal whether the overall model fits are improved or not (Fotheringham et al., 2002).  The AIC 

for the global OLS model is 14,546.713 and this specific AIC value is compared with the AIC 

value obtained from the local GWR to compare the relative quality of the two models (i.e., 

‘global’ vs. ‘local’).  The lower the AIC value, the better the model fit is. 

 5.3.2.2 Regional OLS Results 

 A series of additional global OLS regression analyses is also conducted in order to 

elaborate and explore further whether geographic variability in the association between obesity 

rates and explanatory variables exist.  For that reason, the data for the entire study area is 

disaggregated into regional areas based on the US Census Bureau’s region definitions and used.  

The global OLS estimates for the Northeast, Midwest, South, and West are presented in Tables 

5.3, 5.4, 5.5, and 5.6, respectively.  As evident in these tables, the global OLS results for the 

regions indicate that geographic variability in the association between obesity rates and 

explanatory variables exists.  It is also observed that only some of the parameter estimates are 

significant in the global OLS for the US regions while all parameter estimates are significant in 

the global OLS for the entire US as presented previously in Table 5.2.  The details of the regional 

OLS results are interpreted further as follows.     

 In the Northeast, the significant parameter estimates include PIA (0.182), commute by 

car (0.090), and high educational attainment (-0.229) while all others are insignificant based on 

the p-values (Table 5.3).  Among these significant variables, a change in the rate of the high 

educational attainment variable by one unit generates the most change in obesity rates.  In other 
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words, high educational attainment is the most important predictor of obesity in the Northeast.  

On the other hand, commute by car is the least important predictor of obesity in the Northeast.  

On the other hand, in the Midwest only the parameter estimates for the PIA (0.187), commute by 

car (0.036), fast-food restaurants per capita (-0.687), poverty (0.170), and high educational 

attainment (-0.090) variables are significant based on the p-values (Table 5.4).  Among these 

significant variables, fast-food restaurants per capita is the most important predictor of obesity 

while commute by car is the least important predictor (i.e., with one unit change, generates the 

least change in obesity rates) in the Midwest.  

Table 5.3 Results of global ordinary least squares (OLS) regression for the Northeast  

 Coefficient SE p-Value 

 

VIF 

 
 

Intercept 20.644 3.470 0.000   
PIA 0.182 0.062 0.004 2.861 
Commute by Car 0.090 0.020 0.000 2.243 
Natural Amenities Index -0.119 0.142 0.401 1.181 
JER 1.221 0.700 0.083 1.622 
Fast-food Restaurants Per Capita -1.064 0.985 0.281 1.786 
Poverty 0.058 0.053 0.274 2.468 
African American Population 0.038 0.031 0.216 2.545 
High Educational Attainment -0.229 0.033 0.000 3.948 
Rural Population 0.005 0.008 0.500 3.158 
Native Residents 0.000 0.012 0.991 1.859 
Adjusted R-square 0.730       
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Table 5.4 Results of global ordinary least squares (OLS) regression for the Midwest 
 

 Coefficient SE p-Value 

 

VIF 

 
 

Intercept 22.107 1.754 0.000   
PIA 0.187 0.022 0.000 1.559 
Commute by Car 0.036 0.013 0.007 1.544 
Natural Amenities Index -0.005 0.056 0.927 1.160 
JER 0.510 0.433 0.240 1.615 
Fast-food Restaurants Per Capita -0.687 0.341 0.044 1.488 
Poverty 0.170 0.018 0.000 1.484 
African American Population -0.004 0.019 0.825 1.508 
High Educational Attainment -0.090 0.015 0.000 2.095 
Rural Population -0.002 0.004 0.577 2.859 
Native Residents 0.005 0.007 0.524 1.146 
Adjusted R-square 0.332       

      

 In the South, the significant parameter estimates include PIA (0.375), natural amenities 

index (-0.314), fast-food restaurants per capita (-0.661), African American population (0.080), 

and high educational attainment (-0.081) while all others are insignificant based on the p-values 

(Table 5.5).  Among these significant variables, fast-food restaurants per capita is the most 

important predictor of obesity in the South.  On the other hand, African American population and 

high educational attainment variables are, almost equally, the least important predictors of 

obesity in the South.  On the other hand, in the West only the parameter estimates for the PIA 

(0.240), natural amenities index (-0.239), high educational attainment (-0.224), and rural 

population (0.036) variables are significant (Table 5.6).  Among these significant variables, PIA 

is the most important predictor of obesity (i.e., with one unit change, generates the most change 

in obesity rates) while rural population is the least important predictor in the West.              
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Table 5.5 Results of global ordinary least squares (OLS) regression for the South 

 Coefficient SE p-Value 

 

VIF 

 
 

Intercept 18.373 1.295 0.000   
PIA 0.375 0.019 0.000 2.007 
Commute by Car 0.025 0.013 0.054 1.189 
Natural Amenities Index -0.314 0.050 0.000 1.258 
JER -0.490 0.304 0.107 1.975 
Fast-food Restaurants Per Capita -0.661 0.280 0.018 1.839 
Poverty 0.015 0.014 0.284 2.041 
African American Population 0.080 0.004 0.000 1.444 
High Educational Attainment -0.081 0.012 0.000 2.636 
Rural Population 0.004 0.003 0.188 2.124 
Native Residents 0.007 0.006 0.217 1.760 
Adjusted R-square 0.637       

      

Table 5.6 Results of global ordinary least squares (OLS) regression for the West 

 Coefficient SE p-Value 

 

VIF 

 
 

Intercept 24.811 2.837 0.000   
PIA 0.240 0.045 0.000 2.381 
Commute by Car 0.030 0.024 0.220 1.521 
Natural Amenities Index -0.239 0.071 0.001 1.453 
JER 0.484 0.360 0.179 1.035 
Fast-food Restaurants Per Capita -0.073 0.322 0.820 1.132 
Poverty 0.027 0.032 0.407 1.338 
African American Population -0.097 0.080 0.229 1.290 
High Educational Attainment -0.224 0.023 0.000 2.412 
Rural Population 0.036 0.006 0.000 1.869 
Native Residents 0.012 0.012 0.318 1.177 
Adjusted R-square 0.558       
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 Although some of the variables are referred to as the most and least important predictors 

of obesity in the above interpretations, the designation of the “most” and “least” only refers to 

the magnitude of the effect.  Otherwise, it should be noted that all significant variables are 

important in explaining obesity rates in their regional context.  Furthermore, overall, the 

parameter estimates for the PIA and high educational attainment are significant in all US regions.  

On the other hand, the parameter estimates for the poverty, African American, and rural 

population are only significant in the Midwest, South, and West, respectively. 

 The VIF values for each variable in each region are also shown in Tables 5.3, 5.4, 5.5, 

and 5.6 and they do not suggest any multicollinearity among the independent variables.  Overall, 

the global OLS models for the Northeast, South, and West are robust having adjusted R2 values 

of 0.730, 0.637, and 0.558, respectively while the model for the Midwest is relatively quite weak 

having an adjusted R2 of 0.332 (p<0.001).  In other words, the model for the Midwest explains 

an insignificant amount of variance (only 33%) in the obesity rates at the county level when 

compared to the models for rest of the regions explored.  In the end, the above results show that 

geographic variability in the association between obesity rates and explanatory variables can be 

detected to a certain extent by conducting the OLS for the US regions instead of the entire US.      

5.3.3 Geographically Weighted Regression (GWR)  

As stated previously, spatial data often violate the assumptions of OLS regression and 

therefore further analysis is crucial to investigate whether significant spatial heterogeneity is in 

effect.  In that case, using methods such as the GWR that incorporate local variation into the 

regression model is essential.  The above global OLS results confirm that the global OLS model 

performs well and thus the variables included in the global model can be carried on to run the 

GWR analysis.  It is expected that the GWR analysis will not only improve the overall model fit 
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but also reveal spatial patterns such as local variations that are not visible otherwise.  Details of 

the GWR analysis will be examined in the following section. 

The GWR model summary is presented in Table 5.7 and it confirms that there is a 

significant improvement over the OLS model. The ‘local’ GWR model is thus more robust.  The 

GWR returns an overall adjusted R2 of 0.778, indicating that the model explains about 78% of 

the variance in the obesity rates at the county level (p<0.001) (Table 5.7).  In addition, the AIC in 

the GWR model is 13,830.341.  Since the AIC value from the GWR is smaller than the AIC 

value obtained from the OLS (14,546.713), it implies that the GWR model has been improved by 

allowing relationships to vary across the study area.  The values of both the adjusted R2 and AIC 

confirm that the ‘local’ GWR model is much better than the ‘global’ OLS model.   

Table 5.7 Results of local geographically weighted regression (GWR) 

   

Min 

 

 

25% 
Quartile 

 

 

50% 
Quartile 

 

 

75% 
Quartile 

 

 

Max 

 

 

Intercept 

 

2.739 

 

15.811 

 

20.544 

 

25.363 

 

38.824 
PIA 0.031 0.171 0.246 0.316 0.609 
Commute by Car -0.118 0.014 0.042 0.080 0.206 
Natural Amenities Index -0.866 -0.342 -0.207 -0.001 0.452 
JER -20.208 -2.718 -0.746 0.927 11.850 
Fast-food Restaurants Per Capita -3.479 -0.868 -0.258 0.325 3.623 
Poverty -0.485 0.082 0.198 0.329 0.832 
African American Population -0.691 0.001 0.063 0.100 1.272 
High Educational Attainment -0.248 -0.148 -0.102 -0.076 0.059 
Rural Population -0.039 -0.014 -0.004 0.005 0.033 
Native Residents -0.094 -0.019 0.004 0.030 0.092 
Adjusted R-square 0.778         
AIC 13,830.34102         
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Furthermore, all regression coefficients obtained from the local GWR model show 

evidence of non-stationarity.  As shown in Table 5.8, this is confirmed by the fact that the 

interquartile ranges of the local GWR regression coefficients were larger than twice the standard 

errors of the regression coefficients of the global model (Ailes et al., 2012; Weisent et al., 2012).  

This indicates that the regression coefficients of each of the independent variables included in the 

model change across all counties in the study area.  In other words, this implies that the strength 

of the associations between obesity and each of the independent variables varies depending on 

the spatial location.  Therefore, assuming a causal relationship, the effects of the determinants of 

obesity are not constant across the US, but are mainly dependent on the geographical location. 

Table 5.8 Assessment of the stationarity based on the local GWR model coefficients 

  

Global 
SE 

 

Global 
SEx2 

 

Local GWR 
Interquartile R. 

 

 

Is Coefficient 
Non-Stationary? 

 
 

PIA 

 

0.013 

 

0.025 

 

0.145 

 

Yes 
Commute by Car 0.007 0.015 0.065 Yes 
Natural Amenities Index 0.025 0.049 0.341 Yes 
JER 0.191 0.381 1.236 Yes 
Fast-food Restaurants Per Capita 0.169 0.338 1.193 Yes 
Poverty 0.010 0.020 0.107 Yes 
African American Population 0.004 0.007 0.099 Yes 
High Educational Attainment 0.008 0.016 0.072 Yes 
Rural Population 0.002 0.004 0.019 Yes 
Native Residents 0.004 0.008 0.049 Yes 
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 Figure 5.12 illustrates the spatial distribution of the geographically weighted local R2 

values (p<0.05).  Local R2 values range from 0.11 to 0.87. Some counties have quite high R2 

values, where the model performs well, while others have very low values of R2, where the 

model fit is less precise (Figure 5.12).  Overall, the GWR model’s highest performance is mainly 

observed in Florida and parts of Alabama, Georgia, South Carolina, and North Carolina in the 

South, and with a second area mainly in Colorado and parts of New Mexico, Utah, Arizona, and 

Wyoming in the Mountain Region in the West (Figure 5.12).  Also, most of the Northeast and 

counties around the DC area have relatively high local R2 values, as well.  On the other hand, 

poorer model fits are seen among the states in the Midwest and partly in the South including 

Texas, Oklahoma, Tennessee, and Kentucky (Figure 5.12). 

 
Figure 5.12 Local coefficient of determination (R2) map based on the local GWR model 
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Although Table 5.7 above presents the intercept and coefficient ranges across the study 

area as obtained from the GWR model, it is crucial to map the local parameter estimates for the 

independent variables used to observe the spatial patterns, to reveal where significant 

nonstationarity is in effect and where it is not.  Therefore, local GWR parameter estimates are 

mapped and compared to obtain further and useful insight concerning spatial variations in the 

relationships.  Primarily the GWR method itself and in particular the maps generated from the 

GWR outputs are exploratory rather than explanatory, showing mainly where particular 

covariates contribute strongly and where they do not.  The spatial patterns of the local GWR 

coefficients of the independent variables are illustrated in Figures 5.13 through 5.22 (p<0.05 

shown on the maps).  The white areas show an insignificant relationship with obesity. 

Figure 5.13 shows significant positive coefficients of PIA for most of the US.  Although 

the magnitude of the effect of PIA on obesity varies across the US, the PIA effect is particularly 

pronounced in Alabama and Florida in the South, in the four corners area (Colorado, Utah, 

Arizona, and New Mexico) in the Mountain Region of the West, and in Oregon and California in 

the Pacific Region of the West.  The positive correlation pattern observed throughout the US 

proves that the PIA is a major determinant of obesity rates in the US.  This finding suggests that 

targeting the PIA to lower high obesity rates will be effective in all areas across the US, yet the 

effectiveness of such an approach may be more substantial in the counties located in the South 

and West due to the fact that the relationship is more pronounced in these areas. 

Similarly, the relationship between commute by car rate and obesity is positive in most 

counties except in Arkansas and Mississippi (Figure 5.14).  But for most counties, the 

relationship is insignificant.  The positive relationship is most pronounced in Iowa, Wisconsin, 

and Illinois in the Midwest and in the entire Northeast.  This suggests that in order to reduce  
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  Figure 5.13 Significant and insignificant local GWR coefficient parameter estimates for physical inactivity (PIA)  
  rates as a determinant of obesity prevalence at the county level in the US 
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  Figure 5.14 Significant and insignificant local GWR coefficient parameter estimates for commute to work by car  
  rates as a determinant of obesity prevalence at the county level in the US 
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obesity rates, initiatives aiming to reduce commute by car rates may very well work in these 

areas.  In other words, initiatives introducing and/or encouraging other modes of transportation 

(e.g., public transportation, bicycling, and/or walking) and therefore decreasing commute by car 

rates may be very practical to reduce obesity rates in these areas. 

The natural amenities index is strongly and extensively associated with obesity in the 

West and partially in the South (Figure 5.15).  There are both positive and negative coefficients.   

As seen in Figure 5.15, negative coefficients are predominantly higher than positive coefficients.  

The negative effect of the natural amenities index is most noticeable in the Texas Panhandle 

Region and its bordering counties in Oklahoma, Kansas, and Colorado, in Pennsylvania and New 

Jersey in the Northeast, in North Carolina and Virginia in the South, in Utah and Wyoming in the 

West, and in Montana and North Dakota in the Midwest.  This suggests that in these areas, an 

increase in natural amenities may reduce obesity.  Public health interventions should definitely 

consider the opportunities and limitations offered by the natural environment to promote physical 

activity and therefore reduce obesity rates especially in these areas, where there is an inverse 

association between natural amenities index and obesity.  On the other hand, the positive effect is 

observed in Kentucky, Indiana, Illinois, and Missouri as well as Michigan and South Dakota in 

the Midwest.  In these positively related areas, the relationship is in the unexpected direction.  

 The JER variable is negatively correlated with obesity most prominently in Florida in the 

South and in California in the West (Figure 5.16).  The negative relationship is also observed in 

Maine, Massachusetts, New Hampshire, Vermont, New York, Pennsylvania, and New Jersey in 

the Northeast, in West Virginia, South Carolina, Kentucky, Alabama, Mississippi and in the DC 

area in the South, in Ohio, Wisconsin, Illinois, Michigan, Minnesota, and Iowa in the Midwest, 

and in Wyoming, Oregon, and Washington.  Conversely, the JER variable is strongly and  
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  Figure 5.15 Significant and insignificant local GWR coefficient parameter estimates for natural amenities index   
  as a determinant of obesity prevalence at the county level in the US  
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  Figure 5.16 Significant and insignificant local GWR coefficient parameter estimates for ratio of jobs to    
  employed residents (JERs) as a determinant of obesity prevalence at the county level in the US 
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positively correlated with obesity most prominently in Montana and Idaho in the West and in 

Nebraska in the Midwest (Figure 5.16).  The positive relationship also exists most clearly in New 

Mexico in the West, in Wisconsin in the Midwest, and in Texas, Mississippi, Alabama, and 

Georgia in the South.  It is notable that the negative relationship is primarily observed in the 

areas where large metropolitan areas and major cities exist while the positive relationship is 

mainly seen in rural areas.  In this study, the JER variable is used as a proxy to capture the 

degree of mixed land use as discussed in detail in Chapter 3.  Mixed land use is positively 

associated with street connectivity and negatively associated with automobile dependence.  

Therefore, these results indicate that in the negatively correlated areas, the higher the mixed land 

use (i.e., higher street connectivity and lower automobile dependence) is, the lower the obesity 

rates are.  Such a finding also indicates that increasing JER may be used as a tool to lower 

obesity rates effectively in areas, where the relationship with obesity is negative. 

The relationship between fast-food restaurants per capita and obesity is mainly negative.  

The negative relationship is observed in all US regions except the Northeast.  The most 

noticeable negative relationship is observed in Wisconsin, Texas, and Kentucky, followed by 

Florida, Kansas, and Missouri (Figure 5.17).  These areas are mostly rural areas.  On the other 

hand, the positive relationship is observed in Illinois and Indiana in the Midwest, in Pennsylvania 

and New Jersey in the Northeast, and in South Carolina in the South (Figure 5.17).  The positive 

effect is much more pronounced in Illinois and Indiana followed by South Carolina.  Conversely, 

these positively related areas are mostly urban areas.  The observed negative relationship 

between fast-food restaurants per capita and obesity is in the unexpected direction.  As 

previously pointed out by Ahern et al. (2011), this negative association may be due to existence 

of a higher density of fast-food restaurants along interstates and other major highways in rural  
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  Figure 5.17 Significant and insignificant local GWR coefficient parameter estimates for fast-food restaurants   
  per capita as a determinant of obesity prevalence at the county level in the US 
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areas particularly where the population density is low yet the obesity rates of the population is 

also low.  In that regard, the patterns observed in Minnesota in the Midwest and in Texas in the 

South can be good examples.  In other words, the supply of these fast-food outlets may be 

serving more travelers and/or non-residents, rather than the residents of the county. 

 The effect of poverty on obesity is mainly positive and observed across the entire US, 

except in most counties in the state of Texas and to some degree in some counties in the 

Midwest.  This positive association is most pronounced in the West, South (except Texas), and 

Northeast.  In particular, the magnitude of the poverty’s effect on obesity is most visible in 

Maine in the Northeast, in Florida, South Carolina, and North Carolina in the South, as well as in 

California in the West (Figure 5.18).  In contrast, the effect of poverty is most prominently 

negative in the peripheral counties of Oklahoma, Kansas, Colorado, and New Mexico and in 

some peripheral counties of New York and Pennsylvania (Figure 5.18). The positive sign is the 

expected direction of this relationship. Such consistent and strong positive correlation indicates 

that in these positively related areas, reducing poverty may help reduce obesity rates, yet such an 

approach will be more effective in some areas than others based on the strength of the 

relationship.  On the other hand, counties showing a negative relationship with obesity may not 

benefit from poverty related (poverty reducing) policy changes.  Furthermore, the global OLS 

model used in this study, as well as previously conducted studies from the literature, have 

confirmed a positive relationship between poverty and obesity.  However, the findings from the 

local GWR model showed that there are also local patterns in the opposite direction (negative) 

and such finding is quite interesting.  A detailed exploration of areas with negative coefficients 

may be interesting for future studies.   
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  Figure 5.18 Significant and insignificant local GWR coefficient parameter estimates for poverty rates as a   
  determinant of obesity prevalence at the county level in the US 
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The African-American population rate is strongly and positively correlated with obesity 

in most counties across the US (Figure 5.19).  The positive effect on obesity is quite significantly 

consistent across the entire South.  In addition, the positive relationship is observed in Michigan, 

Indiana, and Missouri in the Midwest and in Arizona, Wyoming, Montana, Idaho, Washington, 

and Oregon in the West.  The magnitude of the positive effect is most pronounced in Montana 

and its surrounding counties in the West.  On the other hand, the negative relationship is 

observed most distinctly in the Midwest, especially in North Dakota and South Dakota (Figure 

5.19).  In addition, the negative relationship is also seen in the West (Wyoming) and Northeast 

(Maine).  In conclusion, the consistent pattern of the positive African-American population 

coefficients, especially in the South, proves that racial disparities are one of the important factors 

behind the obesity issue in the US. 

The relationship between high educational attainment rate and obesity is negative across 

the entire US, except in some counties in North Dakota in the Midwest (Figure 5.20).  The 

magnitude of the effect is most pronounced in the entire Northeast followed by most of the states 

in the Mountain Region in the West.  This consistent and strong negative correlation shows that 

education may be a great tool to combat obesity in these areas.  It is obvious that such an 

approach will be more effective in some regions than others due to the varying coefficient 

values.  For instance, the success rates may be much higher in the Northeast compared to the 

other regions, since the magnitude of the effect is most pronounced in the Northeast. 

Figure 5.21 shows significantly negative coefficients of the rural population rate in the 

West as well as in some inland areas in the Midwest and the South.  Based on the magnitude of 

the negative effect, the counties in Washington, Oregon, California, Missouri, Nebraska, and 

Kansas are distinct by their strong negative effect.  On the other hand, there are significantly  



178 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
  Figure 5.19 Significant and insignificant local GWR coefficient parameter estimates for African American   
  population rates as a determinant of obesity prevalence at the county level in the US 
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  Figure 5.20 Significant and insignificant local GWR coefficient parameter estimates for high educational   
  attainment rates as a determinant of obesity prevalence at the county level in the US 



180 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
  Figure 5.21 Significant and insignificant local GWR coefficient parameter estimates for rural population rates   
  as a determinant of obesity prevalence at the county level in the US 
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positive coefficients of the rural population rate in the South (Georgia and South Carolina), 

Midwest (Illinois and Indiana), and Northeast (Pennsylvania and New Jersey).  According to the 

government definition, all areas that are not urban, suburban, or metropolitan are classified as 

rural, by default.  Traditionally, rural areas are often agricultural (HRSA, 2015).  The varying 

relationship (negative vs. positive) at the local level might very well be due to the lifestyle of 

individuals living in these areas classified as rural areas.  For instance, in correctly classified 

rural areas, agriculture or labor intense jobs are the primary industries.  In these rural areas, it is 

also more typical that people live or work on farms or ranches.  In other words, people generally 

work in heavy labor industries, which naturally increase the energy expenditure.  Such factors 

may contribute to the negative relationship with obesity.  On the other hand, some rural areas, 

consisting mostly of suburban areas, are, in general, incorrectly classified as rural areas (HRSA, 

2015) and the lifestyle of the suburban population in such areas is totally different (e.g., more car 

dependent and less active).  Therefore, such a factor may be attributed to the positive relationship 

with obesity in such incorrectly classified areas. 

The relationship between native resident rate and obesity is positive in most counties 

(Figure 5.22).  The positive relationship is mostly observed in the West, more specifically in the 

Mountain Region, Midwest, and South, while the negative relationship is observed in the South 

and Midwest (the West North Central Region) (Figure 5.22).  There is no significant 

relationship, either positive or negative, in the Northeast.  The strength of the positive 

relationship is especially noticeable in Kentucky and Tennessee in the South followed by 

Oklahoma, Wisconsin, Michigan, South Dakota, and Colorado.  Conversely, the magnitude of 

the negative effect is more pronounced in Texas, Oklahoma, and Virginia in the South. 
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  Figure 5.22 Significant and insignificant local GWR coefficient parameter estimates for native residents rates as  
  a determinant of obesity prevalence at the county level in the US 
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 In addition to the above results, Figure 5.23 shows the overall distribution of significant 

and insignificant parameter estimates.  It indicates that overall, 43% of all parameter estimates 

(cumulatively added for all variables) are significant at the county level.  Furthermore, Figure 

5.24 illustrates the percentages of significant and insignificant parameter estimates separately for 

each variable used in this study.  It points out that with 82% of all parameter estimates  being 

significant,  the PIA’s effect on obesity is the strongest among all independent variables tested, 

while fast-food restaurants per capita is weakest, with only 16% of all parameter estimates being  

significant. 

 A further exploration of the results of the GWR analysis by US regions is also possible 

regarding the significance of parameter estimates for all variables used in this study.  In the 

Northeast, high educational attainment is by far the most important predictor of obesity, while 

percentage of native residents is by far the least important predictor (Figure 5.25).  The effects of 

the three variables (commute to work by car, PIA, and poverty) are also significant in most 

counties in the Northeast (Figure 5.25).  Similarly, high educational attainment and PIA are the 

most important predictors of obesity in the Midwest, whereas rural population and JER are the 

least important predictors (Figure 5.25).  In the Midwest, the effects of the three variables 

(commute by car, African-American population, and poverty) are also significant in most 

counties (Figure 5.25). 

 In the South, the estimate for the local regression coefficients of the PIA is the most 

important predictor of obesity, while the estimate of fast-food restaurants per capita is the least 

important predictor (Figure 5.25).  The effects of the African-American population, high 

educational attainment, and poverty are also significant in most counties in the South (Figure 

5.25).  In the West, high educational attainment, rural population, PIA, and natural amenities  
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 Figure 5.23 Summary of statistical significance of local GWR coefficient estimates (%) across all US counties 
 

 

 

 

 

 

 

    

 Figure 5.24 Summary of statistical significance of local GWR coefficient estimates by variables (%) 
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Figure 5.25 Summary of statistical significance of local GWR coefficient estimates by variables and regions (%) 
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index are the most important predictors of obesity, whereas fast-food restaurants per capita is the 

least important predictor (Figure 5.25).  In the West, the effect of poverty and percentage of 

native residents are also significant in most counties (Figure 5. 25). 

 Consequently, as far as global models are concerned, the local GWR analysis has 

demonstrated that a spatial regression model adds significantly to the understanding and 

interpretation of spatially varying obesity rates in the US.  The use of a GWR model allowed for 

an assessment of spatial heterogeneity, when exploring the relationships between the 

independent variables and obesity rates at the county level.  Geographically weighted estimations 

provided a better fit to the data.  Independent variables as well as obesity rates showed strong 

local variation, indicating that policymakers may best address problems at the local level.   

Further insights that can be deduced from above results are included in the discussion section, 

which follows next. 

5.4 Discussion  

 A major contribution of this study is examining and revealing geographic variability in 

the association between obesity rates and various explanatory variables both nationwide and 

regionally at the county level for the entire US.  The main strength of this study is the use of the 

GWR in the analysis of the spatial distribution and associations of the obesity prevalence at the 

county level in the US.  As a modeling approach the ‘local’ GWR is a novel model by providing 

powerful tools to spatially disaggregated ‘global’ model statistics.  Although a local GWR model 

may offer valuable insights concerning the risk factors and their confounding relationships with 

the obesity issue,  only a few studies have utilized this approach (e.g., Xu and Wang, 2015; Lee 

et al., 2014; Chi et al., 2013; Wen et al., 2010).  Most of these studies typically focused on one 

type of association (e.g., built environmental, food environment, etc.).  However, this current 
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study investigated a variety of factors, including behavioral, natural and built environmental, 

socioeconomic and demographic, and population characteristics to get a more comprehensive 

picture of the obesity issue and its spatial associations in the US both nationwide and regionally.  

Particularly, the use of variables such as commute to work by car, ratio of jobs to employed 

residents (JER), and percentage of native residents have not yet been included in the obesity 

literature. 

 This study verified the superiority of the ‘local’ GWR over the ‘global’ OLS model in 

spatial analysis of the relationships between obesity and numerous confounding variables.  Such 

superiority was mainly confirmed by the spatial variation of relationships across the study area.  

The global OLS regression model for the entire US in this study showed that 64.8% of county 

level obesity prevalence was explained by the confounding variables used.  Similarly, the global 

OLS models for the US regions showed that in the Northeast 73%, in the South 63.7%, in the 

West 55.8%, and in the Midwest 33.2% of county level obesity prevalence was explained by the 

same set of variables.  An improvement in the global OLS model was valid only for the 

Northeast.  A geographic variability in the association between obesity rates and explanatory 

variables were detected to a certain extent by conducting the OLS for the US regions.  On the 

other hand, an overall percentage of 77.8 of county level obesity prevalence was explained by 

the local GWR model with the same set of variables.  More specifically, at the individual county 

level, the explained obesity prevalence ranged from 11% to 87% in the GWR model.  These 

local R2 measures, as well as the regression coefficient estimates from the local GWR model, 

were mapped as surfaces and examined in detail in the results section (Figures 5.12-5.22).  

Examining the spatial distribution of local R2 measures and coefficient estimates as a surface 

revealed where and how much variation was present.  Understanding of such variations provided 
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insights that may be used to inform local policymakers of how to best address the obesity issue at 

the county level. 

All regression coefficients obtained from the local GWR model showed evidence of 

nonstationarity (Table 5.8).  This suggested that the strength of associations between obesity and 

each of the independent variables varied depending on the spatial location.  Accordingly, the 

observed patterns in the maps, directions of the relationships (positive vs. negative and/or 

expected vs. unexpected), and possible implications deduced from those patterns were discussed 

in detail in the results section of this study. 

The confounding variables PIA, high educational attainment, African-American 

population, and poverty were identified as the top four variables by having relatively stronger 

effects in explaining obesity rates at the county level.  By looking at the PIA’s relationship with 

obesity it can be concluded that PIA rates and, consequently, individuals’ caloric expenditures 

are the most significant determinants of obesity rates.  On the other hand, natural and built 

environments partly influences physical activity (by encouraging or discouraging and/or creating 

activity spaces) and thus caloric expenditure, while the fast-food environment controls dietary 

habits and consequently caloric intake to a certain extent.  In this study, the natural amenities 

index and the JER are used as measures of the physical characteristics of a county, while fast-

food restaurants per capita is used as a measure of the food environment of a county.  When the 

natural amenities index, JER, and fast-food restaurants per capita’s relationships with obesity are 

scrutinized independently, it is concluded that the effect of the natural amenities index and/or 

JER on obesity rates is more prominent than fast-food restaurants per capita.  In other words, 

natural amenities and JER, by influencing activity spaces and/or potentials for physical activity 

and therefore caloric expenditure, are more important determinants of obesity rates than fast-
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food restaurants that shape food outlets and thus opportunities for caloric intake.  These three 

variables define opportunities and/or accessibility to places (for physical activity and/or fast-

food); however, accessibility alone does not explain much about obesity rates.  Accessibility 

becomes meaningless unless awareness is present.  For instance, although physical activity can 

be largely affected by an individual’s natural and/or built environment, it is also influenced by an 

individual's awareness and desire to be active.  A similar approach is true for dietary habits.  

Therefore, awareness is a very critical factor and it often increases as the educational attainment 

increases.  The significant and widespread local GWR coefficient patterns concerning the high 

educational attainment rate’s correlation with obesity across the US support and strengthen this 

idea as can also be seen in Figure 5.20.  To support a similar idea, the African-American 

population rate’s strong correlation with obesity across the US can be further scrutinized.  For 

instance, African-American populations in general have lower income and lower education and 

usually inhabit locations with greater access to fast-food restaurants, corner stores, and unsafe or 

undesignated urban open spaces, while they usually have limited access to preferable outlets 

such as healthy restaurants and supermarkets, gyms, or safe parks and playgrounds (Rossen and 

Pollack, 2012; Abercrombie et al., 2008; Franco et al., 2008; Gordon-Larsen et al., 2006; Zenk et 

al., 2005; Block et al., 2004).  All these socioeconomic and environmental disadvantages 

translate into limited access to various resources and opportunities, as well as awareness about 

how or how not to use such resources and opportunities.  In that regard, as shown previously in 

Figure 5.18 (poverty relationship with obesity) and Figure 5.19 (African-American population 

relationship with obesity), the significant positive associations observed are convincing 

representations, especially in the US South. 
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Further elaboration of the local GWR results revealed several particularly important 

points.  First, an examination of the frequency of the significant parameter estimates at the local 

level revealed that overall, 43% of all parameter estimates are significant, while 57% of all 

parameter estimates are insignificant (Figure 5.23).  Of those significant parameter estimates, 

18% are negatively significant, while 25% are positively significant (Figure 5.23). 

Second, with the exception of the PIA (82% significant), high educational attainment 

(77% significant), African-American population (54% significant), and poverty (52% 

significant), the majority of the regression coefficient estimates for all other independent 

variables are insignificant (Figure 5.24).  Among all variables, fast-food restaurants per capita 

(16% significant) has the least significant coefficient estimates.  These results indicate that 

among all variables, the effect of the PIA is by far most strongly associated with obesity, 

whereas the effect of fast-food restaurants per capita is least strongly associated.  It is also quite 

clear from Figures 5.13 through 5.22 that positive or negative global effects of independent 

variables on obesity do not hold across all counties.  Therefore, it confirms that it is quite crucial 

to examine variation at the local scale through GWR, rather than exploring this variation at the 

global scale only, by utilizing OLS or similar global models. 

Third, the effects of the remaining variables, which are not mentioned above, are rather 

low based on the significant parameter estimate frequencies.  However, the variables natural 

amenities index (35% significant), percentage of native residents (34% significant), and 

commute by car (32% significant) are especially worth mentioning, since their effect on obesity 

is still quite noteworthy (Figure 5.24). 

Fourth, global parameter estimates obtained from OLS would have masked much of the 

variation at the local level, if the local GWR model were not utilized.  Even conducting the 
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global OLS for the US regions helped reveal only some of the variation.  For instance, 

nationwide, the global parameter estimate for the PIA is 0.287, although parameter estimates at 

the local level range from 0.031 to 0.609.  Similarly, the global parameter estimate for high 

educational attainment is -0.117, while the local parameter estimates range from -0.248 to 0.059 

or as in the case of the African-American population, the global estimate is 0.064, whereas local 

estimates range from -0.691 to 1.272. 

 Last but not least, overall by regions and variable groups, the effect of socioeconomic and 

demographic variables on obesity is the most important group for all regions (highest in the 

South), except in the Northeast (Figure 5.26).  In the Northeast, the effect of behavioral variables 

is the most pronounced among all groups of variables.  On the other hand, the effect of natural 

and built environmental variables is most important in the Northeast followed by the West, while 

its effect is least important in the South (Figure 5.26).  Furthermore, in the West, the effect of 

different variable groups, except the socioeconomic and demographic variables, is almost 

equally important in predicting obesity, while such variable mix cannot be found in any other 

region.  These varying associations and patterns across the US regions suggest that targeting a 

certain factor (variable) to lower high obesity rates will not be equally effective in all areas 

across the US simply due to the fact that one variable or group of variables may be a more or less 

important predictor of obesity in some regions, states, and/or counties, than in others.  In other 

words, the global model “one fits all” approach will not be the most effective approach to tackle 

the issue of obesity in all US regions.  Also to further elaborate, similar facts and patterns can be 

obtained by dissecting states independently to distinguish what variables or group of variables 

are more or less important in predicting obesity in different states. 
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Figure 5.26 Summary of statistical significance of local GWR coefficient estimates by variable groups and regions (%) 
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 On the other hand, this study was subject to some limitations, as well.  First of all, heights 

and weights that the BRFSS use to calculate BMI values were based on telephone self-reported 

information.  It is known that both men and women may underreport weight and men may over-

report height in telephone surveys (Merrill and Richardson, 2009).   Therefore, the prevalence of 

obesity rates used in this study should be considered somewhat conservative.  Nonetheless, the 

very same BRFSS data are the most widely used obesity data and also assumed to present the 

best picture of the obesity epidemic in the US (BRFSS, 2014).  Second, the spatial patterns of 

obesity identified may change depending on the spatial scale used, an issue also known as the 

Modifiable Areal Unit Problem (MAUP).  Similar to most geographic research, the results of this 

study were scale dependent, as well.  Therefore, the findings were significant and important at 

the scale of counties and county equivalents within the US as a whole. 

There were also limitations to the GWR, as well as the findings of this study.  All types 

of spatial analysis that generate localized and cartographic outputs are subject to edge effects and 

the GWR is no exception.  Edge effects occur when counties are located at the outer boundaries 

of the US (i.e., US borders with Canada and Mexico).  These counties do not have the influence 

of neighboring counties all around them, compared to the counties not located along the border 

areas.  In regard to limitations to the findings, the local R2 accounted for 11% to 87% of county 

level obesity prevalence by using the 10 independent variables included in the GWR model.  

This means that in the counties where the local R2 values are low, there must have been missing 

important factors that are associated with obesity in the model tested. 

Although a number of variables were not included but were explored in the earlier phases 

of this study (e.g., Gini index, per capita income, public transportation use, crime, female 

employment, unemployment, occupation type, gender, median age, etc.).  These variables were 
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discarded for various reasons, such as multicollinearity or low correlation with obesity.  

However, future studies should definitely reconsider some of those variables to use them 

especially for counties where the local R2 values are low.  In those areas, the low local R2 values 

may be indicating that the current model is missing some important factors that are associated 

with obesity in those specific areas.  In addition, future studies should also consider exploring the 

areas (counties) where the sign of the correlation is not as expected.  Such areas are often very 

interesting and warrant further exploration in order to reveal what might be causing such 

unexpected patterns.  

 In conclusion, the main objective of this study was to identify predictors of obesity 

prevalence at the county level and to reveal how the effects of these predictors vary spatially.  

The main hypothesis aimed to test whether the predictors of obesity prevalence and effects and 

variations of such factors across space can be identified and revealed by the GWR technique at 

the county level.  Significant local parameter estimates were found for the independent variables, 

confirming spatial heterogeneity in the effects of these variables on obesity and providing 

insights into the spatial scale at which processes may be operating.  In addition, scrutinizing local 

parameter estimates based on the effect of these variables in different regions revealed further 

insights. Consequently, the results from this study generated empirically-based and useful 

insights that will help national but, most importantly, local obesity programs and interventions to 

better target areas/populations and specific factors associated with obesity prevalence across the 

US.  The robust results obtained through the utilization of a GWR model in this study also 

proved that the GWR as a spatial analysis approach is valuable and should definitely be used in 

future obesity, as well as public health, studies. 
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APPENDIX A 
UNIVARIATE LISA SIGNIFICANCE MAPS 

 
  Figure A.1 Univariate LISA significance map for county level obesity prevalence rates in the US for 2004  
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  Figure A.2 Univariate LISA significance map for county level obesity prevalence rates in the US for 2007  
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  Figure A.3 Univariate LISA significance map for county level obesity prevalence rates in the US for 2010  
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  Figure A.4 Univariate LISA significance map for county level physical inactivity (PIA) prevalence rates in the   
  US for 2004  
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  Figure A.5 Univariate LISA significance map for county level physical inactivity (PIA) prevalence rates in the   
  US for 2007  
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  Figure A.6 Univariate LISA significance map for county level physical inactivity (PIA) prevalence rates in the   
  US for 2010  
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  Figure A.7 Univariate LISA significance map for county level poverty prevalence rates in the US for 2004  
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  Figure A.8 Univariate LISA significance map for county level poverty prevalence rates in the US for 2007  
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  Figure A.9 Univariate LISA significance map for county level poverty prevalence rates in the US for 2010  
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  Figure A.10 Univariate LISA significance map for county level ratio of jobs to employed residents (JERs) in the  
  US for 2010  
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  Figure A.11 Univariate LISA significance map for county level population-weighted distances (PWDs) to parks  
  in the US for 2008  



226 
 

 
  Figure A.12 Univariate LISA significance map for county level population densities in the US for 2004  
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  Figure A.13 Univariate LISA significance map for county level population densities in the US for 2007  
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  Figure A.14 Univariate LISA significance map for county level population densities in the US for 2010  
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APPENDIX B 
BIVARIATE LISA SIGNIFICANCE MAPS 

 
  Figure B.1 Bivariate LISA significance map for county level obesity prevalence rates and physical inactivity   
  (PIA) prevalence rates in the US for 2004 
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  Figure B.2 Bivariate LISA significance map for county level obesity prevalence rates and physical inactivity   
  (PIA) prevalence rates in the US for 2007  
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  Figure B.3 Bivariate LISA significance map for county level obesity prevalence rates and physical inactivity   
  (PIA) prevalence rates in the US for 2010  
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  Figure B.4 Bivariate LISA significance map for county level obesity prevalence rates and poverty prevalence   
  rates in the US for 2004  
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  Figure B.5 Bivariate LISA significance map for county level obesity prevalence rates and poverty prevalence   
  rates in the US for 2007  
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  Figure B.6 Bivariate LISA significance map for county level obesity prevalence rates and poverty prevalence   
  rates in the US for 2010  
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  Figure B.7 Bivariate LISA significance map for county level obesity prevalence rates and ratio of jobs to   
  employed residents (JERs) in the US for 2004  
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  Figure B.8 Bivariate LISA significance map for county level obesity prevalence rates and ratio of jobs to   
  employed residents (JERs) in the US for 2007  
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  Figure B.9 Bivariate LISA significance map for county level obesity prevalence rates and ratio of jobs to   
  employed residents (JERs) in the US for 2010  
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  Figure B.10 Bivariate LISA significance map for county level obesity prevalence rates and population-weighted  
  distances (PWDs) to parks in the US for 2004  
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  Figure B.11 Bivariate LISA significance map for county level obesity prevalence rates and population-weighted  
  distances (PWDs) to parks in the US for 2007  
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  Figure B.12 Bivariate LISA significance map for county level obesity prevalence rates and population-weighted  
  distances (PWDs) to parks in the US for 2010  
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  Figure B.13 Bivariate LISA significance map for county level obesity prevalence rates and population densities   
  in the US for 2004  
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  Figure B.14 Bivariate LISA significance map for county level obesity prevalence rates and population densities   
  in the US for 2007  
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  Figure B.15 Bivariate LISA significance map for county level obesity prevalence rates and population densities   
  in the US for 2010 
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