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ABSTRACT 

The examination of temporal changes in surface winds has been analyzed by 

scientists for a variety of physical, biological, climatological, and socioeconomic reasons.  

This research uses surface and upper-level wind data from historical in-situ and climate 

models to examine the geographical and climatological characteristics of wind across 

Brazil during 1980–2014. 

Overall linear and quantile regression shows that surface wind speed trends are 

changing regionally across Brazil.  Wind speeds across northeastern Brazil are 

increasing, while a decreasing trend is documented for interior and southeastern Brazil.  

The spatial and temporal trends found are possibly related to alterations in the physical 

landscape (urbanization and land-cover change) and the seasonal relationship between the 

Intertropical Convergence Zone and the South Atlantic Anticyclone.  To further examine 

the role of the South Atlantic Anticyclone, an additional analysis was performed to show 

how the position of high pressure system affects surface conditions across Brazil.  Results 

show that surface winds across northern Brazil are affected by an equatorward shift of the 

semi-permanent high pressure, while southern Brazil is more influenced by migrating 

anticyclones that were passing through the South Atlantic Basin. 

A spatial and temporal analysis of upper-level wind speed trends was conducted 

to examine how surface and marco-scale features have evolved over Brazil.  An overall 

vertical profile shows a decreasing trend in lower-level winds (1000–850 hPa) that 

switches to a positive trend in the upper portions of the atmosphere (400–200 hPa).   A 

geographical interpretation of upper-level wind trends was performed based on a three-

dimensional model.  The model depicts that seasonal wind trend patterns across Brazil 



xi 

 

occur within the proximity of the Bolivian high and subtropical jet (400–200 hPa).  A 

regional analysis confirms the role of these two synoptic features. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

Earth’s climate is an ever-changing and developing complex system that greatly 

affects physical, biological, and socioeconomic environments.  Wind is an essential 

component of Earth’s climate at micro-, meso-, and synoptic scales.  Recent studies note 

that near-surface and upper-level atmospheric conditions have been influencing wind 

speeds across the globe (McVicar and Roderick 2010; Vautard et al. 2010; McVicar et al. 

2012).  Therefore, a present debate among scientists is whether macro-scale synoptic 

circulation is the lone factor for causing wind trends to change over time or if some 

unknown or misunderstood variable(s) (e.g., land-cover change, urbanization, etc.) may 

also play a role.  Regardless, wind is a physical component associated with many 

weather-related (e.g., tropical and mid-latitude cyclones, tornadoes, downbursts, storm 

surge, etc.) and socioeconomic (energy, soil erosion, aviation, etc.) phenomena, which 

are known to result both in catastrophic events and impact the human condition. 

Hazard studies have shown that wind-related events are capable of producing 

human causalities and major socioeconomic losses (Ashley and Black 2008; Changnon 

2009; Schmidlin 2009; Black and Ashley 2010; Schoen and Ashley 2011; Barthel and 

Neumayer 2012).  Table 1.1 depicts the number of wind-related fatalities by 

meteorological type in the United States.  This table demonstrates how vulnerable 

humans are to meteorological hazards despite technological advancements and warning 

system upgrades.  Interestingly, Kahn (2005) analyzed natural disaster deaths for 73 

countries from 1980 to 2002 and found that nearly half were attributed to wind-related 

events (i.e., cyclones, hurricanes, storms, tornadoes, tropical storms, typhoons, and winter 
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storms).  Changnon (2009) documented 176 wind-driven storms in the U.S. that produced 

more than $15 billion dollars in total losses between 1952 and 2006.  Barthel and 

Neumayer (2012) found that global (U.S.) average insured loss per windstorm during 

1990–2008 (1973–2008) was $21.1 ($33.6) million dollars.  These findings demonstrate 

near-surface winds are problematic to humans and require further research. 

Table 1.1.  Number of wind-related fatalities in the U.S. based on meteorological hazard 

type. 

 

Original Paper Period Tornado 
Convective/ 

Nontornadic 
Nonconvective 

Tropical 

Cyclone 

Ashley and  

Black (2008) 
1980–2005 1388 696 616 181 

Schmidlin 

(2009) 
1995–2007 28 165 143 57 

Black and  

Ashley (2010) 
1975–2005 1710 1195 635 181 

Schoen and 

Ashley (2011) 
1998–2007 634 191 – – 

 

1.2 Literature Review 

 

Climatologists and meteorologists still have many unanswered questions about 

surface winds.  Studies have focused on understanding and evaluating the characteristics 

of surface winds based on three basic principles: socioeconomics, anthropogenic activity, 

and synoptic variability.  The main focus of those studies has examined variations in 

synoptic and anthropogenic to help explain changes occur in near-surface winds across 

Earth.  Therefore, this literature review provides a comprehensive overview on surface 

wind speeds and trends at different spatial and temporal scales to understand how 

changes in atmospheric conditions could be affecting these changes on Earth’s surface. 
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1.2.1 Global 

 Several studies have performed general global wind trend analysis using various 

observational records, meteorological gridded datasets, and climatic models (Vautard et 

al. 2010; Zhao et al. 2011; Bichet et al. 2012).  Vautard et al. (2010) found that observed 

surface winds are weakening over the period from1979 to 2008 across North America, 

eastern and central Asia, and Europe.  McVicar et al. (2012) established a similar pattern 

to Vautard et al. (2010) when conducting a global review on relationships between wind 

speed and evaporation.  When these results are compared to National Center for 

Environmental Prediction/National Center for Atmospheric Research reanalysis dataset 

(NCEP/NCAR), however, the negative trend disappears for each region, likely because 

NCEP/NCAR modeling does not include land-cover change as a parameter (Vautard et 

al. 2010).  The study further explains that NCEP/NCAR model assimilates near-surface 

winds from a fixed climatological land scheme and extrapolation method. 

Table 1.2.  Total number of wind trend (i.e., positive and negative) studies from 1989 to 

2011 conducted for each region identified by McVicar et al. (2012). 

 

Region Number of Studies Positive Negative 

North America 27 6 21 

Central and South America 7 2 5 

Europe 24 4 20 

Asia 38 0 38 

Sub-continent 6 0 6 

Middle-East 14 6 8 

Africa 21 5 16 

Oceanic 9 2 7 

Antarctica 2 2 0 

 148 27 121 

 

Table 1.2 shows that 82% (121) of all studies examined found a negative temporal 

trend in the annual mean wind speed (McVicar et al. 2012).  The only regions showing a 

consistent positive upward trend were located in polar latitudes, a result that could be 
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related to the shift of mid-latitude cyclones to higher latitudes over time (McVicar et al. 

2012).  A regional breakdown is necessary to understand how wind speeds have changed 

over time. 

1.2.2 North America 

Klink (1998) constructed a 30-year mean wind speed, variance, and direction 

climatology for the month of January using 216 U.S. observations stations between 1961 

and 1990.  Klink (1998) showed the highest (lowest) mean wind speeds are experienced 

in the central plains and northeastern part of the United States (southwest and 

Appalachian Mountains).  The study also documented four primary cardinal direction 

groupings: a westerly component (i.e., west, northwest, and southwesterly) from the 

Great Plains to the northeast,  a northeasterly wind orientation for the Gulf Coast, a 

southeasterly flow for the West Coast, and a highly variant flow around the Rocky 

Mountain range.  Klink (1999a; 1999b) further expanded the study to include all other 

months and additional statistical parameters (i.e., minimum and maximum) which 

determined that the strongest (weakest) mean wind speeds occur during winter and spring 

(summer).  Similarly, Pryor et al. (2007) documented a wind trend and speed relationship 

for 157 weather stations from 1973 to 2005 and found that the highest wind speeds are 

observed in the eastern (western) U.S. during winter (spring and summer).  Klink (1999a) 

explained that a strong equator-to-polar temperature and pressure gradient affect surface 

wind speeds in particular regions across the United States.  The study showed that 

cardinal wind directions across the central and northeastern (southeastern) U.S. become 

more (less) variable during the spring and eventually shift to a southerly direction during 

summer.  Klink (1999a; 1999b) suggested that local topography, atmospheric circulation, 
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and air mass origin contribute to wind variability across the United States.  The findings 

also demonstrate that western (southeastern) stations observe relatively high (low) wind 

speed variance (Klink 1999a). 

Time-series analysis was performed to understand how atmospheric patterns are 

affecting near-surface wind velocities across the United States.  For example, Abhishek et 

al. (2010) found that Cincinnati, Ohio; Indianapolis, Indiana; and Little Rock, Arkansas, 

all demonstrated a negative wind trend during the 20
th

 century.  A significant indicator of 

the downward trend is the number of calm wind reports observed, from 3% in the 1940s 

to almost 10% in 2008 (Abhishek et al. 2010).  The study proposed that the amplified 

frequency in calm reports is interconnected with macro-scale synoptic and 

teleconnections (i.e., Pacific North American (PNA); Wallace and Gutzler 1981) pattern.  

However, when analyzing wind observations for 41 northeastern stations, DeGaetano 

(1998) found that the increase in calm reports between 1960s and 1990s is associated 

with human reporting bias and instrumentation error.  

Despite conflicting findings between Abhishek et al. (2010) and DeGaetano 

(1998), other research has shown that the overall surface mean wind speed has declined 

across the United States (Klink 1999b; Klink 2002; Pryor et al. 2007).  In a wind speed 

trend climatology for the contiguous U.S., Pryor et al. (2007) found statistically 

significant (p<0.05) negative wind trends for 71% (111) of the stations, with the highest 

concentration occurring in the Midwest.  In a similar way, Klink (2002) documented a 

decreasing trend in wind speeds for seven observations stations in Minnesota.  However, 

Klink (1999b) found that the overall mean minimum monthly wind speeds have declined 

for 176 stations during 1961–1990.  Klink (1999b; 2002) suggested that microscale, 



6 

 

mesoscale, and global factors (i.e., surface temperature, seasonal cyclonic activity, 

urbanization, instrumentation, etc.) are contributing to the continual fluctuation in wind 

trends and speeds across the United States.  However, Pryor et al. (2007) found that no 

major changes occurred in the 50
th

 and 90
th

 percentile wind speeds with the 

implementation of Automated Surface Observation Systems (ASOS) installed during the 

1990s.  This result supports findings of Klink (1999b; 2002) that atmospheric variables 

rather than instrumental issues may be prompting the decline in recent wind speeds 

across the United States. 

Recent studies have shifted from investigating surface winds (10 m) to analyzing 

trends in modeled wind speeds at 80 m above the ground to assess the potential for wind 

energy production (Li et al. 2010: Greene et al. 2012; Holt and Wang 2012).  Li et al. 

(2010) used wind data from the National American Regional Reanalysis (NARR; 

Mesinger et al. 2006) to understand wind characteristics of the Great Lakes region from 

1979 to 2008.  During the 30-year period, Li et al. (2010) found that the strongest 

(weakest) 80 m wind observations occurred during November–January (July–

September).  The study explained that these wind patterns are primarily driven by 

seasonal temperature and pressure gradient changes.  However, Li et al. (2010) argued 

that seasonal wind magnitude and variability could be possibly related to El Niño/ 

Southern Oscillation (ENSO).  The study found that during warm phases (El Niño) of 

ENSO, wind speeds are weaker which occurs from a greater frequency of calm periods 

observed across the Great Lakes region during spring and winter (Li et al. 2010).  Cold 

phases (La Niña) of ENSO are more prone to influence wind speeds (i.e., higher 

variability) across the Great Lakes during summer and winter (Li et al. 2010).  Despite 
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the phase of ENSO, Lin et al. (2010) calculated positive linear trends over both water 

(0.14 m s
-1

 decade
-1

) and land (0.09 m s
-1

 decade
-1

) for the Great Lakes region. 

Following this idea further, Greene et al. (2012) used extrapolation 80 m wind 

data from North American Regional Climate Change Assessment Program (NARCCAP; 

Mearns et al. 2009) to describe the negative wind speed trend across the western High 

Plains from 1971 to 2000.  Greene et al. (2012) identified a seasonal wind trend pattern 

similar to Li et al. (2010), in which the largest (smallest) wind speed variations occurred 

during winter and spring (summer and fall).  A spatial analysis demonstrated that the 

greatest decreases (7%) occurred in southeastern Wyoming and western Nebraska during 

the 30-year period (Greene et al. 2012).  Greene et al. (2012) constructed two arguments 

for the wind decline over the western High Plains: fewer and weaker cold fronts and a 

northward migration of synoptic systems. 

However, Holt and Wang (2012) found increasing wind speed trends at 10 m 

(0.15 m s
-1

 decade
-1

) and 80 m (>0.1 m s
-1

 decade
-1

) for a majority of the continental U.S., 

including an increase up to 0.3 m s
-1

 decade
-1

 for the central Plains and upper Midwest 

during 1979–2009.  The study (2012) also found a similar wind pattern for the Great 

Lakes as described by Li et al. (2010) and hypothesized about the role of mid-latitude jet 

over the region.  These results suggest that numerical models and observational datasets 

need to be scrutinized before any conclusive results can be drawn from them (Pryor et al. 

2009).  Table 1.3 summarizes the overall wind trends found for the U.S based on 

different record periods, study regions, and data types. 
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Table 1.3.  Previous work conducted with land-based and numeric model data over U.S. 

and the wind speed trend magnitudes (m s
-1

 decade
-1

) calculated for each study of 

interest. 

 

Original Paper Region Period 
Data 

Type 

Height 

(m) 

Trend (m s
-1

 

decade
-1

) 

Klink (1999b) Lower 48 1961–1990 Surface 6.1 -0.04 

Klink (2002) Minnesota 1962–1993 Surface 8 -0.05 

Abhishek et al. (2010) Midwest 1948–2008 Surface 10 -0.07 

Li et al. (2010) Great Lakes 1979–2008 Model 80 
Land: 0.14 

Lake: 0.09 

Pryor and Ledolter 

(2010) 
Lower 48 

1973–2001 

1973–2005 
Surface 10 -0.32 – -0.14 

Holt and Wang 

(2012) 
Lower 48 1979–2009 Model 

10 0.15 

80 >0.10 

 

Wan et al. (2010) provided a near-surface wind trend analysis for 117 Canadian 

observation stations from 1953 to 2006.  The study found that wind speeds declined 

(increased) over western and southern Canada (Canadian Arctic and Atlantic Maritimes) 

for all seasons (Wan et al. 2010).  Table 1.4 provides a regional breakdown of the 

monthly linear trends described by Wan et al. (2010).  This general trend is in agreement 

with Tuller (2004), who found a general negative wind speed trend for three west coast 

Canadian observation sites.  Hundecha et al. (2008) concurred, finding that 69% (9) of all 

stations located along the Gulf of St. Lawrence showed a decline in wind speed from 

1979–2004. 

A seasonal time series shows wind trends (i.e., mid-1970s and early 1980s) are 

positively correlated with Pacific Decadal Oscillation (PDO) and PNA across Canada 

(Tuller 2004).  Wan et al. (2010) noted that the increase in wind speeds for the central 

Canadian Arctic for all seasons and in Maritime Atlantic for fall and spring and suggest 

various atmospheric circulations (i.e., Arctic Oscillation (AO), North Atlantic Oscillation 

(NAO), PDO, and ENSO) are responsible for the short-term and long-term wind patterns 
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experienced throughout Canada.  St. George and Wolfe (2009) analyzed long-term wind 

speed observations across the southern Canadian Prairies from 1953 to 2006 and found a 

significantly statistical relationship (p=0.003) between a positive phase of Southern 

Oscillation Index (SOI, Ropelewski and Jones 1987) and weak surface winds during 

winter.  However, Griffin et al. (2010) suggested that the geographic heterogeneity (i.e., 

coastal and inland stations) and topography can influence temporal wind trends for the 

Canadian Pacific Northwest.  The study analyzed 179 weather stations during 1950 to 

2008 and found that coastal sites show a fluctuating temporal pattern (8–10 year periods), 

while mainland locations show a negative wind trend for the Pacific Northwest (Griffin et 

al. 2010).  Griffin et al. (2010) proposed that the cyclical pattern found along coastal 

stations could be explained by an unknown macro-scale climate oscillation. 

Table 1.4.  Canadian regional linear mean trend estimates (m s
-1

 decade
-1

) and p-values 

during 1979–2004 based on Wan et al. (2010). 

 

Region Trend (m s
-1

 decade
-1

) p-value 

Central Canadian Arctic 0.023 0.027 

Yukon- Northwest Territories -0.042 >0.001 

British Columbia -0.048 >0.001 

Prairies -0.065 >0.001 

Ontario -0.061 >0.001 

Quebec and Baffin Island -0.059 >0.001 

Maritimes 0.008 0.165 

Newfoundland and Labrador -0.017 0.072 

 

1.2.3 Europe 

Studies across northern and western Europe examined surface wind 

characteristics at a variety of temporal and spatial scales (Jönsson and Fortuniak 1995; 

Pryor and Barthelmie 2003; Hewston and Dorling 2011; Wever 2012).  Jönsson and 

Fortuniak (1995) analyzed surface wind directions from 1741 to1990 for an observation 

station in southern Sweden.  The study found three stages or phases (continental low-
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zonality, an immediate maritime, and maritime high-zonality) to describe wind 

characteristics at Lund, Sweden (Jönsson and Fortuniak 1995).  Wever (2012) established 

a statistically significant (p<0.05) negative linear trend (-0.06 m s
-1

 decade
-1

) in wind 

speed for 59 Swiss stations between 1982 and 2009 using European Climate Assessment 

and Dataset (Klein Tank et al. 2002).  A regional breakdown by Wever (2012) described 

the spatial and temporal mean wind speed trends for six northern and western European 

countries (Table 1.5). 

Pryor and Barthelmie (2003) analyzed wind speeds at 850 hPa from 1953 to 1999 

and determined that the annual mean wind speed has linearly increased over the Baltic 

region.  Annual and winter mean wind speed trends indicated that the largest increase 

developed in the southwest part of the Baltic basin at a rate of 0.25 m s
-1

 decade
-1

 (Pryor 

and Barthelmie 2003).  The study also found that extreme wind observations increased by 

as much as 5 m s
-1

 during a 50-year period.  Pryor and Barthelmie (2003) explained this 

positive temporal wind trend by connecting the increase in seasonal and extreme wind 

events to a positive NAO phase.  However, Wever (2012) evaluated the effects of surface 

roughness on wind speeds from 1962 to 2009.  Wever (2012) concluded that wind speeds 

over the Netherlands diminished linearly on average by 3.1% (0.13 m s
-1

) per decade due 

to the doubling of surface roughness since 1981.  Wever (2012) then developed a 

boundary layer model to simulate the effects of surface roughness on wind speeds and 

found that 70% of the wind speed decline was contributed by changes in the surface 

roughness associated with land redevelopment (i.e., urbanization, forestation, and pasture 

land). 
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Table 1.5.  Linear trend (m s
-1

 decade
-1

) analysis of the annual mean wind speed for six 

European countries during 1982–2009 from Wever (2012).  A * indicates linear trend is 

statistically significant (p<0.05).   

 

Country Stations Trend (m s
-1

 decade
-1

) 

Switzerland 59 -0.06* 

Germany 28 0.10* 

Estonia 2 -0.36* 

Ireland 11 -0.09 

Netherlands 34 -0.34* 

Norway 15 0.01 

 

Hewston and Dorling (2011) conducted a gust climatology for 43 United 

Kingdom Meteorological Office stations from 1980 to 2005 and found a statistically 

significant (p<0.05) decline of 5% (0.2 m s
-1

 decade
-1

) in the daily maximum gust speed 

(DMGS) and a decrease of 8% (0.8 m s
-1

 decade
-1

 ) in extreme DGMS (i.e., top 2% of all 

DMGS).  A seasonal breakdown indicated that long-term variations are evident in the 

study, with the largest (smallest) decrease in DGMS occurring in fall (winter) since 1980.  

As a result, Hewston and Dorling (2011) proposed that a decadal macro-scale 

atmospheric circulation relationship exists between NAO and DGMS and extreme 

DGMS in the United Kingdom. 

A similar decline in wind speeds and trends is described for eastern and southern 

Europe (Brázdil et al. 2009).  The study found an overall decline in monthly, seasonal, 

and annual wind speeds for 23 climatological stations in the Czech Republic from 1961 

to 2005.  This decrease in mean wind speed is a product of the increase in frequency of 

anticyclonic activity over Europe between 1960 and 1990, which was followed by a rise 

in cyclonic circulation (Brázdil et al. 2009).  However, Wever (2012) found an annual 

linear increase (0.06 m s
-1

 decade
-1

) in wind speeds for 11 Czech Republic sites during 
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1982–2009.  These conflicting findings may result from different methods used to 

calculate mean wind speeds (daily, monthly, or annual) or length of record used. 

Other studies have focused on the effects of wind across the Mediterranean and 

Adriatic regions of southern Europe (Pirazzoli and Tomasin 1999; 2003).  Pirazzoli and 

Tomasin (1999) analyzed three-hourly surface wind data from four Italian meteorological 

stations between 1951 and 1996 and found a sharp decline in the magnitude and number 

of Bora winds.  The study attributes the decline to a climate and synoptic shift of 

anticyclonic and cyclonic activity in central and southern Europe (Pirazzoli and Tomasin 

1999).  As a result, an increase in calm wind reports indicates that a change is developing 

at the surface and in the atmosphere.  Pirazzoli and Tomasin (1999) found that calm wind 

reports have increased from 26% in the 1950s to 44% in the 1990s.  This dramatic rise in 

reports is troubling and warrants further investigation.  

In another study, Pirazzoli and Tomasin (2003) investigated 17 coastal Italian 

stations along the Adriatic and Tyrrhenian basins to determine if any relationships exist 

between wind speed and sea surface temperature.  The research determined that two wind 

trends existed: a linear decline of wind speeds from 1951 to 1975 and an increasing linear 

trend after 1975 (Pirazzoli and Tomasin 2003).  Pirazzoli and Tomasin (2003) proposed 

that wind speeds are positively correlated with temperature changes experienced during 

the study period.  Liuzzo et al. (2016) analyzed evapotranspiration for 10 southern Italian 

observation stations and found that 6 (1) sites show statistically significant (p<0.10) 

linear wind trend increases (decreases) during 1968–2004.  Similarly, Liuzzo et al. (2016) 

identified a positive relationship between wind speed and temperature based on 

evapotranspiration forecast scenarios.  
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More recently, wind speed analysis was performed for Spain and Portugal 

(Moratiel et al. 2011; Azorin-Molina et al. 2014).  Azorin-Molina et al. (2014) examined 

wind speeds for 54 (67) observation stations during 1961–2011 (1979–2008) and found a 

linear decline in wind speeds across the Iberian Peninsula.  A seasonal breakdown 

determined a negative (positive) linear wind trend over winter and spring (summer and 

fall) for both study periods (Azorin-Molina et al. 2014).  As a result, Azorin-Molina et al. 

(2014) evaluated three macro-scale atmospheric circulations (i.e., NAO, Mediterranean 

oscillation index–MOI; Palutikof 2003, and western Mediterranean oscillation index–

WEMOI; Martin-Vide and Lopez-Bustin 2006 ) and urban-rural sites differences to 

explain the seasonal, annual, and long-term variability that currently exists across Spain 

and Portugal.  However, Moratiel et al. (2011) found that wind speeds have linearly 

increased at both annual and monthly intervals over the northwest Iberian Peninsula 

during 1980–2009.  

1.2.4 Middle East 

 Limited research has been conducted to understand surface winds across Middle 

East.  McVicar et al. (2012) describes mixed trend results due to the limited results (i.e., 

number of observations and period of record) and paucity of studies conducted for the 

region.  Recently, Dadaser-Celik and Cengiz (2014) investigated wind speed trends for 

206 Turkish weather stations between 1975 and 2006 and found that the majority of sites 

are observing a negative linear temporal trend at monthly, seasonal, and annual intervals.  

Dadaser-Celik and Cengiz (2014) found that the wind speed changes across Turkey are 

(are not) related to alterations in macro-scale atmospheric circulations and air 

temperatures (data quality and land-cover type).  The study found that annual linear wind 
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trends showed a strong correlation between atmospheric conditions (temperature and 

atmospheric circulation), while a small annual mean standard deviation (0.29 m s
-1

 

decade
-1

) and a nonsignificant paired t-test (p=0.11) among urban and rural wind stations 

was found for Turkey. 

1.2.5 Asia 

During the past decade, climatologists and meteorologists focused on analyzing 

wind trends in China (Xu et al. 2006; Jiang et al. 2010; Fu et al. 2011; Guo et al. 2011; 

Yang et al. 2012; Lin et al. 2013; Cheng et al. 2013; You et al. 2014).  Table 1.6 shows a 

consistent overall linear decline in the annual mean wind speed over China ranging 

between 0.12 and 0.24 m s
-1

 decade
-1

.  Fu et al. (2011) found that 81% (481) of 

observation sites across China are showing negative wind trends, of which 66% (392) are 

statistically significant (p<0.05).  Similarly, Xu et al. (2006) examined surface wind data 

for 305 weather observation sites and found that the annual mean wind speed has 

decreased by 28%, with the number of high-wind days (>5 m s
-1

) also declining by 58%.  

The study explains that simultaneous significant warming (cooling) in the northern 

(southern) region of China was responsible for the weakening of meridional pressure 

gradient and therefore the wind speeds commonly associated with East Asian monsoons 

(Xu et al. 2006).  You et al. (2014) documented a statistically significant (p<0.01) 

negative correlation between wind speed and temperature across the Tibetan Plateau from 

1980 to 2005.  Jiang et al. (2010) argued a similar concept but further explained that 

contrasts in sea level pressure and surface temperature between Asia and the Pacific 

Ocean have disrupted the macro-scale atmospheric circulation (i.e., meridional and zonal 

flow), resulting in an amplitude change of East Asian monsoons. 
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Table 1.6.  As in Table 1.3 except from surface observation data for China. 

 

Original Paper Period Region Stations 
Trend 

(m s
-1

 decade
-1

) 

Chen et al. (2013) 1971–2007 Contiguous China 540 -0.17 

Fu et al. (2011) 1961–2007 Contiguous China 597 -0.13 

Guo et al. (2011) 1969–2005 Contiguous China 652 -0.18 

Jiang et al. (2010) 1956–2004 Contiguous China 535 -0.12 

Lin et al. (2013) 1960–2009 Contiguous China – -0.10 

Shenbin et al. (2006) 1961–2000 Tibetan Plateau 101 -0.13 

Yang et al. (2012) 1969–2009 Southwestern China 110 -0.24 

You et al. (2014) 1980–2005 Tibetan Plateau 71 -0.24 

 

Guo et al. (2011) found that 72% (469) of the observation sites evaluated from 

1969–2005 exhibited a statistically significant (p<0.05) decline in wind speeds.  Guo et 

al. (2011) recognized tropospheric modifications (i.e., pressure gradient force) and 

urbanization as the primary factors in the reduction of wind speeds across China.  

Additionally, Fu et al. (2011) determined that wind speeds are highly correlated with the 

phase of Interdecadal Pacific Oscillation (IPO, Mantua et al. 1997).  Chen et al. (2013) 

compared observations from 540 weather stations to the NCEP/NCAR reanalysis dataset 

during 1961–2007 and found that macro-scale oscillations are influencing mean wind 

speeds across certain geographical regions of China.  In particular, Chen et al. (2013) 

found that during a positive AO phase, a large portion of China experiences lower mean 

wind speeds.  However during a positive ENSO (Niño 3.4 region) phase, the highest 

(lowest) wind speeds are observed in the northern (southern) part of the country (Chen et 

al. 2013).  As a result, these studies demonstrated that various macro-scale conditions and 

circulations are affecting wind trends in China. 

Studies have also observed various wind speed patterns (i.e., short-term and long-

term) over the last century in China (Shenbin et al. 2006; Jiang et al. 2010; Fu et al. 2011; 

Guo et al. 2011; Chen et al. 2013; You et al. 2014).  Specifically, Guo et al. (2011) found 
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a prominent fluctuation in wind speed based on seasonality for China.  The largest linear 

decreasing (smallest) trends between 1969 and 2005 occurred during spring (summer) at 

a rate of 0.21 m s
-1

 decade
-1 

(0.15 m s
-1

 decade
-1

, Guo et al. 2011).  However, Jiang et al. 

(2010) explained that the peak wind speed change developed during winter (-0.151 m s
-1

 

decade
-1

) rather in in spring (-0.149 m s
-1

 decade
-1

) between 1956 and 2004.  This 

variation in seasonalityis likely due to the difference of time period and surface 

observation data used to conduct each study.  Similarly, Fu et al. (2011) described the 

removal of observations from its study prior to 1960 due to the lack of available station 

data and gaps and discrepancies found in the records.  These variances may contribute or 

explain the disparity found between Jiang et al. (2010) and Guo et al. (2011).  Likewise, 

Chen et al. (2013) suggested that anemometer height changes could be exacerbating the 

annual wind speeds and observations across China during the 1970s because the 

European Center for Medium-Range Weather Forecasts 40 years Re-Analysis (ERA-40) 

does not show any significant trends for 10 m wind speeds during 1971–2007. 

Another component of detecting wind trend variations is evident from a time 

series perspective (Xu et al. 2006; Jiang et al. 2010; Fu et al. 2011; Guo et al. 2011; Chen 

et al. 2013; Lin et al. 2013).  Fu et al. (2011) established four distinct temporal wind 

phases for China: two steady wind periods from 1961 to 1968 and 1969 to 1974, a sharp 

decline in 1974–1990s, followed by another constant wind speed era from 1990s to 2007.  

The study explains that the trends are derived from instrument relocation, land use and 

land-cover change, and synoptic parameters (Fu et al. 2011).  Lin et al. (2013) also noted 

two wind speed increases during the early 1970s and middle 2000s over China.  Chen et 
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al. (2013) found a similar pattern and attributed the trend to a change in the upper 90
th

 

(95
th

) wind speed percentile by -0.39 m s
-1

 decade
-1

 (-0.50 m s
-1

 decade
-1

).   

Urbanization is another factor possibly influencing wind records and trends across 

China (Xu et al. 2006; Jiang et al. 2010; Guo et al. 2011).  Jiang et al. (2010) analyzed 

wind speeds from 174 urban and 180 rural observation sites and found two major results: 

urban stations tend to record weaker annual mean wind speeds with a distinct negative 

mean wind speed trend denoted from 1956 to 2004 due to urban development in China.  

Yang et al. (2012) identified a statistically significant (p<0.05) linear decrease of wind 

speeds (i.e., during seasonal and annual intervals) in urban vs. rural sites in southwestern 

China from 1969 to 2000.  On the other hand, Guo et al. (2011) determined that urban 

and rural stations follow a comparable negative wind speed trend until 1990 when a 

positive shift is noted in urban observations.  An explanation of this upward trend in 

urban stations is not provided and contradicts the effect of frictional drag on wind speed 

in urban development (Guo et al. 2011).  Lin et al. (2013) support the idea that 

urbanization and land-cover change are not influencing surface wind speeds and suggest 

that atmospheric processes are the major factor contributing to the downward trend across 

China.  However, You et al. (2014) explained that a combination of anthropogenic (i.e., 

surface roughness, land-cover change, urbanization, etc.) and natural (i.e., synoptic, 

atmospheric circulations, topography, etc.) causes may possibly be leading to the overall 

wind speed changes occurring across China.   

Recent work also describes the spatial heterogeneity of linear temporal wind 

trends across China (Xu et al. 2006; Jiang et al. 2010; Fu et al. 2011; Guo et al. 2011; 

Yang et al. 2012).  The largest wind speed decreases are observed in northern China, 
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Tibetan Plateau, and coastal China (Xu et al. 2006; Shenbin et al. 2006).  Xu et al. (2006) 

suggested that recent temperature increases from solar radiation has resulted in the 

weakening of monsoonal winds which greatly influences wind speed within these 

regions.  This concept is supported by You et al. (2014) who found a negative correlation 

between sunshine hours and wind speed at an annual and seasonal (i.e., spring, summer, 

and autumn) basis in Tibetan Plateau.  In addition, Yang et al. (2012) described sunshine 

radiation as a possible cause of surface wind speed decreases but suggested that other 

atmospheric, anthropogenic, and topographic influences may be contributing to the 

decline for southwestern China. 

Wind speed trends have also been conducted to understand relationships between 

evaporation or potential evapotranspiration (PET) and other atmospheric variables in 

China (Zheng et al. 2009; Liu et al. 2010; Liu et al. 2011; Yin et al. 2010a; 2010b; Tang 

et al. 2011).  Table 1.7 shows that annual wind speed magnitudes have declined during 

the late 20
th

 century.  Many of these studies establish a relationship evaporation and PET 

to wind speed changes in China.  Yin et al. (2010b) explained that the decline results 

from changes in macro-scale atmospheric circulations (i.e., East Asian monsoon and 

Siberian high) in northern China and Tibetan Plateau.  The weakening (strengthening) of 

meridional (zonal) circulation is related to the evolving location of the Siberian high 

which maybe influencing the relationship between evaporation and wind speed across 

China (Yin et al. 2010b).  Zheng et al. (2009) found that evaporation increases due to 

atmospheric warming were offset by other climatic variables (i.e., wind speed, solar 

radiation, and vapor pressure) in the Haihe River Basin.  Therefore, wind speed is not the 

only atmospheric variable affecting evaporation and PET in China. 
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Table 1.7.  Studies investigating changes in evaporation and potential evapotranspiration 

for China using wind speed as a variable (m s
-1

 decade
-1

).  A *(**) indicates linear trend 

is statistically significant at 95% (99%) confidence-level. 

 

Original Paper Period Study Region Stations 
Trend (m s

-1
 

decade
-1

) 

Zheng et al. (2009) 1957–2001 Haihe River 45 -0.14* 

Liu et al. (2010) 1961–2006 Yellow River 89 -0.09* 

Liu et al. (2011) 1960–2007 Contiguous China 518 -0.12** 

Yin et al. (2010a) 1961–2008 Contiguous China 595 -0.09 

Yin et al. (2010b) 1960–2009 Contiguous China 603 -0.12 

Tang et al. (2011) 1961–2000 Haihe River 34 -0.14* 

 

1.2.6 India 

 

Jaswal and Koppar (2013) analyzed the wind characteristics for 171 Indian 

weather sites between 1961 and 2008.  The study reported that monthly and annual wind 

trends are declining linearly across the study region.  Overall monthly and annual linear 

trends were found to be statistically significant (p<0.01) with an overall mean wind speed 

trend decreasing at a rate of 0.24 m s
-1

 decade
-1

 for India (Jaswal and Koppar 2013).  

Bandyopadhyay et al. (2009) found that 85% (113) of observation stations were detecting 

a decrease in wind speeds during 1971–2002.  As a result, Jaswal and Koppar (2013) 

examined several possible reasons that surface winds are slowing across India.  Jaswal 

and Koppar (2013) discussed the decrease frequency of cyclonic activity in the Bay of 

Bengal has led to the decline in the annual average wind speed across India as one 

possible reason.  Jaswal and Koppar (2013) also analyzed sea surface temperature (SST) 

and urbanization as other motives connected to the decline in wind speeds across India.  

1.2.7 Australia 

McVicar et al. (2008) performed a wind speed climatology for Australia based on 

daily u wind data at 2 m from 1975 to 2006.  The study found on average a linear trend of 

-0.09 m s
-1

 decade
-1

 for 88% of the observation stations in Australia.  Interestingly, a 
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positive wind speed trend was determined for three regions: central Australia, southeast 

Queensland, and northeast New South Wales and southern Victoria and Tasmania 

(McVicar et al. 2008).  However, the study explained that the positive wind trend in arid 

central Australia resulted from above-average precipitation during the mid-1970s 

(McVicar et al. 2008).  McVicar et al. (2008) concluded that if the study would have 

started after 1980, then the positive wind trend in central Australia would not exist.  

McVicar et al. (2008) also determined the highest (lowest) wind speeds were observed 

during summer (winter) at 2.3 m s
-1

 (1.7 m s
-1

) in Australia. 

In a similar way, Troccoli et al. (2012) conducted a 59-year study analyzing long-

term wind linear trends using observations at 2 m and 10 m in Australia.  Troccoli et al. 

(2012) established that wind speed trends are sensitive to the height of the station during 

two periods: 1975–2006 and 1989–2006.  A negative (positive) wind speed trend is 

directly observed at 2 m (10 m) for both periods (Troccoli et al. 2012).  Troccoli et al. 

(2012) identified that surface observations are greatly influenced by topographical 

features and do not accurately describe and represent macro-scale synoptic patterns.  

Donohue et al. (2010) found a statistically significant (p=0.002) negative trend (-0.1 m s
-1 

decade
-1

) of 2 m wind speeds during 1981–2006.  Troccoli et al. (2012) suggested that 10 

m wind data should be used to understand any relationships between the surface and 

atmosphere is valid. 

1.2.8 South America 

The wind characteristics of Brazil are primarily driven by a macro-scale 

atmospheric circulation system (i.e., Intertropical Convergence Zone – ITCZ and South 

Atlantic Anticyclone – SAA) and topographic features (Ratisbona 1976).  Consequently, 
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the seasonality of surface winds is affected by these two previously mentioned features.  

During winter (JJA), the SAA is dominant and the wind fields follow a counter-clockwise 

rotation outward around the SAA across Brazil.  Ratisbona (1976) classified wind 

direction into three major groupings: southeasterly flow for the east, northeasterly 

direction for the north and northwest, and a westerly flow for high altitudes and extreme 

portions of southern Brazil (Figure 1.1). 

 

Figure 1.1.  A map showing the 26 states and one federal district that constitutes the 

country of Brazil and the countries that border it.  Digital elevation (m) map data is 

provided by GLOBE database (Hastings et al. 1999). 

 

Ratisbona (1976) explained the overall mean wind speed pattern for Brazil based 

on seasonal fluctuations.  During austral winter, coastal lowlands, equatorial, and 

Amazonian regions experience calm or weak wind speeds, while the central portion of 
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the Brazilian Highlands exhibits higher winds, ranging from 5 to 10 m s
-1

, primarily 

driven by altitude change within the region (Ratisbona 1976).  However, the strongest 

wind speeds are experienced in southern Brazil, where mid-latitude cyclones and 

anticyclones pass through the region.  In summer (DJF), continental heating results in the 

overall decline of wind speeds across Brazil.  The only exception to this geographic 

pattern occurs at high altitudes, where climatological mean wind speeds are observed 

during winter (Ratisbona 1976).  

During the past several years, scientists have started to focus on understanding the 

impact of wind trends on energy production in Brazil (Lucena et al. 2010; Pereria et al. 

2013; Santos and Silva 2013).  Numerical models suggest that wind power production 

should increase for coastal and northern Brazil by the end of the 21
st
 century based on 

current land-cover figurations (Lucena et al. 2010).  Similarly, Pereria et al. (2013) 

simulated future wind power density based on the HadCM3 (Hadley Centre Coupled 

Model, version 3; Gordon et al. 2000) model and expect increases in wind productivity 

for northeastern and southern parts of Brazil.  However, Pereria et al. (2013) also 

analyzed historic wind records for 15 stations during 1960–2007 and found decreasing 

and non-significant linear trends for a majority (11) of those observation sites.  Santos 

and Silva (2013) analyzed 47 weather stations based on five station groupings for 

northeastern Brazil from 1986–2011 and determined that three of the five groups are 

observing statistically significant (p<0.01) decreasing linear trends for annual and 

seasonal wind speeds (Santos and Silva 2013).  Santos and Silva (2013) found that linear 

wind trends across northeastern Brazil are positively correlated with the different phases 

of ENSO. 
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Similar to Brazil, wind characteristics of Argentina, Paraguay, and Uruguay can 

be explained by major macro-scale atmospheric circulations.  Prohaska (1976) showed 

the interaction between the South AA and Pacific anticyclone, a quasi-stationary low in 

northern Argentina, and prevailing westerlies of the middle latitudes affect the magnitude 

and direction of the wind speeds across the region.  Prohaska (1976) documented that the 

strongest wind speeds are observed in the southern portion of the continent, where 

westerlies are dominant.  The strong winds that develop within the Roaring Forties (40°– 

50° S) of the Southern Hemisphere result from an absence of landmass which minimizes 

friction.   On average, coastal and inland weather stations record wind speeds of 7–8 m s
-1

 

(3–6 m s
-1

) during austral winter (summer).  Next, Prohaska (1976) explained the effect 

of the SAA over the area in the context of two broad wind groups: northeasterly winds 

for central Argentina and southwestern Uruguay and easterly and southeasterly winds for 

eastern Paraguay, northeastern Argentina, and northeastern Uruguay.  Wind speeds found 

in this region are usually dependent on the position and strength of the nearby SAA 

(Prohaska 1976).  In addition, a northerly migration of maximum wind speeds is 

experienced from early spring to summer due to heating and pressure contrast between 

the continent and Atlantic Ocean.  Finally, wind speeds associated with the quasi-

stationary low follow a similar pattern found across central Argentina and southwestern 

Uruguay.  

 

1.3 Research Questions 

 

Wind speed trends have been researched and investigated throughout the world 

using different statistical methods, historic datasets, and climatic models.   However, 



24 

 

scientists still have many unanswered questions about which variables are influencing 

surface and upper-level winds at different spatial and temporal scales.  The motivation of 

this research is derived from the limited amount of research on the surface (McVicar et 

al. 2012) and upper-level (Vautard et al. 2010) wind speed characteristics for the 

Southern Hemisphere, especially with regard to Brazil described by McVicar et al. 

(2012).  Recent several studies have analyzed wind speeds for the northeastern part of 

Brazil for potential wind energy production (Lucena et al. 2010; Pereria et al. 2013; 

Santos and Silva 2013).  However, a complete analysis of surface and upper-level wind 

characteristics for the entire country of Brazil has not yet been conducted.   As a result, 

this dissertation addresses these issues in a three-part study. 

The first manuscript (Chapter 2) provides a climatological assessment of linear 

wind speed trends over Brazil using historical surface wind and climatic model datasets 

from 1980 to 2014.  Seasonal and annual linear trends are determined to understand how 

wind speeds vary across the country at various temporal and spatial scales.  Studies have 

already shown that changes in surface winds were related to synoptic and surface-based 

conditions (land-cover change and urbanization; Vautard et al. 2010).  It is hypothesized 

that surface winds are changing differently across portions of Brazil.  To address these 

issues, this study investigates the following questions: 

 How do seasonal and annual mean wind speeds vary across Brazil from 1980 to 

2014? 

 How do surface wind speeds compare to each other from a seasonal and overall 

perspective based on the Weibull distribution? 
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 Are any of the seasonal or annual linear wind trends statistically significant 

(p<0.05) from a geographical and temporal perspective for station and climate 

reanalysis datasets? 

 Are extreme near-surface winds following these same linear trends across 

different percentiles (i.e., 5%, 25%, 50%, 75%, and 95%) from 1980 to 2014? 

 How do in-situ surface wind trend patterns compare to those of climate model 

datasets?  

The second manuscript (Chapter 3) evaluates the role of SAA and its effect on the 

surface conditions (wind speed, sea-level pressure (SLP), and temperature) across Brazil 

using reanalysis data.  Studies have examined temporal changes in monthly, seasonal, 

and annual position of the SAA to explain modification in near-surface and upper-level 

atmospheric conditions across the South Atlantic Basin (SAB; Hastenrath 1985; Mächel 

et al. 1998; Degola 2013).  Ratisbona (1976) explained that wind speeds across Brazil 

were under the control of the SAA and ITCZ.  As a result, it is expected that any shift in 

the latitudinal or longitudinal position of SAA could impact surface conditions across 

Brazil.  To address this relationship between SAA and surface conditions across Brazil, 

this study addresses the following questions: 

 How have seasonal and annual surface winds changed spatially and temporally 

across the SAB? 

 What are the seasonal and annual linear SLP trends of the latitudinal and 

longitudinal center of the SAA in the SAB? 

 What is the geographical relationship between the position of the SAA and wind 

speed across Brazil? 
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 To what extent does the position of the SAA affect the regional relationships of 

surface wind speed, SLP, and temperature? 

 Are there any regional anomalies between the relationships of surface wind, SLP, 

and temperature based on the position of the SAA relative to Brazil? 

 How does the spatial location of the SAA in the SAB affect surface wind 

anomalies geographically across Brazil? 

The last manuscript (Chapter 4) examines linear temporal trends in upper-level 

winds across Brazil during 1980–2014.  Vautard et al. (2010) found that upper-level wind 

(850–200 hPa) trends did not match changes in near-surface winds for the Northern 

Hemisphere during 1979–2008.  It is hypothesized that surface and upper-level wind 

trends across Brazil could be connected to each other through alternations in macro-scale 

atmospheric conditions.  The remaining questions that will be addressed in this study 

include the following: 

 What is the overall vertical relationship of upper-level wind patterns at the 

mandatory pressure levels (1000, 925,850, 700, 600, 500, 400, 300, 250, 200, 

150, and 100 hPa) of the atmosphere across Brazil? 

 How do the overall and regional seasonal and annual surface wind trends compare 

to upper-level wind trends? 

 How has upper-level wind speed changed over time from a three-dimensional 

visualization (coordinate system) perspective? 

 What atmospheric circulations are related to the upper-level wind speed trends 

found over Brazil? 
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1.4 Summary 

 

Overall surface wind speed characteristics described by Ratisbona (1976) provide 

an important foundation of what type of climatological and meteorological research has 

been conducted in Brazil.  However, this region has not been fully investigated as 

described by McVicar et al. (2012).  In a study using data from 1986 to 2011, Santos and 

Silva (2013) is the only major study of Brazilian wind climatology to find that surface 

wind speeds have decreased across the majority of northeastern stations.  Besides this 

regional study, no other formal research has been conducted to understand the surface 

and upper-level wind trends of Brazil from a climatological and geographical approach.   

The purpose of this dissertation is to understand and expand our background 

about Brazilian surface and upper-level wind characteristics.  To understand more 

completely the implications of how surface and upper-level winds have changed, this 

dissertation performs nonparametric statistics and quantile regression of historical and 

reanalysis datasets.  Results from this dissertation will provide a broader understanding of 

how surface and upper-level wind speed characteristics across Brazil have changed 

between 1980 and 2014. 
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CHAPTER 2 

SURFACE WIND SPEED: TREND AND CLIMATOLOGY OF BRAZIL  

FROM 1980–2014 

2.1 Introduction 

Regional wind climatologies across North America (Klink 1999; 2002; Tuller 

2004;  Pryor et al. 2007; 2009; Hundecha et al. 2008; Abhishek et al. 2010; Griffin et al. 

2010; Li et al. 2010; Pryor and Ledolter 2010; Wan et al. 2010; Holt and Wang 2012; 

Romanić et al. 2016), Europe (Pirazzoli and Tomasin 2003; Pryor and Barthelmie 2003; 

Brázdil et al. 2009; Wever 2012; Azorin-Molina et al. 2014; Romanić et al. 2015; Liuzzo 

et al. 2016), Asia (Xu et al. 2006; Jiang et al. 2010; Fu et al. 2011; Guo et al. 2011; Yang 

et al. 2012; Chen et al. 2013; Lin et al. 2013; You et al. 2014; Kim and Palk 2015), and 

Australia (McVicar et al. 2008; Troccoli et al. 2012) have examined and identified 

changes in the geographical and temporal trends of surface winds during the 20
th

 century.  

However, McVicar et al. (2012) identified that comprehensive wind trend studies for 

Central and South America are still lacking especially for Brazil where one study (i.e., 

Silva et al. 2010) was included as part of their analysis (Table 2.1). 

Table 2.1.  Total number of annual surface wind speed trend (i.e., positive and negative) 

studies conducted for each region based on McVicar et al. (2012). 

Region Number of Studies Positive Negative 

North America 27 6 21 

Central and South America 7 2 5 

Europe 24 4 20 

Asia 38 0 38 

Sub-continent 6 0 6 

Middle-East 14 6 8 

Africa 21 5 16 

Oceanic 9 2 7 

Antarctica 2 2 0 

 148 27 121 
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Much of Brazilian research conducted since Silva et al. (2010) has focused on 

assessing changes in surface winds with respect to present and future wind energy 

production (Lucena et al. 2010; Pereira et al. 2013; Santos and Silva 2013; Pes et al. 

2017).  Lucena et al. (2010) showed that future wind energy production should increase 

for coastal and northern Brazil by the end of the 21
st
 century based on Intergovernmental 

Panel on Climate Change (IPCC) emission scenarios (pessimistic high and optimistic low 

emissions) and present land-cover using Hadley Centre Coupled Model, version 3 

(HadCM3; Gordon et al. 2000) general circulation model.  Pereira et al. (2013) stimulated 

future wind energy using HadCM3 model and concluded that energy production should 

also increase for northeastern Brazil by the end of the 21
st
 century.  However, their 

analysis further explored past wind records from 15 Brazilian weather stations and 

established that the majority (11) of sites is experiencing decreasing or non-significant 

linear wind speed trends from 1960 to 2007.  Santos and Silva (2013) presented a 

comparable negative wind trend pattern between 1986 and 2011 based upon categorizing 

47 northeastern Brazilian stations into five groups by derived using a cluster analysis.  

The study showed that three of the five groups observed significant (p<0.01) negative 

linear trends in seasonal and annual near-surface wind speeds. 

Overall, the general consensus is that surface wind speeds are decreasing globally 

(Vautard et al. 2010; Bichet et al. 2012; McVicar et al. 2012).  McVicar et al. (2012) 

showed that 82% (121) of all studies analyzed found declining annual trends (Table 2.1).  

This decreasing pattern is supported by more recent research conducted for Europe 

(Azorin-Molina et al. 2014; Romanić et al. 2015) and Asia (Yang et al. 2012; Chen et al. 

2013; Lin et al. 2013; You et al. 2014; Kim and Palk 2015).  However, certain studies 
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performed for North America exhibited increasing wind speeds (Holt and Wang 2012; 

Romanić et al. 2016).  This discrepancy found between these regional studies can be 

attributed to measurement height differences.  Holt and Wang (2012) and Romanić et al. 

(2016) used 80 m and sigma 0.995 level (~41 m) reanalysis data to calculate wind trends 

for the United States and Great Lakes region (i.e., Toronto), while studies conducted in 

Europe and Asia utilized 10 m surface wind measurements. 

Despite this issue, the present debate among scientists has focused on identifying 

which surface and atmospheric variables can explain the modification of near-surface 

winds.  Many studies attributed the decreasing temporal trends to urbanization  (Xu et al. 

2006; Guo et al. 2011; Li et al. 2011; Yang et al. 2012; Jaswal and Koppar 2013; Azorin-

Molina et al. 2014) and land-cover change (Vautard et al. 2010; Bichet et al. 2012; Wever 

2012).  Using annual mean wind speeds for 12 stations located in Greater Beijing, Li et 

al. (2011) found that urbanization accounted for 20% of the regional wind decline 

between 1960 and 2008.  Vautard et al. (2010) estimated that 25%–60% of the decrease 

in surface wind trends found in the Northern Hemisphere could be related to an increase 

in surface roughness from vegetation.  While these two factors can influence surface 

winds, other analyses suggest that alterations in macro-scale atmospheric circulations 

(Jiang et al. 2010; Guo et al. 2011; Li et al. 2011; Troccoli et al. 2012; Yang et al. 2012; 

Jaswal and Koppar 2013; Lin et al. 2013; Dadaser-Celik and Cengiz 2014; You et al. 

2014; Romanić et al. 2015) and teleconnections (Pirazzoli and Tomasin 2003; Pryor and 

Barthelmie 2003; Tuller 2004; St. George and Wolfe 2009; Abhishek et al. 2010; Li et al. 

2010; Pryor and Ledolter 2010; Fu et al. 2011; Hewston and Dorling 2011; Chen et al. 
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2013; Lin et al. 2013; Azorin-Molina et al. 2014; You et al. 2014) are responsible for the 

decreasing trends being documented across the globe. 

Surface wind climatologies have evaluated other potential causes of wind speed 

change including the spatial role of elevation (Griffin et al. 2010; Yang et al. 2012; You 

et al. 2014), surface temperature (Xu et al. 2006; Jiang et al. 2010; Yang et al. 2012; 

Dadaser-Celik and Cengiz 2014; You et al. 2014), solar radiation (Yang et al. 2012), 

solar activity (Romanić et al. 2016), and evapotranspiration (Zuo et al. 2005; Gao et al. 

2006; Burn and Hesch 2007; Zheng et al. 2009; Liu et al. 2010; Yin et al. 2010a; 2010b; 

Liu et al. 2011; Tang et al. 2011: McVicar et al. 2012).  Studies have also examined data 

quality and heterogeneity (e.g., anemometer relocation and height adjustment, instrument 

replacement, and observation bias) of wind records to explain spatial and temporal and 

patterns (DeGaetano 1998; Klink 1999; Pryor et al. 2007; 2009; Jakob 2010; Jiang et al. 

2010; Wan et al. 2010; Dadaser-Celik and Cengiz 2014). 

Previous work has suggested that wind speeds are slowing across northeastern 

Brazil (Silva et al. 2010; Pereira et al. 2013; Santos and Silva 2013).  Yet, it has been 

forecasted that surface winds will increase along coastal and northeastern Brazil based on 

conditions implemented from IPCC emission schemes and stimulated into general 

climate models (Lucena et al. 2010; Pereira et al. 2013).  Renewable energy is becoming 

an important component of the Brazilian energy production sector.  Currently, wind 

energy accounts for 6.8% (10.4 GW) of the total electrical power capacity generated by 

Brazil (ANEEL 2017).  Any modifications in surface or atmospheric conditions could 

affect surface winds across Brazil.  As a result, it is important to investigate how changes 
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in the spatial and temporal wind patterns could impact potential wind energy production 

across the country. 

The objectives of this study are to: (1) understand the geographic distribution of 

mean wind speeds, (2) identify any mean seasonal or annual surface wind speed trends 

across Brazil, (3) examine how seasonal and annual wind speed trends change at different 

percentiles (i.e., 5%, 25%, 50%, 75%, and 95%), and (4) evaluate how surface wind 

speeds and trends vary among surface measurements and reanalysis datasets based on 

linear and quantile regression.  To meet these objectives, geographic and temporal 

characteristics of near-surface wind speeds are identified through statistical analysis of 

overall and individual in-situ and gridded observations for the study region. 

 

2.2. Data and Methods 

2.2.1 In-situ Winds 

This study utilizes two historical wind measurement datasets to analyze the wind 

speed trend characteristics of Brazil during 1980–2014.  The first source of surface-based 

measurements is provided by National Institute of Meteorology (Instituto Nacional de 

Meteorologia – INMET).  INMET collects three daily observations (0, 12, and 18 UTC) 

of various meteorological variables (i.e., dry and wet bulb temperature, relative humidity, 

wind speed and direction, cloud coverage, and atmospheric pressure) from its manual 

network of 293 surface weather stations across Brazil.  Santos and Silva (2013) describe 

that wind speed observations gathered from INMET follow and meet the anemometer 

height standard (10 m) set by the World Meteorological Organization (WMO).  However, 

a setback of using observations from INMET is the lack of continuous periods of record 

for all given sites.  INMET provides daily meteorological observations starting in 1961, 
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but upon further inspection, it was determined that many of the stations did not start 

maintaining consistent daily records until the early 1980s.  Thus, many of the stations 

provided by INMET were not suitable for analysis and the scope of the paper limited to 

the period of 1980 to 2014. 

A second dataset from the National Centers for Environmental Information 

Integrated Surface Database (NCEI-ISD) had to be included to supplement for missing 

daily records that existed in the original INMET dataset.  NCEI-ISD is a quality-

controlled global repository that collects meteorological surface observations (manual 

and automatic) from governmental and meteorological organizations across the world 

(Lott et al. 2008).  Land-based stations included in the NCEI-ISD database consist of 

meteorological observations from two Brazilian sources: INMET and Center for Weather 

Forecasting and Climatic Studies and Brazilian National Institute for Space Research 

(CPTEC/INPE).  For the purpose of this study, CPTEC/INPE wind observations are 

acquired for stations not included in the primary dataset from NCEI-ISD.  To minimize 

additional error or replication bias, all NCEI-ISD observations included in this study 

originate from the same source and observation time as INMET.  This was achieved by 

examining INMET and NCEI-ISD for unique identifiers (i.e., WMO number allocation), 

which are assigned to each weather station following the rules set by WMO. 

Another issue of concern is the robustness or quality of a dataset.  INMET 

collects three daily observations (0, 12, and 18 UTC) at each site included in its network 

of meteorological stations across Brazil.  Santos and Silva (2013) utilize a single daily 

observation time (12 UTC) from INMET to construct and analyze surface wind speed 

trends across northeastern Brazil from 1986 to 2011.  The study recognized that a greater 
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frequency of daily observations would improve their wind analysis.  This statement is 

supported by Jakob (2010), who found that the number of observations (eight vs two 

reports) used to calculate daily mean wind speeds impacted seasonal and annual averages 

for three Australian weather stations.  It is also important to document the physical 

environment (e.g., land-cover, urbanization, etc.) of each station.  A visual inspection of 

aerial imagery of INMET sites shows that many of the anemometers are located in urban 

or vegetated environments. 

Based on these concerns, supplementary resources were consulted to identify 

stations that contain a sufficient number of reports within study period of interest and 

located in more desirable settings (i.e., open terrain) to comprise the standard baseline or 

proxy to investigate the spatial and temporal wind speed trends of Brazil.  More 

specifically, NCEI-ISD collects wind records from military and airport stations (i.e., 

Brazilian Department of Airspace Control – DECEA) across Brazil as part of its global 

repository.  Weather stations situated at these sites tend to report a higher frequency of 

wind observations and be positioned in open terrain surroundings in compliance with 

WMO specifications.  A second wind dataset was constructed based on the records from 

Brazilian military and airport stations by NCEI-ISD during 1980–2014.  This dataset 

(NCEI-ISD) is used as the proxy to understand the wind speed trend characteristics of 

Brazil.  The daily observations acquired from NCEI-ISD improve the characterization of 

the changes in wind speeds across Brazil despite the geographical limitations of stations 

included in this study. 

Recent literature further shows a broad range of techniques used to identify and 

select stations for regional (Pryor et al. 2007, 2009; St. George and Wolfe 2009; Griffin 
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et al. 2010; Jakob 2010; Fu et al. 2011; Troccoli et al. 2012; Chen et al. 2013; Lin et al. 

2013; Santos and Silva 2013; Azorin-Molina et al. 2014) and global (Vautard et al. 2010) 

studies based on the number of observations.  Sites in Brazil where over 500 observations 

were recorded annually with each season containing more than 50 valid records during 

1980–2014 were selected for analysis, following guidelines of Pryor et al. (2007) for 

INMET and NCEI-ISD datasets.  This methodology maximizes the number of study sites 

in Brazil while maintaining data quality.  Based on this criterion, 56 INMET and 35 

NCEI-ISD stations were selected to characterize the surface wind trends of Brazil (Figure 

2.1). 

 

Figure 2.1.  Spatial distribution of the 56 INMET and 35 NCEI-ISD stations used in the 

study.  Digital elevation (m) map data are provided by GLOBE database (Hastings et al. 

1999). 
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2.2.2 Reanalysis Winds 

Surface zonal (u; west–east) and meridional (v; south–north) wind components 

(10 m) from three climate models were used to infer the wind speed trend characteristics 

of Brazil during 1980–2014.  The first dataset used in the study is from the National 

Center for Environmental Prediction/National Center for Atmospheric Research 

(NCEP/NCAR) reanalysis dataset (i.e., referred to as Reanalysis 1), which is a global 

climate model that assimilates surface and atmospheric variables at a spatial resolution of 

2.5° x 2.5° (T62 model) for 28 vertical levels of the atmosphere every six hours (0, 6, 12, 

and 18 UTC; Kalnay et al. 1996).  Reanalysis 1 designates surface wind records with a B-

class distinction, which specifies that surface winds are integrated into the reanalysis but 

the model has a greater influence over the grid point value of each wind observation.  

Near-surface wind observations from Reanalysis 1 are determined through the downward 

extrapolation of u and v winds at the sigma 0.995 level using Monin-Obukhov similarity 

theory (Obukhov 1971) and not through the assimilation of land-based historical records.  

A global land-based surface roughness climatology is also implemented to control u and 

v wind speed outputs for Reanalysis 1 (Dorman and Sellers 1989). 

The second climate dataset utilized is the National Center for Environmental 

Prediction and Department of Energy (NCEP-DOE) reanalysis dataset (i.e., Reanalysis 2) 

is an updated version of Reanalysis 1, which contains the equivalent spectral resolution of 

28 vertical levels, six-hourly interval (0, 6, 12, and 18 UTC), and similar raw observation 

data but with additional records (Kanamitsu et al. 2002).  These improvements to 

Reanalysis 2 include the implementation of higher spatial resolution (1.875° x 1.875°), 

improved algorithms for processing errors, and adjustments made to forecast models and 
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data assimilated systems.  Near-surface wind (u and v) components are constructed using 

the same processing technique of extrapolating winds at the sigma 0.995 level based on 

Monin-Obukhov similarity theory and global roughness length described by Pryor et al. 

(2009). 

The final reanalysis dataset used in the study is the European Centre for Medium-

Range Weather Forecasts (ECMWF) Interim (i.e., ERA-Interim) is a six-hourly interval 

(0, 6, 12, and 18 UTC) global assimilated model that is constructed at 60 vertical levels 

with a grid resolution of 0.75° x 0.75° (T255) for the period of 1979 to present (Dee et al. 

2011).  Surface wind records from automatic and manual land stations, Meteorological 

Terminal Aviation Routine (METAR) reports, ships, and drifting buoys are included in 

ERA-Interim.  Dee et al. (2011) describes how the selection process is applied to select 

and remove convectional surface data from the model.  After this quality control, u and v 

winds are constructed by the interpolation of upper-level atmospheric winds and Tiled 

ECMWF Scheme for Surface Exchanges over Land (TESSEL) surface scheme (Viterbo 

and Beljaars 1995). 

2.2.3 Statistical Analysis 

Wind data (u and v components) extracted from Reanalysis 1, Reanalysis 2, and 

ERA-Interim are used to calculate the actual wind speeds (V) modelled for each grid 

point (Equation 1).  Geographical information systems (GIS) is utilized to select 

reanalysis grid points that overlay the study area of Brazil.  Overall and individual mean 

wind speeds are determined for each in-situ and reanalysis climate product used in this 

analysis. 

 
22),( vuvuV   (1) 
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The data is then fitted to the Weibull distribution (Davenport 1963) to understand 

how the seasonal and annual wind speed histograms differ among the in-situ and climate 

reanalysis datasets.  This function is used in the study to represent the wind speed 

frequency distribution of each dataset.  Justus et al. (1978) describes five methods used to 

determine the two parameters [shape (k) and scale (λ)] of the Weibull distribution based 

on the wind statistics available.  For this study, the mean (V̅) and standard deviation (σ) 

from each dataset are used to estimate seasonal and annual k and scale λ values. 

Nonparametric statistics and quantile regression are used to describe the surface 

wind trend characteristics of Brazil during 1980–2014.  Mann-Kendall test (Mann 1945; 

Kendall 1975) and Sen’s slope estimator (Sen 1968) are employed to reveal the seasonal 

and annual linear trends of mean wind speeds for each dataset.  These two statistical 

methods are commonly applied in surface wind trend climatologies (e.g., Chen et al. 

2013; Dadaser-Celik and Cengiz 2014; Romanić et al. 2016).  However, this type of 

statistical analysis leaves many unanswered questions pertaining to how wind speeds 

vary across different percentiles.  Studies have documented wind speed trends for 

specific quartiles (Pryor et al. 2007; 2009; Pryor and Ledolter 2010; Guo et al. 2011) 

based on linear regression.  Here, overall and individual percentile (5%, 25%, 50%, 75%, 

and 95%) wind speed trends are identified for each dataset using quantile regression 

(Koenker and Bassett 1978).  The percentiles selected follow the typical convention of a 

standard boxplot.  Lastly, a comparative assessment of surface measurement and climate 

reanalysis datasets is performed to understand how wind speed trends differ 

geographically and temporally across Brazil. 
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2.3 Results 

2.3.1 Wind Climatology 

Four geographic regions are identified based on seasonal and annual mean wind 

speed climatology during 1980–2014 for Brazil (Figure 2.2).  The slowest mean wind 

speeds are found over the Amazon, where wind speed averages less than 2 m s
-1 

for each 

dataset.  A transition zone is located across central Brazil (Mato Grosso and Pará), where 

a gradual increase in elevation occurs.  Reanalysis winds indicate that the mean wind 

speeds for this region fall between 2 and 3 m s
-1

.  The third region, largely corresponding 

to the Brazilian Highlands, exhibits an average wind speed of 3–4 m s
-1

.  The final wind 

speed region is located on the perimeter of the Brazilian Highlands (i.e., coastal, 

southern, and northeastern Brazil), where mean wind speeds exceed 5 m s
-1

. 

Seasonal mean wind speeds across Brazil are influenced by macro-scale 

atmospheric circulations.  Figure 2.2a–2.2d shows that when the Intertropical 

Convergence Zone (ITCZ) is located south (north) of the Equator during summer and fall 

(winter and spring) mean wind speeds across Brazil are slower (faster).  This seasonal 

shift in mean wind speeds is influenced by the position of the South Atlantic Anticyclone 

(SAA).  As the ITCZ shifts seasonally, the SAA becomes a prominent feature that affects 

sea-level pressure (SLP) gradients over Brazil.  Schwerdtfeger (1976) shows when the 

ITCZ moves southward (northward), SLP decreases (increases) during summer and fall 

(winter and spring) over Brazil.  This relationship between the locations of the ITCZ and 

SAA controls the magnitude of wind speeds, with the fastest (slowest) observations 

occurring during winter and spring (summer and fall). 
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Figure 2.2.  Mean wind speeds (m s
-1

) for (a) summer (DJF), (b) fall (MAM), (c) winter 

(JJA), (d) spring (SON), and (e) annual based on surface measurement and reanalysis 

datasets during 1980–2014.  Mean seasonal and annual position of the ITCZ (dash line) is 

derived from Waliser and Gautier (1993). 

 

Overall annual average winds from each dataset were categorized into 4 groups 

(0–2, 2–4, and 4–6, and >6 m s
-1

).  INMET, Reanalysis 2, and ERA-Interim show that the 

majority of annual average wind speeds across Brazil are below 2 m s
-1

, while NCEI-ISD 

and Reanalysis 1 exhibited mean wind speeds that range between 2 and 4 m s
-1

.  The 

strongest (>6 m s
-1

) mean annual wind speeds occur with each climate reanalysis dataset.  
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These results demonstrate that the annual mean winds across Brazil are slow and light.  

This high frequency of low annual mean speeds is a result of the Amazon basin, where 

average wind speeds across the basin range between 1 and 2 m s
-1

 for each dataset and 

when located outside the Amazon basin, the average wind speed exceeds 3 m s
-1

. 

Figure 2.3 shows the seasonal and overall Weibull distribution of wind speeds by 

dataset.  The strongest (weakest) mean wind speeds are observed during winter and 

spring (summer and fall).  Weibull parameters display a gradual flattening (stretching) of 

the distribution, which supports higher (lower) wind speeds during winter and spring 

(summer and fall). 

The surface wind speed distributions also shows a variation exists between the 

five datasets.  INMET depicts an exponential distribution, where a low λ value indicates a 

higher random probability of expecting light winds (<2 m s
-1

) to occur.  In contrast, 

NCEI-ISD shows wind distributions more comparable to reanalysis data.  The best-fit 

wind distribution comparison of NCEI-ISD is to Reanalysis 1, which exhibit similar k 

and λ values during summer, spring, and annual periods (Figure 2.3a, 2.3d, and 2.3e).  

The difference shown in Weibull parameters between land-based stations is likely related 

to the physical environment.  INMET stations tend to be located in urban environments, 

whereas airport and military sites selected from NCEI-ISD are positioned in open terrain 

surroundings.  The high frequency of low wind speeds observed by INMET sites could 

also be influencing the overall seasonal and annual distribution.  Pes et al. (2017) 

identified data quality issues when examining minimum and maximum surface wind 

trends across Brazil between 1947 and 2014. 
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Figure 2.3.  Weibull probability density plots of surface and reanalysis datasets for (a) 

summer (DJF), (b) fall (MAM), (c) winter (JJA), (d) spring (SON), and (e) overall during 

1980–2014.  Mean wind speed (m s
-1

) [V̅], standard deviation (σ), shape (k), and scale (λ) 

parameter values are provided for each Weibull plot. 

 

The distribution of surface wind speeds for each reanalysis dataset is impacted by 

the type of land-cover and planetary boundary layer scheme used in the model.  This is 

supported by Reanalysis 1 and Reanalysis 2, which use similar raw observational data to 

calculate surface wind speeds.  Kanamitsu et al. (2002) describes that an updated 

planetary boundary and orographic scheme was introduced into Reanalysis 2.  This 

improved scheme used by Reanalysis 2 shows a lower mean wind speed and a reduction 

(stretching) of λ (k) values for each seasonal and annual period when compared to 

Reanalysis 1. 
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2.3.2 Linear Trend Analysis 

Overall linear seasonal and annual mean wind speed trends are displayed in Table 

2.2, which shows a high degree of variability exists between the five datasets from 1980 

to 2014.  INMET shows that mean wind speeds have significantly (p<0.05) decreased 

during all periods except winter.  This finding is in accordance with Santos and Silva 

(2013), who described negative linear wind speed trends for INMET stations across 

northeastern Brazil.  However, NCEI-ISD and ERA-Interim, show positive significant 

(p<0.05) linear wind trends during each seasonal and annual interval.  This temporal 

variation in trends is also described for Reanalysis 1 and Reanalysis 2, which exhibit 

negative (positive) wind speed trends for fall (spring).  The only agreement found 

between the datasets occurs during spring when INMET is excluded. 

Table 2.2.  Statistical regression (m s
-1

 decade
-1

) analysis of overall seasonal and annual 

mean wind speeds for in-situ and reanalysis datasets during 1980–2014.  A * indicates 

the linear regression is statistically significance at the 95% confidence-level. 

 

Dataset 
Summer 

(DJF) 

Fall 

(MAM) 

Winter 

(JJA) 

Spring 

(SON) 
Annual 

INMET -0.02* -0.03* -0.05* -0.02 -0.03* 

NCEI-ISD 0.17* 0.16* 0.16* 0.20* 0.17* 

Reanalysis 1 0.02 -0.04* -0.02 0.05* 0.00 

Reanalysis 2 0.00 -0.02 0.03 0.06* 0.02 

ERA-Interim 0.05* 0.03* 0.05* 0.06* 0.05* 

 

The differences that exist between the datasets demonstrate the importance of not 

interpreting trends based on overall mean wind speeds alone.  McVicar et al. (2008) 

found that reanalysis models (Reanalysis 1, Reanalysis 2, and ERA-40) underestimated 

overall annual u linear trends when compared to Australian wind data during 1975–2006.  

The study suggested that modifications in the data assimilation scheme or insufficient 

key-boundary layer parameterizations could contribute to the u winds calculated for each 
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model.  Vautard et al. (2010) showed a similar underestimated linear wind trend of 

Reanalysis 1, while analyzing surface wind speeds across the Northern Hemisphere 

between 1979 and 2008.  Their analysis also indicated that wind speed changes 

associated with ERA-Interim were related to alterations in macro-scale circulations.  

Consequently, these findings suggest that geographic and meteorological variables could 

affect wind speeds differently across Brazil.  Many of the studies reported by McVicar et 

al. (2012) performed their analysis on a regional scale, which allowed them to examine 

different factors (e.g., topography, land-cover, synoptic conditions) to explain wind speed 

trends observed within their study area.  Therefore, a geographic analysis will allow 

improved assessment of the differences between the datasets for Brazil. 

Seasonal and annual wind speed trends are displayed in Figure 2.4.  Surface 

winds along coastal Brazil show varying trends by season and dataset.  Stations for 

NCEI-ISD show positive trends, while INMET exhibits declining wind speeds for each 

season and annually along the coastal states of Ceará to Rio Grande do Sul.  Reanalysis 1 

shows a coastal concentration of positive temporal trends in wind speed north of 10° S 

for northern and northeastern Brazil.  Reanalysis 2 suggests a positive temporal trend at 

coastal locations that reaches its maximum extent during spring and gradually becomes 

more concentrated over northeastern Brazil during summer and fall.  ERA-Interim 

indicates a broad region of temporally increasing winds over northern Brazil, with the 

highest positive wind trends within the states of Pará and Maranhã.  The primary focus is 

located north of 15° S with an exception during spring and summer, where a localized 

area of increasing wind speeds is identified over the wetlands of Pantanal and the state of 

Mato Grosso. 
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Figure 2.4.  Geographic distribution of wind speed trends (m s
-1

 decade
-1

) for (a) summer 

(DJF), (b) fall (MAM), (c) winter (JJA), (d) spring (SON), and (e) annual for INMET, 

NCEI-ISD, Reanalysis 1, Reanalysis 2, and ERA-Interim.  Black outlines or shaded areas 

depict statistically significant trends at the 95% confidence-level. 

 

Negative linear temporal trends are also present across portions of Brazil.  

Reanalysis 1 shows that wind speed decreases have occurred over central and 

southeastern Brazil.  NCEI-ISD suggests a similar zonal alignment of negative wind 

trends that extends from Mato Grosso do Sul to São Paulo, with two localized declining 

patterns situated along the mouth of Amazon River and archipelago islands of Fernando 

de Noronha.  INMET reveals that negative wind speed trends are mostly concentrated 
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over the states of Bahia and Minas Gerais, with a secondary axis located over Rio Grande 

do Sul.  A similar zonal pattern is evident for southeastern Brazil with ERA-Interim 

during summer and fall.  However, Reanalysis 2 shows the concentration of decreasing 

wind speeds farther north over the central Brazilian Highlands.  A localized negative 

trend is also located along the peripheral of the Guiana Highlands during winter and 

spring.  INMET, Reanalysis 1, and Reanalysis 2 support the decline over the Guiana 

Highlands but only Reanalysis 2 produces a negative surface wind speed trend into the 

Amazon basin. 

The statistical significance of each dataset is also shown in Figure 2.4.  A 

statistically significant (p<0.05) positive linear surface wind speed trend is exhibited 

across northeastern Brazil for Reanalysis 1, Reanalysis 2, and ERA-Interim.  Likewise, a 

general consensus of a negative linear surface wind speed trend is found over southern 

and southeastern Brazil during summer and fall for all datasets excluding NCEI-ISD. 

The proximity and location of both wind speed trends generate questions about 

the role of geographic, atmospheric, and oceanic variables for Brazil and how it is 

modeled.  Santos and Silva (2013) suggested that wind speeds from stations located along 

coastal northeastern Brazil are influenced by changes in ocean-land thermal gradients and 

trade winds from the seasonal cycle of the ITCZ and SAA, while inland sites (i.e., 

Maranhão, Piauí, and Bahia) are impacted by temporally weakening SLP gradients from 

the equatorial low and physical topography (i.e., vegetation and elevation).  Hastenrath 

(1976) associated stronger (weaker) than normal surface wind speeds along the coast of 

northeastern Brazil with dry (wet) periods.  This synoptic setting develops when the 

ITCZ is shifted equatorward (poleward), which allows the SAA to move into lower 



54 

 

(higher) latitudes during austral winter (summer).  As a result, sea surface temperatures 

(SSTs) along the coast of northeastern Brazil decrease (increase), which allows a larger 

(smaller) temperature gradient to develop between the land and ocean for winter 

(summer) in the Southern Hemisphere.  As this thermal gradient increases (decreases), u 

winds located on the equatorward side of the SAA increase (decrease) and move toward 

the coast of northeastern Brazil.  However, Vizy and Cook (2016) found that surface 

winds across the South Atlantic Basin (SAB) have increased despite a poleward shift of 

the SAA between 1982 and 2013.  The study showed that an increased in latent heat 

transfer from the southward movement of the SAA has led to an increase in SLP. Vizy 

and Cook (2016) further explain that this rise in SLP intensifies near-surface winds, 

which in response transports more latent energy away from the area and causes a decline 

in SSTs to occur between 18° S and 28° S in the SAB.  It is believed that the evolving 

position of the SAA and ITCZ is influencing the surface wind trends found across 

northern and northeastern Brazil. 

Modifications found in land and SSTs could affect the balance between wind 

speed and SLP.  This balance could be related to changes occurring with atmospheric 

temperatures being observed across South America (Skansi et al. 2013).  In particular, 

diurnal temperature ranges (DTR) have decreased across southern Brazil during the 20
th

 

century (Marengo and Camargo 2008; Sansigolo and Kayano 2010).  Both studies 

indicate that decreasing DTRs can be attributed to changes in land-cover and 

urbanization.  Marengo and Camargo (2008) also examined annual SSTs between 1990–

2002 and 1961–1969 for the SAB and found positive anomalies along coastal Brazil.  

Klink (1999) noted that decreasing surface wind speeds found across the U.S. were 
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related to the weakening of the pressure gradient caused by high-latitudinal hemispheric 

warming.  This finding suggests that alternations between temperature and pressure 

gradient could attribute to the stilling of surface winds found across southern Brazil 

during 1980–2014. 

2.3.3 Quantile Regression Analysis 

Figure 2.5 shows the annual quantile temporal linear wind speed trends of Brazil 

during 1980–2014.  The overall wind speed trends across the lowest percentile (i.e., 5%) 

exhibit minimal change (Figure 2.5a).  Positive and negative geographic trends exist 

across portions of northeastern and southeastern Brazil of the lowest 5% and 25% 

quantiles (Figures 2.5a–2.5b).  This finding is supported by Pes et al. (2017), who 

documented that weather stations located along the coast of Brazil showed changes in 

minimum wind speeds between 1947 and 2014.  A gradual spatial expansion of wind 

trend magnitudes is detected with the largest changes occurring among the upper quantile 

wind speeds (i.e., 75% and 95%) for each dataset (Figures 2.5d–2.5e).  Annual upper 

quantile regressions show predominately increasing (decreasing) wind speed trends over 

the Amazon basin for ERA-Interim (Reanalysis 2) [Figures 2.5d–2.5e].  Reanalysis 1 

depicts a spatial pattern of increasing wind speeds developing over the western part of 

Amazonas and declining extreme wind speeds across northeastern Amazonas, Para, and 

Roraima.  INMET shows comparable negative trends to Reanalysis 2, which are observed 

across the states of Amazonas and Pará. 

A seasonal quantile trend analysis is also performed for austral summer (Figure 

2.6) and winter (Figure 2.7).  Reanalysis datasets show large areas of increasing 

(decreasing) lower quantile winds along the Brazilian coast (highland) during summer 
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(Figure 2.6a–2.6b).  This suggests that the summer land-ocean thermal gradient is 

strengthening over northeastern Brazil.  Silva (2004) documented that minimum 

temperatures across northeastern Brazil have increased during later part of the 20
th

 

century.  This temperature modification along the coast of Brazil would allow a stronger 

thermal gradient to develop between the land and ocean, which would enable wind 

speeds to increase at the lower quantiles. 

 

Figure 2.5.  Annual quantile regression (m s
-1

 decade
-1

) by percentile (a) 5%, (b) 25%, (c) 

50%, (d) 75%, and (e) 95% for INMET, NCEI-ISD, Reanalysis 1, Reanalysis 2, ERA-

Interim for the period of 1980 to 2014. 
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Figure 2.6.  As in Figure 2.5 except for summer (DJF). 

 

During winter, geographic trends of minimum wind speeds are present but on a 

broader, regional scale (Figure 2.7).  Positive and negative wind trends extend farther into 

central Brazil and portions of the Amazon basin for each reanalysis dataset, while station 

data depict quantile trends along parts of eastern Brazil.  This change occurring at lower 

wind speeds indicates that macro-scale conditions are possibly shifting across Brazil 

during the dry season.  Degola (2013) documented that when the SAA shifts west (east) 

of its annual climatological mean, 10-m u winds increase (decrease), while temperatures 
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decrease (increase) across northeastern Brazil.  The study further investigated the position 

of the SAA and found that under future warming scenarios, it is forecasted that the 

longitudinal center of the SAA will continually progress westward during the 21
st
 

century.  It is then estimated that lower percentile wind speeds would continue to increase 

and impact wind energy production over northeastern Brazil. 

 

Figure 2.7.  As in Figure 2.5 except for winter (JJA). 

 

Upper quantiles (75%–95%) show that wind speeds are changing more 

substantially when compared to lower percentiles during austral summer (Figure 2.6) and 
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winter (Figure 2.7).  INMET shows far more decreasing wind speeds than increasing 

nationwide.  NCEI-ISD displays declining winds for stations located in the states of 

Amapá, Pará, and eastern Amazonas for each season.  Reanalysis 1 depicts decreasing 

surface winds across portions of northern Brazil, but with largest negative trends over 

southeastern Brazil.  However, Reanalysis 2 exhibits a defined zone of diminishing 

surface winds that extends from the interior of Brazil to the Brazilian Highlands, with the 

highest declining trends found over the state of Tocantins. ERA-Interim shows a negative 

concentration of upper quartile trends across southeastern Brazil during austral summer. 

Additionally, upper positive trends are found along the coast of Brazil for each dataset 

except for ERA-Interim, which exhibits an increasing pattern north of 15° S.  A 

secondary axis of increasing quantile winds are found between the states of Rondonia and 

Mato Grosso do Sul during winter (summer) for Reanalysis 2 (ERA-Interim).  However, 

INMET stations show no compatible positive quantile trends when compared to 

numerical data. 

 

2.4 Conclusions 

This study examines the surface wind speed trend characteristics of Brazil during 

1980–2014 based on in-situ and climate reanalysis products.  In general, the lowest 

(highest) seasonal and annual mean winds occur over the Amazon (coastal) states.  The 

weakest (strongest) wind speeds develop during summer and fall (winter and spring).  

Density plots of the wind distributions support the seasonal wind patterns, but show 

differences exist between each dataset, possibly stemming from land-cover and data 

quality concerns associated with INMET. 



60 

 

Nonparametric statistics are implemented to describe the overall linear trends of 

seasonal and annual mean wind speeds for Brazil.  INMET observation sites show that 

wind speeds have statistically (p<0.05) declined across seasonal and annual periods 

(except for winter) from 1980 to 2014.  However, NCEI-ISD and ERA-Interim exhibit a 

statistically significant (p<0.05) increase in seasonal and annual winds across Brazil.  

This temporal inconsistency of the overall seasonal and annual surface wind speed trends 

of both in-situ and reanalysis datasets is concerning.  It is supported by the linear trend 

differences that exist between Reanalysis 1 and Reanalysis 2, which use similar raw data 

to extrapolate surface winds across Brazil.  Pryor et al. (2009) demonstrated that 

discrepancy exists between surface wind measurements and reanalysis products while 

examining surface wind speed trends across the United States.  The results from this 

study support that outcome and suggest the concerns that occur for station observations 

and climate reanalysis datasets. 

This study also examined how lower and upper percentile wind speeds have 

changed linearly through time based on quantile regression (Koenker and Bassett 1978).  

Lower percentile (5% and 25%) trends show that positive or negative wind speed 

changes that exist tend to be found along the coast of Brazil.  Median quantile (50%) 

trends similarly follow the patterns described by mean wind speeds for in-situ and 

reanalysis products.  The highest spatial distribution wind speed change is found with 

upper quantiles (75% and 95%), which were located in coastal and southeastern Brazil.  

The variation that exists among extreme wind speeds for surface wind measurements and 

climate models implies that other atmospheric or geographic variables are possibly 

changing over the study region.  Degola (2013) documented using ERA-Interim that 
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changes in the location of the SAA were responsible for influencing surface winds for 

northeastern Brazil.  Any modifications in wind speeds across each quantile could be 

related to changes in temperature and pressure gradients observed over Brazil and 

warrants further investigation. 

It is challenging to compare and assess historical and reanalysis surface wind 

products to each other adequately.  This conclusion is supported by Troccoli et al. (2012) 

who investigated three reanalysis products and found that land-based wind speed trends 

vary greatly between models, which made it difficult to determine which reanalysis 

product can replicate near-surface winds across Australia.  Pryor et al. (2009) concluded 

that no distinct agreement could be reached when analyzing in-situ, regional climate, and 

reanalysis datasets for the contiguous United States. 

The present study found some agreements between weather station and climate 

reanalysis models.  However, reanalysis products show overall annual and seasonal mean 

wind speeds and trends that are comparable to NCEI-ISD than INMET.  This favorable 

agreement of NCEI-ISD with reanalysis products may be related to the fact that INMET 

reporting stations tend to be located in urban environments across Brazil.  Pes et al. 

(2017) describes three regions across Brazil that are generating wind energy, with the 

largest contribution coming from the northeast followed by the southeastern and southern 

regions.  Therefore, further research is required to understand how and why differences 

exist between historical data and reanalysis products with the goal in mind to improve 

and produce better future forecasting on wind energy production for Brazil. 
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CHAPTER 3 

POSITION OF THE SOUTH ATLANTIC ANTICYCLONE AND ITS IMPACT 

ON SURFACE CONDITIONS ACROSS BRAZIL 

 

3.1 Introduction 

The climatological position of atmospheric features (cyclones and anticyclones) 

have been identified and examined to understand how their spatial and temporal 

characteristics have changed during the 19
th

 and 20
th

 century (Teissereng de Bort 1883; 

Zishka and Smith 1980; Whittaker and Horn 1984; Harman 1987; Sahsamanoglou 1990; 

Sinclair 1996; 1997; Davis et al. 1997; Mächel et al. 1998; Degola 2013).  Studies have 

highlighted changes in macro-scale atmospheric patterns as a possible cause for the wind 

trend patterns being observed across Earth’s surface (Tuller 2004; St. George and Wolfe 

2009; Abhishek et al. 2010; Jiang et al. 2010; Li et al. 2010; Pryor and Ledolter 2010; 

You et al. 2010; Fu et al. 2011; Hewston and Dorling 2011; Yang et al. 2012; Chen et al. 

2013; Lin et al. 2013; You et al. 2014).  This plausible reason may be applicable to the 

South Atlantic Anticyclone (SAA), which is a semi-permanent pressure system that 

predominately controls wind speeds across Brazil (Ratisbona 1976).  Santos and Silva 

(2013) concluded that macro-scale atmospheric circulations and topography influence 

surface wind speeds and wind energy production for northeastern Brazil.  Regarding 

wind energy, the states of northeastern Brazil currently account for 78% (332) and 94% 

(151) of the national operational and planned sites, respectively, which constitute 81% 

(8.4 GW) of all wind energy produced in the country (ANEEL 2017).  Therefore, any 

changes in the climatological position of the SAA could impact wind speeds across 

Brazil which would affect wind energy production, especially for northeastern Brazil. 



71 

 

Previous work has closely examined the latitudinal and longitudinal position of 

the Intertropical Convergence Zone (ITCZ) and the SAA and their impacts on various 

climatological characteristics within the South Atlantic Basin (SAB) [Hastenrath 1985; 

Mächel et al. 1998; Degola 2013; Sun et al. 2017].  Mächel et al. (1998) documented 

circulation center trends based on position (latitude and longitude) and sea-level pressure 

(SLP) gradient and trends in the SLP core using three temporal periods (1881–1989, 

1950–1989, and 1970–1989) for summer (DJFM) and fall (JJAS).  The study described a 

relationship between the latitudinal position of the ITCZ and SAA during 1950–1989 and 

1970–1989.  The northward (southward) movement of both ITCA and SAA resulted in 

increasing (decreasing) SLP gradients over the SAB during summer (DJFM).  Based on 

this conclusion, it is expected that modifying the location of the ITCZ and SAA can 

affect wind speeds across Brazil.  Degola (2013) found faster (slower) than normal 10 m 

surface wind speeds develop for northeastern Brazil during 1989–2010 when the 

longitudinal center of the SAA is located west (east) of its climatological monthly mean.  

Both of these studies establish the relevance of investigating the latitudinal and 

longitudinal position of the SAA center for Brazil and the SAB.  As such, the goal of this 

research is to construct a spatial and geographic climatology that examines the daily 

relationship between Brazilian surface wind characteristics and the position of the SAA 

within the SAB from 1980 to 2014. 

 

3.2 Data and Methods 

3.2.1 Reanalysis Datasets 

Three reanalysis datasets were selected to analyze the surface wind characteristics 

associated with the central location of the SAA in the SAB.  The period of 1980 to 2014 
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was chosen based on the temporal availability of each climate reanalysis used in the 

study.  National Center for Environmental Prediction/National Center for Atmospheric 

Research (NCEP/NCAR) reanalysis dataset (Reanalysis 1) is a 2.5° x 2.5° (T62) global 

resolution model that assimilates meteorological components for 28 vertical levels of the 

atmosphere from 1948 to present (Kalnay et al. 1996).  National Center for 

Environmental Prediction and Department of Energy (NCEP-DOE) reanalysis dataset 

(Reanalysis 2) is an improved form of Reanalysis 1, which includes an enhanced spatial 

resolution (1.875° x 1.875°) of surface and atmospheric conditions from 1979 to present 

time (Kanamitsu et al. 2002).  European Centre for Medium-Range Weather Forecasts 

(ECMWF) Interim (ERA-Interim) is a 0.75° x 0.75° (T255) global atmospheric 

assimilated model constructed at 60 vertical levels for the period of 1979 to present (Dee 

et al. 2011).  Data obtained from each reanalysis product consists of six-hourly (0, 6, 12, 

and 18 UTC) 10 m u (west–east) and v (south–north) wind component, SLP, and 2 m air 

temperature which was used to calculated daily, seasonal, and annual mean grid point 

values for Brazil and the SAB during 1980–2014.  Resultant surface wind speeds for each 

grid point (V) are determined based on the u and v wind components obtained from 

Reanalysis 1, Reanalysis 2, and ERA-Interim (Equation 1). 

 
22),( vuvuV   (1) 

3.2.2 Identify SAA Center in the SAB 

Overall daily mean SLPs (based on the 4-times daily observations) were 

calculated for each reanalysis grid point found within the SAB during the period of 1980 

to 2014.  The preliminary domain of 10° S to 50° S and 60° W to 20° E was used to 

identify the daily center of high pressure in the SAB, which follows similar boundaries 
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employed by earlier analyses (i.e., Ito and Ambrizzi 2000; Castro et al. 2015).  Degola 

(2013) used monthly mean SLPs to determine the central location of pressure for the 

SAA instead of daily mean SLPs because of the concern that migrating anticyclones and 

fragmented pressure centers in the SAB may disrupt the analysis when approximating the 

true mean position of the semi-permanent SAA.  Ito and Ambrizzi (2000) also found that 

the SAA shifts from its climatological position approximately every 4 to 5 days because 

of mid-latitude dynamics and frontal passages that occur in the SAB during austral 

winter.  While these issues are acknowledged, this study still believes by identifying the 

daily position of the maximum pressure center in the SAB is the most appropriate method 

to provide a comprehensive background on the surface wind characteristics of Brazil. 

Upon selecting a defined study area for conducting a daily analysis, an algorithm 

was developed to determine the daily mean latitude and longitude location of the 

maximum pressure center within the SAB for Reanalysis 1, Reanalysis 2, and ERA-

Interim from 1980 to 2014.  Previous studies have implemented second-order Taylor 

series (Murray and Simmonds 1991), nearest-neighbor (Sinclair 1997; Blender and 

Schubert 2000; Ito and Ambrizzi 2000; Wernli and Schwierz 2006; Zarrin et al. 2010; 

Degola 2013), and threshold based (Davis et al. 1997) algorithms to identify the 

latitudinal and longitudinal center of pressure.  For this study, the daily center of the SAA 

is derived using a simple mean-based algorithm (Figure 3.1).  The initial step of the 

algorithm first calculates the mean SLP based on the preliminary boundary of 10° S to 

50° S and 60° W to 20° E (label A), which selects SLP grid points that are greater than 

the daily average for further processing (label B).  This sequence is repeated for two 

additional computations using the remaining grid SLP values selected from the previous 
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step to find the location center of the SAA (labels C–D).  As the final task of the 

algorithm, all remaining SLPs that are one standard deviation above the mean (label E) 

are used to calculate the daily mean latitude and longitude center of the SAA for the SAB 

(label F).  It should be noted that passing anticyclones that typically form during austral 

winter and spring in the Southern Hemisphere are subject to be included in the dataset if 

the algorithm determines it to be the maximum pressure center for that day.  With this 

concern, the results from this algorithm should be inferred with caution. 

 

Figure 3.1.  An example of the algorithm employed to identify the daily mean center of 

the SAB high pressure system (label F) for 1 January 1980 from Reanalysis 1.  Initial 

black box (label A) represents the boundary used to select grid values that follow the 

criterion (labels B–E) set by the algorithm for each reanalysis used in the study. 

3.2.3 Surface Wind Speed and SAA Characteristics of the SAB 

Nonparametric statistics are used to describe the linear trends and relationships 

that may exist between the latitudinal and longitudinal position of the SAA and Brazilian 
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wind speed characteristics for each reanalysis dataset.  Sen’s slope estimator (Sen 1968) 

is utilized to evaluate seasonal and annual mean wind speed and positional trends based 

on spatial and temporal patterns for the SAB.  Next, daily surface characteristics (wind 

speed, SLP, and air temperature) are correlated with the mean location of central pressure 

for the SAB using the Mann-Kendall test (Mann 1945; Kendall 1975) to determine if any 

geographic patterns exist across Brazil.  It should be noted that to test the correlation of 

surface wind, temperature, and SLP, geographic coordinates (positive and negative) 

assigned to the SAA are based on the latitude and longitude spherical systems (e.g., 

Eastern and Western Hemisphere) maintained by each  reanalysis dataset. 

To further quantify the geographic correlations, wind speed, SLP, and air 

temperature anomalies were calculated and compared with the central location of the 

SAA from 1980 to 2014.  Individual surface anomalies were constructed based on the 

annual mean of each grid point.  Positive and negative anomaly boxplots identified how 

the annual mean latitude and longitude position of the SAA varies between the 5 regions 

of Brazil.  Figure 3.2 shows the geographical regions used to assigned surface anomalies 

into one of five zones based on Instituto Brasilerio de Geografia e Estatística (IBEG).  

Based on these results, an average surface wind anomaly for each grid point is calculated 

on the position of the SAA for five different surface scenarios.  The purpose of the 

surface wind scenarios is to relate the position of the SAA to wind speed across Brazil 

during the thirty-five study period. 
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Figure 3.2.  The five geographical zones of Brazil defined by the IBEG used to interpret 

surface wind characteristics associated with the SAA pressure center in the SAB. 

 

3.3 Results 

3.3.1 Linear Trends of Surface Wind Speed and SAA for the SAB 

Figure 3.3 demonstrates seasonal and annual mean linear wind speed trends in the 

SAB and adjacent South America during 1980–2014.  Positive wind trends found in the 

study are primarily located in two geographic areas.  First, increasing surface winds are 

found poleward of 20° S over the SAB during summer (DJF) and fall (MAM) for 

Reanalysis 1 and Reanalysis 2 (Figure 3.3a–b).  This positive linear wind trend detected 

is related to SLP and sea surface temperature changes (SST) occurring within the spatial 

domain of 18° S–25° S and 30° W– 0° from 1982 to 2013 (Vizy and Cook 2016).  The 

study found that SSTs (SLPs) are linearly decreasing (increasing) within the 

climatological position of the SAA based on atmospheric and oceanic reanalysis products 
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during the dry seasons.  This relationship identified between SLP and SST would result 

in a stronger pressure gradient to form, which would cause an increase of surface wind 

speeds to be observed poleward of 20° S in Reanalysis 1 and Reanalysis 2. 

 
 

Figure 3.3.  (a) Summer (DJF), (b) fall (MAM), (c) winter (JJA), (d) spring (SON), and 

(e) annual spatial distribution of mean wind speed trends (m s
-1

 decade
-1

) with mean wind 

direction across the SAB for Reanalysis 1, Reanalysis 2, and ERA-Interim from 1980 to 

2014. 
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During austral winter and spring, positive linear wind trends found are related to 

oceanic surface currents in the SAB (Figure 3.3 c–d).  The strongest positive trends were 

found along the South Equatorial Current (SEC), where wind speeds have increased more 

than 0.3 (0.1) m s
-1

 decade
-1

 for Reanalysis 1 and Reanalysis 2 (ERA-Interim).  This 

spatial linear trend occurs because of the northward shift of the ITCZ and SAA, which 

relocates the orientation of SST gradients between 5º S and 15º S that transports cooler 

SSTs from the Benguela Current into the equatorial waters (Grodsky and Carton 2003).  

A temporal analysis also shows that SSTs found along the SEC have cooled based on 

Advanced Very High Resolution Radiometer (AVHRR) Pathfinder version 5 data from 

January 1985 to December 2004 (Good et al. 2007).  However, Vizy and Cook (2016) 

found that SSTs have increased between 18° S and 25° S during winter and spring for the 

period of 1982 to 2013.  The contrasting linear SST trends that exist between the cooling 

equatorial and warming subtropical waters would allow a larger thermal gradient to 

develop on the northward side of the SAA.  With this temperature gradient change, 

southeastern trade winds along the SEC would increase as described by each reanalysis 

dataset for austral winter and spring. 

While each reanalysis product shows increasing seasonal trends across the SAB, 

negative wind trends are still documented over the continent of South America.  The 

primary axis of negative trends described in the study is found across southeastern and 

southern Brazil during summer and fall (Figure 3.3a–b).  This decline in wind speed 

trends may be correlated to changes observed in surface air temperature.  Klink (1999) 

explained that wind speed trends found across the U.S. were related to modifications in 

pressure and temperature gradient that develop at higher latitudes.  Similarly, previous 
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studies showed that minimum surface air temperatures have increased over southern 

Brazil (Marengo and Camargo 2008; Sansigolo and Kayano 2010).  This change in 

minimum surface air temperature has also been correlated with a decline in the diurnal 

temperature range for southern Brazil (Vincent et al. 2005).  As a result, it is expected 

that the weakening of austral summer and fall wind speeds described by each reanalysis 

dataset is possibly linked to temperature (diurnal temperature range) and pressure 

gradient changes that have developed over southeastern and southern Brazil during the 

last century. 

 
 

Figure 3.4.  Annual and seasonal latitudinal and longitudinal trends of the SAA based on 

Reanalysis 1 (red), Reanalysis 2 (blue), and ERA-Interim (green) during 1980–2014. 

 

The geographic analysis of surface wind speed trends performed from this study 

demonstrates that changes in macro-scale atmospheric circulation are a possible reason 

for decreasing and increasing winds across Brazil and the SAB.  Therefore, the evolution 

of the climatological center of the SAA over the SAB was examined.  Figure 3.4 
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illustrates the seasonal and annual trends based on latitudinal and longitudinal mean 

center of the SAA between 1980 and 2014.  It is evident that two distinct patterns are 

documented based on latitude and longitude positions in the SAB.  Reanalysis datasets 

show a poleward shift in the latitudinal center of the SAA for each seasonal and annual 

interval, with the largest (smallest) relocations developing during fall (winter).  This 

southward shift of the SAA is supported by a linear increase of SLP occurring at higher 

latitudes across the SAB (Vizy and Cook 2016).  With this poleward shift in SLP, Degola 

(2013) showed a continued southward shift of the SAA into the early portion of the 21
st
 

century based on six future warming scenarios.  

However, a higher degree of seasonal variability exists when analyzing longitudinal 

trend position of the SAA center for the SAB.  Results show that the longitudinal center 

for winter and spring are trending in opposite directions, while summer and fall portray 

marginal changes in longitude.  Degola (2013) suggests that the interannual longitude 

variability during winter and spring is influenced by extratropical cyclone activity in the 

SAB.  Similarly, Ito and Ambrizzi (1999) further documented that the SAA tends to be 

located east (west) of its climatological mean when frontal passages are frequent (less 

frequent to non-existent) in the SAB between 1982 and 1996.  It is plausible that the 

frequency or intensity of extratropical cyclones in the Southern Hemisphere has changed 

over time which has allowed the longitudinal trends observed during spring and winter to 

be identified in this analysis.  Reboita et al. (2015) determined the number of Southern 

Hemisphere extratropical cyclone occurrences has increased (remained constant) during 

austral winter (spring) between 1980 and 2012.  The study also documented a positive 

temporal trend in cyclonic activity over southern Brazil during winter.  This increased 
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frequency of extratropical cyclones developing over southern Brazil would support the 

eastward shift of the SAA found with Reanalysis 1, Reanalysis 2, and ERA-Interim. 

3.3.2 Brazilian Surface Correlations Based on the SAA 

With the continual geographic and temporal shifting of the SAA center in the 

SAB, it is important to understand how wind speeds change as a result of the movement 

of the high pressure center (Figures 3.5–3.6).  Figure 3.5 shows the geographic seasonal 

and annual correlations between daily mean wind speed and latitudinal pressure center 

during the 35-year study period.  When the latitudinal center shifts to lower latitudes, 

wind speeds across northern and northeastern Brazil increase, while southern and 

southeastern Brazil observe a decline in wind speeds.  Central-West Brazil and eastern 

Amazon basin act as a transitional boundary between northern and southern Brazil which 

causes a lower degree of correlation to exist for each season. 

A spatial pattern is also observed when analyzing daily mean wind speeds with 

longitudinal position of the SAA for the SAB (Figure 3.6).  It shows that when the center 

of the SAA shifts to the east (west), wind speeds across the majority of Brazil decrease 

(increase), with the exception of grid points located along equatorial Brazil.  This result 

supports findings of Degola (2013) who concluded that surface u winds across eastern 

Brazil are stronger (weaker) when the SAA is located west (east) of its climatological 

mean position in the SAB.  The only region where the longitudinal position does not 

correlate with wind speed is in the western Amazon basin during austral summer (Figure 

3.6a).  This is a result of the equatorial trough (i.e., ITCZ) that develops over the Amazon 

basin, which controls the daily weather conditions observed during summer (Hastenrath 

1985). 
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Figure 3.5.  Spatial correlations between wind speed and latitudinal center of the SAA for 

(a) summer (DJF), (b) fall (MAM), (c) winter (JJA), (d) spring (SON), and (e) annual for 

Reanalysis 1, Reanalysis 2, and ERA-Interim during 1980–2014.  Hatched areas indicate 

the correlation is statistically significant at the 95% confidence-level. 
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Figure 3.6.  As in Figure 3.5 except for longitude. 
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Figure 3.7.  Annual regional latitudinal and longitudinal correlations between the daily 

mean position of the SAA and (a) SLP and (b) temperature for Reanalysis 1 (circle), 

Reanalysis 2 (square), and ERA-Interim (triangle). 
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To understand how these changes in wind speeds are linked to other atmospheric 

conditions as they are in turn associated with the SAA, daily mean SLP and surface air 

temperature were examined with respect to latitude and longitude at a regional scale.  

Each grid point located over Brazil was assigned to one of five zones established by 

IBEG.  After each point was assigned to a zone, individual correlations were performed 

to determine how SLP and temperature are geographically related to the SAA within the 

SAB.  Figure 3.7 shows the annual correlations for SLP and temperature based on central 

latitude and longitude position of the SAA across Brazil during 1980–2014.  As the 

pressure center moves northward and westward, SLP increases (decreases) for northern 

and northeastern (southern) Brazil (Figure 3.7a) across each dataset.  Consequently, 

surface temperatures across Brazil decrease (increase) when the SAA moves farther west 

(east) and north (south) [Figure 3.7b].  This temperature correlation is supported by the 

presence of moisture and clouds provided by the SAA in the SAB.  Moscati and Gan 

(2007) found that when the SAA is located south and west of its climatological position 

allowed southeastern trade winds to strengthen and transports moisture into northeastern 

Brazil, which enabled cloud formation and precipitation to develop and a decrease in 

temperature to occur.  As for southern and southeastern Brazil, temperature changes 

develop when oceanic moisture transported by the northeastern trade winds associated 

with the SAA and heat from the interior of Brazil converge to form convective 

thunderstorms (Reboita et al. 2010).  Degola (2013) also found that air temperature 

anomalies for southern Brazil increase (decrease) when the SAA is shifted west (east) of 

its climatological mean.  However, this analysis showed temperature increased 

(decreased) when the longitudinal position is shifted away (toward the continent of South 
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America for southern and southeastern Brazil.  Therefore, it is important to further 

evaluate the role of latitude and longitude on surface winds, SLP, and temperature across 

the five different regions of Brazil. 

3.3.3 SAA Characteristics Based on Surface Anomalies 

Figure 3.8 displays the regional mean latitude and longitude positions of wind 

speed, SLP, and temperature anomalies for each reanalysis.  Above (below) normal wind 

speeds across northern, northeastern, and central-west (southeastern and southern) Brazil 

occur when the SAA center is located at lower (higher) latitudes (Figure 3.8a).  As 

expected, changes in wind speeds result because of alterations in SLP and temperature 

observed across each region.  The northward shifting of the SAA northward causes SLP 

to rise across northern, northeastern, central-west, and southeastern Brazil (Figure 3.8b) 

and temperature to fall across all regions (Figure 3.8c).  These surface conditions develop 

when the u surface winds flow across the SAB, which transports oceanic air into coastal 

Brazil.  The resulting thermal and pressure differences established between the land and 

ocean cause the gradients to increase, which in response allows wind speeds to increase 

across the mountains and plateaus of northern and northeastern Brazil.  The opposite 

pattern is described for southern Brazil, where SLP decreases while the SAA center is 

located at lower latitudes. 

Longitudinally, wind speeds increase (decrease) when the central location of the 

SAA is located closer to (farther from) South America, which enables surface 

temperatures to decrease (increase) across all regions of Brazil (Figure 3.8).  By contrast, 

Degola (2013) found that surface temperatures increase (decrease) when the SAA is west 

(east) of its climatological mean position for southeastern and southern Brazil based on 
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average synoptic conditions for September 2007 (1993).  This conflicting result with 

Degola (2013) is related to the usage of monthly instead of daily averages which cannot 

distinguish migratory anticyclones in the higher latitudes of the SAB.  The zonal tracking 

of these transient high pressure features typically bring below normal temperatures and 

increased barometric pressure values to southern Brazil (Satyamurty et al. 1998) which is 

supported by the ridge-to-trough (i.e., southwest-to-northeast in the Southern 

Hemisphere) propagation of Rossby waves that originate from the tropical western 

Pacific (Marengo et al. 2002).  This relationship between air temperature and SLP causes 

the gradients to increase which results in the increase of wind speeds across the region.  

Once the migratory anticyclone shifts away from the continent, temperatures increase 

while SLP and wind speeds fall for the northern latitudes of Brazil.  This life cycle 

follows the results of Sinclair (1996), which documented the initial formation of the 

passing anticyclone over the continent of South America, intensification off the coast of 

South America, and eventual dissipation on the eastern side of the SAB. 

Lower (higher) spatial variability is observed in SLP anomalies of northern and 

northeastern (central-west, southeastern, and southern) Brazil (Figure 3.8b).  Similarly, 

the variability of temperature is greatly dependent on the position of the SAA for 

southeastern and southern Brazil.  The deviation between SLP and temperature anomalies 

for northern and southern Brazil is influenced by separate two meteorological 

environments.  Atmospheric pressure within equatorial Brazil and Amazon basin changes 

minimally between summer and spring because of the influence of the ITCZ 

(Schwerdtfeger 1976).  Any changes that develop in SLP occur when the ITCZ is 

seasonally displaced northward, which allows the SAA to migrate equatorward and 
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therefore play a more prominent role of influencing SLP characteristics for the region.  

On the other hand, the zonal transient anticyclones across the SAB contribute to the 

annual temperature patterns found, especially for southeastern and southern Brazil. 

 

Figure 3.8.  Regional latitudinal (left) and longitudinal (right) mean position boxplots of 

the SAA based on (a) wind speed, (b) SLP, and (c) air temperature negative (gray) and 

positive (black) anomalies for Reanalysis 1 (red), Reanalysis 2 (blue), and ERA-Interim 

(green) during 1980–2014. 

 

This study has documented that the position of the SAA in the SAB affects 

surface wind characteristics observed across Brazil.  Five surface map scenarios illustrate 

how wind speeds vary across Brazil when the location of the SAA center is situated 
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between a specific range of latitudes and longitudes within the SAB (Figure 3.9).  First, 

when the latitudinal center is shifted north of its climatological mean, the average wind is 

above (below) normal for portions of northeastern (coastal southern) Brazil (Figure 3.9a).  

SLP isobars are oriented parallel to the coast of Brazil which allows a larger pressure 

gradient to form which enables stronger than normal winds to be observed across 

northeastern Brazil.  If the SAA center is found off the coast of Uruguay, where on-shore 

flow is present, a change in pressure gradient is shown which causes wind speeds across 

the interior and southern Brazil to be faster than normal (Figure 3.9b).  This wind 

anomaly pattern develops as a result of transient anticyclones that likely form on the lee 

side of the Andes Mountains and track across the southern portion of the SAB.  The 

formation of the migrating system begins over the continent from low-level cooling and 

as the anticyclone travels over the eastern coast of South America, it undergoes rapid 

intensification because of intense baroclinic activity in the region (Sinclair 1996).  

Previous research has documented this anticyclone genesis through the “budding” 

mechanism, whereby the parent Pacific Ocean anticyclone cell extends a ridge 

downstream of the Andes Mountains which intensifies and closes off to form a new 

eastward high pressure cell (“cradle”) over South American (Taljaard 1967; 1972; Jones 

and Simmonds 1994).  The downstream formation of this anticyclone advects colder air 

northward along the Andes Mountains resulting in below normal temperatures (i.e., cold 

surges) to occur in southern and southeastern Brazil (Garreaud 2000; Lupo et al. 2001; 

Pezza and Ambrizzi 2005; Sprenger et al. 2013).  While this synoptic setup is occurring, 

the thermal low located over central South America is displaced equatorward which 
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allows the SLP gradient to increase and positive wind anomalies to be observed across 

the interior of Brazil as described by Figure 3.9b. 

 
 

Figure 3.9.  Mean wind speed anomalies (m s
-1

) and SLP (hPa) based on the location of 

the SAA when located between (a) 20° S–30° S and 30° W–20° W, (b) 30° S–40° S and 

60° W–50° W, (c) 30° S–40° S and 20° W–10° W, (d) 40° S–50° S and 50° W–40° W, 

and (e) 40° S–50° S and 10° W–0° for Reanalysis 1, Reanalysis 2, and ERA-Interim.   

 



91 

 

As the SAA shifts to its normal climatological position (35° S and 15° W) 

determined in the analysis, surface winds across Brazil follow their typical average with 

exception to southern Brazil, where a slight decline in wind speeds is observed (Figure 

3.9c).  It should be noted the mean position used for this study is located south and west 

of previous studies (Hastenrath 1985; Mächel et al. 1998; Degola 2013), which perform 

monthly or seasonal instead of daily analysis to identify the central location of the SAA 

in the SAB.  It is plausible that using monthly or seasonal latitude and longitude positions 

could change the average wind speed anomalies found for Figure 3.9c which warrants 

additional analysis.  Lastly, when the SAA is shifted to the south (Figure 3.9d) and east 

(Figure 3.9e), it reveals weaker than normal mean wind speeds across eastern Brazil.  

These negative wind anomalies develop because of the poleward shift of the ITCZ, which 

decreases SLP gradients across the country.  This decrease in wind speed is also noted 

across the SEC, which influences surface winds observed across northern and 

northeastern Brazil.  As a result, when the thermal and pressure gradients decline along 

this current, it weakens the coastal land-sea breeze, which causes negative wind 

anomalies to be reported across eastern Brazil. 

 

3.4 Conclusions 

This study examined the surface wind characteristics of Brazil based on the 

position of the SAA in the SAB using three reanalysis datasets.  Temporal linear 

increases in wind speed across Brazil are related to the seasonal relationship between the 

ITCZ and SAA, especially for northern and northeastern Brazil.  However, temporally 

decreasing linear trends in wind speed across southeastern Brazil may be related to 

changes in surface temperature observed during the last century.  As a result of this 
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relationship with macro-scale atmospheric circulations, this study identified the daily 

position of the SAA center to determine if any seasonal or annual temporal trends exist 

during 1980–2014.  It was documented that climatological mean position of the SAA has 

shifted farther east (west) during winter (spring).  Previous work has shown that passing 

mid-latitude cyclones affect the location of the SAA in the SAB (Ito and Ambrizzi 1999; 

Degola 2013).  Results indicate the frequency or location of extratropical cyclones 

passing through the SAB could be causing the opposing longitudinal trends found in 

austral winter and spring (Reboita et al. 2015). 

 Mann-Kendall test (Mann 1945; Kendall 1975) was used to show how the 

location of the SAA correlates with wind speed, SLP, and temperature across Brazil.  

When the SAA center is located at lower latitudes, SLP increases northward while 

temperature decreases westward, which in response, allows wind speeds to increase 

across northern and northeastern Brazil during summer.  This surface scenario develops 

when the ITCZ is displaced northward, allowing higher SLPs and cooler surface 

conditions to be transported in from the SAB.  As the ITCZ eventually shifts toward the 

equator, longitudinal correlations with wind speed, SLP, and temperature indicate how 

the position of central pressure affects conditions across Brazil differently.  These results 

demonstrated that SLP correlations across Brazil are associated with changes in latitude, 

while temperature is connected to longitudinal shifts in the high pressure system.   

To further quantify these results, this study analyzed the relationship of positive 

and negative wind, SLP, and temperature anomalies based on the location of the SAA for 

the SAB.  For the northern half of Brazil, wind speed anomalies tend to be related to 

changes in SLP, while southern Brazil is more strongly connected to alterations in 
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temperature when examining the latitudinal and longitudinal center of the SAA for the 

SAB.  The role of migrating anticyclones has been identified as a possible reason of 

influencing surface wind characteristics across southern and southeastern Brazil.  These 

findings are further described when analyzing the average wind speed anomalies based 

on the location of the SAA center in different geographic locations across Brazil.  

Stronger (weaker) than normal wind speeds are observed when the location of the SAA 

center is located north and west (south and east) of its mean position in the SAB.   

The location and position of the SAA in the SAB plays an important role in 

influencing wind characteristics across Brazil.  Any latitude or longitude change in the 

SAA can affect the daily weather conditions observed across Brazil.  The consistent wind 

flow across portions of northeastern Brazil has been identified by research as a potential 

area to develop and generate renewable wind energy (CRESESB 2001).  As a result, any 

climatological shifting of the SAA could affect wind energy production across the region.  

Future wind forecasts expect that wind speeds will continue to increase by the end of the 

21
st
 century for northeastern Brazil (Lucena et al. 2010; Pereira et al. 2013).  This wind 

forecast is based on the scenario that the longitudinal position of the SAA will shift 

toward the west over the next century (Degola 2013).  Therefore, it is essential to 

continue to evaluate and understand how atmospheric features evolve across the SAB, so 

future climatological and socioeconomic consequences of wind on Brazil can be 

identified. 
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CHAPTER 4 

SPATIOTEMPORAL ANALYSIS OF UPPER-LEVEL WIND SPEED TRENDS 

OF BRAZIL DURING 1980–2014 

 

4.1 Introduction 

Surface wind climatologies have shown a general decline in wind speeds across 

the Earth during the 20
th

 century (McVicar et al. 2012).  Much of the research has 

focused on two surface variables to explain the decreasing geographic and temporal wind 

speed patterns found across regional and global studies.  The first explanation is that 

changes in wind speed are related to a poleward shift in the latitude of steepest 

temperature and pressure gradients, leaving more of Earth’s surface under the influence 

of weak pressure gradients (Klink 1999; Pirazzoli and Tomasin 2003; Xu et al. 2006; 

Jiang et al. 2010; Guo et al. 2011; Jaswal and Koppar 2013; Dadaser-Celik and Cengiz 

2014; You et al. 2014; Romanić et al. 2015).  The second reason is that urbanization (Xu 

et al. 2006; Li et al. 2011; Yang et al. 2012; Jaswal and Koppar 2013; Azorin-Molina et 

al. 2014) and land-cover change (Vautard et al. 2010; Bichet et al. 2012; Wever 2012)  

across North America, Europe, Asia, and Australia weaken surface winds by increasing 

surface friction.  Klink (1999) suggested that modifications in the pressure gradient and 

surface roughness could not only affect surface winds, but also vertical mixing of 

atmospheric winds.  In fact, analyses have examined the relationship between surface 

wind speeds and evapotranspiration to understand how changes in vertical forcing could 

impact hydrological processes (Fu et al. 2009; Zheng et al. 2009; Donohue et al. 2010; 

Liu et al. 2010; Yin et al. 2010a; 2010b; Liu et al. 2011; Moratiel et al. 2011; Tang et al. 

2011; McVicar et al. 2012; Liuzzo et al. 2016). 
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Atmospheric teleconnection indices are also frequently used to explain changes in 

surface wind speed trends (Pirazzoli and Tomasin 2003; Pryor and Barthelmie 2003; 

Tuller 2004; St. George and Wolfe 2009; Abhishek et al. 2010; Li et al. 2010; Pryor and 

Ledolter 2010; Fu et al. 2011; Hewston and Dorling 2011; Chen et al. 2013; Lin et al. 

2013; Azorin-Molina et al. 2014; You et al. 2014).  For example, Chen et al. (2013) 

identified surface wind speed patterns based on the temporal phases of the Arctic 

Oscillation (AO) and El Niño–Southern Oscillation (ENSO) for China between 1971 and 

2007.  The study found that under a positive AO, wind speeds declined across most of 

China, while increased (decreased) speeds were observed over northern (southern) China 

during positive ENSO (Niño 3.4 region) phases.  This spatial shifting of wind speeds 

across the continent of Asia under the different phases of ENSO could influence the 

position of the East Asian monsoon (Yang et al. 2002; Wu et al. 2003; Lim and Kim 

2007; Zhou and Wu 2010).  Therefore, studies have analyzed alterations in macro-scale 

atmospheric circulations to explain near-surface wind trends across the globe (Jiang et al. 

2010; Guo et al. 2011; Li et al. 2011; Troccoli et al. 2012; Yang et al. 2012; Jaswal and 

Koppar 2013; Lin et al. 2013; Dadaser-Celik and Cengiz 2014; You et al. 2014; Romanić 

et al. 2015).  However, many of these studies only examined a single level of the 

troposphere (850 or 500 hPa) to evaluate changes in macro-scale circulation and its 

possible relationship to surface winds.   

The most complete upper-level wind trend analysis was performed by Vautard et 

al. (2010).  It revealed positive (negative) annual mean upper-level (i.e., 850, 700, 500, 

and 200 hPa) wind trends for western Europe and North America (China) during 1979–

2008, which does not (does) support present literature on terrestrial wind speed changes.  
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As a result, Vautard et al. (2010) investigated and suggested that increases in surface 

roughness due to vegetation could explain the reduction of surface winds observed across 

western Europe and North America, while changes in the Asian Monsoon from climate 

change and air pollution could be attributing to the decreasing surface and tropospheric 

winds across China. 

McVicar et al. (2012) documented that wind trend climatology literature has 

emphasized to North America, Europe, and Asia at the expense of Central and South 

America over the last decade.  Much of the research on Latin America has focused on 

evaluating the geographic and temporal surface wind speed trends and its potential 

implications on wind energy production for northeastern Brazil (Lucena et al. 2010; 

Pereira et al. 2013; Santos and Silva 2013).  However, no formal studies have explored 

upper-level wind trends for Brazil.  Vautard et al. (2010) characterized the overall 

vertical wind profile of wind speed trends for North America, Europe, and Asia based on 

monthly rawinsonde between 1979 and 2008.  This provides an opportunity to analyze 

whether upper-level wind trend characteristics over Brazil match trends observed 

elsewhere.  As a result, the goal of this study is to examine the spatial and temporal 

patterns of upper-level wind trends based on climate reanalysis datasets for Brazil.  

Results will show how atmospheric winds changed from a three-dimensional perspective 

and also provide a foundation to understand how wind speeds vary not only from a 

vertical, but also from a spatial (horizontal) standpoint for Brazil from 1980 to 2014.  
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4.2 Data and Methods 

Figure 4.1 summarizes the data and methods used in the study to identify 

geographic and temporal upper-level wind patterns found in Brazil.  Reanalysis products 

were selected for the analysis because of the limited temporal and spatial coverage of 

radiosonde data available for Brazil.  Three reanalysis datasets are used to describe the 

upper-level wind speed trends of Brazil from 1980 to 2014.  The data period selected was 

based on the temporal accessibility of each model.  National Center for Environmental 

Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis dataset 

(Reanalysis 1) is a 28 vertical level global numerical model that assimilates surface and 

atmospheric variables at a horizontal resolution of 2.5° x 2.5° (T62) beginning in 1948 

(Kalnay et al. 1996).  National Center for Environmental Prediction and Department of 

Energy (NCEP-DOE) reanalysis dataset (Reanalysis 2) is an updated version of 

Reanalysis 1, with improved parameterization of physical processes and fixed errors 

found with Reanalysis 1 (Kanamitsu et al. 2002).  Reanalysis 2 is similarly constructed at 

a horizontal grid scale of 2.5° x 2.5° (T62) for each pressure field (28 levels) as 

Reanalysis 1, but with a temporal resolution starting in 1979.  Finally, European Centre 

for Medium-Range Weather Forecasts (ECMWF) Interim (ERA-Interim) is a global 

numerical model constructed at 0.75° x 0.75° (T255) resolution for 60 atmospheric 

pressure levels during the period of 1979 to present (Dee et al. 2011). 

Data obtained from each model consist of 4 daily (0, 6, 12, and 18 UTC) u (west–

east) and v (south–north) wind component (m s
-1

), geopotential height (m), and 

temperature (K) values for 12 mandatory pressure levels (1000, 925, 850, 700, 600, 500, 

400, 300, 250, 200, 150, and 100 hPa) of the atmosphere from 1980 to 2014.  Upper-level 
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wind speeds (V) for each grid point is calculated from the u and v wind components 

extracted from each reanalysis dataset (Equation 1).  Seasonal and annual mean wind 

speeds and geopotential heights were calculated based on the 12 mandatory pressure 

levels for each grid found within the study area.  Sen’s slope estimator (Sen 1968) is used 

to calculate the linear trend of each seasonal and annual upper-level wind grid field used 

in the study.  Mann-Kendall test (Mann 1945; Kendall 1975) is utilized to describe the 

association between wind speed and time of each individual grid point located in Brazil.  

Both statistical methods have been used to examine changes in u and v winds of 

atmospheric circulations (500 hPa) to help explain near-surface wind trends (Dadaser-

Celik and Cengiz 2014; Romanić et al. 2015).  The resultant mean seasonal and annual 

winds trends are analyzed at each mandatory pressure level through a vertical profile and 

by constructing a three-dimensional model from geographical information system (GIS).   

 
22),( vuvuV   (1) 

 

Figure 4.1.  Flow diagram showing the methods and datasets used to analyze the 

geographical and temporal wind speed trend characteristics of Brazil during 1980–2014. 

 

To further quantify any geographic trends, a regional wind speed analysis also 

was performed to show how the overall vertical wind profiles have changed across each 

region of Brazil.  Regional wind speeds were constructed by selecting grid fields that are 

within one of the five geographical zones (north, northeast, central-west, southeast, and 
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south) recognized by Instituto Brasilerio de Geografia e Estatística (IBEG) [Figure 4.2].  

Once each grid point was assigned to a region, overall seasonal and annual mean wind 

speeds were performed for each pressure level at which linear trends were calculated for 

each region of Brazil

 

Figure 4.2.  Geographic distribution of the five geographical zones (North, Northeast, 

Central-West, South, and Southeast) of Brazil used to determine the seasonal and annual 

regional wind trends. 

 

4.3 Results 

4.3.1 Overall and Spatial Wind Trends 

Figure 4.3 shows the vertical profile of seasonal and annual upper-level wind 

trends of Brazil for each reanalysis.  From these findings, three wind trend patterns are 

identified for each model.  Surface winds (1000 hPa) exhibit decreasing (increasing) 
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linear trends for Reanalysis 1 and Reanalysis 2 (ERA-Interim).  The reason for the 

differing linear trends is related to the type of surface roughness climatology or scheme 

used in each reanalysis.  Reanalysis 1 and Reanalysis 2 utilize the simple biosphere 

model (SiB) [Dorman and Sellers 1989], while ERA-Interim employs the Tiled ECMWF 

Scheme for Surface Exchanges over Land (TESSEL) scheme (Viterbo and Beljaars 1995) 

to assimilate near-surface u and v winds.  Despite these discrepancies, upper-level winds 

continue to vertically trend in the same direction before reaching a critical point for each 

reanalysis.  This point in the atmosphere is defined as where the upper-level wind trend 

shifts direction from its original orientation (i.e., decreasing to increasing) starting from 

the surface.  This shift in upper-level wind trends develops between 700 and 600 hPa for 

Reanalysis 1, near 850 hPa for Reanalysis 2, and near 925 hPa for ERA-Interim.  The 

conflicting transition points between Reanalysis 1 and Reanalysis 2 occur despite using 

similar data as a result of the updated physical parameterizations included in Reanalysis 

2.  Kanamistu et al. (2002) discussed how orography was smoothed in Reanalysis 2 to 

prevent Gibbs phenomena related to precipitation and sensible and latent heat fluxes near 

steep topography to occur in the model.  Gibbs phenomenon is a jump discontinuity that 

occurs in a continuous piece-wise Fourier series (Hewitt and Hewitt 1979).  This periodic 

jump observed in the numerical models can have a detrimental effect on properly 

assessing meteorological variables.  Kanamistu et al. (2002) also describes a modification 

in the planetary boundary layer (PBL) scheme from a localized Richardson number-

dependent vertical diffusion process used in Reanalysis 1 to a nonlinear vertical diffusion 

scheme (Hong and Pan 1996) implemented in Reanalysis 2 to avoid concerns associated 

with vertical convergence of eddy fluxes (i.e., heat, moisture, and momentum).  von 
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Engeln and Teixeira (2013) further acknowledge that Richardson-based methods are 

problematic of not adequately characterizing convective turbulence since the Richardson 

number is derived from localized turbulence and dry atmospheric conditions.  These 

orographic and boundary scheme differences could result in the upper-level wind 

discrepancies that exist between Reanalysis 1 and Reanalysis 2. 

 
 

Figure 4.3.  Overall vertical wind profile of the seasonal and annual upper-level wind 

speed trends (m s
-1

 decade
-1

) of Brazil for (a) Reanalysis 1, (b) Reanalysis 2, and (c) 

ERA-Interim during 1980–2014. 
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Above this shift, reanalysis models show temporally increasing wind trends until 

reaching the upper part of the atmosphere, where the highest positive wind trends are 

documented between 300 and 200 hPa.  The largest positive wind trends occur during 

summer and fall for each model, where wind speeds have increased between 0.2 and 0.6 

m s
-1

 decade
-1

 depending upon the climate model.  Finally, a sharp change in wind speed 

is detected above 200 hPa, for which reanalysis datasets show a decrease in wind speed, 

with mixed results between seasons for the ERA-Interim.  This decline in wind speed is 

associated to temperature changes developing in the upper troposphere and lower 

stratosphere.  Allen and Sherwood (2008) showed that u winds decreased across the 

upper pressure levels (above 200 hPa) of the atmosphere between 5° S and 35°S during 

1979–2005, despite an increase in upper-tropospheric wind shear observed.  This increase 

in vertical wind shear develops when the troposphere warms and stratosphere cools, 

which allows the meridional temperature gradients to be enhanced toward the poles 

(Lorenz and DeWeaver 2007). 

Vautard et al. (2010) suggested that positive upper-level wind trends could not 

explain the decline in surface wind across North America and Europe.  The study 

identified changes in surface roughness that may attribute to the decreasing trends found 

in surface winds.  Wever (2012) analyzed variations in surface roughness and found that 

wind speeds decreased on average by 3.1% (0.13 m s
-1

) per decade due to the doubling of 

surface roughness in the Netherlands since 1981.  This finding of surface roughness 

change is supported by Bichet et al. (2012), who noted that increasing vegetation 

roughness length by a factor of 1.5, 2, and 4 decreased average surface winds globally 

between 1975 and 2005.  As expected, this suggests that surface and lower atmospheric 



109 

 

winds of Brazil are interconnected to changes in surface roughness.  The results of this 

analysis show that different land-cover and PBL schemes influence wind trends found in 

the lower portion of the troposphere (below 850 hPa) for each climate model except for 

Reanalysis 1 (~700 hPa).  Once above this boundary, upper-level wind trends shift or 

remain constant until reaching the proximity of the jet stream (~300 hPa) for each 

reanalysis dataset.  If upper-level winds were leading to the decline in near-surface and 

lower-level wind speeds, it would be expected that winds would have weaken throughout 

vertical profile of the troposphere.  It is possible that decreasing trends do exist in the 

upper-level atmosphere winds, but are geographically located over certain regions of 

Brazil.  Consequently, mechanisms contributing to spatial differences in upper-level 

trends across Brazil will be examined. 

Figures 4.4 and 4.5 show the spatial seasonal and annual mean wind trends based 

on the 12 pressure levels of the atmosphere for Brazil from 1980 to 2014 from a three-

dimensional view.  Wind trends correspond to changes in upper tropospheric circulation 

occurring over South America.  During summer (DJF), a zonal pattern of decreasing and 

increasing wind trends located between 400 and 200 hPa is found between 15° S and 35° 

S (Figure 4.4a).  This geographic configuration is also supported by a positive region 

found over northeastern Brazil in Reanalysis 1 and Reanalysis 2, which extends into 

equatorial Brazil for ERA-Interim (Figure 4.5a).  The location of these upper-level trends 

is dynamically-linked to the position of the Bolivian High (BoH) and Nordeste low.  The 

BoH is a warm-core anticyclone that forms over the Altiplano from latent heat released 

within the Amazon basin and moisture convergence from South Atlantic Convergence 

Zone (SACZ), while the Nordeste low is a cold-core sinking cyclone that develops 
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downstream of the Bolivian ridge (Lenters and Cook 1997).  As expected, upper-level 

winds associated with this atmospheric circulation pattern are affected differently under 

wet and dry conditions (Vuille 1999).  The study found that anomalously strong (weak) 

westerly winds occur in the Altiplano when the BoH weakens (strengthens) is displaced 

northward (southward) of its climatological position, and is warmer than normal 

temperatures during dry (wet) periods of the Southern Oscillation Index. 

 
 

Figure 4.4.  Wind speed trends (m s
-1

 decade
-1

) of the mandatory atmospheric pressure 

levels based on (a) summer (DJF), (b) fall (MAM), (c) winter (JJA), (d) spring (SON), 

and (e) annual intervals during 1980–2014. 
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Figure 4.5.  As in Figure 4.4 except viewed from Atlantic Ocean. 

 

Figure 4.6 shows that decreasing (increasing) upper-level winds are located 

between 15° S and 25° S (25° Sand 35° S).  It is expected that when the BoH weakens 

and shifts northward, upper-level wind speeds across central-west and southeastern 

(southern) Brazil will decrease (increase).  Table 4.1 shows a positive trend in the 

summer mean temperature and geopotential height (latitude) at the core of the BoH.  This 

finding shows that despite increasing temperatures (0.02–0.44 K decade
-1

) and pressure 

heights (5.0–8.1 m decade
-1

) occurring at 250 hPa, it does not necessarily support an 
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equatorward shift of the BoH.  It is possible that the geographic location of the BoH is 

highly variable during summer.  Lenters and Cook (1997) identified five geopotential 

height (200 hPa) scenarios of the BoH location with respect to Altiplano for eight 

summer seasons (1985/1986–1992/1993) based on empirical orthogonal function (EOF) 

analysis.  The five EOF locations positioned the BoH over the center (25° S), southwest, 

southeast, east, and south of Altiplano.  This evidence demonstrates that performing a 

seasonal composite on the spatial location of the BoH will not adequately explain spatial 

changes occurring with upper-level wind speeds across Brazil.   

Table 4.1.  Statistical linear regression analysis of summer (DJF) averages of latitude (°), 

geopotential height (m), and temperature (K) based on the central location of the BoH at 

250 hPa for Reanalysis 1, Reanalysis 2, and ERA-Interim.  A * indicates the linear trend 

is statistically significant (p<0.05) 

 

Parameter Dataset 
Slope per 

decade 

Correlation 

coefficient 
p-value 

Latitude (°) 

Reanalysis 1 0.307 0.111 0.356 

Reanalysis 2 -0.014 -0.008 0.955 

ERA-Interim -0.232 -0.111 0.356 

Geopotential 

Height (m) 

Reanalysis 1 5.000 0.250 0.038* 

Reanalysis 2 5.450 0.296 0.014* 

ERA-Interim 8.120 0.425 <0.001* 

Temperature 

(K) 

Reanalysis 1 0.017 0.034 0.787 

Reanalysis 2 0.161 0.270 0.024* 

ERA-Interim 0.437 0.558 <0.001* 

 

It is possible that the thermal expansion of the equatorial and subtropical climates 

is promoting the increase in geopotential heights across the upper-levels of the 

atmosphere across Brazil.  Figure 4.6 shows a steep decrease in the geopotential heights 

between the BoH and subtropical jet (STJ) at 250 hPa for each reanalysis dataset.  As 

described earlier, an increase in the geopotential heights and temperature is shown with 

the BoH during the 35-year study period (Table 2.1).  It is expected that as the 

atmosphere continues to warm, the geopotential height differences developing in the 
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subtropical and middle latitudes will allow a steeper geopotential gradient to form and 

result in an increase of wind speeds to occur between 25° S and 35° S. 

 
 

Figure 4.6.  Austral summer wind speed trends (m s
-1

 decade
-1

) at 250 hPa overlaid with 

mean geopotential height (m) and wind direction (°) for the period of 1980 to 2014. 

 

Eventually as the BoH begins to dissipate during fall (MAM), positive and 

negative upper-level wind trends across southern Brazil move equatorward (Figure 4.4b).  

A weakening of the Nordeste low is also described over northeastern Brazil for 

Reanalysis 1 and Reanalysis 2, while the negative wind pattern is located farther off the 

coast of Brazil for ERA-Interim (Figure 4.5b).  This northward shift described by upper-

level circulation follows the seasonal cycle of Intertropical Convergence Zone (ITCZ).  

After the ITCZ migrates past the equator, the STJ over Brazil becomes an important 

factor for influencing upper-level wind speeds above 400 hPa during winter and spring.  

Figures 4.4 c–d and 4.5 c–d display the decrease and increase in wind speeds found with 

respect to the location of the STJ.  The boundary separating positive and negative wind 

trends associated with STJ at 20° S is apparent for each reanalysis.  A STJ climatology 

performed by Koch et al. (2006) documented that the maximum extent of the STJ occur 

south of 20° S, with the highest distribution developing poleward of 25° S for austral 
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winter and spring during 1979–1993.  Therefore, if the frequency or intensity of the STJ 

in lower latitudes (>25° S) has changed temporally, it is expected that upper-level winds 

located between 10° S–20° S across Brazil would decline in each reanalysis.  Archer and 

Calderia (2008) examined the annual mean position and strength of the STJ using ERA-

40 data and found that it shifted poleward (-0.06 degrees decade
-1

) and weakened (-0.41 

hPa decade
-1

) between 1979 and 2001.  The study mentioned atmospheric warming and 

Hadley cell expansion as factors responsible for the latitudinal position and intensity 

changes occurring with global jets.  This thermal heating is related to the location of 

increasing and decreasing wind trends found along the STJ.  The band of decreasing 

winds is primarily concentrated between 400 and 100 hPa, while the pattern of increasing 

wind tends to occur above 700 hPa for each model.  Allen and Sherwood (2008) 

explained that increasing meridional temperatures within the upper troposphere (~200 

hPa) led to a decline in atmospheric wind speeds for the equatorial zone.  Results from 

this analysis show that geopotential heights (400–200hPa) have increased (decreased) 

between 10° S and 20° S (>20° S) during austral fall.  This change in geopotential height 

would attribute to the wind speed trends developing across central-west, southern, and 

southeastern Brazil during 1980–2014. 

Several upper-level wind trends related to the position of tropospheric circulations 

(STJ and BoH) have been identified in this research.  However, it is also important to 

analyze the lower and middle level wind speed trends of equatorial Brazil.  ERA-Interim 

shows positive wind trends across the Amazon basin for each season at the lower levels 

(850–500 hPa) of the atmosphere (Figure 4.5).  Reanalysis 1 (Reanalysis 2) exhibits 

decreasing wind speeds across the Amazon basin during austral fall and winter (winter 
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and spring) at 850 hPa but shows a varying amount of seasonal decrease higher above the 

surface (700–500 hPa).  Both models agree, with increasing wind trends across portions 

of northern and northeastern Brazil during summer and fall below 700 hPa (Figure 4.5a–

b).  Eventually, the positive wind trend shifts toward the east for all other lower levels of 

the atmosphere (700–500 hPa).  The only exception occurs at 600 hPa, where Reanalysis 

1 presents a negative trend of wind speeds across equatorial Brazil for each season.  The 

inconsistencies established between the reanalysis models suggest that other variables not 

analyzed in the study could attributed to the lower-level wind trends found across 

equatorial Brazil. 

4.3.2 Regional Wind Trends 

Figure 4.7 shows the regional wind speed trend magnitudes based on season and 

annual periods for Brazil.  During summer, regional wind trends are minimal across 

Brazil until a positive pattern develops between 400 and 200 hPa, with the maximum 

occurring between 250 and 200 hPa (Figure 4.7a).  However, reanalysis datasets show 

different pairings of increasing regional wind trends for austral summer.  Reanalysis 1 

and Reanalysis 2 depict comparable positive wind speed trends of 0.08–0.70 m s
-1

 

decade
-1

 for northern, northeastern, and southern Brazil, while ERA-Interim displays 

increasing trends, ranging between 0.05 and 0.90 m s
-1

 decade
-1

 for all regions except for 

southeastern Brazil.  The differences observed suggest that atmospheric inputs or model 

schemes are influencing upper-level wind trends in each model.  After an equatorward 

shift of the ITCZ, wind patterns for central-west, southeastern, and southern Brazil 

exhibit positive trends between 400 and 100 hPa during fall (Figure 4.7b).  The highest 
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increasing wind trends which are statistically significant (p<0.05) for southeastern and 

southern Brazil occur between 250 and 200 hPa of each reanalysis dataset. 

 

Figure 4.7.  As in Figure 4.3 except based on region during (a) summer (DJF), (b) fall 

(MAM), (c) winter (JJA), (d) spring (SON), and (e) annual. 

 

Figure 4.8 shows how u winds have changed across Brazil during fall.  A decrease 

(increase) in u winds is observed above (below) 15° S for each dataset.  This change in 

zonal winds is related to modifications of geopotential and temperature gradients.  As 

temperature increases across the tropics, the meridional flow of thermal energy 

transported toward the subtropical and middle latitudes increases.  This additional heating 
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of the atmosphere increases the meridional temperature and geopotential gradient 

difference between the tropics and mid-latitudes, which in response allows upper-level 

westerlies to increase across southern and southeastern Brazil.  Furthermore, the warming 

of the atmosphere allows an increase of static stability to occur in the subtropics which 

results in a poleward shift of baroclinic instability to higher latitudes (Frierson et al. 

2007).  This change in static stability would increase vertical wind shear and decrease u 

winds across equatorial and subtropical Brazil as described in Figure 4.8. 

 
 

Figure 4.8.  Spatial linear trends of the upper-level u winds during fall (MAM) for 

Reanalysis 1, Reanalysis 2, and ERA-Interim between 1980 and 2014. 

 

As winter approaches, wind trends above 500 hPa separate into two groups based 

on the position of STJ (Figure 4.7c).  Points located south (north) of STJ observed 

increasing (decreasing) winds, with the highest positive (negative) movements 

developing above 200 (150) hPa for southern (central-west and southeastern) Brazil.  The 

strength of the positive (negative) wind trends found at each maximum (minimum) varies 

between 1.18 and 1.85 (-1.61 and -0.54) m s
-1

 decade
-1

 among the reanalysis models.  

This finding supports the geographic interpretation of the upper-level winds described 

earlier and supports the analysis conducted by Archer and Calderia (2008) on the 

climatological position of STJ during winter.  Eventually, the regional wind trend 

dissipates as the STJ moves poleward during spring, when upper-level speeds change 
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between -0.5 and 0.5 m s
-1

 decade
-1

 for each group, with the exception of southeastern 

Brazil for Reanalysis 2. 

 

4.4 Conclusions 

This study analyzed the upper-level wind speed trends characteristics of Brazil 

from 1980 to 2014 based on three reanalysis datasets.  Overall vertical profile show 

positive seasonal and annual wind trends across the 12 mandatory atmospheric pressure 

levels for ERA-Interim.  Reanalysis 1 and Reanalysis 2 exhibit decreasing wind speed 

trends at lower levels that eventually transition to increasing trends at upper pressure 

levels of the atmosphere.  The seasonal and annual wind trends are further evaluated at 

which general patterns are established for each reanalysis.  Surface wind trends tend to 

increase vertically in magnitude at the lower portions of the troposphere due to the type 

of PBL scheme utilized in each climate model to calculate u and v winds.  Finally, a 

consensus among the models shows that the highest positive wind trends occur in the 

upper portion of the atmosphere (400–200 hPa) before returning to a negative trend along 

the tropopause.  This decline in wind speed is attributed to an increase in temperature 

found in the lower portion of the stratosphere.  Allen and Sherwood (2008) showed that 

an increase of vertical shear from meridional warming of the atmosphere results in the 

decline of upper-level winds across the tropics. 

 Other studies have examined upper-level atmospheric circulations to explain 

changes developing with near-surface wind trends (Jiang et al. 2010; Vautard et al. 2010; 

Guo et al.2011; Li et al. 2011; Troccoli et al. 2012; Yang et al. 2012; Jaswal and Koppar 

2013; Lin et al. 2013; Dadaser-Celik and Cengiz 2014; You et al. 2014; Romanić et al. 

2015).  As a result, this study constructed and analyzed upper-level wind speed trends 
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through a three-dimensional model.  Results showed that upper-level wind trends are 

influenced by two synoptic circulations.  During summer and fall, wind speed trends 

observed across northeastern and southern Brazil are affected by the relationship between 

the BoH and Nordeste low.  After the ITCZ shifts northward, wind speed trends are 

influenced by the position of STJ.  Upper-level winds found between 400 and 200 hPa 

have decreased across central-west and southeastern Brazil, while increases were 

observed for southern Brazil between 700 and 200 hPa.  Recent work suggests that the 

position and intensity of STJ has declined and shifted poleward during the last century 

(Archer and Calderia 2008).  The southward move of the Southern Hemisphere’s STJ 

over Brazil has also been connected to changes in the atmospheric warming and Hadley 

cell expansion over the tropics.  It is expected as the atmosphere warms, geopotential 

heights increase in the tropics, which allows a greater gradient to develop between the 

warm subtropical and colder middle latitudes.  This pattern is documented along the 

boundary of STJ, where an increase (decrease) in wind speeds south (north) of the SJT 

across southern (central-west and southeastern Brazil) occurred. 

A regional comparison of the upper-level wind speed trends confirms the findings 

of the geographic patterns found across Brazil.  The highest (lowest) wind speed trends 

occur in the upper (lower) portions of the atmosphere between 400 and 200 hPa (1000 

and 700 hPa).  These results suggest that regional winds located in the lower troposphere 

are affected by changes in surface roughness rather than in macro-scale atmospheric 

circulations as supported by Vautard et al. (2010).  However, additional research with 

respect to surface roughness and other climatological variables must be completed before 

a conclusive statement can be made. 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

5.1 Overview 

Global and regional wind climatologies have shown that surface wind speeds are 

generally decreasing across the world (Vautard et al. 2010; Bichet et al. 2012; McVicar et 

al. 2012).  McVicar et al. (2012) conducted a comprehensive review of near-surface wind 

trends globally to show that 82% of all studies found an overall annual decreasing wind 

trend.  The study cautioned that an insufficient amount of research has been conducted 

for the Latin American countries, especially for Brazil.  However, recent studies have 

analyzed surface wind speed trends across Brazil (Lucena et al. 2010; Pereira et al. 2013; 

Santos and Silva 2013; Pes et al. 2017).  The purpose of those studies was to assess how 

present and future surface winds will change across northeastern Brazil under different 

climate scenarios and how it could possibly affect wind energy production.  Additionally 

these studies have focused their efforts on understanding wind speed characteristics for 

northeastern Brazil.  This limited scope of research provides a starting point for wind 

research across Brazil. 

The purpose of this dissertation was to expand upon previous work and analyze 

how wind speeds changed across Brazil not only from a surface perspective, but at upper 

levels as well.  It is also important to examine how atmospheric features could play a role 

in influencing surface and upper-level winds across Brazil.  To achieve these goals, this 

dissertation conducted a three-part study, with the motivation of understanding how the 

geographical and climatological characteristics of surface and upper-level winds have 

changed across Brazil from 1980 to 2014. 
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5.2 Statistical Overview 

The classic method used in surface and upper-level wind speed climatologies are 

to examine how the mean wind speed changes for a given a study area through 

nonparametric linear regression.  As a result, this dissertation uses nonparametric linear 

regression to describe spatial and temporal surface and upper-level wind characteristics 

of Brazil during 1980–2014 for each in-situ and reanalysis dataset. 

Mann-Kendall (Mann 1945; Kendall 1975) is a nonparametric rank correlation 

test used to describe the seasonal and annual temporal relationship of mean wind speeds 

found in each study.  The test assumes that the data is independent and identically 

distributed (iid) and is not dependent on a normal distribution.  Equation (1) depicts the 

estimation of S statistics used in the Mann-Kendall test, where x denotes individual data 

values, n is the total number of observations, and sgn (θ) is a summation function 

calculated between sequential data pairs (ith and jth) of a given time series.  Kendall 

(1975) verified through a proof that the S statistic is of normal approximation when n>10 

and a mean (µ) of zero.  The variance (σ) of S shown in equation (2) is calculated when 

rank ties (ti) exist between xi and xj observations.  A two-tailed Z-test (Z) is conducted to 

determine whether the correlation is significant (p<0.05) [Equation 3]. 
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Mann-Kendall test only describes the association between the dependent and 

independent variables and therefore requires additional test to evaluate the slope of a 

climatological time-series (i.e., wind).  Sen’s slope estimator (Sen 1968) is another 

nonparametric test used to detect linear trends based on data pairings.  Equation (4) 

describes how the slope estimators (Qi) are calculated for each data pairing (xj and xk) of 

the dataset.  Sen’s slope (β) is then determined from the median value of the slope 

estimators (N) [Equation 5].  The median value determined from Sen’s slope is used to 

describe the linear seasonal and annual magnitudes found in each study of the 

dissertation. 
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Several studies have documented wind speed trends for specific quartiles (Pryor 

et al. 2007; 2009; Pryor and Ledolter 2010; Guo et al. 2011) using ordinary linear 

regression.  However, this type of analysis leaves many unanswered questions pertaining 

to how wind speeds vary across different percentiles.  Therefore, the practicality of using 

quantile regression in wind climatology research provides a unique opportunity to 

understand how surface winds change and vary across time and space.  The first 

manuscript (Chapter 2) of the dissertation uses quantile regression to understand how 
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wind speeds across five percentiles (5%, 25%, 50%, 75%, and 95%) change across 

Brazil. 

Quantile regression (Koenker and Bassett 1978) is an extension of ordinary least 

squares (OLS), which has the capability to examine changes that occur across different 

percentiles of a dataset.  Consequently, this form of analysis is used with data that is 

heteroscedastic (i.e., dispersion) in nature.  Equation 6 describes the portion of a 

population [Q
 (p)

 (yi|xi)] that lies below a quantile (p) of the covariates (xi).  It assumes the 

residual error (є) of the response variable is independent and iid.  An exterior point 

algorithm is used to minimize the error of the coefficients (β0 and β1) determined at each 

quantile (Hao and Naiman 2007).  Equation (7) describes how weights are assigned to the 

entire set of observations based on their location to the regression line.  A data 

observation (yi) that lies above (below) the fitted quantile regression (ŷ) is allocated a 

weight of p (1-p) to determine the sum of distances (dp) between the regression line and 

observation points.  Similar to OLS, the sum of residuals is used to evaluate the standard 

error of the slope which helps determine the significance (p<0.05) of each quantile by 

conducting a Student’s t-test. 
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5.3 Summary 

5.3.1 Surface Wind Analysis 

The purpose of the first manuscript (Chapter 2) was to expand understanding of 

how near-surface winds (10 m) vary across Brazil based on two in-situ and three 
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reanalysis datasets for the period of 1980 to 2014.  Overall seasonal and annual wind 

speed trends show that variation exists between the datasets.  The in-situ (INMET and 

NCEI-ISD) datasets suggest a decreasing and increasing wind trend for each seasonal and 

annual period.  The negative trend pattern found in INMET corresponds to the findings of 

Santos and Silva (2013).  The difference in wind speed trends found between the surface 

wind measurements is possibly related to two factors: physical environment (location of 

instrumentation) and quality of the datasets.  Wind distribution plots show that INMET 

stations have a higher probability of observing a wind speed of less than <2 m s
-1

 when 

compared to NCEI-ISD, which shows a distribution similar to Reanalysis 1. 

Climate models exhibited different surface wind trends across Brazil.  This 

variation of seasonal and annual trends is attributed to the type of land-cover and 

orographic scheme used in each model.  Reanalysis 1 and Reanalysis 2 used similar wind 

data observations to assimilate near-surface winds, but based on the distribution show 

different shape and scale.  This is a result of an updated physical parameterization 

scheme implemented in Reanalysis 2 (Kanamitsu et al. 2002). 

A geographical analysis of the mean and quantile wind trends across Brazil shows 

two distinct patterns.  Surface wind speed trends across portions of coastal, northern, and 

northeastern Brazil are increasing during 1980–2014.  These areas are under the influence 

of the Intertropical Convergence Zone (ITCZ) and South Atlantic Anticyclone (SAA), 

which primarily control the daily weather conditions.  Vizy and Cook (2016) showed that 

near-surface winds across the South Atlantic Basin (SAB) have increased despite a 

poleward shift in the SAA.  The study explains that latent heat loss from surface wind 

movement has allowed a stronger pressure gradient to develop, which in response has 
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allowed wind speeds to increase across the SAB.  These surface winds from the SAA 

then travel across the SAB and into northeastern Brazil.  The decrease in wind speeds 

across central-west and southeastern Brazil is related to changes in temperature occurring 

within the interior of Brazil.  Santos and Silva (2013) noted that continental heating from 

the equatorial low weakens the pressure gradient force across these two regions.  Studies 

have also shown that the diurnal temperature range (DTR) has decreased across southern 

Brazil which has attributed to the decline in sea-level pressure (SLP) [Marengo and 

Camargo 2008; Sansigolo and Kayano 2010].  Based on these findings, it is important to 

further evaluate the role of the SAA and ITCZ and its impact on near-surface conditions 

(wind speed, SLP, and temperature) as the next manuscript (Chapter 3). 

5.3.2 South Atlantic Anticyclone Analysis 

As previously discussed in Chapter 2, surface winds across northeastern Brazil are 

influenced by the seasonal relationship between ITCZ and SAA.  Therefore, the purpose 

of the second manuscript (Chapter 3) was to understand how the position of the SAA 

influences surface winds across Brazil from 1980 to 2014.  To perform this analysis, a 

mean-based algorithm was developed to identify the daily central location of the SAA in 

the SAB.  Next, a linear trend analysis was performed to ascertain how the position of the 

SAA center has changed over time.  It was found that the SAA has shifted poleward 

during all seasons, but the longitudinal center has shifted westward (eastward) during 

spring (winter).  Previous studies have explained how the role of transient anticyclones 

and extratropical cyclones moving through the SAB influence the position of the SAA 

(Ito and Ambrizzi 1999; Degola 2013). 
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Based on these findings, the study further examined how the position of SAA 

influences surface conditions across Brazil.  As the SAA shifts equatorward, wind speeds 

across northern (southern) Brazil increased, which is represented by a decrease (increase) 

in temperature followed by a decrease (increase) in SLP.  To further quantify this 

relationship between surface conditions and SAA, anomalies were calculated to quantify 

the SAA position changes between the five zones of Brazil as designated by Instituto 

Brasilerio de Geografia e Estatística (IBEG).  It was found that southern Brazil is affected 

by transient anticyclones, while northern Brazil is influenced by a northward shift in the 

SAA.  This difference in surface features is also supported by the spatial variability of 

SLP and temperature anomalies for northern and southern Brazil.  It was found that SLP 

is more directly related to wind speed variability in Northern Brazil, while southern 

Brazil is geographically affected by changes in temperature.  A surface wind analysis was 

conducted to show how the spatial location of the SAA affects wind anomalies across 

Brazil. 

5.3.3 Upper-Level Wind Analysis 

The purpose of the final manuscript (Chapter 4) was to examine the upper-level 

wind characteristics of Brazil based on overall, regional, and geographic perspectives.  

Overall vertical wind profiles showed that differences exist between surface and upper-

level wind trends.  This is observed by a shift in the wind speed trends related to the 

planetary boundary layer (PBL) and vegetation schemes used by each dataset.  However, 

to fully understand the temporal trends of upper-level wind speeds across Brazil, a 

geographic approach must be used. 
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Thus, a three-dimensional model was constructed to analyze how wind speeds 

changed across the atmosphere.  Based on this analysis, we were able to identify two 

major synoptic features: the Bolivian high (BoH) and subtropical jet (STJ) that possibly 

influence upper-level winds across Brazil.   During austral summer and fall, the BoH is 

the primary feature that controls upper-level winds and if any changes occur with this 

circulation it could impact wind speeds across Brazil.  The temperature and geopotential 

height associated with the BoH was found to have increased during 1980–2014.  This 

increase in temperature has expanded the upper atmosphere, which has caused a steeper 

gradient to form between the states of central-west and southern Brazil.  This temperature 

change is related to a thermal expansion that is developing in the tropics (Allen and 

Sherwood 2008).  With this meridional temperature increase, zonal (u) winds across 

subtropical Brazil are decreasing as a result of increased vertical wind shear.  After the 

BoH dissipates during the fall, the STJ starts to influence upper-level winds between 

central and southern Brazil.  Archer and Calderia (2008) found that the climatological 

mean of the STJ is weakening and moving poleward during the 20
th

 century.  The 

southward shift has impacted upper-level winds across the states of central-west 

(southern) Brazil which have decreased (increased) from 1980 to 2014.  A regional 

comparison of these two synoptic features is supported by an increased (decreased) in 

upper-level wind speeds across the states of southern (central-west) Brazil. 

 

5.4 Conclusions and Future Research 

Results from this dissertation deepen understanding of the role of wind for Brazil 

with respect to surface and upper-level winds.  Prior to this study, a limited number of 

studies have examined wind speed characteristics (Lucena et al. 2010; Pereira et al. 2013; 
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Santos and Silva 2013; Pes et al. 2017).  These studies focused on examining how 

changes in near-surface winds could potentially affect present and future wind production 

across northeastern Brazil.  This three-part study demonstrated that different wind speed 

trend patterns exist across Brazil and that various surface and upper-level variables are 

influencing those atmospheric winds. 

This dissertation provided a foundation to ask and answer questions related to 

changes in wind speed characteristics based on surface and upper-level conditions.  

However, many questions remain unanswered about how present and future surface and 

upper-level winds will change based on a changing climate and physical environment.  

Studies suggest that changes in near-surface winds are attributed to land-cover change 

(Bichet et al. 2012; Wever 2012) and urbanization (Xu et al. 2006; Li et al. 2011; Yang et 

al. 2012; Azorin-Molina et al. 2014).  Results from this dissertation show that upper-level 

wind trends differ from surface wind trends based on an overall vertical profile and three-

dimensional analysis.  Vautard et al. (2010) found that median wind speeds across the 

Northern Hemisphere have decreased as normalized difference vegetation index (NDVI) 

becomes more positive.  Therefore, it is then important to investigate how changes in 

land surface type affect surface winds across Brazil.  The wind speed changes that are 

identified in this study for portions of southern and southeastern Brazil may be related to 

surface land modifications. 

Another avenue of interest is conducting an empirical orthogonal function (EOF) 

analysis on surface winds across the SAB.  Lenters and Cook (1997) identified 5 

geopotential height (200 hPa) scenarios based on a five-day running sea-level pressure 

average to identify the upper-level synoptic conditions associated with the BoH.  This 
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type of analysis would be helpful to understand how wind speeds change with respect to 

the ITCZ and SAA and support the findings conducted on wind speed anomalies based 

on the position of the SAA in the SAB.  The EOF can also be used to investigate upper-

level wind speed patterns across the Southern Hemisphere as well. 

Studies have examined changes in the upper-level of the atmosphere by 

conducting a vertical wind or temperature profile.  Allen and Sherwood (2008) show that 

thermal winds across both hemispheres are evolving because of atmospheric warming 

occurring at the Equator, which is affecting u winds between the tropics and middle 

latitudes.  With today’s technological advancements, it would be interesting to investigate 

how the thermal winds across the Southern Hemisphere have changed based on a three-

dimensional perspective.  It is hypothesized that the decreasing (increasing) wind speeds 

across equatorial and subtropical (mid-latitude and polar) climates could be further 

explained by this type of analysis.  It would also support the findings of this dissertation 

on upper-level wind trends across Brazil.  Therefore, future research will examine how 

thermal winds have changed across Brazil. 
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