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Abstract 

 This dissertation is an investigation into the interplay between vegetation and aeolian 

processes in the coastal embryo dune environment at Padre Island National Seashore, Texas. 

Vegetation is a geomorphic agent, altering aeolian process dynamics. This research adopted a 

three-pronged approach to improving our understanding of ecogeomorphodynamics in the coastal 

environment.  

 The first study analyzed large-scale spatiotemporal trends in the vegetation community of 

the embryo dune environment in order to contextualize smaller scale aeolian processes. Results of 

this study demonstrated that there was a clear transition in community assemblage from the 

seaward edge of the embryo dune zone, where species functioned as pioneer builders promoting 

deposition, to foredune toe, where species stabilized and protected the substrate from erosion. 

 The second study documented morphology of different vegetation types (tall grass, short 

grass, and shrub) as well as their response to wind velocity. While tall grass occupied the greatest 

area, it also had the highest porosity. Short grasses occupied less space than the tall grasses, with 

roughly half the optical porosity. Shrubs occupied the lowest volume but were the densest 

roughness element with the highest optical porosity. 

 The final study documented spatial patterns of fluid flow and sediment erosion and 

deposition around vegetation of different morphology types (tall grass, short grass, and shrub). 

Tall grasses and shrubs were more effective at reducing velocity in their lee than short grasses, 

with tall grasses creating a larger deceleration zone than shrubs. However, the greatest deposition 

occurred around patches of short grass, which was the shortest morphology type. 

 Findings of this dissertation suggest that both optical porosity and element size influence 

patterns of aeolian flow and sediment deposition. There is a tradeoff between overall size of a 
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roughness element in the flow field and the porosity of that element. Objects with lower optical 

porosity but smaller size are less effective at trapping sediment than elements with greater size and 

higher optical porosity. Results indicate that large, continuous patches of short, dense vegetation 

are in fact more effective at trapping and retaining sediment than tall grasses which obtrude into 

the boundary layer and cause greater flow deceleration.  
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Chapter 1. Introduction 

1.1 Project Context and Research Needs 

 Coastal dunes perform many vital functions. They represent a key reserve of sediment 

within the larger littoral system (Sherman and Bauer, 1993; Bauer and Sherman, 1999), and 

provide a first line of defense for coastal infrastructure against storm waves, storm surge, and 

shoreline retreat due to sea level rise and negative sediment budgets (Nordstrom and Psuty, 1980; 

Martínez et al., 2008; Nordstrom, 2008; Debaine and Robin, 2012). In addition to aesthetically 

pleasing, representing a key component of the allure and attraction of beaches, and contributing to 

the vast tourism industry associated with beaches (Nordstrom and Lotstein, 1989; Bauer and 

Sherman, 1999), coastal dunes function as a critical habitat for a large variety of organisms, 

including a number of threatened or endangered species (e.g., Forelius pruinosus and Dorymyrmex 

flavus (ants), Ocypode quadrata (ghost crabs), Charadrius melodus (piping plover), Pelecanus 

occidentalis (brown pelican), etc.) (Bauer and Sherman, 1999; Martínez et al., 2008; Maun, 2009). 

Despite the significance and importance of coastal dunes, our ability to model their development 

and dynamics remains far too crude to effectively contribute to the successful management of this 

highly dynamic environment. Given a general model of the basic physical dynamics involved in 

the interaction between vegetation and aeolian processes, local managers could apply site-specific 

characteristics to improve the efficacy of dune restoration projects. This dissertation improves 

quantitative understanding of the physical process dynamics involved in the interactions between 

key vegetation species and wind flow and sediment transport in the embryonic dune zone.  

This dissertation presents investigations into the dynamics between vegetation and aeolian 

process dynamics in the coastal embryo dune zone. The embryo dune zone is the zone of minor, 

hummocky dunes formed as a result of deposition around vegetation seaward of the foredune ridge. 
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Vegetation obstructs and alters fluid flow by increasing drag, resulting in increased turbulence and 

deposition in the area surrounding the vegetation and within vegetation (Buckley, 1987; Crawley 

and Nickling, 2003; Gillies et al., 2006; Gillies et al., 2007; Grant and Nickling, 1998; King et al., 

2005; Lancaster and Baas, 1998; Leenders et al., 2011; Leenders et al., 2007; Lightbody and Nepf, 

2006; Luhar et al., 2008; Musick et al., 1996; Nepf, 1999; Neumeier and Amos, 2006; Neumeier 

and Ciavola, 2004; Okin, 2008; Pasquill, 1950; Suter-Burri et al., 2013; Wolfe and Nickling, 1993; 

Wolfe and Nickling, 1996; Wyatt and Nickling, 1997; Zong and Nepf, 2010). It is possible to 

model the effect of roughness elements on the distribution of shear stress, which is the driving 

force of sediment transport, around roughness elements such as vegetation (Marshall, 1971; 

Raupach, 1992; Raupach et al., 1993; Schlichting, 1936). Many studies have evaluated the 

applicability of the Raupach et al. (1993) model where rigid roughness elements, either synthetic 

rods or shrub species, have been used to represent simplified vegetation elements (Brown et al., 

2008; Gillies et al., 2000; Gillies et al., 2007; King et al., 2005; Musick et al., 1996; Sutton and 

McKenna-Neuman, 2008; Wolfe and Nickling, 1996; Wyatt and Nickling, 1997).  

 However, there are fundamental limitations in applying the Raupach et al. (1993) model to 

environments which have live, flexible, porous grasses. Primarily, the morphology of live 

vegetation is dynamic because blades, leaves, and stems bend and flex in response to increasing 

wind flow, which causes a change in drag coefficients of these roughness elements (Burri et al., 

2011; Gillies et al., 2002; King et al., 2005; Okin, 2008; Walter et al., 2012a; Walter et al., 2012b; 

Webb et al., 2014). Additionally, the response of vegetation to increased wind flow differs by 

species because vegetation morphology depends on a variety of variables such as blade/leaf size, 

shape, and rigidity, as well as stem and blade density (Arens et al., 2001; de Langre, 2008; Moller, 

2006; Neumeier, 2005; Nilsson et al., 1958; Pavlik, 1984; Steudle et al., 1977). Moreover, the 
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Raupach et al. (1993) model assumes that all roughness elements have the same geometry. Yet 

coastal embryo and foredune systems contain a wide variety of vegetation species with different 

morphologies that range from tall grasses to short grasses to shrubs and vines.  

Due to the inherent complexity of the interaction between vegetation and aeolian processes 

in the natural dune environment, deterministic modeling of the initiation and development of 

coastal dunes is still not possible because of the lack of detailed, quantitative understanding of how 

coastal dune vegetation alters and modifies the aeolian sediment transport system in real embryo 

dune environments. In order to develop theory describing the interactions between plants and wind 

flow it is necessary to characterize the response of plant morphology to fluctuations in fluid flow 

as well as the response of the wind field and resulting sediment transport to the presence of plants 

with varying morphologies. 

 

1.2 Research Objectives  

 The overall goal of this dissertation is to enhance understanding of how vegetation 

influences fluid flow and sediment deposition and erosion in coastal embryo dune environments. 

The specific objectives pursued in order to achieve this goal were to: 

1. document and quantify spatiotemporal variation in vegetation community composition 

in the embryo dune zone at Padre Island National Seashore, including ecological 

characteristics such as species abundance and diversity;  

2. identify the effect of wind velocity on the shape of three common morphology types of 

native dune species (tall grass, short grass, and shrub), in terms of fluid-dynamically 

meaningful morphological parameters, including plant area, pore area, and optical 

porosity;  
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3. document and analyze differences in spatial patterns of fluid flow across a range of 

wind velocities around common, native vegetation species that exhibit very different 

morphologies; and  

4. document and analyze patterns of erosion and deposition of sediment around species 

with different morphologies.  

 The first objective of this investigation was necessary in order to contextualize further 

research into process dynamics of different vegetation morphology types. The second, third, and 

fourth objectives were undertaken in order to build a framework for development of a shear stress 

partitioning model which incorporates the inherent variability in roughness element morphology 

that vegetation in coastal dunes presents. A model that accounts for the dynamic morphology of 

live vegetation as well as morphology-dependent flow dynamics would substantially improve our 

ability to model the fluid dynamics associated with the presence of these types of vegetation and 

enhance our ability to model changes in morphology and dune growth resulting from the presence 

of vegetation. 

 

1.3 Chapter Synopses 

 Chapters 2-4 focus on field experiments which address these research needs and objectives 

in the following ways. Chapter 2 documents temporal and spatial variation in vegetation ecology 

in the embryo dune and foredune environments at Padre Island National Seashore. The goal of this 

chapter was to determine what, if any, were the trends in species composition and abundance 

through time and space and relate those changes to geomorphology. An understanding of spatial-

temporal trends in larger scale ecogeomorphology was deemed necessary to contextualize the 

process dynamics involved in vegetation-aeolian fluid flow interactions.  



5 

 

Chapters 3 and 4 focus on process dynamics between vegetation and wind. Remotely 

sensed imagery from three perspectives was used to derive measures of vegetation morphology, 

such as plant area, pore area, and optical porosity, which were then analyzed as a function of wind 

velocity. By focusing on changes in vegetation morphology from three perspectives, Chapter 3 

presents a new methodology for quantifying the change in shape of different vegetation 

morphology brought on as a result of changes in wind velocity. Chapter 4 examines the differences 

in spatial patterns of fluid flow and surface elevation changes around isolated clumps of vegetation 

in the embryo dune environment. The goal of this chapter was to distinguish flow and sediment 

transport patterns based on vegetation morphology type. Chapter 5 summarizes the findings and 

presents avenues for future research.  

The coastal embryo dune systems is highly complex, with a multitude of dynamic 

vegetation morphologies altering fluid flow to varying degrees and creating hummocky terrain. 

By investigating the response of vegetation to aeolian flow as well as the how aeolian processes 

are altered by the presence of discrete patches of vegetation, this dissertation provides a holistic 

approach to examining the interplay between vegetation and geomorphological processes in this 

complex ecosystem. This dissertation establishes a foundation for developing a shear stress 

partitioning model which accounts for the dynamic morphology of live vegetation.  
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Chapter 2. Embryo Dune and Foredune Vegetation Ecogeomorphodynamics at Padre Island 

National Seashore 

 

2.1 Introduction 

 Vegetation is integral to the formation and evolution of foredunes in coastal environments 

(Arens, 1996; Arens et al., 2001; Baas and Nield, 2007; Buckley, 1987; Burri et al., 2011; Delgado-

Fernandez, 2011; Durán and Moore, 2013; King et al., 2005; Kuriyama et al., 2005; Luna et al., 

2011; Miller, 2015; Psuty, 2004; Pye, 1983; Pye, 1992; Zarnetske et al., 2012). In order to 

contextualize small-scale, fluid dynamic processes of aeolian sediment transport influenced by the 

numerous species found in the embryo dune zone (EDZ), it is necessary to document and analyze 

spatiotemporal trends in vegetation species abundance, richness, and diversity along with 

geomorphology. Once larger scale vegetation community dynamics are documented it will be 

possible to extend small-scale process dynamics to larger-scale, longer-term models of coastal 

dune formation and evolution.  

 The purposes of this study were to 1) investigate the dynamics between plant species and 

geomorphology in the EDZ, 2) analyze temporal changes in community composition in different 

cross-shore habitats, 3) investigate ecogeomorphic functions of the various species found in the 

EDZ, and 4) produce an inventory of species present in the embryo dune and foredune zones. Field 

surveys of ecology and topography were conducted in the summer of 2012, 2013, and 2014 in 

order to accomplish these objectives. 

 

2.2 Background 

While the effects of the environmental stresses on coastal dune vegetation are well 

documented, there is currently no detailed information on spatiotemporal variation in vegetation 

abundance and diversity in the coastal embryo and foredune environments available for Padre 
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Island National Seashore (PINS). Padre Island, Texas, is the largest barrier island in the United 

States, extending 182 km from Corpus Christi Pass in the north to Brazos Santiago Pass in the 

south, and separating Laguna Madre from the Gulf of Mexico. Judd et al. (1977) documented 

species distribution in relation to topography on South Padre Island in five zones on three cross-

island transects which were approximately 64 km south of the study site used in this research, 

though the season and year in which surveys were conducted was not identified. This study is not 

fully applicable to northern PINS because anthropogenic disturbance, which is common in South 

Padre Island with areas of dense development and altered natural processes, is largely absent in 

the northernmost portion of PINS. Carls et al. (1991) documented the presence of species in five 

cross-island zones in May and July 1987. Both of these studies documented vegetation in cross-

island transects from the beach to the backside of the barrier island and grouped the entire EDZ 

into one sub-environment called the “backshore” (Carls et al., 1991; Judd et al., 1977). This coarse 

grouping obscures variation in biotic and abiotic factors that control vegetation distribution within 

this zone, which was ~40 m wide during the study period. Furthermore, neither of these studies 

analyzed temporal change in community assemblage and species abundance.  Knowledge and 

understanding of spatiotemporal distribution of species in the embryo dune and foredune zones are 

essential to modeling geomorphic changes in this zone, as vegetation species are agents of 

geomorphic change.  

Vegetation in coastal dune environments is specially adapted to living in this high stress 

environment, where burial, erosion, sand abrasion, salt spray, low nutrient availability, low soil 

moisture, and high exposure to sun are present (Dech and Maun, 2005; Gilbert et al., 2008; Maun, 

1998; Maun, 2009; Miller, 2015; Moreno-Casasola, 1986; Moreno-Casasola and Vasquez, 1999; 

Oosting and Billings, 1942; Ruocco et al., 2014; van der Maarel, 2005). The intensity of 
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environmental stress caused by these variables varies along a shore-perpendicular gradient, 

wherein stresses are higher closer to the shoreline and lower farther from the shoreline (Arens, 

1996; Bauer and Davidson-Arnott, 2003; Gilbert et al., 2008; Grootjans et al., 1998; Houser and 

Ellis, 2013; Lubke, 2004; Martinez et al., 1997; Martinez et al., 2001; Maun, 2009; Moreno-

Casasola, 1986; Moreno-Casasola and Vasquez, 1999; Oosting, 1945; Oosting and Billings, 1942; 

Zuo et al., 2008). Based on the distribution of stresses smaller micro-habitats exist within the EDZ 

and foredune zones.  Adaptation to and ability to cope with these various environmental stresses 

determine the spatial distribution of species as well as their abundance (Gilbert et al., 2008; Maun, 

1998; Maun, 2009). Thus, species abundance and diversity were measured through time and 

related to changes in surface elevation since sand transport and consequent deposition and erosion 

is the predominant variable that influences dune vegetation species (Dech and Maun, 2005; Gilbert 

et al., 2008; Hesse and Simpson, 2006; Martinez et al., 1997; Martinez et al., 2001; Maun, 1998; 

Maun, 2009; Miller, 2015; Moreno-Casasola, 1986b). 

Vegetation and geomorphology are interdependent. Not only do geomorphic processes 

influence the spatial distribution and abundance of species, but also different species perform 

different functions as geomorphic agents. Zonation of communities is thought to be representative 

of successional processes. Pioneer species are those which first colonize a previously uninhabited 

surface, altering the local environmental conditions through time and enabling colonization of 

other species. New species colonize a location in successive waves as environmental conditions 

change further. These are called secondary and tertiary species and so forth. Typically, the pioneer 

species will be the builders of the landscape in coastal dune environment, as they are located at the 

edge of vegetation closest to the source of wind-blown sand and trap deposition with upright 

growth habits (Hernández-Cordero et al., 2015). Secondary and tertiary waves of species are 
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typically stabilizers and can be classified by whether they are burial tolerant or intolerant 

(Hernández-Cordero et al., 2015). Stabilizers protect the surface from erosion and stabilize the 

substrate. Thus, by looking at concurrent change in geomorphology, it can be determined what 

function individual or groups of species perform as geomorphic agents based on their location in 

the embryo dune and foredune environments and the concurrent change in geomorphology.  For 

example, Tobias (2015) conducted very thorough surveys and determined the functions of different 

species found along the coast of California. However, none of the species mentioned were found 

at PINS in this study or in the catalogs of Judd et al. (1977) or Carls et al. (1991). This study will 

determine the functions of the species that characterize the Texas coast by examining an essentially 

unaltered coastal dune ecosystem.  

 

2.3 Methodology 

2.3.1 Study Site 

Vegetation species and abundance and topography were documented at PINS, which is 

located in the Gulf of Mexico, approximately 160 km north of the United States – Mexico border 

(Figure 2.1 inset). Beach sediment is predominantly very-well sorted, fine to very-fine quartz sand 

with a mean diameter of about 0.15 mm (Schmutz, 2007). In the northern portion of the park where 

the study sites were located, there is a 7.25 km section of beach on which public driving has been 

prohibited since the park was established in 1962. The beach at PINS is dissipative, with a 

continuous primary foredune ridge that has very few and minor blowouts. Seaward of the foredune 

ridge is a partially vegetated, hummocky EDZ that ranges from about 30 to 40 m in width (Figure 

2.2). The general climate of PINS is regarded as subtropical and semi-arid. The average 

temperature is 14°C in winter and is 28°C in summer, while the mean annual rainfall is 81 cm 
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(SRCC, 2015).  During summer, winds are dominated by the sea breeze so that the dominant wind 

direction is from the southeast (Weise and White, 1980). During winter, passage of cold polar 

frontal systems through the area generates strong northerly winds (Weise and White, 1980).  

 

 
Figure 2.1. Map of location of study site (inset) and transects (red lines with white numbers). 
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Figure 2.2. Image of the study site from the crest of the foredune, looking to the southwest 

with the Gulf of Mexico to the left and Laguna Madre out of the frame to the right.  

 

PINS has several important advantages as a study site including dune morphology and 

vegetation that are fairly typical and representative of northern and western Gulf of Mexico barrier 

islands. This section of the shoreline is relatively unaffected by human development. Only a few 

park vehicles agitate the surface to contribute to increased sediment transport into the embryo 

dune. It is abundantly clear that heavy vehicular traffic contributes to a large amount of aeolian 

sediment transport into the embryo dune and foredune zones and results in a decrease in vegetation 

abundance, density, and diversity (Anders and Leatherman, 1987; Hosier and Eaton, 1980; 

McAtee and Drawe, 1980; Rickard et al., 1994; Schlacher and Morrison, 2008; Schlacher and 

Thompson, 2008; Thompson and Schlacher, 2008). Thus this portion of the shoreline exhibits a 

vegetation ecology and geomorphological dynamics that are as natural as can be found in the state.  
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2.3.2 Data Collection 

Three sets of field data were collected at PINS – on 6-8 August 2012, 27 July 2013, and 9-

10 June 2014. The survey dates were determined to be representative of the peak growing season. 

No significant tropical storms affected the study area prior to or during surveys. During these 

surveys, vegetation presence and abundance as well as topography were measured along five 

transects perpendicular to the shoreline, extending from the foredune crest (FDC) to the seaward 

edge of vegetation, also referred to as the leading edge of the EDZ.  

In order to capture trends alongshore variation in vegetation, five cross-shore transects 

were established in the northernmost 5 km of the vehicle-prohibited zone at PINS (Figure 2.1) for 

vegetation and geomorphology monitoring. Transects were located approximately 4.25 km 

(transect 1), 3.25 km (transect 2), 2.25 km (transect 3), 1.25 km (transect 4), and 0.25 km (transect 

5) from the northern boundary of the restricted area. A benchmark was emplaced at the crest of 

the foredune for each transect in 2012 as a control point for subsequent surveys. The location of 

the benchmarks were recorded in UTM NAD 83 using a handheld eTrex GPS (Table 2.1). Transect 

orientations were also recorded to ensure that the same locations were surveyed during subsequent 

surveys. 

 

Table 2.1. Coordinates (NAD 83 UTM Zone 14R) for the benchmark at the start of each 

transect and the orientation of each transect. 

transect starting x starting y site line 

1 0669007 3036570 291° 

2 0669370 3037519 289° 

3 0669735 3038459 285° 

4 0670105 3039380 284° 

5 0670474 3040300 289° 
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Topographic data for each transect were collected using a total station. Vegetation surveys 

were conducted using the visual estimate method within a 1 m2 quadrat, or plot (Figure 2.3). The 

visual estimate method is a standard methodology for monitoring plant assemblages (Barbour et 

al., 1987; Bråkenhielm and Qinghong, 1995; Vanha-Majamaa et al., 2000; Kercher et al., 2003; 

Carlsson et al., 2005; Godínez-Alvarez et al., 2009), which is executed by establishing plots using 

a quadrat of known size on the surface, visually identifying each species, and estimating the 

percentage of the area of the plot that each species occupies, resulting in a percent cover estimate.  

 

 
Figure 2.3. Example of transect for measuring topography and species distribution. Species cover 

was estimated within the 1 m by 1 m space outlined by the red box. 

 

Although visual estimates fluctuate somewhat between surveyors, this method has been 

found to be the least time-consuming and most accurate approach in sparse grassland environments 

(Bråkenhielm and Qinghong, 1995; Vanha-Majamaa et al., 2000; Kercher et al., 2003; Carlsson et 

al., 2005; Godínez-Alvarez et al., 2009). In this study, all surveys were conducted by the same 
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person, who had training in visual estimate methods. If a species was not easily identified in the 

field, it was photographed in situ, extracted and pressed for identification by a botanist at Louisiana 

State University Herbarium. 

 

 

2.3.3 Ecological Data Analysis 

The ecology database for analysis had five transects with 35-45 plots in each, in which 

species percent cover was estimated, for a total of 566 plots. In order to analyze community 

structure in the embryo dune and foredune environments at PINS, percent cover of each species, 

richness, and Simpson’s Diversity Index were related to distance from the FDC and year of data 

collection. Species richness is simply the total number of species present in a given plot and does 

not take into account the abundances of the species present. Species richness is not a complete 

representation of community structure as it does not take into account the evenness, or 

homogeneity of abundance, of species present. For example consider two plots, both of which have 

the same richness value with three species present. One plot has 60% cover of species A, 30% 

cover of species B, and 10% cover of species C. It is evident that species A dominates this plot. 

The second plot has 30% cover of species A, 35% cover of species B, and 35% cover of species 

C. The species in the second plot share roughly equal area within the plot and thus no one species 

dominates.  

Many diversity indices incorporate evenness to capture differences in community structure 

(Krebs, 1972), and Simpson’s Diversity Index was chosen to measure species diversity in this 

study. Simpson’s Diversity Index was calculated for each plot using the following equation: 

D = 
Σi=1

S ni(ni-1)

N(N-1)
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where the values of D range from 0 to 1, S is the number of species in each plot, N is the total 

percentage cover in each plot and n is the percentage cover of a species within a plot. As the value 

of D increases, diversity decreases. Simpson’s Diversity Index (Simpson, 1949) is more 

appropriate for use in coastal dune vegetation communities over the widely used Shannon-Weiner 

Index because the Shannon-Weiner Index emphasizes species richness while Simpson’s Diversity 

Index does not (Magurran, 1988; van der Maarel, 2005). Species richness is rather low in dune 

environments (often no more than 15) and fluctuates greatly between plots. Richness in plots in 

this study range from 1 to 7. Accuracy in diversity calculated by the Shannon-Weiner index is 

affected by richness, (Magurran, 1988; van der Maarel, 2005). On the other hand, Simpson’s 

Diversity Index emphasizes dominance (Magurran, 1988; van der Maarel, 2005), which varies as 

different species dominate the various plots along transects. For diversity indices to be useful, the 

total cover must add up to 100% and therefore bare sand coverage is used as a “species” in this 

analysis, as suggested by Magurran (1988) because vegetation often covers less than 100% of the 

surface in dunes and semi-arid grasslands.   

 

2.4 Results 

2.4.1 Geomorphology 

Data from the GPS total station were interpolated to generate topographic profiles 

representing the different data years (Figure 2.4). The elevations of the starting point of transects 

in 2013 and 2014 were adjusted to match the benchmark recorded in 2012, because the surface 

elevation at this point changed less than 2 cm between 2012 and 2014. Profiles were truncated at 

the seaward edge of the vegetated zone because the focus on ecogeomorphodynamics requires the 

presence of vegetation. The average from each year of the five transects was used to determine 
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height change through time. The five transects were treated as replicates representing a moment in 

time because the focus was on the community, not the individual transects.  

 

 
Figure 2.4. Average topographic profiles for 2012, 2013, and 2014. 

 

 

A general linear mixed model (“Proc Glimmix” in SAS) was used to test the effect of the 

independent variables: distance from the FDC, year, and distance*year on the dependent variable 

elevation. The interactive term “distance*year” was used to test the simultaneous influence of 

these two variables on elevation. Distance and Distance*year were random variables and year was 

a fixed variable. Use of a linear model is not appropriate when both fixed and random effects are 

present in the data. Furthermore, a general linear mixed model is the most appropriate model for 

unbalanced and non-normal data as are found in this dataset. The use of a general linear mixed 

model allows grouping of various effects and responses by year and distance from the FDC. 
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There were significant differences in plot elevation along all transects as functions of a) 

distance from FDC (p<0.0001), b) year (p<0.0001), and c) the interaction between year and 

distance (p=0.0376). Elevation decreased along all transects away from the FDC, as to be expected, 

and elevation increased through time, signifying deposition along transects between 2012 and 

2014.  

A second model was tested in SAS to determine the effects of the independent variables 

distance, time period, and the simultaneous interaction between distance and time period on the 

dependent variables elevation change. The time periods tested were 2012-2013 and 2013-2014. 

There were significant differences in elevation change along all transects as a function of a) 

distance (p<0.0001) and b) time period (p<0.0001), but not as a function of the interaction of 

distance and time period (p=0.5972). Elevation changes from 2012-2013 (average=0.0002 m) were 

significantly lower than from 2013-2014 (average=0.079 m) or 2012-2014 (average=0.096 m) 

(Table 2.2). The average elevation change along transects was graphed for each time period in 

Figure 2.5.  

 

Table 2.2. Elevation change statistics. 

 2012-2013 2013-2014 2012-2014 

Average change along all five 

transects (m) 
0.0002 0.0794 0.0957 

Maximum erosion along all five 

transect (m) 
0.12 0.15 0.13 

Maximum deposition along all five 

transects (m) 
0.12 0.31 0.31 

Slope of line relating average 

elevation in a year to distance 
-0.19 0.85 0.88 
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Figure 2.5. Elevation change for all transects averaged for the study periods. Average elevation 

of all transects and data years depicted as profile line. 

 

The foredune slope (FDS) (0-12 m from the FDC) experienced small amounts of deposition 

(0.05-0.12 m) between 2012 and 2013 and small amounts of erosion (0.08-0.15 m) between 2013 

and 2014 (Figure 2.5). The result was net erosion of less than 0.05 m in this area between 2012 

and 2014. Changes in elevation at the rear portion of the EDZ (EDZ) (12-18 m from the FDC) 

ranged from -0.11 m to 0.09 m between 2012 and 2013 and between 2013 and 2014. The net 

change in this area was erosion less than 0.08 m between 2012 and 2014. The rear of the EDZ (12-

23 m from the FDC) experienced minor amounts of deposition (0.01-0.13 m). Between 2012 and 

2013 minor deposition (up to 0.08 m) occurred in the middle of the EDZ (24-35 m from the FDC) 

and erosion (up to -0.12 m) occurred at the leading edge of the EDZ (36-40 m from the FDC). 

Between 2013 and 2014 deposition (0.18-0.31 m) dominated the middle to leading edge of the 

EDZ. In summary, deposition occurred along the FDS and minor amounts of erosion occurred 
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throughout the EDZ between 2012 and 2013 whereas erosion occurred along the FDS and rear of 

the EDZ and deposition occurred in the middle and leading edge of the EDZ between 2013 and 

2014. Net elevation changes from 2012 to 2014 match more closely those changes from 2013 to 

2014 than from 2012 to 2013. During the entire study period, net erosion occurred along the FDS 

and rear of the EDZ and deposition dominated from the middle to the leading edge of the EDZ.  

 

2.5.2 Trends in Community Ecology 

For the purpose of analyzing trends in community ecology, the presence or absence of all 

species in all plots was displayed as a function of distance using box and whisker plots, which 

show the total range of distribution as lines and 50% of occurrences as boxes (Figure 2.6). The 

following species occurred on every profile: Amaranthus greggii S. Watson, Atriplex 

acanthocarpa (Torr.) S. Watson, Croton punctatus Jacq., Ipomoea imperati (Vahl) Griseb., 

Ipomoea pes-caprae (L.) R. Br., Oenethera drummondii Hook., Panicum amarum Elliott, 

Salicornia spp., Sesuvium portulacastrum (L.) L., Sporobolus virginicus (L.) Kunth, and 

Tidestromia lanuginosa (Nutt.) Standl. There was a tendency for certain species to occupy similar 

areas of the embryo dune and foredune environment. Generally, Croton dominated the vegetation 

community closest to the foredune, with minor occurrences of Panicum, Atriplex, I. imperati, and 

Oenethera. Some species, such as I. pes-caprae and Sporobolus were found primarily at the rear 

to middle of the EDZ. Amaranthus, Salicornia spp., Sesuvium and Tidestromia were not present 

in this area but were found predominantly from the middle to the leading edge of the EDZ.  
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Figure 2.6. Box and whisker plots of species presence at distances from foredune crest in 2012, 

2013, and 2014. Average elevation of all transects plotted in bottom graph for reference. 

 

Five species were deemed rare because they occurred in fewer than 15 of the 566 plots. 

These species were Cakile geniculata (B.L. Rob.) Millsp. with 14 occurrences, Chamaecrista spp. 

with 1 occurrence, Hydrocotile bonariensis Comm. ex Lam. with 4 occurrences, Iva imbricata 
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Walter with 2 occurrences, and Uniola paniculata L. with 7 occurrences. Contrary to expectations 

based on published catalogs of common coastal dune vegetation in the area (Carls et al., 1991; 

Judd et al., 1977; Weise and White, 1980), Uniola was not a dominant species. The low occurrence 

of Uniola in the dataset is simply coincidental and attributable to placement of transects. Uniola 

was observed throughout the EDZ in discrete tussocks during all three field seasons.  

Graphical representations of percent cover of each non-rare species in each plot along each 

transect in each year are presented in Appendix A. These graphs were difficult to read, provide 

limited insight into spatial and temporal trends, and produce descriptive results at best, but they 

illustrate the complexity of the dataset. The next issue to be investigated was whether percent cover 

of each species, richness, or diversity is related to distance from the FDC or the year in which data 

were collected. 

A general linear mixed model (Proc Glimmix in SAS) was used to analyze the effect of the 

independent variables distance from FDC, year, and distance*year on the dependent variables 

percent cover of all species, richness, and diversity. Distance and distance*year were random 

effects and year was a fixed effect. The interactive term “distance*year” was used to test the 

simultaneous influence of these two variables on percent cover, richness, or diversity. Results are 

presented in Table 2.4. No significant relationships were found between percent cover of I. 

imperati, I. pes-caprae, Panicum, Sesuvium, or Sporobolus and distance or year. Distance from 

the FDC had a significant effect on percent bare cover (p=0.0023), dead cover (p=0.0459), and 

Oenethera (p<0.0001). Percent cover of the plots occupied by bare sand and by Oenethera 

increased from the FDC to the leading edge of the EDZ while percent cover by dead material in 

all plots decreased along this same gradient. 
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Table 2.4. P-values for relationships between independent (distance, year, distance*year) and 

dependent (richness, Simpson’s Diversity, and percent cover of species) variables. 

 distance year distance*year 

Amaranthus 0.7813 0.0017 0.8464 

Atriplex 0.8632 0.0092 0.5916 

bare cover 0.0023 0.0107 0.0572 

Croton 0.4117 0.0036 0.004 

dead cover 0.0459 0.0722 0.5174 

I. imperati 0.6245 0.1056 0.4116 

I. pes-caprae 0.8773 0.4873 0.9996 

Oenethera <.0001 0.0073 0.0012 

Panicum 0.6313 0.8224 0.8948 

richness <.0001 <.0001 0.341 

Salicornia spp. 0.2512 0.1256 0.0026 

Sesuvium 0.6915 0.0575 0.674 

Simpson's <.0001 0.423 0.9534 

Sporobolus 0.9736 0.1481 0.5616 

Tidestromia 0.1053 0.0013 0.2322 

 

Sediment transport and salt spray increased along a gradient from the FDC to the leading 

edge of the EDZ, causing higher environmental stress in more seaward areas of the EDZ. Greater 

stresses at the leading edge of the EDZ were associated with lower vegetation cover and greater 

bare sand cover in this area. At the rear of the EDZ and along the FDS, environmental conditions 

were more stable and less stressful and therefore the community there had undergone some 

successional transition, leading to build-up of detritus from previous waves of succession.  

The simultaneous effect of year and distance had a significant effect on the percent cover 

of Croton (p=0.004), Oenethera (p=0.0012), and Salicornia spp. (p=0.0026). Both Croton and 

Oenethera migrated seaward through time. Salicornia spp. is an annual species which was found 

in minor amounts in 2012, greater amounts and more seaward in 2013, and not at all in 2014 in 

the survey plots.  
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There were significant changes through time in percent cover of Amaranthus (p=0.0014), 

Atriplex (p=0.0092), Croton (p=0.0036), Oenethera (p=0.0073), Tidestromia (p<0.0001), and bare 

ground (p=0.0013). Overall the percent cover of plots occupied by Atriplex, Oenethera, and bare 

cover increased from 2012 to 2014, while the percent cover of plots occupied by Amaranthus, 

Croton, and Tidestromia decreased through time. Bare cover increased through time as the result 

of deposition. It is not clear if this was part of a longer-term trend in community composition 

caused by large-scale factors such as barrier island progradation. Vegetation surveys need to be 

conducted in the growing season for several more years expand and strengthen the dataset. For all 

other species there was not a significant change in the percent cover through time.  

Treated as separate effects, year (p<0.001) and distance (p<0.001) from FDC both had a 

significant effect on species richness, even though the simultaneous effect of distance and year did 

not significantly affect richness. Richness increased through time so that the average richness 

across all plots on all transects in 2012 was 1.75, in 2013 was 2.07, and in 2014 was 2.31. Richness 

increasing through time indicated that the foredune and embryo dune environment as a whole was 

experiencing transition in succession, wherein a larger number of species are present because 

species of the previous stage co-exist with species of the next stage of succession. Successional 

transition is occurring because this coastline has been prograding since the 1970s (Weise and 

White, 1980) and so community assemblage has changed through time as the barrier island has 

widened. Species richness decreased with increasing distance from the FDC (Figure 2.7). There 

was a spike in richness in the middle of the EDZ (23-34 m from the FDC) in 2014. Richness was 

lower at the leading edge of the EDZ, where environmental stresses were greatest along transects, 

and increased toward the FDC, where environmental stresses such as sediment transport and salt 

spray were less.  
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While time did not have a significant effect on diversity distance from FDC did have a 

significant effect on diversity (p<0.001). Along each transect, diversity was higher at the FDC, 

lower at the FDT, and then decreased across the EDZ so that it was lowest at the leading edge of 

the EDZ (Figure 2.8). This was due to the increase in environmental stresses from the FDC to the 

leading edge of the EDZ. 

 

 
Figure 2.7. Richness averaged for all transects in a study year. Elevation profile included for 

reference. 

 

 
Figure 2.8. Simpson’s Diversity Index, averaged through time along each transect. Elevation 

profile included for reference. 
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2.5.3 Effects of Elevation Change on Community Ecology 

The final issue was to examine the relationship between sediment transport and changes in 

percent cover of species found in the EDZ as well as richness and diversity. In order to examine 

the effect of elevation change, as a representative of rates of deposition and erosion, on ecology, 

rates of change of percent cover were calculated for all species and correlated to elevation change 

in each plot. Time periods examined were 2012-2013 and 2013-2014. The results are presented in 

Table 2.5.  

 

Table 2.5. Pearson correlation coefficients and p-values for correlations of elevation 

change to change in percent cover of all species, richness, and diversity.  

 R p-value 

Amaranthus 0.01425 0.8607 

Atriplex -0.02230 0.8612 

bare cover 0.01109 0.8332 

Croton 0.15266 0.0370 

dead cover -0.05507 0.3746 

I. imperati -0.24688 0.0050 

I. pes-caprae -0.07515 0.3828 

Oenethera 0.08419 0.4607 

Panicum -0.02567 0.8671 

richness -0.08827 0.1575 

Salicornia spp. -0.29788 0.0151 

Sesuvium -0.10612 0.3009 

Simpson's 0.01745 0.7380 

Sporobolus 0.04528 0.7181 

Tidestromia -0.21276 0.0969 

 

Change in percent cover of Croton, I. imperati, and Salicornia spp. were significantly 

related to elevation change (p=0.0370, 0.0050, and 0.0151, respectively). Croton cover increased 

where deposition occurred whereas I. imperati and Salicornia spp. decreased where deposition 

occurred. Change in the percent cover of the other species, richness, and diversity did not correlate 
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to elevation change.  It is likely that species response to deposition and erosion occurs at longer 

time intervals than those examined herein. 

 

2.5.4 Comparison to Previous Species Catalogs for Padre Island 

Prior to when PINS was established as a National Seashore in 1962, the land was primarily 

used for cattle ranching (Weise and White, 1980), a practice which reduced vegetation cover in 

the park. As time passed, the ecosystem has recovered from grazing disturbance. To the author’s 

knowledge there has been no vegetation catalogue for embryo dune and foredune species published 

for PINS since the late 1980s. There are substantial differences between species recorded by Judd 

et al. (1977), Carls et al. (1991), and this study in both the EDZ and the foredune zone (Table 2.5). 

These differences suggest that the community is actively undergoing succession, attributable to 

larger-scale disturbances, such as island-wide cattle grazing, or smaller scale disturbances, such as 

scarping or overwash during periodic storms or fires. Without long-term census data and records 

of these disturbances, it is not possible to determine where in the succession process the 

communities are the recorded times. 

Species that occurred in the EDZ during all three studies were Sesuvium, Panicum, I. 

imperati, I. pes-caprae, and Croton. Six other species were present in the EDZ in this study which 

were not present in previous studies – Atriplex, Sporobolus, Amaranthus, Tidestromia, Cakile, and 

Salicornia spp. Species which occurred in the foredune zone in all three studies include Uniola, 

Croton, Panicum, and Oenethera. Six species were present in the foredune in this study which 

were not present in previous studies – Cakile, Atriplex, I. pes-caprae, Sporobolus, Amaranthus, 

and Iva. This study focused on ecology in the EDZ and thus did not extend landward of the FDC 

so that the list of foredune species is not as comprehensive as previous studies that surveyed the 
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whole foredune complex. It is unclear how exactly the boundaries of the zones termed backshore 

and foredune were defined in the earlier studies, so there may be some overlap in the two 

environments. In this study, the boundary between the EDZ and the foredune is the dune toe, or 

the break in slope at the windward bottom of the foredune.  

Table 2.5. Species catalogues of various studies.  

 Judd et al. (1977) Carls et al. (1991) Renken (2015) 

Embryo 

dune zone 

(or 

backshore 

in Judd et 

al. (1977) 

and Carls 

et al. 

(1991)) 

Croton punctatus 

Fimbristylis castanea 

Ipomoea pes-caprae 

Ipomoea stolonifera 

Panicum amarulum 

Schizachyrium 

scoparium 

Sesuvium portulacastrum 

Uniola paniculata 

Croton punctatus 

Ipomoea imperati 

Ipomoea pes-caprae var. 

emarginata 

Oenothera drummondii 

Panicum amarum 

Senecio riddellii 

Sesuvium portulacestrum 

Uniola paniculata 

Amaranthus greggii 

Atriplex acanthocarpa 

Cakile geniculate 

Croton punctatus 

Ipomoea imperati 

Ipomoea pes-caprae 

Oenethera drumondii 

Panicum amarum 

Salicornia spp. 

Sesuvium portulacastrum 

Sporobolus virginicus 

Tidestromia lanuginosa 

Foredune Cassia fasciculata  

Croton punctatus  

Fimbristylis castanea 

Heterotheca subaxillaris  

Heterotheca subaxillaris  

Ipomoea stolonifera  

Oenothera drummondii  

Panicum amarulum  

Paspalum monostachyum  

Rhynchosia minima  

Schizachyrium 

scoparium  

Uniola paniculata 

Andropogon glomeratus 

Chamaecrista fasciculate 

Croton punctatus 

Eleocharis sp. 

Eragrostis secundiflora 

Euphorbia serpens 

Heterotheca subaxillari 

Hydrocotyle bonariensis 

Ipomoea imperati 

Leptoloma cognatum 

Machaeranthera 

phyllocephala 

Oenothera drummondii 

Panicum amarum 

Paspalum monostachyum 

Paspalum setaceum 

Phyla nodiflo 

Physalis viscosa 

Schizachyrium 

scoparium var. littoralis 

Scirpus pungens var. 

longispicatus 

Sporobolus pyramidatus 

Uniola paniculata 

Amaranthus greggii 

Atriplex acanthocarpa 

Cakile geniculate 

Chamaecrista spp. 

Croton punctatus 

Hydrocotile bonariensis 

Ipomoea imperati 

Ipomoea pes-caprae 

Iva imbricata 

Oenethera drumondii 

Panicum amarum 

Sporobolus virginicus 

Uniola paniculata 
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2.6 Summary and Conclusions 

Spatial and temporal trends in community composition were examined and compared to 

geomorphology. There were significant inter-annual variations between species percent cover for 

5 of the 12 major species – Atriplex and Oenethera increased through time while Amaranthus, 

Croton, and Tidestromia decreased through time. The change in community composition during 

this three-year study signifies the active process of community succession, whereby a newer 

community of species replaces an older community of species as environmental conditions are 

changed by the older community.  

Species tended to co-occupy similar zones in the EDZ and the foredune. The community 

at the leading edge of the EDZ consisted of Tidestromia, Amaranthus, and Sesuvium. These species 

are exposed to high environmental stresses and thus their composition and cover fluctuate greatly 

through time. These species were leading edge pioneers (Tobias, 2015), which tend to trap moving 

sand particles resulting in deposition. Indeed, deposition was greatest at the leading edge of the 

EDZ. Diversity was found to be lowest here, with a small number of species occupying small areas 

within plots here. 

The middle of the EDZ was a transition zone in the EDZ community, with some species 

extending seaward from the FDS and FDT into this area (i.e. I. pes-caprae, and I. imperati) and 

other species extending landward from the leading edge of the EDZ in this area (i.e., Salicornia 

spp. and Amaranthus). The rear of the EDZ and the FDS were relatively stable and experienced 

little change in morphology. Biodiversity was greatest here and richness was moderate. The rear 

portion of the EDZ, the FDT, and the FDS housed a particular suite of species, including Croton, 

Atriplex, Oenethera, and Panicum. These species are mid-strand stabilizers (Tobias, 2015), which 



33 

 

establish themselves after other plants have colonized the surface and continue to protect and 

stabilize the substrate.  

Even though all species present in the coastal dune environment located seaward of the 

crest of the foredune can be considered pioneer species because they are first to colonize the highly 

unstable substrate of the coastal barrier island, the distribution of the various species along the five 

transects indicate the proclivity of some species to be more pioneer than others, colonizing the 

leading edge of the EDZ (i.e., Sesuvium) while others prefer the more stable portion of the EDZ 

nearest the foredune (i.e., Croton).  

In previous research, the foredune zone and the EDZ have been clumped together as one 

community or the embryo dune environment has been considered uniform (Freestone and 

Nordstrom, 2001; Judd et al., 1977; Miller, 2015). However, this study shows that there are clear 

and distinct differences in the ecological community across the EDZ to the crest of the foredune, 

as evidenced by analysis of not only species presence but also species richness and species 

diversity. Differences in morphological evolution played a large role in the development of 

ecological zones within the embryo dune sub-environment. There was a clear transition in the 

composition of the ecological community from the foredune to the seaward edge of vegetation. 

Croton, Panicum, Atriplex, Oenethera, and I. imperati as well as two rare species Chamaecrista 

spp. and Hydrocotile occupied the FDS and rear of EDZ, which was the most stable, with little 

geomorphic change through time. Sporobolus, Oenethera, I. imperati, Salicornia spp., I. pes-

caprae, and Amaranthus occupied the middle of the EDZ, which had a relatively stable substrate 

and experienced minor deposition through time. Tidestromia, Sesuvium, and Amaranthus occupied 

the leading edge of the EDZ together. These are the pioneer species that promote deposition of 

sand being transported from the beach by wind. 
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The interactions between ecology and geomorphology are such that it appears possible to 

predict community composition based on the location within the EDZ as well as trends in 

geomorphic change. In future studies, employment of a variety of instruments to measure 

environmental variables such as soil moisture, pH, organic content, and soil nutrients would allow 

for a more thorough analysis of the numerous variables that influence species zonation in embryo 

dunes and foredunes.  
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Chapter 3. The Response of Coastal Dune Vegetation Morphology to Fluctuating Wind 

Energy  

 

3.1 Introduction 

It is widely recognized that vegetation behaves as a roughness element that impedes fluid 

flow at the surface and alters sediment transport patterns (Arens et al., 2001; Baas and Nield, 2007; 

Brown et al., 2008; Buckley, 1987; Burri et al., 2011; Dallavis et al., 2011; Dijkstra and 

Uittenbogaard, 2010; Dong et al., 2008; Gillies et al., 2000; Gillies et al., 2002; Grant and Nickling, 

1998; Kim and Stoesser, 2011; Kuriyama et al., 2005; Lancaster and Baas, 1998; Leenders et al., 

2011; Leenders et al., 2007; Leonard and Croft, 2006; Leonard and Luther, 1995; Lightbody and 

Nepf, 2006; Luhar et al., 2008; Moller, 2006; Musick and Gillette, 1990; Nepf, 1999; Neumeier, 

2007; Neumeier and Amos, 2006; Neumeier and Ciavola, 2004; Okin, 2008; Suter-Burri et al., 

2013; Udo and Takewaka, 2007; Wolfe and Nickling, 1993; Woodhouse, 1978; Wyatt and 

Nickling, 1997; Zong and Nepf, 2010). However, as a result of the complexity of interactions 

between aeolian processes and biological elements, there remains a lack of quantitative 

understanding of the influence of vegetation on mechanics of wind flow in coastal embryo dunes 

and foredunes. The adjustment of wind flow patterns is interactive with vegetation morphology, 

which continuously varies as vegetation bends and flexes in response to wind forces. Furthermore, 

this dynamic response of vegetation morphology to wind velocity differs between species due to 

different blade/leaf size, shape, and rigidity, or ability to flex based on cell structure and water 

pressure within the blades/leaves/stems (de Langre, 2008; Nilsson et al., 1958; Pavlik, 1984; 

Steudle et al., 1977) as well as varying stem and blade density (Arens et al., 2001; Moller, 2006; 

Neumeier, 2005). The coastal embryo dune environment is host to a wide variety of species, from 

short grasses such as Sporobolus virginicus, to tall grasses such as Uniola paniculata, to vines 
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such as Ipomoea sp., to prostrate shrubs such as Sesuvium portulacastrum, and to taller shrubs 

such as Croton punctatus. 

The goal of this research was to quantify the effect of wind on the morphology of multiple 

vegetation morphology types commonly found in the embryo dune zone in terms of fluid-

dynamically meaningful variables, such as plant area, pore area, and optical porosity. This research 

will improve understanding of the interactions between vegetative elements and aeolian processes, 

building a foundation for incorporating different plant types into models of the distribution of 

surface shear stress, which is the force driving sediment transport.  

 

3.2 Background 

As with all roughness elements, vegetation creates drag on fluid flow, altering the bed shear 

stress distribution and velocity (Gillies et al., 2002; Jia et al., 1998; Marshall, 1971; Wyatt and 

Nickling, 1997). The predominant models of the spatial distribution of shear stress around 

vegetation elements were developed using rigid elements such as solid rods and cylinders to 

represent vegetation (Brown et al., 2008; Gillette and Stockton, 1989; King et al., 2005; Marshall, 

1971; Okin, 2008; Raupach, 1992; Raupach et al., 1993; Sutton and McKenna-Neuman, 2008). 

The model has been to apply to flow around rigid, desert shrub species (Dong et al., 2008; Gillies 

et al., 2000; Gillies et al., 2002; Leenders et al., 2011; Leenders et al., 2007; Musick and Gillette, 

1990). However, a few studies have demonstrated that flexible grasses, which often dominate 

coastal dune environments (Martinez et al., 2001; Maun, 2009), produce significantly different 

flow dynamics than rigid shrub species (Burri et al., 2011; Gillies et al., 2002; Walter et al., 2012a; 

Walter et al., 2012b), because the morphologies of grasses and other natural vegetation are highly 
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dynamic in response to wind flow. Thus it is necessary to investigate the effect of wind on 

vegetation morphologies which are common within the embryo dune environment. 

Frontal area and optical porosity are two morphological variables that have been used in 

previous investigations of the influence of vegetation on fluid dynamics (Gillies et al., 2002; Grant 

and Nickling, 1998; Guan et al., 2009; Jia et al., 1998; Kenney, 1987; Loeffler et al., 1992; 

Marshall, 1971; Wyatt and Nickling, 1997). In these studies, frontal area was defined as the width 

times the height of the object and was used to calculate roughness density, a variable used to model 

shear stress around roughness elements, the drag coefficient of roughness elements in the flow 

field, and the effect of vegetation on velocity profiles and turbulence (Brown et al., 2008; Crawley 

and Nickling, 2003; Gillies et al., 2000; Gillies et al., 2002; Gillies et al., 2007; Jia et al., 1998; 

King et al., 2005; Marshall, 1971; Okin, 2008; Raupach, 1992; Raupach et al., 1993; Walter et al., 

2012a; Walter et al., 2012b; Wolfe and Nickling, 1996; Wyatt and Nickling, 1997). This approach 

is practical for solid objects, but is less appropriate for porous objects such as vegetation. It is also 

not appropriate for objects that do not have a standard and uniform geometry, such as vegetation. 

To determine frontal area, an image of a plant can be projected onto a two-dimensional surface. 

Because porous objects such as vegetation have aerodynamics porosity it was necessary to 

distinguish between area occupied by plant and area occupied by pores within the perimeter of the 

plant. In the present study, frontal area was subdivided into plant area (PLA) and pore area (POA). 

Optical porosity (OP) has also been used to characterize the morphology of vegetation in 

relation to aeolian fluid flow (Gillies et al., 2002; Grant and Nickling, 1998; Kenney, 1987; 

Leenders et al., 2011; Loeffler et al., 1992; Musick et al., 1996). OP is defined as the proportion 

of pore area to total area (which is the sum of plant area and pore area). OP ranges from 0, when 

an object is completely solid, to 1, when an object is non-existent. Elements with lower OP have 
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greater flow decrease in their lee (Leenders et al., 2011; Loeffler et al., 1992) and are more effective 

at increasing the transportation threshold surrounding them than elements with higher OP (Musick 

et al., 1996). The OPs of grasses and shrubs behave differently in response to changes in wind 

velocity, so that OP of grasses decreases at higher velocity as plants bend and compress to become 

more streamlined and OP of shrubs increases at higher velocities as the flat surfaces of leaves align 

parallel to wind flow (Gillies et al., 2002). OP provides a useful improvement over pore area since 

it is not dependent on the plant size. 

In previous research vegetation morphology has been measured from one direction only, 

the upwind or “front” direction. Analyzing vegetation morphology from only the front, or upwind 

perspective, to predict the effect of plants on flow disregards the three-dimensional nature of 

vegetation as well as wind direction variability. In Figure 3.1 the plant area from the front 

perspective of the two different plant distributions (A and B) is the same.  

 

Figure 3.1. Front, side, and top views of two hypothetical vegetation spatial arrangements. 

Dashed black line with arrow indicates wind direction. The front view, used to determine optical 

porosity in previous studies, is equal. Side and top views reveal very different spatial 

arrangements that affect fluid flow for the two cases. 
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However, incorporation of side and top views in analysis would produce very different 

measures of morphology and aerodynamic roughness.  Hence this study examined vegetation 

morphology in terms of PLA, POA, total area, and OP from three perspectives – upwind, 

perpendicular to the wind, and overhead. Total area from the front perspective only equates to the 

frontal area metric used in previous studies. 

Research on flexible grasses in aquatic environments clearly shows significant interspecies 

differences in how grasses impact fluid dynamics and sediment transport rates (Leonard and Croft, 

2006; Leonard and Luther, 1995; Luhar et al., 2008; Moller, 2006; Nepf, 1999; Neumeier, 2005; 

Neumeier, 2007; Neumeier and Ciavola, 2004). However, differences in the fluid-dynamic 

influence of different species in aeolian environments has heretofore been limited to non-coastal 

species such as shrubs and ornamental grasses (Burri et al., 2011; Gillies et al., 2002; Loeffler et 

al., 1992; Walter et al., 2012a). It is therefore necessary to investigate the physical dynamics of 

different species in the embryo dune environment in order to develop a framework to improve the 

ability to model aeolian fluid flow around vegetation and resulting dune formation and evolution 

in the embryo dune environment and thus to improve the effectiveness of dune restoration projects. 

Dune restoration projects typically employ a single species, often whatever is native or indigenous 

to the area and perceived to be the most effective at trapping sediment (Freestone and Nordstrom, 

2001; Nordstrom, 2008; Woodhouse, 1978). Inclusion of only one species has been the default for 

decades, without any explicit scientific reasoning for not including more than one species. 

However, natural dune environments are commonly occupied by 5 to 25 different species 

indigenous to the embryo and foredune zones (Agır et al., 2014; Barbour et al., 1985; Carls et al., 

1991; Cooper, 1936; Freestone and Nordstrom, 2001; Judd et al., 1977; Lubke, 2004; Moreno-

Casasola, 1986; Moreno-Casasola and Espejel, 1986; Moreno-Casasola and Vasquez, 1999; 
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Tobias, 2014), and each will somewhat function differently in trapping and retaining sand (García-

Mora et al., 1999; Novo et al., 2004; Stallins, 2003; Tobias, 2014). Hence, this study examined the 

effects of wind on plant morphology for specimens with three different morphology types – tall 

grass, short grass, and shrub. These vegetation morphologies were chosen as representative of 

plant morphologies commonly found at the seaward edge of the coastal embryo dunes in a wide 

range of geographic locations.   

 

3.3 Methodology 

Field research was conducted at Padre Island National Seashore (PINS), Texas. PINS is 

located in the northwestern portion of the Gulf of Mexico, approximately 160 km from the United 

States – Mexico border (Figure 3.2). In the northern portion of the park where the study sites were 

located, there is a 7.25 km section of beach on which driving is prohibited. The beach at PINS is 

dissipative and the foredune ridge is continuous, with very few and minor blowouts.  

 

 
Figure 3.2. Location of Padre Island National Seashore. 
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Shoreward of the foredune ridge is a very wide, partially vegetated, hummocky embryo 

dune zone that ranges from about 30 to 40 m in width (Figure 3.3). The plants examined were at 

the shoreward edge of this embryo dune zone. Sediment is predominantly very-well sorted, fine to 

very-fine quartz sand with a mean diameter of about 0.15 mm (Schmutz, 2007). PINS is located 

in a subtropical and semi-arid climate region. The average temperature in winter is 14°C, in spring 

is 21°C, in summer is 28°C, and in fall is 23°C; while the mean annual rainfall is 81 cm (SRCC, 

2015).  During summer, when the field research was conducted, winds are commonly generated 

by sea breeze conditions, so that the dominant wind direction is from the southeast (Weise and 

White, 1980). During the winter, passage of cold polar frontal systems through the area generates 

northerly winds (Weise and White, 1980).  

 

 
Figure 3.3. Image of the study site from the crest of the foredune, looking to the northeast so that 

the Gulf of Mexico is to the right. 
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3.3.1 Data Collection 

  Two isolated clumps of each vegetation morphology type were studied, creating a database 

that comprised of six specimens - two specimens of short grass, Sporobolus virginicus (Figure 

3.4A; one in each of 2013 and 2014), two specimens of tall grass, Uniola paniculata (Figure 3.4B; 

one in each of 2013 and 2014), and two specimens of shrub (Tidestromia lanuginosa (Figure 3.4C) 

in 2013, and Amaranthus greggii (Figure 3.4D) in 2014). A suitable specimen of Tidestromia was 

not present at the seaward edge of the embryo dune zone in 2014 so a specimen of Amaranthus, 

which has a similar growth habit to Tidestromia, was chosen. The shrubs and tall grasses existed 

as discrete clumps naturally. The short grass occurred in large extensive mats and was trimmed 

down to roughly the same footprint as the tall grasses and shrubs.  

 

 
Figure 3.4. Vegetation observed – A) Sporobolus virginicus, B) Uniola paniculata, and              

C) Tidestromia lanuginosa, and D) Amaranthus greggii. 
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Digital images of isolated specimens were obtained during either three observations in 

2013 or five observations in 2014. During an observation, images were collected from three 

different perspectives – upwind of the stand (“front”), from the side of the stand perpendicular to 

the front, and from overhead of the stand (“top”) (Figure 3.5).  

 
Figure 3.5. Image depicting the placement of the camera in the front, side, and top perspectives.  
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For the front and side images the camera was placed on a tripod. The camera sensor was 

horizontally positioned 3 m from the center of the plant clump, and vertically positioned so that it 

was level with the middle of the mass of the clump. For overhead imagery the camera was placed 

on a boom made of PVC pipe so that the sensor was located at 4.5 m above the ground surface and 

directly above the plant. Images were collected in JPEG format using a Canon Rebel T3 at the 

highest resolution possible for the camera, 4272 x 2848 pixels for all perspectives except the top 

perspective in 2013. In 2013 the overhead images were obtained in the MOV format (1280 x 720 

pixels) as the equipment was not available to take still images from overhead at that time. 

From each perspective, 13 total images were collected during a one-minute period at five 

second intervals in order to encapsulate the natural variability of vegetation morphology for a 

given wind regime. In order to analyze the effect of velocity on vegetation morphology, wind 

velocities were measured contemporaneously with image collection. Wind velocities were 

measured at 1 Hz using RM Young Gill 3-cup anemometers at 0.25 m, 0.75 m, and 1.5 m height 

on a mast located on the open beach five to eight m upwind of each plant clump on the un-vegetated 

backbeach. Images were processed in a GIS to determine PLA, POA, total area, and OP for each 

image. 

 

3.3.2 Image Processing 

 Image processing was performed in ERDAS Imagine 2011 and 2013 and in ArcGIS 10.1 

and 10.2.2. The following steps were required in order to calculate the plant morphology variables: 

1) pixel size calculation; 2) cropping; 3) iterative self-organizing data (i.e., isodata) unsupervised 

classification; 4) reclassification; and 5) classification accuracy assessment. 
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In order to calculate pixel area of each set of images, three “scale cards” (i.e., black squares 

of dimension 0.1 m x 0.1 m) were placed within the frame of each image – one at the front of the 

plant mass, one in the middle of the plant mass, and one at the rear of the plant mass (see Figure 

3.5). For the overhead perspective, the scale blocks were located on the ground surface. Pixel area 

was determined by measuring the number of pixels occupied by the scale blocks in the image and 

then dividing the actual area of each block (0.01 m2) by the number of pixels representing that 

block. In order to account for image depth and distortion in pixel resolution from the front of the 

plant to the rear of the plant, the calculated pixel area at the front, middle, and back of the plant 

were averaged, based on the fact that the majority of the vegetation mass was located near the 

middle of the field of depth. Pixel area ranged from 0.5 to 0.6 mm2 in all front and side images, 

from 0.9-1.0 mm2 for 2014 top images, and 10-11 mm2 for 2013 top images. Each image was then 

cropped at the outer perimeter of the vegetation (Figure 3.6).    

 

 
Figure 3.6. Image of a clump of Uniola paniculata before cropping (A) and after cropping (B). 

 

 

 

In order to determine PLA and POA in each image, isodata unsupervised classifications 

were performed. The isodata analysis technique uses an algorithm that splits and merges clusters 

of pixels based on their RGB values. In isodata classification multiple iterations are performed to 
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find the best fit for the data. The isodata approach is very effective at identifying spectral clusters 

specific to the data being analyzed (Sciandrello et al., 2015). It also has the advantage of requiring 

little preliminary knowledge of the data (i.e., there is no requirement to produce individual 

histograms for each image to model the spectral signature of the images). Thus, this method of 

classification is efficient for data such as this one consisting of 936 images and including multiple 

image sets with different spectral signatures. 

The timing of imagery collection varied throughout the day and thus the spectral signature 

of each image set varied based on lighting and exposure so that clustering of pixels was unique 

and different for each image set. All images within a given set had similar spectral properties 

because they were taken within a one-minute time period without sensor movement, so that it was 

appropriate to apply the spectral signature generated by isodata classification of the first image to 

the other twelve images comprising the set. Within images in a set, differences in lighting were 

caused by overexposure, high albedo caused by reflection of the sun by grass blades, and shadow 

effects occurring in early morning and late afternoon. For example, pixels in shadows on the sand 

on one side of the image were placed in the same class as pixels representing brightly lit vegetation 

on the other side of the image. As a result of this misclassification in the original image, several 

sets of images were subset for classification and outputs were combined for analysis.  

Using the signature file created by the isodata classification, a maximum likelihood 

classification was performed on the remaining 12 images in the set. Output classes were visually 

scrutinized and re-classed as plant (1) or non-plant (0). The total number of pixels in each category 

was determined and converted to an area using the pixel area calculated in the first step of image 

processing. PLA and POA were direct outputs from the image classification. Total area was 

calculated as the sum of PLA and POA. OP was calculated as the ratio of POA to total area.  
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3.3.4 Accuracy Assessment 

 Accuracy of classification schemes was assessed on a representative image from each 

image set in order to determine how well classifications distinguished between plant and non-plant 

pixels in images. To compare classified images to unclassified images, error matrices were 

compiled from random sets of 100 points. These points were individually evaluated in both 

unclassified and classified images as either falling on plant- or non-plant-occupied pixels. From 

these error matrices, overall accuracy and Cohen’s kappa coefficients were calculated. Overall 

accuracy is the percentage of points which were classified in the correct class. Cohen’s kappa 

coefficient indicates how well the classification process produced results compared to random 

chance. Kappa ranges from -1, indicating perfect disagreement below chance, to +1, indicating 

perfect agreement above chance. A kappa value of 0 indicates agreement equal to chance. Results 

from the accuracy assessment are listed in Table 3.2. In general, the classifications performed well, 

with an average overall accuracy of 93% and a kappa of 0.813 for all 72 classification schemes, 

signifying that the classifications performed on average 81.3% better than if they occurred merely 

by chance. 

 

Table 3.2. Overall accuracy percentage and Cohen’s kappa coefficient for all image sets. 

  Uniola 2013 Sporobolus 2013 Tidestromia 2013 

perspective image set 
overall 

accuracy 
kappa 

overall 

accuracy 
kappa 

overall 

accuracy 
kappa 

front high 85 0.680 94 0.637 92 0.777 

side high 92 0.843 90 0.732 93 0.673 

top high 89 0.783 93 0.775 92 0.786 

front low 91 0.808 92 0.758 95 0.836 

side low 90 0.788 96 0.882 97 0.911 

top low 96 0.925 86 0.421 83 0.465 

front middle 84 0.664 91 0.746 92 0.781 

side middle 89 0.768 97 0.913 96 0.806 

top middle 94 0.885 91 0.634 88 0.642 

  



52 

 

Table 3.2 continued. Overall accuracy percentage and Cohen’s kappa coefficient for all image 

sets. 

  Uniola 2014 Sporobolus 2014 Amaranthus 2014 

perspective image set 
overall 

accuracy 
kappa 

overall 

accuracy 
kappa 

overall 

accuracy 
kappa 

front a 95 0.891 96 1.898 97 0.852 

side a 92 0.838 96 0.906 93 0.689 

top a 95 0.898 95 0.897 95 0.825 

front b 92 0.837 93 0.877 95 0.807 

side b 91 0.828 84 0.630 96 0.853 

top b 91 0.800 94 0.873 84 0.493 

front c 88 0.762 98 0.948 94 0.813 

side c 97 0.935 94 0.864 99 0.966 

top c 93 0.854 87 0.735 94 0.821 

front d 92 0.836 88 0.745 95 0.839 

side d 97 0.946 93 0.808 95 0.849 

top d 88 0.771 98 0.958 88 0.368 

front e 95 0.895 95 0.869 97 0.851 

side e 93 0.854 93 0.802 95 0.855 

top e 92 0.826 93 0.841 96 0.898 

 

 

 

3.4 Results  

Three sets of imagery and wind velocity data were collected for each of the three specimens 

in 2013, and 5 sets were collected for each of the three specimens in 2014. In 2013 velocities at 

0.25 m height ranged from 2.5 to 7.2 m/s during data collection, while in 2014 velocities at 0.25 

m height ranged from 1. 95 to 5.7 m/s (Table 3.3). No data were collected at zero wind flow 

because calm conditions did not occur during the study period. However, 2 m/s can be considered 

calm conditions in the present context because no sediment transport occurred when the velocity 

at 0.25 m height was 2 m/s.  
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Table 3.3. One-minute average of velocity at anemometers during image collection. 

  Uniola 2013 Sporobolus 2013 Tidestromia 2013 

perspective image set 
0.25 

m 

0.75 

m 

1.5 

m 

0.25 

m 

0.75 

m 

1.5 

m 

0.25 

m 

0.75 

m 

1.5 

m 

front high 6.56 8.04 9.13 2.64 6.80 7.69 7.06 8.00 9.00 

side high 7.10 8.65 10.09 2.48 6.95 7.85 7.24 8.52 9.60 

top high 6.94 8.52 9.70 6.83 7.78 8.65 6.86 7.97 9.00 

front low 3.27 4.18 4.58 3.37 4.15 4.60 4.05 4.82 5.30 

side low 2.82 3.63 4.03 3.11 3.83 4.25 3.31 4.19 4.72 

top low 2.97 3.71 4.09 3.17 3.88 4.26 3.17 3.97 4.37 

front middle 4.84 6.09 7.02 5.44 6.64 7.41 5.44 6.60 7.18 

side middle 5.19 6.51 7.28 5.54 6.66 7.32 4.82 5.91 6.62 

top middle 4.93 6.31 7.11 5.42 6.51 7.37 5.43 6.55 7.31 

           

  Uniola 2014 Sporobolus 2014 Amaranthus 2014 

perspective image set 
0.25 

m 

0.75 

m 

1.5 

m 

0.25 

m 

0.75 

m 

1.5 

m 

0.25 

m 

0.75 

m 

1.5 

m 

front a 3.48 3.95 4.69 2.05 2.28 2.67 2.22 2.58 3.03 

side a 3.39 3.73 4.45 2.66 2.98 3.39 2.07 2.35 2.77 

top a 3.41 3.80 4.45 2.66 2.91 3.26 2.06 2.32 2.65 

front b 4.02 4.66 5.44 3.16 3.69 4.33 3.20 3.69 4.08 

side b 3.85 4.26 5.07 3.08 3.61 4.11 3.31 3.95 4.43 

top b 3.97 4.44 5.09 3.46 4.08 4.68 3.17 3.60 4.22 

front c 1.89 2.13 2.53 4.16 4.96 5.59 4.58 5.42 6.26 

side c 2.18 2.52 2.96 4.91 5.90 6.70 4.51 5.08 5.70 

top c 1.88 2.13 2.57 4.46 5.40 6.08 4.82 5.52 6.41 

front d 2.32 2.65 3.16 5.00 5.86 6.56 1.90 2.16 2.49 

side d 2.48 2.77 3.22 4.79 5.69 6.33 2.00 2.23 2.48 

top d 2.51 2.80 3.31 4.51 5.36 6.10 1.85 2.03 2.29 

front e 3.90 4.40 5.06 4.85 5.72 6.53 5.22 5.92 6.64 

side e 3.90 4.42 5.07 5.68 6.70 7.55 5.10 5.78 6.63 

top e 4.04 4.58 5.36 4.67 5.36 6.05 5.37 6.28 7.15 

 

 

 

3.4.1 Wind Velocity Assessment 

The purpose of this study was to determine whether the vegetation morphology parameters 

examined herein correlated to wind velocity. In order to evaluate the relationships between 

vegetation morphology parameters and wind velocity, it was necessary to determine which of the 
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available wind velocity measures to use. There were three options from which to choose. Average 

velocity was calculated for anemometers at all three heights on the anemometer mast. Average 

velocity was the simplest measure of wind and hence preferred. However, instantaneous velocity, 

which was the velocity at the moment of image capture, might improve the strength of correlations. 

Time-lagged velocities, which account for the time required for wind to travel the distance between 

the anemometer mast and vegetation, might also improve the strength of correlations. The velocity 

measured at one-second before image collection was used for this dataset because the mast was 

located at a distance of five to eight m upwind of vegetation. 

A correlation analysis was performed in SAS between the three different velocity measures 

at 0.25 m, 0.75 m, and 1.5 m heights on the anemometer mast. There was no statistical difference 

between average velocity and instantaneous velocity (R=0.989, p<0.0001), between average 

velocity and time-lagged velocity (R=0.970, p<0.0001), or between instantaneous and time-lagged 

velocity (R=0.971, p<0.0001). The fact that Pearson correlation coefficients exceed 0.97 means 

that these measures are highly correlated to each other and the use of any one of these measures in 

analysis would produce the same results as the other two. Therefore, the average velocity was 

utilized to determine the effect of wind on vegetation morphology as it inherently incorporates the 

natural variability of wind.  

Next, a representative anemometer elevation had to be chosen. A correlation analysis was 

performed in SAS between average velocities at the three anemometer heights. Average velocities 

at 0.25 m, 0.75 m, and 1.5 m height on the anemometer mast were highly correlated to each other 

(0.25 m to 0.75 m: R=0.929, p<0.0001; 0.25 m  to 1.5 m: R=0.929, p<0.0001; 0.75 m  to 1.5m: 

R=0.998, p<0.0001). As a result, velocity at any height produced the same results as the other two 

heights in further statistical analysis. The short grass grew no taller than 0.25 m and the shrubs no 



55 

 

taller than 0.5 m, while the tall grasses grew to 0.75-1 m height. Because a majority of the plant 

mass was below the 0.75 m anemometer, velocity recorded by the anemometer at 0.25 m height 

was selected for use in further analysis.  

 

3.4.2 Wind Velocity and Plant Morphology 

For the purpose of determining the relationships between vegetation morphology and 

velocity general linear mixed models (Proc Glimmix) were used in SAS. The use of Proc Glimmix 

for this data is appropriate because the data are unbalanced across specimen (66% more 

observations for specimens in 2014 than 2013), and because a mixed model is most appropriate 

when there are both random effects (specimen, velocity), which are the source of variability in the 

data, and fixed effects (perspective, morphology type), which are controlled in the experiment.  

 

3.4.2.3 Wind Velocity and Total Area 

The first step was to determine differences in total area between specimens of the same 

morphology type from the different perspectives. Total area from the front perspective was the 

equivalent of the frontal area variable used in other studies. Total area from the side and top 

perspectives were new measures that provided a more three-dimensional look at plant morphology. 

A general linear mixed model was used to determine the effect of type*perspective, the 

independent interactive variable, on total area, the dependent variable. There were significant 

differences in the total area of the different vegetation morphology types based on the perspective 

from which it was measured (p<0.0001). The results are shown in Table 3.4.  
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Table 3.4. Average total area (m2) by type and perspective. 

 Front Side Top 

Shrub 0.72 0.66 1.98 

Short grass 0.73 0.76 3.53 

Tall grass 1.51 1.89 3.52 

 

 Shrub specimens were nearly the same size as the short grass specimens from the front and 

side perspectives and substantially smaller than short grass and tall grass specimens from the top 

perspectives. Tall grass specimens were roughly twice the size of the shrub and short grass 

specimens from front and side perspectives. The larger plant area from the front and side 

perspectives of the tall grass specimens indicates that the tall grass occupied the greatest volume, 

extending higher into the boundary layer and presenting a greater obstruction to flow. The short 

grass, which was trimmed to match the size of the tall grass and fit within a 2 m by 2 m quadrat, 

had a large total area from the top perspective because it naturally grows in dense blankets covering 

the sand. 

The next objective was to determine the change in total area as function of wind velocity. 

For this purpose, a general linear mixed model tested the effects of the following independent 

variables on the dependent variable total area: velocity*perspective, velocity*type, and 

velocity*type*perspective. The * signifies that the terms were interactive. Only the effect of 

velocity by perspective on total area was significant (p=0.0004). For all morphology types, total 

area from the front and side perspectives increased as a function of velocity (0.051 m2/m/s for 

front; 0.001 m2/m/s from side) while total area from the top perspective decreased as a function of 

wind velocity (-0.085 m2/m/s). Changes in total area as a function of wind velocity indicate that 

live plants indeed change shape in response to increasing wind velocity. From the front 

perspective, total area increased when blades at the top of the plants were pushed down while 

blades at side of the plants were pushed out laterally by increased turbulence that accompanies 
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higher velocities. Walter et al. (2012a) observed the same phenomenon in their study of Lolium 

perenne, a non-native perennial rye-grass used for lawns and pastures, in a wind tunnel. Minor 

increases in side total area occurred when blades at the front of the plants were pushed into the 

main mass of the plants but blades at the rear of the plants were pushed down and out to extend 

behind the main mass of the plants. From the top perspective, total area decreased because blades 

at the front of the plants bent toward the main mass of the plants, resulting in overlap of blades. 

Any extension of blades at the rear or side of the plants did not increase the area here substantially 

because blades overlapped each other from the top perspective. 

 

3.4.2.2 Wind Velocity and Plant Area  

 The next step was to distinguish between the plant area and pore area within the total area 

and to determine how these differ for the different morphology types. Plant area is the area 

occupied by the plant within the perimeter of the plant. It does not include pore space. A general 

linear mixed model in SAS was used to determine differences in PLA between morphology types 

based on perspective. Plant area was significantly different between the tall grasses, the short 

grasses, and the shrubs, depending on the perspective from which it was measured (p<0.0001). 

Results are shown in Table 3.5. 

 

Table 3.5. Average PLA (m2) by type and perspective. 

 Front Side Top 

Shrub 0.61 0.55 1.59 

Short grass 0.55 0.59 2.51 

Tall grass 0.76 0.99 1.94 

 

 The shrub specimens and the short grass specimens occupied roughly the same area from 

the front and side perspectives while the tall grass specimens were larger from front and side 
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perspectives. The shrubs were substantially smaller than the short grass specimens and slightly 

smaller than the tall grass specimens from the top perspective. Differences in PLA between 

morphology types were similar to total area for each specimen, in that the tall grass had the highest 

PLA from the front and side perspectives, signifying that this morphology type presents a greater 

obstruction to wind flow than the other morphology types. The short grass had a larger plant area 

from the top perspective due to its natural growth habit, which was low and dense.  

Next to be examined was the relationship between velocity and PLA. A general linear 

mixed model tested the effects of the following independent variables on the dependent variable 

PLA: velocity*perspective, velocity*type, and velocity*type*perspective. The * signifies that the 

terms were interactive.  Only the effect of velocity by perspective on PLA was significant 

(p=0.0104). For all morphology types, both front PLA and side PLA increased as a function of 

wind velocity (0.038 m2/m/s for front; 0.002 m2/m/s from side) while top PLA decreased as a 

function of wind velocity (-0.045 m2/m/s). Changes in PLA as a function of wind velocity were 

similar to changes in total area. PLA from the front increased when blades at the top of the plants 

bent to become more streamlined while blades extended to the side as more turbulence affected 

the plants at higher velocity. From the side perspective, decreases in PLA at the front of the plant 

as a result of blades being pushed toward the main mass of the plant were offset by extension of 

blades downwind of the plant. Plant area decreased from the top perspective as blades on all sides 

of the plant realigned parallel to the wind and overlapped the main mass of the plant.  

 

 

3.4.2.3 Wind Velocity and Pore Area 

 Pore area is a measure the available space through which wind can flow within the structure 

of the plant. A general linear mixed model was used to determine the effect of type*perspective, 
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the independent interactive variable, on the dependent variable POA. There were significant 

differences in the amount of pore area of the different vegetation morphology types based on the 

perspective (p=0.0002). The results are shown in Table 3.6. 

 

Table 3.6. Average POA (m2) by type and perspective. 

 Front Side Top 

Shrub 0.11 0.11 0.39 

Short grass 0.18 0.17 1.02 

Tall grass 0.75 0.90 1.59 

 

 

 Shrub specimens by far had the least amount of pore area from all perspectives while tall 

grass specimens were the most porous. The short grass specimens had slightly larger POA than 

shrub specimens from the front and side perspective and much greater POA than shrub specimens 

from the top perspective. Shrub specimens were denser than any other species, with the lower pore 

area than short grass specimens, which had less pore area than tall grass specimens. This finding 

is significant because plants which are denser are more capable of extracting energy from the fluid 

flow, promoting deposition and reducing erosion, than plants that naturally are less dense (Arens 

et al., 2001; Bouma et al., 2009; Gillies et al., 2002; Leonard and Luther, 1995; Neumeier, 2005; 

Neumeier and Amos, 2006).  

 A general linear mixed model was used to test the effects of the following independent 

variables on the dependent variable POA: velocity, velocity*perspective, velocity*type, and 

velocity*type*perspective. The * signifies that the terms were interactive. None of these 

independent variables had a significant effect on POA (p=0.4709, p=0.7950, p=0.2562, and 

p=0.8294, respectively). It was expected that pore area would decrease as plants bent and became 

more streamlined in higher velocities. Instead, there was not a significant relationship between 
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POA and wind velocity. This was likely a result of changes in the configuration of three-

dimensional pore space not being detectable on two-dimensional projected images because of 

optical overlap of blades and leaves. Instead, POA measured pore area around the outer perimeter 

of vegetation. 

 

3.4.2.4 Wind Velocity and Optical Porosity  

The final step was to analyze the differences between the OP of different morphology types 

as well as the effect of velocity on OP. Because it is a ratio, OP reduced the emphasis on the actual 

size of the specimens chosen for examination. A general linear mixed model was used to determine 

the effect of morphology type on OP. There were significant differences in OP between the 

different morphology types (p=0.0222). Shrub specimens had a lower optical porosity 

(average=0.17) than short grass specimens (average=0.26) and tall grass specimens 

(average=0.46). The tall grass had nearly twice the OP of the short grass, which in turn had nearly 

twice the OP of the shrubs. There was no significant difference in OP of the different morphology 

types from the different perspectives (p=0.2249). These findings reinforce those related to POA, 

wherein the shrub was found to be denser than the short grass, with the tall grass as the least dense. 

The tall grass specimens had long blades which spread out away from the main mass of the plant, 

resulting in large pore spaces near the periphery of the plants.  

 A general linear mixed model was used to test the effects of the following independent 

variables on the dependent variable OP: velocity*perspective, velocity*type, and 

velocity*type*perspective. The * signifies that the terms were interactive. None of these 

independent variables had a significant effect on OP (p=0.4145, p=0.4086, p=0.2561, and 

p=0.2991, respectively). Again, it was expected that OP would decrease as velocity increased, 
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causing plants to bend and become more aerodynamic. However, this phenomenon was not 

observed. OP does not correspond directly to aerodynamic porosity. Pore space was visible in 

imagery, but was not distinguishable in classification due to visual overlap of blades and leaves in 

a two-dimensional projected image. 

 

 

3.5 Summary and Conclusions 

The first goal of this study was to evaluate several measures of vegetation morphology and 

to quantify differences between vegetation morphology types. Three types of vegetation 

morphology common to coastal dune systems were examined herein – shrub, short grass, and tall 

grass – in terms of their total area, plant area, pore area, and optical porosity. 

There were significant differences in the morphology of the different types of vegetation. 

The tall grasses were the largest in terms of total area, plant area, and pore area. Shrubs had the 

smallest total area, plant area, and pore area from all perspectives. Short grasses fell in the middle 

of the spectrum. The variation in total area, plant area, and pore area between morphology types 

was dependent upon the individual specimens chosen for examination. To account for natural 

variability in specimen size, OP, which normalized the amount of pore area by the total area of the 

vegetation, was also evaluated. Unlike plant area and pore area, which varied significantly for each 

morphology type dependent upon the direction from which images were taken, OP was not 

different from the different perspectives of the same morphology type. It did however, differ 

between morphology types. The shrubs had the lowest OP The short grasses had roughly twice the 

OP of the shrubs, and the tall grasses had roughly twice the OP of the short grasses. Loeffler et al. 

(1992) and Gillies et al. (2002) found also found differences in OP between species, emphasizing 

the need to investigate species-specific differences in response to wind velocity. OP can be used 
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to predict the degree of sheltering which vegetation provides against erosion (Leenders et al., 2011; 

Loeffler et al., 1992; Musick et al., 1996). Objects with higher OPs shelter downstream areas to a 

lesser degree and therefore greater erosion or less deposition occurs downwind of more porous 

objects. 

The second objective of this study was to quantify the response of different vegetation 

morphologies to wind velocity in an attempt to develop a more appropriate method for 

incorporating roughness object size into shear stress partitioning models for use in the coastal 

embryo dune environment, where roughness objects come in a wide range of sizes and growth 

habits. This research found that total area and plant area of live plants from all perspectives indeed 

change as a function of wind velocity as blades of live grass and shrubs bend and flex in response 

to increasing fluid forces on them. Changes in plant area and total area as a function of wind 

velocity were the same magnitude for all vegetation morphology types. Either the method for 

measuring plant response to wind velocity is inappropriate or too little data were collected to 

substantiate any relationship between velocity and plant area or total area based on morphology 

type. In the future it will be necessary to expand the data set by collecting imagery from a greater 

number of specimens of each type of vegetation morphology at a larger sample of wind velocities.  

In the range of velocities observed in this study, total area from the front increased as a 

function of wind velocity. In contrast, Walter et al. (2012b) found that total area from the front and 

roughness density decrease with increasing wind velocity. As Walter et al. (2012b) further 

explained, frontal area increased at lower velocities as plants flutter and expand, but decreased at 

higher velocities. The natural range of wind observed in the field during this study did not reach 

the velocities that Walter et al. (2012b) generated in their wind tunnel study.  
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Pore area and OP did not change as a function of wind velocity. These two measures of 

pore space are inappropriate for quantification of the response of vegetation to wind velocity 

because they do not equate to three-dimensional aerodynamic porosity. Three-dimensional pore 

spaces “disappear” in two-dimensional projections of vegetation. In the future, it is worth 

exploring the applicability of a relatively new technology, terrestrial laser scanning, to produce a 

three-dimensional digital model of vegetation morphology in order to assess the effect of velocity 

on aerodynamic porosity. 

In conclusion, findings indicate that natural growth habits, in terms of blade density and 

height, of the various species in the coastal embryo dune zone may be more important in relation 

to their ability to influence and alter aeolian processes than previous research has indicated. This 

research emphasizes the importance of incorporating the three-dimensional response of vegetation, 

which was also suggested by Musick et al. (1996) in their investigation of the influence of 

vegetation structure on saltation. Furthermore, this research emphasizes the need to develop a more 

appropriate measure of aerodynamic porosity. The effect of velocity on vegetation porosity is still 

unclear, and so it remains difficult to model how porosity influences surface shear stress 

distributions and sediment transport thresholds (Brown et al., 2008; Crawley and Nickling, 2003; 

Gillies et al., 2007). The next phase in investigations of the complex interaction between biological 

elements and geomorphic processes necessitates examination of the influence of different 

vegetation morphology types on fluid flow patterns as well as patterns of sediment erosion and 

deposition surrounding the vegetation. The next chapter delves into this topic in greater depth.  
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 Chapter 4. The Effect of Vegetation on the Spatial Distribution of Aeolian Fluid Flow and 

Sediment Deposition and Erosion in Coastal Embryo Dunes 

 

4.1 Introduction  

Vegetation behaves as a roughness element in aeolian environments, increasing drag on 

fluid flow, altering shear stress, and influencing patterns of sediment transport (Buckley, 1987; 

Crawley and Nickling, 2003; Dong et al., 2008; Gillies et al., 2000; Gillies et al., 2002; Gillies et 

al., 2006; Grant and Nickling, 1998; Lancaster and Baas, 1998; Leenders et al., 2011; Leenders et 

al., 2007; Leonard and Croft, 2006; Luhar and Nepf, 2013; Luhar et al., 2008; Mattis et al., 2012; 

Nepf, 1999; Neumeier, 2007; Neumeier and Amos, 2006; Okin, 2008; Pasquill, 1950; Siniscalchi 

et al., 2012; Suter-Burri et al., 2013; Wolfe and Nickling, 1993; Wyatt and Nickling, 1997; Zong 

and Nepf, 2010). Shear stress is the driving force of sediment transport (Bagnold, 1941). Currently, 

it is not possible to model wind flow and sediment deposition within the coastal embryo dune 

environment because the distribution and morphology of vegetation in this environments has a 

high degree of variability, with vegetation growing in non-systematic and unpredictable spatial 

arrangements and producing hummocky terrain.  

Modeling shear stress distribution around roughness elements provides a means to predict 

sediment transport patterns that lead to dune formation and evolution. The predominant shear 

stress partitioning model used for aeolian environments, which allows the prediction of the total 

shear stress on the entire canopy as well as the peak and the average shear-stress ratios, was derived 

around solid, rigid roughness elements (Raupach et al., 1993). Recent work has shown that this 

model does not perform well in environments where there is live, non-rigid vegetation (Gillies et 

al., 2002; Grant and Nickling, 1998; Okin, 2008; Walter et al., 2012a; Walter et al., 2012b; Wolfe 

and Nickling, 1996; Wyatt and Nickling, 1997). This is due in large part to the fact that porous 

elements behave very differently than solid objects (Gillies et al., 2000; Grant and Nickling, 1998; 
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Okin, 2008; Walter et al., 2012a) and to the fact that live vegetation has dynamic morphology so 

that the morphology and drag coefficients of individual elements changes as function of wind 

velocity (Gillies et al., 2000; Gillies et al., 2002). Before a shear stress partitioning model 

applicable to live, natural vegetation can be developed, it is necessary to first examine the influence 

of different vegetation morphology types on spatial patterns of flow and sediment transport.  

The goal of this chapter was to investigate spatial patterns of aeolian fluid flow as well as 

sediment deposition and erosion around live, native species of different morphology – a short 

grass, a tall grass, and a shrub. Analyzing differences in flow and transport between species with 

different morphologies is necessary as the first step in building the framework for a shear stress 

partitioning which will be applicable within a natural environment. This research will enhance our 

understanding of aeolian ecogeomorphodynamics in a highly complex coastal embryo dune 

environment.  

 

4.2 Background 

4.2.1 Modeling Shear Stress  

The shear stress partitioning model most commonly used in the context of terrestrial 

vegetation in aeolian environments is that of Raupach et al. (1993). Conceptually, shear stress can 

be subdivided into components of shear force that act on each of the different elements that 

comprise the ground surface in a given location (e.g., sand grains, bed forms, vegetation, etc.), and 

a remainder that is left to drive sediment transport (Marshall, 1971; Raupach, 1992; Raupach et 

al., 1993; Schlichting, 1936). Raupach et al. (1993) proposed the following definition for the 

threshold friction velocity ratio, Rt:  

Rt=
u*S

u*R
=√

τs
"

𝜏𝑅
=√

1

(1-mσλ)(1+mβλ)
      (1) 
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where u*S is the threshold shear velocity on the surface with no roughness elements present, u*R is 

threshold shear velocity on the surface with roughness elements present, τs” is the maximum stress 

on the ground surface at any point, τR is the shear stress acting on the roughness elements, σ is the 

ratio of basal area (ground area occupied by the plant) to frontal area, m is an empirical parameter 

between 0 and 1 that accounts for spatial and temporal variations in shear stress on intervening 

surface, λ is roughness density (λ=nbh/S, where n is number of elements, b is element width, h is 

element height, and S is surface area occupied by elements), and β is the ratio of drag coefficient 

of isolated roughness element to the drag coefficient of the surface itself (or CR/CS, where CR is 

the drag coefficient of the element and CS is the drag coefficient of the surface). The Raupach et 

al. (1993) model was developed using solid, rigid elements with uniform spatial distribution and 

stable object morphology and has been evaluated with successful results for either solid, rigid 

objects or rigid desert shrubs (Brown et al., 2008; Crawley and Nickling, 2003; Gillies et al., 2000; 

Gillies et al., 2006; Gillies et al., 2007; Jia et al., 1998; King et al., 2005; Leenders et al., 2011; 

Leenders et al., 2007; Luo et al., 2012; Musick et al., 1996; Raupach, 1992; Raupach et al., 1993; 

Sutton and McKenna-Neuman, 2008; Wolfe and Nickling, 1996).  

However, considerable limitations arise when applying this shear stress partitioning model 

to coastal dune environments. First of all, the Raupach et al. (1993) model emphasizes the effect 

of the spatial distribution of roughness elements, which was based on the findings of Marshall 

(1971). In fact, several studies have evaluated the effect of roughness density on shear stress 

partitioning and found that the measured partitioning of shear stress validated the model, regardless 

of their spatial configuration (Brown et al., 2008; Crawley and Nickling, 2003; Gillies et al., 2006; 

Gillies et al., 2007; King et al., 2005). These studies used artificial elements to represent vegetation 

and thus roughness element size was held constant.  However, recent research has shown that 
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object height plays a significant role in influencing the spatial distribution of wind velocity and 

shear stress partitioning (Leenders et al., 2011; Webb et al., 2014), with taller elements causing 

greater magnitude of deceleration in their lee. Vegetation in embryo dune environment comes in 

many different shapes and size and therefore, it is necessary to investigate spatial patterns of 

aeolian processes around natural vegetation of different size in an embryo dune environment. 

Furthermore, live vegetation has very different effects on flow dynamics as a result of being 

porous and flexible. A limited number of studies have shown distinct differences in aeolian flow 

and shear stress distribution around solid, rigid roughness elements and live, flexible grasses (Burri 

et al., 2011; Gillies et al., 2002; Walter et al., 2012a; Walter et al., 2012b). Gillies et al. (2002) 

showed that drag of certain vegetation species changes as plants become more streamlined in 

response to higher velocity. Therefore, there is a compelling need to examine the dynamics of 

aeolian flow and sediment transport around flexible grasses, which are the most common species 

type found in coastal dunes, to incorporate these in shear stress partitioning models. 

Finally, it is worth noting that a majority of studies examining shear stress partitioning 

models have been conducted in wind tunnels (Brown et al., 2008; Buckley, 1987; Burri et al., 

2011; Crawley and Nickling, 2003; Dong et al., 2008; Gillies et al., 2002; Jia et al., 1998; Luo et 

al., 2012; Marshall, 1971; Musick et al., 1996; Raupach, 1992; Raupach et al., 1993; Suter-Burri 

et al., 2013; Sutton and McKenna-Neuman, 2008; Udo and Takewaka, 2007; Walter et al., 2012a; 

Walter et al., 2012b). The handful of studies which have been conducted in the field have examined 

flow around either artificial roughness elements (Gillies et al., 2006; Gillies et al., 2007) or shrubs 

(Gillies et al., 2000; Grant and Nickling, 1998; Leenders et al., 2011; Leenders et al., 2007; Wyatt 

and Nickling, 1997). Wind dynamics within wind tunnels are greatly simplified in comparison to 

nature due unsteadiness in wind velocity and direction and uneven surfaces. Thus there exists an 
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inherent need to examine flow around in situ coastal dune grass and sediment transport dynamics 

as the first step toward understanding how these plants control shear stress and sediment transport. 

Ideally, bed shear stress would be measured directly. However, this is not practicable in 

the context of the present study due to instrument limitations in natural environments. Instruments 

capable of measuring surface shear stress that are: a) small enough to avoid interfering with the 

behavior of the vegetation or be interrupted by vegetation, b) robust enough to operate consistently 

and accurately when exposed to blowing sand, and c) inexpensive enough to allow simultaneous 

deployment of a dozen or more units to capture spatial variability (within practical budget 

constraints), simply do not exist. Moreover, surface shear stresses cannot be predicted using 

velocity at some height above the bed because the law of the wall does not apply when sparsely 

distributed roughness elements are present in the flow field (King et al., 2008). Instead, near-

surface wind velocities were measured to document and analyze differences in the extent and 

magnitude of the influence of various plant species on aeolian fluid flow.  

 

4.2.2 Patterns of Sediment Transport around Vegetation 

The Raupach et al. (1993) model, while capable of predicting values of average and peak 

shear stresses within an area of study, is neither useful for predicting spatial patterns of flow around 

vegetation nor how these patterns correlate to zones of erosion and deposition. Wolfe and Nickling 

(1993) published a widely used conceptual model for aeolian flow patterns and wake development 

around roughness elements based on roughness element concentration. Leenders et al. (2011) 

generated a model to predict spatial patterns of sediment transport around vegetation (Figure 4.1). 

The impact of vegetation on aeolian flow and shear stress distribution is more localized than 

previously thought (Ghisalberti and Nepf, 2006). Vegetation decreases velocity and shear stress in 
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a localized area in the immediate lee of the plant instead of affecting shear stress across the entire 

surface where vegetation is present. 

 

 
Figure 4.1. Depiction zones of acceleration and deceleration around vegetation. Image taken 

from Leenders et al. (2011). 

 

 Echo dunes form upwind of roughness elements as a result of the formation of reversed 

flow caused by flow interaction with the roughness object (Qian et al., 2012). As wind steers 

around vegetation there are small localized areas of accelerated wind velocity located directly to 

the sides of the element coinciding with areas of erosion (Dong et al., 2008; Leenders et al., 2011; 

Leenders et al., 2007; Sutton and McKenna-Neuman, 2008). In the lee of vegetation, flow 

separation and decreased turbulence lead to deposition in features called shadow dunes in aeolian 

environments (Gillies et al., 2014; Gunatilaka and Mwango, 1989; Luo et al., 2012).  

Since different species and different vegetation densities alter fluid flow and shear stress 

distribution in different ways in aeolian environments (Gillies et al., 2002) as well as in aquatic 

environments (Ghisalberti and Nepf, 2006; Leonard and Croft, 2006; Luhar et al., 2008; Neumeier, 

2005; Neumeier, 2007; Neumeier and Amos, 2006; Siniscalchi and Nikora, 2012), it follows that 

patterns of deposition and erosion will differ among vegetation morphology types. However, the 

influence of vegetation on patterns of aeolian processes in the embryo dune zone are poorly 

understood. The purposes of this study were to 1) quantify and map the near-surface aeolian fluid 
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flow around different types of in situ vegetation, 2) differentiate flow modification patterns 

between vegetation morphology types, and 3) differentiate sediment deposition and erosion 

patterns to vegetation morphology type.  

 

4.3 Methodology 

4.3.1 Study Site 

 A series of experiments were conducted at Padre Island National Seashore (PINS), Texas. 

The field site at Padre Island National Seashore is located in the northwestern Gulf of Mexico, 

approximately 160 km north of the United States – Mexico border (Figure 4.2). The shoreline is  

 

 
Figure 4.2. Location of Padre Island National Seashore. 

 

oriented SSW to NNE (220°-20°) and the dominant wind direction in summer is from the southeast 

(135°). The beach at PINS is dissipative with a wide, well-established, partially vegetated, and 

hummocky embryo dune zone which was approximately 40 m wide during the study period. Beach 

sediment is predominately very-well sorted, fine to very-fine quartz sand with a mean diameter of 
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about 0.15 mm (Schmutz, 2007). Dune vegetation was fairly typical of northern and western Gulf 

of Mexico barrier islands and beaches.  

 

4.3.2 Site Preparation  

Three vegetation morphology types were chosen for examination - 1) a short, rhizomatous 

grass that grows in dense blankets up to approximately 0.25 m in height with thin blades 

(Sporobolus virginicus; Figure 4.3A); 2) a tall, rhizomatous grass that grows up to 2 m in height 

with thin (<0.6 cm in width) blades (Uniola paniculata; Figure 4.3B); and 3) a short, rigid shrub 

that grows up to approximately 0.5 m in height in the embryo dune environment, with either erect 

or ascending stems that were no more than 2 cm in diameter, and with leaves circular and obovate 

up to 0.5 cm in thickness and 4 cm in length (Tidestromia lanuginosa – Figure 4.3C, Amaranthus 

greggii – Figure 4.3D).  

 

 
Figure 4.3. Images of each of the plant species examined herein. A) The short grass, Sporobolus, 

B) The tall grass, Uniola, C) a shrub, Tidestromia, and D) a shrub, Amaranthus. 
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Finite patches of each of these morphology types were selected based on meeting several 

criteria – a) only a single species occupied a patch; b) vegetation was located near the seaward 

edge of the embryo dune zone so that approaching winds were not altered by other vegetation; and 

c) surrounding terrain was generally flat to reduce variability in wind flow caused by a sloped 

surface. 

 Preparation of the specimen sites for data collection consisted of the following steps. First, 

other vegetation and debris within a 5 to 10 m radius around the clump were removed to reduce 

the effect of any surrounding vegetation on the airflow. For the purpose of measuring wind velocity 

approaching vegetation and determining upwind, lateral, and down-stream effects of vegetation 

on the flow field, 16-32 tent stakes, or erosion pins, were emplaced in a grid (Figure 4.4). These 

pins marked the location of the anemometers used to measure near-surface wind velocities and 

surface elevation changes.  

 

 
Figure 4.4. Example of arrangement of stakes around a finite patch of vegetation.  
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Rows of 3-5 pins were oriented perpendicular to the dominant wind direction at distances 

1) 1.5-2 m upwind of the edge of vegetation clump; 2) touching the upwind edge of the clump; 3) 

at the middle of the clump with stakes on either side of the clump; 4) touching the downwind edge 

of the clump; 5) 2 m downwind of the clump; and 6) 4-5 m downwind of the clump. An 

anemometer mast was installed on the open beach within 10 m of the vegetation clump of interest, 

with anemometers at 0.25 m, 0.75 m, and 1.5 m heights. The locations of stakes, masts, and 

perimeters of vegetation clumps were recorded with a total station.   

Data were collected around three specimens of short grass (8 runs for 2012 specimen, 9 

runs for 2013 specimen, 13 runs for 2014 specimen), four specimens of tall grass (9 runs for 2012 

specimen, 10 runs for 2013 specimen, 16 runs for first 2014 specimen, and 12 runs for second 

2014 specimen), and two specimens of shrubs (9 runs for 2013 specimen, 12 runs for 2014 

specimen). In total, 98 runs of near-surface flow data were collected and analyzed for all specimens 

at a range of wind velocities (Table 4.1, Figure 4.5). The wind direction during each run was 

observed using a flag located at 1 m height on the anemometer mast, measured with a compass, 

and recorded in a field notebook (Table 4.2, Figure 4.6).  

 

 

Table 4.1. Average velocity in m/s at 0.25 m height on anemometer mast for each run. 

 

Obs. 

2012 

Sporob

olus 

2013 

Sporob

olus 

2014 

Sporob

olus 

2012 

Uniola 

2013 

Uniola 

2014 

Uniola 

1 

2014 

Uniola 

2 

2013 

Tidestr

omia 

2014 

Amara

nthus 

A 1.98 3.75 2.53 1.61 2.16 2.17 2.39 3.59 2.37 

B 2.44 4.18 2.82 1.99 2.54 2.62 2.79 3.69 2.96 

C 2.63 4.24 3.19 2.54 2.91 2.77 2.92 3.82 3.15 

D 3.49 4.52 3.67 3.59 3.09 3.13 3.16 3.87 3.20 

E 4.03 5.05 3.82 4.20 3.63 3.33 3.66 4.03 3.39 

F 4.37 5.43 4.22 4.35 4.05 3.37 3.71 4.47 3.59 

G 4.48 5.54 4.75 4.59 4.06 3.57 3.95 4.61 3.94 

H 4.62 5.80 4.80 4.74 4.17 3.69 4.31 4.66 4.05 
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Table 4.1 continued. Average velocity in m/s at 0.25 m height on anemometer mast for each 

run. 

 

Obs. 

2012 

Sporob

olus 

2013 

Sporob

olus 

2014 

Sporob

olus 

2012 

Uniola 

2013 

Uniola 

2014 

Uniola 

1 

2014 

Uniola 

2 

2013 

Tidestr

omia 

2014 

Amara

nthus 

J  6.14 5.01 4.82 4.18 4.01 4.75 4.78 4.99 

K   5.13  4.55 4.18 4.80  5.13 

L   5.22   4.34 5.33  5.27 

M   5.28   5.38 5.57  5.51 

N   5.28   5.60    

P      5.71    

Q      5.79    

R      5.79    

 

 
Figure 4.5. Average velocity (m/s) at 0.25 m height on anemometer mast for each run. 

 

Table 4.2. Wind direction in degrees from which wind blew for each run. Due onshore was 110°. 

Obs. 

2012 

Sporob

olus 

2013 

Sporob

olus 

2014 

Sporob

olus 

2012 

Uniola 

2013 

Uniola 

2014 

Uniola 

1 

2014 

Uniola 

2 

2013 

Tidestr

omia 

2014 

Amara

nthus 

A 171 150 187 115 146 141 105 152 113 

B 170 162 181 90 148 140 112 153 107 

C 136 149 188 82 140 140 95 151 93 

D 153 156 180 138 138 145 114 150 105 

E 122 156 188 140 133 140 113 150 106 

F 135 153 189 122 120 144 135 130 129 
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Table 4.2 continued. Wind direction in degrees from which wind blew for each run. Due 

onshore was 110°. 

 

Obs. 

2012 

Sporob

olus 

2013 

Sporob

olus 

2014 

Sporob

olus 

2012 

Uniola 

2013 

Uniola 

2014 

Uniola 

1 

2014 

Uniola 

2 

2013 

Tidestr

omia 

2014 

Amara

nthus 

G 127 144 196 137 129 160 123 147 130 

H 137 143 187 240 131 140 135 135 135 

J  134 195 236 131 149 120 142 115 

K   195  140 125 160  143 

L   187   125 150  151 

M   198   197 150  160 

N   185   162    

P      162    

Q      172    

R      165    

 

 
Figure 4.6. Wind direction for each run. 

 

 

4.3.3 Near-surface Flow Data Collection  

All wind velocity data were collected with RM Young Gill 3-cup anemometers at 1 Hz. 

Velocity was measured continuously at the mast for the duration of a run. Velocity was measured 

at each pin within the grid array at 0.25 m height for a 3-minute interval. The 3-minute sampling 

duration was selected because it was deemed sufficient to allow averaging of wind unsteadiness 
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cause by turbulence but not so long that velocity changed substantially during an entire run cycle. 

Wind velocity was averaged for each 3-minute sampling interval. For the purpose of determining 

the effect of vegetation on velocity three-minute average velocities at pins were normalized by 

dividing by average velocity recorded at 0.25 m height on the mast for the same time interval. 

Raster maps depicting normalized velocities for each run were interpolated using the kriging 

method. Raster maps were included in Appendix B. Four runs (2spa, 2spb, 2unh, and 2unj) were 

removed from all further analysis because the wind direction was not from the open beach but 

instead from over surrounding vegetation. 

 

4.3.4 Surface Elevation Data Collection and Analysis 

In order to analyze patterns of sediment transport around vegetation, surface elevation 

change was measured during the 2013 and 2014 field seasons at the erosion pins in the grid 

surrounding each specimen. The initial heights of the erosion pins above the surface were recorded 

at the onset of the experiments. Heights of erosion pins were subsequently recorded at daily 

intervals for the duration of each set of experiments, and changes were calculated for the entire 

study period. During the 2013 field season, elevation data were collected for a 6-day period from 

1100 hours on July 23 to 1000 hours on July 29. During the 2014 field season surface elevation 

data were collected for a 9-day period starting at 0900 hours on June 2 and ending at 0900 hours 

on June 11. Elevation change was determined by subtracting the initial elevation values from the 

final elevation values. Raster maps showing elevation change for the entirety of each study period 

were generated in Surfer 8 by interpolating change at each grid location using the kriging method.  
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4.3.5 Wind Data for Surface Elevation Change 

Since anemometers were not deployed continuously at all clumps for the duration of field 

work, wind direction and velocity data were acquired from the National Buoy Data Center at Bob 

Hall Pier located approximately 15 km north-northeast from the study site. These data were 

averaged for 1-hour periods for input into the Lakes Environmental WRPlot Freeware program. 

Wind roses were produced for each study period to determine the dominant velocity and resultant 

direction of wind during the time over which elevation data were recorded. While the WRPlot 

program adjusts for the 360 degree compass, so that winds from 355° and 5° do not produce an 

average of 180°. However, this was not significant because winds during the 2013 study period 

ranged from 119° to 177°and during the 2014 field season ranged from 68° to 196°. 

Wind directions and wind velocities measured at the Bob Hall Pier buoy had minor 

differences between the 2013 and 2014 study periods (Figure 4.7). Due onshore was 110°. During 

both study periods, there were diurnal patterns in wind direction. Wind direction shifted 

approximately 40-50° throughout each day. During the night, the wind had a stronger easterly 

component than during the day, when winds were more southerly. The average wind direction 

during 2013 was 153° (Figure 4.7C) and during 2014 was 128° (Figure 4.7F). Diurnal patterns in 

wind direction were consistent throughout the 2013 field season. On the other hand wind direction 

shifted during the 9-day 2014 field season, from more easterly during the first 3 days and more 

southeasterly during the last 3 days. The average wind velocity for the 2013 study period was 10 

m/s with 0% calm winds (<1 m/s). The average wind velocity for the 2014 study period was 8 m/s 

with 0% calm winds. Wind velocities were lower during the first three days of the 2014 season 

than the latter half of the 2014 season.  
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Figure 4.7. Wind data for the two study periods – A) 2013 wind velocity, B) 2013 wind 

direction, C) 2013 wind rose, D) 2014 wind velocity, E) 2014 wind direction, and F) 2014 wind 

rose. Vertical lines indicate midnight. Dashed lines on A and D indicate the threshold velocity 

for sediment transport (u=6.24 m/s at 7.92 m height of buoy) Dashed lines on B and E indicate 

due onshore (110°). 
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4.4 Results 

4.4.1 Near-surface Flow Patterns 

For the purpose of determining the effect of vegetation on spatial patterns of flow it was 

necessary to analyze flow patterns around the different vegetation morphology types. Interpolated 

raster maps of normalized velocity were not directly comparable and could not be overlaid in a 

GIS because wind direction varied substantially between the different specimens. Therefore, 

another approach was adopted. Values of normalized velocities were extracted from interpolated 

rasters in ArcGIS 10.2.2 3D Analyst along 3 lines (Figure 4.8).  

 

 
Figure 4.8. Example of lines of extraction from interpolated raster of normalized velocity in 

ArcGIS 10.2.2 for analysis (specimen: 4u1a). The blue line is parallel to wind direction through 

the center; the other two lines are lines perpendicular to wind direction – one through the center 

of the vegetation and the other 2 m downwind of vegetation center; green polygon indicates the 

outline of perimeter of specimen.  
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One line was parallel to wind direction through plant centers to provide insight into stream-

wise differences in velocity between morphology types. The second line was perpendicular to wind 

direction through plant centers in order to investigate the lateral effects of vegetation on velocity. 

The third line was perpendicular to wind direction 2 m downwind from plant centers so that the 

cross stream influence on the flow downwind of vegetation could be examined. Data were 

referenced to the center of each specimen.  

 

4.4.1.1 Streamwise Variation in Velocity 

 The first step in this analysis was examining normalized velocities along flow parallel to 

the wind direction through the center of specimens and comparing flow patterns around different 

morphology types. Normalized velocity for each morphology type was averaged for all runs for 

each morphology type and shown in Figure 4.9.  

 

 
Figure 4.9. Normalized velocity along lines parallel to wind direction averaged for each 

morphology type. Negative x values indicate distance upwind while positive x values indicate 

distance downwind of the specimen center; and the green boxes indicate the approximate 

locations of specimen perimeters. 
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The different morphology types had different effects on velocity in the lee of the 

vegetation. The upwind influence of vegetation on velocity was alike for all morphology types. 

Flow was not altered by the vegetation at a distance of 1 m upstream of the leading edge of all 

specimens. At 0.5 m upstream of the leading edge of all specimens, velocity was decreased to an 

average of approximately 90% that of open beach velocity. Short grasses were the least effective 

at reducing velocity within and immediately downwind of the vegetation. Shrubs were most 

effective at reducing velocity downwind and therefore the greatest amount of deposition was 

expected in this area. Tall grasses reduced velocity by a lesser magnitude than shrubs but in a zone 

extending farther downwind. Consequently, it was expected that low amounts of deposition 

occurred downwind of short grasses and greater amounts of deposition were expected downwind 

of shrubs. Accordingly, deposition downwind of the tall grass was expected to be of lower 

magnitude than for the shrub, but covering a larger area. In order to examine differences in the 

influence on flow between specimens, all runs for each specimen are shown in Figure 4.10.  

Both shrub specimens were consistently effective at reducing velocity directly in the lee of 

the vegetation, with velocity at this location averaging 15% of open beach velocity. Trends in 

normalized flow around tall grass specimens had a wide range of variability. The tall grass 

specimen from 2012 and the first specimen from 2014 had similar impacts on flow, with longer 

zones of deceleration downwind of the vegetation. The zone of deceleration downwind of the 

second 2014 tall grass specimen was smaller than the 2012 or first 2014 specimen. The 2013 tall 

grass specimen was much less effective at reducing velocity downwind than the other tall grass 

specimens, with a velocity reduction of 35-60% of open beach velocity at the lowest.   
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Figure 4.10. Normalized velocities parallel to wind direction through the center of specimens. 

Negative x values indicate distance upwind while positive x values indicate distance downwind 

of the specimen center; and the green boxes indicate the approximate locations of specimen 

perimeters. 
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 There were substantial differences in the effect of flow caused by short grass specimens 

from 2012 and 2014 than the short grass specimen from 2013. The 2012 and 2014 specimens 

caused a 50-60% decrease in velocity in the first third of the plant and a minor increase in velocity 

(up 5%) at the second third of the plant. Velocity directly in the lee of these two specimens was 

40% of open beach velocity. In contrast, the 2013 specimen had nearly the opposite influence on 

flow velocities in the streamwise direction. Velocity remained the same as or actually increased 

by 5-10% of open beach velocity in the first third of the specimen, decreased to 40-80% of open 

beach velocity in second third of specimen, and increased to 80% of open beach velocity directly 

in lee of the specimen. At 0.5 m downwind of the 2013 shot grass specimen, velocity was no less 

than 80% of open beach flow. 

Leenders et al. (2007) found that near-surface wind velocity was reduced by 15% on 

average in an area downwind extending to 7 times the height of an isolated shrub. For the tall grass, 

this would be approximately 5.25-7 m downwind of the edge of vegetation 0.75-1 m high, 1.75 m 

downwind of the edge of the short grass (0.25 high), and 3.5 m downwind of the edge of the shrubs 

(0.5 m high). These findings did not hold for the short grass specimens of 2012 and 2014, which 

had velocities at 60-80% of open beach flow at 1.75 m downwind of the edge of vegetation, and 

they could not be evaluated for tall grass and shrub specimens because velocity data did not extend 

to this distance.  

 

4.4.1.2 Lateral Impact of Vegetation on Flow 

In order to evaluate the cross-stream effect of the presence of vegetation to the sides of a 

finite patch of vegetation, normalized velocity was extrapolated from interpolated rasters along 

lines perpendicular to the wind direction through the center of the plant. The first step was 
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comparing flow patterns between the different morphology types. Normalized velocity for each 

morphology type was averaged for all runs for each morphology type and shown in Figure 4.11.  

 

 
Figure 4.11. Average normalized velocity along lines perpendicular to wind direction through the 

center of vegetation for each morphology type. Negative x values indicate distance to the left of 

the specimen based on wind direction, and green boxes indicate the approximate locations of 

specimen perimeters. 

 

Generally, vegetation did not alter fluid flow at a distance of 1.5 m from the center of the 

vegetation for all morphology types. Minor flow acceleration occurred immediately to the sides of 

the short grass. Acceleration did not occur immediately to the sides of tall grass or shrub 

morphology types. Flow reduction in the middle of the plant was less for the tall grass than the 

short grass. The shrub morphology was most effective at reducing velocity within the plant. 

Therefore, minor amounts of erosion were expected on the lateral edges of the short grass but not 

of the tall grass or shrub. A comparison of all runs for each specimen showed different effects on 

flow of the individual specimens (Figure 4.12). 
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Figure 4.12. Normalized velocities along lines perpendicular to wind through the center of 

specimens. Negative x values indicate distance to the left of the specimen based on wind 

direction, and green boxes indicate the approximate locations of specimen perimeters. 
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This comparison revealed that greater velocity acceleration occurred on the lateral edges 

of the 2014 short grass specimen than for the other two short grass specimens. Also, flow 

acceleration occurred on the lateral edges of both 2014 tall grass specimens, but not on the 2012 

or 2013 tall grass specimen. Flow patterns to the sides of the 2012 tall grass specimen were unlike 

the other three specimens for this morphology type in that flow was reduced up to 2 m away from 

the center of vegetation. Both shrubs exhibited similar influences on flow along lines perpendicular 

to the wind velocity through the center of vegetation, with flow reduction at the edges of this 

morphology type. As a result of these flow patterns, it was expected that greater erosion would 

occur to the sides of the 2014 short grass and both 2014 tall grass specimens.  

 

4.4.1.3 Cross-stream Variation in Velocity Downwind of Vegetation 

In order to examine the effect that vegetation had on downstream velocity, normalized 

velocity along lines perpendicular to wind direction 2 m downwind of specimen centers were 

extrapolated from interpolated rasters. Normalized velocity was averaged for all specimens of each 

type along these lines (Figure 4.13)  

The short grass morphology produced a narrower zone of deceleration downwind of the 

plant than the other two morphology types. In fact, flow acceleration occurred downwind and to 

the sides of the short grass morphology type. The effect of the tall grass morphology and the shrub 

morphology were similar at this location, with reductions to 40-50% of open beach flow. A 

comparison of all runs for each specimen showed that flow downwind of the individual specimens 

had the greatest variability of any dataset (Figure 4.14). 
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Figure 4.13. Average normalized velocity along lines perpendicular to wind direction 2 m 

downwind of the center of vegetation for each morphology type. Negative x values indicate 

distance to the left of the specimen based on wind direction, and green boxes indicate the 

approximate locations of specimen perimeters. 

 

At the center line, the short grass specimens were less consistent and effective at reducing 

velocity (25-90% of open beach velocity) than shrub specimens (40-60% of open beach velocity) 

or tall grass specimens (40-50% of open beach velocity for 2012 and 2014 specimens, 60-80% of 

open beach velocity for 2013 specimen). The lowest proportional velocity was not always found 

at the centerline, where the line parallel through the center of vegetation intersected the cross-

stream line. Instead, the location of the lowest velocity was often found within 1 m on either side 

of the centerline, indicating the tendency for the zone of deceleration to have an asymmetrical 

shape as the result of non-uniform wind and non-uniform vegetation morphology in the field. 

These data indicate the great deal of spatial variability in flow around specimens of similar 

morphology type and as well as between specimens of different morphology type, confirming the 

inherent variability of flow around live vegetation in a field setting.  
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Figure 4.14. Normalized velocities along lines perpendicular to wind 2 m downwind of center of 

specimens. Negative x values indicate distance to the left of the specimen based on wind 

direction, and green boxes indicate the approximate locations of specimen perimeters. 
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4.4.2 Surface Elevation Changes 

 In order to assess the influence of vegetation morphology type on sediment transport 

patterns, changes in surface elevation were measured and analyzed surrounding short grass, tall 

grass, and shrub specimens. There were substantial differences in the spatial patterns of elevation 

change around the different species as well as between study periods for the same morphology 

type (Figure 4.15).  

In 2013 minor deposition was concentrated in small areas directly in the lee of the tall grass 

(20-25 mm), within the perimeter of the short grass (20-25 mm), and in two areas to the side of 

the shrub (10-15 mm). The remainder of the study sites experienced erosion, which was typically 

concentrated on the lateral edges of specimens (40-45 mm for tall grass, 30 mm for short grass, 

and 20-25 mm for shrub). 

In contrast, greater amounts of erosion and deposition occurred around specimens in 2014. 

In 2014 the greatest deposition around each specimen occurred on an axis which did not match the 

mean wind direction for the entire study period. The axis of greatest deposition for each specimen 

had a more north-south component than the mean wind direction. During the study period, wind 

direction shifts from southeasterly to more southerly so that the last half of the study period (days 

6-10) was dominated by winds approaching from 125-155° (Figure 4.7E). These winds were also 

of higher velocity (8-12 m/s with the exception of half of day 9) than the rest of the study period 

(Figure 4.7D). Mean wind was determined using all winds during the study period with equal 

emphasis on winds during the first half and the second half of the study period. It is highly likely 

that winds during days 6-9 of 2014 field season had a stronger influence on sediment transport 

than winds during days 1-3. Even so, the greatest deposition occurred at the edges of the short 

grass (75 mm), with slightly less deposition measured within the shrub (35-40 mm) and directly 



96 

 

adjacent to both tall grass specimens (each with 40-45 mm). The isolated deposition at pin 19 for 

the 2014 shrub was an artifact of the edge effect of surrounding vegetation.  

 

 
Figure 4.15. Surface elevation changes in mm for A) 2013 Uniola, B) 2014 Uniola 1, and C) 

2014 Uniola 2, D) 2013 Sporobolus, E) 2014 Sporobolus, F) 2013 Tidestromia, and G) 2014 

Amaranthus. Plant footprint denoted by green line. Erosion pin location signified by numbered 

squares. Dashed lines indicate average wind direction for study period. 
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 In 2013 the areas surrounding the plants were dominated by erosion while deposition 

dominated the areas surrounding vegetation in 2014. This was likely a result of the characteristics 

of the beach surface. In 2013 dead Sargasso was pervasive and covered a majority of the entire 

beach, whereas Sargasso only covered the seaward portion of the dry beach (Figure 4.16). This 

clearly limited the supply of sediment from the beach, leading to a negative sediment budget and 

transportation out of the vegetation plots.  

 

 
Figure 4.16 Cover and distribution of Sargasso in 2013 and 2014. 

 

 

4.4.3 Comparison of Flow and Surface Elevation Change Patterns 

The final step was comparing the distribution of zones of acceleration and deceleration 

around specimens to spatial patterns of deposition and erosion around specimens. Patterns of flow 

more closely correspond to zones of sediment deposition and erosion around specimens in 2013 

than in 2014. Patterns in wind direction were more consistent throughout the study period in 2013 

than 2014. Spatial patterns of erosion and deposition agree with patterns of wind velocity for the 

2013 tall grass. Erosion occurred to the lateral sides of the vegetation, where wind velocity was 

slightly accelerated, and deposition occurred immediately in the lee where velocity was greatly 

reduced by the vegetation. Patterns of erosion and deposition deviated slightly from expected 
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patterns based on flow distribution around the short grass in 2013. Minor amounts of deposition 

occurred within and immediately to the side of the vegetation, with erosion higher at distances 

farther from the sides of the vegetation.  

There was an incongruity between spatial patterns of normalized velocity and observed 

patterns of sediment deposition and erosion with respect to wind direction around specimens in 

2014. The cause of this incongruity lies in the temporal resolution of the two datasets. Velocity for 

runs was recorded over a short period of time (3-minute intervals during a 40-minute run period) 

whereas wind data utilized in surface elevation change analysis were averaged over a 6-day or 9-

day period. It is likely that a majority of the winds which caused the patterns of erosion and 

deposition seen in 2014 occurred in the latter half of the study period, during which time wind was 

stronger and had a more southerly component, than the first half of the 2014 study period.   

 

4.5 Summary and Conclusions 

The goal of this study was to document the spatial distribution of the aeolian flow field as 

well as sediment deposition and erosion around different species in the coastal embryo dune zone 

to identify the effects of different vegetation morphology types on these processes. There were 

considerable differences in spatial patterns of aeolian flow and of surface elevation change around 

the different species morphology types.  

First, greater magnitude of total elevation change, both erosion and deposition, occurred 

around the two grasses in both years than around the shrubs. This suggests that natural coastal 

dune grasses have larger influences on aeolian processes than shrubs in this environment. More 

sediment deposition occurred because grasses were more effective at reducing shear stress than 

shrubs, indicating that grasses have higher drag coefficients than shrubs. This contrasts with the 



99 

 

work of Gillies et al. (2002), who found that the ornamental grass that they examined had lower 

drag coefficients at a range of velocities than the shrub and tree that they examined. It is difficult 

to extend their findings to the species examined herein, because species should have different drag 

coefficients based on density of blades and leaves (Dallavis et al., 2011; Leonard and Croft, 2006; 

Marshall, 1971; Neumeier, 2005; Neumeier and Amos, 2006), which is controlled by both biotic 

and abiotic factors. More research is needed concerning the range of drag coefficients for different 

species. It cannot be assumed that all grasses behave the same way with regard to drag, because 

species differ in blade/leaf size, shape, rigidity (i.e., ability to flex based on cell structure and water 

pressure within the blades/leaves/stems) (de Langre, 2008; Nilsson et al., 1958; Pavlik, 1984; 

Steudle et al., 1977) and stem and blade density of individuals (Arens et al., 2001; Moller, 2006; 

Neumeier, 2005).  

Second, with regard to the effects of vegetation on flow, nearly all specimens altered flow 

upwind of the plant, decreasing velocity by as much as 20% within 0.5 m upwind of the edge of 

vegetation. This phenomenon has been observed in aeolian environments (Qian et al., 2012) as 

well as aquatic marsh environments, where velocity decreases upstream of the vegetation due to a 

high-pressure region generated by the leading edge of the vegetation (Chen et al., 2013). 

Essentially, the wind “feels” the vegetation before it actually touches the vegetation. As expected 

based on previous research (Dong et al., 2008; Zong and Nepf, 2010), flow was diverted around 

the sides of the vegetation and acceleration occurred. These zones of flow acceleration extended 

farther from the edges of the tall grass than the short grass or shrubs. In the lee of vegetation, the 

shrub and tall grass were both effective at reducing velocity, whereas the short grass was the least 

effective at reducing velocity downstream. The zone of deceleration downwind of tall grass 
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extended farther downwind and was larger than the shrubs, likely because the shrubs were 0.5 m 

high and ~0.5 m narrower than the tall grasses, which were 0.75-1 m high.  

The short grass, Sporobolus, was the least effective at reducing velocity in the lee of the 

plant. In contrast, this short grass was the most effective at retaining sediment in 2013 and trapping 

sediment in 2014 in the area around the plant. Although the blades and inflorescences of the short 

grass do not protrude into the boundary layer by more than 0.25 m, the high density of blades of 

these short grasses decreased sediment transport and increased sediment capture, as Neumeier and 

Amos (2006) found with salt marsh vegetation. 

Patterns in velocity and sediment transport around vegetation are likely dependent upon 

the specimens chosen for examination. There was considerable variability in the normalized 

velocities between specimens of the same morphology type. It is highly likely that blade/leaf 

density played a significant role in flow dynamics around specimens. A concurrent research 

experiment found that the 2013 short grass had a lower optical porosity at a range of wind velocity, 

which is related to flow permeability through the vegetation, than the 2014 short grass in 2-

dimensional images of the 2013 and 2014 specimens from upwind (2013=0.0030, 2014=0.0054), 

perpendicular to the wind (2013=0.0054, 2014=0.0079), and overhead (2013=0.0093, 

2014=0.0160). In the future, flow and deposition patterns should be recorded around a variety of 

specimens of the same species (therefore holding constant the biotic factors controlling rigidity of 

blades) with the same height but different blade densities in order to determine whether density or 

height is the dominant variable controlling the spatial distribution of velocity, shear stress, and 

sediment transport around this species.  

Canopy, or roughness, density (Arens et al., 2001; Moller, 2006; Neumeier, 2005; 

Neumeier and Amos, 2006; Suter-Burri et al., 2013; Zarnetske et al., 2012) and height (Leenders 



101 

 

et al., 2011; Leenders et al., 2007; Webb et al., 2014) have separately been found to influence 

patterns of flow and sediment transport. In the future, it is necessary to determine how both density 

and height affect fluid flow and sediment transport patterns. This is achievable by documenting 

flow around specimens of similar height with different densities, which should be explored in 

future research. 

In conclusion, the individual morphology of the various species examined herein had a 

tangible influence on aeolian fluid dynamics and associated sediment transport dynamics. Flow 

retardation occurred within 0.5 m of the leading edge of vegetation regardless of specimen 

morphology type, while flow acceleration occurred on both sides of the vegetation within 0.5 m 

of the edge of vegetation. In the lee of the vegetation, the tall, dense grass specimens were most 

effective at reducing velocity to a greater extent than the short grass, and in a larger area than the 

rigid shrubs. Contrary to expectations, the short grass, which reduced velocity to a much lesser 

extent in the lee of the plant than both tall grass and shrub specimens, caused the least amount of 

erosion in one study period and the greatest deposition in the area surrounding it in the other study 

period. The area surrounding the rigid shrub experienced the lowest magnitude of surface elevation 

change of all three morphology types.  

Natural unsteadiness in wind direction and velocity proved to be a complicating factor in 

analysis. While the intention of this study was to examine in situ processes and dynamics, the next 

step must involve either significantly larger data sets collected in the field, or placement of live 

plants in a wind tunnel where wind is steadier and shear stress and turbulence can be measured 

direction without sand present.  
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Chapter 5. Summary and Conclusions 

The goal of this dissertation was to improve understanding of how vegetation influences 

aeolian fluid flow and sediment transport patterns in the coastal embryo dune environments. Three 

studies were undertaken – one to document larger-scale vegetation community dynamics, a second 

to investigate the morphology response of vegetation to changes in wind velocity, and a third to 

quantify spatial patterns of flow and deposition around vegetation. Chapters 2-4 presented 

empirical findings from field research conducted in 2012-2013 in an embryo dune environment 

along the Gulf of Mexico coast.  

 

5.1 Empirical Findings 

 This section presents a summary of findings from the field experiments. The objective for 

Chapter 2 was to document and quantify spatiotemporal trends in vegetation community 

composition, including trends in species abundance and diversity. Two major findings emerged 

from of this chapter. First, there were significant inter-annual variations in 5 of the 12 major 

species, where 2 species increased cover through time and 3 species decreased cover through time. 

Changes in species abundance signify the active and continuing process of community succession 

which began following the establishment of the national seashore in 1962 and the subsequent 

cessation of cattle ranching practices which had severely disturbed the landscape. The second 

important finding from chapter 2 is that the embryo dune zone, which has previously been 

considered as one environment, is in fact divisible into sub-environments as determined by 

community assemblage. The foredune slope and rear of the embryo dune zone, which were the 

most stable sub-environments, were occupied by Croton punctatus, Panicum amarum, Atriplex 

acanthocarpa, Oenethera drumondii, and Ipomoea imperati as well as two rare species 
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Chamaecrista spp. and Hydrocotile bonariensis. In contrast, the seaward edge of the embryo dune 

zone was colonized by Tidestromia lanuginosa, Sesuvium portulacastrum, and Amaranthus 

greggii. These pioneer species promoted deposition of sand transported from the beach by wind.  

Chapters 3 and 4 focused on distinctions between three different vegetation morphology 

types which naturally occur in the embryo dune environment – tall grass, short grass, and shrub. 

Chapter 3 was designed to evaluate the applicability of several different parameters to measure 

morphology changes of different species as a function of wind velocity. There were significant 

differences in plant area, pore area, and optical porosity of the different morphology types, with 

the latter presenting the greatest implication for flow. The tall grass, the morphology type which 

occupied the largest volume, also had the largest optical porosity. The short grass, which occupied 

a smaller area, had 56% of the optical porosity of the tall grass. The shrubs were the densest 

morphology type, with 65% the optical porosity of the short grass, and also occupied the smallest 

volume.  

Most importantly Chapter 3 explored the three-dimensional nature of vegetation response 

to wind flow. Findings demonstrated that vegetation morphology indeed changed as a result of 

wind velocity, where plant area from the front increased as a function of velocity while plant area 

from the top decreased. As plants became more streamlined in higher velocities, compression 

occurred in the vertical dimension with blades bending and aligning parallel to wind direction. At 

the same time, extension of the plant shape occurred in the horizontal dimension, as the blades and 

leaves of plants flattened out in response to greater wind velocities. Pore area and optical porosity 

are not appropriate measures for the purpose of analyzing the effect of velocity on plant on 

aerodynamic porosity. Three-dimensional pore spaces were not detectable in two-dimensional 
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projections of vegetation. Further research should include exploring other technologies for 

measuring aerodynamic porosity.  

Chapter 4 sought to document and analyze spatial patterns of fluid flow and sediment 

erosion and deposition around species with different morphologies. While all examined species 

generated a zone of deceleration and deposition within 0.5 m upwind, results showed considerable 

differences in patterns of flow and sediment deposition in the lee of different morphology types. 

Tall grasses, such as Uniola paniculata, develop shadow dunes that cover large areas because they 

obtrude higher into the boundary layer flow and develop a large, intense deceleration zone in their 

lee. On the other hand, short grasses, such as Sporobolus virginicus, do not reduce velocity in their 

lee to the same extent as large grasses but are effective at trapping saltating grains, causing large 

magnitude of deposition within and directly around the edges of a finite patch. Shrubs, while most 

effective at reducing the velocity, only reduce flow in a small area in their lee as a result of their 

compact and dense nature. Thus findings presented in Chapter 4 indicate that the role of vegetation 

in aeolian processes is dependent upon the morphology of a given species. 

Chapters 3 and 4 demonstrate that there is a tradeoff between overall size and optical 

porosity. While the tall grass had the largest size and thus should have been the most effective at 

trapping sediment, it also had the highest optical porosity and thus greatest turbulence behind the 

plant, reducing the amount of deposition. The short grass was of a smaller size, particularly shorter 

height than the other species, and thus less effective at reducing velocity downstream. However, 

the short grass had roughly half the optical porosity of the tall grass, and thus it was more effective 

at trapping larger amounts of sediment than the other two morphology types. The shrub, which 

had lowest optical porosity, also occupied the smallest total volume and so the area where it 
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effectively reduced velocity was limited to a small zone directly in the lee of the plant, and 

consequently the least amount of deposition was observed around this type of vegetation. 

Currently it is not feasible to apply shear stress partitioning models in real world 

environments where roughness element morphology is neither static nor the same for all roughness 

elements. The findings of chapter 3 and 4 have significant ramifications in terms of modeling shear 

stress and sediment transport in highly complex coastal embryo dune environments. Results 

demonstrate that species in the coastal embryo dune environment interact with aeolian processes 

in different manners depending on their morphology. The findings of this dissertation reinforce 

the need to develop parameters that allow for incorporations of variable roughness object 

morphology into shear stress partitioning models.  

Furthermore, the findings of this research show that management of coastal dune 

restoration projects can be enhanced by including a multi-species approach to dune restoration 

projects, wherein species of different morphology are interspersed during planting. Each species 

within the coastal embryo dune and foredune environments affects wind flow differently based on 

morphology and growth habit. Tall grasses reduce velocity more effectively and over a larger area 

than shrubs, or short grasses. However, findings also indicate that short grasses, while they do not 

reduce velocity to as great an extent as tall grasses or shrubs, are capable of trapping larger amounts 

of sediment, promoting deposition and dune formation and growth.  

  

5.2 Future Research Needs 

 This dissertation represents an advance in our understanding of the role of vegetation, 

specifically of different species, in aeolian processes within the embryo dune environment. 

However, additional research is essential before it will become possible to model shear stress and 
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sediment transport in embryo dune environments. The two avenues which will need to be explored 

before a model can be developed are 1) drag coefficients specific to individual species, and 2) 

spatial patterns of turbulence surrounding different morphology types. Once these topics have been 

investigated further, it will be possible to augment existing shear stress partitioning models in order 

to simulate dune evolution in coastal embryo dune environments.  
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Appendix A. Species Percent Cover 

The following figure show the percent cover of each of the major species in Chapter 2, richness, 

and diversity in each plot along transects for the study years 2012, 2013, and 2014. In each of the 

following figures, the topography of each transect in each year (represented as lines) overlays the 

vegetation data, which are represented as bars for the plots in which they were measured, or 

calculated for richness and diversity. The elevation profile and the vegetation data from each year 

are represented by the same color.  
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Figure A1. Percent cover of Amaranthus along transects. 
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Figure A2. Percent cover of Atriplex along transects. 
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Figure A3. Percent cover of Croton along transects. 
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Figure A4. Percent cover of I. imperati along transects. 
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Figure A5. Percent cover of I. pes-caprae along transects. 
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Figure A6. Percent cover of Oenethera along transects. 
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Figure A7. Percent cover of Panicum along transects. 
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Figure A8. Percent cover of Salicornia along transects. 
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Figure A9. Percent cover of Sesuvium along transects. 
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Figure A10. Percent cover of Sporobolus along transects. 
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Figure A11. Percent cover of Tidestromia along transects. 
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Figure A12. Species richness along transects for each year. 
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Figure A13. Simpson’s Diversity Index along transects for each year. 
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Appendix B. Contour Maps of Normalized Velocity 

The following figures are the interpolated contour maps of normalized velocity around each 

specimen for each data run. There exists one figure for each specimen. Within this figure are 

multiple contour maps. They are ordered based on increasing wind velocity, so that A is always 

the lowest velocity run and the final map is the highest velocity run captured for that species. The 

distances along the x and y axis are measured in meters. The plant is outlined in green. The scale 

bar to right of each contour map shows the normalized velocity, where blue indicates negative 

normalized velocity, or decelerated flow; white indicates no change in velocity; and red indicates 

accelerated velocity compared to flow on the open beach. The locations of the stakes, or erosion 

pins, are shown as squares with numbers identifying them. In the lower right corner of each contour 

map is a compass, with an arrow indicating the direction of flow during that data run. 
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Figure B1. Flow around Sporobolus virginicus in 2012. 
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Figure B2. Flow around Sporobolus virginicus in 2013. 
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Figure B3. Flow around Sporobolus virginicus in 2014. 
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Figure B4. Flow around Uniola paniculata in 2012. 
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Figure B5. Flow around Uniola paniculata in 2013. 
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Figure B6. Flow around Uniola paniculata 1 for lowest 9 velocities in 2014. 
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Figure B7. Flow around Uniola paniculata 1 for highest 7 velocities in 2014. 
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Figure B8. Flow around Uniola paniculata 2 in 2014. 
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Figure B9. Flow around Tidestromia lanuginosa in 2013. 
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Figure B10. Flow around Amaranthus greggii in 2014. 
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