
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

11-1-2017

Assessing Morphodynamics of the Lower
Mississippi River from 1985 to 2015 with Remote
Sensing and GIS Techniques
Bo Wang
Louisiana State University and Agricultural and Mechanical College, wangbo6418@gmail.com

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Geomorphology Commons, and the Hydrology Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Wang, Bo, "Assessing Morphodynamics of the Lower Mississippi River from 1985 to 2015 with Remote Sensing and GIS Techniques"
(2017). LSU Doctoral Dissertations. 4134.
https://digitalcommons.lsu.edu/gradschool_dissertations/4134

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1053?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1054?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/4134?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4134&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


 

 

ASSESSING MORPHODYNAMICS OF THE LOWER MISSISSIPPI RIVER FROM 1985 TO 

2015 WITH REMOTE SENSING AND GIS TECHNIQUES 

 

 

 

 

A Dissertation 

 

Submitted to the Graduate Faculty of the 

Louisiana State University and 

Agricultural and Mechanical College 

in partial fulfillment of the 

requirements for the degree of 

Doctor of Philosophy 

 

in 

 

The Department of Geography & Anthropology 

 

 

 

 

 

 

 

 

 

 

by 

Bo Wang 

B.S., China University of Geosciences, 2008 

M.S., China University of Geosciences, 2011 

December 2017



ii 

 

ACKNOWLEDGEMENTS 

I am grateful to my major professor, Dr. Lei Wang, because he offered me the 

opportunity to pursue my PhD degree in the United States and it is a key turning point in my life. 

He inspired me a lot to study Remote Sensing and GIS. He has been not only a good advisor, but 

also a nice friend. He always stands by me when I faced some obstacles as I work through the 

academic pathway to success.  

Special thanks go to co-chair of my committee, Dr. Yi-jun Xu. I will forever be indebted 

to him for his insightful guidance, knowledge, and inspiration through every stage of this project 

and for the trust he put on me to complete this work. 

I would like to thank my committee members, Dr. Nan Walker, Dr. Fahui Wang, and Dr. 

Bruce Sharky for their support and enthusiasm for my research. They offered their help and 

insightful advice without reservation.  

I would like to thank my parents, Xijun Wang and Yuqin Liu, who ingrained in me the 

love of learning, the value of hard work, the concept of setting goals, and the persistence to 

complete them.  

I would like to thank the Department of Geography and Anthropology for the financial 

support that allowed me to come to LSU and complete this research. This project was also 

supported by grants from the Louisiana Coastal Protection and Restoration Authority, National 

Science Foundation, and the Louisiana Department of Wildlife and Fisheries.  

Above all, I am deeply grateful to my wife, Yan. Her sacrifice for supporting me to 

complete this project was much more than fair. To my children, Rocky and Andy: I love you, 

thanks for bringing endless happiness to this family and helping me get through the tough time.    



iii 

 

CONTENTS 

ACKNOWLEDGEMENTS ............................................................................................................ ii 

ABSTRACT ................................................................................................................................... iv 

CHAPTER 1. INTRODUCTION ................................................................................................... 1 

CHAPTER 2. DYNAMICS OF 30 LARGE CHANNEL BARS IN THE LOWER MISSISSIPPI 

RIVER IN RESPONSE TO RIVER ENGINEERING FROM 1985 TO 2015 .............................. 6 
2.1 INTRODUCTION ................................................................................................................ 6 

2.2 STUDY SITE ........................................................................................................................ 9 
2.3 METHODS ......................................................................................................................... 13 
2.4 RESULTS ........................................................................................................................... 22 
2.5 DISCUSSION ..................................................................................................................... 31 

2.6 CONCLUSIONS ................................................................................................................ 38 

CHAPTER 3. LONG-TERM GEOMORPHIC RESPONSE TO FLOW REGULATION IN A 

10–KM REACH DOWNSTREAM OF THE MISSISSIPPI–ATCHAFALAYA RIVER 

DIVERSION ................................................................................................................................. 40 
3.1 INTRODUCTION .............................................................................................................. 40 

3.2 STUDY AREA ................................................................................................................... 43 

3.3 METHODS ......................................................................................................................... 45 

3.4 RESULTS ........................................................................................................................... 50 
3.5 DISCUSSION ..................................................................................................................... 62 

3.6 CONCLUSIONS ................................................................................................................ 68 

CHAPTER 4. SEDIMENT TRAPPING BY EMERGED CHANNEL BARS IN THE 

LOWERMOST MISSISSIPPI RIVER DURING A MAJOR FLOOD ........................................ 70 

4.1 INTRODUCTION .............................................................................................................. 70 
4.2 STUDY AREA ................................................................................................................... 73 

4.3 LONG-TERM HYDROLOGIC CONDITIONS AND THE 2011 SPRING FLOOD ....... 76 

4.4 ESTIMATION OF BAR AREA AND VOLUME CHANGES ......................................... 76 

4.5 RESULTS ........................................................................................................................... 81 
4.6 DISCUSSION ..................................................................................................................... 87 
4.7 CONCLUSIONS ................................................................................................................ 92 

CHAPTER 5. SUMMARY AND CONCLUSION ...................................................................... 93 

LITERATURE CITED ................................................................................................................. 97 

APPENDIX A: PERMISSION TO REPRINT CHAPTER 2 ..................................................... 107 

APPENDIX B: PERMISSION TO REPRINT CHAPTER 3 ..................................................... 109 

APPENDIX C: PERMISSION TO REPRINT CHAPTER 4 ..................................................... 111 

VITA ........................................................................................................................................... 112 
 



iv 

 

ABSTRACT 

The Lower Mississippi River is one of the most highly engineered rivers in the world. 

The river is now completely regulated by a combination of levees, artificial cutoffs, bank 

revetments, and dike fields; however, the river engineering has also complicated the 

geomorphological response to the sediment brought in the river. This dissertation research 

examined morphodynamics of the middle portion of the Lower Mississippi River from 

Vicksburg, Mississippi (river kilometer: 737) to Red River Landing, Louisiana (river kilometer: 

486) to elucidate river engineering effects on sediment transport, storage, and distribution. The 

Old River Control Structure (ORCS) diverts approximately 25% of the Mississippi River into the 

Atchafalaya River. Hence, the research also assessed the river diversion on downstream channel 

morphology and sediment deposition. Results showed that the highly regulated river favored the 

development of mid-channel and attached bars. The average volume of a single mid-channel bar 

is over twice that of an attached bar and over four times that of a point bar. Overall, in the past 

three decades, the total volume of the 30 bars between Vicksburg and ORCS has increased by 

110,118,000 m3 or 41%. Increased dike length contributed significantly to the bar volume 

increase. Downstream of the ORCS, three bars had a net volume gain of 30,271,000 m3 (206%). 

Sediment trapping on the bars was prevalent during the period 1990-1995 and 2007-2011 when 

large floods occurred.  In particular, a single flood in the spring of 2011 increased the volume of 

these three bars by 1.22 × 106 m3 (4.4%). In the past 30 years, the 33 emerged channel bars along 

the 258-km reach trapped 168 MT sediment and currently, the total mass of their emerged 

portions accounts to 584 MT. These findings show that river engineering in the Lower 

Mississippi River has greatly affected sediment transport and deposition patterns. As a 

potentially useful resource for coastal protection and restoration of the sediment-starving 
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Mississippi River Delta, future river management should develop engineering strategies to 

mobilize the tremendous sediment store downstream of the river.  
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CHAPTER 1. INTRODUCTION 

A large river delta is typically formed where an alluvial river enters the ocean and 

supplies sediment more rapidly than the redistribution rate by waves and tides. Sediment by 

water discharge of the rivers, accommodation space of the basins and coastal wave energy are 

the main contributors for deltas’ morphodynamics (Galloway, 1975). Deltas and their estuaries 

are critical for ecology, global and local economies, and are major centers of population and 

agriculture (Ericson et al., 2006). However, human impacts, including accelerated sediment 

compaction on the deltas because of oil, gas, and ground water extraction, substantial sediment 

trapping in the upstream rivers owing to man-made structures, and extensive floodplain 

engineering, have caused significant degradation of the deltas (Day et al., 2007; Syvitski et al., 

2009; Syvitski et al., 2005).  

The Mississippi River Delta was formed by six major delta complexes prograding into 

coastal Louisiana over the past 7,000-8,000 years (Fisk, 1944). Shifting courses of the 

Mississippi River deposited sediment over an area of approximately 30,000 km2 (Britsch and 

Dunbar, 1993a). However, overbank flooding and sedimentation have been eliminated because 

of the extensive construction of levee systems along the Mississippi River after the Great 

Mississippi River Flood of 1927. Concurrently, the Mississippi River Delta has lost about 4,900 

km2 land since 1932 (Couvillion et al., 2011). Except for the isolation of the river from the 

Mississippi River Delta, dam construction in the Upper Mississippi River Basin before the 1950s 

has largely reduced sediment transported to the Lower Mississippi River. For example, ~50% of 

riverine sediment was found trapped by dams in the upper reaches of the river. This has 

contributed to the delta loss over the past century (Blum and Roberts, 2012). Blum and Roberts 
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(2009) predicted that without enough sediment input, an additional 10,000-135,000 km2 of 

Mississippi River Delta would be submerged by the year 2100.  

The Mississippi River Delta is not only home to more than two million people but also 

has a great importance in national energy production, petrochemical industry, shipping, fisheries, 

and coastal wetlands. In the recent decade, federal and state agencies have intensified their 

efforts to protect and restore Louisiana’s coast. In 2017, the Coastal Protection and Restoration 

Authority of Louisiana (CPRA) published the latest Louisiana Coastal Master Plan that guides 

various projects helping maintain and build the Louisiana’s coastal land. Many of these projects 

utilize sediment from the Mississippi River to restore and create coastal marshes (CPRA, 2017). 

In particular, these projects are proposed to utilize large sediment diversions and dredged 

materials (i.e. Long Distance Sediment Pipeline, LDSP) to deliver the riverine sediment into the 

previous floodplain. The success of these projects will largely rely on available sediment in the 

river. Therefore, investigating riverine sediment transport, deposition, storage, and distribution is 

crucial for developing effective strategies and plans for saving Louisiana’s coast. 

Riverine sediment can deposit to form different types of bars within river channels. 

Occurrence and development of the bars are major components of the morphodynamics of 

alluvial rivers. In general, the growth of point bars within the concave sides of channels usually 

results in river meandering. Before intensive human modifications in the Lower Mississippi 

River (i.e. before 1930), point bars were the most common bar type in the river. A previous study 

estimated that point bars stored more than 95% of the riverine sediment in the channel, while the 

channel bed only stored ~5% of sediment (Kesel et al., 1992). After 1930, construction of levee 

systems along the Lower Mississippi River changed the river from a freely meandering alluvial 

river to a highly confined channel. In addition, a series of engineering modifications, including 
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artificial bend cutoffs, bank stabilization by revetments, and constructions of dike fields, 

profoundly influenced morphodynamics of the Lower Mississippi River (Harmar and Clifford, 

2007; Harmar et al., 2005; Kesel, 2003; Nunnally and Beverly, 1986; Rijksdienst voor de 

Ijsselmeerpolders and Wilkerson, 1974; Smith and Winkley, 1996). For example, Harmar et al. 

(2005) found that the Lower Mississippi River adjusted the number, size, location, and shape of 

crossings and pools after a post-cutoff period (i.e. 1949-1964) as responses to the additional 

energy created by the cutoffs. Kesel (2003) found that the volume of channel bars increased 

significantly between Cairo, Illinois and Red River Landing, Louisiana during the period of 

1948-1963. The study from Smith and Winkley (1996) indicated that the highly regulated Lower 

Mississippi River tended to form mid-channel bars because of the confined riverine sediment.   

River diversions remove water from rivers and can impose primary changes on flow and 

sediment transport (Church, 1995). Upstream 505 km from the Mississippi River mouth, a 

portion (approximately 25%) of the river’s water is diverted into the Atchafalaya River by a 

control structure - Old River Control Structure (ORCS) built in 1963. The diversion structure 

maintained by the United States Army Corps of Engineers was built to prevent possible course 

changing from the Mississippi River to the Atchafalaya River. During the 1973 large Mississippi 

flood, the ORCS almost failed because severe scour developed underneath the structure. In 1988, 

an auxiliary structure was built to alleviate the pressure on the main control structure during 

large floods. In 1990, the Sidney Murray Hydroelectric Plant was completed to benefit from the 

resource as well as to decrease the pressure of other ORCS structures (Mossa, 2016). The 

analysis of the hydrographic surveys conducted in 1963 and 1975 following the operation of the 

ORCS in 1963 found significant bed aggradation (i.e. 30 × 106 m3) downstream of the ORCS 

(Little and Biedenharn, 2014). From 1948 to 2012, the average width of the 115-km channel 
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between the ORCS and Baton Rouge reduced by about 115 m and sediment of over 2 m depth 

was deposited on the thalweg (Knox and Latrubesse, 2016). All these findings indicate ORCSs 

have largely affected the downstream channel morphology. 

Morphodynamics of the Lower Mississippi River over the past century has been 

investigated by a number of studies (Harmar and Clifford, 2007; Harmar et al., 2005; Kesel, 

2003; Kesel et al., 1992). However, these studies mostly used old hydrographic survey data 

before the 1970s, which does not reflect the river morphodynamics responding to the recent river 

engineering, such as the construction of numerous dike fields during the 1970s and 1980s. Dike 

fields are built to enhance navigation, improve flood control, and protect erodible banks 

(Copeland, 1983). However, substantial sediment deposition and bar growth were observed 

within the dike fields (Alexander et al., 2012; Kesel, 2003; Nunnally and Beverly, 1986; Smith, 

1986), which may have greatly influenced sediment transport in the Lower Mississippi River. 

Quantitative estimation of the correlation between dike fields and sedimentation and bar growth 

is necessary for navigation and sediment management.  

The goal of this dissertation research aimed to answer a principal question of how much 

sediment is currently trapped on large channel bars in the Lower Mississippi. To achieve this 

goal, three interrelated studies were conducted, and this dissertation attempts to introduce them 

in three separate chapters as standalone journal publications. Following this Introduction, the 

second chapter presents a study assessing morphologic changes of 30 large emerged bars located 

in a 223-km reach of the Lowe Mississippi River from Vicksburg, MS to the ORCS from 1985-

2015. The third chapter focuses on the 3-decadal morphological changes of the 10-km channel 

and the three large emerged bars downstream of the ORCS to elucidate the long-term effects of 

river engineering including diversion, revetment and dike constructions. Chapter four describes a 
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study on how a single flood in the Mississippi River can affect the morphological changes of 

large emerged channel bars. Chapters two, three, and four are written as stand-alone manuscripts 

that were recently published in Geomorphology, Journal of Hydrology: Regional Studies, and 

Water.  
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CHAPTER 2. DYNAMICS OF 30 LARGE CHANNEL BARS IN THE 

LOWER MISSISSIPPI RIVER IN RESPONSE TO RIVER ENGINEERING 

FROM 1985 TO 2015 

2.1 INTRODUCTION 

Over the past century, sediment delivery from many rivers in the world to coastal areas 

has significantly decreased (Vorosmarty et al., 2003; Walling, 2006; Walling and Fang, 2003). 

This is especially the case with the world’s large alluvial rivers. For instance, the annual average 

suspended sediment load from the Mississippi River to the Gulf of Mexico has decreased from 

400 million metric tons (MT) before 1900 to 172 MT during the last three decades (Meade and 

Moody, 2010). The annual average sediment load from the Yangtze River to the East China Sea 

has declined by 40% in the 2000s when compared to that during the 1950s and 1960s (Yang et 

al., 2006). Dam construction in the main and tributary channels of these rivers have been 

attributed to be mainly responsible for the sediment loss (Blum and Roberts, 2009; Hu et al., 

2009; Meade and Moody, 2010; Yang et al., 2006). While the direct effect of river dams on 

siltation has been intensively investigated worldwide, relatively little is known about how 

changes in river flow downstream owing to dam construction and other river engineering 

practices, such as channel cuts, levee and dike building, may have affected in-channel sediment 

trapping in the lower reach of these rivers.    

A few recent studies found considerable quantities of sediment trapping in the Lower 

Mississippi River. Nittrouer and Viparelli (2014) described large channel bars exposed on the 

riverbed during the 2012 Mississippi River drought, postulating that the Lower Mississippi River 

is a sand reservoir channel that could supply stable sand to the coastal area in the next several 

                                                 

 This chapter previously appeared as “Wang, B.; Xu, Y.J. Dynamics of 30 large channel bars in the Lower 

Mississippi River in response to river engineering from 1985 to 2015, Geomorphology, 300, 2018,”. See Appendix 

A for the reprint permission. 
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centuries by bed scour between Cairo, Illinois, and Knox Landing, Louisiana. Channel bars are 

integral to the morphodynamics of alluvial rivers. Their formation and development were widely 

studied in rivers and streams with few engineering modifications (Ashworth, 1996; Hooke, 1986; 

Hooke and Yorke, 2011; Luchi et al., 2010). In the Lower Mississippi River, point bars were 

found as the major reservoir for in-channel sediment storage before the 1920s when intensive 

human modifications were introduced to the river (Kesel et al., 1992). Alternatively, Kesel (2003) 

noticed degradation of the point bars in the Lower Mississippi River during the 1970s and the 

1980s. Kesel also found that the bars between Cairo and Red River Landing changed in number 

and size during 1935-1963, while the few bars downstream of the Red River Landing showed 

little change. Smith and Winkley (1996) pointed out that mid-channel bars tended to form in the 

Lower Mississippi River owing to the confined channel with limited natural meander cutoffs. 

While it is increasingly recognized that sediment trapping in the Lower Mississippi River may 

have been progressive in the past decades, there is, in general, a knowledge gap about sediment 

trapping in channels bars in the lower reaches of the large and highly regulated Lower 

Mississippi River. As one of the most engineered rivers in the world, the Lower Mississippi 

River has undergone various hydraulic alterations for navigation safety and flood control 

including the construction of levees, dike fields, meander cutoffs, and bank revetments. These 

practices could have dramatically influenced formation and evolution of channel bars. 

During the 1970s and 1980s, many dike fields were constructed in the Lower Mississippi 

River for channel stabilization and navigation safety during low river flows (Harmar et al., 2005; 

Pinter et al., 2006; Smith and Winkley, 1996). While several studies have investigated the effects 

of dike fields on changes of river surface area (Nunnally and Beverly, 1986) and flood trends 

(Pinter et al., 2008), few studies have quantitatively analyzed the correlation between 
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sedimentation and dike fields. In a recent study, Alexander et al. (2012) reported significant 

sediment deposition within the void space of in-channel dikes in the Lower Mississippi River. 

Very recently, Wang and Xu (2016) conducted a study on the development of a 10-km long 

channel in the Lower Mississippi River from 1985 to 2015, and they found the rapid growth of a 

point bar, for which the construction of in-channel dikes has been one of the main contributing 

factors. The constructed dike fields in the Lower Mississippi River may have had important 

effects on sediment storage and bar development in this alluvial river.  

Decreasing sediment delivery from rivers, coupled with artificial levees, constrain the 

sediment supply to deltaic floodplains (Syvitski et al., 2009; Yang et al., 2011). Morton et al. 

(2005) reported that approximately 4000 km2 of the low-lying coastal land in the Mississippi 

River Delta had been submerged since the 1930s. Previous studies (Barras et al., 2003; Britsch 

and Dunbar, 1993a) found a peak delta-plain land loss of 60–75 km2 yr-1 from the 1960s to the 

1980s. With accelerating sea level rise and land subsidence, the Mississippi River Delta has been 

projected to continue losing more than 13,000 km2 of land by the year 2100 (Blum and Roberts, 

2009; Blum and Roberts, 2012).  Large sediment diversions from the Lower Mississippi River 

are being proposed for coastal land restoration in the Mississippi River Delta (CPRA, 2012). 

Sufficient riverine sediment supply is crucial for sustaining the delta by these diversions. As an 

important morphologic feature of alluvial rivers, bars can be temporary and long-term sediment 

stores (Hooke and Yorke, 2011). Assessing sediment volume of channel bars in the Lower 

Mississippi River can provide information useful in the development of effective strategies and 

plans for regional sediment management and river sediment diversion efforts.  

Utilizing satellite images and river stage records from 1985 to 2015, this study aimed to 

determine sediment quantity and dynamics of emerged channel bars in a 223 km reach of the 
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Lower Mississippi River from Vicksburg, Mississippi, at river kilometer (RK) 737 to the 

Mississippi– Atchafalaya River diversion at RK 515. Specifically, the study accomplished the 

following objectives: (1) to characterize the morphology of 30 emerged channel bars along the 

river reach over the past three decades, (2) to develop rating curves of bar surface area with the 

river stage for each emerged bar, (3) to quantify the emerged volumes of the bars and their 

changes based on the rating curves, and (4) to investigate changes in bar sand mass from 1985 to 

2015.    

2.2 STUDY SITE 

The Lower Mississippi River, starting from the river’s confluence with the Ohio River at 

Cairo, Illinois (RK 1536), to the river’s outlet in the Head of the Passes (RK 0), to the Gulf of 

Mexico (Figure 2.1), is one of the most highly regulated rivers in the world. The river was 

trained through artificial cutoffs, levees, dikes, and bank revetments under the management of 

the U.S. Army Corps of Engineers (USACE) for flood control and navigation safety. To prevent 

the river from avulsing into the Atchafalaya River in Louisiana at RK 505, the Old River Control 

Structure (ORCS) was built in 1963, which allows approximately 30% of combined flow of the 

Mississippi and Atchafalaya rivers at the latitude of Red River Landing (RRL in Figure 2.1) to 

be diverted through the Atchafalaya River.  The discharge upstream of the ORCS during the past 

three decades has averaged 19,413 m3 s-1 (Figure 2.2). Little difference was found when 

comparing available discharge data between Vicksburg and upstream of the ORCS during 2008-

2015 (Figure 2.2).  

In the 500 km reach from the ORCS to the Head of the Passes at the Gulf of Mexico, 

there are only about a dozen emerged channel bars and most of them are located within the upper 

200 km reach. In the 223 km river reach immediately upstream of the ORCS, there are 30 large 
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emerged channel bars identified at a river stage of 14.67 m (Figure 2.1). This river reach (i.e., 

from Vicksburg at RK 737 to the ORCS at RK 515) is well confined by levees on the floodplain 

along the west bank close to the river channel and the upland along the east bank within a range 

of approximately 20 km. A cumulative length of over 250 km of concrete revetments was 

installed in the 1960s and 1970s to prevent bank erosion (Hudson and Kesel, 2006; Hudson et al., 

2008). Dike fields were also intensively constructed in the reach. This river reach underwent 

seven artificial cutoffs in the early of the twentieth century (Harmar and Clifford, 2007; Harmar 

et al., 2005). Currently, the channel has an average bankfull width of approximately 1100 m.   

Two gauging stations operated by the USACE are located within the study reach at 

Vicksburg, Mississippi (USACE ID# 15145; RK 702), and Natchez, Mississippi (USACE ID# 

15155; RK 586) (Figure 2.1). From 1985 to 2015, the highest river stages reached 31.45 m at 

Vicksburg and 24.11 m at Natchez in 2011, and the lowest river stages were recorded in 1988 at 

13.60 m at Vicksburg and 6.12 m at Natchez (Figure 2.3). The average river stage at Vicksburg 

is about 6 m higher than that at Natchez (20.95 m vs. 14.33 m), but the stage difference between 

the two locations varies depending on low or high flows (Hudson et al., 2013). Upstream and 

downstream of the study reach, there are another two USACE gauging stations: at Greenville, 

Mississippi (91°9'39″ W, 33°17'22" N; RK 855), and Red River Landing, Louisiana (USACE 

ID# 01120; RK 487). The average river stage at Greenville (31.45 m) is about 21 m higher than 

that at Red River Landing (10.19 m). It should be noted that all stage data used in this study is 

based on the elevation above the National Geodetic Vertical Datum of 1929 (NGVD 29).    
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Figure 2.1. Geographical location of the Lower Mississippi River (left). The study reach is 

located between RK 737 (River Mile 458) and RK 515 (River Mile 320), in which 30 large 

emerged bars are identified (right). The U.S. Army Corps of Engineers operates four gauging 

stations at Greenville (RK 855), Vicksburg (RK 701), Natchez (RK 585), and Red River Landing 

(RRL, RK 487). The long-term river stage records from these stations were used for determining 

bar surface area at different river water levels. A portion of the Mississippi River is diverted into 

the Atchafalaya River through the Old River Control Structure (ORCS) at RK 505.  
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Figure 2.2. The 120-day moving average of the Mississippi River discharge above the Old River 

Control Structure (ORCS) during 1985-2015 and at Vicksburg during 2008-2015 (only available 

data for Vicksburg). The discharge above the ORCS was calculated as the sum of the discharge 

from the Old River Outflow Channel (water diverted into the Atchafalaya, USACE ID# 02600Q) 

and Tarbert Landing gauging station (RK 493, water remained in the Mississippi main stem, 

USACE ID# 01100Q). The average discharge during 2008-2015 at the two locations showed 

little difference, i.e. QVicksburg = 20,641 m3 s-1 and QORCS = 20,524 m3 s-1.  The horizontal dash 

line shows the 30-yr average discharge (i.e., Q = 19,413 m3 s-1) upstream of the ORCS.  
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Figure 2.3. Daily river stage from 1985 to 2015 above the National Geodetic Vertical Datum of 

1929 (NGVD 29) at Greenville, Vicksburg, Natchez, and Red River Landing (RRL). All stage 

data were obtained from the U.S. Army Corps of Engineers. On average, the water level at 

Vicksburg is about 6 m higher than that at Natchez and 11 m higher than that at RRL, while it is 

approximately 10 m lower than that at Greenville. Black crosses indicate the dates of the 

collected satellite images used in this study and their corresponding stages at Vicksburg.   

 

2.3 METHODS 

2.3.1 Bar Types, Areal Parameters, and Dike Assessment  

Bar morphology was identified from cloud-free Landsat Surface Reflectance images that 

were downloaded from the U.S. Geological Survey (USGS) website 

(https://earthexplorer.usgs.gov/). By examining the river stage at Vicksburg, two images taken 

on 08/22/1985 (Landsat 5) and 09/26/2015 (Landsat 8) having a similar river stage (17.32 m vs. 

17.54 m) were selected to determine the morphologic changes of the bars. The near-infrared 

band (band 4 for Landsat 5 and band 5 for Landsat 8) in each image was digitized in ArcGIS 

10.3 (ESRI, Redlands, California, USA) to obtain the length, width, and surface area of each of 

https://earthexplorer.usgs.gov/
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the 30 bars. Bar types were classified based on the method from Hooke and Yorke (2011). In 

addition, two images (taken on 03/02/1986 and 10/25/2014) were used to estimate morphologic 

changes of the reach over the past three decades. River stages on these two dates were relatively 

high (22.47 m vs. 22.49 m), providing favorable conditions for river bank identification. 

 In the 223 km study reach, dike fields currently exist within 24 of the 30 bars. To clarify 

the correlation between dike fields and bar volume change, dike information including dike 

amount and the total length of the dikes in each dike field was acquired in the 2013 Vicksburg 

District navigation bulletin (USACE, 2013). Dike length was directly measured in Adobe 

Acrobat Professional (San Jose, CA, USA) by using the “Measurement” tool.  

2.3.2 Collection of Satellite Images and River Stage Records 

The volume of emerged channel bars can be estimated by utilizing satellite imagery and 

river stage data. This method has been developed and successfully used to estimate the volume 

change of three large channel bars downstream from the ORCS (Wang and Xu, 2015; Wang and 

Xu, 2016). The technical process of the estimation is described in sections 3.2-3.4.  

Daily river stage records at the Greenville, Vicksburg, Natchez, and Red River Landing 

gauging stations were obtained for the periods of 1985-2015 (for Greenville, Vicksburg, and 

Natchez) and 1987-2015 (for Red River Landing) from the USACE. All cloud-free Landsat 

Surface Reflectance images during 1985-2015 were collected from the USGS. To develop a 

numeric relationship between river stage and bar surface area (i.e., a surface area – river stage 

rating curve, see more in the following section), we selected two sets of satellite images, one at 

the beginning and another at the end of the study period, which covered a wide range of river 

stages at Vicksburg and Natchez (Table 2.1 and Figure 2.3). The selected images — eight images 

in 1985/86/87 and seven images in 2014/15 — were taken from low to high river stages (from 
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14.67-26.10 m in 1985 at Vicksburg), allowing the establishment of the surface area – river stage 

rating curves for each of the 30 bars. The low and high river stages mentioned here were 

referenced to the historic river stages shown in Figure 2.3.    

Table 2.1.  Dates and image numbers of Landsat Surface Reflectance images used for estimation 

of bar volume in 1985 and 2015 at different river stages (above NGVD 29) at Vicksburg when 

the images were captured.  

Volume estimation in 1985 Volume estimation in 2015 

Date 

River 

stage  

 (m) 

Image Number Date 

River 

stage 

(m) 

Image Number 

10/31/1987 14.67 LT50230381987304XXX04 10/28/2015 16.17 LE70230382015293EDC00 

8/22/1985 17.32 LT50230381985234XXX05 9/26/2015 17.54 LC80230382015269LGN00 

1/13/1986 18.66 LT50230381986013XXX01 2/6/2015 18.42 LE70230382015037EDC00 

1/26/1985 21.04 LT50230381985026XXX04 2/14/2015 19.38 LC80230382015045LGN00 

6/22/1986 21.77 LT50230381986173XXX04 8/25/2015 20.04 LC80230382015237LGN00 

3/2/1986 22.47 LT50230381986061XXX05 10/25/2014 22.49 LC80230382014298LGN00 

10/28/1986 23.57 LT50230381986301XXX03 12/15/2015 25.29 LC80230382015349LGN00 

4/16/1985 26.10 LT50230381985106XXX04         

 

2.3.3 Development of a Rating Curve of Bar Surface Area by River Stage  

In each of the selected 15 images, the 30-m resolution near-infrared band (band 4 for 

Landsat 5/7 and band 5 for Landsat 8) was digitized to obtain the surface areas of each of the 30 

bars in ArcGIS 10.3. Bare soil and water have a clear boundary in these bands. To balance the 

accuracy and efficiency, a 1:40,000 image scale was selected for the digitization. In order to test 

the validity of this image scale, we also downloaded 2.4-m Quickbird imagery covering the area 

from Google Earth Pro. We compared the surface areas of bars 14 and 21 digitized from Landsat 

imagery at a scale of 1:40,000 with those digitized from Quickbird imagery at different scales 

from 1:10,000 to 1:40,000. We found that the difference in surface areas digitized from the two 

image sets (both taken on 01/30/1998) at different scales was very marginal, i.e., mostly less than 

1%.  
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There was a 21 m river stage difference between Greenville and Red River Landing; 

therefore, a specific stage for each of the 30 bars should be developed based on the stages of the 

four gauging stations. Three water slope profiles between Greenville and Vicksburg, between 

Vicksburg and Natchez, and between Natchez and Red River Landing were created to calculate 

the stage differences between each bar and the Vicksburg gauging station (Table 2.2). These 

estimated values were used thereafter to calculate the specific stage for each bar (e.g., 2.34 m 

should be added to all Vicksburg stages to obtain correct stages for bar 1). This river stage 

difference (RSD) between each bar and Vicksburg (Table 2.2) is very helpful for quickly 

estimating the specific stage for each bar and the subsequent bar volume calculation. 

Table 2.2. Specific river stages for each of the 30 bars were estimated by three water slope 

profiles between Greenville and Vicksburg, between Vicksburg and Natchez, and between 

Natchez and Red River Landing. The estimated results were transformed to the river stage 

difference (RSD) between each bar and Vicksburg gauging station. Bar 6 is located at Vicksburg. 

Therefore, its RSD is 0 m.    

Bar  RSD (m) Bar RSD (m) Bar RSD (m) 

1 2.34 11 -1.17 21 -4.58 

2 1.51 12 -1.32 22 -5.19 

3 1.30 13 -1.83 23 -6.50 

4 0.88 14 -2.14 24 -6.50 

5 0.36 15 -2.55 25 -7.00 

6 0.00 16 -2.95 26 -7.40 

7 -0.36 17 -3.36 27 -8.10 

8 -0.61 18 -3.97 28 -8.75 

9 -0.51 19 -3.97 29 -9.15 

10 -1.07 20 -4.18 30 -9.55 

 

For each bar, 15 correlations between bar surface areas and the corresponding river stages 

were developed, eight for 1985 and seven for 2015. Rating curves were plotted as river stage on 

the x-axis and bar surface area on the y-axis for each of the 30 bars (Figure 2.4a-c). A regression 

equation was developed for each of the bars. The coefficient of determination (R2) and standard 
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error of the estimate (SE) were used to evaluate the goodness of fit of the regression. The R2 for 

most of the regression equations exceeded 0.95, indicating an excellent goodness of fit.  
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Figure 2.4. Rating curves of bar surface areas and river stages for the 30 studied bars located 

between Vicksburg and the Old River Control Structure in 1985 (blue) and 2015 (red) (a, bar 1-

10, b, bar 11-20, and c, bar 21-30). Regression equations were given for the 1985 rating curve 

(top) and the 2015 rating curve (bottom), along with their coefficient of determination (R2) and 

the standard error of the estimate (SE).   

(fig. cont’d.) 
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(fig. cont’d.)  
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2.3.4 Bar Volume Estimation 

Volumetric analysis for the studied channel bars was performed using the developed 

rating curves. Specifically, volume (Vs) of each bar between the highest stage (Dh) and the lowest 

stage (Dl) was calculated by an integral with the surface area – river stage rating curves, which is 

described by (Wang and Xu, 2015) as below:  

𝑉𝑠 =  ∫ (𝑎𝑥2 − 𝑏𝑥 + 𝑐 )𝑑𝑥
𝐷ℎ

𝐷𝑙
 = (

𝑎𝑥3

3
− 

𝑏𝑥2

2
+ 𝑐𝑥) | 𝐷ℎ

𝐷𝑙
  = (

𝑎𝐷ℎ
3

3
−  

𝑏𝐷ℎ
2

2
+ 𝑐𝐷ℎ) – (

𝑎𝐷𝑙
3

3
−   

𝑏𝐷𝑙
2

2
+ 𝑐𝐷𝑙)             (1) 

To compare the bar volume between the beginning and the end of the study period, the 

common stage range (16.17-25.29 m) between the two periods at Vicksburg should be used in 

the integral processes (Table 2.1). This range should be adjusted based on the difference values 

between each bar and the Vicksburg station. Detailed bar volume calculations are shown in 

Figure 2.5. The volume of bar 1 in 2015 was the area enclosed by the 2015 rating curve, the x-

axis, and the vertical line at a river stage of 18.51 m (16.17 + 2.34 m) (Figure 2.5). The enclosed 

area was then calculated by integrating the rating curve between 18.51 and 27.63 m (25.29 + 

2.34 m). For its volume calculation in 1985, the lower stage remained the same (18.51 m), but 

24.81 m was used as the upper bound instead of 27.63 m in the integral. This is because the bar 

was fully submerged at this stage and using 27.63 m as the upper bound would incorporate a 

negative area and underestimate the bar volume in that year.  
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Figure 2.5. An example using bar 1 for illustrating how surface area – river stage rating curves 

(RC) were used in an integral (Eqn. 1) to calculate bar volumes at two different time points. The 

volume of bar 1 in 1985 was calculated by integrating y=2629.26x2 - 352166.72x + 7077221.54 

for the river stage range from 18.51 to 24.81 m, while the volume of the same bar in 2015 was 

calculated by integrating y= 174470266747.08e-0.61x for the river stage range between 18.51 and 

27.63 m. 

 

2.4 RESULTS 

2.4.1 Morphologic Changes of Channel Bars 

Overall, the 223 km study reach showed little channel morphologic change from 1985 to 

2015 (Figure 2.6). The entire 223 km river reach seemed to be well regulated by levees and bank 

revetments (Hudson et al., 2008). However, more than half of the channel bars had substantial 

changes (i.e., > 20%) regarding surface area, average length, and width over the past 30 yr 

(Table 2.3). Sixteen bars became elongated with an average length increase of over 2100 m, 14 

bars showed an average increase in their width of 100 m, and 13 bars increased their surface area 

substantially. However, one bar (bar 8) experienced a drastic change: the bar had a total emerged 

surface area of 1,659,838 m2 in 1985 at a river stage of 17.32 m (Table 2.3) but became 
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completely unrecognizable in 2015 at a river stage of 17.54 m (Figure 2.6). For the entire 223 km 

river reach, the total surface area of emerged bars increased by 11,368,000 m2 or 21% over the 

past three decades (Table 2.3).  

 

Figure 2.6. The changes of channel morphology and bar surface area from 1985 to 2015. Both 

were from digitized Landsat images at similar river stage (i.e., 22.47 vs. 22.49 m for the channels, 

17.32 vs. 17.54 m for the bars). 

 

Table 2.3. Location, types, and characteristics of 30 emerged channel bars and the associated 

dike fields in the 223 km river reach from Vicksburg to the Old River Control Structure on the 

Lower Mississippi River. Length and width of the bar were measured based on two Landsat 

images acquired in 1985 and 2015 at a similar river stage, i.e., 17.32 m vs. 17.54 m.  Letters P, A, 

M, and C indicate the point, attached, mid-channel, and concave bars, respectively.  

Bar 
No. 

Bar 
location 

(RK) 

Bar 
type 

Area 
 (m2) 

Length 
 (m) 

Mean width  
(m) 

Length/width Dike 

1985 2015 1985 2015 1985 2015 1985 2015 count Total length (m) 

1 737 P 1,174,454 1,125,786 2900 2600 400 400 7.3 6.5 4 885 

2 724 A 575,382 1,259,187 3400 5300 200 200 17.0 26.5 9 3090 

3 721 P 1,312,559 2,613,244 3200 5300 400 500 8.0 10.6 2 1561 

(table cont’d) 
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Bar No. Bar 
location 

(RK) 

Bar type Area 
 (m2) 

Length 
 (m) 

Mean width  
(m) 

Length/width Dike 

1985 2015 1985 2015 1985 2015 1985 2015 count Total length (m) 

4 715 P 447,134 190,469 2700 1500 200 100 13.5 15.0 0 0 

5 707 A 788,644 1,326,710 2200 3000 400 400 5.5 7.5 5 2849 

6 702 P 311,083 245,240 2200 2200 100 100 22.0 22.0 0 0 

7 695 A 1,399,252 2,788,984 2600 4600 500 600 5.2 7.7 5 4635 

8 692 M 1,659,838 0 3200 0 500 0 6.4 0.0 0 0 

9 690 A 471,831 3,065,586 2200 6000 500 500 4.4 12.0 11 6035 

10 681 A 79,455 578,966 500 1700 200 300 2.5 5.7 0 0 

11 679 A 1,145,388 883,066 4000 3500 300 300 13.3 11.7 3 1609 

12 676 P 2,135,650 2,030,134 6100 3700 400 500 15.3 7.4 3 2092 

13 666 P 1,479,338 2,080,450 2000 3100 700 700 2.9 4.4 3 2752 

14 660 M 7,332,004 7,370,591 7000 6500 1000 1100 7.0 5.9 10 3943 

15 652 A 30,802 1,409,389 400 5500 80 300 5.0 18.3 5 3621 

16 644 P 519,210 945,790 3100 3400 200 300 15.5 11.3 3 1320 

17 636 M 2,962,987 3,509,584 4100 4700 700 800 5.9 5.9 3 1915 

18 624 A 4,242,336 4,116,048 5700 5400 700 800 8.1 6.8 4 3187 

19 624 A 1,492,600 1,487,528 3200 3200 500 500 6.4 6.4 3 2189 

20 620 P 1,565,135 2,177,144 2800 3200 600 700 4.7 4.6 4 2655 

21 612 M 7,394,675 8,147,754 7400 11000 1000 700 7.4 15.7 6 5263 

22 600 A 889,899 916,277 3100 3100 300 300 10.3 10.3 3 966 

23 576 C 184,476 1,826,337 2000 5700 100 300 20.0 19.0 7 4554 

24 576 P 4,933,310 4,478,392 6200 5400 800 800 7.8 6.8 2 1561 

25 566 A 3,820,684 4,804,826 6900 10000 600 500 11.5 20.0 6 4136 

26 558 P 1,268,204 1,312,503 3200 2600 400 500 8.0 5.2 4 2253 

27 544 P 714,719 1,804,285 4600 5800 200 300 23.0 19.3 3 1625 

28 531 P 2,001,435 1,500,955 3800 2200 500 700 7.6 3.1 2 1320 

29 523 M 2,041,391 1,962,538 4400 6900 500 300 8.8 23.0 0 0 

30 515 P 342,071 125,167 2000 1900 200 100 10.0 19.0 0 0 

Average 1,823,865 2,278,721 3,570 4,480 439 469 9.7 11.6   

 

The 30 channel bars in this river reach included 13 point bars, 11 attached bars, five mid-

channel bars, and one concave bar in 1985 (Tables 2.3 and 2.4). The attached bars, the mid-

channel bars, and the concave bar showed significantly elongation. The average length of all 

types of bars increased by 743 m (p=0.045) from 1985 to 2015, while the average width of the 

bars had no statistically significant change (-17 m, p=0.56), resulting in a significant increase of 



25 

 

length/width ratio from 1985 (9.7) to 2015 (11.6) (Table 2.3). Except for the mid-channel bars, 

all other bar types had an increase in surface area, with the largest change occurring in the 

attached and concave bars (Table 2.4). The surface area of the mid-channel bars had a slight, 

insignificant decrease (401,000 m2 or 2%). Currently, the total surface area each of the point, 

attached, and mid-channel bars ranges from 31% to 34%, while the total surface area of the 

concave bars accounts for just 3% of the total bar surface area (Table 2.4).    

Table 2.4. Decadal morphologic changes by bar type of the 30 studied channel bars from 

Vicksburg, MS to the Old River Control Structure, MS of the Lower Mississippi River.  

Bar type 

(count) 

Average 

length (m) 

Average 

width (m) 

Total surface area (m2) Percentag

e of area 

change 

Percentage 

of  

the total bar 

area 

198

5 

201

5 

198

5 

201

5 

1985 2015  1985 2015 

Point (13) 340

0 

330

0 

400 400 18,204,00

0 

20,630,00

0 

13% 33% 31% 

Attached (11) 310

0 

470

0 

400 400 14,936,00

0 

22,637,00

0 

52% 27% 34% 

Mid-channel 

(5a) 

520

0 

580

0 

700 600 21,391,00

0 

20,990,00

0 

-2% 39% 32% 

Concave (1) 200

0 

570

0 

100 300 184,000 1,826,000 892% 0% 3% 

Total (30) 360

0 

430

0 

400 400 54,715,00

0 

66,083,00

0 

21% 100

% 

100

% 
a The amount of mid-channel bars reduced from 5 to 4 in 2015 due to the disappearance of bar 8.  

 

2.4.2 Current Bar Volume, Mass, and Spatial Distribution  

In 2015, the 29 emerged channel bars had a total volume of 378,183 × 103 m3 (Table 2.5). 

While bar 21 amassed a volume of 58,573 × 103 m3, bar 30 was only about 1% of the volume of 

bar 21 (628 × 103 m3). The 29 bars had an average volume of 13,041 × 103 m3, with the largest 

volume centered in the middle of the river reach. The eight bars located between RK 665 and RK 

612 (bars 14-21) had a combined volume of 192,543 × 103 m3, accounting approximately 51% of 
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the total volume of the 29 bars (Figure 2.7). Based on the spatial distribution of the bar volume, 

the 223 km river reach was divided into three sub reaches: A, B, and C. The average bar volume 

in reach B was 3,565,611 m3/km, which was more than three times larger than that in reach A 

(1,165,819 m3/km) and reach C (1,048,464 m3/km).  

 

Figure 2.7. The cumulative volume of the 30 emerged bars in the river reach from Vicksburg, 

MS to the Old River Control Structure, MS of the Lower Mississippi River. Based on the change 

rates, the 223-km reach can be divided into three sub-reaches (A, B, and C). Dashed blue lines 

are the slope of the curves in reaches A, B, and C. Most of the sediment are currently stored in 

the middle of this river reach.   

The channel bars contained nearly pure coarse sands (Figure 2.8). The average bulk 

density of the bar sediment from the surface up to 1.5 m was 1.4 t/m3, based on measurements of 

sediment core samples collected from different locations on bar 24. Assuming the bulk density as 

representative for all studied bars, the total mass of 529,456 × 103 t of sediment would be 

currently stored in the 29 emerged bars. Bar 21 currently stored the most sediment (82,002 × 103 
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t), while bar 30 had the least (879 × 103 t). The sediment mass of the 29 bars averaged 18,257 × 

103 t.   

Table 2.5. Emerged volume and mass currently (2015) found in the 30 channel bars from 

Vicksburg, MS to the Old River Control Structure, MS of the Lower Mississippi River.  

Bar number Bar volume  Bar massa  Bar number Bar volume  Bar massa 

 (m3)   (metric ton)  (m3)  (metric ton)  

1 3,557,000 4,979,800 16 3,160,000 4,424,000 

2 4,748,000 6,647,200 17 22,454,000 31,435,600 

3 9,083,000 12,716,200 18 29,432,000 41,204,800 

4 946,000 1,324,400 19 11,795,000 16,513,000 

5 8,595,000 12,033,000 20 9,383,000 13,136,200 

6 675,000 945,000 21 58,573,000 82,002,200 

7 22,254,000 31,155,600 22 3,431,000 4,803,400 

8b 0 0 23 14,120,000 19,768,000 

9 11,440,000 16,016,000 24 32,896,000 46,054,400 

10 2,303,000 3,224,200 25 23,705,000 33,187,000 

11 2,246,000 3,144,400 26 3,880,000 5,432,000 

12 10,699,000 14,978,600 27 6,868,000 9,615,200 

13 7,393,000 10,350,200 28 4,789,000 6,704,600 

14 50,993,000 71,390,200 29 11,384,000 15,937,600 

15 6,753,000 9,454,200 30 628,000 879,200 
a Based on the measurement of the average bulk density of the bars, 1.4 t/m3. 

b The bar was emerged in 1985 and became unrecognizable in 2015. 
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Figure 2.8. The channel bars in the Lower Mississippi River contain nearly pure coarse sand. The 

average bulk density of the sands from the surface to 1.5 m deep is about 1.4 t/m3.   

 

A significant difference in sediment storage was found between different bar types. The 

four mid-channel bars amassed the most sediment (143,404 × 103 m3) making up 38% of the 

total bar volume, while the concave bars stored the least at 4% (Table 2.6). The average sediment 

deposition was highest on the mid-channel bars (35,851 × 103 m3), 2.5-5 times higher the 

averages for the other bar types.      

Table 2.6. Volume and mass by types of the 30 channel bars in 2015 from Vicksburg, MS to the 

Old River Control Structure, MS of the Lower Mississippi River. 

Bar type Count Total volume 

(m3) 

Average volume 

per bar (m3) 

Total mass 

(metric ton) 

Percentage of 

total 

Point 13 93,957,000 7,227,000 131,539,800 25% 

Attached 11 126,702,000 11,518,000 177,382,800 34% 

Mid-channel 4a 143,404,000 35,851,000 200,765,600 38% 

Concave 1 14,120,000 14,120,000 19,768,000 4% 

Total 29 378,183,000 13,041,000 529,456,200 100% 
a The amount of mid-channel bars reduced to 4 in 2015 due to the disappearance of bar 8.  



29 

 

2.4.3 Changes in Bar Volume and Mass Over the Past Three Decades  

From 1985 to 2015, the total volume of the 30 emerged bars increased by 110,118 × 103 

m3, or 41% of their initial volume (Figure 2.9). Among of them, 21 bars gained a combined 

volume of 121,925 × 103 m3 sediment, with bar 21 showing the largest increase (17,463 × 103 m3). 

Nine bars lost volume by a total of 11,807 × 103 m3, with bar 8 showing the largest volume loss 

(5,682 × 103 m3) and becoming unrecognizable in 2015. The decrease in volume (by the 

percentage of the total volume loss) was produced by seven point bars (46%), one mid-channel 

bar (48%), and one attached bar (6%) (Figure 2.9). Overall, all of the bar types increased in 

volume over the past three decades. Excluding the one single concave bar, the attached bars 

increased in volume by the largest amount, both in volumetric (56,339 × 103 m3) and percentage 

(80%) terms (Table 2.7).   

 

Figure 2.9. Volume changes of the studied 30 emerged bars from Vicksburg, MS to the Old 

River Control Structure, MS in the Lower Mississippi River between 1985 and 2015.  
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Table 2.7. Volume changes by types of the channel bars from Vicksburg, MS to the Old River 

Control Structure, MS of the Lower Mississippi River between 1985 and 2015.   

Bar type Count Total volume  

in 1985  

(m3) 

Total volume  

in 2015  

(m3) 

Total volume 

change  

(m3) 

Percentage 

of change 

Percentage of 

total bar 

volume 

1985 2015 

Point 13 81,439,000 93,957,000 12,518,000 15% 30% 25% 

Attached 11 70,363,000 126,702,000 56,339,000 80% 26% 34% 

Mid-channel 4a 115,670,000 143,404,000 27,734,000 24% 43% 38% 

Concave 1 593,000 14,120,000 13,527,000 2281% 0% 4% 

Total 29 268,065,000 378,183,000 110,118,000 41% 100% 100% 

a The amount of mid-channel bars reduced to 4 in 2015 due to the disappearance of bar 8.  

 

The largest volume percentage changes occurred for the attached bar 15 (73-fold increase) 

and the concave bar 23 (23-fold increase), while bar 8 had the largest decrease rate (100%) 

(Figure 10). In total, the increased bar volume was equivalent to 154,165 × 103 t of sediment.   

 

 

Figure 2.10. Volume change rates of the 30 bars during the period of 1985-2015. The Y-axis for 

volume increase rate is on a logarithmic scale.  
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Similar to the spatial distribution of the current bar volume, bar growth in the past three 

decades occurred mainly on bars 14-25 in the middle of the studied river reach, which together 

accounted for about 71% (78,232 × 103 m3) of the total volumetric increase of the 30 bars. The 

four bars with the largest increases in volume (bars 21, 7, 23, and 25) accounted for about 51% 

of the total volumetric increase. Bars that had decreased in volume were usually located near the 

downstream portion of the enlarged bars, and no adjacent bars that experienced sediment loss 

were observed (Figure 2.9).  

2.5 DISCUSSION 

The Lower Mississippi River is one of the most highly regulated rivers in the world. It is 

also one of the world’s largest alluvial rivers, transporting annually over 120 MT of suspended 

sediment to the lower 500 km of the river (Rosen and Xu, 2014) and another 54 MT of 

suspended sediment to its distributary, the Atchafalaya River (Rosen and Xu, 2015) in the past 

three decades. When an alluvial river is confined by levees and its river bank is stabilized by 

revetments, channel wandering is impossible, and sediments are either transported to the lower 

reach or deposited in the channel. In a study on channel morphologic changes using early 

hydrographic surveys from 1880 to 1963, Kesel (2003) reported that the emerged channel bars in 

the Lower Mississippi River from Cairo, Illinois, to Red River Landing, Louisiana, tended to 

adjust their number and size as responses to the river engineering. Our study shows that while 

Lower Mississippi River’s channel is well confined, the adjustment of the bars in this reach has 

continued in the past 30 yr, and that the bars increased their emerged volume by 41%. 

In an active meandering river, point bars are the dominant bar type, both in number and 

area, and the size of the point and attached bars are significantly larger than mid-channel bars 

(Hooke and Yorke, 2011). In the 223 km study reach, however, point bars are not dominant in 
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either amount (i.e., 13 out of 30 bars) or total surface area (31% of the total surface area) 

compared to the other bar types such as attached (34%) and mid-channel bars (32%) (Table 2.4). 

In the upper part of the Lower Mississippi River between Cairo and Red River Landing, point 

bars were major sediment storage sites during 1880-1914 before intense human modifications to 

the river (Kesel et al., 1992). However, Kesel (2003) noticed the degradation of point bars in the 

Lower Mississippi River during the 1970s and 1980s.  In our study, the volume of more than half 

of the point bars (7 out of 13) decreased in the past 30 yr. Although the total volume of point 

bars increased slightly, the proportion of the total bar volume of the reach declined from 30% to 

25% during 1985-2015. On the contrary, sediment was increasingly stored in the mid-channel 

and attached bars (Table 2.6). 

The findings demonstrate that significant changes occurred in sediment storage sites in 

this highly regulated channel. During the period of 1985-2015, attached bars experienced the 

largest increase in both surface area and volume. It is interesting to examine the reasons behind 

these large morphologic changes. We investigated the development of attached bar 15 (with the 

highest volume increase rate of 7240%) by examining four Landsat images taken in 1985, 1995, 

2005, and 2015 (note that these image dates had similar river stages of 17.3-17.5 m). In 1985, a 

relatively small (400 × 90 m) bar existed in the lower part of the reach with one single dike 

located along the right bank (Figure 2.11a). By 1995, five dikes had been built along the whole 

bank, and the bar had become much larger (Figure 2.11b). From 1995 to 2015, the surface area 

of the bar increased significantly, and the dike field area had been mostly covered by the bar 

(Figure 2.11c-d), as evidenced by the rapid growth of the attached bar 15 around the dike field. 

Therefore, the increased bar volume was closely associated with the construction of the dike 

field.  
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Figure 2.11. The rapid growth of bar 15 from 1985 to 2015 due to the construction of a dike field. 

River stages were very similar (i.e., 17.3 – 17.5 m) on these four days when the satellite images 

were taken.  

 

Impermeable spur dikes exist within 24 of the studied 30 bars (Table 2.3). The total 

length of the dikes in each dike field ranged from 885-6035 m. The sediment volume trapped in 

these 24 bars is about 96% of the total volume of the 30 bars. Although sediment deposition 

adjacent to and within dike fields were widely observed in the Middle Mississippi River (Watson 

et al., 2013), concerns exist about the mechanics of dike field sedimentation and its relation to 

dike location, dike field design, flow hydrology, and sediment flow (Nunnally and Beverly, 

1986). The quantitative estimation of the bar volume in the present study provides an opportunity 

to further explore the correlation between dike characteristics (e.g., amount and length) and the 

sedimentation around dikes.   
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    An examination of the correlation between increased bar volume during 1985-2015 of 

all bar types and the dike fields shows that there is a positive linear relationship between bar 

volume and the total length of the dikes in a dike field (R2 = 0.62; p < 0.0001) (Figure 2.12b), 

while there is no significant correlation to the number of dikes (R2 = 0.17; p = 0.08) (Figure 

2.12a). In Figure 2.13b, bar 9 appears to be an outlier (i.e., it is associated with the longest dikes 

of ~6000 m, but a relatively low increase in volume). In fact, this was caused by the river 

engineering that took place around this bar during 1985-2015 (Figure 2.13). In 1985, bar 8 was a 

large mid-channel bar (Figure 2.13a). If no actions were taken, the continuous growth of this bar 

might have threatened navigation safety. In 1995, several dikes had been built within bar 7 

(Figure 2.13b), which closed the secondary channel around bar 7 and increased flow velocity in 

the main channel. As a result, most of bar 8 was flushed away. In 2005, bar 8 had completely 

disappeared, while the sizes of bars 7 and 9 increased significantly (Figure 2.13c). Compared to 

1995, the main channel width had decreased by ~700 m in 2005. The much narrower channel 

may have increased the flow velocity substantially and scoured the channel bed, thus confining 

the lateral growth of bar 9. Overall, the relatively low volumetric increase of bar 9 during 1985-

2015 was caused by the construction of dike fields within bar 7 and the corresponding channel 

narrowing. If bar 9 is excluded in the regression analysis, the total length of the dikes in a dike 

field displays a much stronger relationship with the increase in bar volume (R2 = 0.86; p < 

0.0001) (Figure 2.12b). Therefore, we conclude that the substantial changes in bar morphology 

found in our study were mainly caused by the construction of dike fields during the 1970s and 

1980s.   
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Figure 2.12. Regression analysis between bar volume increase during 1985-2015 and the dike 

amount (a) and the total dike length (b) in the corresponding dike fields.  
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Figure 2.13. Morphologic changes of bars 7, 8, and 9 from 1985 to 2015. There were two dike 

fields near bars 7 and 9. Bar 8 was a mid-channel bar in 1985. However, it was fully 

unrecognized in 2015 due to the construction of the dike field around bar 7. The river channel 

narrowed by about 700 m over the past three decades due to the growth of bar 9.  

 

In 1985, the bar volume in reaches A, B, and C accounted for 21%, 55%, and 31% of the 

total volume of the 30 bars, which was very similar to the spatial volume distribution in 2015. 

This may suggest that the depositional pattern in this 223 km river reach remains the same and 

that there was no significant sediment transfer among reaches A, B, and C over the past three 

decades. Interestingly, the bars that decreased in size usually were located downstream from bars 

that increased in size, which may suggest that the growth of a channel bar may potentially result 

in the degradation of its adjacent downstream bar (Figure 2.9). Overall, the channel and bar 

positions have remained relatively fixed in the study reach. There were also few changes in bar 

type from 1985 to 2015, with the exception of bars 7 and 25 that changed from side bars to 

attached bars. Although substantial morphologic changes occurred in the bars, the average width 

of the bars changed little, indicating that bars usually do not develop laterally in this highly 

regulated river reach. Development of the bars in the future should not be as rapid as the past if 
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no new dike fields are built. However, we infer that the bars still have a substantial ability to trap 

riverine sediment by vertical accretion. The formation of mid-channel bars in the Lower 

Mississippi River was considered as the sediment response to the fixed channel, where the 

channel cannot laterally migrate by the development of point bars (Smith and Winkley, 1996). 

Although only four mid-channel bars currently exist in the 223 km study reach, mid-channel bars 

are about 3-5 times the average volume of attached bars and point bars, suggesting that mid-

channel bars could develop into the dominant depositional feature in a regulated alluvial river. 

According to Hooke’s (1986) development theory of mid-channel bars, in the future these four 

mid-channel bars could develop laterally and become attached to the bank, thus trapping a large 

amount of sediment.   

Although the 378,183,000 m3 total bar volume at present is tremendous, it is likely an 

underestimation of actual sediment storage of these bars. This is because that we only calculated 

the volume in certain ranges of the river stage. The shapes of the surface area – river stage rating 

curves (Figure 2.4) demonstrate that the submerged bar volume between low water plane and 

channel bed could be large. In the future, submerged portions of the bars can be estimated using 

the developed rating curves once bed elevations near the bars are measured.  

Sediment reduction in the Lower Mississippi River in the past century has been attributed 

mainly to the dam construction in the upper Mississippi River Basin (Blum and Roberts, 2009; 

Blum and Roberts, 2012). The findings of this study show that the large emerged channel bars in 

the LMR have also trapped a large amount of sediment, primarily sands. In a modeling study, 

Nittrouer and Viparelli (2014) predicted that the sand load at Know Landing, Louisiana (RK 505) 

would not reduce in the next six centuries because potential bed scouring between Cairo, IL (RK 

1536) and Memphis, TN (RK 1182) would sustain the sand transport downstream to the MRD. 
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However, the modeling study did not consider the effect of large emerged channel bars in 

trapping riverine sands in this studied river reach. It is very likely that large channel bars located 

within the ~1000-km channel from Cairo to Knox Landing could trap substantial sand. Further 

studies are needed to elucidate sand trapping capacity upstream of Vicksburg as well as the 

relevance of the sediment loss to the downstream channel morphodynamics.  

The average annual suspended sand load (SSL) delivered into the last 500-km Mississippi 

River was estimated at about 27 MT during the period from 1973 to 2013 (Joshi and Xu, 2015). 

The ~530 MT sediment stored on the emerged bars (nearly pure coarse sand) by this study would 

be equivalent to ~20 years’ total SSL discharged into the LMR.  Since the mid-2000s Louisiana 

Coastal Protection and Restoration Authority (CPRA) has been implementing a Long Distance 

Sediment Pipeline (LDSP) project to dredge sands from the Mississippi River (CPRA, 2017). 

Construction of the LDSP began in 2013, and the pipeline has so far borrowed and transferred 

nearly 10 million cubic yards of Mississippi River sediment to support marsh and ridge creation 

projects in the Barataria Basin south of New Orleans. The LDSP remains in place as a permanent 

pipeline corridor for future project use. There is no doubt that future success of the project will 

largely depend on sand availability. The large quantity of sand found in this study on the channel 

bars in LMR can be a precious resource of sediment for coastal restoration. River engineering 

strategies and solutions should be developed to utilize the resource for the restoration of the 

downstream sinking MRD.    

2.6 CONCLUSIONS 

This study is a comprehensive assessment of a 30-yr record of large-scale bar 

morphology in a highly regulated alluvial river. The results of this study show that the river 

engineering practices in the past have been successful in confining the channel of this 223 km 
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reach of the Lower Mississippi River. The levees and revetments have regulated the river flow, 

allowing very little change in channel position. However, significant changes have occurred in 

channel bars, both morphologically and volumetrically. The bars have become elongated and 

have trapped a large quantity of coarse sediment. In terms of bar development, our study reveals 

that a highly regulated river may favor the growth of attached and mid-channel bars. This 

depositional characteristic is a reflection of sediment transport adjustment to the artificial cutoffs, 

levees, and revetment constructions for channel stabilization for navigation safety and flood 

control. In particular, the total dike length in a dike field exhibited a strong relationship with 

increased bar volume. Furthermore, our study found a total emerged bar volume of 378,183,000 

m3 from the river channel’s 30 bars and a combined volume increase of 110,118,000 m3 in the 

past three decades. Assuming a bulk density of 1.4 t/m3, these volumes are equivalent to a sand 

mass of approximately 530 million metric tons. In the future, the tremendous quantity of 

sediment (nearly pure sand) could be potentially utilized for river diversion efforts downstream 

to save the sediment-starved Mississippi River Delta if suitable engineering strategies are 

developed. 
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CHAPTER 3. LONG-TERM GEOMORPHIC RESPONSE TO FLOW 

REGULATION IN A 10–KM REACH DOWNSTREAM OF THE 

MISSISSIPPI–ATCHAFALAYA RIVER DIVERSION 

3.1 INTRODUCTION 

The Louisiana Gulf coast in the USA has experienced one of the highest sea–level rises 

over the past century (Ivins et al., 2007). Concurrently, the Mississippi River Delta has 

undergone rapid land loss since the early 20th century (Britsch and Dunbar, 1993b; Craig et al., 

1979; Gagliano et al., 1981; Scaife et al., 1983). Since 1932 a total land loss of approximately 

4900 km2 has been reported for Louisiana’s delta plain (Couvillion et al., 2011). A number of 

natural and human factors have been attributed to the problem including river engineering 

(Meade and Moody, 2010; Turner, 1997), accelerated subsidence (Gagliano et al., 1981; Yuill et 

al., 2009), reduced riverine sediment supply (Kesel, 1988; Meade and Moody, 2010), 

disconnection of the river with its floodplains (Xu, 2014), coastal land erosion (Wilson, 2004), 

and relative sea level rise (Georgiou et al., 2005).  Couvillion et al. (2013) projected that, if no 

actions were taken, at least another 2118 km2 land of Louisiana’s coast would be lost over the 

next 50 years. This land loss possesses a serious threat to the energy industry, river transportation, 

and commercial fisheries in this region, all of which have the level of national importance.  

Currently, large sediment diversions are being proposed for restoring and protecting the 

1sinking Louisiana’s coast by diverting river water and sediment into the wetlands and estuaries 

surrounding the Lower Mississippi Rivers (LMR) (CPRA, 2012). Studies have been conducted 

extensively in the recent years on design and site selection of diversions (Gaweesh and Meselhe, 

2016; Meselhe et al., 2012; Nittrouer et al., 2012), magnitude of diversion discharge (Wang et al., 

                                                 

This chapter previously appeared as “Wang, B., Xu, Y.J. Long-term geomorphic response to flow regulation in a 

10–km reach downstream of the Mississippi – Atchafalaya River diversion. Journal of Hydrology: Regional Studies, 

2016 (8):10-25.”. See Appendix B for the reprint permission. 
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2014), and operation strategy (Allison et al., 2014; Rosen and Xu, 2014). A few studies have also 

looked at potential impacts of river diversions on upstream and downstream sediment transport 

through modeling (Brown et al., 2013), short-term channel responses to opening of a large river 

spillway (Allison et al., 2013), wetland ecosystems (Couvillion et al., 2013), vegetation cover 

(Kearney et al., 2011), and physiochemical conditions of estuaries (Das et al., 2012; Lane et al., 

2007). However, studies on long–term effects of large river diversions on downstream channel 

morphology and sediment transport are scarce. Such information should be tightly associated 

with the design of proposed diversions because the morphological response of the river reach 

may affect flood conveyance, channel stability and sediment supply to downstream reaches 

(Surian, 1999).  

River diversions remove water from rivers and impose primary changes on flow and 

sediment transport (Church, 1995). To date, a number of studies have focused on the effects of 

diversions on downstream channel morphology and sediment deposition. For instance, for the 

rivers in montane environments, Baker et al. (2011) found that decreased flow velocity and fine 

sediment deposition downstream of diversions on 13 streams in the western America. Gaeuman 

et al. (2005) reported that water diversions eliminated moderate flood events which caused 

vegetation encroachment in the channel and corresponding channel narrowing. However, Ryan 

(1997) found the subtle change in subalpine channels downstream of diversions. For alluvial 

rivers and reaches, Caskey et al. (2015) reported that simplifying and narrowing impacted by 

diversion-induced flow alteration in single-thread, straight and meandering, alluvial channels on 

low to moderate gradient (<3%) valley segments. Wang et al. (2008) predicted that sediment 

deposition would develop along the whole reach in the long term downstream of the large water 

diversions in the Lower Yellow River. In general, these studies illustrate that the morphological 
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responses of the downstream channels to the diversions are not only related to the changes in 

flow regimes and sediment availability but also to the bed types, channel slope, and geometry.  

In the LMR, the extensive modifications have been undertaken since the 1920s. Artificial 

cutoffs,  levee and dike construction, bank revetment, and reservoir building along major 

tributaries have largely complicated the geomorphological response of the river reach (Harmar et 

al., 2005). The river engineering has forced channels to adjust, often resulting in the development 

of mid channel bars (Smith and Winkley, 1996). However, in his assessment on channel bars of 

the Lower Mississippi River, Kesel (2003) showed that the bar size and volume from 1880 to 

1963 in the lowermost Mississippi River had little change. It has been debated whether this trend 

has remained in the past several decades. Therefore, studying historical changes of channel bars 

near diversions can help better understand possible geomorphic responses of a river reach to its 

proposed future diversion, The Mississippi–Atchafalaya River diversion at the Old River Control 

Structure (ORCS), with three shortly downstream large channel bars and nearby revetments and 

dikes, offer an excellent case to study the effects of these engineering practices on channel 

morphology and bar dynamics in the Lowermost Mississippi River. Little and Biedenharn (2014) 

recently completed an assessment on the riverbed from the ORCS to the mouth of Mississippi 

River outlets using single beam bathymetric data acquired in 1963, 1975, 1992, 2004 and 2012 

(Little and Biedenharn, 2014). However, there was little information on bar emergence and 

sediment deposit because their work mainly focused on the bed elevation change. This, along 

with the relative coarse time resolution of the surveys, makes it difficult to discern the individual 

effects of the river engineering practices on bar and channel form changes  

The purpose of this study is to examine morphological changes of the 10-km long river 

channel, and the three emerged channel bars nearly downstream of the diversion during 1985-
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2015. Specially, we utilized satellite images and long-term hydrologic data to (1) examine the 

impacts of the diversion on flow regime, (2) interpret the morphological change of the river 

channel, and (3) quantitatively estimate variations of surface area and volume of three large 

channel bars located in the studied reach. The main goal of this study is to elucidate the effects of 

the large river diversion, revetments and dikes on the morphology of river channel and emerged 

channel bars.  Such information can be helpful for the design of engineering projects in advance 

to reduce possible hazards in flood protection and navigation safety downstream of the proposed 

large sediment diversions in the LMR or elsewhere.  

3.2 STUDY AREA 

The lowermost Mississippi River is defined as the last 500-km long river reach from the 

Mississippi-Atchafalaya River diversion - the Old River Control Structure (ORCS) (31°04'36" N, 

91°35'52" W) to the river’s Gulf outlet (Figure 3.1). The ORCS was built to prevent the majority 

of Mississippi River water from being captured by the Atchafalaya River (AR). The overbank 

structure, low sill structure, and outflow channel were completed in 1963. An auxiliary inflow 

channel and a hydroelectric station were built in 1987 and 1991, respectively. Latitude flow is 

defined as water in the MR and AR flow across the latitude of Red River Landing (30° 56' 20.4") 

which is an important term in the diversion management. The often-quoted number of diverted 

flow by the ORCS is 30% of latitude flow, but the percentage varies in every year, fluctuating 

between 15% and 29% (Mossa, 1996).  
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Figure 3.1. Three large channel bars – Shreves Bar, Angola Landing and Miles Bar locate in a 

10-km long reach which is shortly below the Mississippi-Atchafalaya River diversion - Old 

River Control Structures (ORCS). The ORCS includes hydropower project, overbank, low sill 

and auxiliary structures. All three channels in the ORCS divert water from the Mississippi River 

to the Atchafalaya River. The Lower Old River is a navigation channel and controlled by 

navigation lock. Two gauging stations - Tarbert Landing and Red River Landing are shown.  The 

west bank of the 10-km studied reach is protected by revetment. In addition, one revetment was 

built in front of Miles Bar.  

 

The 10-km long river reach investigated in this study is located shortly downstream of the 

ORCS. The reach includes two mid–channel bars – Shreves Bar and Miles Bar and one point bar 

– Angola Landing, and they are located approximately 18, 24, and 26 kilometers downstream of 

the ORCS (Figure 3.1), respectively. In addition to the flow regulation by the diversion, several 

river engineering constructions exist in the reach which include a trenchfill revetment through 
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the middle of Miles Bar, stone dikes on the east bank of the river and one single dike near Miles 

Bar. These constructions were done between September 1990 and June 1996 (Copeland et al., 

2010). In addition, the whole west bank of the reach is also protected from erosion by revetments.  

 Several gauge stations are located in the reach. Red River Landing (RRL) gauge station 

measures daily river stage data and the available data is from 1987 (30°57'39" N., 91°39'52" W; 

river kilometer 487, or river mile 302.4; USACE Gauge ID: 01120). The U.S. National Oceanic 

and Atmospheric Administration (NOAA) uses the station’s stage for lowermost Mississippi 

River flood prediction. Tarbert Landing (TBL) gauge station (31°00'30" N, 91°37'25" W), 

located at river kilometer 493 (river mile 306.3), about 16 kilometers downstream the ORCS, 

provides the discharge data spanning the longest period for the lowermost Mississippi River 

where both the U.S. Geological Survey (USGS) and the U.S. Army Corps of Engineers (USACE) 

have a monitoring station (USGS Station ID: 07295100 and USACE Gauge ID: 01100).  

3.3 METHODS 

3.3.1 Data Collection  

Satellite images and river stages are two major sources of data used in this study. A series 

of cloud-free satellite images covering the study area (Path 23 Row 39), Landsat Surface 

Reflectance Climate Data Record (CDR), were collected from the USGS for the period from 

1984 to 2015. CDR is a derived product from level–1 data of Landsat 4–5, Landsat 7 and 

Landsat 8 processed by the Landsat Ecosystem Disturbance Adaptive Processing System 

(LEDAPS) (Wolfe et al., 2004). LEDAPS is designed for atmospheric correction by considering 

the impacts of water vapor, ozone, geopotential height, aerosol optical thickness, and digital 

elevation. High accuracy 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) 

radiative transfer codes (Kotchenova and Vermote, 2007; Vermote et al., 1997) were used in 
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LEDAPS to generate the products including Top of Atmosphere (TOA) Reflectance, Surface 

Reflectance, Brightness Temperature, and masks for clouds, land, and water (Masek et al., 2006). 

In our study, the products of surface reflectance and water mask were used to acquire the channel 

morphology and surface area of the channel bars. The images with atmospheric correction are 

beneficial for the estimation of surface area change in the long term.  

Daily river stage data at Red River Landing (Station ID: 01120) were collected for the 

period from 1984 to 2015 to determine emerged surface area of the channel bars. For the same 

period, daily river discharge at Old River Outflow Channel (OROC) (Station ID: 02600) and 

Tarbert Landing (Station ID: 01100) were also collected to characterize flow conditions in the 

studied river reach. The discharge at OROC included the discharge in Hydropower project, 

Auxiliary structure and Low Sill structure (Figure 3.1).  

3.3.2 Estimation of Channel Morphology and Surface Area Change of the Bars  

River stage affects the appearance of channel morphology and the size of the emerged 

surface area of the channel bars. Therefore, the long-term estimation of them by satellite images 

must ensure that the river stages on the days when images were captured were similar. Besides, 

the suitable time interval of the images is important to reveal the morphological changes of the 

channel and bars well.  Based on these criterions, eight images with 4 or 5–year time interval 

were selected from 1985 to 2015 (Table 3.1). The river stages on these dates were very close 

(6.42 - 6.72 m).  

River channel and bar outlines in each of these images were digitized in ArcGIS 10.3 

software (ESRI, Redlands, California, USA). Shortwave band – band 5 (1.55 – 1.75 μm) of the 

image was used in the digitization because land and water can be easily differentiated in this 

band.  
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Table 3.1 Landsat CDR images used for estimation of the change in bar surface area and the 

dates and river stages when the images were captured.  

Date River Stage (m) Landsat CDR products No. 

22 Aug 1985 6.42 LT50230391985234XXX04 

24 Nov 1990 6.46 LT50230391990328XXX05 

21 Oct 1995 6.55 LT50230391995294XXX02 

21 Aug 1999 6.54 LE70230391999233EDC00 

25 Sep 2003 6.68 LT50230392003268LGS01 

20 Sep 2007 6.51 LT50230392007263CHM01 

17 Oct 2011 6.42 LT50230392011290EDC00 

18 Sep 2015 6.72 LE70230392015261EDC00 

 

3.3.3 Estimation of Volume Change of the Bars  

The method of surface area – river stage rating curve has been successfully applied to 

estimate the volume change of Shreves Bar, Angola Landing, and Miles Bar before and after the 

2011 spring Mississippi River flood (Wang and Xu, 2015). In their study, the rating curves for 

each of the three bars before and after the flood were built by a series of river stages (x-axis) and 

corresponding surface areas of the bar (y-axis) (Figure 3.2). The emerged surface areas at 

different river stages can be acquired from corresponding images used the method described in 

section 3.2.  The rating curves were best fitted by 2nd-order polynomial equations (Figure 3.2b).   
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Figure 3.2. (a) Diagram of a channel bar with its fluctuating emerged surface area in the relation 

with river stage height. Dh and Dl are the highest and lowest river stage; (b) A surface area – river 

stage rating curve, which usually can be best fitted by a second order polynomial equation 

according to Wang and Xu (2015). 

 

Volume (Vs) of each bar between the highest stage (Dh) and the lowest stage (Dl) then 

was calculated by integral based on the surface area – river stage rating curves (Wang and Xu, 

2015):  
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where Vs is the bar volume, Dh is the highest river stage, Dl is the lowest stage, and a, b and c are 

constants.  

In the present study, the volumes of the three bars in 1985 and 2015 are needed to 

estimate. For building the rating curves of the three bars in these two years, ideal situation is that 
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enough cloud-free images in each year exist to cover a large range of river stage which helps to 

acquire more surface areas in the year. However, the examination of river stages and images 

found that the amount of available images are not able to build the rating cures in 1985 and 2015. 

After careful consideration, instead, eight images captured during 1984 and 1986 were selected 

to build the rating curve in 1985 (Table 3.2). The river stages associated with these images were 

from 5.5 to 15.3 m.  In addition, eight images taken in 2013 and 2014 were used to estimate the 

bar volume in 2013 because no enough images can develop the rating curves in 2014 and 2015. 

The river stages associated with these images were from 5.5 to 15.3 m. The common range of the 

river stages in these two periods was from 6.1 to 15.3 m which were used as the limits of 

integration to estimate the bar volume. 

Table 3.2. Dates and product numbers of Landsat CDR images used for estimation of the change 

in bar volume at different river stages when the images were captured. 

Date Stage 

(m) 

Landsat CDR products No. Date Stage 

(m) 

Landsat CDR products No. 

Volume estimation in 1985 Volume estimation in 2013 

07 Nov 1984 11.0 LT50230391984312XXX02 29 Apr 2013 14.3 LC80230392013119LGN01 

09 Dec 1984 12.0 LT50230391984344XXX03 15 May 2013 15.9 LC80230392013135LGN01 

16 Apr 1985 15.3 LT50230391985106XXX03 04 Sep 2013 7.5 LC80230392013247LGN00 

22 Aug 1985 6.4 LT50230391985234XXX04 07 Nov 2013 6.1 LC80230392013311LGN00 

21 May 1986 9.3 LT50230391986141XXX03 27 Feb 2014 9.8 LC80230392014058LGN00 

24 Jul 1986 9.8 LT50230391986205XXX05 05 Jul 2014 11.5 LC80230392014186LGN01 

25 Aug 1986 5.5 LT50230391986237XXX04 23 Sep 2014 9.1 LC80230392014266LGN00 

28 Oct 1986 12.9 LT50230391986301XXX03 25 Oct 2014 10.7 LC80230392014298LGN00 

 

The standard error of the estimate (SE) was used to measure the error of these rating 

curves.  

  SE =  √
∑(𝑦̂−𝑦)2

𝑁−𝑃
 (2) 
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where SE is the standard error of the estimate, 𝑦̂ is the predicted value and y is the actual value, 

N is the sample size, P is the number of the parameters in the model, for linear regression, P = 2, 

for second order polynomial regression, P = 3. SE calculates the average distance between 

observed values and the regression line. Smaller SE indicates smaller prediction error. 

Coefficient of variation (CV) as the ratio of SE to the mean of the observed values was also used 

to estimate model error.  

3.4 RESULTS 

3.4.1 Long–term Hydrologic Conditions 

Over the past 30 years (1985-2015), daily discharge at Tarbert Landing of the lowermost 

Mississippi River averaged 14,968 cubic meter per second (cms), varying from 3143 cms in the 

extremely dry year of 1988 to 45,845 cms in the flood year of 2011 (Table 3.3). During the same 

period, the river was diverted through the Old River Outflow Channel (OROC) with a daily 

average of 4,365 cms, fluctuating from zero flow for 26 days in 1987 and a high discharge of 

19,001 cms in May 2011. Therefore, the ratio of the diverted Mississippi River to the total 

discharge at TBL and OROC varied from 0% to 38%, with an average ratio of 23%. The ratio 

did not change with the total discharge but often had an opposite tendency (Figure 3.3). 

Seasonally, discharge of the lowermost Mississippi River is high during the winter and spring 

and low during the summer and early fall. Despite the flow seasonality, on average 24% of the 

river during the seasons was still diverted into the Atchafalaya River (Table 3.3). In a long-term 

river flow study at Tarbert landing, Rosen and Xu (2014) separated the corresponding flow 

regimes <13,000 cms for Low Flow Stage, 13,000–18,000 cms for Action Flow Stage, 18,000–

25,000 cms for Intermediate Flow Stage, 25,000–32,000 cms for High Flow stage, and >32,000 

cms for Peak Flow Stage. 
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Table 3.3. Long-term (1985-2015) and seasonal discharge at Tarbert Landing (TBL) and Old 

River Outflow Channel (OROC). Ratio values are the proportion of diverted river at OROC from 

the Mississippi River.  

 Discharge (cms) 

1985 - 2015 Average values for each season 

Annual mean (min - max) Spring Summer Fall Winter 

TBL 14,968 (3,143 - 45,845) 21,303 13,862 8,499 16,226 

OROC 4,365 (0 - 19,001) 6,068 4,438 2,689 4,250 

Total 19,333 (4,191 - 64,676) 27,370 18,299 11,188 20,475 

Ratio 23% 22% 24% 24% 21% 

 

 

Figure 3.3. The long-term trend of flow at the Mississippi-Atchafalaya River diversion. Total 

discharge is the sum of discharge at Old River Outflow Channel (OROC) and at Tarbert Landing 

(TBL); Ratio of diversion is the ratio of discharge at OROC to the Total discharge of the 

Mississippi River. Both of these two discharges were presented with a 120–day moving average. 

The upper line and the lower line indicate the mean ratio of diverted water (23%) and mean total 

discharge (19,333 cms), respectively.  The long-term discharge data were obtained from the U.S. 

Army Corps of Engineers. 
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The discharge – river stage rating curves in 1988, 1999 and 2015 (Figure 3.4) showed a 

continuous change in their relationship over the past 30 years. For instance, at the discharge of 

6,000 cms, the corresponding daily mean river stage was 4.9 m in 1988, 5.5 m in 1999 and 6.2 m 

in 2015. Overall, there was an increase of 1.3 m in river stage from 1988 to 2015 for a same 

quantity of discharge. The rising trend of the river stage is more apparent at higher flows, for 

instance, at a discharge between 14,000 to 22,000 cms, the river stage increased by 

approximately 1.5 m from 1988 to 2015.  

 

Figure 3.4. Changes in the relationship between daily mean river stage and discharge 

downstream of the Mississippi-Atchafalaya River diversion over the past 30 years. The river 

stage data were collected at Red River Landing, the discharge data were collected at Tarbert 

Landing, and these data were obtained from U.S. Army Corps of Engineers and U.S. Geological 

Survey.   
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3.4.2 Morphological Change of the River Channel  

Over the past 30 years, the studied 10-km long river reach below the Mississippi-

Atchafala River diversion experienced marginal changes on its west bank, but significant 

changes on its east bank (Figure 3.5). As a whole, the reach can be divided into three different 

segments based on the variation of the east bank. The east bank of the upper reach (U) has been  

eroding since 1985, causing the channel to widen by about 150 m. In the middle reach (M), the 

east bank experienced substantial sediment trapping, narrowing the channel by about 550 m. 

Comparing to the upper and the middle reach, the lower reach (L) showed the most dynamic 

change: during the 5-year period 1985-1990, the channel was significantly widened by about 360 

m; in the following 5 years, the channel widening continued for another 120 m on both east and 

west banks; however, in the last 20 years, the channel width declined by about 1000 m. In the 

west bank, about 400 m channel narrowing also occurred in 2003–2015.  
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Figure 3.5. Morphological change of a 10-km long river channel downstream of the Mississippi-

Atchafalaya River diversion from 1985 to 2015. The middle (M) and the lower (L) section of the 

channel experienced substantial sediment deposition on their east banks, causing the channel 

narrowed by 800 m in average.  
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3.4.3 Long–term Change in Bar Size  

Over the past 30 years, the three major bars nearby downstream of the Mississippi-

Atchafalaya River diversion showed a significant change in their size and shape (Figure 3.6). 

Located nearest to the river diversion, Shreves Bar showed first a slight decline in its surface 

area during 1985–1990, then a steady longitudinal increase, leading to a continuous elongation to 

the present day (from 2,700 m to 3,800 m). The fastest increase rate of it was between 1990 and 

1995 (Figure 3.7). Located six kilometers downstream of Shreves Bar and two kilometers 

upstream of Miles Bar, the size of Angola Landing was very small in 1985. However, the point 

bar showed a remarkable, continuous growth since 1985: Angola Landing was only a 1,200-m 

long narrow strip in 1985 (Figure 3.6a); by 1999, it had grown to a 6,500-m long, 600-m wide 

large point bar (Figure 6b–6d). On the whole, the bar rapidly increased before 1999, but had no 

large increase during 1999-2007, and then had a nearly tripled increase from 2007 to 2011 than 

the period 2003-2007 (Figure 3.7). When compared with Shreves Bar and Angola Landing, 

Miles Bar was the largest bar in 1985. The bar showed a significant elongation from 1985 to 

1990 (Figure 3.6b) but a large decline of its emerged surface area during the 1990s (Figure 3.6b-

d). Afterwards, Miles Bar had a continuous increase as a new bar grew along the west bank 

(Figure 3.6e-h). The increase rate of it has slowed down since 2003 (Figure 3.7). 
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Figure 3.6. Morphological changes of Shreves Bar, Angola Landing and Miles Bar downstream 

of the Mississippi-Atchafalaya River diversion over the past 30 years. The river stage is close in 

each image (6.42-6.72 m). The construction of a trenchfill revetment through the middle of Miles 

Bar and the dikes on the east bank of the river and on the Miles Bar head in the early 1990s 

greatly changed the morphology of the channel and the bars. The trenchfill revetment caused the 

sediment on its east side was rapidly removed by river flow in 1990-1999 (Figure 3.6b-d). The 

revetment then became the new river bank which narrowed the main channel. The thalweg was 

also shifted to the east side of Miles Bar (Figure 3.6d). During the same period of revetment 

construction, 5 spur dikes were built along the east bank of the reach (4 visible in Figure 3.6c-d). 
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Figure 3.7. The annual change rate of the emerged surface area of three large channel bars 

downstream of the Mississippi-Atchafalaya River diversion in different periods of 1985 to 2015. 

 

As a whole, over the past 30 years, the total emerged surface area of the three major bars 

downstream of the Mississippi-Atchafalaya River diversion increased by 4,107,000 m2 or 119% 

of that in 1985 (Table 3.4). Angola Landing had a much higher increase (36 times of that in 1985 

or 3,996,000 m2) when compared with Shreves Bar (53% or 687,000 m2). On the contrary, the 

emerged surface area of Miles Bar showed a 28% net decrease (or -576,000 m2).  

Table 3.4. Estimation of surface area by satellite images and their changes comparing to the last 

dates (italic) for three large channel bars near the Mississippi-Atchafalaya River diversion in 

1985-2015. 

Date Shreves Bar  Angola Landing Miles Bar 

 Emerged Area and changes (m2) 

22 Aug1985 1,303,600 115,300 2,046,000 

(table cont’d.) 
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Date Shreves Bar  Angola Landing Miles Bar 

 Emerged Area and changes (m2) 

24 Nov1990 1,265,400 (–38,200) 288,800 (+173,500) 2,099,200 (+53,200) 

21 Oct 1995 1,582,900 (+317,500) 1,453,500 (+1,164,700) 1,529,700 (–569,500) 

21 Aug 1999 1,528,900 (–54,000) 2,987,600 (+1,534,100) 961,600 (–568,100) 

25 Sep 2003 1,755,700 (+226,800) 3,273,600 (+286,000) 1,041,000 (+79,400) 

20 Sep 2007 1,823,300 (+67,600) 3,477,400 (+203,800) 1,251,600 (+210,600) 

17 Oct 2011 1,909,900 (+86,600) 4,078,900 (+601,500) 1,394,800 (+143,200) 

18 Sep 2015 1,991,000 (+81,100) 4,111,300 (+32,400) 1,469,600 (+74,800) 

Period Area change in the long term (m2) Total 

1985–2015 687,400 3,996,000 –576,400 4,107,000 

Δ% 53% 3466% –28% 119% 

 

3.4.4 Emerged Surface Area – River Stage Rating Curve  

The sizes of the three studied bars at different river stages were assessed for two short 

time periods: 1984-1986 and 2013-2014 (Table 3.5), in order to develop a rating curve of surface 

area – river stage for each of the bars. During 1984-1986, the lowest and highest river stages 

when a satellite image was taken were 5.5 m and 15.3 m. While Shreves Bar was never 

submerged, Miles Bar was submerged at the river stage of 11.0 m and Angola Landing at the 

river stage of 12.0 m. During 2013-2014, the lowest and the highest river stage were 6.1 m and 

15.9 m, and all three bars stood above the highest river stage.  

Table 3.5.  Estimated surface areas of the three large channel bars and the corresponding river 

stages in each day. 

Date River Stage 

(m) 

Shreves Bar Angola Landing 

(m2) 

Miles Bar 

07 Nov 1984 11.0 1,027,300 16,900 0 

 

(table cont’d.) 
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Date River Stage 

(m) 

Shreves Bar Angola Landing 

(m2) 

Miles Bar 

09 Dec 1984 12.0 971,300 0 0 

16 Apr 1985 15.3 922,200 0 0 

22 Aug 1985 6.4 1,271,300 125,500 1,946,200 

21 May 1986 9.3 1,012,900 48,900 569,100 

24 Jul 1986 9.8 1,010,100 33,500 412,200 

07 Nov 1984 5.5 1,556,500 159,100 2,532,500 

09 Dec 1984 12.9 964,400 0 0 

29 Apr 2013 14.3 811,600 1,785,600 881,900 

15 May 2013 15.9 784,300 1,717,200 836,300 

04 Sep 2013 7.5 1,413,500 3,753,800 1,287,400 

07 Nov 2013 6.1 1,784,700 4,192,300 1,433,200 

27 Feb 2014 9.8 1,005,700 2,869,400 1,127,800 

05 Jul 2014 11.5 883,900 1,971,000 1,008,300 

23 Sep 2014 9.1 1,102,200 3,353,000 1,273,800 

25 Oct 2014 10.7 928,900 2,684,100 1,205,700 

 

As expected, a highly close relationship between river stage and emerged surface area of 

the bars was found for the 1984-1986 and 2013-2014 periods. The relationships were best fitted 

by a 2nd-order polynomial equation, except for Miles Bar during 2013-2014, for which a linear 

regression was applied (Figure 3.8). All the regressions achieved a high regression coefficient 

(R2, 0.92 to 1.00), as well as a satisfactory range of standard error (SE) and coefficient of 

variation (CV, mostly < 5%) (Table 3.6), showing the credibility of using the rating curves for 

predicting the emerged bar sizes with the river stages during the periods.    
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Figure 3.8. Rating curves of emerged surface area – river stage for Shreves Bar (top), Angola 

Landing (middle), and Miles Bar (bottom) downstream of the Mississippi-Atchafalaya River 

diversion.  



61 

 

Table 3.6. Estimation of the surface area – river stage rating curves for three large channel bars 

downstream of the Mississippi-Atchafalaya River diversion in 1985 and 2015. The standard error 

of mean (SE) and coefficient of variation (CV) are calculated for each of the rating curves. 

Year Bar R2 SE (m2) CV 

1985 Shreves Bar 0.92 69,965 6% 

Angola Landing 1.00 2,595 4% 

Miles Bar 1.00 27,944 3% 

2013 Shreves Bar 0.99 40,385 4% 

Angola Landing 0.96 228,661 8% 

Miles Bar 0.94 57,176 5% 

 

3.4.5 Long–term Change in Bar Volume 

The volumes of Shreves Bar, Angola Landing and Miles Bar in 1985 and 2013 were 

estimated by taking integrals of the rating curves of surface area – river stage developed for the 

bars. Based on the estimation, in 1985, Shreves Bar, Angola Landing, and Miles Bar had a bar 

volume of 9,677 x 103 m3, 342 x 103 m3, and 4,641 x 103 m3 between the river stage of 6.1 m and 

15.3 m, respectively (Table 3.7). In 2013, for the same river stage range, these three bars (in the 

same order as above) had a bar volume of 9,583 x 103 m3, 24,985 x 103 m3, and 10,363 x 103 m3, 

showing a marginal change in volume for Shreves Bar (-1%) but a 123% growth for Miles Bar 

and a near 72-fold increase for Angola Landing. As a whole, the volume of the three bras 

increased more than doubled over the past 30 years.  

Table 3.7. Changes in volume of three large channel bars downstream of the Mississippi-

Atchafalaya River diversion during 1985–2013. 

Bars Volume 

(m3) 

Mass* 

(metric ton) 

1985 2013 Δ Δ (%) Δ 

Shreves Bar 9,677,000 9,583,000 -94,000 -1% -113,000 

Angola Landing 342,000 24,985,000 24,643,000 7206% 29,572,000 

Miles Bar 4,641,000 10,363,000 5,722,000 123% 6,866,000 

Total  14,660,000 44,931,000 30,271,000 206% 36,325,000 

* Based on the assumption of the bulk density of the bars is 1.2 metric tons per cubic meter. 
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Assuming a bulk density of 1.2 metric tons per cubic meter of the bars, the change in bar 

volume from 1985 to 2013 represents a deposition of 29,572 x 103 metric tons of sediment on 

Angola Landing and of 6,866 x 103 metric tons of sediment on Miles Bar. The mass change on 

Shreve Bar was marginal (-113,000 metric tons). In total, 36 million metric tons (MT) of riverine 

sediment were trapped on the three bars between river stage of 6.1 m and 15.3 m.  

3.5 DISCUSSION 

By examining historical maps and aerial images, Kesel (2003) found that the emerged 

channel bars in the Mississippi River from Cairo, Illinois to Red River Landing, Louisiana 

tended to adjust the amount and size from 1880 to1963, while the bars below Red River Landing 

had fewer channel bars and showed little variation in size. However, the results presented in this 

study indicate that dramatic changes of channel bars near Red River Landing did occur after 

1985. With an average of 23% water loss through the Mississippi-Atchafalaya River diversion, 

flow power and sediment transport potential were largely reduced in the river downstream of the 

diversion and therefore, caused consequently downstream sediment deposition. It is evidenced 

by the rapid growth of Miles Bar during 1988-1991 (Figure 3.9a-b) and the significant channel 

widening (360 meters) during 1985-1990 in the lower section of the reach (Figure 3.5). At the 

time, no other engineering practices functioned except the diversion. The rapid development of 

Miles Bar supports the argument by Smith and Winkley (1996), who concluded that the most 

significant morphological response of the Lower Mississippi River to river engineering since the 

1920s was the formation of mid-channel bars. Brown et al. (2013) also pointed out that the 

adjustment of channel morphology downstream of the diversion might include the formation of 

point bars and/or lateral bars.  
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Figure 3.9. Morphological changes of Shreves Bar, Angola Landing, and Miles Bar from 1988 to 

1995. The river stage heights were similar on the four dates when the satellite images were taken. 

(a) and (b) show the rapid growth of Miles Bar during 1988-1991. (c) and (d) show the initial bar 

tail of Angola Landing was from the braided Miles Bar. In addition, showing the rapid 

development of the Angola Landing during 1992-1995.    
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In addition to the flow regulation by the Mississippi-Atchafalaya diversion, the dike and 

revetment constructions within this 10-km reach are partially responsible for the morphological 

change of the river channel and the bars. Dikes are generally used to enhance navigation, 

improve flood control and protect erodible banks (Copeland, 1983). However, sediment 

deposition usually occurs in the void areas between each of the dikes (Alexander et al., 2012; 

Nunnally and Beverly, 1986; Smith, 1986). In the studied reach, the most significant effect of 

dikes was to stop further bank erosion after 1995 (Figure 3.5). However, how these dikes 

affected the sediment dynamics in the reach? To address this question, a set of satellite images 

taken before and after the dike construction were examined.  

Before the engineering practices, Miles Bar was well-developed and occupied most of the 

channel in 1988 (Figure 3.10). If no river engineering had been undertaken, more flow would 

have been redirected into the main channel (near west bank), and the channel should deepen, 

which may cause instability and further bank erosion (Figure 3.10) (Ashworth et al., 2000). In 

the meantime, the secondary channel near the east bank may be most likely clogged with 

sediment, and finally,  the bar would attach to the river bank based on the development theory of 

mid-channel bars (Hooke, 1986). However, with the construction of trenchfill revetment in 1991 

(Figure 3.9b), sediment deposit on its east side was removed, and a new main channel was 

formed (Figure 3.9c). The built of dikes constrained the flow between the area of dike field and 

the trenchfill revetment. As a result, the sediment deposition on the dike field formerly belonged 

to Miles Bar which was not washed away but became a new bar core of lower Angola Landing in 

1992 (Figure 3.9c). For that reason, we conclude that the initial development of lower Angola 

Landing was not mainly induced by the construction of dikes but the combination results of the 

rapid growth of Miles Bar and the trenchfill revetment. On the whole, the development of the 
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trenchfill revetment and the spur dikes in the studied reach, although developed a new navigation 

channel and largely changed the bar morphology, barely affected the remarkable tendency of 

sediment deposition induced by the operation of Mississippi-Atchafalaya River diversion. In fact, 

about 1.5 m stage increase at same discharge over the past three decades (Figure 3.4) also proved 

that sediment deposition occurred in the whole reach but not only around the dike field. Apart 

from the dikes, the single dike built near the bar head of Miles Bar closed the secondary channel 

and initiated the development of a new bar during the period 1999-2011(Figure 3.6d–e).  

 

Figure 3.10. Morphology of the channel and Shreves Bar, Angola Landing and Miles Bar in 

1988 at a low river stage of 3.29 m. 
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In a short-term study on morphological change of meander point bars, Kasvi et al. (2015) 

found that the flood event plays an essential role in point bar evolution: the longer the inundation 

of the bar, the more probable it gets net deposition. Wang and Xu (2015) reported that Shreves 

Bar, Angola Landing, and Miles Bar trapped a substantial amount of sediment during the 2011 

Mississippi River flood. In that single flood, the surface area and volume of the three bars 

increased by 7.3% and 4.4%, respectively, and at least 1.0 MT sediment was deposited on the 

bars. In this present study, the rapid bar growth from 1992 to 1995 (Figure 3.9c-d) was very 

likely mainly a consequence of the “Great Flood of 1993” which created the highest mean annual 

discharge at Tarbert Landing (21,880 cms) in the past three decades and caused a sharp drop in 

the long-term rate of suspended sediment concentrations in the Lower Mississippi River 

(Horowitz, 2010). There is little doubt that floods could accelerate the development of channel 

bars. However, for the growth of Angola Landing during 1992-1995, the effects of the ORCS 

cannot be excluded, as evidenced by the rapid growth of Miles Bar prior to the revetments and 

dikes constructions. Also, the fastest growth of Angola landing occurred, in fact, during the 

period of 1995-1999, although the mean annual discharge (15,709 cms) was slightly lower than 

the period of 1990-1995 (16,860 cms). This may be resulted from the increased bend curvature 

due to the migration of the main channel which may cause the remarkable lateral growth of the 

bar (Blanckaert, 2011). The 80% larger bar area in 1995 than 1990 was probably more beneficial 

for sediment capture. Overall, the morphological changes of Angola Landing during 1990-1995 

and 1995-1999 demonstrate that the development of a channel bar is not only determined by 

river flow (e.g., reduction by river diversions or increase by floods) but also related to bend 

growth and morphology of bar itself. The slower growth of Angola Landing during 1999-2007 

was consistent with the finding of Pyrce and Ashmore (2005) that as the development of a point 
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bar, bedload transport across the bar would decrease. Although transport along thalweg increases, 

deposition would only occur along the bar margin. This is reasonable because more flow and 

sediment would be transported downstream with increased thalweg incision. In addition, the low 

mean annual discharge from 1999 to 2007 (13,138 cms) further reduced the inundation time of 

Angola Landing. However, the four years from 2008 to 2011 were all flood years with a mean 

annual discharge of 17,507 cms. The rapid growth of Angola Landing during this period further 

demonstrates that floods can highly promote the development of the bar even in a relatively 

mature bend. It is not surprised that the lowest areal increase rate occurred in 2011–2015, during 

which no floods occurred and more important, the river bend appeared to be in equilibrium at 

present.  

Although our estimate showed a doubled increase in volume for the three bars from 1985 

to 2013, this increase (30 × 106 m3) is likely an underestimation of sediment deposition because 

only the emerged volume of the bars, i.e., a river stage height between 6.1 m and 15.3 m, were 

calculated. Based on the actual geometry, the surface area of these bars (and most river channel 

bars) becomes larger with decreasing river stage. Therefore, it is highly likely that a large 

quantity of sediment (probably sands) is deposited on the bases of these bars below the river 

stage of 6.1 m. Little and Biedenharn (2014) estimated a total sediment volume increase of 31 × 

106 m3 for the same river reach (excluding Shreves Bar) from 1992 to 2012. This estimate for 20 

years was higher than our estimate for 30 years and, considering riverbed aggradation from 1985 

to 1992, the actual sediment deposition in the reach from 1985 to 2013 should be much larger 

than 31 × 106 m3. The findings further indicate that accumulation of sediment in subaqueous 

areas of the bars may have occurred.  
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According to Joshi and Xu (2015), a total of 789 million metric tons (MT) sand load 

would have been discharged at Tartbert Landing from 1985 to 2013. Our conservative estimate 

of sediment deposition on the three bars is 36 MT (mostly coarse sediment by field observation) 

which only accounts for a relatively small portion of the total discharged sand load (i.e., 4.6%). 

However, there are hundreds of emerged channel bars located in the Lower Mississippi River 

between Cairo, Illinois and the ORCS, and many of them extend several kilometers. The 

sediment deposited on these bars in the long term could be an astronomical number. The success 

of proposed sediment diversions in the Lower Mississippi River greatly relies on enough riverine 

sediment supply (Davis, 1997; Thorne et al., 2008). The trapped sediment on the emerged 

channel bars should be considered as a precious resource for coastal restoration in the sinking 

Mississippi River Delta. Future studies are needed to estimate the amount of sediment deposited 

on those channel bars and to explore the ways to mobilize the sediment resources downstream.  

3.6 CONCLUSIONS 

This study contributes to a quantitative understanding of large river diversion effects on 

channel morphology and sediment deposition nearby downstream. The utilization of 3-decadal 

satellite images and daily hydrological data allowed a long-term and continuous assessment of 

the morphological changes, rather than event-based short-term studies. Based on the results, we 

conclude that diversion of the Mississippi River into the Atchafalaya River has caused 

significant changes in the channel morphology and sediment deposition on channel bars nearby 

downstream. The greatest change was the rapid growth of a point bar on the convex bank, 

amassing a total volume of 30,271,000 m3 (approximately 36 million metric tons of sediment, 

assuming a bulk density of 1.2 t/m3). The construction of revetments and dikes in the river reach 

has also contributed to the changes, especially the distribution of sediment deposition. The 
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findings highlight the importance of location-specific strategies in large river diversions for 

future flow and sediment regulation. Furthermore, the study demonstrates the great usefulness of 

remote sensing in quantifying long-term changes in sediment deposition on river channel bars.   
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CHAPTER 4. SEDIMENT TRAPPING BY EMERGED CHANNEL BARS 

IN THE LOWERMOST MISSISSIPPI RIVER DURING A MAJOR FLOOD 

4.1 INTRODUCTION 

The Mississippi River Delta (MRD), a 25,000 km2 dynamic region on the southeastern 

coast of Louisiana in the USA, has been experiencing rapid land loss since the early 20th century 

(Britsch and Dunbar, 1993b; Craig et al., 1979; Gagliano et al., 1981; Scaife et al., 1983). The 

loss rate varied from 17 km2/yr in 1913 to 102 km2/yr in 1980 and averaged about 43 km2/yr 

during 1985-2010 (Couvillion, 2011; Kesel, 1988). In the past 80 years, a total of 4877 km2 

coastal land have lost (Couvillion, 2011). A number of factors have been attributed to the rapid 

land loss, including riverine sediment reduction due to upstream dam construction and river 

engineering, subsidence, and sea level rise (Boesch et al., 1994). It has been projected that, if no 

actions were taken, at least another 2118 km2 land of Louisiana’s coast would be lost over the 

next 50 years (Couvillion et al., 2013; Day et al., 2007). This possesses a severe threat to the 

energy industry, river transportation, and commercial fisheries in this region, all of which have 

the level of national importance.  

Sediment from the Mississippi River (MR) is a precious resource for sinking costal 

2Louisiana. Currently, diversions of the lowermost MR are being proposed for introducing the 

riverine sediment to various wetland habitats on the sinking coast of the Mississippi River Delta 

(CPRA, 2012). The success of these projects will rely not only on the selection of river diversion 

locations but also on the actual sediment availability along the lowermost MR. The need for such 

information is especially critical at the planning stage because it is essential that river 

                                                 

This chapter previously appeared as “Wang, B., Xu, Y.J. Sediment trapping by emerged channel bars in the 

lowermost Mississippi River during a major flood. Water 2015 (7): 6079-6096.” See Appendix C for the reprint 

permission.  
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engineering helps maximally capturing the sediment resource while ensuring navigation safety 

and flood protection.      

A number of studies have been conducted on sediment availability assessment for the 

Mississippi-Atchafalaya River System (MARS). For the Mississippi River main channel at 

Tarbert Landing, Meade and Moody (Meade and Moody, 2010) reported an average annual 

suspended sediment load (SSL) of 145 million metric tons (MT) over the period 1987-2006. For 

the same location, a report by the U.S. Army Corps of Engineers (Filippo) gave an average 

annual SSL of 134 MT for the decade 1989-1998 and a nearly 10% reduced load (123 MT) for 

the following decade. In a recent study, however, Rosen and Xu (Rosen and Xu, 2014) reported 

an average annual suspended sediment load of 126 MT for the four decades of 1980-2010, with 

an insignificant but slightly increasing trend from 1990 to 2010. For the Mississippi River’s 

largest distributary, the Atchafalaya River at Simmesport, Xu (Xu, 2010) reported an average 

annual suspended sediment load of 64 MT over the period 1975–2004, while the USACE report 

(Filippo) gave an annual SSL of 48 MT for 1999-2008 and 75 MT for 1989-1998. In spite of the 

discrepancy among the reports, these estimates provide insights into magnitude and timing of 

riverine sediment in MARS. However, the locations for which sediment loads were made are far 

from the river mouths: Tarbert Landing is located nearly 500 km upstream from the outlet of the 

MR main channel to the Gulf of Mexico, while Simmesport is approximately 220 km from the 

mouth of the Atchafalaya River main channel to the Gulf of Mexico. Therefore, it is not clear 

how much of the sediment loads estimated for the two far-upstream locations can actually reach 

the coast. 

In recent years, research on sediment availability of the MARS has focused on assessing 

sediment loss downstream Tarbert Landing and Simmesport. In their sediment budget study for 
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the upper 182-km reach of the Atchafalaya River Basin, Rosen and Xu (Rosen and Xu, 2015) 

found an annual sediment trapping of ~10% from 1980 to 2010, spatially occurred mainly in the 

lower basin areas with larger swamp and open water areas. In a shorter-term sediment budgeting 

for the flood years, 2008 - 2010, Allison et al. (Allison et al., 2012) reported that nearly half of 

the total annual suspended sediment on the MR and Red River were trapped between the Old 

River Control Structures and the Mississippi-Atchafalaya exits to the Gulf of Mexico. For the 

MR main channel, they found an annual sediment loss of about 67 MT total suspended sediment 

within the 74-km river reach between Tarbert Landing and St. Francisville, part of the east side 

of the MR is not leveed. Therefore, Allison et al. attributed the loss to a possible overbank 

sedimentation and river channel bed accumulation. In a follow-up study, Smith and Bentley 

(Smith and Bentley, 2014) could, however, only find a marginal sedimentation (2 MT/yr) from 

the three flood years on the unleeved flood plain, the previously assumed large overbank storage 

area. This quantity of sediment makes only 3% of the Allison et al.’s estimate, leaving 97% of 

the estimated sediment loss uncounted for. 

The MR has been extensively modified for flood control and navigation since the 1920s 

(Harmar et al., 2005). The modifications included the construction of levees, bank revetments, 

artificial cutoffs, training dikes and reservoirs on the major tributaries (Smith and Winkley, 

1996). As a result, the river channel was constrained to accrete and shift laterally to form natural 

cutoffs of meanders. Instead, the vertical accretion on bars occurred as a morphological response 

of the alluvial river (Biedenharn and Thorne, 1994; Smith and Winkley, 1996). Despite the 

general observations existed, quantitative studies of channel bars in the MR are scarce, and they 

are limited to headwater areas and gravel bed channels (Hooke, 1986; Li et al., 2014; 
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Wintenberger et al., 2015). After a thorough literature review, we could not find any studies on 

lower MR channel bar dynamics and believe our study to be the first.  

From May to June in 2011, an unprecedented flood of the Mississippi River occurred 

because of the combination of snow melt and heavy rain. The river crested 19.32 m at TBL on 

the 18th of May 2011, which was nearly 75 cm higher than the crest stage of the 1927 MR flood 

(18.57 m). A field river sampling in the lowermost Mississippi River during 12-14 May 2011 

(Ramirez and Allison, 2013) found a sharp rise in sediment concentrations. This large river flood 

provides a unique opportunity for assessing changes in large emerged channel bars in the 

lowermost MR. We hypothesized that during this extreme flood event, a substantial quantity of 

riverine sediments, especially sands, would be trapped by channel bars. In this study, we utilized 

satellite images taken before and after the 2011 spring flood to first quantify the change in 

surface area of the channel bars and then to estimate the associated change in volume of these 

channel bars. The primary goal of the study was to assess flood effects on channel bar dynamics 

and sediment accumulation in the lowermost Mississippi River. Estimation of possible sediment 

accumulation on these bars is essential for understanding the sediment availability for designing 

and operating the proposed diversion in the lowermost Mississippi River.   

4.2 STUDY AREA 

The channel bars investigated in this study are located shortly downstream the river 

diversion control structure of the lowermost Mississippi River, the Old River Control Structures 

(ORCS) (31°04'36" N, 91°35'52" W). ORCS diverts the MR into two channels (Figure 4.1): the 

Mississippi River main channel and the Atchafalaya River. Under normal flow conditions, about 

25% of the Mississippi River’s water is diverted into the Atchafalaya River that also carries the 

entire flow of the Red River. The control structure is designed to prevent the Mississippi River 



74 

 

from changing its course to the Atchafalaya River by seeking a shorter course to the Gulf of 

Mexico (Mossa, 2013). During high flows, a larger volume of the Mississippi River’s water is 

allowed to the Atchafalaya River, in order to reduce flood risk downstream to the cities of Baton 

Rouge and New Orleans.     

According to the common classifications of position and shape (Hooke, 1995), the study 

area includes two mid-channel bars - Shreves Bar and Miles Bar - and one point bar - Angola 

Landing, and they are located approximately 10, 14, and 17 kilometers downstream of the ORCS 

(Figure 4.1), respectively. All the three bars are located within a meander with the elongated 

Shreves Bar on the top and the Miles Bar at the end of the meander.  

 In this study, we obtained daily river stage data from the Red River Landing (RRL) 

gauge station (30°57'39" N., 91°39'52" W; river kilometer 487, or river mile 302.4; USACE 

Gauge ID: 01120), which is the closest gauge station to the studied channel bars. The U.S. 

National Oceanic and Atmospheric Administration (NOAA) uses the station’s stage for 

lowermost Mississippi River flood prediction.  We also collected river discharge and sediment 

records from the Tarbert Landing (TBL) gauge station (31°00'30" N, 91°37'25" W), which is 

located at river kilometer 493 (river mile 306.3), about 8 kilometers downstream the ORCS. The 

station provides the longest discharge and sediment records for the lowermost Mississippi River 

where both the U.S. Geological Survey (USGS) and the U.S. Army Corps of Engineers (USACE) 

have a monitoring station (USGS Station ID: 07295100 and USACE Gauge ID: 01100). One 

thing that needs to be pointed out here is that the sediment records at Tarbert Landing are 

currently under review by the USGS due to possible errors. 
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Figure 4.1. (A) Map of southeastern Louisiana, with the locations of Old River Control Structure 

(ORCS), Morganza Spillway (MS), Bonnet Carré Spill Way (BCS), cities, and proposed 

sediment diversions (red arrow). Blue region is the potential sinking area for the period up to 

2050 based on the elevation and sea level trend data from USGS and NOAA (NOAA, 2012). (B) 

The locations of Shreves Bar, Angola Landing and Miles Bar, Tarbert Landing (TBL) and Red 

River Landing (RRL). 
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4.3 LONG-TERM HYDROLOGIC CONDITIONS AND THE 2011 SPRING FLOOD   

Long-term (1973 - 2013) average discharge of the Mississippi River at TBL is 15,027 

cubic meter per second (cms), varying from 3143 cms in 1988 to 45,844 cms in 2011. Seasonally, 

discharge of the lowermost Mississippi River is high during the winter and spring and low during 

the summer and early fall. For its flood warning prediction for the lowermost MR, NOAA 

defines five flow stages at RRL: (1) Low Flow Stage (river stage: < 9.8 m), (2) Action Flow 

Stage (river stage: 9.8 – 12.1 m), (3) Intermediate Flow Stage (river stage: 12.1 to 14.6 m), (4) 

High Flow Stage (river stage: 14.6 to 16.8 m), and (5) Peak Flow Stage (river stage: > 16.8 m). 

Using a stage-discharge analysis, Rosen and Xu (Rosen and Xu, 2014) separated the 

corresponding flow regimes < 13,000 cms for Low Flow Stage, 13,000 – 18,000 cms for Action 

Flow Stage, 18,000 – 25,000 cms for Intermediate Flow Stage, 25,000 – 32,000 cms for High 

Flow stage, and > 32,000 cms for Peak Flow Stage.  

During the spring of 2011, extreme flooding conditions prevailed along the MR due to a 

combination of snow melt and heavy rain. The river stage at RRL reached High Flow Stage (i.e., 

14.6 m) in early May and remained above the stage in June. The river crested 19.32 m on May 

18, 2011.  The average stage at RRL was 18.21 m in May and 16.86 m in June. 

4.4 ESTIMATION OF BAR AREA AND VOLUME CHANGES  

4.4.1 Collection of Satellite Imagery and River Stage Data 

A total of 22 cloud-free Landsat Surface Reflectance Climate Data Record (CDR) images 

(Path 23 Row 39) taken in 2010, 2011, and 2012 were collected from USGS 

(http://earthexplorer.usgs.gov/) (Table 4.1). Level-1 Landsat 4-5 Thematic Mapper (TM) and 

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) data were processed using the Landsat 

Ecosystem Disturbance Adaptive Processing System (LEDAPS) (Wolfe et al., 2004). LEDAPS 
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considers water vapor, ozone, geopotential height, aerosol optical thickness, and digital elevation 

when it deals with atmospheric correction (Kotchenova and Vermote, 2007; Vermote et al., 

1997). The CDR products include Top of Atmosphere (TOA) Reflectance, Surface Reflectance, 

Brightness Temperature, and masks for clouds, cloud shadows, adjacent clouds, land, and water 

(Masek et al., 2006). In our study, the product of surface reflectance was utilized to acquire 

surface areas of the bars because it is easier to detect area change over time without the 

atmospheric effect. In addition, the mask product of water and land was used to aid to delineate 

the outlines of the bars. 

Table 4.1. Dates and product numbers of Landsat CDR images used in this study and the 

corresponding daily river stages at Tarbert Landing of the Mississippi River. 

Before the flood During and after the flood 

Date River Stage 

(m) 

Landsat CDR products No. Date River Stage 

(m) 

Landsat CDR products No. 

08/03/10 12.05 LE70230392010215EDC01 05/26/11 18.93 LT50230392011146CHM01 

08/27/10 9.97 LT50230392010239EDC00 06/03/11 18.50 LE70230392011154EDC00 

12/09/10 8.71 LE70230392010343EDC00 06/11/11 17.45 LT50230392011162EDC00 

01/02/11 7.18 LT50230392011002CHM01 07/13/11 13.76 LT50230392011194EDC00 

01/26/11 6.84 LE70230392011026EDC00 08/22/11 9.35 LE70230392011234EDC00 

02/11/11 7.55 LE70230392011042EDC00 08/30/11 8.66 LT50230392011242EDC00 

02/19/11 7.85 LT50230392011050EDC00 09/07/11 8.63 LE70230392011250EDC00 

03/15/11 14.12 LE70230392011074EDC00 10/01/11 7.17 LT50230392011274EDC00 

04/16/11 13.86 LE70230392011106EDC00 10/17/11 6.42 LT50230392011290EDC00 

   10/25/11 5.80 LE70230392011298EDC00 

   11/02/11 6.65 LT50230392011306EDC00 

   11/10/11 6.79 LE70230392011314EDC00 

   01/29/12 11.77 LE70230392012029EDC00 

 

To identify river flow conditions in connection with the satellite images, river stage 

records at RRL were collected for August 2010 - January 2012 from USACE 

(http://rivergages.mvr.usace.army.mil/WaterControl/stationinfo2.cfm?sid=01120&fid=RRLL1&

dt=S&pcode=HG).  The data were also used to develop numeric relations between surface area 

of the channel bars and the river stages (see more in sections 4.2 and 4.3). 

http://rivergages.mvr.usace.army.mil/WaterControl/stationinfo2.cfm?sid=01120&fid=RRLL1&dt=S&pcode=HG
http://rivergages.mvr.usace.army.mil/WaterControl/stationinfo2.cfm?sid=01120&fid=RRLL1&dt=S&pcode=HG
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4.4.2 Estimation of Bar Surface Area Changes 

For estimating area change of the bars, satellite images were chosen following two rules: (1) 

images must be taken within several months before and after the flood because this could 

maximally reflect the change of surface area was caused by the flood; and (2) images taken dates 

must have similar river stages which are necessary for comparing area change. Based on these 

rules, the images taken on 01/02/2011 and 10/01/2011 were chosen, when the river stage was at 

7.18 m and 7.17 m, respectively.   

It is important to choose one suitable band in the image to digitize the boundary of the 

channel bars. In general, the near-infrared band - band 4 (0.76 – 0.90 μm) and shortwave band - 

band 5 (1.55 – 1.75 μm) are good at differentiating land and water because water has almost no 

reflection and shows near black color in these bands. However, in band 4 image, bare soil on the 

channel bars displays a similar character with vegetated soil on the river bank. This makes it 

difficult to distinguish the bar from bank soil. Therefore, band 5 was used to digitize the bar. The 

digitization process was performed in ArcGIS 10.3 (ESRI, Redlands, California, USA). For 

reducing feature identification error, all images were digitized at the same scale and followed the 

same rules made by the operators. Because the purpose of the digitization is to estimate area 

change before and after the flood, the difference computation of areas may further reduce the 

error.     

ERDAS IMAGINE 2013 (Leica Geosystems Geospatial Imaging, LCC, Georgia, USA) 

was used to assess the distribution of the area change. Through subtracting the band 5 values of 

the post-flood image by the band 5 values of the pre-flood image, we obtained the threshold 

values that were used to locate the change of surface feature. Because the display values in the 

surface reflectance image are multiplied by 10000, therefore, the value of water body is usually 
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lower than 100, whereas bare soil in the bars is over 3000. As a result, after the subtraction, 

larger positive values (+3000) indicated water changed to land and the smaller negative values (-

3000) indicated land changed to water.   

4.4.3 Estimation of Bar Volume Changes   

Previous research has proved multi-temporal multibeam echosoundings, mobile, and 

terrestrial laser scanning, and Acoustic Doppler Current Profiler are able to efficiently estimate 

the dynamics of channel bars by determining the elevation change of the bars (Kasvi et al., 2013; 

Lotsari et al., 2014; Williams et al., 2015; Wintenberger et al., 2015). However, these studies 

usually focus on the mechanisms of the morphological change, primarily, in a relatively small 

study sites (a few hundred meters). Our research aims to quantify the sediments trapped by large 

bars caused by a rare flood. The tools mentioned above, however, are not useful for achieving 

this objective because there is usually no measurements taken before rare flood events which 

makes it impossible to estimate the volume variation of the bars (Eaton and Lapointe, 2001). 

Therefore, a surface area – river stage rating curve was developed for each of the three bars 

based upon available satellite images taken before and after the flood.  

Firstly, the areas of the three bars were calculated in each image followed the method 

described in 4.2. However, with the increase of the stage, some area was submerged, and it was 

difficult to tell the outlines of the bars. For solving this problem, the bar outlines on the day that 

had the lowest stage were used as baselines to make sure the bar outlines on other days within 

these baselines.  The image used here was taken on 10/25/2011. The river stage on that day was 

5.80 m which were very close to the lowest stage (5.65 m) in 2011. Another problem was that 

with the increase of the river stage, especially when it was over the flood stage (14.63 m), bars 

which were partly covered by the water turn into the dark in band 5 image, which could cause an 
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underestimation of the surface area. By comparison, band 4 was used as a substitute to estimate 

the bar surface area when the river stage was over 14.63 m. Secondly, according to the surface 

areas at different stages, the rating curve was assumed to be a polynomial curve because the area 

usually becomes smaller with the increase of the river stage (Figure 4.2).  

 

Figure 4.2. The hypothetic relationship between channel bar surface area and river stage at 

Tarbert Landing of the Lower Mississippi River.  

 

The standard error of the estimate was used to measure the error of the rating curve: 

 SE =  √
∑(𝑦̂−𝑦)2

𝑁−𝑃
 (1) 

where SE is the standard error of the estimate, N is the sample size, P is the number of the 

parameters in the model, 𝑦̂ is the predicted value and y is the actual value.   

The channel bar volumes (Vs) pre and post the 2011 spring flood were calculated for each 

bar based on the integral:  

  𝑉𝑠 =  ∫ (𝑎𝑥2 − 𝑏𝑥 + 𝑐 )𝑑𝑥
𝐷ℎ

𝐷𝑙
 = (

𝑎𝑥3

3
−  

𝑏𝑥2

2
+ 𝑐𝑥) | 𝐷ℎ

𝐷𝑙
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where Vs is the channel bar volume, Dh is the highest river stage, Dl is the lowest stage, and a, b 

and c are constants.  

4.5 RESULTS 

4.5.1 Surface Area Change of Shreves, Angola Landing, and Miles Bars 

The false color images (band 432) show the bars before, during and after the 2011 spring 

flood (Figure 4.3). White color indicates bare soil areas and red color indicates vegetated areas. 

Before the flood, when the river stage was at 7.18 m, bare soil and vegetated area were 

apparently visible in the satellite image. With the increase of the stage to 18.93 m on 05/26/2011, 

all bare soils and part of the vegetated areas on the bars were inundated (Figure 4.3B). After the 

flood when the river stage dropped to 7.17 m, which was nearly the same river stage same as that 

before the flood, sediment accumulation could be seen along the bars. Miles Bar used to be a 

single bar (image not shown) and became braided in the recent decade. All the heads of these 

channel bars appeared to mainly sand accumulation, and their tails were covered by vegetation.  
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Figure 4.3. False color images (band 432) showing bare soil (white) and vegetated areas (red) of 

three large channel bars near Tarbert Landing of the Mississippi River on 01/02/2011 (A), 

05/26/2011 (B), and 10/01/2011 (C).   

 

There were both gain and loss of the surface area in the three studied bars after the flood 

(Figure 4.4). Area loss occurred mainly in the northern part of the Shreves Bar while area gain 

occurred in the western and eastern sides. A minor area loss was found at Angola Landing and 

the main gain occurred along the western side. For Miles Bar, land gain occurred on the west 

side of the braided bars.  
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Figure 4.4. Changes in the surface area of three large mid-channel bars near Tarbert Landing of 

the Mississippi River after the 2011 spring flood. 

 

As a whole, all three bars showed a net gain from 01/02/2011 to 10/01/2011 (Table 4.2). 

The surface area of Shreves Bar increased from 1.74 × 106 m2 to 1.80 × 106 m2 (or a 3.5% 

increase). Angola Landing showed a 0.23 × 106 m2 increase (or an 8.3% increase) of its surface 

area from 2.78 × 106 m2 before the flood to 3.01 × 106 m2 after the flood. The Miles Bar 

increased from 1.26 × 106 m2 to 1.40 × 106 m2 (or an 11.1% increase). The total surface area 

increases of the three bars following the 2011 spring flood amounted to 0.42 km2 (or a 7.3% 

increase).   
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Table 4.2.  Changes in the surface area of three large channel bars near Tarbert Landing of the 

Mississippi River before and after the 2011 Spring Flood.  

 River Stage 

      (m) 

Shreves Bar  Angola Landing 

(× 106 m2) 

Miles Bar  Total 

01/02/2011 7.18 1.74 2.78 1.26 5.79 

10/01/2011 7.17 1.80 3.01 1.40 6.21 

Δ  +0.06 +0.23 +0.14 +0.42 

Δ (%) +3.5% +8.3% +11.1% +7.3% 

 

4.5.2 River Stage – Surface Area Rating Curves for Shreves, Angola Landing, and Miles 

Bars 

The pre- and post-flood surface areas estimated with 22 satellite images for the three bars 

were given in Table 4.3. The relationships between the surface areas and the river stages taken 

on the dates were found best represented by a second order polynomial equation, where the 

increase of area associated with a decrease of river stage (Figure 4.5). The correlation 

coefficients (R2) of the rating curves were all high, i.e., above 0.98. The surface area – river stage 

curves based on the equations show that the three post-flood curves are all above the pre-flood 

curves. Interesting is that the post-flood area of Miles Bar was clearly higher than its pre-flood 

area in the lower river stage, but became unchanged in the higher river stage, indicating the bar’s 

greater horizontal expansion. On the other side, Shreves Bar and Angola Landing both showed 

comparably smaller area change in the lower river stage, but an increasing change in the higher 

river stage, suggesting a greater vertical expansion.  
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Table 4.3. Estimated surface areas of three large channel bars in the lowermost Mississippi River 

and the river stages of the dates when the satellite images were taken. 

Flood Date River Stage 

(m) 

Shreves Bar  Angola Landing 

(× 106 m2) 

Miles Bar 

Before the 

flood 

08/03/10 12.05 0.93 0.94 0.85 

08/27/10 9.97 1.19 1.89 0.96 

12/09/10 8.71 1.41 2.33 1.07 

01/02/11 7.18 1.74 2.78 1.26 

01/26/11 6.84 1.81 2.92 1.31 

02/11/11 7.55 1.68 2.73 1.25 

02/19/11 7.85 1.55 2.50 1.11 

03/15/11 14.12 0.61 0.73 0.73 

04/16/11 13.86 0.75 0.72 0.69 

During and 

after the 

flood 

05/26/11 18.93 0.72 0.69 0.57 

06/03/11 18.50 0.73 0.70 0.62 

06/11/11 17.45 0.76 0.75 0.66 

07/13/11 13.76 0.84 0.85 0.76 

08/22/11 9.35 1.33 2.16 1.11 

08/30/11 8.66 1.44 2.41 1.12 

09/07/11 8.63 1.40 2.37 1.21 

10/01/11 7.17 1.80 3.01 1.40 

10/17/11 6.42 1.91 3.26 1.39 

10/25/11 5.80 2.18 3.70 1.64 

11/02/11 6.65 1.88 3.25 1.43 

11/10/11 6.79 1.82 3.10 1.39 

01/29/12 11.77 0.94 1.06 0.85 
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Figure 4.5. Rating curves of surface area – river stage for Shreves Bar (top), Angola Landing 

(middle), and Miles Bar (bottom) near Tarbert Landing in the lowermost Mississippi River. SE 

(× 106 m2) is the standard error of the estimate. 
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4.5.3 Volume Change of Shreves, Angola Landing, and Miles Bars 

For comparison of the bar volume changes, the same range of river stages was used for 

the three studied bars. The stage range was 6.84 m - 14.12 m, based upon which the bar volumes 

were calculated for the pre- and post-flood periods (see Equation 1). The estimated volume of the 

three channel bars all increased after the 2011 spring flood (Table 4.4). The volume gain for 

Shreves Bar, Angola Landing, and Miles Bar was 0.24 × 106 m3, 0.53× 106 m3 and 0.46× 106 m3, 

respectively, or in a percentage rate of 2.8%, 4.3%, and 6.7%.  The total volume gain of the three 

channel bars above the river stage of 6.84 m was 1.22× 106 m3 or a 4.4% increase. 

Table 4.4. Changes in volume of three large channel bars near Tarbert Landing in the lowermost 

Mississippi River before and after the 2011 spring flood. 

 Shreves Bar Angola Landing  

(× 106 m3) 

Miles Bar  Total  

 

Pre-flood 8.46 12.23 6.90 27.59 

Post-flood 8.69 12.76 7.35 28.81 

     

Δ  0.24 0.53 0.46 1.22 

Δ (%) +2.8% +4.3% +6.7% +4.4% 

 

4.6 DISCUSSION  

Kesel (Kesel, 2003) analyzed the historic channel bar size and volume from 1880 to 1963 

in the Mississippi River. It was concluded that there were few bars in the Lower Mississippi 

River and there was relatively little change in their bar size and volume. However, our findings 

indicate that one single river flood can have effects on the surface area and volume of the 

channel bars in the river reach. The increase of surface area is 0.06, 0.26 and 0.14 × 106 m2 for 

Shreves Bar, Angola Landing and Miles Bar, respectively. These numbers are all greater than the 

standard error of the estimate for their respective rating curves, which means the area change 

estimated by the digitation is statistically meaningful. Located in the middle of the river channel, 
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Shreves Bar showed the large gain and loss in its surface area after the 2011 flood (Figure 4.4). 

In general, for channel bars, heavier materials such as gravels and coarse sands on bar heads are 

resistant to flow (Li et al., 2014) and erosion occurs on bar margins (Tsujimoto, 1998). The 2011 

extreme flood, however, caused a substantial erosion of the bar head of Shreves Bar with 

sediment deposition on its margins. The erosion was caused by high stream power during the 

flood which removed the sediments on bar head. For the deposition on bar margins, it may be 

caused by lateral accretion at the low flow after the flood. Ashworth et al. (Ashworth et al., 2000) 

studied the evolution of a mid-channel bar in a large sand-bed braided river, and they found the 

high flow during the flood produced high sediment transport rates and caused bar-top vertical 

aggradation while the falling and low-stages caused lateral accretion. They reported the possible 

reason for lateral growth was flow divergence at the bar head. Based on their theory, the 

deposition occurred on the eastern side of Shreves Bar was caused by the lateral accretion. The 

slower flow inside of the bend of Shreves Bar caused deposition on the bar’s west side. Due to 

the erosion, 0.06 km2 net increase of surface area of Shreves Bar was the lowest increase among 

the three bars. The deposition for Angola Landing and Miles Bar were both inside bends 

depositions. Angola Landing had more deposition suggests that the larger the sandbar, the more 

capacity it has to capture the sediment during the flood.  

In this study, we estimated a total volume increase of 1.22 million m3 for the three 

studied bars during the 2011 spring flood. It is important to note that 1) the estimation is made 

for the bar area above the river stage of 6.84 m at RRL, and 2) the estimation is based on the 

assumption that the bars have a uniform geometry.  Although we are not certain, how the volume 

below the 6.84 m river stage has changed, the estimation is likely a gross underestimation of 

actual changes in the subaqueous area of the three studied channel bars. At the stage of 14.12 m, 
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the submerged area included all bar heads and part of bar tails of Shreves Bar and Angola 

Landing, and nearly half of Miles Bar. Because sediment size on the bar surface becomes finer 

along the bar [17], it suggests there would be muddy sediment deposited on tails of the bars 

during the flood. At the range of stage below 6.84 m, it is no doubt that there was a large amount 

of sediment trapped there during the flood. In addition, the surface area – river stage rating curve 

was utilized to estimate the volume change covering the post-flood period (July 2011 to January 

2012) which was a flood recession period. Studies have reported that part of the newly deposited 

sediments could be eroded during the falling limb of floods (Mueller et al., 2014; Wintenberger 

et al., 2015). It suggests that the calculated volume after the flood was possibly less than the 

actual captured volume during the flood. Therefore, it is reasonable to believe that the 1.22 

million m3 volume gain is a conservative estimate of the trapped sediments by the three bars 

during the 2011 flood.  

The sediments trapped by the three channel bars during the 2011 spring flood can contain 

all grain sizes of sediment. Based on a recent field trip and observation four years after the 2011 

spring flood, sediments trapped on the bars should primarily be sands. Assuming a bulk density 

of 1.2 metric tons per cubic meter (i.e., a typical bulk density for silt – pure soil), the total 

volume of trapped sediment during the 2011 flood would be about 1.5 million metric tons. Joshi 

and Xu (2015) analyzed the long-term relationship between discharge and sand load for Tarbert 

Landing and developed a daily discharge (q) – daily sand load (S) rating curve as below:  

 ln(S) = -0.6382 ln(q) 2 + 14.3 ln(q) - 67.139 (R2=0.87, SE=0.496)  (2) 

Daily total sand load from March 1, 2011, to August 31, 2011, was calculated according 

to this rating curve (Figure 4.6). During this flood period, daily sand load fluctuated between 

28,642 and 371,010 metric ton/day, and a total sand load was about 34.0 MT. If our 1.5 MT 
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estimate of trapped sediment was pure sand, that would be only about 4.4% of the total sand load 

passing the three bars.  

 

Figure 4.6. River discharge (cms) and estimated daily sand load (t/day) at Tarbert Landing pre 

and post the 2011 Mississippi River spring flood. 

 

From their study on a 3-year sediment budget (2008-2010), Allison et al. (Allison et al., 

2012) reported an average loss of 67 MT/yr total suspended sediment in the river reach from 

TBL to St. Francisville at river kilometer 419, and 80% of the sediment loss was sand, i.e., about 

54 MT/yr sand. They attributed the large loss to a deposition in the channel bed and overbank 

storage. In a follow-up study by Smith and Bentley (Smith and Bentley, 2014), however, only 

about 2 MT/yr muddy sediment deposited by overbank storage was found in the unleveed Cat 

Island and Raccourci Lake regions. Considering our 1.5 MT sediment trapping in the three bars, 

a large quantity of the sediment loss is still uncounted for. There are other large channel bars in 

the river reach between the Tarbert Landing and St. Francisville. These bars could also have 
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trapped substantial sediments during the flood. Further study is needed to elucidate the role of 

these bars in sediment accumulation in the lowermost MR.  

A large amount of sediment may have also been transported to downstream of the study 

site during the flood. Kroes et al. (2015) reported 1.03 MT of sediment was deposited in the 

Atchafalaya River Basin through the Morganza Spillway, located right below our study site, in a 

54-day release period during the 2011 flood. The Bonnet Carré Spill Way (BCS), a 2300-m-

width flood control construction located in about 51 km upstream of downtown New Orleans 

which allows floodwater from the Mississippi River to flow into the Lake Pontchartrain. It 

diverted 4.9 million m3 sand during the 42 days operation from May 9 to June 20 in 2011 

(Nittrouer, 2013). Through the comparison, we found the increased volume in the three bars was 

about 25% of the total diverted sand by BCS. Although the BCS was not designed for 

maximizing sediment capture, there is little doubt that a large amount of sand was transported 

downstream.  

For the suggested sediment diversions by Louisiana Coastal Protection and Restoration 

Authority (CPRA, 2012) which may be only operated in the certain time periods, such as during 

Intermediate Flow Stage and High Flow Stage or the rising limb of flood pulses (Hooke, 1995; 

Mossa, 1996). Our findings presented here indicate that if the sediment diversions open during 

these periods, the channel bars in the Lower Mississippi River can trap a considerable amount of 

sediment which may impair the capacity of diverting sediment to the river surrounding wetland. 

Numerous studies have reported a reduction of sediment loads in the Lower Mississippi River 

during the past century (Boesch et al., 1994; Kesel, 1988; Kesel, 1989). Increasing evidence 

suggests that significant amount of sediment is being trapped in the lower MR (Mossa, 2013; 

Smith and Winkley, 1996).  However, the MR delta ecosystem would be better served if the 
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sediment could be delivered to the areas of the delta that are currently subsiding (Figure 4.1), 

though solutions for providing such delivery are in need of development. Nonetheless, this 

sediment, which may well exceed 1 × 109 MT, is a critical resource that is essential for the 

recovery of the Mississippi River Delta, and it needs to be carefully managed. There is a dozen 

of large mid-channel and point bars in the river reach below the studied sites, and it is not clear 

how much sediment these bars could trap under normal and during high flow conditions.  

4.7 CONCLUSIONS 

This study is the first quantitative assessment of a major flood on morphological changes 

and the associated sediment accumulation of emerged channel bars in the lowermost Mississippi 

River. The findings show that channel bars in this intensively managed river are capable of 

trapping a substantial quantity of sediment during a flood. Long-term change of the channel bars 

may have profound effects on downstream river channel morphology and sedimentation, and the 

accumulated sediment could be used as a critical source for restoring the sinking Mississippi 

River Delta. There is a need to further investigate other large channel bars in the lowermost 

Mississippi River, in order to quantify the sediment accumulation rate over the past several 

decades.  The study demonstrates that the rating curve approach with multi-temporal satellite 

images is statistical significance in assessing areal and volumetric changes of channel bars and it 

can be very helpful to achieve the objective.  
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CHAPTER 5. SUMMARY AND CONCLUSION  

This dissertation research examined morphodynamics of the Lower Mississippi River to 

(1) determine sediment quantity and dynamics of 30 large emerged channel bars in a 223 km 

reach of the Lower Mississippi River between Vicksburg, Mississippi (RK737) and the 

Mississippi–Atchafalaya River diversion (RK 515) from 1985 to 2015, (2) investigate 

morphological changes of the 10-km long river channel, and the three emerged bars shortly 

downstream of the diversion during 1985-2015, and (3) assess how a large flood affected 

morphology of emerged channel bars. The primary goal of this dissertation research is to answer 

a central question - how much sediment is currently trapped on large channel bars in the Lower 

Mississippi? The answer to this question will improve our understanding of riverine sediment 

transport, deposition, and distribution in the Lower Mississippi River, which is urgently needed 

to help develop effective strategies and solutions for Louisiana’s coastal restoration and 

protection efforts. The Mississippi River Delta is rapidly losing land owing to a combination of 

multiple factors, chief of which is the reduction in riverine sediment supply. The continuous land 

loss directly threatens the livelihood of hundreds of thousands of Louisianans, the existence of 

precious coastal wetlands, and the nationally relevant energy, petrochemical, shipping, and 

fisheries industries. The State of Louisiana is conducting various projects to help maintain and/or 

build coastal land, and many of these projects rely on available sediment in the Mississippi River. 

Hence, this dissertation research makes a contribution to the investigation of sediment transport, 

deposition, storage, and distribution in the Lower Mississippi River, which is crucial for 

developing effective strategies and plans to save Louisiana’s sinking coast. Major findings from 

the research are summarized below. 
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(1) River engineering, especially dike field constructions, have largely affected channel 

bar development in the middle portion of the Lower Mississippi River. The 223 km 

reach of the Lower Mississippi River between Vicksburg and Old River Control 

Structures showed little channel meandering from 1985 to 2015 because of the 

channel confinement by levees and revetments. However, the 30 emerged channel 

bars have changed their morphology and volume substantially. The average length of 

the bars increased by 743 m, while the average width showed no statistically 

significant change. The volume of the 30 emerged bars increased by 110,118 × 103 m3 

(or 41%) over the past three decades, which is equivalent to 154,165 × 103
 t of 

sediment trapped on these bars, based on the measured bulk density of 1.4 t/m3. 

Currently, these bars amassed a total amount of 378,183 × 103
 m3 (or 530 million 

metric tons) sediment. Approximately 51% of the total sediment stored on the eight 

bars located between RK 665 and RK 612. The average volume of mid-channel bars 

was 2.5-5 times larger than the other types of bars. The construction of dike fields in 

the reach strongly affected sediment transport and channel bar development.  

(2) Diversion of a large alluvial river can strongly affect sediment transport downstream.  

From 1985 to 2013, the 10-km long river reach downstream of the Mississippi-

Atchafala River diversion experienced substantial changes in both channel 

morphoglogy and three large emerged bars within the reach. The middle and the 

lower sections of the channel (RK 486-480) experienced considerable sediment 

deposition on their east bank, causing the channel to narrow by 800 m in average. The 

total emerged surface area of the three bars increased by 4,107,000 m2 or 119%. The 

total volume of the three bras increased 30,271,000 m3 (206%), which is equivalent to 
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36,325,000 metric tons in mass, based on the estimated bulk density of 1.2 t/m3 (i.e., a 

typical bulk density for silt – pure soil). In particular, Angola Landing showed a near 

72-fold volumetric increase (i.e., 24,643,000 m3), while Shreves Bar had little change 

in its volume. Overall, we conclude that diversion of the Mississippi River into the 

Atchafalaya River has caused significant changes of downstream channel 

morphology and sediment deposition on channel bars. The construction of revetments 

and dikes in the river reach has also contributed to the changes, especially the 

distribution of sediment deposition. 

(3) River floods can have large impacts on sediment transport, bar migration and hence 

channel morphology. During the 2011 Mississippi flood, the three bars downstream 

of the Mississippi-Atchafalaya River diversion were mostly inundated in May and 

June. I studied morphologic changes of the bars using 22 Landsat images acquired 

before and after the flood. Results showed that the total emerged surface of the three 

bars increased approximately 0.42 km2 (7.3%) because of the flood. The total volume 

gain of the three channel bars was 1.22× 106 m3 or a 4.4% increase. Assuming a bulk 

density of 1.2 t/m3, the total volume of trapped sediment during the 2011 flood would 

be about 1.5 million metric tons. This study firstly estimated a major flood on 

morphological changes and the associated sediment accumulation of emerged channel 

bars in the Lower Mississippi River. The findings indicated that channel bars in this 

highly regulated river are able to trap a substantial quantity of sediment during a flood. 

(4) Highly regulated alluvial rivers develop their own characteristics in sediment 

transport, erosion, and deposition. Channel bars are major reservoir for in-channel 

sediment. To measure their morphodynamics is extremely important for 
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understanding the sediment dynamics of the channel. By measuring that 

morphodynamics, this dissertation research offers an important insight into channel 

and bar morphodynamics located within a 258-km reach in the Lower Mississippi 

River. Under the current river management, which mainly targets at navigation safety 

and flood controls, the large emerged channel bars in the Lower Mississippi River are 

capable of trapping a large amount of sediment. The coarse sediment trapped in the 

bars is an extremely important material source for restoration and protection of 

coastal Louisiana. It is hoped that suitable river engineering strategies and solutions 

are developed in the future to mobilize them downstream to the coastal Louisiana.  
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