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Abstract 
 

Land subsidence, defined as a land sinking or a gradual inward caving of land, 

presents a common disturbance observed in many areas of the world. In Louisiana, 

this specific problem posed a serious threat to the populace living there. Considered 

by denizens to be an adverse impact of land use, the extant Louisiana subsidence 

causes serious problems that tend to worsen, such as excessive wetland formation or 

land loss. Unless researchers find appropriate treatments to address this increasingly 

serious problem, the present issues will be exacerbated. 

To visualize the spatio-temporal subsidence patterns, this study used data 

collected by high-precision GPS stations and processed high-accuracy land elevation 

data in coastal Louisiana by means of a GIS-based spatio-temporal data model. I used 

the Kriged Kalman Filter (KKF) to map the spatial temporal field of land elevation 

change in southern Louisiana from 2011 to 2013, which showed a clear subsidence 

area after 2012. The coincidence of the Bayou Corne Sinkhole enabled a validation of 

the GPS data and the spatio-temporal data model. 

In addition, the spatial pattern for subsidence was predicted by 

Regression-Kriging and based on observed GPS data in tandem with the data on 

contributing subsidence factors. The prediction results using Regression-Kriging had 

high and acceptable accuracy. 

I applied the geographically weighted regression (GWR) model to show the 

spatial heterogeneity of contributing factors to subsidence in the study site. The 

statistical results showed that spatial heterogeneity for the data of contributing factors 
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would be useful to recognize the agglomeration of communities in the study area. The 

regionalization work of these contributing factors could also be helpful to form 

location-based subsidence mitigation policies. 

This research contributes to the knowledge of GIS data modeling by 

incorporating a spatio-temporal interpolation—the Kriged Kalman filter (KKF)—into 

mapping and monitoring the land elevation change. This technique overcomes the 

problems of traditional spatial interpolation methods that disregard the time 

dependency of the geospatial data. The second contribution of this research is to 

predict the spatial pattern of subsidence using the information in regard to the 

subsidence factors at GPS stations. A cross-scale subsidence prediction, drawn solely 

on point based data from GPS stations, was made possible by Regression-Kriging. 

The third contribution of this research is that the spatial statistical models used for 

data analysis enable location-based policy-making. In other words, the local 

government can embrace smart policies that are specifically effective for certain 

regions to prevent further land loss or subsidence.
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Chapter 1 Introduction 
 

1.1. Background 

The term ―subsidence‖ refers to the downward movement of the earth’s surface 

with respect to a reference point (Dokka 2006; Kent and Dokka 2012), which may be 

produced by both geophysical and anthropogenic factors (Kent and Dokka 2012). The 

subsidence may cause many adverse effects on affected living space, such as 

excessive wetland formation or land loss, depending on whether appropriate 

treatments are applied to the extant irregular subsidence (Kent and Dokka 2012). 

Multiple regions around the world suffer from serious subsidence problems, yet 

for different reasons (Hung et al. 2011). For instance, Italy’s Venice, renowned as a 

historical city, displays a subsidence phenomenon. The city’s local problems include 

issues such as the stability of buildings, waterways, and coastal erosion, thus 

constituting major problems that consistently contribute to subsidence phenomena 

yearly (Bitelli et al. 2000). Other classic areas that show emerging dramatic 

subsidence are inclusive of the United States’ lower Mississippi Valley and northern 

Gulf coast, with multiple contributing factors, such as groundwater withdrawal and 

the extraction of oil by pumping (Abdollahzadeh et al. 2013; Shinkle and Dokka 

2004). The experiential subsidence in this area, deemed a ―slow disaster,‖ threatens 

critical habitats in large and small cities, farms, and economic infrastructures in 

several states and threatens a harbinger of eventual inundation by the Gulf of Mexico 

(Shinkle and Dokka 2004). 
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The State of Louisiana, located in the lower Mississippi Valley and the northern 

Gulf Coast area as well, reflects a gradual, evident subsidence, especially in the 

coastal parishes, thus causing a huge area of wetland to form. To account for this 

serious problem, the following figure shows the vertical displacement of height for a 

Louisiana ground point (point name: 1 LSU) throughout 2012, based on the research 

methods of Shinkle and Dokka in 2004 (Dokka 2006; Shinkle and Dokka 2004). 

 

 
Figure 1. Height changes for one site (1LSU) in Louisiana in 2012, units: day 

(Horizontal axis), meter (Vertical axis) 

 

Figure 1 uses the trendline slope (0.00005) to calculate an annual subsidence rate, 

which equals 18.3 mm or 0.05 mm per day. We must not lose sight of this rate, 

calculating a serious subsidence problem in the area, as the future cumulative 

subsidence found over a long period, such as 50 to 100 years, will be significant, 

should this subsidence rate remain stable. The effects of such a subsidence disaster 

would be felt by the entire country at that time, as the looming inundation would 
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gradually destroy America’s largest coastal wetland and continue on to ravage its 

energy production heartland (Shinkle and Dokka 2004). 

Hence, facing the gravity of the Louisiana situation regarding this serious 

subsidence problem, relevant researchers should increasingly focus on subsidence 

studies of high importance, such as subsidence prediction. Governments should 

assume immediate and powerful actions to control the high speed of adverse 

subsidence. This research may, in fact, substantially serve as a potential and feasible 

attempt to monitor, predict, and treat subsidence in Louisiana. 

1.2. Literature review 

The subsidence study may be done as an interdisciplinary project, applying the 

various methods of geotechnical engineering, geology, geophysics, geography, or the 

geographic information system (GIS). In potential research, the recent geographic 

subsidence study is focused mainly on backgrounds. The literature review results 

indicate that relevant papers on subsidence may be classified into two subsets for 

research topics: 1) how to make a highly accurate subsidence observation and 

prediction, and 2) how to collect relevant contributing factors by means of modeling 

during a dramatic subsidence. 

 

Subsidence observation and prediction 

Recently, three common kinds of techniques have been widely used in the 

process of subsidence observation: leveling, GPS observation, and Interferometric 

Synthetic Aperture Radar (InSAR) (Lu, C. et al. 2012).  
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In the early 1950s, engineers and researchers initiated subsidence surveys by 

means of leveling, usually quantifying the vertical displacement at relevant 

benchmarks for land subsidence (Shinkle and Dokka 2004). By means of geodesy 

methods, the survey accuracy in leveling has the potential to be high at a millimeter 

level, while the temporal resolution is technically limited (Lu, C et al. 2012); 

conventional survey cycles usually exceed 10 years. However, since the GPS 

technique emerged and expanded widely, the GPS survey has become yet another 

available method to quantify land subsidence by applying millimeter-level point 

heights and relatively higher temporal resolution, whereas the survey point density 

tends to be relatively low (Lu, C. et al. 2012). As an innovation of the new 21st 

century, the InSAR technique provides an alternative to leveling and GPS 

observations, due to the high spatial density (Lu, C. et al. 2012)/ In the entire InSAR 

survey imaging process, the differences in phases of microwaves from repeat-pass 

InSAR satellites are used to calculate the displacements of ground downward 

movements as land subsidence (Extracted from: 

http://treuropa.com/technique/insar-evolution/); in turn, this imaging process will  

definitely produce multiple categories of unwanted errors, especially atmosphere 

effect, topographic distortion, and de-correlation noise (Extracted from: 

http://treuropa.com/technique/insar-evolution/).  

A new, advanced InSAR technique, such as differential InSAR (DInSAR), may 

emerge that presents a differential method with the corresponding digital elevation 

model (DEM). Nevertheless, the present technique has the capability to reduce or 
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eliminate multiple topographic distortions, although errors, such as atmospheric 

effects, may remain unprocessed. Thus, each one of three techniques—leveling, GPS, 

and InSAR—has relatively evident advantages and flaws. The integration or 

combination of such techniques remains a common research trend, necessary for 

developing an accurate land subsidence survey. 

Notably, many researchers initially completed the integration of leveling and 

GPS observations at the inception stage of a techniques-integration study. A paper 

released in 2007 shows that a comparison of historical leveling and recent GPS data 

reveals the subsidence rates on the Thessaloniki Plain of Greece for the past 50+ years 

(Psimoulis et al. 2007). Around 2000, a data information system capable of 

connecting the leveling network with GPS data was operated to monitor the ground 

subsidence in the Southern Po Valley (Bitelli et al. 2000). Additionally, the NOAA 

data report by Shinkle and Dokka in 2004 reveals that the GPS observation data in the 

Continuously Operating Reference Station (CORS) had assisted the integrated 

leveling benchmark data from many epochs, by calculating and interpolating the 

steady state of subsidence rates in the lower Mississippi Valley and Northern Gulf 

Coast; based on these calculated subsidence rates, the increasing land loss areas in the 

Lower Mississippi River Basin from 2011 to 2050 were evaluated by Zou et al. in 

2016 (Shinkle and Dokka 2004; Kent and Dokka 2012; Zou et al. 2016). 

Hence, this method on leveling and GPS combination produces more accurate 

subsidence data and thereby extends the subsidence observation periods from the past 

to the future (Shinkle and Dokka 2004; Kent and Dokka 2012). Nevertheless, it may 
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prove unfeasible to solve the low point-density problem easily, especially in cases 

where observation points are distributed on less of an average or less randomly in the 

study area. 

Recently, many papers on subsidence have indicated that the most acknowledged 

and popular subsidence survey method involves an integration technique between 

InSAR/DInSAR) and GPS. In the entire integration process, DInSAR should be used 

rather than ordinary InSAR, as the DInSAR data display much less topographic error 

when applied with the corresponding DEM (Extracted from: 

http://treuropa.com/technique/insar-evolution/). Moreover, many areas of land 

subsidence (such as Appin Township, located southwest of Sydney, Australia) were 

globally surveyed by means of this popular integration technique (Linlin Ge et al. 

2003). In Appin Township, GPS data over the same study site were used to 

geo-reference the DInSAR results. Further, the differential tropospheric delay 

(atmosphere effect) was estimated by the GPS data for interpolation into an image to 

correct the atmosphere disturbance in the InSAR results (Linlin Ge et al. 2003; Ge 

2000) (Extracted from: http://treuropa.com/technique/insar-evolution/). 

Thus, DInSAR may be regarded as a popular technique to monitor land 

subsidence when combined with GPS. However, this technique may be subject to 

uncertainties induced by errors in atmosphere, satellite orbits, and terrain effects.  

According to research, the land coverage showing various surface properties over 

different seasons will cause spatial de-correlation in DInSAR, as well as degraded 

measurement accuracy (Hung et al. 2011; Hung et al. 2010). Permanent scatterer 
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interferometry (PSI) was proven to reduce the deficiency in DInSAR (Hooper et al. 

2004; Hung et al. 2011). PSI, a relatively recent development from conventional 

InSAR, relies on a study of pixels, which remains coherent over a sequence of 

interferograms, thus providing consistent and stable radar reflections (Burgmann et al. 

2000). In one subsidence case over the Choushui River Alluvial Fan in Taiwan, PSI 

reduced errors affected conventional DInSAR techniques. As a result, PSI was used 

for data fusion work, coupled with high-precision and low point-density leveling data, 

thus producing a smoothed correction to the PSI results (Hung et al. 2011; Lu, C. et al. 

2012). Such fusion work allows the surveyed result to be more representative of 

overall deformation characteristics than the sole use of the PSI field, or leveling 

(Hung et al. 2011). In addition, the fusion work provides a superior, classic study on 

the integration of PSI (InSAR) and leveling. In this fusion process, a simple ―draping‖ 

method was applied to merge the PSI result with that of the leveling (Hung et al. 2011; 

Forsberg and Skourup 2005). Future studies on data fusion will include either an 

improved method that uses wavelet functions or a spectral combination to represent 

various kinds of subsidence data (Hung et al. 2011; Addison 2002). 

In addition, with the exception of leveling, other subsidence survey techniques, 

such as GPS and InSAR, were used in recent research cases, such as Analog weather 

charts (AWC), which was applied to the high-precision Grid point value of 

Meso-Scale Model(GPV-MSM) and combined with water vapor data (Zheng et al. 

2014). In this instance, the spatial distribution of the atmospheric delay by water 

vapor was quantified using AWC by permitting the atmosphere effect of DInSAR data 
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to be reduced, thus rendering GPV-MSM data effective for DInSAR analysis (Zheng 

et al. 2014; Lu, C. et al. 2012). 

Although the integration of such techniques tends to result in high accuracy in 

subsidence surveys, recent media announcements indicate that NASA is in the process 

of developing a new, airborne interferometer system named UAVSAR, which will 

provide much higher spatial resolutions and accuracy for future subsidence surveys in 

the future (Blom et al. 2009). 

Furthermore, with the exception of common techniques and their integration, 

some methods from geo-statistics models may also be used to process subsidence data 

for higher prediction accuracy, such as the Kriged Kalman Filter (Mardia et al. 1998). 

The Kriged Kalman filter (KKF), regarded as a combination or integration of Kalman 

filter and Kriging interpolation, may be used to process and predict spatio-temporal 

data, such as long-term point data on subsidence (Kalman 1960; Mardia et al. 1998; 

Shang et al. 2011; Olea 1999). The long-term GPS subsidence data may be especially 

applied to KKF due to characteristics of high temporal resolution, as well as low point 

density, and based on the GPS points’ input, raster data may be produced; large areas 

of subsidence data near these scatter GPS points may then be interpolated and 

predicted accurately for a long-term period (Shang et al. 2011; Lu, C. et al. 2012). 

Thus, KKF may provide a possible and accurate method for surveying and predicting 

long-term subsidence data (Shang et al. 2011). 
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Modeling of contributing factors to subsidence 

The factors for subsidence may be classified as both geophysical and 

anthropogenic (Kent and Dokka 2012). A recent study on subsidence in southern 

coastal Louisiana indicates that sediment compaction, low-angle faulting, and the 

regional subsidence associated with mass loading may display the major factors 

controlling subsidence in the delta, coupled with a finding that the coastal regions 

outside the delta tend to undergo slower subsidence, probably related to factors such 

as fluid withdrawal encompassing ground water, petroleum, and natural gas extraction 

(Abdollahzadeh et al. 2013).In other words, the natural process of subsidence in many 

active areas can be mainly attributed to the following factors: a) sediment compaction, 

b) faulting, c) anthropogenic mass loading, d) groundwater withdrawal, e) oil 

pumping, and f) natural gas extraction (Abdollahzadeh et al. 2013; Kent and Dokka 

2012). Thus, the methodology on how to use an appropriate model to establish 

relationships between subsidence and factors and how to quantify such factors will be 

prevailing topics for subsidence researchers from a variety of academic backgrounds. 

Geophysical factors that contribute to subsidence (Kent and Dokka 2012) 

indicate that faulting emanating from a series of dramatic crust movements is 

popularly considered a vital study topic on subsidence, especially for geological and 

geophysical researchers (Abdollahzadeh et al. 2013; Dolezalova et al. 2009; Brodie et 

al. 2007). A strong example in this context comes from an evaluation project 

regarding a mining subsidence in Karvina, located in the Czech Republic, which used 

GPS data as well (Dolezalova et al. 2009). In the Karvina project, the subsidence 
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depression acquired from two years of GPS survey data revealed that the complicated 

tectonic situation importantly influenced the behavior of surface subsidence 

(Dolezalova et al. 2009). Tectonic faults evidently shaped the subsidence depression 

in an irregular form; yet importantly, on sites without a tectonic fault, the subsidence 

depression experienced a smooth and regular development. Consequently, this 

research instance strongly corroborates a close correlation between the shape of a 

subsidence, as well as the characteristics of a fault on the same site (Dolezalova et al. 

2009). 

As a commonly anthropogenic factor relating to subsidence (Kent and Dokka 

2012), groundwater withdrawal (Kent and Dokka 2012; Abdollahzadeh et al. 2013) 

remains a common indicator to researchers from many backgrounds, notably because 

groundwater can be the most direct factor leading to subsidence (Shang et al 2011; 

Abdollahzadeh et al. 2013). A classic hydrology and GIS case involves a spatial and 

temporal prediction system for groundwater flow and subsidence in the Japanese 

coastal plain (Zhou et al. 2003). In this case, by means of hydrology and GIS 

knowledge, the required data were converted to GIS data in the database, while the 

surface water cycle was simulated to obtain the spatial and temporal groundwater 

infiltration quantity (Zhou et al. 2003). A 3D groundwater flow model based on 

hydrology then was established a) to simulate the groundwater flow, and b) to 

calculate or predict the corresponding subsidence in different water pumping 

scenarios (Zhou et al. 2003). Another recent GIS instance involving water withdrawal 

(Abdollahzadeh et al. 2013) shows the spatial and temporal characteristics of a 
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subsidence induced by groundwater over-exploitation in Beijing (Chen et al. 2011; 

Abdollahzadeh et al. 2013). Using data collected by GPS and InSAR, a model on the 

dynamic variation from hydro-dynamics was established to analyze the subsidence 

response to groundwater withdrawal (Chen et al. 2011). 

In addition to such models that form hydrology, many geo-statistics models can 

be even more available for quantifying the factors related to subsidence, such as 

geographically weighted regression (GWR) (Fotheringham et al. 2002). The most 

recent GWR case on subsidence was released by a research group from Taiwan, 

which involved the groundwater factor for modeling (Shang et al 2011). 

In the GWR case from Taiwan, the study site was selected in the Choshuichi 

Alluvial Fan, using ground subsidence data collected by GPS observation. The data 

were inclusive of groundwater levels from three underground aquifers, obtained from 

the Water Resources Agency (Shang et al. 2011). By means of interpolation, the 

spatial distribution of subsidence in the study site and the groundwater levels at each 

GPS station may be estimated for GWR (Shang et al. 2011; Shepard and Donald 

1968). 

In the GWR modeling process, the changes in groundwater levels from three 

aquifers were selected as predictors, applying subsidence as the dependent variable 

(Shang et al 2011). GWR is more advantageous than other geo-statistics models in 

this instance, as the other models used for subsidence research usually involve a 

―global‖ approach, thus lacking spatial heterogeneity of the data. On the other hand, 

GWR definitively displays a spatial variation of predictors, as well as spatially varied 
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coefficients of predictors (Shang et al. 2011; Fotheringham et al. 2002). Thus, by the 

GWR model, all four of the spatially varied coefficients may be calculated; as a result, 

by using these coefficients, land subsidence in the study site may be predicted (Shang 

et al 2011). As a result, an important comparison between the prediction result from 

GWR and the one from ordinary least squares (OLS) was made, showing that GWR 

can better approach the real subsidence distribution by means of a higher accuracy 

and an adjusted R-square (Shang et al 2011; Hayashi and Fumio 2000). Although this 

GWR case for subsidence may be classic, it still has many drawbacks, including the 

lack of long-term or seasonal GPS data for showing a more detailed correlation 

between groundwater levels and subsidence (Shang et al. 2011). Further, multiple 

kinds of important factors, with the exclusion of groundwater levels, may be collected 

to access GWR for more accurate modeling results. These drawbacks are expected to 

improve through future research (Shang et al. 2011; Fotheringham et al. 2002; 

Abdollahzadeh et al. 2013). 

Many of the subsidence cases discussed refer to a natural process of subsidence; 

however, in some small site areas, subsidence may be produced by loadings from 

certain human activities, such as mining. For such cases, especially for a mining 

subsidence, the factors related to subsidence should largely differ, such as a) depth 

and distance from drift, b) DEM and slope gradient, c) groundwater permeability, d) 

geology, and e) land use (Kim et al. 2006; Kim et al. 2009; Oh and Lee 2010; Oh et al. 

2011). 

 



13 
 

Hyun-Joo Oh’s researchers from Korea initiated a series of studies on mining 

subsidence by collecting relevant contributing factors and using many classic models 

from general statistics (Kim et al. 2006; Kim et al. 2009; Oh and Lee 2010; Oh et al. 

2011). The case study sites, located in abandoned coal mines, modeled a) frequency 

ratios, b) logistic regression, c) weights of evidence, and d) artificial neural networks; 

these were tested successively. The testing sought possible relationships between 

subsidence and contributing factors by calculating factor ratings/weights to map 

subsidence hazards; this was accomplished by means of overlaying the ratings or 

weights. The results for most of the tested models showed predicted accuracies of 

over 90% (Kim et al. 2006; Kim et al. 2009; Oh and Lee 2010; Oh et al. 2011; 

Freedman 2009). This series of studies on mining subsidence evidenced a maximum 

progress, yet also revealed evident drawbacks. The tested models involved the global 

approach on subsidence prediction, as the spatial heterogeneity of factors was not yet 

considered (Shang et al 2011; Kim et al 2006; Kim et al 2009; Oh and Lee 2010; Oh 

et al 2011). Moreover, the dependent variable of subsidence was regarded initially as a 

dichotomous or categorical one (presence/absence). In fact, subsidence is a numerical 

variable; therefore, the modeling process by a dichotomous variable as a subsidence 

may tend to cause a coarser prediction with much less detailed information (Kim et al. 

2006; Kim et al. 2009; Oh and Lee 2010; Oh et al. 2011; Freedman 2009). 

1.3. Research questions 

According to the drawbacks of recent techniques and methods on subsidence, as 

discussed in the literature review chapter, KKF and GWR will be selected as the two 
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main methods of this research to process the Louisiana subsidence data. Therefore, 

research questions are proposed as follows: 

In this research, GPS subsidence data in the coastal area of Louisiana were 

collected and processed by KKF, rather than benchmark subsidence data collected to 

interpolate in the former research (Zou et al. 2016; Kent and Dokka 2012). Then, 

further work will serve to validate the KKF raster results. 

1. Do the results processed by KKF validly reflect the real spatio-temporal 

distribution of subsidence patterns in the study site? 

In the modeling process, multiple factors that may cause subsidence were 

collected, and the GWR model and the Regression-Kriging model were selected to 

process these kinds of data (Pebesma 2006). 

2. Do the GWR results reflect the spatial heterogeneity of Louisiana subsidence? 

3. Can the Regression-Kriging results accurately predict the spatial pattern of 

Louisiana subsidence? 

1.4. Research significance 

The KKF method may be used to process GPS subsidence data for the long term 

in Louisiana to overcome the flaw of low point density, thereby accurately 

interpolating a large area of subsidence; KKF, as a combination of the Kalman filter 

and Kriging interpolation, has features of both (Mardia et al. 1998; Lu, C. et al. 2012). 

Therefore, it may be considered more advantageous to interpolate and predict 

subsidence accurately, due to the optimal prediction with time for the Kalman filter 

(Mardia et al. 1998; Kalman 1960; Zhang 2008). Results by KKF may show the 
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spatio-temporal subsidence pattern which is varied each year, rather than the spatial 

pattern of subsidence which is not varied each year in the former benchmark 

subsidence research, because GPS subsidence data can be collected every year while 

benchmark subsidence data can only be collected every many years (Zou et al. 2016; 

Kent and Dokka 2012; Mardia et al. 1998). In addition, multiple kinds of subsidence 

factors may be modeled and analyzed using GIS to map the spatial heterogeneity for 

each kind of subsidence factor. Mapping the regression coefficients should serve as 

the theoretical foundation for government and administrative agencies to make 

location-based decisions for mitigating subsidence in Louisiana. Additionally, the 

spatial pattern of Louisiana subsidence can be modeled by Regression-Kriging based 

on observations from GPS stations in the study site and multiple contributing factors 

to subsidence (Pebesma 2006; Hengl et al. 2004). Thus, spatial prediction for 

Louisiana subsidence may be made accurately from contributing factors by 

Regression-Kriging; to date, such spatial points-to-area prediction based on OLS 

regression has not yet been accomplished in existing subsidence research. 
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Chapter 2 Research Methods 
 

2.1. Research workflow 

Based on the above proposed research questions, added to the research methods 

by Mardia et al. in 1998 and Fotheringham et al. in 2002, and strengthened by the 

characteristics of collected data, permit the methods used in this research to be 

summarized into a research workflow as follows (Mardia et al. 1998; Fotheringham et 

al. 2002): 

Data collection and preprocessing 

↓ 
KKF processing of GPS subsidence data. 

↓ 
Validation of results 

↓ 

Modeling of contributing factors 

↓ 

Visualization of modeling results, accuracy evaluation, results 

analysis, and comparisons 

Figure 2. Research workflow 
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2.2. Data collection 

The entire study site has been confined within the geographic boundaries of the 

State of Louisiana, USA. The data collection work was comprised of the following 

two parts: GPS data collection and data collection for contributing factors. 

2.2.1. GPS data collection 

For the GPS data collection on subsidence, an ftp server from National Geodetic 

Survey (NGS) websites is available online to download all sites of GPS data required 

since 1994 for this research. The corresponding link is shown as follows: 

ftp://www.ngs.noaa.gov/cors/rinex/ 

From this link and NGS websites, findings indicate that 18 GPS observation sites 

representing an entire CORS system were installed in Louisiana. The distribution map 

of all GPS sites in the study area may be shown as follows: 

 

 

Figure 3. Distribution map for all GPS stations, green points: GPS stations 
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The 18 stations of GPS data for the last five years to the present were 

downloaded by this NGS link. The original format for this dataset is kept as a 

compressed Rinex and is unavailable for direct use on a subsidence survey. As a result, 

this original set of downloaded data must be preprocessed by geodetic software, such 

as GIPSY by NASA Jet Propulsion Laboratory (JPL), to be converted to a format with 

longitude, latitude, and height of sites. Changes in height were used for quantifying 

the subsidence for GPS sites; by using this GIPSY software by NASA JPL, the height 

accuracy for all GPS sites may be controlled within 2mm. 

2.2.2. Data collection for contributing factors 

According to previous research on subsidence factors in Louisiana, multiple data, 

such as a) groundwater, b) oil, c) natural gas, d) sediment, and e) faulting, were 

selected for collection (Abdollahzadeh et al. 2013).  

For groundwater collection, the data on groundwater levels for observation wells 

in Louisiana may be collected and recorded online from the USGS website (Extracted 

from: http://groundwaterwatch.usgs.gov/). Additionally, for data collection, the 

Louisiana Department of Natural Resources provides a website to collect desired data 

in GIS format, such as oil, gas, and sediment (Abdollahzadeh et al. 2013). This 

website is as follows: http://sonris.com. Further, the distribution map of the data for 

oil and gas in Louisiana parish units are shown on the following map; maps for other 

data, such as sediment, were obtained as well. 



19 
 

 
Figure 4. Distribution of oil and gas wells in Louisiana (Extracted 

from:http://sonris-www.dnr.state.la.us/gis/agsweb/IE/JSViewer/index.html?TemplateI

D=181) 

 

Figure 5. Distribution of sediment measurement sites in Louisiana (Extracted 

from:http://sonris-www.dnr.state.la.us/gis/agsweb/IE/JSViewer/index.html?TemplateI

D=181) 
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For the data collection on anthropogenic mass loading, the data after image 

classification from the National Land Cover Database (NLCD) website were used to 

collect the data of buildings cover in Louisiana, thus allowing researchers to extract 

useful classified information on the mass loading of buildings in the study site 

(Abdollahzadeh et al. 2013; Kent and Dokka 2012).  

2.3. Main methods 

As discussed in the research workflow above, the main methods used in this 

research had three parts as follows: 

2.3.1. Kriged Kalman Filter 

The Kalman filter, proposed by Kalman in 1960, may provide a feasible process 

for dynamically changing data in a time series by calculating each state of the optimal 

estimation for the data (Kalman 1960; Zhang 2008; Mardia et al. 1998). As a 

recursive process to make estimations in general state models, the Kalman filter 

minimizes the converged errors the data contains (Kalman 1960; Mardia et al. 1998; 

Zhang 2008). 

Conversely, the Kriging interpolation method from geo-statistics may be used for 

estimating a large area of spatial data from some spatially correlated scatter points 

nearby, thus providing a possible means to predict data in a spatial domain (Mardia et 

al. 1998; Zhang 2008; Olea 1999). 

Based on the respective characteristics for two such methods above, a 

combination of the Kalman filter and Kriging interpolation may be possible for data 

prediction in a spatio-temporal domain. KKF has proven to be an applicable model to 
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process spatio-temporal data (Mardia et al. 1998; Kalma 1960; Zhang 2008; Olea 

1999). 

The fundamental model of KKF: 

First, consider the state space model from the Kalman filter as follows (Mardia et 

al. 1998; Kalman 1960; Zhang 2008): 

x(t) = 𝒉𝑻α(t) + ε(t) 

α(t) = Pα(t - 1) + Kη(t) 

The upper equation is the observation equation, and the lower one is the system 

equation; moreover, x(t) is the observation variable at state t, h is the parameter 

p-vector, α(t) is the state p-vector, ε(t) is the scalar observation error, P : p p is 

the transition matrix, K : p x d is the innovation coefficient matrix, andη(t) is the 

innovation (or system error or state noise) d-vector (Mardia et al. 1998; Kalman 

1960). 

Then, in a spatio-temporal domain, the observation variable x(t) should be 

extended to x(s, t) for spatio-temporal data (Mardia et al. 1998).  

In addition, x(s, t) can be decomposed and expressed as follows (Mardia et al. 

1998): 

x(s, t) = ｕ(s, t) + ε(s, t) 

ｕ( s , t ) = ( s ) ( t )+ ( s ) ( t ) + . . . + (s) ( t ) = 

α( t ) 
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Thus, the observation equation of KKF can be shown as follows (Mardia et al. 

1998; Kalman 1960): 

x(s, t) = ( s ) ( t )+ ( s ) ( t ) + . . . + (s) ( t ) + ε(s, t) = 

α( t ) + ε(s, t) 

The system equation of KKF can also be same as that of the classic Kalman filter 

as follows (Mardia et al. 1960; Kalman 1960): 

α(t) = Pα(t - 1) + Kη(t) 

Moreover, in the observation equation of KKF, the error term ε(s, t) should be 

spatially correlated (Mardia et al. 1998) and shown as follows (Mardia et al. 1998): 

cov(ε(s, t), ε(s', t' ) = 0 for t  t' all s, s' 

Applying these two key equations above, the KKF observation equation and the 

KKF system equation may be regarded as the general format of the KKF model 

(Mardia et al. 1998). As applications to process spatio-temporal data, the principle 

fields should be calculated by the Kriging predictor, in tandem with the transition 

matrix and other parameters also specified by the expectation–maximization (EM) 

algorithm (Mardia et al. 1998; Dempster et al. 1977; Olea 1999). 

2.3.2. GWR modeling 

GWR is proposed to solve problems on spatial heterogeneity in geo-statistics, 

using a linear multiple regression model with varied coefficients in different 

geographic areas (Fotheringham et al. 2002; Shang et al. 2011). By calculating varied 

coefficients as respective weights for predictors, GWR can also be an effective tool to 
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show relationships between the dependent variable and predictors, by showing which 

factor contributes most to the dependent variable in a special geographic area 

(Fotheringham et al. 2002; Shang et al. 2011). 

The fundamental model of GWR: 

As a linear multiple regression model, GWR may be shown as follows (Shang et 

al. 2011; Fotheringham et al. 2002): 

y(g) = (g)+ (g) + (g) +…+ (g) + ε 

The varied coefficients β may be calculated in the following way (Fotheringham 

et al. 2002; Shang et al. 2011): 

β=  

W(g) is the Gaussian weight function (Fotheringham et al. 2002; Shang et al. 

2011) (Extracted from: http://www.cs.cmu.edu/~schneide/tut5/node12.html).  

GWR modeling on subsidence 

Multiple kinds of collected data displaying useful attribute information 

contribute to the subsidence in Louisiana, such as groundwater, oil, natural gas, 

sediment, faulting, and anthropogenic mass loading. These data should be totally 

quantified to numeric data as important inputs to predictors in the GWR model, such 

as the groundwater level of each aquifer in a certain site (Fotheringham et al. 2002; 

Shang et al. 2011; Abdollahzadeh et al. 2013). After GWR modeling, the varied 

coefficients as GWR results should be identified in a census tract unit (Fotheringham 

et al. 2002; Shang et al. 2011). 
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The calculating process of GWR may be made by ArcGIS software, and the 

results on varied coefficients may be visualized as raster files (Fotheringham et al. 

2002; Shang et al. 2011). 

To analyze the results, GWR results may be compared with OLS results with 

respect to prediction accuracy on subsidence to show the advantage of GWR 

(Fotheringham et al. 2002; Shang et al. 2011; Hayashi and Fumio 2000). Thus, after 

the GWR modeling process, researchers could identify the possible distribution of 

major factors on fast subsidence rates for each census tract in the Louisiana study site, 

which in turn could be used for making special and correct treatments on subsidence 

in certain areas (Shang et al. 2011). 

2.3.3 Regression-Kriging 

The GWR model may be used to show the spatial heterogeneity of factors, which 

contributes to subsidence in Louisiana (Fotheringham et al. 2002; Shang et al. 2011). 

Unlike GWR, the regression-kriging model may be used based on OLS regression and 

kriging interpolation of the regression residuals to predict the spatial pattern of 

Louisiana subsidence (Pebesma 2006; Hengl et al. 2004). 

OLS regression model 

In modeling any dataset with no clear spatial autocorrelation or spatial 

dependency with the samples, the OLS model is used to show the relationship 

between the dependent variable and the independent variables (Wang 2006; Wang et 

al. 2014; Hayashi and Fumio 2000; Knegt et al. 2010).  

The fundamental model is as follows: 
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y = Xβ+ ε 

y is the dependent variable vector, and X is the independent variables vector, β

is the regression coefficients vector, and εis the errors vector (Hayashi and Fumio 

2000; Wang 2006; Wang et al. 2014). Based on OLS regression, the dependent 

variable y at one spatial position s can be predicted in the fundamental 

Regression-Kriging model as follows (Hengl et al. 2004): 

y(s) = m(s) + e(s) 

m(s) is the drift term by OLS regression, and e(s) are the interpolated value of 

OLS regression residuals by Kriging (Hengl et al. 2004). 

Thus, the dependent variable y(s) can also be calculated as follows: 

y(s) = X β +  

β is the vector for the regression coefficient by OLS, and  are the kriging 

weights (Wang 2006; Hengl et al. 2004). 

In this dissertation, the subsidence rates observed from GPS stations in the study 

site will be collected as the independent variable y, and likewise, the contributing 

factors to subsidence will be collected and quantified as the dependent variable X. 

Then, by OLS, the regression coefficient vector β and the residuals may be generated. 

Based on these generated residuals, the interpolated raster may be made by 

Kriging, and the spatial pattern of the subsidence rate may be predicted by summing 

the OLS drift, together with the interpolated value from this raster (Hengl et al. 2004). 

Chapter 3 Spatio-temporal Pattern Visualizations of Subsidence 
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3.1. The general equations for KKF and the main processing steps 

As the research workflow shows, the KKF processing for GPS subsidence data 

may be operated after the data collection. The research methods chapter also displays 

the fundamental model of KKF as follows: 

x(s, t) = ( s ) ( t )+ ( s ) ( t ) + . . . + (s) ( t ) + ε(s, t) 

= α( t ) + ε(s, t) 

α(t) = Pα(t - 1) + Kη(t) 

The upper equation above is the observation equation for KKF, and the lower 

equation is the state equation (Kalman 1960; Mardia et al. 1998), where x(s, t) is the 

observation variable for spatio-temporal data, h is the parameter p-vector,α(t) is the 

state p-vector,ε(t) is the scalar observation error, P : p p is the transition matrix, K : 

p x d is the innovation coefficient matrix, andη(t) is the innovation (or system error 

or state noise) d-vector (Mardia et al. 1998; Kalman 1960). 

In the application of KKF processing, the study should specify all essential and 

intermediate parameters, such as the GPS subsidence data processing (Mardia et al. 

1998). Mardia et al.’s findings showed the specification method for the KKF model 

parameters. This method can help to determine which essential variables or 

parameters should be summarized. These essential parameters are the covariance 

matrix, the bending energy matrix B, the principal fields, the parameter matrix h, and 

the transition matrix P (Mardia et al. 1998; Kalman 1960). 

Additionally, based on these specified parameters, the main steps for KKF 

processing can be summarized as follows (Mardia et al. 1998; Kalman 1960): 
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Step 1: Based on the characteristics of the collected data, construct a variogram 

and fit a model to the variogram (Mardia et al. 1998; Olea and Ricardo 1991). 

Step 2: Use the variogram model to generate the covariance matrix for this set of 

data (Mardia et al. 1998; Olea and Ricardo 1991). 

Step 3: Use the covariance matrix to calculate the bending energy matrix B 

(Mardia et al. 1998). 

Step 4: Use the B matrix from the last step to generate the principal fields 

(Mardia et al. 1998). 

Step 5: Use the principal fields from the last step to calculate the parameter 

matrix h from the Kalman filter (Mardia et al. 1998). 

Step 6: Use the Kalman filter and EM algorithm to generate the transition matrix 

P, as well as the spatio-temporal fieldα(s, t) (Mardia et al. 1998; Dempster et al. 

1977; Shumway and Stoffer 1982; Olea 1999). 

Step 7: Use the spatio-temporal fieldα(s, t) from the last step to make an 

interpolation in a time series (Mardia et al. 1998; Dempster et al. 1977; Shumway and 

Stoffer 1982; Olea 1999). 

Step 8: Use the interpolation result to make a raster, showing the distribution of 

subsidence rates of the study site (Mardia et al. 1998). 

Before processing the collected data by GPS observation, this set of original data 

should be preprocessed by geodetic software, such as NASA’s GIPSY. The final data 

format by preprocessing will show the longitude, latitude, and height for the GPS 

station, thus allowing the study to use the change in heights to calculate the 
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subsidence rate. In this research, the preprocessing work by GIPSY (version 6.2) was 

done by Mr. Zhengsong Chen from the Hubei Earthquake Administration in China. 

The GPS subsidence data may be processed by KKF to show the distribution of 

subsidence rates in the study site. Thus, the following discussion will focus on how to 

generate the variogram model for subsidence research and will additionally show the 

final processing results by KKF (Mardia et al. 1998; Olea and Ricardo 1991). 

3.2. Variogram 

The semi-variogram (or variogram) modeling is essential for KKF processing 

(Mardia et al. 1998; Olea and Ricardo 1991; Olea 1999). The calculation formula for 

the semi-variogram (or variogram) is as follows: 

γ(h) = ∑(  

The variable h is the distance between each pair of points in the study site, while 

N is the total number of point pairs (Olea and Ricardo 1991). 

GPS data were collected from 18 coastal stations in Louisiana, using a particular 

set of data to calculate the average subsidence rate each year from 2011 to 2013. The 

distribution map of coastal stations in the study site is shown in Figure 6. 
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Figure 6.  Distribution of 18 GPS stations in the study site, green points: GPS 

stations 

Next, with the whole set of original data preprocessed through GIPSY, the 

calculation of the average yearly subsidence rate for each GPS station in the study site 

can be initiated. The preprocessing results found by GIPSY show the daily height 

value in one year for each GPS station, permitting the use of the total height values 

for one GPS station in one year; these data generate a straight line by OLS, and the 

slope for this straight line was used to calculate the yearly subsidence rate for the GPS 

station (Shinkle and Dokka 2004; Hayashi and Fumio 2000). Thus, we can summarize 

the calculation formula for the subsidence rate as follows: 

Each year’s subsidence rate = the slope * one year 

(Shinkle and Dokka 2004; Hayashi and Fumio 2000) 

Based on this calculation formula and the research methods by Shinkle and 

Dokka in 2004 as well as Hayashi and Fumio in 2000, I calculated each year’s 

subsidence rate from 2011 to 2013 for all the GPS stations as follows (Shinkle and 

Dokka 2004; Hayashi and Fumio 2000): 
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Table 1. Each year’s subsidence rate (2011–2013) for all the GPS stations in the study 

site, marked by Rate 2011, Rate 2012, and Rate 2013 (Unit: m/year) 

Site Longitude Latitude Slope 2011 Slope 2012 Slope 2013 Rate 2011 Rate 2012 Rate 2013 

1LSU -91.1803 30.40742 0.000002 -0.00005 -0.00003 0.00073 -0.0183 -0.01095 

AWES -90.983 30.10027 0.000005 -0.00002 -0.00003 0.001825 -0.00732 -0.01095 

BVHS -89.4064 29.33681 -0.000007 -0.000004 -0.000002 -0.002555 -0.001464 -0.00073 

CAMR -93.3251 29.7985 0.00009 0.000008 -0.000004 0.03285 0.002928 -0.00146 

COVG -90.0955 30.47591 0.000002 0.0000007 0.000003 0.00073 0.0002562 0.001095 

DQCY -93.4453 30.45118 0.00012 0.00002 -0.00002 0.0438 0.00732 -0.0073 

DSTR -90.3822 29.96456 0.000001 -0.00001 -0.000005 0.000365 -0.00366 -0.001825 

ENG5 -89.9417 29.87896 -0.000001 -0.000009 0.000009 -0.000365 -0.003294 0.003285 

ENG6 -89.9421 29.87918 0.0000003 -0.000008 -0.00001 0.0001095 -0.002928 -0.00365 

FSHS -91.5022 29.80531 -0.000004 0.000001 -0.00001 -0.00146 0.000366 -0.00365 

GRIS -89.9573 29.26553 -0.00002 -0.00002 0.00002 -0.0073 -0.00732 0.0073 

GVMS -90.9036 30.31439 0.000003 -0.000006 -0.000002 0.001095 -0.002196 -0.00073 

HAMM -90.4676 30.51308 0.00017 0.000005 0.000002 0.06205 0.00183 0.00073 

LMCN -90.6613 29.25498 -0.00002 -0.00002 0.00004 -0.0073 -0.00732 0.0146 

LWES -90.3494 29.90037 -0.00002 0.000002 0.00001 -0.0073 0.000732 0.00365 

MCNE -93.2177 30.18057 0.0000003 0.000007 -0.00002 0.0001095 0.002562 -0.0073 

THHR -92.0806 30.52935 0.00011 0.000009 0.0000002 0.04015 0.003294 0.000073 

TONY -92.0451 30.22138 0.000006 0.00002 0.000009 0.00219 0.00732 0.003285 

 

The calculations of subsidence rates for all the GPS stations are as shown in 

Figure 7, 8, 9. 
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Figure 7. Subsidence rate for each GPS station in 2011 in the study site (Some map 

data were extracted from: http://atlas.lsu.edu) 

 
Figure 8. Subsidence rate for each GPS station in 2012 in the study site (Some map 

data were extracted from: http://atlas.lsu.edu) 
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Figure 9. Subsidence rate for each GPS station in 2013 in the study site (Some map 

data were extracted from: http://atlas.lsu.edu) 

Based on the calculation results for the subsidence rates, as well as the research 

methods by Mardia et al. in 1998 and Olea and Ricardo in 1991, a semi-variogram is 

generated as follows, using the semi-variogram formula above (Mardia et al. 1998; 

Olea and Ricardo 1991): 

 

 

Figure 10. Semi-variogram for calculated subsidence rates in the study site, blue points: 

averagedγvalues, red points: the fitted exponential model, the horizontal axis unit: 

degree 
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For the semi-variogram, this research fixed the bin size and number of bins in the 

horizontal axis h, to calculate the average γvalue in each bin (blue points in the 

above figure) (Olea and Ricardo 1991; Mardia et al. 1998). Then, based on the points 

for these γ values, I used a model to fit these points (red points in the above figure) 

(Olea and Ricardo 1991; Mardia et al. 1998). 

The bin size is fixed to 0.1, and the number of bins is fixed to 10. Then, we chose 

the exponential model to fit. The equation of the fitted model is as follows (Olea and 

Ricardo 1991; Mardia et al. 1998): 

γ = 1.7316E-08 + 0.0002 (1 – ). 

3.3. Final processing results and their consistency check 

As Chapter 3.1 shows, the above KKF process, inclusive of the calculations and 

specifications for multiple variables and parameters drawn from collected 

spatio-temporal GPS data, may be coded into an executable program based on ArcGIS 

software. In this research, the computer program for KKF, coupled with ArcGIS 

software, was used to process subsidence rate data from GPS observations. 

Using KKF, the distributions of the subsidence rates in 2011, 2012, and 2013 

were generated. The question remains whether the KKF results are valid in this study. 

To assure that these KKF results are validated, further work should be conducted.  

First, the model was validated using a cross-validation approach (Geisser and 

Seymour 1993). Each time a spatio-temporal field was calculated by leaving one GPS 

station out, the researcher compared the KKF modeled data with the GPS station data 

(Geisser and Seymour 1993), with the expectation that if the surface motion rate data 
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showed strong spatial and temporal continuity, certain GPS stations would be well 

replicated by the KKF model. The root mean square error (RMSE) was used to 

evaluate how the predicted surface motion rates compared to the observed surface 

motion rates (Geisser and Seymour 1993). Figure 8 shows the RMSEs of the GPS 

stations, based on research methods used by Geisser and Seymour in 1993 and Mardia 

et al. in 1998 (Geisser and Seymour 1993; Mardia et al. 1998). The GPS stations 

located inland displayed greater RMSE values (up to 40 mm/year), suggesting that 

those stations could not be replaced by model predictions. The reason might be that 

the inland area is more directly related to human activities, and therefore the land 

surface motion process could be very complex and thus difficult to predict from the 

surrounding GPS stations. Therefore, more GPS stations should be allocated toward 

the inland areas to capture the spatial continuity. Of course, considering the cost to 

build new GPS stations, the alternative to building more GPS stations is to use 

regression models to enhance the spatio-temporal prediction model. 

The stations ―LWES,‖ ―BVHS,‖ and ―LMCN‖ have quite a low RMSE (~5 

mm/year). These stations are located where the major wetlands and swamps of 

Louisiana are preserved. The spatio-temporal model predicted the land surface motion 

rate well, even with some missing data. 
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Figure 11. RMSE of the GPS stations from cross-validation 

 

A sinkhole constitutes a threatening phenomenon, especially for people living in 

bayou areas all over the world. Indeed, in August of 2012, such a well-known 

phenomenon emerged near Bayou Corne in Louisiana and was termed the ―Bayou 

Corne Sinkhole‖ (Cusanza 2013; Jones and Blom 2014). The collapse of one cavern 

in the salt dome under the bayou resulted in this sinkhole; the sinkhole size had 

increased from 1 hectare (Cusanza 2013; Jones and Blom 2014). The government 

issued emergent warnings to people living near Bayou Corne, and many were forced 

to evacuate (Cusanza 2013; Jones and Blom 2014). 

For the Bayou Corne Sinkhole, a former study by experts revealed that rather 

than faulting, a sidewall collapse had formed the threatening sinkhole by creating a 

disturbed rock zone, thereby filling the cavern void (Jones and Blom 2014; Louisiana 

Department of Natural Resources 2013b). By radar interferometry, scientists found a 

pre-event and post-formation surface deformation near Bayou Corne, showing 
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significant vertical and horizontal ground movements (Jones and Blom 2014; Jones 

and Blom 2015).  

This vertical downward surface movement detected by radar interferometry can 

be observed in the form of subsidence; therefore, subsidence may be used to signify 

sinkholes (Jones and Blom 2014; Jones and Blom 2015; Dokka 2006; Kent and 

Dokka 2012). Further, the precursory surface movement detected by radar 

interferometry in Bayou Corne indicated that the surrounding subsidence may have 

even accelerated prior to the sinkhole event (Jones and Blom 2014; Jones and Blom 

2015). In fact, the accelerating subsidence near Bayou Corne was surveyed by many 

organizations, such as Fenstermaker and Itasca, when the sinkhole first emerged in 

2012; these organizations still monitor the sinkhole (Jones and Blom 2014; Jones and 

Blom 2015; Fenstermaker 2014; Itasca 2013). 

To check the consistency of the generated KKF results, the Bayou Corne 

Sinkhole location should be added to the distribution maps of subsidence rates from 

2011 to 2013 as follows, based on the research methods used by Mardia et al. (1998), 

Kent and Dokka (2012), and Jones and Blom (2014 and in 2015): 
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Figure 12. Distribution of subsidence rates (Unit: mm/year) in the study site in 2011 

by KKF, green points: GPS stations, purple point: the Bayou Corne Sinkhole location 

 

 

Figure 13. Distribution of subsidence rates (Unit: mm/year) in the study site in 2012 

by KKF, green points: GPS stations, purple point: the Bayou Corne Sinkhole location 
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Figure 14. Distribution of subsidence rates (Unit: mm/year) in the study site in 2013 

by KKF, green points: GPS stations, purple point: the Bayou Corne Sinkhole location 

 

Figure 12 shows the spatial distribution of the subsidence rate in 2011, about one 

year prior to the Bayou Corne Sinkhole event. This distribution in 2011 appears to be 

uniform, with no significantly high subsidence area. No obvious subsidence was 

identified in this area during 2011. The vertical motion rates (Kent and Dokka 2012) 

around Bayou Corne were positive, ranging from 0 to 0.005 meters per year (5 

mm/year). This data remained consistent with previous reports that the surface in this 

area had even made a slightly upward movement in 2011 (Jones and Blom 2014). 

Thus, from Figure 12, the study detected no significant precursory subsidence or 

vertical ground displacement around Bayou Corne Sinkhole in the 2011 period 

(Dokka 2006; Kent and Dokka 2012). In contrast to Figure 12, Figure 13 shows a 

much different and abnormal distribution of land vertical motion rates close to the 

sinkhole event (August 2012), with a significant accelerating subsidence to the north 

of Bayou Corne. The surface motion subsidence rate was approximately -15 mm/year 
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near Baton Rouge and north of Bayou Corne. Likewise, Figure 14 shows the spatial 

pattern of the surface motion in 2013 after the sinkhole event. In Figure 14, the 

negative motion (subsidence) was found around Baton Rouge and the Bayou Corne 

Sinkhole (Dokka 2006; Cusanza 2013). Interestingly, the center of the negative 

motion area coincides with the sinkhole (Cusanza 2013). However, the relatively large 

RMSEs of the GPS stations around the sinkhole (Figure 11) suggest that to better 

monitor such abrupt changes as sinkhole events, more GPS stations are required. 

Thus, from Figures 12, 13, and 14, this study can confirm that the land area 

around Bayou Corne experienced an abrupt change, which may be caused by the 

sinkhole event in August 2012. The upward motion rate (5 mm/year) in 2011 was 

changed to a -14 mm/year downward motion in 2013 because of the sinkhole. Many 

research organizations also reported a negative land vertical motion caused by the 

Bayou Corne Sinkhole. For example, Itasca measured the land subsidence rate near 

Bayou Corne at approximately -0.4 inches/year (about -10 mm/year) (Itasca 2013). 

This study result is consistent with the previously reported land vertical motion 

around Bayou Corne. The consistency means that this subsidence area, showing a 

diameter of approximately 50 kilometers around Bayou Corne, may be correlated with 

or caused by a ground movement, such as a sinkhole (Louisiana Department of 

Natural Resources 2013b; Fenstermaker 2014; Jones and Blom 2014, 2015). In the 

consistency check of the KKF results in this dissertation, the Empirical Bayesian 

Kriging results may also be used to compare and show the differences for the same set 

of data (Extracted from:
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 http://www.esri.com/news/arcuser/1012/empirical-byesian-kriging.html) (Olea 

1999). Based on the research method used by Kent and Dokka in 2012, the Empirical 

Bayesian Kriging results are as follows, shown with the Bayou Corne Sinkhole 

location (The interpolation method is extracted from: 

http://www.esri.com/news/arcuser/1012/empirical-byesian-kriging.html.) 

(Cusanza 2013; Kent and Dokka 2012): 

 

Figure 15. Distribution of subsidence rates (Unit: m/year) in 2011 using Empirical 

Bayesian Kriging, green points: GPS stations, purple point: the Bayou Corne Sinkhole 

location (Some map data were extracted from: http://atlas.lsu.edu) 
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Figure 16. Distribution of subsidence rates (Unit: m/year) in 2012 using Empirical 

Bayesian Kriging, green points: GPS stations, purple point: the Bayou Corne Sinkhole 

location (Some map data were extracted from: http://atlas.lsu.edu) 
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Figure 17. Distribution of subsidence rates (Unit: m/year) in 2013 using Empirical 

Bayesian Kriging, green points: GPS stations, purple point: the Bayou Corne Sinkhole 

location (Some map data were extracted from: http://atlas.lsu.edu) 

 

Comparison between Figure 12 and Figure 15 shows that in 2011, the Empirical 

Bayesian Kriging results were similar those of KKF. It may be noted that while the 

distribution of subsidence rates in Figures 12 15 are similar, there are also clear 

differences. In Figure 12, the subsidence rates near Bayou Corne are positive, ranging 

from 0 to 0.005 m/year; yet in Figure 15, these values are near zero. 

Comparisons between Figure 13 and Figure 16 show that in 2012, the KKF and 

Empirical Bayesian Kriging results are similar as well; again, there are clear and 

distinct differences. One difference is that in Figure 13, we see a subsidence area near 

Bayou Corne of approximately -0.01 m/year, yet in Figure 16, we find no such 

subsidence area near Bayou Corne. 
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Further comparisons between Figure 14and Figure 17 indicate that in 2013, the 

KKF and Empirical Bayesian Kriging results again are very different. The distribution 

of subsidence rates in Figure 14 shows a clear subsidence area near Bayou Corne of 

approximately -0.01m/year, while from contours in Figure 17, this distribution differs; 

the subsidence rates near Bayou Corne are clearly less, ranging from 0 to 

-0.005m/year. 

From the above comparisons, it appears that the Empirical Bayesian Kriging 

rather than KKF results differ significantly due to significant interpolation error, 

which can not be checked consistently via Bayou Corne Sinkhole knowledge (Olea 

1999; Cusanza 2013; Jones and Blom 2014; Jones and Blom 2015). Thus, because of 

a smaller interpolation error, KKF is advantageous over other models for processing 

subsidence data, permitting strong validation of the KKF results in this research (Olea 

1999; Mardia et al. 1998; Kalman 1960). 

3.4. Summary and discussion 

In this chapter, the KKF model to process the GPS subsidence data was 

discussed. Based on research done by Mardia et al. in 1998, the steps on how to 

calculate the essential parameters in the KKF model were summarized (Mardia et al. 

1998). Then, based on the subsidence data collected, the yearly subsidence rate for 

each coastal observation station was calculated. These final results indicate that from 

2012 to 2013 in coastal Louisiana areas, one area in particular clearly exhibited high 

subsidence rates at approximately 10 mm each year and kept nearly the same rate 

(New Orleans area) in the coast of Louisiana. Additionally, the disaster knowledge of 
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the Bayou Corne Sinkhole in 2012 was used to check the consistency of KKF results 

in this research. In 2012, the subsidence near Bayou Corne accelerated during the 

sinkhole year and further expanded as an accelerating subsidence area since 2012. The 

subsidence rate near Bayou Corne was stabilized at nearly 10 mm per year during and 

after the sinkhole incident (2012–2013). This stabilized subsidence rate maintains a 

basic consistency with the measured subsidence rate at approximately 0.4 inches/year 

near the Bayou Corne Sinkhole from the Itasca-Subsidence Report, which checks this 

study by KKF consistently (Itasca 2013; Jones and Blom 2014; Jones and Blom 2015). 

Thus, the KKF results are valid and outperformed the traditionally used spatial 

interpolation method that disregards the continuity of data in time. 
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Chapter 4 Spatial Pattern Modeling of Subsidence by Regression and 

Kriging 
 

4.1. Regression-Kriging and its main steps 

As illustrated in the research methods chapter, the fundamental model of 

Regression-Kriging can be formatted as follows (Hengl et al. 2004; Wang 2006): 

y(s) = X β +  𝐰𝐢 𝐬 ∗ 𝐞(𝐬𝐢)
𝐧
𝐢=𝟏  

In this formation, X is the vector for independent variables, y(s) is the value of 

dependent variable y at the location s, β is the vector for regression coefficient by 

OLS, and  are the Kriging weights (Hengl et al. 2004; Wang 2006). 

Thus, based on this formation, the main steps of Regression-Kriging can be 

summarized as follows: 

Step 1: Data collection and rasterization for the dependent variable and the 

independent variables (Pebesma 2006; Hengl et al. 2004). 

Step 2: Regression analysis by OLS. 

Step 3: Interpolation of the OLS residuals. 

Step 4: Generating the drift raster based on the OLS regression coefficients (Hengl et 

al. 2004). 

Step 5: Generating the prediction raster for the dependent variable by summing the 

drift raster and the interpolation raster of the OLS residuals (Hengl et al. 2004). 

Step 6: Accuracy evaluation of the prediction by Regression-Kriging. 
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4.2. Data collection and rasterization of the contributing factors to subsidence 

In this dissertation, subsidence data have been collected via GPS observations for 

modeling. For the subsidence prediction work of points-to-area by 

Regression-Kriging, the study site should have many GPS stations recording 

subsidence in the coastal area of Louisiana; thus, this study site may be mapped as 

follows: 

 
Figure 18. Study site with 12 GPS stations (Some map data were extracted from: 

http:// atlas.lsu.edu) 

This study site for Regression-Kriging has 12 GPS stations, and 736 Louisiana 

census tracts. Subsidence data should be collected and calculated from these GPS 

station as the dependent variable in OLS and Regression-Kriging, and in this 

dissertation, the subsidence rates at GPS stations have been calculated based on the 

OLS regression in Chapter 3. For these 12 stations in the study site, the calculated 

subsidence rates in 2013 should be used for Regression-Kriging as follows: 
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Table 2. Subsidence rates in 2013 for 12 GPS stations in the study site (Unit: m/year) 

GPS station Subsidence rate in 2013 

GVMS -0.000730 

AWES -0.010950 

DQCY -0.007300 

CAMR -0.001460 

GRIS 0.007300 

TONY 0.003285 

ENG6 -0.003650 

BVHS -0.000730 

LWES 0.003650 

THHR 0.000073 

COVG 0.001095 

HAMM 0.000730 

 

For the Regression-Kriging model, the contributing factors to subsidence, such 

as groundwater, oil/gas, sediment, faulting, and the loading of buildings, should be 

collected and rasterized as the independent variables, in addition to the subsidence 

data collection for the dependent variable (Abdollahzadeh et al. 2013). Thus, this 

collection and rasterization work has been done as follows: 

Groundwater level change 

Former research showed that the groundwater change should be a main factor of 

subsidence, so for 2013, many wells of groundwater-level changes in the study site 

have been collected from the USGS website (http://groundwaterwatch.usgs.gov/) 

(Shang et al. 2011; Abdollahzadeh et al. 2013). Then, based on these changes, an 

interpolation process using the Inverse Distance Weighting (IDW) method has been 

used to generate a raster showing the spatial pattern of groundwater changes in the 

study site (Shang et al. 2011; Shepard and Donald 1968).This interpolated raster has 
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been mapped as follows: 

 
Figure 19. Interpolated groundwater level changes in the study site (Some map data 

were extracted from: http://atlas.lsu.edu) 

Further, for the OLS work in Regression-Kriging, the interpolated groundwater 

level change at each GPS station should be recorded from the raster as follows: 

Table 3. Interpolated groundwater level change at each GPS station (Unit: feet) 

GPS station Groundwater level change 

GVMS 3.409013 

AWES 3.365736 

DQCY 1.590018 

CAMR 1.564772 

GRIS 0.994465 

TONY 4.057013 

ENG6 -0.952839 

BVHS 1.175898 

LWES 0.291490 

THHR 4.939754 

COVG 1.315575 

HAMM 2.723452 
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Oil and gas pumping 

The SONRIS website provides the distribution data of oil and gas pumping wells 

in Louisiana, and based on this distribution, the point density of wells may be 

calculated in the study site (http://sonris.com and 

http://sonris-www.dnr.state.la.us/gis/agsweb/IE/JSViewer/index.html?TemplateID=18

1).For Regression-Kriging, the calculated point densities have been rasterized in the 

following image: 

 
Figure 20. Distribution of the point densities for oil and gas pumping wells in the 

study site (Some map data were extracted from: http://atlas.lsu.edu) 

 

In addition, for the OLS work in Regression-Kriging, the oil and gas pumping 

data at one GPS station may be quantified by the point density value for the 

coordinate where this GPS station is located; thus, the wells’ density data at each GPS 

station may be quantified and recorded as follows: 
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Table 4. Quantified point density of the wells at each GPS station 

GPS station Density 

GVMS 0.81189209223 

AWES 1.36438834667 

DQCY 1.60287892818 

CAMR 1.45654213428 

GRIS 2.29616570473 

TONY 2.24582242966 

ENG6 0.57809448242 

BVHS 2.49753880501 

LWES 1.25303578377 

THHR 1.45142245293 

COVG 0.02431836538 

HAMM 0.06698216498 

 

Sediment 

The former research shows that sediment attributes may be spatially correlated, 

and the thickness of sediment may be a main factor to subsidence, due to the sediment 

compaction process of the coastal area of Louisiana (Lima et al. 2003; Abdollahzadeh 

et al. 2013); the SONRIS website also provides the attribute data for the sediment 

thickness 

(http://sonris- 

www.dnr.state.la.us/gis/agsweb/IE/JSViewer/index.html?TemplateID=181).  

Based on the collected thicknesses, empirical Bayesian kriging interpolated the 

sediment thickness in any area in the study site and accordingly, the interpolated raster 

has been mapped as shown in Figure 21. 
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Figure 21. Interpolated sediment thickness in the study site (The map data were 

extracted from: http://atlas.lsu.edu) 

In Regression-Kriging, the interpolated sediment thickness at each GPS station 

was recorded from the raster for the OLS work as follows: 

Table 5. Interpolated sediment thickness at each GPS station (Unit: feet) 

GPS station Thickness 

GVMS 36.75794601440 

AWES 34.20343780520 

DQCY 2.09999990463 

CAMR 2.09999990463 

GRIS 18.06450653080 

TONY 12.52227115630 

ENG6 42.41160202030 

BVHS 19.37388038640 

LWES 39.00268173220 

THHR 14.75399875640 

COVG 50.97607040410 

HAMM 46.10993576050 
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Faulting 

The USGS website provides the faulting data in Louisiana, while the important 

attributes of faulting data from this website are nearly the same 

(http://earthquake.usgs.gov/hazards/qfaults/). Thus, if used, the faulting data reflect no 

clear variation for the faulting variable in the OLS model; therefore, these types of 

data will not be considered for OLS and Regression-Kriging in this chapter. 

Mass loading 

Mass loading, such as the loading of buildings, may cause subsidence. This 

contributing factor may be collected and quantified from the National Land Cover 

Database (NLCD). The NLCD website provides a classified image in the study site, 

which shows designated classes for mass loading constructed areas with low, medium, 

and high intensity, and this classified image was converted into a GIS map (Extracted 

from: http://www.mrlc.gov/nlcd2011.php). For the GIS map, the percentage of mass 

loading area in each census tract may be calculated by the ratio of the total 

constructed area and the total census tract area, as well as rasterized, into an image, as 

shown in Figure 22. 
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Figure 22. Percentage of the mass loading area in each census tract in the study site 

(Some map data were extracted from: 

http://atlas.lsu.edu&http://www.mrlc.gov/nlcd2011.php) 

Further, for the OLS work in Regression-Kriging, the mass loading data at one 

GPS station may be quantified by a percentage of mass loading that covers the area 

for the census tract in which this GPS station is located, as nearly all the census tracts 

in the study site have small areas; as a result, each pair of GPS stations is not 

necessarily located in the same census tract. Thus, the mass loading data at each GPS 

station may be quantified and recorded as shown in Table 6. 
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Table 6. Quantified percentage of the mass loading area at each GPS station 

GPS station Percentage of mass loading area 

GVMS 0.08964340000 

AWES 0.20841900000 

DQCY 0.12412500000 

CAMR 0.01025500000 

GRIS 0.00963580000 

TONY 0.88093900000 

ENG6 0.29752800000 

BVHS 0.00742552000 

LWES 0.20472900000 

THHR 0.65296100000 

COVG 0.37777900000 

HAMM 0.71174000000 

 

Distance to the sinkhole 

Prior research shows that disasters initiated by humans, such as mining disasters 

or sinkholes, can cause an accelerating subsidence, which in turn badly impacts lives 

(Kim et al. 2006; Kim et al. 2009; Oh and Lee 2010; Oh et al. 2011; Cusanza and Kris 

2013). As Chapter 3 shows, the Bayou Corne Sinkhole, having been formed by a 

carven collapse, caused adverse subsidence in the coastal area of Louisiana after 2012. 

These contributing factors to the sinkhole subsidence are similar to those for mining 

subsidence (Cusanza and Kris 2013; Jones and Blom 2014; Jones and Blom 2015). 

Thus, the distance to the sinkhole could represent a main contributing factor to the 

subsidence in the 2013 study site. The inverse distance from each GPS station to the 

sinkhole has been calculated in this dissertation (Kim et al. 2006; Kim et al. 2009; Oh 

and Lee 2010; Oh et al. 2011; Cusanza and Kris 2013). By IDW interpolation 

(Shepard and Donald 1968), these calculated inverse distances were used to rasterize 

into an image, as shown in Figure 23. 
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Figure 23. Interpolated inverse distance to the sinkhole in the study site (Some map 

data were extracted from: http://atlas.lsu.edu) 

 

For the OLS work in Regression-Kriging, the data for the sinkhole at one GPS 

station can be quantified by the inverse distance from the sinkhole to the coordinate at 

which this GPS station is located. Thus, the data for the sinkhole at each GPS station 

may be quantified and recorded as shown in Table 7. 
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Table 7. Inverse distance to the sinkhole at each GPS station (Unit: 1/km) 

GPS station Inverse distance to the sinkhole 

GVMS 0.024493 

AWES 0.054434 

DQCY 0.004408 

CAMR 0.004718 

GRIS 0.007068 

TONY 0.011112 

ENG6 0.008554 

BVHS 0.005433 

LWES 0.012885 

THHR 0.009350 

COVG 0.008826 

HAMM 0.011679 

 

4.3. Regression-Kriging 

4.3.1. OLS regression results 

The OLS regression of contributing factors to Louisiana subsidence, useful for 

analyzing the correlations of factors with subsidence, should be considered the first 

main step in the Regression-Kriging work. As Chapter 4.2 shows, five kinds of 

contributing factors involving a) groundwater, b) oil and gas, c) sediment, d) loading 

of buildings, and e) sinkholes were collected and quantified at all GPS stations in the 

study site. Additionally, the subsidence rates at these GPS stations were also 

calculated, based on a one-year observation (2013). Thus, for the OLS regression in 

this dissertation, quantifying contributing factors at GPS stations would be the 

independent variables, while subsidence rates at these GPS stations would be the 

dependent variables. The regression work would generate coefficients for contributing 

factors, with the P-values showing significance levels. As an important part of OLS 

regression results, coefficients and P-values may be generated, as shown in Table 8. 
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Table 8 The OLS results 

 Coefficient value P-value 

Groundwater 0.001407 0.277470 

Oil/gas 0.004534 0.088545 

Sediment 0.000304 0.058838 

Mass loading -0.001813 0.764078 

Sinkhole -0.344435 0.028043 

Intercept -0.012359 0.086861 

R-square 0.660775 - 

Adjusted R-square 0.378087 - 

 

This table shows the correlation of contributing factors with subsidence 

modeling by OLS. It also illustrates that the sinkhole (distance to the sinkhole) 

constitutes a significant factor for the study site in 2013 that is negatively correlated 

with subsidence. This significant correlation of sinkhole with subsidence may match a 

real subsidence situation at the same study site, as near Bayou Corne, Louisiana, an 

adverse sinkhole had emerged in 2012.While monitoring this disaster, an increasing 

subsidence area could be observed near Bayou Corne in 2013 (Cusanza and Kris 2013; 

Jones and Blom 2014; Jones and Blom 2015; Itasca 2013). 

4.3.2. Prediction raster of Louisiana subsidence patterns using Regression-Kriging 

Other than the OLS coefficients, the residuals at all the GPS stations were also 

generated. Based on the fundamental Regression-Kriging model, the residuals at these 

GPS stations should be collected for interpolation. Thus, in this dissertation, 

Empirical Bayesian Kriging was used to interpolate the OLS residuals, and the 

prediction of a spatial pattern for Louisiana subsidence may be generated based on the 

OLS coefficients and the interpolation raster of residuals. Based on the fundamental 
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Regression-Kriging model, the prediction of a Louisiana subsidence pattern can be 

generated by the equation as follows (Pebesma 2006; Hengl et al. 2004): 

Prediction raster for subsidence rates =  the OLS coefficient ∗

quantified raster for independent variables + interpolation raster of 

OLS residuals 

For this equation, the quantified raster for one contributing factor in Chapter 4.2 

should be used to multiply with the OLS coefficient to generate the drift, and the final 

prediction raster for subsidence rates can generate as follows, by summing the drift 

and interpolation of residuals (Hengl et al. 2004): 

 
Figure 24. Predicted subsidence rates in the study site using Regression-Kriging 

(Some map data were extracted from: http://atlas.lsu.edu) 

From this prediction raster, the spatial pattern for subsidence rates in the study 

site is similar to the 2013 KKF result in Chapter 3, based on comparisons. Like the 

2013 KKF raster (Figure 11), an area with a high speed of subsidence emerged near 
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Bayou Corne in 2013, and the highest speed for subsidence may be predicted at nearly 

10.8mm/year in some small areas around Bayou Corne. In accordance with 

Regression-Kriging, a high-speed subsidence area emerged near Lake Charles at 

nearly 10mm/year; yet in accordance with KKF, the subsidence speed near Lake 

Charles may be considered at nearly 20mm/year. 

Based on OLS regression, the Regression-Kriging prediction may be viewed as a 

consistent alignment with KKF results, due to an emergent area near Bayou Corne 

with a high-speed subsidence. This predicted high speed (nearly 10.8mm/year) closely 

matches the formal observation (10–20mm/year) (Itasca 2013). 

Further, other than generating the prediction raster, the prediction accuracy 

should also be calculated and analyzed (Hengl et al. 2004). Thus, the accuracy should 

be evaluated. Section 4.4 will show the accuracy evaluation results. 

4.4. Prediction accuracy using Regression-Kriging 

The work in Section 4.3 predicted a spatial pattern for the subsidence rates in 

Louisiana. The Regression-Kriging results were checked for consistency with the 

monitoring observation near Bayou Corne. The question remains as to the accuracy of 

the subsidence prediction work by Regression-Kriging. Thus, additional work should 

be implemented to quantify the prediction results. In this dissertation, important 

quantities for accuracy evaluation, such as the RMSE, served to calculate the 

prediction accuracy (Hung et al. 2011; Hengl et al. 2004). 

In regard to the prediction raster using Regression-Kriging, the subsidence rates 

at all coordinates in the study site may be predicted, and these subsidence rates may 
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be collected and recorded as predicted values. On the other hand, based on a research 

method used by Hengl et al. in 2004 for calculating prediction accuracy, six other 

GPS stations in the study site may be collected as the standard points in the following: 

 
Figure 25. Distribution of six GPS stations as the standard points in the study site 

(Some map data were extracted from: http://atlas.lsu.edu) 

In this map, similar to the work in Chapter 4.2, the subsidence rates for these six 

standard points may also be calculated, based on a one-year observation, and recorded 

as the standard values for accuracy evaluation (Hengl et al. 2004; Hung et al. 2011). 

The difference may be calculated as follows to show the accuracy at these standard 

points (Hung et al. 2011): 

Difference = Absolute value of (predicted value – standard value) 

Thus, in this dissertation, based on the research method used by Hung et al. in 

2011, the difference between the predicted value and the standard one at each GPS 

station was calculated and mapped, as shown in Figure 26. 
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Figure 26. Accuracy of the subsidence rates using Regression-Kriging predictions for 

each standard point in the study site (Unit: m/year) (Some map data were extracted 

from: http://atlas.lsu.edu) 

As the research by Hengl et al. indicates for accuracy comparisons, the 

interpolation of subsidence rates at standard points by Kriging (Empirical Bayesian 

Kriging) was displayed in Figure 14. The differences at these standard points were 

calculated and mapped as follows (Hengl et al. 2004; Kent and Dokka 2012): 
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Figure 27. Accuracy of the subsidence rates using Empirical Bayesian Kriging for 

each standard point in the study site (Unit: m/year) (Some map data were extracted 

from: http://atlas.lsu.edu) 

Further, Hengl et al.’s findings from 2004 showed that RSME may be used to 

calculate the prediction accuracy by Regression-Kriging. RSME may be formatted as 

follows (Hengl et al. 2004): 

RMSE= 
1

number  of  points
∗  (predicted value − standard value)2 

Thus, based on the difference (predicted value-standard value) for each standard 

point, the RSME value obtained via Regression-Kriging equals 5.95mm/year. 

Likewise, the RSME value obtained from Empirical Bayesian Kriging equals 

8.00mm/year. 

Prior research shows that for the accuracy evaluation of a soil variables 

prediction by Regression Kriging, the accuracy by Empirical Bayesian Kriging, or 

Kriging, was applied for comparisons, similar to the comparisons of this dissertation 
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(Hengl et al. 2004). The distribution maps of difference at standard points using 

Regression-Kriging (Figures 26 and 27) also show that the subsidence rates may not 

be accurately predicted for the GPS stations ―1LSU and ―LMCN.‖ Nevertheless, these 

predictions, with differences at nearly—or less than—2 mm/year, may prove to be 

more accurate than the ones obtained via Empirical Bayesian Kriging for most of the 

GPS stations, such as ―DSTR‖ and ―FSHS.‖ Further, for total prediction accuracy, the 

RSME value obtained through Regression-Kriging at 5.95 mm/year may be slightly 

smaller than the one at 8.00 mm/year from Empirical Bayesian Kriging. This smaller 

RMSE value also indicates that the subsidence prediction work by 

Regression-Kriging can be acceptable.  

Thus, this dissertation introduced Regression-Kriging to make a subsidence 

prediction for the spatial pattern generated from the data of contributing factors, an 

unprecedented selection not applied in former subsidence research. By means of 

Regression-Kriging, a spatial pattern of subsidence may be predicted accurately from 

contributing factors. This dissertation therefore provides a spatial points-to-area 

subsidence prediction based on Regression-Kriging. 

4.5. Summary and discussion 

In previous research, the spatial pattern of subsidence may be modeled by a 

common interpolation, such as Kriging (Kent and Dokka 2012). Such a model may 

generate a subsidence spatial pattern only from points of observed subsidence data, as 

well as from multiple other contributing factors. Yet the model may not be considered 

as sufficient auxiliary information necessary to generate an accurate spatial pattern 
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(Hengl et al. 2004). Thus, in this chapter, multiple kinds of factors contributing to 

subsidence, such as groundwater, oil/gas, sediment, loading of buildings, and 

sinkholes, were collected and quantified for Regression-Kriging. The 

Regression-Kriging work was based on the OLS regression between points of 

observed subsidence and contributing factors, together with an interpolation of 

residuals. The prediction raster known as the Regression-Kriging result may be 

checked consistently with the formal organizational observation, due to the predicted 

high subsidence rate at nearly 10.8mm/year near Bayou Corne, Louisiana (Itasca 

2013). Additionally, the higher prediction accuracy of Regression-Kriging than that of 

Empirical Bayesian Kriging shows that this dissertation provides an acceptable, 

spatial points-area prediction work of subsidence a) using the data of contributing 

factors, and b) by the common subsidence research found with Regression-Kriging. 

As a research method based on OLS regression, the model was introduced to spatially 

predict subsidence. 

The Regression-Kriging prediction is acceptable, yet future improvement is 

possible. One clear area for improvement lies in the minimal amount of six standard 

points for accuracy evaluation, which caused the prediction results to be less 

statistically accurate. Thus, an increase in standard GPS stations of data collection is 

recommended for accuracy evaluation in the future. 
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Chapter 5 Regionalization of Contributing Subsidence Factors by 

GWR 

 

5.1. GWR and its application in land subsidence modeling 

As demonstrated in the research methodology chapter, the equations for GWR 

(Fotheringham et al. 2002; Shang et al. 2011) are as follows: 

y(g) = 𝜷𝟎(g)+𝜷𝟏(g) 𝒙𝟏+𝜷𝟐(g)𝒙𝟐+…+𝜷𝒏(g)𝒙𝒏+ ε 

β= (𝑿𝑻𝑾(𝒈)𝑿)−𝟏(𝑿𝑻𝑾(𝒈)𝒀) 

y is the dependent variable, , ,…  are predictor variables, g is the known 

coordinates for observation points (Fotheringham et al. 2002; Shang et al. 2011), β are 

the varied coefficients as the GWR results (Fotheringham et al. 2002; Shang et al. 

2011), and W(g) is usually defined by a Gaussian function (Fotheringham et al. 2002; 

Shang et al. 2011). 

To show the spatial heterogeneity of Louisiana subsidence in this dissertation, 

GWR will be based on multiple contributing factors to subsidence. These contributing 

factors were collected and quantified as predictor variables, while data for a 

subsidence rate were used as the dependent variable (Shang et al. 2011). The spatial 

heterogeneity feature for Louisiana land subsidence, when reflected clearly by GWR, 

enables the formation of location-based, hazard mitigation policies in land subsidence 

for the Louisiana state government. 
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5.2. Data collection and factor quantification 

Prior research findings showed that the ordinary factors for subsidence rates 

should be a) groundwater level variations, b) oil and gas pumping, c) sediment, and d) 

faulting and mass loading (Shang et al. 2011; Abdollahzadeh et al. 2013). The 2012 

disaster of the Bayou Corne Sinkhole caused an accelerated subsidence at the study 

site. Therefore, the distance to the sinkhole is considered a contributing factor, 

especially for the nearby areas. The census tracts of the coastal Louisiana are used as 

the basic geographic unit for the spatial statistics, as shown in the following map: 

 
Figure 28. Study site with 736 census tracts, green points: GPS stations (Some map 

data were extracted from: http://atlas.lsu.edu) 

The factor data were collected and mapped to these 736 census tracts. The 

following paragraphs describe how the data were collected. 
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Groundwater level change 

Groundwater withdrawn by human activity has not been measured directly. 

However, former research by Shang et al. in 2011 shows that many areas of 

subsidence strongly relate to the groundwater level variations, based on their GWR 

modeling results (Shang et al. 2011; Abdollahzadeh et al. 2013). Thus, groundwater 

level change data were collected from the USGS website for groundwater level data 

in the study site: (http://groundwaterwatch.usgs.gov/). Changes in the groundwater 

levels for all available wells in 2013 were recorded. Based on these wells, an 

interpolation process employing the IDW method was used (Shang et al. 2011; 

Shepard and Donald 1968). This interpolation raster result shows the predicted 

distribution for average changes in the groundwater level at the study site. The 

average raster values enclosed by each census tract were calculated for each tract, as 

shown in the following map (Figure 29). 
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Figure 29. Average change in the groundwater level for census tracts in 2013 (unit: 

feet, natural break classification into 5 intervals) (Some map data were extracted from: 

http://atlas.lsu.edu) 

Oil and gas pumping 

Oil and gas data were obtained from the SONRIS website (Extracted from: 

http://sonris.com&http://sonris-www.dnr.state.la.us/gis/agsweb/IE/JSViewer/index.ht

ml?TemplateID=181). 

Based on data from the SONRIS website, the density of pumping wells for each 

census tract at the study site was calculated, as shown in the following map (Figure 

30). It must be noted that the productivity of the wells is not known from the data, 

although that information could be helpful to interpret the oil and gas pumping data. 
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Figure 30. Density of oil and gas pumping wells for census tracts in 2013 (natural 

break classification into five intervals) (Some map data were extracted from: 

http://sonris.com&http://sonris-www.dnr.state.la.us/gis/agsweb/IE/JSViewer/index.ht

ml?TemplateID=181&http://atlas.lsu.edu) 

Sediment: 

The SONRIS website 

(http://sonris-www.dnr.state.la.us/gis/agsweb/IE/JSViewer/index.html?TemplateID=1

81) provides sediment sampling data to download. Lima et al. (2003) illustrated the 

application of sediment interpolation by GIS, and the authors also showed that 

attributes of sediment, such as chemical elements and sample thicknesses, may be 

spatially correlated in a small area (Lima et al. 2003). All sampling sites of data were 

interpolated using Empirical Bayesian Kriging (Olea 1999).  

The thickness of the sediment samples reflects the sediment compaction feature 

that can be correlated with the subsidence in the coastal area of Louisiana (Sclater and 

Christie 1980; Abdollahzadeh et al. 2013). The average thickness of the sediment was 
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applied at the census tracts as the sediment factor for land subsidence analysis (The 

sediment data were extracted from: 

http://sonris.com&http://sonris-www.dnr.state.la.us/gis/agsweb/IE/JSViewer/index.ht

ml?TemplateID=181) (Figure 18). 

 
Figure 31. Average thickness of clay-sand mixture samples for census tracts (unit: feet, 

natural break classification into five intervals) (The map data for sediment were 

extracted from: 

http://sonris.com&http://sonris-www.dnr.state.la.us/gis/agsweb/IE/JSViewer/index.ht

ml?TemplateID=181; Some map data were extracted from: http://atlas.lsu.edu) 

 

Faulting 

Faulting data were downloaded from the USGS earthquake data website 

(http://earthquake.usgs.gov/hazards/qfaults/). The faulting data contain attributes of 

rates, years, and moving directions of faulting in Louisiana. However, due to the scale 

of the faulting phenomenon, all census tracts in the coastal Louisiana have almost the 
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same values in the attributes. This variable worked as the intercept. Therefore, the 

faulting data were not included in the regression formulas.  

Mass loading 

The excessive weight of buildings expedites the downward motion of land. The 

mass loading from buildings in the study area is considered one of the factors leading 

to subsidence (Abdollahzadeh et al. 2013)., The image classification produced by the 

USGS Land Cover Institute (LCI) in the study site was extracted from the National 

Land Cover Database (NLCD) website (Extracted from: 

http://www.mrlc.gov/nlcd2011.php). 

In regard to classified thematic data collected from the NLCD website, the 

classes for human constructions of low, medium, and high intensity were extracted 

and then converted into a GIS map for the census tracts (Extracted from: 

http://atlas.lsu.edu/&http://www.mrlc.gov/nlcd2011.php). Based on this GIS map, the 

ratio of the total constructed land and the total area of each census tract was calculated 

as the mass loading factor, as shown in the following map (Figure 32). 
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Figure 32. Percentage of mass loading area for each census tract (natural break 

classification into 5 intervals) (Some map data were extracted from: 

http://atlas.lsu.edu/&http://www.mrlc.gov/nlcd2011.php) 

Distance to the sinkhole 

The literature shows that certain human activities, such as mining accidents, can 

cause adverse subsidence in our living area (Kim et al. 2006; Kim et al. 2009; Oh and 

Lee 2010; Oh et al. 2011). In addition, former research revealed that a) the depth and 

distance from drift, b) DEM and slope gradient, c) groundwater permeability, and d) 

geology and land use are the main factors for mining subsidence (Kim et al. 2006; 

Kim et al. 2009; Oh and Lee 2010; Oh et al. 2011; Coal Industry Promotion Board 

1997; Coal Industry Promotion Board 1999). 

The Bayou Corne Sinkhole, formed by a cavern collapse, also caused an 

accelerated subsidence at the study site for a period of time after the sinkhole year 

2012 (Cusanza 2013; Jones and Blom 2014; Jones and Blom 2015). The factors for 
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sinkhole subsidence should be very similar to those for mining subsidence. Prior 

research also shows that many factors, such as the distance to the sinkhole and 

sinkhole depth, can contribute to an accelerating subsidence (Kim et al. 2006; Kim et 

al. 2009; Oh and Lee 2010; Oh et al. 2011; Cusanza 2013; Jones and Blom 2014; 

Jones and Blom 2015;). Thus, besides the common factors, the inverse of the distance 

to the sinkhole was also calculated as a factor (Figure 21). 

 
Figure 33. Inverse distances from the Bayou Corne Sinkhole location to the 

geographic center of each census tract in the study site (unit: 1/km, natural break 

classification into five intervals) (Some map data were extracted from: 

http://atlas.lsu.edu) 

5.3. GWR results 

The GWR analysis was supported by the ArcGIS software. All the above factors 

were used as independent variables. The interpolated space-time elevation change 

data were used as the dependent variable (Figure 32). 
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Figure 34. Average subsidence rate for each census tract in 2013 (unit: m per year, 

natural break classification into five intervals)(Some map data were extracted from: 

http://atlas.lsu.edu) 

 

The local R-squared values and the coefficients for each census tract are shown 

in Figures 32–38, following the research example of Xu and Wang (2015) 
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Figure 35. Local R square values for census tracts (Some map data were extracted 

from: http://atlas.lsu.edu) 

 

 

Figure 36. Intercept for census tracts (Some map data were extracted from: 

http://atlas.lsu.edu) 
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Figure 37. Oil/gas coefficients for census tracts (Some map data were extracted from: 

http://atlas.lsu.edu) 

 
Figure 38. Mass loading (buildings) coefficients for census tracts (Some map data 

were extracted from: http://atlas.lsu.edu) 
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Figure 39. Sediment coefficients for census tracts (Some map data were extracted 

from: http://atlas.lsu.edu) 

 

Figure 40. Sinkhole coefficients (inverse distances to sinkhole location) for census 

tracts (Some map data were extracted from: http://atlas.lsu.edu) 
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Figure 41. Groundwater coefficients for census tracts (Some map data were extracted 

from: http://atlas.lsu.edu) 

5.4. Goodness of fit for the GWR model 

From the GWR output report, the average R-squared value is approximately 

0.6650 (60.50%), and the adjusted R-squared value is approximately 0.6583 (65.83%). 

The spatially varied coefficients for various factors are calculated in Table 2, 

following the previous research examples (Shang et al. 2011; Xu and Wang 2015). 
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Table 9. Modeling results using GWR 

 

 25% quartile 50% quartile 75% quartile 

Intercept 0.010387 0.011762 0.012591 

Oil/gas -0.010249 0.011426 0.012289 

Mass loading -0.003346 -0.002593 -0.002250 

Sediment -0.000247 -0.000232 -0.000220 

Sinkhole -0.123039 -0.118171 -0.100977 

Groundwater -0.001400 -0.000982 -0.000830 

 

Based on the same set of data in the GWR model, modeling results were 

generated using OLS. By comparing the GWR results to the OLS results, the total 

R-squared value obtained by GWR (about 0.6650) is much greater than that of the 

OLS (0.1681). This indicates that the GWR model explained more variability in the 

land subsidence. This is consistent with previous research (Shang et al. 2011; Xu and 

Wang 2015). Additionally, the GWR results (Figure 35) also show that the local 

R-squared values for census tracts vary spatially. The R-squared values in the study 

site range from 0.350872 (about 35.09%) to 0.844445 (about 84.44%), showing clear 

spatial heterogeneity in the study area (Fotheringham et al. 2002; Shang et al. 2011; 

Xu and Wang 2015). 

For each factor contributing to the subsidence, such as groundwater, oil/gas, 

sediment, building loading, and inverse distance from the sinkhole location, Table 9 

shows that all the coefficients for census tracts considerably vary spatially, with clear 
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spatial heterogeneity for the contributing factor weights. The maps for GWR results 

also depict clear spatial clusters for each coefficient, indicating that there may be a 

spatial dependency of the land subsidence phenomenon in this research area (Shang et 

al. 2011; Xu and Wang 2015; Knegt et al. 2010).  

Figure 37 illustrates that the oil/gas coefficients for nearly all the census tracts at 

the study site are insignificant. This result is inconsistent with the previous research 

by Abdollahzadeh et al. (2013). It may be that in the process of collecting oil/gas data, 

the important production data and the capacity data of wells were not collected for use 

in this research (Extracted from: http://sonris.com). This reflects the limitation of this 

research, due to data availability. Should the findings reflect production data, the 

modeling results may show improved significance levels. 

Figure 38 shows that the buildings’ loading coefficients are mostly significant, 

although some green-colored polygons in the figure represent census tracts with 

non-significant coefficients. The negative sign for the coefficients shows that a greater 

percentage of the building loading area may contribute to the downward motion of 

land (negative value) in the coastal area of Louisiana (Abdollahzadeh et al. 2013). In 

addition, the higher absolute values for this coefficient, found in the Baton Rouge area, 

reveal that the impact of buildings loading on the subsidence becomes clearly larger 

than for other areas in the study site. For the coastal areas, the smaller absolute value 

of the coefficient indicates a smaller impact on subsidence, due to much lessloading 

of buildings. 

Figure 39 shows that for nearly all the census tracts in the study site, the 
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sediment coefficient is significant. This finding is in agreement with previous research 

(Abdollahzadeh et al. 2013). Further, the negative value for the sediment compaction 

coefficient shows that the subsidence rate and the sediment factor are negatively 

correlated. This negative correlation can be explained: In the process of sediment 

formation, a greater thickness for the sediment sample indicates a more significant 

compaction process, which in turn causes obvious subsidence (Sclater and Christie 

1980) Further, the higher absolute value for this coefficient in Figure 36 shows a 

clearly larger impact of sediment on subsidence from north to south for the central 

area in the study site, while for other areas, such an impact on subsidence would be 

less important. 

Figure 40 shows that the sinkhole coefficient is significant for nearly all the 

census tracts in the study site, except for those located far from the Bayou Corne 

sinkhole (Cusanza 2013). The negative sign of the coefficients suggests that when the 

distance was closer, the land subsidence rate became higher. This correlation is 

consistent with the continually expanding situation of the Bayou Corne Sinkhole, as 

reported by monitoring reports since August of 2012 (Cusanza 2013; Jones and Blom 

2014; Jones and Blom 2015). Additionally, the coastal census tracts near the 

Assumption Parish sinkhole location display evidence of higher absolute values for 

this coefficient. In turn, the evidence for these census tracts reveals a much larger 

impact of sinkholes on subsidence (Cusanza 2013). 

Finally, Figure 41 shows that the groundwater coefficients for nearly all the 

census tracts are significant with several exceptions (green-colored polygons). The 
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correlation between the subsidence rate and the groundwater factors is positive for 

many census tracts, although this correlation remains negative for other census tracts 

in the study site. Shang et al. indicated that either the positive correlation or the 

negative correlation can be explained, as different layers of groundwater aquifers may 

cause different correlations (Shang et al. 2011). Their findings show that the 

correlation can be positive in some areas, as the decreasing groundwater level will 

cause an increasing internal pressure for the unconfined aquifer in these areas; as a 

result, the internal pressure can make the aquifer compress and the ground move 

downward. The correlation can also be negative in other areas, as the confined aquifer 

in these areas may uplift due to a decreased loading of the unconfined aquifer (Shang 

et al. 2011; Dokka 2006; Kent and Dokka 2012). Thus, in Figure 41, the positive 

values for this coefficient in the census tracts around Lake Charles demonstrate a 

large impact of unconfined aquifers on subsidence. Yet in census tracts around Baton 

Rouge, this coefficient becomes negative, due to data showing that the impact on 

subsidence could clearly be larger for confined aquifers than unconfined aquifers. 

Thus, findings indicate that the modeling results from GWR show spatially 

varying R-squared values and factor coefficients for the census tracts in the study site. 

The spatial heterogeneity of the factors may be used to form location-based, land 

subsidence, hazard mitigation policies. For example, those areas shown with high, 

negative coefficients of the building mass loading factor (red-colored polygons) in 

Figure 38 would aid in the avoidance of excessive construction. 
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5.5. Regionalization of GWR results 

As Chapter 5.4 shows, the GWR results clearly reflect a spatial heterogeneity 

feature for most kinds of contributing subsidence factors, underscored with significant 

levels of GWR coefficients. The coefficient for each contributing factor is 

significantly space-related, which could aid in location-based land subsidence policies 

if regionalized by GIS to mitigate the disasters caused by land subsidence. Thus, in 

the regionalization process that follows, the work for regionalization of GWR results 

should be accomplished when combined into region-related classes with multiple 

contributing factors (Xu and Wang 2015). 

Chapter 5.4 also shows space-related significance levels for each kind of 

contributing subsidence factor in the study site, such as groundwater, sediment, the 

loading of buildings (mass loading), and sinkholes. Based on the research findings of 

Xu and Wang in 2015, these four kinds of contributing factors for subsidence were 

combined into six region-related classes as follows: Each class by combination can 

represent one sub-region in the study site, and the entire study site can be covered by 

these six sub-regions (Xu and Wang 2015). 

Table 10. Six region-related classes by the combination of four kinds of contributing 

subsidence factors 

Class name Buildings loading Sediment Sinkhole Groundwater 

Class 1 Not significant Not significant Not significant Positive 

Class 2 Not significant Negative Negative Positive 

Class 3 Not significant Negative Not significant Positive 

Class 4 Negative Negative Negative Positive 

Class 5 Negative Negative Negative Negative 

Class 6 Negative Negative Negative Not significant 
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In this table, ―positive‖ means the positive and significant correlation with 

subsidence for one contributing factor; likewise, ―negative‖ means the negative and 

significant correlation, while ―not significant‖ means no significant correlation with 

subsidence for this factor. 

Thus, based on the research method used by Xu and Wang in 2015, these six 

combinations (classes) for four kinds of contributing subsidence 

factors—groundwater, sediment, the loading of buildings, and sinkholes—the 

regionalization results for all six sub-regions can be mapped in the study site as 

follows: 

 
Figure 42. Regionalization of contributing subsidence factors in the study site (Some 

map data were extracted from: http://atlas.lsu.edu) 

In this map showing the regionalization results, six sub-regions represent ―Class 

1,‖ ―Class 2‖…―Class 6;‖ these are colored and named ―Region 1,‖ ―Region 

2‖…―Region 6,‖ for discussion. 
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Region 1, representing Class 1 and colored orange in the left-hand side of Figure 

42, shows the City of Lake Charles in this region. As Table 10 shows, all subsidence 

factors were insignificant, except for groundwater. The positive correlation for the 

groundwater factor shows that the decreasing groundwater levels at the unconfined 

aquifers could easily cause a main subsidence for Region 1, due to increasing internal 

pressure for these aquifers (Shang et al. 2011). 

Region 2 (yellow-colored) is located near Region 1, and Table 10 shows that 

sediment, sinkholes, and groundwater are significant factors for the main subsidence 

in this region. The negative correlation for sediment and sinkholes, and the positive 

correlation for groundwater in Table 10 demonstrate that the main subsidence in 

Region 2 could be caused by sediment compaction, the Bayou Corne Sinkhole, and 

decreasing groundwater levels in the unconfined aquifers (Sclater and Christie 1980; 

Cusanza and Kris 2013; Shang et al. 2011). 

Region 3, colored purple, is near Regions 1 and 2. For this region, the GWR 

results show that two factors, sediment and groundwater, are significant. A negative 

correlation for sediment, coupled with a positive correlation for groundwater, reveals 

that we should control not only an adverse sediment compaction, but also decreasing 

levels existing at unconfined groundwater aquifers, to deal with subsidence problems 

in this region. 

Region 4, colored pink, is the smallest sub-region in the study site. This area 

represents Class 4 in Table 10. The main subsidence in this region was caused by all 

four factors—mass loading (loading of buildings), sediment, sinkholes, and 
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groundwater. Similar to Region 2, sediment compaction, the Bayou Corne Sinkhole, 

together with decrease of water in unconfined groundwater aquifers could be the main 

contributing factors to adverse subsidence (Shang et al. 2011). Yet, unlike Region 2, 

the loadings of buildings in Region 4 might also be related to adverse subsidence, in 

addition to the same contributing factors. 

The largest sub-region in the study site, blue-colored Region 5, also has four 

significant contributing subsidence factors, similar to Region 4. Baton Rouge and 

New Orleans, two large Louisiana cities, are located in this region. Similar to Region 

4, Region 5 has the same correlations for the loading of buildings, sediment, and 

sinkhole. The opposite and negative correlations for groundwater in Region 5 mean 

that main subsidence in this region might also be caused by increasing levels in 

confined groundwater aquifers, rather than decreasing ones in unconfined 

groundwater aquifers for Region 4 (Shang et al. 2011). 

Region 6, depicted in green, represents Class 6 and is mainly located in the 

coastal area near New Orleans. Unlike the other five sub-regions in the study site, the 

groundwater factor for Region 5 was insignificant. In addition, the negative 

correlations for the other three contributing factors indicate that the loading of 

buildings, sediment compaction, and the Bayou Corne Sinkhole could cause main 

subsidence in this region. 

Thus, based on the GWR results, the entire study site, classified as six 

sub-regions, is based on different combinations of contributing subsidence factors. 

This regionalization work seeks to form location-based policies to mitigate the 
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adverse subsidence in the coastal area of Louisiana. The Louisiana state government 

can apply these policies to control subsidence-related problems. The regionalization 

work in this dissertation shows that governmental location-based policies are possible. 

Each combination of all contributing factors serves to represent a unique policy for a 

singular sub-region in the study site. Thus, for these six sub-regions (Regions 1–6), 

six different policies could be formed to control subsidence concerns. For example, to 

deal with adverse subsidence in Region 1, meaningful policies would control the 

impact of decreasing levels in unconfined groundwater aquifers. For Region 2, 

different polices could address adverse subsidence. Such a policy ought to control not 

only the groundwater impact in the unconfined aquifers, but also the strong impacts of 

both sediment compaction and the Bayou Corne Sinkhole. 

5.6. Summary and discussion 

The GWR model modeled the factors that contributed to subsidence in the study 

site. The modeling results demonstrated that the GWR model can be advantageous to 

map the spatial heterogeneity of the regression models by producing spatially varied 

local R-squared values and coefficients of the factors (Xu and Wang 2015; Shang et al. 

2011).Based on the GWR results, regionalization work was done to create 

location-based subsidence mitigation policies for the study site. The study site was 

classified into six sub-regions by regionalization. Each sub-region presented a unique 

combination of contributing subsidence factors. As a result, the policy for each 

sub-region can uniquely address the adverse subsidence, thereby making 

location-based subsidence policies for government possible. 
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The regionalization results in this dissertation show that the GWR model can be 

useful for developing location-based subsidence policies, yet flaws in the GWR 

modeling process for factors were identified. One flaw was that in the quantification 

of oil and gas data, researchers collected only the well data related to the well 

distribution, not the production data for each well. The well production data 

contribute directly to subsidence; thus, for oil/gas wells, well density—rather than 

production—is considered an independent variable in the factor modeling process. 

The modeling results not only show that the oil/gas coefficient is insignificant, but 

these results do not match prior research (Abdollahzadeh et al. 2013; Wang et al. 

2014).  
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Chapter 6 Conclusions and Summary 
 

6.1. Research conclusions 

This research consisted of two main stages. First, GPS data were processed by a 

spatial temporal interpolation model to map land surface motion. In the second stage, 

spatial statistical models related the direction and magnitude of land surface motion to 

five selected factors. 

6.1.1. Conclusions on the spatial temporal data model 

GPS data were obtained from Louisiana stations by the public domain data server. 

The data were then processed to create point maps and time series of elevation data on 

those particular stations. Finally, the KKF was applied to interpolate the point data. 

The first conclusion involves the line regression fitting on the time series data, 

which produced the land elevation change rate (mm/year), proven to be both effective 

and valid. In a further validation by Bayou Corne Sinkhole knowledge, the final KKF 

results shown in Chapter 3 rest on the yearly distribution of subsidence rates.  

The second conclusion of the GPS data process applies the KKF to the GPS data. 

The KKF results show a significantly accelerating subsidence area near Bayou Corne. 

These results were validated by the Bayou Corne Sinkhole knowledge, as well. 

The third conclusion is that the KKF can be useful for detecting and monitoring 

ground movement in related disasters near bayou areas, such as sinkholes. The 

integrated spatial and temporal interpolation from KKF captured the subtle surface 

elevation change when measured by a high-precision GPS. 

 



90 
 

6.1.2. Conclusions from the factor modeling results 

Regression-Kriging, a model based on OLS regression and Kriging interpolation, 

was used to predict the spatial pattern for subsidence rates in 2013. The first 

conclusion is that Regression-Kriging is effective in modeling the land subsidence 

rate. The data are inclusive of such factors as groundwater, oil/gas, sediment, the 

loading of buildings, and sinkholes. 

This spatial pattern is similar to the 2013 KKF results in Chapter 3 and is drawn 

from the predicted high subsidence rate near Bayou Corne—one which 

approaches10.8mm/year. Furthermore, in regard to accuracy, the Regression-Kriging 

prediction is more accurate than that of Empirical Bayesian Kriging. Thus, an 

acceptable subsidence prediction is provided by this dissertation based on OLS 

regression. 

A second conclusion is that in modeling contributing factors to subsidence, the 

GWR model is more advantageous than a global OLS regression model. The 

modeling results indicate that there is clear, spatial heterogeneity for subsidence data 

in the study site. Not only are the local R-squared values for the census tracts spatially 

varied, but the coefficients for each type of contributing factor are spatially varied as 

well. Furthermore, the GWR results differ substantially from the OLS results, which 

further indicates clear spatial heterogeneity in the subsidence models. In viewing the 

results, GWR may be considered the more advantageous model. 

The third conclusion is that the regionalization work in this dissertation can be 

helpful in forming location-based policies for the government to mitigate subsidence 
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problems. Based on the GWR results, the regionalization work classified the entire 

study site into six sub-regions, which in turn represent six different combinations for 

contributing subsidence factors. Thus, the regionalization results show that although 

the combination of contributing factors for each sub-region may be unique, a policy 

can also become unique to deal with an adverse subsidence for each sub-region. This 

process would permit location-based policies. 

6.2. Final summary and future work 

The land subsidence problem has received much attention in Louisiana. For this 

research, GPS data mapped the adverse situation of land subsidence, particularly in 

coastal Louisiana. Based on the data analyses estimation, this study suggests that in 

the near future, the State of Louisiana will experience substantial land loss caused by 

land subsidence. Thus, the people of Louisiana should focus keenly on this subsidence 

study, taking positive actions to prevent serious subsidence in the coastal area. 

After the subsidence problem was presented, the literature review revealed the 

recent research progress on subsidence done by researchers. A major section of the 

literature review involves subsidence observation and prediction. This section 

presents three kinds of common observation techniques. These techniques consisting 

of leveling, GPS, and InSAR were previously discussed with respect to the different 

advantages and flaws (Lu, C. et al. 2012). Additionally, combinations of these 

techniques focused on improving the observation levels for subsidence. The KKF 

model has also been introduced as a new method to process subsidence data (Mardia 

et al. 1998). 
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Another section of the literature review involved modeling the factors 

contributing to subsidence. The findings indicated that the contributing factors 

presented by prior research were the groundwater level, oil and gas pumping, 

sediment compaction, faulting, and mass loading (Abdollahzadeh et al. 2013). 

Previous modeling methods on subsidence factors were discussed; most of the 

modeling processes either lacked local views or drew a conclusion for spatial 

heterogeneity (Fotheringham et al. 2002; Shang et al. 2011). 

Based on the literature review, research questions and a research workflow were 

proposed. The main research workflow involves two important research techniques of 

KKF processing and factor modeling, such as Regression-Kriging and GWR. Thus, in 

the following chapters, these two techniques and their subsequent applications on 

subsidence data were discussed, together with instructions on how to use these 

techniques to process Louisiana’s subsidence data. 

Chapter 3 shows that KKF can be a valid method to interpolate subsidence rates 

in coastal Louisiana by means of incorporating time series GPS data in a Kriging 

interpolation (Mardia et al. 1998; Kalman 1960). 

Regression-Kriging, used in Chapter 4, was based on OLS regression to predict 

the spatial pattern for subsidence rates in 2013. This study modeled contributing 

factors, thus providing a subsidence prediction work and thereby achieving acceptable 

prediction results. 

In Chapter 5, the modeling results showed that GWR can be advantageous for 

factor modeling. As a result, the regionalization work based on these GWR results 
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could be instrumental in forming location-based policies toward mitigating adverse 

subsidence. 

Although this study has produced new progress on subsidence research in coastal 

Louisiana, there are also flaws or defects in the data and models that could be 

improved in future research. The first instance is found in the collection of oil and gas 

data for factor modeling, as only the well data on the distribution online could be 

collected. In the future, should the production data for each well be collected, the 

modeling results may then reflect an explainable coefficient for the oil and gas 

pumping factor, showing a more significant level. 

The second instance is that the faulting data were not considered in the factor 

modeling process due to the fact that spatial heterogeneity for faulting data could not 

be found in the study site; thus, future work may focus on how to quantify the faulting 

data with other knowledge. This improvement could produce more contributing 

factors for the factor modeling process. 

The third instance is that the building mass loading data were approximated 

using the land cover data from the National Land Cover Database. However, the land 

cover data only indicate whether the land is highly constructed and the accuracy is 

questionable. Thus, future work may choose to focus on how to more accurately 

quantify the loading, based on better sources of remote sensing images. 

The fourth instance is that the KKF results were only checked by the Bayou 

Corne Sinkhole knowledge for a consistency to validate these results. The consistency 

was checked in a small area around Bayou Corne, while the KKF results were not 
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validated in the whole study site due to the lack of available subsidence data from the 

other kinds of observations. Thus, for future work, the InSAR data in the same study 

site can be collected to show the subsidence pattern, and the validation of the whole 

study site can be made if this subsidence pattern by InSAR is available. 

The fifth instance is that only six GPS stations as the standard points were used 

to calculate the prediction accuracy using Regression-Kriging. Thus, more GPS 

stations as standard points can be used to calculate the prediction accuracy in future 

work, and this work may show higher accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



95 
 

References 

Abdollahzadeh, M.; Dixon, T. H.; Malservisi, R. Geodetic subsidence rate in coastal 

Louisiana. American Geophysical Union, Fall Meeting 2013. December 2013. 

 

Addison Paul S. The Illustrated Wavelet Transform Handbook, Institute of Physics, 

2002. 

 

Anselin, L., A. K. Bera, R. Florax, and M. J. Yoon. GeoDa: An Introduction to Spatial 

Data Analysis. Geographical Analysis 38 (1): 5-22. 

 

Baller, R. D., L. U. C. Anselin, S. F. Messner, G. Deane, and D. F. Hawkins. 2001. 

Structural Covariates of U. S. County Homicide Rates: Incorporating Spatial 

Effects. Criminology 39 (3): 561-588. 

 

Blom, R. G., Chapman, B. D., Dokka, R. K., Fielding, E. J., Hensley, S., Ivins, E. R., 

Lohman, R. B. Hazards of gulf coast subsidence: crustal loading, geodesy, 

InSAR and UAVSAR observations. American Geophysical Union, Fall Meeting 

2009. December 2009. 

 

Brodie, Kate, Fettes, Douglas, Harte, Ben, Schmid, Rolf (29 January 2007). Structural 

terms including fault rock terms. International Union of Geological Sciences. 

 

Burgmann, R., Rosen, P.A., Fielding, E. J. (2000), ―Synthetic aperture radar 

interferometry to measure earth’s surface topography and its deformation‖, 

Annual Review of Earth and Planetary Sciences 28, pp. 169-209. 

 

Carolina Pagli, Freysteinn Sigmundsson, Thora Arnadottira, Pall Einarsson, Erik 

Sturkell. Deflation of the Askja volcanic system: Constraints on the deformation 

source from combined inversion of satellite radar interferograms and GPS 

measurements. Journal of Volcanology and Geothermal Research, 2006. 152, 

97–108. 

 

 

 



96 
 

CHEN Beibei, GONG Huili, LI Xiaojuan, LEI Kunchao, ZHANG Youquan, LI Jiwei, 

GU Zhaoqin, DANG Yanan. Spatial-temporal characteristics of land 

subsidencecorresponding to dynamic groundwater funnel inBeijing municipality, 

China. Chin. Geogra. Sci., 2011. 21(6), 753–764. 

 

Coal Industry Promotion Board, CIPB (1997). A study on the mechanism of 

subsidence over abandoned mine area and the construction method of subsidence 

prevention. Coal Industry Promotion Board, Seoul, 97-06, pp 1-67. 

 

Coal Industry Promotion Board, CIPB (1999). Fundamental investigation report of the 

stability test for Gosari. Coal Industry Promotion Board, Seoul, 99-06, pp 7-22. 

 

Cusanza, Kris. ―Bayou Corne evacuation could last for years‖ NBC 33. Retrieved 24 

July 2013. 

 

Daniel R. Roman, Yan Ming Wang, William Henning, and John Hamilton. 

Assessment of the New National Geoid Height Model, GEOID03. 2004 

ACSM/TAPS Conference and Technology Exhibition. Nashville, Tennessee, 

April 16-21, 2004. 

 

Dempster, A.P.;Laird, N.M.;Rubin, D.B.. Maximum Likelihood from Incomplete Data 

via the EM Algorithm. Journal of the Royal Statistical Society.1977. Series B 39 

(1): 1–38. 

 

Dokka, R. K.Modern-day tectonic subsidence in coastal Louisiana. Geol, 2006. 34(4), 

281–284. 

 

DOLEŽALOVÁ Hana, KAJZAR Vlastimil, SOUÈEK Kamil, STAŠ Lubomir. 

Evaluation of mining subsidence using GPS data. Acta Geodyn. Geomater., 2009. 

Vol. 6, No. 3 (155), 359–367. 

 

Forsberg, R., Skourup, H. Arctic Ocean gravity, geoid and sea-ice freeboard heights 

from ICESat and GRACE. Geophysical Research Letters, 2005, 32(21), L21502. 

 

 



97 
 

Fotheringham A. S., C. Brunsdon C, Charlton M. Geographically Weighted 

Regression: The analysis of spatially varying relationships. Wiley, 2002. 

 

Freedman David A. (2009). Statistical Models: Theory and Practice. Cambridge 

University Press. 

 

Gabriele Bitelli, Flavio Bonsignore, Marco Unguendoli. Levelling and GPS networks 

to monitor ground subsidence in the Southern Po Valley. Journal of 

Geodynamics,2000. 30, 355-369. 

 

Ge L. Development and testing of augmentations of continuously-operating GPS 

networks to improve their spatial and temporal resolution, PhD Thesis, School of 

Surveying and Spatial Information Systems, The University of New South Wales, 

Sydney NSW 2052, AUSTRALIA, UNISURV S-63, xvi+230pp. 

 

Ge Linlin, Cheng Eric, Li Xiaojing, and Rizos Chris. Quantitative subsidence 

monitoring the integrated InSAR, GPS and GIS approach. The 6th International 

Symposium on Satellite Navigation Technology Including Mobile Positioning & 

Location Serivces Melbourne, Australia, 22–25 July 2003. 

 

Geisser, Seymour (1993). Predictive Inference. New York, NY: Chapman and Hall. 

ISBN 0-412-03471-9. 

 

Hasanuddin Z. Abidin, H. Andreas, Rochman Djaja,Dudy Darmawan, M. Gamal. 

Land subsidence characteristics of Jakarta between 1997and 2005, as estimated 

using GPS surveys. GPS Solut, 2008, 12, 23–32. 

 

Hayashi, Fumio (2000). Econometrics. Princeton University Press. 

 

Hengl, T., Heuvelink, G., Stein, A. A generic framework for spatial prediction of soil 

variables based on Regression Kriging. Geoderma, 120 (2004), 75-93. 

 

Hung Wei-Chia, Hwang Cheinway, Chen Yi-An, Chang Chung-Pai, Yen Jiun-Yee, 

Hooper Andrew, Yang Chin-Yi. Surface deformation from persistent scatterers 

SAR interferometry and fusion with leveling data: A case study over the 



98 
 

Choushui River Alluvial Fan, Taiwan. Remote Sensing of Environment, 2011. 

115, 957–967. 

 

Jones, C. and Blom, R., ―Pre-event and post-formation ground movement associated 

with the Bayou Corne Sinkhole‖ (2015). 

 

Jones, C. and Blom, R., Bayou Corne, Louisiana, sinkhole: Precursory deformation 

measured by radar interferometry. Geology, February 2014, v. 42, no. 2, p. 

111-114. 

 

Kalman, R. E. A new approach to linear filtering and prediction problems. Journal of 

Basic Engineering, 1960. 82 (1), 35–45. 

 

Kanti V. Mardia, Colin Goodall, Edwin J. Redfern, Francisco J. Alonso. The Kriged 

Kalman filter. Test, 1998. Vol. 7, No.2, 217-285. 

 

Kent, J., Dokka, R. Potential impacts of long-term subsidence on the wetlands and 

evacuation routes in coastal Louisiana. GeoJournal, 2012. 4, 641-655. 

 

Kim Ki-Dong, Lee Saro, Oh Hyun-Joo, Choi Jong-Kuk, Won Joong-Sun. Assessment 

of ground subsidence hazard near an abandoned underground coal mine using 

GIS. Environ Geol, 2006. 50, 1183–1191. 

 

Kim Ki-Dong, Lee Saro, Oh Hyun-Joo. Prediction of ground subsidence in Samcheok 

City, Korea, using artificial neural networks and GIS. Environ Geol, 2009. 58, 

61–70. 

 

Knegt, De, Coughenour, M. B., Skidmore, A. K., Heitkonig, I. M. A., Knox, N. M., 

Slotow, R., Prins, H. H. T. (2010). Spatial autocorrelation and the scaling of 

species-environment relationships. Ecology 91: 2455-2465. 

 

Li Kenan. Temporal changes of coastal community resilience in the gulf of Mexico 

region. A LSU thesis, 2011. 

 



99 
 

Li Xiaolu, Wang Lei and Liu Shan. Geographical Analysis of Community Resilience 

to Seismic Hazard in Southwest China. International Journal of Disaster Risk 

Science (2016). pp 1-20. doi:10.1007/s13753-016-0091-8. 

 

Lima, A., Vivo, B. De, Cicchella, D., Cortini, M., Albanese, S., Multifractal IDW 

interpolation and fractal filtering method in environmental studies: an application 

on regional stream sediment of (Italy), Campania region. Applied Geochemistry. 

Volume 18, Issue 12, December 2003, Pages 1853-1865. 

 

Louisiana Department of Natural Resources, 2013b, Blue Ribbon Commission initial 

technical briefing: 

http://dnr.louisiana.gov/assets/OC/BC_All_Updates/Plans_Reports/BlueRibb.04.

05.13.pdf (May 2013). 

 

Louisiana Department of Natural Resources, Fenstermaker Area Survey: 

http://dnr.louisiana.gov/assets/OC/BC_All_Updates/Plans_Reports/Fenstermaker

.Jan.2014.areasurvey.pdf (January 2014). 

 

Louisiana Department of Natural Resources, Itasca-Subsidence Report: 

http://dnr.louisiana.gov/assets/OC/BC_All_Updates/Itasca.results.1152013.pdf 

(October 2013). 

 

Lu Chih-Heng, Ni Chuen-Fa, Chang Chung-Pai, Yen Jiun-Yee, Hung Wei-Chia: 

Integrations of multiple observations and inversion of subsidence parameters in 

Choushui River Fluvial Plain of central Taiwan. AGU Fall Meeting, San 

Francisco, 3-7 December 2012. 

 

McLachlan, G. J. (2004). Discriminant Analysis and Statistical Pattern Recognition. 

Wiley Interscience. 

 

Oh Hyun-Joo, Ahn Seung-Chan, Choi Jong-Kuk, Lee Saro. Sensitivity analysis for 

the GIS-based mapping of the ground subsidence hazard near abandoned 

underground coal mines. Environ Earth Sci, 2011. 64, 347–358. 

 

Oh Hyun-Joo, Lee Saro. Assessment of ground subsidence using GIS and the 

weights-of-evidence model. Engineering Geology, 2010. 115, 36–48. 



100 
 

Oh Hyun-Joo, Lee Saro. Integration of ground subsidence hazard maps of abandoned 

coal mines in Samcheok, Korea. International Journal of Coal Geology, 2011. 86, 

58–72. 

 

Olea, R.A. (1999). Geostatistics for engineers and earth scientists. Kluwer Academic 

Publisher. 

 

Olea, Ricardo (1991) A. Geostatistical Glossary and Multilingual Dictionary. Oxford 

University Press. pp. 47, 67, 81. 

 

Pebesma, Edzer J (1 July 2006). The role of external variables and GIS databases in 

geostatistical analysis. Transaction in GIS. 10 (4): 615-632. 

 

Poland Michael, Burgmann Roland, Dzurisin Daniel, Lisowski Michael, Masterlark 

Timothy, Owen Susan, Fink Jonathan. Constraints on the mechanism of 

long-term, steady subsidence at Medicine Lake volcano, northern California, 

from GPS, leveling, and InSAR. Journal of Volcanology and Geothermal 

Research, 2006. 150, 55– 78. 

 

Psimoulis P., Ghilardi M., Fouache E., Stiros S. Subsidence and evolution of the 

Thessaloniki plain, Greece, based on historical leveling and GPS data. 

Engineering Geology, 2007. 90, 55–70. 

 

Robbins, Herbert (1956). ―An Empirical Bayes Approach to Statistics‖. Proceedings 

of the Third Berkeley Symposium and Mathematical Statistics and Probability, 

Volume 1. Contributions to Theory of Statistics: 157-163. 

 

Samsonov Sergey, Tiampo Kristy, Rundle John, and Li Zhenhong. Application of 

DInSAR-GPS Optimization for derivation of fine-scale surface motion maps of 

southern California. Transactions on Geoscience and Remote Sensing, IEEE, 

2007. Vol.45, No.2, February 2007. 

 

Sclater, J. G. and Christie, P. A. F. 1980. Continental stretching: an explanation of the 

post-mid-Cretaceous subsidence of the Central North Sea Basin. Journal of 

Geophysical Research, 85, 3711-3739. 

 



101 
 

Shang Rong-Kang, Shiu Yi-Shiang, Ma Kuo-Chen. Using geographically weighted 

regression to explore the spatially varying relationship between land subsidence 

and groundwater level variations: A case study in the Choshuichi alluvial fan, 

Taiwan. International Conference on Spatial Data Mining and Geographical 

Knowledge Services, ICSDM 2011, Fuzhou, China, June 29 - July 1, 2011. 

 

Shepard and Donald (1968). ―A two-dimensional interpolation function for 

irregularly-spaced data". Proceedings of the 1968 ACM National Conference. pp. 

517-524. 

 

Shinkle, K., & Dokka, R. Rates of vertical displacement at benchmarks in the lower 

Mississippi Valley and the northern Gulf Coast. NOAA Technical Report 50, 

2004. 

 

Shumway, R.H. and D.J. Stoffer (1982). An approach to time series smoothing and 

forecasting using the EM algorithm, Journal time series analysis, 3, 253-264. 

 

Strozzi Tazlo, Wegmiiller Urs, Tosl Luigl, Bitelli Gabrlele, Spreckels Volker. Land 

Subsidence Monitoring with differential SAR interferometry. Photogrammetric 

Engineering & Remote Sensing, 2011. Vol. 67, No. 11, November 2001, 

1261-1270. 

 

The Atlas website. Extracted from:http://atlas.lsu.edu/. 

 

The CMU website. Weighting function. Extracted 

from:http://www.cs.cmu.edu/~schneide/tut5/node12.html. 

 

The Esri website. Extracted 

from:http://www.esri.com/news/arcuser/1012/empirical-byesian-kriging.html. 

 

The National Land Cover Database website. Extracted 

from:http://www.mrlc.gov/nlcd2011.php. 

 

The NCSU Libraries website. DOQQs. Extracted 

from:http://www.lib.ncsu.edu/gis/doqq.html. 



102 
 

The SONRIS website. Extracted from: http://sonris.com. 

 

The SONRIS website. SONRIS Interactive Maps. Extracted 

from:http://sonris-www.dnr.state.la.us/gis/agsweb/IE/JSViewer/index.html?Tem

plateID=181. 

 

The USGS website. Extracted from:http://groundwaterwatch.usgs.gov/. 

 

The USGS websites. Faults. Extracted 

from:http://earthquake.usgs.gov/hazards/qfaults/. 

 

The website of Murphy Lab. Back-propagation neural network. Extracted 

from:http://murphylab.web.cmu.edu/publications/boland/boland_node17.html. 

 

The website of OECD Glossary of Statistics Terms. Frequency ratio. Extracted 

from:http://stats.oecd.org/glossary/detail.asp?ID=1066. 

 

The website of State University of Campinas. Weights of evidence method. Extracted 

from:http://www.ige.unicamp.br/wofe/documentation/wofeintr.htm. 

 

The website of TRE. DInSAR. Extracted from: 

http://treuropa.com/technique/insar-evolution/. 

 

TheArcGISresource website. Extracted from:                          

http://resources.arcgis.com/en/help/main/10.1/index.html#//0031000000q900000

0. 

 

WANG Chong chang, LV You, SONG Ying. Researches on mining subsidence 

disaster management GIS `s system. 2012 International Conference on Systems 

and Informatics (ICSAI 2012), 19-20 May 2012. 

 

 



103 
 

Wang Fahui, Tang Quan and Wang Lei. Post Katrina population loss and uneven 

recovery in New Orleans, 2000-2010. Geographical Review. Volume 104, Issue 

3, 310-327, July 2014. 

 

Wang Fahui. Quantitative methods and Application in GIS [M]. CRC Press. 2006. 

 

Wang Guoquan, ASCE M., Yu Jiangbo, Kearns Timothy, J., Ortega Jesse. Assessing 

the accuracy of long-term subsidence derived from borehole extensometer data 

using GPS observations: Case study in Houston, Texas. J. Surv. Eng. 2014. 

140(3), 05014001. 

 

Wegmuller Urs, Strozzi Tazio, and Bitelli Gabriele. Validation of ERS differential 

SAR interferometry for Land subsidence mapping: the Bologna case study. 

Geoscience and Remote Sensing Symposium, 1999. IGARSS '99 Proceedings. 

IEEE 1999 International (Volume:2). 

 

Xu Yanqing and Wang Lei. GIS based analysis of obesity and the built environment in 

the US. Cartographic and Geographic Information Science, 2015. Vol 42, No. 1, 

9-21. 

 

Yuan Changfeng, Wang Xuchun, Wang Ning, Zhao Qianqian. Study on the effect of 

tunnel excavation on surface subsidence based on GIS data management. 

Procedia Environmental Sciences, 2012. 12, 1387 – 1392. 

 

Zhang Fengshuang, Bo Wanju. Primary discussion about the application of GPS 

results to research of ground subsidence. Science of Surveying and Mapping, 

2012. 4, 37-39. 

 

Zhang J. X. Scale, Uncertainty and Fusion of Spatial Information [M] Wuhan: Wuhan 

University Press, 2008. 

 

Zheng Minxue, Kaoru Fukuyama, Kazadi Sanga-Ngoie. Application of InSAR and 

GIS techniques to ground subsidence assessment in the Nobi Plain, central Japan. 

Sensors, 2014. 14, 492-509. 

 



104 
 

Zhou Guoyun, Esaki Tetsuro, Mori Jiro. GIS-based spatial and temporal prediction 

system development for regional land subsidence hazard mitigation. 

Environmental Geology, 2003. Volume 44, Issue 6, 665-678. 

 

Zou Lei, Kent Joshua, Lam Nina S.-N., Cai Heng, Qiang Yi, Kenan Li. Evaluating 

land subsidence rates and their applications for land loss in the Lower 

Mississippi River Basin. Water 2016, 8(1), 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



105 
 

Vita 

Hanyu Xiang, originally from Wuhan City in the Hubei Province of China, 

pursued his Ph.D. degree at Louisiana State University with a major in Geography. 

Before coming to the USA, Hanyu gained a Bachelor of Science degree in 2005 from 

the Wuhan University of Technology, as well as a Master of Engineering degree from 

Peking University. His research topic is Subsidence in Louisiana. 

 

 

 

 

 

 

 

 

 

 

 

 


	Louisiana State University
	LSU Digital Commons
	2017

	Spatio-temporal Modeling of Louisiana Land Subsidence Using High-resolution Geo-spatial Data
	Hanyu Xiang
	Recommended Citation


	tmp.1519407009.pdf.VBvVy

