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ABSTRACT 

Background: Surveys across the U.S. reveal that commuters driving personal vehicles spend a 

significant amount of time in traffic, while public transit, as an efficient commuting mode, has 

been largely underutilized. 

Purpose: What causes a low public transit ridership? How could public transit ridership be 

explained by demographic, socio-economic and spatial characteristics of neighborhood? This 

study answers these questions by deciphering the relationships between public transit ridership 

and various factors in a medium-size city in southern U.S. – Baton Rouge, Louisiana. 

Methods: Non-spatial and spatial data in a larger areal unit (e.g., block group) are used to infer 

demographic, socio-economic and spatial variables in a smaller areal unit (e.g., census block) to 

gain a sharper spatial resolution in the analysis of public transit ridership in geographic 

information systems (GIS). First, the ecological inference method is used to disaggregate 

demographic and socio-economic data from the block group level to the census block level. 

Secondly, Monte Carlo simulation and transit schedule data are used to improve the estimation 

of travel time by private vehicle and public transit, respectively, based on which commuting time 

ratio of these two is calibrated at the census block level. Regression analyses including ordinary 

least square (OLS) regression, geographically-weighted regression (GWR) and semi-parametric 

GWR (SGWR) are used to explain the variability of public transit ridership using demographic, 

socio-economic, and spatial variables at the census block level. 

Results: A stepwise regression process selects six variables from 25 original variables 

representing different aspects of demographic, socio-economic, and spatial characteristics at the 

census block level. The final model includes both global and localized effects on public transit 

ridership. Recent immigrants and carless population are positively related to public transit 



 x 

ridership. White population concentration is negatively related to public transit ridership. These 

relationships are found to be consistent across the study area. The relationships between public 

transit ridership and income, commuting time ratio, and accessibility to employment via public 

transit vary across the study area, and some of these variables even show opposite effects in 

specific pockets in contrast to their area-wide average effects.  
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CHAPTER 1. INTRODUCTION 

Daily commute from residence to workplace is an important part of people’s everyday 

life, and it accounts for a significant portion of intra-urban transportation. On average, the 

amount of time that American workers spend on commuting is longer than the paid hours they 

take for vacations and federal holidays. According to the 2011-2015 5-Year American 

Community Survey (ACS) data, the average one-way travel time to work was 25.4 minutes – 

that is equivalent to 27 8-hour workdays annually. In Louisiana, workers spent 24.9 minutes per 

day on commute, only slightly less than the national average. The 2015 Urban Mobility 

Scoreboard by Texas A&M Transportation Institute reports that 19.0% of commuting time (i.e., 

42.0 hours a year) was wasted on road congestion (Schrank et al. 2015). 

Burgeoning private vehicle ownership and use largely explain the escalating road 

congestions (Stopher 2004). High percentage of daily commute by private vehicle not only 

aggravates road congestions, but also damages environment and human health. For example, less 

walking or biking increases the rate of obesity and hypertension, and more driving rises the risks 

of death and injury in car accidents (Hoehner et al. 2012; Litman 2005). Emissions from 

vehicles, on the other hand, contribute to greenhouse effect and air pollution, the latter of which 

is detrimental to human health (Simonson et al. 1968; Tallis 2014). 

Among other approaches, promoting the use of public transit, whose market share in 

daily commute has been squeezed to minimum for years, is an important pathway to the 

reduction of private vehicle commute. The 2009 National Household Travel Survey (NHTS) by 

the Federal Highway Administration reports that the ridership of public transit for home-to-work 

commute purpose was held below 4.0% in a twenty-year span from 1990 to 2009, while the 

percentage of trips by private vehicle was steadily maintained over 90% during the same period 



 2 

(Santos et al. 2011). In Louisiana, the 2011-2015 ACS shows that a dismal 1.4% of workers aged 

16 and over commuted by public transit, whereas 92.2% drove private vehicles to work. 

Public transit has been offered as an option to help to reshape the quality and form of 

urban growth (Bernick and Cervero 1997; Calthorpe 1993). Extensive debate over the past two 

decades has established that public transit needs to be implemented alongside with supportive 

policies to encourage transit-oriented development (TOD). TOD is broadly conceptualized as the 

development of high density, pedestrian-friendly, and mixed-use neighborhoods (Atkinson-

Palombo and Kuby 2011), with multiple objectives such as, for transit operators, maximizing 

revenue for transit agency through lucrative ground leases, maximizing public transit ridership, 

or revitalizing station areas (Babalik-Sutcliffe 2002; Belzer et al. 2004; Willson and Menotti 

2007), and for general public, reducing traffic congestion. Promoting public transit and TOD 

could form a virtuous circle that benefits not only public transit agency, but also urban 

development, and ultimately, urban community. 

What factors explain transit ridership? Demographics, private vehicle ownership, land 

use, parking availability and fare, and transit quality, frequency, fares, etc. all play a role. 

However, the relative importance of these factors, as well as the interaction between them, is not 

well understood (Taylor and Fink 2003). This study attempts to explore some possible answers 

to this question. This study chooses East Baton Rouge Parish, Louisiana to analyze the 

relationship between public transit ridership and various demographic, socio-economic, and 

spatial characteristics at the census block level. The study area is a medium-size metropolitan 

area in the U.S. with considerable traffic congestion during rush hours, although the currently 

underused public transit system could have relieved the traffic. This study attempts to understand 

how public transit ridership could be explained by neighborhood characteristics, and the findings 
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can have important implications for policy-making and planning. Improving public transit 

ridership helps alleviate traffic congestion, improve community health and environment, and 

achieve better living. 

This dissertation has eight chapters. Following this introduction, Chapter 2 provides a 

critical review of the researches on public transit ridership. It mainly discusses the theories and 

methods in four categories:  

1. The choice of explanatory factors on public transit ridership, including both non-

spatial (demographic and socio-economic) and spatial factors; 

2. The methods of disaggregating non-spatial data from larger areal unit to smaller areal 

unit, or the solutions to the “ecological inference problem”; 

3. The methods of simulating the commuting trips at smaller areal unit based on data in 

larger areal unit; 

4. The measures of travel time, including driving private vehicle and riding public 

transit. 

Chapter 3 describes the study area and data used. It offers an overview of the geography, 

transportation infrastructure, including road network and public transit system, and demographic 

and socio-economic landscape of the study area. It also documents the data sources and the 

corresponding years. 

Chapter 4 first describes the demographic, socio-economic, and spatial variables used in 

this study. It then proposes a method of data disaggregation to interpolate non-spatial data that 

are only available in larger areal units (e.g., block group) to a smaller areal unit (i.e., census 

block). 
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Chapter 5 explains the concept and method to simulate individual commuting trips based 

on the census tract-to-census tract trip flow data. This is enabled by the Monte Carlo simulation 

method that accounts for commuting trip flow and land use patterns in the study area. 

Chapter 6 discusses how to use transit schedule data to calculate transit-based commuting 

time via transit network. 

Chapter 7 uses multivariate regression analyses to explain public transit ridership using 

the aforementioned demographic, socio-economic and spatial factors. 

Chapter 8 summarizes the major findings of the study, highlights the methodological 

contributions, and discusses the possible implication in public policy and urban planning. It also 

outlines the directions for future extensions to this study.  
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CHAPTER 2. LITERATURE REVIEW 

This chapter reviews the literatures pertaining four major components of this study: factors 

influencing public transit ridership, non-spatial (i.e., demographic and socio-economic) data 

disaggregation, trip simulation, and measures of travel time.  

 

2.1. External factors influencing public transit ridership 

Studies on factors influencing transit ridership can be generally grouped into two main 

categories: descriptive analysis and causal analysis (Taylor and Fink 2003). Descriptive analysis 

uses qualitative survey and interview data to identify factors that may affect transit ridership, and 

focuses on traveler’s attitudes and perceptions. Such information is highly subjective and 

dependent on respondents’ perceptions and assumptions. It is hard to quantify (TRB 1998), and 

the data collection processes are often not outlined in detail (Bianco, Dueker, and Strathman 

1998). Such methodological and interpretative defects could easily yield biases and unreliable 

results. Descriptive analysis is usually employed by transit operators for purposes such as service 

adjustments, marketing, planning, and fare policy. Causal analysis, on the other hand, employs a 

wider variety of data to conduct empirical studies with more robust results. It is also more 

feasible to generalize findings from causal analysis to other public transit systems and study 

areas (Spillar 1989; Hartgen and Horner 1997; Taylor et al. 2009). This study falls under the 

broad category of causal analysis, on which the remaining section focuses.  

Transportation researchers often model transit demand or evaluate existing transit 

systems. Most traditional causal analysis studies focus on the metropolitan area level (Kain and 

Liu 1999; Taylor et al. 2009), and compare different transit systems by related geographical, 

environmental, and demographic and socio-economic characteristics in different metropolitan 
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areas. Only a few exceptions examine intra-urban variations by analyzing factors such as 

population density and land uses. However, these studies usually choose transit stops or stations 

as the primary object and explain ridership by the geographic and socio-economic characteristics 

of their surrounding service areas (Cervero and Seskin 1995; Kuby, Barranda, and Upchurch 

2004; Gutierrez, Cardozo, and Garcia-Palomares 2011). These studies certainly provide valuable 

insights on evaluating the effectiveness of a public transit system, but lack depth on analyzing 

ridership on commuter’s side (e.g., the propensity of using public transit service by different 

population groups).  

Factors believed to affect public transit ridership are generally categorized into internal 

factors and external factors (Taylor and Fink 2013). Internal factors are those controlled by 

transit agencies and operators, including service quality, fares and service frequency (Chen, 

Varley, and Chen 2011). Studies on internal factors help operators to manage public transit 

supply and improve ridership. External factors refer to those that are exogenous to transit system 

itself, such as distributions of population and employment, and demographic and socio-economic 

factors (Gomez-Ibanez 1996; Taylor et al. 2009). Studies on external factors are useful for policy 

makers and transportation planners to identify transit needs and encourage transit use. This study 

only examines external factors. As public transit’s market has been continuously squeezed by 

private vehicle, its importance to commuters with limited access to private vehicles (the poor, the 

disabled, children and elderlies) and travelers to large employment centers with limited and 

expensive parking has become more significant. To capture these two groups of public transit 

users, demographic, socio-economic and spatial factors are the main types of external factor 

discussed in this study. The following part discusses the specific external factors used in 

previous literatures. 
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Due to its wide availability, the Census data is a popular choice for researchers to 

measure external factors. A host of demographic and socio-economic factors are identified to 

explain public transit ridership at aggregate level. In a study on western American cities (Spillar 

1989), areas with higher population density and lower income level tend to have higher public 

transit ridership. Additional factors such as percentages of college students and recent 

immigrants are found to be positively related to public transit ridership among most U.S. 

urbanized areas (Taylor et al. 2009). Private vehicle ownership is also a crucial factor that 

reduces public transit ridership (Sharaby and Shiftan 2012), and improvements in public transit 

may not suppress the impact of increasing use of private vehicle (Kitamura 1989). 

Besides demographic and socio-economic variables derived from Census data (i.e., 

characteristics of the “origin”), variables related to employment (i.e., the “destination” of a 

commuting trip) are also relevant. A study of public transit commute to CBD in U.S. cities finds 

a positive relationship between employment growth and public transit ridership (Hendrickson 

1986). This observation is echoed by a study on Chicago’s public transit system from 1976 to 

1995 (Chung 1997) and another study of 54 most populous Metropolitan Statistical Areas in U.S. 

from 2000 to 2005 (Armbruster 2010). However, others argue that the positive effect of 

employment growth on public transit ridership is offset by the impact of rising income (on a per 

capita basis) and suburbanization (Liu 1993; Gomez-Ibanez 1996). Such inconsistency may be 

related to the multicollinearity problem among the explanatory variables in the multivariate 

regression models in those studies. 

In addition to the aforementioned non-spatial variables, commuter’s travel behavior could 

also be influenced by various spatial factors. In fact, urban and transportation planners have more 

direct control over land use and deployment of public transit system than demographic and 
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socio-economic factors of neighborhoods. Residential and employment densities have long been 

thought to have positive relationships with transit use (Pushkarev and Zupan 1977; Hendrickson 

1986; Spillar 1989; Chung 1997). Decentralized residential and employment locations are 

difficult to serve with traditional fixed-route public transit and have low patronage, while densely 

populated neighborhoods and compactly developed business districts tend to attract more public 

transit use (Crane 2000; Ewing and Cervero 2010). As discussed previously, most existing 

studies on resident and employment densities either examine at large scales, such as a set of 

metropolitan areas, or focus on the service area of each transit stop. Little emphasis is placed on 

transit accessibility of commuter’s neighborhood (e.g., census block). In addition to the 

straightforward measures such as the aforementioned residential and employment densities, the 

difference in travel efficiency by competing commute modes is pivotal for a commuter’s mode 

choice, and has been largely missed in most studies. Furthermore, walking distance in transit trip 

(e.g., between home or workplace and transit stops, or between transit stops to transfer) is an 

important factor affecting whether to choose public transit or not. Most studies consider a 

walking distance threshold to construct catchment area for public transit (Neilson and Fowler 

1972; Alshalalfah and Shalaby 2007; Crowley, Shalaby, and Zarei 2009; Guerra, Cervero, and 

Tischler 2012), instead of a gradual influence of increased distance on reduced transit ridership 

propensity. 

One notable study in the Netherlands considers both non-spatial and spatial factors to 

explain travel mode choice in resident worker communities (Limtanakool, Dijst, and Schwanen 

2006). However, that is on medium- and long-distance inter-urban trips. A public transit system 

in the U.S. mainly serves one or a few adjacent metropolitan areas. On the methodological front, 

one common problem in the multivariate model used in the existing literature is multicollinearity 
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among those external factors. For example, places of higher residential density also tend to share 

certain demographic and socio-economic characteristics, such as lower income and lower car 

ownership. Untangling the mutual effects of non-spatial and spatial variables on one another and 

on public transit ridership is a challenge (Gomez-Ibanez 1996; Crane 2000; Taylor and Fink 

2003) that has motivated this study. 

 

2.2. Data disaggregation 

Some external factors, especially non-spatial factors, can only be accessed in larger areal 

units. Such data need to be disaggregated to smaller areal unit in order to gain better spatial 

resolution. An influential study on data disaggregation is by King (1997). It uses a regression-

randomization process to estimate the parameter values for subunits using a “statistical 

approach” within the value ranges predefined by a “method of bounds”. His model assumes that 

the correlation between two variables is constant in both aggregate area level and disaggregate 

area level, and also assumes a variance function that fits an important feature of aggregate data 

and is usually available in Census data. This data disaggregation method avoids commonly-

found estimation biases in many of his precedents (e.g., Flanigan and Zingale 1985; Dykstra 

1986), and has been widely adopted by social scientists. More technical details will be discussed 

in Chapter 3, which builds upon King’s method with some refinements specially designed for 

this study for better results. 

 

2.3. Trip simulation 

Similar to non-spatial data, spatial data of commuting trips between larger areal units also 

need to be disaggregated to improve accuracy of estimation. Trip simulation is largely dominated 
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by the popular four-step model of travel demand model: trip generation, trip distribution, mode 

choice and trip assignment (Wang 2015). Hu, Wang, and Wilmot (2017) uses Monte Carlo 

simulation method to simulate individual intra-urban commuting trips that are consistent with 

aggregate trip flow data derived from the Census data. Their case study, which is also in Baton 

Rouge, Louisiana, shows that this method is very promising. Their study utilizes the Census and 

land cover data to improve simulation of trip origins and destinations, and uses origin-destination 

(OD) flow data between census tracts from Census Transportation Planning Package (CTPP) to 

guide the simulation of individual commuters. This model is further improved by adjusting the 

parameters of the algorithm for the maximal fitness between simulated pattern and observed 

traffic count data provided by a local government agency. This study uses the more accurate land 

use data to further improve the simulation of commuting trips. 

 

2.4. Measures of travel time 

As previously mentioned, most studies on public transit ridership fall short in accurately 

measuring travel time difference between different travel modes. A study in Seattle suggests that 

travel time is the primary factor in influencing a resident’s choice of travel mode (Frank et al. 

2008). Longer driving time by private vehicle tend to sway workers to public transits, and 

similarly, longer transit-riding time is associated with reduced public transit use. Most studies 

rely on survey data such as the aforementioned CTPP or NHTS to gather information on travel 

time difference between different transportation modes. Once again, these survey data often lack 

a reasonable geographic resolution to infer meaningful travel behavior. Survey-based travel data 

also suffer from biases from multiple sources (Spurr, Chapleau, and Piché 2014). Recent 

advancement in applying network theory in geographic information systems (GIS) enables one to 
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estimate driving time with reasonable accuracy. The same cannot be assumed for transit travel 

time estimation since a fixed route transit system follows its posted schedule instead of the 

shortest or fastest route (Kuai and Zhao 2017). A recent study in Seattle (Tallis 2014) uses a 

schedule-aware tool for transit-based network analysis to compute in-vehicle time as well as 

waiting, walking, and transfer time. This study implements the state-of-art transit travel time 

simulation tool to measure travel time via public transit network.  
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CHAPTER 3. DATA AND VARIABLE DEFINITIONS 

3.1. Data for resident workers and employment 

This study selects East Baton Rouge Parish, Louisiana, as the study area. A “parish” is a 

county-equivalent administrative unit in the state of Louisiana. According to the data provided 

by Capital Region Planning Commission (CRPC) (2013) – the metropolitan planning 

organization of the Baton Rouge metropolitan area, East Baton Rouge Parish holds a total 

population of 443,598, 47.6% of which (211,184) are workers aged above 16 not working at 

home. This study is primarily based on the census block level. The study area has 9,270 census 

blocks with non-zero resident workers. Among the four incorporated cities, the city of Baton 

Rouge is the parish seat, and is the largest both in terms of area and number of resident workers. 

It is also the second-largest city in the state of Louisiana. The cities of Baker and Zachary also 

have minor concentrations of resident workers. The city of Central is mostly rural with 

population sparsely scattered. Figure 1 is based on resident worker data at the census block level 

in the study area (hereafter, simply referred to as “Baton Rouge”). 
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Figure 1. Resident worker distribution in Baton Rouge 2013 

Also based on the CRPC data at the census block level, Figure 2 shows the density 

distribution of employment (the white-shaded area represents urban area). Downtown Baton 

Rouge, in the west of the study area, has the highest concentration of employment, with the State 

and the City-Parish governments being the two largest employers. Employment density generally 

declines with increasing distance from downtown. There are two other more noticeable 

employment centers: Louisiana State University (LSU), located at the south of downtown, and 

the regional medical center (i.e., Our Lady of the Lake Regional Medical Center (OLOL) and 

Baton Rouge General Hospital), located southeast of downtown. LSU and OLOL are the largest 

and second largest employers of the entire study area, respectively. This makes the study area 
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unique from other metropolitan areas in U.S. that it is multi-centered. Similar to the pattern of 

resident workers, the three satellite cities (Baker, Central and Zachary) have far less 

employment. 

 
Figure 2. Employment distribution in Baton Rouge 2013 

 

3.2. Data for transportation and land uses 

The public transportation system in Baton Rouge includes road network and public transit 

system. The road network data is based on the 2012 ESRI StreetMap data that includes all levels 

of roads and streets with essential information such as speed limits and directions. Given the year 

(2013) for the CRPC data for resident workers and employment, the 2012 ESRI StreetMap data 
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is the closest match in date for road network data available to this study. This study uses the 

General Transit Feed Specification (GTFS) data to access information on the public transit 

system. GTFS is an open-source data format developed by Google Developers to describe fixed-

route transit services (Antrim and Barbeau 2013). The 2015 GTFS data, provided by Baton 

Rouge’s public transit authority – the Capital Area Transit System (CATS), include detailed 

information of transit routes, stops, and schedules. The transit system mainly covers the cities of 

Baton Rouge and Baker, and has 30 regular-servicing, fixed bus routes with a total length of 

approximately 280 miles and 1676 bus stops. In 2014, it served more than 90,000 passengers. On 

weekdays, it operates from as early as 5:00 a.m. to as late as 11:00 p.m. 

The 2012 land use data is acquired from the local government (City of Baton Rouge and 

Parish of East Baton Rouge), shown in Figure 3. 
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Figure 3. Selected land uses in Baton Rouge 2012 

The majority of land uses is residential, among which low-density residential land use 

accounts for the highest percentage and is distributed throughout the study area. Medium- and 

high-density residential land uses mainly are located in and around the downtown area. 

Commercial land use, where much employment is located, mainly appears along major 

transportation corridors. Industrial land use is found along the east bank of Mississippi River. 

Notable occupants of institutional land use include four major employers in the study area: LSU 

in the southwest, the aforementioned regional medical center, Southern University in the north 

by Mississippi River, and Baton Rouge Metropolitan Airport to the east of Southern University. 

Undeveloped and unpopulated lands are shown as blank on the map. 
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The data sets used in this study are documented in Table 1. 

Table 1. Summary of data sets 

Data set Source Spatial resolution Year(s) 

Demographics and housing CRPC, ACS Census block 2013 

Socio-economic status ACS Block group 2011 – 2015 

Employment count CRPC Census block 2013 

Trip flow CTPP Census tract 2006 – 2010 

Road network ESRI StreetMap - 2012 

Public transit system CATS - 2015 

Land use Local government Parcel 2012 

Traffic count LaDOTD - 2014 

 

 

3.3. Variable selection and definition 

This dissertation attempts to decipher the relationship between public transit ridership 

and demographic, socio-economic, and spatial factors that represent different characteristics of 

neighborhood. The dependent variable is public transit ridership at the census block level. As 

discussed in Chapter 2, public transit ridership is associated with both internal and external 

factors. Because this study is primary interested in how a neighborhood’s patronage of public 

transit is affected by its own characteristics, factors like gasoline price and parking cost are thus 

not considered. Based on the existing literatures and considering the information in the data 

available, 16 non-spatial and 9 spatial variables at the census block level are selected as 

explanatory variables. These variables do not necessarily have direct causal relationships with 

public transit ridership. Also, different variables reflecting similar aspect of neighborhood 

characteristic are included for testing purpose. Nevertheless, these variables characterize 

neighborhood’s demographic and socio-economic structure and spatial location that indicate its 

residents’ propensity for commuting by public transit. Findings on how public transit ridership is 
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related to these variables can help transportation planners and policy makers to predict transit 

needs and make adjustment and plans accordingly. 

The non-spatial variables include a set of demographic, socio-economic, and housing 

condition variables. For example, in terms of demographic variables, this study includes median 

age of neighborhood which may influence the acceptable walking distance from home to bus 

stop (Alshalalfah and Shalaby 2007). Another common set of demographic variables include 

race and ethnicity, gender, and immigrant status (Blumenberg and Shiki 2007). To quantify 

immigrant status, this study uses “households speaking limited English” as a proxy for recent 

immigrants. Neighborhood’s financial status is a major category of socio-economic variables, 

and is represented by poverty level and income level, as well as unemployment rate. Education 

attainment, measured by population with high school diploma, is another factor that could affect 

a commuter’s perspective towards how to commute. Availability of private vehicles is one of the 

most intuitive and significant variables that affects a commuter’s behavior. Percentage of renter-

occupied housing unit that quantifies the concentration of home renters is a joint result of 

demographic and socio-economic conditions (Kuby, Barranda, and Upchurch 2004). Other 

housing condition variables are newly added in this study, including housing unit with multiple 

occupants per room and housing unit without complete kitchen and plumbing facilities.  

 

For spatial factors, this study first considers the relative convenience of commuting by 

public transit versus private vehicle for census block, here measured by the average ratio of 

travel time by public transit to travel time by private vehicle for every trip originated from census 

block: 

 𝑣 =
𝑇𝑡

𝑇𝑑

̅̅̅̅
 (3.1) 
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where 𝑡𝑇 and 𝑡𝐷 stand for time for public transit and private vehicle, respectively, and their 

specific formulations will be explained in Chapter 6. The second variable denotes the distance 

from census block to its nearest bus stop to measure census block’s proximity to public transit 

system. In addition, total number of bus stop(s) within a 1-mile radius of census block is also 

included as a measure of availability of public transit system. In both cases and in the following 

sections, the location of census block is represented by its centroid. The next variable is 

accessibility to jobs via public transit network. It is measured as number of jobs within a 1-hour 

transit catchment area: 

 𝑣 = ∑ 𝐸𝑖
𝑖∈(𝑡𝑖≤60)

 (3.2) 

 

where 𝑡𝑖 is the travel time (in minutes) from census block to employment location 𝑖 via the 

public transit network, and 𝐸𝑖  stands for the number of employments in i. As discussed in 

Chapter 2, population density is a popular factor considered in previous literature. Resident 

density, worker density and housing unit density of census block are 3 similar but slightly 

different measures of population density. Furthermore, a binary land use variable, coded as: 

 𝑣 = {
0
1

 
Low-density residential 

(3.3) 
Medium- or high-density residential 

 

is used, as this term is often adopted in planning and policy making process. These four variables 

together help to capture a more comprehensive picture of transit needs in terms of residential 

land use. Lastly, the presence of sidewalk may impact a neighborhood’s walkability to bus 

stop(s), and is measured by the total length of sidewalks within a 1-mile radius of census block. 

The non-spatial and spatial variables discussed above are mapped in Figure A1-A7 in Appendix. 
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3.4. Dependent variable and effective sample 

The common walking distance (network distance) to a bus station is 0.5 miles (Kuby, 

Barranda, and Upchurch 2004), thus 1 mile is considered as the maximum range for pedestrians 

to account for any possible edge effect. This study includes only 4,045 worker-populated census 

blocks that has its centroid within the 1-mile range from its nearest bus station. That is to say, the 

4,045 census blocks assemble the effective sample for this study. 

Public transit ridership for the effective sample census blocks in 2015 is shown in Figure 

4. Overall, public transit ridership in the study area is low, and the network has limited coverage 

in the cities of Baton Rouge and Baker in the middle part of the study area. Even as the network 

extends to the southern part of the parish, the ridership there is near zero. The system is seriously 

underutilized. 
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Figure 4. The CATS ridership 2015  
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CHAPTER 4. DISAGGREGATION OF SOCIO-DEMOGRAPHIC VARIABLES  

As outlined previously in Table 1, most socio-economic variables from Census in this study such 

as poverty rate and median household income are at the block group level, and a small number of 

variables such as basic demographics and housing conditions from the local agencies are at the 

census block level. It is often desirable for studies to be at a smaller geographic areal unit for 

better resolution. It is even more so for spatial variables such as the calculation of travel time in 

order to achieve reasonable precision of location. Transformation of data from a larger areal unit 

(e.g., block group) to a smaller areal unit (e.g., census block) is termed “data disaggregation”. 

The task begins with the disaggregation of demographic and socio-economic variables, a process 

also referred to as “ecological inference” (King 1997). 

 

4.1. Solution to the ecological inference problem 

To explain the solution to ecological reference problem, this dissertation borrows King’s 

(1997) example – estimating the voting patterns of different racial groups in geographic unit 

called “voting precinct”, as depicted in Table 2.  

Table 2. Non-White and White voting turnouts of a precinct 

Race Turned out Did not turn out  

Non-White 𝛽𝑖
𝑏 1 − 𝛽𝑖

𝑏 𝑋𝑖 

White 𝛽𝑖
𝑤 1 − 𝛽𝑖

𝑤 1 − 𝑋𝑖 

 𝑇𝑖 1 − 𝑇𝑖  

 

Table 2 depicts the problem to estimate voting turnouts of non-White and White that 

occur in one of 𝑝 precincts in a voting district, denoted by 𝑖 (𝑖 ∈ [1, 𝑝]). The notations are 

explained as follows: 

𝑇𝑖: proportion of voters turned out (known); 

𝑋𝑖: proportion of non-White voters (known); 
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𝛽𝑖
𝑏: proportion of non-White voters turned out (unknown); 

𝛽𝑖
𝑤: proportion of White voters turned out (unknown). 

Researchers can only observe the “marginals” – the final column representing the total 

number of non-White/White voters, and the final row representing the total number of voters 

turned out/did not turn out. 𝛽𝑖
𝑏 and 𝛽𝑖

𝑤 are the variables of interest. The goal is to infer the cell 

entries 𝛽𝑖
𝑏 and 𝛽𝑖

𝑤 from the aggregate marginals. The basic model that describes the relationship 

between these variables is: 

 𝑇𝑖 = 𝛽𝑖
𝑏𝑋𝑖 + 𝛽𝑖

𝑤(1 − 𝑋𝑖) (4.1) 

 

This accounting identity is a statement of fact that holds for each one of the 𝑝 precincts in 

the data set, forming a system with 𝑝 equations (one equation for each precinct) and 2𝑝 

unknowns (one set of 𝛽𝑖
𝑏 and 𝛽𝑖

𝑤 for each precinct). It is assumed that 𝛽𝑖
𝑏 and 𝛽𝑖

𝑤 are modeled as 

if they are generated by a truncated normal (TN) distribution conditional on 𝑋𝑖: 

 P(𝛽𝑖
𝑏, 𝛽𝑖

𝑤) = TN(𝛽𝑖
𝑏, 𝛽𝑖

𝑤|𝔅, Σ) (4.2) 

 

where the mean vector 𝔅 and the variance matrix Σ of (𝛽𝑖
𝑏, 𝛽𝑖

𝑤) are: 

 𝔅 = (𝔅𝑏

𝔅𝑤) and Σ = (
𝜎𝑏

2 𝜎𝑏𝑤

𝜎𝑏𝑤 𝜎𝑤
2

) (4.3) 

 

The means, 𝔅𝑏 and 𝔅𝑤, are based on the district-level averages of non-White and White 

turnout rates of voters: 𝔅𝑏 = E(𝛽𝑖
𝑏) and 𝔅𝑤 = E(𝛽𝑖

𝑤). This assumption can be verified to a 

sufficient degree in the aggregate data set. Limited to the scope of this study, this dissertation 

does not discuss the observable implications that provides diagnostic test to verify these 

assumptions. Besides, King also adds other two assumptions to this identity that are either 

proven to be unnecessary or “does not have major consequences for most aspects of this model” 

(King 1997). 
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The solution to this model is a combination of what King refers to as “statistical 

approach” and “method of bounds”. Define 𝛽𝑖
𝑏 and 𝛽𝑖

𝑤 as: 

 
𝛽𝑖

𝑏 = 𝔅𝑏 + 𝜀𝑖
𝑏 

𝛽𝑖
𝑤 = 𝔅𝑤 + 𝜀𝑖

𝑤 
(4.4) 

 

where 𝔅𝑏 and 𝔅𝑤 are their means, 𝜀𝑖
𝑏 and 𝜀𝑖

𝑤 are error terms that E(𝜀𝑖
𝑏) = 0 and E(𝜀𝑖

𝑤) = 0. 

Now, Equation 4.1 can be written as: 

 𝑇𝑖 = 𝔅𝑏𝑋𝑖 + 𝔅𝑤(1 − 𝑋𝑖) + 𝜀𝑖 (4.5) 

 

where 𝜀𝑖 = 𝜀𝑖
𝑏𝑋𝑖 + 𝜀𝑖

𝑤(1 − 𝑋𝑖). 

To determine the bounds of 𝛽𝑖
𝑏 and 𝛽𝑖

𝑤, first write Equation 4.5 as: 

 𝜀𝑖 = 𝑇𝑖 − 𝔅𝑏𝑋𝑖 + 𝔅𝑤(1 − 𝑋𝑖) (4.6) 

 

As E(𝜀𝑖|𝑋𝑖) = 0, the bounds of 𝛽𝑖
𝑏 and 𝛽𝑖

𝑤 can be derived by assuming homogeneous non-White 

or White precincts. With 𝑋𝑖 at its extremes (0 and 1), 𝛽𝑖
𝑏 and 𝛽𝑖

𝑤 fall within the permissible 

bounds: 

 

𝛽𝑖
𝑏 ∈ [max (0,

𝑇𝑖 − (1 − 𝑋𝑖)

𝑋𝑖
) , min (

𝑇𝑖

𝑋𝑖
, 1)] 

𝛽𝑖
𝑤 ∈ [max (0,

𝑇𝑖 − 𝑋𝑖

1 − 𝑋𝑖
) , min (

𝑇𝑖

1 − 𝑋𝑖
, 1)] 

(4.7) 

 

With the parameter bounds determined, the key is to estimate the variance matrix Σ. Then 

through a randomized variation on 𝜀𝑖
𝑏 and 𝜀𝑖

𝑤, 𝛽𝑖
𝑏 and 𝛽𝑖

𝑤 are estimated as: 

 
𝛽𝑖

𝑏 = 𝔅𝑏 + 𝜀𝑖
𝑏 

𝛽𝑖
𝑤 = 𝔅𝑤 + 𝜀𝑖

𝑤 
(4.8) 

 

where 𝜀𝑖
𝑏~N(0|𝜎𝑖

𝑏) and 𝜀𝑖
𝑤~N(0|𝜎𝑖

𝑤). 

To sum up, King’s solution to ecological inference problem uses Bayesian constructs to 

derive posterior distribution of unknown parameters based on known means of 𝛽̂ and estimates 
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of variances and covariances (Anselin and Cho 2002). Thus, heterogeneity of parameters is 

conceptualized as random variations around a certain common mean value. 

 

4.2. Data disaggregation of socio-economic variables 

This study introduces an altered version of King’s solution to ecological inference 

problem. The task is to disaggregate the socio-economic factors that are only available at block 

group level to census block level. 

Here, the estimation of variable “number of renter-occupied housing unit” is used as 

example. This method only disaggregates one variable at a time (e.g., number of renter-occupied 

housing unit), and does not consider a second dimension (e.g., race, as in King’s example) to 

estimate the variable of interest. Table 3 illustrates the problem, showing numbers of renter-

occupied housing unit, owner-occupied housing unit, and total occupied housing unit across 𝑛 

census blocks within one block group. 

Table 3. Housing unit counts by tenure at census block level 

Census block Renter-occupied Owner-occupied Occupied unit total 

1 𝑥1
𝑟 𝑥1 − 𝑥1

𝑟 𝑥1 

2 𝑥2
𝑟 𝑥2 − 𝑥2

𝑟 𝑥2 

    

𝑖 𝑥𝑖
𝑟 𝑥𝑖 − 𝑥𝑖

𝑟 𝑥𝑖 

    

𝑛 𝑥𝑛
𝑟 𝑥𝑛 − 𝑥𝑛

𝑟 𝑥𝑛 

Categorical total 𝑥𝑟 𝑥 − 𝑥𝑟 𝑥 

 

The notations for the variables in Table 3 are: 

𝑥: total number of occupied housing unit in the block group (known); 

𝑥𝑖: number of occupied housing unit in census block 𝑖 (known); 

𝑥𝑟: total number of renter-occupied housing unit in the block group (known); 
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𝑥𝑖
𝑟: number of renter-occupied housing unit in census block 𝑖 (unknown); and 

𝑥𝑖 − 𝑥𝑖
𝑟: number of owner-occupied housing unit in census block 𝑖 (unknown). 

According to Equation 4.5, the count of renter-occupied housing unit is estimated as: 

 𝑥𝑖
𝑟 = (𝑥𝑖

𝑟)0 + 𝜀𝑖
𝑟 (4.9) 

 

where (𝑥𝑖
𝑟)0 is the preliminary estimated value of 𝑥𝑖

𝑟, and 𝜀𝑖
𝑟 is an error term. This is the basic 

accounting identity to estimate the total number of renter-occupied housing unit 𝑥𝑖 in census 

block 𝑖. 

This data disaggregation method uses an external variable that is available at both block 

group and census block levels to predict the preliminary value of an unknown variable at census 

block level. Here, the external variable used is number of occupied housing unit 𝑋. First, at block 

group level, assume that number of renter-occupied housing unit 𝑋𝑟  could be expressed using 𝑋: 

𝑋𝑟 = 𝑘𝑋. 𝑘 could be estimated using a bivariate linear regression between 𝑋𝑟  and 𝑋 at block 

group level. Next, assume that the relationship between 𝑋𝑟  and 𝑋 at block group level also 

applies to 𝑥𝑖
𝑟 and 𝑥𝑖 at census block level, so that the preliminary value is: 

 (𝑥𝑖
𝑟)0 = 𝑘𝑥𝑖 (4.10) 

 

With the preliminary value established, a disaggregating coefficient 𝛽𝑖
𝑟 is introduced as 

the ratio of the preliminary number of renter-occupied housing unit in the census block to the 

total number of renter-occupied housing unit in its corresponding block group: 

 𝛽𝑖
𝑟 =

(𝑥𝑖
𝑟)0

𝑥𝑟
 (4.11) 

 

The next step is to simulate the error term 𝜀𝑖
𝑟. 𝜀𝑖

𝑟 can be simulated by randomized 

generation, as it follows a truncated normal distribution: 

 P(𝜀𝑖
𝑟) = TN(𝜀𝑟|0, 𝜎𝑖

𝑟) (4.12) 

 

where 𝜎𝑖
𝑟 is the standard deviation of the probability density distribution function of 𝜀𝑖

𝑟. 
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As the original ACS data provides margin of error (𝜖𝑟) for renter-occupied housing unit 

count at block group level, 𝜎𝑖
𝑟 is calculated as the block group-level standard deviation 𝜎𝑟 

multiplied by the disaggregating coefficient 𝛽𝑖
𝑟: 

 𝜎𝑖
𝑟 = 𝛽𝑖

𝑟𝜎𝑟 = 𝛽𝑖
𝑟 ∙

𝜖𝑟

1.645
 (4.13) 

 

The denominator 1.645 comes from the fact that U.S. Census Bureau uses a 90% 

confidence interval to calculate the margin of error 𝜖𝑖 that equals to approximately 1.645 times of 

its standard error (Berkley 2017). 

Next, the permissible bounds of 𝑥𝑖
𝑟 could be written as: 

 𝑥𝑖
𝑟 ∈ {max[0, (𝑥𝑖

𝑟)0 − 𝛽𝑖
𝑟𝜖𝑟], min[(𝑥𝑖

𝑟)0 + 𝛽𝑖
𝑟𝜖𝑟 , 1]} (4.14) 

 

Using all known variables, Equation 4.9 estimates the number of renter-occupied housing 

unit in census block as: 

 𝑥𝑖
𝑟 = 𝑘𝑥𝑖 + 𝜀𝑖

𝑟 (4.15) 

 

where 

 P(𝜀𝑖
𝑟) = TN (𝜀𝑖

𝑟|0, 𝛽𝑖
𝑟 ∙

𝜖𝑟

1.645
) (4.16) 

 

With the number of renter-occupied housing unit estimated, the variable representing the 

percentage of renter-occupied housing unit is written as: 

 𝑣 =
𝑥𝑖

𝑟

𝑥𝑖
× 100% (4.17) 

 

In summary, this data disaggregation method combines “statistical approach” and 

“method of bounds” to solve the ecological inference problem. Statistical approach contains two 

components: using regression method to establish preliminary value, and then using randomized 

variation to readjust preliminary value within a value range. It also takes advantage of the margin 



 28 

of error information contained by the ACS data to integrate the method of bounds. This data 

disaggregation method has two assumptions: 

1. Linearity: The variable of interest can be represented by an external variable, 

available in both larger and smaller areal units. This method uses this assumption to 

establish preliminary values for the variable to be estimated. 

2. Normality. The variable in smaller areal unit follows a normal distribution within a 

variance range defined by the margin of error. This method uses this assumption to 

simulate values across small areas randomly. 

 

4.3. Disaggregation results 

Unknown population and housing unit counts at census block level are estimated by the 

procedures illustrated in the previous section, and are then used to define ratio variables such as 

female headed household percentage, percentage of renter-occupied housing unit, carless 

population percentage, poverty rate, etc. Note that in Equation 4.17, the denominator 𝑥𝑖 is a 

known value for all census blocks, as the ACS data contains total population and housing unit 

counts at census block level (see Table 1). Non-ratio or non-percentage variables such as median 

age, median household income, and per capita income are directly estimated by Equations 4.9 – 

4.16. 

Here, we use a variable “White population percentage” available at both block group and 

census block levels to validate this data disaggregation method. Figure 5 plots the correlation 

between simulated and true values. The Pearson correlation coefficient between the two values is 

0.837, and thus highly correlated (with 4,045 census blocks). 
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Figure 5. White population percentage: simulated versus true 

Table 4 summarizes the basic statistics of the dependent and explanatory variables used 

in this study. Among the 16 demographic and socio-economic variables, 14 are disaggregated by 

this data disaggregation method from block group level to census block level, and two are 

directly extracted from the CRPC data. For convenience to read, the 9 spatial variables are also 

included here, and their definitions and calibrations will be discussed in the next two chapters 

(i.e., Chapters 5 and 6).  
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Table 4. Basic statistics of variables at census block level (number of observations 4,045) 

Variable Mean Minimum Maximum 

Dependent variable (directly from local agencies) 

Workers commuting by public transit (%) 0.408 0.000 40.851 

Explanatory variables (directly from local agencies) 

White population (%) 25.000 0.000 26.369 

Vacant housing unit (%) 5.000 0.000 8.453 

Explanatory variables (disaggregated from block group) 

Median age (years) 35.264 0.410 117.126 

Female headed householder (%) 18.800 0.000 100.000 

Population with high school diploma (%) 6.865 1.735 229.451 

Household speaking limited English (%) 0.534 0.035 9.893 

Poverty rate (%) 1.545 0.004 85.883 

Median household income (dollars) 40,171.798 308.349 303,944.519 

Per capita income (dollars) 26,086.832 568.408 91,713.952 

Household receiving food stamp (%) 1.168 0.000 32.447 

Unemployment rate (%) 2.502 0.010 70.272 

Renter-occupied housing unit (%) 25.000 0.000 100.000 

Housing unit with >1 persons/bedroom (%) 4.775 0.000 23.387 

Carless housing unit (%) 0.615 0.000 43.570 

Housing unit with incomplete plumbing device (%) 0.161 0.000 7.981 

Housing unit with incomplete kitchen (%) 0.201 0.000 11.113 

Spatial variables 

Bus-riding-driving time ratio 6.832 4.028 11.984 

Distance to nearest bus stop (meters) 287.705 11.497 1,606.619 

Number of jobs within 1-hour transit service area 3,043.906 1.000 25,104.000 

Number of nearby bus stop 46 1.000 186.000 

Population density (per acre) 6.989 0.013 938.331 

Worker density (per acre) 2.099 0.011 118.396 

Housing unit density (per acre) 2.708 0.000 423.121 

Nearby sidewalk length (meters) 37,258.783 173.515 96,249.783 

Low-density residential land use - - - 

 

In summary, the data disaggregation method proposed in this study applies King’s 

solution to the ecological inference problem with external controls. First, it establishes a 
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preliminary value for the variable of interest. It uses an external variable that is available in both 

larger and smaller areal units to predict the variable of interest that is only available in larger 

areal unit based on a regression. Then, it establishes a value range for the variable of interest 

using the margin of error information from the ACS data and assumes that the variable of interest 

follows a truncated normal distribution within that range. Within value range, the estimate of the 

variable of interest is randomly generated. The data disaggregation results are then validated with 

real data and could be considered acceptable. Thus, this data disaggregation method provides 

acceptable results at the smaller areal unit and could be used in the following analyses.  
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CHAPTER 5. MONTE CARLO SIMULATION OF COMMUTING TRIPS 

Apart from demographic and socio-economic factors, travel time is another critical factor that 

could affect people’s travel behavior. Estimating travel time begins with retrieving commute 

trips between residence and workplace units. Similar to demographic and socio-economic data, 

trip count data is only available between larger areal units such as census tract in the study area. 

If one uses census tract centroid to represent commute origins and destinations, the estimation of 

travel time may suffer from serious zonal effect, especially in suburban and rural areas where 

census tracts have large areal size. This study uses Monte Carlo simulation method to simulate 

individual residence-to-workplace commute trips, and then aggregate them back to estimate 

travel time between census blocks. By doing so, much zonal effect could be mitigated and more 

accurate travel time could be calculated.  

 

5.1. Principles of Monte Carlo simulation 

Monte Carlo simulation is a numerical analysis technique that generates random numbers 

to explore the distribution of individuals in a featured system when the distribution pattern is not 

directly available. Random numbers are generated by following a pre-defined probability 

distribution function (PDF) that describes the probabilities of occurrence of different outcomes in 

a system. Some commonly used PDFs include uniform, normal, lognormal and discrete 

distributions (Hu, Wang, and Wilmot 2017), as illustrated in Figure 6. 

Take discrete distribution as an example. Instead of a continuous curve, a group of 

numbers within a certain range share a same occurring probability, and numbers in different 

groups may have different chances of occurrence. For example, in the context of this study, the 
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occurrence possibility of commuting trip may be 40% for a commuting distance range between 0 

to 3 miles, 30% for 3 to 5 miles, 20% for 5 to 10 miles and 10% for beyond 10 miles. 

 
Figure 6. Uniform, normal, lognormal and discrete distributions 

In Monte Carlo simulation, a set of random results generated according to a predefined 

PDF is called an iteration. For instance, an iteration includes a set of residence locations, a set of 

workplace locations and the commuting trips between them. The simulation process is iterated 

for a large number of times until the set conforms to certain prior knowledge (e.g., observed 

traffic count data).  
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5.2. Monte Carlo simulation of residences (O) and workplaces (D) 

Corresponding to trip generation in the four-step travel demand simulation model, the 

first step is to simulate individual locations of trip ends from zonal resident (origin) and 

employment (destination) data. An earlier study (Hu and Wang 2015) used resident worker and 

employment count data at census tract level, and used National Land Cover Database data to 

help to improve the accuracy of trip end simulation. This study makes further improvement by 

utilizing higher-quality resident worker and employment counts at census block level and land 

use data at sub-census block level from the local government agencies to further confine the 

feasible location sets for simulated trip ends. Specifically, resident worker points are only 

generated in residential (low-, medium- and high-density) land use areas and employment points 

are only generated in commercial, industrial and institutional land use areas.  

Monte Carlo simulation of trip ends begins by generating random geographic coordinates 

across the study area, following a PDF of two-dimensional discrete distribution: 

 P(𝑋𝑖𝑗
, 𝑌𝑖𝑗

) = {
𝑝𝑖

0
 

Point inside residential/employment land use 
(5.1) 

Point outside residential/employment land use 

 

where P(𝑋𝑖𝑗
, 𝑌𝑖𝑗

) stands for the occurring probability of trip end point 𝑖 in census block 𝑗 during 

an iteration of Monte Carlo simulation, X and Y are geographic coordinates, and 𝑝𝑗 represents 

the occurring probability, which is constant within the corresponding land use area in census 

block 𝑗.  

Figure 7 illustrates the residential and employment land uses in the study area and 

simulated trip ends. Specifically, the numbers of simulated origins and destinations in each 

census block are proportional to the resident worker and employment counts in each census 

block reported by CRPC. 
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Figure 7. Land uses and simulated trip ends in Baton Rouge: (a) residential, (b) employment 

 

5.3. Monte Carlo simulation of commuting trips 

After individual resident worker and employment locations are generated, the next step is 

to pair resident worker and employment locations to simulate commuting trips. Monte Carlo 

simulation here generates individual commuting trips that are consistent with observed inter-

zonal traffic flow data. This is implemented in four steps: 

1. From a residential zone containing 𝑚 resident worker locations (origins), randomly 

choose one denoted as 𝑂𝑖, where 𝑖 ∈ [1, 𝑚]. 
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2. Similarly, from an employment zone containing 𝑛 employment locations 

(destinations), randomly choose one denoted as 𝐷𝑗, where 𝑗 ∈ [1, 𝑛]. 

3. Pair 𝑂𝑖 and 𝐷𝑗 as a trip, and cumulate the trip count 𝐶 between i and j. 

4. Iterate the previous three steps until the cumulated trip count 𝐶 reaches a given inter-

zonal trip count 𝐶0. 

The process above is repeated for every valid pair of residential and employment zones. 

A valid pair is one with non-zero commuting trips as reported in CTPP data, and the simulated 

trip counts are assigned proportionally to the reported commuting volumes on corresponding OD 

pairs. This study uses Traffic Simulation Modules for Education (TSME) program developed by 

Hu and Wang (2015) to implement both simulation processes of trips ends and trips. Monte 

Carlo simulations of trips facilitate the disaggregation of OD commuting trip volumes at the 

aggregate (census tract) level to individual trips.    

 

5.4. Validating simulation results 

The purpose of simulating individual commuting trips in this study is to improve 

accuracy when estimating travel time. With travel time on individual OD pairs in place, travel 

time between any pairs of zones (e.g., between residential and employment census blocks in this 

study) can be easily calculated. This section uses observed traffic count data (provided by 

LaDOTD) to validate the simulation results. By aggregating the simulated trips passing through a 

specific road segment, we are able to obtain the simulated traffic count at a particular location 

and compare to actual recorded traffic data. 

Figure 8 shows traffic monitor locations in the study area. Most are located along major 

arterials such as the interstate and state highways. There are 211 traffic monitor stations with 
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reported traffic counts in 2014. The traffic counts are recorded on a 48-hour cycle, and then 

converted to annual average daily traffic (AADT) count. AADT counts are inclusive of all lanes 

of travel, in both directions. 

 
Figure 8. Traffic monitor locations 

As shown in Figure 9, the simulated traffic counts and the AADT counts are largely 

consistent. The simulation tends to underestimate traffic in the lower range of traffic volumes 

and overestimate traffic in the upper range of traffic volumes. The Pearson correlation coefficient 

is as high as 0.919, significantly better than the study by Hu and Wang (2015) with a reported 

Pearson correlation coefficient of 0.660. 
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Figure 9. Simulated traffic counts vs. observed AADT in Baton Rouge 

In summary, this study disaggregates inter-zonal commuting trip volume data that is 

originally in census tract level to individual commuting trips using the four-step model. This 

model is based on Monte Carlo simulation to generate trip ends and form trip routes. Land use 

data is used to constrain trip end locations so that the simulation results are more reliable. By 

validating the simulation results to the actual traffic count data, the trip simulation method used 

in this study proves to be able to produce usable simulation to commute pattern, paving way to 

access an important factor: travel time. 
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CHAPTER 6. TRAVEL TIME ESTIMATION 

Based on the commuting trips simulated from Chapter 5, this chapter discusses how to estimate 

travel time of trips by private vehicle and by public transit since the difference between them is a 

key element in commuter’s mode choice. The Network Analyst module in ArcGIS is used to 

estimate driving time by private vehicle through road network, and this process is fairly routine 

(see Wang (2015)) and thus not discussed here. CATS provides a bus transit system covering a 

limited area in the study area. This system has fixed routes and stops, and operates under a fixed 

schedule. A reliable estimation of travel time by transit calls for the use of a schedule-aware 

method – for this study, the GTFS model. This chapter focuses on estimating the travel time via 

transit network. 

 

6.1. The GTFS data model for transit 

Since its first launch in 2005, GTFS has been the most popular data format to describe 

fixed-route transit systems (Antrim and Barbeau 2013). Implemented in Google Transit, its main 

functionality is transit trip routing, providing information on transit routes, transfers and travel 

time and distance for trips via a public transit network. GTFS data model represents a fixed-route 

transit system in a series of tables in the form of comma-delimited text files. These tables use 

data with pre-defined field names to describe multiple components of transit system, such as 

agency basics, transit stops and routes, schedules, etc. Among those tables, six are necessary to 

create a functioning GTFS data set (https://developers.google.com/transit/): 

1. File “agency.txt” contains basic information about transit agency such as its unique 

ID, full name, URL, and time zone. 

https://developers.google.com/transit/


 40 

2. File “stops.txt” contains information about each transit stop such as its ID, name, and 

geographic coordinates in latitude and longitude. 

3. File “routes.txt” contains information about each transit route such as its ID, affiliated 

transit agency ID, short and full names, and type (e.g., bus, subway). 

4. File “trips.txt” contains information about each transit trip that belongs to every 

transit routes of every transit agency within the transit system such as its route ID, 

service calendar ID, and trip ID. 

5. File “stop_times.txt” contains information about the stop times a vehicle arrives at 

and departs from each individual transit stop for each individual trip. 

6. File “calendar.txt” contains operation calendar types of weekly schedules (e.g., 

business day only, weekend only, etc.) to be referenced by the transit trips table. 

An additional route shape table “shapes.txt” describes how transit routes are drawn in 

GIS for visualization purposes. As shown in Figure 10, all tables are interconnected to each other 

by the common fields (keys), similar to a relational database, so that essential trip information 

such as routes, departure/arrival and transfer locations and times, trip lines, and especially travel 

time can be derived by routing analysis applications.  
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Figure 10. Interconnected GTFS tables 

 

6.2. Transit travel time estimation by “Yay, transit!” 

This study uses an application “Yay, transit!” from Esri to implement GTFS into the 

Network Analyst module of ArcGIS. “Yay, transit!” translates GTFS text files into operational 

transit data in ArcGIS by building spatial components of transit network and interpolate 

temporally conscious transit operations (Tallis 2014). This section details the step-by-step 

implementation.  

This process begins with building a transit network. It first generates transit lines, stop 

points and a database of schedules from the aforementioned GTFS text files. Figure 11 shows the 

bus stops and routes of CATS. Secondly, it creates small connector features between transit 

lines/stops and road network. Specifically, it snaps each bus stop to the closest point of the 

closest street, and builds a connector line between them to apply a time delay for boarding and 

un-boarding bus (see Figure 12). Last, it creates a transit network dataset in ArcGIS that includes 

road network, transit lines, connector lines, and bus stops and their snapped points. 
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Figure 11. CATS system map 

 
Figure 12. Build connections between bus stops and streets 

Once the transit network dataset is built, travel time can be calculated. “Yay, transit!” 

decomposes the travel time of a trip 𝑇 into four parts (Farber, Morang, and Widener 2014): 

 𝑇 = 𝑇𝑤𝑘 + 𝑇𝑤𝑡 + 𝑇𝑏 + 𝑇𝑟 (6.1) 
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where 𝑇𝑤𝑘 represents the walking time, including home-to-stop, stop-to-work, and transferring 

between two bus stops, 𝑇𝑤𝑡 denotes the waiting time, 𝑇𝑏 is a constant boarding/un-boarding 

time for each bus trip, and 𝑇𝑖
𝑟 stands for the bus-riding time (shown in Figure 13). Both 𝑇𝑤𝑡 and 

𝑇𝑟 are queried from the GTFS schedules. 

 
Figure 13. Querying a complete transit commuting trip route from residence to workplace 

Figure 14 uses an example to further illustrate the transit routing problem: 

1. Suppose a passenger leaves home at 7:30 a.m., the solver finds one possible walking 

route to a nearby stop 1.1, and calculates the walking time that 𝑇1
𝑤𝑘 = 2. This is the 

impedance value of the first walking edge, and the passenger arrives at the starting 

stop at 7:32 a.m. 

2. The solver queries the GTFS database to get the arrival time of the next bus, which is 

7:38 a.m., and calculates the impedance value of the waiting edge 𝑇1
𝑤𝑡 = 6, which is 

the difference between the bus arrival time and the passenger’s initial arrival time at 

the stop. 

3. The impedance value of the boarding edge 𝑇1
𝑏 is set as a constant: 15 seconds, or 0.25 

minutes. 

4. By querying the GTFS database again for arrival time for the next stop 1.2, which is 

7:39 a.m., the solver calculates the impedance value of the first riding edge (in light 

blue) 𝑇1
𝑟 = 1. 

5. Now the passenger needs to transfer to another route (in dark blue) by un-boarding 

the bus at stop 1.2 and walk to stop 2.1. Another boarding edge (un-boarding, 0.25 
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minutes) and walking edge (from stop 1.2 to stop 2.1) 𝑇2
𝑤𝑘 = 1 is added to the graph, 

and the passenger arrives at stop 2.1 at 7:40 a.m. 

6. The process repeats Steps 2-5 to add more waiting (9 minutes), boarding and riding 

edges (2 minutes) until the passenger finally reaches the last stop (stop 2.3) at 7:51 

a.m. 

7. One last walking edge (4 minutes) is added for walking from the final stop to 

workplace, and the passenger arrives at the workplace at 7:55 a.m. 

 
Figure 14. An example of a complete transit commuting trip from residence to workplace 



 45 

6.3. Transit-to-driving travel time ratio 

The difference in travel time between transit and private vehicle is measured as ratio. The 

transit-to-driving travel time ratio for a census block as a whole is calculated as the travel time 

ratio for every commuting trip originated from this census block:  

 𝑣 =
𝑇𝑡

𝑇𝑑

̅̅̅̅
 (6.2) 

 

where 𝑇𝑡 and 𝑇𝑑 stand for the transit commuting time and driving time, respectively. 

Figure 15 maps out the variation of transit-to-driving travel time ratio across the study area. 

Commuting with private vehicle is much faster and more convenient across the study area, as 

riding public transit usually involves walking, waiting, and boarding/un-boarding, and bus 

typically would typically travel slower. In the southern half of Baton Rouge (south of US 

Highway 190), the map shows a trend that travel time ratios of census blocks along Interstate 

Highways 10 and 12 are generally higher than distant ones. The public transit system in the study 

area mostly bypasses freeways, so that the commuting time advantage for census blocks near 

freeway would be more significant, making public transit a less appealing choice for commuters 

in those neighborhoods. In comparison, in the northern half of the study area (north of US 

Highway 190), the travel time ratio is not as high, as there are no nearby freeways, and there are 

more bus routes and stops (see Figure 11). 

In summary, the travel time of public transit is still measured based on the traditional 

Dijkstra’s algorithm (Dijkstra 1959). But the traverse time of each trip segment is not simply 

calculated as distance divided by speed, like one would do for a private vehicle trip. Instead, the 

traverse time is dynamically determined by querying GTFS transit schedule (for waiting and 

riding), or by calculating walking time (for walking). This leads to more accurate estimate of 
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transit travel time comparing to survey or other indirect approaches, and provides a more reliable 

factor to evaluate commuter’s behaviors. 

 
Figure 15. Transit-to-driving travel time ratio in Baton Rouge  



 47 

CHAPTER 7. GLOBAL AND LOCALIZED NEIGHBORHOOD EFFECTS ON PUBLIC 

TRANSIT RIDERSHIP 

Like many issues, public transit ridership in neighborhood may be explained by “who they are” 

(i.e., non-spatial factors) and “where they are” (i.e., spatial factors). As discussed in Chapters 2 

and 3, this study focuses on the factors at census block level. These factors are often referred to 

as “external factors” as they are external to public transit system. Many other factors such as fare 

and quality of service of transit system, gasoline price, accessibility to parking facilities, and 

weather are not considered due to the scope of this study. More importantly, due to a lack of 

access to data of individual commuters (e.g., age, sex, gender, education attainment, income, 

occupation, etc.), this study is limited to census block level. While this study makes all efforts to 

disaggregate data from larger areal units (census tract or block group) down to a small areal unit 

(census block), it still remains at aggregate areal level and thus is not completely immune from 

possible criticism of “ecological fallacy” (Robinson 1950). Nevertheless, the disaggregation 

approaches, implemented for measures of both non-spatial and spatial factors, have prepared data 

at a sharper spatial resolution and of a larger sample size, and thus helped mitigate some of the 

problems (e.g., limit loss of information or variability of variables in data aggregation). When 

individual-level data is available, future work will employ a multilevel modeling approach in 

detecting both individual commuter behavior and neighborhood effects (e.g., Antipova, Wang, 

and Wilmot (2011)). 

 

7.1. Selecting explanatory variables by stepwise regression 

As outlined in Table 4, this research selects 25 variables to explain the variation of public 

transit ridership across the study area at census block level. These 25 variables represent several 

different aspects of neighborhood characteristics including demographic and socio-demographic 
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(or non-spatial), and spatial factors. All variables are log-transformed for the following analyses. 

A forward stepwise regression is used to refine the variable list to minimize the possibility of 

unnecessary inclusion of variables. The selection results are reported in Table 5. Variables that 

meet both of the following criteria are entered as explanatory variables in the following 

regression analyses: 

1. Probability of 𝐹-to-enter ≤ 0.05. This is the default criteria. If the addition of a 

variable does not inflate the probability of the model’s 𝐹-test to above 0.05. The 

variable would be accepted. 

2. Contribution to adjusted 𝑅2 ≥ 0.010. It is possible that some variables that meet the 

previous criterion do not contribute enough to the model. This study adds another 

layer of control to retain the variables that increases to the model’s adjusted 𝑅2 by 

more than 0.010, in order to keep the model as concise as possible. 

The stepwise regression retains 6 variables (denoted by * in Table 5) out of 25 as the 

explanatory variables in the following regression models. Among the excluded variables, non-

spatial ones like age, householder gender, education attainment, and spatial ones such as nearby 

sidewalk length are not statistically strong indicators of public transit ridership. Note that neither 

population density nor worker density is a statistically significant indicator of census block’s 

public transit ridership, as well as housing unit density and residential land use, which is 

contradictory against most existing studies (Pushkarev and Zupan 1977; Hendrickson 1986; 

Spillar 1989; Chung 1997). Another scenario of exclusion of variable is because there is another 

variable retained to represent a group of highly correlated variables. For example, median 

household income is retained as the representative of per capita income, poverty rate and 

percentage of renter-occupied housing units. 
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Table 5. Stepwise regression results 

Code Variable 𝒑-value 𝑹𝟐 change 

 Median age (years) 0.582 - 

White *White population (%) 0.000 0.013 

 Female headed householder (%) 0.253 - 

 Population with high school diploma (%) 0.671 - 

English *Household speaking limited English (%) 0.000 0.012 

 Poverty rate (%) 0.012 0.000 

Income *Median household income (dollars) 0.000 0.012 

 Per capita income (dollars) 0.368 - 

 Household receiving food stamp (%) 0.599 - 

 Unemployment rate (%) 0.131 - 

 Vacant housing unit (%) 0.225 - 

 Renter-occupied housing unit (%) 0.025 0.000 

 Housing unit with >1 persons/bedroom (%) 0.523 - 

Carless *Carless housing unit (%) 0.000 0.188 

Plumb *Housing unit with incomplete plumbing device (%) 0.000 0.002 

Kitchen *Housing unit with incomplete kitchen (%) 0.000 0.008 

Time *Bus-riding-driving time ratio 0.000 0.105 

Distance *Distance to nearest bus stop (meters) 0.000 0.001 

Jobs *Number of jobs within 1-hour transit service area 0.000 0.034 

 Number of nearby bus stop 0.217 - 

 Population density (per acre) 0.142 - 

 Worker density (per acre) 0.756 - 

 Housing unit density (per acre) 0.203 - 

 Nearby sidewalk length (meters) 0.606 - 

 Low-density residential land use 0.228 - 

*: retained variables 

 

7.2. Assessing neighborhood global effects 

After variable selection, 6 selected non-spatial and spatial variables are included in the 

regression models. The initial analysis is to access the global effect of these variables on public 

transit ridership by building a global model with OLS regression to access their global effects on 

public transit ridership across census blocks. The global model is: 
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 𝑦𝑖 = 𝛽0 + 𝛽1𝑣1 + 𝛽2𝑣2 + ⋯ + 𝛽9𝑣9 + 𝜀𝑖 (7.1) 

 

where 𝑦 is the dependent variable (public transit ridership), 𝛽0 is the model intercept, and 𝛽1 

through 𝛽9 are the parameters for explanatory variables 𝑣1 through 𝑣9, respectively. The 

coefficient estimators 𝛣, in matrix notation, are solved as: 

 𝛣 = (𝑉𝑇𝑉)−1𝑉𝑇𝑌 (7.2) 

 

where 𝑉 is a matrix for the explanatory variables, and 𝑌 is a vector for the dependent variable. 

The results of OLS regression are reported in Table 6. The variance inflation factor (VIF) 

for all variables are well below the threshold of 2.500, showing that multicollinearity between 

the variables is relatively low. 

Table 6. OLS regression results 

Variable Coefficient estimate Standard error 𝒕-statistic P-value VIF 

Intercept 6.372 0.446 14.300 0.000 - 

White -0.083 0.012 -6.764 0.000 1.362 

English 0.296 0.031 9.459 0.000 1.091 

Income -0.236 0.033 -7.08 0.000 1.427 

Carless 0.271 0.021 12.943 0.000 1.482 

Time -3.798 0.153 -24.887 0.000 1.150 

Jobs 0.235 0.016 14.671 0.000 1.058 

Adjusted 𝑅2: 0.364; AICc: 13,246.548 

 

The global results suggest that higher public transit ridership tend to be associated with 

less White population, lower median household income, and certainly fewer carless population in 

census block. On the other hand, more linguistically isolated census blocks, which may indicate 

more recent immigrants, as well as census blocks with worse housing conditions (i.e., housing 

units with incomplete plumbing or kitchen facilities), would probably have more people 

commuting by public transit. For spatial factors, greater commuting time difference between 

riding public transit and driving private vehicle is related to lower public transit ridership. 
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Distance to the nearest bus stop is surprisingly positively related to public transit ridership. The 

last factor, number of jobs within a 1-hour transit service area, shows a positive relationship, 

meaning that for a census block, if more jobs available with public transit, more commuters tend 

to choose public transit. As shown in Figure 16, the spatial distribution of residuals from the 

global model shows some level of clustering. This is further confirmed by its global Moran’s I of 

0.151 with a 𝑧-score of 52.338 and a 𝑝-value of 0.000, which indicates statistically significant 

spatial autocorrelation. 

 
Figure 16. Residuals from the OLS model 

The presence of spatial autocorrelation indicates that the errors derived from the OLS 

regression are systemically related to each other, and similar values are next to each other, as 
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suggested by the positive Moran’s I. This violates a major assumption of OLS regression and 

raises questions whether the estimators of coefficients for the corresponding independent 

variables are unbiased and reliable. 

 

7.3. Assessing neighborhood localized effects 

There are several approaches developed in the literature that can control or mitigate the 

effect of spatial autocorrelation. For example, spatial error model and spatial lag model can be 

estimated by a maximum likelihood method (Wang 2015). However, those are broadly defined 

as global spatial regression models that detect only the global effects of those explanatory 

variables. In other words, they assume that the effect of each explanatory variable is uniform 

across the entire study area. Recent literature suggests that it is common, especially in socio-

economic applications in geographic or spatial data, that the relationship between explanatory 

and dependent variables varies across study area. A localized model by geographically weighted 

regression (GWR) is developed to analyze the spatially varying relationships and permits spatial 

non-stationarity in the regression coefficients (Fotheringham, Brunsdon, and Charlton 2002). 

GWR stems from OLS regression with varying coefficients. The GWR model here is written as: 

 𝑦𝑖 = 𝛽0𝑖
+ 𝛽1𝑖

𝑣1 + 𝛽2𝑖
𝑣2 + ⋯ + 𝛽9𝑖

𝑣9 + 𝜀𝑖 (7.3) 

 

where 𝛽0𝑖
 through 𝛽9𝑖

 are weighted parameters, and i indexes census block. In matrix notations, 

these parameters (denoted as vector B) are estimated by implementing a spatial weight matrix 𝑊𝑖  

to Equation 7.2: 

 𝛣 = (𝑉𝑇𝑊𝑖𝑉)−1𝑉𝑇𝑊𝑖𝑌 (7.4) 

 

The same 9 independent variables are used in the localized model. The model yields an 

adjusted 𝑅2 of 0.558 and an AICc of 12,190.100. Comparing to the global model whose adjusted 
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𝑅2 is 0.364 and AICc is 13,246.548, the localized model captures spatial effects and has a better 

model fit. Furthermore, given the residuals mapped in Figure 17(a), as well as its global Moran’s 

I of 0.002 with a 𝑧-score of 0.827 and 𝑝-value of 0.408, the spatial distribution of the residuals 

from the localized model is confidently random. Therefore, the use of GWR in place of OLS 

regression is well warranted, and overall the localized effects of neighborhood variables are 

significant. 

 
Figure 17. Residuals and Local 𝑅2 of the GWR model 

The local 𝑅2 of the localized model is mapped in Figure 17(b). For most areas with 

public transit access, the demographic, socio-economic, and spatial factors can explain fairly 

enough variances in public transit ridership by the localized model, while in some other areas – 
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notably Baker, the Southern University area, the east of ExxonMobil refinery, and the region 

between Interstate Highway 12 and US Highway 190, the model fit is not as sufficient. 

Table 7 reports the summary statistics of coefficient estimates from the localized model. 

Although the means and medians report the same trends of relationships between public transit 

ridership and the explanatory variables, some census blocks reports opposite relationships. For 

example, White population percentage has a maximum coefficient estimate of 0.681 albeit a 

negative global estimate. 

Table 7. GWR model’s coefficient estimates 

Variable Mean Std. dev. Minimum Median Maximum 

Intercept 9.894 7.544 -16.266 9.784 40.391 

White -0.032 0.251 -1.180 -0.018 0.681 

English 0.186 0.327 -1.029 0.187 1.440 

Income -0.163 0.421 -1.837 -0.128 1.159 

Carless 0.141 0.234 -0.563 0.135 0.857 

Time -5.623 2.579 -14.096 -5.100 -0.117 

Jobs 0.129 0.566 -3.853 0.073 4.100 

Adjusted 𝑅2: 0.558; AICc: 12,190.100; optimal bandwidth: 131.293 

 

The coefficient estimates for all six variables and the intercept are mapped in Figures 18 

and 19. Figure 18 reports the spatial distribution patterns for the coefficient estimates of the four 

non-spatial variables: (a) White population percentage, (b) percentage of households speaking 

limited English, (c) median household income, and (d) percentage of carless population. Figure 

19 shows the spatial distribution patterns for the coefficient estimates of the two spatial 

variables: (a) bus-riding-to-driving time ratio, and (b) number of jobs within a 1-hour public 

transit service area. 
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Figure 18. Coefficient estimates for non-spatial variables 
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Figure 19. Coefficient estimates for spatial variables 

 

7.4. Separating global and localized neighborhood effects 

The localized model reports localized parameter estimates for the explanatory factors, 

and statistically improves the model performance when comparing to the global model. 

However, both models fail to consider the possibility of a combination of global and localized 

effect in the same model. Some factors could be used to explain public transit ridership in a 

constant manner across the study area, while others may have different implications on public 

transit ridership for different neighborhoods. This is important for this study, because if a 

variable actually with global effect is incorrectly modeled with localized effect, or vice versa, 
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future effort in improving public transit ridership based on such model could be fruitless, or even 

cause further decrease for some neighborhoods. Semi-parametric GWR (SGWR) is the most 

recent development of GWR that captures such difference by including both geographically 

fixed and varying parameters in the same model. Thus, factors with global effect would be 

modeled with constant coefficient across space, and factors with localized effect would be 

modeled with varying coefficient based on location. SGWR is implemented in this study using 

the GWR4.09 software. 

To determine whether a variable is global or localized, a geographical variability test is 

performed (Mashhoodi, Stead, and van Timmeren 2019). This test is based on conducting a 

series of SGWR analyses with exactly one variable being global in each model, and then 

comparing their model performances to the original GWR model. For example, to test whether 

𝑣𝑘 is a global variable, the following test model: 

 𝑦𝑖 = 𝛽0𝑖
+ 𝛽𝑘𝑣𝑘𝑖

𝐺 + ∑ 𝛽𝑙𝑖
𝑣𝑙𝑖

𝐿

5

+ 𝜀𝑖 (7.6) 

 

is compared to the ordinary GWR model described in Equation 7.3. In Equation 7.6, 𝛽𝑘  is the 

global (constant) coefficient of the corresponding global variable 𝑣𝑘
𝐺  that is tested for 

geographical variability, and 𝛽𝑙𝑖
 is the localized (varying) coefficient of the corresponding 

remining localized variable 𝑣𝑙
𝐿 . If the test model’s AICc is lower than that of the ordinary GWR 

model (i.e., a positive “DIFF of Criterion”), 𝑣𝑘 should be considered a global variable in SGWR 

model. Otherwise, 𝑣𝑘 should be considered a localized variable. Model performance indices 

other than AICc may also be used, including adjusted 𝑅2, cross-validation (CV), and global 

Moran’s I. Table 8 reports the results of geographical variability tests for the model variables: 
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Table 8. Geographical variability test results 

Variable DIFF of Criterion Type of variable 

Intercept -3,018.216 Local 

White 8.990 Global 

English 22.854 Global 

Income -1,224.451 Local 

Carless 5.031 Global 

Time -2,327.762 Local 

Jobs -1,443.892 Local 

 

By employing SGWR, the model described in Equation 7.3 is further developed to a 

combination of three global and three localized variables, including the intercept being localized 

(Nakaya et al. 2005): 

 𝑦𝑖 = 𝛽0𝑖
+ ∑ 𝛽𝑘𝑣𝑘𝑖

𝐺

3

+ ∑ 𝛽𝑙𝑖
𝑣𝑙𝑖

𝐿

3

+ 𝜀𝑖  (7.5) 

 

According to the geographical variability test, the variables representing White 

population percentage, percentage of linguistically isolated households, and carless population 

percentage are identified as global variables. Median household income, along with the two 

spatial variables: bus-riding-to-driving time ratio, and number of jobs within a 1-hour public 

transit service area are remained as localized variables. With global and localized variables 

differentiated, the results of the SGWR analysis are reported in Table 9. The SGWR analysis 

reports standardized coefficients so that the question of which variables are more related to 

public transit ridership could be answered by simply comparing their absolute values. 

Table 9. SGWR model’s coefficient estimates (standardized) 

Global variable Coefficient estimate Std. error 𝒕-statistic Probability 

White -0.097 0.033 -2.923 0.011 

English 0.118 0.020 5.841 0.000 

Carless 0.168 0.024 6.866 0.000 

 

(table cont’d) 
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Localized variable Mean Std. dev. Minimum Median Maximum 

Intercept -1.936 0.945 -5.425 -1.967 2.607 

Income -0.092 0.371 -1.656 -0.083 1.410 

Time -0.831 0.463 -2.827 -0.744 0.101 

Jobs 0.173 1.048 -5.708 0.117 6.656 

Adjusted 𝑅2: 0.574; AICc: 12,055.300; optimal bandwidth: 74.055 

 

The parameter estimates of the global factors: White population percentage, percentage 

of linguistically isolated households, and carless population percentage are all statistically 

significant at the 0.05 level. The AICc of the SGWR model further decreased to 12,055.300. In 

addition, Figure 20(a) maps the standard residuals from the SGWR model showing even more 

randomized pattern (global Moran’s I: -0.002, 𝑧-score: 0.622, 𝑝-value: 0.534). Figure 20(b) maps 

the local 𝑅2 of the SGWR model. For most areas with public transit access, the demographic, 

socio-economic, and spatial factors can explain fairly enough variances in public transit ridership 

with the SGWR model, despite the fact that the model fit not as sufficient in some other areas – 

notably Baker, the Southern University area, east of ExxonMobil refinery, and the region 

between Interstate Highway 12 and US Highway 190. Judging from the statistical diagnostics, 

the SGWR model reports better model performances comparing to the previous models (see 

Table 10). 

 

Table 10. Diagnostics of the OLS, GWR, and SGWR models 

 OLS GWR SGWR 

Adjusted 𝑅2 0.364 0.558 0.574 

AICc 13246.548 12,190.100 12,055.300 

Residuals Moran’s I 0.151 0.002 -0.002 

𝑝-value 0.000 0.408 0.534 
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Figure 20. Residuals and local 𝑅2 of the SGWR model 

Generally speaking, the parameter estimates of the global factors appear to have similar 

trend to what global model reports. White population percentage is negatively related to public 

transit ridership, meaning that commuters in neighborhoods with higher concentration of White 

population are more willing to drive to work. More linguistically isolated neighborhoods, or 

neighborhoods with more recent immigrants, are related to higher public transit ridership. In 

terms of car ownership, certainly more carless population would indicate more commuters taking 

public transit. The global results point to positive relationship between public transit ridership 

and disadvantages in demographic and socio-economic status. While it is a social welfare to 

provide public transit services to minorities and people with low mobility, it might also help to 
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increase public transit ridership in the advantageous neighborhoods by promoting the benefits of 

commuting with public transit, such as reducing air pollution, or forcing reasonable amount of 

walking that is beneficial to health, etc. Such policies could be implemented to the advantageous 

neighborhoods to dig the potential of public transit commuters. Among the three global factors, 

the results show that car ownership has the most impact on public transit ridership, with a 

parameter estimate of 0.168. When compared to the three localized factors: income, commuting 

time ratio, and access to jobs via public transit, the parameter estimate of carless percentage is 

greater than their parameter estimates in only 41.9%, 3.1%, and 21.2% of census blocks in the 

study area, respectively. For the other two global factors with less contribution, White population 

has greater impact than the localized factors in 25.5%, 1.7%, and 12.3% of census blocks, 

respectively, and recent immigrant level has greater impact than the localized factors in 30.4%, 

2.0%, and 14.9% of census blocks. The comparisons speak that car ownership is the most 

contributive global factor, and the global factors do not have greater impacts comparing to the 

localized factors. 

Figure 21 – 23 maps the spatial distribution patterns for the parameter estimates of the 

localized variables. The spatial distribution patterns generally show similar trends to those of the 

four corresponding variables in the ordinary GWR model, as discussed in the previous section. 

The nature of the relationships between public transit ridership and these variables vary across 

space. Figure 21 reports the spatial distribution patterns for the parameter estimate of median 

household income. The mean and median are -0.092 and -0.083, respectively. This is consistent 

with the global model, meaning that generally, richer neighborhoods tend to drive to work. 

However, the map shows that for a lot of neighborhoods, higher income level would instead be 

related to higher public transit ridership in 38.5% of census blocks. The distribution of the 
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converse trend represented by the warmer colors is dispersed, and the notable areas include the 

east and south ExxonMobil refinery, the north of downtown, the north of LSU, the Sherwood 

Forest region, and the Old Jefferson area. 

 
Figure 21. Coefficient estimates for median household income 

As previously discussed, commuting time difference between riding public transit and 

driving private vehicle is perhaps one of the most important factors in commuting mode choice. 

Figure 22 reports the spatial distribution patterns for the parameter estimate of commuting time 

ratio. The mean and median are -0.831 and -0.744, respectively, which coherent with the global 

estimate. An easy conclusion could be reached that the greater commuting time difference 

between public transit and private vehicle, the more likely that commuters would be discouraged 
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to use public transit system. The distribution of local coefficient estimates shows perfect 

consistency with the global trend, albeit some variations in degree, that for all census blocks, 

extended commuting time via public transit system makes it a less preferable option for 

commute. 

 
Figure 22. Coefficient estimates for commuting time ratio 

Number of jobs within a 1-hour transit service area of census block measures 

accessibility to employment via public transit. Figure 23 maps the spatial distribution patterns for 

this factor. The mean and median are 0.173 and 0.119, respectively, which is similar to the 

global model. From the map, most of the study area also have positive coefficient estimates, 

meaning that for most neighborhood (58.6%), the more jobs are connected by public transit 

system, the more commuters would choose public transit. Most area in Baker is again the most 
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notable exception, along with the area east of LSU, and the neighborhoods at the east and south 

sides of Baton Rouge. In these regions, more jobs accessible via public transit system might 

instead indicate lower public transit ridership. 

 
Figure 23. Coefficient estimates for number of jobs within 1-hour transit service area 

From the standardized parameter estimates reported in Table 9, it could be concluded that 

commuting time ratio has the greatest impact on public transit ridership (mean: -0,831, median: -

0.744) – about four times greater than the second-place factor number of jobs within a 1-hour 

transit service area. Figure 24 displays where the three localized factors have the greatest impact 

in the study area. Commuting time ratio is the most dominant localized factor in more than 60% 

of the study area. 
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Figure 24. Most influential localized factors 

This chapter uses regression models to analyze the relationships between public transit 

ridership and a wide spectrum of demographic, socio-economic and spatial factors that represent 

different aspects of census block. Only a certain number of factors are considered to have 

statistically significant correlation to public transit ridership in census block. Some factors are 

proven to have generally the same correlations with public transit ridership across the study area 

(i.e., global/homogenous variables), while others’ relationships are more localized (i.e., 

localized/heterogenous variables). Comparing the global terms to the global model, and the 

localized terms to the localized model, the SGWR model shows consistent findings. Although 
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the findings are similar, the SGWR model should still be considered an advancement from the 

previous two models for the following reasons: 

1. The model clearly differentiates factors that have global effect on public transit 

ridership, and ones that have localized effect. The model could potentially help the 

policy makers and transit operators to target where and how public transit ridership 

could be improved, and implement strategies for different kinds of commuters in 

different places. 

2. SGWR improves model performance in terms of increasing the model fit, and 

minimizing the information loss.  
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CHAPTER 8. CONCLUSIONS AND DISCUSSION 

This chapter summarizes major findings from this study, highlights significant contributions and 

discusses possible extensions for future work. This dissertation attempts to examine how public 

transit ridership can be explained by neighborhood characteristics such as demographic, socio-

economic, and spatial variables. The case study is based on East Baton Rouge Parish, Louisiana 

in 2013.  

 

8.1. Major findings and contributions 

This section provides a brief recap of four major tasks accomplished, corresponding to 

Chapters 4-7, respectively: 

1. A disaggregation method is used to interpolate demographic and socio-economic 

variables from a larger areal unit (block group) to a smaller areal unit (census block), 

and therefore integrate variables at two different scales into one (i.e., census block). 

2. The integration of high-quality resident worker and employment data and land use 

data with the CTPP data enables more accurate simulations of resident worker and 

employment locations, and hence individual commuting trips. Improvement in 

simulations is validated by the recorded traffic count data. Better simulation of 

commuting trip leads to more accurate measurement of travel time. 

3. In addition to calibrating travel time by private vehicle in GIS, this study implements 

GTFS model into GIS to compute travel time via public transit system based on 

transit schedule. 

4. Variables prepared from the three tasks above are fed into a series of regression 

models to identify neighborhood effects of demographic, socio-economic and spatial 
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variables on public transit ridership. The regression analysis advances from a 

stepwise regression to extract effective global explanatory variables, to a GWR to 

detect localized effects, and finally to a SGWR to separate global and localized 

effects. 

Some major findings are highlighted below: 

First, a number of variables have constantly been identified by the existing literature to 

exert strong influence on public transit ridership, but fail to be validated by this study. These 

include: age, population or housing density, presence of sidewalks, and residential land use. A 

likely reason for such discrepancies in findings is that this study examines the relationship in 

neighborhoods (here census blocks), whereas the traditional intra-urban studies focus on how 

public transit ridership is affected by these factors in surrounding areas of transit stops. Take 

population density for example, a traditional intra-urban study may explain public transit 

ridership at a transit stop by population density within its 1-mile service area. Obviously a higher 

population density means more population (within the same 1-mile area), and thus more transit 

riders there. However, as in this study, a densely populated area does not necessarily generate a 

higher percentage of public transit commuters. Another possible cause is multicollinearity, as 

discussed in section 7.1. One variable’s statistical significance in a regression model may be 

spurious if this variable is highly correlated with other truly influential variables in the model. 

For this reason, this study has made a conscious effort to extract a large number of variables. 

Since some of them are related, the stepwise regression is used to retain the significant variables 

while filtering out the lesser ones. For example, median household income is retained over per 

capita income, poverty rate, percentage of renter-occupied housing units, and housing conditions. 
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For the retained variables, the final model is able to sort out which effects are global and 

which are localized. For example, commuters in socio-economically disadvantageous 

neighborhoods tend to be more likely to ride public transit to work (i.e., non-White concentrated, 

linguistically isolated, inferior housing conditions, etc.), and such effects are constant across the 

study area. This is consistent with most of existing studies. More importantly, this study shows 

that overall a lower income level tends be positively related to a higher public transit ridership, 

but the relationship is far from uniform and can be even reversed in certain regions of the study 

area. For instance, neighborhoods in extreme poverty may experience a very low labor 

participation rate, which may be a result of poor accessibility to public transit (say, away from 

transit routes or lack of transit fare affordability). In this case, low transit ridership is both an 

outcome and a contributor of poverty. The effects of spatial factors on public transit ridership are 

all localized. Greater disadvantage of public transit in commuting time pushes commuters away 

to driving private vehicle. The effect of commuting time ratio is significant, and is more 

significant in certain areas than others. Neighborhoods that are better connected to jobs by public 

transit might have more commuters willing to commute by public transit, but the entirely 

opposite can be found elsewhere in the study area. More in-depth field work is needed to 

uncover the underlying dynamics in specific parts of the study area. Commuting time ratio has 

the strongest effect on public transit ridership by a wide margin, and dwarfs the effect by 

demographic and socio-economic factors. This has significant implication in service planning 

and policy making: improving public transit efficiency and reliability is vital for promoting 

public transit ridership. 

On the methodological front, this study makes several notable contributions.  
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1. It considers both spatial and non-spatial factors at census block level to explain public 

transit ridership. While most non-spatial factors have been considered by existing 

studies, this study disaggregates these data to facilitate analysis at a smaller areal unit 

(census block) is the first of kind in applying ecological inference method in 

transportation-related studies.  

2. It defines multiple spatial factors, among which the calibration of transit-to-driving 

time ratio is considered a major strength of this study. The pursuit for more accurate 

measurement is enabled by access to better data and more sophisticated simulation 

techniques powered by geospatial computation in a GIS environment.  

3. This study taps into the advanced SGWR model to finalize the regression analysis. 

While the SGWR method was developed over a decade ago, its implementation and 

availability for public usage was fairly recent. As discussed under “major findings”, it 

enables this study to sort out what are global effects and what are localized effects, 

and where the localized effects are. Such findings may help policy makers and transit 

operators to target where and how public transit ridership might be needed and 

improved, and implement different strategies for different kinds of commuters in 

different places. In short, when it comes to public policy, it rejects the notion that 

“one size fits all” and promotes “place-adaptable policy”. 

 

8.2. Limitations and possible future improvements 

First of all, this study does not focus on individual behaviors due to the nature of 

aggregated data in areal units. 
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This study area, Baton Rouge, is a medium-size U.S. city where only a very small portion 

of commuters use public transit system. Small values of transit ridership make its variability 

sensitive to data and measurement errors. This may limit the replicability of the findings in other 

cities. 

This study uses the aforementioned data disaggregation method to simulate variable 

values in a smaller areal unit from data in a larger areal unit. The data disaggregation method 

makes certain assumptions that may require additional justification (e.g., one unknown variable 

is linearly correlated to one known variable). Future studies can use other data sources for 

improving the estimation. For trip simulation, this study uses land use data to improve the 

simulation of trip ends. Future work can further advance the simulation by utilizing parcel data, 

building footprint data, and others. 

For driving time by private vehicle, this study simply assumes that drivers follow speed 

limits. Future study can use other methods (e.g., Google Maps API) to derive more realistic 

travel time that accounts for traffic conditions. On measuring riding time on public transit, this 

study relies on a fixed transit schedule. However, delays are also common for public transits in 

the study area. This study also omits LSU’s own shuttle service, Tiger Trails, available for 

anyone on and around the campus. However, it does not operate on a fixed schedule, and 

therefore one cannot use the GTFS data adopted by this study to estimate travel time.   
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APPENDIX. SUPPLEMENTARY MAPS  

 
Figure A.1. Residential land use: low density, and medium and high density 
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Figure A.2. Demographic variables at the census block level 
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Figure A.3. Socio-economic variables at the census block level 
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Figure A.4. Socio-economic variables at the census block level 
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Figure A.5. Socio-economic variables at the census block level 
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Figure A.6. Spatial variables at the census block level 
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Figure A.7. Spatial variables at the census block level 
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