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ABSTRACT 

Tornadoes are a reoccurring severe weather hazard, with the highest rates globally 

occurring in the central United States. Despite their high frequency in the U.S., the scientific 

community’s disagreement of tornado activity during varying phases and intensities of the El 

Niño Southern Oscillation (ENSO) justifies a need for further research. In this study, tornado 

events from 1950 to 2014 in the U.S. east of the Rocky Mountains were investigated for seven 

phases of ENSO: strong, moderate, and weak El Niño/La Niña and the neutral phase. A seasonal 

Niño 3.4 index was used as the definition of ENSO. ENSO influences on tornado frequency, 

intensity, geographical distribution, and track area were tested using sophisticated mapping (i.e. 

GIS optimized hot spot analysis) and spatial statistics (i.e. average nearest neighbor and global 

Moran’s I). Results indicate that in spring, a Weak La Niña correlates with higher tornado 

intensity and stronger, long-lived tornadoes that shift eastward from the central U.S. as ENSO 

transitions from El Niño to La Niña. Summer has high tornado frequencies that do not vary 

dramatically across ENSO phases, with weak, short-lived tornadoes occurring in tornado 

outbreaks. Fall has similar tornado frequencies across six of the seven ENSO phases, apart from 

largely higher annual counts during a Strong La Niña phase. Winter exhibits more tornadoes that 

are stronger and longer-lived during a Moderate La Niña phase, with a northward expansion in 

tornado hot spots as ENSO transitions from El Niño to La Niña. In general, La Niña is most 

conducive for higher tornado counts and stronger, longer lived tornadoes.   
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CHAPTER 1: INTRODUCTION 

1.1 Background 

 Severe thunderstorms are capable of producing violent tornadoes across the eastern 

United States. Second to hurricanes, thunderstorms producing tornadoes, along with hail and 

powerful winds cost the U.S. an average of about $1.6 billion in damage per year (Munich 2013). 

While many studies have been implemented to better understand tornadic dynamics, the 

scientific community has not fully developed a single theory that explains all the observed 

features in a tornado (Rotunno 1986). Furthermore, our understanding of the influence and 

impacts of atmospheric teleconnections, such as the El Niño Southern Oscillation (ENSO), on 

the tornado climatology in the U.S., while having improved in recent years (Cook and Schaefer 

2008, Allen et al. 2015) has plenty of room for improvement.  

There are disagreements in the scientific community about the effects of teleconnections, 

such as ENSO, on tornado climatology. First, this type of study is complicated due to a scaling 

problem. Tornadoes are considered “mesoscale”, or very localized, making it difficult to 

adequately capture the effects of large-scale and long-term atmospheric processes (Trenberth and 

Stepaniak 2001). Another complication with the tornado record is that the number of tornado 

reports has increased dramatically through time. This is due to improvements in tornado 

detection technology (i.e., Doppler radar), increased eyewitness reports from population 

increases over time, and changes in damage survey procedures (Lee et al. 2013). Other problems, 

such as underreporting of tornadoes and the likely underrating of tornadoes due to lack of 

structures for damage reports are also contributors to the complexity of these studies (Brooks and 

Doswell 2001).  

Researchers have used varying techniques to better understand how ENSO effects 
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tornadic frequency and density in the Continental United States (CONUS). However, many of 

these studies have contradicting results due to varying methods. Bove (1998) saw a reduction 

[increase] of tornadic activity in the southern plains during El Niño [La Niña]; El Niño [La Niña] 

inhibits [facilitates] large tornado outbreaks. A northward displacement of the subtropical jet 

stream during La Niña brings stronger dynamical forcing (i.e. forced lifting of air) to parts of the 

southeast U.S. (Ropelewski and Halpert 1989), creating an environment more conducive for 

tornadoes. On the contrary, El Niño shifts the subtropical jet stream southward, removing this 

forcing from the U.S. which makes the environment less conducive for tornadoes. Tornadoes 

commonly develop in spring due to the large difference between cold, dry air masses pushing 

southward from Canada and warm, moist air moving northward from the Gulf of Mexico (GOM) 

(Bove 1998). This large difference, also referred to as the temperature gradient, creates 

atmospheric instability conducive for severe weather. El Niño [La Niña] events tend to decrease 

[increase] the temperature gradient between these two air masses, and is therefore less [more] 

conducive for tornadic activity. These results were consistent with other similar studies 

(Monfredo 1999; Marzban and Schaefer 2001; Lee et al 2013; Allen et al. 2015; Lee et al. 2016).  

However, not all of the literature agrees with these findings. Agee and Zurn-Birkhimer 

(1999) suggest that the phase of ENSO does not have a role in the production of stronger or 

longer track tornadoes, regardless of phase. Knowles and Pielke (2005) claim that there is little 

difference found in total numbers between El Niño and La Niña events. They do confirm that La 

Niña events do tend to have longer tracked, more violent tornadoes than El Niño. Warmer than 

normal temperatures in the northwest pushing against colder than normal temperatures in the 

south during El Niño years weakens the interactions between the two air masses, decreasing the 

lengths of tornadoes, and the opposite is true for La Niña years (Knowles and Pielke 2005). Cook 
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and Schaefer (2008) found that ENSO neutral years actually have the strongest correlation with 

an increase in tornado days (a day with 6 or more tornadoes), with respect to El Niño and La 

Niña. Finally, Schaefer and Tatom (1999) agree with Knowles and Pielke that the phase of 

ENSO does not favor tornado frequencies, and solely exhibit a shift in geographic location in the 

Mideastern and Northeastern United States during a La Niña phase. Their hypothesized physical 

explanation for this is little or no lag between warm/cold Pacific water and associated weather 

(Schaefer and Tatom 1998). This discordance amongst aforementioned studies is an issue that 

needs to be resolved.  

1.2 Statement of Problem 

A key goal of this study was to ease the aforementioned conflict in the literature. To do 

this, seven different categories of ENSO were examined to see their effects on spatial and 

temporal tornadic variability and characteristics. While other studies have looked at three phases 

of ENSO (El Niño, La Niña, and Neutral), this study will represent an improvement of the 

current science by looking at the following seven categories: 

1. Strong El Niño 

2. Moderate El Niño 

3. Weak El Niño 

4. Neutral 

5. Weak La Niña 

6. Moderate La Niña 

7. Strong La Niña 

This study will also contribute to the literature by looking at ENSO influences in all 

seasons. Cook and Schaefer (2008) analyzed tornado activity in winter, and Lee et al. (2013) and 

Lee et al. (20016) both analyzed tornado activity in spring, but only one other study has looked 

at the influence of ENSO on tornado activity year-round (Allen et al. 2015). It is hypothesized 
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that the reason for varying results amongst previous studies is because the intensity of ENSO has 

not been taken into account, which could have led to contradictory results. The overlying 

purpose of this study is to examine how these varying ENSO categories affect seasonal tornadic 

characteristics and tendencies.  

1.3 Objectives 

 This thesis represents an improvement in the literature by not only examining seven 

phases of ENSO, but also by analyzing relationships during four seasons: Winter (DJF), Spring, 

(MAM), Summer (JJA), and Fall (SON). Therefore, the major objectives of this paper are to 

build on previous studies by examining the effects that ENSO has on tornadic characteristics and 

tendencies seasonally from 1950-2014. The statistical significance of all findings, for both spatial 

and temporal trends, was also analyzed. As such, objectives of this research are to: 

1. To analyze tornado frequencies for the entire tornado record, and for weak (EF-0 and 

EF-1) and strong (EF-2 through EF-5) tornadoes as they relate to intensities of ENSO 

2. To analyze the geographical distribution of tornadoes by ENSO phase.  

3. Analyze tornado days and the Destruction Potential Index as a function of ENSO to 

better understand tornado outbreaks and track area 

4. Produce results which ease conflict in the literature. 

These objectives will be met through the seven class ENSO system, sophisticated mapping, 

spatial statistics, and atmospheric composite analysis. The following two chapters will 

accomplish these objectives, and are written in journal-style formatting which may help shed 

some light on the problem with these types of studies. The next chapter will primarily focus on 

spatial distribution and tornado frequencies as a function of ENSO phase and intensity. The 

following chapter will cover this same relationship, shifting focus towards weak and strong 
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tornadoes, as well as tornado days and the Destruction Potential Index. The thesis will then have 

a concluding chapter that summarizes the findings for each of the objectives noted above.  
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CHAPTER 2: SPATIAL ANALYSIS OF TORNADO 

FREQUENCY AS A FUNCTION OF ENSO IN THE EASTERN 

UNITED STATES 

 

2.1 Introduction 

 Tornadoes pose a significant threat to lives and property across the United States, and can 

result in large losses of both (Farney et al. 2015). Although the tornado record has become more 

robust due to improvements in tornado detection technology (i.e., Doppler radar), increased 

eyewitness reports from population increases over time, and changes in the damage survey 

procedures (Lee et al. 2013), our vulnerability to these events is still considerable. The record-

breaking tornado outbreak of April 2011 is just one example of their destruction. During this 

event, there were 1084 tornadoes, 5,182 injuries, 541 deaths, and over $9 trillion in estimated 

property loss (Lee et al. 2013; SPC 2016). It just so happens that the spring of 2011, when that 

tornado outbreak occurred, the tropical Pacific was transitioning from a Moderate La Niña to a 

Weak La Niña, thereby raising suspicion that the event may be linked to this teleconnection (Lee 

et al. 2013).  Previous studies have also shown a linkage of tornado activity in the Eastern United 

States to La Niña phases (Monfredo 1999; Marzban and Schaefer 2001; Lee et al 2013; Allen et 

al. 2015; Lee et al. 2016), but knowing the role that the intensity of the El Niño-Southern 

Oscillation (ENSO) plays would be beneficial to seasonal tornado outlooks.  

 This chapters aims to discover the temporal and spatial characteristics of tornado activity 

as a function of ENSO intensity. While previous studies have analyzed seasonal tornado 

frequency and geographic distribution as a function of ENSO (Schaefer and Edwards 1999; 

Marzban and Schaefer 2001; Cook and Schaefer 2008), no studies have analyzed the relationship 

as a function of ENSO intensity as well. Understanding the geographical variability of tornadoes 
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during each phase of ENSO could potentially result in improved seasonal forecasts for such 

activity in the United States.  This chapter examines the temporal change in tornado frequency 

and distribution from 1950 through 2014. The statistical significance of both spatial and temporal 

trends was analyzed for confidence.   As such, the objectives of this research are to: 

1. To analyze tornado frequencies across the eastern United States as they relate to 

intensities of ENSO 

2. To analyze the seasonality of tornadoes across the eastern United States 

3. To analyze the geographical distribution of tornadoes as related to ENSO 

4. Produce results which ease conflict in the literature 

2.2 Data 

Studies examining ENSO and tornados have utilized various definitions of ENSO, such 

as the Trans-Niño Index (Lee et al. 2013), the Climate Prediction Center’s definition (Marzban 

and Schaefer 2001; Cook and Schaefer 2008), the Japan Meteorological Agency Index (Bove 

1998), and the Oceanic Niño Index (Cook and Schaefer 2008). Cook and Schaefer (2008) also 

used a “4-tier” classification system to identify tornado outbreaks, and found that the definition 

of ENSO did not change the results by much. The Oceanic Niño Index (ONI), used in a more 

recent study (Allen et al. 2015), was stratified into a useful list of ENSO intensities by Golden 

Gate Weather Services (Null 2016). ONI values are a running 3-month mean of sea surface 

temperature (SST) anomalies in the Niño 3.4 region, and are positive for El Niño, and negative 

for La Niña. For example, a moderate La Niña would fall between -1.0 and -1.4. The intensities 

of ENSO are categorized under the following magnitudes: 

● Weak: 0.5 - 0.9 

● Moderate: 1.0 - 1.4 



8 
 

● Strong: Equal to or larger than 1.5 

However, because the ONI is calculated using a running 3-month mean, it would not be useful 

for a seasonal analysis as a function of ENSO since it would include values in the months 

surrounding the season. Therefore, a seasonal Niño 3.4 index was used. Seasons were 

categorized as: Winter (DJF), Spring (MAM), Summer (JJA), and Fall (SON). Data were 

retrieved from the Climate Prediction Center’s Monthly Atmospheric and SST Indices database 

(CPC 2016). The monthly Extended Reconstructed SST (ERSSTv4) anomaly dataset with 

centered base periods was used because of its monthly input into the ONI (CPC 2016), as well as 

its detrended mean for producing SST anomalies. A centered SST dataset was chosen as opposed 

to a one with a 1981-2010 base period because this analysis began in 1950. Centered base 

periods detrend SST anomalies so that external variables such as climate change or an increase in 

SSTs are not an influence. With a 1981-2010 base period for an analysis starting in 1950, the 

adjusted average for a year early in the record (i.e. 1950) would be much warmer than what was 

observed from the increase in SSTs, indicating a higher mean for that year and resulting in a 

higher anomaly. Since the Niño 3.4 index values are an average SST anomaly value similar to 

the ONI, the same intensity thresholds from the ONI were used. It should be noted that averaging 

monthly SST values over a season pulls the distribution away from the extremes and towards 

weaker ENSO and neutral phases. Each season was binned into a Strong El Niño (SEN), 

Moderate El Niño (MEN), Weak El Niño (WEN), Neutral, Weak La Niña (WLN), Moderate La 

Niña (MLN), or Strong La Niña (SLN) category based on its 3-month average SST anomaly 

value. A complete list of seasonally binned years for each ENSO phase are in the Appendix. 

The Storm Prediction Center’s Tornado Database provided the critical tornado 

information necessary for this analysis; primarily, tornado touchdown points (Schaefer et al. 
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1980; Schaefer and Edwards 1999). These points, which are originally imported in a WGS84 

coordinate system, were projected into a Lambert Conformal Conic projection. This projection is 

utilized because it is one of the best for mid-latitudes (ESRI 2016), where the study area is 

located. A conic projection starts at a single point over the poles, then extends southward in a 

cone shape. This projection works best for all areas that have a greater east-west extent, like the 

United States (ESRI 2016). The Lambert Conformal was chosen over another conic projection, 

such as the Albers, because it portrays shape more accurately than area, which is a feature 

desired for this study. Both an 80km grid and a 40km grid are used by the Storm Prediction 

Center, but a 40km grid is used as the grid of choice when analyzing count data due to its 

extensive use by the SPC (SPC 2016; Figure 2.1). The number of tornado touchdowns in each 

40km grid cell were tabulated and used as the primary data source in this analysis.  

 

Figure 2.1. A 40-km grid depicting the study region chosen for this study.  

Lastly, atmospheric composites were plotted for a better understanding of upper and 

lower air conditions during varying phases and intensities of ENSO, and their relationship with 

tornadic counts and spatial distribution. Atmospheric variables including 500hPa geopotential 

height contours, 500hPa geopotential height anomalies, 850hPa wind vectors, and 300hPa wind 

vectors were plotted using data from ESRL’s Monthly and Seasonal Climate Composites (ESRL 



10 
 

2016) for each season and phase/intensity of ENSO. 

2.3 Methods and Results 

2.3.1 Spatial Statistics Indicators 

To determine whether there is evidence of clustering in tornado incidents, two global 

indices of spatial autocorrelation were calculated: average nearest neighbor and global Moran’s 

I. Average Nearest Neighbor calculates a nearest neighbor index based on the average distance 

from each feature to its nearest neighboring feature (ESRI 2016). A random pattern generated 

from the Poisson process is compared against the real data to measure the strength of clustering. 

The null hypothesis is that the two processes are similar, or that there is no clustering and the 

features are randomly distributed. This tool was implemented on each season per ENSO 

category, resulting in a total of 24 statistical outputs based on available data. The second tool, 

Global Moran’s I, was used to verify and analyze spatial clustering through a different method. 

Given a set of features (i.e. tornado touchdown points) and an associated attribute (count data), 

this tool evaluates whether the pattern expressed is clustered, dispersed, or random (ESRI 2016). 

The associated attribute (count data) is derived from the number of points assigned to each cell in 

the 40km grid, resulting in a “count” number per fishnet grid. Again, the null hypothesis states 

that the values associated with the features are randomly distributed. For both analyses, z-scores 

were used to compare across phases and intensities of ENSO to determine which category has 

the strongest spatial clustering. Results also indicate if z-scores are similar or different, thereby 

determining which phases/intensities of ENSO have the largest effect on spatial autocorrelation 

amongst tornado counts. Figure 2.2 shows the z-scores for both analyses across each phase of 

ENSO by season. 
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Figure 2.2: Average nearest neighbor (A) and Global Moran’s I (B) z-scores across phases 

and intensities of ENSO 

All groups came back with significant p-values, rejecting the null hypothesis that the features are 

randomly distributed (i.e. no clustering). This was for all tornadoes in the record. The strength of 

clustering is represented by z-scores; a larger absolute value indicates stronger clustering. It 

should be noted that spring and summer SEN and SLN had zero tornado counts and are excluded 

from this series of analyses. For each category, the Neutral phase has the strongest clustering 

amongst all seven phases. Considering this is the category with the most tornadoes across all four 

seasons, this is not surprising. If we remove the influence of the ENSO neutral phase, in two out 

of four phases WLN has the strongest clustering (spring and summer). Apart from spring and 

summer, where there are zero representatives in the stronger categories, SLN had the weakest 

spatial clustering. SEN also has weak spatial clustering in fall, but is relatively large in winter. In 

spring, summer, and fall, the degree of spatial clustering generally weakens as the phase of 

ENSO becomes stronger. This could be due to the dampening of sample sizes as ENSO strength 

increases. Winter does not follow this same pattern, where all z-scores are similar apart from 

MEN and SLN. Comparing across seasons, SEN has the strongest clustering in winter and the 

weakest in fall. MEN has relatively consistent Z-scores across all seasons, but WLN has the 

strongest clustering in spring which decreases in the other seasons. Out of the seven categories, 
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winter has the strongest spatial clustering for four phases of ENSO – SLN, MLN, MEN, and 

SEN. The fall season has the weakest clustering in four ENSO categories.  

2.3.2 Seasonal Hot Spots 

 Seasonal hot spot maps were created in GIS through the “Optimized Hot Spot Analysis” 

tool. Given incident points (i.e. tornado touchdown locations), this tool creates a map of 

statistically significant hot and cold spots using the Getis-Ord Gi* statistic (Getis and Ord 1992; 

ESRI 2016). Getis-Ord Gi* works by examining each feature within the context of neighboring 

features, or nearby tornado origin points. The local sum for a feature and its neighbors is 

compared proportionally to the sum of all features, and when the local sum is much different 

than the expected local sum and the difference is too large to have resulted from random change, 

it is scored a statistically significant z-score (Mitchell 2005). For statistically significant (p-value 

less than or equal to 0.05) and positive z-scores, larger z-scores indicate more intense clustering 

of high values (hot spots). For statistically significant and negative z-scores, smaller z-scores 

indicate more intense clustering of lower values, or cold spots (ESRI 2016). Equations used in 

this statistic are accessible on ESRI’s “Optimized Hot Spot Analysis” page (ESRI 2016). 

 GIS offers two types of hot spot tools – the standard Hot Spot Analysis (Getis-Ord Gi*), 

as well as the Optimized Hot Spot Analysis tool. For the purpose of this study, the latter method 

was utilized for several reasons. The Optimized Hot Spot tool automatically aggregates incident 

data, identifies appropriate scale of analysis, and corrects for both multiple testing and spatial 

dependence (ESRI 2016). The automatic aggregation of data allowed the input data features to 

be the original Conformal Lambert Conic projected tornado touchdown points. This tool also 

determines settings to produce optimal hot spot analysis results. Most importantly, it identifies 

statistically significant spatial clusters of hot and cold spots, which are useful in this study to 
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identify local tornado clusters as a function of ENSO intensity and phase. Figure 2.3 shows plots 

representing ENSO hot spots for all four seasons, resulting in a total of 28 individual figures 

(four of which have no tornadoes, and are labeled appropriately). Each hot spot analysis is 

defined by a seven-category legend: hot and cold spots with 90%, 95%, and 99% confidence, as 

well as non-significant spots.  
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Figure 2.3: Tornado hot and cold spots, 1950-2014. Columns are in the order of winter, 

spring, summer and fall. A-D are Strong El Niño, E through H are Moderate El Niño, I 

through L are Weak El Niño, M through P are Neutral, Q through T are Weak La Niña, U 

through X are Moderate La Niña, and Y through AB are Strong La Niña.  
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Changes in spatial distribution of severe thunderstorm activity are attributed to the 

position of the jet stream (Barnes and Newton 1986; Johns and Doswell 1992; Cook and 

Schaefer 2008). The jet stream is modified by phase and intensity of ENSO (Cook and Schaefer 

2008, Allen et al. 2015), as well as changes in season (Fraunfeld and Davis 2003; NWS 2016). 

Understanding the location of the jet stream is important because synoptic scale disturbances 

tend to form in areas of maximum wind speed and follow jet axes (Holton 1992), which 

modulates the location and intensity of severe weather (Archer and Caldeira 2008) and 

potentially tornado activity. The circumpolar vortex, which is a complex upper-level low-

pressure area over the North Pole, is defined by geopotential contours that lie within the core of 

tropospheric westerlies (Frauenfeld and Davis 2003). Expansion (contraction) of the circumpolar 

vortex results in equatorward (poleward) modulation of the jet stream. Seasonal analysis 

revealed that the largest shift in the jet stream and geopotential heights in the Northern 

Hemisphere was during summer in the circumpolar vortex (Frauenfeld and Davis 2003). The 

average latitude of the jet stream begins to shift poleward during spring, shifts most evidently 

northward during summer with the contraction of the circumpolar vortex, then retreats towards 

the Equator in fall (NWS 2016). However, the intensity of the jet stream is strongest during 

winter, since the jet stream follows gradients between warm and cold air, which is most 

pronounced during winter (NWS 2016). Spatial evolution of hot spots in Figure 2.3 generally 

reflect the seasonal evolution of the circumpolar vortex and attendant jet stream.    

In winter, hot spots consistently lie along the GOM regardless of ENSO phase. In all 

three phases of ENSO (Figure 2.3A, 2.3E, 2.3I), there are hot spots along Florida, which is 

consistent with extratropical cyclogenesis in the GOM during El Niño years (Hardy and Hsu 

1997). As ENSO transitions from El Niño to La Niña phases, tornado hot spots shift further 
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northward (Figure 2.3Q, 2.3U) with the exception of the SLN phase (Figure 2.3V). This is likely 

due to the northward displacement of the jet stream during La Niña phases (Cook and Schaefer 

2008). A stronger La Niña tends to exhibit more northerly tornado activity; the exception during 

a SLN phase is likely due to a decrease in sample size.   

Spring has persistent hot spots along the central U.S. regardless of ENSO phase and 

intensity. This is consistent with Brooks et al. (2003), where tornado activity during spring is 

more active along the central plains. However, as ENSO transitions from El Niño (Figure 2.3F, 

2.3J) to La Niña (Figure 2.3R), the location of these hot spots generally shifts eastward through a 

WLN phase. The sudden decrease in hot spots during a MLN is likely due to a dampening in 

sample size, and will be discussed in section 2.3.3. There is also an increase in tornado activity 

further north during Neutral (Figure 2.3N) and WLN (Figure 2.3R) phase, which is likely due to 

the northward displacement of the jet stream during a La Niña phase, moving the storm track 

northward as well.  

Regardless of ENSO phase and intensity, tornado activity in the summer primarily lies 

along the north-central U.S. corridor. Frauenfeld and Davis (2003) found that the circumpolar 

vortex is strongest during the summer, which contracts the jet stream northward and 

subsequently the storm track also shifts northward. When comparing across ENSO phases 

(Figure 2.3, column 3), it is seen that the location of these hot spots really doesn’t change 

dependent upon the phase of ENSO. Decreases in tornado hot spot area is likely due to smaller 

sample sizes during ENSO extremes (moderate phases) compared to weak phases and a neutral 

state. ENSO does not seem to play a role geographically in tornado activity during summer.  

Finally, in fall, there is not a discernable shift in tornado hot spots dependent on ENSO 

phase (Figure 2.3, column 4). All phases exhibit tornado activity primarily along the GOM, 
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which is caused by a southwardly displaced jet stream. However, it does seem that tornado hot 

spots are more aggregated during El Niño phases (Figure 2.3D, 2.3H, 2.3L) than La Niña phases 

(Figure 2.3T, 2.3X, 2.3AB). This is verified by global spatial statistics (Figure 2.2A and 2.2B), 

which indicate stronger clustering during El Niño phases and weaker clustering during La Niña 

phases when comparing ENSO intensities against each other (i.e. SEN vs. SLN).    

2.3.3 Adjusted Tornado Counts 

 To eliminate the upward trend in tornado counts over time due to factors such as 

urbanization, population increase, and improvement in radar technology (Brooks et al. 2003; Lee 

et al. 2016), the Storm Prediction Center developed a simple method to eliminate this issue using 

a linear regression equation (Brooks and Carbin 2007). An analysis on raw tornado counts during 

varying phases of ENSO might be questioned due to the obvious upward trend in reports since 

1950, necessitating this detrended analysis. While this method can remove the trend in tornado 

reports due to changes in detection and reporting, it cannot remove the potential influence of 

other external variables such as climate change and additional teleconnections. Figure 2.4 is an 

example of one of these calculations, which compares the raw values (Figure 2.4A) and adjusted 

values (Figure 2.4B).  

 

Figure 2.4: Raw (A) and adjusted (B) tornado counts in spring, 1950-2014 
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Annual tornado frequency is first plotted from 1950-2014. This upward tick in tornado counts is 

easily visible with a linear trend line, shown in black. The linear trend line equation is used to 

compute the “delta”, which is the linear equation value for that year minus the original annual 

total, which results in the adjusted tornado count for that year (Brooks and Carbin 2007). For raw 

tornado counts in the spring (Figure 2.4A), the median was 348. Each individual delta (positive if 

the original value is above the trend line, negative if below) was applied to 348. The resulting 

value is the adjusted tornado count for that year. Detrended tornado counts were calculated for 

all four seasons. Detrending the tornado counts helped to analyze tornado counts during different 

phases and intensities of ENSO. Once an adjusted tornado count has been calculated for each 

year and each season, counts can be binned into their appropriate ENSO category per year. The 

total sum of each ENSO category was calculated, then averaged to eliminate the influence of 

heavily represented categories in respect to lesser-represented categories (i.e. neutral categories 

versus stronger categories). The results are in Figure 2.5. The average values were then used for 

statistical tests examining the difference of means, such as the Kruskal-Wallis and Mann-

Whitney test. 

 

Figure 2.5: Detrended tornado counts per season across all phases of ENSO, 1950-2014 
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 To determine which statistics test was most applicable to the adjusted tornado counts, the 

data were tested for normality using both the Shapiro-Wilk test and Normal Quantile-Quantile 

(Q-Q) plots in R. When checking for normality, Q-Q plots are used to compare a sample 

distribution (i.e. adjusted tornado counts) with a theoretical sample (i.e. a normal distribution, 

with a mean of zero and a standard deviation of one) (Vries and Meys 2015). The Shapiro-Wilk 

test was also used to either confirm or deny the findings from the Q-Q plots. The null hypothesis 

for the Shapiro-Wilk test is that the sample comes from a population which has a normal 

distribution (Royston 1982). Significant p-values would reject the null hypothesis, indicating that 

the sample has non-normal properties. The results for all four seasons, with their respective 

Shapiro-Wilk p-values, are shown in Figure 2.6. 

  

Figure 2.6: Seasonal normal Q-Q plots with Shapiro-Wilk p-value.  

With statistically significant p-values of less than .01 rejecting the null hypothesis of normality, 

as well as different observed and theoretical (in red) distributions from the Q-Q plots, it is 

determined that the distribution of all four datasets should be tested using non-parametric 

statistics. To test the differences between ENSO phases on a non-normally distributed 
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continuous variable (i.e. count), the Kruskal-Wallis test is most appropriate because these data 

are unpaired (Kruskal & Wallis 1952; McKight and Najab 2010). The null hypothesis of the 

Kruskal-Wallis test is that there are not any statistical differences between two or more groups of 

an independent variable (Aerd 2016). The results of the Kruskal-Wallis test are in Table 2.1.  

Table 2.1: Kruskal-Wallis rank sum resulting p-values 

Season P-value 

Winter < 0.001 

Spring < 0.001 

Summer < 0.001 

Fall < 0.001 

 

Significant p-values reject the null hypothesis that there are no differences between two or more 

groups – in this case, “groups” are different phases of ENSO during each season. Therefore, 

these p-values indicate that at least one ENSO phase is different from the others. To test and 

specify exactly which ENSO phases are different from each other, the Mann-Whitney test was 

used. This test was used over the Wilcoxon because the pairs were unmatched, and the Wilcoxon 

test requires matched data ("Kruskal-Wallis and Friedman Tests” 2016). The Mann-Whitney U 

test is a simplified Kruskal-Wallis test, analyzing only two groups instead of multiple (McKight 

and Najab 2010). The Kruskal-Wallis was run first to determine if a Mann-Whitney should be 

applied to an individual group (i.e. phase of ENSO), then the Mann-Whitney was performed 

between each phase of ENSO. The Mann-Whitney is a measure of difference within 

mathematical space, or the difference in the location of the distribution.  

 Dissecting this first by season, the increase in tornado counts across ENSO phases during 

spring is apparent through Weak La Niña. As ENSO transitions from Moderate El Niño to Weak 

La Niña, the number of tornadoes increases from 250 to almost 450. To define the statistical 

significance of these differences in counts across ENSO phase, the Kruskal-Wallis (Table 2.1) 
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and Mann-Whitney tests were applied. Results for the Mann-Whitney test in spring are listed in 

Table 2.2.  

Table 2.2: Mann-Whitney resulting p-values for spring (very strong evidence – pink; strong – 

orange; moderate – yellow; weak or none – dark grey; no data – light gray) 

  

Strong 

El Niño 

Moderate El 

Niño 

Weak El 

Niño 

Neutral 

 

Weak La 

Niña 

Moderate La 

Niña 

Strong La 

Niña 

Strong El Niño               

Moderate El Niño   - - - - -   

Weak El Niño   0.0444 - - - -   

Neutral   0.0021 < 0.001 - - -   

Weak La Niña   0.0440 0.6784 < 0.001 - -   

Moderate La Niña   0.6667 0.2222 0.0465 0.1538 -   

Strong La Niña               

 

 Figure 2.5 demonstrates that Moderate El Niño and Weak La Niña are very different from each 

other, and Mann-Whitney test verifies that with a significantly strong p-value of 0.0440. 

Moderate La Niña almost consistently results in a non-significant p-value. Box-and-whisker 

plots are examined (Figure 2.7) to better understand this result. The Mann-Whitney analysis and 

the box-and-whisker plot both reveal dissimilarity between Moderate La Niña and other phases 

(Figure 2.7B). However, Moderate La Niña only has one value, resulting in a distribution that is 

just a line, which could be the cause of non-significance. Therefore, it is important to note that 

spring MLN frequencies should not be trusted as much as other tornado frequencies in spring. 

Out of all the relationships between ENSO phases in the spring, six out of ten of them are 

significantly different from each other (Table 2.2).  

(A) (B) 
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Figure 2.7: Box-and-whisker plots of tornado counts for winter (A), spring (B), summer 

(C), and fall (D) by ENSO phase 

Looking across ENSO phases in summer (Figure 2.5), it seems that there is not much 

difference across the varying phases of ENSO, except for a drop in counts during Weak El Niño. 

However, Table 2.3 and Figure 2.7C indicate there is evidence for statistical differences between 

detrended tornado counts in most ENSO phases and intensities.  

Table 2.3: Mann-Whitney resulting p-values for summer (very strong evidence – pink; strong 

– orange; moderate – yellow; weak or none – dark grey; no data – light gray) 

  

Strong 

El Niño 

Moderate El 

Niño 

Weak El 

Niño 

Neutral 

 

Weak La 

Niña 

Moderate La 

Niña 

Strong La 

Niña 

Strong El Niño               

Moderate El Niño   - - - - -   

Weak El Niño   0.0159 - - - -   

Neutral   < 0.001 < 0.001 - - -   

Weak La Niña   < 0.001 0.0133 < 0.001 - -   

Moderate La Niña   0.2500 0.0357 < 0.001 0.0055 -   

Strong La Niña               

 

This implies that the distribution of tornado counts between varying phases of ENSO in 

summer are statistically different, though the average detrended annual count does not show the 

same. Fall and winter seasons demonstrate that tornado counts decrease dramatically when 

(C) (D) 
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changing from spring/summer (Figure 2.5). Strong La Niña has the greatest tornado count across 

all phases of ENSO in fall. However, Table 2.4 reports non-significant p-values between Strong 

La Niña and the remaining six ENSO phases, except for the neutral phase.  

Table 2.4: Mann-Whitney resulting p-values for fall (very strong evidence – pink; strong – 

orange; moderate – yellow; weak or none – dark grey) 

  

Strong El 

Niño 

Moderate El 

Niño 

Weak El 

Niño 

Neutral 

 

Weak La 

Niña 

Moderate 

La Niña 

Strong La 

Niña 

Strong El Niño - - - - - - - 

Moderate El Niño 0.4857 - - - - - - 

Weak El Niño 0.0418 0.0132 - - - - - 

Neutral < 0.001 < 0.001 0.0279 - - - - 

Weak La Niña 0.0103 < 0.001 0.3793 < 0.001 - - - 

Moderate La Niña 0.3152 0.1636 0.0684 < 0.001 0.0346 - - 

Strong La Niña 0.4 0.4 0.1538 0.0741 0.1667 0.25 - 

This is again because Strong La Niña only has one value, not a distribution, which could be the 

cause of non-significance (Figure 2.7D), and should be noted. There are fewer statistically 

significant pairings in fall than spring and summer, but there are more categories present due to 

all seven ENSO categories having tornado counts. Twelve out of 21 relationships in the fall are 

significantly different from each other (Table 2.4). Winter shows an interesting trend in tornado 

counts, with a “U” shape across ENSO phases and a large spike during Moderate La Niña 

(Figure 2.5). Strong El Niño has a large tornado count, which decreases dramatically across the 

other El Niño phases, then increases again through WLN and MLN. Table 2.5 shows evidence 

indicating paired groups that have statistical differences between each other (13 out of 21).   

Table 2.5: Mann-Whitney resulting p-values for winter (very strong evidence – pink; strong – 

orange; moderate – yellow; weak or none – dark grey) 

  

Strong El 

Niño 

Moderate 

El Niño 

Weak El 

Niño 

Neutral 

 

Weak La 

Niña 

Moderate 

La Niña 

Strong La 

Niña 

Strong El Niño - - - - - - - 

Moderate El Niño 0.5714 - - - - - - 

Weak El Niño 0.0025 0.0172 - - - - - 

Neutral < 0.001 < 0.001 0.4505 - - - - 

Weak La Niña 0.0194 0.1107 0.0137 < 0.001 - - - 

Moderate La Niña 0.3095 0.1429 < 0.001 < 0.001 < 0.001 - - 

Strong La Niña 1.0 0.4 < 0.001 < 0.001 < 0.001 0.5714 - 
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Overall, 40 out of 62 pairings resulted in statistical significance, meaning that 64.5% of ENSO 

phases have significantly different tornado frequencies when compared against each other. 

2.3.4 Atmospheric Composite Analysis 

 Seasonal composites of 500 hPa geopotential height, 850 hPa wind fields, and 300 hPa 

wind fields were analyzed to identify underlying atmospheric patterns that potentially contribute 

to shifts in tornado activity identified in Section 2.3.2.  A geopotential height approximates the 

actual height of a pressure surface above mean sea-level (NOAA 2017). In this case, 500mb 

geopotential heights are the approximated height above mean sea-level at which the pressure is 

500mb. Contours are used to show patterns of similar geopotential heights, resulting in ridges 

and troughs, which are indicative of circumpolar vortex variability (which can be influenced by 

ENSO, Frauenfeld and Davis 2003), location and intensity of jet streams, and locations of storm 

tracks over the U.S. Examining geopotential height anomalies, or departures from long-term 

means of geopotential height, is also useful in determining mid-level troughs and ridges, as well 

as zonal and meridional flows and resultant severe weather episodes. Negative anomalies tend to 

indicate storminess as cooler air aloft is advected atop a warmer airmass below (Drakoen 2008). 

For this analysis, anomaly data provided by the NCEP/NCAR Reanalysis was calculated as the 

departure from the climatology during 1981-2010 to match the new climate normal time period 

(ESRL 2016). Finally, because vertical wind shear is one of the most important components in 

severe weather and tornado occurrences (Brooks et al. 2003), winds at the 850mb level and 

300mb level are also analyzed to exhibit deep-layer shear, as well as low-level advection.  These 

atmospheric composites were retrieved from the NCEP/NCAR Reanalysis Dataset available via 

the Earth System Research Laboratory (ESRL) (Kalnay et al. 1996), and plotted in R (R Core 

Team 2016). This global dataset is defined on a 2.5° longitude by 2.5° latitude grid (Figure 2.8) 
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with 17 vertical levels, starting at 1000hPa.  

 

Figure 2.8: Domain used for NCEP/NCAR Renalaysis Data. Red rectangle indicates 

subdomain used for this study. Figure from 

http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html 

Data was imported into R for each season and phase of ENSO, resulting in 24 separate 

NetCDF files per variable. World map countries and coastlines were downloaded from Natural 

Earth’s large scale database ("Downloads, Natural Earth" 2016). To analyze atmospheric 

conditions over the United States as well as ENSO conditions over the eastern Pacific, a region 

encompassing 70°W to 160°W longitude and longitude and 10°N to 65°N latitude was chosen 

(shown in red in Figure 2.8). Although a total of 24 composite maps were developed, only plots 

most relevant to the analyses in Section 2.4 will be shown.  

2.4 Discussion 

 Seasonally, winter and spring exhibit the strongest shifts in tornado activity, although fall 

exhibits an interesting change in frequency during SLN. Figure 2.5 shows a general increase in 

tornado counts as ENSO transitions from El Niño to La Niña phases in both seasons; summer 

shows little to no variation. Fall shows consistency in six of the seven phases, with a spike 

during the SLN phase. Geographically, Figure 2.3 shows a general northward expansion of hot 
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spots in winter as La Niña becomes stronger, while spring tornado hot spots typically shift 

eastward as ENSO changes from El Niño to La Niña. While tornado activity in most ENSO 

phases are not remarkably different from each other, the differences described above will be 

analyzed in this section. Atmospheric composites during summer will also be analyzed to 

confirm non-variability between ENSO phases.  

In winter, MLN favors increased tornado activity. To understand the increase in tornado 

counts during a more intense La Niña phase, versus El Niño phases, the atmospheric composite 

for winter MEN and MLN will be compared (Figures 2.9A and 2.9B).  

 

Figure 2.9: Atmospheric composites for Winter MEN (A) and Winter MLN (B). Contours 

represent 500hPa geopotential heights. Shading represents 500hPa geopotential height 

anomalies. 850hPa (300hPa) mean wind vectors are shown in blue (red). 

Winter MLN composites exhibit a negative anomaly over western Canada/U.S., 

indicating low-level pressure to the east of the trough over the north-central U.S. (Figure 2.9B). 

Meridionally oriented low-level winds are also evident, which transport warm, moist low-level 

air of maritime tropical origin to inland areas. This creates an environment conducive for tornado 

activity, based on the Barnes and Newton (1986) diagram for typical synoptic conditions 

favorable for severe weather (Figure 2.10).   

A B 
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Figure 2.10: Typical synoptic conditions favorable for severe weather in the United States. 

Figure adapted from Barnes and Newton (1986).  

MEN in winter (Figure 2.9A) exhibits negative geopotential height anomalies over the 

central U.S. This negative anomaly is consistent with a southwardly displaced surface cyclone 

track along the GOM identified in previous studies (Eichler and Higgins 2006) during El Niño 

events. Southeasterlies are advecting warm moisture over Florida, indicative of potential activity; 

however, the position of the low explains why there is a decrease in tornado activity, as well why 

tornadoes occur most frequently along the GOM during this phase. These results are consistent 

with previous findings (Cook and Schaefer 2008), as well as typical ENSO conditions during 

winter (CPC 2016). The lack of tornadic activity in Florida during other ENSO phases is likely 

due to a decrease in GOM cyclogenesis in these areas.  

 In spring, a WLN cultivates increased tornado activity. Hot spot analyses in Section 2.3.2 

also reveal that this phase promotes eastward displacement of tornado hot spots when compared 

to El Niño phases. Composites comparing Spring WEN (Figure 2.11A) and Spring WLN (2.11B) 

verify increased tornado activity during La Niña phases.  
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Figure 2.11: Atmospheric composites for Spring WEN (A) and Spring WLN (B). Contours 

represent 500hPa geopotential heights. Shading represents 500hPa geopotential height 

anomalies. 850hPa (300hPa) mean wind vectors are shown in blue (red). 

In WEN, negative anomalies of geopotential height exist across much of the southern tier of the 

U.S. (Figure 2.11A). This is consistent with a southwardly displaced surface cyclone track (as 

shown in Figure 2.3J) over much of the U.S.  Meridionally oriented low-level winds are 

advecting tropical moisture from the GOM, which is conducive for tornado activity; however, 

the position of the mid-level height anomalies would foster more tornado activity along the 

southern U.S. compared to its WLN counterpart (Figure 2.11B), where broader warm sectors can 

make more inland progress and foster tornado activity at higher latitudes. During a WLN, a 

negative anomaly over the northwestern U.S. typically indicates areas of low-pressure at the 

surface over the central U.S. (Figure 2.11B), which in turn aids in southerly flow at 850 hPa 

(also shown in Figure 2.11B) and more frequent moisture influxes from the Gulf of Mexico, 

resulting in greater tornado activity (Figure 2.3R, Figure 2.5). Aside from increased tornado 

frequency, an eastward expansion of hot spots from El Niño to La Niña is an important finding in 

this study. It is hypothesized that the expansion of tornado hot spots further eastward during La 

Niña phases (Figure 2.11B) compared to El Niño phases (Figure 2.11A) is due to increased low-

level meridional winds during WLN (Figure 2.11B), which could potentially be advecting more 

A B 
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moisture across the southern plains and enhancing tornado activity. These atmospheric 

parameters explain both the increase in tornado activity during Spring WLN as well as an 

eastward expansion in hot spots when compared to El Niño phases. 

 The influence of ENSO on tornado activity in summer is generally weak compared to 

other seasons, resulting in little variation in average annual tornado frequencies between ENSO 

phases. Hot spots also show little variation in geographic location across all five phases, which is 

consistent with the northward displacement of the jet stream (Frauenfeld and Davis 2003) and 

tornadic activity (Brooks et al. 2003) during summer compared to other seasons. Summer MLN 

and summer WEN composites (Figures 2.12A and 2.12B) exhibit very similar mean atmospheric 

conditions, which also confirms the similarities in observed tornado hot spots and average annual 

frequency shown in Section 2.3.  

 

Figure 2.12: Atmospheric composites for Summer MLN (A) and Summer WEN (B). 

Contours represent 500hPa geopotential heights. Shading represents 500hPa geopotential 

height anomalies. 850hPa (300hPa) mean wind vectors are shown in blue (red). 

Both summer MLN (Figure 2.12A) and WEN (Figure 2.12B) composites exhibit a 

northwardly displaced jet stream, with a trough over the west coast. Strong southerly winds are 

advecting warm, moist air from the GOM leading to increased potential for severe weather over 

A B 
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the central U.S. Persistent negative height anomalies in both MLN and WEN composites along 

the west coast of the U.S. reinforces the notion that ENSO exhibits little influence on severe 

weather activity in the eastern U.S. during summer.   

 Fall SLN tends to foster increased tornado activity, while the other six phases of ENSO 

have a smaller effect. Fall SLN is compared to a fall SEN phase to understand why there is an 

increase in counts during this phase (Figures 2.13A and 2.13B). 

  

Figure 2.13: Atmospheric composites for Fall SEN (A) and Fall SLN (B). 850hPa (300hPa) 

wind vectors are shown in blue (red). Contours represent 500hPa geopotential heights. 

Shading represents 500hPa geopotential height anomalies. 850hPa (300hPa) mean wind 

vectors are shown in blue (red). 

 Atmospheric conditions during SLN in fall are more favorable for tornado activity than in 

other ENSO phases. The SEN composite exhibits a “split-flow” pattern, where the subtropical jet 

is positioned over the southern U.S. and a polar jet is oriented from central Canada 

southeastward into the northern states (Figure 2.13A). Generally, negative anomalies over 

Hudson Bay can be inhibitive of tornado activity inland due to low-level cold air surges from 

Canada. This is indicated by mean northwesterly 850 hPa wind fields. On the other hand, SLN 

has a large magnitude negative anomaly over western Canada, and a positive anomaly over the 

eastern U.S northward near Hudson Bay (Figure 2.13B). These features generally favor low-

A B 
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level warm/moist advection indicated by the 850 hPa flow, which generally fosters increased 

tornado activity during these phases. Differences in 850 hPa flow between the two phases might 

also explain the variability in tornado activity between the two – there is a large increase in 

850hPa winds during a SLN phase compared to a SEN phase, which is conducive for tornado 

activity. However, this large increase in annual frequency during SLN is not reflected in the hot 

spots (Figure 2.3AB). The lack of hot spots present is likely due to a sample size issue, which 

was found with non-significant Mann-Whitney results when compared to other ENSO phases in 

fall. Though the SLN composite indicates generally favorable synoptic-scale conditions for 

tornado activity, the increase in tornado counts during these phases should has a lower 

confidence compared to other phases during this season.  

Winter and spring exhibit the largest ENSO-related spatial shifts in tornado activity. 

During winter El Niño, tornado activity is displaced southward along the GOM, while a general 

northward displacement of activity is observed during La Niña phases. These findings are 

consistent with Cook and Schaefer (2008). Tornado frequency is highest in winter during MLN 

conditions in the equatorial Pacific, although a general increase in tornado counts is evident with 

progressively cooler sea surface temperatures. In spring, as ENSO transitions from El Niño to La 

Niña phases, a general eastward expansion of tornado activity across the Central Plains is evident 

in the hot spots, which is likely due to increased low-level winds advecting more moisture across 

the southern plains (Figure 2.11B). Out of the four seasons, spring WLN has the largest tornado 

count. Summer shows little variation both spatially and in annual tornado frequencies. Fall 

shows slight variation across ENSO phases, but the geographic distribution of hot spots is 

sporadic and does not follow a specific pattern. There is an apparent increase in frequency during 

Strong La Niña, but a sample size of one in the box-and-whisker plots resulted in non-significant 
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p-values to validate this observation.   

To better visualize the differences in tornado hot spots between each phase of ENSO 

during a particular season, difference maps were created and are shown below (Figures 2.14 and 

2.15). The colored grid cells exhibit a cell that has a hot spot only in the respective phase of 

ENSO, which are referred to as “unique hot spots”. 

 

Figure 2.14: Unique hot spots across seven phases of ENSO for all seasons, 1950-2014 
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Figure 2.15: Unique cold spots across seven phases of ENSO for all seasons, 1950-2014 

Figure 2.14 visualizes the geographic shift in hot spots across all four seasons. In spring, 

as ENSO transitions from El Niño to La Niña, hot spots move from a Midwestern location 

further eastward – this is visible in Figure 2.3. Unique hot spots during WLN are visible across 

parts of Dixie Alley and extending northward into Indiana and Ohio, and unique MEN hot spots 

are evident along the Texas coastline, indicating an eastward shift from El Niño to La Niña. The 

potential cause of this could be due to an increase in 850 hPa winds, increasing low-level 

moisture advection from the GOM during WLN compared to WEN. In fall, the inconsistent hot 

spots are visible in Figure 2.3, where there is no evident pattern between the phases of ENSO, 

which is verified by a wide variety of unique hot spots. Also, due to some hot spots in particular 

phases being adjacent to hot spots of an opposite ENSO phase (i.e. SEN right next to SLN), it is 

difficult to say with certainty that there is an ENSO influence in these regions. Winter shows a 

northward expansion of hot spots when transitioning from El Niño to La Niña, and this is evident 

in Figure 2.3. with unique hot spots during WLN and MLN along the north Central Plains. The 
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northward displacement of the jet stream seen in Figure 2.9B during MLN exhibits why unique 

hot spots belong to stronger La Niña phases.  

Figure 2.15 shows mostly unique cold spots in the Neutral phase due to the presence of 

cold spots during this phase with respect to the other phases, but WLN also has some unique cold 

spots during spring, summer and winter. 

2.5 Conclusion 

 Tornadoes from 1950 through 2014 were analyzed geographically to determine potential 

influences from ENSO. A seasonal Niño 3.4 index was derived from the original Niño 3.4 index 

to better represent tornadic activity seasonally without involving a running 3-month mean (like 

the ONI). Annual tornado counts were detrended to remove the uptick that has been observed in 

tornado counts due to urbanization, technology improvements, and population increase. Spatial 

statistics such as the Average Nearest Neighbor and Global Moran’s I were performed to confirm 

spatial clustering, then local statistics (Optimized Hot Spots) were applied to visualize where 

spatial clustering was happening across the study region. It was found that in spring, a Weak La 

Niña phase means more tornadoes on average (Figure 2.5). Hot spots persistently lie over the 

central U.S. in spring, and expand eastward as ENSO transitions from El Niño to La Niña. A 

weaker La Niña phase indicates more tornadoes annually as well as a larger spatial region of 

significant hot spots in spring. Summer has a relatively even distribution of tornado counts 

across ENSO phase, with Weak El Niño showing smaller annual frequency than the other phases 

of ENSO. Spatially, summer has little change geographically, with decreases in hot spots likely 

occurring as a dampening in sample size. Fall has its largest tornado count during a Strong La 

Niña, very little difference in annual counts in the remaining six fall ENSO phases. However, 

due to a sample size of one for Strong La Niña (Figure 2.7), the Mann-Whitney test returned 
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non-significant results when tested against other ENSO categories during fall (Table 2.4). 

Geographic distribution in fall does not show changing patterns across ENSO phases, however 

El Niño phases seem to have more aggregated hot spots while La Niña phases are more 

dispersed. This is verified by global spatial statistics, which indicate stronger clustering during El 

Niño phases and weaker clustering during La Niña phases. Winter also shows tendency for 

higher tornado counts during La Niña phases, except for a Strong El Niño phase. A relatively 

large hot spot extent along the Gulf and Central Plains zones during Strong El Niño might be the 

cause of this spike in annual tornado frequency, which could be the result of outbreak(s) during 

winter. As ENSO transitions from El Niño to La Niña in winter, hot spots grow and extend 

further north with the exception of Strong La Niña. This is largely due to the position of the jet 

stream as well as persistent troughing in the northwestern U.S./Canada in La Niña phases. The 

statistical differences between adjusted tornado counts across ENSO phases were tested using the 

Mann-Whitney test, and 40 out of 62 individual relationships between two groups (64.5%) 

resulted as statistically different (Tables 2.2 through 2.5). This means that the intensity of ENSO 

does have an impact on tornado frequencies, but a spatial analysis is vital to fully understand its 

influence. Overall, results of this study conclude that the intensity of ENSO does have an 

influence on tornadoes in the eastern United States. ENSO influences spatial distribution in all 

phases of ENSO, and tornado frequencies generally tend to be higher during La Niña phases. A 

larger sample size would be beneficial to the moderate and strong phases of El Niño and La 

Niña; future studies could improve this type of study with a longer time period to resolve this 

issue. Future research could utilize the seasonal findings of this study through machine-based 

learning to create a functional prediction tool, which has been studied previously but only for 

spring (LaCorte 2011).   
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CHAPTER 3: THE INFLUENCE OF ENSO ON WEAK AND 

STRONG TORNADOES IN THE EASTERN UNITED STATES 

 

3.1 Introduction 

 The record-breaking tornado outbreak in spring 2011 caused 1084 tornadoes, 5,182 

injuries, 541 deaths and over $9 trillion in estimated property losses (Lee et al. 2013; SPC 2016). 

During this time, the eastern Pacific was transitioning from a Moderate La Niña to a Weak La 

Niña, raising questions as to whether this teleconnection was linked to the massive tornado 

outbreak. (Lee et al. 2013). Previous studies have shown a connection between ENSO 

(specifically La Niña phases) and tornado activity in the eastern United States (Monfredo 1999; 

Marzban and Schaefer 2001; Lee et al 2013; Allen et al. 2015; Lee et al. 2016), but no studies 

have analyzed the role that the intensity of ENSO plays.  

 This chapter aims to discover characteristics of the tornado-ENSO intensity relationship 

as it is related to tornado intensity, tornado days, and the Destruction Potential Index (DPI) 

(Thompson and Vescio 1998). While previous studies have analyzed seasonal tornado frequency 

and geographic distribution as a function of ENSO (Bove 1998; Schaefer and Edwards 1999; 

Marzban and Schaefer 2001; Cook and Schaefer 2008; Lee et al. 2013; Allen et al. 2015), no 

studies have analyzed the relationship as a function of ENSO intensity as well. Of these studies, 

very few have analyzed the influence ENSO has on tornado intensity and tornado days (Cook 

and Schaefer 2008; Lee et al. 2013). Understanding the geographical variability of tornadoes by 

tornado intensity as a function of ENSO could potentially result in improved seasonal forecasts 

for such activity in the United States. Analyzing tornado days as a function of ENSO would also 

benefit seasonal outlooks by preparing for tornado outbreaks during a specific phase. This 

chapter examines the spatial distribution and temporal change in tornado frequency and 
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distribution for “weak” (EF-0 and EF-1) and “strong” (EF-2 through EF-5) tornadoes on the EF-

scale from 1950 through 2014. The statistical significance of both spatial and temporal trends 

will be analyzed for confidence. As such, the objectives of this research are to: 

1. To analyze tornado frequencies for weak and strong tornadoes as they relate to 

intensities of ENSO 

2. To analyze the seasonality of weak and strong tornadoes across the eastern United 

States 

3. To analyze the geographical distribution of tornadoes as related to ENSO 

4.  Analyze tornado days as a function of ENSO to better understand tornado outbreaks 

5.  Analyze trends in the Destruction Potential Index as a function of ENSO to better 

understand track area (i.e. length/width) during varying phases 

3.2 Data 

Various definitions of ENSO have been utilized when examining ENSO and tornadoes, 

such as the Trans-Niño Index (Lee et al. 2013), the Climate Prediction Center’s definition 

(Marzban and Schaefer 2001; Cook and Schaefer 2008), the Japan Meteorological Agency Index 

(Bove 1998), and the Oceanic Niño Index (Cook and Schaefer 2008). Cook and Schaefer (2008) 

also used a “4-tier” classification system to identify tornado outbreaks, and found that the 

definition of ENSO did not change the results by much. The Oceanic Niño Index (ONI), used 

recently by Allen et al. (2015), was stratified into a useful list of ENSO intensities by Golden 

Gate Weather Services (Null 2016). The ONI is a running 3-month mean of SST anomalies in 

the Niño 3.4 region. The thresholds to stratify phases of ENSO by intensity are positive for El 

Niño, and negative for La Niña. For example, SST anomalies for moderate La Niña would fall 

between -1.0 and -1.4. The intensities of ENSO are categorized under the following magnitudes: 
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● Weak: 0.5 - 0.9 

● Moderate: 1.0 - 1.4 

● Strong: Equal to or larger than 1.5 

However, since this analysis evaluates tornadic activity by season, this averaging method would 

not reflect tornado relationships in a given season most effectively, as it would include values in 

the months surrounding the season. Therefore, a seasonal Niño 3.4 index was used. This seasonal 

index is an improvement of the ONI, specifically for this study, due to the seasonal 

categorization of ENSO intensity. Seasons were averaged and categorized over the following 

months: Winter (DJF), Spring (MAM), Summer (JJA), and Fall (SON). Data were retrieved from 

the Climate Prediction Center’s Monthly Atmospheric and SST Indices database (CPC 2016). 

The monthly Extended Reconstructed SST (ERSSTv4) anomaly dataset with centered base 

periods was used because of its use in the ONI (CPC 2016), as well as its detrended mean for 

producing SST anomalies. A centered SST dataset was chosen as opposed to one with a 1981-

2010 base period because this analysis began in 1950. Centered base periods detrend SST 

anomalies so that external variables such as climate change or an increase in SSTs are not an 

influence. With a 1981-2010 base period for an analysis starting in 1950, the adjusted SST 

average for a year early in the record (i.e. 1950) would be much warmer than what was observed 

from the increase in SSTs, indicating a higher mean for that year and resulting in a higher 

anomaly. Since the Niño 3.4 index values are an average SST anomaly value similar to the ONI, 

the same intensity thresholds from the ONI were used. It is noted that averaging SST values over 

a season pulls the distribution away from the extremes and towards weaker ENSO and neutral 

phases. Each season was binned into a Strong El Niño (SEN), Moderate El Niño (MEN), Weak 

El Niño (WEN), Neutral, Weak La Niña (WLN), Moderate La Niña (MLN), or Strong La Niña 
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(SLN) category based on its 3-month average SST anomaly value. A complete list of seasonally 

binned years for each ENSO phase are in the Appendix. 

The Storm Prediction Center’s Tornado Database provided the critical information 

necessary for this study (Schaefer et al. 1980; Schaefer and Edwards 1999). For the tornado 

intensity analysis, tornadoes were stratified into two categories. “Weak” tornadoes are tornadoes 

classified as either EF-0 or EF-1, and will be referred to as EF01. “Strong” tornadoes are the 

remaining EF-2 through EF-5 tornadoes, and are noted as EF25 in this study. Tornado start 

points, which were originally imported in a WGS84 coordinate system, were projected into a 

Lambert Conformal Conic projection. This projection was utilized because it is one of the best 

for mid-latitudes (ESRI 2016), where the study area is located. A conic projection was chosen as 

it starts at a single point over the poles and extends southward in a cone shape. This projection 

works best for all areas that have a greater east-west extent, like the United States (ESRI 2016). 

The Lambert Conformal was chosen over other conic projections, such as Albers, because it 

portrays shape more accurately than area which was desired for this study. A 40km grid is used 

as the grid of choice when analyzing count data due to its extensive use by the SPC (SPC 2016; 

Figure 3.1). The number of tornado touchdowns in each 40km grid cell were tabulated and used 

as the primary data source in this analysis   
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Figure 3.1. A 40-km grid depicting the study region chosen for this study.  

To quantify tornadic intensity, the Destruction Potential Index is used as a measure of the 

potential for damage and causalities within an outbreak to examine the influence that ENSO has 

on tornado days, tornado strength and track area (Cook and Schaefer 2008). The equation is 

shown below, and further explained in section 3.3.4.  

DPI = Σ [An (Fn +1)]           3.1 

Lastly, composites of mean atmospheric conditions during each ENSO phase were analyzed to 

better understand shifts in those conditions during varying phases and intensities of ENSO and 

their relationship with tornado counts, spatial distribution for weak and strong tornadoes, and 

tornado days. 500hPa geopotential height contours, 500hPa geopotential height anomalies, 

850hPa wind vectors and 300hPa wind vectors were plotted Using data from ESRL’s Monthly 

and Seasonal Climate Composites (ESRL 2016) for each season and phase/intensity of ENSO.  

3.3 Methods and Results 

3.3.1 Spatial Statistics Indicators 

To determine whether there is evidence of spatial association in tornado incidents, two 

global indices of spatial autocorrelation were calculated: average nearest neighbor and global 

Moran’s I. Average Nearest Neighbor calculates a nearest neighbor index based on the average 
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distance from each feature to its nearest neighboring feature (ESRI 2016). A random pattern 

generated from the Poisson process is compared against the real data to measure the strength of 

clustering. The null hypothesis is that the two processes are similar, or that there is no clustering 

and the features are randomly distributed. This tool was implemented on each season per ENSO 

category, resulting in a total of 24 statistical outputs based on available data per tornado 

intensity. The results are below in Figure 3.2. 

 

Figure 3.2. Average nearest neighbor z-scores across phases of ENSO for weak (A) and 

strong (B) tornadoes 

 The other tool, Global Moran’s I, was used to verify and support spatial clustering 

through a different method. Given a set of features (i.e. tornado touchdown points) and an 

associated attribute (count data), this tool evaluates whether the pattern expressed is clustered, 

dispersed, or random (ESRI 2016). The associated attribute (count data) is derived from the 

number of points assigned to each cell in the 40km grid, resulting in a “count” number per 

fishnet grid. Again, the null hypothesis states that the values associated with the features are 

randomly distributed. For both analyses, z-scores were used to compare across phases and 

intensities of ENSO to determine which category has the strongest spatial clustering. Results also 

indicate if z-scores are similar or different, thereby determining which phases/intensities of 

ENSO have the largest effect on spatial autocorrelation amongst tornado counts. Figure 3.3 
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shows the z-scores for the Global Moran’s I analysis. It should be noted that winter Moderate El 

Niño does not have a resulting z-score with Global Moran’s I because it only had 28 tornadoes 

that classified as EF-2 through EF-5, and the GIS tool will not perform with less than 30 points 

(ESRI 2016). 

  

Figure 3.3: Global Moran’s degree of spatial clustering for weak (A) and strong (B) 

tornadoes 

For EF01 and EF25 tornadoes, all groups produced a significant p-value, rejecting the 

null hypothesis that the features are randomly distributed (i.e. no clustering). This was for all 

tornadoes with available F/EF-scale ratings in the record. It should be noted that out of the entire 

record, 55 tornadoes (.097%) did not have available F/EF-scale ratings and were not included in 

this analysis. Because all groups were statistically significant, z-scores can be compared to 

understand spatial clustering; a larger absolute value indicates stronger clustering. Spring and 

summer SEN and SLN had zero tornado counts and had no results in this analysis. EF01 tornado 

clustering (Figure 3.2A and 3.3A) strongly resembles clustering in all tornadoes (Figure 3.4), 

apart from slightly stronger clustering during winter WLN for all tornadoes.  
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Figure 3.4. Average nearest neighbor z-scores across phases of ENSO for all tornadoes 

EF25 tornadoes (Figure 3.2B and Figure 3.3B) show different patterns than all tornadoes 

(Figure 3.4) and EF01 tornadoes (Figure 3.2A and 3.2A). First, the strength of the clustering is 

weaker in EF25 tornadoes. This is most likely due to a smaller tornado count, meaning they are 

more geographically dispersed. However, the distribution of z-scores across seasons also 

changes, primarily in winter and fall. Spring and summer EF25 tornadoes both resemble a 

distribution similar to EF01 and all tornadoes, with a general increase in z-score from El Niño to 

La Niña and a dramatic decrease during MLN (this does not include the Neutral phase spike). 

However, strong tornadoes show the fall season having a relatively similar degree of spatial 

clustering throughout each phase of ENSO, except for a spike during the neutral season. This is 

unlike EF01 and all tornadoes, which resemble more of a bell-shape distribution of z-scores. This 

means that spatial clustering of EF25 tornadoes is generally independent of non-neutral ENSO 

phases during fall. In winter, the pattern itself remains similar to EF01 and all tornadoes, 

however the largest z-score belongs to the WLN phase instead of the Neutral phase. In fact, the 

z-score for WLN during winter and spring is almost identical. Spring MLN has the smallest 

spatial clustering, which is likely due to a small sample size.  
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3.3.2 Seasonal Hot Spots 

 Seasonal hot spot maps were created in GIS through the “Optimized Hot Spot Analysis” 

tool. Given incident points (i.e. tornado touchdown locations), this tool creates a map of 

statistically significant hot and cold spots using the Getis-Ord Gi* statistic (Getis and Ord 1992; 

ESRI 2016). Getis-Ord Gi* examines each feature within the context of neighboring features, or 

nearby tornado origin points. The local sum for a feature and its neighbors is compared 

proportionally to the sum of all features. When the local sum is much different than the expected 

local sum, and the difference is too large to have resulted from random change, it is scored a 

statistically significant Z-score (Mitchell 2005). For statistically significant (p-value less than or 

equal to 0.05) and positive Z-scores, a larger Z-score indicates more intense clustering of high 

values (hot spots). For statistically significant and negative z-scores, a smaller z-score indicates 

more intense clustering of lower values, or cold spots (ESRI 2016). Equations used in this 

statistic are accessible on ESRI’s “Optimized Hot Spot Analysis” page (ESRI 2016).  

 GIS has two hot spot tools of choice – the standard Hot Spot Analysis (Getis_Ord Gi*), 

as well as the Optimized Hot Spot Analysis tool. For the purpose of this study, the latter method 

was utilized for several reasons. The Optimized Hot Spot tool automatically aggregates incident 

data, identifies appropriate scale of analysis, and corrects for both multiple testing and spatial 

dependence (ESRI 2016). The automatic aggregation of data allowed the input data features to 

be the original Conformal Lambert Conic projected tornado touchdown points. Most 

importantly, it identifies statistically significant spatial clusters of hot and cold spots, which are 

used in this study to identify local tornado clusters as a function of ENSO intensity and phase.

 Figures 3.5 and 3.6 show plots representing ENSO hot spots across all seasons for EF01 

and EF25 tornadoes, resulting in a total of 56 individual figures (nine of which have no 
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tornadoes). Figure 3.7 displays tornado hot spots for all tornadoes, for comparison against EF01 

and EF25 tornado hot spots.  
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Figure 3.5: Weak (EF01) tornado hot and cold spots, 1950-2014. Columns are in the order 

of winter, spring, summer and fall. A-D are Strong El Niño, E through H are Moderate El 

Niño, I through L are Weak El Niño, M through P are Neutral, Q through T are Weak La 

Niña, U through X are Moderate La Niña, and Y through AB are Strong La Niña. 
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Figure 3.6: Strong (EF25) tornado hot and cold spots, 1950-2014. Columns are in the order 

of winter, spring, summer and fall. A-D are Strong El Niño, E through H are Moderate El 

Niño, I through L are Weak El Niño, M through P are Neutral, Q through T are Weak La 

Niña, U through X are Moderate La Niña, and Y through AB are Strong La Niña. 
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Figure 3.7: All tornado hot and cold spots, 1950-2014. Columns are in the order of winter, 

spring, summer and fall. A-D are Strong El Niño, E through H are Moderate El Niño, I 

through L are Weak El Niño, M through P are Neutral, Q through T are Weak La Niña, U 

through X are Moderate La Niña, and Y through AB are Strong La Niña. 
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Changes in spatial distribution of severe thunderstorm activity are attributed to the 

position of the jet stream (Barnes and Newton 1986; Johns and Doswell 1992; Cook and 

Schaefer 2008). The jet stream is modified by phase and intensity of ENSO (Cook and Schaefer 

2008; Allen et al. 2015), as well as changes in season (Frauenfeld and Davis 2003; NWS 2016). 

Understanding the location of the jet stream is important because synoptic scale disturbances 

tend to form in areas of maximum wind speed and follow jet axes (Holton 1992), which 

modulates the location and intensity of severe weather (Archer and Caldeira 2008) and 

potentially tornado activity. The circumpolar vortex, which is a complex upper-level low-

pressure area over the North Pole, is defined by geopotential contours that lie within the core of 

tropospheric westerlies (Frauenfeld and Davis 2003). Expansion (contraction) of the circumpolar 

vortex results in equatorward (poleward) modulation of the jet stream. Seasonal atmospheric 

analyses show that the largest shift in the jet stream and geopotential heights in the Northern 

Hemisphere was during summer in the circumpolar vortex (Frauenfeld and Davis 2003). The 

average latitude of the jet stream begins to shift poleward during spring and especially during 

summer with the contraction of the circumpolar vortex, then retreats towards the Equator in fall 

(NWS 2016). However, the intensity of the jet stream is strongest during winter, since the jet 

stream follows gradients between warm and cold air, which is most pronounced during winter 

(NWS 2016). Spatial evolution of hot spots in Figures 3.5 and 3.6 generally reflect the seasonal 

evolution of the circumpolar vortex and attendant jet stream, similar to Figure 3.7.    

Strong spatial clustering is evident in the SEN plots across the southern U.S. for EF01 

tornadoes (Figures 3.5A and 3.5D), like the all tornado pattern (Figure 3.7A and 3.7D). EF01 

and EF25 tornado hot spots during SEN strongly resemble all tornado hot spots during the same 

phase. Fall SEN patterns show a striking difference between all (Figure 3.7D), EF01 (Figure 
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3.5D), and EF25 (Figure 3.6D) tornadoes. EF01 tornadoes show an increase in hot spot area 

along the Gulf, particularly in Florida, while EF25 tornadoes have a much smaller presence 

along the Gulf (Figure 3.6D). Therefore, we can say that EF01 tornadoes in the fall during a SEN 

typically to occur along the Gulf coast, while EF25 tornadoes are less likely in this region. 

Verification of this pattern can be done with gridded tornado counts, which is a point of future 

research beyond this study. 

 In MEN, hot spots of all tornadoes (Figure 3.7E) and EF01 tornadoes (Figure 3.5E) are 

almost identical in all four seasons. Unfortunately, only 28 strong tornadoes occurred in MEN 

winters, which was an insufficient sample size for the hot spot analysis. Hot spots amongst the 

other three seasons strongly resembled the distribution of hot spots of all tornadoes (Figure 3.7). 

Overall, fall MEN tornadoes do not show much variation from all tornadoes between EF01 and 

EF25 tornado hot spot location. 

 WEN tornadoes in winter show a persistent hot spot over the Gulf Plains regardless of 

tornado intensity, however there is a hot spot over most of Georgia and South Carolina for EF01 

tornadoes (Figure 3.5I) that is not found for EF25 tornadoes (Figure 3.6I). In spring WEN, hot 

spots are similar for EF01 and EF25 tornadoes. WEN tornadoes in summer show an additional 

cold spot with the EF01 tornado analysis (Figure 3.5K), different from the all tornado analysis 

(Figure 3.7K). It is hypothesized that for the all tornado analysis, enough EF25 tornadoes exist 

along the cold spot region visible in Figure 3.5K to discount a significant cold spot, but not 

enough to result in a significant hot spot which is not visible in Figure 3.7K. The massive hot 

spot over Florida for EF01 tornadoes, and not EF25 tornadoes, could be the result of tornadoes 

spawning from hurricanes. In fall, EF01 tornadoes have significant hot spots along the entire 

Gulf Coast, while EF25 tornadoes solely lie near the Louisiana/Mississippi region. 
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 Neutral tornadoes in winter do not show much variation between EF01 and EF25, with 

the exception of a strong tornado hot spot over northwest Illinois not present in EF01 tornadoes 

(Figure 3.6M). In fact, there is a lack of variation between all, EF01, and EF25 tornadoes for all 

four seasons during this phase. The only difference between tornado intensities occurs during 

summer, where tornado hot spots over Oklahoma and the Texas panhandle exist only for EF01 

tornadoes, and disappear for EF25 tornadoes (Figure 3.5O and 3.6O).  

 For the WLN phase in winter, hot spots are unique to South Carolina and east Texas only 

for EF01 tornadoes, but not EF25 tornadoes (Figure 3.5Q). In spring, there seems to be a slight 

rotation in tornado hot spots between weak and strong tornadoes. EF01 tornadoes in spring have 

a much larger presence over the central U.S., specifically north Texas through Nebraska, while 

EF25 tornadoes show a shift primarily over the northern Dixie Alley (Figures 3.5R and 3.6R). 

EF25 tornadoes in summer during this phase show a unique presence over Oklahoma (Figure 

3.6S) that is not evident in EF01 tornadoes (Figure 3.5S). In fall, EF01 tornadoes are likely to 

occur across the entire Gulf coast region, as well as Oklahoma and northeast Virginia (Figure 

3.5T), whereas EF25 tornadoes are not likely (Figure 3.6T).  

 MLN tornadoes in winter show a northerly shift in hot spots away from the GOM for 

EF25 tornadoes when compared to EF01 ones. Spring tornadoes during this phase show an 

interesting area of hot spots for EF25 tornadoes in Arkansas (Figure 3.6V) that is not present for 

EF01 tornadoes (Figure 3.5V). Summer EF25 tornadoes during a MLN result in very little hot 

spots – this could be due to a smaller sample size. However, fall shows a similar pattern to 

winter; EF01 tornadoes are more likely to occur along the coastline (Figure 3.5X), while EF25 

tornadoes exist more inland (Figure 3.6X).  

 Finally, winter tornadoes during a SLN are more likely to be classified as EF01 tornadoes 
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over Arkansas and Missouri, and rated EF25 over South Carolina (Figures 3.5Y and 3.6Y). The 

fall shows an interesting change in hot spot patterns when comparing EF25 tornadoes (Figure 

3.6AB) to all tornadoes (Figure 3.7AB). Both EF01 and all tornadoes exhibit hot spots over the 

central plains, primarily over Arkansas and the Oklahoma/Kansas border. However, this area 

size increases drastically when examining only EF25 tornadoes. This is indicative that spatially, 

EF25 tornadoes (potentially from tornado outbreaks) are responsible for many of the hot spot 

locations.  

 Overall, the location of tornado hot spots dependent on tornado intensity does not vary 

greatly tornado hot spots of the entire dataset. There are small differences between a few select 

ENSO phases, which will be discussed in section 3.4, but those differences are most likely due to 

mesoscale processes and are therefore outside the scope of this research.  

3.3.3 Adjusted Tornado Counts 

 To eliminate the upward trend in tornado counts over time, due to factors such as 

urbanization, population increase, and improvement in radar technology (Brooks et al. 2003; Lee 

et al. 2016), the Storm Prediction Center developed a simple method to eliminate this issue using 

a linear regression equation (Brooks and Carbin 2007). An analysis on raw tornado counts during 

varying phases of ENSO might be questioned due to the obvious upward trend in reports since 

1950, necessitating this detrended analysis. While this method can remove the trend in tornado 

reports due to changes in detection and reporting, it cannot remove the potential influence of 

other external variables such as climate change and additional teleconnections. Figure 3.8 is an 

example of one of these calculations, which compares the raw values (Figure 3.8A) and adjusted 

values (Figure 3.8B). 
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Figure 3.8: Raw (A) and adjusted (B) tornado counts for weak tornadoes in spring, 1950-

2014 

Annual tornado frequency is first plotted from 1950-2014. This upward tick in tornado 

counts is easily visible with a linear trend line, shown in black. The linear trend line equation is 

used to compute the “delta”, which is the linear equation value for that year minus the original 

annual total, which results in the adjusted tornado count for that year (Brooks and Carbin 2007). 

For raw tornado counts for weak tornadoes in spring (Figure 3.8A), the median was 264. Each 

individual delta (positive if the original value is above the trend line, negative if below) was 

applied to 264. The resulting value is the adjusted tornado count for that year. Adjusted tornado 

counts were calculated for all four seasons and both tornado intensities. Once an adjusted 

tornado count has been calculated for each year and each season, counts can be binned into their 

appropriate ENSO category per year. The total sum of each ENSO category was calculated, then 

normalized (or averaged) by the number of entries in that category. The purpose of this is to 

eliminate the influence of heavily represented categories in respect to lesser represented 

categories (i.e. neutral categories versus stronger categories). The results are in Figure 3.9. 

Adjusted tornado counts for all tornadoes are included for comparison (Figure 3.10). The 

average values were then used for statistical tests examining the difference of means, such as the 

Kruskal-Wallis and Mann-Whitney test. 
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Figure 3.9: Detrended tornado counts per season across all phases of ENSO for both weak 

(light colors) and strong (dark colors) tornadoes, 1950-2014. 

 

Figure 3.10: Detrended tornado counts for all tornadoes (for comparison), 1950-2014 

 To determine the appropriate statistics test, the data was tested for normality using both 

the Shapiro-Wilk test and Normal Quantile-Quantile (Q-Q) plots in R. When testing for 

normality, Q-Q plots are used to compare a sample distribution (i.e. adjusted tornado counts) 
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with a theoretical sample (i.e. a normal distribution, with a mean of zero and a standard deviation 

of one) (Vries and Meys 2015). The Shapiro-Wilk test was used secondarily to confirm findings 

from the Q-Q plots. The null hypothesis for the Shapiro-Wilk test is that the sample comes from 

a population which has a normal distribution (Royston 1982). Significant p-values would reject 

the null hypothesis, indicating that the sample has non-normal properties. Results for weak and 

strong tornadoes, with their respective Shapiro-Wilk p-values, are shown in Figures 3.11 and 

3.12, respectively.  

 

Figure 3.11. Seasonal normal Q-Q plots with Shapiro-Wilk p-value for weak tornadoes  

 

Figure 3.12. Seasonal normal Q-Q plots with Shapiro-Wilk p-value for strong tornadoes  
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With statistically significant p-values of less than .01 rejecting the null hypothesis of normality, 

as well as different observed and theoretical (in red) distributions from the Q-Q plots, the 

distribution of all data is confirmed to be non-normal, hence we will use non-parametric 

statistical tests on these data. As such, we test the differences between ENSO phases using the 

Kruskal-Wallis test, which is most appropriate because these data are unpaired (Kruskal & 

Wallis 1952; McKight and Najab 2010). The null hypothesis of the Kruskal-Wallis test is that 

there are no statistical differences between two or more groups of an independent variable (Aerd 

2016). Results of the Kruskal-Wallis test for EF01 and EF25 tornadoes are in Table 3.1.  

Table 3.1. Kruskal Wallis p-values for adjusted annual tornado counts 

Season Weak Tornadoes Strong Tornadoes 

Winter < 0.001 < 0.001 

Spring < 0.001 < 0.001 

Summer < 0.001 < 0.001 

Fall < 0.001 < 0.001 

 

Significant p-values reject the null hypothesis that there are no differences between two or more 

groups – in this case, “groups” are different phases of ENSO during each season. Therefore, 

these p-values indicate that at least one ENSO phase is different from the others for both EF01 

and EF25 tornadoes. To specify exactly which ENSO phases are different from each other, the 

Mann-Whitney test was used. This test was used over the Wilcoxon because the pairs were 

unmatched, and the Wilcoxon test requires matched data ("Kruskal-Wallis and Friedman Tests” 

2016). The Mann-Whitney U test is a simplified Kruskal-Wallis test, analyzing only two groups 

instead of multiple (McKight and Najab 2010). The Kruskal-Wallis was run first to determine if 

a Mann-Whitney should be applied to individual group (i.e. phase of ENSO), then the Mann-
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Whitney was performed between each phase of ENSO. The Mann-Whitney is a measure of 

difference within mathematical space, or the difference in the location of the distribution. 

 Looking first at seasons, the increase in tornado counts across ENSO phases during 

spring is apparent through WLN for both EF01 and EF25 tornadoes. As ENSO transitions from 

MEN to WLN, the number of tornadoes increases from about 175 to over 300 in weak tornadoes, 

and about 60 to over 100 in strong tornadoes. The statistical difference between the five ENSO 

phases in spring are shown in Table 3.2 for EF01 tornadoes and Table 3.3 for EF25 tornadoes. 

Table 3.2: Mann-Whitney resulting p-values for weak tornadoes in spring (very strong 

evidence – pink; strong – orange; moderate – yellow; weak or none – dark grey; no data – light 

gray) 

  

Strong El 

Niño 

Moderate El 

Niño 

Weak El 

Niño 

Neutral 

 

Weak 

La Niña 

Moderate La 

Niña 

Strong La 

Niña 

Strong El Niño               

Moderate El Niño   - - - - -   

Weak El Niño   0.0444 - - - -   

Neutral   0.0021 < 0.001 - - -   

Weak La Niña   0.0220 0.2380 < 0.001 - -   

Moderate La Niña   0.6667 0.2222 0.0465 0.1538 -   

Strong La Niña               

 

Table 3.3: Mann-Whitney resulting p-values for strong tornadoes in spring (very strong 

evidence – pink; strong – orange; moderate – yellow; weak or none – dark grey; no data – light 

gray) 

  

Strong 

El Niño 

Moderate El 

Niño 

Weak El 

Niño 

Neutral 

 

Weak La 

Niña 

Moderate La 

Niña 

Strong La 

Niña 

Strong El Niño               

Moderate El Niño   - - - - -   

Weak El Niño   0.0889 - - - -   

Neutral   0.0021 < 0.001 - - -   

Weak La Niña   0.0879 0.4269 5.8310E-12 - -   

Moderate La Niña   1.0000 0.4444 0.0465 0.3077 -   

Strong La Niña               

Twelve out of the 20 relationships show statistical differences in the weak and strong 

category, consistent with all tornadoes. MLN returns mostly non-significant p-values for both, 

and this is likely due to the category only having one value, shown in the following box and 

whisker plots (Figures 3.13 and 3.14), resulting in non-significance.  Therefore, it is important to 
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note that spring MLN frequencies should not be trusted as much as other tornado frequencies in 

spring. 

  

Figure 3.13: Box-and-whisker plots of weak tornado counts per season by ENSO phase 

 

Figure 3.14: Box-and-whisker plots of strong tornado counts per season by ENSO phase 



59 
 

Summer shows distributions across ENSO phases that are relatively similar regardless of 

tornado intensity. This pattern is like the all tornadoes distribution (Figure 3.10), where it is even 

across all phases except for a decrease during WEN’s. However, statistical tests show that the 

relationships between ENSO phases for both EF01 and EF25 tornadoes result in 17 out of 20 

significantly different distributions (Tables 3.4 and 3.5). 

Table 3.4: Mann-Whitney resulting p-values for weak tornadoes in summer (very strong 

evidence – pink; strong – orange; moderate – yellow; weak or none – dark grey; no data – light 

gray) 

  

Strong El 

Niño 

Moderate El 

Niño 

Weak El 

Niño 

Neutral 

 

Weak La 

Niña 

Moderate La 

Niña 

Strong La 

Niña 

Strong El Niño               

Moderate El Niño   - - - - -   

Weak El Niño   0.0318 - - - -   

Neutral   < 0.001 < 0.001 - - -   

Weak La Niña   0.0005 0.0133 < 0.001 - -   

Moderate La Niña   0.3929 0.0714 0.0002 0.0055 -   

Strong La Niña               

 

Table 3.5: Mann-Whitney resulting p-values for strong tornadoes in summer (very strong 

evidence – pink; strong – orange; moderate – yellow; weak or none – dark grey; no data – light 

gray) 

  

Strong El 

Niño 

Moderate El 

Niño 

Weak El 

Niño 

Neutral 

 

Weak 

La 

Niña 

Moderate La 

Niña 

Strong La 

Niña 

Strong El Niño               

Moderate El Niño   - - - - -   

Weak El Niño   0.0318 - - - -   

Neutral   < 0.001 < 0.001 - - -   

Weak La Niña   0.0133 0.5833 6.1070E-06 - -   

Moderate La Niña   0.2500 0.0357 0.0002 0.0055 -   

Strong La Niña               

 

 Like the all tornadoes results (Figure 3.10), the adjusted counts drastically decrease 

when transitioning into fall and winter seasons. This is true for both EF01 and EF25 tornadoes. 

In fall, SLN has the largest counts in both EF01 and EF25 tornadoes, but the difference across 

ENSO phases is much more dramatic in EF25 tornadoes. The rest of the counts fall around the 

same value upon examination of EF25 tornadoes, but in EF01 tornadoes there is a secondary 
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peak during WEN. This is possibly due to an outlier in the distribution, shown in Figure 3.13. 

Tables 3.6 and 3.7 show that only 19 out of 42 relationships have statistically different 

distributions. 

Table 3.6: Mann-Whitney resulting p-values for weak tornadoes in fall (very strong 

evidence – pink; strong – orange; moderate – yellow; weak or none – dark grey; no data – light 

gray) 

  

Strong El 

Niño 

Moderate 

El Niño 

Weak El 

Niño 

Neutral 

 

Weak La 

Niña 

Moderate La 

Niña 

Strong La 

Niña 

Strong El Niño - - - - - - - 

Moderate El Niño 0.3429 - - - - - - 

Weak El Niño 0.1014 0.0785 - - - - - 

Neutral 0.0013 < 0.001 0.0616 - - - - 

Weak La Niña 0.1040 0.0557 0.6443 0.0105 - - - 

Moderate La Niña 0.7879 0.2303 0.1173 0.0082 0.1259 - - 

Strong La Niña 0.4000 0.4000 0.1410 0.0741 0.1667 0.2500 - 

 

Table 3.7: Mann-Whitney resulting p-values for strong tornadoes in fall (very strong 

evidence – pink; strong – orange; moderate – yellow; weak or none – dark grey; no data – light 

gray) 

  

Strong El 

Niño 

Moderate 

El Niño 

Weak El 

Niño 

Neutral 

 

Weak La 

Niña 

Moderate La 

Niña 

Strong La 

Niña 

Strong El Niño - - - - - - - 

Moderate El Niño 0.6857 - - - - - - 

Weak El Niño 0.0132 0.0044 - - - - - 

Neutral < 0.001 < 0.001 0.1744 - - - - 

Weak La Niña 0.0103 0.0015 0.4491 0.0139 - - - 

Moderate La Niña 0.5273 0.0242 0.0221 0.0002 0.0441 - - 

Strong La Niña 0.4000 0.4000 0.1538 0.0741 0.1667 0.2500 - 

 

 Although fall SLN clearly has the highest adjusted count in both categories, statistically 

significant p-values only surface when compared to the Neutral phase. This is most likely due to 

a distribution of only one value; therefore, the frequency of tornado counts during fall SLN 

should not be trusted as much as the other six phases during fall. Winter shows a “U” shape 

across ENSO phases, with a large spike during MLN in both EF01 and EF25 tornadoes. In EF01 

tornadoes, SEN has a relatively large tornado count, which decreases in the transition to MEN, 

and increases through the spectrum up through MLN. EF25 tornadoes show this same variation; 
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however, the actual tornado counts are so small that the variation itself is only over the span of 

10 or so tornadoes amongst ENSO phases. A total of 26 out of 42 winter relationships are 

statistically different from each other (Tables 3.8 and 3.9).  

Table 3.8: Mann-Whitney resulting p-values for weak tornadoes in winter (very strong 

evidence – pink; strong – orange; moderate – yellow; weak or none – dark grey; no data – light 

gray) 

  

Strong El 

Niño 

Moderate 

El Niño 

Weak El 

Niño 

Neutral 

 

Weak La 

Niña 

Moderate La 

Niña 

Strong La 

Niña 

Strong El Niño - - - - - - - 

Moderate El Niño 0.3929 - - - - - - 

Weak El Niño 0.0039 0.0965 - - - - - 

Neutral 0.0009 0.0358 0.5406 - - - - 

Weak La Niña 0.0140 0.3643 0.0253 0.0016 - - - 

Moderate La Niña 0.2222 0.1429 0.0012 0.0007 0.0002 - - 

Strong La Niña 0.5714 0.4000 0.0090 0.0067 0.0036 0.5714 - 

 

Table 3.9: Mann-Whitney resulting p-values for strong tornadoes in winter (very strong 

evidence – pink; strong – orange; moderate – yellow; weak or none – dark grey; no data – light 

gray) 

  

Strong El 

Niño 

Moderate El 

Niño 

Weak El 

Niño 

Neutral 

 

Weak La 

Niña 

Moderate 

La Niña 

Strong La 

Niña 

Strong El Niño - - - - - - - 

Moderate El Niño 0.3929 - - - - - - 

Weak El Niño 0.0359 0.0575 - - - - - 

Neutral 0.0234 0.0040 0.4315 - - - - 

Weak La Niña 0.1433 0.7036 0.0448 < 0.001 - - - 

Moderate La Niña 0.2222 0.0357 0.0012 < 0.001 < 0.001 - - 

Strong La Niña 0.7857 0.4000 0.0090 < 0.001 0.0393 0.5714 - 

 

Overall, 75 out of 124 relationships when comparing weak and strong tornadoes across varying 

ENSO phases seasonally are statistically different from each other (about 60%).  

 To compare EF01 and EF25 tornadoes against the entire record, ENSO phases were 

compared against their own phase in another category. For example, SEN in spring for EF01 

tornadoes was compared against SEN in spring for all tornadoes. The resulting table is shown 

below (Table 3.10).  
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Table 3.10: Seasonal Mann-Whitney resulting p-values when comparing all vs. weak, all vs. 

strong, and weak vs. strong tornadoes 

    
Strong El 

Niño 
Moderate 

El Niño 
Weak El 

Niño 
Neutral 

 
Weak La 

Niña 
Moderate La 

Niña 
Strong La 

Niña 

Sp
rin
g 

All vs. Weak - 0.6670 0.3282 < 0.001 0.0121 1.0000 - 

All vs. Strong - 0.3333 0.0003 < 0.001 < 0.001 1.0000 - 

Weak vs. Strong - 0.3333 0.0006 < 0.001 
< 0.001 1.0000 - 

Su
m
m
er 

All vs. Weak - 0.0556 0.1508 < 0.001 0.0192 0.4000 - 

All vs. Strong - 0.0079 0.0079 < 0.001 2.8350E-06 0.1000 - 

Weak vs. Strong - 0.0079 0.0079 < 0.001 2.8350E-06 0.1000 - 

Fal
l 

All vs. Weak 0.2000 0.2000 0.2141 0.0256 0.0083 0.3176 1.0000 

All vs. Strong 0.0571 0.1143 0.0011 < 0.001 < 0.001 0.0175 1.0000 

Weak vs. Strong 0.2000 0.1143 0.0262 < 0.001 0.0019 0.0379 1.0000 

Wi
nt
er 

All vs. Weak 0.4206 0.7000 0.2206 0.1180 0.0428 0.2222 0.7000 

All vs. Strong 0.0952 0.1000 0.0151 0.0016 0.0013 0.0079 0.2000 

Weak vs. Strong 0.2222 0.2000 0.1508 0.0345 0.0612 0.2222 0.4000 

 

When comparing EF01 tornadoes versus all tornadoes, 2 out of 5 were significant in 

spring, 3 out of 5 were significant in summer, 2 out of 7 were significant in fall, and 1 out of 7 in 

winter. The lack of significantly different results is not surprising, considering the distribution of 

tornado counts is not all that different between the EF01 tornado dataset and all tornado dataset 

(Figures 3.9 and 3.10). All tornadoes versus EF25 tornadoes resulted in 3 out of 5 significant 

differences in spring, 5 out of 5 in summer, 5 out of 7 in fall, and 6 out of 7 in winter. In other 

words, 19 out of 24 inter-relationships when examining all tornadoes vs. EF25 tornadoes were 

statistically different from each other. Finally, by comparing EF01 tornadoes versus EF25 

tornadoes, it was found that 3 out of 5 were significant in spring, 5 out of 5 were significant in 

summer, 4 out of 7 were significant in fall and 3 out of 7 were significant in winter.  

 In summary, based on adjusted count analysis alone, only 33% of phases were 

statistically different between EF01 tornadoes and all tornadoes, 80% of phases showed 

significantly different values between EF25 and all tornadoes, and 63% were significant when 

comparing EF01 against EF25. Between EF01 and EF25 tornadoes, summer showed the most 
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significant differences between ENSO phases with all five relationships resulting in significant 

p-values. Spring follows, with three out of five. The distribution of tornadoes for the entire 

record versus the EF01 record is quite similar, resulting in little difference between the two. This 

is visible in Figures 3.9 and 3.10. In short, ENSO seems to have a significant influence on the 

number of tornadoes, but the overall distribution does not vary when broken down by tornado 

intensity.  

3.3.4 Tornado Days and the Destruction Potential Index 

 The Destruction Potential Index (DPI) is an index of the total tornado damage area for 

each day (in this study, a “tornado day”) multiplied by the weighted mean F-scale for all 

tornadoes within that time period (Thompson and Vescio 1998). It is a measure of the potential 

for damage and causalities within a particular outbreak. The DPI is used here to examine the 

influence that ENSO has on tornado days during specified phases and seasons, as well as further 

understand the influence ENSO has on tornado strength and path area. The DPI formula is 

described in Equation 3.1. Tornado days are defined as a day that has 6 or more tornadoes 

occurring within a 24-hour period, to be consistent with Cook and Schaefer (2008) and Galway 

(1975). After each ENSO-tornado dataset was stratified into records falling on a tornado day, the 

DPI was calculated for each tornado day. The total number of tornado days, average tornado 

days per season, total DPI for all tornado days and average DPI per for all tornado days are 

shown in Table 3.11. Average DPI across all seasons are displayed in Figure 3.15.  
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Table 3.11: Tornado day and resulting DPI values across all seasons and phases of ENSO 

Spring          

 SEN MEN WEN Ntrl WLN MLN SLN Sum 
χ2 

statistic 

Total number of "tornado 
days" - 31.0 116.0 842.0 274.0 4.0 - 1267.0 31.71 

Average number of 
"tornado days" per spring - 15.5 14.5 20.0 22.8 4.0 - 76.9 155.74 

Number of springs 
according to ENSO phase - 2.0 8.0 42.0 12.0 1.0 - 65.0 - 

Total DPI for all "tornado 
days" - 468.0 4781.6 39745.8 23784.4 66.1 - 68845.9 13979.37 

Average DPI for all 
"tornado days" - 15.1 41.2 47.2 86.8 16.5 - 206.8 3680.46 

Summer          

Total number of "tornado 
days" - 92.0 65.0 736.0 179.0 53.0 - 1125.0 7.39 

Average number of 
"tornado days" per 
summer - 18.4 13.0 18.0 16.3 17.7 - 83.3 189.23 

Number of summers 
according to ENSO phase - 5.0 5.0 41.0 11.0 3.0 - 65.0 - 

Total DPI for all "tornado 
days" - 663.3 620.2 8922.4 2545.6 348.1 - 13099.5 476.91 

Average DPI for all 
"tornado days" - 7.2 9.5 12.1 14.2 6.6 - 49.7 35.37 

Fall          

Total number of "tornado 
days" 20.0 16.0 48.0 128.0 46.0 42.0 9.0 309.0 8.96 

Average number of 
"tornado days" per fall 5.0 4.0 4.0 4.9 4.2 6.0 9.0 37.1 96.90 

Number of falls according 
to ENSO phase 4.0 4.0 12.0 26.0 11.0 7.0 1.0 65.0 - 

Total DPI for all "tornado 
days" 376.1 972.8 1191.2 4401.6 553.9 694.2 151.0 8340.8 1438.65 

Average DPI for all 
"tornado days" 18.8 60.8 24.8 34.4 12.0 16.5 16.8 184.2 3743.23 

Winter          

Total number of "tornado 
days" 21.0 9.0 35.0 52.0 41.0 36.0 15.0 209.0 36.43 

Average number of 
"tornado days" per winter 4.2 3.0 2.3 2.5 3.2 7.2 5.0 27.4 110.64 

Number of winters 
according to ENSO phase 5.0 3.0 15.0 21.0 13.0 5.0 3.0 65.0 - 

Total DPI for all "tornado 
days" 507.5 81.8 659.2 1477.2 1505.3 2548.1 217.9 6997.1 8566.14 

Average DPI for all 
"tornado days" 24.2 9.1 18.8 28.4 36.7 70.8 14.5 202.5 3923.27 
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Figure 3.15: Average DPI results across all seasons and phases of ENSO 

A χ2 distribution is used to determine whether the distribution of these parameters varies 

with ENSO phase. If the χ2 statistic is larger than the critical value, the hypothesis that the 

distributions are independent of the respective ENSO phase can be rejected. The formula to 

calculate this statistic is described in Equation 3.2. 

                                  (# Observed - # Expected)2          3.2 

 

For each metric (i.e. tornado days, DPI, etc.), the expected value was calculated as the sum of 

that metric times the number of seasons in respective ENSO phase, divided by the total number 

of seasons on record (in this study, the total number of seasons is 65). For example, in spring 

MEN, the expected value for total DPI for all tornado days was calculated by multiplying the 

total DPI observed across all ENSO phases in spring by the number of seasons in spring MEN 

(2), divided by 65. Doing this across all ENSO phases, and summing the totals results in the chi-

0

10

20

30

40

50

60

70

80

90

100

Winter Spring Summer Fall

SEN

MEN

WEN

Ntrl

WLN

MLN

SLN

# Expected 
χ2  =  Σ 



66 
 

square statistic. The critical value (v) is determined by subtracting one from the number of 

classes. In spring and summer, v is 4. For fall and winter, v is 6. The confidence levels for each 

critical value is from Wilks (1995). For a critical value equal to 4, the 90% confidence interval is 

7.779 and the 99.9% confidence interval is 23.512. For the critical value 6, the 90% confidence 

interval is 10.645 and the 99.9% confidence interval is 27.855.  

In Table 3.11, the χ2 statistic for tornado days in spring and winter (31.71 and 36.43) are 

above the 99% critical level of 23.512 and 27.855, respectively. Summer and fall show less 

significant χ2 statistics of 7.39 and 8.96, respectively, which fall below even the 90% critical 

level of 7.779 and 10.645, respectively. Therefore, for summer and fall, we cannot reject the null 

hypothesis that the frequency of tornado days over the eastern U.S. is independent of ENSO 

phase. However, in winter and spring, because the χ2 statistic is larger than the critical level at as 

high as the 99.9% confidence level, the hypothesis that the frequency of tornado days in the 

study area are independent of ENSO phase can be rejected. In other words, in spring and winter, 

the total number of tornado days east of the Rocky Mountains is affected by ENSO phase. The χ2 

test is also used to determine whether the DPI observations have statistical significance. The χ2 

statistic for ENSO-related differences in the average DPI for spring, summer, fall, and winter 

tornado days (3,680.46, 35.37, 3,743.23, and 3,923.27, respectively) is well above the 99.9% 

confidence level for all four seasons (23.512 for spring and summer, and 27.855 for fall and 

winter). Therefore, we can reject the hypothesis that average DPI for spring, summer, fall and 

winter tornado days is independent of ENSO phase.  

Average DPI (Figure 3.15) shows considerable differences between ENSO phases across 

each season. In winter, DPI tends to be the highest during MLN. DPI decreases as ENSO 

transitions from La Niña to El Niño, apart from a spike during SEN. Spring WLN has the highest 
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DPI for its season, which again decreases in its transition from La Niña to El Niño. In fact, 

spring WLN has the highest DPI for all seasons. Historically, spring Weak La Niña has 

coincided with some of the most devastating tornado outbreaks in recorded history. In terms of 

DPI, the top five include dates such as April 27th, 2011 (207 tornadoes with a DPI of 6,236), 

April 3rd 1974 (128 tornadoes with a DPI of 2384), May 31st, 1985 (30 tornadoes with a DPI of 

116), and May 24th, 2011 (48 tornadoes with a DPI of 1060). The presence of some of the largest 

outbreaks in history occurring during spring WLN is consistent with large hot spots (Figure 3.7) 

and increased tornado counts (Figures 3.10) shown in both analysis chapters. Summer shows the 

smallest variation in DPI values; however, it follows the same trend with WLN showing the 

largest DPI, and decreasing as La Niña turns into El Niño. Fall is the exception to the trend, with 

the largest DPI occurring during MEN then varying non-harmoniously across ENSO phases and 

intensities. Large DPI values indicate long-track, strong tornadoes. Therefore, in winter, spring 

and summer, La Niña phases are more favorable for long-track, strong tornadoes, with WLN 

being more favorable for these conditions in spring and summer, and a MLN in winter. In fall, a 

MEN phase is more favorable for longer, more intense tornadoes, with a non-uniform pattern in 

the remaining ENSO phases. It’s noteworthy to mention the much smaller DPI values in summer 

when compared to the rest of the seasons. As a whole, spring and summer have the most 

tornadoes on record (Figure 3.10). Table 3.11 reveals that the number of tornado days and the 

average number of tornado days per season is much larger in summer than in fall and winter. 

Therefore, the large decrease in DPI during this season must be due to weak, short-lived 

tornadoes occurring in outbreaks.  

3.4 Discussion  

EF01 and EF25 tornadoes exhibited geographic dependence on seasonality and ENSO 
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phase, but did not differ from those patterns exhibited for all tornadoes (Figures 3.5, 3.6, and 

3.7). Tornado frequencies for both weak and strong tornadoes strongly resembled the distribution 

of all tornadoes as well (Figures 3.9 and 3.10). However, three different phases of ENSO did 

show variation between EF01 and EF25 tornado hot spots, and those maps will be discussed 

here.  

From a seasonal perspective, both Strong El Niño seasons (fall and winter) showed 

interesting variations between weak and strong tornado hot spots. In winter, most EF01 tornado 

hot spots are oriented along an east-west axis along the Gulf coast, extending from east Texas 

into Florida (Figure 3.16A), while EF25 tornado hotspots are oriented along a southwest-

northeast axis from northeast Texas to southern Illinois (Figure 3.17B). The absence of strong 

tornadoes along the GOM could be due to weak tornadoes spawning from extratropical cyclones 

in the NW GOM, which have been shown more frequent during El Niño years (Hardy and Hsu 

1997). This same observation could be made for weak tornadoes during fall SEN, where more 

weak tornadoes are oriented along the GOM (Figure 3.16C) and stronger tornadoes have smaller 

hot spots over Illinois and Indiana (Figure 3.16D) There are likely potential factors influencing 

the occurrence of weak tornadoes along the coastline (due to cyclogenesis in the GOM), and 

strong tornadoes further north in the U.S., which are outside the scope of this research and could 

benefit from future analysis. The geographical difference in hot spots is more minimal during a 

spring WLN (Figures 3.16E and 3.16F), but there are differences between the two. Weak 

tornadoes hot spots occur over Kansas and Nebraska, which does not show up for strong 

tornadoes. On the other hand, strong tornadoes exhibit a hot spot over Alabama/Georgia, which 

is not present for weak tornadoes. 
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Figure 3.16: Comparisons of weak vs. strong tornadoes. Winter SEN weak (A) vs. strong 

(B), Fall SEN weak (C) vs. strong (D), and Spring WLN weak (E) vs. strong (F) tornadoes 

are shown. 

Unfortunately, there is not a clear reason why changes in physical location between weak 

and strong tornadoes are occurring. The purpose of this research is to study the influence ENSO 

has on synoptic scale features impacting severe weather activity, and potentially tornado activity, 

in the eastern U.S. To assess changes in tornado intensity, synoptic scale patterns might not be 

enough. The location of one hot spot for weak tornadoes that does show up for strong tornadoes 

could be due to something as simple as one outbreak. For example, the spring 2011 tornado 

outbreaks across the southeastern U.S., which produced many strong tornadoes, could be the 

cause for hot spots over Alabama/Georgia that do not appear in weak tornadoes. To fully 

understand what is influencing a change in geographic location by tornado intensity, a mesoscale 

or daily atmospheric assessment is necessary to attempt to relate the influence of ENSO. Future 

research could take these factors into account to better analyze the role ENSO plays in tornado 

intensity location across the southeastern U.S.  
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3.5 Conclusion 

Tornadoes from 1950 through 2014 were analyzed geographically as a function of ENSO to 

test the relationship against varying tornadic intensities, tornado days, and the Destruction 

Potential Index. A seasonal Niño 3.4 index was derived from the original Niño 3.4 index to 

better represent tornadic activity seasonally without involving a running 3-month mean (used in 

the ONI). Spatial statistics such as the average nearest neighbor distance and Global Moran’s I 

were performed first on weak (EF-0 and EF-1) and strong (EF-2 through EF-5) tornadoes to 

confirm spatial clustering, then local statistics (Optimized Hot Spots) were applied to visualize 

where spatial clustering was occurring across the study region. Annual tornado counts were 

detrended to remove the upward trend observed in tornado counts due to urbanization, 

technology improvements and population increase. These adjusted tornado counts were analyzed 

as a function of ENSO for both weak and strong tornadoes to determine if ENSO influences 

tornadic intensity. To analyze whether ENSO influences the strength and length of tornadoes, the 

Destruction Potential Index was used. Tornado days were defined as a 24-hour period that had 6 

or more tornadoes, and a DPI was calculated for each outbreak and averaged across an ENSO 

season to test its role. The chi-square statistic was implemented to test the significance of these 

findings. It was found that in general, the overall pattern of weak versus strong tornadoes does 

not vary from all tornadoes dependent on ENSO phase. In spring, a Weak La Niña means more 

tornadoes for both weak and strong tornadoes (Figure 3.9). The DPI was also significant during 

this season and phase (Figure 3.15); spring Weak La Niña had the largest average DPI out of any 

season and phase of ENSO. This means that stronger, longer-lived tornado tracks and outbreaks 

occur during Weak La Niña in the spring. The hot spots verify this claim, with the second-largest 

hot spot for strong tornadoes occurring (only behind spring Neutral). Summer has a relatively 

even distribution of tornado counts across ENSO phase, with Weak El Niño showing slightly 
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smaller annual frequency in both weak and strong tornadoes. Perhaps the most interesting result 

for this season is the extremely small DPI values with respect to other seasons. Though there is a 

slight increase in average DPI from El Niño to La Niña, the difference between them is quite 

small. A small DPI indicates weaker, shorter tornadoes. This is verified in the hot spot maps, 

where the strong tornado analysis reveals smaller significant tornado locations compared to other 

seasons (Figure 3.6, column 3). Fall has its largest tornado count during Strong La Niña for both 

weak and strong tornadoes. An examination of spatial hot spots does not reveal a specific 

geographic shift dependent on ENSO phase; however, the Moderate El Niño phase does have the 

largest average DPI, indicating strong and longer tornadoes, which is reflected by a stronger 

band of hot spots (Figure 3.6H). Winter also shows a slight lean toward higher tornado counts 

during La Niña phases for both weak and strong tornadoes, except for a Strong El Niño phase. 

As ENSO transitions from El Niño to La Niña, a general northward expansion of hot spots exists 

through Moderate La Niña. The average DPI suggests that Moderate La Niña is most conducive 

for longer and stronger tornadoes. Geographical variation between weak and strong tornadoes 

did not differ from the all tornado analysis, with shifts being attributed to seasonality and ENSO 

phase and not tornado intensity. Three hot spot maps showcasing differing hot spots by tornado 

intensity were shown, but verifying the reason atmospherically was outside the scope of this 

study. All average DPI values returned with a significant chi-square statistic, meaning that 

tornado days in all four seasons are dependent on ENSO phase. The statistical differences 

between adjusted tornado counts across ENSO phases for strong, weak, and all tornadoes were 

tested using the Mann-Whitney test. Only 33% of phases were statistically different between 

weak tornadoes and all tornadoes, 80% of phases showed significantly different values between 

strong and all tornadoes, and 63% were significant when comparing weak against strong. This 



72 
 

indicates that the weak tornado record and all tornado record distribution are roughly similar, the 

strong tornado record and all tornado record are largely different, and the distributions between 

weak and strong tornadoes are also different. Though the pattern of tornado frequencies across 

ENSO phases is not different compared to all tornadoes, the intensity of ENSO does seem to 

have an impact on tornado frequencies between weak and strong tornadoes. Overall, this study 

does conclude that ENSO has an influence on tornadoes in the eastern United States. Tornado 

frequencies generally tend to be higher during La Niña phases. A larger sample size would be 

beneficial to the moderate and strong phases of El Niño and La Niña; future studies could 

improve this type of study with a longer time period to resolve this issue. Future research could 

utilize the seasonal findings of this study through machine-based learning to create a functional 

prediction tool, which has been studied previously but only for spring (LaCorte 2011). 
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CHAPTER 4: SUMMARY AND CONCLUSION 

 

 Large tornado outbreaks coinciding with specific phases and intensities of ENSO, as well 

as conflicting results in the literature, have raised concerns that the teleconnection has an 

influence on tornadic activity in the eastern United States which we do not understand fully. For 

this reason, tornado frequency and spatial distribution in the eastern United States were 

examined as a function of ENSO to gain an understanding of the ENSO-tornado relationship. In 

addition, spatial and annual frequencies were examined for weak and strong tornadoes, and 

tornado days were analyzed to calculate a Destruction Potential Index to examine the influence 

ENSO has on tornado track area seasonally.  The results of this study have implications on 

seasonal tornado outlooks, as this type of study has not been performed on summer and fall. The 

following summarizes the seminal results of this thesis, based on the objectives noted in Chapter 

1. 

4.1 Objective 1 – Tornado frequencies related to ENSO 

 Annual tornado frequencies were detrended to analyze the influence that ENSO has on 

tornado counts seasonally. This was done with the Storm Prediction Center linear regression 

method, to eliminate the natural increase in tornado observations due to urbanization, 

improvement in technology (i.e. Doppler radar), and increased eyewitness reports from 

population increases over time. It was found that spring and summer have the most tornado 

counts regardless of ENSO phase, and fall and winter have roughly similar counts. In spring, as 

ENSO transitions from Moderate El Niño to Weak La Niña, tornado counts increase. A strong El 

Niño phase means fewer tornadoes, and a Weak La Niña is most conducive for tornado activity. 

Results during a Moderate La Niña in spring should not be trusted due to small sample size and 
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non-significance via the Mann-Whitney test. Summer shows less variation in counts across 

ENSO phases, with the exception of a decrease in counts during Weak El Niño. Fall and winter 

both show larger annual frequency during La Niña phases; Strong La Niña in fall, and Moderate 

La Niña in winter. However, Strong La Niña results in fall should not be relied on due to a small 

sample size and non-significant Mann-Whitney results. These annual frequencies were tested for 

statistical significance using the Mann-Whitney test, and 40 out of 62 individual relationships 

between two groups resulted as statistically different (64.5%). The same analysis was performed 

on weak (EF-0 through EF-1) and strong (EF-2 through EF-5) tornadoes, and the distribution of 

tornado counts across ENSO phases was similar, just with smaller counts. When weak tornadoes 

were compared against the entire record, only 33% of phases were statistically different. Strong 

tornadoes resulted in 80% significantly different values when compared against the entire record, 

and 63% of were significant when comparing weak against strong. These results meet the first 

objective that tornadic frequency varies across ENSO phase for all, weak, and strong tornadoes.  

4.2 Objective 2 – Geographical distribution of tornadoes by ENSO phase 

 Tornadoes were stratified by ENSO phases based on the seasonal Niño 3.4 index to 

examine geographical distribution across the eastern United States. This was accomplished using 

the Optimized Hot Spot analysis tool in ArcGIS, which aggregated data using a 40km fishnet and 

the Getis-Ord Gi* statistic. Seasonal analysis revealed several differences in hot spot location 

dependent upon ENSO phase. Winter showed a northward expansion in tornado hot spots as 

ENSO transitioned from Moderate El Niño to Moderate La Niña, which was further verified with 

difference maps and atmospheric composites. Spring exhibited an eastward expansion in tornado 

hot spots from Moderate El Niño to Weak La Niña in the central U.S., and summer showed a 

similar geographical distribution in the northern United States regardless of ENSO phase. Fall 
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did not exhibit a uniform pattern dependent upon ENSO phase, however hot spots were more 

aggregated during El Niño phases and dispersed during La Niña phases. This was verified with 

global statistics. Weak and strong tornado hot spot analysis revealed several interesting 

differences in location during Strong El Niño in fall and winter, as well as Spring Weak La Niña, 

but a majority of hot spot locations between EF01 and EF25 tornadoes were not anomalous from 

the all tornado record hot spot analysis. These results confirm the hypothesis that ENSO has an 

influence on tornado activity in the eastern United States predominately during winter and 

spring.    

4.3 Objective 3 – Tornado days and track area as a function of ENSO 

 To better understand the influence ENSO may have on tornado outbreaks and track area, 

tornado days (a day with 6 or more tornadoes) were analyzed to compute a Destruction Potential 

Index (DPI). The resulting DPI values were averaged and analyzed across ENSO intensity and 

phase to determine whether ENSO plays a role in stronger, longer-lived tornadoes as well as 

tornado outbreaks. Results for tornado days and DPI were tested for significance using the chi-

squared statistic. For summer and fall, the null hypothesis that the frequency of tornado days 

over the eastern U.S. is independent of ENSO phase could not be rejected. However, winter and 

spring showed significant chi-square results meaning we can reject the null hypothesis and that 

ENSO does not have an influence on tornado days during these seasons. When comparing the 

average DPI across ENSO seasons, a significant chi-square was computed for all four seasons 

indicating that average DPI is not independent of ENSO phase. Seasonally, winter has the 

highest DPI during Moderate La Niña. Spring has its largest DPI average during Weak La Niña, 

and fall has its largest average DPI during Moderate El Niño. Summer resulted in significantly 

small average DPI values across all phases of ENSO, though it had the second highest number of 
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outbreaks across the four seasons. This indicates that even though summer is conducive for 

tornado outbreaks, the tornadoes in these outbreaks are weak and short-tracked. These results 

meet the third objective, and show us that ENSO does have an influence on tornado days and 

track area in the eastern U.S.  

4.4 Objective 4 – Conflicting results in the literature 

 The driving force behind this analysis was conflicting results in the literature on the 

tornado-ENSO relationship. While a majority of studies found that La Niña is favorable for 

larger annual frequencies, and strong, long-tracked tornadoes, several studies found opposite 

conflicting results. This analysis revealed geographic patterns and annual frequencies which 

confirmed that La Niña phases generally have a larger influence on tornadic activity in the 

eastern United States. Possibly more important, this study revealed that the intensity of ENSO 

does play a role in tornadic frequency and geographic distribution seasonally, and should not be 

neglected. This study also showed an improvement in the current literature by examining the role 

of ENSO during all four seasons, and not just tornado peak seasons. Therefore, with confidence 

we can say that this analysis greatly met the final objective of this study – to clarify varying 

results in the tornado-ENSO relationship.  

4.5 Limitations 

 One of the largest limitations in this study was the tornado database. The increase in 

tornado reports due to technology advancement, urbanization, increased eyewitness reports, and 

increased structures for damage reports have led to a large spike in the overall observational 

record. While this can be remedied with the SPC linear regression method, it is still a fallback for 

analyses conducted as far back as 1950. Lastly, there is a limitation with these types of studies 

due to a scaling problem. Tornadoes are considered mesoscale, whereas ENSO is large-scale and 
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long-term atmospheric process, making it difficult to attribute tornadic frequencies and spatial 

distribution without careful analysis. 

4.6 Future Work 

 There is work that can still be done with the tornado-ENSO relationship utilizing a seven-

classification system instead of the traditional three-classification system. Potential future work 

could determine a way to statistically test the geographic differences between tornado hot spots 

by ENSO phase, instead of qualitatively analyzing the differences. As discussed in Chapter 3, a 

mesoscale analysis on weak versus strong tornadoes is necessary to understand ENSO-related 

influences on tornado intensity in the eastern U.S. Other potential expansions of this analysis 

could include potential for injuries, deaths, and tornado duration dependent upon ENSO intensity 

and phase. Improvement in these types of study could result from a longer study period, 

increasing the sample sizes in the stronger ENSO categories revealing a more detailed hot spot 

analysis for Strong and Moderate El Niño/La Niña. Perhaps most importantly, future research 

could also utilize the seasonal findings of this study through machine-based learning to create a 

functional prediction tool, which has been studied previously but only for spring (LaCorte 2011).  
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APPENDIX 

 

Table A.1. Seasonally binned Strong El Niño years from 1950 through 2014. 

Winter (DJF) Spring (MAM) Summer (JJA) Fall (SON) 

1957-1958   1965 

1972-1973   1972 

1982-1983   1982 

1991-1992   1997 

1997-1998    

 

Table A.2. Seasonally binned Moderate El Niño years from 1950 through 2014. 

Winter (DJF) Spring (MAM) Summer (JJA) Fall (SON) 

1965-1966 1983 1957 1957 

1986-1987 1992 1965 1963 

2009-2010  1972 1987 

  1987 2002 

  1997  

 

Table A.3. Seasonally binned Weak El Niño years from 1950 through 2014. 

Winter (DJF) Spring (MAM) Summer (JJA) Fall (SON) 

1952-1953 1953 1953 1951 

1953-1954 1957 1963 1953 

1958-1959 1958 1982 1958 

1963-1964 1966 1991 1969 

1968-1969 1969 2002 1976 

1969-1970 1987  1977 

1976-1977 1993  1986 

1977-1978 1998  1991 

1979-1980   1994 

1987-1988   2004 

1994-1955   2006 

2002-2003   2009 

2004-2005    

2006-2007    

2014-2015    
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Table A.4. Seasonally binned Neutral years from 1950 through 2014. 

Winter (DJF) Spring (MAM) Summer (JJA) Fall (SON) 

1951-1952 1951 1951 1952 

1956-1957 1952 1952 1956 

1959-1960 1954 1956 1959 

1960-1961 1959 1958 1960 

1961-1962 1960 1959 1961 

1962-1963 1961 1960 1962 

1966-1967 1962 1961 1966 

1978-1979 1963 1962 1967 

1980-1981 1964 1966 1968 

1981-1982 1965 1967 1978 

1983-1984 1967 1968 1979 

1985-1986 1970 1969 1980 

1989-1990 1972 1976 1981 

1990-1991 1973 1977 1985 

1992-1993 1976 1978 1989 

1993-1994 1977 1979 1990 

2001-2002 1978 1980 1992 

2003-2004 1979 1981 1993 

2008-2009 1980 1983 1996 

2012-2013 1981 1984 2001 

2013-2014 1982 1985 2003 

 1984 1986 2005 

 1986 1989 2008 

 1988 1990 2012 

 1990 1992 2013 

 1991 1993 2014 

 1994 1994  

 1995 1995  

 1996 1996  

 1997 2001  

 2001 2003  

 2002 2004  

 2003 2005  

 2004 2006  

 2005 2007  

 2006 2008  

 2007 2009  

 2009 2011  

 2010 2012  

 2012 2013  

 2013 2014  

 2014   

Table A.5. Seasonally binned Weak La Niña years from 1950 through 2014. 
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Winter (DJF) Spring (MAM) Summer (JJA) Fall (SON) 

1950-1951 1955 1950 1950 

1954-1955 1956 1954 1954 

1955-1956 1968 1955 1964 

1964-1965 1971 1964 1970 

1967-1968 1974 1970 1971 

1971-1972 1975 1971 1974 

1974-1975 1985 1973 1983 

1984-1985 1989 1974 1984 

1995-1996 1999 1998 1995 

1996-1997 2000 2000 2000 

2000-2001 2008 2010 2011 

2005-2006 2011   

          2011-2012   

 

Table A.6. Seasonally binned Moderate La Niña years from 1950 through 2014. 

Winter (DJF) Spring (MAM) Summer (JJA) Fall (SON) 

1970-1971 1950 1975 1955 

1975-1976  1988 1975 

1998-1999  1999 1988 

2007-2008   1998 

2010-2011   1999 

   2007 

   2010 

 

Table A.7. Seasonally binned Strong La Niña years from 1950 through 2014. 

Winter (DJF) Spring (MAM) Summer (JJA) Fall (SON) 

1973-1974   1973 

1988-1989    

1999-2000    
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