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ABSTRACT 
 

Barrier islands provide important ecosystem services, including storm protection 

and erosion control to the mainland, habitat for fish and wildlife, and tourism. As a 

result, natural resource managers are concerned with monitoring changes to these 

islands and modeling future states of these environments. Landscape position, such as 

elevation and distance from shore, influences habitat coverage on barrier islands by 

regulating exposure to abiotic factors, including waves, tides, and salt spray. 

Geographers commonly use aerial topographic lidar data for extracting landscape 

position information. However, researchers rarely consider lidar elevation uncertainty 

when using automated processes for extracting elevation-dependent habitats from lidar 

data. Through three case studies on Dauphin Island, Alabama, I highlighted how 

landscape position and treatment of lidar elevation uncertainty can enhance habitat 

mapping and modeling for barrier islands. First, I explored how Monte Carlo simulations 

increased the accuracy of automated extraction of intertidal areas. I found that the 

treatment of lidar elevation uncertainty led to an 80% increase in the areal coverage of 

intertidal wetlands when extracted from automated processes. Next, I extended this 

approach into a habitat mapping framework that integrates several barrier island 

mapping methods. These included the use of landscape position information for 

automated dune extraction and the use of Monte Carlo simulations for the treatment of 

elevation uncertainty for elevation-dependent habitats. I found that the accuracy of dune 

extraction results was enhanced when Monte Carlo simulations and visual interpretation 

were applied. Lastly, I applied machine learning algorithms, including K-nearest 

neighbor, support vector machine, and random forest, to predict habitats using 
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landscape position information extracted from topobathymetric data. I used the habitat 

map to assess the accuracy of the prediction model and I assessed the ability of the 

model to generalize by hindcasting habitats using historical data. The habitat model had 

a deterministic overall accuracy of nearly 70% and a fuzzy overall accuracy of over 

80%. The hindcast model had a deterministic overall accuracy of nearly 80% and the 

fuzzy overall accuracy was over 90%. Collectively, these approaches should allow 

geographers to better use geospatial data for providing critical information to natural 

resource managers for barrier islands. 
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CHAPTER 1. INTRODUCTION 
 

Barrier islands are subaerial expressions consisting of wave-, wind-, and/or tide-

deposited sediments found along portions of coasts on every continent except 

Antarctica (Oertel, 1985; Stutz & Pilkey, 2011). Intertidal wetlands and supratidal/upland 

habitats on barrier islands provide numerous invaluable ecosystem services including 

storm protection and erosion control to the mainland, habitat for fish and wildlife, carbon 

sequestration in marshes, water catchment and purification, recreation, and tourism 

(Barbier et al., 2011; Feagin et al., 2010; Sallenger, 2000). However, barrier islands, 

face an uncertain future, particularly in the latter part of the 21st century. Numerous 

threats including hurricanes, accelerated sea-level rise, oil spills, and anthropogenic 

impacts may negatively influence the future of these islands (Pilkey & Cooper, 2014). 

Furthermore, climate-related threats to barrier islands may increase in the future 

(Hansen et al., 2016; Knutson et al., 2010). Therefore, to promote better management 

decisions, coastal resource managers require habitat mapping and models for insights 

with regard to how these islands are changing over time. This need can be filled by 

using geographic information science and remote sensing for monitoring the dynamic 

nature of barrier islands and modeling for predicting the future state of these 

ecosystems (Foster et al., 2017; Gutierrez, Plant, Thieler, & Tureck, 2015; Kindinger, 

Buster, Flocks, Bernier, & Kulp, 2013; Lucas & Carter, 2010; Passeri, Long, Plant, 

Bilskie, & Hagen, 2018).  

Elevation data acquired via airborne topographic light detecting and ranging 

(lidar) sensors, are widely used in barrier island mapping and geomorphology studies 

(Brock, Krabill, & Sallenger, 2004; Foster et al., 2017; Gutierrez et al., 2015; McCarthy 
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& Halls, 2014). Due to their low-slope, barrier islands often contain a large amount of 

intertidal wetlands (Leatherman, 1979). While lidar technology has led to advancements 

in coastal wetland habitat mapping methodologies (Klemas, 2013), lidar vertical error 

often presents unique challenge for geospatial data applications in these low-relief 

environments. The level of uncertainty from data collected with conventional aerial 

topographic lidar systems is considerable within intertidal areas and can be as high as 

60 cm in densely vegetated emergent wetlands (Buffington, Dugger, Thorne, & 

Takekawa, 2016; Medeiros, Hagen, Weishampel, & Angelo, 2015). Due to the lack of 

detailed error information, the uncertainty of lidar-based digital elevation models (DEMs) 

is often left unaddressed for habitat mapping efforts, yet the level of uncertainty 

becomes critical when studying low-relief environments, such as barrier islands, where 

centimeters can make a difference in the exposure to physically demanding abiotic 

conditions (e.g., inundation, salt spray, wave energy) (Anderson, Carter, & Funderbunk, 

2016; Young, Brantley, Zinnert, & Vick, 2011). Advancements in sensor technology, 

such as single photon and Geiger-mode lidar sensors (Stoker, Abdullah, Nayegandhi, & 

Winehouse, 2016) and unmanned aerial system (UAS) lidar data collection (Jaakkola et 

al., 2010; Lin, Hyyppä, & Jaakkola, 2011), should lead to a greater frequency of high-

quality elevation data for use by scientists and natural resource managers. As more and 

more data become available, one question that may arise for scientists is how to best 

leverage these data to produce automated inventories of elevation-dependent habitats 

in dynamic coastal environments to aid monitoring efforts. The first objective of this 

dissertation, covered in the second chapter, was to assess the impact of elevation 
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uncertainty on the delineation of intertidal habitats on barrier islands. This research was 

published in an article in Remote Sensing. 

Maps of barrier island habitats provide natural resource managers with 

information needed to understand how habitats, such as beaches, intertidal flats, 

marshes, coastal dunes, and maritime forests, are changing over time (Kindinger et al., 

2013; Lucas & Carter, 2010; Zinnert et al., 2016). As previously mentioned, with the 

increased availability of high-resolution lidar data, many researchers are utilizing 

elevation information along with aerial orthophotography for habitat mapping efforts 

specific to barrier islands (Chust, Galparsoro, Borja, Franco, & Uriate, 2008; Hantson, 

Kooistra, & Slim, 2012; Lucas & Carter, 2013; McCarthy & Halls, 2014). High-resolution 

elevation data can provide information about absolute elevation, but also relative 

topography, which has been shown to be helpful for delineating dune habitat (Wernette, 

Houser, & Bishop, 2016). The second objective of this dissertation, covered in the third 

chapter, was to develop a barrier island habitat mapping approach that incorporates 

elevation uncertainty information and relative topography from high-resolution lidar data.  

Researchers have shown that barrier island habitats are related to barrier island 

morphology (Anderson et al., 2016; Foster et al., 2017; Young et al., 2011), yet models 

specific to barrier island habitats have rarely been developed. The relatively new field of 

machine learning includes efficient and powerful algorithms, such as K-nearest 

neighbor, support vector machine, and random forest (James, Witten, Hastie, & 

Tibshirani, 2013). Unlike classic data models, these flexible algorithms provide 

prediction tools that are free from assumptions related to the distribution of data 

(Breiman, 2001). The third objective of this dissertation, covered in the fourth chapter, 
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was to build on prior research with regard to linkages between barrier island 

morphology and habitat to assess how well machine learning algorithms can predict 

barrier island habitats using landscape position information (e.g., elevation and distance 

from the shoreline).  

Due to the importance of barrier islands and the many ecosystem goods and 

services they provide, barrier island research often has a critical link to natural resource 

management. Finally, the fifth chapter concludes this dissertation with a summary of 

chapters two through four along with the implications of this research. 
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CHAPTER 2. THE IMPACT OF LIDAR ELEVATION UNCERTAINTY ON 
MAPPING INTERTIDAL HABITATS ON BARRIER ISLANDS  

 
2.1. Introduction 
 

Barrier islands are subaerial expressions consisting of wave-, wind-, and/or tide-

deposited sediments found along portions of coasts on every continent except 

Antarctica (Oertel, 1985; Stutz & Pilkey, 2007). Due to their position along the land-sea 

interface, barrier islands often experience rapid episodic impacts related to storms as 

well as gradual changes related to anthropogenic activity, tides, and currents. Thus, 

natural resource managers are concerned with monitoring the extent and condition of 

these important coastal environments over time (Carruthers et al., 2013). Remote 

sensing provides an important tool for monitoring the dynamic nature of barrier island 

systems (Kindinger et al., 2013; Lucas & Carter, 2010). 

Barrier islands provide numerous ecosystem services, including storm protection 

and erosion control to the mainland, habitat for fish and wildlife, salinity regulation in 

estuaries, carbon sequestration in marshes, water catchment and purification, 

recreation, and tourism (Barbier et al., 2011). Intertidal wetlands, which make up a 

substantial proportion of area on barrier islands, include areas that are regularly 

exposed to saline waters via high tides and areas that are periodically exposed to saline 

waters via extreme spring tides (Cowardin et al., 1979). Though difficult to value, these 

wetlands support ecosystem goods and services that are estimated to be worth U.S. 

$194,000 per hectare per year (Constanza et al., 2014). In addition to providing fish and 

                                            
This chapter, previously published as “Enwright, N. M., Wang, L., Borchert, S. M., Day, 
R. H., Feher, L. C., & Osland, M. J. (2018). The Impact of Lidar Elevation Uncertainty on 
Mapping Intertidal Habitats on Barrier Islands. Remote Sensing, 10, 5.”  
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wildlife habitat, tidal wetlands can improve water quality, ameliorate flooding impacts, 

support coastal food webs, and protect coastlines (Barbier et al., 2011). Detailed 

wetland habitat mapping, such as the maps produced via the U.S. Fish and Wildlife 

National Wetlands Inventory Program, have commonly been developed using 

approaches that rely heavily on expert manual photointerpretation (Madden et al., 1999) 

and sometimes use elevation data as a guide (Maxa & Bolstad, 2009). Elevation 

information has also been combined with aerial photography for several habitat 

mapping efforts specific to barrier islands (Chust et al., 2008; McCarthy & Halls, 2014; 

Zinnert et al., 2016). For example, McCarthy and Halls (2014) mapped barrier island 

habitats in North Carolina and used elevation data to delineate habitats based on tidal 

regimes (e.g., intertidal and supratidal). 

While lidar technology has led to advancements in coastal wetland habitat 

mapping methodologies (Klemas, 2013), lidar vertical errors can often present unique 

challenges for lidar applications in these low-slope environments. Lidar vertical error 

commonly varies by land cover type (Hodgson & Bresnahan, 2004), and vegetation 

cover has been found to be one of the greatest sources of error in lidar data (Su & Bork, 

2006). The level of uncertainty from data collected with conventional aerial linear lidar 

systems is considerable within intertidal areas and can be as high as 60 cm in densely 

vegetated emergent wetlands (Buffington et al., 2016; Medeiros et al., 2015). 

Researchers have grappled with the challenges related to gauging the vertical error of 

lidar in intertidal areas and developing approaches to deal with these issues. These 

approaches have ranged from simple techniques, such as using a minimum bin 

approach (Schmid et al., 2011), to more complex regression-based corrections that 
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relate biomass estimation to the relative accuracy of digital elevation models (DEMs) 

estimated from Real-Time Kinematic Global Position System (RTK GPS) observations 

(Buffington et al., 2016; Medeiros et al., 2015). Due to the lack of detailed error 

information, the uncertainty of DEMs is often left unaddressed for habitat mapping 

efforts, yet the level of uncertainty becomes critical when studying low-relief 

environments where centimeters can make a difference in the exposure to physically 

demanding abiotic conditions (e.g., inundation, salt spray, wave energy) (Anderson et 

al., 2016; Young et al., 2011). In the near future, advancements in lidar technology, 

such as single photon and Geiger-mode lidar sensors (Stoker et al., 2016) and 

unmanned aerial system (UAS) lidar data collection (Jaakkola et al., 2010; Lin et al., 

2011), should lead to higher frequency of high-quality elevation data for use by 

scientists and natural resource managers. As more and more data become available, 

one question that may arise for scientists is how to best leverage these data to produce 

automated inventories of elevation-dependent habitats in coastal environments for 

detailed monitoring of habitat changes over time. 

One classic approach for dealing with vertical error in DEMs is through the use of 

Monte Carlo simulations (Hunter & Goodchild, 1995; Wechsler & Kroll, 2006). For 

example, one simple application of Monte Carlo simulations is to propagate error and 

determine the probability that the elevation is below a specific threshold for a set of 

iterations. This approach has become a popular way to incorporate vertical uncertainty 

in sea-level rise modeling applications (Cooper, Fletcher, Chen, & Barbee, 2013; Leon 

et al., 2014). Liu et al. (2007) used Monte Carlo simulations and error reported from 

lidar metadata to delineate the mean high water shoreline on the Bolivar Peninsula in 
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Texas, USA. Our work builds on this approach to extend the automated delineation to 

the full intertidal zone. In doing so, it is important to be sure that the error estimate 

incorporates vegetated land cover types and represents the 95th percentile error, since 

error commonly deviates from a normal distribution in vegetated land cover types 

(American Society for Photogrammetry and Remote Sensing, 2015). Furthermore, the 

utilization of a bias constraint in the Monte Carlo analyses (Weschler & Kroll, 2006) 

becomes critical as the intertidal boundary often extends into densely vegetated areas, 

which tend to lead to overestimation of elevation. 

The primary objective of this study was to apply a simple approach to enhance 

results of automated intertidal area mapping using lidar data. I used tide gauge 

information, site-specific RTK GPS data, and information from a detailed relative 

accuracy report (i.e., lidar metadata) that followed the American Society of 

Photogrammetry and Remote Sensing’s (ASPRS) standards (American Society for 

Photogrammetry and Remote Sensing, 2015) to simulate the propagation of elevation 

uncertainty into a lidar-based DEM using Monte Carlo simulations. I compared three 

different elevation error treatments, which included leaving error untreated and 

treatments that used Monte Carlo simulations to incorporate elevation vertical 

uncertainty using general information from lidar metadata and site-specific RTK GPS 

data, respectively. For each of the error treatments, I assessed the effect of error 

handling on automated delineation of low-lying lands (i.e., low-lying lands below the 

extreme high water spring (EHWS) tidal datum) and the delineation of the intertidal 

wetlands (Figure 2.1). In some cases, the collection of site-specific RTK GPS data may 

not be feasible and detailed metadata information with a relative elevation accuracy 
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assessment specific to vegetated low-lying land cover types may not be available. In 

these instances, researchers may opt to use information identified in literature from 

similar environments, specifically with regard to vegetation community. To aid 

researchers facing this predicament, I conducted a sensitivity test to explore how 

estimates of low-lying areas could be influenced by changes to error and bias. In this 

study, I investigated the following research questions: (1) How does extraction of low-

lying lands compare for the three elevation error treatments in terms of areal coverage 

and accuracy?; (2) How does the extraction of intertidal wetlands compare for the three 

elevation error treatments in terms of areal coverage?; (3) How sensitive are error and 

bias parameters for the identification of low-lying lands?  

 
Figure 2.1. General overview of the study analyses. (a) Comparison of area with low-
lying lands (i.e., elevation greater than or equal to the extreme high water spring tide 
level) and intertidal area using estimates from the three elevation error treatments. (b) 
Sensitivity analysis to assess how alternative error and bias values influence the 
identification of low-lying lands. 
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2.2. Methodology 
 
2.2.1. Study Area 
 

Dauphin Island (Alabama, USA) is a barrier island with a length of about 25 km, 

from about −88.34° to −88.07° longitude. At the widest point, the island extends from 

about 30.28° to 30.23° latitude (Figure 2.2). In December of 2015, the island had a 

subaerial area of about 13.6 km2 (Enwright et al., 2017). The barrier island comprises a 

portion of a 105-km long Mississippi–Alabama wave-dominated barrier island chain that 

is backed by the shallow (<4-m depth) Mississippi Sound (Otvos & Carter, 2008). A tide 

gauge, first established in 1966 and operated by the National Oceanic and Atmospheric 

Administration (NOAA) (station ID: 8735180), is located on the eastern side of the island 

(Figure 2.2). The island is a microtidal environment, and experiences diurnal tides with a 

mean range of tide of about 0.36 m (i.e., height difference between mean low water and 

mean high water tidal datums), based on observations from the NOAA tide gauge on 

the island during the most recent North American Tidal Datum Epoch (NTDE; 1983 to 

2001). The maximum observed water level at this gauge was about 2.01 m above mean 

sea level, which occurred during Hurricane Katrina in 2005. Numerous impacts from 

hurricanes have been documented on Dauphin Island with the most recent impacts 

occurring during Hurricane Katrina (Morton, 2008). 
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Figure 2.2. Study area and the location of the tide gauge. Basemap source data is 0.3-
m color-infrared orthoimagery acquired in 2015 by Digital Aerial Solutions, LLC (DAS; 
Riverview, FL, USA) and the U.S. Geological Survey (USGS). 
 
2.2.2. Elevation Data 
 

I used aerial topographic linear lidar acquired during January 2015 by Digital 

Aerial Solutions, LLC (DAS; Riverview, FL, USA) and the U.S. Geological Survey 

(USGS). The lidar data were collected with the Leica ALS70 and ALS80 sensors. This 

data collection occurred over an extensive area (5,400 km2) that included barrier islands 

in Alabama, Mississippi, and part of Louisiana. The acquisition area included 184 

survey lines and 21 control lines positioned to have a nominal side overlap of 30%. 

These data were collected at an altitude of about 1,800 m and a ground speed of 155 

knots. The laser rate was 132 kHz and the scan rate was 66.2 Hz. Airborne and ground 

GPS observations were collected at a frequency of 2 Hz and inertial measurement unit 

observations were collected at 200 Hz. These data were collected with a nominal pulse 

density of about 6 points per m2 and adhered to the USGS quality level 2 standards 

(Heidemann, 2014). A 1-m DEM, which was used for this effort, was developed to 

support the USGS 3D Elevation Program (3DEP) (Sugarbaker et al., 2014) by DAS and 

the USGS. See Heidemann (2014) for information on USGS standards for lidar 
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acquisition and Arundel et al. (2015) for information on 1-m DEM development. The 

vertical datum of the data was the North American Vertical Datum of 1988 (NAVD88) 

GEOID 12a. 

2.2.3. Tide and Water Level Data 
 

I used tidal datum data from the NOAA Dauphin Island tide gauge (Figure 2.2). 

For this gauge, the mean sea level (MSL) was estimated to be 0.018 m higher than 

NAVD88 for the observations during the most recent NTDE. I transformed the vertical 

datum of the DEMs to MSL by adding this relative height difference to the DEM. Esri 

ArcMap 10.4.1 (Redlands, CA, USA) was used for all spatial analyses.  

Intertidal wetlands fall above the extreme low water spring and below the EHWS 

tidal datums (Cowardin et al., 1979). I defined EHWS as the highest astronomical tide 

predicted for the Dauphin Island tide gauge (0.448 m relative to MSL), which is the 

highest predicted water level under astronomical conditions alone during the most 

recent NTDE. 

2.2.4. Field Data Collection 
 

I collected field data over two and a half weeks in November and December of 

2015. Elevation data were collected using a high-precision RTK GPS connected to a 

Global Navigation Satellite System (GNSS) (Trimble R10 and TSC3, Trimble, 

Sunnyvale, CA, USA), coupled with the Continuously Operating Reference Station 

(CORS) network for Mississippi and Alabama (University of Southern Mississippi’s 

network and Alabama Department of Transportation’s CORS, respectively). The 

estimated precision from RTK GPS observations was about ±0.04 m (mean = 0.039, 

median = 0.037, interquartile range = 0.021). The habitat type was observed for each 
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elevation observation. These observations were collected via cluster sampling to 

support a habitat mapping effort (Enwright et al., 2017). Site accessibility related to 

private land was one of the main factors in the spatial distribution of the points. For 

more information on field data collection, see Enwright et al. (2017). 

For this study, I created two subsets from the RTK GPS points. The first subset 

was used to conduct a relative accuracy assessment between the site-specific RTK 

GPS points and the 1-m DEM. A total of 62 points were collected in three different 

habitats which included intertidal flat (n = 7; Figure 2.3a), intertidal emergent marsh (n = 

29; Figure 2.3b), and meadow (n = 26; Figure 2.3c). Meadows are supratidal areas with 

emergent herbaceous vegetation similar to wetlands found on the backslopes of the 

back-barrier. The second subset of the RTK GPS points was used to validate the results 

for identifying low-lying lands. I used datum information from the NOAA Dauphin Island 

tide gauge to transform the RTK GPS elevations to MSL. I restricted the subset to 

include points from any habitat that were below the elevation of 0.936 m (i.e., double the 

elevation of EHWS + 0.04 m; n = 86). A binary variable was created for these 

observations for which points with an elevation that was less than or equal to 0.488 m 

(EHWS + 0.04 m) were coded to “1” (n = 48) and those with an elevation greater than 

0.488 m were coded to “0” (n = 38). 
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(a) (b) (c) 
Figure 2.3. Examples of habitat types where data were collected for the relative 
accuracy assessment of the 1-m digital elevation model (DEM). (a) Intertidal flat. (b) 
Intertidal marsh. (c) Meadow. 
 
2.2.5. Error and Bias 
 

Propagation of lidar data vertical uncertainty by using Monte Carlo simulations 

requires an estimate of lidar DEM error and, if relevant, bias. I developed two different 

relative vertical error and bias estimates by comparing elevation collected via RTK GPS 

with the 1-m lidar DEM. The site-specific RTK GPS sample (n = 62) was right-skewed 

(i.e., skewness = 0.545) with a 95th percentile value of 0.415 m and a positive bias for 

76% of the observations (Table 2.1). Based on the RTK GPS precision analyses, I 

assumed that points that were within ±0.04 m were not different for determining the 

percentage of observations with a positive bias (the DEM observation is higher than 

RTK GPS observation). Note, the bias identified in this study was similar to the bias 

found in a similar study in coastal wetlands by Buffington et al. (2016). The second error 

and bias estimate was based on information reported in the metadata for the lidar DEM 

product. These data came from RTK GPS observations throughout the extensive lidar 

acquisition extent from areas classified as either open, nonvegetated terrain, tall weed, 

brush land, forest, or urban. To make this analysis comparable to the site-specific 

analysis, I only used points from the open, nonvegetated terrain (n = 22) and tall weed 

(n = 18) classes that fell below 1 m relative to NAVD88. The pooled sample (n = 40) 
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was right-skewed (i.e., skewness = 0.959) with a 95th percentile value of 0.326 m and a 

positive bias for 54% of the observations (Table 2.1). For both vertical error 

assessments, the bias for nonvegetated and vegetated areas were combined to 

develop a simple average bias value which was rounded to nearest integer. SigmaPlot 

12.5 (Systat Software, Inc., San Jose, CA, USA) was used for all nonspatial statistical 

analyses in this study, unless otherwise noted. 

Table 2.1. Relative error accuracy assessment between the 1-m DEM and the Real-
Time Kinematic Global Position System (RTK GPS) observations. 

Measure Site-specific RTK GPS data Lidar metadata 

Positive bias (%) Nonvegetated (n = 7): 57.1 Nonvegetated (n = 22): 36.3 

Vegetated (n = 55): 94.5 Vegetated (n = 18): 72.2 

Average (n = 62): 76.0 Average (n = 40): 54.0 

Skewness 0.545 0.959 

95th percentile error (m) 0.415 0.326 

 
2.2.6. Monte Carlo DEM Error Propagation 
 

Monte Carlo analyses provide an efficient way to simulate the propagation of 

vertical error into DEMs for coastal applications involving tidal datums and sea-level rise 

(Cooper & Chen, 2013). In this study, error propagation followed an approach similar to 

that of Cooper and Chen (2013), with the addition of enhancements such as a 

neighborhood spatial autocorrelation filter and bias constraint used by Wechsler and 

Kroll (2006).  

Figure 2.4 shows a general overview of the Monte Carlo simulation process used 

in this study. The first step in the error propagation was the development of a random 

field. In our case, I used a raster with a normal distribution with a mean of 0 and a 

standard deviation of 0.5. I forced the bias to be either positive or negative for each 

random field, collectively based on the proportional positive bias identified in the relative 

elevation analyses (Table 2.1). Next, a local filter (a 3-by-3-pixel neighborhood) was 
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used to incorporate spatial autocorrelation into the simulated random fields (Wechsler & 

Kroll, 2006). The filtered raster was multiplied by the 95th percentile error (Table 2.1) 

and added to the original DEM. The use of the 95th percentile error is recommended by 

the ASPRS when dealing with vertical error for areas that include vegetated areas 

(American Society for Photogrammetry and Remote Sensing, 2015). The result of 

adding the product of the 95th percentile error and the random field to the DEM is the 

simulation of the propagation of error into the DEM. For each iteration, pixels less than 

or equal to EHWS were coded as a binary variable as being true (“1”) or false (“0”). 

These steps were repeated for 500 iterations. The binary rasters were summed, and the 

probability of a pixel being less than or equal to EHWS was determined by dividing the 

sum by the iteration count (n = 500).  

I developed a presence-absence raster from the probability surface by coding 

pixels with a probability of greater than 0.5 to be “1” (presence) or “0” (absence) 

otherwise. This raster identified areas considered to be low-lying lands with an elevation 

less than or equal to EHWS. This low-lying lands raster includes some isolated low-lying 

areas that are not influenced by tides (Figure 2.1). I applied a connectivity constraint to 

this raster to create a presence-absence raster for intertidal areas. Specifically, I used 

the 8-side rule which includes cardinal and diagonal directions (Poulter & Halpin 2008) 

to remove isolated low-lying areas and retain only interconnected cells that receive tidal 

influence (Figure 2.4; for example, see Enwright et al. (2016) (p. 310)).  

I repeated the steps above to develop a probability raster, presence-absence 

raster for low-lying lands, and a presence-absence raster for intertidal areas for the 

DEM using both error treatments (Table 2.1). I also created presence-absence rasters 
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for low-lying lands and intertidal areas for the untreated DEM. Our analyses were limited 

to the landward boundary of the intertidal zone (i.e., above MSL) since the airborne 

topographic lidar data I used did not include bathymetric data. 

 
Figure 2.4. An overview of the Monte Carlo error propagation process for estimating the 
probability of pixels being considered low-lying lands (i.e., elevation ≤ extreme high 
water spring), the presence-absence raster for pixels likely to be low-lying lands, and 
the presence-absence raster for pixels likely to be intertidal areas. DEM: Digital 
elevation model; EHWS: Extreme high water spring; PA: Presence-absence raster. 
 
2.2.7. Data Analyses 
 

I compared the areal coverage of low-lying lands for the uncorrected DEM and 

for both error treatments. I also used the site-specific RTK GPS observations described 

in Section 2.2.4 as validation data to assess the performance of each DEM error 

treatment for identifying low-lying lands (Figure 2.5). For each treatment, I calculated 

the producer’s accuracy (omission errors) and user’s accuracy (commission errors) of 
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each presence-absence raster for low-lying lands. This accuracy assessment generally 

adhered to guidelines suggested by Congalton and Green (2009).  

 
Figure 2.5. Validation points for assessing the presence-absence rasters for low-lying 
lands (a–e). Basemap source data is 0.3-m color-infrared orthoimagery acquired in 
2015 by the DAS and the USGS.  
 

I compared the areal coverage of intertidal areas delineated from each error 

treatment for the entire island. I conducted a more detailed comparison for a few 

specific areas of interest (AOI) with abundant intertidal areas. For each AOI, I calculated 

the percent of the AOI that is intertidal for each treatment. 

In some cases, the collection of site-specific RTK GPS data may not be feasible 

and detailed metadata information with a relative elevation accuracy assessment 

specific to vegetated low-lying land cover types may not be available. In these 
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instances, researchers may opt to use information identified in literature from similar 

environments, specifically with regard to vegetation community. To aid researchers 

facing this predicament, I conducted a sensitivity analysis to explore how estimates of 

low-lying areas could be influenced by changes to error and bias. I ran the Monte Carlo 

error propagation for a suite of alternative error and bias values. I used the error 

treatment based on site-specific RTK GPS data as the baseline.  

In total, I tested nine different alternative positive bias values (Table 2.2) and 

eight different error values (Table 2.3). To reduce the number of combinations, I held 

the bias constant (76%) while modifying error values and used a constant error of 0.415 

m for bias modifications. I calculated the Kappa statistic (Cohen, 1960) to assess the 

agreement between each sensitivity scenario and the baseline scenario for identifying 

low-lying lands. Thus, the results of the sensitivity analysis show how minor adjustments 

to the error and bias affect the results of delineating low-lying lands. Ultimately, by 

gauging the similarity of results of minor error or bias adjustments, I aim to provide 

researchers with information for gauging whether it would be reasonable to use 

literature-derived error and bias values for similar environments.  

Table 2.2. Positive bias values used in the sensitivity analysis. 

Positive bias (%) 

50 
55 
60 
65 
70 
76a 
80 
85 
90 
95 

aBaseline positive bias value. 



 

20 
 

Table 2.3. Error values used in the sensitivity analysis. 

Error (m) 

0.250 
0.300 
0.350 
0.375 
0.395 
0.415a 
0.435 
0.450 
0.500 

aBaseline error value. 
 

2.3. Results 
 
2.3.1. Identification of Low-Lying Lands 
  

The areal coverage of low-lying lands identified from the DEM varied by error 

treatment (Table 2.4). The range for the coverage of these lands extracted from the 

DEMs was 1.3 km2. The untreated DEM resulted in the least amount of low-lying lands 

with an areal coverage of about 1.8 km2, whereas the DEM with error treatment using 

site-specific RTK GPS data resulted in the most low-lying lands with an areal coverage 

of about 3.1 km2.  

In terms of validation, the range of both producer’s accuracy and user’s accuracy 

was nearly 30% (Table 2.4). Similar to areal coverage, there was a positive relationship 

between producer’s accuracy and the sophistication of error treatment. The untreated 

DEM had a producer’s accuracy of about 60% and the DEM with error propagation 

using site-specific RTK GPS data had a producer’s accuracy of nearly 88%.  

In contrast, a negative relationship was found between user’s accuracy and 

sophistication of error treatment. The untreated DEM had a user’s accuracy of about 



 

21 
 

96% and the DEM with error propagation using site-specific RTK GPS data had an 

accuracy of about 69%. 

Table 2.4. Areal coverage, producer’s accuracy, and user’s accuracy for low-lying lands 
for each error treatment. 

Error treatment 
Area of low-lying 
lands (km2) 

Producer’s 
accuracy 
(%) 

User’s 
accuracy 
(%) 

Untreated 1.8 60.4 96.4 
Information from lidar metadata 2.5 79.2 84.4 
Site-specific RTK GPS data 3.1 87.5 68.9 

 
2.3.2. Intertidal Wetlands 
 

The overall trend in areal coverage of intertidal wetlands delineated for each 

treatment (Table 2.5) was consistent with the results of low-lying lands (Table 2.4). The 

range of intertidal area delineated from the DEMs was 1.3 km2. The percent change in 

the coverage of intertidal areas from the untreated DEM increased by about 44% when 

intertidal areas were delineated using DEM with error treatment using information from 

metadata (i.e., increase from 1.6 km2 to 2.3 km2). This figure increased to 81% when 

intertidal areas were delineated using DEM with error treatment using site-specific RTK 

GPS data (i.e., increase from 1.6 km2 to 2.9 km2). 

Table 2.5. Areal coverage of intertidal areas delineated for each error treatment. 

Error treatment Intertidal area (km2) 

Untreated 1.6 
Information from lidar metadata 2.3 
Site-specific RTK GPS data 2.9 

 
Figures 2.6–2.8 show the extent of the intertidal area delineated for each error 

treatment for three different AOIs. Figure 2.6 includes back-barrier wetlands on the 

western tip of Dauphin Island. The percent of the AOI that contained intertidal areas 

increased by 190% when these areas were delineated using the DEM with error 

treatment using information from the lidar metadata. This figure increased to about 
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373% when intertidal areas were delineated using the DEM with error treatment using 

site-specific data. Figure 2.7 highlights an area with back-barrier wetlands near the 

island breach that occurred during Hurricane Katrina (named “Katrina Cut”). The 

percentage of the AOI that contained intertidal areas increased by 150% when these 

areas were delineated using the DEM with error treatment using information from the 

lidar metadata. This figure increased to about 294% when intertidal areas were 

delineated using the DEM with error treatment using site-specific RTK GPS data. Figure 

2.8 includes intertidal marsh near Graveline Bay. Here, the differences amongst the 

three error treatments were much less pronounced; the difference between percent of 

the AOI that contained intertidal wetlands was ±10% for all three treatments. 
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Figure 2.6. Comparison of intertidal area delineated for each error treatment for back-
barrier wetlands located near the western tip of Dauphin Island. (a) Color-infrared 
orthoimagery for the AOI. Imagery is 0.3-m color-infrared acquired in 2015 by DAS and 
the USGS. (b) Intertidal area delineated with each DEM within the AOI. To visualize the 
full extent of a given treatment it is necessary to consider areas with less sophisticated 
treatment(s) (e.g., include the extent of all treatments for visualizing the extent of the 
treatment with site-specific RTK GPS data). The percentage of total area within the AOI 
below delineated as intertidal (rounded to nearest percent) is shown graphically below 
the map. The location of the AOI is depicted on a generalized overview map of Dauphin 
Island (Enwright et al., 2017). AOI: Area of interest; RTK GPS: Real-Time Kinematic 
Global Position System. 

 
 
 



 

24 
 

 

 

Figure 2.7. Comparison of intertidal area delineated for each error treatment for back-
barrier wetlands located east of Katrina Cut. (a) Color-infrared orthoimagery for the AOI. 
Imagery is 0.3-m color-infrared acquired in 2015 by DAS and the USGS. (b) Intertidal 
area delineated with each DEM within the AOI. To visualize the full extent of a given 
treatment it is necessary to consider areas with less sophisticated treatment(s) (e.g., 
include the extent of all treatments for visualizing the extent of the treatment with site-
specific RTK GPS data). The percentage of total area within the AOI delineated as 
intertidal (rounded to nearest percent) is shown graphically below the map. The location 
of the AOI is depicted on a generalized overview map of Dauphin Island (Enwright et al., 
2017). AOI: Area of interest; RTK GPS: Real-Time Kinematic Global Position System. 
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Figure 2.8. Comparison of intertidal area delineated for each error treatment for back-
barrier wetlands located near Graveline Bay. (a) Color-infrared orthoimagery for the 
AOI. Imagery is 0.3-m color-infrared acquired in 2015 by DAS and the USGS. (b) 
Intertidal area delineated with each DEM within the AOI. To visualize the full extent of a 
given treatment it is necessary to consider areas with less sophisticated treatment(s) 
(e.g., include the extent of all treatments for visualizing the extent of the treatment with 
site-specific RTK GPS data). The percentage of total area within the AOI delineated as 
intertidal (rounded to nearest percent) is shown graphically below the map. The location 
of the AOI is depicted on a generalized overview map of Dauphin Island (Enwright et al., 
2017). AOI: Area of interest; RTK GPS: Real-Time Kinematic Global Position System. 
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2.3.3. Sensitivity Analysis 
 

Figure 2.9 shows the results from the sensitivity analysis. Overall, adjustments to 

the error (Figure 2.9a) had a greater effect on the agreement of results with the baseline 

than adjustments to positive bias (Figure 2.9b). Scenarios had a Kappa of 0.85 with 

error values that ranged from 0.375 m to 0.450 m (baseline error = 0.415 m), whereas 

scenarios had a Kappa of 0.85 for positive bias that ranged from 60% to 95% (baseline 

positive bias = 76%). Results produced using a 50% positive bias (DEM overestimates 

elevation only 50% of the time) were very different from the baseline (Kappa = 0.25). 

 
Figure 2.9. Plots of the sensitivity analysis results. (a) Agreement between the baseline 
scenario and scenarios with alternative error values with a fixed positive bias (76%). (b) 
Agreement between the baseline scenario and scenarios with alternative positive bias 
values with a fixed error (0.415 m). 
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2.4. Discussion 
 

In this study, I applied a simple probabilistic approach to more accurately use 

lidar data in coastal settings for delineation of the landward intertidal boundary. Our 

results confirmed findings of others, which suggest that lidar DEMs can have a 

substantial level of vertical uncertainty in intertidal areas (Buffington et al., 2016; 

Medeiros et al., 2015; Schmid et al., 2011), and this uncertainty should be accounted for 

if data are directly used in classification algorithms for habitat mapping or for use in sea-

level rise modeling efforts (Alizad et al., 2016; Schile et al., 2014). Our findings 

highlighted that optimal results with regard to the maximum identification of actual 

intertidal areas (i.e., highest producer’s accuracy) are likely produced when site-specific 

RTK GPS data are used. Due to the overall importance and the dynamic nature of 

intertidal ecosystems, a natural resource manager may prefer an approach that better 

ensures all intertidal areas are captured even if the methodology used may include 

some level of reasonable overestimation rather than underestimation. In the absence of 

site-specific data, using information from the lidar metadata to parameterize error and 

bias should provide better results than maps produced with error left untreated. With a 

lower vertical error estimate, the Monte Carlo analyses with information from the lidar 

metadata provided relatively balanced results with regard to producer’s accuracy and 

user’s accuracy. This was likely due to the moderate error and lower bias compared to 

the site-specific error and bias. Ultimately, the decision on how a researcher balances 

omission error (producer’s accuracy) or commission error (user’s accuracy) should be 

based on their research questions and mapping objectives.  
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By using connectivity constraints, I extended the Monte Carlo analyses to map 

areas likely to be intertidal wetlands. The impact of error treatments was explored for 

the entire island and for three different AOIs (Figures 2.6–2.8). While the untreated 

DEM was more suitable for the intertidal marsh application near Graveline Bay (Figure 

2.8), the differences were more magnified for other back-barrier marshes (Figures 2.6 

and 2.7). The similarity of the treatments for the marsh near Graveline Bay is likely the 

result of a lower overall elevation of the marsh platform in that area, but differences in 

vegetation community can also be a factor that affects localized lidar error, for example 

(Buffington et al., 2016). Clearly, a map of intertidal areas developed from untreated 

DEM would result in a gross underestimation of intertidal wetlands similar to results 

from other researchers (Buffington et al., 2016; Kidwell et al., 2017). However, both 

maps with treatment of error could provide reasonable intertidal wetland estimates 

based on lidar data alone or as an initial step that could be refined via minor manual 

photointerpretation. In other words, these maps can serve as a stand-alone inventory of 

area falling within the intertidal zone similar to the work of Liu et al. (2007) or be used to 

as a foundation to develop a detailed habitat map (Enwright et al., 2017). 

The decision regarding use of site-specific RTK GPS data or information from the 

lidar metadata should be driven by project budget and research questions. In some 

cases, the lidar metadata may not provide sufficient information to assess the 95th 

percentile error for vegetated areas and estimate the bias. Under these circumstances, 

error treatment may only be feasible using error and bias values identified from 

literature that include analyses of lidar datasets with similar acquisition characteristics 

(e.g., point spacing) and vegetation community. I conducted a sensitivity analysis to 
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provide insights on how results produced with minor adjustments to either error or bias 

compare to the results produced with site-specific RTK GPS data. Our results suggest 

selection of an appropriate error value may be more critical than bias; however, it 

seems important to have a bias value that is higher than 50% for study areas with 

vegetated areas. If it is necessary to rely on literature for error and bias values, then a 

thorough visual inspection of the results may be warranted to ensure parameters are 

producing reasonable results for the particular study area. 

Due to the local scale of our study, I was able to transform vertical datum of the 

DEM from an orthometric datum to a locally relevant tidal datum using a tide gauge on 

the island. However, studies that cover a larger spatial extent may need to use a vertical 

datum transformation software, such as NOAA VDatum (Parker, 2003) to transform 

orthometric datums to locally relevant tidal datums. This step can lead to additional 

vertical uncertainty, and if quantified for the transformation model, this uncertainty can 

be combined with the source data uncertainty and incorporated into the Monte Carlo 

simulations (Cooper et al., 2013). 

A byproduct of delineating the upper intertidal boundary is information on the 

extent and areal coverage of supratidal habitat. On barrier islands, supratidal areas 

include habitats such as beach, dune, and barrier flat (i.e., meadow, nonvegetated 

barrier flat, and forest). Monitoring these supratidal areas is equally important to 

resource managers (Lucas & Carter, 2010) because these areas provide important 

habitat for resident and migratory shorebirds (Galbraith, DesRochers, Brown, & Reed, 

2014), neotropical migrants (Lester, Ramierez, Kneidel, & Heckscher, 2016), and sea 

turtles (Katselidis, Stamou, Dimopoulos, & Pantis, 2014). Besides providing habitat for 
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wildlife, dunes deliver erosion control for shorelines (Plant, Thieler, & Passeri, 2016). 

Dune crest elevation plays a critical role in the level of this protective capacity, and thus, 

in determining coastal vulnerability (Plant et al., 2016; Sallenger, 2000; Stockdon, 

Doran, Thompson, Sopkin, & Sallenger, 2012). A Monte Carlo process similar to the 

one used in this study can be applied to determine areas with elevation that is greater 

than a typical extreme water level associated with storms using site-specific RTK GPS 

data collected in dune environments (Enwright et al., 2017). 

The objective of this study was to develop a straightforward approach for treating 

vertical uncertainty in lidar-based DEMs. This study leveraged RTK GPS data collected 

with a cluster sampling design that was obtained to serve as validation data for a habitat 

classification mapping effort (Enwright et al., 2017). For this reason, I chose to use a 

simple method of introducing spatial autocorrelation into the Monte Carlo processing by 

using a low-pass filter rather than a more complex approach, such as the weighted 

spatial dependence approach (Wechsler & Kroll, 2006). A more systematic sampling of 

lidar error in intertidal areas similar to the approaches applied by Medeiros et al. (2015) 

or Buffington et al. (2016) would allow for a more complex treatment of spatial 

autocorrelation. As stated earlier, analyses in this effort were restricted to intertidal 

areas above MSL due to the use of topographic lidar. The methodology used in this 

study could be modified to more accurately delineate the full intertidal zone (i.e., 

boundary between subtidal and intertidal habitats and boundary between supratidal and 

intertidal habitats) if used with topobathymetric lidar. Lidar intensity data has been 

shown to enhance habitat classifications in coastal environments (Brennan & Webster, 

2006; Chust et al., 2008). Future efforts could explore the application of spatially 
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variable error and bias based on a simple vegetation presence-absence classification 

based on lidar intensity. Additionally, the use of intensity information would allow 

researchers to extend this work to examine the habitat-specific impacts of not treating 

lidar error when delineating the intertidal zone. One potential issue related to this 

enhancement could be that high-quality intensity information may not be available for all 

lidar acquisitions. Finally, technological advancements like next-generation lidar sensors 

and on-demand lidar via UAS should greatly enhance how dynamic habitats like barrier 

islands are monitored. As data availability increases, this approach could be calibrated 

with next-generation lidar sensors such as single photon and Geiger-mode lidar 

platforms which enable data collection with much higher nominal point spacing (e.g., 

greater than 20 points per m2) as compared to conventional linear lidar (i.e., lidar used 

in this study was about 6 points per m2) (Stoker et al., 2016) or data collected via on-

demand lidar via an UAS (Jaakkola et al., 2010; Lin et al., 2011). Another potential 

improvement of using these methods with UAS data would be the ability to collect 

elevation data and optical imagery concurrently. 

2.5. Conclusion 
 

In intertidal areas, the elevation estimated from conventional aerial linear lidar 

can be much higher than the actual elevation due to dense vegetation cover. The 

uncertainty of DEMs is often not addressed for habitat mapping efforts, yet the level of 

uncertainty becomes critical when studying these low-relief and intertidal environments 

where centimeters can greatly influence the exposure to physically demanding abiotic 

conditions. In this study, I applied tide gauge information, RTK GPS data, and 

information from a detailed relative accuracy report that followed the ASPRS standards 



 

32 
 

to simulate the propagation of elevation uncertainty into a DEM using Monte Carlo 

simulations. The primary objective of this study was to apply a simple approach to 

enhance results of automated intertidal area mapping using lidar data. I analyzed three 

different elevation error treatments which included leaving error untreated and 

treatments that used Monte Carlo simulations to incorporate elevation vertical 

uncertainty using lidar metadata and site-specific RTK GPS data, respectively. 

Our work shows that the untreated DEM underestimated coverage of low-lying areas 

and intertidal areas. I found that the DEMs with treatment of error had higher producer’s 

accuracy and user’s accuracy for identifying low-lying areas below the EHWS. For the 

entire island, the percent intertidal lands increased by up to 80% when using Monte 

Carlo analyses to treat vertical uncertainty. Results from the sensitivity analysis suggest 

that it could be reasonable to use error and positive bias values from literature for 

similar environments, conditions, and lidar acquisition characteristics in the event that 

collection of site-specific data is not feasible and information in the lidar metadata is 

insufficient. In this event, I found that bias values may be less sensitive than error, 

although it is critical to select a bias value greater than 50% if the study area has 

abundant vegetation cover. 

Results from this study should interest researchers that use lidar data in coastal 

morphology and habitat mapping studies, but especially those studying elevation-

dependent ecological patterns and processes in coastal areas. The methodology 

outlined in this study could be used to develop stand-alone products with the simple aim 

of providing land managers with an accurate areal coverage of intertidal and supratidal 

habitats or to serve as a foundation for identification of tidal regimes for detailed habitat 
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mapping efforts. The approach outlined in this study should be applicable to future 

technological advancements, such as next-generation lidar sensors and on-demand 

lidar via unmanned aerial systems. 
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CHAPTER 3. ADVANCING BARRIER ISLAND HABITAT MAPPING 
USING LANDSCAPE POSITION INFORMATION AND ELEVATION 

UNCERTAINTY 
 

3.1. Introduction  

Barrier islands are dynamic coastal environments that consist of wave-, wind-, 

and/or tide-deposited sediments located along the estuarine-marine interface. These 

islands are found along portions of coasts on every continent except Antarctica (Oertel, 

1985; Stutz & Pilkey, 2011). Comprised of a diverse mosaic of habitats, these islands 

can include beaches, dunes, marshes, intertidal flats, and coastal forests. Barrier 

islands provide many valuable ecosystem services, including storm protection and 

erosion control to the mainland, habitat for fish and wildlife, carbon sequestration in 

marshes, water catchment and purification, recreation, and tourism (Barbier et al., 2011; 

Feagin et al., 2010; Sallenger, 2000). However, barrier islands face an uncertain future, 

particularly in the latter part of the 21st century as numerous threats, including 

hurricanes, accelerated sea-level rise, oil spills, and anthropogenic impacts, may 

influence the future of these islands (Pilkey & Cooper, 2014). Furthermore, climate-

related threats to barrier islands are expected to increase in the future (Knutson et al., 

2010; Hansen et al., 2016). Thus, to better inform both present and future management 

decisions, coastal resource managers require insights into how these dynamic islands 

are changing over time. Geographers and remote sensing scientists can fill this critical 

need through the development of habitat maps and models created using geographic 

information science and remote sensing (Campbell, Wang, Christiano, & Stevens, 2017; 

Jeter & Carter, 2015; Kindinger et al., 2013; Lucas & Carter, 2010; Zinnert et al., 2016). 
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3.1.1. Mapping Methodologies 

Barrier island monitoring efforts require the development of custom habitat map 

products. This is due to a need for greater thematic resolution than is often included in 

readily available, regional land cover products such as the U.S. Geological Survey’s 

(USGS) National Land Cover Database (NLCD; Homer et al., 2015) and the National 

Oceanic and Atmospheric Administration’s (NOAA) Coastal Change Assessment 

Program (C-CAP; Dobson et al., 1995), which include general land cover types such as 

bare lands, marshes, and woody vegetation but lack classification of habitats like 

beaches, dunes, and intertidal flats. These regional products also often lack specific 

information related to regional microhabitats such as relic beach ridges (e.g., Chenier 

Plain region of Texas and Louisiana, USA). Similarly, the U.S. Fish and Wildlife 

Service’s National Wetland Inventory maps (Cowardin et al., 1979) provide detailed 

information in coastal areas, but only for wetland habitats. Also, the spatial resolution of 

regional map products like NLCD and C-CAP are often too coarse (i.e., 30 m) for barrier 

islands, which may only span a handful of pixels for relatively narrow portions of an 

island. In some cases, researchers may find the accuracy of NLCD and C-CAP 

products for barrier islands to be suboptimal for a given research objective since these 

classifications are developed for expansive areas that extend well beyond barrier 

islands rather than focusing explicitly on developing targeted algorithms for habitat 

classification on barrier islands. As a result, barrier island-specific habitat mapping 

efforts are prevalent and include a wide array of habitat class types, source data, and 

mapping approaches (Table 3.1). 
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Table 3.1. Examples of barrier island or coastal beach-dune habitat mapping efforts. 
For each mapping effort, I outlined the types of classes, mapping unit, source data, 
general mapping approach, and location of the study. Studies that included both 
species-level classes and general morphology-based habitat classes were listed under 
both class categories. HI: Hyperspectral imagery; HO: High-resolution 
orthophotography; HS: High-resolution satellite imagery; KB: Knowledge-based ruleset; 
LI: Topographic lidar elevation data; ML: Machine learning algorithm; MS: Moderate-
resolution satellite imagery; OB: object-based; PB: Pixel-based; PI: Photointerpretation; 
SC: Supervised classification; UAS: Unmanned aerial system; and UC: Unsupervised 
classification.  

Types of classes Unit Source data 
Mapping 
approach Study 

 
Location 

Species-level  PB HI SC and UC Bachmann et al. (2002)  U.S. East Coast 

 HI and LI SC and UC Young et al. (2011) U.S. East Coast 
 HO, HS, and LI ML Timm and McGarigal (2012) U.S. East Coast 
 HO and LI 

 
SC 
 

Chust et al. (2008)  
Hantson et al. (2012) 

Spain 
Netherlands 

  HO and LI SC Hantson et al. (2012) Netherlands 
 HS, HO, and LI ML Campbell et al. (2017) U.S. East Coast 

 HS and LI KB Brownett and Mills (2017) England 

National/regional 
classification schemes 

PB HO PI Acosta et al. (2003)  Italy 
 HS UC Wang et al. (2007) U.S. East Coast 

General morphology-
based barrier island 
habitats (e.g., beach, 
dune, and backslopes) 

PB HO UC Fearnley et al. (2009) U.S. East Coast 
 HS and LI UC and SC McCarthy and Halls (2014) U.S. East Coast 
 HO SC Jeter and Carter (2015) U.S. East Coast 
 HO and LI SC Anderson et al. (2016) U.S. East Coast 
 HI and LI 

 
SC Lucas and Carter (2010) 

Lucas and Carter (2013) 
U.S. East Coast 
U.S. East Coast 

 MS SC Zinnert et al. (2016)  U.S. East Coast 
 MS and LI SC Zinnert et al. (2011) U.S. East Coast 
OB HS, HO, and LI ML Campbell et al. (2017) U.S. East Coast 
 UAS and LI ML Sturdivant et al. (2017) U.S. East Coast 

 HS and LI KB Brownett and Mills (2017) England 

 
A critical starting point for habitat mapping efforts is the development or adoption 

of an existing classification scheme (i.e., a set of mapping targets with clear definitions). 

Table 3.1 includes a list of commonly used classification scheme types for barrier island 

and coastal beach-dune habitat mapping efforts. Some studies used detailed 

classification schemes that include species-level habitat mapping (Bachmann et al., 

2002; Brownett & Mills, 2017; Campbell et al., 2017; Chust et al., 2008; Hantson et al., 

2012; Timm & McGarigal, 2012; Young et al., 2011). In some cases, barrier island 

habitat mapping efforts utilized existing standardized classification schemes, such as 

the U.S. National Vegetation Classification System (Wang, Traber, Milstead, & Stevens, 

2007) or the European CORINE (coordination of information on the environment) 



 

37 
 

system (Acosta et al., 2003). However, most barrier island habitat mapping efforts used 

or included general, user-defined barrier island habitat classes with an emphasis on 

geomorphic features including beaches, dunes, and barrier flats (Anderson et al., 2016; 

Brownett & Mills, 2017; Campbell et al., 2017; Fearnley et al., 2009; Halls, Frishman, & 

Hawes, 2018; Jeter & Carter, 2015; Leatherman, 1979; Lucas & Carter, 2010, 2013; 

McCarthy & Halls, 2014; Timm & McGarigal, 2012; Zinnert, Shifflett, Vick, & Young, 

2011; Zinnert et al., 2016). 

The mapping unit is another critical decision in developing a mapping 

methodology. Here, options include traditional pixel-based methods, where each pixel is 

classified individually, and geographic object-based image analysis (GEOBIA; Blaschke 

et al., 2014), which involves classification of image objects (i.e., a group of neighboring 

pixels that are considered to be similar). A few benefits of GEOBIA are the ability to 

easily integrate spatial information into a mapping process through data fusion (O’Neil-

Dunne, MacFaden, & Royar, 2014; Zhang, 2015; Zhang, Xie, & Selch, 2013) and the 

ability to reduce salt-and-pepper issues associated with pixel-based mapping (Yu et al., 

2006). These advantages are most often realized when using high-resolution source 

data (e.g., high-resolution orthophotography, high-resolution satellite imagery). While 

the popularity of GEOBIA is rapidly increasing in coastal remote sensing applications 

(Dronova, 2015; Heumann, 2011), the technique was not found to be as prevalent in 

barrier island and coastal beach-dune habitat mapping literature (Table 3.1). A few 

examples of use of GEOBIA in coastal-beach dune settings include the work of 

Brownett and Mills (2017) and Hantson et al. (2012). 
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Source data are another critical component for habitat mapping efforts. Species-

level mapping efforts commonly used hyperspectral imagery, yet most barrier island 

habitat mapping efforts used high-resolution orthophotography or satellite imagery 

(Table 3.1). High-resolution imagery is well-suited to developing detailed maps 

(Brownett & Mills, 2017; Campbell et al., 2017), whereas moderate-resolution satellite 

imagery such as Landsat or Sentinel-2 imagery offers the advantage of developing 

multi-temporal analyses to explore change in these dynamic systems (Zinnert et al., 

2011, 2016). Both products can provide valuable insights to barrier island monitoring. A 

high-resolution, bare-earth digital elevation model (DEM) produced from data collected 

from aerial topographic lidar systems provides valuable information for coastal 

applications on barrier islands (Brock & Purkis, 2009), and these data were often 

combined with imagery for habitat mapping efforts (Table 3.1). Increasingly, researchers 

are using bare-earth DEMs developed from lidar data and tide data for automated 

delineation of intertidal and supratidal habitats (Brownett & Mills, 2017; Halls et al., 

2018; McCarthy & Halls, 2014). Raw lidar data also have general applicability to 

mapping efforts as researchers can use these data for estimating the height and 

morphology of building footprints (Meng, Wang, & Currit, 2009) and, despite uncertainty 

issues due to lidar penetration in densely vegetated areas (Meng, Currit, & Zhao, 2010), 

for estimates of the height of vegetation (Brownett & Mills, 2017; Hantson et al., 2012; 

Hudak, Evans, & Smith, 2009; O’Neil-Dunne et al., 2014). 

Lastly, the mapping approach is another crucial factor to consider. Several 

algorithms have been used with traditional pixel-based mapping frameworks for barrier 

island habitat mapping efforts (Table 3.1). The most common algorithm was the 
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maximum likelihood classifier (Anderson et al., 2016; Chust et al., 2008; Strahler, 1980; 

Hantson et al., 2012; Jeter & Carter, 2015; Lucas & Carter, 2010, 2013; McCarthy & 

Halls, 2014; Sturdivant et al., 2017; Zinnert et al., 2011, 2016), although some studies 

used unsupervised techniques (Bachmann et al., 2002; Ball & Hall, 1965; Fearnley et 

al., 2009; McCarthy & Halls, 2014; Wang et al., 2007). While supervised machine 

learning approaches can be used with GEOBIA (Campbell et al., 2017; Dronova, 2015; 

Timm & McGarigal, 2012), researchers often use a rule-based approach that classifies 

habitat types in a step-wise fashion using interpretation and expert knowledge (Brownett 

& Mills, 2017; Dronova, 2015; Gao, Chen, Zhang, & Zha, 2004; Myint Gober, Brazel, 

Grossman-Clarke, & Weng, 2011; O’Neil-Dunne et al., 2014). For instance, Brownett 

and Mills (2017) used high-resolution satellite imagery, a bare-earth DEM, a canopy 

height model, tide information, and ecological knowledge to develop a rule-based 

approach to classify coastal dune habitats in England. 

3.1.2. Intertidal Wetlands and Lidar Vertical Uncertainty 
 

Intertidal wetlands include areas that are periodically exposed to saline waters 

via extreme spring tides (Cowardin et al., 1979). Barrier islands often include a 

substantial amount of low-lying lands. Thus, these wetlands often make up a large 

proportion of area on barrier islands. As previously mentioned, DEMs are increasingly 

being used for automated delineations of intertidal and supratidal habitats in coastal 

applications despite issues related to vertical uncertainty. Yet, the level of uncertainty 

from data collected with conventional aerial topographic lidar systems has been found 

to be as high as 60 cm in densely vegetated emergent wetlands throughout the U.S. 

(Buffington et al., 2016; Enwright et al., 2018b; Medeiros et al., 2015). For barrier island 
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habitat mapping efforts, the vertical uncertainty is often left unaddressed due to the lack 

of detailed error information. However, the level of uncertainty becomes critical when 

studying low-relief environments, including barrier islands, where centimeters can make 

a difference in the exposure to physically demanding abiotic conditions (e.g., inundation, 

salt spray, wave energy) or in the potential for inundation by storm surges or rising sea 

levels (Anderson et al., 2016; Young et al., 2011; Zinnert, Stallins, Brantley, & Young, 

2017).  

 Monte Carlo simulations are one classic approach for dealing with vertical 

uncertainty in DEMs (Hunter & Goodchild, 1995; Wechsler & Kroll, 2006). For example, 

a simple application of Monte Carlo simulations is to propagate error and determine the 

probability that the elevation of a given DEM cell is below or above a specific elevation 

threshold for a set of iterations. This approach has been used for coastal shoreline 

mapping applications. For instance, Liu et al. (2007) used Monte Carlo simulations and 

error reported from lidar metadata to delineate the mean high water shoreline from 

noisy lidar data on the Bolivar Peninsula in Texas, USA. Enwright et al. (2018b) 

extended this approach using field data to map the full intertidal zone using the highest 

astronomical tide for a barrier island off the coast of Alabama, USA. The results from 

these efforts confirmed the findings of others (Alizad et al., 2016; Buffington et al., 2016; 

Medeiros et al., 2015; Schmid et al., 2011) and underscore the importance of 

considering elevation uncertainty when using a DEM for automated delineation of 

intertidal habitats. 
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3.1.3. Dune Delineation  

Dunes are geomorphic features formed by aeolian transport of sediments. These 

features provide important habitat for wildlife (Gieder et al., 2014; Katselidis et al., 2014) 

and can influence coastal vulnerability by buffering coastal erosion and flooding during 

storm surges (Sallenger, 2000; Stockdon et al., 2012; Plant et al., 2016). Remote 

sensing of dune features is complicated due to the ambiguity and subjectivity often 

associated with the delineation of these features (Hugenholtz et al., 2012; Wernette et 

al., 2016, 2018). Dunes with a high relative topography (i.e., steep slopes) can often be 

easily distinguished in high-resolution lidar-based DEMs. Wernette et al. (2016) 

proposed the use of relative relief as an approach for automated dune delineation. Their 

multi-scaled approach shows promise for detailed, automated dune extraction, but the 

focus on foredune (i.e., first seaward dune) extraction could potentially limit the 

applicability to broad island-scale habitat mapping efforts. Another approach is the use 

of the topographic position index (TPI), which was first proposed by Weiss (2001). This 

index can be used to identify slope positions such as ridges and upper slopes. This 

approach has been used by Halls et al. (2018) for automated dune extraction from a 

DEM. However, when using a TPI-based approach, elevation becomes important 

because ridges and upper slopes can also be located at lower elevations, including on 

features such as beach berms. One possible workaround could be using an elevation 

threshold based on extreme storm water levels to remove low-lying ridges and upper 

slopes that were identified as dune based on the TPI extraction alone. The rationale 

here is that frequent impacts from storm water levels would prevent dunes from forming 

at lower elevations (Sallenger, 2000). Similar to intertidal areas, the vertical uncertainty 
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in DEMs for dune habitats could be impacted by vegetation, but slope could also be a 

factor (Su & Bork, 2006). Thus, Monte Carlo analyses could be used to develop 

probabilistic outputs for the probability of a pixel being above an extreme storm water 

level. While the techniques discussed so far have been focused on two-dimensional 

mapping of dunes, researchers are also interested in understanding one-dimensional 

(i.e., transect-based) geomorphic characteristics of beach-dune systems (Stockdon et 

al., 2012) and moving beyond dune delineation to categorizing dune topographic state 

space (Monge & Stallins, 2016). 

3.1.4. Aim 

In addition to providing a review of barrier island habitat mapping efforts, I aimed 

to use a case study to outline a GEOBIA barrier island habitat mapping framework 

(Figure 3.1) that includes advances in dune delineation and integrates the treatment of 

elevation uncertainty for the extraction of elevation-dependent habitats. The framework 

builds on the GEOBIA approach outlined by Brownett and Mills (2017) and includes the 

following advancements: (1) use of relative elevation for automated dune delineation 

approaches (Halls et al., 2018; Wernette et al., 2016); (2) use of a Monte Carlo 

approach for addressing vertical uncertainty to develop a dune elevation threshold 

based on extreme storm water levels; and (3) treatment of vertical uncertainty for 

delineating intertidal and supratidal habitats.  
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Figure 3.1. An overview of the development of the barrier island habitat map for 
Dauphin Island, Alabama, 2015. 
 

3.2. Methodology 

3.2.1. Study Area and Data 

Dauphin Island, Alabama, USA is a part of a 105 km-wide barrier island chain 

that is backed by the shallow (<4-m deep) Mississippi Sound and is located along the 

north central Gulf of Mexico Coast of the USA (Otvos & Carter, 2008) (Figure 3.2). As of 

December 2015, the island had a length of about 25 km, from about 88.34° W to 88.07° 

W and, at its widest point, the island extended from about 30.28° N to 30.23° N and had 

a subaerial area of about 13.60 km2 (Guy, 2015). The island is a microtidal environment 

with diurnal tides that have a tidal range of about 0.36 m from mean low water tide to 

mean high water tide based on observations from the NOAA tide gauge (station ID: 
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8735180) on the island during the most recent North American Tidal Datum Epoch 

(NTDE; 1983−2001).  

 
Figure 3.2. Study area, location of National Oceanic and Atmospheric Administration’s 
tide gauge, and lidar data for the barrier island habitat mapping effort on Dauphin 
Island, AL, 2015. (a) Basemap source data is 0.3-m color-infrared orthophotography 
acquired in 2015 by Digital Aerial Solutions, LLC (DAS; Riverview, FL, USA) and the 
U.S. Geological Survey (USGS). (b−d) 1-m lidar bare-earth digital elevation model 
acquired in January 2015 by DAS and the USGS. 
 
 As outlined for previous studies, barrier island habitat monitoring efforts require 

detailed source data for map production. I used field data, tide data, high-resolution 

orthophotography, and lidar data for mapping habitats on Dauphin Island (Figure 3.1). 

Habitat type and elevation data were collected during two and a half weeks in 

November and December of 2015 by using cluster sampling (i.e., relatively dense 

sampling in a limited number of targeted areas) along 67 different transects located 
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across seven different sites on the eastern portion of Dauphin Island. Site selection was 

driven predominantly by accessibility. The transects targeted 10 general habitat types 

including: (1) beach, (2) dune-bare; (3) dune-herbaceous; (4) dune-wooded; (5) 

forested; (6) intertidal flat; (7) intertidal marsh; (8) meadow; (9) scrub/shrub; and (10) 

unvegetated barrier flat (Appendix A). Transect locations were randomly selected within 

homogenous areas of habitats per site based on a generalized map I developed from 

heads-up digitizing of 1-m color-infrared orthophotography acquired in 2013 by the U.S. 

National Agriculture Imagery Program. For each transect, I collected data for three 

points along the transect and for a set of eight points radiating from the center point at a 

distance of about 25 m at intervals of 45-degree angles. I collected the center transect 

point using a high-precision real-time kinematic (RTK) global positioning system (GPS) 

connected to a Global Navigation Satellite System (GNSS; Trimble R10 and TSC3, 

Trimble, Sunnyvale, CA, USA), coupled with the continuously operating reference 

station (CORS) network for Mississippi and Alabama (University of Southern 

Mississippi’s CORS network or the Alabama Department of Transportation’s CORS). I 

used a laser rangefinder (Laser Technology, Inc., 360 R, Centennial, CO, USA) to 

efficiently collect additional data for transect ends and points radiating off the transect 

center. Habitats were identified within a 1-m quadrat for transect locations and radial 

points. In total, data were collected at 749 points. SigmaPlot 12.5 (Systat Software, Inc., 

San Jose, CA, USA) was used for all nonspatial statistical analyses in this study, unless 

otherwise noted. The distribution of precision estimates for all the RTK GPS 

observations was right-skewed (i.e., skewness = 1.09) with a median root mean square 

error (RMSE) of ±0.04 m. All geospatial data for this study were native to, or otherwise 
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projected to, the Universal Transverse Mercator Zone 16 North projected coordinate 

system with the North American Datum of 1983. For more information on this field data 

collection, see Enwright et al. (2017). 

Tide data were obtained from the NOAA tide gauge on the eastern end of 

Dauphin Island (Figure 3.2). I used these data to understand the relationship between 

the North American Vertical Datum of 1988 (NAVD88), mean sea level (MSL), and 

spring tide levels. Intertidal wetlands are situated above the extreme low water spring 

and below the extreme high water spring (EHWS) tides (Cowardin et al., 1979). I 

defined EHWS as the highest astronomical tide predicted for the Dauphin Island tide 

gauge (0.45 m relative to MSL), which is the highest predicted water level under 

astronomical conditions alone during the most recent NTDE. As a wave-dominated 

barrier island (McBride et al., 2013), storms play a large role in the regulation of barrier 

island morphology and habitats on Dauphin Island (Morton, 2008). Thus, I used the 

NOAA’s Extreme Water Analyses for Dauphin Island based on observations between 

1966 and 2010 (Zervas, 2013) to identify an elevation associated with extreme water 

levels. Specifically, I used the extreme water level with a 10-percent annual exceedance 

probability updated for 2016 (1.13 m relative to MSL) to account for the sea-level rise 

trend observed at the Dauphin Island tide gauge (NOAA, 2013).  

 Similar to numerous other barrier island habitat mapping efforts, I utilized both 

high-resolution orthophotography and lidar data. I used 0.3-m color-infrared aerial 

orthophotography acquired on December 4, 2015 by Digital Aerial Solutions, LLC (DAS; 

Riverview, FL, USA) and the USGS. The orthophotography was collected with a Leica 

ADS100 digital camera (Wetzlar, Germany) when water levels were near the MSL. I 
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used a 1-m bare-earth DEM from January 2015 produced by DAS. The source data was 

aerial topographic lidar data acquired with the Leica ALS70 and ALS80 sensors. These 

data were collected with a nominal pulse density of about 6 points per m2. I used first 

returns from the lidar point cloud to create 1-m and 5-m digital surface models (DSMs) 

by using the maximum bin algorithm (i.e., assigning the DSM cell to be equal to the 

maximum first return in the cell). I used the information from the NOAA tide gauge to 

transform the vertical datum of the 1-m DEM from the NAVD88 to MSL. 

3.2.2. Addressing Uncertainty 

Monte Carlo simulations were used to propagate error and determine the 

probability that the elevation of a given DEM cell is above or below a specific elevation 

threshold for a set of iterations. These analyses were used to determine the probability 

of a pixel being intertidal and the probability of a pixel being above the elevation during 

extreme water levels associated with storms. Error propagation followed an approach 

similar to that of Cooper and Chen (2013), with the addition of enhancements such as 

using the 95th percentile error instead of the RMSE due to vegetated cover (American 

Society for Photogrammetry and Remote Sensing, 2015) along with the use of a 

neighborhood spatial autocorrelation filter and bias constraint outlined by Wechsler and 

Kroll (2006). I used a relative error assessment to determine the error and bias for the 

DEM for dune habitat. This assessment was conducted using field data collected on 

dunes below 3.00 m relative to MSL. This elevation cutoff was selected because higher 

dunes are both well above the extreme storm water threshold and also may have higher 

uncertainty due to issues with horizontal displacement along steeper slopes (Su & Bork, 

2006). The observations (n = 29) had a median elevation of 1.44 m (relative to MSL) 
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and an interquartile range of 1.54 m. These data were left-skewed (skewness = –2.58) 

with a positive bias (i.e., DEM was higher than RTK GPS elevation) for 55% of the 

observations and a 95th percentile error of 0.16 m. The Monte Carlo analyses included a 

total of 1,000 iterations. Probabilistic outputs were developed using binary raster for 

each pixel with regard to whether elevation was greater than or equal to the 10-percent 

extreme storm water level. For determining the probability of a pixel being intertidal, my 

approach was similar to Enwright et al. (2018b). 

3.2.3. Barrier Island Mapping Framework 

I developed a custom 17-class habitat classification scheme through the review 

of barrier island habitat mapping efforts (Figure 3.3; Appendix A). Similar to Brownett 

and Mills (2017), I used a semi-automated GEOBIA approach to classify the habitats. A 

few preprocessing steps included conducting a principal component analysis (PCA) of 

the four-band orthophotography and calculating a normalized difference vegetation 

index (NDVI). I used multiresolution segmentation (Trimble, 2016) in Trimble eCognition 

Developer 9.2 (Munich, Germany) to segment the imagery into objects based on spatial 

and spectral similarities with regard to derivatives of orthophotography including the first 

two PCA components, NDVI, and elevation. I determined the optimal segmentation 

parameters (i.e., bands, weights, and scale of objects) using a trial-and-error approach 

similar to Myint et al. (2011). 
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Figure 3.3. Photos of the habitat classes (n = 17) for the barrier island habitat mapping 
effort on Dauphin Island, AL, 2015. The classification scheme delineates habitats by 
tidal regime (see legend in lower right). The developed and shoreline protection are not 
depicted. For habitat definitions, see Appendix A. 
 
 I used a hierarchical approach to classify the image segments based on object-

level statistics (e.g., mean, SD, and minimum pixel value). First, I classified the image 

segments as either land or water using thresholds for the NDVI and the near infrared 

band and manual editing. Next, I used a similar approach to classify land segments into 

vegetated and unvegetated categories. I used general rule-based thresholds to further 

subdivide vegetated and unvegetated areas into detailed habitats according to habitat 

definitions (Appendix A). For a given step, threshold-based rules were developed to 

classify habitats while minimizing commission and omission errors as gauged by visual 

inspection of results (Figure 3.4). For example, a generalized rule to identify objects in 

the meadow class would include rules to target “non-tidal vegetated areas that lack 

relative topography and woody vegetation.” After applying general decision rules for 
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each habitat in a step-wise fashion, photointerpretation was used to refine habitats 

through manual editing including editing segment boundaries as needed (Figure 3.4). 

For more information on general thresholds used in the mapping process for most of the 

classes, see Appendix B. It is important to note that these thresholds are often specific 

to source data and can vary based on many factors such site vegetation community, 

time of year, image quality, and image bit-depth. Thresholds can also vary from image 

to image and sometimes within images due to color balancing issues. 

 
Figure 3.4. An overview of the mapping process used for the barrier island habitat map 
for Dauphin Island, AL, 2015. The italic text indicates data or techniques used for 
classifying each habitat. DEM: Digital elevation model; DSM: Digital surface model; 
NDVI: Normalized difference vegetation index; NIR: Near infrared band; PCA: Principal 
component analysis; PI: Probability of being intertidal; PS: Probability of being above 
water levels during extreme storms; TPI: Topographic position index; and VI: 
Photointerpretation. VI was used for all mapping steps and classes.  
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 Several elevation derivatives were developed to assist with mapping various 

classes, including woody vegetation (i.e., scrub/shrub and forested habitats), developed 

areas, intertidal habitats, and the dune classes. First, the relative difference between the 

DSMs and the DEM provided information on the difference in the heights of objects 

such as tree canopy or buildings and was used to map the scrub/shrub, forested, and 

developed classes. Second, the probabilistic outputs with regard to intertidal areas from 

Enwright et al. (2018b) were used as a guide for mapping intertidal habitats (i.e., 

intertidal beach, intertidal marsh, and intertidal flat). Image objects were classified as 

intertidal if the object intersected an area considered likely to be intertidal based on pixel 

elevations. These areas were refined, as needed, using visual inspection of 

orthophotography and lidar data. This approach was used for identifying the 

intertidal/supratidal boundary, whereas the intertidal/subtidal boundary was identified via 

photointerpretation of the imagery due to the lack of bathymetric information. Lastly, I 

used the TPI, which was developed by comparing the elevation for a pixel with the 

mean for the neighborhood (De Reu et al., 2013; Weiss, 2001), to identify slope 

position. First, I excluded pixels from the DEM with an elevation less than zero and ran 

a low-pass filter on the DEM to smooth random noise. Then, I estimated the TPI for a 

30-m circular neighborhood. While a detailed dune geomorphology study may be 

interested in use of multiple scales (Wernette et al., 2016), I opted for a single scale as 

a multi-scaled approach may not be feasible for large-scale habitat mapping efforts 

(e.g., maps for one or a few islands). I used visual inspection and confirmed 30 m was a 

reasonable neighborhood size. Halls et al. (2018) used a similar scale (i.e., 40 m) for 

dune delineation. Dunes were defined as pixels with TPI values that were indicative of 
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ridges or upper slopes (i.e., values greater than one-half SD from the mean) (De Reu et 

al., 2013; Weiss, 2001). Dunes were further refined by: (1) excluding ridges and upper 

slopes with a probability of less than 0.5 for being greater than or equal to extreme 

water levels associated with storms; (2) excluding any areas less than 40 m2; and (3) 

revising ridges and upper slopes based on visual inspection of orthophotography and 

lidar data. This last step included manually removing areas that were not dunes via 

visual inspection and geomorphic setting (e.g., small ridges behind the dune backslope 

on eastern end of Dauphin Island in developed areas), filling in holes in dunes based on 

TPI scale limitations (i.e., would be considered dune if a larger scale was used), and 

adding in well-defined dunes that were missed by using a single scale. The reduction in 

the areal coverage of ridges and upper slopes was quantified for these steps. 

 Several post-processing steps were conducted to refine the barrier island habitat 

map with an emphasis on noise reduction. First, I converted the image objects to a 1-m 

raster. The rationale for converting the image objects to a raster was to efficiently 

remove sliver polygons created via manual editing through a majority filter for a 3-by-3 

pixel neighborhood in the raster data structure. To further reduce noise not removed by 

the major filter and standardize the identification of small features, I applied a 40 m2 

minimum mapping unit (MMU). I selected this MMU as a reasonable balance between 

noise reduction and loss of detail evaluated through visual inspection. This mapping unit 

is well below the smallest MMU (2,500 m2) suggested by the USGS and the U.S. 

National Park Service for mapping vegetation in U.S. National Parks (Lea & Curtis, 

2010). 
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 Lastly, I conducted an accuracy assessment using the previously discussed field 

data. The accuracy assessment generally adhered to guidelines by Congalton and 

Green (2009) regarding sample design and procedures. Instead of assessing map 

accuracy with points, I buffered field data to have area equal to the size of the minimum 

mapping unit. For the accuracy assessment, the map data label was assigned to be the 

majority class that fell within the buffered area and the reference data label (Appendix 

A) came from the field data collection and, in some instances, photointerpretation. In 

order to have at least 30 accuracy points per class, supplemental data were added for 

the following habitat classes: (1) beach (n = 1); (2) developed (n = 30); (3) dune-bare (n 

= 9); (4) forested wetland (n = 30); (5) intertidal beach (n = 25); (6) shoreline protection 

(n = 30); (7) water-estuarine (n = 30); (8) water-fresh (n = 30); (9) water-marine (n = 30). 

These supplemental points were attributed by using visual inspection of 

orthophotography and lidar data. The accuracy assessment included overall accuracy, 

Kappa statistic (Cohen, 1960), and producer’s and user’s accuracy estimates for each 

class. 

3.3. Results 

Like Halls et al. (2018), I found that the TPI proved to be an effective approach 

for delineating dunes. I found the application of an elevation threshold and manual 

refinement enhanced TPI-based dune extraction. The refinement of the ridges and 

upper slopes by using the probabilistic output with regard to storm water levels led to an 

18.1% decrease in areal coverage (50 hectares (ha); Figure 3.5). While the removal of 

small areas below the minimum mapping unit reduced noise, the step only resulted in a 

decrease in areal coverage of ridges and upper slopes of about 2 ha. Manual editing of 
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the ridges and upper slopes layer resulted in the largest reduction in areal coverage (84 

ha; Figure 3.5). Collectively, the refinements led to a 49.1% decrease in the areal 

coverage of dunes (Figure 3.5). 

 

Figure 3.5. Areal coverage in hectares (ha) for ridges and upper slopes for each step in 
the TPI-based dune delineation process for the habitat mapping effort for Dauphin 
Island, AL, 2015. The numbers along the x-axis represent the steps in the dune 
delineation process. 1: Initial ridges and upper slope extraction; 2: Exclusion of ridges 
and upper slopes below extreme storm water levels; 3: Exclusion of ridges and upper 
slopes smaller than the minimum mapping unit; and 4: Manual refinement of ridges and 
upper slopes using visual inspection. 

 
The habitat map produced for Dauphin Island is shown in Figures 3.6 and 3.7. 

Table 3.2 shows areal coverage of each habitat by tidal zone. For nonwater habitats, 

much of the island was within the supratidal/upland elevation range (85.5%; Table 3.2). 

Of the nonwater, nondeveloped, subaerial habitats, the most abundant habitats were: 
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(1) meadow (360 ha, 29.2%); (2) forest (292 ha; 23.7%); (3) all dune classes, 

collectively (141 ha, 11.4%); (4) intertidal marsh (122 ha, 9.9%); (5) unvegetated barrier 

flat (105 ha, 8.5%); and (6) all beach classes, collectively (103 ha, 8.4%). 

 
Figure 3.6. Habitat map for the western two-thirds of Dauphin Island, AL, 2015.  
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Figure 3.7. Habitat map for the eastern one-third of Dauphin Island, AL, 2015. 
 
 



 

57 
 

Table 3.2. Areal coverage for each habitat class summarized by tidal regime for the 
barrier island habitat map for Dauphin Island, AL, 2015. 

Tidal regime Habitat class Areal coverage (ha) 

Subtidal Water-marine 1,335 

Water-estuarine 2,849 

Subtidal total  4,184 

Intertidal Intertidal beach 19 
Intertidal flat 55 
Intertidal marsh 122 

Intertidal total  196 

Supratidal/upland Beach 84 
 Dune-bare 10 
 Dune-herbaceous 109 
 Dune-wooded 22 
 Meadow 360 
 Unvegetated barrier flat 105 
 Scrub/shrub 47 
 Forest 292 
 Forested wetland 6 
 Water-fresh 5 
 Developed 121 
 Shoreline protection 3 

Supratidal/upland total  1,164 

Total  5,544 

 
The map had an overall accuracy of 79.2% and a Kappa statistic of 0.77 (Table 

3.3). Excluding water classes, shoreline protection and developed, the classes with the 

highest user’s accuracies were: (1) forest (97.3%); (2) dune-bare (90.3%); (3) intertidal 

beach (86.7%); (4) forested wetland (85.7%); and (5) beach (84.4%). The dune-wooded 

and meadow class had the lowest user’s accuracy at 65.1% and 65.7%, respectively. 

For the meadow class, most of the confusion was from misclassification as dune-

herbaceous areas mapped as meadow. The classes with the highest producer’s 

accuracies were: (1) intertidal beach (95.0%); (2) intertidal marsh (93.8%); (3) dune-

bare (93.3%); (4) beach (93.3%); and (5) forested wetland (86.7%). The dune-

herbaceous class had the lowest producer’s accuracy of 46.2% with majority of the 

confusion coming from dune-herbaceous areas mapped as meadow. Dunes were 
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mapped at a higher accuracy when lumped into a single dune class. Collectively, the 

dune classes had a mean user’s accuracy of 78.4% and a producer’s accuracy of 

72.4%.  

3.4. Discussion 

Barrier island habitat maps provide researchers and natural resource managers 

with critical information needed to understand changes to these dynamic ecosystems. In 

this study, I reviewed barrier island habitat mapping literature to highlight habitat class 

types, mapping units, source data, and mapping approaches commonly used by 

researchers. As is the case for remote sensing applications for other environments, 

researchers utilize many approaches for barrier island habitat mapping. Having so many 

classification schemes and methodologies can create semantic challenges when a 

researcher is assessing whether habitat maps from different dates or geographic 

extents can be conflated for regional or time series analyses (Feranec et al., 2014). 

Gibson and Looney (1992) highlight this issue for barrier island mapping efforts by 

crosswalking habitats from four different barrier island mapping efforts. Similarly, 

Wernette et al. (2016, 2018) show how several commonly used dune delineation 

techniques can yield different results using the same data. To help reduce these issues, 

I developed a GEOBIA approach for mapping general morphology-based barrier island 

habitats that uses landscape position information and addresses elevation uncertainty 

for extracting elevation-dependent habitats.  
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Table 3.3. Confusion matrix for the 2015 barrier island habitat map for Dauphin Island, AL. B: Beach; CT: Column total; 
DB: Dune-bare; DH: Dune-herbaceous; DV: Developed; DW: Dune-wooded; F: Forest; FW: Forested wetland; IB: 
Intertidal beach; IF: Intertidal flat; IM: Intertidal marsh; M: Meadow; OA: Overall accuracy; PA: Producer’s accuracy; RT: 
Row total; SP: Shoreline protection; SS: Scrub/shrub; UA: User’s accuracy; UBF: Unvegetated barrier flat; WE: Water-
estuarine; WF: Water-fresh; and WM: Water-marine. 

  Reference data 

 
Class DB DH DW M UBF SS F FW IB  B IF IM SP DV WE WF WM RT 

UA 
(%) 

M
a

p
 d

a
ta

 

DB 28 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 90.3 

DH 1 36 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 46 78.3 

DW 1 4 28 2 0 1 7 0 0 0 0 0 0 0 0 0 0 43 66.7 

M 0 32 2 113 1 16 3 0 0 0 1 4 0 0 0 0 0 172 65.7 

UBF 0 3 0 4 24 1 0 0 0 0 4 0 0 0 0 0 0 36 73.9 

SS 0 0 0 8 0 47 2 0 0 0 0 2 0 0 0 0 0 59 79.7 

F 0 0 1 1 0 0 73 0 0 0 0 0 0 0 0 0 0 75 97.3 

FW 0 0 0 0 0 0 5 30 0 0 0 0 0 0 0 0 0 35 85.7 

IB 0 0 0 0 0 0 0 0 26 1 3 0 0 0 0 0 0 30 86.7 

B 0 1 0 0 0 0 0 0 3 38 3 0 0 0 0 0 0 45 84.4 

IF 0 0 0 3 4 0 0 0 0 1 47 2 0 0 4 0 0 61 77.0 

IM 0 0 0 36 0 4 2 0 0 0 1 136 0 0 1 0 0 180 76.0 

SP 0 0 0 2 0 0 0 0 0 0 0 0 30 0 3 0 0 35 85.7 

DV 0 0 0 1 0 0 0 0 0 0 0 0 0 30 0 0 0 31 96.8 

WE 0 0 0 0 0 0 0 0 0 0 7 0 0 0 22 0 0 29 75.9 

WF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 30 100.0 

WM 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 30 32 93.8 

CT 30 78 36 174 30 69 92 30 30 40 66 145 30 30 30 30 30 970  

 
PA 
(%) 

93.3 46.2 77.8 64.9 80.0 68.1 79.4 86.7 95.0 93.3 71.2 93.8 100.0 100.0 73.3 100.0 100.0 
 

 

 OA (%):  79.2; Kappa: 0.77                
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As higher-resolution remote sensing data becomes increasingly available in the 

future, GEOBIA should become a more and more popular approach for detailed habitat 

mapping (Ma et al., 2017). The step-wise GEOBIA approach outlined in this study relies 

heavily on the use of lidar data for understanding the geomorphologic settings on a 

barrier island (Leatherman, 1979; Zinnert et al., 2017). One challenge with existing lidar 

data can be limited temporal and spatial coverage. In some areas, lidar is only collected 

every several years. Some lidar monitoring programs, such as those that collect lidar 

data to monitor shoreline change, only collect lidar data for a narrow band along 

shorelines in order to monitor nearshore change and often do not collect data for back-

barrier habitats. I expect that advancements in sensor technology, such as single 

photon and Geiger-mode lidar sensors (Stoker et al., 2016) and unmanned aerial 

system (UAS) lidar data collection (Jaakkola et al., 2010; Lin et al., 2011), should lead 

to a greater frequency and coverage of high-quality elevation data for use by scientists 

and natural resource managers. Researchers are already using digital surface models 

created via structure-from-motion for geomorphic feature extraction and habitat 

classification for coastal beach-dune systems (Sturdivant et al., 2017). The techniques 

outlined in this study provide insights for researchers on how to best leverage elevation 

data to enhance mapping of elevation-dependent habitats like dunes and intertidal 

areas and increase the efficiency and repeatability of barrier island habitat monitoring 

efforts.  

Dune delineation from remote sensing data can be challenging and is often 

ambiguous. Both Halls et al. (2018) and Wernette et al. (2016) have shown the utility of 

using relative topography from DEMs for automated dune extraction. While my research 
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confirmed the utility of relative topography information for dune extraction, I also found 

the need to incorporate elevation thresholds and allow for refinement via visual 

interpretation. As a relative measure, the TPI considers relative topography independent 

of elevation relative to locally relevant datums. Therefore, an elevation threshold can be 

important for removing high beach berms, which could be considered a ridge or upper 

slope when based solely on a TPI value, from the results of an automated dune 

extraction routine. Storms can shape dune morphology (Sallenger, 2000), thus extreme 

water levels associated with storms can serve as a reasonable dune elevation 

threshold. Researchers recommend that vertical uncertainty be considered for coastal 

studies using lidar data for the automated delineation of elevation-dependent habitats 

(Buffington et al., 2016; Enwright et al., 2018b; Kidwell et al., 2017; Liu et al., 2007). The 

vertical uncertainty of lidar in dunes can be impacted by both vegetation cover and 

slope (Su & Bork, 2006). Here, I applied a similar approach as Enwright et al. (2018b) to 

use Monte Carlo simulations to determine the probability of a pixel being above an 

extreme water level associated with storms from field data and tide data for automated 

dune extraction. While the application of the elevation threshold had a smaller relative 

impact for the entire island compared to visual inspection (Figure 3.5), it is expected that 

the relative reduction in areal coverage would likely be greater if the assessment were 

limited to the beach-dune area instead of the entire island. The use of relative 

topography provides an enhancement to existing techniques for dune delineation, yet 

the approach also warrants manual refinement through visual inspection when used for 

broad habitat mapping. For instance, some areas on a dune backslope (i.e., meadow 

and unvegetated barrier flat) or behind dunes can have relative relief and be higher than 
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an extreme storm tide, such as areas that exhibit disturbance-resisting morphology 

(Zinnert et al., 2017), yet perhaps not all areas should be considered dune habitat 

particularly in areas with anthropogenic impacts (i.e., spoil banks). Finally, temporal 

gaps between lidar and imagery acquisition along rapidly changing dynamic coasts can 

cause issues for habitat mapping, which typically uses the imagery as the primary 

source data and elevation data for supplemental information related to landscape 

position.  

The level of uncertainty from data collected with conventional aerial topographic 

lidar systems has been found to be as high as 60 cm in densely vegetated emergent 

wetlands throughout the U.S. (Buffington et al., 2016; Enwright et al., 2018b; Medeiros 

et al., 2015). Thus, the consideration of vertical uncertainty is critical for producing 

accurate areal coverage estimates for intertidal and supratidal habitats from DEMs and 

tide data (Buffington et al., 2016; Campbell & Wang, 2018; Enwright et al., 2018b; 

Kidwell et al., 2017). Enwright et al. (2018b) includes a detailed overview of the impacts 

of not incorporating uncertainty into intertidal area identification efforts on Dauphin 

Island. I applied the methodology outlined in Enwright et al. (2018b) to develop 

probabilistic outputs that considered vertical uncertainty for use as a guide for 

delineating intertidal and supratidal habitats. The approaches for handling vertical 

uncertainty for both dunes and intertidal areas can be extended into other study areas 

although the vertical uncertainty may depend on factors such as lidar technology, lidar 

point spacing, vegetation community, vegetation density, and slope. In this study, field 

data were used to determine the error and bias of the lidar dataset; however, if field 

data cannot be acquired, then I recommend using the lidar metadata for the Monte 
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Carlo analysis similar to Liu et al. (2007) and Enwright et al. (2018b) instead of leaving 

vertical uncertainty untreated. 

The results from the accuracy assessment highlight some minor challenges 

associated with mapping barrier island habitats with regard to data processing and 

semantics. Most of the confusion was associated with dunes, specifically, for the dune-

herbaceous class. To a large extent, these areas were determined to be poorly defined 

hummocky dunes in the field, yet they were classified as meadow or unvegetated 

barrier flat per the classification scheme. This error is largely caused by the difficulty in 

identifying small hummocky dunes that often lack the defined relative topography 

needed to easily delineate with remote sensing data. However, if hummocky dunes are 

of interest to a researcher, then it may be possible to map these areas using some 

combination of texture metrics, a finer-scaled TPI, and visual inspection. For example, 

Halls et al. (2018) extracted hummock features from a DEM using geomorphology 

information like mean elevation, fine-scaled TPI, and shape indices. While this process 

shows promise, the hummock class was found to be difficult to classify with an omission 

error of just over 50%. The FRAGSTAT metrics used by Monge and Stallins (2016) to 

characterize state space may also prove to be useful for hummock dune extraction. 

These results also highlighted confusion for the intertidal marsh and meadow and 

intertidal flat classes. This was likely due to the difficulty of determining intertidal areas 

on a single site visit when water levels were observed at a narrow window within the 

tidal range. Also, as previously mentioned, the temporal gaps between lidar data 

orthophotography acquisition can introduce challenges when mapping intertidal beach 

and intertidal flat along dynamic shorelines. Due to the dynamic nature of these 
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habitats, researchers should consider using both a deterministic and fuzzy accuracy 

assessment (Congalton & Green, 2009; Woodcock & Gopal, 2000). Still, the framework 

outlined in this study provides a roadmap for efficiently processing remote sensing data 

while also making progress toward tackling semantic challenges for barrier island 

habitat maps using landscape position information and the treatment of vertical 

uncertainty. The framework presented here can be modified by increasing the detail of 

the habitat classes, adding new habitat classes (e.g., mangrove, freshwater wetland, 

interdunal swale, and/or hummock), and/or dropping certain habitat classes, or if a 

researcher opts to use a traditional pixel-based approach. If any of these modifications 

are needed to suit the objectives of a researcher, the basic concepts outlined in this 

framework regarding landscape position and elevation uncertainty would still be 

applicable and provide value to the mapping effort. For example, this mapping approach 

can be extended beyond barrier islands to beaches, dunes, and marshes found on 

mainland areas as well as areas that include mangrove forests (Enwright et al., 2018a). 

While this framework relies heavily on high-resolution orthophotography, it is important 

that researchers studying barrier islands continue to utilize moderate-resolution imagery 

for multi-temporal analyses to study dynamic changes (Zinnert et al., 2011, 2016) that 

may not be captured in periodic mapping from high-resolution orthophotography or UAS 

data collections. The utilization of both approaches, where applicable, will provide 

natural resource managers with key insights on how these systems are changing over 

time. 
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3.5. Conclusion 

Due to their dynamic nature, monitoring of barrier islands is critical for advancing 

understanding of how these ecosystems change over time from gradual processes such 

as tides and currents to more episodic events like storms. Because of their size and 

unique geomorphic habitats, barrier island habitat monitoring efforts often require 

custom habitat map development rather than using readily available, regional land cover 

datasets. One challenge when mapping geomorphic habitats on barrier islands with 

remotely sensed data is reducing semantic issues caused by ambiguity in class 

definitions and variability in delineation techniques. In response, I outlined a GEOBIA 

approach for mapping general morphology-based barrier island habitats that includes 

landscape position information and treatment of elevation uncertainty. A few highlights 

of the approach include advancements in dune delineation and integration of vertical 

uncertainty into the barrier island habitat mapping process. While DEMs provide 

valuable information regarding geomorphic setting, the level of uncertainty can be 

substantial in these data from barrier islands. To address this uncertainty, I used field 

data, tide data, and Monte Carlo analyses to develop probabilistic outputs based on the 

elevation relative to extreme storm water levels and extreme spring tides. The dune 

refinement using extreme storm water levels led to an 18% decrease in areal coverage 

and combined with manual edits from visual inspection for a 49% reduction in dune 

area. The Monte Carlo techniques outlined in this study provide a repeatable and more 

accurate method for automated extraction of elevation-dependent habitats. Collectively, 

the framework outlined in this study provides a roadmap for efficiently processing 

remote sensing data while also enhancing the semantics of barrier island habitat maps 
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through the use of landscape position information and treatment of elevation uncertainty 

to enhance map comparison through time and map conflation for regional analyses. 
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CHAPTER 4. MODELING BARRIER ISLAND HABITATS USING 
LANDSCAPE POSITION INFORMATION 

 

4.1. Introduction 

Barrier islands are subaerial expressions consisting of wave-, wind-, and/or tide-

deposited sediments (Oertel, 1985). These islands are found along portions of every 

continent except Antarctica (Stutz & Pilkey, 2011) and provide numerous important 

ecosystem services, including storm surge reduction, wave attenuation, erosion control 

to the mainland, habitat for fish and wildlife, carbon sequestration in marshes, water 

catchment and purification, recreation, and tourism (Barbier et al., 2011; Feagin et al., 

2010; Sallenger, 2000). Barrier islands tend to be dynamic due to their location along 

the estuarine-marine interface. Collectively, these factors make barrier island monitoring 

a critical need of natural resource managers for coastal management, such as planning 

for coastal protection and restoration. As a result, natural resource managers often use 

habitat maps developed by geographers and remote sensing scientists to gain insights 

into how these islands are changing over time (Campbell et al., 2017; Jeter & Carter 

2015; Kindinger et al., 2013; Lucas & Carter 2010; Zinnert et al., 2016). Besides gradual 

changes caused by constant forces, such as currents and tides, barrier islands face 

numerous threats including hurricanes, accelerated sea-level rise, oil spills, and 

anthropogenic impacts (Pilkey & Cooper, 2014). These threats are likely to influence the 

future of barrier islands in the latter part of the 21st century, especially as climate-related 

threats to coastal areas are expected to increase in the future (Hansen et al., 2016; 

Knutson et al., 2010). Thus, to better inform both current and future management 

decisions, natural resource managers often lean on scientific models that predict what 
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barrier island systems may look like in the future with regard to morphology (Guiterrez 

et al., 2015, Passeri et al., 2018) and habitat for fish and wildlife (Foster et al., 2017). 

Geomorphology is a critical component of barrier island habitat configuration as 

certain foundation species (sensu Dayton, 1972), such as saltmeadow cordgrass 

(Spartina patens (Aiton) Muhl.), seaoats (Uniola paniculata L.), and slash pine (Pinus 

elliottii) tend to thrive in specific topographic settings or disturbance regimes (Zinnert et 

al., 2017). Geomorphology regulates many abiotic factors that influence the 

performance of foundation plant species, including wave energy, salinity, inundation 

frequency, sea spray, Aeolian transport, and nutrient availability (Young et al., 2011). 

Researchers have established linkages between barrier island habitats and specific 

landscape position variables, such as distance from shoreline (Young et al., 2011) and 

elevation (Anderson et al., 2016; Foster et al., 2017; Halls et al., 2018; Young et al., 

2011).  

Geocomputational models can incorporate landscape position information, 

including elevation and relative topography, to predict barrier island geomorphic 

features and habitats. For example, Halls et al. (2018) developed a model that uses 

landscape position to produce maps of geomorphic features (e.g., intertidal, supratidal, 

dune, hummock, swale, and overwash) using information extracted from a digital 

elevation model (DEM) for an area in North Carolina, USA. To predict geomorphic 

features, their model uses elevation relative to tidal datums, relative topography, shape, 

and general location information (e.g., proximity). Similarly, Gutierrez et al. (2015) 

developed a Bayesian network to model barrier island morphologic characteristics, 

including dune crest height, beach presence-absence, and beach width using 
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contemporary data, such as a lidar-based DEM and orthophotography for Assateague 

Island, off the coasts of Maryland and Virginia, USA. Their approach also uses data 

representing longer-term, larger-scale processes, including long-term shoreline change 

rates, barrier island width, barrier island elevation, proximity to inlets, and anthropogenic 

modification. Researchers often use data-driven, machine learning algorithms, such as 

K-nearest neighbor (KNN; Barandela & Juarez, 2002; Manton et al., 2005), support 

vector machine (SVM; Guo Kelly, & Graham, 2005; Heumann, 2011; Xu, Dai, Xu, & 

Lee, 2012,), and random forest (RF; Prasad, Iverson, & Liaw, 2006; Rogan, Franklin, & 

Roberts, 2002) to develop geocomputational models to make predictions from 

geospatial data. These algorithms could also be effective tools for determining the 

relationship between landscape position and barrier island habitats. For example, 

Foster et al. (2017) developed a naïve Bayes model to predict the overall habitat 

coverage based on elevation for Cape Canaveral Florida, USA, under alternative sea-

level rise scenarios. Despite these productive examples and the demonstrated 

importance of landscape position, most researchers have not fully leveraged landscape 

position-habitat linkages to develop predictive models. 

Incorporation of elevation uncertainty for extracting elevation-dependent habitats 

and post-processing model results using expert knowledge of barrier island habitats 

may enhance machine learning-based habitat prediction for barrier islands. Habitats on 

barrier islands can be tied to tidal regimes (Enwright et al., in press), which could allow 

for targeted models to be developed for each tidal regime. Researchers can extract 

these tidal regimes directly from DEMs by using information regarding locally relevant 

tidal datums, such as extreme high water spring (EHWS), extreme low water spring 
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(ELWS), and storm water levels (Enwright et al., 2018b, in press; Halls et al., 2018; 

McCarthy & Halls, 2014). When using automated extraction of elevation-dependent 

habitats, researchers are advised to address vertical uncertainty in DEMs (Buffington et 

al., 2016; Enwright et al., 2018b; Medeiros et al., 2015). This is especially critical for 

low-relief environments, such as barrier islands, where centimeters can make a 

difference in the exposure to physically demanding abiotic conditions (e.g., inundation, 

salt spray, wave energy; Anderson et al., 2016; Young et al., 2011). Enwright et al. 

(2018b) highlighted the impact of the treatment of vertical uncertainty within intertidal 

areas. Relative topography can be helpful for extracting dune habitat (Enwright et al., in 

press; Halls et al., 2018; Wernette et al., 2016), yet elevation relative to storm water 

levels can also be a factor as dunes can be eroded by high wave runup during storms 

(Sallenger, 2000). Thus, elevation uncertainty analyses could also be used to evaluate 

the likelihood of areas depicted by a DEM being above a common extreme storm water 

level (Enwright et al., in press). Data-driven, machine learning algorithms are powerful 

tools for teasing out patterns and relationships in data; however, one potential issue is 

that they require the assumption that the data used to train the model is representative 

of the phenomena being modeled. Because change can sometimes occur rapidly on a 

barrier island, post-processing could be used to ensure that spatially explicit habitat 

predictions match my expectations based on expert theoretical knowledge of the 

specific barrier island being modeled (e.g., for a high energy barrier island I would not 

expect marsh to be located on the ocean-facing shoreline; Roland & Douglass, 2005).  

Here, I built upon recent barrier island habitat model efforts by Foster et al. 

(2017) and Halls et al. (2018) to develop a habitat model for Dauphin Island, Alabama, 
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USA. The model incorporates elevation uncertainty for elevation-dependent habitat 

extraction and yields spatially explicit predictions of general barrier island habitats 

based on landscape position information, such as elevation, distance from shoreline, 

and relative topography (Figure 4.1). For this study, I explored three research questions: 

(1) how well can machine learning algorithms, such as KNN, SVM, and RF, predict 

contemporary barrier island habitats from landscape position information; (2) does the 

use of post-processing routines, such as expert rules based on the theoretical 

understanding of a barrier island (e.g., marsh should not be located along the high 

energy shoreline of the island), enhance model accuracy; and (3) how well does this 

model generalize to predict historical habitats (i.e., hindcast)? 

 
Figure 4.1. Hypothesized relationship between elevation and distance from ocean-
facing shoreline for general barrier island habitats based on literature (Leatherman, 
1979; Young et al., 2011). 
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4.2. Methodology 

4.2.1. Study Area 

Dauphin Island is part of a 105-km wide Mississippi-Alabama wave-dominated 

barrier island chain (McBride et al., 2013; Otvos & Carter, 2008; Figure 4.2). The island 

is backed by the shallow (<4-m deep) Mississippi Sound (Otvos & Carter, 2008) and is 

flanked to the east by Mobile Bay. In 2015, the length of Dauphin Island was about 25 

km and the subaerial portion of the island was estimated to be about 15.8 km2 

(Enwright et al., 2017, in press). Situated in the northern Gulf of Mexico, Dauphin 

Island experiences diurnal tides with a mean tidal range of about 0.36 m (i.e., mean low 

water to mean high water), based on observations during the most recent North 

American Tidal Datum Epoch (NTDE; 1983 to 2001) from a National Oceanic and 

Atmospheric Administration tide gauge (station ID: 8735180) on the island. I developed 

the modeling domain for this study (dashed outline in Figure 4.2) by buffering the 

maximum extent of Dauphin Island shorelines from 1940 to 2015 (Henderson, Nelson, 

Long, & Smith, 2017) by 2.5 km. I used Esri ArcMap 10.5.1 (Redlands, CA, USA) for all 

spatial analyses. 
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Figure 4.2. Modeling domain and the extent of baseline mapping data for habitat 
modeling effort on Dauphin Island, Alabama, USA. The basemap source data is 0.3-m 
color-infrared orthophotography acquired in December 2015 by Digital Aerial Solutions, 
LLC (Riverview, Florida, USA) and the U.S. Geological Survey. The area that is outside 
the 2015 imagery acquisition zone is shown in black. 
 
4.2.2. Barrier Island Habitats 

I set the model targets to be generalized habitat classes from a geomorphology-

based habitat classification scheme that was recently used for a 2015 Dauphin Island 

habitat map (Table 4.1; Figure 4.3; Enwright et al., in press). The habitat generalizations 

that I applied involved combining habitat classes that may occupy the same geomorphic 

setting yet are regulated by factors that I did not include in the model, such as 

disturbance. Specifically, these included combining meadow and unvegetated barrier 

flat habitats into a single habitat class (i.e., barrier flat) and, likewise, combining forest 

and scrub/shrub into a single habitat class (i.e., woody vegetation). Each habitat in the 

model classification scheme is linked to a tidal zone (i.e., subtidal, intertidal, 

supratidal/upland; Figure 4.3). My research questions are mainly focused on predicting 

habitats; therefore, I did not make any predictions of changes to developed areas. 

These developed areas were extracted from the 2015 Dauphin Island habitat map and 

excluded from the machine learning prediction model input and output.  
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Table 4.1. Descriptions of the habitat classes included in the Dauphin Island habitat 
model. 

Habitat Description Source 

Barrier flat Barrier flat includes flat or gently sloping supratidal/upland 
areas that are located on the backslope of dunes, 
unvegetated washover fans, and areas along estuarine 
shorelines. Barrier flat habitat can be unvegetated or 
vegetated (i.e., meadow). 

Leatherman 
(1979); Lucas 
and Carter (2010)  

Beach Beach includes bare or sparsely vegetated supratidal areas 
that are located upslope of the intertidal beach and marine-
water habitats. These habitats are located along shorelines 
with high wave energy.  

Cowardin et al. 
(1979) 

Developeda Developed includes areas dominated by constructed 
materials (i.e., transportation infrastructure, residential, and 
commercial areas). 

Homer et al. 
(2015) 

Dune Dunes are supratidal features developed via Aeolian 
processes with a well-defined relative elevation. Dune 
habitat can be vegetated or unvegetated. 

Acosta et al. 
(2005) 

Intertidal beach Intertidal beach includes bare or sparsely vegetated 
intertidal wetlands located along the ocean-facing side of the 
island that are adjacent to high energy shorelines. 

Cowardin et al. 
(1979) 

Intertidal flat Intertidal flat includes bare or sparsely vegetated intertidal 
wetlands that are adjacent to estuarine-water and along low 
energy shorelines. 

Cowardin et al. 
(1979) 

Intertidal marsh Intertidal marsh includes all intertidal wetlands with 30% or 
greater areal cover by erect, rooted, herbaceous 
hydrophytes. 

Cowardin et al. 
(1979) 

Water-estuarine Water-estuarine includes all areas of subtidal water and 
ponds on the back-barrier side of the island. These areas 
rarely have salinity greater than 30 ppt and generally has 
less than 30% cover of vegetation. 

Cowardin et al. 
(1979) 

Water-fresh Water-fresh includes all areas of supratidal/upland water 
that generally have less than 30% cover of vegetation. 

Cowardin et al. 
(1979) 

Water-marine Water-marine includes all areas of subtidal water found 
offshore of the ocean-facing side of the island. These areas 
are found along high energy coastlines and/or are areas that 
occasionally experience salinity levels greater than or equal 
to 30 ppt and generally has less than 30% cover of 
vegetation. 

Cowardin et al. 
(1979) 

Woody 
vegetation 

Woody vegetation includes supratidal/upland scrub/shrub 
and forested areas where woody vegetation height is 
greater than about 0.5 m. Woody vegetation coverage 
should generally be greater than 30 percent.  

Homer et al. 
(2015); Cowardin 
et al. (1979) 

Woody wetland Woody wetland includes all supratidal/upland wetlands 
dominated by woody vegetation with a vegetation height 
greater than about 0.5 m. Woody vegetation coverage 
should generally be greater than 30 percent. 

Cowardin et al. 
(1979) 

aDeveloped was not modeled in this effort. I assumed there were no changes in developed 
areas from the 2015 habitat map. 
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Figure 4.3. Examples of the habitat classes for the barrier island habitat modeling effort 
on Dauphin Island, Alabama, USA. The classes are linked to tidal regime (see legend in 
lower left corner of the figure). The developed class was not shown since it was not 
explicitly modeled in this effort. Modified from Enwright et al. (in press) with permission. 

 

4.2.3. Remote Sensing Data and In Situ Data 

I used topobathymetric DEMs (TBDEMs) as the primary data source for 

landscape position information. The contemporary TBDEM was developed from a 1-m 

bare-earth DEM from lidar data collected in January 2015 by Digital Aerial Solutions, 

LLC (DAS, Riverview, Florida, USA). The TBDEM was produced by DAS and the U.S. 

Geological Survey (USGS). The contemporary bathymetric data for much of the 

nearshore area was from a 20-m DEM developed from single-beam sonar surveys by 

the USGS in 2015 (DeWitt et al., 2015). Bathymetric data for the remainder of the study 

area was from the 3-m USGS Coastal National Elevation Database TBDEM (CoNED; 

Thatcher et al., 2016) for the northern Gulf of Mexico, which includes historical data 

from various periods between 1920 through 1988. I developed a seamless 10-m 

TBDEM by converting the rasters to points and using inverse distance weighted 
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interpolation to combine the datasets. The rationale for selecting 10 m for the model 

resolution was to use a spatial resolution that could provide insights on whether this 

habitat model framework could be used with spatial resolutions that could be compatible 

with irregular grids from hydrodynamic numerical models for forecasting geomorphology 

(Passeri et al., 2018).  

The CoNED TBDEM was used for the hindcast TBDEM. Topographic data for 

the subaerial portion for most of the island in this dataset was from data collected via 

the USGS Experimental Advanced Airborne Research Lidar (Bonisteel et al., 2009) in 

2007, although a small area along the northern portion of eastern Dauphin Island and 

Little Dauphin Island (i.e., the narrow island on the northeastern end of the study area 

that runs from northwest to the southeast; Figure 4.2) was from lidar data from 2002 

collected by Mobile County, Alabama. I resampled the CoNED to 10 m using bilinear 

interpolation. 

I used orthophotography as ancillary data for model validation via 

photointerpretation. The contemporary orthophotography was ~0.3-m color-infrared 

aerial orthophotography acquired on 4 December 2015, by DAS and the USGS. The 

imagery was collected with a Leica ADS100 digital camera (Wetzlar, Germany) when 

water levels were near or just below mean sea level (MSL). The hindcast 

orthophotography was 0.5-m true color orthophotography collected with a Leica ADS40 

digital camera (Wetzlar, Germany) by the USGS on 1 February 2008 for all but the 

western tip of Dauphin island. For this area, I used 1-m orthophotography captured with 

a Z/I digital mapping camera by Photo Science, Inc (Norcross, Virginia, USA) in October 

2008 due to a lack of coverage in the February orthophotography. 
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I used tide data to understand the relationship between the North American 

Vertical Datum of 1988 (NAVD88), MSL, extreme spring tide levels, and extreme water 

levels. These data were obtained from the NOAA tide gauge on the eastern end of 

Dauphin Island (Figure 4.2). All TBDEMs were transformed from NAVD88 to MSL using 

relative height differences from the NOAA tide gauge during the current NTDE. Habitat 

type and elevation data were collected during two and a half weeks in November and 

December of 2015 at 67 different transects located across seven different sites on the 

eastern half of Dauphin Island. These data were collected using a high-precision real-

time kinematic global positioning system (RTK GPS) connected to a Global Navigation 

Satellite System (GNSS, Trimble R10 and TSC3, Trimble, Sunnyvale, CA, USA). These 

data were used to develop two separate relative error assessments for the 2015 DEM. 

The first assessment explored relative error for intertidal and low-lying herbaceous 

areas, whereas the second assessment quantified relative error in dunes. I assumed 

that the error and bias in the historical TBDEM were similar to the contemporary 

TBDEM. For more information on the field data collection and relative error 

assessments, see Enwright et al. (2017, in press). 

4.2.4. Probability Surfaces 

I used Monte Carlo simulations to develop probability surfaces that indicated the 

likelihood that a pixel in the TBDEM is either in an intertidal geomorphic setting or above 

an extreme water level. To do this, I simulated the propagation of error uncertainty using 

information from the relative error assessments (i.e., error and bias). For subaerial 

areas, the Monte Carlo simulation to create the probability surface related to intertidal 

areas used the assessment from intertidal and low-lying herbaceous areas, whereas the 
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Monte Carlo simulation for the likelihood of being above a storm water level used the 

dune assessment. For submerged areas for both simulations, I used recommendations 

from Byrnes, Baker, and Li (2002) for the RMSE of bathymetry data for nearshore 

waters and assumed bias was negligible. The lower and upper elevation thresholds for 

the intertidal probability surface were the lowest astronomical tide and the highest 

astronomical tide observed during the NTDE at the Dauphin Island, respectively 

(Cowardin et al., 1979). The elevation threshold for the extreme water probability 

surface was set to be the extreme water level with a 10% annual exceedance 

probability from the NOAA’s Extreme Water Analyses for Dauphin Island (Zervas, 2013) 

that was updated for 2016 (1.13 m relative to MSL) to account for the sea-level rise 

trend observed at the Dauphin Island tide gauge (NOAA, 2013). For more information 

on the probability rasters and Monte Carlo simulations, see Enwright et al. (2018, in 

press).  

4.2.5. Tidal zone determination 

Because the habitat classes are linked to tidal zones (Figure 4.3), it is important 

to be able to automate the extraction of tidal zones from the TBDEM. I used the 

intertidal probability surfaces to separate the model domain by tidal zone. Subtidal 

areas were pixels that had a probability of being intertidal that was less than 0.5 and 

had an elevation less than MSL. Intertidal areas were areas with a probability of being 

intertidal greater than or equal to 0.5. The connectivity of the raster cells was defined by 

the queen’s move rule, which searches for interconnected cells to expand tidal influence 

in both cardinal and diagonal directions and removes isolated low-lying areas (Poulter 
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& Halpin, 2008). After subtidal and intertidal areas were identified, the remaining areas, 

which included the isolated low-lying areas, were classified as supratidal/upland. 

4.2.6. Predictor variable processing 

I used the TBDEM to develop numerous landscape position predictor variables 

based on literature-derived linkages of landscape position to barrier island ecology and 

habitat distribution (Anderson et al., 2016; Foster et al., 2017; Halls et al., 2018; Young 

et al., 2011). The predictor variables were related to elevation or X,Y coordinates (i.e., 

proximity and direction; Figure 4.4). I determined the value of these predictor variables 

for each 10-m pixel in the TBDEM. I used the topographic position index, which was first 

proposed by Weiss (2001), as a measure of relative topography. This is calculated by 

subtracting the elevation for a single pixel to that of a neighborhood. Halls et al. (2018) 

used the topographic position index to extract dune habitat. The elevation to the south 

variables were calculated by taking the median of the maximum elevation for three 22-

degree wedge-shaped kernels radiating to the south with radii of 1-km and 8-km. The 

distance from the Mobile-Tensaw River Delta was a cost distance, which restricted the 

distance calculation to subtidal areas identified from the TBDEMs. To do this, I created 

a cost surface that only included subtidal areas (i.e., intertidal, supratidal, and upland 

areas were set to “NoData”). For the Euclidean direction from the center variable 

(Figure 4.4), I determined Euclidean direction from centroids of 5-m cross-shore 

transects. I recoded this variable to “1” for directions between 90 degrees and 270 

degrees, otherwise the value was set to “0”. 
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Figure 4.4. Landscape position predictor variables for the barrier island habitat 
modeling effort on Dauphin Island, Alabama, USA. The imagery source data is 0.3-m 
color-infrared orthophotography acquired in December 2015 and the elevation data 
source data is a 1-m digital elevation model from January 2015. Both of these data were 
collected by Digital Aerial Solutions, LLC (Riverview, FL, USA) and the U.S. Geological 
Survey. 

 
4.2.7. Habitat Modeling 

The first step in the modeling process was to develop a habitat model for each 

tidal zone from contemporary data (Figure 4.5). I used the 2015 habitat map (solid 

outline in Figure 4.2; Enwright et al., in press) to develop training and validation 

datasets. These data were stratified among tidal zones and by habitat types within tidal 

zones to be proportional of the habitat strata from the 2015 habitat map (Table 4.2; 

Enwright et al., in press). With a minimum of 42 training points, I ensured that I had at 

least 30 training points for each class for training datasets made from 70% random 

permutations. To limit spatial autocorrelation issues with training data, I created random 

points per class through an iterative process aimed at maximizing the minimum distance 

between points. I used a similar approach to control the minimum sample distance per 
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habitat class for all random samples developed in this effort (i.e., training data and 

validation data for the contemporary and hindcast outputs). The validation dataset 

included 1,000 points per tidal zone stratified by the areal coverage of habitat classes 

predicted per tidal zone. Areas within 10 m of the training samples were excluded from 

the validation set. Furthermore, to avoid the influence from human constructions, I 

buffered developed areas from the 2015 habitat map by 10 m and excluded these areas 

from the validation sampling frame. Mapping intertidal areas from aerial 

orthophotography can be difficult since the imagery just shows water levels from a 

single snapshot. Thus, I excluded intertidal areas that were below MSL in the 

contemporary TBDEM (Enwright et al., in press) from the contemporary validation 

assessment. Following guidelines from Congalton and Green (2009) for accuracy 

assessment, I attempted to include at least 50 points per class, but I was only able to 

include around 30 points in woody wetland and water-fresh habitats because of the 

limited areal coverage of these habitats and the constraint of the minimum distance 

criterion.    
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Figure 4.5. Workflow for the barrier island habitat model development for Dauphin 
Island, Alabama, USA. (a) Overview of process for developing and validating the 
contemporary model for predicting barrier island habitats using a habitat map and a 
topobathymetric (TBDEM) from 2015; (b) Overview of the process for predicting barrier 
island habitats using historical data from the USGS Coastal National Elevation Dataset 
(CoNED) TBDEM using the model fitted with contemporary data (i.e., hindcast). 
 

I used MathWorks® MATLAB 2016b (Natick, Massachusetts, USA) for model 

fitting and prediction. I used the MATLAB Classification Learner application in the 

Statistics and Machine Learning Toolbox to fit and assess KNN, SVM, and RF models 

for several MATLAB model presets, such as various neighborhood sizes, weights, and 

distance metrics for KNN models, and kernel scale and kernel function for SVM models 

(Appendix C). I opted to use standard MATLAB model presets since this model was 

developed from a single snapshot of barrier island habitat data and barrier islands are 

dynamic ecosystems that can change gradually from coastal processes, including 

currents and tides or rapidly from episodic events, such as storms. Based on five 

permutations of the training data, I selected the best performing KNN, SVM models 

using five-fold cross-validation for each tidal zone (Tables C.1–C.3). These models 
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were combined with the RF models for further validation. For KNN and SVM models, I 

followed general recommendations to standardize the predictor variables to scale the 

feature space distance for these models (James et al., 2013). Table 4.2 lists the 

variables used per model with rationale. To illustrate how landscape position can 

influence barrier island habitats, I used the MATLAB Distribution Fitting application in 

the Statistics and Machine Learning Toolbox to plot univariate probability density 

functions for elevation and distance from the ocean-facing shoreline for the 

supratidal/upland habitats. For the probability density plots, I used non-parametric 

curves with bandwidths that best fit the data based on visual inspection. 

Table 4.2. Response variables (i.e., habitat classes) and predictor variables per tidal 
zone for the habitat model for Dauphin Island, Alabama, USA. 
Tidal 
zone 

Habitat (number of 
training points) 

Predictor variables and 
source Source 

Subtidal 
Water-estuarine (1,000) 
Water-marine (1,000) 

(1) Distance from Mobile-
Tensaw River Delta 

(2) Direction from center  

(1–2) Cowardin et al. (1979) 

Intertidal 
Intertidal flat (252) 
Intertidal beach (50) 
Intertidal marsh (121) 

(1) Elevation 
(2) Elevation to the south 

(8-km) 
(3) Distance from ocean-

facing shoreline 
(4) Distance from back-

barrier shoreline  

(1) Cowardin et al. (1979); 
Foster et al. (2017); 
Young et al. (2011); 
Anderson et al. (2016); 
Zinnert et al. (2017) 

(3–4) Young et al. (2011) 

Supratidal
/upland 

Barrier flat (484) 
Beach (99) 
Dune (184) 
Water-fresh (43) 
Woody vegetation (327) 
Woody wetland (43) 

(1) Elevation   
(2) Elevation to the south 

(1-km) 
(3) Topographic position 

index (30-m) 
(4) Topographic position 

index (100-m) 
(5) Distance from ocean-

facing shoreline  
(6) Distance from back-

barrier shoreline  

(1) Cowardin et al. (1979); 
Foster et al. (2017); 
Young et al. (2011); 
Anderson et al. (2016); 
Zinnert et al. (2017) 

(3–4) Wernette et al.   
      (2016);  
      Halls et al. (2018);    
      Enwright et al. (in       
      review) 
(5–6) Young et al. (2011) 

 
To avoid overfitting a single model, I trained 100 models per tidal zone from 70% 

of the training set selected by random permutations. For each cell, the majority habitat 

class of the 100 predictions was chosen as the final prediction. The intertidal zone and 
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the supratidal/upland zone models were applied to each cell in the 10-m raster; 

however, to increase efficiency of the subtidal zone models, I made predictions for a 

100-m raster and then converted these data to a 10-m raster using inverse distance 

weighted interpolation.  

I used the validation points to conduct an accuracy assessment and quantify the 

overall accuracy and the producer’s accuracy and user’s accuracy for each class. For 

each assessment, I calculated a deterministic and fuzzy estimate for all accuracy 

statistics following guidelines by Congalton and Green (2009) and Woodcock and Gopal 

(2000). The fuzzy accuracy estimate allows classification of: (1) exact match (e.g., 

woody vegetation in model results and orthophotography); (2) acceptable match due to 

landscape position and geomorphic setting (e.g., calling a location Intertidal beach or 

water-marine along ocean-facing shoreline); and (3) unacceptable/error (e.g., intertidal 

marsh located on the high energy, ocean-facing shoreline). Fuzzy accuracy is well 

suited for assessing barrier island habitats due to dynamic transitions like open water 

classes and intertidal classes, which are dependent on water level.  

To determine the best model per tidal zone (i.e., from the subset of models, 

which included the RF models and the top-performing KNN and SVM models), I used 

the tidal zone delineations from the contemporary 10-m TBDEM to extract the validation 

points that fall within the tidal zone. However, because the validation data was from the 

1-m 2015 habitat map, there may be some discrepancies between the reference labels 

within a tidal zone due to temporal lag and spatial resolution differences. Thus, I omitted 

validation points that have a reference label other than what would be expected in the 
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tidal zone being assessed (e.g., I omitted points that had a reference label of intertidal 

beach from the supratidal/upland zone).  

Next, I combined the best model per tidal zone and tested whether the 

application of a suite of post-processing routines enhanced the model results. These 

included the application of a majority filter to reduce noise along with several user-

defined constraints based on the theoretical understanding of barrier island habitats 

from the literature regarding elevation and X,Y coordinates (Table 4.3; Cowardin et al., 

1979; Leatherman, 1979; Young et al., 2011). For example, on non-fetch-limited barrier 

islands, emergent marsh vegetation typically occurs where wave energy is lower, 

whereas unvegetated intertidal mudflats or intertidal beach habitats are more common 

where wave energy is higher (Roland & Douglass, 2005). Therefore, intertidal marsh 

habitat found along the ocean-facing shore were changed to intertidal beach habitat. An 

additional example is that dunes are not expected to be sustainable at low-lying 

elevations, such as those below a common extreme storm water level (Sallenger, 

2000). Therefore, dune habitat that had a probability less than 0.5 for being above the 

extreme storm water level were recoded to barrier flat (Enwright et al., in press). These 

rules were applied in a step-wise fashion (Table 4.3). Some of the thresholds used are 

directly related to tidal datums (e.g., EHWS), whereas others, such as sink depth, were 

determined by trial-and-error with the final value being selected by visual inspection. I 

also explored whether the use of a four-pixel minimum mapping unit (MMU) impacted 

model performance. I selected four pixels as the maximum MMU based on visual 

inspection of results (i.e., small habitat areas can be lost if the MMU is too high). 
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Table 4.3. The type, condition, and order for user-defined rules applied to model results 
via post-processing by habitat class for the habitat model for Dauphin Island, Alabama, 
USA. 
Type of 
correction Habitat Condition Order 

Elevation Dune Dune areas that had a probability less than 0.5 for 
being above the extreme storm water level were 
changed to barrier flat. 

2 

Elevation - 
depressional 
habitats 

Barrier flat Barrier flat areas that had a sink depth greater than or 
equal to 0.5 m were changed to water-fresh. 

11 

Intertidal beach Intertidal beach areas that had a sink depth greater 
than or equal to 0.01 m should be commonly 
inundated with standing water and were changed to 
water-marine. 

7 

Intertidal flat Intertidal flat areas that had a sink depth greater than 
or equal to 0.01 m should be commonly inundated 
with standing water and were changed to water-
estuarine. 

8 

Water-fresh Water-fresh areas that did not have a sink depth 
greater than or equal to 0.5 m were changed to barrier 
flat. 

10 

Woody wetland Woody wetland areas that did not have a sink depth 
greater than or equal to 0.1 m were recoded to be 
woody vegetation. 

1 

X,Y 
coordinates 

Intertidal beach Intertidal beach areas that were found to be closer to 
the back-barrier shoreline than the ocean-facing 
shoreline were changed to intertidal flat. 

3 

Barrier flat Barrier flat areas that had intertidal beach within a 5-
by-5 pixel neighborhood were changed to beach due 
to the proximity to the ocean-facing shoreline. 

9 

Intertidal beach Intertidal beach areas that are located behind 
supratidal areas with an elevation to the south for 1 
km greater than or equal to 0.6 m were changed to 
intertidal flat. 

5 

Intertidal flat Intertidal flat areas that were closer to water-marine 
than water-estuarine were changed to intertidal flat. 

6 

Intertidal 
marsh/Intertidal 
flat 

Intertidal marsh areas should be sheltered from high 
energy areas (Roland & Douglass, 2005). These 
areas that did not have an elevation to the south for 8 
km greater than or equal to 0.448 m (i.e., EHWS) 
were changed to intertidal beach. This rule was also 
applied to intertidal flat. 

4 

 
Lastly, I applied the final model to hindcast habitats based on the predictor 

variables developed from the CoNED TBDEM (Figure 4.5). To validate the hindcast 

results, I developed a hindcast validation dataset with about 300 points per zone (n = 

1,029). These data consisted of stratified random points within each habitat model 

class. I assigned reference labels to the hindcast validation points through 
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photointerpretation of the orthophotography and inspection of the TBDEM and 

probability surfaces and assessed deterministic and fuzzy map accuracies.  

4.3. Results  

Similar to Young et al. (2011), I found that habitats on Dauphin Island are related 

to landscape position (Figure 4.6). For example, these plots show that beach habitat 

tended to be located near the ocean-facing shore and had a mode for elevation of 

around 1 m relative to MSL, whereas woody vegetation had a mode for elevation of just 

under 2 m relative to MSL and was further away from the ocean-facing shoreline. 

Collectively, these plots confirmed that landscape position variables are important 

predictors for supratidal/upland habitats on Dauphin Island. 

 
Figure 4.6. Probability density functions developed from the training data for the 
supratidal/upland zone from the contemporary (i.e., 2015) habitat model for Dauphin 
Island, Alabama, USA. (a) Distance (m) from the ocean-facing shoreline up to 1,000 m; 
(b) Elevation (m) up to 5 m; and (c) a bivariate plot for these two variables. 
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The top performing models for the subtidal zone using five-fold cross validation 

were coarse KNN, fine gaussian SVM, and RF (Table C.1). For the intertidal zone, the 

top performing models using five-fold cross validation were weighted KNN, cubic SVM, 

and RF (Table C.2). Lastly, the top performing models for the supratidal/upland zone 

using five-fold cross validation were weighted KNN, quadratic SVM, and RF (Table C.3). 

With more robust model development (i.e., using 100 random permutations of the 

training data) and assessment using the validation data from the 2015 habitat map, the 

performance of all of the models was similar for the subtidal zone (Figure C.1a); 

however, the coarse KNN model was selected for the subtidal zone based on visual 

inspection of the results. I found that RF performed the best for the intertidal and 

supratidal/upland zones (Figure C.1b–c).  

As previously mentioned, these models were combined to create the 

contemporary model results. The combined contemporary model had a deterministic 

overall accuracy of 66.9% and a fuzzy overall accuracy of 80.3% (Figure 4.7a–b; Table 

C.4). The application of post-processing yielded a slight enhancement to the 

deterministic and fuzzy overall accuracy (Figure 4.7c–d; Table C.5). I selected the 

model with post-processing and a four-pixel MMU as the final model. This model had a 

deterministic overall accuracy of 67.5% and a fuzzy overall accuracy of 82.1% (Figure 

4.7e–f; Table 4.4). However, I did not find that the application of the MMU led to a 

negative impact on the results (Figure 4.7c–f; Table C.4–5). 
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Figure 4.7. Producer’s and user’s accuracy results for the barrier island habitat model 
effort for Dauphin Island, Alabama, USA. (a–b) Deterministic accuracies (a) and fuzzy 
accuracies (b) for the final contemporary model without post-processing; (c–d) 
Deterministic accuracies (c) and fuzzy accuracies (d) for the final contemporary model 
with post-processing, but no minimum mapping unit (MMU); (e–f) Deterministic 
accuracies (e) and fuzzy accuracies (f) for the final contemporary model with post-
processing and a four-pixel MMU; (g–h) Deterministic accuracies (g) and fuzzy 
accuracies (h) for the hindcast model with post-processing and a four-pixel MMU. OA:  
Overall accuracy of the model results. 
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Table 4.4. Error matrix with deterministic and fuzzy accuracies for the final 
contemporary model results (i.e., with post-processing and a four-pixel minimum 
mapping unit) for Dauphin Island, Alabama, USA. For the off-diagonal cells, the first 
value indicates deterministic count and the second value indicates the fuzzy count. BF: 
Barrier flat; B: Beach; CT: Column total; D: Dune; DPA: Deterministic producer’s 
accuracy; DOA: Deterministic overall accuracy; DUA: Deterministic user’s accuracy; 
FOA: Fuzzy overall accuracy; FPA: Fuzzy producer’s accuracy; FUA: Fuzzy user’s 
accuracy; IB: Intertidal beach; IF: Intertidal flat; IM: Intertidal marsh; RT: Row total; WE: 
Water-estuarine; WF: Water-fresh; WM: Water-marine; WV: Woody vegetation; WW: 
Woody wetland.  

  Reference data   

 
Class BF B D IB IF IM WE WF WM WV WW RT 

DUA 
(%) 

FUA 
(%) 

M
o

d
e

l 
d

a
ta

 

BF 307 4;2 43;2 0;0 14;7 23;2 13;0 4;0 1;1 36;16 0;0 495 62.0 72.1 

B 9;9 61 1;1 1;15 1;4 4;0 1;0 0;0 7;28 0;1 0;0 143 42.7 83.2 

D 27;1 0;1 90 0;0 0;2 0;0 0;0 0;0 0;0 3;1 0;0 125 72.0 74.4 

IB 0;7 17;1 0;0 20 0;11 5;0 2;38 0;0 4;92 0;0 0;0 197 10.2 85.8 

IF 9;6 0;0 1;0 0;0 90 35;35 62;118 0;0 0;0 3;1 0;0 360 25.0 69.4 

IM 14;9 2;0 1;0 0;0 16;4 327 53;3 0;0 1;0 0;1 0;0 431 75.9 79.8 

WE 4;0 0;0 0;0 0;0 1;0 6;0 616 0;0 0;0 0;0 0;0 627 98.3 98.3 

WF 5;0 0;0 0;0 0;0 0;0 0;0 6;0 23 0;0 2;0 0;0 36 63.9 63.9 

WM 0;0 2;0 0;0 1;0 0;0 0;0 69;1 0;0 319 0;0 0;0 392 81.4 81.6 

WV 14;9 0;0 0;0 0;0 0;0 3;0 0;0 1;0 0;0 208 5;0 240 86.7 90.4 

WW 0;0 0;0 0;0 0;0 0;0 0;0 0;0 0;0 0;0 16;3 26 45 57.8 64.4 

 CT 430 90 139 37 150 460 982 28 453 291 31 3,091   
 DPA 

(%) 71.4 67.8 64.8 54.1 60.0 71.4 62.7 82.1 70.4 71.5 83.9 
 

  
 FPA 

(%) 80.9 72.2 66.9 94.6 77.3 83.5 79.0 82.1 97.1 79.4 83.9 
 

  

  DOA (%): 67.5; FOA (%): 82.1 

 
While overall accuracy is a helpful measure, it is also important to assess class-

specific performance reported by producer’s and user’s accuracy. For the final 

contemporary model, the top three classes with regard to deterministic producer’s 

accuracy were woody wetland (83.9%), water-fresh (82.1%), and woody vegetation 

(71.5%). The three classes with the highest fuzzy producer’s accuracy were water-

marine (97.1%), intertidal beach (94.6%), and woody wetland (83.9%). The classes with 

the lowest deterministic and fuzzy producer’s accuracy were intertidal flat (60.0%) and 

dune (66.9%), respectively. The three classes with the highest deterministic user’s 

accuracy were water-estuarine (98.3%), woody vegetation (86.7%), and water-marine 
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(81.4%). The three classes with the highest fuzzy user’s accuracy were water-estuarine 

(98.3%), woody vegetation (90.4%), and intertidal beach (85.8%). The classes with the 

lowest deterministic and fuzzy user’s accuracy were intertidal beach (10.2%) and water-

fresh (63.9%), respectively.  

Figure 4.7a–f highlights the change in accuracy as a result from the use of fuzzy 

accuracy. For the final model, the use of fuzzy accuracy led to a median increase of 

producer’s accuracy of 9.5% with an interquartile range of 15.2% (Figure 4.7e–f), while 

the user’s accuracy was more variable with a median increase of user’s accuracy of 

3.9% with an interquartile range of 40.3%. In addition to the use of fuzzy accuracy, I 

found that the model results were often enhanced when post-processing routines were 

applied. Compared to the original model results, the three highest magnitude changes 

in deterministic producer’s accuracy as a result of the user-defined rules were water-

fresh (-14.3%), intertidal beach (+10.8%) and dune (-5.7%). As a result of the user-

defined rules, the three highest magnitude changes in deterministic user’s accuracy 

were water-fresh (+11.0%), woody wetland (+6.9%) and dune (+6.4%). Figure 4.8 

shows additional evidence to support the use of post-processing by contrasting the 

western tip of Dauphin Island without post-processing (Figure 4.8a) and with post-

processing (Figure 4.8b). Besides the reduction in dune habitat, a few notable 

differences include the reduction of intertidal beach areas that are found behind beach 

habitat, introduction of estuarine ponds within intertidal marsh, and the reduction in the 

salt-and-pepper effect. When comparing the areal coverage per supratidal/upland 

habitat, I found the overall comparison of percent difference per habitat class more 

closely matches the 2015 habitat map (Enwright et al., in press). 



 

92 
 

 
Figure 4.8. Barrier island habitat contemporary (i.e., 2015) habitat model outputs and 
percent difference comparison for supratidal/upland habitat compared to the 2015 
habitat map (Enwright et al., in press), Dauphin Island, Alabama, USA. (a) 
Contemporary model without post-processing; (b) Contemporary model with post-
processing and four-pixel minimum mapping unit. 

 
Overall, the model did generalize well for the hindcast with a deterministic overall 

accuracy of 77.8% and a fuzzy overall accuracy of 92.4% (Table 4.5; Figure 4.7g–h). 

With regard to deterministic producer’s accuracy, the top three classes were water-

marine (97.8%), water-fresh (97.4%), and intertidal beach (97.0%). The three classes 

with the highest fuzzy producer’s accuracy were water-estuarine (99.5%), intertidal 

beach (98.5%), and water-marine (97.8%). The classes with the lowest deterministic 

and fuzzy producer’s accuracy were intertidal flat (35.9%) and woody vegetation 

(79.3%), respectively. The three classes with the highest deterministic user’s accuracy 

were water-estuarine (98.4%), beach (95.9%), and dune (94.0%). The three classes 

with the highest fuzzy user’s accuracy were water-estuarine (98.4%), water-marine 

(98.4%), and beach (95.9%). The classes with the lowest deterministic and fuzzy user’s 

accuracy were woody wetland/intertidal marsh (38.8%) and woody wetland (61.2%), 

respectively. 
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Table 4.5. Error matrix with deterministic and fuzzy accuracies for the hindcast model 
results (i.e., with post-processing and a four-pixel minimum mapping unit) for Dauphin 
Island, Alabama, USA. For the off-diagonal cells, the first value indicates deterministic 
count and the second value indicates the fuzzy count. BF: Barrier flat; B: Beach; CT: 
Column total; D: Dune; DPA: Deterministic producer’s accuracy; DOA: Deterministic 
overall accuracy; DUA: Deterministic user’s accuracy; FOA: Fuzzy overall accuracy; 
FPA: Fuzzy producer’s accuracy; FUA: Fuzzy user’s accuracy; IB: Intertidal beach; IF: 
Intertidal flat; IM: Intertidal marsh; RT: Row total; WE: Water-estuarine; WF: Water-
fresh; WM: Water-marine; WV: Woody vegetation; WW: Woody wetland.  

  Reference data   

 
Class BF B D IB IF IM WE WF WM WV WW RT 

DUA 
(%) 

FUA 
(%) 

M
o

d
e

l 
d

a
ta

 

BF 121 5;2 5;3 0;0 0;0 0;0 1;0 1;0 0;0 1;5 0;0 144 84.0 91.0 

B 1;0 47 1;0 0;0 0;0 0;0 0;0 0;0 0;0 0;0 0;0 49 95.9 95.9 

D 2;0 0;0 47 0;0 0;0 0;0 0;0 0;0 0;0 1;0 0;0 50 94.0 94.0 

IB 0;0 0;0 0;0 65 1;7 0;0 0;0 0;0 0;0 0;0 0;0 73 89.0 98.6 

IF 0;0 0;0 0;0 0;1 57 5;3 0;0 0;0 0;0 0;0 0;0 66 86.4 92.4 

IM 3;1 0;0 0;0 1;0 7;85 62 0;0 0;0 0;0 1;0 0;0 160 38.8 92.5 

WE 0;0 0;0 0;0 0;0 1;0 0;0 183 0;0 2;0 0;0 0;0 186 98.4 98.4 

WF 6;2 0;0 0;0 0;0 0;0 0;0 0;1 37 0;0 2;2 0;0 50 74.0 84.0 

WM 0;0 1;0 0;0 0;0 1;0 0;0 0;25 0;0 89 0;0 0;0 116 76.7 98.4 

WV 5;1 0;0 2;0 0;0 0;0 2;0 0;0 0;0 0;0 74 1;1 86 86.1 88.4 

WW 0;0 0;0 0;0 0;0 0;0 0;0 0;0 0;0 0;0 19;11 19 49 38.8 61.2 

 CT 142 55 58 67 159 72 210 38 91 116 21 1,029   
 DPA 

(%) 85.2 85.5 81.0 97.0 35.9 86.1 87.1 97.4 97.8 63.8 90.5 
 

  
 FPA 

(%) 88.0 89.1 86.2 98.5 93.7 90.3 99.5 97.4 97.8 79.3 95.2 
 

  

  DOA (%): 77.8; FOA (%): 92.4 

 

4.4. Discussion 

This effort builds on the work of Young et al. (2011) and Foster et al. (2017) by 

using machine learning algorithms to develop spatially explicit predictions of barrier 

island habitat based on landscape position information. I found that the flexibility of 

machine learning algorithms makes them well suited to predict barrier island habitats. In 

some cases, the individual parameters followed Gaussian distributions for particular 

habitats (Figure 4.6a–b); however, the distributions can become complex in the n-

dimensional space (Figure 4.6c). Furthermore, machine learning algorithms are not 

concerned with multicollinearity from the predictor variables that could be problematic 
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for traditional models, such as multinomial logistic regression, but instead the main 

concern with machine learning is how well the model can generalize to new data 

(James et al., 2013; Shmueli, 2010). The deterministic overall accuracy for the 

contemporary model was just under 70% and the fuzzy overall accuracy was just over 

80%, whereas the hindcast deterministic overall accuracy was just under 80% and the 

fuzzy overall accuracy was over 90%.  

One challenge with the use of data-driven machine learning algorithms is that the 

algorithm can only learn relationships that are present in the training dataset. This can 

be problematic for a dynamic environment, such as barrier islands, where habitat 

transition zones can change rapidly from the impact of an episodic event, such as a 

storm. The data-driven nature of machine learning algorithms underscores the need for 

a theoretical basis in the selection of predictor variables, as done with this study. 

Similarly, the results of a model can be assessed to ensure they comply with theoretical 

understanding of barrier island habitats through post-processing routines similar to the 

ones I utilized. While the post-processing routines I used reduced the accuracies of 

some classes, the reduction was often associated with a minor increase in omission 

error. This tradeoff was justified by the overall positive increase in performance (Figure 

4.7) and overall comparison with habitat coverage (i.e., supratidal) in the 2015 habitat 

map (Figure 4.8). In order to reduce issues associated with the data-driven approach, 

future efforts could aim to augment time for space by developing additional training data 

from historical habitat maps paired with landscape position information. Additionally, 

details regarding precedent conditions relating to storminess could be added to such a 

training dataset using an approach similar to Mickey, Long, Plant, Thompson, and 
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Dalyander (2017) to characterize storminess for a period. While I used standard 

presets, a more robust training dataset would allow for model preset optimization. 

Additionally, variables that pertain to longer-term, larger-scale variables similar to the 

ones used by Gutierrez et al. (2015), such as island width and historical shoreline 

erosion rates, could also provide valuable information to improve barrier island habitat 

models. 

In addition to utilizing post-processing to refine the models results, the use of 

fuzzy accuracy also helped better evaluate the performance of a model due to flexibility 

to note uncertainties regarding the vegetative state of areas for a given time. For 

example, some areas were predicted to be intertidal marsh based on landscape position 

in the hindcast results, yet these areas only had sparse vegetation in the 

orthophotography used for validation and, at that time, may be more appropriately 

predicted as intertidal flat instead of intertidal marsh. In other words, an area could be 

predicted to be intertidal marsh based on landscape position, yet it may not be intertidal 

marsh at the time of assessment because it often takes time for habitat succession 

necessary for a marsh to develop (Mitsch & Wilson, 1996). Additionally, due to data 

availability there can be a temporal lag between the acquisitions of lidar data used for 

model development and orthophotography used for model validation. Similarly, moving 

from a detailed habitat map (Enwright et al., in press) to a general model based on 

landscape position information required some generalizations for habitat classes. For 

instance, the barrier flat habitat model class (Figure 4.3; Table 4.1) includes a wide 

spectrum of vegetation levels from densely vegetated meadow habitat to sparsely 

vegetated barrier flat (Enwright et al., in press). The reason for this type of 
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generalization was due to the difficulty of predicting vegetation succession from a model 

with landscape position alone as the vegetation state is largely controlled by exposure 

to abiotic factors, such as inundation and overwash from storm surges. Future research 

is needed to explore how landscape position and temporal lag from disturbances impact 

the probability of an area being vegetated.  

While there are developed areas on Dauphin Island, I did not incorporate urban 

growth into the model. I assumed development was constant and excluded these areas 

from validation. Alternatively, this model framework could be used to predict potential 

habitat for developed areas based on landscape position. If a researcher is interested in 

integrating urban growth into this type of model framework, then utilizing or calibrating 

an existing urban growth model such as the SLEUTH model (Slope, Land cover, 

Exclusion, Urbanization, Transportation, and Hillshade; Terando et al., 2014) may be 

desirable.  

While the model predictor variables were developed from high-resolution lidar 

DEMs (i.e., 1-m to 3-m spatial resolution), I opted to use 10 m as the spatial resolution 

to show how a model could be applied to forecast applications, which can have variable 

cross-shore and alongshore resolutions (Passeri et al., 2018). I expect that using a 

higher resolution model grid would increase the prediction performance for the dune 

class based on the increased ability to resolve relative topography from higher 

resolution data. If I was not focused on forecasting, the model framework outlined in this 

effort could be calibrated with high-resolution data. Similarly, while this effort focused on 

developing a model to predict habitats from a DEM alone, the landscape position 

information used in this study could be applied to machine learning algorithms for 
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producing contemporary or historical barrier islands habitat maps with remotely sensed 

imagery and lidar data.  

The model framework presented here can be calibrated and extended to other 

islands. While this effort developed a single global model for Dauphin Island, future 

efforts may explore the utility of developing local models based on wave energy settings 

and habitat composition. For instance, the orientation of an island could be used as an 

indicator of the need for a separate model. Dauphin Island is generally parallel to the 

mainland (i.e., generally east to west), whereas portions of the island run from the 

northwest to the southeast (Figure 4.2). Likewise, topographic state metrics could be 

used to develop meaningful model zones (Zinnert et al., 2017) using methods similar to 

that of Monge and Stallins (2016). 

The advantage of developing a model largely based on information that could be 

extracted from a TBDEM is that these models can be calibrated and used with 

numerical models for forecasting alternative future states of an island with accelerated 

sea-level rise and simulated storms. Landscape position-based habitat models can be 

coupled with hydrodynamic geomorphology models (Passeri et al., 2018) that 

incorporate coastal morphodynamics and dune evolution (Dalyander, Mickey, Passeri, 

& Plant, in review). Collectively, these types of models can provide natural resource 

managers with tools for predicting the potential future states of these ecosystems with 

and without management actions (e.g., beach nourishment, dune creation or 

restoration, marsh creation or restoration).  
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4.5. Conclusion 

In this effort, I explored whether machine learning algorithms could be used to 

predict habitat on barrier islands based on landscape position information. The model 

performance among the KNN, SVM, and RF models was similar for the subtidal zone, 

but I opted for the KNN model based on a smoother transition from water-estuarine to 

water-marine. I found that RF was the best model for the intertidal and supratidal/upland 

zones. The deterministic overall accuracy for the contemporary model was just under 

70% and the fuzzy overall accuracy was just over 80%. I tested whether model 

performance was enhanced using post-processing routines. While this process 

introduced some omission error in certain classes, such as water-fresh and dune 

classes, the post-processing routines, collectively, tended to enhance the model results 

via increases in accuracy and overall comparison with habitat coverage from the source 

map used for training data development. I found that the model did generalize well to 

new data. The hindcast deterministic overall accuracy was just under 80% and the fuzzy 

overall accuracy was over 90%. This model framework could be coupled with 

hydrodynamic geomorphology models that can incorporate coastal morphodynamics 

and dune evolution for forecasting alternative states of barrier islands with and without 

various management actions or for producing contemporary or historical detailed barrier 

island habitat maps using remotely sensed imagery and lidar. 
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CHAPTER 5. CONCLUSION 
 

Barrier islands provide important ecosystem services, including storm protection 

and erosion control to the mainland, habitat for fish and wildlife, and tourism (Barbier et 

al., 2011; Feagin et al., 2010; Sallenger, 2000). Barrier islands tend to be dynamic due 

to their location along the estuarine-marine interface. Besides gradual changes caused 

by constant forces, such as currents and tides, barrier islands face numerous threats 

including hurricanes, accelerated sea-level rise, oil spills, and anthropogenic impacts 

(Pilkey & Cooper, 2014). These threats are likely to influence the future of barrier 

islands in the latter part of the 21st century, especially as climate-related threats to 

coastal areas are expected to increase in the future (Knutson et al., 2010; Hansen et al., 

2016). As a result, natural resource managers are concerned with monitoring changes 

to these islands and modeling future states of these environments. In this dissertation, I 

outlined how barrier island habitat mapping and modeling can be enhanced using 

landscape position information and elevation uncertainty. While this dissertation is 

focused on barrier islands, this research includes many important concepts in the fields 

of geographical information science and remote sensing, including management of 

uncertainty, data fusion, object-based analyses, spatial scale, temporal scale, fuzzy 

logic, and geocomputational modeling. The remainder of this chapter includes a 

summary of each research objective along with limitations to the research and next 

steps. This section concludes with a discussion of how this dissertation fits in the 

context of a comprehensive barrier island habitat research agenda. 

Natural resource managers are concerned with monitoring the extent and 

distribution of intertidal wetlands due to the numerous valuable ecosystem goods and 
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services that these ecosystems provide (Barbier et al., 2011). For the first research 

objective of this dissertation, I applied a simple approach to enhance the results of 

automated intertidal area mapping using light detection and ranging (lidar) data. The 

level of uncertainty from data collected with conventional aerial topographic lidar 

systems is considerable within intertidal areas and can be as high as 60 cm in densely 

vegetated emergent wetlands (Buffington et al., 2016; Medeiros et al., 2015). Due to the 

lack of detailed error information, the uncertainty of lidar-based digital elevation models 

(DEMs) is often left unaddressed for habitat mapping efforts, yet the level of uncertainty 

becomes critical when studying low-relief environments, such as barrier islands, where 

centimeters can make a difference in the exposure to physically demanding abiotic 

conditions (e.g., inundation, salt spray, and wave energy) (Anderson et al., 2016; Young 

et al., 2011). To address this issue, I assumed two estimates of elevation data 

uncertainty, which included uncertainty estimated from relative accuracy assessments 

using in situ Real-Time Kinematic Global Position System (RTK GPS) data and an 

estimate included in a metadata report that followed the American Society of 

Photogrammetry and Remote Sensing’s (ASPRS) standards that accompanied the lidar 

data product. These data were used to simulate the propagation of elevation uncertainty 

into a DEM using Monte Carlo simulations for Dauphin Island, a barrier island along the 

coast of Alabama, USA. I extracted low-lying lands and intertidal areas from 

probabilistic outputs from the Monte Carlo simulations using a tidally relevant elevation 

threshold. These data were compared to low-lying lands and intertidal areas that were 

extracted from a DEM without any management of uncertainty. I found that the DEMs 

with the treatment of elevation uncertainty had higher producer’s accuracy and user’s 
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accuracy for identifying low-lying areas. For the entire island, the percentage of intertidal 

areas delineated through an automated extraction increased by up to 80% when using 

Monte Carlo analyses to treat elevation uncertainty of the lidar data. Results from a 

sensitivity analysis suggest that it could be reasonable to use error and bias values from 

literature for similar environments, conditions, and lidar acquisition characteristics in the 

event that collection of site-specific data is not feasible and/or information in the lidar 

metadata is insufficient. In this event, I found that bias values may be less sensitive than 

error, although it is critical to select a positive bias (i.e., DEM elevation overestimates 

actual elevation) value greater than 50% if the study area has abundant vegetation 

cover. These results confirmed the findings of others, which suggest that lidar DEMs 

can have a substantial level of vertical uncertainty within intertidal areas (Buffington et 

al., 2016; Medeiros et al., 2105; Schmid et al., 2011), and elevation uncertainty should 

be treated prior to conducting automated extraction of elevation-dependent habitats 

(Kidwell et al., 2017). The simple probabilistic approach presented in this research 

should provide insights to researchers for increasing the repeatability, accuracy, and 

efficiency of the delineation of tidal zones in coastal settings using lidar data. 

Furthermore, the results from the sensitivity analysis highlight how minor adjustments to 

the error and bias affect the results of delineating low-lying lands. Researchers can use 

this information to gauge whether it would be reasonable to use literature-derived error 

and bias values for similar environments, which could be helpful for instances where the 

collection of site-specific RTK GPS data is not feasible due to budget constraints or site 

accessibility. The methodology utilized in this study could be used to develop stand-

alone products with the aim of providing land managers with accurate areal coverage of 
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intertidal areas or to serve as a foundation for the identification of tidal regimes for 

detailed habitat mapping efforts. The approach outlined in this study should be 

applicable, with certain calibration, to future technological advancements, such as next-

generation lidar sensors and on-demand lidar via unmanned aerial systems (UASs). A 

byproduct of delineating the upper intertidal boundary is information on the areal 

coverage of the supratidal/upland zone. On barrier islands, supratidal/upland areas 

include habitats such as beach, dune, and barrier flat (e.g., meadow, nonvegetated 

barrier flat, and forest). Monitoring these areas is equally important to resource 

managers (Zinnert et al., 2016) because they provide important habitats for resident and 

migratory shorebirds (Galbraith et al., 2014), neotropical migrants (Lester et al., 2016), 

and sea turtles (Katselidis et al., 2014). A limitation of this effort was that the field data 

used for the site-specific RTK GPS was collected with a sample design for the validation 

of a habitat map instead of being customized for elevation uncertainty analyses. Future 

research could build on this work by collecting data with a sampling design that is more 

targeted for elevation uncertainty analyses, including sampling vegetated and 

unvegetated areas proportionally and using systematic transects to capture a gradient 

of vegetation densities. Lidar intensity data has been shown to enhance habitat 

classifications in coastal environments (Brennan & Webster, 2006; Chust et al., 2008). 

Thus, future efforts could also explore how the application of spatially variable error and 

bias based on lidar intensity enhances this framework.  

Barrier islands are dynamic environments that change over time via gradual 

processes including waves, currents, and tides or rapidly via extreme episodic events, 

such as storms. Thus, natural resource managers need repeat remote sensing-based 
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assessments of habitats for monitoring and managing these resources (Kindinger et al., 

2013). For the second research objective of this dissertation, I showed how elevation 

uncertainty and relative topography can be integrated into a methodology for mapping 

barrier island habitats. I developed a custom 17-class habitat classification scheme for 

Dauphin Island, Alabama through the review of existing barrier island habitat mapping 

efforts. This study built on the work of Halls et al. (2018) and Wernette et al. (2016) by 

integrating the use of relative topography for delineating dunes into a barrier island 

habitat mapping effort. Storms can shape dune morphology (Sallenger, 2000), thus 

extreme water levels associated with storms can serve as a reasonable dune elevation 

threshold. Thus, dunes are also elevation-dependent habitats. In addition to adding the 

tidal zone delineation from the first research objective, I also used storm water level 

observations (Zervas, 2013) to produce a probabilistic map with regard to elevations 

above an extreme water level. This research highlighted the use of elevation uncertainty 

and landscape position information for semi-automated dune habitat extraction. The 

probabilistic map with regard to elevations above an extreme water level was used to 

remove upper slopes and ridges that were identified by the topographic position index 

(TPI; Weiss, 2001) that were located in low-lying areas, such as a beach berm. This 

refinement led to an 18% decrease in the areal coverage of potential dune habitat. Next, 

the potential dune area was refined with manual edits from visual inspection. 

Collectively all of the dune refinement steps led to a 49% reduction from the original 

TPI-based potential dunes (i.e., upper slopes and ridges). These findings underscore 

the importance of refining dunes extracted from relative topography alone. The final 

habitat map had an overall accuracy of 79.2% and a Kappa statistic of 0.77. Most of the 
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confusion was associated with hummock dune areas being misclassified as meadow or 

unvegetated barrier flat. Future efforts should explore if a finer-scaled TPI and visual 

inspection enhance hummock dune mapping. Another potential opportunity is the use of 

UASs, which can provide elevation data through structure-from-motion or via onboard 

lidar (Jaakkola et al., 2010; Lin et al., 2011). Researchers are already using digital 

surface models created via structure-from-motion for geomorphic feature extraction and 

habitat classification for coastal beach-dune systems (Sturdivant et al., 2017). Two 

advantages of using UAS data are the temporal alignment of elevation and imagery 

data and the ability to collect data with a very high spatial resolution (e.g., spatial 

resolutions are commonly 15 centimeters or higher). This very high spatial resolution 

may increase the ability to detect less well-defined dunes, such as hummock dunes, in 

geospatial data. A few disadvantages of this type of data collection could include 

limitations with regard to data collection feasibility (i.e., limitations to spatial extent of the 

data collection and site accessibility) and outliers introduced from the very high spatial 

resolution data (e.g., increased detection of vegetation canopy shadow). The framework 

outlined in this work utilized object-based image analysis, which performs well with very 

high resolution geospatial data (Blaschke et al., 2014). I expect that advancements in 

sensor technology, such as single photon and Geiger-mode lidar sensors (Stoker et al., 

2016) and UAS-based lidar data collection (Jaakkola et al., 2010; Lin et al., 2011), 

should lead to a greater frequency and coverage of high-quality elevation data for use 

by scientists and natural resource managers. The Monte Carlo and mapping framework 

outlined in this study provide a repeatable and more accurate method for automated 

extraction of elevation-dependent habitats and could be implemented with these data as 



 

105 
 

well as the orthophotography and airborne topographic lidar used in this study. 

Collectively, this approach should allow geographers and remote sensing analysts to 

make better use of the increasingly available high-quality geospatial data for mapping 

and monitoring barrier island habitats while reducing subjectivity in classes, such as 

dunes and intertidal habitats. These methods also should increase the overall accuracy 

of tidal regime information through the treatment of elevation uncertainty. 

To make more informed decisions today, natural resource managers rely on 

models for predictions of likely future alternative states of an area. For the third research 

objective of this dissertation, I integrated methods and data from my prior research 

objectives to predict barrier island habitats based on landscape position-habitat linkages 

identified in the literature (Anderson et al. 2016; Foster et al. 2017; Halls et al., 2018; 

Young et al. 2011). In this effort, I explored whether machine learning algorithms (i.e., 

K-nearest neighbor (KNN), support vector machine (SVM), and random forest (RF)) 

could be used to predict barrier island habitats based on landscape position information 

for Dauphin Island, Alabama. I used a contemporary habitat map to identify landscape 

position linkages for habitats, such as beach, dune, woody vegetation, and marsh. I 

used deterministic accuracy, fuzzy accuracy, and hindcasting to validate the model. 

Because barrier island habitats can be separated by tidal zones, I developed separate 

models per tidal zone (i.e., subtidal, intertidal, and supratidal/upland). I found machine 

learning algorithms were well suited for predicting barrier island habitats using 

landscape position. The model performance among the KNN, SVM, and RF models was 

similar for the subtidal zone, but I opted for the KNN model based on a smoother 

transition from water-estuarine to water-marine. I found that RF was the best model for 



 

106 
 

the intertidal and supratidal/upland zones. The deterministic overall accuracy for the 

contemporary model was just under 70% and the fuzzy overall accuracy was just over 

80%. I tested whether the model performance was enhanced using post-processing 

routines, which included noise reduction and the posteriori application of expert rules 

based on my theoretical understanding of barrier island habitats. While this process 

introduced some omission error in certain classes, such as water-fresh and dune, the 

post-processing routines, collectively, tended to enhance the model results. The 

rationale for this was based on a slight increase in overall accuracy, increases in user’s 

accuracies, and the overall comparison with habitat coverage from the source map used 

for the training data development. I found that the model was able to generalize well 

when predicting habitats from historical data (i.e., hindcast). The hindcast deterministic 

overall accuracy was just under 80% and the fuzzy overall accuracy was over 90%. 

Engineers and coastal researchers could use a similar approach as the one outlined 

here to develop landscape position-based habitat models that could be coupled with 

morphological models to make predictions of future conditions on barrier islands. The 

models developed in this effort could be applied to future morphology predictions with 

and without restoration actions to provide important information to natural resource 

managers for making future-focused management decisions. This could allow planners 

to utilize a structured decision-making process, such as the one used by Dalyander et 

al. (2016) to gauge how restoration actions (i.e., including a no-action alternative) could 

positively or negatively impact habitat resources over time. This information could 

provide insights to natural resource managers and planners on how a restoration project 

and even the restoration project placement location may allow or impede natural coastal 
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processes and provide information critical for making decisions regarding barrier island 

restoration. The model framework presented here can be calibrated and extended to 

other islands. While this effort developed a single global model for Dauphin Island, 

future efforts may explore the utility of developing more localized models based on 

wave energy settings and morphology. For instance, the orientation of an island could 

be used as an indicator of the need for a separate model. Additionally, topographic state 

metrics could be used to develop meaningful model zones (Zinnert et al., 2017) using 

methods similar to that of Monge and Stallins (2016). Data-driven, machine learning 

algorithms are powerful tools for teasing out patterns and relationships in data; 

however, one potential issue is that they require the assumption that the data used to 

train the model is representative of the phenomena being modeled. To develop a more 

robust training dataset, future efforts could aim to augment time for space by developing 

additional training data from historical habitat maps paired with landscape position 

information from that time. Additionally, details regarding precedent conditions relating 

to storminess (e.g., magnitude, frequency, and temporal lag) could be added to such a 

training dataset using an approach similar to Mickey et al. (2017) to characterize 

storminess for a period. While this research used default MATLAB algorithm presets, a 

more robust training dataset may allow for meaningful optimization of model tuning 

parameters. Researchers could also evaluate whether the use of longer-term, larger-

scale variables similar to the ones used by Gutierrez et al. (2015), such as island width 

and historical shoreline erosion rates, enhances barrier island habitat model predictions. 

Finally, more research is needed to explore how landscape position and temporal lag 

from disturbances impact the probability of an area being vegetated. This would provide 
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information that could be combined with the general habitat predictions from this 

research to enhance geomorphic models, such as for refining friction coefficients that 

are used in morphological modeling of barrier island environments (Feagin et al., 2015; 

Mendoza et al., 2017; Passeri et al., 2018). 

 In conclusion, barrier islands are important environments due to the numerous 

ecosystems goods and services they provide (Barbier et al., 2011). These islands are 

unique coastal systems due to their dynamic nature resulting from many abiotic factors 

operating at a wide range of spatiotemporal scales (Young et al., 2011; Zinnert et al., 

2017). For instance, barrier island geomorphology and habitat coverage can change 

rapidly because of storms or gradually from tides and currents. Additionally, wave-

dominated barrier islands, such as Dauphin Island, are often long and narrow (McBride 

et al., 2013), which influences the importance of spatial scale of geospatial data in both 

the cross-shore and alongshore directions. Collectively, these traits make barrier islands 

both a challenging and fascinating research setting. Barrier island geomorphology and 

habitat configuration are an expression of abiotic forcings on a barrier island (Young et 

al., 2011; Zinnert et al., 2017). Additionally, wildlife utilize barrier island habitats for 

important portions of their life cycle, including resident and migratory shorebirds 

(Galbraith et al., 2014), neotropical migrants (Lester et al., 2016), and sea turtles 

(Katselidis et al., 2014). Thus, natural resource managers are concerned with 

understanding how habitats on barrier islands are changing over time in addition to 

insights on potential future alternative states of these systems. Collectively, this 

dissertation highlighted how the incorporation of landscape position information and 

elevation uncertainty can be used to enhance barrier island habitat mapping and 
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modeling. The habitat mapping components outlined in Chapters 2 and 3 provide a 

roadmap for efficiently processing remote sensing data while also enhancing the 

semantics of barrier island habitat maps through the use of landscape position 

information and treatment of elevation uncertainty. Together these frameworks can help 

enhance map comparison through time and map conflation for regional analyses. The 

habitat model framework outlined in Chapter 4 showed how landscape position 

information extracted from lidar data can be used to model barrier island habitats using 

machine learning algorithms. This framework can be calibrated for other barrier islands 

and data including, hydrodynamic geomorphologic model outputs. When coupled with 

hydrodynamic geomorphologic model outputs, researchers could use this habitat model 

framework to forecast barrier island habitats under alternative scenarios with regard to 

sea-level rise, storminess, and restoration actions. In order to create a comprehensive 

research agenda for barrier island habitats, it is important to address the unique 

spatiotemporal scales of barrier island evolution, which requires the inclusion of a range 

of temporal scales (e.g., every few weeks to 10 or more years) and spatial scales (e.g., 

very high to moderate spatial resolutions). Building on the work outlined in this 

dissertation, my future research will focus on: (1) extending the barrier island habitat 

model framework to forecast habitats based on landscape position information extracted 

from hydrodynamic geomorphic model outputs; (2) exploring the tradeoffs and 

opportunities of using high-resolution UAS data for barrier island habitat mapping; and 

(3) studying overwash impacts to dune and barrier flat habitats to develop a predictive 

model for estimating vegetation cover in these habitats. 
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APPENDIX A:  HABITAT CLASS DEFINITIONS 
 
Table A.1. Habitats, description, tidal regime, and description source for the barrier island habitat mapping effort for 
Dauphin Island, Alabama, 2015. 

Habitat Descriptiona 
Tidal 
regime Source 

Dune-bare 

Dunes are supratidal features developed via Aeolian processes. Dunes are often found above storm water 
levels and have a well-defined relative elevation (i.e., ridge or upper slope). Dune-bare includes dunes that 
have less than 10% vegetation cover. 

Supratidal/
upland 

Acosta et al. 
(2005) 

Dune- 
herbaceous 

Dune-herbaceous includes low-elevation dunes with sparse to dense herbaceous vegetation coverage. 
Herbaceous vegetation cover should generally be greater than or equal to about 10 percent. See the dune-
bare class for a general description of dune features. 

Supratidal/
upland 

Gibson and 
Looney 
(1992) 

Dune-wooded 

Dune-wooded includes relatively immobile secondary dunes that support sparse vegetation coverage by 
shrubs. Compared to the other dune classes, these dunes are typically found at higher elevations and 
further from the shoreline. Woody vegetation cover should generally be greater than or equal to about 
30%. See the dune-bare class for a general description of dune features. 

Supratidal/
upland 

Lucas and 
Carter 
(2010) 

Meadow 

Meadow includes areas with sparse to dense herbaceous vegetation located above extreme high water 
springs found leading up to primary dunes and on the barrier flat (i.e., backslope of dunes). Vegetation 
coverage should be generally greater than 30%. 

Supratidal/
upland 

Lucas and 
Carter 
(2010) 

Unvegetated  
barrier flat 

Unvegetated barrier flat includes flat or gently sloping unvegetated or sparsely vegetated areas (i.e., less 
than 30% cover) above extreme high water springs that are located on the backslope of dunes, 
unvegetated washover fans, unvegetated open developed areas, and estuarine shorelines where salinity is 
less than 30 parts per thousand (ppt). 

Supratidal/
upland 

Leatherman 
(1979) 

Scrub/shrub 
Scrub/shrub includes areas where woody vegetation height is greater than about 0.5 meters, but less than 
6 meters. Woody vegetation coverage should generally be greater than 30%. 

Supratidal/
upland 

Cowardin et 
al. (1979) 

Forest 
Forest includes upland areas where woody vegetation height is greater than 6 meters. Woody vegetation 
coverage is generally greater than 30%. 

Supratidal/
upland 

Cowardin et 
al. (1979) 

Forested 
wetland 

Forested wetland includes all nontidal wetlands dominated by woody vegetation with a height greater than 
or equal to 6 meters. Woody vegetation coverage should generally be greater than 30%. 

Supratidal/
upland 

Cowardin et 
al. (1979) 

Intertidal 
beach 

Intertidal beach includes bare or sparsely vegetated areas along the ocean-facing side of the island found 
between extreme low water springs and extreme high water springs that are adjacent to high-energy 
shorelines which occasionally experience salinity that is greater than or equal to 30 ppt. 

Intertidal 
Cowardin et 
al. (1979) 

aAll percent coverage requirements refer to an area of at least 40 m2 (i.e., the same area as the minimum mapping unit). 

(cont’d.) 
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Habitat Descriptiona 
Tidal 
regime Source 

Beach 

Beach includes bare or sparsely vegetated area that is upslope of the intertidal beach zone and marine open 
water. These habitats occasionally experience inundation by marine water at a concentration of greater than 
or equal to 30 ppt and include shorelines with high wave energy. 

Supratidal/
upland 

Cowardin et 
al. (1979) 

Intertidal flat  

Intertidal flat includes all tidal wetlands (i.e., wetlands found above extreme low water springs and below 
extreme high water springs) adjacent to estuarine open water (i.e., water with salinity due to ocean-derived 
salts that would rarely be above 30 ppt) and along shorelines with low wave energy with vegetation cover of 
less than 30%. 

Intertidal 
Cowardin et 
al. (1979) 

Intertidal 
marsh 

Intertidal marsh includes all tidal wetlands (i.e., wetlands that are found above extreme low water springs and 
below extreme high water springs) with 30% or greater areal cover by erect, rooted, herbaceous 
hydrophytes. 

Intertidal 
Cowardin et 
al. (1979) 

Shoreline  
protection 

Shoreline protection includes areas that have any material used to protect shorelines from erosion. Supratidal/
upland 

Fearnley et 
al. (2009) 

Developed 
Developed includes areas dominated by constructed materials (i.e., transportation infrastructure, and 
residential and commercial areas). 

Supratidal/
upland 

Homer et al. 
(2015) 

Water-  
fresh 

Water-fresh includes all areas of nontidal open water (i.e., isolated low-lying areas that are not influenced 
from tides associated extreme water springs). These water areas generally have less than 30% cover of 
vegetation. 

Supratidal/
upland 

Cowardin et 
al. (1979) 

Water- 
estuarine 

Water-estuarine includes all areas of tidal open water and estuarine water of the back-barrier side of the 
island (i.e., water bodies that receive regular inundation from tides associated extreme water springs). These 
areas rarely have salinity greater than 30 ppt. These water areas generally have less than 30% cover of 
vegetation. 

Subtidal 
Cowardin et 
al. (1979) 

Water-  
marine 

Water-marine includes all areas of marine open water found offshore of the ocean-facing side of the island. 
These areas are found along high-energy coastlines and/or occasionally experience salinity levels greater 
than or equal to 30 ppt. 

Subtidal 
Cowardin et 
al. (1979) 

aAll percent coverage requirements refer to an area of at least 40 m2 (i.e., the same area as the minimum mapping unit). 
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APPENDIX B:  HABITAT MAPPING THRESHOLDS 
 
Table B.1. Examples of general thresholds used for the barrier island habitat mapping 
effort for Dauphin Island, Alabama, 2015. B: Beach; DB: Dune-bare; DH: Dune-
herbaceous; DV: Developed; DW: Dune-wooded; F: Forest; IB: Intertidal beach; IF: 
Intertidal flat; IM: Intertidal marsh; M: Meadow; NDVI: Normalized difference vegetation 
index; NIR: Near infrared band; SD: Standard deviation; SS: Scrub/shrub; TPI: Upper 
ridges and slopes processed from the topographic position index (Weiss, 2001); UBF: 
Unvegetated barrier flat; VH: Vegetation height in m; WE: Water-estuarine; WF: Water-
fresh; and WM: Water-marine. 

General 
class Threshold(s) 

Detailed 
class Thresholds/rules 

Non-
vegetated 

Mean NDVI < -0.01 
& Mean NIR > 
29,000 

B Found near the ocean-facing shoreline in front of dune or 
transitional area (i.e., start of vegetated area) 

DB Overlap with TPI = TRUE 

UBF Areas not classified as B where overlap with TPI = False and 
Overlap with probability of being intertidal = FALSE 

IB Overlap with probability of being intertidal = TRUE & along the 
ocean-facing shoreline 

IF Overlap with probability of being intertidal = TRUE & along the 
back-barrier-facing shoreline 

DV Buildings: Median VH > 1 & Mean NDVI < -0.06 & Mean NIR > 
16,000; Non-buildings: Mean VH < 1 & Mean NDVI < -0.06 & 
Mean NDVI > -0.02 & Mean NIR < 33,000 & Mean NIR > 12,000  

Vegetated Mean NDVI < -0.07 
& Mean NIR < 
29,000; Mean NDVI 
> 0  
  

DW Areas classified as either SS or F where overlap with TPI = TRUE  

DH Areas not classified as either SS or F where overlap with TPI = 
TRUE 

M Overlap with probability of being intertidal = FALSE 

SS Mean VH >= 0.05 & Mean VH < 6 & SD VH < 3 & Mean NDVI > 
0.20 

F Mean VH >= 6 & Mean NDVI > 0.25; Mean VH >=0.05 & Mean VH 
< 6 & SD VH < 3 & Mean NDVI > 0.20 

IM Overlap with probability of being intertidal = TRUE 

Water Mean NDVI < -0.25 
& Mean NIR < 
1,500 

WE Found near the back-barrier-facing shoreline 

WF Overlap with probability of being intertidal = FALSE 

WM Found near the ocean-facing shoreline 
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APPENDIX C:  HABITAT MODELING 
 
Table C.1. Model presets and overall accuracy results using five-fold cross validation by 
algorithm (i.e., K-nearest neighbor, support vector machine, and random forest models) 
for the subtidal zone for the contemporary habitat model development for Dauphin 
Island, Alabama, USA. D: Distance; K = Number of neighbors; KT: Kernel type; KS: 
Kernel scale; SD: Standard deviation; W: Weight. 

   
Overall 

accuracy 

Algorithm Name Configuration Mean SD  

K-nearest 
neighbor 
(KNN) 

Fine KNN K = 1; D = Euclidean 94.60 0.15 

Medium KNN K = 10; D = Euclidean 96.16 0.16 

Coarse KNN K = 100; D = Euclidean 96.54 0.05 

Cosine KNN K = 10; D = cosine 96.20 0.14 

Cubic KNN K = 10; D = cubic 96.16 0.16 

Weighted KNN K = 10; D = Euclidean; W = inverse squared 94.82 0.10 

Support 
vector 
machine 
(SVM) 

Linear SVM KT = linear; KS = automatic 96.48 0.04 

Quadratic SVM KT = quadratic; KS = automatic 96.50 0.00 

Cubic SVM KT = cubic; KS = automatic 92.62 4.50 

Fine Gaussian SVM KT = Gaussian; KS = 0.56 96.52 0.04 

Medium Gaussian SVM KT = Gaussian; KS = 2.2 96.50 0.06 

Coarse Gaussian SVM KT = Gaussian; KS = 8.9 93.30 0.00 

Random 
forest (RF) 

Random forest 30 trees 94.64 0.20 

 

Table C.2. Model presets and overall accuracy results using five-fold cross validation by 
algorithm (i.e., K-nearest neighbor, support vector machine, and random forest models) 
for the intertidal zone for the contemporary habitat model development for Dauphin 
Island, Alabama, USA. D: Distance; K = Number of neighbors; KT: Kernel type; KS: 
Kernel scale; SD: Standard deviation; W: Weight. 

  
 Overall 

accuracy 

Algorithm Name Configuration Mean SD 

K-nearest 
neighbor 
(KNN) 

Fine KNN K = 1; D = Euclidean 82.54 0.82 

Medium KNN K = 10; D = Euclidean 82.46 1.15 

Coarse KNN K = 100; D = Euclidean 72.66 0.23 

Cosine KNN K = 10; D = cosine 81.22 0.84 

Cubic KNN K = 10; D = cubic 81.22 1.65 

Weighted KNN K = 10; D = Euclidean; W = inverse squared 84.68 1.63 

Support 
vector 
machine 
(SVM) 

Linear SVM KT = linear; KS = automatic 80.74 0.53 

Quadratic SVM KT = quadratic; KS = automatic 84.22 0.48 

Cubic SVM KT = cubic; KS = automatic 85.54 1.00 

Fine Gaussian SVM KT = Gaussian; KS = 0.56 84.34 0.55 

Medium Gaussian SVM KT = Gaussian; KS = 2.2 81.60 0.60 

Coarse Gaussian SVM KT = Gaussian; KS = 8.9 71.58 0.48 

Random 
forest (RF) 

Random forest 30 trees 88.78 0.63 
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Table C.3. Model presets and overall accuracy results using five-fold cross validation by 
algorithm (i.e., K-nearest neighbor, support vector machine, and random forest models) 
for the supratidal/upland zone for the contemporary habitat model development for 
Dauphin Island, Alabama, USA. D: Distance; K = Number of neighbors; KT: Kernel type; 
KS: Kernel scale; SD: Standard deviation; W: Weight. 

   
Overall 

accuracy 

Algorithm Name Configuration Mean SD  

K-nearest 
neighbor 
(KNN) 

Fine KNN K = 1; D = Euclidean 71.26 0.35 

Medium KNN K = 10; D = Euclidean 74.02 0.51 

Coarse KNN K = 100; D = Euclidean 66.22 0.19 

Cosine KNN K = 10; D = cosine 72.64 0.42 

Cubic KNN K = 10; D = cubic 73.56 0.67 

Weighted KNN K = 10; D = Euclidean; W = inverse squared 75.74 0.87 

Support 
vector 
machine 
(SVM) 

Linear SVM KT = linear; KS = automatic 72.74 0.22 

Quadratic SVM KT = quadratic; KS = automatic 76.36 0.34 

Cubic SVM KT = cubic; KS = automatic 75.62 0.65 

Fine Gaussian SVM KT = Gaussian; KS = 0.56 70.74 0.52 

Medium Gaussian SVM KT = Gaussian; KS = 2.2 74.08 0.43 

Coarse Gaussian SVM KT = Gaussian; KS = 8.9 64.62 0.12 

Random 
forest (RF) 

Random forest 30 trees 78.02 0.64 
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Figure C.1. Deterministic accuracy (black bar) and fuzzy overall accuracy (gray bar) by 
zone for top three models for the contemporary habitat model development for Dauphin 
Island, Alabama, USA. (a) Subtidal zone; (b) Intertidal zone; and (c) Supratidal/upland 
zone. CKNN: Coarse K-nearest neighbor model; CSVM: Cubic support vector machine 
model; FGSVM: Fine-scaled Gaussian support vector machine model; RF: Random 
forest model; QSVM: Quadratic support vector machine model; WKNN: Weighted K-
nearest neighbor model. 
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Table C.4. Error matrix with deterministic and fuzzy accuracies for the initial 
contemporary model results (i.e., without post-processing and a four-pixel minimum 
mapping unit) for Dauphin Island, Alabama, USA. For the off-diagonal cells, the first 
value indicates deterministic count and the second value indicates the fuzzy count. BF: 
Barrier flat; B: Beach; CT: Column total; D: Dune; DPA: Deterministic producer’s 
accuracy; DOA: Deterministic overall accuracy; DUA: Deterministic user’s accuracy; 
FOA: Fuzzy overall accuracy; FPA: Fuzzy producer’s accuracy; FUA: Fuzzy user’s 
accuracy; IB: Intertidal beach; IF: Intertidal flat; IM: Intertidal marsh; RT: Row total; WE: 
Water-estuarine; WF: Water-fresh; WM: Water-marine; WV: Woody vegetation; WW: 
Woody wetland.  

  Reference data   

 
Class BF B D IB IF IM WE WF WM WV WW RT 

DUA 
(%) 

FUA 
(%) 

M
o

d
e

l 
d

a
ta

 

BF 305 4;2 36;1 1;0 15;8 47;23 13;0 0;0 0;0 31;15 0;0 501 60.9 70.7 

B 4;7 62 0;1   2;14 0;3 3;0 1;0 0;0 7;25 0;1 0;0 130 47.7 86.9 

D 38;1 0;1 99 0;0 0;0 0;0 0;0 0;0 3;1 5;1 0;0 149 66.4 69.1 

IB 1;0 13;1 0;0 17 0;2 1;0 0;10 0;0 2;88 0;0 0;0 135 12.6 87.4 

IF 17;5 4;0 0;0 3;0 95 39;34 73;144 0;0 11;0 2;1 0;0 428 22.2 65.2 

IM 13;6 2;0 2;0 0;0 23;4 307 54;3 0;0 1;0 1;1 0;0 417 73.6 77.0 

WE 1;0 0;0 0;0 0;0 0;0 0;0 607 0;0 0;0 0;0 0;0 608 99.8 99.8 

WF 9;0 0;0 0;0 0;0 0;0 0;0 9;0 27 1;0 4;1 0;0 51 52.9 54.9 

WM 0;0 1;0 0;0 0;0 0;0 0;0 68;0 0;0 314 0;0 0;0 383 82.0 82.0 

WV 13;8 0;0 0;0 0;0 0;0 6;0 0;0 0;0 0;0 205 2;0 234 87.6 91.0 

WW 2;0 0;0 0;0 0;0 0;0 0;0 0;0 1;0 0;0 20;3 29 55 52.7 58.2 

 CT 430 90 139 37 150 460 982 28 453 291 31 3,091   
 DPA 

(%) 70.9 68.9 71.2 46.0 63.3 66.7 61.8  96.4 69.3 70.5 93.6 
 

  
 FPA 

(%) 77.2 73.3 72.7 83.8 74.7 79.1 77.8  96.4 94.5 78.4 93.6 
 

  

  DOA (%): 66.9; FOA (%): 80.3 
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