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“Clouds come floating into my life, 

no longer to carry rain or usher storm, 

but to add color to my sunset sky.” 
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ABSTRACT 

High winds, torrential rain, and storm surges from tropical cyclones cause massive 

destruction to property and cost the lives of many people. Among the coastal areas affected 

by these major natural calamities, the coastline of the Bay of Bengal (BoB) ranks as one of 

the most susceptible to tropical cyclone storm surge risk due to its geographical setting and 

population density, Bangladesh suffers the most. The purpose of this study is to describe 

the relationship between storm surge at the BoB and peak reported wind and describe the 

dependency structure between wind speeds and storm surges at that location. Various 

models have been developed to predict storm surge in this region but none of them quantify 

statistical risk with empirical data. This research demonstrates a methodology for 

estimating the return period of the joint hazard based on a bivariate copula model. An 

Archimedean Gumbel copula with Weibull and normal margins is specified for the result 

the coast of BoB can expect a cyclone with peak reported winds of at least 24 m s−1 and 

surge heights of at least 4.0 m, on average, once every 3.2 years (2.7–3.8). The BoB can 

expect peak reported winds of 62 m s−1 and surge heights of at least 8.0 m, on average, 

once every 115.4 years (55.8–381.1). In this ocean basin, surge heights are comparably 

higher when compared to other ocean basins. Application of the copula will mitigate future 

threats of storm surge impacts on coastal communities of the BoB. 
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CHAPTER 1.  

INTRODUCTION 

1.1 Tropical Cyclones and Storm Surge Risk over the Bay of Bengal 

 Tropical cyclones (TCs), with the associated high winds, torrential rain, and storm 

surge at landfall, are one of Earth’s most destructive natural phenomena. These 

characteristics cause massive destruction to property, coastal structures, and agriculture 

(Alam and Collins 2010, Islam et al. 2011, Mallick et al. 2011). The events are so 

extreme they can cost the lives of many people living at or near coastal regions (Alam 

and Collins 2010, Islam et al. 2010). These events create economic losses every year to 

affected countries, which is mainly the result of violent winds and deep storm surges 

(Rao et al. 2007).  TCs form over warm ocean surfaces with sea-surface temperatures 

(SST) > 26°C; low magnitude vertical wind shear; larger than normal low-level vorticity; 

and higher than normal mid-troposphere relative humidity (Sahoo and Bhaskaran 2015). 

The nature of the ocean basin, including the continental shelf and the tidal conditions 

during the TC landfall, along with high population density, increases risk from TCs due 

to storm surge inundation. Storm surge is defined as an unusual increase in water level 

caused by a storm, over and above the predicted astronomical tides (National Hurricane 

Center 2015). Risk assessment and warning systems can be improved by better 

understanding the geophysical settings and the TC characteristics in a given ocean basin. 

 Among the coastal areas affected by these major natural calamities, the coastline 

of the Bay of Bengal (BoB) ranks as one of the most susceptible to TC storm surge risk 

due to its geographical setting and population density (Chan 2014), as well as the size of 

the surges, which are the largest in the world (Needham et al. 2015). Cyclone tracks are 

steered by the semi-enclosed and funnel shape nature of this basin. The BoB is 
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historically significant for receiving the most catastrophic, deadly cyclones with death 

tolls at the top of all records (Sahoo and Bhaskaran 2015). Among the countries that 

share the BoB coastline, Bangladesh is the most vulnerable based on the number of 

landfalls since 1970 (Dube et al. 1997; IMD 2010; SURGEDAT 2015). Hence, there is a 

need to understand TC extreme winds, storm surges, and associated coastal inundation in 

this part of the world. 

 To achieve greater confidence, assess the risk of storm surge and extreme winds in 

the BoB, studies of its physical and dynamic characteristics are needed.  Various models 

have been developed to predict storm surge in this region (Das 1972; Johns and Ali 1980; 

Ghosh et al. 1983; Dube et al. 1985, 2000a, 2000b, 2004, 2006; Abrol 1987; Katsura et 

al. 1992; Sinha et al. 1996, 2008; Roy et al. 1999; Jain et al. 2006; Rao et al. 2009), but 

none of them quantify statistical risk with empirical data for this region of the world.  

Chu and Wang (1998), Emanuel et al. (2006), Elsner et al. (2008), Liu et al. (2009), Lin 

et al. (2010), Irish et al. (2011), and Trepanier et al. (2015) quantify risk with empirical 

data but not in the BoB.  

1.2 Research Question 

 Due to the devastating nature of TCs and high population density along the BoB 

coast, it is important to quantify risk of storm surge and wind events for emergency 

managers. This study uses a statistical model to estimate the risk of extreme wind speeds 

and TC-induced storm surges in the BoB. A statistical copula model is used to model TC 

characteristics incorporating peak wind speed and surge height data. This model will 

estimate the combined statistical risk of wind speeds and storm surges along this coast. 

This study will focus on the following question: 
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 What is the risk of experiencing a combined extreme wind and storm 

surge from a TC along the BoB coastline? 

To answer this question, the objective of the study is to quantify the probability of 

occurrence of specific wind speed and storm-surge magnitudes over time. This provides 

combined risk of cyclone wind and surge at the coast of BoB at different temporal scale.  

1.3 Hypothesis 

Due to the funnel-shaped coastline, the gentle gradient of the continental shelf, 

and evidence from the historical records, the BoB has a high probability of a combined 

extreme wind and surge event.  The severity of the surge’s impacts may depend on time 

of occurrence, local factors, and the use of a warning system. 

1.4 Study Area 

 In the Northern Hemisphere, the Indian Ocean Basin is divided into two divisions: 

the BoB and the Arabian Sea (AS). The BoB experiences more cyclone occurrences than 

the AS (Paul 2009). This research focuses on TCs originating over the Indian Ocean, 

following the path over the BoB, and making landfall over the coasts of Bangladesh, Sri 

Lanka, the east coast of India (West Bengal, Orissa, Andhra Pradesh, and Tamil Nadu), 

and the west coast of Myanmar. Landfall is defined as the eye of the storm passing over a 

coastline. The BoB is the northeast horn of the Indian Ocean, and Bangladesh is at the 

northern edge of that triangular horn (Figure 1.1). The BoB lies roughly within 5°N to 

22°N latitude and 80°E to 90°E longitude. This large but relatively shallow embayment 

occupies an area of about 2,173,000 km2 (839,000 mi2) and is about 1,600 km (1,000 

miles) wide, with an average depth of more than 2,600 m (8,500 ft) (Morgan 2015). 
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Figure 1.1 – Study area: the Bay of Bengal. An inset map is included to 

show the global location of the study area 

 The BoB coast extends from Kanniyakumari (Tamil Nadu, India) in the southwest 

to Kawthuang (Myanmar) in the southeast. The coastal expanse is 5,055 km long and 

covers all the coastlines mentioned above except Sri Lanka, which has about 1340 km of 

coastline (CICFRI 2004). The climate of the region is subtropical to tropical and is 

characterized by high temperatures and medium precipitation, with virtually all 

precipitation falling as rain during the Southwest Monsoon (June to September), causing 

a drastic decline in salinity in the BoB (Central Inland Capture Fisheries Research 

Institute 2004). According to the Central Inland Capture Fisheries Research Institute 

(2004) in West Bengal, India, the reported annual sea surface temperature of the BoB 

varies within a narrow range of 27 to 29°C. This makes it a prime location for TCs. 
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1.5 Overview  

 This introduced the TC and storm surge risk over the BoB coastal region. The 

research question and hypothesis are identified, followed by a general description of the 

study area. Chapter Two is a complete literature review on storm surge and wind-induced 

risk at the BoB coastline. The literature review highlights the necessity for quantifying 

statistical risk of TC storm surge and wind for emergency managers.   

 Chapter Three discusses the data and methods required to create the copula for 

risk modeling. Chapter Four presents and discusses the results. Chapter Five provides the 

conclusions, limitations to the current model, and recommendations for future work.  
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CHAPTER 2. 

LITERATURE REVIEW 

 This chapter provides a background for TCs and storm surge risk in the BoB, with 

a specific focus on the coastline of Bangladesh. 

2.1 Tropical Cyclones 

The Indian Meteorological Department (IMD) defines a TC as a rotational low 

pressure system in the tropics with a central pressure of at least 5hPa less than the 

surrounding area and a minimum sustained wind speed of 17.22 m s-1 (62 km hr-1or 34 

knots) (IMD 2010; Akter and Tsuboki 2014). These vast, violent whirls of air span 150 to 

800 km in size and spiral around a center as they progress along the sea surface at a rate of 

300 to 500 km day-1 (IMD 2010).  

The spatiotemporal distribution of SST exceeding 26°C and the location of the 

monsoon trough (monsoon-type intertropical convergence zone) are primary factors 

explaining the seasonal distribution and frequency of TCs over the oceans (McBride 1995). 

Cyclone formation in all ocean basins is also correlated with the seasonally averaged values 

of six parameters (Gray 1975, 1979): of the six parameters, there are three dynamic 

variables (low-level relative vorticity, inverse of the tropospheric vertical wind shear, and 

the Coriolis parameter) and three thermodynamic variables (ocean thermal energy 

extending to a sufficient depth, moist static instability, and mid-tropospheric relative 

humidity). When environmental conditions are favorable, an external wind burst into 

regions already containing a tropical disturbance can trigger TC formation (i.e., 

cyclogenesis) by causing development of deep convection (Zehr 1992; Gray 1998). This 

can subsequently evolve into a TC vortex capable of self-intensification.  
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A fully developed TC has a central cloud free region of calm winds, known as the 

eye of the cyclone, with a diameter varying from 10 to 50 km (IMD 2010). Surrounding 

the eye is a dense wall of clouds, called the eyewall, characterized by very strong winds 

and torrential rains with a width from 10 to 150 km (IMD 2010). Wind speeds gradually 

decrease away from the core region, which eventually terminate over areas of weaker 

winds with overcast skies and the occasional thunderstorm. There may be one or more rain 

bands in a cyclone where higher rainfall occurs (IMD 2010).  

2.1.1 Tropical Cyclones in the Bay of Bengal 

TCs are common phenomena in the BoB and influence every country with a North 

Indian Ocean (NIO) coastline (east coast of India, Sri Lanka, Bangladesh, and Myanmar). 

About one quarter of the world’s population resides in the countries sundering the BoB, 

approximately 400 million of whom live in the Bay’s catchment area (Hossain 2004). 

Between 1891 and 1998, 178 devastating cyclones with wind speeds exceeding 24.17 m s-

1 (87 km hr-1) formed in the BoB and were responsible for millions of human lives lost and 

the destruction of vast amounts of natural resources and property (BUET and BIDS 1993; 

Shrestha et al. 1998). Although only a few storms form in this region every year, the events 

seem to be deadlier than elsewhere, with 80 ̶ 90 percent of global casualties happening 

along the BoB coastline for many years after the 1950s (Chowdhury 2002; Debsarma 2009; 

Jia 2013).  

The BoB is one of the world’s most active zones for tropical cyclogenesis (Paul 

2009). In contrast to the other ocean basins, where environmental conditions are most 

favorable for TCs in late summer (Neumann 1993), the NIO has a bimodal peak in TC 

activity with one occurring in May and the other in November (Akter and Tsuboki 2014). 
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Most cyclones form within the regional monsoon trough; thus, their seasonal distribution 

has been related to the migration of the monsoon trough over the ocean (McBride 1995). 

 The high cyclogenesis potential in the BoB results from combined forcing of 

seasonal (Akter and Tsuboki 2014) and intraseasonal environmental conditions (Kikuchi 

and Wang 2010). Kikuchi and Wang (2010) found a statistical relationship between NIO 

TC genesis and two intraseasonal oscillation (ISO) modes - the Boreal Summer 

Intraseasonal Oscillation (BSISO), which propagates primarily northward, and the 

Madden-Julian Oscillation (MJO), which propagates eastward. Both ISO modes favor TC 

genesis by causing a synoptic-scale disturbance at least six days prior to TC formation in 

the NIO (Akter and Tsuboki 2014). Kikuchi and Wang (2010) reported that over 70% of 

ISO-related cyclogenesis was associated with the BSISO in May–June and September–

November, with the rest associated with the MJO in November–December. 

Consistent with the findings of Kikuchi and Wang (2010), Yanase et al. (2012) 

assessed cyclogenesis over the NIO in relation to the Genesis Potential Index (GPI). Active 

cyclogenesis was associated with a strong northward-moving GPI signal with a periodicity 

of approximately 30–40 days associated with the BSISO. They attributed the strong GPI 

during the BSISO to abundant relative humidity and large absolute vorticity within its 

convective phase (Yanase et al. 2012). In the BoB, northward propagating BSISO enhances 

cyclones more than MJO.   

Both the seasonally varying monsoon trough position and the intraseasonal ISO 

phase allow the tropical disturbances over the NIO to develop further into TCs. In the BoB, 

the coasts of Sri Lanka and Myanmar are less affected by TCs in comparison with the 

coasts of Bangladesh and India (Murty and Flather 1994, Shaji et al. 2014). This is due to 
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the monsoon trough position, north-east trade wind and counter trade winds position and 

intraseasonal ISO condition, and also possibly due to geographic orientation of the coasts.    

2.1.2 Storm Surges in the Bay of Bengal 

 Of the TCs that cause at least 5000 casualties worldwide, 53% occur in Bangladesh 

making it one of the world’s most vulnerable countries to TCs (Ali 1999; UNDP 2004). 

About 10% of the TCs in the world originate in the BoB, and one-sixth of these make 

landfall on the coast of Bangladesh (Islam et al. 2011).  About 41% of these cyclones travel 

through funnel-shaped central region each year, which makes the central coast of 

Bangladesh vulnerable to storm surge (Paul and Rahman 2006). A cyclone with a high 

potential for damage, for example having high winds, may not be devastating depending 

on its time of occurrence, local factors, and natural and human adaptation capability. In 

Bangladesh, TC events typically result in high loss of life and economic damage because 

of the combination of geographic location, topography, population density, levels of 

poverty, and extraordinarily large storm surges (CCS 1991; Murty and El Sabh 1992; Jia 

2013). The funnel-shaped coastline, shallow coastal water, favorable cyclone track, and 

innumerable inlets including the world’s most populated river system (the Ganges-

Brahmaputra-Meghna) put this low-lying region under high TC storm surge risk (Ali 1979; 

Dube et al. 2009; Khan and Damen 2013).  

 Storm surge from a TC is an unusual increase in water level caused by a storm, over 

and above the predicted astronomical tides (National Hurricane Center 2015). The term 

storm tide is also often used to describe storm surge. Storm tides are the total undulation 

of waters due to tidal fluctuations in addition to the weather event, and often exist for a few 

days (Murty 1984). Thus, removal of astronomical tides from storm tides defines the actual 
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storm surge height generated from a storm. Storm surge is a very complex phenomenon 

because it is sensitive to the slightest changes in storm intensity, forward speed, size (radius 

of maximum winds-RMW), angle of approach to the coast, central pressure (minimal 

contribution when considering wind), width and slope of the ocean bottom, and shape and 

characteristics of coastal features such as bays and estuaries (National Hurricane Center 

2015). Approximately 62% of Bangladeshi coastal land has an elevation less than 3 m and 

86% lies below 5 m (CEGIS 2009; Jia 2013). Moreover, Bangladesh has 710 km of 

coastline exposed to the BoB, which is relatively long compared to the size of the country 

(Jia 2013).  

In Bangladesh, severe cyclones in 1584, 1737, 1876, and 1897 took a combined 

914,000 casualties (MoEF 2009). In the past 50 years, around 718,000 lives in Bangladesh 

have been lost during such cyclones (Haque et al. 2012). Of the 718,000 lives lost, 70% 

occurred in only a single storm in 1970 called the Bhola Cyclone which claimed some 

500,000 lives (Choudhury 2002). In recent decades, super cyclones (with wind speeds of 

> 61 m s-1) have occurred in 1970, 1991, and 2007, leading to huge losses of life and 

property (Khalil 1992; GOB, European Commission and World Bank 2008) (Table 2.1). 

Cyclone Sidr’s (2007) monetary losses totaled US $1.67 billion (GOB 2008) and the 1991 

cyclone caused about US $2.4 billion (Kausher et al. 1996) in material damage. Table 2.2 

shows cyclone severity, surge height, wind speed, and deaths in Bangladesh for major 

cyclone events from 1960 ̶ 2007.  

Authorities in Bangladesh have drastically improved the pre-, during-, and post-

disaster management strategies in the past three decades (Alam and Collins 2010). This 

largely includes infrastructure developments, cyclone warning systems, and 
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communication to raise awareness among the local population (Khan 2008). These 

initiatives reduced the death rate for severe cyclones in recent years (Table 2.2).  

Table 2.1  ̶  Comparison of the three most devastating cyclones in Bangladesh over recent 

decades (Khalil 1992; GOB, European Commission and World Bank 2008) 

 Year of Occurrence 
1970 Bhola 

Cyclone 

1991 Chittagong 

Cyclone 

2007 Cyclone 

Sidr 

Wind Speed (km hr-1) 66.94 53.61 66.67 

Storm Surge Height (m) 10 5 6 

Death of People About 500, 000 About 150,000 About 4,000 

Table 2.2  ̶  Cyclone severity according to Indian Meteorological Department (IMD) scale 

and deaths in Bangladesh 1960–2010 *(Karmakar 1998; Dasgupta et al. 2010; 

SURGEDAT 2015)  

Year Number of deaths 
Peak wind speed m s-1 

(km hr-1) 

Storm tide 

(m) 
Severity index 

1960 8119 58 (210) 9.1 5 

1961 11466 41 (146) 8.8 5 

1963 11520 56 (203) 9.1 5 

1965 20152 58 (210) 5.8 5 

1966 850 41 (146) 9.6 5 

1970 500300 67 (241) 9.1 6 

1973 183 34 (122) 5.1 5 

1974 50 45 (162) 5.3 5 

1985 11069 43 (154) 4.5 5 

1988 9590 45 (162) 3.3 5 

1997 410 62.5 (225) 5 6 

2007 4234 67 (240) 5.75 6 

*Storm tides come from Karmakar (1998) and SURGEDAT (2015) and peak wind speed 

and number of death come from Dasgupta et al. (2010). 

The documents used as sources for Table 2.2 follow the “cyclone severity index” 

of the IMD based on wind intensity to compile the severity index. The categories of the 

IMD damage potential scale or severity index of different cyclone systems are broken up 

based on expected damage to the landscape. The low severity has minimal damage (for 

example, minor damage to structures, agricultural lands, embankments; breaches in road 

due to flooding) and high severity has total destruction (for example, extensive damage to 
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buildings, structures, and roads; uprooting of poles; total disruption of agricultural land, 

communication and power supply; submerging of coastal lands due to flooding and sea 

water inundation). 

Yet even with the improved hazard mitigation strategies, physiographic features, 

location factors, and demographic and economic conditions all suggest that Bangladesh 

remains the world’s most vulnerable country to TC storm surge. 

2.2 Tropical Cyclone Risk Modeling 

 Historical records of different variables are incorporated in cyclone risk modeling 

studies to make meaningful estimations of cyclone risk. Wind speeds and storm surges are 

major elements in many risk models. The following sections describe univariate risk 

models, first for wind and then for storm surge. Modeling a combined risk is discussed 

subsequently. 

2.2.1 Wind Speed Risk Modeling 

 The historical record of TC wind intensities spanning back over the last 100 years 

is relatively robust and provides evidence that damage and loss of life results mostly from 

cyclone induced winds and storm surges (Emanuel et al. 2006). This evidence has 

motivated several efforts to assess risks associated with TC winds. Huang et al. (2001) and 

Watson and Johnson (2004) have provided a comprehensive review of wind loss modeling.  

Though a significant number of studies have been done on TCs at the BoB, none of them 

addressed the cyclone wind risk in the region directly and comprehensively. 

 In early wind risk assessment studies, statistical distributions such as the log-normal 

distribution (Georgiou et al. 1983) and the Weibull distribution (Neumann 1987) were used 

to model the behavior of TC winds. Empirical models were applied (Georgiou 1985), as 
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well as inferential models (Darling 1991, Chu and Wang 1998). Murnane et al. (2000) used 

a cumulative probability distribution function to infer global estimates of hurricane actual 

(rather than relative) wind intensity.  

TC key parameters such as central pressure (Vickery et al. 2000a, 2009; Emanuel 

et al. 2006), the radius to maximum winds (Vickery et al. 2009), the heading (Vickery et 

al. 2000a, 2009), translation speed (Vickery et al. 2000a, 2009), position of the storm 

(Emanuel et al. 2006, Lee and Rosowsky 2007), maximum wind speed (Chu and Wang 

1998, Vickery et al. 2009), changes in wind direction (Lee and Rosowsky 2007), intensity 

along each track (Vickery et al. 2000b, Emanuel et al. 2006), and sea surface temperature 

(Emanuel 1988, Vickery et al. 2000a, 2000b) are the most common variables used in the 

statistical modeling for the TC wind risk estimation.  Huang et al. (2001) define the long-

term TC risks on the basis of statistical extreme wind climate. Harper (1999) describes 

simulation techniques to provide essential insight into the complex mechanisms that 

underscore extreme winds in a region and provide a reasonable basis for extrapolation to 

very long return periods.  

Vickery and Twisdale (1995) describe the rate of decay of the TC after landfall with 

two key components of a TC simulation process: the wind-field model and the filling 

model. Vickery and Twisdale (1995) predicted hurricane wind speeds in the United States. 

This study provided an updated hurricane simulation methodology incorporating newly 

developed wind-field and filling models to obtain hurricane wind speeds associated with 

various return periods along the hurricane-prone coastline of the United States.  

Vickery et al. (2000b) solved the nonlinear solution to the equations of motion of a 

hurricane and then parameterized it for use in fast-running simulations. The model 
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considered the effects of changing sea surface roughness and the air-sea temperature 

difference on the estimated surface-level wind speeds. Comparisons between modeled and 

observed hurricane wind speed records showed that the model provides a good 

representation of the hurricane wind field. Vickery et al. (2000b) introduced a new 

simulation approach from statistics where by the entire track (before and after landfall) of 

a tropical storm in the Atlantic Basin can be modeled for hurricane wind risk analysis over 

large regions; whereas traditional simulation models required selection of a subregion from 

which statistical distributions had been derived. Vickery et al. (2009) updated the hurricane 

simulation model to form a basis of hurricane wind speed to analyze hurricane wind speed 

risk and uncertainty.    

Thompson and Cardone (1996) recreated hurricane surface winds in relation to 

ocean waves and surge in a discrete numerical wind field model. Emanuel et al. (2006) 

estimated hurricane wind risk with a coupled ocean-atmosphere model; he computed 

hurricane tracks and combined a deterministic numerical approach with statistical track 

generation from a probability density function to simulate storm intensity.  

2.2.2 Storm Surge Risk Modeling 

Models associated with storm surge predict probable storm and landfall locations, 

peak surge amplitudes along the coast, and inland inundation associated with storm surges 

(Azam et al. 2004, Dube et al. 2009, Lewis et al. 2013). In the context of storm surge risk 

in this study, risk refers to the statistical likelihood of the surges affecting a given location 

or region (Trepanier et al. 2015). An estimation of occurrence of storm surges or storm 

frequencies in a specific area provides an assumption of the risk over the entire study 

region.  
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Previous studies with numerical models suggest that the coastline of the BoB is 

susceptible to storm-surge inundation, with the magnitude varying with consequent tidal 

conditions and associated wind speeds. Das (1972), Johns and Ali (1980), Ghosh et al. 

(1983), Dube et al. (1985, 2000a, 2004, 2006), Abrol (1987), Katsura et al. (1992), Sinha 

et al. (1996, 2008), Roy et al. (1999), Jain et al. ( 2006), and Rao et al. (2009) have 

developed numerical storm surge prediction models applied in the BoB. At first, numerical 

models only focused on synoptic scale prediction to estimate storm-surge amplitude (Dube 

et al. 2009).  Gradually the model foci turned to operational numerical storm surge 

prediction (Dube et al. 1994, 1997, 2000a, 2004, 2005, 2006; Rao et al. 1997; Chittibabu 

1999;  Chittibabu et al. 2002; Jain et al. 2006), real-time storm surge prediction (Dube et 

al. 1994, 2004; Dube and Gaur 1995; Chittibabu et al. 2002; Jain et al. 2006), and high-

resolution location-specific models for accurate prediction of the surge (Dube et al. 1994, 

2000b, 2004; Rao et al. 1997; Chittibabu 1999; Chittibabu et al. 2002; Jain et al. 2006). 

Chu and Wang (1998), Emanuel et al. (2006), Elsner et al. (2008), and Lin et al. (2010) at 

the Atlantic and Pacific coasts of the U. S., Liu et al. (2009) at the coast of China, and Irish 

et al. (2011) and Trepanier et al. (2015) at the coast of the Gulf of Mexico applied statistical 

storm surge risk models to predict storm surge risks at those coasts. The models are 

significant for early warning systems, emergency management, and to investigate multiple 

forecast scenarios. 

2.3 Combined Tropical Cyclone Risk Modeling 

 In the above sections emphasis has been given on single variable cyclone wind risk 

and storm surge risk modeling. Now a discussion of combined, or multivariate, risk 

modeling is presented. 
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 Numerical models depend on various inputs of oceanographic and meteorological 

variables (Dube et al. 2009). Computationally intensive numerical models involve a large 

number of input parameters which include water level, sea level variations, wave heights, 

wind velocity, bathymetry, topographic undulation, landscape variability, historical data, 

simulated data, and others (Jia and Taflanidis 2013). Numerical models compare model 

predictions with the observational surge level. In 1977 at the Andhra Coast and, in 1982 at 

the Orissa Coast, numerical models were used to predict the combined tidal and surge 

response by using respective tide-gauge reading and inland flooding (Johns et al. 1985).  

On the other hand, statistical modeling uses real-time observed data and known 

statistical theories to model TC behavior. Statistical models are used to represent 

hypotheses or assumptions depending on the observed data. Statistical models are 

constrained by the known limits of the data and the theory, which has the potential of 

making them reliable sources to model TC behavior.  

Emanuel et al. (2006) contributed significant knowledge to study of hurricane risk 

using both statistical and numerical approaches. The researchers ran two individual models 

with one model using empirical data to assess the hurricane positions and other model using 

the predicted data to estimate storm wind magnitude (Emanuel et al. 2006). Today, 

extensive availability of data related with hurricane risk assessment has provided the 

opportunity to make meaningful estimates of the risk using a combine numerical statistical 

approach (Emanuel et al. 2006). The authors also emphasize that recently all numerical 

estimation techniques begin with compilations of all observed data as they are readily 

available and give more accurate results; but for the places where the data records are 

sparse and locally unavailable the task becomes more complicated (Emanuel et al. 2006).  
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2.3.1 Joint Probability Modeling 

Research is increasing in the area of probability and statistics, in which multivariate 

models are analyzed with various types of dependence structures (Joe 1997). Dependence 

structures can be explained under joint probability distribution. The joint probability 

distribution for two or more variables that are defined on a probability space gives the 

probability that each of those variables falls in any particular range or discrete set of values 

specified for that variable. The joint probability distribution can be expressed in terms of a 

joint cumulative distribution function or joint probability density function (continuous 

variables) or joint probability mass function (discrete variables). These in turn can be used 

to find two other types of distributions: the marginal distribution and the conditional 

probability distribution (Hazewinkel 2001). For the joint probability density function for 

continuous multivariate distributions, the univariate marginals and the multivariate or 

dependence structure can be separated and the multivariate structure can be represented by 

a copula (Joe 1997).  

2.3.2 Copula Modeling 

A copula is a function or tool that links univariate marginals to their full multivariate 

distribution (Frees and Valdez 1998). According to Sklar's theorem any multivariate joint 

distribution can be written in terms of univariate marginal distribution functions and a 

copula, which describes the dependence structure between the variables (Nelsen 1998). 

The joint distribution function expresses the fact that copulas embody the way in which 

multidimensional distribution functions are coupled to their 1-dimensional margins, and 

also the way in which random variables defined over a common probability space are 

connected or linked together (Sklar 1973). If G is an n-dimensional joint distribution 
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function with 1-dimensional margins F1,..., Fn, then there exists a function C (called an 

"n-copula") from the unit n-cube to the unit interval  such that 

G(x1, ..., xn) = C(F1(x1), ..., Fn(xn)) for all real n-tuples (x1, ..., xn). 

 Multivariate distributions share the necessary conditions in a joint distribution 

function over the probability space. Multivariate distributions in a joint probability 

distribution function originate from the same existing environment that the consequences 

can be explanatory under same criteria with univariate margins. For example, in this study 

cyclone wind speed and storm surge are the consequences of the same storm event 

originating from ocean-air interaction and their dependence structure can be explained by 

a copula. 

 Trepanier et al. (2015) used a statistical copula model to estimate the combined 

surge and wind risk from hurricanes at Galveston, Texas. The researchers came up with 

precise results of storm surge and wind risk, which is computed from the long term 

observed data of wind speed and surge height, without any complex intensive 

computations. This model could be improved by including additional variables.  But if 

additional variables are not available or rather the copula itself is suited to create just its 

bivariate approach that can essentially model the risk estimate of those two variables 

dependent on each other but independent on the entire basin itself. Copula allows the 

capacity to model empirical relationships between observed data as separate entities from 

the additional data and to pin point a relationship between two variables at a specific 

location. As storm surge risk analysis involves data of different types, such as oceanographic, 

meteorological, hydrological, bathymetric, and coastal geometric, it is obvious that all these 

data cannot always be available to run a complete model. As a result, there are few studies 
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using observed data in storm surge risk analysis in the BoB, in comparison to modeled data 

in this region (Dube et al. 2009).  

 Among various statistical models, a copula is a straight-forward method that 

becomes a valuable alternative to the more commonly used multivariate methods in climate 

research, in which non-normally distributed random climatic data are involved (Schölzel 

and Friederichs 2008). The climate system is a complex, high-dimensional, and nonlinear 

system, and it is difficult to characterize using univariate components (Schölzel and 

Friederichs 2008). Instead, the climate system tends to be composed of a suite of variables 

that together approach a probability distribution of multivariate random variables (Schölzel 

and Friederichs 2008), making it ideally suited to copula modeling. In storm surge risk 

analysis, most of the previous model studies are limited by their reliance on a univariate 

component of storm surge (Chu and Wang 1998; Elsner et al. 2008; Lin et al. 2010; Irish 

et al. 2011). In contrast, recent studies based on copula (Liu et al. 2009; Trepanier et al. 

2015) facilitate the analysis of risk contributed by multivariate random variables. 

 Depending on data availability, a copula model can be expanded to incorporate 

more variables and spatial extensions than have been incorporated in previous TC research. 

According to Schölzel and Friederichs (2008), three typical situations of bivariate random 

variables are considered in a copula framework: (1) the same climate variable at different 

locations, (2) different climate variables at the same location, and (3) bivariate extremes, 

as far as they can be expressed in the copula framework. 

 Copulas were introduced by Sklar (1959). The technique has become popular in 

recent decades, especially in the fields of econometrics (Embrechts et al. 2003), finance 

(Breymann et al. 2003), risk management (Schölzel and Friederichs 2008), insurance (Haas 
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1999), and more recently in hydrology (Renard and Lang 2007; Genest et al. 2007; 

Bardossy and Li 2008). Copula modeling has recently become more prominent in climate 

research as it is able to analyze risk more efficiently within a holistic climatic framework. 

Bivariate frequency analysis of observed and simulated storm events (Vandenberghe et al. 

2011), analysis of precipitation extremes (Zhang et al. 2012), risk evaluation of drought 

(Zhang et al. 2013), and analysis of risk from hydrodynamic boundary conditions (Wahl et 

al. 2012) are some examples of copula modeling applied in climate research. This research 

capitalizes on the advantages of copula modeling of wind speed and storm surge risk 

analysis in the BoB, where it has not been implemented in previous research.   
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CHAPTER 3.  

DATA 

3.1 Data 

This research utilizes peak storm surge and cyclone wind speed data along the coast 

of the BoB. The data have been collected mainly from the South Asian Association for 

Regional Cooperation (SAARC) Meteorological Research Centre (SMRC), the world’s 

storm surge data center (SURGEDAT), and the International Best Track Archive for 

Climate Stewardship (IBTrACS). The rest of the data have been collected from various 

journals and reports. For storm surge, peak height at or near landfall has been considered, 

and for wind speed, the reported peak wind and winds prior to landfall have been 

considered. For this study, 64 records have been collected pairing surge with reported peak 

wind and pre-landfall winds. 

Two distinct datasets of wind and surge pairs are used for analysis. Each event has 

one wind and one storm surge pair associated with it. The first, called dataset 1 (DS1), 

considers the reported peak wind speed and storm surge given from the SMRC with the 

storm surge data supplemented by SURGEDAT and wind data supplemented by IBTrACS. 

The second (DS2) considers the 12-hour pre-landfall wind speed reported from IBTrACS 

with the same storm surge data in the first set. The reasoning for this is detailed below. 

First, the storm surge data are described and, second, the rationale and description of the 

two wind data sets are given.  

3.1.1 Storm Surge 

The South Asian Association for Regional Cooperation (SAARC) Meteorological 

Research Centre (SMRC) provided data for 37 storm surge events for this study from 1942–

1997.  The SMRC is a research center monitoring meteorological phenomena consistent 
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with SAARC Member States (Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, 

Pakistan, and Sri Lanka). The SMRC accumulates data from various publications of the 

Bangladesh Meteorological Department (BMD), the Indian Meteorological Department 

(IMD), newspapers, journals, and reports. In SMRC, storm surges height includes the 

combined effect of the storm tide and astronomical tide (Karmakar 1998). The data 

provided include the peak storm surge height in meters along with a qualitative description 

of location. To quantify the location given, estimation of latitudes and longitudes have been 

made using landfall location given by the SMRC, cyclone track information from 

IBTrACS, and by applying theoretical knowledge of hurricane structure which suggests 

the largest storm surge occurs at the right-forward quadrant of the storm in the Northern 

Hemisphere (NOAA 2015). 

The global storm surge database SURGEDAT provided an additional 17 surge 

events from 1885–2011 (Needham et al. 2013). These data include the peak water level 

and the latitude and longitude of the record. SURGEDAT retrieved data from numerous 

academic publications, Unisys Weather (Unisys Corporation 2015) and the Joint Typhoon 

Warning Center (JTWC). Most of the storm surge heights in SURGEDAT indicate the 

combined effects of the storm tide and astronomical tide from scientific and anecdotal 

documents. Tide gauge data were unavailable during surge periods, or gauges were not 

located in the area of peak storm surge, so in many cases, the removal of astronomical tidal 

influences was not possible. Generally, these estimations provided water levels slightly 

above normal, sometimes rounded off to the nearest foot, which were then converted to 

meters.  
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The rest of the 10 records have been compiled from Murty et al. (1986), Khalil 

(1992), and Murty and El-Sabh (1992). The reported surge was given with a qualitative 

location similar to the SMRC. The same approach was used to quantify these locations.  

Figure 3.1 shows the locations of peak storm surges with grayscale gradient 

symbols showing various scales of surge intensity. Four of the storm surges (1974, 1975, 

1978, and 1982) are actually recorded over water but are close to land and are considered.  

Figure 3.1  ̶  Coastlines of the Bay of Bengal and location of major storm surges in 

various intensity from 1885–2011 

Among the 11 >6.5 m surges, 8 surges occurred on the coast of Bangladesh and 3 

on the Indian coast (Orissa). Among the 5.51 ̶ 6.5 m surges, 4 occurred on the coast of 

Bangladesh and 3 were on the coast of India (2 and 1 occurred in Orissa and West Bengal 

respectively). The 4.51–5.5 m surges occurred more frequently than the other categories, 

where 11 occurred on the coast of Bangladesh, 10 were on the Indian coast (3, 4, and 3 
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occurred in West Bengal, Andhra Pradesh, and Tamil Nadu respectively), and 4 were on 

the Myanmar coast. Among the 2.5–4.5 m surges, 4 occurred on the coast of Bangladesh, 

5 were in India (2 and 3 occurred in Orissa and Andhra Pradesh respectively) and 3 in 

Myanmar. There were only 9 surges <2.5 m, where 4 occurred in Bangladesh and 5 are in 

India (1, 1, and 3 occurred in Orissa, Andhra Pradesh, and Tamil Nadu respectively). 

3.1.2 Wind Speed 

To best represent and model the relationship between storm surge and wind speed, 

it is necessary to find the pairing of wind and surge with the strongest statistical 

relationship. Multiple locations of wind are considered: the reported peak wind at landfall, 

and the 6-, 12-, 18-, and 24-hour winds prior to landfall. 

Latitudinal and longitudinal specification for both surge height and wind provide 

the level of dependency between wind and surge to analyze risk. For the reported maximum 

wind, this research utilizes wind speed data from the SMRC and IBTrACS. The SMRC 

provided 32 wind events for this study from 1949–1997. These events do not come with 

information regarding where the peak wind was recorded, only where landfall was 

recorded. Since it is known that peak winds often occur prior to landfall due to the decay 

influence of the land (Kaplan and DeMaria 2001), assuming that the reported peak wind 

occurred at the landfall location is not suitable. This is the reason for use of two datasets. 

DS1 does not include location information for the reported peak wind. DS2, described 

below, has this information, which may prove useful in the model. The IBTrACS dataset 

provided an additional 22 wind events from 1885–2011. The rest of the 10 records have 

been aggregated from renowned journals and publications (Murty et al. 1986, Khalil 1992, 

Murty and El-Sabh 1992). These winds with the surge described above comprise DS1. 
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For winds prior to landfall, the tracks of the cyclones with storm surge information 

have been identified from the IBTrACS using the following few steps. The IBTrACS 

dataset provided all wind speeds along the cyclone track from 1885–2011. IBTrACS is the 

most commonly used TC data source and records location, distribution, frequency, and 

intensity of TCs worldwide. Among the various data sources in IBTrACS, wind speed data 

have been obtained primarily from the National Center for Atmospheric Research (NCAR): 

North Indian Ocean Basin: BoB and Arabian Sea, and World Meteorological Organization 

(WMO) depending on availability. If they were not available in those two sources then the 

wind data were obtained from different weather observatory stations in IBTrACS. For 

example, some wind speeds were taken from the IMD: RSMC New Delhi, JTWC, and the 

National Climate Data Center (NCDC). In IBTrACS, the wind speeds are recorded in knots 

and have been converted to m s-1. All the cyclone track positions and wind values have 

been cross-verified with the Unisys Weather (National Weather Service, NOAA) (Unisys 

Corporation 2015) database.  

IBTrACS provides 6-hour intervals of observation for each storm’s location and 

intensity from the time of its formation to its final decay. In this study, according to the 

National Hurricane Center (NHC), landfall is defined as the location where the TC center 

intersects with a coastline (NHC 2015). When using the 6-hour track, it is possible to miss 

the landfall location. The 6-hour track could be just before or just after landfall. The point 

of landfall for each storm track was identified using a land mask of the study area and the 

approaches outlined in Needham and Keim (2014). This point was marked as hour zero. A 

spline interpolation method (Jagger and Elsner 2006) was used on the 6-hourly cyclone 

track data to capture the hourly values. This provides a clearer picture of landfall location. 
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Then the interpolated values were used to identify the one-hour geographic position of the 

cyclone center and wind speed to consider hours 6, 12, 18, and 24 prior to landfall. The 

various magnitudes of wind speed are used to test the relationship between wind and storm 

surge at differing points along the cyclones’ tracks.  The wind speed chosen for final 

analysis was the variable that produced the strongest significant statistical correlation with 

surge and is used in DS2. These correlations will be discussed below. 

Among the 64 events, five storms (1952, 1960, 1963, 1970, and 1971,) did not make 

a landfall as defined by NHC. However, these tracks passed close to land and have peak 

surge records worth modeling. Hour zero was marked as the track point closest to the land 

mask. Among these nine cyclone tracks the closest track is about 0.45 km from the 

coastline, the farthest is about 277 km from the coastline, and the average distance from 

the decay point of the track to the coastline is about 94 km. The distances measured in these 

cases considered the nearest coastline from the decay point. For each track considered in 

this study, the average track length from cyclogenesis to total decay is 1853.22 km. Figure 

3.2 shows the cyclone intensity scale with color gradient lines followed by the IMD. 

3.1.3 Combined Wind and Storm Surge Datasets 

Using the data outlined above, 64 storm surge records with maximum winds 

occurred along the coast of the BoB from 1885 ̶ 2011. No storm events are included outside 

of these ranges due to a lack of observational surge data. The data set includes the name, 

country of landfall, year of the cyclone, surge height in meters (SmaxM), longitude (Slon) 

and latitude (Slat) of the surge height, recorded peak wind in m s−1 (MaxW), wind speed 

at 6(6W), 12(12W), 18(18W), and 24(24W) hours prior to landfall, longitude (MWlon) 

and latitude  (MWlat)  of  the  peak  wind, longitude (12Wlon) and latitude (12Wlat) of the  
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Figure 3.2  ̶  Along-track wind intensity of the Bay of Bengal storms, 1885–2011. 

The category of wind intensity follows the IMD classification  

wind speed 12 hours prior to landfall, and the distance between 12W and surge in meters 

12 hours before landfall (D12) (see Appendix). An index is added to the data that notes the 

position of the cyclone wind along the track relative to the surge location. This is only 

applicable to the 12W in DS2 as the wind is on the cyclone track. If the wind speed occurred 

to the left of the surge location, it was given an index of 1. If the wind speed occurred to 

the right of the surge location, it was given an index of 0. It is well-known that the highest 

magnitude of wind speeds is in the right front quadrant in the Northern Hemisphere, 

(NOAA 2015). This index is used in later regression analyses as an attempt to test that 

relationship.  
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Among the 64 storm surge records with maximum winds, there is only one storm 

surge event in the 1800s. This event has been reported in multiple documents due to the 

severity and damage. Frequency of storm surge events is higher during later portions of the 

record. This is likely due to the establishment of more weather observatory centers at the 

local and national level and improvement of the technology after the 1950s. When 

considering any time series analyses or any modeling that involves rate information, this 

earlier record will be omitted due to the potential data bias.  

For the storm surge events that do not have any reported wind speed records, the 

track of the cyclone has been identified from the IBTrACS data set and maximum wind 

speed has been traced along the track for that specific event. As mentioned earlier, 22 

records for winds have been collected from IBTrACS to pair with 5 SMRC and 17 

SURGEDAT surge records that do not come with wind data. 

3.2 Relationships between Surge and Wind 

In this research, the strongest statistical relationship between wind and storm surge 

is needed to model the combined risk of both cyclone characteristics.  Multiple locations 

of wind are considered: the reported peak, and the 6-, 12-, 18-, and 24-hour winds prior to 

landfall (as described above).  

Upon initial analysis of the distributions, the storm surge and reported peak winds 

are normally distributed and pre-landfall winds are non-normally distributed (Figure 3.3). 

The Shapiro-Wilk test (Royston 1982) is performed to test the normality and cross validate 

the distributions. From the test, the p-values for storm surge, 12-hour pre-landfall wind and 

peak wind are respectively 0.15 (> 0.05), 0.005 (< 0.05) and 0.31 (> 0.05). Higher p-values 

for storm surge and peak wind show no significance and state the notion that samples are 
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normally distributed. The lower p-value for 12-hour pre-landfall wind suggests the values 

do not come from a normal distribution. This makes physical sense as many events have 

lower magnitude wind speeds and few have extreme wind speeds. Thus, the Pearson 

product-moment correlation is used for the peak wind and the Spearman’s rank correlation 

is used for the pre-landfall winds to represent the statistical relationship between all surge 

and wind pairs. A total of 64 records have been considered for correlation analysis and the 

results can be seen in Table 3.1. The strongest relationships are noted in shaded rows. 

Figure 3.3  ̶  Frequency distribution of (a) surge height (meters), (b) peak wind (m s-1) 

and (c) 12-hour pre-landfall wind (m s-1) 

The most significant correlations are found between the reported peak wind and 

surge height (r = 0.51, p-value < 0.00). Because the reported peak winds do not come with 

latitudinal and longitudinal coordinates, the research must analyze the surge relation with 

winds before landfall (where location information is known). Previous research shows that 

pre-landfall winds are correlated more strongly with storm surge height than winds at 

landfall (Jordan and Clayson 2008; Needham and Keim 2014). Jordan and Clayson (2008) 

explained that a certain amount of time is required for a water column in an ocean to gain 

energy from its adjacent atmosphere. For the U. S. Gulf Coast, Needham and Keim (2014) 
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determined that among pre-landfall winds, winds 18 hours before landfall have a stronger 

correlation when compared to wind speeds at other pre-landfall hours.  In this study, among 

the pre-landfall winds considered, the strongest relationship to storm surge height is found 

at 12 hours before landfall (ρ = 0.3, p-value = 0.01) (Table 3.1). The amount of variance 

explained by the Pearson r value is the square of the value. This difference in the 12-hour 

pre-landfall correlation may be attributed to different geographical settings and dynamic 

systems (Ali 1979) associated with the cyclone formation in the BoB versus the Gulf of 

Mexico. The two datasets utilizing the reported peak wind (DS1) and 12-hour pre-landfall 

winds (DS2) are used for the duration of the analyses presented throughout the remaining 

chapters of this thesis. 

Table 3.1  ̶  Pearson’s product moment and Spearman’s rank correlation values between 

cyclone winds and peak surge heights 

Categories of Wind with Surge 

Events 

Pearson’s Spearman 

r P-value ρ P-value 

Reported Peak Wind 0.5093569 1.72e-05 0.4829145 5.31e-05 

6-hour Pre-landfall Wind 0.3234496  0.009132 0.25652 0.04075 

12-hour Pre-landfall Wind 0.3503721  0.004535 0.3142554 0.01144 

18-hour Pre-landfall Wind 0.3409144 0.005839 0.3098499 0.01272 

24-hour Pre-landfall Wind 0.2691565 0.0315 0.2413131 0.05474 
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CHAPTER 4.  

METHODS AND RESULTS 

 All analysis and modeling is performed using the open source software, R Project 

for Statistical Computing (R Core Team 2014). Specifically, the copula package (Yan 

2007; Kojadinovic and Yan 2010) is utilized for the final portion of analysis of the research. 

Copula is a combined risk analysis package built under R environment. Before creating the 

copula model for DS1 and DS2, basic descriptive statistics and regression results are 

presented.  

4.1 Descriptive Statistics 

Each dataset has 64 event records. Of those 64, 56% were recorded at the coast of 

Bangladesh, 36% occurred along the east coast of India, and 8% were on the coast of 

Myanmar.  When considering the entirety of the surge data, the Myanmar coast was 

affected by the highest surges in 1982 (Cyclone Gwa) and 2008 (Cyclone Nargis). These 

cyclones caused extensive loss of life and property along the Myanmar coast and farther 

inland (Dube et al. 2009).  The east coast of India has received devastating storm surges in 

1971, 1977, 1989, 1990, 1996, and 1999 (SURGEDAT 2015) in terms of surge height. 

Along the east coast of India, the Andhra Pradesh coast (Figure 1.1) experienced the most 

events, where 39.1% of TCs included in this record made landfall. The next most frequent 

location is along the Orissa coast and Tamil Nadu coast where 26.1% of TCs made landfall.  

A total of only 8.7% of TCs crossed the West Bengal coast. 

 For the Bangladesh coastline, locations of the storm surges show that the Noakhali-

Chittagong coast and Barisal/Patuakhali-Noakhali coast are much more susceptible to 

storm surges than other areas, with the maximum storm surge height in the sample 

considered here being 10 m (the Bhola Cyclone). The Chittagong-Cox’ Bazar coast is a 
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secondary peak area of susceptibility, with a maximum storm surge height of 7.6 m 

(Barisal-Bakerganj Cyclone). The Khulna/Sundarban and Barisal-Noakhali coasts are 

relatively less vulnerable in comparison to the above-mentioned locations.  

 The minimum surge height recorded from 1885–2011 (Table 4.1) was 0.2 m 

(Chennai Cyclone in 1978) and the maximum surge recorded was 10 m (the Bhola Cyclone 

in 1970), with an average 4.6 m surge height over the years. The average peak wind speed 

and 12-hour pre-landfall wind speeds were 40.66 m s-1 and 32.6 m s-1, respectively. The 

minimum storm surge, peak wind and 12-hour pre-landfall wind speed occurred during the 

same event in 1978, with 0.2 m, 10.29 m s-1, and 10.35 m s-1, respectively. The maximum 

peak and 12-hour pre-landfall wind speeds were 72.02 m s-1 and 68.84 m s-1, respectively, 

and occurred in 1999 when the surge height was 7.5 m.  

Table 4.1  ̶  Summary of variables. Min is the minimum, Max is the maximum, 1Q and 

3Q refer to the first and third quantiles 

Surge (m) Peak Wind (m s-1) 12-hour Pre-landfall Wind (m s-1) 

Min: 0.200 Min: 10.29 Min: 10.35 

1Q: 3.375 1Q: 30.42 1Q: 23.46 

Median: 4.550 Median: 38.60 Median: 31.86 

Mean: 4.299 Mean: 40.66 Mean: 32.16 

3Q: 5.000 3Q: 53.61 3Q: 35.16 

Max: 10.000 Max: 72.02 Max: 68.84 

 The monthly distribution of cyclones included in this record is shown in Figure 4.1. 

Cyclones occurring in this region show bimodal peaks: one in May, and the other in 

October. May is the most susceptible month, with 28.6% of BoB TCs included in this 

record making landfall somewhere in the basin. Specifically along the eastern coast of 

India, 30.4% and 34.8% of TCs make landfall in October and November, respectively. For 

the Bangladeshi coast, May and October are the most susceptible months with 30.6% and 

25% making landfall, respectively.  
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Figure 4.1  ̶  Monthly frequency distribution of cyclones occurring in the Bay of Bengal 

from 1942-2011 

4.2 Regression Analyses 

Regression analysis is a statistical process to examine relationships between a 

variable of interest and explanatory variables. The regression equation is written as

iii xy   , where y is the dependent variable, α is the intercept, β is the slope of the 

line, x is the independent variable, and ε is the error term. Here, different regression models 

are presented. First, as an attempt to look at trends over time, time series analyses are 

presented to quantify relationships between year and storm surge height and year and the 

two wind speed variables.  

The intensity of peak storm surge height, peak wind, and the 12-hour pre-landfall 

wind as a function of year are shown in Figure 4.2(a–c). To avoid potential bias in the time 

record, the 1885 event has been removed from each dataset for the rest of the analyses and 

the new start date of the data is 1942.   
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Figure 4.2  ̶  Scatterplots between (a) year and peak wind, (b) year and 12-hour pre-

landfall wind, and (c) year and storm surge 
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The time series models in Figure 4.2(a) and 4.2(b) show a slightly increasing 

temporal trend for both for both peak wind speed and 12-hour pre-landfall wind speed. The 

slope of the Figure 4.2(a) shows for every one year that passes, peak wind speed increases 

by 0.20 m s-1 (p-value = 0.07). The slope in Figure 4.2(b) shows for every one year that 

passes, the 12-hour pre-landfall wind speed increases by 0.30 m s-1 (p-value = 0.002). For 

both wind sets, the models show at least marginally significant results. It is possible this 

increasing trend is due to changes in warmer SST (Nitta and Yamada 1989; Cane et al. 

1997), or changes in better measurement techniques over time. On the other hand, the linear 

regression model in Figure 4.2(c) shows a slightly decreasing trend of peak storm surge 

height over time. The relationship between storm surge and year is not significant (p-value= 

0.79), indicating there is not a trend across time in storm surge values for the BoB.   

 Storm surge height can be described with wind values by using a regression model.  

Initially, a Pearson product-moment correlation was computed to find relationships 

between peak surge and various levels of winds using all data back to 1885. This was 

presented in Chapter 3 as a way to describe the choice of wind speed data for analysis. 

Again, to avoid the concern over the potentially missing events in the first portion of the 

20th century, 1942 is the new start date. Correlation values between the new DS1 and DS2 

variables are minimally different and still significant. For peak wind, the Pearson 

correlation value is 0.512 (p-value < 0.0000). The Spearman rank correlation value for the 

12-hour pre-landfall wind data is 0.345 (p-value = 0.0057). Both tests show the correlation 

is strong for peak wind with a highly significant p-value, and moderately strong for the 12-

hour pre-landfall wind with a less significant p-value. The assumptions of a linear model 

are that the data are normally distributed and the data values are independent and identically 
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distributed. These assumptions are tested through analysis of the regression model 

residuals.  

The peak reported wind data are normally distributed and can be modeled using 

linear regression without breaking any assumption rules. On the other hand, the 12-hour 

pre-landfall wind data show positive skewness for the distribution. In this case, the 

residuals of the regression model are analyzed to assess the fit of the model and to validate 

use of a linear regression with slightly skewed data. 

An ordinary-least squares (OLS) regression model was created for peak winds and 

the 12-hour pre-landfall winds. As a first order, the R program package ggplot2 (Wickham 

2010, Wilkinson 2011) has been used for each storm and wind pair to visualize the 

relationship.  

Figure 4.3(a) shows the relationship between the reported maximum wind speed 

(m s−1) and surge height (m), and Figure 4.3(b) shows the relationship between the 12-hour 

pre-landfall wind speed (m s−1) and surge height (m). The marginal distributions of winds 

and surge are also shown along the x and y axes.  The red line indicates the best fit model. 

Figures 4.3(a) and 4.3(b) show significant trends between wind speeds and surge 

height.   The significant (p-value <0.000) relationship between peak wind and surge height 

shows that for every 1 m s−1 increase in wind speed, surge heights are expected to increase 

by 0.07 m. Also, for every 1 m s−1 increase in 12-hour pre-landfall wind speed, the storm 

surge significantly (p-value = 0.001) increases by 0.05 m. However, storms with higher 

wind speeds do not always cause the higher surge. Storms with higher wind speeds do not 

always have the higher surge.   
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Figure 4.3  ̶  (a) Peak wind speed (m s−1) and (b) 12-hour pre-landfall wind speed 

regressed on storm surge height (m) at the Bay of Bengal. The adjacent axes show the 

marginal distributions of the respective variables 

  To assess whether assumptions were violated in the peak and in the 12-hour pre-

landfall wind speed and storm surge regression models, residuals are analyzed from the 

model fit. Figures 4.4(a) and 4.4(b) show the distribution of residuals of the regression 

model of peak wind and 12-hour pre-landfall wind, respectively. Both histograms are 

similar to a normal distribution. P-value from the Shapiro-Wilk test (Royston 1982) is 

0.053 for the residuals in peak wind and surge model and 0.27 for 12-hour pre-landfall 

wind and surge model respectively show that the distribution is marginally significant and 

not significant. In both cases it support the notion that the residuals are normally 

distributed. This offers no reasons to reject the validity of the linear regression model of 

both datasets. 

The relationship between wind and surge is modeled sequentially including a third 

variable: position of the wind speed relative to the surge and then distance between surge 

and wind location.  The modeled relationships are: (i) how does wind affect surge, (ii) how 
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does wind and distance from wind to surge location affect surge, and (iii) how much 

influence does the position of the peak wind relative to the surge location have on surge. 

In the Northern Hemisphere, the peak of a storm surge is generally higher to the right of 

the cyclone track or cyclone wind direction, as these areas receive strong onshore winds 

from the counterclockwise wind flow around the cyclone (Needham and Keim, 2014) and 

over that extensive area water continues to pile up in a pronounced way (Blain et al., 1994). 

As mentioned previously, if the surge occurred to the right of the wind location, it is given 

an index of 1 and for the opposite case, a value of 0. In a study by Blain et al. (1994), if a 

tropical cyclone travels to the left of the surge event, the right front quadrant would be 

closer to the surge (Trepanier 2012). Since the peak wind and surge height of the SMRC 

were recorded in the same location, the DS1 data set does not contain any index or distance 

measurement. For DS2, one hypotheses is that cyclone wind speed occurring to the left of 

the surge event will produce a higher surge than one occurs to the right. Using a logistic 

regression the index variable is considered. The relationship is not significant.  

Figure 4.4  ̶  Distribution of residuals (a) of  peak wind and (b) 12 hour pre-landfall 

wind 
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A distance variable as described above shows a weak correlation value with surge 

of 0.24 (p-value = 0.06) and leads to a suggestive rejection of the null hypothesis that there 

is no relationship and the acceptance that the distance between the wind and surge location 

influences the surge height, at least marginally. The variable is examined further in a 

regression model. For every 1 m s−1 increase in 12-hour pre-landfall wind speed, surge 

heights are expected to increase by 0.06 m (p-value = 0.001). For every 1 km increase 

between the wind and surge height locations, surge is expected to increase by 0.004 m (p-

value = 0.01). This suggests that the greater the distance between the 12-hour pre-landfall 

wind and peak surge, the greater the surge tends to be. Distance between the 12-hour pre-

landfall wind and peak surge gives the ocean more time and more space to response to 

changes in the wind speeds. This suggests the model can be improved by including the 

distance from wind to surge location.  

The Akaike Information Criterion (AIC), which is a measure of the goodness of fit 

of a statistical model, has been applied to test the quality of the models in comparison to 

each other, and thus select the best model for further analysis. The lower the value, the 

better the model describes the relationship. The three relationship models described above 

get the AIC test values of 252.9 (model=i), 249.5 (model=ii), and 254.88 (model=iii) 

respectively. These values indicate that the model using the 12-hour pre-landfall wind with 

the distance between the wind and surge location is better than using just the 12-hour pre-

landfall wind alone. Therefore, a copula model is presented for both DS1 and DS2. DS1 

has the stronger relationship between the peak wind and the storm surge and landfall and 

is, thus, important to model. DS2 is used to create a copula because this information comes 

with additional location information. The AIC value suggested that knowing this 



40 

 

information furthers the understanding of the expected surge at landfall. Depending on the 

application, either data set may be useful.  

Copula modeling minimizes the marginal distribution influence and runs the joint 

distribution of storm surge and wind speed to predict the dual risk at the coast of the BoB. 

The magnitude of inundation due to surge varies with the tidal conditions and associated 

landforms. This research is directed toward a broader analysis of storm surge and wind 

risk, where risk can be defined as statistical likelihood of the storm surges and wind speeds 

affecting the coast of the BoB.  

4.3 Copula Model 

To understand the relationship between cyclone wind speed and storm surge and to 

estimate the overall risk, i.e., the likelihood of a wind and surge occurring in the BoB from 

cyclones, a bivariate statistical copula is used.   

A copula is used to describe the dependency structure between the wind speed (peak 

wind and 12-hour pre-landfall wind) and peak storm surge height to quantify statistical risk 

along the BoB coastline. The dependency structure describes the behavior of one random 

variable given the occurrence of another. That is, a copula model can be used to describe 

how surge and wind are linked with one another within a TC system. Physically, cyclone 

wind and storm surge are linked because they share many of the same processes within the 

TC. The atmosphere-ocean flux which drives the TC storm surge is created through the 

momentum flux between the energy exchange of the winds near the ocean surface and the 

waves at the top of the ocean water column (Trepanier et al. 2015).  Thus, stronger winds 

generate a greater flux. It is worth noting that the swell of the water column and 

amplification of surge near landfall depend on many characteristics including, but not 
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limited to, the continental shelf and bathymetry; not just on the relationship with wind 

speed.       

The objective of a copula is to model the dependence of wind and surge (W, S) 

statistically. It can be assumed that the marginal distributions of random variables are the 

same and that the data can be treated as such within the copula model. However, as the 

marginal distributions of random variables are often not identical, the copula function can 

be written to allow for the removal of marginal influences.  It sets up the goal to predict the 

annual probability for a given occurrence level of wind speed and storm surge. The 

dependence measure for wind and surge (W, S) developed finds a return period (year), Z, 

for a given occurrence level of wind speed and storm surge. Tawn (1988) and Coles et al. 

(1999) describe the theory and dependence models for extreme values. The theory is 

summarized below. 

The copula function for a measure of dependence in the extreme tail is described as 

follows. For any random vector, (W, S), the distribution function F (w, s) = Pr (W ≤ w, S ≤ 

s) provides a complete description of dependence between variables W and S. The effect 

of the margins are removed by observing that, subject to continuity conditions, there is a 

unique function C (., .) with domain A = [0,1] × [0,1] such that 

        F (w, s) = C [FW (w), FS (s)],                    (1) 

where FW  and  FS are the marginal distribution functions given by  

     FW (w) = F (w, ∞), and FS (s) = F (s, ∞).   (2) 

The function C is the copula model and it contains the information about the joint 

distribution of W and S apart from the marginal distributions. C describes the association 

between the two variables after transformation to variables U and V, having margins 
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defined by the empirical data distributions. Analysis of the data distributions allows a 

distribution to be chosen for the margins and the attention can then be focused on the 

dependence structure between surge height and wind speed. Joe (1997), Nelsen (1998), 

Coles et al. (1999), and Yan (2007) give a complete summary of the dependence measures. 

In this thesis, a two-dimensional copula model has been implemented based on the sample 

values. The dimension is the number of variables, in this case wind and surge.   

4.3.1 Elliptical and Archimedean Copula Structures  

 The dependency structure of wind and surge can be modeled with various classes 

of a copula. In this study, two important classes considered are the elliptical and the 

Archimedean copula families and each are applied for combined risk modeling of wind 

and surge. The model with the best fit provides a table of annual probabilities of specific 

wind and surge pairs with uncertainty provided with 1000 Monte Carlo simulations of the 

copula.  

 First, the structure of elliptical copulas are described followed by a description of 

the Archimedean copula. Elliptical copulas are simply the distribution functions of 

componentwise transformed elliptically distributed random vectors. The model is derived 

from multivariate distribution functions using Sklar’s Theorem (Fang et al. 1990, 

Embrechts et al. 2001).  Elliptical distributions, which are comparably rich in parameters, 

enable the modeling of multivariate extremes by sharing tractable properties of the 

multivariate normal distribution (Embrechts et al. 2001). Let F be the multivariate 

cumulative density function (CDF) of an elliptical distribution, Fi is the CDF of the ith 

margin, and Fi
−1 is its inverse function, i = 1, . . . , p. The elliptical copula determined by F 

is  
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   C(ui, . . . , up) = F [F1
−1(u1), . . ., Fp

−1(up)]        (3)  

 In this family are two common elliptical copulas: the Gaussian (or normal) and the 

Student’s t. The Gaussian copula has been implemented in this study for the two-

dimensional bivariate case of wind and surge for both data sets (DS1 and DS2). The 

bivariate distribution function for the Gaussian copula is parameterized by the linear 

correlation coefficient ρ and is expressed as: 

      C(u, v) = Φρ (Φρ
-1(u), Φρ

-1(v))                        (4) 

where Φρ(·, ·) is the bivariate Gaussian distribution function and Φ− ρ 1(·) is the inverse 

of the univariate Gaussian distribution function (Louie 2014). The model was also tested 

using a copula created with a t-distribution. Little difference was found in the results. 

 Archimedean copulas are an important class of copulas that have closed form 

expressions and allow for a great variety of different dependence structures (Embrechts 

2001). They are able to capture different kinds of tail dependencies, such as: only upper 

tail dependence and no lower tail dependence or both lower and upper tail dependence but 

of different magnitude (Hofert and Mächler 2011). This class of copulas are very popular 

and advantageous for some settings as the relationship can be expressed in terms of a 

single-argument generator function φ(t) (Embrechts et al. 2001, Nelsen 2007; Nelsen et al. 

2002) rather than C(u, v), (Louie 2014). The expression can be written as, 

C(u1, . . . , up) = φ−1 { φ(u1) + · · · + φ(up)}      (5) 

where φ−1 is the inverse of the generator ϕ. While this multidimensional definition formally 

follows the criteria of a copula under certain properties of φ, higher dimensions are not 

practical since the margins are exchangeable. Therefore Archimedean copulas are mostly 

used in the bivariate case (Schölzel and Friederichs 2008). Commonly used examples of 
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Archimedean copulas include the Clayton (Clayton 1978), Frank (Frank 1979), and 

Gumbel (Gumbel 1960). All these three families of Archimedean copula have been tested 

for DS1 and DS2 and it has been found that the Gumbel copula fits both data sets well. The 

Gumbel copula is an extreme value copula which allows us to model tail behavior of joint 

distribution and focuses on upper tail. The Gumbel copula has been used in this study for 

two dimensional bivariate case of wind and surge to model their tail dependencies for both 

DS1 and DS2. The generator function which is related to a bivariate copula is:  

C(u, v) = φ−1 (φ(u) + φ(v))    (6) 

where φ−1(·) is the pseudo-inverse of φ(t). For the Gumbel copula the generator, φ(t) = (− 

ln t) α  and generator inverse, φ−1(s) = exp (−s1/α). 

Although simulation from elliptical copula is straightforward, there are drawbacks 

in elliptical copulas as they are restricted to have radial symmetry (C = Ĉ) and do not 

necessarily exist in closed form expressions (Embrechts et al. 2001, Schölzel and 

Friederichs 2008). Often many practical applications require different upper and lower tail 

behavior, which cannot be modeled with an elliptical copula. Such asymmetries can only 

be explained with Archimedean copulas. Archimedean copula allows a margin to be 

defined by an extreme value.      

4.3.2 Copula Structure for Peak Winds (DS1)  

Both elliptical and Archimedean copula model structures are applied to DS1.  Using 

the elliptical copula model structure, the wind and surge data are fitted to normal 

distributions. Using the Archimedean structure, the wind data are fitted to a Weibull 

distribution and a normal distribution is used for surge. These decisions were made after 

attempting to fit to various distributions, including but not limited to the gamma, log-
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normal, t, and Poisson. The normal and Weibull created the best fit copula, as described 

below. For the normal distributions, the parameters are the means and standard deviations 

and for the Weibull distribution the parameters are shape (ξ) and scale (σ). The values of 

the parameters are obtained for the marginals using a maximum-likelihood procedure 

(Venables and Ripley 2002). The multivariate density is generated from the copula 

definition and the Gaussian parameters (means and standard deviations) for the elliptical 

copula and the Weibull parameters (ξ and σ) for the Archimedean copula. For both copula 

models, the copula-based multivariate density is fitted to the data set using a maximum-

likelihood procedure.  

The first argument is the data (as a matrix), the second is a multivariate copula with 

normal or Weibull margins, and the third is a vector containing the original parameter 

estimates. The copulas are redefined using the modeled correlation parameter values. The 

multivariate density is generated from the new copula definition and the updated Gaussian 

and Weibull parameter values. This provides fitted copula models using the observational 

data in DS1. The densities for both the elliptical and the Archimedean copulas are plotted 

on a two-dimensional grid spanned by the range of wind and surge values.  

 Figures 4.5(a) and 4.5(b) show the joint density plot from elliptical and 

Archimedean copula for DS1. The density plot includes the observed data points.  

Contours, in units of events per bin size, are plotted at intervals of .001 starting at .001.  

The bin size is in units of meters times m s−1 and the number of bins is 50 times 50 over a 

range from 0 to 9 m and 5 to 80 m s−1. The match between the model and data appears to 

be good although the highest surge does not correspond with the fastest wind nor does the 

fastest wind correspond with the highest surge for a few events. Among the joint density 
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plots of elliptical and Archimedean copula, it is well illustrated that Archimedean copula 

model fits better to the distribution of the observed points (Figure 4.5, b). The Archimedean 

copula density structure is used to calculate the return period probabilities for combined 

wind and surge pairs. 

Figure 4.5  ̶  The joint density plot from (a) elliptical copula and (b) Archimedean copula 

for DS1. The points shown are the empirical data. Peak reported wind speeds (m s−1) are 

shown on the x-axis and maximum surge heights (m) are shown on the y-axis 

The joint probability of the wind and surge based on the copula density is 

determined using a function created in the R program (R Core Team 2014). The per event 

probability, [Pr(W > wmax, S > smax)] times the cyclone frequency (the number of cyclones 

divided by the total number of years), provides the annual event frequency. That is, the 

yearly frequency of events with W exceeding wmax and S exceeding smax. The yearly 

probability of an event is then 1−exp(−frequency), where exp() is the exponent function, 

and the return period is 1 divided by 1 −exp(−frequency), or roughly 1 divided by the 

frequency plus 0.5 year. For small frequencies, the return period is roughly 1 divided by 

the frequency. This provides the probability of specific wind and surge events. 
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 Figure 4.6 shows the return period probability of specific wind and surge events 

using the DS1 data and the copula structure defined above. The lines represent specific 

years. Contours are given at 2, 5, 10, 20, 30, 50, 75, 100, 150, 200, 300, and 500 years. A 

500-year return period has an annual probability of 1/500 or 0.2%. 

 

 

 

 

 

 

 

 

 

 

Figure 4.6  ̶  Return period information for wind and surge levels from Archimedean 

copula for DS1. Each line represents a specific return period year. The years shown are 2, 

5, 10, 20, 30, 50, 75, 100, 150, 200, 300, and 500 

 

 The combined risk for specific wind and surge pairs have been estimated using the 

Archimedean copula structure defined above. This is presented in Table 4.2. The 

classifications of the IMD’s cyclone category wind speeds have been followed for this 

table. Estimates of uncertainty around these point estimates, shown in parentheses, are 

based on 1000 Monte Carlo simulations. The Monte Carlo simulations use random draws 

of the normal and Weibull parameters for the marginals (two parameters for the surge 

marginal and two for the wind marginal, respectively) and a random draw from the copula 

dependency to generate return periods. The uncertainty is expressed as the 90th percentile 

of the simulated return periods. 
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Table 4.2  ̶ Wind speed and surge level return periods for DS1 (from Gumbel copula). 

Return period year information for (1-4)* cyclone category wind speeds are shown along 

with 4, 5, 6, and 8 m surges. The quartile pointwise CI is shown in parentheses 

    Return Period (Year) with 90% Confidence Intervals 

Wind Surge Height (m) 

Speed (m s-1) 4 5 6 8 

24 
3.2 

(2.7–3.8) 

5.1 

(4.2–6.9 ) 

10.5 

(7.6–17.4) 

79.7 

(38.8–240.8) 

32 
3.6 

(3.0–4.4) 

5.6 

(4.5–7.8) 

11.1 

(7.9–18.3 ) 

81.2 

(39.5–251.1) 

46 
6.0 

(4.7–8.3) 

8.2 

(6.3–12.7) 

14.2 

(9.9–26.1) 

87.9 

(42.9–284.1 ) 

62 
22.5 

(13.8–48.2) 

25.7 

(15.6–58.5) 

33.1 

(19.8–81.0) 

115.4 

(55.8–381.1) 

* 1 = Severe Cyclonic Storm, 2 = Very Severe Cyclonic Storm, 3 = Extremely Severe 

Cyclonic Storm, 4 = Super Cyclonic Storm 

 Statistical significance exists between pairs that do not have overlapping 

confidence bounds. For example, on average, the BoB can expect a TC with a peak wind 

speed of at least a 24 m s-1 with a 4 m surge every 3.2 years (2.7–3.8). The same peak wind 

speed with a higher storm surge of 5 m can be expected, on average, every 5.1 years (4.2–

6.9). These two events have a statistically significant difference in their recurrence time 

based on the narrow, non-overlapping confidence intervals. The most extreme event with 

a peak wind of 62 m s-1 and an 8 m surge can be expected to happen once every 115 years.  

4.3.3 Copula Structure for 12-hour Pre-landfall Winds (DS2)  

Like DS1 both elliptical and Archimedean copula model structures are applied to 

DS2.  Using the elliptical structure, the wind and surge data are fitted to normal 

distributions and, using the Archimedean structure, the wind and surge data are fitted 

individually to Weibull distribution for wind and normal distribution for surge. The setup 

for these different copula structures is exactly the same as described for the peak wind, 

only using the 12-hour wind data in DS2. This provides fitted copula models for DS2.  
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 Figures 4.7(a) and 4.7(b) show the joint density plot from the elliptical and 

Archimedean copulas for DS2. The density plot includes the observed data points.  

Contours, in units of events per bin size, are plotted at intervals of .001 starting at .001.  

The bin size is in units of meters times m s−1 and the number of bins is 50 times 50 over a 

range from 0 to 9 m and 5 to 80 m s−1. Among the joint density plots of elliptical and 

Archimedean copula, it is well illustrated, again, that the Archimedean copula model fits 

better to the distribution. From this point, the Archimedean copula is used to calculate the 

return periods for wind and surge. 

Figure 4.7  ̶  The joint density plot from (a)  elliptical copula and (b) Archimedean copula 

for DS2. The points shown are the empirical data. 12-hours pre-landfall wind speeds (m 

s−1) are shown on the x-axis and maximum surge heights (m) are shown on the y-axis 

 

 From the joint density plot it appears that higher wind speeds do not always cause 

the higher surges, just like with the peak wind data. This may be due to land water 

orientation, tidal condition during surge, intensity of a storm, its size, translational speed, 

angle of approach to the coast, landfall location, or the bathymetry at that location. These 

uncertainties at the upper tail are explained well by the Gumbel copula of Archimedian 
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class as it fits the data comparatively well when compared to the elliptical copula and thus 

is the most appropriate for the combined risk analysis. In Figure 4.8, the return period 

probability of specific wind and surge events are shown for DS2. The lines represent 

specific years. Contours are given at 2, 5, 10, 20, 30, 50, 75, 100, 150, 200, 300, and 500 

years.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8  ̶  Return period information for wind and surge levels from Archimedean 

copula for DS2. Each line represents a specific return period year. The years shown are 2, 

5, 10, 20, 30, 50, 75, 100, 150, 200, 300, and 500 

  The combined risk for specific wind and surge pairs have been estimated using the 

Archimedean copula structure defined above; results are presented in Table 4.3. The 

classifications of the IMD’s cyclone category wind speeds have been followed for this 

table, as well. Estimates of uncertainty around these point estimates, shown in parentheses, 

are based on 1000 Monte Carlo simulations, similar to the peak wind copula. The 

uncertainty is expressed as the 90th percentile of the simulated return periods. 

 



51 

 

Table 4.3 ̶ Wind speed and surge level return periods for DS2 (from Gumbel copula). 

Return period year information for (1-4)* cyclone category wind speeds are shown along 

with 4, 5, 6, and 8 m surges. The quartile pointwise CI is shown in parentheses 

 Return Period (Year) with 90% Confidence Intervals 

Wind  Surge Height (m) 

Speed (m s-1) 4 5 6 8 

24 
3.9 

(3.3–4.8) 

6.5  

(5.1– 9.1) 

12.7 

(9.0–21.4) 

94.8 

( 44.2–294.8) 

32 
5.2 

(4.2–6.8) 

8.2 

(6.1–12.1) 

15.1 

(10.3–26.5) 

104.2 

( 48.8–335.5) 

46 
12.6 

(8.9–21.3) 

17.6 

(11.5–34.0) 

27.6 

(16.5–62.8) 

139.0 

(63.3–541.0) 

62 
93.5 

(40.6–315.4) 

109.8 

(48.0–397.2) 

134.8 

(57.0–558.1) 

311.8 

(117.1–1739.8) 

* 1 = Severe Cyclonic Storm, 2 = Very Severe Cyclonic Storm, 3 = Extremely Severe 

Cyclonic Storm, 4 = Super Cyclonic Storm 

Statistical significance exists between some pairs that do not have overlapping 

confidence bounds. Less significance exists in this table than in Table 4.2. This is 

potentially due to the stronger relationship between peak wind and storm surge. For 

example, on average, the BoB can expect a TC with a 12-hour pre-landfall wind speed of 

at least a 24 m s-1 with a 5 m surge every 6.5 years (5.1–9.1 years). The same wind speed 

with a higher storm surge of 6 m can be expected, on average, every 12.7 years (9.0–21.4 

years). These two events do not have a statistically significant difference in their recurrence 

time because their confidence intervals overlap slightly. Significant differences are 

indicated by a lack of overlap in confidence intervals. The most extreme event with a 12-

hour pre-landfall wind of 62 m s-1 and an 8 m surge can be expected to happen once every 

311.8 years. This difference in values for 12-hour pre-landfall wind compared to the peak 

wind at the highest level is expected as the 12-hour pre-landfall wind is likely closer to the 

coast and has already begun to feel the effects of land-decay. This difference also represents 

a singular snapshot in time, whereas the peak wind has the entire length of the track to 
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occur. The likelihood of that extreme of an event 12 hours before landfall is less than the 

peak wind. 

4.4 Summary of Combined Risk  

 Comparisons between Table 4.2 and Table 4.3 shows that more time is expected 

between the occurrence of certain wind speed and surge pairs using the 12-hour pre-landfall 

data. The risk is greater when using the peak reported wind. The Gumbel Archimedean 

copula models surge and peak reported wind with greater significance than the 12-hour 

pre-landfall wind. In addition, the correlation value is higher between surge and peak 

reported wind. It is rational to say the values presented in Table 4.2 would be more 

preferable to emergency managers to take further actions. However, as the 12-hour pre-

landfall wind provides specific wind location with corresponding surge height, the values 

in Table 4.3 can be also used to set the boundary for more caution. From both tables it can 

be generalized that the higher the surge height and wind value the higher the uncertainty 

of risk. From these results, it seems that in this ocean basin the risk of combined surge 

heights and wind speeds (even the lowest) are comparably higher than in other ocean basins 

where the risk is not as great (Trepanier 2012).   
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CHAPTER 5.  

CONCLUSION 

5.1 Concluding Remarks 

The geographical setting and population density make coastal regions of the BoB 

more susceptible to storm surge risk and mark it as one of the most active regions of 

severe TC occurrences, leading to enormous life loss and property damage. Losses result 

from high winds and the flooding associated with storm surge and rainfall. Statistical 

models of these two hazards typically take a univariate approach. Various models have 

been developed to predict storm surge in this region but none of them quantify statistical 

risk with empirical data. This study shows how peak reported winds along the track and 

the 12-hour pre-landfall winds (other pre-landfall winds are considered, but the strongest 

relationship exists at the 12-hour) with associated storm surge heights are related with a 

statistical model to estimate risk and uncertainty at this coast.    

In this research, data have been collected mainly from SMRC, SURGEDAT, and 

IBTrACS. The SMRC provided reported peak winds with surge heights, which have been 

updated for recent years from SURGEDAT and IBTrACS.  Location specific wind data 

for the given study period have been collected and interpolated from IBTrACS for 

associated surge heights. The data show bimodal characteristics of cyclone occurrence 

with peaks in May and in October. Time series analysis of the data show relationships 

between year and storm surge heights, and year and the two wind speed variables.  For 

wind values, small increasing trends of wind speed (0.20 m s-1 for peak wind and 0.30 m 

s-1 for 12 hours pre-landfall wind) have been observed with marginally significant results. 

Storm surge data show no trend over time. Regression models also show the relationship 

between peak storm surge and wind values. There is a strong correlation (0.512) between 
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storm surge and peak wind speed and a moderately strong correlation (0.345) between 

storm surge and 12-hour pre-landfall wind speed. In both cases, p-values are significant.  

Two classes of copulas have been implemented to fit the model for storm surge 

and wind-induced risk analysis at the coastline of the BOB. The Gumbel copula of class 

Archimedean shows the best fit to the data, and reported peak wind and surge height 

gives the most significant output.  Results show that the BoB can expect a TC with a peak 

reported wind of at least 24 m s−1 and a surge height of at least 4.0 m, on average, once 

every 3.2 years (2.7–3.8), and with a peak reported wind of 62 m s−1 and a surge height of 

at least 8.0 m, on average, once every 115.4 years (55.8–381.1). According to the IMD 

damage potential scale, 24 m s-1 wind intensity forms a cyclonic storm and causes 

damages to the coastal properties. On the other hand, 62 m s-1 wind intensity forms super 

cyclonic storms and turns into a catastrophic form and causes extensive damage, 

sometimes total disruption, to coastal structures, roads, embankments, and agricultural 

lands. Large scale submerging also occur due to flooding and sea water inundation from 

surge. 

5.2 Broader Impacts, Intellectual Merit, and Future Research 

The broad impact of this individual study is the hope that locations around the 

world that experience these natural weather phenomena will adopt this methodology 

to better understand their statistical risk of hurricanes. Many locations rely simply 

on the expectation of certain wind levels when there is another deadly factor they 

should also be considering. This methodology provides a way to assess the frequency of 

hurricane wind speeds along with hurricane storm surges at any location where surge 

and wind speed data are available.  
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 The people of this coastal area face the vicious consequences of cyclones more 

often than any other coastal community in the world. Among the countries that share an 

Indian Ocean coastline, Bangladesh faces the most consequences because of the extreme 

population density along the coast (754 per km2) (BBS 2011).  

 This research can strengthen early warning or forecasting systems and improve 

adaptation and coping strategies, cyclone resilience structure, and mitigation measures.  

Depending on the storm-surge risk level, governments can take initiatives to build 

embankments/polders and infrastructures along the coastline sustainable to risk level. 

With this new information, policymakers can develop coastal land use planning and early 

warning and evacuation systems more suitable to the damage at that area. Moreover, 

policymakers or government officials could use the information on storm-surge risk to 

identify vulnerabilities to improve strategies, forecast systems, policies, etc.  

 The intellectual merit of this study is to provide an analysis using observed data 

and a statistical copula model to estimate the statistical risk of TC winds and storm surge 

along the BoB coastline, an area which has not received scholarly attention in this way. 

Losses result from high winds and the flooding associated with storm surge and rainfall. 

Statistical models of these two hazards typically take a univariate approach. Copula 

models estimate the annual probability of the joint hazard. Copulas can be applied 

anywhere along the coast where storm hazard information is available. They can be used 

at fixed points along the coast to produce hazard risk maps. Copulas are not restricted to 

two dimensions and, thus, the methodology can be extended naturally to include other 

hazard variables such as inland flooding.  
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 Improvements to the model can be made by including structural uncertainty 

associated with choosing a specific copula type or additional TC variables such as storm 

size or fetch. This comprehensive method may open a new door to the climate scientist to 

integrate climatic phenomena with real life situations. The prediction of climate change 

and the expected increase of intensity of cyclones make the study of TC wind and storm 

surge even more pertinent (Elsner et al. 2008).  

 This study will initiate future research for geographers and others in related fields. 

Statistical risk of TC wind and storm surge occurrence is considerable in terms of time 

span. By analyzing the frequency, risk, and uncertainty of occurring cyclones with certain 

wind speed and surge height, coastal managers and policy makers should prepare 

accordingly. Attention should be given to build capacity, imply land use management and 

revise mitigation and adaptation policy to minimize the consequences. The application of 

the copula model will provide useful insights into those initiatives. In broader aspects, 

this method will identify the on-going and future threats of TC wind and storm surge 

impacts on coastal ecosystems, property, and live.   
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APPENDIX: DATA 

Table  ̶  Data used for analysis. Includes 64 records including the name, country of landfall, year, surge height, surge location, 

peak wind, peak wind location, 6-hour, 12- hour, 18-hour, 24-hour wind, 12 hour wind location, distance of 12-hour wind from 

surge location, and index for cyclone wind position along the track relative to the surge location 

Name 
Cou

ntry 
Year 

Sma

xM 

Slo

n 

Sla

t 

Max

W 

MW

lon 

MW

lat 
6W 12W 18W 24W 

12W

lon 

12W

lat 
D12 

Ind

ex 

False 

Point 

Cyclone 

IN 1885 7.0 87 21 23.2 87 21 23.5 23.1 23.2 23.1 88 18 288.6 1 

Unnamed IN 1942 5.0 88 22 32.9 88 22 26.8 22.6 19.6 17.2 88 20 194.6 1 

09B IN 1945 4.5 82 17 33.4 82 17 33.6 33.4 33.4 33.4 84 14 339.5 1 

12B IN 1949 4.6 82 17 38.1 82 17 25.9 34.6 34.6 25.8 83 16 159.7 1 

14B IN 1952 1.2 80 11 24.4 80 11 33.4 33.4 33.4 33.4 82 10 249.4 1 

11B IN 1955 1.5 84 19 30.8 84 19 30.7 23.7 16.6 18.4 86 18 216.9 1 

13B IN 1955 4.6 80 11 53.6 80 11 34.1 34.7 23.4 13.3 81 10 195.4 1 

08B BD 1958 1.8 92 22 25.8 92 22 13.0 12.2 16.0 16.0 90 21 223.9 1 

09B BD 1960 6.7 92 22 53.6 92 22 19.5 17.6 18.1 18.0 88 17 677.1 1 

WINNIE BD 1961 4.9 91 22 44.7 91 22 16.0 29.0 34.4 33.3 90 20 315.8 1 

05B BD 1961 4.6 92 22 31.4 92 22 13.0 20.5 34.4 33.7 91 21 141.5 1 

10B BD 1962 5.8 92 22 55.6 92 22 30.3 23.9 16.6 18.4 88 20 507.2 0 

03B BD 1963 6.1 92 23 56.1 92 23 26.2 34.8 33.2 33.1 91 20 315.8 1 

10B BD 1963 2.2 92 21 29.2 92 21 16.7 28.6 34.5 33.2 92 20 68.3 0 

10B IN 1963 5.5 80 12 33.4 80 12 19.0 32.0 20.7 17.7 82 11 284.3 1 

01B BD 1965 3.6 89 22 44.7 89 22 32.5 16.5 18.4 17.9 88 19 387.4 0 

02B BD 1965 7.6 91 22 33.4 91 22 34.4 33.7 31.5 16.7 90 20 276.9 1 

12B BD 1965 3.6 92 22 51.1 92 22 16.2 31.6 33.9 33.3 90 20 288.7 1 
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Cou

ntry 
Year 

Sma

xM 
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Max
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MW

lon 

MW

lat 
6W 12W 18W 24W 

12W

lon 

12W

lat 
D12 

Ind

ex 

08B BD 1966 6.7 89 22 38.6 89 22 29.2 34.0 34.8 22.8 87 19 406.6 1 

13B BD 1967 3.0 90 22 44.4 90 22 34.9 33.1 33.5 33.5 88 21 263.9 1 

12B BD 1967 2.0 92 21 36.1 92 21 15.8 32.8 20.5 17.4 91 18 315.0 1 

01B BD 1968 4.6 93 20 33.4 93 20 23.3 34.9 33.0 33.5 92 19 194.8 1 

10B BD 1969 7.3 89 22 18.0 89 22 14.5 18.5 18.2 16.5 88 21 198.0 1 

03B BD 1970 2.3 92 21 41.1 92 21 31.9 33.8 33.3 33.5 92 20 158.0 1 

Chg. 

Cyclone 
BD 1970 10.0 92 23 62.2 92 23 34.9 33.1 33.5 33.5 88 19 553.5 1 

01B BD 1971 4.2 91 22 22.5 91 22 12.4 17.3 18.2 18.0 90 20 260.2 1 

11B BD 1971 5.0 88 22 33.4 88 22 33.4 18.0 18.0 12.9 89 21 72.1 1 

15B IN 1971 5.0 87 21 47.2 87 21 33.9 33.3 33.5 33.4 87 20 199.6 1 

18B BD 1971 2.1 92 22 29.2 92 22 34.6 34.2 28.8 16.4 89 19 467.2 1 

09B IN 1972 6.0 85 20 56.7 85 20 40.8 41.5 37.0 31.6 87 17 332.9 1 

12B IN 1973 4.5 87 21 38.1 87 21 19.8 23.0 23.1 25.2 88 19 231.5 1 

13B BD 1973 3.5 92 22 45.8 92 22 25.9 26.0 28.5 28.2 90 21 268.7 1 

14B BD 1973 4.6 90 22 30.8 90 22 25.3 28.0 28.4 28.1 87 19 466.9 1 

06B BD 1974 2.5 87 22 22.2 87 22 22.7 17.4 14.7 12.4 89 21 197.8 0 

12B BD 1974 5.2 91 23 44.7 91 23 36.0 38.6 36.0 36.0 89 20 337.8 1 

Bassein 

Cyclone 
MM 1975 5.0 94 17 38.6 94 17 31.8 35.9 38.2 38.9 94 16 106.7 1 

09B BD 1976 3.5 91 22 29.2 91 22 15.5 18.4 18.4 15.5 90 21 159.8 1 

13B IN 1976 0.2 83 18 18.0 83 18 12.9 12.9 12.9 12.9 80 15 433.9 1 

Andhra 

Cyclone 
IN 1977 5.0 81 16 53.6 81 16 56.7 56.8 55.2 54.0 81 15 170.2 1 

03B IN 1978 0.2 80 13 10.3 80 13 10.3 10.4 10.0 7.7 81 12 140.4 1 

04B IN 1978 5.0 79 10 56.7 79 10 26.4 31.8 36.8 42.2 81 8 257.9 1 
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Cou

ntry 
Year 

Sma

xM 

Slo
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Sla
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Max

W 

MW

lon 

MW

lat 
6W 12W 18W 24W 

12W

lon 

12W

lat 
D12 

Ind

ex 

01B IN 1979 3.6 80 16 44.4 80 16 42.0 41.6 44.2 43.0 81 14 145.7 1 

Unnamed BD 1981 4.6 88 22 33.3 88 22 28.0 30.2 35.2 38.4 87 19 313.0 1 

Gwa MM 1982 4.0 95 17 61.7 95 17 60.7 60.1 54.8 49.7 91 18 392.7 1 

Orissa 

Cyclone 
IN 1982 3.5 87 21 28.3 87 21 29.2 25.8 21.6 19.4 88 19 229.3 1 

Unnamed BD 1983 2.5 92 21 60.8 92 21 28.5 28.4 26.3 23.3 91 19 274.7 1 

Unnamed BD 1985 4.6 92 22 42.8 92 22 31.9 29.1 26.7 23.7 91 21 194.6 1 

Unnamed BD 1988 4.6 89 22 44.4 89 22 54.0 51.4 48.9 46.3 88 19 334.0 1 

Unnamed IN 1989 6.0 88 22 30.8 88 22 27.1 25.7 24.5 22.9 87 20 151.1 1 

Divi 

Cyclone 
IN 1990 4.5 81 16 65.3 81 16 46.3 46.3 52.5 65.3 81 15 102.1 0 

Cyclone 

Gorky 
BD 1991 7.6 92 23 62.5 92 23 68.7 64.3 66.0 61.8 90 20 334.5 0 

Unnamed BD 1991 2.4 92 22 23.1 92 22 23.6 23.6 19.5 17.9 90 20 366.8 1 

Unnamed BD 1994 4.9 92 21 64.3 92 21 55.4 52.2 48.9 42.1 91 19 239.2 1 

Unnamed BD 1996 1.5 89 22 19.4 89 22 15.4 15.4 15.5 15.2 88 19 354.0 1 

Kakinada 

Cyclone 
IN 1996 3.7 82 17 19.4 82 17 39.1 27.3 22.2 24.1 84 16 187.0 1 

Unnamed BD 1997 4.6 92 21 63.9 92 21 45.9 46.9 43.6 35.7 91 20 155.1 1 

Unnamed BD 1997 4.6 92 23 41.7 92 23 28.3 23.2 20.6 18.0 89 21 309.6 1 

Orissa 

Cyclone 
IN 1999 7.5 87 20 72.0 87 20 72.4 68.8 54.8 41.3 87 19 160.5 1 

Mala MM 2006 4.0 95 17 51.4 95 17 51.0 51.5 51.5 48.0 93 16 199.3 1 

Sidr BD 2007 5.8 89 22 59.2 89 22 59.6 58.3 53.9 53.1 89 19 282.2 1 

Nargis MM 2008 5.0 95 16 46.3 95 16 46.3 39.6 33.4 33.4 93 16 252.6 1 

Laila IN 2010 3.0 81 16 28.3 81 16 28.9 28.2 28.2 28.7 81 15 171.7 1 
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Giri MM 2010 4.0 94 20 54.0 94 20 48.9 32.9 26.1 23.7 93 19 178.7 1 

Thane IN 2011 1.0 80 12 38.6 80 12 40.2 38.1 38.9 37.1 81 12 137.2 1 
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