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ABSTRACT 

Based on the CTPP data 1990-2010, this research analyzes the temporal variability of commuting 

patterns and efficiency (in both distance and time) in Baton Rouge, Louisiana. It proposes a 

simulation-based method to measure commuting by simulating individual resident workers, jobs, 

and trips between them, in order to mitigate the aggregation error and scale effect that are 

commonly encountered in existing studies. Specifically, the Monte Carlo simulation approach is 

adopted to simulate individual resident workers and jobs that were consistent with their spatial 

distributions across the areal unit (e.g., census tract), and then simulate individual trips that were 

proportional to the existing journey-to-work trip flows. The results indicate that average commute 

distance kept climbing between 1990 and 2010, whereas average commute time increased between 

1990 and 2000 but then slightly dropped toward 2010. 

As commuting is a trip linking one’s residence to employment, this research follows the long 

tradition of using the urban land use pattern, namely the spatial separation between residential 

housing and job location, to explain the observed commuting pattern. Three land use measures are 

used: distance from the CBD, jobs to resident workers ratio, and a gravity-based job proximity 

index. The research finds that these land use measures remained a good predictor of commuting 

pattern in Baton Rouge over time, and the best model explained up to 90 percent of mean commute 

distance and about 30 percent of mean commute time. 

Furthermore, nonspatial factors such as a worker’s socioeconomic attributes also influence 

commuting. Foremost, income plays an important role in one’s residential choices and thus 

commuting. This research focuses on the role of wage rates of resident workers in commuting 

pattern. It is reported that commuting behaviors varied across areas of different wage rates, 

captured by a convex shape. Initially workers living in more affluent neighborhoods tended to 
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commute more, but those in areas with the highest wage rates retreated for less commuting. This 

trend remained relatively stable over time. 

Wasteful (excess) commuting is also examined as the overall commuting efficiency metric for the 

study area. Wasteful commuting is measured as the proportion of actual commute that is over 

minimum (optimal) commute when assuming that people could freely swap their homes and jobs 

in a city. This research identifies two contributors resulting in the miscalculation of wasteful 

commuting: reporting errors and the use of aggregate zonal data. The former tended to overstate 

the actual commuting length and led to overestimate wasteful commuting; and the latter (especially 

the use of large areal unit) led to underestimate wasteful commuting. This research indicates that 

the percentage of wasteful commuting increased significantly between 1990 and 2000 and 

stabilized afterward.
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CHAPTER 1. INTRODUCTION 

Commuting, a human mobility behavior for employed individuals, occurs on a daily basis by 

multiple transportation modes (e.g., drove-alone, carpool, public transit, bicycle and walk). By 

linking home (residential areas) to employment (commercial, industrial and other land uses), 

commuting is a key factor in affecting land use patterns (AASHTO, 2013). As population and jobs 

become increasingly decentralized, commuters are traveling longer (both length and duration) than 

ever before (Gordon et al., 2004). For example, the average commute time by the U.S. workers 

was 24 minutes on their one-way trips to work in 2003, and increased to 25.1 minutes in 2009 

(McKenzie and Rapino, 2011). According to National Household Travel Survey, one-out-of-

twelve U.S. workers spent an hour or more in their one-way commute trips in 2001, compared to 

one-out-of-twenty in 1995. This is especially worse in large cities where one-out-of-ten workers 

experienced the same amount of time to commute on average less than 38 miles 

(http://nhts.ornl.gov/briefs/Commuting%20for%20Life.pdf, p.1). In the meantime, an increasing 

number of commuters is choosing the drove-alone mode especially during the job decentralization 

era when inter-suburb and reverse commuting are more common. For instance, 75.5 percent of the 

U.S. workers drove alone to jobs in 2008, and the ratio increased to 76.1 percent in 2009 (Fields 

and Jiles, 2009). 

Given the increasingly longer length and duration and the dominantly auto-dependent travel 

mode, commuting is strongly connected with some practical issues on which many public policies 

concentrate (Sultana and Weber, 2014). It is a major contributor to traffic congestion, air pollution 

and greenhouse gas emissions. Even though commuting represents only 20-25 percent share of all-

purpose trips in the United States (Sultana, 2002; Horner, 2004), it results in two of the most 

congested periods in a day and establishes the major transportation infrastructure and service 
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needs. For example, the average commute speed declined about 10 percent in midsize metropolitan 

areas from 1990 to 2009 (http://nhts.ornl.gov/2009/pub/stt.pdf, p.49). In line with the worsened 

traffic congestion, commuters are spending more time in their daily commute trips all across the 

United States. The Texas Transportation Institute (TTI) estimated that in 2010 the average 

commuter spent an additional 34 hours annually and wasted 14 gallons of gas sitting in traffic 

(TTI, 2011). In addition, among all economic sectors, transportation (including commuting) is the 

“second-largest contributor to total U.S. emissions” (next to industry) but with the fastest growth 

rate, especially given the fact that the growth of urban travel has significantly outpaced that of 

population in the United States during the past three decades 

(www.state.gov/documents/organization/140636.pdf, p.36). According to Table VM-202 in 

Highway Statistics (U.S. DOT/FHWA, 2012) and Table 7 in Statistical Abstract of the United 

States (U.S. Census Bureau, 2012), the Vehicle Miles Travelled (VMT) in the U.S. urban areas 

has increased by 133 percent from 1980 to 2012 while the population increased by 36 percent 

during the same period. Therefore, efforts focused on studying the urban commuting behavior, for 

example, understanding the temporal change of commuting and its underlying causes is a step 

toward the larger goals of traffic congestion mitigation and carbon emission control. 

Commuting has been widely studied in previous research, such as investigating the influences 

of urban form, wasteful commute, jobs-housing balance, and accessibility on commuting pattern 

(Cervero, 1989; Horner, 2004; Sultana, 2002; Sultana and Weber, 2014; Wang, 2001). However, 

most studies are affected by aggregation error (e.g., measuring commuting distance by a zonal 

centroid-to-centroid distance) and scale effect (e.g., inconsistent analysis results are obtained due 

to different unit scales and unit zone definitions). More accurate measures of commute remain 

very much needed. 
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The very focus of this dissertation is to detect and explain the temporal trends of intraurban 

commuting pattern (measured by both commuting distance and time) in Baton Rouge, Louisiana 

between 1990 and 2010. Specifically, this dissertation aims at: 

 designing a simulation-based approach for more accurate and reliable measures of 

commuting length so as to mitigate the aforementioned issues that have been central to the 

study of commuting; 

 applying the proposed approach to detecting the intraurban commuting pattern (in both 

distance and time) in Baton Rouge, Louisiana over time (between 1990 and 2010); 

 investigating how a spatial factor—land use—influences the discovered commuting 

pattern; 

 examining the impact of a nonspatial factor—wage rate—on the detected commuting 

pattern; 

 measuring commuting efficiency, i.e., wasteful commuting behavior and its temporal 

trends. 

The following chapters discuss the above analyses. Chapter 2 reviews existing commuting 

studies. For example, it groups the literature into several categories: measures of commuting 

length, explaining commuting by spatial factors, explaining commuting by nonspatial factors, and 

wasteful commuting. 

Chapter 3 describes the study area and data sources. This dissertation selects East Baton Rouge 

Parish in Louisiana as the study area. Major data sources used in this dissertation include census 

unit boundary (e.g., census tract) and road network data in a GIS format (e.g., shapefile), as well 

as commuting and socioeconomic data (e.g., number of commuters and a tract’s mean wage rate) 

in ASCII format (e.g., MS Excel) from the U.S. Census Bureau. 
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Chapter 4 explains the proposed simulation-based approach designed to measure commuting 

length. Specifically, it first gives a brief introduction to this method, and then illustrates the 

principle and process to simulate resident workers, jobs and commuting trips between them. 

Chapter 5 detects the temporal trends of commuting pattern in both distance and time and then 

investigates the relationship between commuting and a spatial factor—land use. The land use 

layout is characterized by three indices—distance from CBD, jobs-housing balance ratio, and 

proximity to jobs. 

Chapter 6, on the other hand, examines the impact of a nonspatial factor—wage rate—on 

shaping the commuting pattern. For example, it inspects the commuting pattern first by 

neighborhood’s average wage and then by distribution of wage groups across neighborhoods. 

Chapter 7 measures the commuting efficiency—wasteful commuting behavior as well as its 

change over time. It presents two analyses at an aggregated level and at the individual level, 

respectively, and then compares the results. 

Chapter 8 discusses the results and conclusions reached by the preceding chapters, as well as 

describes the contributions, limitations and future steps of this dissertation. Followed are the 

references used throughout this dissertation and the author’s vita. 
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CHAPTER 2. LITERATURE REVIEW 

Commuting has a dynamic nature, in other words, it can vary in different times, places, and socio-

economic groups. For example, commuting around 8am could be more remarkable than around 

10am; commuting originating from places far away from downtown area could be dissimilar to 

places near CBD; and commuting behavior may not be the same for White vs. African American 

(or male vs. female). Given its important role in daily life and the complex nature, this subject has 

received considerable attention in the literature. Studies have been conducted to model and explain 

the commuting pattern in order to gain better understanding of human mobility, and can be 

summarized into the following aspects. 

2.1 MEASURES OF COMMUTING LENGTH 

The topic of measuring commuting length deserves some discussion, as it is the core for this 

research. In the commuting literature, time is oftentimes utilized to analyze the spatial separation 

between home and job sites, as it is directly available from survey data (e.g., CTPP); however, 

mileage could provide a more consistent measure of commuting length (Sultana and Weber, 2007) 

and is not studied as much as time. Existing literature used a simple zonal centroid-to-centroid 

approach to reconstruct Euclidean distance (Gera, 1979; Hamilton, 1982; Levinson and Kumar, 

1994; Levinson, 1998; Horner and Murray, 2002; Clark et al., 2003; Wang, 2003; Kim, 2008). 

However, some argued that the centroid-to-centroid straightline distance measure is not close to 

actual commute distance as it lacks the consideration of real transportation network, and thus 

preferred the network distance measure. Specifically, the network distance estimated the 

commuting distance as the shortest-time distance between two zone centroids using GIS network 

modeling techniques (White, 1988; Levinson and Kumar, 1994; Cervero and Wu, 1998; Wang, 

2000; Wang, 2001; Horner, 2002; Yang, 2008). This would necessarily assume that commuters 
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are utility-maximizers, in other words, they will choose the shortest route to work; while not 

always true, it is a much closer representation of actual commute distance, especially compared 

with the Euclidean distance. However, this distance measure, though more complex, could 

underestimate the actual distance, as it is still a measure between zone centroids where all people 

are assumed to start and end a journey. Such an approach could bias the estimate particularly in 

large zones and also by omitting intrazonal distance. Hewko et al. (2002) noted, aggregation error 

resulted from using a centroid to represent a neighborhood in distance measure, would be 

significant for analyses using more aggregated units such as census tracts; additionally, facilities 

under investigation that are plentiful and more spatially concentrated (e.g., jobs) would cause more 

errors in their analysis of neighborhood spatial accessibility. For this reason, Horner and Schleith 

(2012) used a small analysis unit such as census block to reduce such aggregation error. 

Commuting data at the block level, however, are not widely available for most cities in the United 

States. Different unit scales and unit zone definitions cause inconsistency in analysis results, 

particularly common in comparison analysis over time, and thus lead to the MAUP (Niedzielski 

et al., 2013). Some recent studies have shown great promise in using Global Positioning System 

data and activity-travel surveys of individual trip makers in commuting studies (Shen, Kwan, and 

Chai, 2013; Kwan and Kotsev, 2015). Such data, however, might not be representative of all 

commuters and are also not universally available. More accessible and accurate measures of 

commute length remain very much needed. 

One possible way is to use simulation techniques for commute length measures. This research 

proposes to apply the Monte Carlo simulation method; specifically, it simulates individual resident 

workers and jobs that were consistent with their spatial distributions across the areal unit (e.g., 

census tract), and then simulates individual trips that were proportional to the existing journey-to-
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work trip flows. In this way, aggregated trips extracted from survey data (e.g., CTPP) are 

disaggregated into individual level, free from aggregation error and scale effect. 

The Monte Carlo simulation technique is widely used in spatial analysis. Here, I briefly discuss 

its applications in spatial analysis, e.g., spatial data disaggregation and statistical testing. More 

details regarding this technique and its principle are described in Chapter 4. 

Spatial data often come as aggregated data in various areal units (sometime large areas) for 

various reasons. One likely cause is the concern of geo-privacy. Others include administrative 

convenience, integration of various data sources and limited data storage space, etc. Several 

problems are associated with analysis of aggregated data such as  

 modifiable areal unit problem (MAUP), i.e., instability of research results when data of 

different areal units are used,  

 ecological fallacy, when one attempts to infer individual behavior from data of aggregate 

areal units (Robinson, 1950), and 

 loss of spatial accuracy when representing areas by their centroids in distance measures. 

Therefore, it is desirable to disaggregate data in area units to individual points in some studies. 

For example, Watanatada and Ben-Akiva (1979) used the Monte Carlo technique to simulate 

representative individuals distributed in an urban area in order to estimate travel demand for policy 

analysis. Wegener (1985) designed a Monte Carlo based housing market model to analyze location 

decisions of industry and households, corresponding migration and travel patterns, and related 

public programs and policies. Poulter (1998) employed the method to assess uncertainty in 

environmental risk assessment and discussed some policy questions related to this sophisticated 

technique. Luo et al. (2010) used it to randomly disaggregate cancer cases from the zip code level 

to census blocks in proportion to the age-race composition of block population, and examined 
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implications of spatial aggregation error in public health research. Gao et al. (2013) used it to 

simulate trips proportionally to mobile phone Erlang values and to predict traffic-flow distributions 

by accounting for the distance decay rule. 

Another popular application of Monte Carlo simulation in spatial analysis is to test statistical 

hypotheses using randomization tests. The tradition can be traced back to the seminal work by 

Fisher (1935). In essence, it returns test statistics by comparing observed data to random samples 

that are generated under a hypothesis being studied, and the size of the random samples depends 

on the significance level chosen for the test. A major advantage of Monte Carlo testing is that 

investigators could use flexible informative statistics rather than a fixed, known distribution 

theory. Besag and Diggle (1977) described some simple Monte Carlo significance tests in analysis 

of spatial data including point patterns, pattern similarity, and space-time interaction. Clifford et 

al. (1989) used a Monte Carlo simulation technique to assess statistical tests for the correlation 

coefficient or the covariance between two spatial processes in spatial autocorrelation. Anselin 

(1995) used Monte Carlo randomization in the design of statistical significance tests for global and 

local spatial autocorrelation indices. Shi (2009) proposed a Monte Carlo-based approach to test 

whether the spatial pattern of actual cancer incidences is statistically significant by computing p-

values based on hundreds of randomized cancer distribution patterns. 

2.2 EXPLAINING COMMUTING BY SPATIAL FACTORS 

There has been a sustained interest in (and debate of) explaining intraurban variation of 

commuting by land use pattern (Giuliano and Small, 1993; Wang, 2000; Sultana, 2002; Horner, 

2004; Horner, 2007; Horner and Schleith, 2012). In essence, commuting is for a worker to 

overcome the spatial barrier from home to workplace, and therefore explanation of commuting 

naturally begins with a focus on the spatial separation of resident (population) and employment 
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locations. Past attempts include modeling how far a residential location is from a job concentration 

area (e.g., CBD) or from the overall job market, or measuring the need of commuting beyond a 

local area (e.g., captured by the jobs-housing balance ratio). For example, job-housing imbalance 

would be related to longer commute and the increasing traffic congestion. An area would be 

considered job-housing imbalance when the number of resident workers differ considerably from 

the number of jobs (Giuliano and Small, 1993). Cervero (1989) made an attempt based on data in 

the San Francisco Bay Area and other U.S. cities, and found that areas with severe job-housing 

imbalance were associated with longer commutes. On the contrary, urban areas with balanced jobs 

and housing (i.e., integrated residential and employment locations) would promote less 

commuting. Wang (2000) found that mean commuting distance was more sensitive to job-housing 

imbalance than mean commuting time. Sultana (2002) investigated this relationship of commuting 

pattern and job/housing imbalance in the Atlanta metropolitan area based on 1990 CTPP (Census 

Transportation Planning Package) data and also supported the determining role of job/housing 

imbalance in causing long commuting. Horner (2002) studied 26 U.S. cities and reached that 

commuting lengths were well correlated with jobs-housing balance. A few recent studies examined 

the temporal change in commuting patterns and connected it with land use patterns. For example, 

Horner (2007) explained the spatial–temporal pattern of intraurban commuting (mileage and 

multiple commuting efficiency metrics) from the jobs–housing balance perspective in Tallahassee, 

Florida, from 1990 to 2000. Similarly, Chen, Zhan, and Wu (2010) investigated the change in 

commuting patterns from analyzing the residential and employment distributions in central Texas 

between 1990 and 2000. 

Policies advocating some land use metrics such as jobs-housing differ from other attempts on 

commuting in that they are explicitly focused on the spatial perspective, and this lays such 
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approaches open to criticisms, however (Horner, 2004). For instance, Giuliano and Small (1993) 

found that the relationship between commuting times and jobs-housing balance ratio was 

significantly small in Los Angeles area. Peng (1997) concluded that such relationship between 

commuting and jobs-housing was clear only in cases where jobs and housing were extremely 

unbalanced. Similarly, Cervero (1996) supported the above finding but defined it more specifically 

that only in places where job creation was far more than residential location production did 

commutes change. Levinson (1998) also investigated such plausible relationship and found 

moderate support in Washington, DC. Specifically, he argued that personal choice would play a 

more significant role in affecting housing/employment decisions than jobs-housing balance, and 

therefore, policies aiming at improving jobs-housing balance in order to alleviate traffic congestion 

would not perform well. 

In the meantime, a debate focusing on the relationship between job decentralization and 

commuting was also recognized. As discovered by Gordon et al. (1991), the average commuting 

time in the 20 largest metropolitan areas was found to remain stable overtime, albeit the increase 

in traffic congestion in cities. Based on the tradeoff assumption in the theoretical urban economic 

model, a more decentralized city would have more workers migrating to locations near 

employment sub-centers to minimize their commuting costs, and thus give rise to shorter 

commuting time (Gordon et al., 1989b). This is consistent with Downs (1992), who argued that 

the decentralization of suburban job sites would decrease commuting. To better explain the above 

commuting paradox, a co-location theory was proposed, which states that workers would change 

their residence or jobs in order to adapt to the worsening traffic congestion (Gordon et al., 1991). 

Levinson and Kumar (1994) supported this theory based on their findings of stable commuting 

time in Washington metropolitan region, and further defined those workers as rational locators. 
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Empirical evidence to this pattern is also found in Crane and Chatman (2003) and Sultana and 

Weber (2007) that job decentralization would encourage shorter commuting distance. 

However, there are some studies that contradicted the co-location theory. For example, Cervero 

and Wu (1998) found that the rapid job decentralization in San Francisco Bay Area, on the 

contrary, led to the rise in average commuting distance and time between 1980 and 1990. This 

opposing finding was also detected in Levinson and Wu (2005). In addition to that, they also found 

that the commuting time could vary among different metropolitan structures. Aguilera (2005) also 

discovered the same changing pattern in three biggest French metropolitan areas and thus disputed 

the co-location theory. 

2.3 EXPLAINING COMMUTING BY NONSPATIAL FACTORS 

There are also nonspatial factors that lead to more commuting beyond what can be predicted 

by the land use pattern. Some research studies tried to understand commuting based on the classic 

urban economic model (Muth, 1969; Mills, 1972), which suggests that the tradeoff between 

commuting and housing dictates a household’s residential choice. Specifically, it assumes that 

workers would move farther away from CBD and thus commute longer to trade for better housing. 

Zax and Kain (1991) investigated the impact of commute distance on quit and move behaviors 

based on the residential choice theory. They found that long commutes resulted from the tradeoff 

between commuting cost and housing consumption would encourage quits and discourage moves, 

in metropolitan areas with negative wage and housing price gradients. Dubin (1991) found that 

workers prefer less commuting in terms of time, and would use suburbanization to shorten their 

commute time, consistent with the prediction of monocentric model that firm decentralization 

would reduce total commuting. 

Arguably, it becomes increasingly difficult to apply this simplistic urban model to current 
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urban structures, particularly, large metropolitan areas, where job decentralization becomes a norm 

(Horner, 2004). This assumption regarding income and housing may still be applicable to urban 

areas where CBD dominates the job market, however. Given the same income level, a worker 

living farther away from the CBD commutes longer and is compensated by more spacious housing, 

and this leads to a decentralized housing development pattern. Such pattern is especially common 

in the United States, where people are enjoying increased mobility and are capable of living where 

they want to, without compromising their opportunity in engaging life activities (Horner, 2004). 

However, as residents differ a great deal in income, how does income influence one’s tolerance of 

commute and desire of housing space? For example, low-wage workers are reported to spend a 

much higher proportion of their income on commuting (6.1 percent) than other workers (3.8 

percent); furthermore, the working poor who rent spend a greater portion of their income on 

combined costs of commuting and housing (32.4 percent) than other workers (19.7 percent) 

(Roberto, 2008). Low-wage workers also have significantly lower vehicle ownership than others 

(Lowe and Marmol, 2013), and are thus more likely to use slower transportation modes such as 

public transit, carpool, bicycle and walk than their high-wage counterparts (Ross and Svajlenka, 

2012; McKenzie, 2014). To this end, higher-wage workers may generally commute longer than 

lower-wage workers because of their better mobility and economic conditions. Lack of access to 

data of individual commuters, particularly quality data over a long time period, prevents us from 

addressing the question directly. Nevertheless, analysis of commuting variability by neighborhood 

income levels may still shed light on the issue (Wang, 2003). Gordon et al. (1989c) investigated 

the relationship between income and commuting and argued that commuting times would increase 

with income. Rosenbloom and Burns (1993) discovered the same pattern between commuting and 

income; as income increases, commuting distance would increase for both men and women 
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workers. Wang (2003) measured commuting lengths (in both distance and time) for different wage 

groups in Cleveland and found that compared to time, commuting distance was more sensitive to 

wage in a way that wealthier workers commuted more than lower wage workers, but the wealthiest 

wage group shortened commute slightly. A recent work by Horner and Schleith (2012) 

investigated the commuting pattern by three income groups (i.e., low, medium, and high) based 

on their monthly income, and found that the average observed and minimum commute became 

lengthier as the income increased. More detailed income subgroups may help detect more hidden 

pattern in terms of income and commuting length, however. 

There are also other nonspatial factors commonly investigated in the literature besides income. 

For instance, people of a racial-ethnic minority (by extension any disadvantaged groups) may 

commute more than their white counterpart, commonly-known as “spatial mismatch” (Kain, 

1968); and multiple-worker household tend to commute more because of difficulty of coordinating 

multiple commute trips. Gera (1979) found that age was related to commuting behavior that 

commuting distance tended to decrease with age. Gordon et al. (1989a) recognized that women 

have significantly shorter commutes than male. Gordon et al. (1989c) suspected that commuting 

would be related with occupation; and higher share of industrial employment would offer more 

opportunities for shorter commuting time. They also examined transportation modes and found 

that carpools would result in longer commuting time than drove-alone. Wang (2001) considered 

workers’ socio-demographic characteristics (e.g., race, gender, home-ownership status and 

education) in his model and found significant relationship between some variables (e.g., race and 

gender) and commuting. Sultana and Weber (2007) also showed the promise of using workers’ 

socioeconomic characteristics to explain commuting patterns. In short, as discussed above, 

commuting may be explained by where they are and by who they are (Wang 2003). 
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2.4 WASTEFUL COMMUTING 

Wasteful or excess commuting is another line of research closely related to the paradigm of 

interrelatedness between land use and commuting, and reflects the overall commuting efficiency 

in a city. It is measured as the proportion of actual commute that is over minimum (optimal or 

required) commute when assuming that people could freely swap their homes and jobs in a city 

(Hamilton, 1982; White, 1988; Horner and Murray, 2002). Instead of focusing on the variation of 

commuting across areas, it highlights how much overall commuting could be reduced based on 

the above assumption. In other words, the concept captures the potential (or lack of potential) for 

a city to optimize commuting without altering the existing land use, and to some extent, reflects 

efficiency in its land use layout. Based on the definition of the optimal commute, other commuting 

efficiency metrics were then designed. Horner (2002) proposed the theoretical maximum commute 

to represent the most inefficient or costly regional commuting flow pattern given the existing 

spatial arrangement of workers and jobs. He then defined a metric commuting range as the 

difference between theoretical maximum and minimum commute to reveal how much commuting 

flexibility or capacity is available for commuting. Another metric the capacity consumed statistic 

is expressed as the difference between actual and optimal commute, divided by the commuting 

range; and it indicates how much of a region’s commuting potential (or capacity) has been utilized 

(accounted for by the observed commute). Both metrics above provide alternative views of a 

region’s commuting efficiency in comparison to wasteful commuting. 

Besides the minimum and maximum commute, a theoretical random commute was then put 

forward (Charron, 2007; Yang and Ferreira, 2008; Layman and Horner, 2010; Murphy and Killen, 

2011), sitting between the lowest and highest theoretical commuting cost scenarios. Alternatively, 

it represents a commute pattern in which workers are not sensitive to commuting costs in making 
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location decisions. Put it in another way, it corresponds to a spatial interaction model with no 

distance decay effect, i.e., no impact of travel cost (Niedzielski et al., 2013). Based upon theoretical 

random commute, another policy-relevant commuting efficiency metric named commuting 

economy is provided. Similar to the capacity consumed statistic, commuting economy also tackles 

the association between commuting potential and practical utilization. Carried out differently, the 

theoretical random commute is considered a more realistic representation of the commuting upper 

bound than maximum commute in a region. 

Though all the above metrics offer insight into a region’s commuting efficiency, this research 

is specifically interested in wasteful commuting that tackles the connection between theoretical 

minimum commute and actual commute, given its fundamental importance in the literature of 

commuting efficiency, its implication related to journey to work pattern, land use, and the spatial 

separation of home and jobs, its policy-related role in benchmarking urban travel efficiency 

(Horner, 2004; Horner and Schleith, 2012), and, most importantly, its methodological issues that 

remain unresolved (Horner and Murray, 2002; Fan et al., 2011; Niedzielski et al., 2013). 

The concept of wasteful commuting was first proposed by Hamilton (1982), as he was to 

examine if the classical urban economic model would perform a good job in predicting the mean 

commute length in a city. Hamilton assumed that both population and employment densities 

decline exponentially with distance from the city center, and the latter have a steeper gradient than 

the former. Assuming that residents could freely swap houses, the optimal (minimal) commuting 

pattern is that people always commute toward the city center and the trips end at the nearest jobs. 

As a result, the average minimal commute is the difference in average distances of population and 

employment from the city center. Surprisingly, he found that actual commute was about 87 percent 

excess in comparison to the optimal in 14 U.S. cities. White (1988) argued that the urban commute 
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optimization should be constrained to the existing spatial distribution of homes and jobs and the 

road network, and formulated the optimal commuting pattern by a simple Linear Programming 

(LP) approach. White’s model returned only 11 percent wasteful commuting for the same study 

areas used by Hamilton. The large gap in the results by Hamilton and White has led to a sustained 

debate on how to accurately measure wasteful commuting, and generated a large volume of 

literature from multiple disciplines. 

Some attributed the discrepancy to the scale (zonal) effect. Hamilton (1989) cautioned 

researchers of assuming an optimal intrazonal commute, and pointed out that a larger zone size 

might lead to less wasteful commuting. In practice, the LP result usually yields a high proportion 

of optimal commute trips within a zone, e.g., 90.7 percent in Small and Song (1992) were 

intrazonal commute. If one adopts average reported intrazonal commuting time for all zones in a 

study area, the optimal commute is likely to be overestimated. An inflated optimal commute leads 

to an underestimated wasteful commuting such as the case for White (1988) that was only 11 

percent. Based on a smaller zone, i.e., Traffic Analysis Zones (TAZs), Small and Song (1992) 

implemented White’s LP approach in Los Angeles and found 66 percent wasteful commuting, 

substantially higher than White’s but lower than Hamilton’s. Their finding confirmed Hamilton’s 

proposition of scale effect. In addition, they suggested a normatively neutral term excess 

commuting instead of wasteful commuting. Horner and Murray (2002) linked the issue to the 

Modifiable Areal Unit Problem (MAUP), which is well known to geographers (Openshaw and 

Taylor, 1979). They further validated the impact of spatial unit definition on the estimation of 

wasteful commuting and suggested using zonal data as disaggregate as possible.  

Others suspected that different metrics might play a role (Hamilton, 1989). Hamilton (1982) 

used distance while White (1988) used travel time. Most found a high consistency between the 
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two and rejected that it was a major factor causing the discrepancy (e.g., Cropper and Gordon, 

1991; Small and Song, 1992). 

Some believed that job decentralization might account for most or all of the wasteful 

commuting (Merriman et al., 1995; Suh, 1990). However, as argued by Giuliano and Small (1993), 

the direction of job decentralization’s impact on commuting could be ambiguous. On the one side, 

it may encourage urban sprawl, reduce the land use intensity and thus increase commute lengths. 

On the other side, it may also improve the jobs-housing balance in many areas particularly suburbia 

and alleviate the need of lengthy commute to downtown. Following the suggestions of Hamilton 

(1982), several studies searched for factors beyond land use that prevented people from attaining 

optimal commute. Some emphasized the variability of labor participation rate across households 

as it is harder for households with multiple workers to optimize commuting for individuals (Kim, 

1995; Thurston and Yezer, 1991). Certainly, residential choice is hardly made solely for the 

purpose of minimal commuting and often involves a complex decision considering also housing 

and neighborhood attributes (Cropper and Gordon, 1991). Not all workers are mobile in terms of 

residential choice and thus limit their likelihood of relocating to save commute (Buliung and 

Kanaroglou, 2002). Furthermore, the boundary effect for a study area may also affect the 

magnitude of wasteful commuting as Frost et al. (1998) found in their study of British cities. Our 

fascination of wasteful commuting is also linked to its implication in public policy (Fan et al., 

2011). Many studied the issue for various transportation or land use related policy scenarios that 

could reduce commuting cost and their related environmental and economic impacts (Boussauw 

et al., 2012; Horner, 2002; Ma and Banister, 2006; O'Kelly and Lee, 2005; Rodríguez, 2004; Scott 

et al., 1997; Yang, 2008). 

This research directs the attention back to the measurement of wasteful commuting given a 
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land use pattern (i.e., employment and resident worker locations). Is it possible to design a study 

as disaggregate as possible to mitigate (or perhaps be even free from) the scale effect for estimating 

required commute, as suggested by Horner and Murray (2002)? Given the concern related to 

privacy, it is unlikely for researchers to access a large scale commuting dataset of individual 

households geocoded to their home addresses and workplaces. Our approach is to simulate 

individual employment and resident worker locations and the trips between them in order to 

alleviate the concern of unreliable estimate of intrazonal commute and also improve the accuracy 

of estimating interzonal commute lengths. 

Another issue is on how actual commute is measured. Some commuting literature (though not 

directly related to wasteful commuting) suggested the unreliability of measuring commute length 

by travel time. It could be misleading as travel time by slower modes (e.g., carpool, transit, walking 

or bicycling) is much longer than drove-alone for the same distance. The journey-to-work survey 

(e.g., CTPP) data often contain some erroneous records (e.g., commute trips of several hours for 

travelling only a few miles; for example, the reported mean travel time from tract 36.04 to tract 

11.04 in Baton Rouge, Louisiana was 3.7 hours (with an estimated travel distance 5.4 miles), 2.8 

hours from tract 22 to 26.01 (with an estimated travel distance 2.6 miles), and so on). There is also 

concern of inconsistency in the way respondents report commute time (e.g., whether including 

“mental time” as noted in Wang (2003)). Wasteful commuting calculated at different times may 

also vary (Frost et al., 1998; Yang, 2008). As wasteful commuting is the difference between actual 

and optimal commuting, it is an unfair comparison to define actual commuting by reported time 

and optimal commuting by estimation. This research proposes to measure both by estimated travel 

time and distance through the road network, and identify the true extent of wasteful commuting. 
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CHAPTER 3. STUDY AREA AND DATA SOURCES 

As the core of Baton Rouge Metropolitan Area, East Baton Rouge Parish in Louisiana is selected 

as the study area. Note that parish in Louisiana corresponds to county in other states in the United 

States. This parish has an area of 471 square miles including the City of Baton Rouge (i.e., the 

state capital, one of the fastest growing areas in the South) in the middle, Baker and Zachary in the 

north. Eight parishes surround it, and the spatial distribution of this region is shown in Figure 1. 

There are two major rivers in this region—Mississippi River and Amite River—forming the 

natural borders of the study area. Clearly, the Mississippi River on the west divides East Baton 

Rouge Parish from West Baton Rouge Parish and Pointe Coupee Parish, while the Amite River on 

the east segregates this Parish from Livingston Parish and St. Helena Parish. In terms of land use, 

these neighbor parishes are mostly composed of rural areas (Antipova et al., 2011). Based on the 

road density in Figure 1, the northeastern, northwestern and the most southern parts of East Baton 

Rouge Parish are also recognized as rural areas that may serve as the buffer zone between the 

urbanized areas (e.g., most central area that has high road density) in this parish and other 

neighboring parishes. Given the above distribution patterns, edge effects, a common phenomenon 

that could result in unreliable conclusions due to incomplete consideration of the impacts of border 

areas, might be of little influence in this study area (Wang et al., 2011). For simplicity, hereafter 

the study area is referred to as Baton Rouge. 

The major data source is the CTPP: the 1990 and 2000 CTPPs from the Bureau of 

Transportation Statistics (BTS, 2014), and the most recent 2006-2010 CTPP from the American 

Association of State Highway and Transportation Officials (AASHTO, 2014). Note that the 1990 

or 2000 CTPP was extracted from the long form decennial census, and the 2006-2010 CTPP was 

based on the 5-year American Community Survey (ACS) 2006-2010 (hereafter simply referred to 
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as 2010). All CTPPs consist of three parts: (1) part 1 on place of residence, such as number of 

resident workers and breakdowns of wage groups, and mean wage rate in each zone; (2) part 2 on 

place of work (this is unique among all census products), such as number of jobs and breakdowns 

of wage groups in each zone; and (3) part 3 on journey-to-work flow, such as number of commuters 

from a residence zone to a workplace zone, and mean commuting time breakdowns of different 

transportation modes, for example, drove-alone, carpool, public transit, and walk. 

 

Figure 1. Baton Rouge region 2010. 
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There is inconsistency in area unit used in the CTPP data for Baton Rouge: traffic analysis 

zone (TAZ) in 1990, multiple zonal levels in 2000 (census tract, census block group, and TAZ for 

Parts 1 and 2, only census tract for Part 3), and census tract and TAZ in 2006-2010. We chose 

census tracts as the unit to use throughout. Luckily in Baton Rouge, the 1990 TAZs were mostly 

components of census tract for easy aggregation with only very few minor exceptions. There were 

85, 89 and 92 census tracts in Baton Rouge in 1990, 2000 and 2010, respectively (excluding the 

2010 airport tract where no records of any resident workers or jobs are provided in the data). The 

slightly increased number of tracts in later years were simply the result of split tracts from earlier 

years (i.e., 2000 vs. 1990, 2010 vs. 2000). This enabled us to integrate the data in three time epochs 

based on the 85 census tracts in 1990 when needed. Corresponding spatial data sets in GIS 

(including census tracts, TAZs and road networks) are extracted from the TIGER Products 1994, 

2000, and 2010 from the U.S. Census Bureau. We are aware of the time gaps of using the 1994 

and 2010 GIS data to match the 1990 and 2006-2010 CTPP, respectively, which were the best data 

accessible to us.  

The National Land Cover Database (NLCD, http://www.mrlc.gov), a national land cover 

product created by the Multi-Resolution Land Characteristics (MRLC) Consortium, is used to help 

improve the accuracy of individual trip simulation, in particular the simulation of trip destinations 

(see Chapter 4). Three NLCD products—e.g., NLCD 1992, 2001, and 2011—are employed to 

match with the above CTPP and TIGER data. The NLCD has a spatial resolution of 30 square 

meters, and only one land cover type is recorded in each pixel, 30m × 30m polygon. It provides a 

uniform land cover classification across the entire United States, and is perhaps the most accessible 

and commonly used national land cover map (Jin et al., 2013). In this research, the high intensity 

developed areas that are commonly interpreted as commercial/industrial lands are used to define 
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the geographic areas for simulated job locations. The geographic areas of resident workers, 

however, are calibrated on the basis of census block population data obtained from the U.S. Census 

Bureau due to its better accuracy in capturing the residential pattern than the NLCD. See Table 1 

for a summary of all data sources used in this research. 

Table 1. Summary of all data sources. 

Data layer Year Spatial scale Format Source Purpose 

CTPP 1990 TAZ ASCII/excel file BTS Total number 

of workers, 

jobs, and 

commuters 

 2000 Census tract ASCII/excel file BTS 

 20101 Census tract ASCII/excel file AASHTO 

Zone boundary 1994 TAZ Vector/shapefile TIGER/Line Define 

boundary of 

zone units 
 2000 Census tract Vector/shapefile TIGER/Line 

 2010 Census tract Vector/shapefile TIGER/Line 

Population 1990 Census block ASCII/excel file Census Spatial extent 

of residential 

areas 
 2000 Census block ASCII/excel file Census 

 2010 Census block ASCII/excel file Census 

NLCD 1992 30m×30m cell Raster/tif file MRLC Spatial extent 

of workplaces 
 2001 30m×30m cell Raster/tif file MRLC 

 2011 30m×30m cell Raster/tif file MRLC 

Road network 1994 - Vector/shapefile TIGER/Line Define entire 

road network 
 2000 - Vector/shapefile TIGER/Line 

 2010 - Vector/shapefile TIGER/Line 

1 Based on 2006-2010 CTPP, 2010 is used here and all other tables for simplicity. 
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CHAPTER 4. MONTE CARLO SIMULATION METHOD 

This research proposes to use Monte Carlo simulation technique to simulate individual 

locations of home and job sites as well as the trips between them. By mitigating the 

aggregation error and zonal effect, this permits more accurate estimation of commute 

distances in both analyses of commuting pattern and commuting efficiency (i.e., wasteful 

commuting) in this research. This chapter will provide a brief introduction to the Monte 

Carlo simulation technique and a specific application of simulating locations of trip ends 

(i.e., resident workers and jobs) and trip distribution (i.e., trips between resident workers 

and jobs). 

4.1 INTRODUCTION TO MONTE CARLO SIMULATION 

Basically, a Monte Carlo method generates suitable random numbers of parameters or 

inputs to explore the behavior of a complex system or process. The random numbers 

generated follow a certain probability distribution function (PDF) that describes the 

occurrence probability of an event. Some common PDFs include: 

 A normal distribution is defined by a mean and a standard deviation. Values in the 

middle near the mean are most likely to occur, and the probability declines 

symmetrically from the mean. 

 If the logarithm of a random variable is normally distributed, the variable’s 

distribution is lognormal. For a lognormal distribution, the variable takes only 

positive real values, and may be considered as the multiplicative product of several 

independent random variables that are positive. The left tail of a lognormal 

distribution is short and steeper and approaches toward 0, and its right tail is long 

and flatter and approaches toward infinity.  
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 In a uniform distribution, all values have an equal chance of occurring. 

 A discrete distribution is composed of specific values, each of which occurs with a 

corresponding likelihood. For example, there are several turning choices at an 

intersection, and a field survey suggests a distribution of 20 percent turning left, 30 

percent turning right and 50 percent going straight. 

In a Monte Carlo simulation, a set of random values is generated according to a defined 

probability distribution function (PDF). Each set of samples is called an iteration and 

recorded. This process is repeated a large number of times. The larger the number of 

iteration times is simulated, and the better the simulated samples conform to the pre-

defined PDF. Therefore, power of a Monte Carlo method relies on a large number of 

simulations. By doing so, Monte Carlo simulation provides a comprehensive view of what 

may happen and the probability associated with each scenario.  

Monte Carlo simulation is a means of statistical evaluation of mathematical functions 

using random samples. Software such as Matlab and R package provides several random 

number generators corresponding to different PDFs (e.g., a normal distribution). Others 

use pseudo-random number sampling. For example, the inverse transformation generates 

sample numbers at random from a probability distribution defined by its cumulative 

distribution function (CDF), and is therefore also called inverse CDF transformation. 

Specifically, one can generate a continuous random variable X by (1) generating a uniform 

random variable U within (0, 1), and (2) setting X = F-1(U) for transformation to solve X in 

terms of U. Similarly, random numbers following any other probability distributions could 

be obtained. 
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4.2 MONTE CARLO SIMULATIONS OF RESIDENT WORKERS (O) AND JOBS (D) 

This section and next one introduce a specific application of Monte Carlo simulation 

in data disaggregation, one from area-based aggregated data to individual points (e.g., from 

area-based job count data to individual job points) and another from area-based flow data 

to individual O-D trips (e.g., from area-based commuting flow count data to individual 

journey-to-work trips). Both are commonly encountered in spatial analysis. 

To mitigate the effect of aggregation error and zonal scale commonly seen in 

commuting studies, we begin with simulating locations of trip ends, i.e., a simulation of 

individual locations of resident workers and jobs that are proportional to their 

corresponding numbers within each census tract (i.e., following a discrete distribution). 

Land use patterns are considered for better simulation performance. Specifically, the 

number of simulated trip origins is proportional to the number of resident workers in a 

tract, the number of trip destinations is proportional to the number of jobs there, and both 

are randomly distributed within areas of residential land use (from census block data) and 

areas of commercial/industrial land use (from the NLCD) in the tract’s boundary, 

respectively (see Figure 2 for the distribution of commercial/industrial land use patterns in 

Baton Rouge derived from NLCD 2011). In other words, denoting the total numbers of 

simulated and actual commuters by n and N, respectively, and given the numbers of 

resident workers and employment in a tract i from the CTPP as Ri and Ei, the numbers of 

simulated individual workers and jobs in the tract i are (n/N)Ri and (n/N)Ei, respectively. 

The value of n is selected by balancing accuracy and computational efficiency (i.e., larger 

numbers of simulated points and subsequently O-D trips improve accuracy but demand 

more computing power). For illustration of the process, we selected four census tracts in 
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Baton Rouge as an example. Given the zonal level spatial patterns of resident workers and 

jobs confined with corresponding land uses in the four selected tracts in Figure 3a and 

Figure 3c, respectively (see Figure 4a and Figure 4c for the case without considering land 

use patterns), Figure 3b and Figure 3d show corresponding simulated individual locations 

of resident workers and jobs, more reasonable and accurate results compared to Figure 4b 

and Figure 4d that do not take land use patterns into account. 

 

Figure 2. Commercial/Industrial land use in Baton Rouge 2010. 
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(a)          (b) 

                        

(c)          (d) 

Figure 3. Spatial distribution of (a) resident workers in residential land use areas in zones, (b) simulated resident workers, (c) jobs in 

commercial/industrial land use areas in zones, and (d) simulated jobs.
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(a)          (b) 

                        

(c)          (d) 

Figure 4. Spatial distribution of (a) resident workers in zones, (b) simulated resident workers, (c) jobs in zones, and (d) simulated jobs. 
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4.3 MONTE CARLO SIMULATIONS OF O-D TRIPS 

The previous section returns simulated points of resident workers and jobs according to their 

spatial distributions across the areal unit (e.g., census tract). This section shows another application 

of Monte Carlo simulation in connecting resident workers and jobs together to form commuting 

trips, or more generally, disaggregating area-based flow data to individual O-D trips. 

To achieve this, another simulation process is designed for trip distribution. Specifically, we 

simulate the trips between individual locations of workers and jobs that are consistent with the 

actual zonal-level flows. Similarly, as the actual zonal-level flow from a residential worker tract i 

to an employment tract j (extracted from the CTPP) is xij, the simulated flow when aggregated at 

the zonal level should be (n/N)xij, i.e., proportional to the actual journey-to-work pattern. This is 

implemented by another Monte Carlo simulation process by utilizing the previously simulated 

points of resident workers (O) and jobs (D): 

 Randomly choosing an origin point p(i) in a residential worker tract i, 

 Randomly choosing a destination point q(j) in a job tract j,  

 Forming individual O-D trips between p and q and recording the trip length between them 

through the road network cpq, and  

 Capping the number of trips between zones i and j at (n/N)xij. 

The simulation approach disaggregates the reported zonal commuting trips into individual 

trips, and permits more accurate estimation of commute distances by mitigating the aggregation 

error and zonal effect. For example, the mean within-tract commute distance for the most northeast 

tract in 2010 in Figure 1 was 0 by the centroid-to-centroid measure, and became 8.39 miles by the 

simulation approach, and 7.74 miles after land use variability was accounted for.
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CHAPTER 5. COMMUTING AND LAND USE 

This chapter examines the temporal trend of commuting for the general population (resident 

workers), and then attempts to understand the observed commuting pattern. As mentioned, 

commuting may be explained by where they are (i.e., spatial factors) and who they are (i.e., 

nonspatial factors) (Wang 2003). One spatial factor that is commonly investigated in existing 

studies (i.e., land use) is tested in this chapter; and the effect of a nonspatial factor on commuting 

is examined in next chapter.  

5.1 OVERALL TEMPORAL TREND OF COMMUTING 

This research examines the commuting pattern in both distance and time. Unlike commuting 

time, distance is not reported in CTPP. Given the aforementioned issues, we retrieve commuting 

distance based on simulation of individual trips for better accuracy. 

People commute by multiple modes. It makes more sense to take mode choices into 

consideration when measuring commuting distance. For example, Wang (2000) recovered 

commute distance based on the centroid-to-centroid network distance in Chicago by two major 

modes—vehicles (including drove-alone, carpool, bus, taxi, etc.) and trains (subway and rail) due 

to the high percentage in each mode. Specifically, he calculated the shortest-time network distance 

for commuting trips made by vehicles and train, while using the Manhattan distance to estimate 

the commute distances for commuters using bicycle or walking. Separation by different 

transportation modes is truly reasonable, especially for area with high demand in each mode, and 

additional information such as the transit network would be needed. In Baton Rouge, however, the 

majority commuted by auto (including drove-alone and carpool), and the percentage was steady 

over time (i.e., 94-95 percent) (see Table 2). Therefore, we estimated commute distance based on 

the road network without taking transit, bicycle or pedestrian routes into consideration. 
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Table 2. Modal splits and commute lengths in Baton Rouge 1990-2010. 

Year 

Modal splits 
Mean commute 

distance  

Mean commute 

time  

Drove-

alone 
Carpool 

Public 

transit 
Others1 

(mile) (min) 

1990 82.35 11.76 1.29 4.60 5.95 16.73 

2000 83.16 11.91 1.40 3.54 6.17 18.73 

2010 83.77 11.08 1.75 3.40 6.25 17.98 

1 Others include taxi, motorcycle, bicycle, walk, etc. 

 

The mean commuting distance/time of a zone is commonly seen in the literature as a measure 

of commuting pattern (Gera, 1979; Gera and Kuhn, 1980; Gordon et al., 1989b; Gordon et al., 

1991; Giuliano and Small, 1993; Cervero and Wu, 1998; Wang, 2000; Wang, 2001; Wang, 2003; 

Kim, 2008; Sultana and Weber, 2014). Similar to Wang (2000, 2001, 2003), mean commuting 

distance/time in a tract is the average travel distance/time from this tract to all employment tracts 

weighted by corresponding number of commuters. 
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In Equation (1), MCi is the mean commute distance/time in tract i; fij is the commuter flow 

residing in tract i and working in tract j; cij is travel cost (i.e., distance/time) between tract i and j; 

Ri is the number of resident workers in tract i; and n is the total number of tracts in the study area. 

In a word, this measure indicates that resident workers in tract i, on average, commute as far/long 

as MCi. CTPP part 3 provides the commuter flow matrix and corresponding reported travel time 

between tracts, which makes it feasible to measure mean commute time for each tract. Mean 

commute distance, while not reported, was measured based on the Monte Carlo simulation of 

individual trips, rather than the coarse centroid-to-centroid distance measure. For example, the 
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average commute distance in Baton Rouge in 2000 was 5.95 miles by the zonal centroid-to-

centroid approach, and revised to 6.17 miles by the simulation-based approach. The more accurate 

(longer) estimates by the simulation technique are validated through a one-tailed statistical test, 

indicating the effectiveness of our method. 

Also shown in Table 2, the mean commute distance on average increased steadily from 5.95 

mile in 1990 to 6.17 mile in 2000 and further to 6.25 mile in 2010. This is consistent with some 

previous studies (Levinson and Kumar, 1994; Cervero and Wu, 1998), and reflects a long standing 

trend of more workers moving farther from their jobs either to search farther for jobs for 

maximizing their earnings or to move their residences for better housing. However, the increasing 

rate was higher in 1990-2000 than in 2000-2010. One possible reason might be the recession in 

2008 (Horner and Schleith, 2012). 

The mean commute time for overall population increased from 1990 to 2000 and then declined 

to 2010. Other studies also found that the average commute time stayed stable or even dropped 

over time, albeit the worsening traffic congestion (Gordon et al., 1989c; Dubin, 1991; Gordon et 

al., 1991; Levinson and Kumar, 1994; Kim, 2008). They ascribed the declining time to co-location 

of jobs and housing, i.e., people relocate their residence or jobs to cut back commute time as traffic 

becomes more congested. An increasing use of suburban roads that are usually newer and wider 

than roads in central city makes it achievable to commute longer distance in a shorter duration. 

Taking drove-alone for example, the implied average commuting speed was 24.3 mph in 1990, 

dropped to 21.9 in 2000 and only recovered slightly to 22.8. Therefore, a small increment in 

commute distance from 1990 to 2000 came with a much larger climb in commute time, and it was 

only after 2000 that the co-location theory became relevant and led to a small drop in commute 

time. The significant climb of commute time for 1990-2000 might reflect people’s increasing 
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endurance of long commutes or traffic congestion that grew much more rapidly than people could 

adapt (Levinson and Wu, 2005), and the re-location adjustment came afterwards. Such an increase 

of commuting time in 1990-2000 was also seen in Pisarski (2002). 

Based upon the observed commuting pattern (both distance and time) as listed in Table 2, we 

may ask questions on why and how. In short, we need to find the underlying factors that 

significantly affect commuting. This chapter focuses on the spatial part (i.e., land use, the spatial 

distributions of employment and resident workers). As mentioned in Chapter 2, existing attempts 

look at three aspects of land use patterns (i.e., distance from CBD, a local jobs-housing balance 

ratio, and the overall proximity to jobs) and link them with commuting. Specifically, distance from 

CBD captures how far a residential location is from a job concentration area (particularly applied 

to a monocentric city where its CBD dominates the job market); the local jobs-housing balance 

ratio further extends the measure by considering local jobs (within a threshold of residence) rather 

than jobs in one particular area (e.g., CBD); and the job proximity, collectively, measures the 

distance from a residential location to the overall job market. Next, I will evaluate the effects of 

these land use metrics on commuting one by one.  

5.2 COMMUTING PATTERN VS. DISTANCE FROM CBD 

There has been a long tradition of attempts to explain intraurban variability of commuting by 

land use patterns. The analysis begins by examining the impact of the CBD with the highest 

employment concentration (see Figure 5). In the study area, 42 percent of workers commuted to 

the area within a 3-mile radius of the CBD in 1990, and the rate dropped to 32 percent in 2000 and 

31 percent in 2010, indicating that a large portion of jobs were concentrated in CBD area albeit 

they increasingly moved out of the CBD area during this period. Table 3 shows that distance from 

the CBD (denoted by DCBD) explained the variation of mean commute distance across census tracts 
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by 78 percent in 1990, 68 percent in 2000 and 63 percent in 2010. The declining explaining power 

was attributable to dispersion of jobs beyond the CBD area (e.g., percentage of workers commuted 

to the area within a 3-mile radius of the CBD was 42 percent in 1990, 32 percent in 2000 and 31 

percent in 2010). The effect of distance from CBD remained significant on mean commute time 

in all models (Table 4), but much weaker than on mean commute distance (Table 3). The lower 

performance of regression models on commute time was attributable to the non-uniform modal 

distribution across tracts. In fact, for drove-alone commuters alone, the pattern of mean commute 

time was largely consistent with that of mean commute distance, and the corresponding regression 

models yielded R2 = 0.60, 0.41 and 0.50 in 1990, 2000 and 2010, respectively (details not reported 

here). Adding the square term DCBD
2 did not improve the explaining power of the regression 

models and thus was not included. Note that results on jobs-to-workers-ratio (JWR) and proximity 

to jobs (JobP) are also reported in Table 3 and Table 4, see the following sections for details. 

Table 3. Regression models of mean commute distance across census tracts 1990-2010. 

 1990 2000 2010 1990 2000 2010 1990 2000 2010 

Intercept 
2.40*** 

(10.03) 

2.91*** 

(10.52) 

3.01*** 

(9.93) 

10.37*** 

(29.14) 

14.87*** 

(20.75) 

13.65*** 

(21.34) 

0.88*** 

(4.60) 

0.99*** 

(7.06) 

1.10*** 

(5.74) 

DCBD 
0.57*** 

(17.38) 

0.50*** 

(13.67) 

0.48*** 

(12.22) 
   

   

JWR 
   -3.88*** 

(-14.07) 

-10.38*** 

(-8.35) 

-8.05*** 

(-7.57) 

   

JWR2 
   0.37*** 

(13.93) 

2.60*** 

(5.33) 

1.75*** 

(4.36) 

   

JobP 
   

   
0.67*** 

(29.44) 

0.67*** 

(40.26) 

0.64*** 

(29.22) 

No. obs. 85 89 91 85 89 91 85 89 91 

R2 0.78 0.68 0.63 0.72 0.78 0.76 0.91 0.95 0.91 

Note: t-statistics are in parentheses; ***significant at the 0.001 level.  
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Figure 5. Job density pattern in Baton Rouge 2010.  

5.3 COMMUTING PATTERN VS. JOBS-HOUSING BALANCE 

This section looks into the jobs-housing balance hypothesis proposed by Cervero (1989). An 

imbalanced area has far more resident workers than jobs, and thus more workers need to commute 

outside of the area for their jobs and tend to incur more commuting. Following Wang (2000), this 

research used the floating catchment area method to define a circular area around each census tract 

centroid, and calculated the jobs-to-workers-ratio (JWR) within each catchment area. A higher 
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JWR implies less need of commuting beyond the catchment area and thus is expected to correlate 

with less commute. We experimented with radii ranging 1.5-7.5 miles and settled with 5 miles for 

its best explaining power. 

As an example, Figure 6 shows the relationship between mean commute distance and time 

versus JWR in 2010. Both display a quadratic trend, but the trend is much clearer for distance than 

time. This is confirmed by a regression model with the added square term of JWR, as reported in 

Tables 2 and 3. In 1990, 2000 and 2010, the negative sign of JWR and the positive sign of JWR2 

indicate that mean commute distance or time at the tract level declined with JWR, but the declining 

slope got flatter in higher-JWR areas. Both terms are statistically significant in all models. The 

models for mean commute distance in Table 2 performed well with R2 that was 0.72 in 1990, 

peaked at 0.78 in 2000 and dropped slightly to 0.76 in 2010. The models for mean commute time 

in Table 3 also confirmed the quadratic trend in all years though with lower R2 (0.21, 0.26 and 

0.35 in 1990, 2000 and 2010, respectively). In short, the results confirm the importance of jobs-

housing imbalance in affecting commuting pattern, much more significant in Baton Rouge than 

large metropolitan areas reported in other studies (e.g., Wang, 2000). 

 

Figure 6. Mean commute distance and time vs. jobs-to-workers ratio (JWR) in 2010. 
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Table 4. Regression models of mean commute time across census tracts 1990-2010. 

 1990 2000 2010 1990 2000 2010 1990 2000 2010 

Intercept 
14.72*** 

(26.82) 

16.96*** 

(23.06) 

15.29*** 

(25.01) 

19.69*** 

(28.25) 

27.86*** 

(13.51) 

25.36*** 

(17.12) 

13.32*** 

(20.44) 

14.42*** 

(16.12) 

13.63*** 

(21.15) 

DCBD 
0.32*** 

(4.28) 

0.27** 

(2.80) 

0.40*** 

(5.04) 
      

JWR 
   -2.51*** 

(-4.65) 

-12.26*** 

(-3.43) 

-8.45*** 

(-3.43) 
   

JWR2 
   0.21*** 

(4.12) 

3.60* 

(2.57) 

1.99* 

(2.15) 
   

JobP 
   

   
0.25*** 

(5.74) 

0.30*** 

(5.22) 

0.31*** 

(7.41) 

No. obs. 85 89 91 85 89 91 85 89 91 

R2 0.18 0.08 0.22 0.21 0.26 0.35 0.28 0.24 0.38 

Note: t-statistics are in parentheses; *significant at the 0.05 level, **significant at the 0.01 level, 
***significant at the 0.001 level. 

 

5.4 COMMUTING PATTERN VS. PROXIMITY TO JOBS 

Either the emphasis on the role of CBD or the jobs-housing balance approach does not consider 

all job locations in explaining the commuting pattern. The job proximity index (JobP) captures the 

spatial separation between a worker’s residence location and all potential job sites (Wang, 2003), 

formulated such as: 

 



n

j

ijiji dPJobP
1

,   (2) 

where    



n

k

ikkijjij dJdJP
1

 . 

Similar to the notion of Huff (1963) model, the probability of workers residing in zone i and 

going to work in zone j (denoted by Pij) is predicted as the gravity kernel of job site j out of those 
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of all job sites k (= 1, 2, …, n). Each gravity kernel is positively related to the number of jobs there 

Jj (or Jk) and negatively to the distance or time (measured as network distance or time) between 

them dij (or dik) powered to the distance friction coefficient β. With the probability Pij defined, 

JobP at zone i is simply the aggregation of all distances (time) dij with corresponding probabilities 

Pij over all job sites (j = 1, 2, …, n).  

Calibration of JobP requires defining the value for the distance friction coefficient β in 

Equation (3). In this research, the β value was computed from the log-transformed regression based 

on the classic gravity model such as 

 
 ijjiij dJaWC  (3) 

where Cij is the number of commuters from a tract with Wi resident workers and to a tract with Jj 

jobs for a distance (time) of dij (Wang 2015, p.33). Based on the CTPP data, the derived β value 

was 0.404 in 1990, 0.547 in 2000, and 0.475 in 2010 if the journey-to-work trips were measured 

in distance; and the β value was 0.295 for 1990, 0.353 for 2000, and 0.385 for 2010 if measured 

in time. 

The regression results for mean commute distance and time by JobP are again reported in Table 

3 and Table 4, respectively. The mean commute distance at the tract level was well explained by 

JobP with R2 = 0.91, 0.95 and 0.91 in 1990, 2000 and 2010, respectively. This is a significant 

improvement over other factors, i.e., DCBD and JWR. Similarly, regression models on mean 

commute time returned lower R2 ranging 0.24-0.38. We also did not add the square term JobP2 as 

it did not improve the explaining power of the regression models. Note that we also run a series of 

regression models on mean commuting distance (centroid-to-centroid), and results indicate weaker 

R2 than the simulation-calibrated distance. This again demonstrates the value of our simulation 

approach.
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CHAPTER 6. COMMUTING AND WAGE RATE 

Alternatively, this chapter makes an attempt to understand intraurban commuting based 

upon nonspatial factors. As mentioned in Chapter 2, commuters of different socioeconomic 

groups like age, gender, income, race and among others usually have varying commuting 

preferences and patterns. Studies of this kind commonly rely on aggregated socioeconomic 

data such as from Census; and this would make such analyses most vulnerable and open to 

criticism due to the ecological nature, however. Therefore, this research focuses on only 

one specific nonspatial factor to examine the connection between commuting pattern and 

aspatial factors, instead of investigating all of those aforementioned nonspatial factors. 

This research finally selected the nonspatial factor income and aims at understanding 

its relationship with the observed commuting pattern (i.e., commuting variability by 

different income groups). Specifically, we use wage rate earned by resident workers instead 

of household income because of better data on wages from the CTPP and for wage’s closer 

tie to commuting behavior than other income sources (Gera and Kuhn, 1980; Wang, 2003). 

There are several reasons for picking income (wage as a surrogate): (1) it plays a 

determining role in a household’s residential choice that is usually driven by the tradeoff 

between commuting length and housing size as suggested by the urban economic model; 

for example, some people may be more sensitive to one factor than the other according to 

their socio-demographic attributes, and perhaps foremost, the elasticity value varies across 

wage groups; (2) it is perhaps the most important determinant in vehicle ownership and 

thus affects mobility (commuting); (3) it is freely available from CTPP at the neighborhood 

(e.g., census tract) level, which reflects the neighborhood attributes and provides the 

geographic context for this research. 
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6.1 COMMUTING PATTERN BY NEIGHBORHOOD’S AVERAGE WAGE 

As stated previously, people of different wage rates may have varying responses to the 

tradeoff between commute length and house size. Without access to data of individual 

commuters, this section investigates the effect of wage on commuting by using a 

neighborhood’s mean wage rate extracted from the CTPP Part 1. 

Table 5. Mean commute distance and time by tract-level mean wage rate. 

Mean Wage 

Percentile 

Wage cutoff point 
Mean commute 

distance (mile) 

Mean commute time 

(min) 

1990 2000 2010 1990 2000 2010 1990 2000 2010 

0-20 14,822 21,085 27,529 4.58 5.10 5.40 16.78 20.39 17.51 

20-40 18,420 24,140 34,905 4.68 5.67 6.33 16.50 19.40 19.32 

40-60 22,766 31,915 45,023 7.95 7.53 5.96 18.66 19.38 17.52 

60-80 28,050 41,680 53,551 6.72 7.28 7.14 16.57 18.83 18.10 

80-100 42,760 63,245 75,899 5.84 5.21 6.43 15.13 15.49 17.50 

Total - - - 5.95 6.17 6.25 16.73 18.73 17.98 

 

To account for the effect of wage inflation over time, we group the tracts in each year 

by their mean wage rate percentiles such as 20, 40, and so on, as shown in Table 5. In 1990 

and 2000, the tract-level mean commuting distance increased with the mean wage rate up 

to about the middle point (i.e., 40-60 percentile) and then declined toward the wealthiest 

neighborhood. This is largely consistent with the finding of Cleveland in 1990 reported in 

Wang (2003). The average commute distance peaked at the middle-range wage 

neighborhoods in our study area but more to the side of upper-middle wage neighborhoods 

in Cleveland. In other words, the response of mean commute distance to rising mean wage 

in neighborhoods may be characterized by a convex shape in 1990 and 2000. This is further 

confirmed by the convex curves in Figure 7 (for 1990 as an example) and the regression 
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results in Table 6 (note the + and - signs for the coefficients of mean wage and its square 

terms, respectively, in 1990 and 2000, and both are statistically significant in either year). 

However, this pattern was less clear and not significant in 2010 because the middle 40-60-

percentile tracts experienced a minor dip in commute distance; and in general, higher wage 

groups travelled farther than lower wage groups (e.g., 7.14 and 6.43 miles by the 60-80 

and 80-100-percentile groups, respectively, vs. 5.40 and 6.33 miles by the 0-20 and 20-40-

percentile groups, respectively). 

Table 6. Regression of mean commute vs. mean wage rate during 1990-2010. 

Dependent 

variable 

Mean commute distance Mean commute time 

1990 2000 2010 1990 2000 2010 

Intercept 
-0.61 

(-0.31) 

-0.19 

(-0.10) 

3.12 

(1.63) 

13.02*** 

(5.52) 

16.97*** 

(6.02) 

13.21*** 

(4.91) 

Mean_wage 
0.001** 

(3.16) 

0.0004*** 

(3.52) 

0.0001 

(1.30) 

0.0004* 

(2.03) 

0.0002 

(1.42) 

0.0003 

(1.91) 

Mean_wage2 
-1.0E-8** 

(-2.85) 

-5.9E-9*** 

(-3.55) 

-1.1E-9 

(-0.95) 

-1.1E-8* 

(-2.41) 

-5.5E-9* 

(-2.22) 

-3.2E-9 

(-1.95) 

F value 5.84 6.32 2.58 4.30 11.43 1.91 

R2 0.13 0.13 0.06 0.10 0.21 0.04 

No. 

observations 85 89 91 85 89 91 

Note: t-statistics are in parentheses; *significant at the 0.05 level, **at the 0.01 level, 

***significant at the 0.001 level (two-tailed test). 

The convex shape pattern for mean commute distance may first reflect the complex 

residential choice behavior in the tradeoff between commuting cost and house space. As 

the income net of commuting cost is larger for higher-wage workers and their housing 

expenditures increase with income, they opt to live farther away from the central city (and 

their jobs in general) for more house space and better community environment (Gordon et 
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al., 1989b; Kim, 2008). In addition, the individual’s job location behavior would induce 

workers to locate their jobs at a distance from their residential places in order to achieve 

maximization in their earnings net of travel cost and job-searching spending. The job 

location behavior is more usual in a job-decentralized city (Gera and Kuhn, 1980). The 

third possible reason refers to the nature of their jobs. Specifically, higher-wage workers 

usually have jobs requiring more specialties, and thus may need to commute further for 

appropriate jobs; on the contrary, lower-wage workers usually take less skilled jobs and 

may find suitable employment everywhere (Prashker et al., 2008). All explanations rely on 

better transport mobility for workers in higher-wage neighborhoods. Mobility for the 

workers in lower-wage neighborhoods is more limited (e.g., low vehicle ownership, high 

dependency on bicycling, walking, or transit that is often feasible only in the central city 

area). However, this increasing trend of commute distance may be reversed when the mean 

wage rate reaches a certain level. A higher wage rate also means a higher opportunity cost 

for more commuting. More importantly, workers living in the neighborhoods of highest 

wages can also afford homes that are closer to jobs and may command a higher unit price 

of housing. In short, the high wage enables the workers of this group to cut back on their 

commute lengths without sacrificing house space. 

In terms of mean commute time, the convex shape pattern remained valid in 1990 (i.e., 

mean commute time peaked at 18.66 minutes in the tracts of the 40-60-percentile wage 

group), but did not hold in 2000 or 2010. In 2000, clearly the mean commute time was the 

highest for the poorest tracts and declined steadily to wealthier tracts. In 2010, the highest 

mean commute time was experienced by the tracts of 20-40-percentile wage group, and 

varied within a narrow band (i.e., 17.5-18.1 minutes) in the tracts of the other wage groups. 
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Figure 7. Mean commuting distance/time vs. tract’s mean wage rate in 1990. 

The largely inconsistent trends between the mean commute distance and time were 

attributable to the variability of mode distributions across tracts of various mean wage 

rates. It is well-known that travel time is longer for carpool than drove-alone, and even 

longer for public transits and others. As shown in Table 7, the percentage of commuters by 

drove-alone tracts was the smallest in the neighborhood of the lowest wage rate (i.e., 61.9 

percent in 1990, 62.2 percent in 2000 and 66.5 percent in 2010), and increased gradually 

to tracts in higher wage rate. In other words, more workers had to use slower transport 

modes in lower-wage neighborhoods, and thus increased their commute time. Furthermore, 

as more low-wage workers tended to live in central city with higher densities and more 

congested roads, even those drove-alone commuters would use more time to travel the 

same distance and were less likely to convert their shorter distance trips to shorter duration. 

As discussed previously, a shorter commute distance also reflects less mobility in job 

search. The double disadvantages were most evident in 2000 when the tracts in the 0-20-

percentile wage group spent most time to commute the shortest distance. 
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Table 7. Commuting modal splits by tract-level mean wage rate. 

Year Wage percentile group Drove-alone Carpool Public transit Others1 

1990 0-20 61.91 16.18 4.17 17.74 

 20-40 78.37 14.56 1.59 5.48 

 40-60 85.28 10.76 0.52 3.45 

 60-80 85.06 10.00 0.66 4.27 

 80-100 88.07 7.69 0.27 3.97 

 All 82.35 11.76 1.29 4.60 

2000 0-20 62.17 18.37 5.36 14.11 

 20-40 77.77 14.95 2.38 4.91 

 40-60 83.19 12.00 0.46 4.35 

 60-80 86.21 9.13 0.46 4.20 

 80-100 87.00 8.03 0.28 4.68 

 All 83.16 11.91 1.40 3.54 

2010 0-20 66.50 13.96 4.97 14.57 

 20-40 77.72 15.26 2.91 4.11 

 40-60 81.85 10.78 2.02 5.35 

 60-80 86.13 9.51 0.31 4.05 

 80-100 87.47 7.49 0.39 4.66 

 All 83.77 11.08 1.75 3.40 

1 Others include taxi, motorcycle, bicycle, walk, etc.  

To explore the spatial patterns of commuting and neighborhood’s mean wage rate, three 

bivariate choropleth maps are designed as shown in Figure 8. For each year, tracts are 

grouped into three categories of about equal frequency (i.e., 33, 66 and 100 percentile) in 

terms of mean commuting distance, and denoted by distinctive colors. In the meantime, as 

stated earlier, tracts are also grouped into five categories by mean wage rate percentile, and 

denoted by each color’s darkness. The pattern of mean commuting distance shows a 

concentric pattern with increasing distance from the CBD for all three time periods, 
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indicating the consistent significance of downtown Baton Rouge in influencing the 

commuting pattern. The pattern for mean wage rate displays a contrast between the 

southeast sector (higher wage) and the rest (including north and a narrow southwest strip 

with lower wage) in each year. While the general pattern for commuting distance remained 

concentric over years, the areas falling in each category changed. For example, the zones 

of short-distance commuting (i.e., 33 percentile marked in red) expanded to the southeast 

with medium to high income (in lighter red). This highlights that the areas with shorter-

distance commuting in 1990 were mostly composed of low-wage earners, but expanded to 

areas with higher-wage earners. Tracts in the middle (40-60 percentile) wage group were 

mostly in the north in 1990 (mostly rural at the time), started to shift toward the middle 

area of Baton Rouge in 2000, and mostly were in the middle in 2010. This may help explain 

how this is the lone wage group with a trend of shortening commute distance from 1990 to 

2010. Also note that areas of the lower wage (0-40 percentile) groups spread out from the 

central city area over time, and areas for higher wage (60-100 percentile) groups further 

stretched out from the south to further outskirts of development. 
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   (a)      (b)      (c) 

 

Figure 8. Mean commuting distance and mean wage rate: (a) 1990, (b) 2000, (c) 2010. 

Note: Color represents mean commuting distance: red for the shortest, blue for the 

middle, and brown for the highest. Darkness represents mean wage rate: darker for 

lower mean wage rate. 
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6.2 COMMUTING PATTERN VS. DISTRIBUTION OF WAGE GROUPS 

The above section explores the effect of wage on commute by using the mean wage 

rate of tracts. Given that a tract’s mean wage rate cannot fully represent its real wage 

distribution pattern where workers of various wage rates reside, this section analyzes the 

distribution of wage groups across census tracts to obtain more insight into the interaction 

between commuting and wage. 

The CTPP data include the numbers of resident workers in various wage ranges. 

Different wage ranges were used among the CTPP 1990, 2000 and 2010. We divide 

workers in tracts into five wage groups (i.e., 0-15k, 15-35k, 35-50k, 50-75k, and 75k+), 

which is the only feasible classifications to be consistent over time. While all wage groups 

could be present in one tract with the same mean commute, their relative concentrations 

(e.g., percentages) vary. Limited by the aggregated data, we cannot single out which wage 

group(s) commute how much. However, if a certain group is consistently observed to be 

overrepresented in long-commuting areas and other groups are consistently found to 

concentrate in short-commuting areas, it is more likely than not that overall the former 

experiences longer commute than others (i.e., live further away from their jobs). Due to the 

ecological nature of the CTPP data, the inference from the analysis is merely suggestive 

and calls for validation by more in-depth analysis of individual data.     

Given that workers of all wage groups could reside in the same tract, we formulate a 

null hypothesis for testing disparities in commuting lengths such as: 

H0 (null hypothesis): the proportion of workers (of a certain wage group) living 

in areas with above-average commute length is the same as that in areas with 

below-average commute length. 
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Here, the weighted average commute for the overall population in the study area is used 

as a benchmark for comparison. We are interested in examining whether a wage group is 

distributed disproportionately higher in areas of longer commute. 

A conventional pooled t-test may be considered to test the above null hypothesis (Wang 

and Feliberty, 2010). For easy implementation for a large number of repetitive tests, we 

choose to use a weighted OLS regression to test the hypothesis (Ikram et al., 2015), where 

the tract population is used as the weight for appropriate adjustments in the error term. By 

doing so, a tract with more population is weighted heavier than one with less population. 

Such an adjustment is not feasible by the conventional pooled t-test.  

Specifically, tracts in the study area are first split into two sets: Set 1 with below-

average commute are coded as “Flag = 0”, and Set 2 are above-average tracts coded as 

“Flag = 1”. Denoting the ratio of a wage group in a tract as Yw, the regression model is 

defined as 

 FlagbaYw   (4) 

The model is estimated by a weighted OLS regression where the total population in a 

tract defines the weight. The intercept a is the average % of this wage group in Set 1 (i.e., 

tracts with below-average commute when Flag = 0). The average % of the wage group in 

Set 2 (i.e., tracts with above-average commute when Flag = 1) is simply reconstructed as 

a+b. The slope b is the difference between Sets 1 and 2, and its corresponding t value 

reveals the statistical significance for the difference. 
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Table 8. Wage groups in areas above or below the average commuting distance. 

Wage group 

1990 2000 2010 

% with 

below 

average 

% with 

above 

average 

Difference 

in % 

% with 

below 

average 

% with 

above 

average 

Difference 

in % 

% with 

below 

average 

% with 

above 

average 

Difference 

in % 

<15k 50.3 38.5 -11.8*** 37.7 29.3 -8.4** 28.4 21.6 -6.8* 

15-35k 33.1 39.3 6.2*** 32.9 36.9 4.0* 30.9 30.3 -0.6 

35-50k 9.0 12.7 3.7*** 12.5 14.8 2.3* 15.3 17.5 2.2 

50-75k 4.7 7.1 2.4** 9.7 12.4 2.7* 13.0 16.4 3.4* 

>75k 3.0 2.6 -0.4 7.2 6.5 -0.7 12.4 14.2 1.8 

Note: *** indicates statistically significant at 0.001, ** significant at 0.01, * significant at 0.05. 

 

 

Table 9. Wage groups in areas above or below the average commuting time. 

Wage group 

1990 2000 2010 

% with 

below 

average 

% with 

above 

average 

Difference 

in % 

% with 

below 

average 

% with 

above 

average 

Difference 

in % 

% with 

below 

average 

% with 

above 

average 

Difference 

in % 

<15k 46.2 44.0 -2.2 32.8 35.7 2.9 28.4 23.3 -5.1 

15-35k 34.4 37.4 3.0 31.6 37.9 6.3*** 28.4 32.9 4.5* 

35-50k 10.1 11.3 1.2 14.0 12.9 -1.1 15.6 16.7 1.1 

50-75k 5.8 5.6 -0.2 12.0 9.4 -2.6* 13.4 15.0 1.6 

>75k 3.6 1.8 -1.8** 9.6 4.0 -5.6*** 14.2 12.0 -2.2 

Note: *** indicates statistically significant at 0.001, ** significant at 0.01, * significant at 0.05.
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Table 8 and Table 9 report the significance test results of commuting distance and time, 

respectively. The results list the ratios of each wage group with below-average commute and 

above-average commute as well as their differences. For example, in 1990, 50.3 percent of lowest-

wage workers (i.e., <15k) lived in areas with shorter commute distance than the overall population, 

while 38.5 percent lived in areas with above-average commute distance. The negative difference 

(i.e., -11.8) between both ratios is significant at 0.001 level, suggesting that workers in the lowest 

wage group in 1990 were significantly higher in areas with below-average commute distance, and 

thus enjoyed shorter commute distance in general. Similarly, we found that workers in the 

following three groups (i.e., 15-35k, 35-50k, and 50-75k) in 1990 were more concentrated in areas 

with above-average commute distance, indicating relatively longer commute lengths in these wage 

groups than the overall population. The highest-wage workers in 1990 appeared to have a slightly 

higher percentage living in areas with below-average commute distance, but not statistically 

significant. In a word, the above results demonstrate that workers in the lowest-wage group, in 

general, commuted significantly less than the overall population, while workers in the following 

three wage groups commuted significantly more than the overall population. However, no solid 

conclusions could be drawn for the highest-wage workers due to the insignificant results. Similar 

pattern was found in 2000 but not as clear as in 1990: only the lowest-wage group tended to 

concentrate in below-average commute distance areas with statistical significance, and 

concentrations of other groups in terms of areas of mean commute distance were not statistically 

significant. In 2010, the tendency of higher concentration of the lowest-wage group workers in 

areas of below-average commute distance remained significant, but the differences in 

concentration of other wage groups were not significant or minor (i.e., ratios of the 50-75k wage 

group in 2010 tended to be slightly higher in tracts of longer commute distance). In general, the 
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convex shape pattern discovered in previous analysis is not observed in this analysis due to more 

insignificant results. However, it does highlight the significant shorter commute distance for 

lowest-wage workers than the average in Baton Rouge 1990-2010, which is largely determined by 

their limited mobility. If the ecological inference is true that what is true for the group is true for 

the individual, we can conclude that the lowest-wage workers on average suffer from poor mobility 

and such disadvantage remained unchanged over time, and relevant policies such as adding more 

jobs near workers in this group may be considered for improvement. 

In terms of commute time, there are several observations to make. First, the difference in 

concentration of the highest-wage workers was statistically significant in 1990 and 2000 (i.e., more 

in below-average commute time areas), but such a difference disappeared in 2010. Secondly, in 

2000, workers in the 15-35k group were reported to disproportionately live in areas with above-

average commute time (significant at 0.001 level). Again, no clear convex shape pattern was found 

in the association between commute time and wage; however, we do observe less commuting time 

with statistical significance for the highest-wage workers than the overall workers in 1990 and 

2000. Once again, if the ecological inference is valid, the finding may suggest a true advantage in 

terms of commute time for the highest-wage workers due to their better mobility and job 

accessibility. Given the ecological nature of the CTPP data, we refrain from further inference.
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CHAPTER 7. WASTEFUL COMMUTING 

Although the land use pattern in Baton Rouge explained the commuting variations to some 

extent, there was still a proportion of variations unexplained (particularly commuting time). 

Part of the gap could be attributable to the wasteful commuting behavior that individuals 

do not necessarily optimize their journey-to-work trips as suggested by the spatial 

arrangements of land uses, i.e., jobs and houses (Hamilton, 1982). Even if individual 

workers make every effort to minimize their commuting, the outcome may still differ from 

the minimum total commute collectively for the whole study area. 

Wasteful commuting Tw is the proportion of the average actual commute Ta over the 

average required commute Tr, i.e., 

   araw TTTT   (5) 

Figure 9 outlines the workflow of our analysis. Based on 2006-2010 CTPP, we first 

replicate the existing approach of measuring wasteful commuting at the zonal (census tract) 

level, then use the Monte Carlo method to simulate individual locations of resident workers 

and employment as well as trips between them, and finally calibrate wasteful commuting 

at the individual level. 

7.1 MEASURING WASTEFUL COMMUTING AT THE CENSUS TRACT LEVEL  

As stated previously, both travel time and distance are used to measure wasteful 

commuting. For demonstration of the methods, here only travel time is mentioned. We 

adopt the popular Linear Programming (LP) technique to derive optimal commute. 

Commonly referred to as the transportation problem, the problem is to solve the optimal 

journey-to-work flows between origin and destination zones in order to minimize the 



53 
 

average travel time (Hitchcock, 1941; Horner and Murray, 2002; Taaffe et al., 1996), such 

as presented in Equation (6) – (9). 

 

Figure 9. Workflow of measuring wasteful commuting at the zonal and individual levels. 
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Minimize  
i j

ijijr NxcT  (6) 

Subject to: i

j

ij Rx   (7) 

 j

i

ij Ex   (8) 

 0ijx  (9) 

where cij is the commuting time from zone i to zone j; xij is the number of commuters living 

in zone i and working in zone j; Ri represents the number of commuters living in zone i; Ej 

represents the number of commuters working in zone j; N = ΣiΣjxij is the total number of 

commuters. 

Equation (6) defines the objective function of minimizing the average commuting time, 

which is subject to three constraints. Equation (7) ensures that all journey-to-work flows 

originating from one zone satisfy the total number of commuters living in that zone. 

Similarly, Equation (8) limits all journey-to-work flows ending in one zone to the total 

number of commuters working in that zone. Equation (9) restricts the journey-to-work flow 

matrix xij to be non-negative values. The resulting Tr returned by the objective function 

represents the average required commuting time, suggested by the spatial arrangement of 

homes and jobs. Comparing actual commute Tr to actual commute Ta, Equation (5) 

measures the wasteful commuting rate.   

In implementation, intrazonal travel distance cii is approximated as the radius of a circle 

with the same area size as a zone (Frost et al., 1998; Horner and Murray, 2002), and the 

corresponding intrazonal travel time is obtained by simply assuming a constant travel speed 

of 25 mph through the distance. The interzonal travel distance (time) cij is calibrated 

between the centroids of census tracts by the shortest network path, and then modified by 
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adding the intrazonal components (distance or time) at both the origin and destination 

zones. 

Solving the zonal-level LP as defined in Equations (6) – (9), we obtain the optimal 

commuter flow matrix xij, and then the average minimum commute defined in Equation 

(6). The average minimum commuting time in the study area is 6.61 minutes, and the 

average minimum commuting distance is 3.44 miles. Note that the intrazonal travel times 

and distances are not zero here and vary with tract area sizes. As a result, the optimal 

commuting pattern has only 24.4 percent (i.e., 44,590/182,705) within-tract commute trips 

when travel time is used, and 19.5 percent (i.e., 35,597/182,705) within-tract trips when 

distance is used. 

Figure 10 provides a visual comparison between actual and optimal commuter flows at 

the census tract level. Note that trips are substantially trimmed after optimization, and 

mostly are within tracts and between tracts in proximity. 

Based on reported journey-to-work flow volumes and corresponding mean travel time 

between tracts from the CTPP data, we obtained 19.26 minutes for the average actual 

commuting time. No mean travel distance is reported in the survey. As argued previously, 

reported travel time from a survey could include reporting errors and respondents might 

not be representative of the areas they reside. Furthermore, as the concept of wasteful 

commuting emphasizes the gap between actual and optimal commute lengths, it makes 

more sense to also estimate actual commute time (or distance) through network analysis 

since the optimal commute is an estimated measure.  For comparison, we obtained the 

estimated travel time (distance) for all commute flows, and then average estimated 

commute time of 12.76 minutes and average estimated commute distance of 7.42 miles.
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      (a)                (b) 

Figure 10. Tract-level commuting networks: (a) actual reported flow, and (b) optimal flow. 

[Line width is proportional to flow volume, and bubble size represents total throughput at a tract]
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With all the above results in place, wasteful commuting was calculated according to 

Equation (5) at the census tract level. Based on Table 10, wasteful commuting time was 

65.68 percent by comparing actual reported time with optimal time, and dropped to 48.20 

percent by comparing estimated time with optimal time. In terms of distance, wasteful 

commuting was 53.64 percent. The extent of wasteful commuting when using estimated 

time (48.20 percent) is more in line with that in distance (53.64 percent) as distance is also 

estimated from the road network. 

Table 10. Summary of actual, optimal and wasteful commuting in Baton Rouge 2010. 

 

Average 

Commuting Time 

(min) 

Average 

Commuting 

Distance (mile) 

Census tract level   

Actual Reported 19.26 NA 

 Estimated 12.76 7.42 

Optimal  6.61 3.44 

Wasteful Reported vs. 

Optimal 
65.68% NA 

 
Estimated vs. 

Optimal 
48.20% 53.64% 

Simulated individual level   

Actual Estimated 12.65 7.63 

Optimal  4.75 2.71 

Wasteful Estimated vs. 

Optimal 
62.45% 64.48% 

Note: NA means not available. 

7.2 MEASURING WASTEFUL COMMUTING AT THE SIMULATED INDIVIDUAL LEVEL 

Similar to the LP at the zonal level, the formulation of optimal commute at the 

individual level utilizes the Monte Carlo simulation of resident workers and jobs. Index the 
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locations for simulated individual resident workers and jobs as k and l, respectively. The 

total number of simulated workers is the same as that of simulated jobs, denoted by n. The 

optimization problem is 

Minimize  
 

n

k

n

l

klkl nfc
1 1

 (10) 

Subject to: 1
1




n

l

klf  (11) 

 1
1




n

k

klf  (12) 

 1klf when a trip from k to l is chosen, 0 otherwise (13) 

where ckl is the estimated travel time from resident worker location k to job location l, and 

fkl indicates whether a journey-to-work flow is chosen by the optimization algorithm (= 1 

when chosen and 0 otherwise). The objective function (10) is to minimize the average 

commute time of n simulated commuters. Equations (11) and (12) ensure that each worker 

can be assigned to one unique job and vice versa. Since the variable f is a binary integer, it 

is an integer linear program (ILP) problem. 

The result from the above ILP is the average minimal commuting, Tr. As explained 

previously, if the estimated travel time for a Monte Carlo simulated trip between two 

individual points p and q is cpq, the average estimated commuting time Ta in the simulated 

pattern is ncT
qp

pqa /
,

 . Since both the origins and destinations are individual points and 

do not involve any area configuration, both optimal commute and existing commute are 

estimated from the point-to-point OD trips. The approach is thus independent from the 

zonal effect or MAUP. 
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To mitigate the scale effect in the zonal level analysis, we solved the integer linear 

programming (ILP) problem defined in Equations (10) – (13) for simulated individual 

commuters. As discussed previously, the total number of simulated commuters (or resident 

workers or jobs) n by the Monte Carlo approach needs to be determined by balancing 

accuracy and computational efficiency. Based on a series of experiments with different 

sample sizes, we set the value of n to be 3,565, which was limited by the computation of 

all possible OD cost matrix (i.e., 3,565*3,565 pairs) in ESRI ArcGIS 10.1 in a PC 

environment (i.e., Intel Core 2 Quad 2.4 GHz CPU with 4GB memory and 500GB hard 

disk). The ILP yielded average minimum commuting time and distance at the simulated 

individual level as 4.75 minutes and 2.71 miles, respectively. Both are significantly lower 

than the optimal commute time and distance obtained at the census tract level. This 

difference validates the impact of zonal effect on the measure of wasteful commuting as 

pointed out by Hamilton (1989). 

Next we need to estimate travel time (distance) for the simulated trips that are 

consistent with the actual journey-to-work flow pattern. As discussed previously, the OD 

trips based on the Monte Carlo simulation are randomly paired individual locations of 

resident workers and jobs, but the total number of simulated commuters between two tracts 

i and j is capped proportionally to the actual journey-to-work volume such as (n/N)xij, 

where n = 3,565 and N = 182,705. By doing so, zonal-level trips are disaggregated into 

individual trips. Based on the simulation results, the average estimated commuting time 

and distance are 12.65 minutes and 7.63 miles, respectively. Both estimations are very 

close to those obtained at the census tract level. In other words, the disaggregation does not 
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alter the estimated commuting amounts significantly, and the difference mainly lies in the 

minimum (required) commuting.  

The visualization of networks at the simulated individual level would be too crowded 

to see any pattern. We aggregated both simulated flows and optimized flows into the census 

tract level, shown in Figure 11a and Figure 11b, respectively. Since the simulated flows at 

the individual level were intentionally designed to be proportional to the actual flows, the 

same pattern is observed between Figure 10a and Figure 11a, confirming that our 

simulation of trips worked well. In contrast to Figure 10b with a simpler pattern, Figure 

11b shows the optimal commute flows at the census tract level that were aggregated back 

from the individual optimal pattern, which is far more complex. Individual workers are 

now free to swap houses for individual job locations, instead of being confined to a tract 

centroid for a group of workers (or a group of jobs). Therefore, the flexibility enables more 

choices in the optimized pairing between workers and jobs, and further brings down the 

total (average) minimum commuting. Figure 11b also shows far more interzonal trips as 

individual workers are more likely to be paired with individual jobs in adjacent tracts 

instead of within the same tracts (see Figure 10b), and thus a more realistic optimization 

pattern. 

Measured at the simulated individual level, we obtained 62.45 percent wasteful 

commuting time and 64.48 percent wasteful commuting distance. Both are higher than 

those estimated at the census tract level. The results are also reported in Table 10. 
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       (a)                      (b) 

Figure 11. Aggregated individual-level commuting networks: (a) simulated flow and (b) optimal flow. 

[Line width is proportional to flow volume, and bubble size represents total throughput at a tract]
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An issue regarding the sensitivity of simulation sample size merits some discussion here. The 

cap of n=3,565 simulated commuters was set due to our computation limitation in calibrating of 

the large n×n OD cost matrix for the ILP. Here we experimented with nine sample sizes from 820 

to 3,565. Results for average optimal commute (time and distance) and corresponding wasteful 

commuting percentage are shown in Figure 12a and Figure 12b, respectively. As we increased the 

sample size, the average optimal commute, both in time and distance, tended to initially decrease 

and then stabilize after the sample size reached about 3,000. Even for smaller sample sizes (e.g., 

when n increased from 820 to 1,282), the changes in both measures were minor (i.e., 0.13 minutes 

for optimal commuting time, and 0.1 miles for optimal commuting distance). For larger sample 

sizes (e.g., when n increased from 3,256 to 3,565), the changes in the two measures were minimal 

(i.e., 0.004 minutes for time and 0.003 miles for distance). A similar trend can be said on the 

resulting percentages of wasteful commuting: the wasteful commuting time began to converge 

around 62 percent and the wasteful commuting distance tended to converge around 64 percent 

after the sample size reached 3,000. This confirms that the sample size of 3,565 commuters was a 

sound choice for the study area. 

 

(a) 
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(b) 

Figure 12. Sensitivity of simulation sample size: (a) optimal commute, (b) wasteful commuting. 

 
7.3 DISCUSSION ON DECOMPOSING WASTEFUL COMMUTING  

Based on the results summarized in Table 10, Figure 13 illustrates various measures of average 

commuting time in the study area. The reported average time from survey stood at the highest 

value of 19.26 minutes. This may well be the amount of time experienced by commuters in general. 

However, the extent of wasteful commuting is derived when the actual commuting is compared to 

the minimal (optimal) commuting that is often based on estimation. The concept of wasteful 

commuting was initially proposed for the purpose of assessing the gap between what would be 

possible collectively for a city given its land use pattern and what individuals actually do. 

Therefore, it seems fairer to compare actual and optimal commute time by measuring both in 

estimated time from road network. Our average estimated commuting time (drove-alone) of 12.76 

minutes was much shorter than the reported time of 19.26 minutes because the latter was affected 

by many factors such as commuters by slower modes, traffic congestion or even mental time that 

survey respondents might have included to account for parking and others. As the CTPP does not 
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report commuting distance data, this issue is not relevant when distance is used to measure 

commuting length.  

The conventional LP approach at the zonal level yielded an average minimal (optimal) 

commuting time of 6.61 minutes. By simulating individual locations of resident workers and jobs 

and also the individual trips linking them, our research returned an average minimal commuting 

time of 4.75 minutes. When the zonal-level approach is used, resident workers and jobs are 

grouped together in zones (e.g., tract centroids), and the free swap of homes permitted by the 

optimization are between zones. In our approach at the simulated individual level, the optimization 

permits resident workers to freely swap homes with individual locations, leading to a large number 

of optimal commuting trips that are much shorter and interzonal. The individual level approach is 

not only more accurate for its sharper resolution in estimating trip lengths but also generates more 

realistic optimal commuting pattern. 

 

Figure 13. Various measures of average commuting. 
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Figure 14 further clarifies the two components of false estimation of wasteful commuting. 

When reported commuting time is used as a benchmark, the wasteful commuting stands as high 

as 65.68 percent at the zonal level. When estimated commuting time is used as a new benchmark, 

the wasteful commuting comes down to 48.20 percent at the zonal level. That is to say, using 

reported commuting time implies an overestimation of 17.48 percent wasteful commuting that is 

attributable to people using slower transport modes or getting caught in traffic, which a planning 

scenario of freely swapping house would not help. The 17.48 percent overestimation is termed 

“component 1” in miscalculation. By disaggregating zonal-level commuting patterns to simulated 

individuals, the average optimal commuting time is reduced and leads to a higher percentage of 

wasteful commuting (i.e., climbing back to 62.45 percent from 48.20 percent). That is to say, the 

zonal level approach causes an underestimation of wasteful commuting by 14.25 percent, termed 

“component 2” in miscalculation. 

 

Figure 14. Decomposing wasteful commuting. 
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In summary, the reported commuting time inflates the wasteful commuting measure by 17.48 

percent, and the zonal effect underestimates it by 14.25 percent. The two components bias the 

estimation in opposite directions and offset each other to a large extent. The traditional approach 

adopted in most literature yields 65.68 percent wasteful commuting, very close to 62.45 percent 

obtained in our approach. However, “two wrongs do not make a right.” The debate of wasteful 

commuting should not be about who gets the specific percentage close, rather about the scientific 

soundness in the means by which one reaches that percentage. 

When measured in distance, estimation error caused by component 1 is absent. The zonal level 

analysis generates 53.64 percent wasteful commuting. The simulated individual level analysis 

yields a lower average minimal distance, and thus increases the wasteful commuting to 64.48 

percent, in line with the 62.45 percent wasteful commuting time. 

This study also sheds lights on the choice of time or distance in measuring wasteful commuting. 

Some studies argue that travel time is a more appropriate estimate of travel cost and an important 

determining factor of travel behavior (Buliung and Kanaroglou, 2002; Gordon et al., 1991; Wachs 

et al., 1993). In this study, difference in the results for time and distance is insignificant (when 

estimated time is used). The only complexity is whether to use reported commuting time as a 

benchmark for actual commute. If we define excessive time in using public transit or other slower 

modes and delayed time in congestion as “wasteful”, reported time would be an adequate choice. 

7.4 TEMPORAL TRENDS OF WASTEFUL COMMUTING 

Similar to 2010, we also measure the wasteful commuting for 1990 and 2000. Figure 15 

summarizes the results on wasteful commuting in Baton Rouge 1990-2010. Once again, the 

average commute distance in the study area increased steadily from 1990 to 2000 and again to 

2010; and the average commute time increased from 1990 to 2000 but dropped slightly to 2010. 
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As the concept of wasteful commuting is proposed mainly to assess the potential of commuting 

reduction given the land use pattern of a city, our discussion here focused on the results in terms 

of commute distance.    

The minimum (required) commute was 3.32 miles in 1990, and dropped to 2.62 in 2000 and 

inched up slightly to 2.71 in 2010. It suggested that land uses in Baton Rouge might have changed 

in a way toward more efficiency in terms of commuting need from 1990 to 2000 (e.g., improved 

proximity between jobs and resident workers in general), and stayed largely stable till 2010. 

However, the resident workers did not take advantage of the change, and actually increased their 

trip lengths on average from 7.26 in 1990 to 7.28 in 2000 and then again to 7.42 miles in 2010. 

This led to the rise of wasteful commuting distance from 54.27 percent in 1990 to 63.99 percent 

in 2000, and stayed at 63.48 percent in 2010. Many factors may have contributed to this trend of 

largely increasing wasteful commuting, such as an increasing female labor participation rate (and 

thus more multi-worker households) and a small increase in carpool modal share from 1990 to 

2000 (Table 2). 

 

(a) 
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(b) 

Figure 15. Wasteful commuting in Baton Rouge 1990-2010: (a) distance, (b) time. 

7.5 AN EXTENSION TO WASTEFUL COMMUTING 

The assumption in measuring wasteful commuting is that people could freely exchange their 

homes and jobs in a city. It allows us to specifically focus on the spatial separation between homes 

and jobs (i.e., land use layout) by simply relocating resident workers without altering existing land 

use layout such as building new houses or adding new jobs. However, it becomes increasingly 

difficult to apply this simplistic assumption to current urban systems, where jobs (and residents) 

are more decentralized and social inequalities are more common. For example, it would be unfair 

or impossible to perform a switch between a stockbroker who lives in the suburbs works downtown 

and a domestic worker in the inner city (downtown) works in the suburbs. Beside this extreme 

example there is enough specialization in society that such an assumption of equality of jobs and 

workers can lead to erroneous trip patterns. To make this topic more meaningful, a possible 

extension is to consider more factors beyond land use in the assumption. For instance, we may 

further constrain the relocating process to those resident workers of comparable income. Likewise, 

other factors such as occupation, multiworker household, and vehicle ownership may be taken into 
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account if such data are available so that we can obtain a more practical extent of wasteful 

commuting. 

For illustration, we designed an example to measure wasteful commuting in Baton Rouge in 

2010 by adding a constraint of comparable income in the assumption, given the data availability 

in CTPP (e.g., number of workers/jobs in a wage range in each tract). We first grouped resident 

workers and jobs into different wage strata and then repeated the above process for each wage 

group. For example, Equation (14) defines the tract-level optimal commuting for workers of a 

particular wage group g, where xij
g is the number of commuters who are in wage group g, live in 

tract i and work at jobs of the same wage group g in tract j; cij
g is the corresponding commuting 

time between them; ng is the total number of commuters of wage group g; and refer to Equations 

(7) – (9) for the constraints (note, number of workers Ri is now changed to Ri
g and number of jobs 

Ej to Ej
g). Similarly, Equation (15) formulates the individual-level optimal commuting for workers 

of a specific wage group g, and refer to Equations (11) – (13) for constraints. As formulated in 

Equation (16), the overall optimal commuting for commuters of all wage groups is the weighted 

average of Tr
g of various wage groups, where wg is the number of wage groups defined. 
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The proposed simulation process could be applied here to measure wasteful commuting of 

each wage group at individual level, but its value and accuracy could be compromised without 

adopting additional data. Specifically, without better knowledge, a random distribution in space 
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(e.g., tracts) is reasonable for the overall resident workers, but not necessarily applicable to 

subgroups of workers (e.g., wage groups) given the fact that workers of all wage groups could be 

present in the same census tract. For more accurate and meaningful estimates, one possible way is 

to define the spatial extents of each wage group (e.g., where they live and work) based on other 

data sources such as house price data. Without these auxiliary data in place, instead, our example 

here focused on measures at census tract level. 

Table 11 reports the results for commuting time (distance is not reported). We divided workers 

(and jobs) into the same five groups as in section 6.2. Actual commuting time was measured by 

network travel time, and the aforementioned convex pattern was observed again; it increased from 

the low wage group and peaked at the medium, and then declined towards the high wage group. 

Notably, the low and high wage group workers, on average, had shorter commute time than the 

general workers, while the other three groups commuted longer time than the overall workers. This 

appears consistent with findings shown in Table 9, although the difference in % between below-

average and above-average is not significant in some groups. Optimal commuting was found to be 

stable across wage groups at 6.61 minutes, the same as the general commuters. That is to say, 

existing land use layout in Baton Rouge in 2010 tended to be fair for workers of different wage 

levels, but some groups (e.g., lower-medium, medium, and upper-medium) chose to commute 

longer than what was suggested, and thus incurred wasteful commute. The wasteful commute was 

detected to vary slightly across wage groups as a result of their differentiation in actual commute. 

The weighted average percentage was reported to be 48% for workers of all wage groups, almost 

the same as the result reported in Table 10 where no comparable income assumption is appended. 

The diversity of resident workers/jobs in each census tract might play a role in smoothing the 

variation of wasteful commuting across wage groups and thus did not drive up the weighted 
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average percentage when homogeneous wage level was imposed. In sum, even though similar 

percentages were obtained after adding additional constraint, this line of research still needs more 

investigation—it is not the specific percentage matters, rather the means by which one reaches that 

percentage. 

Table 11. Wasteful commuting breakdowns by wage groups in Baton Rouge in 2010. 

Wage Group 
Actual Commuting 

(min) 

Optimal Commuting 

(min) 

Wasteful 

Commuting 

Low < 15k 12.24 6.6078 0.46 

Lower Medium 15-35k 12.99 6.6077 0.49 

Medium 35-50k 13.33 6.6103 0.50 

Upper Medium 50-75k 13.04 6.6077 0.49 

High > 75k 12.37 6.6070 0.47 

Total  12.76 6.6081 0.48 
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CHAPTER 8. CONCLUSIONS 

This dissertation aims at detecting the temporal trends of intraurban commuting pattern (i.e., 

commuting distance and time) and efficiency (i.e., wasteful commuting) in Baton Rouge, 

Louisiana between 1990 and 2010 and understanding the observed pattern by a spatial factor—

land use and a nonspatial factor—wage rate. Monte Carlo simulation method is proposed in this 

dissertation so as to measure commuting length at the most disaggregate level—the individual 

level—for solving the aggregation error and scale effect, which are commonly encountered in 

existing studies. Major data source employed is the CTPP data (1990, 2000, and 2006-2010) from 

the U.S. Census Bureau, which describes commuting characteristics from three parts: part 1 on 

residential places, part 2 on workplaces, and part 3 on journey-to-work flow. 

This chapter summarizes the major findings from previous analyses as well as the 

contributions, limitations and future steps of this research. As mentioned, the research objectives 

of this dissertation include: 

 designing a simulation-based approach to more accurately measure commuting length so 

as to mitigate the aforementioned issues that have been central to the study of commuting; 

 applying the proposed approach to detecting the intraurban commuting pattern (in both 

distance and time) in Baton Rouge, Louisiana over time (between 1990 and 2010); 

 investigating how a spatial factor—land use—influences the discovered commuting 

pattern; 

 examining the impact of a nonspatial factor—wage rate—on the detected commuting 

pattern; 

 measuring commuting efficiency, i.e., wasteful commuting behavior and its temporal 

trends. 
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Accordingly, Chapter 4 explains the proposed Monte Carlo simulation approach; Chapter 5 

detects the temporal trends of commuting pattern in both distance and time and then investigates 

the relationship between commuting and a spatial factor—land use; Chapter 6, on the other hand, 

examines the impact of a nonspatial factor—wage rate—on shaping the commuting pattern; 

Chapter 7 measures the commuting efficiency—wasteful commuting as well as its change over 

time. Major findings are summarized below. 

Major findings 

First, as suggested by the classic urban economic model, people would commute longer to 

trade for more spacious housing in their residential choices. As income rise and transportation 

infrastructure improves over time, commuting may become increasingly lengthier. This research 

indicates that indeed the mean commuting distance steadily increased over time, and thus workers 

in general moved farther away from their jobs in order to get better housing or maximize their 

earnings. Mean commuting time rose along with mean commuting distance during 1990-2000, but 

went the opposite direction by dipping slightly during 2000-2010. The gap between the two in 

2000-2010 was attributable to a rising modal share of drove-alone (particularly in the low-wage 

group) that was faster. 

Second, in urban studies, there has been a long tradition of attempts to explain intraurban 

variability of commuting by land use patterns. It is fair to say that results from existing studies 

(most on large cities) have been less than overwhelmingly convincing. This research reports that 

the mean commuting distance variations can be well explained by distance from the CBD, job-

housing balance ratio, and even more than 90 percent by the job proximity index. The models on 

mean commuting time also show improvement over existing studies. This result contradicts the 

finding of Giuliano and Small (1993) that urban land use had little impact on commuting, as they 
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used a zonal required commuting that could not necessarily correlate well with the actual 

commuting in their model. The better results may be attributable to improved measure of commute 

distance and a moderate city size in this study. This finding lends support to the effectiveness of 

planning policies that are aimed at trip reduction by improving jobs–housing balance and job 

proximity. 

Third, the aforementioned tradeoff behavior between commuting and housing played out 

differently in housing choices among households from various wage groups. The analysis of 

commuting variability across neighborhoods with different mean wage rates demonstrates that 

workers in areas with higher mean wage rates initially tended to commute further (in distance), 

but the trend was reversed toward less commuting in areas with the highest wage rates. The convex 

shape pattern is used to characterize neighborhoods in terms of the response of mean commuting 

distance to rising mean wage rate. The pattern of mean commute time was hardly consistent over 

time due to the variability of mode distributions across tracts of various mean wage rates. Given 

that a tract’s mean wage rate cannot fully represent its real wage distribution pattern where workers 

of various wage rates reside, in addition, we examined the commuting patterns vs. distribution of 

wage groups across tracts as an analysis complementary to the above one. This analysis found no 

clear convex shape pattern in terms of both commute distance and time in 1990-2010; however, it 

highlighted the lowest-wage workers with shorter commute distance than the general workers 

(with statistical significance) as well as the highest-wage workers with less commute time (with 

statistical significance). The economic commute distance in the lowest-wage workers are found to 

be largely associated with their poor transport mobility, while highest-wage workers are the groups 

who truly enjoy the efficient commute time. This finding may help target policy-makers on specific 

socio-demographic groups to improve the efficiency of planning and policies. 
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Finally, this research identifies two contributors resulting in the miscalculation of wasteful 

commuting, which captures the potential for a city to reduce its overall commuting given its spatial 

arrangement of homes and jobs. Specifically, studies usually rely on survey data such as the CTPP 

to define actual commute time, and measure the optimal commute at an aggregate zonal level by 

linear programming (LP). This research argues that reported commute time by respondents tends 

to overestimate actual commute length as it includes reporting errors, travel time by slower 

transportation modes (e.g., public transits, bicycling, walking and others) and delayed time due to 

congestion. The zonal level analysis of optimal commute also suffers from the scale effect. Both 

contribute to bias in the measurement of wasteful commuting. This research proposes to measure 

wasteful commuting at the most disaggregate level by simulating trip ends, i.e., individual resident 

workers (O) and individual jobs (D) within zones (e.g., census tracts), in order to mitigate the zonal 

effect. It also computes estimated commute distance and time for actual journey-to-work trips as 

a new benchmark for existing commuting. In addition, the new formulation of integer 

programming also has good potential for wider adoption in modeling the optimal commuting 

pattern of individual trip makers. The resulting estimates of wasteful commuting are largely 

consistent between measures in time and distance. A temporal analysis on wasteful commuting 

changing pattern in this study indicates that Baton Rouge in its entirety experienced an increase of 

wasteful commuting from 1990 to 2000 in both commute distance and time, and stayed at about 

the same levels toward 2010. This indicates that the land use configuration changed in such a way 

that jobs were collectively moved closer to residences and thus became better balanced from 1990 

to 2000, but the resident workers did not take advantage of that and incurred more wasteful 

commuting. The trend of rising wasteful commuting was largely halted between 2000 and 2010. 

The economic downturn beginning in 2008 might be one reason underlying the new trend (Horner 
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and Schleith, 2012). The low temporal resolution data (i.e., five-year pooled 2006-2010 CTPP) 

prevent us from validating this speculation. 

On the methodological front, this research proposes a Monte Carlo simulation-based approach 

for improved modeling of commuting patterns. Granted, a more disaggregated data (e.g., block 

level) would incur minor aggregation error, but such detailed data in terms of both spatial and 

temporal resolution are not always available in commuting studies. Given the more widely 

available zonal-level commuting data (e.g., CTPP in the United States), the proposed approach 

mitigates the zonal effect and permits a more accurate estimate of commute length and 

subsequently a more reliable measure of wasteful commuting. 

Contributions 

The value of this research can be identified in two following aspects—methodological 

improvements and substantive findings. 

Methodological improvements 

 This research proposes a Monte Carlo simulation method to measure commuting length 

more accurately by first simulating individual resident workers and jobs that are consistent 

with their spatial distributions across the areal unit (e.g., census tract), respectively, and 

then simulating individual trips that are proportional to the existing area-based journey-to-

work trip flows. It is a significant improvement over the zonal-level centroid-to-centroid 

approach, and can mitigate the aforementioned aggregation error and scale effect. 

 Wasteful commuting, specifically the optimal commuting, is now reformulated as an 

integer programming approach targeted on individual trip makers rather than the traditional 

linear programming approach on the collective behaviors and patterns from the overall 
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commuters. 

Substantive findings 

 This research recognizes that reporting errors from survey data and use of aggregated zonal 

data are two sources of bias in estimation of wasteful commuting that may cancel each 

other and thus conceal the problem. Specifically, the former tended to overstate the actual 

commuting length and led to overestimate wasteful commuting; and the latter (especially 

the use of large areal unit) gave rise to overestimated optimal commuting length and led to 

underestimate wasteful commuting. 

 A relatively impressive explaining power by land use pattern (e.g., more than 90 percent 

by the job proximity index) is found in a medium-size city like Baton Rouge. 

 This research reports the temporal trend of intraurban commuting pattern including the 

most recent period that is benefited from the newly-available 2006-2010 CTPP data. 

Limitations and future work 

A major concern to this study refers to the ecological nature of the aggregated data. For 

example, the analysis in Chapter 6 investigates the relationship between commuting and wage rate; 

the above findings, however, are only suggestive but not necessarily applicable to individuals due 

to the limited aggregated data on wage (or income). More detailed individual data such as on wage 

or even other socioeconomic attributes could be employed in this research to help better understand 

commuting. This is especially feasible in the era of big data, data sources gathered from other 

human activities such as mobile phone call and social network may be adopted. 

Second, this study does not consider neighboring parishes and hence the results might be 

limited. A future research could expand the study area by incorporating neighboring parishes to 
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see whether there are more pronounced changes in the metropolitan area and use high temporal 

resolution data to examine the impact of major external factors (e.g., significant fluctuation in gas 

price) on commuting. Also, more transportation modes such as public transit, bicycle, and walking 

could be incorporated to fully capture the urban mobility for all groups as not every socio-

demographic group relies on auto for daily commute. 

Furthermore, this study follows the line of existing research to measure wasteful commuting 

based on a simple assumption of equality of jobs and workers. As discussed previously, a future 

step could further relax this assumption by considering more constraints such as income, 

occupation, and household characteristics to make this topic more meaningful and practical. 

As mentioned in the very beginning of this dissertation, understanding the temporal change of 

commuting and its underlying causes is a step toward the larger goals of traffic congestion 

mitigation and carbon emission control. A future step could concentrate more on planning and 

policy issues such as what policies may work well in reducing commuting or all-purpose trips in 

general. For example, we may simulate some plausible policy scenarios like flexible work 

schedules and telecommuting to see the impacts on trip reduction and ultimately on environment 

issues such as air pollution and global change.
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