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Abstract 

The Cancer Centers designated by the National Cancer Institute (NCI) form the 

“backbone” of the cancer care system in the United States. Awarded via a peer-review 

process and being re-evaluated every 3 to 5 years, an NCI Cancer Center receives 

substantial financial support from NCI grants. When the quality standard is not 

compromised, we argue that an additional criterion for improving and promoting equal 

accessibility should be factored into the designation and planning process of NCI Cancer 

Centers. With the help of regression and dummy variables, this research evaluates 

geographic disparities in spatial accessibility of the NCI Cancer Centers across 

geographic area, divisions and urbanicity. It also evaluates demographic disparities across 

ethnic and poverty groups. Then this research examines two planning objectives to 

minimize the inequalities in accessibility. One is to minimize the geographic inequality 

while the other is to minimize the racial disparities. Two types of optimization scenarios 

are considered in this exploratory research for the objective of minimizing inequality of 

spatial accessibility. One is to allocate additional resources to existing NCI Cancer 

Centers, and the other is to designate new centers from the most likely candidates (e.g., 

existing academic medical centers or AMCs). Quadratic Programming (QP) and Particle 

Swarm Optimization (PSO) are used to solve different optimization problems. Several 

scenarios are used to illustrate the impact of optimization on reducing geographic and 

demographic disparities. Results from the study may inform the public policy decision 

making process in planning of the NCI Cancer Centers towards equal accessibility.   
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Chapter 1 Introduction 

Equality in health care is widely considered as an important goal of public policy. 

Among a diverse set of principles of equity, equal access to health care (for those in equal 

need) is considered the most appropriate principle for health care policy makers to pursue. 

Inequality in health care access comes at a personal and societal price, evidenced in 

disparities in various health outcomes. Outcomes include differential rates in infant 

mortality and birth weight, in vaccination, in complications from preventive and common 

diseases, in late-stage cancer diagnosis, in quality patient care and survival, among others.  

The United States has one of the highest age-standardized rates for all cancers 

(excluding non-melanoma skin cancer) for men and women in the world (World Health 

Organization, 2014). Over 340 men and 290 women for every 100,000 people suffer from 

cancer. This makes cancer a leading cause of death in the United States, second only to 

heart disease (Jamal et al., 2010). The spatial access to cancer care heavily influences 

patients’ usage of the cancer care services and the outcomes (Onega, 2008). The spatial 

distribution of cancer care services is not uniform, and calls for effective planning and 

allocation to match demands. Policies and strategies are needed to reduce inequality in 

cancer care accessibility so that the gaps in accessibility can be reduced. 

The National Cancer Institute (NCI) in the U.S. has designated dozens of Cancer 

Centers, hereafter referred to as the NCI Cancer Centers (or simply NCI-CCs). These 

cancer centers are considered the backbone of the U. S. cancer care system because of their 

“scientific excellence and the capability to integrate a diversity of research approaches to 

focus on the problem of cancer” (National Cancer Institute, 2013). The NCI has built the 

NCI Thesaurus, which provides an up-to-date and comprehensive science-based cancer 
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terminology (Angela, 2010) and reflects current best practice (Coronado, 2004; Jennifer, 

2006). The study of NCI-CCs is selected to demonstrate how analytical spatial analysis of 

accessibility can improve our understanding of disparity in health care service allocation 

and possible strategies to mitigate it. 

Accessibility may be related to spatial and nonspatial factors. Spatial access 

emphasizes the importance of spatial separation between supply and demand as a barrier 

or a facilitator, whereas the aspatial access is related to many demographic and 

socioeconomic variables that characterize various demographic groups. Given our primary 

interest in geographic issues, this study will emphasize spatial accessibility. However, the 

study will also analyze how some asptial factors interact with spatial accessibility. For 

example, residents somewhere may suffer from poor access because (1) they are far from 

any NCI Cancer Centers, or (2) they are composed of disproportionally higher ratios of 

disadvantaged population groups (e.g., low-income and minority residents) that lack 

economic or transportation means to gain the access. The former leads to spatial 

(geographic) disparity, and the latter leads to aspatial disparity.  

Awarded via a grant using a peer-review process every three to five years, the 

current designation criterion for a NCI Cancer Center focuses on quality of research and 

care in cancer prevention, diagnosis, and treatment. When the quality standard is not 

compromised, we argue that an additional criterion for improving and promoting equal 

accessibility should be factored into the designation and planning process of NCI Cancer 

Centers. The goal of this research is to build the methodological foundation for identifying 

scientific formulation of feasible policy scenarios that reduce disparities in accessibility of 

NCI Cancer Centers. Both spatial and aspatial disparities will be examined, and 
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corresponding planning problems for minimizing the disparities will be formulated and 

solved. 

Specifically, this dissertation has four research tasks: 

(1) It quantifies how the spatial accessibility of NCI Cancer Centers varies 

across geographic areas (i.e., counties and census tracts) in the U.S.  

(2) It examines which demographic groups (e.g., racial-ethnic groups) suffer 

from poorer access and whether such a (racial) disparity is statistically significant.  

(3) It formulates and solves the problem of minimizing geographic disparity in 

spatial accessibility of NCI Caner Centers under various plausible policy scenarios (e.g., 

allocation a fixed amount of financial resource or designation a given number of new 

Centers). 

(4) It formulates and solves the problem of minimizing aspatial disparity given 

similar policy scenarios. 

Tasks 1 and 2 measure the geographic and racial disparities, respectively; and Tasks 

3 and 4 seek optimization that reduces the corresponding disparities. Each task forms a 

major chapter (Chapters 4-7) after the literature review (Chapter 2) and discussion of the 

data preparation (Chapter 3). The dissertation concludes with a summary and an outlook 

for future work (Chapter 9). 

The dissertation belongs to a large body of literature in location-allocation analysis. 

As detailed in Chapter 2, one major difference of our work from the existing literature is 

the perspective of formulating equality in terms of equal accessibility. It builds upon the 

advancement of GIS-based spatial accessibility measures (e.g., Luo and Wang, 2003) and 
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another more recent advancement in location-allocation analysis by proposing a new 

optimization objective of minimal disparity in accessibility (e.g., Wang and Tang, 2013).  

With its focus on methodological issues, the contributions of this study can be 

outlined in three aspects: 

(1) It is the first attempt to formulate the optimization problem of minimal 

racial disparity (or in general, minimal disparity across demographic groups) as the existing 

work is limited to the problem of minimal geographic disparity. 

(2) It formulates an alternative measure of minimal disparity (i.e., minimum of 

maximum absolute error or MINIMAX) in addition to the existing work that minimizes 

the sum of the absolute deviations (MAD). 

(3) It experiments with various algorithms in solving the optimization problems 

such as Particle Swarm Optimization (PSO) in addition to what has been used in the 

existing work (i.e., quadratic programming and integer programming), and recommends 

the best practice based on their performances and other criteria. 
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Chapter 2 Literature Review 

Given the methodological focus of this study, the literature on methods of 

measuring accessibility and optimization techniques related to location-allocation 

analysis is then reviewed in great details in two separate sections. Between the two major 

sections, the middle section provides a brief survey of research on the substantive issue, 

i.e., accessibility of NCI Cancer Centers.  

2.1 Measures of Spatial Accessibility 

Accessibility refers to the relative ease by which an activity, here health care, can 

be reached from a given location (Kwan, 1998, 1999). Spatial accessibility emphasizes 

how easily residents (demand) at a location can overcome the spatial separation to obtain 

the service (supply) elsewhere.  

As noted by Geurs and van Wee (Geurs, 2004), accessibility is “the extent to which 

land-use and transport systems enable individuals to reach activities or destinations by 

means of transport mode.” Early measures of spatial accessibility emphasize the proximity 

to supply locations in terms of distance or time. For instance, one may use minimum travel 

time to the closest cancer care facility to measure accessibility to cancer care service. More 

generally, accessibility can be measured as travel cost including both travel time and 

waiting time (Shavandi, 2006). When accounting for the contribution of other service 

locations beyond the nearest one to the overall accessibility at a demand location, Hansen 

(1959) used a simple gravity-based potential model to define accessibility as the ease of 

reaching desirable destinations. In other words, the accessibility is the sum of all 

surrounding supply capacities, each of which is discounted by its distance (time) from the 

demand. Hansen’s work showed one of the first efforts by the policy planners to consider 
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the effects of the capacity of a supply and its proximity as well as the benefit of availability 

of multiple supplies.  

The above definitions do not consider that resources such as health care are scarce, 

and an adequate measure of accessibility also needs to account for the competition for 

services by the amount of demand involved. A simple method along this line of work 

measures spatial accessibility by the supply-demand match ratio in an area (usually an 

administrative unit such as township or county). For example, the DHHS (2008:11236) 

uses a minimum population-to-physician ratio of 3000:1 within a “rational service area” as 

a basic indicator for defining Health Professional Shortage Areas (HPSAs). However, this 

neither reveals the detailed spatial variations within an area unit (e.g., a county or a sub-

county area), nor accounts for interaction between population and physicians across areas. 

The gravity-based accessibility index, proposed originally by Weibull (1976), is a 

significant improvement over the classic Hansen (1959) model and considers the 

competition for supply by demand. The model is written as: 

 where .    (1) 

In equation (1),  is the accessibility at demand location i, Sj is the capacity of supply at 

location j, Dk is the demand (e.g., population) at location k, dij (dkj) is the distance or travel 

time between i (k) and j,  is the travel friction coefficient, and n and m are the total numbers 

of supply and demand locations, respectively. The contribution of the supply at each 

location j is first discounted by the rule of distance decay, further discounted by the 

crowdedness of all its surrounding population (at locations k) captured by the potential V, 

,
1


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n

j j
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and finally aggregated over all supply locations j. A larger  indicates better accessibility 

to services at the demand location . 

The popular two-step floating catchment area (2SFCA) method was developed by 

Luo and Wang (2003) to measure spatial accessibility to primary care physicians.  In 

essence, the 2SFCA method measures spatial accessibility as a ratio of supply to demand 

(e.g., population), implemented by two steps: 

(1) It first assesses “service provider’s availability” at the provider’s location 

as the ratio of its supply capacity to its surrounding demand (e.g., within a threshold 

distance or travel time from the provider). 

(2) It sums up the availability of providers (derived in the first step) around 

each demand location (i.e., within the same threshold distance or travel time) to yield the 

accessibility value. 

Other models have been proposed to improve the 2SFCA by assuming different 

distance decay behaviors, and most studies are from health care studies (e.g., Guagliardo 

2004; Dai, 2010; Shi et al. 2012). A common fundamental assumption underlines these 

models: the number of nearby facilities (and their capacities) and distance to a facility can 

compensate each other. In other words, availability and accessibility are mutually 

compensating. The revelation of the inherent relationships between the methods under 

different names leads to the understanding that their differences are technical rather than 

conceptual. 

After all, Wang (2012) reviewed many existing accessibility methods that count for 

interactions between supply and demand located in different areas, and synthesized them 

into a generic model such as: 

iA

i
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                                                 (2) 

where Dk is the estimated number of patients (demand) at location (census tract) k, 

Sj is the capacity of supply (e.g., number of hospital beds) at location (cancer center) j, d is 

the travel time between them, and n and m are the total numbers of hospital locations and 

population locations, respectively.  

The above model is termed generalized 2SFCA (G2SFCA) method. As the model 

shows, the main difference of various accessibility models is the function  that 

captures the distance decay effect. For example, in the gravity-based accessibility model 

in Equation (1), the function  is a gravity kernel (i.e., a power function of distance). 

In addition to spatial accessibility, health care access is also influenced by 

nonspatial factors that include demographic (e.g., seniors, children, women of child-

bearing ages), socioeconomic status (e.g., poverty, female-headed households, home 

ownership and median income), housing conditions (e.g., crowdedness, basic amenities), 

linguistic barriers and education, etc. For example, disadvantaged population groups (e.g., 

low-income and minority residents) often suffer from poor access to certain activities or 

opportunities because of their lack of economic or transportation means that limit their 

residential choice. Given the focus of our research on spatial access, our interest in 

nonspatial factors is on how these variables interact with spatial accessibility. In addition, 

for lack of available socio-demographic variables at the individual level, our data on 

nonspatial factors are extracted from the Census and thus ecological in nature. In other 

words, nonspatial factors such as racial-ethnic groups and poverty status are aggregated 

data in area units such as county and census tracts, etc.  

 
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2.2 Spatial Access to NCI Cancer Centers 

Cancer is a leading cause of death in the United States, only second to heart disease 

(Centers for Disease Control and Prevention, 2010). Spatial access to cancer care can be 

particularly important to patients’ utilization of the services (Onega et al., 2008), and thus 

the outcomes. Research suggests that longer travel time to cancer care services increases 

risk of advanced cancer (e.g., Gumpertz et al., 2006), reduces utilization of certain therapy 

(e.g., Celaya et al., 2006), and limits enrollment in clinical trials (e.g., Avis et al., 2006).  

The Cancer Centers designated by the National Cancer Institute (NCI) in the U.S. 

(hereafter referred to as “NCI Cancer Centers” or NCI-CCs) have demonstrated “scientific 

excellence and the capability to integrate a diversity of research approaches to focus on the 

problem of cancer” (National Cancer Institute, 2013). The NCI-CCs are not the only cancer 

care providers in the U.S. Other specialized cancer care facilities also include (1) the NCI-

CC satellite facilities, (2) the Community Clinical Oncology Programs (CCOPs), and (3) 

academic medical centers (AMCs) in the Council of Teaching Hospitals and Health 

Systems (COTH). Nevertheless, the NCI-CCs represent perhaps the cancer care of the 

highest quality. There are currently a total of 66 NCI Cancer Centers. Patients cared for by 

the NCI Cancer Centers have much lower mortality rates (Onega et al., 2009) and higher 

five-year cancer-free rates in multiple types of cancer (Jemal et al., 2008; Landis et al., 

1999). 

A recent study by Shi et al. (2012) reports that there is a great deal of variability in 

spatial accessibility of the NCI Cancer Centers and other academic medical centers 

(AMCs), and much demand for quality cancer care is left unfulfilled. Uneven distributions 

of cancer care facilities and population lead to geographic disparity in accessibility, 
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exemplified by presence of ample service in some areas and absence or paucity of service 

in others. Furthermore, disproportionally higher numbers of racial and ethnic minorities 

often suffer from poor access to health care including cancer care (National Cancer Institute, 

2008), commonly referred to as racial disparity. Both geographic and racial disparities 

contribute to deep gaps in access to care and health outcomes in the U.S. 

Given the important role of NCI Cancer Centers as the “backbone” of the cancer 

care system in the U.S., it is important to further examine the disparities of spatial 

accessibility of NCI Cancer Centers across geographic areas and socio-demographic 

groups and to explore possible policy options to mitigate the problems. 

2.3 Optimization Methods in Health Care Studies  

On the methodological front, there is a rich collection of models in the study of 

planning for health care facilities, but most follow the line of classic location–allocation 

problems (Church 1999).  

The first classic optimization problem is the classic location-allocation (or location 

modeling) problems (e.g., Church, 1999). The p median problem from Church’s paper 

seeks to locate a given number of facilities among a set of candidate sites so that the total 

travel distance or time between demands and supply facilities is minimized. The location 

set covering problem (LSCP) minimizes the number of facilities needed to cover all 

demand within a critical distance or time. See Shavandi and Mahlooji (2008) for an 

application of LSCP in allocating health care facilities at different levels in Iran. 

The maximum covering location problem (MCLP) maximizes the demand covered within 

a desired distance or time threshold by locating p facilities. For example, Pacheco and 

Casado (2005) used it in allocating health care resources in Burgos, Spain.  
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The above models emphasize various objectives such as minimal travel, minimal 

resource, maximal coverage or a combination of them (i.e., multi-objective). Some recent 

work considered spatial accessibility. For example, Perry and Gesler (2000) used a target 

ratio of health personnel versus population and a maximum travel distance as criteria to 

adjust health personnel distribution to improve overall access. Gu et al. (2010) used a bi-

objective model to identify optimal locations for health care facilities that maximize total 

coverage of population as well as their total accessibility. 

However, none of these studies has equity as an objective. The value of equity is a 

matter of ethical obligation and needs to be recognized as rights to medical care (Fried, 

1975). Equity in health and health care may be defined as equal access to health care, equal 

utilization of health care service or equal (equitable) health outcomes among others (e.g., 

Culyer and Wagstaff, 1993). Most agree that equal access is the most appropriate principle 

of equity from a public health policy perspective (Oliver and Mossialos, 2004: 656).  

Most recently, Wang and Tang (2013) formulate the issue of equity in health care 

delivery as equal accessibility of health care services, and specifically proposes a new 

objective of minimizing inequality in accessibility of public services. More specifically, 

the objective is to minimize the variance (i.e., least squares) of accessibility index across 

all population locations by redistributing the total amount of supply among health care 

facilities. Tao et al. (2014) used a similar approach in planning residential care facility 

locations in Beijing, China, in order to achieve the maximum equality of accessibility for 

senior residents. 
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This research further advances this line of work on solving the planning problem 

of maximal equality in accessibility and applies the method to planning NCI Cancer 

Centers.  
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Chapter 3 Study Area and Data Preparation 

The study area is the contiguous 48 states in the U.S. (excluding Hawaii and 

Alaska). In Hawaii or Alaska, the accessibility issue is confined within the state and thus 

more straightforward to address. The accessibility measures of the 48 contiguous states 

need to count for complex interaction between supply and demand across state borders, 

and thus can benefit more from the advanced methods to be discussed in the study. 

Three variables are needed in defining spatial accessibility to cancer care: supply, 

demand and the geographic relationship between them. In this study, the supply is the NCI 

Cancer Centers and their corresponding capacities (e.g., numbers of beds), the demand for 

cancer care is potential cancer patients across geographic areas (e.g., counties or census 

tracts) in the U.S., and the link is travel time between them.  

  On the supply side, besides the NCI Cancer Centers, comprehensive hospitals are 

the second tier of cancer care facilities in the U.S. Most such hospitals are academic 

medical centers (AMCs), which are either independent or integrated with medical schools, 

and are members of the Council of Teaching Hospitals and Health Systems (COTH). The 

AMCs also provide high quality research and cancer care (Onega et al., 2008), and in fact, 

there is also considerable overlap between the NCI Cancer Centers and the AMCs. The 

243 AMCs that are currently not NCI Cancer Centers thus may be the best candidates for 

the future designation. This study considers the 58 NCI Cancer Centers that currently 

provide care to patients in the contiguous 48 states as existing NCI Cancer Centers, and the 

243 AMCs (currently not NCI Cancer Centers) as possible candidates for future 

designations. The combined data set of the 301 hospitals, including their geographic 

locations and existing beds counts, is shown in Figure 1. Data of the NCI Cancer Centers 
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are available from the NCI website (NCI, 2013). Data of the number of staffed hospital 

beds were extracted from the American Hospital Directory 

(http://www.ahd.com/state_statistics.html) and websites of individual hospitals.  

 

Figure 1 NCI Cancer Centers and other AMCs in the contiguous U.S.  

 As shown in Figure 1, most of the NCI Cancer Centers (NCI-CCs) are in the east 

part of the country, and there is a cluster of NCI Cancer Centers in the New England Area. 

A few centers are in west and the Great Plains expect for the clusters around San Francisco 

and Los Angeles in California. There are three centers in the three largest cities in Texas 

(Houston, Dallas and San Antonio). The sizes of these centers vary a great deal. Among 

the 58 NCI Cancer Centers, the smallest one is the USC Norris Comprehensive Cancer 

http://www.ahd.com/state_statistics.html


15 

 

Center in Los Angeles with 26 staffed beds, and the largest one is the Albert Einstein 

Cancer Center at the Montefiore Medical Center in New York with 1409 staffed beds.  

 On the demand side, we will use the analysis units of both county and census tract 

to examine the presence of possible modifiable areal unit problem (MAUP). For the 

purpose of illustrating the methodology, the number of cancer patients was estimated using 

the 2010 Census data (http://www.census.gov/) and the nationwide standardized cancer 

prevalence rates by age, sex, and race and ethnicity. The number of potential patients in 

each demographic group in a census tract was calculated by multiplying the population in 

that category by the corresponding cancer rate. The total estimate was the sum of patients 

from all categories (Shi et al., 2012). To more accurately represent the location of each 

county, we calculated population-weighted centroid for each county based on the 2010 

census tract data. Similarly, we used population-weighted centroid for each census tract 

based on the 2010 census block data. We are aware of the spatial and temporal variability 

of cancer rates. More accurate estimate of cancer care demand will require the cancer 

prevalence data by age, sex, and race and ethnicity at sharper geographic resolutions from 

the North American Association of Central Cancer Registries (NAACCR) 

(www.naaccr.org) data and SEER*Stat (http://seer.cancer.gov/seerstat/). Future research 

will provide refined and more in-depth analysis of the issue.  

 According to the 2010 Census data, the study area contains 3,138 counties, 22 of 

which have zero population and thus not included in the analysis. The remaining 3,109 

counties represent the demand side at the county level (as shown in Figure 2). There are 

72,238 census tracts in the contiguous U.S., 210 of which have no population. The 72,028 

file:///C:/Users/cfu2/Desktop/fd/dissertation%20(Autosaved).docx
http://seer.cancer.gov/seerstat/
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census tracts with non-zero population form the demand side at the census tract level 

(Figure 3).  

 

Figure 2 Population at the county level in the contiguous U.S. 

The travel time between each county (census tract) centroid and each hospital was 

computed using the ArcGIS Network Analyst module. The road network data for this task 

were extracted from the 2012 ESRI StreetMap USA data that came with the ArcGIS 10.1 

release. We considered all the streets and major roads, including interstate, the U.S. and 

state highways, due to the computational limitation of both software and hardware. The 

estimation of travel time assumes that travelers take the shortest path and follow the speed 

limit posted on each road section. This approach is adequate for capturing the travel 

impedance between patients and hospitals at the national scale for planning and public 

policy analysis.  In addition, it assumes that patients seeking the specialized cancer care in 
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NCI-CCs travel by private vehicles. Conceivably, people may also choose other 

transportation modes such as by air or railway. The former incurs considerably high 

financial cost and the latter is very limited in the U.S., and neither is considered by this 

study. In preparing for the computation of travel time, building the road network dataset 

took over 14 hours on a HP Pavilion dv7 laptop (2.00GHz CPU and 6.00GB memory). 

After that, the computation time for estimating the travel time matrix between 3,109 county 

centroids and combined 301 hospitals was negligible. However, the computation for the 

travel time matrix between 72,043 census tract centroids and 301 hospitals took about 26 

hours on the same computer. 

 

Figure 3 Population at the census tract level in the contiguous U.S. 
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Chapter 4 Measuring Spatial Accessibility and Its Geographic Disparity 

4.1 The Multiple Floating Catchment Areas Method 

Based on the literature review in Chapter 2, the most recent advancement in 

methods that count for complex interactions between supply and demand located in 

different areas is synthesized into the generalized 2SFCA method. The method is 

summarized in Equation (2) in Chapter 2, and rewritten here for convenience: 

 

where Ai is the accessibility to NCI Cancer Centers at county or census tract i; Sj is the 

number of staffed beds representing the capacity of NCI Cancer Centers at a cancer center 

location (supply)  j; Dk is the estimated number of patients at county or census tract 

(demand) k; d is the travel time between them; and n and m are the total numbers of supply 

locations and demand locations, respectively.  

The derived accessibility value is basically the ratio of supply capacity (i.e., number 

of beds) to demand (i.e., number of patients), i.e., number of beds per potential patient. 

Therefore, a higher Ai value indicates better accessibility. In fact, it is proven that the 

weighted average accessibility score across the whole study area is the ratio of total supply 

to total demand (Shen, 1998; Wang, 2006). 

One challenge in implementing the above method is to define the distance (here 

measured in travel time) decay function f(d). This research adopts a decay schema with six 

discrete values based on a Gaussian function. Such a strategy is similar to the 6-ring 

catchment area method suggested by Shi (2012), which also examined the accessibility of 

specialized cancer care in the U.S. that included all academic medical centers (AMCs). 

However, Shi (2012) used a different model in measuring accessibility to fit his purpose. 
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The similarity between our methods lies in the way of conceptualizing the distance decay 

behavior in visiting specialized cancer care hospitals.  

More specifically, the interaction between a patient and a hospital declines with 

travel time, and the declining pattern is designed according to several discrete values 

(weights). In this case, we choose six values corresponding to six 30-minute increments 

(rings) of travel time. The innermost ring defines the area in which travel to the facility 

takes 0 to 30 minutes, the second ring defines the area between 30 and 60 minutes, … and 

the outermost ring defines the area taking 150 to 180 minutes. The six discrete values for 

 are calculated using a Gaussian function: 

 = (x = 1, 2 … 6) 

where  is the weight for ring x (= 1, 2, ... 6 from inner to outer) and e is the natural 

base (2.71828 ...). The corresponding weights are summarized in Table 1. The three-hour 

cap for travel time is almost the limit for a patient to travel to a hospital (one way), obtain 

some service and return home in a single day. For areas beyond the sixth ring, the weight 

is arbitrarily set as 0.015. The six rings are considered six service-to-patient catchment 

areas, and therefore the accessibility measure can be termed the Multiple Floating 

Catchment Areas Method.   

The chosen Gaussian function resembles a bell-shaped curve, widely believed to 

capture the spatial behavior of hospital visits (Shi, 2012). Nevertheless, it is a choice that 

ideally should be made by analyzing the actual hospital visitation data, as attempted by 

Delamater et al. (2013). See Páez et al. (2012) for more discussion on the selection of 

distance decay functions and related parameters. Our future work will resolve this issue. 
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Table 1 Table for converting travel time to weight using a Gaussian function (Shi, 2012) 

Travel time (minutes): dij Declining weight: f(dij) 

0-30 1.00 

30-60 0.91 

60-90 0.69 

90-120 0.43 

120-150 0.22 

150-180 0.10 

> 180 0.015 

 

4.2 Spatial Accessibility across Counties and Census Tracts  

 Applying the Multiple Floating Catchment Areas Method to estimated patients at 

the county level yields the spatial accessibility of NCI-CCs at the county level. As stated 

previously, the accessibility scores may be interpreted as numbers of NCI-CC hospital 

beds per potential patient, and thus very small numbers. The values are thus multiplied by 

100,000 to indicate the numbers of beds per 100,000 patients. The results are shown in 

Figure 4. 

 Figure 4 shows that the accessibility generally exhibits a concentric decline from 

each NCI-CC often in a large city. Much of the country such as the massive Great Plains, 

the west edge of Midwest, west of Texas and much of the Deep South along the Gulf of 

Mexico, have the lowest accessibility scores since they are not covered by any NCI-CCs 

within the 3-hour travel time limit. In areas where the NCI-CCs are close to each other 

such as the long stretch from Massachusetts to Maryland, patients may reach two or more 

centers within 3 hours and enjoy better accessibility. 
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Figure 4 Accessibility of NCI Cancer Centers at the County Level 

To further highlight the geographic pattern of spatial accessibility, we aggregated 

the accessibility scores to the nine census divisions. Denoting the population in a 

county i as Pi and its accessibility as Ai, the population-weighted accessibility in a census 

division is defined as: 

 

The result is shown in Figure 5. Census divisions are groupings of states and the 

District of Columbia, and each is identified by a single-digit census code.  Puerto Rico and 

the Island Areas are not part of any census division. One may also aggregate the result to 

even larger areas such as the four census regions—Northeast, Midwest, South, and West. 

The resolution is too coarse at the census region level, and the result is not discussed here.   
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Figure 5 Accessibility of NCI Cancer Centers across Census Divisions 

 Figure 5 shows that the Middle Atlantic Region enjoys the highest accessibility 

overall, followed by its western and southern neighbors, i.e., the East North Central Region 

and South Atlantic Region. These three regions are known for relative higher population 

densities and more urbanized. On the other end, the Mountain Region with the lowest 

population density suffers from the poorest accessibility. The New England Region, though 

well developed, remains less urbanized and has the second lowest accessibility. The West 

South Central Region, composed of Arkansas, Louisiana, Oklahoma, and Texas, also has 

relatively low accessibility. The other three regions (Pacific, West North Central and West 

South Central) have medium accessibility scores. The next section will examine the 

variability of accessibility by urbanicity levels in depth. 
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 Similarly, when the estimated patients at the census tract level are used to define 

the demand side, the spatial accessibility of NCI-CCs is derived at the census tract level, 

as shown in Figure 6. The general pattern in Figure 6 is consistent with that in Figure 4, 

but at a finer resolution. 

Figure 6. Accessibility of NCI Cancer Centers at the Census Tract Level 

4.3 Spatial Accessibility by Levels of Urbanicity  

Findings from the previous section suggest that the variability of spatial 

accessibility of NCI-CCs be related to urbanicity levels. This section explicitly examines 

this likely association. 

For urbanicity, we first use the 2013 NCHS Urban–Rural Classification Scheme 

for Counties prepared by the National Center for Health Statistics (NCHS, 2006). There 

are six urban–rural categories such as large central metro, large fringe metro, medium 
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metro, small metro, micropolitan and noncore (Figure 7). This definition of urbanicity is 

used for the county-level analysis.  

 

Figure 7 NCHS definition of urbanicity at the county level 

Since the NCHS is based on the county unit, we use a different definition to 

capture the urbanicity at the census tract. For the analysis at the census tract level, this 

research uses the 2010 Census Urban and Rural Classification (U.S. Census Bureau, 

2015). The Census Bureau defines an urban area on census tracts and/or census blocks 

that meet minimum population density requirements. Urbanized areas (UAs) (50,000 or 

more people) and urban clusters (UCs) (at least 2,500 and less than 50,000 people) are 

two types of urban areas (Figure 8). A tract is classified as (1) Urbanized Area, (2) Urban 

Cluster or (3) rural if its centroid falls within an Urbanized Area, Urban Cluster or rural 

area, respectively.  
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Figure 8 Census Bureau definition of urbanicity 

Table 2 presents the average values of accessibility in various urban-rural 

categories. The average accessibility at the county level declines with urbanicity level from 

large central metro counties to large fringe metro counties, …and to noncore (rural) 

counties (also shown in Figure 9a). At the census tract level, clearly the average 

accessibility values are the highest in Urbanized Areas; however, its values are slightly 

lower in Urban Clusters (mostly on the urban fringe) than in rural areas, but the difference 

is minor (shown in Figure 9b). The urban advantage remains in general at the census tract 

level, and the slightly reversed order between Urban Clusters and rural areas may be 

attributable to generally higher demands (i.e., population) in Urban Clusters than rural 

areas, which has been captured by the G2SFCA method.  
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Table 2 Average Accessibility by Urbanicity Levels 

 Accessibility 

(County) 

Accessibility 

(Census Tract) 

Urban-rural classification (County)   

Large central metro 13.92  

Large fringe metro 12.04  

Medium metro 8.40  

Small metro 7.43  

Micropolitan 

Noncore 

6.90 

6.25 

 

Urban-rural classification (Census Tract) 

Urbanized areas 

Urban clusters 

Rural 

 

 

 

 

 

12.67 

7.92 

8.33 

 

Are the observed differences in the average values of accessibility statistically 

significant across urban-rural categories? A simple regression model with dummy 

variables is formulated to answer this question (Xu et al. 2015). The variable of interest, 

accessibility value, defines the dependent variable in the regression; and the independent 

variables are the dummy variables that code the urban-rural categories. For instance, five 

dummy variables are used to code six urbanicity categories at the county level (“large 

central metro” as the reference type); and two dummy variables are used to code three 

urbanicity categories at the census tract level (rural tracts as the reference type). 

The results are reported in Table 3. Taking the model for the county level as an 

example, the intercept from the regression model (13.92) is the average accessibility for 

the reference category (i.e., large central metro counties), and the coefficient for a category 

is the difference between the average accessibility of the reference category and this 
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category. For instance, the coefficient -1.88 for large fringe metro counties indicates that 

the average accessibility of large fringe metro is 1.88 below that of large central metro. 

This confirms that the average accessibility for large fringe metro is 13.92-1.88 = 12.04, 

consistent with that shown in Table 2. What is new from the regression model is the t-

statistic value associated with this coefficient (here, -4.03, in parentheses in Table 3), 

indicating that the difference is highly significant (i.e., significant at 0.001). Similarly, as 

the corresponding coefficient becomes more and more negative from large fringe metro, to 

medium metro, small metro, micropolitan, and non-core, the average accessibility keeps 

declining (consistent with those reported in Table 2). Moreover, the t-values indicate that 

the differences in average accessibility between the reference category (large central metro 

counties) and any of the five other categories are all statistically significant.  

Similarly, for the central tracts, the result from Table 3 indicates that the difference 

in average accessibility between Urbanized Areas and Urban Clusters (or rural areas) is 

statistically significant, and the order of their values is Urbanized Areas > rural > Urban 

Clusters. 
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Figure 9 Average accessibility across urbanicity levels: (a) by six categories at the county 

level, (b) by three categories at the census tract level 
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Table 3 Regression Results for Testing Statistical Significance in Variability of 

Accessibility across Urban-Rural classifications 

 Accessibility 

(County) 

Accessibility 

(Census Tract) 

Urban-rural classification (County)   

Large central metro 13.92*** 

(32.43) 

 

Large fringe metro -1.88*** 

(-4.03) 

 

Medium metro -5.52*** 

(-11.83) 

 

Small metro -6.49*** 

(-13.84) 

 

Micropolitan 

 

Non-core 

-7.02*** 

(-15.53) 

-7.67*** 

(-17.41) 

 

Urban-rural classification (Census Tract) 

Urbanized areas 

 

Urban clusters 

 

Rural 

 

 

 

 

 

12.67*** 

(463.87) 

-4.75*** 

(-45.34) 

-4.34*** 

(-89.84) 

*** p<=0.001, t-value in parentheses.  
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Chapter 5 Disparities of Accessibility by Demographic Groups 

As stated in Chapter 2, both geographic and racial disparities in access to health 

care are of great concern to public policy as both contribute to inequality in health outcomes. 

Chapter 4 examined geographic disparity in accessibility of NCI Cancer Centers. This 

chapter analyzes racial disparity in accessibility. The methodology illustrated here can be 

applied to analysis of disparity across other demographic groups (e.g., people of various 

income groups, educational attainments, employment status or family structures etc.). Once 

again, the analysis is limited to the ecological nature of the data. The finding is not 

consequentially transferrable to individuals. In other words, without access to individual 

data, we cannot clearly compare the accessibility of one racial-ethnic group to others at the 

individual level, rather the difference among various groups on average.  

5.1 Average Accessibility by Demographic Groups 

Demographic information including race and poverty level is extracted from the 

2010 Census. Poverty rate is the estimated percent of people of all ages in poverty. In this 

study, three levels of poverty status are defined. A county (census tract) with the poverty 

rate lower than 10% is defined as low poverty, between 10% and 20% is defined as medium 

poverty, and higher than 20% is high poverty. Figures 10a-c show the spatial patterns of 

the percentage of Black, Minority (or non-White), and population under the poverty line at 

the county level. Figures 11a-c show the patterns of corresponding variables at the census 

tract level. Black and non-White are used as examples as we focus our analysis on disparity 

across racial-ethnic groups. The poverty pattern is shown to highlight that patterns of other 

socioeconomic variables may be consistent with that of race to some extent but may also 

differ significantly. 
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Figure 10 Distribution of demographic groups at the county level: (a) percentage of 

Black; (b) percentage of Minority; (c) poverty rate 
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Figure 11 Distribution of demographic groups at the census tract level: (a) percentage of 

Black; (b) percentage of Minority; (c) poverty rate 
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Figures 10a and 11a show that high percentages of Blacks are observed in the south 

and also southeast coastal states including LA, MS, AL, FL, GA, SC, NC, VI, MD and 

stretching towards northeast. There are over 20 NCI Cancer Centers located in those states. 

For the non-White minorities, Figures 10b and 11b add areas in the southwest bordering 

the U.S. and Mexico such as CA, AZ, NM and TX with a significant presence of Hispanic 

population. In addition to seven NCI Cancer Centers in CA, there are three in TX, one in 

NM and one in AZ. The poverty pattern is more scattered. 

Note that people of various racial-ethnic groups could be present in the same area 

(a county or a census tract) and have the same spatial accessibility of NCI-CCs. It is the 

variability of their various concentrations (i.e., percentages) across geographic areas that 

lead to disparity. This section begins with comparing the average accessibility values for 

different groups to gain some preliminary understanding of the issue. Table 4 reports the 

weighted average accessibility for various racial-ethnic groups. 

From Table 4, Whites have the lowest accessibility score to the NCI cancer centers 

among the ethnic groups, followed by Hispanics, Minorities in general, Blacks, and Asians. 

It may be attributable to that a disproportionally high number of Whites tend to locate in 

the suburbia or rural areas, and thus suffer from the poorest spatial accessibility. Onega 

(2008) also found that African Americans have a shorter median travel time from their 

nearest NCI-CCs (69 minutes) than the Whites (86 minutes), and Asians were found to 

have the shortest median travel time (28 minutes). The somehow surprising finding implies 

that when it comes to spatial accessibility, Blacks and Hispanics actually enjoy better 

accessibility than Whites. We may term this as “reversed racial (dis)advantage.” 
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Table 4 also shows that low-poverty areas (either at the county or census tract level) 

enjoy the best average accessibility. However, high-poverty areas have a slight edge over 

medium-poverty areas in average accessibility but the difference is minor. 

Table 4 Weighted average accessibility for various demographic groups at county and 

census tract levels 

 Accessibility 

(County) 

Accessibility 

(Census Tract) 

All population 11.14 11.14 

By Race-Ethnicity   

White 10.59 10.58 

Black 13.00 12.99 

Hispanic 11.43 11.51 

Asian 13.90 13.92 

Minority (non-White) 12.36 12.40 

By Poverty Level   

Low poverty (<10%) 14.62 12.09 

Medium poverty (10-20%) 10.38 10.25 

High poverty (>20%) 10.52 10.72 

 

5.2 Testing Statistical Differences in Accessibility by Demographic Groups 

Are the aforementioned differences in average accessibility scores among 

demographic groups statistically significant? Prior to the formulation of statistical tests, 

note that the variables of interest are constructed differently. For racial-ethnic groups, each 

group (e.g., White, Black, etc.) is theoretically scattered in every county (tract), and the 

weighted average accessibility for a group is computed by using its population as the 

weight across all counties (tracts). For poverty status, the study area is divided into three 

types of areas according to their poverty percentages, and the weighted average for each is 

computed within that subset of areas and the weight is each county’s (tract’s) entire 
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population. Therefore, the statistical tests are designed differently. Since census tract 

carries a sharper spatial resolution than county, the following analysis uses the tract as the 

analysis unit. 

For racial disparities, one way to formulate the null hypothesis (H0) is such as: the 

ratios of a racial-ethnic group in areas with above-average accessibility values are the same 

as those areas with below-average accessibility values. If this null hypothesis for the one-

tailed test is rejected, the alternative that the ratios of this particular population group are 

significantly higher (lower) in areas of above-average accessibility is accepted. This may 

be measured by conducting a pooled t-test to compare the sample mean of the group’s 

percentages in areas with accessibility higher than average with those below the average. 

For simplicity and easy interpretation, we follow the weighted regression model proposed 

by Irkam et al. (2015) to implement the test. The weighted ordinary-least-squares (OLS) 

regression model is formulated as 

Y = a + b * Flag 

where the dependent variable Y stands for ratios of ethnic groups in various census tracts, 

the independent variable Flag is a binary dummy variable (= 0 or 1, flagging whether a 

tract has an accessibility value above or below the average), and a and b are parameters to 

be estimated. Population in each tract is used as the weight in the model. 

For example, using 72,028 census tracts, the average accessibility value is 11.12. 

All the tracts are split into two parts: tracts in Part 1 are coded as “Flag=0” in which the 

accessibility values are larger than or equal to 11.12, the rest in Part 2 with value less than 

11.12 are coded as “Flag=1”.  
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The regression results are presented in Table 5. For example, the model result for 

Whites is 

Y = 0.2651 + 0.1961 * Flag 

               (31.96) 

The parentheses underneath the equation is the corresponding t value for slope b. 

Based on the result, when Flag=0, Y= 0.2651, which is the intercept, i.e., the sample mean 

of White ratios in tracts above the average accessibility value. When Flag = 1, Y = 0.2651 

+ 0.1961 = 0.4612, which is the sample mean of White ratios in tracts below the average 

value. The slope b = 0.1961 indicates that the difference between the two sample means. 

Here, a positive b implies higher White ratios in part 2 (below-average-accessibility tracts) 

than in part 1 (above-average-accessibility tracts).  The corresponding t value = 31.96 

indicates the difference is highly significant (p<0.001). By employing a weight term in the 

regression, the error term is weighted heavier in a census tract/county with more population 

than one with less population.  

Table 5 Percentages of racial-ethnic groups in census tracts 

 Above-

average 

Below-

average 

Difference t value 

 

White 

 

26.51 

 

46.12 

 

19.61 

 

31.96*** 

Black 6.48 6.20 -0.28 -37.78*** 

Hispanic 6.82 9.58 2.76 5.89*** 

Asian 2.71 1.89 -0.82 -49.72*** 

Minority 16.02 17.67 1.63 39.06*** 

*** p<=0.001 

From Table 5, at the census tract level, rates of the White, Hispanic and Minorities 

are higher in the areas with below-average accessibility values. Black and Asian ratios are 
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higher in the areas with above-average accessibility values. These findings based on 

rigorous statistical analysis are consistent with the preliminary findings suggested by the 

simple weighted averages for White, Black and Asian, but differ from the preliminary 

findings for Hispanic and Minorities.  That highlights the value of rigorous statistical 

analysis that interpretation from simple comparison of average accessibility scores may be 

misleading. 

For analysis of accessibility across areas of various poverty levels, the model is 

straightforward and similar to the regression model with dummy variables used in 

Chapter 4. Using the census tracts with low poverty (poverty rate <10%) as the reference 

category, two dummy variables are used to code three categories of poverty levels in the 

regression model, and the dependent variable is accessibility value in each tract. The 

result is presented in Table 6, completely consistent with that reported in Table 3. For 

example, the intercept 12.09 is the average accessibility score for low-poverty tracts 

(reference category). The coefficient for medium-poverty tracts (poverty rate between 

10% and 20%) is -1.84, indicating that the average accessibility score for medium-status 

tracts is -1.84 below 12.09 (reference category), i.e., 12.09-1.84=10.25. Similarly, the 

average accessibility score for high-poverty tracts (poverty rate >=20%) is 12.09-

1.37=10.72. What new we can learn from the regression model is the statistical 

significances associated with the above findings based on the t values corresponding to 

the dummy variables. Based on Table 6, the differences across the three poverty levels 

are all statistically significant at the 0.001 level. In other words, tracts with the low 

poverty level generally enjoy the best accessibility, followed by high-poverty tracts and 

then medium-poverty tracts.  
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Table 6 Regression result for variability of accessibility across census tracts of different 

poverty levels 

 Accessibility 

(Census Tract) 

  

Low poverty 12.09*** 

(330.13) 

Medium poverty -1.84*** 

(-33.37) 

High poverty -1.37*** 

(-24.23) 

  

                        *** p<=0.001 
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Chapter 6 Optimization for Minimal Geographic Disparity in Spatial Accessibility 

Chapter 4 examines the geographic variability of spatial accessibility of NCI 

Cancer Centers across counties and census tracts. This chapter proposes several planning 

problems for minimizing the disparity (inequality) in accessibility across geographic areas 

by some adjustment in resource allocation. The optimization of equality became an issue 

after equality planning problems arose (Ostor, 2008). The scenarios are formulated as 

optimization problems composed of an optimal objective and a set of constraints, and 

various solution methods are explored and compared. 

6.1 Formulating the Planning Problems 

A planning (optimization) problem is to find the best available value for the 

objective function given a set of constraints. 

We begin the discussion on what the objective is and how to formulate it. As 

suggested by Schrage (1986), one may maximize equality, or alternatively minimize 

inequality, across geographic areas by: 

1) minimizing the sum of the absolute deviations (MAD), i.e., 

 

2) minimizing the maximum absolute error of the range (MINIMAX), i.e., 

 

The second formulation focuses on the gap between a single area with the best accessibility 

and the overall average accessibility, and seeks to minimize that gap.  It is conceivable that 

the maximum accessibility is observed in an area with very few people, and closing up the 

gap would have limited value. It is also more technically challenging in solving an 

)(min xVarf
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optimization problem with the MINIMAX objective. This chapter considers only the MAD 

objective. 

For the MAD objective, variance is a measure of how far a set of values is spread 

out. Given an accessibility measure as defined in Equation (2) in Chapter 4, it is known 

that the weighted mean of the accessibility a is equal to the ratio of the total supply S 

(=S1+S2+...+Sn) to the total demand D (=D1+D2+…+Dm) in a study area (Shen, 1998), 

denoted by a constant a, such that 

              

Therefore, the MAD objective is to minimize the absolute variance (i.e., least 

squares) of the accessibility index Ai across all population locations, written as: 

        (3) 

where accessibility gaps ( ) are weighted by corresponding demand Di. 

Now, we turn our attention to the formulation of constraints and decision variables 

to be solved. Recall that the purpose of this research is to optimize spatial accessibility that 

is influenced by both supply and demand. On the demand side, people choose where to live 

for multiple reasons, including birth, work, education, family, political policy, weather, 

and environment. Access to cancer care may be one of these reasons, but it is usually not 

the determining factor, which is typically family or work. As a result, we cannot change 

people’s living location to optimize the equality of visiting the NCI Cancer Centers, 

meaning that we cannot plan for the demand side. Therefore, we have to consider the 

supply, the allocation of resources related to NCI Cancer Centers in this case, as the 
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variable in the planning. As a starting point, we may speculate two kinds of decisions 

regarding the NCI resources: relocating the existing resources, or allocating new resources. 

Considering the high cost of moving employees and care equipment, we consider it a more 

realistic scenario of allocating some new available resources. These scenarios are set up in 

accordance with the most feasible policy options: allocating funds currently available only 

to existing NCI Cancer Centers and the periodical designation of new centers. These 

options include (1) expanding existing centers (e.g., measured in bed counts) and (2) 

designating new centers. 

            The first option involved in planning is how to allocate additional resources. 

Resources may be quantified financially, either by personnel or capacity. For illustration, 

this study examines how to allocate a fixed number of additional beds, denoted by a 

constant B. The decision variables are the new capacity (number of beds) of the existing 

NCI Cancer Centers, denoted by Xj. Note that the additional beds increase the total supply 

to S+B, and thus, also change the average accessibility . The optimization 

problem is subject to the following constraints:  

, and 

 for all j = 1, 2, …, n. 

In practice, the number of beds Xj can be considered a continuous non-negative real 

number instead of an integer. However, for multiple reasons, like land use, transportation, 

and other urban planning reasons, one hospital or center cannot be given unlimited 

resources. As a result, we may cap the increase ratio at each hospital. For illustration 

purposes, we arbitrarily specify this cap to be 25%, so another constraint is added: 
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 . 

The other planning option is to designate new NCI Cancer Centers from the existing 

AMCs. Say a given number (n0) of new centers is to be designated. We denote the 

capacities (number of beds) of all NCI and AMC hospitals as Sj. However, this time j = 1, 

2, …, 301. In other words, the number of potential supply sites is expanded from only the 

existing NCI Cancer Centers in the previous decision option to the total number of 

combined hospitals. We now introduce the binary decision variable xj = 0, 1, where 1 

indicates the corresponding hospital designated as an NCI Cancer Centers and 0 otherwise. 

For the existing 58 NCI Cancer Centers, xj =1 is already the predetermined solution; for the 

remaining 243 AMCs, xj  is the real variable to be solved. The optimization problem thus 

becomes a 0-1 integer programming problem. 

Figure 12 summarizes the structure and various scenarios of optimization for 

minimizing geographic disparity in spatial accessibility. 

More specifically, for decision option 1 by allocating new resource, the objective 

function in Equation (3) is rewritten as: 

  (4) 

 For decision option 1, the constraints are: 

      (5) 

      (6) 

where the variables Xj is the number of increased staffed beds at each NCI Cancer Center. 
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Figure 12 Formulating Planning Problems for Minimizing Geographic Inequality 

For decision option 2, new NCI Cancer Centers will raise the total supply 

capacity, and the objective function is updated to: 
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where m (=58) is the number of original NCI-CCs; n (=58+243=301) is the number of 

original NCI-CCs and AMCs; X is the number of new NCI-CCs to be designated;  = 1 

(fixed) for the existing NCI-CCs, and = 1, 0 (to be solved) for the other AMCs. 

 Technical details for solving the above optimization problems are presented in 

Chapter 8. 

6.2 Results and Discussion  

To set up a baseline for comparison, we begin with Scenario A0 by removing the 

constraint in Equation (6) that caps the increased bed count of each NCI-CC by 25%. For 

example, the decision option is to allocate 2500 beds (i.e., about 5 times the average staffed 

beds of NCI-CCs) to the existing 58 NCI Centers in order to minimize the inequality in 

accessibility at the census tract level. The result is shown in Figure 12.  

As shown in Figure 13, most of the additional 2500 beds are allocated to NCI-CCs 

in southern California, New England, and Indiana. This indicates that the optimal allocation 

of resources for the purpose of equality is far from a trivial solution that could be obtained 

by simply reading a map or tabulating cancer care providers. In this case, some of the most 

needy regions (that is, those receiving additional services) appear to already have multiple 

facilities on site or nearly. However, they are also major urban areas with a lot more 

demand. Table 6 shows that the additional beds also improve the overall accessibility (a 

larger mean accessibility score of 11.19 than the mean value 11.12 in the existing condition) 

by increasing the total supply capacity, as discussed previously. To normalize the measure 

of the dispersion of the accessibility distribution across census tracts, the coefficient of 

variation is computed to evaluate the impact of optimization. The coefficient of variation 

is reduced from the current 0.5630 to 0.5611. 

j
x

j
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Figure 13 Allocation of 2500 additional beds without caps at the census tract level 

From this case, allocating 2500 additional staffed beds, some hospitals received 

more than 500 beds, doubling their sizes and raising the concern of feasibility in practice. 

For example, City of Hope Comprehensive Cancer Center, Beckman Research Institute in 

Los Angeles would receive 622 new staffed beds, while its original number of beds is 185. 

That is over 3 times from the original capacity. The Scripps Green Hospital in La Jolla, 

CA, would receive 287 new beds; it has 173 now. That is more than double the size. As we 

mentioned before, the number of staffed beds is the easiest way to judge the capacity of an 

NCI Cancer Center. Doubling or tripling the number of beds means that a great increase in 

supply. It seems more feasible for a cancer center to increase its capacity by a small number, 

like 10% or 25%.  
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Table 7 Basic statistics for accessibility before and after optimization of geographic 

disparity 

Scenarios Mean St. Dev. Cof. Var. 

Census tract level    

Existing condition 11.12 6.26 0.5630 

A0. Adding 2500 beds 11.19 6.28 0.5611 

A1. Adding 2500 beds with 25% cap  11.19 6.29 0.5619 

A2. Designating 5 new centers 12.01 6.70 0.5576 

County level    

Existing condition 7.63 4.08 0.5347 

B1. Adding 2500 beds with 25% cap  7.69 4.10 0.5331 

B2. Designating 5 new centers 8.24 4.37 0.5299 

 

At the census tract level, Scenario A1 is now designed by imposing a new constraint 

that the increasing percentage in each center cannot exceed 25% of its existing capacity in 

bed count (as in Equation (6)). The result is shown in Figure 14, and also Table 7. With the 

additional constraint of an expansion cap, the additional beds are now allocated to a wider 

range of facilities across the U.S. (note the absence of hospitals with more than 200 

increased beds). From Table 6, the resulting coefficient of variation is inflated slightly from 

0.5611 to 0.5619. As an additional constraint is imposed, the objective function’s minimal 

value is raised as expected.   

Scenario B1 is the corresponding scenario at the county level by allocating 2500 

additional beds with 25% expansion cap. The result is shown in Figure 15 and also Table 

7. The result is largely consistent with that at the census tract level. A closer look reveals 

subtle differences in some regions.  

Scenarios A2 and B2 minimize the same objective function by designating five new 

centers from the existing AMCs at the census tract level and the county level, respectively. 
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The results are identical as the same AMCs are selected to be designated as new NCI-CCs 

(shown in one map as in Figure 16 and Table 8). Statistics are reported in Table 7. Among 

the five hospitals, 1 is put in Texas filling the void in the middle of the heavily urbanized 

Dallas-San Antonio-Houston triangle, 1 is put in Mississippi, and 1is put in southern 

Alabama to serve the populous Gulf coastal area. There is also 1 placed in Denver to 

enhance the service capacity of the heartland, and 1 was in Rhode Island to fix the shortage 

in the northeast corner. Yet, this scenario exerts the highest impact on equalizing the 

accessibility by reducing the coefficient of variation by 0.948% to the lowest value 0.5576 

at the tract level. In other words, the most cost-efficient policy in reducing the geographic 

disparities in accessibility of NCI Cancer Centers is to go beyond the allocation of 

resources on the existing list and establish new centers.  

 

Figure 14 Allocation of 2500 additional beds with 25% expansion cap at the census tract 

level 
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Figure 15 Allocation of 2500 additional beds with 25% expansion cap at the county level 

A recent paper by Delmelle et al. (2014) focuses the decision choices between 

increasing capacity of existing facilities and adding new facilities in a school location. Our 

study suggests that adding new facilities is a more favorable policy option because it 

significantly reduces the inequality of accessibility. One likely reason is that the new 

facilities reduce travel time for patients in resource-deprived areas in addition to the added 

capacity of the service supply. 
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Figure 16  Designating five new NCI Cancer Centers at the county (tract) level 

Table 8 Five new designated NCI Cancer Centers for minimal geographic disparity 

Hospital Address No. of beds 

University of South 

Alabama Medical Center 

2451 Fillingim St, Mobile, 

AL 36617 
131 

Scott & White Hospital 
2401 S 31st St, Temple, 

TX 76508 
116 

Methodist Rehabilitation 

Center 

1350 E Woodrow Wilson 

Blvd, Jackson, MS 39216 
124 

National Jewish Health 
1400 Jackson St, Denver, 

CO 80826 
24 

Memorial Hospital of 

Rhode Island 

111 Brewster St, 

Pawtucket, RI 02860 
150 

Total  545 
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Chapter 7 Optimization for Minimal Racial Disparity in Spatial Accessibility 

Chapter 5 shows the disparity in spatial accessibility to NCI Cancer Centers across 

different racial-ethnic groups at the county and tract levels. This chapter formulates and 

solves the planning problem of minimizing such a disparity. According to our knowledge, 

it is the first attempt to propose an optimization approach to reduction of racial disparity. 

For that reason, the study is exploratory with an emphasis on the methodological 

development.  

7.1 Formulating the Planning Problems 

The formulation of optimization problems for minimal racial disparity shares much 

similarity with that for minimal geographic disparity. Here only the differences are 

highlighted in this chapter. 

This research proposes a new way to formulate the objective function of minimal 

racial equality by minimizing the gap between the weighted averages of accessibility 

between two groups. For example, the objective function is written as 

                                  (9) 

where Wi, the estimated number of the white patients (demand) at a location (e.g., 

census tract) i, is constant; Mi, the estimated number of the minority patients at location i 

is constant; W and M are total white patients and total minority patients in the study area; 

Ai is the accessibility index calculated at location i; and m is the number of areas (e.g., 

census tracts). 

The constraints and decision options are the same as those in optimization problems 

of minimizing geographic disparity as discussed in Chapter 6. Decision option 1 allocates 








m

i

m

i

MAMWAW iiii

1

2)

1

//min(



51 

 

new resources (i.e., additional beds), and decision option 2 designates new centers. Once 

again, the analysis will be conducted at both the county and census tract levels. 

Specifically, the objective function for decision option 1 is updated to: 

 (10) 

With the same constraints as presented in Chapter 6.     

 For decision option 2 of designating a given number of new NCI Cancer Centers, 

the objective function is revised to: 

 (11) 

The constraints remain the same as discussed in Chapter 6. 

 Technical details for implementing the optimization problems and solving them by 

various algorithms are discussed in Chapter 8. 

7.2 Results and Discussion  

We examine the scenarios for minimizing the racial disparity in accessibility 

between Whites and each minority (Black, Hispanic, Asian), and also between Whites and 

non-White minorities. The pairings form four different objective functions. Similarly to the 

planning scenarios proposed in Chapter 6, we use the same two decision options such as  

(1) allocating new resources (e.g., 2500 extra beds) with a 25% expansion cap to each 

existing NCI-CC, and (2) designating a given number (e.g., five) new NCI-CCs. The 

intersection of four different objective functions and two decision options forms 10 

optimization problems. Since the studies are conducted at both the county and census tract 
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levels, we have solved 20 optimization problems. The statistics for the results are presented 

in Table 9. 

Table 9 Basic statistics for accessibility before and after optimization of racial disparity 

Variables Current 

Accessibility 

Allocating 2500 

beds 

Designating 5 

centers 

County level    

All population    

Average 11.14 11.95 12.01 

Standard deviation 4.08 4.30 4.46 

Race    

White 10.59 11.05 11.07 

Black 13.00 13.03 13.03 

Hispanic 11.43 11.45 11.45 

Asian 13.90 13.91 13.92 

Minorities 12.36 12.38 12.39 

Tract level    

All population    

Average 11.14 11.95 12.01 

Standard deviation 6.26 6.60 6.85 

Race    

White 10.58 11.04 11.08 

Black 12.99 13.03 13.04 

Hispanic 11.51 11.52 11.52 

Asian 13.92 13.94 13.95 

Minorities 12.40 12.41 12.41 

 

Due to the large number (20) of planning scenarios, we only present the results of 

four optimization problems for minimizing the disparity between Whites and non-White 

Minorities in maps (i.e., two decision options, each at two levels). Figures 16 and 17 show 

the results of allocating 2500 beds with 25% expansion cap at the county and census tract 
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levels, respectively. Since the solutions for designating five new centers are the same at 

both the county and census tract levels, only one map (Figure 18) is needed to show the 

results. These five new centers are listed in Table 10.  

Figure 17  Allocation of 2500 additional beds towards maximum racial equality at the 

county level 

 

As shown in Figures 16 and 17, the results at the county and tract levels are highly 

consistent. The cancer centers that receive new beds are mostly located in the middle 

northern regions (MN, WI, IL, OH, MI, VA and west of NY and PA, etc.). One NCI Cancer 

Center in TN also is allocated new beds at both the county and tract levels. Different from 

the county-level result, a center in Tampa, FL also receives increased beds. These areas 

have larger percentages of Whites. By increasing the bed sizes for centers in these areas, 

accessibility increases and helps improve the overall accessibility for Whites than for 

minorities. As a result, the gap between Whites and minorities is reduced. As reported in 
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Table 8, the weighted average accessibility for White people increases from 10.59 to 11.05 

at the county level, and from 10.58 to 11.04 at the tract level. In the meantime, accessibility 

for the minorities also increases, but by very little, from 12.36 to 12.38 at the county level 

and from 12.40 to 12.42 at the tract level. The deviation coefficient of accessibility 

decreases 1.16% at the county level and 1.17% at the tract level.  

  

Figure 18 Allocation of 2500 additional beds towards maximum racial equality at the 

census tract level 

 

As shown in Figure 18 and Table 10, the five newly designated NCI Cancer Centers 

are selected in order to minimize racial disparity between Whites and minorities. The 

results are identical at the county and tract levels. Two centers in West Virginia and one 

center in Kentucky fill the void in the central east of the study area, and two AMCs in 

Maine and Vermont are selected for new designations to meet the shortage in the northeast 



55 

 

corner. Table 7 shows that this scenario also improves racial equality of accessibility. The 

weighted average accessibility for Whites improves by 0.48 to 11.07 at the county level, 

and increases by 0.50 to 11.08 at the tract level. The weighted average accessibility scores 

for individual minority group and the combined category “minorities” have changed very 

little after the optimization. As a result, the racial disparities are reduced.  

 

Figure 19  Designating five new NCI Cancer Centers towards maximum racial equality at 

the county (census tract) level 
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Table 10 Five new designated NCI Cancer Centers for minimal geographic disparity 

Hospital Address No. of beds 

UK Albert B. Chandler 

Hospital 

800 Rose Street, Lexington, 

KY, 40536 
643 

Charleston Area Medical 

Center General Hospital 

501 Morris Street, 

Charleston, WV, 25326 
313 

Cabell Huntington Hospital 
1340 Hal Greer Boulevard, 

Huntington, WV, 25701 
509 

Maine Medical Center 
22 Bramhall Street, 

Portland, ME, 4102 
644 

Fletcher Allen Health Care 

- Medical Center Campus 

111 Colchester Avenue,  

Burlington, VT, 5401 
559 
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Chapter 8 Solving the Optimization Problems by QP and PSO 

This chapter illustrates some technical details on how the optimization problems 

defined in Chapters 6 and 7 are solved, and compares the approaches to make some 

recommendation.  

There is a rich body of methods in the literature, broadly grouped under the 

umbrella of operational research. Some methods seek the problem’s mathematical 

solution(s) as they solve the problem mathematically and prove that the solution(s) is the 

only optimum (are either the exhaustive list of optimums or nonexistent). Some are 

heuristic, and most use some computational algorithms to find the approximate solution(s) 

and often cannot guarantee whether the answer is the true optimum. The former is more 

desirable in terms of the answer’s accuracy, but may not be feasible for all problems. The 

latter is usually more practical and computationally efficient.    

This chapter uses two methods to illustrate how the problems are solved: the 

Quadratic programming (QP) represents a mathematical optimization approach, and the 

Particle Swarm Optimization (PSO) is a heuristic approach.  

8.1 The Quadratic Programming (QP) Method 

For the optimization problem of minimal geographic disparity, its objective 

function in Equation (3) is rewritten here for convenience such as: 
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It is a quadratic function. The constraints in Equations (4) and (5) or in Equation (8) are 

linear. Therefore, it is a classic quadratic programming problem (Nocedal and Wright, 

2006).  
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In matrix notation, we introduce two matrices q and G defined as  

,      

 

where  

)( ijij dfq   

and  

)](/[1
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kj

m
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kj dfDG 


 . 

We define matrix P as the product of q and G, i.e., 

 

Using S to denote the supply vector ( ) and a to represent 

the constant vector of the average accessibility ( ), we can write the 

objective function in matrix form 

aaPSaP)S(PSa)(PSa)(PS
TTTTT  ])2/1[(2   (12) 

The quadratic programming (QP) problem in standard form is: 

min
𝑥

{
1

2
𝑥𝑇𝐻𝑥 + 𝑓𝑇𝑥}                                     (13) 

where x and f are column vectors with n elements, 𝑥𝑇 and 𝑓𝑇 are their vector transposes, 

and H is a symmetric n × n matrix. 

Comparing our problem in matrix notation in Equation (12) to the standard QP form 

in Equation (13) and dropping the constant term 



a
T
a and the multiplier 2, the matrices 

in standard QP are defined as  
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H = PTP

fT = -aTPÞ f = -PTa
 

The constraints are linear, and their definitions in matrix form are straightforward: 

 

For the optimization problem of minimal racial disparity, its objective function in 

Equation (12) is also rewritten here for convenience: 
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Applying the same matrix notations q, G and S as in Equation (12) here, we 

define J = RqG. In matrix form, the objective function becomes 

Min
22 RqGSRA ）（）（  = (JS)2 

 It can be transformed to  

Min JSJSJSJS TTT ）（）（  

The above formulation once again fits the description of quadratic programming 

(QP). Matching its standard form in Equation (10), the related matrices are defined as 

H = 2JTJ

f = 0
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There are various free and open source programs to solve the QP problem (e.g., 

www.numerical.rl.ac.uk/qp/qp.html). This study uses Matlab R2009a to solve decision 

option 1 which is to add new resource, in particular its “quadprog” routine, because of its 

flexibility in coding large matrices and reliability (www.mathworks.com). Lingo 13.0 is 

used to solve decision option 2 because designating new NCI-CCs contains integer 

constraint (www.lindo.com). See Coleman and Li (1996) among others for mathematical 

detail.  

8.2 The Particle Swarm Optimization (PSO) Method 

As stated previously, mathematic optimization such as the QP is usually inefficient 

and computationally intensive. This becomes a major challenge for us as our study deals 

with a large data set. Intelligence optimization algorithms or swarm intelligence (SI) have 

been developed as heuristic methods to solve optimization problems. One of the most 

popular algorithms is Particle Swarm Optimization (PSO). 

The PSO is widely used in planning and operational research. The PSO was an 

evolutionary algorithm originally proposed by Eberhart and Kennedy to graphically 

simulate the movement of a flock of birds (Kennedy, 1995). The PSO has some the 

advantages of an easily understandable algorithm logic, a fast convergence speed, and its 

good number of fits for real number optimization.  So, this method has been used in a wide 

range of applications (www.swarmintelligence.org) since its introduction. For additional 

references, see Shi (1998), Eberhart (2000), and Kim et al. (2009).  

In the PSO, each particle is treated as a point in an n-dimensional bounded solution 

space. Any particle l has position xl, velocity vl, and a previous position pbest that was 

previously found to be the best solution. For all particles, let gbest record the position of 

http://www.numerical.rl.ac.uk/qp/qp.html
http://www.mathworks.com/
http://www.lindo.com/
file:///C:/Users/cfu2/Downloads/www.swarmintelligence.org
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the global best particle. The performance of each particle is measured according to a 

predefined fitness function. Initially, each particle has a random position within a range of 

Xmin and Xmax, with a velocity vl = 0. The particles are updated by the following formulas: 

v
l

= wv
l
+ c1r1(pbesti- xl) + c2 r2(gbest - xl)  

x
l

= x
l
+  v

l
  

where w is the inertia weight, and c1 and c2 are acceleration constants. w provides 

a balance between global and local explorations, while c1 and c2 represent the weights of 

the stochastic acceleration terms that pull each particle xl toward pbesti and gbest. In order 

to avoid the velocities becoming too high and particles flying out of the usable field, it is 

also necessary to clamp velocities to a maximum vl smaller than vmax.  

The pseudo code of the PSO is shown below.  

Step 1 

Setting values of the control parameters of PSO: 

Population size NP, inertia w, learning factors c1 and c2 

Step 2: Initialization 

Set the generation number k = 0 

Initialize a population of NP individuals 

Initialize velocities, v, of the particles: 

Step 3 

WHILE the stopping criterion is not satisfied 

FOR i = 1 to NP 

Calculate Pbest and Gbest 

Evaluate the fitness of particles 
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IF Then 

 

ELSE  

ENDIF 

 

Step 4: Update position and velocity 

Calculate the velocities and positions of the particles in the following way: 

 

 

END FOR 

Step 5: Increase the generation count 

k = k + 1 

END WHILE 

 

For minimal geographic disparity in Equation (3), we set the fitness function for 

the optimization problem as the total absolute difference between the accessibility score of 

each demand location and weighted average accessibility score: 

       

For the optimization problem for minimal racial disparity in Equation (9), we set 

the fitness  function as the absolute sum of the gap between the weighted average 

accessibility of different racial groups: 
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The PSO parameters used in all functions are set as follows: Np = 58, c1 = c2 = 2, 

w=0.4. The accuracy is set as 10-4 and the constriction factor is 0.729. The maximum 

evaluation for all the methods is set as 20,000. 

There are various free and open source PSO toolboxes to solve PSO problems based 

on Matlab, R, and Lingo (e.g., http://psotoolbox.sourceforge.net). This study builds the 

PSO optimization program with the help of two PSO toolboxes based on Matlab 2009a 

(Birge, 2005; Sam, 2009). 

8.3. Comparing the Performances of Solution Methods 

Table 11 summarizes the eight optimization scenarios used in assessing the 

performance of solution approaches. 

Table 11 Optimization Scenarios 

Objective Analysis unit Decision option Scenario index 

 

 

 

Minimal geographic 

disparity 

 

County 

Allocating new 

resources 

S1 

Designating new 

NCI-CCs 

S2 

 

Census tract 

Allocating new 

resources 

S3 

Designating new 

NCI-CCs 

S4 

 

 

Minimal racial 

disparity (Whites vs. 

minorities) 

 

County 

Allocating new 

resources 

S5 

Designating new 

NCI-CCs 

S6 

 

Census tract 

Allocating new 

resources 

S7 

Designating new 

NCI-CCs 

S8 

 

http://psotoolbox.sourceforge.net/
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We use three criteria to assess the performances of QP and PSO methods in solving 

the optimization problems. The first measure of performance is success rate. See Table 12. 

In some cases (optimization scenarios), a method cannot solve the problem after numerous 

attempts. For example, when the QP was used to find minimal inequality of accessibility 

between Whites and minorities by designating new NCI Cancer Centers at the county level, 

it failed to reach a solution. It was unclear whether it was a software or hardware problem. 

The PSO displayed a relatively high success rate, but it still frequently failed in local 

solutions.  

The second measure is complexity in implementation. In our case, the QP was 

relatively difficult to code, particularly in representing the quadratic objective function in 

matrix format. We used Matlab to generate hundreds to thousands of loop lines of codes 

for the QP problems and imported to Lingo to solve the model. The PSO toolboxes 

available in Matlab and Lingo provided the user with a clear guidance to program the 

optimization problems, and were much easier to code.  

The final measure is computation time. When successful, the PSO method solved 

the problems within reasonable time. The QP approach usually used a significantly higher 

amount of computation time (in one case, more than 1,000 hours). Note that when 

successful, QP and PSO yielded identical or very similar results.  

Based on the above discussion, our recommendation is to first attempt the PSO 

method to solve an optimization problem as it uses shorter time and fairly easier to 

implement. When unsuccessful, one may then employ the QP method. It is also a good 

practice to use a small sample data set to test both methods to validate the programs before 

applying the methods to the full data set. 
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Table 12 Assessing Performances of QP and PSO in Optimization 

Scenarios Success rate of 

solution (%) 

Complexity in 

implementation 

Average computation 

time (hours)* 

County level PSO QP PSO QP PSO QP 

S1 100 100 Low High 1.63 11.47 

S2 70 100 Low High 3.99 72.70 

S5 100 100 Low High 7.15 130.28 

S6 100 100 High High 3.82 71.63 

Tract level       

S3 80 100 Low High 36.05 511 

S4 80 100 Low High 80.44 1144.68 

S7 80 100 Low High 44.2 810.63 

S8  --- High --- 96.15 --- 

* Based on a PC with Intel Core(TM) i7-3770 CPU @3.40GHz and 16GB memory. 
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Chapter 9 Conclusions 

In public health studies, spatial accessibility is widely used to assess the 

convenience of people seeking a type of health care. This research uses the NCI Cancer 

Centers (NCI-CCs) as a case study to examine both geographic and racial disparities in 

spatial accessibility. The weighted averaged accessibility for entire United States is 11.14 

which means there are only 11.14 averaged staffed beds supplied in the highest quality 

cancer care service NCI-CCs for every 100,000 people. Comparing with over 340 men 

and 290 women suffer from cancer for every 100,000 people, huge demand for quality 

cancer care is left unfulfilled. The current designation for NCI-CCs focuses on the single 

criterion in quality of research and care in cancer prevention, diagnosis, and treatment, 

and does not consider any equality issue. Research indicates that disparity in health care 

accessibility is a major reason for the subpar health performance ranking for the U.S. 

given our high health care cost. This research examines possible policies for reducing 

disparities in spatial accessibility of NCI-CCs as a first step toward the larger goal of 

improving the overall health in the U.S.  

Four major tasks are accomplished in this research: 

1. It employs the multiple catchment areas method to assess the 

geographic variability of spatial accessibility of NCI-CCs. The result 

shows that the accessibility generally declines with increment of travel 

time away from the centers, and clearly displays an urban advantage. 

2. Analysis on the racial disparity reveals that on average White have the 

lowest spatial accessibility, followed by Hispanic and Black, and the 

differences are statistically significant. This “reversed racial advantage” 
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seems counterintuitive, but is consistent with the finding reported in a 

influential prior study.  

3. Several optimization problems are formulated to minimize disparity in 

spatial accessibility of NCI-CCs across geographic areas or 

demographic (e.g., racial-ethnic) groups. Possible decision options such 

as allocating new resources and designation of new centers are 

explored. The results demonstrate that public policy for promoting 

equal health care access can benefit from optimization research that is 

scientifically sound.  

4. Based on the results, the modifiable areal unit problem is not a major 

concern in most cases. The two different study levels have the similar 

optimization results. In the scenarios of adding new resource on existing 

NCI-CCs, the results of the census tract level always have more NCI-

CCs receiving added staffed beds than the county level, but the numbers 

of added beds for them are small. In the scenarios of designating new 

NCI-CCs, the county level and the census tract level have the exactly 

same results as they pick up the same AMCs. 

5. Based on our research, it is recommended that the PSO be attempted 

first to solve the aforementioned optimization problems due to its 

computational efficiency and relative briefness in coding. When 

unsuccessful, the QP can be used to obtain the solutions.  

Given our primary interest in geographic issues and our limited expertise, this 

research has a focus on the methodological issues related to spatial analysis, and is of 
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exploratory nature. There are several limitations in this research, each of which calls for 

improved work in the future. 

First, the focus on a single health care system such as NCI-CCs is very limited in 

scope as many other hospitals outside of the system also provide quality cancer care. In 

addition, the spatial accessibility measure accounts for the reality of patients seeking 

cancer care across the borders of counties or states, but not countries. In other words, it 

assumes that the care of the NCI-CCs is limited to patients in the U.S. and the patients in 

the U.S. are also restricted to seek the care within the U.S. Future work needs to expand 

the scope beyond the NCI-CCs and also beyond the geographic border of the U.S. 

Secondly, this research used the general population as the potential demand for 

the cancer care facilities by assuming each person has the same risk of becoming a cancer 

patient. However, in reality, the probability or risk to become a cancer patient varies 

greatly across different groups of people, in both geographic and demographic categories. 

For example, very large numbers of research prove that older people have a much higher 

risk of developing cancer in most different types of cancer. After age 40, the rate of 

different cancers (i.e. lung cancer, liver cancer, breast cancer and prostatic cancer) has an 

exponential growth. Different census tracts or counties contain different age components. 

For example, census tracts in a rural area tend to have much more older people living 

than the census tracts in a central urban area. As the age group data is available in the 

census dataset, future studies should consider different cancer rates for different 

demographic groups to estimate the potential demand for the NCI-CCs more accurately. 

The same applied to geographic areas. People living in some higher cancer risk locations 

might have higher cancer rates while the living environment like sun exposure, chemical 
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pollution, air pollution and radiation affects may cause more cancer. Future studies 

should also consider the variation of cancer rates across geographic areas. 

Thirdly, in implementing the spatial accessibility measure, we used an arbitrarily 

defined distance decay function to characterize the patient behavior in seeking 

specialized cancer care. Future research needs to use data of actual hospital visits to 

capture the best fitting distance decay function.  

Fourthly, in analysis of accessibility disparity between demographic groups, our 

finding of the so-called “reversed racial advantage” is preliminary and more importantly, 

ecological in nature. Future work may use data of individual patients to (in) validate such 

a preliminary observation. 

Finally, the optimization problems formulated in this study are exploratory. In 

particularly, the proposed decision options such as allocation of new beds and 

designation of new centers are largely speculations. It calls for inputs from health care 

policy makers to design feasible strategies. Future research may also consider planning 

options such as relocation of patients, improving transportation networks, etc. More 

constraints may also be added in the optimization models to make them more realistic. 

On the methodological front, we also plan to experiment with other solution methods 

beyond the QP and PSO.  
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