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ABSTRACT 

Soil moisture level is an important index in studying environmental changes. High 

resolution soil moisture data is in high demand for agricultural and weather forecasting purpose. 

Current daily large-scale soil moisture projects fail to provide sufficient resolution for medium or 

small region research. To acquire high resolution soil moisture data, different kinds of methods 

are put into practice, including multivariate statistical regression, weight aggregation and so on. 

In this research, SMAP (Soil Moisture Active Passive) level 3 data with 36-km resolution are 

successfully downscaled by MODIS (Moderate Resolution Imaging Spectroradiometer) 1-km 

LST (Land Surface Temperature) product, NDVI (Difference Vegetation Index) product, SRTM 

(Shuttle Radar Topography Mission) DEM (Digital Elevation Model), and TWI (Topographic 

Wetness Index). Three regression models are built based on these supplemental indexes 

correlated with the SMAP data. All downscaled results are validated with SMAPVEX15 field 

data. The research aims to establish and validate the multivariate regression method for 

downscaling low-resolution remote sensing image (such as SMAP) with local field observations. 

Compare the different indexes in the model results, the research suggests the regression models 

have a decent fit with the variables and the soil moisture dataset, indicating the method is 

applicable to small region research.  

 

Key words: SMAP, Downscaling, MODIS, Multivariate statistical regression, DEM, TWI  
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CHAPTER 1. INTRODUCTION 

Soil moisture, a key role in the water cycle, has constant impacts on vegetation and 

natural calamity. Soil water content determines the growth and photosynthesis of vegetation. As 

the water level in soil drops, the photosynthesis decreases while the salinization degree increases. 

The consequences of the decreased water level will lead to the death of ground vegetation. If the 

moisture level rises too rapidly, it will also cause problems. An excessive amount of moisture 

has negative effects on soil aeration and the living of microbes. Furthermore, soil moisture is an 

important part in the evaporation and infiltration of surface water, it also affects the matter 

transferring as well as the earth surface radiation budget. Therefore, the water level in soil is 

regarded as a vital parameter in monitoring drought, predicting floods, assisting agricultural 

activities and weather forecast.  

Traditional methods of detecting soil moisture depend on ground observation stations, 

which not only requires massive fieldwork, it also complicates the data processing procedure. 

The process of combining all the data from each ground stations and convert into compliant 

surface data is time-consuming. The rapid change of soil moisture level causes another technical 

difficulty in traditional methods. Water level changes both spatial and temporal, which result in 

difficulty of restore because of limitation of the record. These shortages state above make a 

nation-wide or global scale real-time soil moisture high accuracy observation nearly unrealistic. 

In order to dynamic monitor soil moisture level at a massive scale, remote sensing technology is 

irreplaceable. 

With the development of remote sensing technology, the measurement instrument of soil 

moisture also evolved. Base on the bands the instrument utilized, it divides the satellite sensors 

into two categories. One category is optical and infrared sensors, the other one is the microwave 
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sensors. Compared to the optical and infrared sensors, the microwave radiometry is more 

sensitive to the change of vegetation cover and the surface soil moisture. Because dielectric 

properties of soil strongly relate to the soil moisture, dielectric character of surface soil affects 

the radiation of ground surface, eventually influence the brightness temperature that microwave 

sensors directly detect. The microwave sensors have unique advantages, such as the capabilities 

to penetrate cloud, snow and detect the soil beneath the surface. With these advantages, 

microwave radiometry has been one of the most efficient methods to gain soil moisture data of 

large-scale surface on the long-time series. 

Considering the multiple applications that soil moisture have in these fields, high spatial 

resolution is required. To obtain the high spatial resolution remote sensing data, either large 

aperture antenna or low orbit is needed. Lowering the latitude will lead to temporal frequency 

reduction and the decreased lifetime of the satellite, which it is not cost-efficient. Considering 

this situation, Soil Moisture and Ocean Salinity mission (SMOS) was launched by European 

Space Agency (ESA) and Soil Moisture Active Passive Mission (SMAP) produced by NASA 

provide the solution towards the large aperture antenna limitation, while many other operational 

systems still have problems (Fang et al, 2013).  Although both SMAP and SMOS have daily 

products that cover global terra and aqua surface, the pixel size of the product is too large 

(around 36 km) for medium and small region research.  

To fulfill the research requirement stated above, other solutions of image resolution 

improvement has been developed. In order to achieve better image resolution, downscaling 

methods are utilized in the field of soil moisture estimation. The downscaling method in the field 

of soil moisture estimation are divided into a few different types: 1) method using active and 

passive microwave data, 2) method purely based on passive microwave data and 3) method 
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combining optical and passive microwave data. For the utilization of passive microwave data, 

these kinds of methods are stated as follow (Zhou, Zhao and Jiang, 2016). 

1.1. Multivariate statistical regression 

Specific characteristics of soil are the key points in this method. Under the same incident 

energy condition, surface temperature decreases with the soil moisture rises. Other than that, 

vegetation cover also has significant influence on the relation between surface temperature and 

soil moisture. The effect of soil moisture on surface temperature is less intense when the 

vegetation cover increases (Petropoulos, G., et al, 2009). 

To apply regression method in downscaling low-resolution image data, one assumption is 

necessary that the coefficient of parameters in the model should be scale-independent. 

Downscaling the low-resolution image data, multiple regression models are built based on soil 

moisture values from low resolution image data and resampled high-resolution image data of 

relevant index, such as surface temperature and NDVI. As regression models are built, applying 

high resolution data in regression equation to obtain the downscaled soil moisture value. In order 

to reduce the dependence of modeling parameters such as LST, vegetation index and reflectance 

to the local environment, normalization should be conducted before the modeling procedure. 

Fang built a regression model based on NDVI and surface temperature in 2013 (Fang et al., 

2013). Using multiple datasets, such as North American Land Data Assimilation System 

(NLDAS, 2011) hourly mosaic data and MODIS Aqua products, they managed to construct the 

regression relationship between the daily average soil moisture for the 1-km pixel and the change 

in surface temperature. Results are validated by Oklahoma Mesonet and Little Washita 

watershed observation, proving the downscaled soil moisture have elevated accuracy and spatial 

resolution. 
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1.2. Weight disaggregation 

Optical and infrared remote sensing technology detect soil moisture mostly by 

monitoring parameters related with soil moisture such as thermal inertia, temperature or 

vegetation index. This technology establishes the relationship by field sampling. Passive 

microwave is able to archive global-scale soil moisture data, but the resolution is relatively 

lower. Considering the fact that passive microwave data has lower resolution than optical and 

infrared data, weight disaggregation methods are delivered by using high resolution data, such as 

optical, infrared or active microwave data. The weight disaggregation method determines the 

distribution of water content inside low resolution pixel. For example, Kim applied this method 

for downscaling of the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) data by 

using MODIS-derived temperature and NDVI product. The result showed better accuracy than 

statistical regression method (Kim et al, 2012). 

1.3. Physically-based algorithm  

Physically-based algorithm is widely applied in downscaling soil moisture remote 

sensing data, especially application related with SMOS data. This method requires many 

supplementary data, such as wind speed and the roughness of earth surface that affect the 

evaporation of water content in soil. Merlin combined 40 km resolution of SMOS data with 1 km 

resolution optical and infrared remote sensing data, along with the variables participated in the 

surface-atmosphere interaction such as soil texture and atmospheric forcing. The downscaling 

algorithm keeps its stability in the sensitivity test that conducted by adding noise on auxiliary 

data and SMOS data. Validating with 1997 Southern Great Plains Hydrology Experiment 

(SGP97) and Advance Very High-Resolution Radiometer (AVHRR) data, the downscaling 

algorithm showed its decent feasibility with the standard deviation between algorithm produced 
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soil moisture level and the one inverted from ESTAR data is less than 4.0% for 90% of the 

SMOS sub-pixels (Merlin et al., 2005).  

1.4. Data assimilation  

By definition, data assimilation combining multiple data from different sources with an 

numerical model or process model, using mathematical theory to get an local optimal solution 

that close to the results from the model and actual observation. Then the local optimal solution 

serves as the initial filed in the model, repeat the process to gets closer to the actual in situ value 

until the results eventually match with the true value. Houser (Houser et al., 1998) first put 

forward the idea of using four-dimensional data assimilation in the application of soil moisture 

and hydrological model. Largely depending on the land surface models’ quality, data 

assimilation systems have been providing improvement in soil moisture estimation. To evaluate 

the improvement, skill metrics using land data assimilation has also become an reliable 

technology (Maggioni and Houser, 2017).  

1.5. Spatial interpolation method 

Spatial interpolation methods serve as a tool for estimating soil moisture from different 

observations, generate spatially continuous data (Li, and Heap, 2011). Traditional spatial 

interpolation, using linear mean or kriging, generates data of different spatial resolution from the 

interpolation of original data. The limitation of these traditional interpolation method is it can 

only preserve information from a single factor. With the ability to preserve the physically 

information in the original data during the process, irregular interpolation become a common 

method in scale variation (Zhou et al., 2016). Irregular interpolation requires two basic 

assumption that all variable should follow exponential relation and uniqueness in define the 

irregular surface. 
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1.6. Comparison of the downscaling methods 

In these studies, soil moisture estimation often uses linear or non-linear regression 

models to fit specific field sampling moisture measurements. The model mostly based on 

spectral reflectance values in one or more bands calibrated. These methods stated above have 

each advantages and range of application. Multivariate statistical regression is the one with 

universality by all means. Supplementary data for this method is easy to obtain, which is one of 

the causes that the method’s wide application in the field. At the same time, this approach has its 

weakness in the theoretical basis and the performance is not always satisfying under different 

circumstances. Weight disaggregation limited with circumstance applied to analyze the factors 

linear relate to soil moisture level. Physically-based algorithm performs well and has a strong 

theory background of its physical model. The disadvantages are that the process is too 

complicated and requires too many datasets of supplemental factors that makes it hard to produce 

large scale continuous data. These difficulties stop these methods from being promoted to more 

applications. Data assimilation and spatial interpolation have less universality for large scale 

application either. In this thesis, multivariate statistical regression method is chosen for study. 

Among these methods, passive microwave data inversion is one of the most efficient method and 

it is also the one will be tested in this thesis. 
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CHAPTER 2. LITERATURE REVIEW 

2.1. Multivariate statistical regression using passive microwave data 

 The relation between surface soil water content, vegetation cover and surface energy 

fluxes can be concluded with a ‘triangle’ method. In an even surface, as the land cover changes 

from bare ground to dense vegetation, water content in soil varies from low to saturation. Taking 

vegetation index as the X-axis and soil temperature as the Y-axis, the scatter plot appears to have 

an irregular triangle distribution (Price, 1990). When the vegetation cover remains unchanged, 

increased water content has positive effects on evapotranspiration, lowering the temperature of 

vegetation cover. While the water stress arise, evapotranspiration decreases and as a result, the 

surface temperature of vegetation become higher (Gillies et al., 1997; Moran et al., 2008). 

The downscaling approach Piles (Piles et al.,2014) conduct, is the upgraded version of 

the one they generate in 2011. The nonlinear model is applied with the SMOS and MODIS 

instruments across several different spatial scales. Considering the brightness temperature data 

contains multiple relevant index, such as surface roughness, soil texture and vegetation cover, the 

authors add SMOS brightness temperature data to the regression formula. Besides, MODIS and 

SMOS data do not share the temporal consistency in the study area. Adding the brightness 

temperature in the regression equation helps to make up the bias brought by the unmatched 

detection time. As a result, the output with brightness temperature involved is much better than 

the one without. ESA produced SMOS level 4 products generated 1-km and 10-km spatial 

resolution soil moisture maps based on this research.  

In 2016, Peng et al. studied the root zone soil moisture in Yunnan Province, China. Four 

passive (SMMR, SSM/I, TMI, and AMSR-E) and two active (ERS AMI and ASCAT) 

microwave soil moisture products are merged by a cumulative distribution function matching 
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technique. Based on the NDVI / LST (landscape surface temperature) feature space, the authors 

develop a downscaling method using vegetation temperature condition index (VTCI) as the only 

input. The formula is designed to turn the original 0.25° soil moisture data into downscaled 

Climate Change Initiative (CCI) soil moisture with 0.05° spatial resolution, while the VTCI is 

calculated by rescaling the LST of each pixel between two extreme LST values for each NDVI 

interval (Peng et al, 2016). Sandholt proposed the concept of Temperature-Vegetation Dryness 

Index (TVDI) based on the surface temperature-vegetation index feature space. The TVDI has 

negative correlation with the soil moisture, makes it served as one indicator the state of soil 

(Sandholt et al., 2002).  

The multivariate downscaling method is easy to compute and suitable in different 

circumstances. The method only needs remote sensing dataset to downscale passive microwave 

soil moisture products. It has become the most popular method in this research topic. However, 

there are still issues remain. First, the scaling effect is not under consider in this method. 

Whether the model is tenable remains questionable, considering the regression relation stride 

over different spatial scale. Second, models are built on the basis of specific study region and 

period as well. In this case, the model won’t be stable in all region, which may lead to the low 

efficiency of processing data. The last one is that the output is limited by the optical remote 

sensing data, which indicated the interference of cloud and precipitation is unable to eliminate 

(Zhou et al., 2018). 

2.2. Passive microwave radiometry 

L band is considered as the best band to detect water content in root zone soil. L band has 

the ability to penetrate sparse and medium density vegetation coverage and obtain soil 

information with a certain depth (Zhao, 2018). After advanced L-band sensors were activated, 
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this technology has brought some new opportunities and also problems to the field of soil 

moisture estimation. Take SMOS products as examples. According to Watershed scaled field 

observation and the AMSR-E soil moisture products, SMOS level 3 products successfully 

achieve the expected spatial resolution in general, but the vegetation optical depth varies on a 

daily basis and sometimes even show randomness. The product does not have the seasonal 

character as it supposes to (Jackson et al, 2012). Schlenz validate the SMOS brightness 

temperature product with simulation results using radiation transfer equation. The results 

indicating SMOS product is not reliable under small angles and the vegetation optical depth has 

no seasonal pattern in changing while the mean value is higher (Schlenz et al., 2012). As to 

SMAP passive products, an assessment of SMAP level 2 passive soil moisture product was 

conducted in 2016. Results indicates the accuracy level matched the description. The pattern of 

soil moisture changes corresponds with climate events. Except from the above conclusions, there 

are still some issues remain. The lack of in situ data, model parameters and the flag thresholds 

designated before launch which needs to be optimize with more current data, the situation needs 

to be improved (Chan et al., 2016).  

The future research on the microwave radiometry soil moisture estimation will focused 

on improvement of active passive algorithm and the rescaling method. Soil information for 

deeper layer is also a hot topic, as well as radiative transfer models. The direction for further 

research sums up to four topics: 1) Improvement for the utilization of datasets with different 

bands or sensor types; 2) develop better rescaling method for soil moisture product that 

contributes to the accuracy validation of the products; 3) investigate the P band application that 

achieve soil information from deeper ground level; 4) With Geosynchronous Earth Orbit 

satellite, the temporal accuracy of soil moisture data will be largely developed. 
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2.3. Choosing variables 

In the estimation of soil moisture, many factors have a strong influence on the soil 

moisture changes. Land surface temperature proved to have the strong linear correlation with soil 

moisture (Idso et al., 1975). The linear relation between surface temperature and soil water 

content is found to have a clear day-night pattern. Different tests conducted on three soil types, 

ranging from loam to clay. As a result, the soil type has an effect on the linear function, however, 

the strong relation between soil-air temperature and moisture level is proved to be sound. 

With the knowledge of the surface temperature’s impact on upper-level soil water 

content, vegetation index is introduced to the model in this research. In the root-zone soil, time 

series results indicating the vegetation index is significantly correlated to the soil moisture 

(Wang et al., 2006). The performance of the regression models differed from each other because 

of climates or vegetation cover, but the researchers conclude the vegetation index is a variable 

strongly correlated to root-zone soil moisture level. 

In 2009, Murphy compared and verified the use of elevation in soil moisture estimates. 

Both DTW and LiDAR DEM are proved to be able to support most of the observation. Given the 

fact that elevation is an index for downslope topography and hydrology condition, elevation is 

defined as a powerful tool to estimate soil moisture level (Murphy et al., 2009). Therefore, DEM 

is also utilized in this study. It serves as a variable in the second model along with LST and 

NDVI. 

Topographic Wetness Index is a steady-state wetness index that indicating the spatial 

pattern of terrain. Study conducted in Europe suggest the strong correlation between flow 

algorithm and soil moisture. The authors state the topographic wetness index can be used to 
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assess the spatial pattern of soil moisture (Schmidt and Andreas, 2003). Researchers computed 

the wetness index in two study sites in Sweden. Rather than having the best method of 

calculating TWI, the researchers identify the important variables for the process of computing 

TWI. With the knowledge of the effect that those variables have on soil moisture, the authors 

compose a principle of choosing method for calculating TWI (Sorensen et al., 2006). Base on the 

principle, TWI is computed from the high-resolution DEM data. The calculation method is set up 

based on the assumption that the soil moisture (wetness) distribution is controlled by two factors: 

contributing area (a) and the local slope(s). The equation is written as: TWI = ln(a/s). In this 

study, TWI is calculated by the equation above and utilized in the following experiment to 

estimate soil moisture level. 

2.4. Chapter summary 

This chapter discuss the statistical research method and the passive microwave remote 

sensing data. Reasons for variable choosing are also explained. In the field of soil moisture 

estimation, the multivariate regression method is proved to be very efficient and practical with 

superiorities. The accessibility of multiple remote sensing datasets and the universality for 

application on small region makes it stands out comparing to other methods. Although, some 

issues, such as the instability, still remains unsolved. The method has its irreplaceable advantages 

that combining with passive microwave radiometry into consideration, these two technologies is 

widely used to monitor and estimate soil moisture level. 

The relationship between soil moisture level and other varieties, especially land surface 

temperature and brightness temperature, has also investigated in many research papers. Besides 

of surface temperature and vegetation index that are broadly used in soil moisture estimation, 

http://dict.youdao.com/w/universality/#keyfrom=E2Ctranslation


 

12 

 

other variables like Enhanced Vegetation Index (EVI) and Temperature-Vegetation Dryness 

Index (TVDI) has also proved to be strong correlate to water content in soil.   
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CHAPTER 3. DATA SETS AND STUDY AREA 

3.1. Study area 

On the basis of the method chosen to downscale SMAP data, the regression model has 

multiple parameters to decide. Thus, the research area covers 42 SMAP pixels that guarantee the 

reliability of model building.  To validate the final downscaling results, SMAPVEX 15 field 

observation are compared and calculated. Considering all the requirements, the study area of 42 

SMAP level pixels are shown as figure 3.1. The time period of the study in this region is match 

SMAPVEX 15 validation program. 

The study area covers an area over 74,000 square kilometers and it locates in southwest 

United States. To be specific, 42 SMAP-level pixels are taken as the research region. Parts of 

Arizona and Mexico are included. This area also includes validation sites of SMAPVEX15 

program. As both Arizona, US and Mexico are known for its desert view and the arid climate, it 

is obvious that the annual rainfall in this area is relatively low. In addition, Soil types in this 

region are mostly gravel and sand which have good capability of drainage. 

For the dataset of SMAPVEX 15, the data collected in the region called Walnut Gulch 

Experimental Watershed (WGEW) which located in southeast Arizona. Operated by the USDA, 

the Walnut Watershed covers a semi-arid area around 148 square km. The average annual 

temperature in the region is around 17.7°C. Within the range of observation sites, most of the 

surface area is covered with shrub and grass (97%), the other areas are defined as developed 

open space (2%). The semiarid climate brings more than half of the precipitation during summer 

from July to September, annual precipitation around 350 mm. In the study time period around 

August, North American monsoon (NAM) influence the study area and brings intense but brief 

thunderstorms. Such a heavy rainfall will obviously affect the local ecosystem and the balance of 
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all the contents in soil (Moran et al., 2015). This area is perfect for validation of soil moisture 

because of these climate change events result in. The shifting precipitation provides more 

informative samples for the study. 

 

Figure 3.1. Study Area  
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Figure 3.2. Validation Area 08-02 (21 stations) 
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Figure 3.3. Validation Sites 08-13 (23 stations) 

3.2. Datasets 

3.2.1. SMAP Level 3 products 

 NASA launched the Soil Moisture Active Passive (SMAP) mission in January 2015 and 

it has been serving as an important global soil moisture observation mission since then. SMAP 

carries both radar and radiometer instruments which designed to detect soil moisture and 

recognize the freeze or thaw state of the mapping area. The observation of soil moisture level 

focus on the top 5 cm of surface, mapped by both radar and radiometer measurements. The radar 

instruments are in charge of ‘Active’ by transmitting pulses of radio waves down to the Earth’s 
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surface and analyze the returning echo. The radiometry instrument, on the other hand, stands for 

‘passive’, as it detects radio waves emitted by the ground and measures the temperature.  

 The project’s antenna covers a swath of 1000 km wide on the ground that completed soil 

moisture maps of Earth every 2 to 3 days. The SMAP mission generate all 15 data products and 

eventually represent 4 levels of data processing. As to the soil moisture products, there are three 

types of data, each stand for active(radar), passive(radiometer), active and passive (radar + 

radiometer) microwave data. The data product has the resolution of 3 km, 36 km and 9 km. In 

this thesis, we are using the Level 3 SMAP data (SPL3SMP). The Level 3 data product use the 

input L-band brightness temperature level to produce soil moisture data. This level also has the 

only freeze/thaw product in the SMAP mission. The product provides surface soil moisture in 

m3/m3. In this study, the 36-km resolution level 3 data is used for downscaling research collected 

from National Snow & Ice Data Center (https://nsidc.org/). In the data processing procedure, it is 

shown at 40-km resolution output on a fixed Earth-2 projection (Knipper et al., 2017).  The 

product contains two set of soil moisture collected from Local Solar Time (LST) 6 am or 6 pm. 

Considering the collection time of 6 am is close to the NDVI data, 6 am product is utilized 

(around 10:30 am).  

3.2.2. MODIS products 

NASA launched the Terra mission (formerly known as EOS AM-1) in December, 1999 

and had the Aqua mission (EOS PM-1) launched in May, 2002. These satellites have two 

different orbits that one runs north to south, vertical to the equator, and the other one passes from 

south to north. The combination of the 36 spectral bands from Terra and Aqua mission turns into 

the Moderate Resolution Imaging Spectroradiometer (MODIS). It is a global observation with a 

frequency around 1 to 2 days. The MODIS instruments provide the atmospheric, land and ocean 

https://nsidc.org/
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images to all users. In this study, the version 6 MODIS aqua daily day time LST product 

(MOD11A1), MODIS terra/aqua 16-day composite Normalized Difference Vegetation Index 

(NDVI) is used as variables to build the downscaling model for estimate soil moisture. These 

datasets have the spatial resolution around 1 km. 

The 1-km resolution daily LST product (MOD11A1) provides per-pixel land surface 

temperature data that derived from level 2 swath products. Giving consideration of overlapping 

observations, average LST values from all qualify observations are taken in this circumstance. 

This product gets rid of the interference of cloud from level 3 and level 2 products. 

Improvements are also made on the split-window algorithm and adjusting weights in the 

day/night algorithm ("MOD11A1 V006 | LP DAAC :: NASA Land Data Products And 

Services").  

The MOD13A2 1-km product not only provides two Vegetation layers, but also includes 

two Quality Assurance (QA) layers and Reflectance bands as well as four observation layers. 

The MOD13A2 version 6 product pick the best available value from all the pixel values obtained 

in the 16-day period. Only the highest NDVI value with low cloud and low view angle will be up 

to the standard. Among all these indexes, NDVI is utilized in the model building. Both NDVI 

composite product are generated by two 8-day Surface Reflectance product ("MOD13A2 V006 | 

LP DAAC :: NASA Land Data Products And Services"). 

For downscaling purpose, NDVI as primary vegetation index is chosen. NDVI calculates 

vegetation index within a value range between -1 to 1 based on a simple equation as in Equation 

1 and is the most widely used vegetation index tested with various studies.  

nir red

nir red

R R
NDVI

R + R

−
= ，(1) 
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Where Rnir and Rred represent the reflectance values of the red and NIR bands 

respectively.All MODIS products are acquired from the NASA Atmosphere Archive & 

Distribution System (LAADS) Distributed Active Archive Center (DAAC) site 

(https://ladsweb.modaps.eosdis.nasa.gov/) in the standard hierarchical data format for the time 

period under investigation. Before model building, all remote sensing images are projected to 

WGS 1984 17 N system. 

3.2.3. SRTM 1 arc-second product 

 The Shuttle Radar Topography Mission (SRTM) was launched by National Aeronautics 

and Space Administration (NASA) and National Imagery and Mapping Agency (NIMA) on 

February 2000. This joint mission is aimed to collect topographic data for most of the land 

surface over the globe. The mission use radar interferometry to achieve surface elevation. 

Transmitting the radar wave to the earth’s surface, the scatter waves received by main antenna 

and outboard antenna came back with differences. Known the accurate baseline distance between 

the main antenna and outboard antenna, the land surface elevation can be calculated. The spatial 

resolution for SRTM products is 1 arc-second (around 30 meters) and 3 arc-second (around 90 

meters). In the thesis, SRTM 1 arc-second global elevation data is used. 

3.2.4. SMAPVEX15 observation 

The SMAPVEX program is a validation experiment that is developed to assess the 

accuracy of SMAP data. The first experiment was conducted in 2012. SMAPVEX-15 was 

carried out in southern Arizona, United States. To create a more spatially and temporally 

complex experimental environment, the experiment is proceeded during Summer Monsoon. 

Some certain dates in August that data from other satellites providing soil moisture estimates are 

available in this region. Both network stations and airborne sensors come into service. For 

https://ladsweb.modaps.eosdis.nasa.gov/
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aircraft component, Passive Active L-band System (PALS), the Uninhabited Aerial Vehicle 

Synthetic Aperture Radar (UAVSAR), and Airborne Microwave Observatory of Subcanopy and 

Subsurface (AirMOSS) are utilized in this experiment. Among the three components, PALS is 

the key method in SMAPVEX15 ("SMAP: SMAPVEX15").  

Most of the SMAPVEX 15 data is collected by distributed soil moisture network 

composed by nearly 80 stations. The ground-based sampling mainly uses Stevens Hydra Probes 

which installed underground 5 cm to get the effective soil moisture. Measurements of soil 

moisture is averaged between 5:00 a.m. and 7:00 a.m. to match satellite overpass times. The 

SMAPVEX 15 data also downloaded from National Snow & Ice Data Center (https://nsidc.org/). 

The Volumetric Soil Moisture (VSM) used in the validation is probe-reading data. To 

match with the retrieval footprint of SMAP products, the field station utilized multiple sample 

sites which meets statistical criteria. The scale of field observation data is 800 m that close to the 

downscaled result. Unit for the ground soil moisture is m3/ m3 which is the same with original 

SMAP soil moisture retrieval.  

http://uavsar.jpl.nasa.gov/
http://airmoss.jpl.nasa.gov/
https://nsidc.org/
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CHAPTER 4. METHODS 

 The following scatter plots demonstrate the relation between soil water level and the 

variables. All the docs represent the mean value of indexes from the 100-pixel research area. Soil 

moisture level as the Y-axis and variables in the model serve as the X-axis. All data value is 

being normalized for intuitive view before generating scatter plot. Based on the scatter plots, 

distribution of NDVI can be conclude by linear relation, while both LST, DEM and TWI do not 

show strong linear relation to soil moisture value. Thus, nonlinear regression model is adopted 

for this thesis research. 

 

Figure 4.1. Scatter Plot of NDVI and Soil Moisture 
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Figure 4.2. Scatter Plot of LST and Soil Moisture 
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Figure 4.3. Scatter Plot of DEM and Soil Moisture 
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Figure 4.4. Scatter Plot of TWI and Soil Moisture 

 

4.1. Multiple regression model 

4.1.1. Model 1 

As stated above, multiple regression method has many advantages for soil moisture 

downscaling. In this research, two regression models are used. NDVI and LST serve as two 

independent variables. DEM data is added to equation 7 as the second model. According to the 

requirements of the multiple regression model, the variable assumed to be the independent 

variable which leads to affecting soil moisture. Piles (2011) indicate that soil moisture, LST, 
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vegetation index has multivariate nonlinear regression relationship and can be calculated by 

Equation 3. The formula stated as follow:  

* *

0 0

SM= NDVI LST ,
j ni n

i j

ij

i j

a
==

= =

  (2) 

The formula is interpretate to the following equation: 

00 01 10 11SM= *LST * NDVI * NDVI*LSTa a a a+ + + , (3) 

n is the order of the model, aij represents the regression coefficients of the independent 

variable. SM stands for soil moisture estimates, while LST* represents the normalized observed 

LST. For better performance of the regression model, normalization process is conduct to all 

datasets. Specific definition is as follows, 

* min

max min

LST - LST
LST ,

LST - LST
= (4) 

LSTmin and LSTmax represent the minimum and maximum LST values in the research 

area.  

4.1.2. Model 2 

To achieve better downscaled results, elevation value is introduced to the model. The 

second model work as a nonlinear regression model and the equation is as follows,  

* * *

0 0 0

SM = NDVI LST DEM
n n n

i j k

ijk

i j k

a
= = =

 , (5) 

The equation can be defined as follows, 

000 100 010 001 110

2 2 2

101 011 200 020 002

SM * NDVI + * LST + * DEM +  * NDVI * LST 

+ NDVI * DEM + LST * DEM + * NDVI  + * LST  + * DEM

a a a a a

a a a a a

= +
, (6) 

To entirely interpret Equation 7, 27 parameters along with multiple variables overlay 

with each other in many polynomials. To avoid similar polynomials interfering the model 
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building, all polynomials contain more than 2 variables are removed. Research in 2014 also 

indicated the reliability of this formula interpretation (Piles et al., 2014). Normalization is also 

executed before regression process. The method of normalization is the same as shown in the 

equation 4. 

4.1.3. Model 3 

Topographic Wetness Index (Sorensen et al. 2007) is a steady-state wetness index 

computed from the high-resolution DEM models. It assumes the soil water content (wetness) 

distribution is controlled by the two factors: contributing area (a) and the local slope. The 

equation is written as:  

TWI = ln(a/s), (7) 

TWI was calculated from the 30 m resolution DEM obtained from the USGS National 

Elevation Dataset (NED). The data was originally provided in the Geographic Coordinate 

System at the 1/3 arc-second resolution (approximated 30 m). The DEM was mosaicked and 

projected to the UTM 12 N coordinate system and clipped to fit the extend of the SMAP data. A 

TWI model was created in ArcGIS to derive TWI using a string of functions including “fill 

depression”, “flow accumulation”, and “slope”. The graphic view of the TWI model was shown 

in the following figure. 

* * *

0 0 0

SM = NDVI LST TWI
n n n

i j k

ijk

i j k

a
= = =

 , (8) 

The equation above is interpreted into the following: 

000 100 010 001 110

2 2 2

101 011 200 020 002

SM * NDVI + * LST + * TWI+  * NDVI * LST 

+ NDVI * TWI + LST * TWI + * NDVI  + * LST  + * TWI

a a a a a

a a a a a

= +
, (9) 
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There are 10 parameters in the equation. To entirely explain the original formula, there 

will be much more parameters than 10. But for the same reason as it is explained in previous 

section, all polynomials contain more than 2 variables are eliminated in order to reduce 

interferences between variables. In the research, second-order polynomial regression model is 

applied in model building process for computational efficiency. SPSS is employed for analyzing 

the dataset and generate the regression models.  

4.2. Downscaling methodology 

In general, the downscaling method in this paper assumes the coefficient of model 

parameters would not change with the scale. The low-resolution images are utilized to generate 

the regression model, then the model is applied with the high-resolution image to achieve 

downscaled high-resolution soil moisture data. The entire route of the experiment is divided into 

few steps, reprojection, resample, normalization and regression. Modeling results are validated 

with field observation from two separate dates. Several studies have shown the strong correlation 

between soil moisture, LST, vegetation index, DEM and TWI. To downscale the low-resolution 

data, SMAP images and supplemental data are utilized to calculate the regression model and 

further produce detailed soil moisture maps.  

4.3. Route of technology 

The entire route of technology for this thesis is shown in figure 4.1. It addresses the all 

the necessary datasets and research methods used in the practice. On the basis of using second-

order polynomial regression model, 9 coefficients would be generated, which requires at least 10 

pixels to be the input dataset. To meet the requirement, a 6*7 cell research area is chosen in the 

study. 100 pixels of the SMAP data are downscaled with 1-km MODIS products and 30-m 

SRTM elevation image in the same area same time period. 
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For the preprocess procedure, original 1-km spatial resolution MODIS are projected to 

WGS 1984 (17N) in ENVI. The 30-m resolution DEM images are also projected to the same 

projection system. Resampling procedure is conducted by calculating the mean of all the 

vegetation index value, LST values and elevation within the larger pixel (40 km ×40 km), the 

MODIS 1-km resolution data is aggregated to 40-km scale. For regression model, three models 

are utilized by different variables for comparison. The first model takes LST and NDVI image as 

high-resolution input, the second model prefers LST, NDVI and DEM while the third model 

process LST, NDVI and TWI data instead. High-resolution soil moisture level is computed based 

on the regression formula. After the preprocess and model building, SMAP data is downscaled 

using the regression models stated above. The final step is to validate the downscaling output 

with the SMAPVEX15 field observation. Results from three regression models are compared 

with the field data of two different dates. To evaluate the regression model, not only the 

comparison results are being assessed, but also the fitting degree of the model simulation and the 

in-situ data.  
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Figure 4.5. Route of Technology (Model 1) 
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Figure 4.6. Route of Technology (Model 2) 
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Figure 4.7. Route of Technology (Model 3) 
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CHAPTER 5. RESULTS AND DISCUSSION 

5.1. Data analysis 

 Considering the validation data SMAPVEX 15 is conducted during August 2nd to August 

18th, datasets from the same time period are picked for the validation, but after evaluating the 

LST images in the validation region, only August 2nd and August 13th MODIS images provide 

available LST value without missing too much area with cloud cover. The models are built based 

on 42-pixels research area and the regression models are validated by the field observation in 

Arizona. The NDVI/ LST/ DEM/TWI condition of research area in Arizona is demonstrated in 

Figure 5.1. It is obvious that the mountain in the study region not only affect elevation, but the 

vegetation cover and land surface temperature appear the same pattern. As the elevation increase, 

vegetation cover decreases while the surface temperature drops. In the validation area, the 

pattern indicates the increasing surface temperature, which is caused by the subtropical monsoon.  
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Figure 5.1. (a) DEM; (b) TWI; (c) NDVI; (d) LST of research area in 08-02-2015; 
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Figure 5.2. Land Surface Temperature of Study Area (a) 08-02 LST; (b) 08-13 LST 

5.2. Modeling results for Model 1 

After image processing, downscaling model based on NDVI and LST is generated. With 

calculating the original SMAP 40-km soil moisture, parameter estimates of variables provide the 

relation between variables and soil moisture level. The downscaled results of the study area are 

achieved by applying the model on MODIS-level resolution data.  
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The coefficient of parameters for Model 1 experiments are listed as Table 5.1 and 5.3. 

Each table represent the data from each experiment date. The correlation of estimated parameters 

is shown in table 5.2 and 5.4. The correlation of parameter estimates illustrates each variable are 

strongly correlated to each other. However, Model 1 is a nonlinear regression, in that case, the 

law of correlation is not suitable for this situation. In common cases, high correlation of each 

parameter requires further examination of multicollinearity. However, given the condition of 

nonlinear regression, there is no need for multicollinearity test. Also, for the same reason of 

nonlinear regression, the ANOVA table with R square does not represent the fitting degree of the 

model. In this research, validation results show the accuracy and the fitting degree of the 

regression model. All three models are evaluated by calculating the mean absolute error (MAE) 

and root mean square error (RMSE). 

Table 5.3. Model 1 parameter estimation of soil moisture in 08-02 

Parameter Estimates 

Parameter Estimate Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

a00 .115 .025 .063 .167 

a01 .020 .034 -.049 .089 

a10 -.002 .053 -.109 .106 

a11 -.027 .099 -.228 .174 

 

Table 5.4. Correlation of parameter estimates in 08-02 

Correlations of Parameter Estimates 

 a00 a01 a10 a11 

a00 1.000 -.895 -.917 .521 

a01 -.895 1.000 .900 -.789 

a10 -.917 .900 1.000 -.741 

a11 .521 -.789 -.741 1.000 
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Table 5.5. Model 1 parameter estimation of soil moisture in 08-13 

Parameter Estimates 

Parameter Estimate Std. Error 

95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

a00 .115 .025 .063 .167 

a01 .020 .034 -.049 .089 

a10 -.002 .053 -.109 .106 

a11 -.027 .099 -.228 .174 

 

Table 5.6. Correlation of parameter estimates in 08-13 

Correlations of Parameter Estimates 

 a00 a01 a10 a11 

a00 1.000 -.895 -.917 .521 

a01 -.895 1.000 .900 -.789 

a10 -.917 .900 1.000 -.741 

a11 .521 -.789 -.741 1.000 
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Corresponding downscaled soil moisture product also listed as figure 5.4 and figure 5.5. 

The comparison result is quite clear in the downscaled product here. If the conclusion were only 

made based on the low-resolution data, we are only able to presume that the northwest pixel has 

the lowest moisture level while the southeast has the lowest. But more detailed information is 

provided with the downscaled remote sensing image. The overall downscaled image fits the 

terrain character of the study region. Pattern of soil moisture level matches the local topography. 

The blank space in the image is caused by the missing LST value. Missing LST value is one of 

the biggest problems in the process. There are many reasons for causing the problem, cloud is the 

most common cause, which is quite normal during the summer monsoon. 

Figure 5.7. Left: SMAP image; Right: Downscaled SMAP data (Model 1) 
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Figure 5.8. Left: 08-13 SMAP image; Right: Downscaled SMAP data (Model 1) 

 

5.2. Modeling results for Model 2 

The following Table 5.2 represents the parameter estimates for Model 2. Correlation of 

each parameter estimates are also high. Same with previous modeling result, the high correlation 

between each parameter are reasonable because of the nonlinear regression.  
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Table 5.9. Model 2 Estimation of Soil Moisture (08-02) 

Parameter Estimates 

Parameter Estimate Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

a000 .102 .071 -.043 .247 

a100 -.284 .245 -.784 .217 

a010 .059 .152 -.251 .368 

a001 .222 .137 -.057 .501 

a110 .160 .189 -.225 .544 

a101 .272 .227 -.191 .734 

a011 -.158 .131 -.426 .110 

a200 .024 .310 -.608 .657 

a020 -.022 .090 -.206 .161 

a002 -.189 .090 -.372 -.006 

 

Table 5.10. Correlation of Parameter Estimates for Model 2 (08-02) 

Correlations of Parameter Estimates 

 a000 a100 a010 a001 a110 a101 a011 a200 a020 a002 

a000 1.000 -.724 -.897 -.473 .697 .142 .512 .456 .768 .345 

a100 -.724 1.000 .484 -.134 -.787 .269 .069 -.872 -.338 -.193 

a010 -.897 .484 1.000 .456 -.661 -.184 -.533 -.211 -.964 -.249 

a001 -.473 -.134 .456 1.000 .126 -.517 -.916 .268 -.400 -.488 

a110 .697 -.787 -.661 .126 1.000 -.092 -.154 .523 .555 .041 

a101 .142 .269 -.184 -.517 -.092 1.000 .411 -.653 .156 -.461 

a011 .512 .069 -.533 -.916 -.154 .411 1.000 -.160 .503 .441 

a200 .456 -.872 -.211 .268 .523 -.653 -.160 1.000 .110 .407 

a020 .768 -.338 -.964 -.400 .555 .156 .503 .110 1.000 .202 

a002 .345 -.193 -.249 -.488 .041 -.461 .441 .407 .202 1.000 
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Table 5.11. Model 2 Estimation of Soil Moisture (08-13) 

Parameter Estimates 

Parameter Estimate Std. Error 

95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

a000 .102 .071 -.043 .247 

a100 -.284 .245 -.784 .217 

a010 .059 .152 -.251 .368 

a001 .222 .137 -.057 .501 

a110 .160 .189 -.225 .544 

a101 .272 .227 -.191 .734 

a011 -.158 .131 -.426 .110 

a200 .024 .310 -.608 .657 

a020 -.022 .090 -.206 .161 

a002 -.189 .090 -.372 -.006 

 

Table 5.12. Correlation of Parameter Estimates for Model 2 (08-02) 

Correlations of Parameter Estimates 

 a000 a100 a010 a001 a110 a101 a011 a200 a020 a002 

a000 1.000 -.724 -.897 -.473 .697 .142 .512 .456 .768 .345 

a100 -.724 1.000 .484 -.134 -.787 .269 .069 -.872 -.338 -.193 

a010 -.897 .484 1.000 .456 -.661 -.184 -.533 -.211 -.964 -.249 

a001 -.473 -.134 .456 1.000 .126 -.517 -.916 .268 -.400 -.488 

a110 .697 -.787 -.661 .126 1.000 -.092 -.154 .523 .555 .041 

a101 .142 .269 -.184 -.517 -.092 1.000 .411 -.653 .156 -.461 

a011 .512 .069 -.533 -.916 -.154 .411 1.000 -.160 .503 .441 

a200 .456 -.872 -.211 .268 .523 -.653 -.160 1.000 .110 .407 

a020 .768 -.338 -.964 -.400 .555 .156 .503 .110 1.000 .202 

a002 .345 -.193 -.249 -.488 .041 -.461 .441 .407 .202 1.000 

 

Figure 5.13 and 5.14 is the downscaled SMAP data of research area. The image shows 

that DEM result distribution is different from the original SMAP image. Using the same 

classification of DEM-derived modeling result, the SMAP image does not provide any detail 
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information especially about the southeast corner. The entire distribution apparently match with 

the actual SMAP distribution of moisture level. Fitting degree of Model 2 will be examined later 

in the validation.  

Figure 5.13. Left: 08-02 SMAP image; Right: Downscaled SMAP data (Model 2) 
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Figure 5.14. Left: 08-13 SMAP image; Right: Downscaled SMAP data (Model 2) 

 

5.3. Modeling results for Model 3 

The parameter estimates of model 3 for August 2nd, 2015 are listed in the following Table 

5.5 while Table 5.6 shows the correlation of parameter estimates. The comparison of the original 

SMAP soil moisture data and the model-based downscaled soil moisture image can be reached in 
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figure 5.8. The downscaled image is aggregated to the MODIS level pixel size, which is also 

showing the same pattern with the original SMAP data. The blank region in the image is caused 

by the missing data of surface temperature. Cloud and climate are the main reason for the 

missing area. The downscaled soil moisture map provided more precise image than the SMAP 

data. For example, SMAP products are not able distinct the difference of soil water level 

between pixels, while the downscaled map provided detail information especially for the 

southeast side of the study area. 

Table 5.15. Model 3 estimation of soil moisture in 08-02 

Parameter Estimates 

Parameter Estimate Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

a000 .311 .131 .045 .578 

a100 -.621 .421 -1.480 .238 

a010 .017 .187 -.364 .399 

a001 -.342 .167 -.683 -.001 

a110 -.008 .257 -.532 .517 

a101 .563 .233 .087 1.038 

a011 .093 .118 -.147 .333 

a200 .455 .364 -.287 1.196 

a020 -.030 .094 -.222 .162 

a002 .073 .088 -.107 .253 
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Table 5.16. Model 3 correlations of parameter estimates in 08-02 

Correlations of Parameter Estimates 

 a000 a100 a010 a001 a110 a101 a011 a200 a020 a002 

a000 1.000 -.947 -.735 -.776 .771 .805 .633 .837 .388 .296 

a100 -.947 1.000 .612 .693 -.740 -.770 -.535 -.965 -.260 -.256 

a010 -.735 .612 1.000 .264 -.924 -.306 -.543 -.477 -.819 .114 

a001 -.776 .693 .264 1.000 -.290 -.932 -.508 -.578 .021 -.659 

a110 .771 -.740 -.924 -.290 1.000 .347 .489 .647 .675 -.052 

a101 .805 -.770 -.306 -.932 .347 1.000 .595 .670 -.019 .429 

a011 .633 -.535 -.543 -.508 .489 .595 1.000 .430 .039 -.243 

a200 .837 -.965 -.477 -.578 .647 .670 .430 1.000 .147 .210 

a020 .388 -.260 -.819 .021 .675 -.019 .039 .147 1.000 -.039 

a002 .296 -.256 .114 -.659 -.052 .429 -.243 .210 -.039 1.000 

 

Table 5.17. Model 3 estimation of soil moisture in 08-13 

Parameter Estimates 

Parameter Estimate Std. Error 

95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

a000 .311 .131 .045 .578 

a100 -.621 .421 -1.480 .238 

a010 .017 .187 -.364 .399 

a001 -.342 .167 -.683 -.001 

a110 -.008 .257 -.532 .517 

a101 .563 .233 .087 1.038 

a011 .093 .118 -.147 .333 

a200 .455 .364 -.287 1.196 

a020 -.030 .094 -.222 .162 

a002 .073 .088 -.107 .253 
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Table 5.18. Model 3 correlations of parameter estimates in 08-13 

Correlations of Parameter Estimates 

 a000 a100 a010 a001 a110 a101 a011 a200 a020 a002 

a000 1.000 -.947 -.735 -.776 .771 .805 .633 .837 .388 .296 

a100 -.947 1.000 .612 .693 -.740 -.770 -.535 -.965 -.260 -.256 

a010 -.735 .612 1.000 .264 -.924 -.306 -.543 -.477 -.819 .114 

a001 -.776 .693 .264 1.000 -.290 -.932 -.508 -.578 .021 -.659 

a110 .771 -.740 -.924 -.290 1.000 .347 .489 .647 .675 -.052 

a101 .805 -.770 -.306 -.932 .347 1.000 .595 .670 -.019 .429 

a011 .633 -.535 -.543 -.508 .489 .595 1.000 .430 .039 -.243 

a200 .837 -.965 -.477 -.578 .647 .670 .430 1.000 .147 .210 

a020 .388 -.260 -.819 .021 .675 -.019 .039 .147 1.000 -.039 

a002 .296 -.256 .114 -.659 -.052 .429 -.243 .210 -.039 1.000 
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Figure 5.19. Left: 08-02 SMAP image; Right: Downscaled SMAP data (Model 3) 
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Figure 5.20. Left: 08-13 SMAP image; Right: Downscaled SMAP data (Model 3) 

Considering the two downscaled maps, some information of the model performance is 

clear. The spatial pattern of downscaled results matches the original SMAP data. Both maps 

indicate that the southeast part of study area tends to be drier and more arid than the other part of 

the area. Placing the Model 2 results with Model 3 results, the Model 3 results provide a finer 

grain than Model 2. DEM-derived model has a smoother image than TWI-based one. During the 

calculation of TWI, contribution area and local slope are taken into consideration, which can 

explain the granular sensation of Model 3 soil moisture maps. 
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5.4. Validation Results 

After producing downscaled maps, all results are combined with SMAPVEX 15 data for 

validation. To evaluate the results, 22 ground observation of soil moisture data are chosen as 

ground truth value. MAE (Mean Absolute Error) of SMAP data and three downscaled methods 

are calculated as Table 5.5. Unlike ME (Mean Error), MAE avoid additional errors caused by the 

cancellation of positives and negatives. MAE is a common measurement of the differences 

between two groups of variables. It compares the prediction value with the observation. As 

present in the table, downscaled results have lower MAE than the original SMAP data, indicating 

the feasibility of the regression model. 

Table 5.21. Mean Absolute Error Comparison 

MAE Model 1 Model 2 Model 3 SMAP 

08-02 0.042835 0.092580 0.052023 0.261907 

08-13 0.031265 0.031011 0.032850 0.158449 

 

RMSE, known as root-mean-square deviation or root-mean-square error, is a common 

measurement of fitting degree of regression model. RMSE measures the average magnitude error 

between predicted value and observation value, so it is regarded as model’s capability of 

prediction. In Table 5.6, RMSE of all models’ performance in validation are calculated and 

compared. 

Table 5.22. Root Mean Square Error of Each Models 

RMSE Model 1 Model 2 Model 3 SMAP 

08-02 0.049016  0.101159  0.062727  0.067731 

08-13 0.041156  0.041856  0.044062  0.047345 
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Since the errors are squared before they are divided, RMSE reveals the condition when 

there are large errors in the dataset. Base on the mean absolute error, the original SMAP image 

has larger errors in general compared with the downscaled results. It is obvious that the 

regression models perform better than the original SMAP images, especially Model 1 and 3. 

Given the differences of MAE and RMSE, statistics show that there is no large outlier in the 

errors of downscaled soil moisture level.  

Comparing results from SMAP data and downscaled soil moisture images, all three 

models perform better than the original SMAP data. Given the condition of models derived by 

two factors and three factors, Model 2 (DEM-derived) do not serve as satisfactory in 

experiments. Meanwhile, Model 3 do not enhance the performance either. Introducing the 

Topographic Wetness Index to the model bring better consistency and fitting than elevation-

derived model. Both MAE and RMSE of TWI-derived model is smaller than the DEM-derived 

model, suggesting better execution in downscaling. As result, it indicates Model 3 performs 

relatively better than Model 2. However, the TWI-based model results show slight difference 

with Model 1. Instead of profound improvement, TWI provide a similar outcome comparing to 

Model 1. 

5.4.1. Validation Result of 08-02-2015 

Model-generated soil moisture maps are compared with the original SMAP images. The 

downscaled results indicating the unsatisfying performance of Model 2. DEM-based model does 

not show any advantage in the downscaling. Model 2 results in much higher moisture level not 

only compared to the original SMAP value, but also to the in-situ data. Meanwhile, Model 1 and 

Model 3 perform decently and produce detailed downscaled results. Both the maps generated by 

Model 1 and Model 3 appear the same pattern, which match with the local LST and TWI images.  
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Chart 5.23. Validation data and Model Estimates (08-02) 

Chart 5.24. Absolute Error of Each Model Estimates (08-02) 
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These two charts are the absolute error between model-predicted value and the actual 

field observation. All three model results and the original SMAP data are compared with the 

validation data. Base on the charts above, it is obvious that all three model has the approximate 

error in predicting soil moisture level. Comparing the modeling results from SMAP data, it can 

conclude that the models are more precise than the original SMAP data. These downscaled maps 

fit the spatial pattern of elevation or surface temperature.  

5.4.2. Validation Result of 08-13-2015 

The following figure is Model-generated soil moisture maps compared with the original 

SMAP images. Model 1 results have relatively small RMSE, which indicating a good fitting of 

the model. The results support the statement that Model 1 in this study is valuable in soil 

moisture estimation. In term of the accuracy of predicted result, the downscaled results from 

three models are in the same level in 08-13 experiment. Comparing the MAE and RMSE of 

Model 1 and Model 3, they have very much the same MAE but the difference in RMSE is 

greater, indicating Model 2 has greater errors than Model 1. 
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Chart 5.25. Validation data and Model Estimates (08-13) 

Chart 5.26. Absolute Error of Each Model Estimates (08-13) 
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5.5. Discussion 

Model 2 and 3 are designed to test out the performance of two variables, DEM and TWI.  

Base on previous research and results from Model 1, surface temperature and vegetation index 

are proved to be spatial correlated to soil moisture. The experiments are established based on the 

idea that bring a new factor to the regression model will bring stability and better outcome. 

Adding the elevation value and wetness index to linking model, the downscaling results are not 

significantly improved comparing to the Model 1 results. According to the current outcome, 

TWI-derived model outperforms the DEM model. The result suggests that DEM is not profound 

correlate to moisture level as it is expected to be. DEM- derived model has an RMSE that is 

remarkable higher than the other two modeling results. A high value RMSE is not acceptable 

because the moisture level itself is usually small in the study area.  

In order to achieve ideal outcome, TWI is calculated and put into service in the third 

experiment. The Topographic Wetness Index (TWI), also called Compound Topographic Index 

(CTI), is an index that represents the topographic character of the terrain. By calculating the flow 

accumulation and slope, TWI is a steady index for soil moisture estimation. Model 3 results meet 

the expectation of high accuracy estimation. Compared with ground observation, the RMSE from 

two separate validation dates are relatively small. RMSE rang from 0.04 to 0.07, suggest the 

reliable stability of Model 3. Given the consideration of soil water level in the validation area is 

within 0.4 m³/m³, RMSE of 0.04 indicating the high accuracy of the downscaled results. 

However, the overall outcome of the TWI-based model does not show strong 

improvement comparing to Model 1. Both MAE and RMSE of the validation indicates TWI does 

not prominently enhance the modeling performance. Based on the characteristic of TWI, the 

possible reasons of the inadequate results are as follows. 
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TWI is very sensitive to the grid size of original DEM. It is reasonable soil moisture 

could be affected by small scale topography. Slope smaller than the pixel size (30 m) may not be 

captured by the sensor which might have profound influence on the final modeling results. With 

more accurate TWI data, might achieved more solid downscaling result. 

In the experiments, considering the limitation of data acquisition, LST is a daily data that 

may be more temporally relate to soil moisture level. For comparison, TWI is derived from 

SRTM 1 arc-second data which is collected on February 2000. The topography of the research 

area may have some changes that did not presented by the TWI image.  

In other studies, researchers also indicate the topographic wetness index is not strongly 

correlated to surface soil moisture. Sanchez tested the effect of critical factors on soil moisture. 

Factors, such as topography and land use, did not show clear spatial correlation with soil 

moisture. Meanwhile, distribution of precipitation had a remarkable relation to soil moisture 

(Sanchez et al., 2012). 

 Based on the results of this study, further research on regression model is emphasis on a 

few aspects. First, even though TWI and DEM do not enhance the modeling result in this 

experiment, TWI calculated by higher resolution elevation data may provide more accurate 

result. Also, new calculation method of TWI may present difference in the downscaling process. 

Second, daily information, for example, surface temperature is the strongest indicator in the 

linking model, so it is reasonable to test other daily data in the regression model. Factors, such as 

precipitation and freeze/thaw information, control the spatial or temporal changes of soil 

moisture. Introducing new daily remote sensing data may have positive effect on the 

downscaling outcome. Third, it is also important to measure the model’s stability. In order to 

have a more comprehensive understanding of the modeling result, it’s necessary to conduct time 
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series examination. Multiple dates from different seasons throughout the year would be ideal for 

the examination. 
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CHAPTER 6. SUMMARY AND CONCLUSION 

In summary, the regression relationship between several important indicators and soil 

moisture are investigated before planning the experiments. With the knowledge of those factors, 

three regression models are built to downscale the SMAP level 3 products. All three models are 

nonlinear regression model. The results of the models have good fitting with the SMAP soil 

moisture.  

After the models are established, and implement with high resolution MODIS image, the 

original SMAP 36-km resolution product is downscaled to MODIS-level 1 km resolution. The 

downscaled soil moisture map showed relatively better accuracy. In this study, DEM was not the 

strong indicator of soil moisture level as expected. Rather than simply use elevation value, TWI 

is calculated by measuring the accumulated area and local slope, which did not show significant 

efficiency in assessing soil water either. 

The limitation of this research includes missing LST data caused by cloud coverage and 

the fixed elevation information that retrieved years before the experiment date. Further study will 

emphasis on the improvement of the regression model. Research direction will focus on 

exanimating the pattern of the spatial correlation between other factors and soil moisture 

retrieval. Furthermore, using data from multiple days throughout the year to test the factors. 

Related research on the model’s performance with different soil type, climate or land cover is 

also a key point.  

In general, this research has concluded the following: 

1. Successfully building regression model based on surface temperature, vegetation 

index, elevation, wetness index and soil moisture in southwest United States. 
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2. Based on the modeling results from low resolution data, calculated downscaled soil 

moisture value and validated with field observation. 

3.The multivariate regression model of Model 1 (NDVI and LST-based) has good fitting 

results. Validation confirm the fact that TWI outperform the DEM-derived model. This 

downscaling method with vegetation index and surface temperature achieves better spatial 

resolution and lower error at same time. 

4. Future study will focus on the improvement of soil moisture estimation. The time-

series examination of other key factors in downscaling soil moisture is the primary goal. 

Repeated experiments on different soil types, vegetation cover and climates are also a direction 

of research. 
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