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ABSTRACT 
 
 
 
Toalston, Jamie E. Ph.D., Purdue University, August 2011. Peri-Adolescent Alcohol 
Consumption Enhances the Reinforcing and Stimulatory Properties of Ethanol Within the 
Adult Mesolimbic Dopamine System in Alcohol Preferring P Rats. Major Professor: 
James M. Murphy. 
 
 
 
 Research in the alcohol preferring (P) rat has indicated that peri-adolescent 

alcohol (EtOH) consumption enhances the acquisition of oral operant EtOH self-

administration, inhibits the extinction of responding for EtOH, augments EtOH-seeking 

behaviors, and increases relative reward value of EtOH during adulthood. Experiment 1 

was conducted to determine if these adult effects of peri-adolescent EtOH intake could 

be observed using an Intracranial Self-Administration (ICSA) model. It was hypothesized 

that an increased sensitivity to the rewarding actions of EtOH would be manifested in 

peri-adolescent-EtOH-exposed subjects compared to naive subjects when the 

opportunity to self-administer EtOH to the posterior ventral tegmental area (pVTA) is 

available in adulthood. The pVTA is a primary site for EtOH’s reinforcing and rewarding 

properties in the mesolimbic dopamine (DA) system. Experiment 2 was a dose-response 

examination of the effects of EtOH administered to the pVTA on downstream DA efflux 

in the nucleus accumbens shell (AcbSh) via a joint Microinjection-Microdialysis 

(MicroMicro) procedure. 

  Male P rats were given 24-h free-choice exposure to 15% volume/volume EtOH 

from postnatal day (PD) 30 to PD 60, or remained experimentally naive, with ad lib food 
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and water. By the end of the periadolescent exposure period, average consumption was 

7.3 g/kg/day of EtOH. After PD 75, periadolescent-EtOH-exposed and naïve rats were 

either implanted with an injector guide cannula aimed at the right pVTA for ICSA 

(Experiment 1), or two cannulae, one aimed at the right pVTA (injector) and one at the 

ipsilateral AcbSh (microdialysis) for MicroMicro (Experiment 2). Following one week of 

recovery from surgery, ICSA subjects were placed in standard two-lever (active and 

inactive) operant chambers. Test sessions were 60 min in duration and occurred every 

other day for a total of 7 sessions. Rats were randomly assigned to one of 5 groups 

(n=4-9/group) that self-infused (FR1 schedule) either aCSF (vehicle, 0 mg%), 50, 75, 

100, or 150 mg% EtOH during 4 sessions, aCSF only for sessions 5 and 6 (extinction), 

and the initial concentration again for session 7 (reinstatement). MicroMicro subjects 

received six days of recovery from surgery, probe implantation the day before testing, 

and then continuous microdialysis for DA with 15 min microdialysis samples collected 

before, during, and then two hrs after 10-min pulse microinjection of either aCSF 

(vehicle, 0 mg%), 50, 75, 100, or 150 mg% EtOH. 

  Neither EtOH-exposed nor naive groups of P rats self-infused the aCSF or 50 

mg% EtOH concentration. While the naive group did not self-infuse the 75 or 100 mg% 

EtOH concentrations, the peri-adolescent EtOH-exposed group of P rats did readily 

discriminate the active lever from the inactive lever at these concentrations. Both groups 

self-infused the 150 mg% EtOH concentration. Pulse microinjections of EtOH during the 

MicroMicro procedure revealed that 75 and 100 mg% concentrations of EtOH increased 

downstream DA in the AcbSh of EtOH-exposed, but not naïve, subjects. 150 mg% EtOH 

increased downstream DA in both adolescent treatment groups. 

  Overall, the results indicate that consumption of EtOH by P rats during peri-

adolescence increases the reinforcing properties of EtOH in the pVTA in adulthood. The 
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results also indicate that there were differential effects of peri-adolescent EtOH exposure 

on DA efflux in the AcbSh. This provides evidence that peri-adolescent EtOH-exposure 

produces long-lasting alterations in neural circuitry involved in EtOH-reinforcement, 

during adulthood. 
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1. BACKGROUND 
 
 
 

Alcohol and Adolescence: A Period of Vulnerability 
 

Within the United States alcohol use by anyone under the age of 21 is illegal. 

Nonetheless, surveys have found that over 70 percent of high school seniors have 

consumed alcohol and 30 percent have reported binge drinking, which is defined as 

consumption of five or more drinks at a time (Johnston et al., 2007). Lifetime prevalence 

of diagnosed alcohol abuse or dependence disorders in the United States is between 5 

and 13% of the population (Kessler et al., 2005). Worldwide, an estimated 76.3 million 

people have alcohol use disorders (Assanangkornchai and Srisurapanont, 2007). Given 

this large population of patients afflicted with continued maladaptive alcohol 

consumption, researchers have attempted to discover how, why, and particularly when 

alcohol consumption progresses from casual intake to a neuropsychological disorder. 

What has been labeled as a "downward spiral" to EtOH addiction has several 

described phases (Koob and Le Moal, 1997). These include EtOH intake to the point of 

intoxication and pharmacologically rewarding effects, and at least one of the following: 

escalation of EtOH intake due to an increase in motivation to achieve greater reward, an 

increased clearance of EtOH from system (metabolic tolerance to its effects), requiring 

greater intake to create same rewarding effect, and systemic homeostatic adjustment 

requiring further EtOH to stave off withdrawal. This also involves changes that occur 

during withdrawal and/or long term EtOH abstinence. Forward and backward feedback 
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loops intertwine these effects in many ways, and are observable at several levels, 

behaviorally and cellularly. 

It has been observed that drinking experience early in life is positively correlated 

with alcohol abuse in adulthood (Kandel et al., 1992, Clark et al., 1998). Long-term 

epidemiological studies have found that those who drink before the age of 14 have a 

four times greater chance of developing a dependence on alcohol during their lifetime, 

compared to those who do not drink until after age 20 (Grant and Dawson, 1997). Fifty 

percent of the alcoholic population first manifests DSM-IV-diagnosable alcoholism by 19 

years of age (Moss et al., 2007), indicating that the biological basis for alcoholism has 

already completely manifested before legal adulthood (and presumed cognitive maturity) 

has even arrived. This suggests that adolescence may be a time when neural systems 

are particularly vulnerable to drugs of abuse, like alcohol. The full effects of alcohol 

administration during adolescence are not yet understood, although it is agreed that 

adolescent alcohol consumption disrupts proper scaffolding of some brain structures that 

develop during this time period, including the cerebral cortex and limbic system (Crews 

et al., 2007).  

Binge drinking at these early ages has become a particular area of concern. 

Higher levels of EtOH in the blood putatively mean greater effects on neurochemistry. 

Greater effects on neurochemistry are likely to lead to long-lasting adaptive changes that 

disrupt normal functioning. Studies of human twins has found that excessive alcohol 

consumption in adolescence predicts later alcohol use problems better than lower levels 

of alcohol consumption (Poelen et al., 2009). Unfortunately, on average, underage 

alcohol drinkers have been found to consume more alcohol per bout than those 

surveyed over the age of 21 (4.9 vs. 2.8 drinks) (Substance Abuse and Mental Health 

Services Administration Office of Applied Studies, 2008).  
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 Adolescence is a time of complexity. Puberty, or sexual maturity, is the hallmark 

of adolescence. Developmental transitions, including physical, social, and cognitive 

maturational factors, together contribute towards producing a time period sensitive to 

production of drug abuse (Spear, 2000). Hormones, adrenal and gonadal in nature, act 

on many systems of the body to change the composition and physical conformation of 

skeleton, body fat and muscle. Social and behavioral markers of adolescence include 

changes in stress, anxiety, and sensation-seeking thresholds. On a neural level, 

significant amounts of cortical and hippocampal synaptic pruning continues during late 

adolescence and early adulthood. Neurotransmitter receptors, including DA, 5-HT, and 

GABA, are reorganized systematically (Spear, 2000).  

Temporally, human adolescence is generally considered to encompass much of 

the teenage years, covering a time period before, during, and after puberty 

(menarche/spermarche), while also encompassing the aforementioned intellectual and 

psychosocial maturational processes. Regarding maturation in the United States, a 

human is legally a minor under parental control until the age of 18. Biologically, the 

process of sexual maturation of human females as a result of hypothalamic-pituitary-

gonadal (HPG) stimulation may start from as early as age 10 and continue for about 4 

years, while maturation of males begins around age 12 and continues for about 6 years 

(Windle et al., 2008). Metabolic fuel availability appears to have an influence on the 

onset timing of these processes, linking childhood obesity to earlier onset of puberty 

(Ebling, 2005). 

The modeling of adolescent EtOH consumption in animals is one strategy to 

elucidate a more precise understanding of the effects EtOH has on the developing brain. 

Skeletal maturation and body weight also have an influence on onset of sexual viability 

in rodents. Vaginal opening in the female rat occurs at about 100 grams of weight, 
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between days 33 and 42, and estrous begins approximately one week later. Sexual 

maturity occurs at body length of 148 to 150 mm in male rats. Testes descend to the 

scrotum at about day 15 of age, and sperm are produced around day 45, yet optimal 

production is not achieved until 75 days (Suckow et al., 2006). Adolescence in the rat 

has been described to begin as early as postnatal day 20 in the female, while most 

obvious signs of puberty in the male rat have occurred as late as day 55 (Odell, 1990, 

Spear, 2000). It is for these reasons that in the alcohol field, many studies use an 

approximate window from postnatal day 30 to 60 to encapsulate a time period for both 

male and female subjects that may be described as peri-adolescence (Spear, 2000, Bell 

et al., 2006). This captures maturational changes during and after sexual maturity in an 

attempt to mirror human adolescence, which extends to physical and psychosocial 

changes beyond mere menarche/spermarche. 

 
Observation of Adolescent EtOH Intake 

 
Changes following EtOH intake during adolescence have the potential to affect 

social interest, novelty-seeking behaviors, attentional properties, and emotional state. 

Given what is known about hormone changes during this time period (testosterone, 

estrogen, growth hormones, anxiety-related hormones), and brain changes due to 

hormone changes, a number of interactions may occur. Epidemiological evidence 

indicates that drug-taking behavior ultimately affects many of these changes increasing 

subsequent drug-seeking behavior and drug-reward incentive value.  

As described with humans (Substance Abuse and Mental Health Services 

Administration Office of Applied Studies, 2008, Poelen et al., 2009), adolescent rats 

have been found to voluntarily consume more EtOH by body weight than adult rats given 

the same amount of access, in both free-choice and limited access experiments (Bell et 
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al., 2003, 2004, 2006, Doremus et al., 2005, Vetter et al., 2007, Vetter-O'Hagen et al., 

2009). Adolescents are innately different from adults in regards to sensitivity to the 

hypnotic, anxiolytic, and motor-impairing effects of EtOH. The decreased sensitivity to 

these aversive effects of EtOH may fail to discourage further drinking in adolescence 

(Brunell and Spear, 2006). In addition, impulsive behavior in human adolescence has 

been found to predict heavy drinking in adulthood (Verdejo-Garcia et al., 2008), while 

heavy drinking in early adolescence has been shown to predict an increase in impulsive 

behavior in later adolescence (White et al., 2011). 

EtOH consumption by the adolescent rat has been shown to have a significant 

impact on adult EtOH drinking behavior. For example, when juvenile (PD 22-28) and 

adult rats are given given similar access to EtOH, the juvenile-exposed rats show a 

greater willingness to drink 30% EtOH in adulthood (Truxell et al., 2007). In the alcohol 

preferring (P) rat, peri-adolescent EtOH consumption enhances EtOH intake during 

adulthood when the rats are tested under both free-choice and operant conditions 

(McKinzie et al., 1998b). Subjects given free-choice access to EtOH during adolescence 

acquire operant responding for EtOH faster than naïve subjects as well as those given 

the same amount of pre-exposure during adulthood (Rodd-Henricks et al., 2002a, b). 

These authors also reported differences that included increased time to extinguish 

responding when EtOH was no longer available in the operant setting, as well as 

enhanced relapse-like behaviors when EtOH availability was returned. 

The alcohol deprivation effect (ADE), as modeled by relatively long-term EtOH 

abstinence followed by a return to EtOH access, simulates precipitated relapse in the 

human condition, and has been observed in multiple laboratory species (Sinclair, 1971, 

Kornet et al., 1990, Spanagel et al., 1996, Agabio et al., 2000, Le and Shaham, 2002). 

Overt withdrawal symptoms after prolonged EtOH exposure last no longer than 1 week 
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in the rat (Cicero et al., 1971), but the ADE deprivation/abstinence interval encompasses 

periods beyond one week. The ADE is observed with manifestation of a spontaneous 

increase in EtOH intake, over previously normal drinking behavior, once access is 

restored (Sinclair and Senter, 1968). Some studies have revealed the absence of an 

ADE between adult- and adolescent-exposed subjects, given the above conditions 

(Tambour et al., 2008), but this may be a function of decreased procedural sensitivity. 

The P rat shows an increased ADE response following adolescent access, compared to 

adult subjects receiving the same exposure/abstinence periods (Rodd-Henricks et al., 

2002a, b). In Wistar rats, acamprosate injections reduce the expression of an ADE 

enhancement in adult-exposed subjects, but not in adolescent-exposed subjects, 

suggesting that adolescent-initiated EtOH drinkers incur some adaptive resistance to the 

neurochemical actions of acamprosate treatment (Fullgrabe et al., 2007). 

All of these studies combined illustrate that EtOH consumption by the adolescent 

rat has significant impact on adult EtOH drinking behavior, above and beyond any effect 

of mere prior access (i.e., differences seen relative to adult exposure). 

 
Adolescent EtOH in Selectively Bred Rats 

 
 Forced-access experimental designs are often necessary to examine effects of 

high levels of EtOH. Free-choice access, where the subject determines how much EtOH 

is administered, can shed light on changes in motivation to seek EtOH and related 

differences in adult neural makeup. For example, following free-choice access to EtOH 

during adolescence, Wistar rats show more pronounced adult stress-induced EtOH 

consumption, compared to those exposed to EtOH in adulthood (Fullgrabe et al., 2007). 

However, to observe the long-term effects of EtOH following high amounts of adolescent 

EtOH consumption it is very useful to employ subjects selectively bred for high EtOH 
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intake and/or preference. These subjects readily consume EtOH voluntarily and attain 

pharmacologically relevant elevation of blood ethanol concentrations. 

Selective breeding for high EtOH consumption in laboratory subjects is meant to 

model humans with a positive family history of alcoholism, as there is evidence of a 

human genetic predisposition for high risk alcohol use. Rodents selectively bred for high 

EtOH consumption include the P rat, high alcohol drinking (HAD) replicate rat lines, 

Sardinian preferring (sP) rats, ALKO alcohol accepting (AA) rats, and high alcohol 

preferring (HAP) mice. Cicero (1980) created a set of criteria for producing a valid animal 

model of alcoholism. These include 1) subjects should orally self-administer EtOH, 2) the 

amount of EtOH consumed should relate to pharmacologically relevant blood alcohol 

levels (BAL), 3) subjects should consume EtOH for pharmacological effect, not just taste 

or caloric load, 4) subjects should find EtOH consumption positively reinforcing, 5) 

chronic EtOH should lead to metabolic/functional tolerance, and 6) chronic EtOH should 

lead to dependence/observable withdrawal. This list was expanded by McBride and Li to 

include evidence of relapse-enhanced drinking behavior (1998). The previously-

mentioned P rat, which was selectively bred for preference of 2 to 1 for 10% v/v EtOH 

over water and at least 5 g/kg/day self-administered EtOH (Lumeng et al., 1977), is 

believed to meet these criteria (McBride and Li, 1998, Murphy et al., 2002, Bell et al., 

2005, 2006). The P rat is the animal model used in this study.  

In the P rat, peri-adolescent consumption has been demonstrated to enhance 

EtOH intake in adulthood in both free-choice and operant settings (McKinzie et al., 

1998b., Rodd-Henricks et al., 2002a, b, McBride et al., 2005). Following peri-adolescent 

access to EtOH in the P rat, increased clearance of DA has been seen in the nucleus 

accumbens (Acb) as measured by no-net-flux microdialysis for DA (Sahr et al., 2004), 

where several concentrations of DA are perfused, then analyzed for DA change. 
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Adolescent EtOH exposure also increases breakpoint responding for operant oral EtOH 

access, indicating a change in the reward salience of EtOH (Toalston et al., In 

Preparation). Peri-adolescent EtOH consumption by the P rat therefore appears to 

cause significant impact on adult EtOH drinking behavior. 

 
Change in Reward Value of EtOH Following Exposure 

 
Operant techniques can examine alterations in the amount of work a subject will 

perform to obtain reinforcement, and are often used to examine subjective changes in 

the reinforcing properties of EtOH (Hodos, 1961, Ciccocioppo et al., 2001, Rodd et al., 

2004a). It has previously been observed that while P rats will consume large volumes of 

sweetened liquids, they will still concurrently consume pharmacologically relevant 

volumes of EtOH (Lankford et al., 1991). But given access to sweetened liquids alone, P 

rats will work to consume sweetened liquids at high volume, higher even than that 

observed for EtOH (Nowak et al., 1999, Czachowski and Samson, 2006). This was also 

observed in our laboratory’s previous study (Toalston et al., In Preparation), where peri-

adolescent P rats that had free-choice access to SACC responded more as adults for 

SACC alone than for EtOH alone. When the operant breakpoint was tested, however, 

subjects with free-choice peri-adolescent access to EtOH were willing to work to a higher 

level for EtOH than subjects with free-choice peri-adolescent access to SACC were 

willing to work for SACC. This supports the idea that, in the P rat, EtOH is a salient 

reinforcer and that peri-adolescent access to EtOH has a greater effect on adult 

behavior than that observed following peri-adolescent SACC (Toalston et al., In 

Preparation). Repeated accesses and abstinences from EtOH also increases the oral 

operant breakpoint for EtOH in both P and HAD rats (Rodd et al., 2003, Oster et al., 

2006).  
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Behavioral Changes Following EtOH Exposure 

 
Various studies have observed long-lasting behavioral effects in adult animals 

following adolescent EtOH treatments, which point to possible detrimental cognitive 

consequences. EtOH administration impairs performance on a number of tasks in 

adolescence to a greater degree than observed in adult-exposed subjects. Chronic 

injections of EtOH during adolescence increase novelty-seeking behavior in adulthood 

compared to naïve subjects (Stansfield and Kirstein, 2007). Repeated EtOH injections 

impair performance of adolescent subjects to a greater degree on a Morris water maze 

task than subjects tested during adulthood (Sircar and Sircar, 2005). Intermittent vapor-

chamber exposure to EtOH during adolescence affects spatial working memory in 

adulthood, as measured by performance on a Morris water maze task (Schulteis et al., 

2008). Adolescent EtOH-vapor exposed subjects display enhanced prepulse inhibition 

response, suggesting a form of behavioral inflexibility has been induced (Slawecki and 

Ehlers, 2005). This form of EtOH inhalation administration results in constant high levels 

of EtOH in the blood stream (Gilpin et al., 2008).  

Repeated administration of EtOH by injection during adolescence has resulted in 

adult subjects less sensitive to EtOH-induced loss of righting reflex, indicating long-term 

tolerance to some of the effects of EtOH, or alterations in the ontogeny of this effect 

(Matthews et al., 2008). Adolescent EtOH exposure has effects on sleep patterns that 

last long into adulthood (Ehlers and Criado, 2010), and responses to EtOH challenge in 

adolescence shows increased sensitivity to some EtOH effects (LMA, anxiolytic, ataxic) 

and decreased sensitivity to others (sedative/hypnotic) compared to adults (Hefner and 

Holms, 2007). These studies illustrate that EtOH treatment has measurable, specific 

effects on behavior and memory in adolescent laboratory subjects, both concurrent to 

EtOH administration as well as without EtOH on board later, in adulthood. 
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Mesolimbic Dopamine System and Effects of EtOH  

 
Systemic EtOH application (like that seen via oral EtOH consumption) increases 

EtOH concentrations in the blood, which has the effect of in vivo bathing of all body cells 

and their communications systems in EtOH until it is metabolized and removed from the 

blood stream. Even acute, one-time EtOH administration has deleterious effects on the 

normal functioning of neural substrates involved with reward (Crews et al., 2006). 

Regarding these neural substrates, DA and related serotonin (5-HT) pathways have 

been repeatedly implicated in high EtOH consumption in rodent models (Murphy et al., 

1985, McBride et al., 1991, Di Chiara, 1997).  

Tsai's ventral tegmental area, the A10 seat of DA neurons cell bodies, is a 

heterogeneous structure, with five main nuclei (Tsai, 1925, Oades and Halliday, 1987). 

The VTA is strongly implicated in cognitive and behavioral processes including 

motivation and reward, as well as disorders arising from malfunction of these processes; 

e.g., addiction and schizophrenia (Laviolette, 2007, Murray et al., 2008). VTA 

dopaminergic projections run primarily to mesocortical and mesolimbic areas, but also 

mesostriatal, mesodiencephalic, and mesorhombencephalic areas (Ikemoto, 2007).  

Mesolimbic VTA DA reward circuitry has been narrowed down further, into meso-

ventromedial and meso-ventrolateral striatal systems (Ikemoto, 2007). The former 

projects from the posterior areas of the VTA to the AcbSh and has been implicated in 

processing rewarding stimuli, while the latter projects from the anterior/lateral areas of 

the VTA to the nucleus accumbens core (AcbC) and has been implicated in processing 

noxious stimuli (Faure et al., 2008, Brischoux et al., 2009). The rodent VTA has 

therefore commonly been separated into anterior (aVTA) and posterior (pVTA) 

dimensions, with this separation occurring at approximately 5.2/5.3 posterior to bregma 

as seen on the Paxinos and Watson rat atlas (1986). More generally speaking, posterior 
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VTA DA projections largely aim to the PFC and AcbSh, while anterior VTA DA cells 

project predominately to AcbSh and AcbC (Brog et al., 1993). A second main set of 

neurotransmitter-producing cell bodies within the VTA is GABAergic, which can 

interconnect with each other via gap junctions. Furthermore, terminating in the VTA are 

serotonergic, acetylcholinergic, GABAergic, and opioid projections (Ikemoto, 2007). 

The mechanisms of action of rewarding drugs (including EtOH) involving the VTA 

is varied, but it has been observed that all drugs that are rewarding to humans are 

associated with DA release in the Acb, while drugs that are noxious decrease DA in this 

area (Di Chiara and Imperato, 1988). Thus, the reciprocal interaction that the VTA has 

with the Acb is a field of intense study. 

Enhancement of neural activity in connection with EtOH within the VTA has been 

observed. In vitro, acutely administered EtOH increases the firing rate of DA neurons in 

the VTA (Brodie et al., 1999). VTA DA neurons of mice with higher sensitivity to EtOH, 

as evidenced by place preference conditioning (CPP) response, but lower propensity to 

consume EtOH, show stronger response to EtOH application than those with lower place 

preference conditioning and higher EtOH drinking behavior (Brodie and Appel, 2000). It 

has also been observed that chronic EtOH treatment increases the excitation of VTA DA 

neurons (Brodie, 2002).  

Part of the effects EtOH has on DA in the VTA has been attributed to mediation 

by the serotonin system (Murphy et al., 1992). Serotonin neurons in the dorsal and 

median raphe nuclei terminate in both the VTA and Acb. 5-HT3 receptor antagonism 

reduces the stimulation of DA release by EtOH in the Acb (Carboni et al., 1989), 

suppresses EtOH-stimulated release of DA in the VTA (Campbell and McBride, 1995), 

and suppresses acquisition and maintenance of responding for ICSA of EtOH in the VTA 

(Rodd-Henricks et al., 2003). Increasing 5-HT enhances the excitability of DA neurons in 
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the VTA (Buck et al., 2004), however 5-HT3 antagonism does not suppress ICSA for the 

EtOH metabolite acetaldehyde (Rodd et al., 2005c).  

Downstream from the VTA in the mesolimbic pathway, the Acb also shows 

evidence of enhancement of neural activity as a result of EtOH treatment or drinking. 

Systemically applied EtOH has been shown to increase DA release in the Acb (Di Chiara 

and Imperato, 1985). Chronic and intermittent EtOH exposure increases D2 receptor 

binding density in the AcbSh (Sari et al., 2006), showing specific evidence of 

compensatory changes in this area. Interestingly, however, self-administration of EtOH 

has also been observed to decrease DA response in the Acb following EtOH challenge, 

compared to yoked forced access subjects that do not show this effect (Nurmi et al., 

1996). Overall, these findings are consistent with a strong link of the Acb to EtOH-

seeking behavior; however, the relationship may be more complex than a simple 

unidimensional EtOH administration effect. 

Enhanced EtOH intake in rodent subjects is related to lower endogenous basal 

5-HT in regions of the mesocorticolimbic neural circuit (Murphy et al., 1987), as well as 

fewer 5-HT neurons in these areas (Zhou et al., 1994). EtOH challenge produces an 

increase in accumbal monoamine metabolites DOPAC, HVA, and 5-HIAA (Murphy et al., 

1988), which suggests activation of these systems. However, in chronically exposed 

subjects this response is muted compared to naïve subjects (Murphy et al., 1988). 

Moreover, serotonin microinfused into the VTA increases DA efflux in the Acb (Guan and 

McBride, 1989). 

The VTA projects GABA-releasing neurons to the Acb, with these VTA neurons 

receiving connections from the PFC (Carr and Sesack, 2000). GABA(A) antagonists 

cause a release of DA into the Acb when administered to the aVTA (Ikemoto et al.,  
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1997b). DA neurons of the VTA and medium spiny neurons of the Acb display evidence 

of increased excitability in synaptic areas, indicating a role from glutamate (Stuber et al., 

2010). 

Opioids are also a factor within the reinforcement neurocircuit (Di Chiara et al., 

1996). A delta-opioid antagonist co-perfused into the Acb with EtOH prevented EtOH-

induced DA increases, but not when co-perfused with cocaine, suggesting a role for 

delta-opioid receptors in the Acb specific to EtOH (Acquas et al., 1993). Genetic 

analyses of human families have shown that high risk for alcoholism is associated with 

carrying a variation in gene OPRK1, which reduces transcription activity of the kappa-

opioid receptor (Edenberg et al., 2008). 

 Taken together, these findings illustrate how the effects of EtOH on the VTA-Acb 

system are obviously varied and complex, even without the added factor of adolescent 

development. As indicated above, animals genetically predisposed to excessive EtOH 

drinking or EtOH-seeking behavior (e.g., P Rats) are known to have endogenous 

alterations in neurochemical pathways compared with their alcohol-non-preferring (NP) 

or outbred (Wistar) counterparts. These neurochemical differences likely mediate some 

responses to EtOH. Thus the effects of adolescent EtOH on these pathways could 

further enhance neuroadaptations to enhance the already predisposed state for EtOH-

seeking in the adult animal. 

 
Neural Stunting Following EtOH Exposure 

 
Binge EtOH results in greater brain damage in young adolescent rats compared 

to adult rats (Crews et al., 2000). EtOH exposure in adolescence dose-dependently 

stunts normal cell proliferation in the forebrain and dentate gyrus, with this effect 

occurring after a single peripheral injection of EtOH (Crews et al., 2006). In the 
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hippocampus, EtOH exposure during adolescence alters the track and survival of 

progenitor cells, possibly by reducing time in critical stages of the cell cycle (McClain et 

al., 2011a), as well as creating marked activation of select microglia, suggesting 

induction of immune-like responses (McClain et al., 2011b). These few recent studies 

show how on a level of cellular development, EtOH application during adolescence 

disrupts normal scaffolding of brain material, and that EtOH administration during this 

critical period of development can have long term harmful effects on neural functioning. 

 
Changes in Neurotransmission Following EtOH Exposure 

 
Adolescent subjects exhibit higher basal DA levels, as well as levels of D1 and 

D2 receptors, than adult subjects, emphasizing that DA tone differs overall in 

adolescents (Pascual et al., 2009). Elevated DA levels have been suggested by 

Melendez et al. to mediate ethanol-seeking behavior (2002) indicating that elevated 

basal DA may render ethanol-exposed adolescent rats more vulnerable to developing 

adult-onset ethanol-seeking behaviors than naïve subjects. 

Repeated injections of EtOH during adolescence increases basal DA in the Acb 

during adulthood (Badanich et al., 2007). Repeated EtOH exposure in adolescence 

elevates accumbal DA levels of the adolescent Acb septi (Philpot and Kirstein, 1998). 

Similarly, this treatment elevates adult Acb DA levels, and decreases the DA response 

to an EtOH challenge within this brain structure (Philpot et al., 2009). Also, it has been 

suggested that repeated adolescent EtOH exposure decreases the time required to see 

the DA increase induced by EtOH administration into the Acb during adolescence 

(Philpot and Kirstein, 2004). Repeated injections of EtOH affects the accumbal ratio of 

DA to a primary metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), at several time 

points during adolescence (Philpot and Kirstein, 2004). This is in agreement with the 
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finding that free-choice adolescent EtOH exposure by P rats PD 30-60 results in greater 

DA clearance during no-net-flux microdialysis in the Acb, suggesting a general increase 

in DA release has occurred (Sahr et al., 2004). The authors also reported more 

protracted DA response to an EtOH challenge injection, compared to naïve rats. 

Repeated EtOH treatment decreases the amount of DRD2 in the Acb of adolescent but 

not adult subjects (Pascual et al., 2009)  

Repeated injections of EtOH during adolescence results in subjects that have an 

increase in extracellular Acb glutamate in response to an EtOH challenge injection, as 

opposed to similarly-treated adult subjects which showed a decrease in extracellular 

glutamate (Carrarra-Nascimento et al., 2011) likely related to input from the PFC, a 

connection that may influence EtOH reward (Kalivas and Volkow, 2005). Low doses of 

naltrexone injections were more effective at slowing acquisition of EtOH drinking 

behavior in adolescent P rats compared to adult subjects, with less tolerance observed 

in the adolescent animals as well (Sable et al., 2006). This suggests that EtOH 

experience has a differential effect on adult and adolescent subjects, and that this can 

translate to an increase, or decrease, in the efficacy of traditional treatment options. 

 
Interaction of Adolescence, Anxiety/Stress, and EtOH 

 
Behavioral reaction to stress has been related to the development of alcoholism. 

In particular, EtOH abuse has been connected with dysfunction within the hypothalamic-

pituitary-adrenal (HPA) axis, a large portion of neural system in place that processes 

physical and psychological stress (Koob, 2010). It is unknown whether ultimately this 

neuroendocrine disruption is causal in EtOH abuse, or vice versa, but evidence shows 

that EtOH dependence does indeed affect HPA functioning (Richardson et al., 2008). 

Furthermore, an abnormal stress response has been correlated with children of 
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alcoholics, who are identified as family history positive for alcoholism (Peterson and Pihl, 

1990). Higher environmental stress exposure in both adolescent children of alcoholics 

and control subjects increased risk for developing substance use disorders (King and 

Chassin, 2008). Stress has been linked with higher relapse rates, making responses to 

stress a factor in the continuation of EtOH drinking (Sinha et al., 2011). 

 Within the HPA loop, corticotropin releasing factor (CRF) in the paraventricular 

nucleus (PVN) of the hypothalamus is strongly involved in stress response, and has 

been connected to hypotheses about creation of addictive states (Koob, 2010). For 

example, repeated stress has been shown to affect the VTA and Acb in ways similar to 

some drugs of abuse (Ortiz et al., 1996). Also within the HPA loop, increases in 

corticosteroid hormones have been shown to increase DA release in the Acb (Imperato 

et al., 1989). Adrenalectomy results in decreased basal DA in the AcbSh, as well as 

reduced DA reactivity during drug administration or stress (Barrot et al., 2000). Chronic 

corticosteroid administration results in decreased DA synthesis and DA turnover in the 

Acb (Pacak et al., 2002). Therefore, acute corticosteroid increases in turn result in 

increased basal DA, while chronic corticosteroid increases result in decreased basal DA 

in this area, resulting in sensitization that can enhance drug effects (Marinelli and 

Piazza, 2002). 

Following repeated administration and withdrawals from EtOH, adolescents 

sensitized to decreased social interaction (anxiety-like behavior) longer than adult 

subjects given the same treatment (Wills et al., 2009), an effect that also requires higher 

doses of CRF to diminish (Wills et al., 2010). Combined with higher basal levels of CRF 

in the PVN and central nucleus of the amygdala, this has been interpreted as lower 

sensitivity to CRF compared to adults (Wills et al., 2010). Adolescents are less affected 

by the anxiogenic effects caused by both acute and chronic EtOH withdrawal, as 
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compared to adults, even when controlling for EtOH clearance concentrations (Doremus 

et al., 2003). This shows a form of insensitivity to EtOH effects (Spear, 2000). 

Studies of macaque monkeys have shown that adolescent exposure to EtOH 

increases later drinking behavior compared to equivalent adult exposure in stressed 

peer-reared subjects compared to unstressed subjects, suggesting that stress has 

affected biological risk for high EtOH consumption (Barr et al., 2004). While chronic 

stress decreases adolescent EtOH intake, subjects still consume more EtOH g/kg than 

adults receiving the same treatment (Brunell and Spear, 2005). Male Wistar rats 

consuming EtOH during adolescence later increased EtOH consumption following stress 

to a greater degree than adult-exposed subjects (Siegmund et al., 2005). Following free-

choice access to EtOH during adolescence, subjects show more pronounced adult 

stress-induced EtOH consumption, compared to those exposed in adulthood (Fullgrabe 

et al., 2007), and peri-adolescent EtOH vapor exposure affects later CRF responses in 

the PVN to an EtOH challenge, indicating that these subjects show a blunted response 

to this stressor (Allen et al., 2011b). P rats exposed to EtOH in adolescence show 

evidence of reduced novelty-induced anxiety compared to naïve subjects (Salimov et al., 

1996).  

As the stress-response system continues to develop during adolescence, there is 

therefore possibility for disruption of its natural course by EtOH administration at this 

time. This disruption may translate to differential response to EtOH, stress, and the 

interaction between the two, in adulthood. 

 
Study Rationale and Hypotheses 

 
Adolescent operant breakpoint studies (Rodd et al., 2003, Oster et al., 2006, 

Toalston et al., In Preparation), combined with ICSA (Rodd et al., 2000) and adolescent 
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work (Bell et al., 2003), have particular relevance in the development of the present 

study. As free-choice EtOH access during adolescence can be argued to have altered 

reward saliency of EtOH in our previous studies, interest in other parameters for 

examining the mesolimbic reward pathways after peri-adolescent EtOH drinking was 

peaked. 

Past research has suggested that peri-adolescent EtOH consumption increases 

the subjective reinforcing properties of EtOH. The goal of this dissertation was to further 

examine the change in reinforcing properties of EtOH within the mesolimbic dopamine 

system induced by free-choice peri-adolescent EtOH consumption. Also, the intent was 

to examine whether peri-adolescent EtOH consumption enhances the stimulatory effect 

of EtOH on the mesolimbic dopamine system.  

In the present study, two experiments evaluate the effects of free-choice EtOH 

intake by P rats during peri-adolescence on later adult EtOH-reward seeking behavior. 

Two questions were addressed: (1) Does EtOH experience during peri-adolescence 

affect responding for ICSA of EtOH into the pVTA in adulthood? (2) Does EtOH 

experience during peri-adolescence increase release of DA in the AcbSh of adult P rats 

following pulsed microinjection of EtOH into the VTA? Together, these studies will 

improve our knowledge of the effects of peri-adolescent EtOH exposure on the 

mesolimbic DA reward pathway. And, by extension, this knowledge will facilitate the 

development of treatments targeting alcohol abuse and dependence. 

The overall hypothesis is that peri-adolescent self-administered EtOH results in 

long-term neuroadaptations within the mesolimbic DA system (VTA and AcbSh), 

increasing the reinforcing properties of EtOH in adulthood compared to EtOH-naïve 

subjects. 
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Experiment 1: ICSA 

 
Experiment 1 will address whether EtOH experience in peri-adolescence affects 

later responding for EtOH ICSA into the pVTA. The ICSA method can determine whether 

a specific brain region is involved in drug reward, by measuring operant bar-press 

behavior that results in administration of drug discretely into the respective region. 

Comparison of number of responses between different concentrations of EtOH creates a 

dose-response curve for a particular set of treatment conditions. In this case, we chose 

to examine the pVTA, a nucleus of dopaminergic neurons previously shown to support 

intracranial EtOH self-administration (Gatto et al., 1994, Rodd-Henricks et al., 2000). 

The research objective of the first experiment was to examine the extent to which 

EtOH consumption during peri-adolescence by P rats altered the neurocircuitry involved 

in the reinforcing properties of EtOH. The first working hypothesis was that EtOH-

exposure-induced neuroadaptations during peri-adolescence result in an adult neuronal 

system projecting from the pVTA that is more sensitive to the reinforcing properties of 

EtOH compared to EtOH-naïve subjects. This increase in responsiveness to the 

stimulating effects of EtOH on pVTA DA neurons would be reflected by a shift of the 

dose-response curve to the left compared to EtOH-naive subjects. ICSA therefore will 

determine whether the dose-response curve for EtOH in adulthood differed between 

adolescent-EtOH-exposed and naïve subjects. The null hypothesis in this situation, 

where this neurocircuitry has no change in sensitivity following EtOH exposure in peri-

adolescence, would be supported by no difference in responsiveness across EtOH 

concentrations to the stimulating effects of EtOH on pVTA DA neurons. 
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ICSA Background 

 
Intracranial self-administration methods are useful for determining which discrete 

brain regions are involved in the initiation and maintenance of drug reinforcement 

(McBride et al., 1999). Comparison of the number of operant responses and infusions to 

the brain site between different concentrations of a drug creates a dose-response curve 

for a particular set of treatment conditions for a given microinfusion site in the brain. In 

this case, we chose to examine the pVTA, which is the seat of dopaminergic neuronal 

cell bodies that project axons to the AcbSh and other mesolimbic terminal sites. 

 The no-tangle form of microinjection of drug used in this experiment was 

pioneered by Criswell for use with chemotrodes (1977) to follow up previous chemical 

stimulation methods more difficult to administer (Myers, 1972). This was again refined by 

Bozarth and Wise (1980). In this procedure, a measured electric current passes between 

two electrodes submerged in a tank of infusate, producing hydrogen gas, and the 

increased pressure in the tank forces the desired small amount of infusate, which has 

been calibrated to the respective current, into the brain through a cannula attached to 

the tank. Monitored constant low current keeps infusate pressure stationary during inter-

injection intervals (Goeders and Smith, 1987). 

It is widely accepted that the VTA-Acb DA connection is involved in reward and 

reinforcement behavior (Wise and Rompre, 1989, Ikemoto and Panksepp, 1999). The 

pVTA has been shown to support EtOH self-administration, while the aVTA does not 

(Rodd-Henricks et al., 2000). Also self-administered in this area is acetaldehyde, a 

metabolite of EtOH (Rodd-Henricks et al., 2002c). D1/D2 agonists administered alone do 

not support ICSA in the AcbSh, while co-administration of the associated agonists does 

(Ikemoto et al., 1997a). Similar to EtOH, differences in opiate reward within the anterior 

and posterior VTA have also been observed (Carlezon et al., 2000). Regarding this, 
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GABA(A) antagonists are self-administered into the aVTA but not pVTA (Ikemoto et al., 

1997c). GABA(A) receptors in the pVTA but not aVTA have been found to be involved in 

binge consumption of EtOH (Melon and Boehm, 2011). While VTA DA neurons are 

excited by AMPA administration, increasing DA in the Acb (Kretschmer, 1999), AMPA 

itself is not self-administered into the VTA (Ikemoto et al., 2004).  

As described earlier, the research objective of the first experiment was to 

examine the extent to which EtOH consumption during peri-adolescence in P rats 

altered the development of neurocircuitry involved in the reinforcing properties of EtOH. 

The hypothesis was that EtOH-exposure-induced neuroadaptations result in an adult 

neurocircuitry system in the pVTA of adolescent-exposed animals that is more sensitive 

to the reinforcing properties of EtOH compared to EtOH-naive subjects. This increase in 

responsiveness to the stimulating effects of EtOH on pVTA DA neurons would be 

reflected by a shift of the dose-response curve to the left compared to EtOH-naive 

subjects. ICSA therefore determined whether the dose-response for EtOH in adulthood 

differed between adolescent-EtOH-exposed and -naïve subjects.  

However, ICSA only examines effects on neurocircuitry at one site. To elucidate 

"downstream" effects of ICSA of EtOH in the pVTA, the current studies will also perform 

a concurrent analysis of a second site as pVTA EtOH is being infused. Because a 

concurrent analysis in the Acb during actual ICSA is technically very difficult and the 

findings may be confounded by variables such as motor effects, one way to accomplish 

this goal is an experimenter-administered (via a calibrated current generator) series of 

pulsed microinjections mimicking a classic ICSA bout with concurrent microdialysis in 

the downstream site. For the purpose of this paper, the method name is shortened to 

MicroMicro. 
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Experiment 2: MicroMicro 

 
Experiment 2 will address whether EtOH experience during peri-adolescence 

enhances release of DA in the AcbSh of adults following EtOH administered into the 

VTA. This experiment used a microinjection-microdialysis methodology. This involves 

experimenter-administered EtOH directly into a cell body region (pVTA) at a 

concentration that has been shown to support self-administration in previous reports, 

coupled with a microdialysis probe implanted into a "downstream" DA cell terminal 

region (AcbSh), which provides a controlled examination of the EtOH effects on 

neurotransmitter release via the assay of the dialysate. 

Specifically, the research objective of the second experiment was to examine the 

effects of peri-adolescent EtOH drinking on adult DA release in the AcbSh after 

microinjection of relevant concentrations of EtOH in the pVTA. The second working 

hypothesis was that peri-adolescent neuroadaptations result in an adult neurocircuitry 

system (DA neurotransmission between the "upstream" pVTA and "downstream" AcbSh 

projection area) that has greater sensitivity to EtOH stimulation. This increase in 

responsiveness to the stimulating effects of EtOH on pVTA DA neurons was expected to 

be reflected by an increase in DA release in the AcbSh in response to lower 

concentrations of EtOH, essentially creating a shift to the left in the dose-response 

curve. Therefore, the microinjection-microdialysis techniques compared DA in vivo efflux 

between peri-adolescent EtOH-exposed and EtOH-naïve subjects in the AcbSh following 

EtOH administration into the pVTA. The null hypothesis in this situation would be 

indicated by no change in responsiveness to the stimulating effects of EtOH on pVTA 

DA neurons, as measured by no difference in DA response, and would suggest no 

differences between the neurocircuitry of subjects exposed to EtOH during peri-

adolescence compared with EtOH-naïve P rats. 
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MicroMicro Background 

 
This pulsed MicroMicro methodology can be used to closely examine changes in 

downstream neurotransmitter release in response to ICSA-like administration in real time 

(Ding et al., 2011). Unlike ICSA, this involves experimenter-administered EtOH directly 

into a cell body region, in a concentration that was demonstrated to be self-administered 

as described in previous reports (Gatto et al., 1994, Rodd et al., 2004c), coupled with a 

microdialysis probe implanted into a downstream DA cell terminal region. This approach 

provides a controlled examination of the EtOH effects on neurotransmitter release via 

HPLC assay of the dialysate. In this study, EtOH is applied into the pVTA, while 

microdialysis for extracellular DA levels is performed in the AcbSh. The pulsing of EtOH 

mimics the pattern of EtOH administration during a bout of ICSA responding, complete 

with mock time-out intervals. 

As described earlier, the research objective of the second experiment was to 

examine, in adulthood, the effects of peri-adolescent EtOH drinking on DA release in the 

AcbSh after microinjection of relevant amounts of EtOH into the pVTA. The hypothesis 

was that adolescent P rats exposed to EtOH would exhibit neuroadaptive changes in 

adult neurocircuitry (DA neurotransmission between the "upstream" pVTA and 

"downstream" AcbSh projection area) yielding an adult system that is more sensitive to 

EtOH reward, and reinforcement, compared to subjects not exposed to EtOH during 

peri-adolescence. This increase in responsiveness to the stimulating effects of EtOH on 

pVTA DA neurons was expected to be reflected by an increase in DA release in the 

AcbSh in response to lower doses of EtOH in the pVTA. This is presumed to mediate the 

behavioral outcome seen as a shift to the left in the dose-response curve for the ICSA of  
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EtOH. MicroMicro techniques, therefore, compared the AcbSh DA response between 

adolescent-EtOH-exposed and -naïve subjects following EtOH administration into the 

pVTA.  
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2. METHODS 
 
 
 

Subjects 
 
The adolescent EtOH access procedures used herein followed published 

procedures from our laboratory (Rodd-Henricks et al., 2002a, Bell et al., 2003, 2004, 

2006, Sahr et al., 2004). Male P rats were chosen for use in the current study because 

their rapid growth post-adolescence increases skull strength for earlier cannula 

placement surgery. Previous work (McKinzie et al., 1998a, Bell et al., 2003) has 

described the differences between male and female P rats in EtOH drinking at these 

ages as minimal.  

Animals used in this study were maintained in facilities fully accredited by the 

Association for the Assessment and Accreditation of Laboratory Animal Care. All 

research protocols were approved by the Indiana University School of Medicine 

(Indianapolis, Indiana) Institutional Animal Care and Use Committee and were in 

accordance with the guidelines of the Institutional Care and Use Committee of the 

National Institute on Drug Abuse, the NIH, and the Guide for the Care and Use of 

Laboratory Animals (2011). 

 
Peri-Adolescent EtOH Exposure Procedure 

 
 Pups were single-housed in hanging stainless steel cages (Allentown Caging 

Equipment Co, Allentown, New Jersey) on PD 28. Subjects were initially maintained on 

a 12-hour light/dark cycle, lights on at 0900. On PD 30, subjects received either ad lib 
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water or continuous access to 15% v/v EtOH and water, until PD 60. Food was available 

ad lib. Bottle and body weights for all subjects were recorded every other day.  

On PD 60, EtOH access ceased, and subjects were pair-housed in standard 

shoebox cages, within the same treatment condition. Subjects were also immediately 

transferred to a 12-hour reverse dark/light cycle, lights off at 1000, to optimize rats' 

nocturnal activity levels for later procedures. After PD 60, subjects received no further 

oral EtOH intake experience. 

 
ICSA 

 
 
 

ICSA Apparatus 
 

Test chambers (Coulbourn Instruments, Allentown, Pennsylvania) were situated 

in sound-attenuating cubicles, as described previously (Rodd-Henricks et al., 2000, 

Rodd et al., 2004b). Briefly, chambers were illuminated by dim house lights during 

testing. Two identical levers were mounted on a single wall of the test chamber, 15 cm 

above a grid floor, separated by 12 cm. Directly above each lever were two cue lights, 

red and green. Red was illuminated over the active lever during resting conditions.  

A desktop computer recorded the data (L2T2 system, Coulbourn Instruments, 

Allentown, Pennsylvania) and controlled the operant delivery of infusate following active 

lever response. An electrolytic microinfusion transducer (EMIT) system (Model 26, MNC, 

Shreveport, Louisiana) controlled the delivery of assigned infusate into the subject via 

calibrated pulses of current. To do this, a cylinder (28 mm length x 6 mm diameter; 

Plastics One, Roanoke, Virginia) with an attached 28 gauge injection cannula was filled 

with infusate. Two platinum electrodes extended into the cylinder from an airtight 

enclosure cap. This was connected by a spring-coated cable (Plastics One) and a swivel 
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(Mercotac, Inc.) to a constant current generator (MNC, Shreveport, Louisiana) that 

maintained low quiescent current between the electrodes. Depression of the active lever 

initiated a 5-sec infusion current of 200 µA, resulting in rapid generation of hydrogen 

gas, increasing the pressure inside the airtight cylinder, pressing a 100 nl bolus of 

infusate out through the injection tip. Between infusions, current returned to the low 

quiescent state. 

During each infusion, there was a 5-sec time-out period where bar-press 

responses were recorded yet resulted in no further infusion. In this time-out, the house 

light and a red cue light were extinguished, while the green cue light over the active lever 

flashed in 0.5-sec intervals. The assignment of active and inactive lever with respect to 

the left or right position was counterbalanced among subjects, and remained the same 

throughout the experiment for each respective subject. 

 
ICSA Procedure 

 
Adolescent EtOH treatment occurred as described above. Food and water were 

available ad lib at all times, except during ICSA testing.  

ICSA was performed as previously described (Rodd-Henricks et al., 2000, Rodd 

et al., 2004b). After postnatal day 75, the rats were implanted under isoflurane 

anesthesia with a guide cannula (22 gauge, Plastics One) stereotaxically aimed 1.0 mm 

above the pVTA. Coordinates were 5.8 to 6.1 mm posterior to bregma, 2.1 mm lateral, 

and 8.5 mm ventral from the surface of the skull at a 10 degree angle from the vertical 

(Paxinos and Watson, 1986). A place-holding stylet (28 gauge, Plastics One) extending 

0.5 mm beyond the tip of the guide cannula was inserted at all times, except during test 

sessions. Subjects were single-housed post surgery, and allowed to recover for 7 days. 

Three days prior to testing, subjects were handled 5 min per day. 
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All infusates were prepared freshly on the day of the experiment. Artificial 

cerebrospinal fluid (aCSF) was used as the vehicle for ICSA infusions. This injection 

vehicle consisted of (in mM) 120.0 NaCl, 4.8 KCl, 1.2 KH2PO4, 1.2 MgSO4, 25.0 

NaHCO3, 2.5 CaCl2, and 10.0 D-glucose, all filtered through a sterile filter (pore size 0.2 

µM) as previously described (Rodd-Henricks et al., 2000, Rodd et al., 2004b). Ethyl 

EtOH (190 proof; McCormick Distilling Co., Weston, Missouri) was dissolved in the 

vehicle solution to the correct concentration. When necessary, 0.5 N HCl was added to 

adjust the pH to 7.4 (±0.1). 

ICSA was conducted similar to procedures previously described (Rodd-Henricks 

et al., 2000, Rodd et al., 2004b). Briefly, subjects were brought to the testing room, the 

stylet was removed, and an injection cannula/infusate cylinder was affixed in place. The 

injection cannula extended 1.0 mm beyond the tip of the guide, into the pVTA. A single, 

noncontingent administration of infusate was given at the beginning of the session 

during this insertion procedure in order to prime the system. Test sessions occurred 

every other day. No operant shaping techniques were used. Active lever and inactive 

lever sides were counterbalanced between subjects, remaining the same for each 

individual rat. Within each 4 hr session, responses on the active lever resulted in 5 sec 

infusions on a fixed ratio 1 schedule of reinforcement. During infusion and time-out, 

responses on the active lever were recorded, but did not produce further infusions. 

Responses on the inactive lever were recorded but did not result in infusions at any time; 

these responses were used to index non-specific bar-pressing activity. During ICSA 

sessions 1 through 4 (acquisition), subjects received their respective dose of either the 

aCSF vehicle or EtOH. During ICSA sessions 5 and 6 (extinction), all subjects received 

aCSF vehicle only, and in session 7 (reinstatement), the original concentration was 

made available. 
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MicroMicro 

 
 
 

MicroMicro Apparatus 
 

Experimental housing was composed of Plexiglas chambers (40 x 28 x 40 cm). 

Polyethylene tubing connected to a dedicated Harvard pump (Harvart Apparatus, 

Holliston, Massachusetts) was used to administer aCSF continuously throughout the 

experiment for microdialysis in the AcbSh. The connection to the EMIT unit for 

microinjection administration to the pVTA was identical to that used in the ICSA 

experiment, although automated control of injections was programmed into the unit 

(Isolated Pulse Stimulator Model 2100, A-M Systems Inc, Sequim, Washington), instead 

of the separate computer controlling and recording operant self-administration. 

Microdialysis probes were prepared as approximately 2-mm loop style probes, as 

previously described (Perry and Fuller, 1992, Engleman et al., 2000, Melendez et al., 

2002). Probes were manufactured in the laboratory with regenerated cellulose 

Spectra/Por ® hollow fiber microdialysis tubing, molecular weight cut off of 13,000. In our 

laboratory, these have been previously found to have approximately 15% DA recovery, 

which is an average recovery rate for this design and probe length (Justice, 1993). 

 
MicroMicro Procedure 

 
Adolescent EtOH treatment occurred as in the first experiment. Food and water 

were available ad lib at all times, except during MicroMicro testing. MicroMicro was 

performed as previously described (Ding et al., 2011). After PD 75, and under isoflurane 

anesthesia, a microinjection guide cannula (22 gauge, Plastics One) was implanted in 

the right hemisphere of each subject, stereotaxically aimed 1.0 mm above the pVTA. 

Coordinates were 5.8 to 6.1 mm posterior to bregma, 2.1 mm lateral, and 8.5 mm ventral 
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from the surface of the skull at a 10 degree angle from the vertical (Paxinos and Watson, 

1986). A place-holding stylet (28-gauge, Plastics One) extending 0.5 mm beyond the tip 

of the guide cannula was inserted at all times, except during final experimentation. Also 

in the right hemisphere, a guide cannula (18 gauge, Plastics One) was implanted, aimed 

3.0 mm above the AcbSh. Coordinates were 1.7 mm anterior to bregma, 2.3 mm lateral, 

and 5.4 mm ventral to the surface of the skull at a 10 degree angle from the vertical 

(Paxinos and Watson, 1986). A place-holding stylet (Plastics One) extending 0.5 mm 

was inserted at all times, except during final experimentation.  

Subjects were single-housed post surgery, and allowed to recover 6 days. Three 

days prior to testing, subjects were habituated to the testing chambers, 3 hours per day. 

One day before testing, microdialysis probes were inserted into the AcbSh under 

isoflurane anesthesia. When inserted, the dialyzing loop was oriented in an anterior-

posterior direction to maximize exposure to the AcbSh. The probe extended 3 mm below 

the guide cannula, into the AcbSh.  

The next day, the MicroMicro procedure was performed. Subjects were placed in 

the experimental chambers and the microdialysis probe tubing was connected to the 

pump for aCSF perfusion. The aCSF microdialysis perfusion medium was composed (in 

mM) as has been previously described (Melendez et al., 2002) of 145.0 NaCl, 2.7 KCl, 

1.0 MgCl2, 2.5 CaCl2, and 2.0 Na2HPO4, filtered through a sterile filter (pore size 0.2 

µM), always prepared fresh the day of the procedure. When necessary, pH was adjusted 

to 7.4 with 0.1 N acetic acid. Perfusate aCSF formula differed from injection aCSF to 

maximize diffusion across the probe dialysis membrane. 

Flow speed of the perfusion medium was 1 µL/min. Microdialysis outflow was 

collected for 15 min per sample. After at least 90 min of washout flow, at least three 
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baseline dialysate samples were collected. This was followed by one microinjection 

dialysate sample.  

During the microinjection sample, the pVTA-cannula stylet was removed and the 

injection cannula/infusate cylinder affixed in place. The injection cannula extended 1.0 

mm beyond the tip of the guide, into the pVTA. Administration of infusate occurred 

automatically, as programmed into the EMIT machine. Each subject received 

microinjections of one solution only, prepared identically to that in the ICSA experiment; 

either infusate vehicle aCSF, or 50, 75, 100, or 200 mg% EtOH. All subjects received the 

same volume of microinjections. Microinjections were composed of a series of 100 nL 

boluses, each delivered over an interval of 5 sec. This was repeated every 20 sec for a 

total of 30 microinjections over a 10 min period into the pVTA.  

Following the microinjection sample, 120 min of post-injection dialysate samples 

were collected. All samples were collected into tubes containing preservative of 5 µL of 

0.1 N perchloric acid. After collection, samples were immediately frozen on dry ice and 

stored at -70 degrees C until HPLC analysis for DA content. 

 
HPLC Apparatus 

 
All microdialysis samples were analyzed with microbore HPLC-EC to determine 

extracellular levels of DA. Stored as described at -70 degrees C, there is no degradation 

of the DA samples (Campbell and McBride, 1995). Samples were loaded into a 10 µL 

sample loop and injected onto an analytical column. Detector output ran to a computer 

program for analysis (ChromPerfect, Justice Innovations, Inc., Palo Alto, California). DA 

levels were then determined by comparison with a standard curve. The lower sensitivity 

limit for DA was estimated to be 0.1 nM. 
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Histologies 

 
 Upon termination of ICSA experiments, a solution of 1% bromophenol blue dye 

was injected into the infusion site and the animals sacrificed. Brains were removed and 

immediately frozen at -70 degrees C, for slicing into 40-µm sections with a cryostat 

microtome. Slides were stained with cresyl violet and examined for infusion site 

verification using the atlas of Paxinos and Watson (1986).  

 Upon termination of MicroMicro experiments, a 1% bromophenol blue dye was 

injected into the infusion site and perfused through the microdialysis probe, and the 

animals were sacrificed. Brains were removed and immediately frozen at -70 degrees C, 

for slicing into 40-µm sections with a cryostat microtome. Slides were stained with cresyl 

violet and examined for infusion and microdialysis site verification using the atlas of 

Paxinos and Watson (1986). 

 
Statistical Analysis 

 
EtOH consumption was analyzed as pure EtOH intake (grams of EtOH per 

kilogram of body weight, g/kg). Change in preference ratio for EtOH intake vs. water was 

calculated by plotting ratios each day of EtOH exposure as a percentage of 15% EtOH 

solution consumed in relation to total fluids consumed ([g ethanol solution intake/g 

ethanol solution intake + g water intake] x 100). The first day of access was compared to 

the last day of access. Intake and Preference data were averaged in six blocks of 5 

days, analyzed with a repeated measures ANOVA and linear regression between 

blocks. 

ICSA data were analyzed with a Dose x Session mixed ANOVA, with repeated 

measures on Session performed on the number of active lever responses and the 

number of infusions separately. For each individual group, lever discrimination was 
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determined by "lever (active vs. inactive) x session" mixed ANOVA with repeated 

measures on session. Post hoc Tukey’s b tests were employed when a significant main 

effect was found, p < 0.05. Extinction was determined by comparing the responses on 

the active lever during sessions 4, 5, and 6, while reinstatement was determined by 

comparing the responses on the active lever during sessions 5, 6, and 7. 

MicroMicro data were expressed as a percentage of basal DA values, to correct 

for between-subject baseline variability, as previously described (Engleman et al., 2006). 

Basal dialysate values for each subject were calculated as the mean of three baseline 

samples prior to the injection sample. Also, absolute levels of baseline DA were 

calculated, and compared as group means between the two peri-adolescent Exposure 

Groups. The effects of peri-adolescent EtOH administration on basal extracellular DA 

levels and maximal drug effect with each Dose was calculated using Student’s t-test. 

The effects of EtOH microinjection administration on extracellular DA levels as a function 

of time and adolescent treatment condition were analyzed using a two-way Adolescent 

Group x Time analysis of variance (ANOVA), with repeated measures on Time (15-min 

samples), followed by the Tukey's post hoc test. Alpha was set at a P < 0.05 significance 

level. 
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3. RESULTS 
 
 
 

Cannula Placements 
 

 ICSA injector placements (Figure 1) located in the pVTA ranged from AP -5.5 to 

AP -6.1 mm relative to bregma as illustrated in 

Rat Brain in Stereotaxic Coordinates (Paxinos 

and Watson, 1986). Only subjects with the 

injector tip entirely within the pVTA (Rodd-

Henricks et al., 2000) were used in the study. 

Prior to surgery, there were 104 peri-adolescent 

EtOH-exposed and 83 naïve subjects for the 10 

groups of ICSA. After histologies, 69 total 

subjects were included in data analyses. Most 

misplaced guide cannulas aimed at the aVTA. 

 MicroMicro injector placements located in 

the pVTA (Figure 1) ranged from AP -5.5 to AP -

6.1 mm relative to bregma. Only data from 

animals with the injector tip entirely within the 

pVTA (Rodd-Henricks et al., 2000) were used 

in the analyses. Microdialysis probe 

placements (Figure 2) ranged from AP 1.5 to 

Figure 1. ICSA and MicroMicro Injector 
Placement. Top: Representation of 
placement sites within the pVTA. Black 
squares indicate representative locations 
of injection sites within the pVTA. Figure 
adapted from Paxinos and Watson 
(1986). Bottom: Depicts a photo of a 
representative brain slice, injection tip 
within the pVTA.  
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AP 1.7, and were located mainly in the AcbSh. 

Only animals with at least 75% of the 

microdialysis probe within the AcbSh were used 

in the analyses. Prior to surgery, there were 72 

peri-adolescent EtOH-exposed and 56 naïve 

subjects for the 10 groups of MicroMicro. After 

histologies, 50 total subjects were included in 

data analyses. A large majority of AcbSh cannulas 

were correctly placed. Most missed pVTA cannulas 

were aimed either in the red nucleus or below the 

pVTA. 

 
Body Weights 

 
For body weight data illustration 

purposes, data were sampled every 4 days of the 

exposure period. There was a significant main 

effect of day (F7,96 = 1370.7, p < 0.001), but 

no significant main effect of exposure group 

(F1,102= 0.257, p=0.613). There was no 

significant day x exposure group interaction 

(F7,96 = 1.53, p=0.167). This shows that 

while subjects gained body weight 

throughout the peri-adolescent time period, 

the EtOH-Exp  

Figure 3. Body weights ICSA. Mean body 
weights (±SEM) over the 30 day peri-
adolescent period for Naïve and free-choice 
EtOH-exposed (EtOH-Exp) subjects in the 
ICSA experiment. There was no significant 
difference between exposure groups. 

 

Figure 2. MicroMicro Dialysis Probe 
Placement.Top: Representation of 
placement sites within the AcbSh. 
Lines indicate representative locations 
of active probe in the AcbSh. Figure 
adapted from Paxinos and Watson 
(1986). Bottom: Depicts a photo of a 
representative brain slice, active 
probe membrane area within the 
AcbSh. 
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and Naïve subjects did not differ from each other in bodyweight within the ICSA or 

MicoMicro experiments (Figures 3 and 4).  

 
Peri-Adolescent EtOH Consumption and EtOH Preference 

 
 Initial consumption for all peri-

adolescent EtOH-exposed subjects was 5.17 

±0.36 g/kg/day. At the end of the access 

period, consumption was 7.80 ±0.31 

g/kg/day.  

For illustration of peri-adolescent 

EtOH consumption purposes, data (g/kg/day) 

were averaged in six blocks of 5 days. The 

repeated measures within subjects ANOVA 

revealed there was a significant main effect of 

Day (F5,51 = 5.627, p < 0.001), indicating 

that EtOH consumption changed over 

time. There was no significant effect of 

Study Group (F1, 55 = 1.948, p = 0.168).  

There was no significant Day x 

Study Group interaction (F5,51 = 0.582, 

p = 0.713). Given this lack of difference 

between study groups, peri-adolescent 

EtOH consumption data were collapsed 

across all EtOH-drinking subjects, for a total 

N of 176 animals. With these data the EtOH 

Figure 4. Body weights MicroMicro. Mean 
body weights (±SEM) over the 30 day peri-
adolescent period for Naïve and free-choice 
EtOH-exposed (EtOH-Exp) subjects in the 
MicroMicro experiment. There was no 
significant difference between exposure 
groups. 

Figure 5. EtOH Intake. Represents the mean 
EtOH intake data for 15% v/v EtOH, g/kg. 
There was no significant difference between 
experimental groups. Differences over time 
are illustrated in the Appendix. 
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consumption average of each block of 5 days was compared to the other blocks of 5 

days with paired samples T-tests. Every single block was significantly different from 

block 1 (M = 5.13, SEM = 0.29); block 2 (M = 6.13, SEM = 0.33, t(175)=-3.70, p < 

0.001), block 3 (M = 7.56, SEM = 0.36, t(175)=-6.71, p < 0.001), block 4 (M = 8.27, SEM 

= 0.37, t(175)=-7.74, p < 0.001), block 5 (M = 8.54, SEM = 0.36, t(175)=-8.33, p < 0.001) 

and block 6 (M = 8.05, SEM = 0.31, 

t(175)=-7.21, p < 0.001). Block 2 was 

significantly different from block 3 

(t(175)=-4.80, p < 0.001), block 4 

(t(175)=-5.75, p < 0.001), block 5 

(t(175)=-5.93, p < 0.001), and block 6 

(t(175)=-4.85, p < 0.001). Block 3 was 

significantly different from block 4 

(t(175)=-2.14, p = 0.03), but not block 5 

(t(175)=-2.62, p = 0.09) or block 6 

(t(175)=-1.27, p = 0.20). Block 4 was not 

significantly different from block 5 (t(175)=-1.29, p = 0.19) or block 6 (t(175)=0.632, p = 

0.528), nor was block 5 significantly different from block 6 (t(175)=1.789, p = 0.07).  

These results indicate that EtOH intake increased over 5-day blocks, until block 

4. This further suggests that EtOH consumption increase over time to a plateau between 

blocks 3 and 4, essentially the midpoint of EtOH access, whereupon amount of EtOH 

intake continued at prior levels and did not change. 

For illustration of peri-adolescent EtOH Preference purposes, data (calculated by 

g 15% EtOH/g total fluids) were averaged in 6 blocks of 5 days. Following a within 

subjects repeated measures ANOVA for 5 day EtOH Preference blocks, there was a 

Figure 6. EtOH Preference. Represents the 
mean EtOH preference data for 15% v/v EtOH 
compared to water, as expressed in grams of 
fluid. There was no significant difference 
between experimental groups. Differences over 
time are illustrated in the Appendix. 
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significant main effect of Block (F5,54 = 31.576), indicating that EtOH Preference changed 

over time. There was no significant effect of Study Group (F1, 58 = 0.625, p = 0.433). 

There was no significant Block x Study Group interaction (F5,54 = 0.822, p = 0.540).  

Given this lack of difference between study groups, peri-adolescent EtOH 

Preference data were collapsed across all EtOH-drinking subjects, for a total N of 176 

animals. This data was then used to compare the EtOH Preference average of each  

block of 5 days to the other blocks of 5 days with paired samples T-tests. Every single 

block was significantly different from block 1 (M = 18.09, SEM = 1.17); block 2 (M = 

21.92, SEM = 1.04, t(175)=-3.91, p < 0.001), block 3 (M = 28.83, SEM = 1.17, t(175)=-

9.31, p < 0.001), block 4 (M = 35.82, SEM = 1.18, t(175)=-13.48, p < 0.001), block 5 (M 

= 39.68, SEM = 1.16, t(175)=-15.44, p < 0.001) and block 6 (M = 42.77, SEM = 1.08, 

t(175)=-17.46, p < 0.001). Block 2 was significantly different from block 3 (t(175)=-10.16, 

p < 0.001), block 4 (t(175)=-13.90, p < 0.001), block 5 (t(175)=-16.50, p < 0.001), and 

block 6 (t(175)=-18.88, p < 0.001). Block 3 was significantly different from block 4 

(t(175)=-8.55, p < 0.001), block 5 (t(175)=-10.99, p < 0.001), and block 6 (t(175)=-12.56, 

p < 0.001). Block 4 was significantly different from block 5 (t(175)=-5.87, p < 0.001) and 

block 6 (t(175)=7.28, < 0.001). Block 5 was also significantly different from block 6 

(t(175)=4.26, p < 0.001). These results suggest that EtOH Preference versus water 

consistently increased over time. 

 Taken together, the results suggest that while EtOH total amount in g/kg 

plateaued at approximately 15 days of access, EtOH Preference continued to increase 

throughout the exposure period.  

The Appendix shows visual expression of total EtOH intake data blocks and 

preference data blocks in predictive linear regression scatter plots of individual rats’ 
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consumption at multiple paired time points, as well as proportion of explained variance 

(r2 ) calculated from their associated Pearson’s r correlation coefficients.  

 
ICSA 

 
Comparison of average acquisition responding during the first four days of ICSA 

with a between-subjects ANOVA revealed a significant main effect of Exposure Group 

(F1,68 = 12.42, p = 0.001), a significant main effect of Dose (F4,68 = 8.43, p < 0.001), and 

an Exposure Group by Dose interaction (F5,51 = 3.70, p = 0.009). 

In peri-adolescent exposed subjects, a one-way ANOVA with Tukey’s b post-hoc 

test was performed to compare acquisition responding by Dose to Infusion, Active Lever, 

and Inactive Lever data. There was a significant effect of Dose on Infusions (F4,33 = 8.63, 

p < 0.001) and a significant effect of Dose on Active Lever (F4,33 = 7.43, p < 0.001), but 

no significant effect of Dose on Inactive Lever (F4,33 = 2.04, p = 0.114). 

Post-hoc comparison by Tukey’s b tests (which corrects for unequal sample size) 

revealed that peri-adolescent exposed subjects bar-pressing for ICSA in adulthood of 

75, 100, and 150 mg% EtOH, significantly (p < 0.05 level) infused these doses at a 

higher rate than both aCSF and 50 mg%. Also, similar analysis of bar-presses on the 

Active Lever by this group revealed significance at a 0.05 level for increased responding 

for 75, 100, and 150 mg% EtOH compared to aCSF and 50 mg%. There were no 

significant differences in response between doses on the Inactive Lever. 

In naive subjects, a one-way ANOVA with Tukey’s b post-hoc test was performed 

to compare acquisition responding by Dose to Infusion, Active Lever, and Inactive Lever 

data. There was a significant effect of Dose on Infusions (F4,34 = 2.70, p = 0.049) and a 

significant effect of Dose on Active Lever responses (F4,34 = 2.91, p = 0.037), but no 

significant effect of Dose on Inactive Lever responses (F4,34 = 1.50, p = 0.226). 
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Post-hoc comparison by 

Tukey’s b tests revealed that naive 

subjects bar-pressing for ICSA of 150 

mg% EtOH, significantly infused this 

dose at a higher rate than aCSF, 50, 

75, and 100 mg% EtOH (Figure 6). 

Also, similar analysis of bar-presses 

on the Active Lever by this group 

revealed significance at a 0.05 level for 

increased responding for 150 mg% 

EtOH only compared to aCSF, 50, 75, 

and 100 mg% EtOH. There were no 

significant differences in response between doses on the Inactive Lever. 

 One-way ANOVAs were performed for each Dose. For aCSF, there was no 

significant difference between EtOH-exposed and naïve subjects for Infusion (F1,11 = 

2.42, p = 0.150), Active Lever (F1,11 = 0.96, p = 0.350), or Inactive Lever (F1,11 = 0.06, p = 

0.806). For 50 mg% EtOH, there was no significant difference between EtOH-exposed 

and naïve subjects for Infusion (F1,19 = 0.79, p = 0.386), Active Lever (F1,19 = 0.50, p = 

0.485), or Inactive Lever (F1,19 = 0.003, p = 0.954). For 75 mg% EtOH, there was a 

significant difference between EtOH-exposed and naïve subjects for Infusion (F1,16 = 

14.23, p = 0.002) and Active Lever (F1,16 = 19.94, p < 0.001), but no significant difference 

of Inactive Lever (F1,16 = 0.15, p = 0.704). For 100 mg% EtOH, there was a significant 

difference between EtOH-exposed and naïve subjects for Infusion (F1,9 = 8.18, p =  

Figure 7. ICSA: Mean Acquisition Infusions. 
Average infusions (±SEM) by male P rats for self-
infusion of aCSF, 50, 75, 100, or 150 mg% EtOH 
during the first four sessions, into the p-VTA. 
Asterisks indicate infusions were significantly 
different from aCSF, p < 0.05. Pound signs 
indicate infusions by peri-adolescent EtOH-
exposed subjects (EtOH-Exp) were significantly 
different from naïve subjects, p <0.05.  



 
41 

 
0.021) and Active Lever (F1,9 = 6.89, p = 0.030), but no significant difference of Inactive 

Lever (F1,16 = 0.006, p = 0.940). Finally, for 150 mg% EtOH, there was no significant 

difference between EtOH-exposed and naïve subjects for Infusion (F1,9 = 0.49, p = 

0.503), Active Lever (F1,9 = 1.397, p = 0.271)., or Inactive Lever (F1,9 = 0.05, p = 0.821).  

A repeated measures within-factor multivariate test was then performed for all 

groups. The repeated measure was Session, with a between subject comparison of 

Dose by Exposure Group. There was a main effect of Session (F6,54 = 12.65, p < 0.001), 

a Session by Exposure Group interaction (F6,54 = 3.02, p = 0.013), a Session by Dose 

interaction (F24,228 = 2.11, p = 0.003), and a Session by Exposure Group by Dose 

interaction (F24,228 = 2.15, p = 0.002). 

 Within peri-adolescent EtOH-exposed 

subjects, there was a significant effect of session 

(F6,24 = 8.01, p < 0.001) and a significant interaction 

of Session by Dose (F24,108 = 1.95, p = 0.011). 

Because there is a significant interaction, we break 

down one-way ANOVAs over the sessions. There 

is a significant difference for Session 1 (F4,33 = 4.03, 

p = 0.010), Session 2 (F4,33 = 12.01, p < 0.001), 

Session 3 (F4,33 = 3.89, p = 0.012), Session 4 (F4,33 

= 6.79, p = 0.001), and Session 7 (F4,33 = 12.86, p < 

0.001), but not Session 5 (F4,33 = 2.46, p = 0.067) or 

Session 6 (F4,33 = 1.54, p = 0.216). This is an 

indication of extinction, where significant difference 

does not appear between Doses on Sessions 5 and 6 (Figures 7 through 11).  

Figure 8. ICSA: aCSF Levers. Mean 
responses (±SEM) on the active and 
inactive lever by male P adolescent 
naïve (top) and E-Exposed (bottom) 
rats for self-infusion of aCSF. There 
was no significant difference between 
the two groups. 
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Within naive subjects, there was a significant effect of session (F6,25 = 6.67, p < 

0.001) and a significant interaction of Session by Dose (F24,112 = 2.46, p = 0.001). 

Because there is a significant interaction, one-way ANOVAs are broken down over the 

sessions. There is a significant difference for Session 3 (F4,34 = 3.32, p = 0.023) and 

Session 4 (F4,34 = 4.42, p = 0.006). There was no 

significant difference for Session 1 (F4,34 = 0.473, p 

= 0.755), Session 2 (F4,34 = 1.12, p = 0.364), 

Session 5 (F4,34 = 2.25, p = 0.087), Session 6 (F4,34 

= 1.86, p = 0.143), or Session 7 (F4,34 = 2.16, p = 

0.098). 

To determine presence (or lack) of lever 

discrimination in naïve subjects, a repeated 

measure analysis of Lever was examined, with a 

between subjects comparison of Dose and 

Exposure Group. There was no interaction of 

Session by Lever by Exposure Group (F24,112 = 

1.07, p = 0.384). This was followed with paired-

sample t-tests of both levers at each dose. Among 

naïve subjects at the 150 mg% dose, there was no observed lever discrimination (p = 

0.140 and greater). Among peri-adolescent EtOH-Exposed subjects at the 75 mg% 

dose, there was lever discrimination on Session 1 (p = 0.022), Session 2 (p = 0.007), 

Session 3 (p = 0.022), Session 4 (p = 0.004) and Session 7 (p = 0.011). Among peri-

adolescent EtOH-Exposed subjects at the 100 mg% dose, there was lever discrimination 

on Session 1 (p = 0.002), Session 2 (p = 0.029), Session 4 (p = 0.017) and Session 7 (p 

= 0.001). Among peri-adolescent EtOH-Exposed subjects at the 150 mg% dose, there 

Figure 9. ICSA: 50 mg% Levers. Mean 
responses (±SEM) on the active and 
inactive lever by male P adolescent naïve 
(top) and E-Exposed (bottom) rats for 
self-infusion of 50 mg% EtOH. Sessions 
5 and 6 were vehicle only. There was no 
significant difference between the two 
groups. 
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was lever discrimination on Session 2 (p = 

0.22), Session 4 (p = 0.043) and Session 7 

(p = 0.019). 

 When focusing on extinction data of 

the peri-adolescent EtOH-exposed subjects, 

repeated measures analysis with 3 sessions 

included (Sessions 4, 5, and 6) was 

examined for concentrations that supported 

infusions. There was a significant 

effect of Session (F2,28 = 12.88, p 

< 0.001) and a significant Session 

by Dose interaction (F8,58 = 2.11, p 

= 0.048). The interaction term was 

decomposed by examining 

Session for each Dose level, including 

follow-up t-tests. In EtOH-exposed subjects 

that were given 75 mg% EtOH to self-

administer, the number of infusions during 

sessions 4 was significantly higher than 

session 5 (p = 0.05) and session 6 (p = 

0.05). In EtOH-exposed subjects that were 

given 100 mg% EtOH to self-administer, the 

number of 

infusions 

Figure 10. ICSA: 75 mg% Levers. Mean responses (±SEM) 
on the active and inactive lever by male P adolescent naïve 
(top) and E-Exposed (bottom) rats for self-infusion of 75 
mg% EtOH. Sessions 5 and 6 were vehicle only. Asterisk 
(*) indicates lever discrimination and significant difference of 
E-Exp from naïve group, p < 0.05. Carat (^) indicates 
significant difference from extinction session 5, Pound sign 
(#) indicates significant difference from extinction sessions 
5 and 6. 
 

 

Figure 11. ICSA: 100 mg% Levers. Mean responses (±SEM) on the active and 
inactive lever by male P adolescent naïve (top) and E-Exposed (bottom) rats for 
self-infusion of 100 mg% EtOH. Sessions 5 and 6 were vehicle only. Asterisk (*) 
indicates lever discrimination, p < 0.05. Carat (^) indicates significant difference 
from extinction sessions and significant difference of E-Exp from naïve group. 
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during session 4 was significantly higher than session 6 (p = 0.015), while the difference 

between 4 and 5 approached significance (p = 0.67). In EtOH-exposed subjects that 

were given 150 mg% EtOH to self-administer, there was no significant difference 

between sessions 4 and 5 or 4 and 6 (p = 0.27 and 0.34). 

 Active lever data were also used for 

analysis of extinction data of peri-adolescent 

EtOH-exposed subjects. Repeated measures 

analysis revealed a significant main effect of 

Session (F2,28 = 11.85 p < 0.001) and a 

significant Session by Dose interaction (F8,58 = 

2.95, p = 0.008). The interaction term was 

decomposed by examining Session for each 

Dose level, including follow-up t-tests. In EtOH-

exposed subjects that were given 75 mg% 

EtOH to self-administer, the number of active 

lever responses during sessions 4 was 

significantly higher than session 5 (p = 0.004) 

and session 6 (p = 0.010). In EtOH-exposed 

subjects that were given 100 mg% EtOH to 

self-administer, the number of active lever 

responses during session 4 was significantly higher than session 5 (p = 0.018), as well 

as 6 (p = 0.14). In EtOH-exposed subjects that were given 150 mg% EtOH to self-

administer, there was no significant difference between sessions 4 and 5 or 4 and 6 (p = 

0.22 and 0.18). 

Figure 12. ICSA ICSA 150 mg% Levers. Mean 
responses (±SEM) on the active and inactive 
lever by male P adolescent naïve (top) and E-
Exposed (bottom) rats for self-infusion of 150 
mg% EtOH. Sessions 5 and 6 were vehicle only. 
Asterisk (*) indicates lever discrimination, p < 
0.05. There was no significant difference of E-
Exp from naïve group. Carat (^) indicates 
significant difference from extinction session 5. 
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When focusing on reinstatement data of the peri-adolescent EtOH-exposed 

subjects, repeated measures analysis with 3 sessions included (sessions 5, 6, and 7) 

was examined for concentrations that had previously supported infusions. There was a 

significant effect of Session (F2,28 = 22.63, p < 0.001) and a significant Session by Dose 

interaction (F8,58 = 3.37, p = 0.003). The interaction term was decomposed by examining 

Session for each Dose level, including follow-up t-tests. In EtOH-exposed subjects that 

were given 75 mg% EtOH to self-administer, the number of infusions during session 5 

was significantly lower than session 7, (p = 0.020) as was 6 (p = 0.024). In EtOH-

exposed subjects that were given 100 mg% EtOH to self-administer, the number of 

infusions during session 5 was significantly lower than session 7, (p = 0.003) as was 6 (p 

< 0.001). In EtOH-exposed subjects that were given 150 mg% EtOH to self-administer, 

there was no significant difference between session 5 and 7 or 6 and 7 (p = 0.213 and 

0.142).  

Active lever data were also used for analysis of reinstatement data of peri-

adolescent EtOH-exposed subjects. Repeated measures analysis revealed a significant 

main effect of Session (F2,28 = 16.91, p < 0.001) and a significant Session by Dose 

interaction (F8,58 = 3.88, p = 0.001). The interaction term was decomposed by examining 

Session for each Dose level, including follow-up t-tests. In EtOH-exposed subjects that 

were given 75 mg% EtOH to self-administer, the number of active lever responses 

during sessions 5 was significantly lower than session 7 (p = 0.008) as was session 6 (p 

= 0.034). In EtOH-exposed subjects that were given 100 mg% EtOH to self-administer, 

the number of active lever responses during session 5 was significantly lower than 

session 7 (p = 0.001), as was 6 (p = 0.001). In EtOH-exposed subjects that were given 

150 mg% EtOH to self-administer, there was no significant difference between active 

lever responses for sessions 5 and 7 or 6 and 7 (p = 0.207 and 0.154). 
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When focusing on extinction data of the naive subjects, repeated measures 

analysis with 3 sessions included (Sessions 4, 5, and 6) was examined for the one 

concentration that supported infusions. There was a no significant effect of Session (F2,29 

= 2.45, p = 0.103) but there was a significant Session by Dose interaction (F8,60 = 4.73, p 

< 0.001). The interaction term was decomposed by examining Session for one Dose 

level, including follow-up t-tests. In naïve subjects that were given 150 mg% EtOH to 

self-administer, the number of infusions during session 4 was significantly higher than 

session 5 (p = 0.040) and 6 (p = 0.023).  

Active lever data were also used for analysis of extinction data of naïve subjects. 

Repeated measures analysis revealed a significant main effect of Session (F2,29 = 4.59 p 

= 0.019) and a significant Session by Dose interaction (F8,60 = 3.05, p = 0.006). 

The interaction term was decomposed by examining Session for each Dose level, 

including follow-up t-tests. In naive subjects that were given 150 mg% EtOH to self-

administer, there was no significant difference between sessions 4 and 5 (p = 0.063) but 

there was a significant difference between 5 and 6 (p = 0.012). 

When examining reinstatement data of the naïve subjects, repeated measures 

analysis with 3 sessions included (sessions 5, 6, and 7) was examined for the one 

concentration that had previously supported infusions. There was a significant effect of 

Session (F2,29 = 9.214, p = 0.001) and a significant Session by Dose interaction (F8,60 = 

2.76, p = 0.012). The interaction term was decomposed by examining Session for each 

Dose level, including follow-up t-tests. In naïve subjects that were given 150 mg% EtOH 

to self-administer, the number of infusions during session 5 was significantly lower than 

session 7, (p = 0.001) but the same was not seen of 6 and 7 (p = 0.160). 

Active lever data were also used for analysis of reinstatement data of naïve 

subjects. Repeated measures analysis revealed a significant main effect of Session 
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(F2,29 = 5.88, p = 0.007) and a significant Session by Dose interaction (F8,60 = 2.10, p = 

0.05). The interaction term was decomposed by examining Session for each Dose level, 

including follow-up t-tests. In naïve subjects that were given 150 mg% EtOH to self-

administer, the number of active lever responses during session 5 was significantly 

lower than session 7, (p = 0.048) but the same was not seen of 6 and 7 (p = 0.196). 

 
MicroMicro 

 
 Absolute baseline DA levels of 

adolescent experimental groups did not differ 

statistically between groups. Naïve subjects had 

an average baseline DA level of 1.10 (±0.12) 

nM, while EtOH-Exp subjects had an average 

baseline of 1.09 (±0.11) nM (Figure 13). 

 A between-subjects ANOVA revealed 

significant main effect of Time (F11,30 = 3.895, p 

= 0.001) , a significant interaction of Time and Exposure Group (F11,30 = 2.412, p = 

0.027), a significant interaction of Time and Dose (F44,116 = 1.69, p = 0.013), and a 

significant interaction of Time and Dose and Exposure group (F11,33 = 3.31, p = 0.004).  

To decompose the significant 3-way interaction, the initial variable held constant 

was adolescent exposure. Performing a similar repeated measures ANOVA in animals 

that were adolescent naïve, there was a significant Time x Dose interaction (F11,14 = 

6.84, p = 0.001). This significant 2-way interaction term was further reduced by 

examining the effect of dose at each time point. For naïve subjects, there was a 

significant difference at 15 min (F4,25 = 4.57, p = 0.008), 30 min (F4,25 = 7.64, p = 0.001), 

and 60 min (F4,25 = 3.776, p = 0.018). Significance was approached at the 75 min time 

Figure 13. MicroMicro: Absolute DA 
Levels. Mean absolute DA levels 
between adolescent exposure groups. 
There was no significant difference 
between the two groups. 
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point (p = 0.057). Post hoc tests 

performed for each individual time 

point (SNK and Tukey’s b) indicated 

that in the 15 to 30 min post-injection 

block that the 150 mg% group was 

significantly different from the aCSF 

and 50 mg% group, with no other 

group differences. At the 30 min time 

point, the 150 mg% group was 

significantly different from all other dose 

levels. At the 60 min time point, the 150 mg% group was significantly different from the 

50 mg% dose, but no other levels. Follow-up t-tests showed that in naïve subjects 

receiving the 150 mg% dose microinjection, DA levels at 15 min post injection were 

significantly different compared to baseline (p = 0.004), as was 30 min (p = 0.014). The 

60 min time point approached significance (p = 0.057) (Figures 14 through 18). 

 Performing a repeated 

measures ANOVA in animals that 

were peri-adolescent EtOH exposed, 

there was a significant main effect of 

Time (F9,11 = 4.87, p = 0.012) and 

significant Time x Dose interaction 

(F11,12 = 428, p = 0.009). This 

significant 2-way interaction term 

was further reduced by examining the 

Figure 14. MicroMicro: aCSF. Microdialysis for DA 
(percent baseline, ±SEM) with concurrent pulsed 
microinjection of aCSF. There was no significant 
difference between the two peri-adolescent 
exposure groups, nor from baseline. 

 

Figure 15. MicroMicro: 50 mg% Microdialysis for DA 
(percent baseline, ±SEM) with concurrent pulsed 
microinjection of 50 mg% EtOH. There was no 
significant difference between the two peri-
adolescent exposure groups, nor from baseline. 
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effect of dose at each time point. For 

EtOH-exposed subjects, there was a 

significant difference at the Injection 

time point (F4,23 = 4.25, p = 0.013), 30 

min (F4,23 = 5.23, p = 0.005), 60 min 

(F4,23 = 3.88, p = 0.018), and 90 min 

(F4,23 = 3.69, p = 0.022). Significance 

was approached at the 15 min time 

point (p = 0.078). Post hoc tests 

performed for each individual time 

point (SNK and Tukey’s b) indicated 

that in the Injection time point, the 75 

mg% group was significantly different 

from the aCSF and 50 mg% group, 

with no other group differences. At the 

30 min time point, the 150 mg% group 

was significantly different from the 

aCSF and 50 mg% groups, with no 

other group differences. At the 90 min 

time point, the 150 mg% group was 

significantly different from the aCSF, 50, and 75 mg% groups, with no other group 

difference.  

Follow-up t-tests showed that in peri-adolescent EtOH-exposed subjects 

receiving the 75 mg% dose microinjection, DA levels at the injection time point were 

significantly different compared to baseline (p = 0.029), while 15 min approached 

Figure 16. MicroMicro: 75 mg% Microdialysis for 
DA (percent baseline, ±SEM) with concurrent 
pulsed microinjection of 75 mg% EtOH. Asterisk (*) 
indicates a significant difference from baseline in 
the EtOH-Exp group (p < 0.05).  

Figure 17. MicroMicro: 100 mg% Microdialysis for 
DA (percent baseline, ±SEM) with concurrent 
pulsed microinjection of 100 mg% EtOH. Asterisk 
(*) indicates a significant difference from baseline 
in the EtOH-Exp group (p < 0.05).  
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significance (p = 0.065). In peri-adolescent subjects receiving the 100 mg% dose 

microinjection, DA levels at the injection time point (p = 0.005), 15 min (p = 0.027), 30 

min (p = 0.011), 45 min (p = 0.042), and 60 min (p = 0.011) time points were significantly 

different compared to baseline. In peri-adolescent subjects receiving the 150 mg% dose 

microinjection, DA levels at the injection time point (p = 0.006), 30 min (p = 0.048), and 

60 min (p = 0.007) time points were significantly different compared to baseline.  

 Performing a repeated 

measures ANOVA with a between 

subjects factor of Dose for the last 

baseline and first four post-baseline 

periods, at Dose levels of aCSF, 50, 

and 75 mg% EtOH, there are no 

significant differences between the 

adolescent exposure groups. There is 

a significant difference at 100 mg%, 

with a main effect of time (F4,4 = 8.18, p 

= 0.033) and a Time by Adolescent 

Group (F4,4 = 7.61, p = 0.037). A one-

way ANOVA show that at this time point there is a significant difference at the Injection 

time point (F1,8 = 6.19, p = 0.042), 15 min (F1,8 = 29.69, p = 0.001), 30 min (F1,8 = 8.35, p 

= 0.023), 60 min (F1,8 = 15.56, p = 0.006), and 90 min (F1,8 = 5.91, p = 0.045). The 75 min 

time point approached significance (p = 0.055). There was a significant difference at 150 

mg%, with a main effect of Time (F4,6 = 6.25, p = 0.025) but no interaction. This suggests 

that at 150 mg%, both Adolescent groups increased from baseline. 

Figure 18. MicroMicro: 150 mg% Microdialysis for 
DA (percent baseline, ±SEM) with concurrent 
pulsed microinjection of 150 mg% EtOH. Asterisk 
(*) indicates a significant difference from baseline 
in the EtOH-Exp group (p < 0.05). Pound sign (#) 
indicates a significant difference from baseline in 
the Naïve group (p < 0.05). 
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4. DISCUSSION 
 
 
 

 The most salient results emerging from these experiments indicate that P rats given 

free-choice access to EtOH during peri-adolescence will voluntarily consume significant 

amounts of EtOH, and this early developmental drinking experience increases the 

reinforcing properties of EtOH in adulthood. The pVTA, a brain area known to be an 

important target area for EtOH’s reinforcing effects, was found to manifest increased 

sensitivity to EtOH as a consequence of the adolescent drinking experience. This 

suggests that activation pVTA DA cell bodies of the mesolimbic DA system is a critical 

substrate that mediates the reinforcing properties of EtOH, and neuroadaptations in the 

pVTA apparently mediate the enhanced reinforcing actions of EtOH seen in adult 

animals exposed to EtOH during the adolescent period. Additionally, the findings of 

increased sensitivity in the mesolimbic system were confirmed with the observation that 

peri-adolescent EtOH exposure significantly increased DA efflux in the AcbSh, a primary 

terminal region for the pVTA axonal projections. Overall, the findings support the 

overarching hypothesis that peri-adolescent EtOH-exposure produces long-lasting 

alterations in neural circuitry involved in EtOH-reinforcement. 

The findings of this study may have relevant translational impact for the 

importance of adolescent consumption in humans. Adolescent alcohol use appears to be 

experiencing a slight decline over the past two decades. In 1991, 88% of surveyed high 

school seniors reported alcohol consumption, whereas 2010 surveys reported this 

percentage to be slightly above 70% (Johnston et al., 2011). While this is good news, 
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particularly if the trend continues, there is still a large proportion (70%) of high school 

seniors who are drinking and experimenting with alcohol and have already chosen to 

undertake the risk of EtOH exposure.  

Lifetime risk for alcohol use disorder declines with increasing age of first drink of 

alcohol (Prescott and Kendler, 1999), including subjects with family history positive for 

alcoholism, as examined in twin studies (Agrawal et al., 2009). Human adolescent binge 

drinking appears to be associated with alteration of white matter fiber tracts during 

adolescence, which has been related to cognitive performance deficits in adulthood 

(Jacobus et al., 2009, McQueeny et al., 2009). Also, fMRI data show that when 

anticipating reward, ventral striatal activation (an area analogous to the Acb examined in 

this study) is greater in adolescents compared to children and adults (Galvan et al., 

2006), suggesting a greater range of plasticity for reward-associated behavior may be 

present during adolescence. There is something about the adolescent neural system 

that makes it fundamentally different from periods before and after adolescence (Spear, 

2000). 

Use of the P rat as a subject in the present studies is meant to model possible 

perturbations of the systems seen in human adolescents that are identified as family 

history positive for alcoholism, particularly since about 50% of the variance in alcohol 

drinking behavior is accounted for by heredity (Bell et al., 2005, 2006, McKinzie et al., 

2005). Peri-adolescent EtOH consumption enhances EtOH intake in adulthood in both 

free-choice and operant settings (McKinzie et al., 1998b., Rodd-Henricks et al., 2002a, 

b, Bell et al., 2005). The present findings indicate that free-choice peri-adolescent EtOH 

consumption has long -lasting effects on EtOH reward pathways in adult P rats that are 

genetically predisposed to abuse EtOH. These effects increase the reward sensitivity of 



 
53 

 
lower concentrations of EtOH in the brain, as measured by a shift to the left of the dose- 

response curve for EtOH self-administered into the pVTA.  

Adolescent EtOH exposure increases DA clearance in the Acb, suggesting a 

general increase in DA release has occurred (Sahr et al., 2004). Adolescent subjects 

exhibit higher basal DA levels, as well as levels of D1 and D2 receptors, than adult 

subjects, emphasizing that DA tone differs overall in adolescents (Pascual et al., 2009). 

EtOH during adolescence increases basal DA in the Acb during adolescence (Philpot 

and Kirstein, 1998) and adulthood (Badanich et al., 2007), and down-regulates the levels 

of DRD2 receptors in prefrontal cortex, striatum and Acb of adolescent animals, but not 

of adult rats (Pascual et al., 2009). This indicates that despite identical treatment in 

adults, the DA system can be uniquely altered in adolescence. Adolescent EtOH 

exposure causes faster DA increase induced by EtOH administration into the Acb during 

adolescence and affects the accumbal ratio of DA to DOPAC (Philpot and Kirstein, 2004, 

Sahr et al., 2004), yet decreases DA response to an EtOH challenge within this brain 

structure (Philpot et al., 2009). Thus, EtOH has both acute and long-lasting effects on 

the DA system terminating in the Acb, which may be causal or correlational to increased 

EtOH consumption in adulthood. 

DA activation in the AcbSh in response to drug administration has been 

suggested to strengthen drug reward associations, a large part of addictive behavior 

(Koob and Le Moal, 1997, Di Chiara, 1998, Koob, 2010). Removal of EtOH access 

decreases DA and 5-HT in the Acb of EtOH-dependent subjects, an effect that is 

reversed when EtOH access is restored (Weiss et al., 1996). Suppression of EtOH 

operant reinforcement by naltrexone occurs simultaneously with a suppressed DA 

response in the Acb (Gonzalez and Weiss, 1998). During operant access for EtOH (as 

well as during an anticipatory pre-access period) DA levels are elevated in the AcbSh 
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(Weiss et al., 1993, Melendez et al., 2002). The literature evidencing DA change during 

reward is well established, but there is only a very limited focus when including the 

variable of adolescent EtOH exposure. 

When it came to examining EtOH consumption during adolescence in the current 

study, it was observed that Intake volume of EtOH for each subject during the 30 day 

access period has reached its peak by the end of the second week. This lack in 

statistical significance between later time blocks suggests that some neurobehavioral 

change has occurred by, or occurs at, the 2 week peri-adolescent EtOH access, 45 day 

of age period. EtOH preference continued to increase throughout the exposure period, 

as evidenced by statistically significant differences between all blocks compared to each 

other. This corresponds to data reported previously in P rats (Bell et al., 2003, Bell et al., 

2006). It appears that water volume consumption decreases by the end of a similar 30-

day peri-adolescent EtOH exposure period, resulting in increased preference ratios. 

Bodyweight increases at a constant rate throughout the whole exposure period, 

indicating this is not due to an observable growth spurt. As seen in the Appendix, this 

increase in preference ratio is significantly correlated when subjects’ drinking volumes 

are plotted in comparison of blocks, suggesting that while EtOH preference is 

significantly continuing to change over the full 30 day period, early EtOH preference 

predicts later EtOH preference. Levels of EtOH consumption by adolescent male P rats 

in this study was comparable to that of previous work with 15% v/v EtOH (Bell et al., 

2006), in g/kg/day intake as well as EtOH percent preference observed throughout the 

30 day access period. In the Bell et al., 2006 study, peri-adolescent subjects reached 

average BAC's of 56 mg% at two hours into the daily dark cycle, yet ranged as high as 

~150 mg%. This average corresponds to a moderate amount of alcohol consumed in the 
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human condition, while the highest concentrations correspond to binge or greater levels 

of EtOH intake (Eckardt et al., 1998, Bell et al., 2006).  

As in previous ICSA studies (Rodd-Henricks et al., 2000, Rodd et al., 2004, 

2005a), P rats responded on the active lever to self-administer EtOH directly into the 

pVTA during ICSA sessions 1-4, and extinguished responding when only vehicle was 

available (sessions 5 and 6). Additionally, the operant responding was reinstated in 

session 7 when EtOH infusions were again available (see Figures 8 - 12). 

Experimentally naïve female P rats self-administer EtOH at concentrations that have 

varied by study (150 mg% EtOH, but not 100 mg%; Rodd-Henricks et al., 2000, 75 mg% 

and higher; Rodd et al., 2004, 2005a). In the current study, subjects were male instead 

of female and substantially larger as a result. These naïve male P rats failed to self-

administer either vehicle or the three lowest EtOH concentrations (50, 75, and 100 mg%) 

to the pVTA, and did not discriminate the active lever from the inactive lever. At 150 

mg% concentration, naïve rats self-infused EtOH at a statistically significant level, and 

approached significance for lever discrimination (possibly diminished due to high 

variability between subjects on both the inactive and active levers). Compared to 

extinction session 5, reinstatement responding on the active lever during session 7 was 

significantly different. 

P rats that had free-choice access to EtOH during peri-adolescence also failed to 

self-administer 50 mg% EtOH and discriminate the active from the inactive lever. At the 

75, 100, and 150 mg% concentrations, however, peri-adolescent EtOH-exposed 

subjects readily self-administered EtOH to the pVTA, responded more on the active than 

inactive lever during acquisition, extinguished responding on the active lever when only 

aCSF was given, and reinstated responding on the active lever when EtOH was 
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restored. Thus, free-choice peri-adolescent EtOH exposure increased the sensitivity of 

the pVTA to the rewarding effects of EtOH in adulthood.  

Future work may find differences at higher concentrations of EtOH, as a previous 

study found that P rats exposed to EtOH constantly or intermittently in adulthood self-

infused higher concentrations of EtOH (300 mg%) into the pVTA, while naïve subjects 

did not (Rodd et al., 2005b). This high concentration was not examined in the current 

study. 

In the second study, the observed basal extracellular DA of the AcbSh (Figure 

13; Naïve subjects 1.10 (±0.12) nM, EtOH-Exp subjects 1.09 (±0.11) nM) of P rats 

corresponded within ranges previously observed (Engleman et al., 2000; Melendez et 

al., 2002, Sahr et al., 2004, Ding et al., 2009, Franklin et al., 2009), indicating both probe 

recovery of DA and DA analysis by HPLC were comparable to previous studies. 

Furthermore, basal extracellular DA data compared between groups support a previous 

study which also failed to find differences in basal DA in the Acb of peri-adolescent 

EtOH-exposed P rats compared to -naïve subjects (Sahr et al., 2004).  

Figures 14 - 18 illustrate the results of the MicroMicro experiments that measured 

DA extracellular concentrations (efflux) within the AcbSh in response to EtOH (50 - 150 

mg%) administered into the pVTA. Naïve P rats failed to show an increase in DA in the 

AcbSh in response to microinjections of the three lower concentrations of EtOH (50, 75, 

and 100 mg%) into the pVTA. Subjects with free-choice access to EtOH during peri-

adolescence did not show an increase at the 50 mg% level, but did display increases in 

extracellular DA within the AcbSh in response to microinjections of 75 and 100 mg% 

EtOH. The results from both the EtOH-exposed and -naïve subjects spanned a range of 

concentrations that were previously found to be below and above the threshold level  

that supported ICSA into the pVTA. Both groups showed an increase in AcbSh DA 
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response at the 150 mg% level, just as both groups displayed self-administration of 150 

mg% EtOH. These results show that free-choice peri-adolescent EtOH consumption has 

changed the way the VTA responds to EtOH in adulthood. Thus, free-choice adolescent 

EtOH exposure enhances the release of DA downstream from the pVTA in the AcbSh, 

upon EtOH application to the pVTA. 

Rodent subjects with a family history that predisposes them for high EtOH 

consumption have been shown to have lower levels of basal DA in the Acb compared to 

non-family-history-positive subjects, possibly connected with reduced DA release 

(Murphy et al., 1982, 1987). Long-term EtOH drinking has been shown to increase basal 

DA activity in the Acb of adult P rats (Thielen et al., 2004), which has been hypothesized 

to be related to increased sensitivity to the reinforcing effect of EtOH in the pVTA 

following EtOH access (Rodd et al., 2005b). While Acb DA transient events (fluctuations 

in DA under a second in duration) of adolescent subjects exist at baseline rates similar 

to adults, transient events in response to social and nonsocial stimuli differ, suggesting 

variations in novelty processing that may relate to reward salience (Robinson et al., 

2011). Therefore, it appears that DA variations and responsiveness in the Acb is related 

to EtOH reward, reinforcement, and a predisposition for high EtOH intake. 

The present study found that pulsed microinjections of EtOH administered to the 

pVTA, in a pattern similar to a bout of ICSA administration, are connected to increased 

extracellular DA concentrations in the AcbSh. This indicates further that stimulation of 

DA cell bodies in the pVTA projecting to the AcbSh is associated with the rewarding 

properties of EtOH. The present results also indicate that following peri-adolescent 

exposure to EtOH, lower concentrations of EtOH are required to produce observable DA 

in peri-adolescent exposed subjects than -naïve subjects. This indicates that the 
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subjective rewarding properties of EtOH within the pVTA can be been significantly 

altered by peri-adolescent EtOH exposure as well. 

As observed in hippocampal cells following EtOH exposure in adolescence 

(Crews et al., 2007, McClain et al., 2011a, b), it is possible that EtOH administration is 

disrupting scaffolding of normal interconnections, or inducing pruning where pruning 

should not occur, in ways that affect the VTA-AcbSh neurocircuit. It is normal for neural 

connections and ratios of proteins and receptors to be changing at this time; 

neurogenesis in the hippocampus (He and Crews, 2007), as well as DA receptor binding 

in the cortex and striatum, have been shown to decline over time (Jucaite et al., 2010, 

Weickert et al., 2007), indicating that receptor density is higher in many brain regions of 

the adolescent relative to adults. For instance, DAR1 mRNA expression has been shown 

to peak in adolescence (Weickert et al., 2007). These basal differences may be involved 

in the vulnerability that the peri-adolescent time period presents; perturbations of 

systems already changing (neurogenesis, changes in receptor density and expression) 

may result in an altered mesolimbic DA system that is primed for increased EtOH reward 

in adulthood.  

 
Conclusions 

 
The mesolimbic DA system is a critical part of the neuro-circuit that is vulnerable 

during adolescence, and when perturbed, may promote future excessive EtOH drinking 

behavior. Overall, the results of this study indicate that the consumption of EtOH by P 

rats during peri-adolescence produces persistent neuroadaptations within this 

mesolimbic DA system. Specifically, following peri-adolescent free-choice EtOH-

exposure in P rats, an increase in the sensitivity and reinforcing properties of EtOH in 

the pVTA was observed, as well as an increase in the sensitivity and efficacy of EtOH to 
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stimulate activation of the mesolimbic DA system. The focus on the mesolimbic DA 

system in the present study adds to a vast literature on the importance of this system in 

modulating alcohol abuse and alcoholism. It is, however, important to note that the 

mesolimbic DA pathway is potentially only one of many neurobiological substrates 

involved in the effects of alcohol and the mediation of drinking behavior. 

 An important aspect of the present study is that the EtOH was self-administered 

via free-choice drinking, compared with many other studies that used experimenter-

administered EtOH via injections or other passive methods. Experimenter-administered 

EtOH is complicated by stress associated with the aversive effects of restraint and 

administration of EtOH amounts that are not necessarily reinforcing to the animal. An 

extensive literature indicates that developmental stressors can have multiple deleterious 

and long-lasting effects on the adult animal. The approach taken in this study is one of 

only a few studies that have used free-choice drinking as a method to administer EtOH 

to adolescent animals, and the results may be more comparable to human adolescent 

drinking than experimenter-administered approaches.  

The translational implications of the present study are clear that adolescent 

alcohol drinking may increase the susceptibility to life-long alcohol abuse and 

alcoholism, particularly for individuals who have a high hereditary propensity to 

excessive alcohol use. According to a number of physical and neurobiological markers, 

the PD 30 - 60 used in the present study is reasonable approximation of the human 

adolescent period. However, one caveat of the present study is that adolescent children 

are likely to drink in binges when alcohol is available, unlike the continuous free-choice 

drinking approach used in this study. On the other hand, binge drinking has repeatedly 

been observed in many studies to cause even more severe deleterious effects than 

continuous drinking on behavior and neurobiological dependent measures. Thus, future 
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studies that investigate binge-like exposure in P rats would likely yield similar or even 

more pronounced effects as observed in the current results. Additionally, it is possible 

that similar findings would occur with EtOH exposure during other developmental 

periods before or after this PD 30 - 60 adolescent window, as well as free-choice 

drinking periods that span less than 30 days.  

Future directions should explore other EtOH exposure parameters with regard to 

this adolescent EtOH exposure model to evaluate differences observed during EtOH 

drinking and/or post-EtOH binge-like access in adolescence. For example, studies might 

include examination of other neurotransmitters or brain areas, use of RT-PCR to 

determine changes in G-proteins or other intracellular signaling pathways, or receptor 

binding and receptor subunit analyses. Moreover, an important future direction is that 

these findings present an opportunity to develop pharmacological interventions that may 

prevent and/or ameliorate these peri-adolescent ETOH-drinking induced 

neuroadaptations. 
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APPENDIX 

 
 

Figure A1. Blocks of EtOH Access. Illustration of breakdown of peri-adolescent EtOH 
access days into six blocks of five days each for comparison of means.  
 
 
 
 

 
Figure A2. Block 1 Compared to Block 2. These blocks are significantly different for 
Intake (p < 0.001) and Preference (p < 0.001). Proportion of explained variance (r2 ) for 
Intake is 0.41 (F1,174 = 121.23, p < 0.001). The r2 for Preference is 0.38 (F1,174 = 105.95, p 
< 0.001).  
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Figure A3. Block 1 Compared to Block 3. These blocks are significantly different for 
Intake (p < 0.001) and Preference (p < 0.001). Proportion of explained variance (r2 ) for 
Intake is 0.18 (F1,174 = 38.38, p < 0.001), while the r2 for Preference is 0.26 (F1,174 = 
62.94, p < 0.001). 

 
Figure A4. Block 1 Compared to Block 4. These blocks are significantly different for 
Intake (p < 0.001) and Preference (p < 0.001). Proportion of explained variance (r2 ) for 
Intake is 0.09 (F1,174 = 17.5, p < 0.001), while the r2 for Preference is 0.14 (F1,174 = 28.59, 
p < 0.001).  
 

 
Figure A5. Block 1 Compared to Block 5. These blocks are significantly different for 
Intake (p < 0.001) and Preference (p < 0.001). Proportion of explained variance (r2 ) for 
Intake is 0.27 (F1,174 = 11.81, p = 0.001), while the r2 for Preference is 0.08 (F1,174 = 
15.42, p < 0.001).  
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Figure A6. Block 1 Compared to Block 6. These blocks are significantly different for 
Intake (p < 0.001) and Preference (p < 0.001). Proportion of explained variance (r2 ) for 
Intake is 0.01 (F1,174 = 2.52, p = 0.114), while the r2 for Preference is 0.04 (F1,174 = 8.30, p 
= 0.004).  
 

 
Figure A7. Block 2 Compared to Block 3. These blocks are significantly different for 
Intake (p < 0.001) and Preference (p < 0.001). Proportion of explained variance (r2 ) for 
Intake is 0.41 (F1,174 = 124.85, p < 0.001), while the r2 for Preference is 0.67 (F1,174 = 
349.96, p < 0.001). 
 

 
Figure A8. Block 2 Compared to Block 4. These blocks are significantly different for 
Intake (p < 0.001) and Preference (p < 0.001). Proportion of explained variance (r2 ) for 
Intake is 0.21 (F1,174 = 47.88, p < 0.001), while the r2 for Preference is 0.36 (F1,174 = 
99.33, p < 0.001).  
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Figure A9. Block 2 Compared to Block 5. These blocks are significantly different for 
Intake (p < 0.001) and Preference (p < 0.001). Proportion of explained variance (r2 ) for 
Intake is 0.11 (F1,174 = 21.23, p < 0.001), while the r2 for Preference is 0.28 (F1,174 = 68.6, 
p < 0.001).  
 

 
 
Figure A10. Block 2 Compared to Block 6. These blocks are significantly different for 
Intake (p < 0.001) and Preference (p < 0.001). Proportion of explained variance (r2 ) for 
Intake is 0.06 (F1,174 = 12.00, p = 0.001), while the r2 for Preference is 0.21 (F1,174 = 
46.87, p < 0.001).  

 
Figure A11. Block 3 Compared to Block 4. These blocks are significantly different for 
Intake (p = 0.03) and Preference (p < 0.001). Proportion of explained variance (r2 ) for 
Intake is 0.37 (F1,174 = 102.59, p < 0.001), while the r2 for Preference is 0.57 (F1,174 = 
235.62, p < 0.001).  
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Figure A12. Block 3 Compared to Block 5. These blocks are not significantly different for 
Intake (p = 0.09) but are significantly different for Preference (p < 0.001). Proportion of 
explained variance (r2 ) for Intake is 0.23 (F1,174 = 51.71, p < 0.001), while the r2 for 
Preference is 0.41(F1,174 = 123.18, p < 0.001).  

 
Figure A13. Block 3 Compared to Block 6. These blocks are not significantly different for 
Intake (p = 0.20) but are significantly different for Preference (p < 0.001). Proportion of 
explained variance (r2 ) for Intake is 0.26 (F1,174 = 26.44, p < 0.001), while the r2 for 
Preference is 0.13 (F1,174 = 63.23, p < 0.001). 

 
Figure A14. Block 4 Compared to Block 5. These blocks are not significantly different for 
Intake (p = 0.19) but are significantly different for Preference (p < 0.001). Proportion of 
explained variance (r2 ) for Intake is 0.70 (F1,174 = 417.32, p < 0.001), while the r2 for 
Preference is 0.71 (F1,174 = 430.55, p < 0.001).  
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Figure A15. Block 4 Compared to Block 6. These blocks are not significantly different for 
Intake (p = 0.53) but are significantly different for Preference (p < 0.001). Proportion of 
explained variance (r2 ) for Intake is 0.28 (F1,174 = 66.73, p < 0.001), while the r2 for 
Preference is 0.42 (F1,174 = 125.88, p < 0.001).  

 
Figure A16. Block 5 Compared to Block 6. Blocks 5 and 6 are not significantly different 
for Intake (p = 0.07) but are significantly different for Preference (p < 0.001). Proportion 
of explained variance (r2 ) for Intake is 0.47 (F1,174 = 153.80, p < 0.001), while the r2 for 
Preference is 0.63 (F1,174 = 299.56, p < 0.001).  
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