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ABSTRACT 

 

 

Raza, Asad. M.S.B.M.E, Purdue University, May 2013. Tunable Hydrogels for 

Pancreatic Tissue Engineering. Major Professor: Chien-Chi Lin. 

 

 

Type I diabetes is an autoimmune disorder characterized by the loss of insulin 

producing islet cell mass. While daily insulin injection provides an easy means of 

glycemic control, it does not prevent long-term complications associated with diabetes. 

Islet transplantation has been suggested as a permanent cure for type 1 diabetes. 

However, the recurrence of host immunity and shortage of donor islets hinder the 

prevalence of islet transplantation. Biomaterial strategies provide an alternative route to 

solving the problems associated with host immune response and shortage of donor islets. 

One highly recognized platform for achieving these goals are hydrogels, which are 

hydrophilic crosslinked polymers with tissue-like elasticity and high permeability.  

Hydrogels prepared from poly(ethylene glycol) (PEG) derivatives  are increasingly used 

for a variety of tissue engineering applications, including encapsulation of pancreatic 

islets and serving as a material platform for pseudo-islet differentiation. PEG hydrogels 

formed by mild and rapid thiol-ene photo-click reactions are particularly useful for 

studying cell behaviors in three-dimension (3D). Thiol-ene PEG-based hydrogels can be 

rendered biodegradable if appropriate macromer and cross-linker chemistry is employed. 

However, the influence of hydrogel matrix properties on the survival, growth, and 

morphogenesis of cells in 3D has not been fully evaluated. This thesis aims at using 

norbornene-functionalized PEG macromers to prepare thiol-ene hydrogels with various 

stiffness and degradability, from which to study the influence of hydrogel properties on 

pancreatic cell fate processes in 3D. Toward establishing an adaptable hydrogel platform
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for pancreatic tissue engineering, this thesis systematically studies the influence of 

hydrogel properties on encapsulated endocrine cells (e.g., MIN6 -cells) and exocrine 

cells (PANC-1 cells), as well as human mesenchymal stem cells (hMSC). It was found 

that thiol-ene photo-click hydrogels provide a cytocompatible environment for 3D culture 

of these cells. However, cell viability was negatively affected in hydrogels with higher 

cross-linking density.  In contrast to a monolayer when cultured on a 2D surface, cells 

with epithelial characteristic formed clusters and cells with mesenchymal features 

retained single cell morphology in 3D. Although cells survived in all hydrogel 

formulations studied, the degree of proliferation, and the size and morphology of cell 

clusters formed in 3D were significantly influenced by hydrogel matrix compositions. For 

example: encapsulating cells in hydrogels formed by hydrolytically degradable macromer 

positively influenced cell survival indicated by increased proliferation. In addition, when 

cells were encapsulated in thiol-ene gels lacking cell-adhesive motifs, hydrolytic gel 

degradation promoted their survival and proliferation. Further, adjusting peptide 

crosslinker type and immobilized ECM-mimetic bioactive cues provide control over cell 

fate by determining whether observed cellular morphogenesis is cell-mediated or matrix-

controlled.  These fundamental studies have established PEG-peptide hydrogels formed 

by thiol-ene photo-click reaction as a suitable platform for pancreatic tissue engineering. 
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1. INTRODUCTION 

 

 

1.1 Pancreas, Type I Diabetes and Therapeutic Approach 

Pancreas is composed of functionally distinct endocrine and exocrine 

machineries. The exocrine region is formed by acinar and duct cells making up to 95–

98% of the pancreas. The function of the exocrine part is to produce digestive enzymes 

and electrolytes, which help in nutrient digestion and absorption in the gastrointestinal 

tract [1]. On the other hand, endocrine cells form aggregates scattered throughout the 

exocrine pancreas in the form of islets of Langerhans [1, 2]. The islets are made up of 

five principle endocrine cell types categorized by the hormone they secrete, which are: 

insulin-producing β-cells, glucagon-producing α-cells, somatostatin-producing δ-cells, 

ghrelin-producing ε-cells and pancreatic polypeptide-producing PP-cells [1]. The main 

functions of these endocrine hormones are: insulin stimulates glucose uptake, glucagon 

mobilizes glucose from the liver into the circulation, somatostatin inhibits both α- and β-

cell secretions, pancreatic polypeptide exerts an inhibitory role in pancreatic exocrine 

secretion and ghrelin inhibits insulin secretion [1-4]. In summary, all endocrine cells play 

an important role in maintaining blood glucose levels.  

 

Insulin secreting β-cells are one of five major types of cells that make up the 

mammalian pancreatic islet. They make up 1–2% of the total cell mass of the pancreas 

and 65–85% of the Langerhans islets cells [2-4]. As mentioned earlier, β-cells secrete the 

hormone insulin in response to nutrients, hormones and neuronal stimuli and hence play a 

pivoting role in the maintenance of glucose homeostasis. The endocrine function of β-

cells can be negatively affected if a person has type I diabetes, type II diabetes or 

pancreatic cancer.  
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Insulin dependent (Type 1) diabetes is an autoimmune disease caused by β-cell-

targeting auto-immunity [5, 6]. Hyperglycemia arises due to the loss of β-cell mass, 

hence exogenous insulin treatment is required to restore normal blood glucose 

homeostasis. The most common glycemic therapy is via daily insulin injections, which 

not only cause patients discomfort, but also accumulate risks of hypoglycemia and 

insulin-resistance in the long-term [7]. To alleviate reliance on daily insulin injections, 

several therapeutic interventions have been adopted, including whole pancreas 

transplantation [8] and islet transplantation using the Edmonton protocol [9, 10]. The 

latter involves infusing donor islets in the portal vein, followed by an improved 

immunosuppressive regimen. Islet transplantation provides better glycemic control over 

conventional exogenous insulin therapy and is considered a safer alternative to whole 

pancreas transplantation [11, 12]. Unfortunately, the clinical prevalence of this technique 

is greatly hindered by the shortage of donor islets for transplantation (islets from at least 

two donors are needed for one recipient), poor viability of the isolated and transplanted 

islets in vivo, and recurrence of immune rejection [13-16].  

 

Due to the threat posed by type I diabetes, the number of studies analyzing the 

mechanisms that govern β-cell proliferation and growth in physiological and pathological 

conditions has increased exponentially during the last few decades [3]. Most in vitro 

studies use cell lines, such as Murine β-cell line (MIN6) (due to islet-like sensitive nature 

of these cell) in order to analyze and characterize matrix conditions influencing 

pancreatic β-cell survival and functioning in 3D culture [17]. In conjunction with 

pancreatic β-cells, mesenchymal stem cells (MSCs) have been used to improve islet 

transplantation outcome (most likely due to paracrine effects) [18-21].  

 

Many studies have also focused on differentiating stem or precursor cells into 

insulin-secreting cells [22-25], while others have focused on developing in vitro culture 

techniques to expand/preserve these cells [8, 26, 27]. One widely researched culture 

platforms is semi-permeable polymeric capsule. The premise of this technique is that the 

encapsulated islet cells are protected from direct contact of host immune cells and large 



3 

 

antibodies, while the semi-permeable membrane still allows facile exchange of nutrients 

and cell metabolic products [15, 28-31]. Various cytocompatible natural and synthetic 

biomaterials have been developed for cell encapsulation [15, 32-34], but it remains a 

challenge to create a suitable three-dimensional biomimetic microenvironment for 

encapsulation of islet cells. This is because pancreatic -cells are known to undergo 

apoptosis easily when exposed to environmental stresses such as hypoxic and oxidative 

conditions [35-37]. As a result, the encapsulation conditions suitable for other cells that 

are more robust (e.g., fibroblasts, mesenchymal stem cells, etc.) are often sub-optimal for 

-cell encapsulation. While efforts have been made towards creating material platform 

for immunoisolation and material-based differentiation of cells to insulin secreting cells, 

there exists a critical need to develop a material platform for safe encapsulation and long-

term culture of -cells and islets. Such a material platform may also serve as a foundation 

for generating large quantity of insulin-secreting cells to overcome the obstacle of donor 

islet shortage.   

 

 

1.2 PEG-Based Hydrogels 

Hydrogels are hydrophilic crosslinked polymers with exceptional potential as 

scaffolding materials for repairing and regenerating tissues [38-40]. The high water 

content of hydrogels permits easy diffusion of oxygen and exchange of nutrients and 

cellular metabolic products, all of which are crucial to maintaining cell viability. In 

addition, hydrogels are excellent carriers for controlled release and cell delivery due their 

high tenability [39]. Many potential hydrogel systems have been explored employing 

both natural and synthetic polymer, specific examples to which include: Ionically 

crosslinked alginate–poly(lysine) system, copolymer of poly(acrylonitrile) and poly(vinyl 

chloride) (PAN–PVC), poly(N-isopropylacrylamideco – acrylic acid) gel, poly(ethylene 

glycol) (PEG), poly(vinyl alcohol) (PVA) and poly(Nisopropylacrylamide) (PNIPAAM) 

[17, 41]. Synthetic hydrogels like PEG-based hydrogels have advantages over natural 

hydrogels, due to their ability for easy photopolymerization, easy control of scaffold 
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architecture and chemical compositions, adjustable mechanical properties and tunable 

matrix composition to match the target tissue [41-44].   

 

Synthetic hydrogels such as those prepared from poly(ethylene glycol) (PEG) are 

increasingly used in tissue engineering applications [38, 39, 45-48], such as 

immunoisolation [29-31, 49, 50] and controlled cell differentiation [51, 52], largely due 

to their cytocompatibility, tissue-like elasticity, and high tunability in material physical 

and mechanical properties [17, 38, 48, 53, 54]. Additionally, PEG hydrogels provide a 

unique niche for cell encapsulation with high biocompatiblility and high permeability 

which allows for the diffusion of nutrients and metabolites, while protecting cells against 

host immune cells [15, 35, 39]. PEG-based hydrogels have been successfully used to 

encapsulate a variety of cell types, including pancreatic β-cells, stem cells, endothelial 

cells, epithelial cells, etc.  Further, defined instructive cues can be incorporated in PEG-

based hydrogels to enhance cell survival and functioning. Moreover, the 

photopolymerization methods used to prepare PEG-based hydrogels have profound 

impact on cell viability during in situ cell encapsulation, especially for radical sensitive 

cells [27].  

 

 

1.3 Chain-Growth Photopolymerization 

Although a commonly used hydrogel platform, studies have shown that PEG 

diacrylate (PEGDA) hydrogels formed by chain-growth photopolymerizations (Figure 

1.1a) have a tendency to damage encapsulated cells during network crosslinking and in 

situ cell encapsulation [27]. The cellular damage was largely attributed to radical species 

generated by the photoinitiator molecules, which propagate through the vinyl groups on 

PEGDA to crosslink polymer chains into hydrogels. Unfortunately, these radical species 

also cause stresses and cellular damage during cell encapsulation, unless bioactive or 

cyto-protective motifs are conjugated in the hydrogel network [32, 35, 49, 55, 56]. In 

order to obtain a higher mesh size for better diffusion and cell survival, higher molecular 
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weights PEGDA are often used for cell encapsulation. This, however, compromises 

polymerization kinetics and causes sub-optimal gel biophysical properties [27, 49, 57].  

 

In addition, hydrogels prepared from chain-growth photopolymerization may 

cause protein de-activation or irreversible conjugation within the cross-linked polymer 

network [58].  It is believed that high radical concentrations and long half-life of the 

radical species are responsible for these adverse reactions [59]. Adding to the above 

mentioned disadvantages, it is very difficult to recover cell structures from PEGDA 

hydrogels due to the heterogeneity and non-degradable nature of the crosslinked 

networks. While protease-sensitive peptides can be incorporated into PEG macromer 

backbone to render the otherwise inert PEGDA hydrogels sensitive to enzymatic 

cleavage, the conjugation often uses expensive reagents and the resulting networks still 

contain high degree of heterogeneity due to the nature of chain-growth polymerization 

[60-62].  
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Figure 1.1. Schematic of hydrogel network structure formed by (a) Chain-growth 

photopolymerization and (b) Step-growth photopolymerization (Schematic not to scale) 
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1.4 Step-Growth Thiol-Ene Photopolymerization 

Initially introduced by Fairbanks and Anseth et al. in 2009, PEG-peptide 

hydrogels fabricated from step-growth thiol-norbornene photo-click reactions (Figure 

1.1b) have proven to be an attractive class of biomaterials for controlling protein delivery 

and promoting tissue regeneration [63-66]. Step-growth thiol-ene photopolymerization 

have been shown to exhibit preferential properties for cell encapsulation over hydrogels 

formed by chain-growth photopolymerization [27]. The superior gelation kinetics of 

thiol-ene hydrogels is attributed to the ‘click’ nature of reaction between thiol and ene 

functionalities. Compared to chain-growth polymerization of PEGDA, thiol-ene reaction 

is less oxygen inhibited which results in faster gelation rate [67, 68].  Thiol-ene hydrogels 

also have higher polymerization efficiency, better gel biophysical properties, highly 

tunable gelation kinetics, idealized network structures, as well as versatility in 

bioconjugation compared to chain-growth PEGDA hydrogels [27, 63]. All these factors 

combined result in limited cellular damage caused by radical species during thiol-ene 

step-growth photopolymerization [27]. Although thiol-ene hydrogels are increasingly 

used as synthetic extracellular matrix mimics for 3D cell culture, studies correlating their 

material properties and superior cytocompatibility remain limited and warrant further 

investigation.  

 

Due to milder reaction conditions and extremely rapid gelation kinetics compared 

to other reaction schemes, thiol-ene hydrogels allow for the formation of a superior 

synthetic microenvironment for cell encapsulation. Using the thiol-norbornene 

photopolymerization scheme, we have recently shown that radical-sensitive pancreatic β-

cells can be safely encapsulated with no significant cellular damage [27].  MIN6 -cells 

were able to proliferate in thiol-norbornene hydrogels even at a very low cell packing 

density (2×10
6
 cells/mL) and without the presence of extracellular matrix (ECM) 

molecules.  In contrast, MIN6 cells encapsulated in chain-growth PEGDA hydrogels did 

not survive at this low cell packing density [27, 55].  When appropriate peptide substrates 

(e.g., CGGYC, where arrow indicates chymotrypsin cleavage site) were used as thiol-
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norbornene hydrogel cross-linker, cell spheroids generated in situ can be rapidly 

recovered via enzyme-mediated gel erosion [27, 69].   

 

In a separate study using experimental investigation and mathematical modeling, 

Shih & Lin reported that thiol-ene gels formed by multi-arm PEG-ester-norbornene and 

dithiol-containing linker (e.g., dithiothreitol (DTT) or bis-cysteine-bearing peptides) were 

susceptible to base-catalyzed hydrolytic degradation [70]. Depending on the gel 

formulations, the hydrolytic degradation rate of these thiol-ene hydrogels could be tuned 

from weeks to months.  Although these studies have elucidated the biophysical aspects of 

thiol-norbornene hydrogels, a potential link between these properties and the fate of 

encapsulated cells has not been established.  

 

 

1.5 Pancreatic Exocrine Adenocarcinoma Cells for Endocrine Differentiation  

Initially introduced as continuous tumor – cell line in 1975 by Lieber et al., 

PANC-1 cells are human pancreatic adenocarcinoma cells, clonally derived from the 

epithelium of the pancreatic duct carcinoma [71]. Immediately after establishment, 

research focus was to study the properties of PANC-1 cells in comparison to other 

existing epithelial cell lines [72]. It was found that when grown on plastic substrate, 

PANC-1 cells form squamous type of epithelium [72, 73]. Now also known as pancreatic 

ductal epithelial cells, PANC-1 cells have been utilized on multiple occasions to study 

pancreatic carcinoma both in vivo and in vitro [74-78]. Further, these cells have also been 

used to understand cancer metastasis at both protein and genetic levels.  For example, 

Binker et al. utilized PANC-1 cells to investigate the role of MMP-2 in pancreatic cancer 

cell mediated tissue invasion [79]. In a more recent study, Zhu et al. exploited PANC-1 

cell features to study the effect of integrin-linked kinase (ILK) gene silencing on cancer 

cell proliferation, migration and invasion [80]. In addition to cancer metastasis, recently 

this epithelioid cell line has been utilized for studying exocrine to endocrine 

differentiation [81-84]. Studies have shown that PANC-1 cells when given appropriate 
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soluble cues can be differentiated into insulin secreting cell clusters that these 

differentiated cells may serve as an alternative cell source to treat type I diabetes [82]. 

 

In spite of the diverse applications of PANC-1 cells not limited to cancer 

metastasis and endocrine differentiation, most of the studies performed have only 

evaluated cell features in two – dimensional (2D) culture. While these studies have 

revealed important information about epithelial cell behavior, the application remains 

limited due to discrepancy between in vitro and in vivo cell behavior. Recent efforts have 

recognized the importance of three – dimensional (3D) models towards biomedical 

applications for both fundamental and applied cancer studies, but there has only been 

modest progress towards this goal. For example, studies performed using NanoCulture 

plates, Matrigel and collagen gels (all with limited matrix tunabilityin gel biophysical 

properties) as platforms for PANC-1 and other epithelial cell culture have revealed 

information about role of matrix metalloproteinase (MMP) [85], transforming growth 

factor (TGF-β) [86, 87], and epidermal growth factor receptor (EGFR) [79] on cell 

spreading, metastasis and tumor growth. Despite of the limited success in studying 

PANC-1 metastasis in 3D, no prior attempt has been made to establish a well-defined and 

highly tunable matrix for studying and controlling morphogenesis of PANC-1 cells in 

3D. 
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2. OBJECTIVES 

 

 

The main objective of this thesis was to systematically study the parameters affecting 

pancreatic endocrine and exocrine cell fate in 3D. The overarching goal of this project 

was to develop a highly adaptable hydrogel platform for pancreatic tissue engineering 

applications, including forming immunoisolation barriers for endocrine islets and 

generating insulin-secreting cells from epithelial tissues. Specifically, this thesis studied 

the effect of hydrogel matrix properties, including cross-linking density and degradation 

rate, on the survival and proliferation of MIN6 beta cells and pancreatic ductal epithelial 

cells (PANC-1) was studied. Specific objectives are: 

  

 

2.1 Characterize Hydrogel Matrix Properties 

Thorough understanding of hydrogel matrix properties is the prerequisite to study 

cell behaviors in 3D. Utilizing hydrogels formed by thiol-ene step-growth 

photopolymerization, the first objective of this thesis was to characterize hydrogel 

swelling and stiffness, two critical parameters affecting cell survival in 3D. The results 

from these fundamental studies will establish a hydrogel platform with improved 

cytocompatibility and tunability for pancreatic tissue engineering.  

 

 

2.2 Investigate the Survival and Proliferation of Pancreatic Beta Cells and Human 

Mesenchymal Stem Cell in 3D 

After obtaining basic understanding of hydrogel matrix properties, the second 

objective of this thesis was to evaluate the survival and morphology of MIN6 β-cells or 

hMSCs encapsulated in thiol-ene hydrogels with highly defined and tunable properties.
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The goal of these studies is to establish a hydrogel platform with improved matrix 

properties for supporting the survival and function of pancreatic beta cells. 

 

 

2.3 Establish Tunable Hydrogel Niches for Culturing Pancreatic Exocrine Cells 

Alternative insulin-secreting cell sources are urgently needed for islet 

transplantation. The third objective of this thesis was to study the growth and 

morphogenesis of pancreatic adenocarcinoma cell (PANC-1 cell) in 3D. The 

understanding of PANC-1 cell behaviors will establish foundation for future endocrine 

differentiation of these cells in 3D.  
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3. MATERIALS AND METHODS 

 

 

3.1 PEG4eNB, PEG4aNB, and Photoinitiator LAP Synthesis 

Degradable PEG-tetra-ester-norbornene (PEG4eNB, Figure 3.1a) was 

synthesized according to an established protocol with slight modifications [63]. Briefly, 

4-arm PEG-OH (Jenkem Technology USA) was dried in a vacuum oven overnight and 

dissolved in anhydrous toluene.  Toluene was evaporated using a rotary evaporator and 

the dried 4-arm PEG was dissolved in anhydrous dichloromethane (DCM).  In a separate 

flask, 5-norbornene-2-carboxylic acid (5 eq.) was reacted with N,N’-

dicyclohexlycarbodiimide (DCC, 2.5 eq.) in anhydrous DCM for at least 15 minutes at 

room temperature to form norbornene anhydride.  The later was filtered through a fritted 

funnel and added drop-wise into a second flask (placed in an ice bath) containing dried 4-

arm PEG-OH, 4-(dimethylamino)pyridine (DMAP, 0.5 eq.), and pyridine (5 eq.) in 

DCM.  All reactions were performed under nitrogen.  After overnight reaction, the 

product (PEG4eNB) was filtered, washed with 5 wt.% sodium bicarbonate to remove 

unreacted norbornene acid and dried over sodium sulphate.  The product was then filtered 

and precipitated in cold ethyl ether.  The filtered product was re-dissolved in DCM and 

re-precipitated in cold ethyl ether to obtain the final product.  PEG4eNB was dried 

overnight in vacuo and the degree of functionalization (> 85 %) was measured using 

proton NMR (Brucker 500). Note: All chemicals were procured from Sigma-Aldrich 

unless noted otherwise. 

 

Non-degradable PEG-tetra-amide-norbornene (PEG4aNB, Figure 3.1b) was 

synthesized by reacting 4-arm PEG-NH2 (Jenkem Technology USA) with norbornene 

carboxylic acid using HBTU (2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethylaminium 

hexafluorophosphate) /HOBT (1-Hydroxybenzotriazole anhydrous) coupling chemistry.
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Briefly, 4-arm PEG-NH2 was dried in a vacuum oven overnight and dissolved in 

anhydrous dimethylformamide (DMF). In a separate flask, norbornene carboxylic acid (5 

eq.) was activated by HBTU and HOBT (5.5 eq.) in DMF for 3 minutes at room 

temperature.  To the activated acid solution, DIEA (6 eq.) was added and further reacted 

for 5 minutes under nitrogen.  The mixture was then added drop wise to the flask 

containing 4-arm PEG-NH2 and allowed to react overnight.  PEG4aNB was obtained by 

precipitation in cold ether and further purified using protocol similar to PEG4eNB 

purification procedure.  The degree of functionalization (> 85 %) was measured using 

proton NMR.  

 

The photoinitiator lithium arylphosphinate (LAP) was synthesized according to a 

published protocol without modification [88].  
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Figure 3.1. Reaction schematic of (a) ester linkage containing hydrolytically degradable 

PEG-tetra-norbornene (PEG4eNB) and (b) amide linkage containing non-degradable 

PEG-tetra-norbornene  (PEG4aNB) synthesis  

  

HBTU / HOBT 
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DCC / DMAP / Pyridine 
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3.2 Peptide Synthesis 

Fmoc-amino acids, Fmoc-Rink-amide MBHA resin, and peptide synthesis 

reagents were purchased from Anaspec Inc or Chempep Inc.  All peptides (CGGYC, 

KCGPQGPAGQCK, KCGPQGIWGQCK, CGRGDS and KCYIGSR (Table 3.1)) were 

synthesized using standard solid phase peptide synthesis (SPPS) chemistry in a 

microwave peptide synthesizer (CEM Discover SPS) following the manufacturer’s 

recommended synthesis procedures.  Terminal cysteines were added for thiol-ene 

reaction. The peptides were also cleaved in the microwave peptide synthesizer (38 C, 20 

W, 30 min) using a cleavage cocktail containing 95 % trifluoroacetic acid (TFA), 2.5 % 

water, and 2.5 % triisopropylsilane (TIS) in the presence of 5 wt/v.% phenol.  Crude 

peptides were precipitated in cold ethyl ether, dried overnight in a desiccator and purified 

using preparative scale HPLC (PerkinElmer Flexar System). All peptides were purified to 

atleast 90% purity and characterized by analytical scale HPLC and mass spectrometry 

(Agilent Technologies).  HPLC grade acetonitrile and water were acquired from Fisher 

Scientific and VWR International, respectively.  Purified peptides were lyophilized and 

stored in -20 
o
C.  The concentration of thiol groups on purified cysteine-containing 

peptides was quantified using Ellman’s reagent (PIERCE) [69].  

  



16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Hydrogel Fabrication and Characterization 

Thiol-norbornene hydrogels formed by step-growth photopolymerization were 

fabricated using PEG4eNB or PEG4aNB (20 kDa) and di-thiol crosslinkers, such as DTT 

(D) or bis-cysteine containing peptide CGGYC (C) [27] or KCGPQGPAGQCK 

(MMPscrm / Ms) [89] or KCGPQGIWGQCK (MMPLinker / ML) [90, 91] (Table 1). 

Radical-mediated thiol-norbornene photopolymerization was initiated using 1 mM LAP 

dissolved in PBS under long-wave UV light exposure (365 nm, 5 mW/cm
2
) for 3 minutes 

(Figure 3.2).  For all hydrogel formulations, a stoichiometric ratio between thiol and 

norbornene groups was maintained.  Gels (50 µL) were formed in 1 mL disposable 

syringes with cut-open tips.  

 

Following thiol-norbornene photopolymerization, hydrogels were incubated at 37 

o
C in ddH2O on an orbital shaker for 24 hours to remove all unreacted macromers.  The 

gels were then dried in vacuum for 24 hours to obtain dried gel weight (Wdry).  Dried gels 

Table 3.1. Cross-linkers used to form thiol-ene hydrogels.  

a
P1 positions for chymotrypsin-mediated cleavage  

b
P1 position for metalloproteinases (MMPs)-mediated cleavage 
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were then incubated in PBS at 37 
o
C on an orbital shaker.  At predetermined time points 

(i.e. 2, 4, 7, and 10 days), hydrogel swollen weights (Wswollen) were measured 

gravimetrically and were used to calculate the mass swelling ratio (q), which is defined 

as: Wswollen/Wdry.  The mass swelling ratios were used to calculate hydrogel mesh size 

based on the Flory-Rehner theory as described elsewhere [40].  

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Schematic of thiol-ene photo-click reaction to form PEG-based hydrogels. 

Gels are formed under UV light (365nm, 5mW/cm
2
) exposure with 1 mM of lithium 

arylphosphanate (LAP) as photoinitiator. Only one arm is shown in the structure of PEG-

tetra-norbornene (PEG4NB). Any multi-functional linker containing more than two thiol 

moieties, such as dithiothreitol (DTT) shown in the schematic, can be used as gel cross-

linker. 
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3.4 Oscillatory Rheometry 

  Rheometrical shear modulus measurements were performed according to 

published protocol [70]. Briefly, thiol-norbornene hydrogel slabs were prepared between 

two glass slides and circular discs punched out from the hydrogel slabs. Rheological 

oscillatory measurement to measure shear modulus immediately following 

photopolymerization was performed on Bohlin CVO 100 digital rheometer. Data was 

analyzed and recorded as mean ± SD for 4 independent samples per test group.   

 

 

3.5 Cell Culture 

Murine pancreatic β-cells (MIN6) (courtesy of Anseth Research Group) were 

maintained in high glucose DMEM (HyClone) containing 10 % fetal bovine serum 

(Gibco), 1X Antibiotic-Antimycotic (Invitrogen, 100 U/mL penicillin, 100 µg/mL 

streptomycin and 250 ng/mL Fungizone), and 50 µM β-mercaptoethanol.  Human 

mesenchymal stem cells (hMSCs) were isolated from human bone marrow (obtained 

from Lonza) and maintained in low glucose DMEM (HyClone) containing 10 % fetal 

bovine serum (Gibco), 1X Antibiotic-Antimycotic (Invitrogen, 100 U/mL penicillin, 100 

µg/mL streptomycin and 250 ng/mL Fungizone), and 1 ng/mL recombinant human bFGF 

(PeproTech).  PANC-1 cells (obtained from ATCC) were maintained in high glucose 

DMEM (HyClone) containing 10 % fetal bovine serum (Gibco) and 1X Antibiotic-

Antimycotic (Invitrogen, 100 U/mL penicillin, 100 µg/mL streptomycin and 250 ng/mL 

Fungizone). Cells were cultured in tissue culture plastic kept at 37 
o
C and 5 % CO2 and 

the culture mediums were changed every 2 to 3 days. [hMSCs were used in passages 2-

4.] 
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3.6 Cell Encapsulation 

Cell encapsulation was performed using a procedure similar to the gel fabrication 

method described earlier.  Briefly, MIN6 β-cells or hMSCs or PANC-1 cells (at a cell 

packing density of 2 × 10
6
 cells/mL [27] or 5 × 10

6
 cells/mL [92] or 2 × 10

6
 cells/mL 

(determined experimentally), respectively) were suspended in pre-polymer solutions 

containing PEG macromer, cross-linker, CRGDS or KCYIGSR (for some experimental 

groups) and photoinitiator, and exposed to UV light (365 nm, 5mW/cm
2
) for 2 minutes.  

Cell-laden hydrogels (25 µL) were maintained in identical cell culture conditions as 

described earlier on an orbital shaker [69].   

  

 

3.7 Encapsulated Cell Viability Assays 

To measure initial cell viability in hydrogels, cell-laden hydrogels were incubated 

in buffers containing 75 µL of HBSS (for MIN6 β-cells) or PBS (for hMSCs and PANC-

1 cells) and 75 µL of CellTiter Glo® reagent (acquired from Promega) following 

photopolymerization.  After 1 hour of incubation, intracellular ATP concentration was 

quantified by measuring sample luminescence using a microplate reader (Synergy HT, 

BioTek Instruments). Intracellular ATP concentrations were interpolated from a series of 

known ATP monohydrate concentrations.  

  

Qualitative cell viability following photoencapsulation was determined using 

Live/Dead staining (obtained from Invitrogen) and confocal imaging.  Cell-laden 

hydrogels were incubated in Live/Dead staining solution for 1 hour at room temperature 

with gentle shaking.  Confocal images of the stained samples were obtained using 

Olympus Fluoview FV100 Laser Scanning Biological Microscope (IUPUI Nanoscale 

Imaging Center).  Z-stack images (100 µm thick, 10 µm per slice) from three samples 

and at least four random fields were acquired for every experimental condition.  A total 

of at least 12 z-stack images were utilized for counting live (staining green) and dead 

(staining red) cells for all experimental groups.  Cell viability was quantified by 

calculating percentage of live cells relative to total number of cells.  
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To monitor long term cell viability and proliferation, cell-laden hydrogels were 

incubated in 500 µL of 10% AlamarBlue® reagent (acquired from AbD Serotec) in cell 

culture medium for 16 hours (for MIN6 β-cells) or 14 hours (for hMSCs) or 4 hours (for 

PANC-1).  Following incubation, 200 µL of the media was transferred to a 96-well plate 

and fluorescence generated due to non-specific cellular metabolic activity was measured 

using a microplate reader (excitation: 560 nm, emission: 590 nm).   

 

 

3.8 Morphology Assessment 

Z-stack confocal images of Live/Dead staining were also used to visualize cell 

morphology within hydrogels at day 10 (for every experimental condition).  Images from 

four samples and at least three random fields per sample were acquired for further 

analysis. All Live/Dead images were analyzed using Olympus Fluoview and NIH ImageJ 

software. For hMSCs, cell length was defined as the longest end to end distance of a 

straight line connecting the two end points on a cell. For both MIN6 β-cells and PANC-1 

cells, spheroid and cluster sizes were acquired by measuring the spheroid or cluster 

diameter in both x and y direction and the average of the two diameters was reported as 

cell spheroid diameter (MIN6 β-cells) or cluster size (PANC-1 cells).  

 

Live/Dead from four samples and at least three random fields per sample were also 

semi-quantitatively analyzed for PANC-1 cell morphology using Olympus Fluoview. 

PANC-1 cell morphology was categorized according the following: (I) Single cell; (II) 

Small rounded and compact clusters; (III) Large and irregular cell clusters; (IV) Small 

clusters with short cellular protrusions; and (V) Cyst-like cell clusters. Total populations 

of each category were manually counted.  
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3.9 Protein Extraction and Western Blot Analysis 

Total proteins from encapsulated cells were extracted by first homogenizing cell-

laden hydrogels using a VWR
TM

 Pellet Mixer. Homogenized samples were lysed with 

cell lysis buffer containing: 10 µL of Halt Protease inhibitor, 10 µL of EDTA and 1mM 

of Phenylmethylsulfonyl Fluoride (PMSF) dissolved in 1 mL of RIPA Buffer. Total 

extract was cleared by centrifugation at 8000 ẋg for 10 minutes at 4 
o
C. Protein extracts 

were further concentrated in Centrifugal Filter Units (Millipore) at 14000 ẋg for 20 

minutes at 4 
o
C. Extracted protein concentration was determined by BCA protein 

quantification assay using Pierce BCA Protein Assay Kit (Thermo Scientific) following 

manufacturer protocol. 

 

Concentrated protein extracts were then subjected to western blot analysis. Briefly, 

equal amounts of proteins between groups were loaded on to a 10% Min-PROTEAN 

TGX Precast Gels (Bio-rad) and subjected to sodium dodecyl sulfate polyacrylamide gels 

electrophoresis (SDS-PAGE). After complete separation, proteins were transferred on to 

0.45µm Immobilon-P PVDF transfer membrane (Millipore) using Trans-Blot Turbo 

Transfer System’s standard semi-dry transfer protocol. The blots were blocked overnight 

with 5% nonfat milk in TBST solution (1X PBS containing 0.5% Tween-20) at 4 
o
C. The 

blots were then sequentially reacted with diluted primary antibody and HRP conjugated 

secondary antibody for 1 hour at room temperature. Primary antibodies used: Mouse anti-

β-actin (Sigma, 1:1000); Rabbit anti-Vimentin (Cell Signaling, 1:1000); Rabbit anti-Snail 

(Cell Signaling, 1:500); Rabbit anti-β-catenin (Cell Signaling, 1:1000); Rabbit anti-E-

cadherin (Cell Signaling, 1:1000). Secondary antibodies used: HRP-labeled goat anti-

rabbit or goat anti-mouse IgG (Cell Signaling, 1:500 to 1:1000). The blots were washed 

with TBST solution for 1 hour and prepared for chemiluminescence detection using 

SuperSignal West Pico Detection Kit (Thermo Scientific) according to manufacturer’s 

protocol and imaged using Fuji LAS 3000 imaging system. Band analysis was performed 

using ImageJ and reported band intensities were relative to β-actin band intensity.    
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3.10 Whole Mount Immunostaining 

Insulin, CD105, F-actin and β-catenin expressions in cells after 10 days of culture 

in 3D thiol-ene hydrogels were visualized by immunostainig. Cell-laden hydrogels were 

fixed in 4 % paraformaldehyde at room temperature for 45 minutes with gentle shaking. 

Samples were then rinsed with PBS and encapsulated cells were permeabilized using 0.5 

% Triton X-100 in PBS at room temperature for 45 minutes with gentle shaking. 

Following permeabilization, samples were washed with PBS and blocked (5% BSA, 5% 

polyvinylpyrrolidone, and 10% fetal bovine serum) overnight at 4 
o
C. Samples were 

sequentially incubated overnight at 4 
o
C in primary antibody (Santa Cruz, 1:100) and 

fluorophore-conjugated secondary antibody (Cell Signaling and Cytoskeleton, 1:100) 

solution for Insulin, CD105, F-actin and β-catenin. The samples were rinsed with PBS, 

further stained with DAPI for 1 hour and washed with PBS. The fluorescence from 

encapsulated cells was visualized and imaged using confocal microscope.      

 

 

3.11 Statistical Analysis 

All experiments were conducted independently for three times and the results 

were presented as mean ± SD.  Statistical analysis was performed using Excel and 

GraphPad Prism software. Shear modulus and Intracellular ATP results were analyzed for 

statistical significance between selected groups using Students’ t-test. Cell-viability, 

spheroid diameter, cluster size and cell morphology data were analyzed using one-way 

ANOVA followed by a Dunnett post-hoc test. Cell viability and western blotting band 

intensity data were analyzed using two-way ANOVA followed by Bonferroni’s post-hoc 

test. Difference between conditions was considered statistically significant when p < 

0.05.  
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4. RESULTS AND DISCUSSION 

 

 

4.1 Characterizing Thiol-Ene Hydrogel Matrix Properties 

Hydrogels formed by photopolymerized step-growth thiol-norbornene chemistry 

(Figure 3.2) have proven to be an extremely cytocompatible platform for encapsulation 

of many cell types including very sensitive cells [27]. Depending on the macromer and 

cross-linker chemistry, thiol-ene hydrogels can be rendered completely non-degradable, 

degradable only by hydrolysis or proteolysis, or degradable by hydrolysis and proteolysis 

(Figure 4.1). In order to develop hypothesis towards how matrix properties play an 

important role in maintaining long-term cell survival in thiol-norbornene hydrogels, we 

evaluated (1) how hydrolytic degradation over time coupled to matrix composition i.e. 

macromere and crosslinker type affected matrix integrity and (2) how varying macromers 

(more specifically polymer molecular weight) affected matrix stiffness.  
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Figure 4.1. Schematic of thiol-ene photo-click reaction to form PEG-based degradable 

hydrogels. PEG-ester-norbornene (R = O) or PEG-amide-norbornene (R = NH) was used 

to construct gels with different hydrolytic degradability (only one arm of 4-arm PEG is 

shown). With a proper combination of macromer and cross-linker, the resulting hydrogels 

undergo different modes of degradation and produce different degradation products. 
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4.1.1 Macromer Composition and Hydrolytic Degradation of Thiol-Ene Hydrogels 

To assess the effect of matrix composition and hydrolytic degradation, we 

synthesized two PEG-tetra-norbornene macromers with different degradability: one with 

hydrolytically stable amide bond (PEG4aNB (Figure 3.1a)) and one with hydrolytically 

labile ester bond (PEG4eNB (Figure 3.1b)). Using thiol-norbornene hydrogels cross-

linked with different macromers (ester-linked PEG4eNB or amide-linked PEG4aNB) and 

dithiol cross-linkers (DTT, CGGYC, or KCGPQGIWGQCK (Table 3.1)), we performed 

gel swelling/degradation studies for a period of 10 days (Figure 4.2).  The 

swelling/degradation profiles of thiol-ene hydrogels diverged as time due to the 

difference in macromer degradability and cross-linker type.  Due to the presence of 

hydrolytically stable amide linkages, hydrogels prepared from PEG4aNB did not degrade 

over a period of 10 days, regardless of the cross-linkers used (Figure 4.2).  The use of 

ester-linked PEG4eNB macromer, on the other hand, resulted in hydrogels with tunable 

hydrolytic degradation [70]. We observed that peptide (i.e., CGGYC in Figure 4.2a or 

KCGPQGIWGQCK in Figure 4.2c) cross-linked PEG4eNB hydrogels degraded faster 

compare to DTT cross-linked gels (Figure 4.2b).  While these two peptides contained no 

hydrolytically labile motifs in their backbones, the presence of different amino acid side 

groups in the peptide cross-linkers likely accelerated the rate by which ester bonds on 

PEG4eNB were hydrolyzed by altering water accesibility, and hence increased the 

degradation rate of the hydrogels [70]. Hydrolytic degradation mechanism of PEG4eNB 

based hydrogels has been studied experimentally and these results were consistent with 

earlier reports on degradation mechanism of thiol-ene hydrogels [70]. 

 

In addition to the cross-linker chemistry, hydrogel degradability was also affected 

by macromer concentration.  Hydrogels formed by higher macromer content (e.g., 8 

wt.%) had lower initial mesh size regardless of the cross-linker used (Figures 4.2a, 4.2b).  

This phenomenon was attributed to higher network cross-linking efficiency due to higher 

macromer concentration [70]. Furthermore, the swelling and mesh size of hydrogels 

cross-linked by both macromer contents (i.e., 4 and 8 wt.%) when incubated in a buffer 

solution increased steadily over a period of 10 days (Figures 4.2a, 4.2b).  It is worth 



26 

 

noting that gel mesh size and mechanical properties are tightly coupled and it has been 

proven that the two are inversely related.  

 

When PEG4eNB was used, the resulting hydrogels had 10 to 30 % increases in 

gel mesh size over 10 days compared to 0 % increase when PEG4aNB was used.  One 

would anticipate this level of degradation to play a significant role in cell fate 

determination in the hydrogels.  Prior reports pertinent to thiol-norbornene hydrogels, 

however, did not evaluate the effect of this critical factor on long-term cell survival and 

morphogenesis. 
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Figure 4.2. Effect of macromer compositions on mesh size (i.e., degradation) of  thiol-ene 

hydrogels. PEG4eNB or PEG4aNB was used as macromer. Cross-linkers used were: (a) 

CGGYC, (b) DTT, and (c) KCGPQGIWGQCK. 4 wt% PEG macromer was used in (c) 

(N = 4, mean ± SD).   
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4.1.2 Macromer Composition and Matrix Stiffness 

To evaluate the effect of matrix composition on matrix stiffness, we utilized two 

PEG-tetra-norbornene macromers with different molecular weights: (1) 5 kDa PEG4eNB 

and (2) 20 kDa PEG4eNB. Further, we crosslinked thiol-ene hydrogels using two 

different crosslinkers namely: DTT (not sensitive to cell secreted MMPs) and MMPLinker 

(susceptible to various cell secreted MMPs), to render gels with different matrix 

remodeling machanisms. After thiol-ene hydrogel formation and oscillatory rheometry 

(as described in Section 3.4), hydrogel shear moduli (G’) were obtained for all 

experimental conditions.  

 

The shear moduli of 5 kDa and 20 kDa PEG4eNB at equilibrium swelling states 

were ~5.5 kPa and ~3.1 kPa, respectively (Figure 4.3). The higher modulus with 5 kDa 

PEG4eNB can be attributed to tighter network crosslinking resulting from shorter 

macromer chain length compared to 20 kDa PEG4eNB macromere at the same 

macromere concentration [70]. Further the modulus of these gels drops over a period of 

10 days due to pure hydrolytic degradation when DTT was used as crosslinker and 

hydrolytic and enzymatic degradation when MMPLinker is used (data no shown). Overall, 

hydrogels formed by 5 kDa PEG4eNB macromer were observed to be much stiffer than 

20 kDa PEG4eNB hydrogels. 

  

Evaluating the most relevant thiol-ene hydrogel properties i.e., hydrogel stability 

over time and hydrogel stiffness, will allow us to answer questions related to cell 

behavior over time in thiol-ene hydrogels and provide calculated hypothesis on observed 

cellular morphogenesis.  
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Figure 4.3. Effect of PEG4eNB macromer molecular weight on shear modulus of 

PEG4eNB hydrogels cross-linked by DTT or MMPLinker (Day-1 post-gelation, N = 4, 

mean ± S.D.). Asterisk represent p < 0.05 between indicated group. 
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4.2 Investigating the Survival and Proliferation of Pancreatic Beta Cells and Human 

Mesenchymal Stem Cell in 3D 

To understand the influence of thiol-ene hydrogel properties on cellular 

morphogenesis, cells derived from both epithelial tissue (e.g, pancreatic MIN6 -cells) 

and mesenchymal tissues (e.g., human mesenchymal stem cells or hMSCs) were used in 

this study. First, the effects of thiol-ene reaction conditions on initial and long-term cell 

survival following photo-encapsulation were studied using various techniques. Second, in 

view of the importance of cell-mediated matrix remodeling on survival and 

differentiation of hMSCs, we incorporated a matrix metalloproteinase (MMP) sensitive 

peptide (MMPLinker) as the cross-linker in thiol-ene hydrogels to render the gels 

proteolytically degradable.  Finally, a fibronectin-derived cell adhesive ligand, Arg-Gly-

Asp-Ser or RGDS, was conjugated within the otherwise inert PEG-based hydrogels to 

illustrate the cooperative influence of gel degradation and cell-matrix interactions on cell 

survival and spreading. 

 

 

4.2.1 Effect of Macromer Composition on Cell Viability Following In Situ Photo-

Encapsulation 

To understand the effect of thiol-norbornene hydrogel properties on cell survival 

and morphogenesis, it is important to examine the initial cell viability following in situ 

gelation and encapsulation.  Thus, immediately following photo-encapsulation we 

assessed the viability of the encapsulated cells qualitatively using Live/Dead staining and 

quantitatively with CellTiter Glo® reagent.  We found that increasing macromer 

concentration from 4 to 8 wt.% decreased viability of encapsulated MIN6 β-cells from 85 

± 3 % to 71 ± 4 % in CGGYC cross-linked PEG4eNB hydrogels, and from 85 ± 1 % to 

75 ± 3 % in DTT cross-linked PEG4eNB hydrogels (Figures 4.4a, 4.4b). Similar 

reduction in initial cell viability at higher macromer content was also found in 

encapsulated hMSCs (Figures 4.5a, 4.5b).  The effect of macromer concentration and 

cross-linker type on initial cell viability was also assessed quantitatively by intracellular 

ATP measurements for both MIN6 β-cells (Figure 4.4c) and hMSCs (Figure 4.5c).  

These ATP assays were conducted one-hour post-encapsulation and the results correlated 
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directly to the number of metabolically active cells following photo-encapsulation.  Not 

surprisingly, these quantitative results agree with the qualitative images shown in Figure 

4.4 and 4.5, confirming the negative influence of high functional group concentrations on 

cell survival during and following photoencapsulation.  
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Figure 4.4. Effect of hydrogel formulation on initial viability of MIN6 β-cells 

encapsulated in (a) 4 wt% or (b) 8 wt% PEG4eNB hydrogels cross-linked by different 

linker (CGGYC or DTT as indicated). (a, b) Cell-laden hydrogels were stained with 

Live/Dead staining kit and imaged with confocal microscope. Numbers shown in the 

representative confocal z-stack images  were the percentages of live cells over total cell 

count (Scale: 100μm; N = 4, mean ± S.D.). (c) Intracellular ATP concentrations were 

determined by Cell-Titer Glo® reagent 1 hour post-encapsulation. (N = 4, mean ± SD). 

Asterisk and ampersand represent p < 0.05 within respective group (i.e., compared to 4 

wt% gels).  
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Collectively, the decreased initial cell viability at higher macromer concentrations 

could be attributed to: (1) higher concentrations of radical species generated during 

network cross-linking and (2) higher degree of cross-linking at higher macromer 

concentrations.  It has been shown that cells are sensitive to radical species generated 

during photopolymerization reaction [27]. When macromer concentration was raised 

from 4 to 8 wt.%, the total functionality (i.e., thiol and norbornene groups) in the pre-

polymer solution was increased by 100 % from 16 to 32 mM.  This drastic increase in 

macromer functionality resulted in higher radical concentration and higher extent of 

thiol-norbornene click reaction [59, 70], both of which may contribute to decreased initial 

cell viability.  Additionally, increased macromer content in the pre-polymer solution led 

to a higher network cross-linking density [70, 93], and hence caused higher degree of 

environmental stresses that could negatively affect initial cell survival.  For all macromer 

concentrations used, however, we did not observe significant differences in cell viability 

between gels formed by different macromer type (i.e., PEG4eNB or PEG4aNB) or cross-

linkers (i.e., DTT or CGGYC).  This could be attributed to the fact that, at the same 

functional group concentration, changing the type of cross-linker or macromer does not 

cause significant differences in the degrees of thiol-norbornene reaction and network 

cross-linking.   
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Figure 4.5. Effect of hydrogel formulation on initial viability of hMSCs encapsulated in 

(a) 4 wt% or (b) 8 wt% PEG4eNB hydrogels cross-linked by different linker (CGGYC or 

DTT as indicated). (a, b) Cell-laden hydrogels were stained with Live/Dead staining kit 

and imaged with confocal microscope. Numbers shown in the representative confocal z-

stack images  were the percentages of live cells over total cell count (Scale: 100μm; N = 

4, mean ± S.D.). (c) Intracellular ATP concentrations were determined by Cell-Titer 

Glo® reagent 1 hour post-encapsulation. (N = 4, mean ± SD). Asterisk and ampersand 

represent p < 0.05 within respective group (i.e., compared to 4 wt% gels).  
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While the initial viability decreased with increasing macromer concentration, 

most of the cells survived the photo-encapsulation process (~70 – 90 %), even at low cell 

packing densities.  Previous studies have demonstrated that only about 40 % of the 

encapsulated β-cells survived following photoencapsulation in chain-growth PEGDA 

hydrogels at a cell packing density of 6.7×10
6
 cells/mL and essentially no cell survived 

when the cell packing density was lower than 5×10
6
 cells/mL [55]. A previous study has 

also shown that only about 77 % of the encapsulated hMSCs survived a UV-based chain-

growth PEGDA photoencapsulation process, with an extremely high cell packing density 

of 25×10
6
 cells/mL [94]. Taken together, step-growth thiol-norbornene photo-click 

chemistry affords milder reaction conditions that preserve the viability of cells from 

either epithelium (pancreatic β-cells) or mesenchyme (hMSCs) origin.  

 

 

4.2.2 Effect of Hydrolytic Gel Degradation on Long-Term Cell Viability 

Previously we have shown that PEG hydrogels formed by thiol-norbornene photo-

click reactions supported the formation of MIN6 -cells spheroids in 3D [27]. Using 

thiol-norbornene hydrogels with identical macromer chemistry, Anderson et al. showed 

that proteolytic degradation in gels supported the survival and differentiation of hMSCs 

[92]. These reports did not, however, examine the influence of hydrolytic degradation in 

thiol-norbornene hydrogels on the observed cell behaviors.  We hypothesized that 

hydrolytic degradation in the ester-containing PEG4eNB macromer has beneficial effects 

on long-term viability for both epithelial (e.g., MIN6) and mesenchymal (e.g., hMSCs) 

cell types.  To prove this, we assessed the viability of encapsulated MIN6 β-cells and 

hMSCs qualitatively using Live/Dead staining (Figure 4.6a – 4.6c, 4.8a – 4.8c) and 

quantitatively using AlamarBlue® reagent (Figure 4.6d, 4.6e, 4.8d, 4.8e).   

 

We found that the majority of cells survived in all gel formulations tested over a 

period of 10 days (Figure 4.6, 4.8).  As expected, MIN6 -cells formed spherical 

aggregates (Figures 4.6a – 4.6c) while hMSCs retained their round and dispersed 

morphology (Figures 4.8a – 4.8c) in all hydrogels. The degree of cell survival and/or 
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proliferation, however, decreased significantly in gels with slower (e.g., DTT-

crosslinked) or no hydrolytic degradation (e.g., PEG4aNB-based).  For example, 

PEG4eNB hydrogels crosslinked by CGGYC supported the formation of larger spheroids 

compared to using DTT as crosslinker (45 ± 1 vs. 39 ± 1 µm, Figures 4.6a, 4.7).  

Moreover, MIN6 β-cell spheroids formed in non-degradable PEG4aNB hydrogels, 

regardless of the crosslinkers used, appeared much smaller (~ 21 µm) compared to the 

hydrolytically degradable gels (Figures 4.6c, 4.7).  Quantitative cell proliferation assay 

agrees with the qualitative Live/Dead staining.  For example, the degree of MIN6 β-cells 

proliferation in 4 wt.% CGGYC-cross-linked hydrogels dropped from ~580 % to ~220 % 

when PEG4eNB macromer was replaced by PEG4aNB (Figure 4.6d).  Further, the use of 

higher PEG macromer content (e.g., 8 wt.%) or DTT as a gel cross-linker (Figure 4.6d, 

4.6e) significantly hindered MIN6 β-cell proliferation.   
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Figure 4.6. Effect of hydrogel formulation on sustaining MIN6 β-cells survival and 

proliferation. (a – c) Cell-laden hydrogels were stained with Live/Dead staining kit and 

visualized by confocal microscopy (z-stack images) at day 10. Macromer used: (a) 4 wt% 

PEG4eNB, (b) 8 wt% PEG4eNB, and (c) 4 wt% PEG4aNB thiol-ene hydrogels (Scale: 

100μm). (d , e) Cell viability as time was determined quantitatively by AlamarBlue® 

reagent. Linker type: (d) CGGYC, (e) DTT (N = 3, mean ± SD). Asterisk represent p < 

0.05 between indicated group. 
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While MIN6 -cells formed spheroids in all gel formulations, encapsulated 

hMSCs remained round and single cell morphology in these gels (Figures 4.8a – 4.8c).  

The morphological differences in epithelial and mesenchymal cells in 3D have been 

reported in numerous other publications [92, 95-98]. What has not been shown is the 

profound impact of hydrolytic degradation in thiol-ene hydrogels on the survival of 

hMSCs in 3D.  For instance, hMSCs encapsulated in higher 8 wt.% PEG4eNB gels 

(Figure 4.8b) or non-degradable PEG4aNB gels (Figure 4.8c) suffered from higher 

degree of cell death and appeared slightly smaller in cell size, especially in DTT-cross-

linked gels.  Quantitative viability assay showed that hMSCs encapsulated in degradable 

PEG4eNB (4 wt.%) gels cross-linked by CGGYC roughly maintained their viability 

throughout the 10-day culture period (Figure 4.8d).  Unfortunately, cell viability dropped 

almost monotonically as time in gels that degraded slowly (DTT-cross-linked) or lacking 

significant hydrolytic degradation (with PEG4aNB) (Figure 4.8e).  The positive 

correlation between cell survival and/or proliferation (Figures 4.6, 4.8) and thiol-

norbornene hydrogel degradation (Figure 4.2) suggest that hydrolytic degradation in the 

hydrogel matrix plays an important role in promoting cell viability in 3D. 
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Figure 4.7. Diameter distribution of MIN6 β-cell spheroids formed in 4 wt.% PEG4NB 

hydrogels cross-linked by (a) CGGYC or (b) DTT. (Day-10, N = 4, mean ± SD). Asterisk 

represent p < 0.05 within indicated group. 
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Figure 4.8. Effect of hydrogel formulation on sustaining hMSCs survival and 

proliferation. (a – c) Cell-laden hydrogels were stained with Live/Dead staining kit and 

visualized by confocal microscopy (z-stack images) at day 10. Macromer used: (a) 4 wt% 

PEG4eNB, (b) 8 wt% PEG4eNB, and (c) 4 wt% PEG4aNB thiol-ene hydrogels (Scale: 

100μm). (d , e) Cell viability as time was determined quantitatively by AlamarBlue® 

reagent. Linker type: (d) CGGYC, (e) DTT (N = 3, mean ± SD). Asterisk represent p < 

0.05 between indicated group. 
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Further, phenotypic evaluation was performed on both encapsulated MIN6 β-cells 

and hMSCs using whole mount immunostaining. MIN6 β-cells and hMSCs were stained 

for insulin and CD105, respectively after 10 days of culture in thiol-ene hydrogels. 

Results obtained via confocal microscopy, confirmed that both cells types remain 

undifferentiated and express there phenotypic proteins i.e., MIN6 β cells express insulin 

(Figure 4.9a) and hMSCs express CD105 (Figure 4.9b). These results provide further 

evidence that thiol-ene hydrogels not only provides a cytocompatible microenvironment 

for cells but also provide an unbiased blank slate environment for long-term preservation 

and culture of cells.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. Representative z-stack immunostaining images of (a) MIN6 β-cells and (b) 

hMSCs. Cells were stained using antibodies targeting (a) insulin (green) and (b) CD105 

(red) 10 days post encapsulation in 4 wt.% PEG4eNB/CGGYC hydrogels. Cell nuclei 

were counter stained with DAPI (blue). (Scale: 100μm)   
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4.2.3 Effect of Cell-Adhesive Motif and Hydrolytic Gel Degradation on Long-Term 

Cell Viability 

It should be noted that results shown in Figures 4.4 through 4.8 were obtained 

from PEG-based hydrogels without the presence of bioactive moieties, which have 

proven beneficial in supporting cell survival in 3D [46, 99, 100].  Toward this end, we 

were interested in illustrating the potential synergistic influence of gel hydrolytic 

degradation and cell-adhesive motifs, such as fibronectin-derived RGDS on cell survival 

and morphogenesis.  We monitored the viability of MIN6 β-cells and hMSCs 

encapsulated in CGGYC cross-linked hydrogels (PEG4eNB or PEG4aNB) incorporated 

with 0, 1, and 2 mM of CRGDS.  At the peptide concentrations tested, the incorporation 

of RGDS motif only marginally increased viability of MIN6 β-cells in hydrolytically 

degradable PEG4eNB hydrogels at day-10 (Figures 4.10a). On the other hand, a higher 

degree of pro-survival effect afforded by RGDS can be seen at day-7 onward when non-

degradable PEG4aNB macromer was used (Figures 4.10b).  The influence of RGDS 

motif on cell survival was more apparent in encapsulated hMSCs.  For example, hMSCs 

encapsulated in thiol-ene hydrogels immobilized with 1 mM or 2 mM RGDS consistently 

showed higher viability at all-time points, regardless of hydrogel degradability (Figures 

4.11a, 4.11b).  The promoting effect of RGDS peptide in cell viability was significantly 

higher in non-degradable PEG4aNB hydrogels (Figure 4.11b), compared to cell viability 

in hydrolytically degradable PEG4eNB hydrogels (Figure 4.11c).  We believe that, in the 

case where thiol-ene gels were susceptible to hydrolytic degradation, the encapsulated 

cells were relieved from polymer network stresses as time and consequently the role of 

RGDS motif became less significant.  Murphy and colleagues have previously reported 

similar behaviors in hMSCs encapsulated in hydrolytically degradable Michael-type PEG 

hydrogels [99-101].  When the gels were not hydrolytically degradable (i.e., using amide-

linked PEG4aNB), the inclusion of RGDS potentially rescued the cells from damages by 

providing critical cell-matrix interactions that were otherwise lacking (Figures 4.11b, 

4.11b). 
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Figure 4.10. Effect of cell-matrix interaction on sustaining survival and proliferation of 

MIN6 β-cells. Cell viability as time was determined quantitatively by AlamarBlue® 

reagent. Cells were encapsulated in 4 wt.% (a) PEG4eNB or (b) PEG4aNB hydrogels 

crosslinked by CGGYC with varying concentrations of immobilized CRGDS. (N = 3, 

mean ± SD). Asterisk represent p < 0.05 between indicated group. 
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Figure 4.11. Effect of cell-matrix interaction on sustaining survival and proliferation of 

hMSCs. Cell viability as time was determined quantitatively by AlamarBlue® reagent. 

Cells were encapsulated in 4 wt.% (a) PEG4eNB or (b) PEG4aNB hydrogels crosslinked 

by CGGYC with varying concentrations of immobilized CRGDS. (N = 3, mean ± SD). 

Asterisk represent p < 0.05 between indicated group. 
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4.2.4 Effect of Hydrolytic Gel Degradation, Cell-Mediated Matrix Remodeling, and 

Cell-Matrix Interaction on hMSC Viability and Morphology 

An attractive feature of thiol-ene hydrogels is that the gels can be designed to 

undergo cell-mediated matrix remodeling by using protease (e.g., MMPs) sensitive 

peptides as gel cross-linkers [63]. Selective cleavage of matrix locally by cell-secreted 

proteases alters the extent to which the cells interact with their microenvironment.  

Furthermore, the degree of cell spreading due to local matrix degradation has been shown 

to significantly impact cell fate determination [92, 102].  For example, Anderson et al. 

showed that the degree of proteolytic degradation in thiol-ene hydrogels significantly 

affected the survival, proliferation, and differentiation of hMSCs [92]. Given the 

profound impact of gel hydrolytic degradation on cell survival as shown in Figures 4.6 

through 4.8, we reasoned that these two forms of gel degradation (i.e., proteolytic and 

hydrolytic) might collaboratively affect hMSCs morphology and survival under the 

influence of cell-matrix interactions (provided by immobilized integrin ligand, RGDS).  

 

To evaluate this possibility, we encapsulated hMSCs in PEG4eNB or PEG4aNB 

hydrogels crosslinked by an MMP-sensitive peptide linker (i.e., KCGPQG↓IWGQCK) 

incorporated with 0, 1, and 2 mM of CRGDS.  We characterized cell morphology 

qualitatively using Live/Dead staining, f-actin immunostaining and confocal imaging 

(Figure 4.12, 4.13) while measured cell viability quantitatively using AlamarBlue® 

reagent (Figure 4.14).  Without RGDS motif, the morphology of hMSCs encapsulated in 

MMP-sensitive peptide cross-linked hydrogels (Figure 4.12a) appeared similar to that 

found in CGGYC or DTT cross-linked gels (Figures 4.8d – 4.8e).  This result 

demonstrates the importance of integrin-binding on cell-mediated matrix remodeling.   

 

Similar to the results shown by Anderson et al., hMSCs exhibited extensive 

cellular processes only when they were encapsulated in an MMP-sensitive 

microenvironment and in the presence of RGD motif (Figure 4.12b, 4.12c). 

Interestingly, however, the percentage of cells exhibiting long cellular processes due to 

enhanced cell-matrix interaction was significantly higher in hydrolytically labile 

PEG4eNB-based hydrogels than in hydrolytically stable PEG4aNB-based gels (Figures 
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4.12b – 4.12e, 4.13).  For example, over 90 % of cells in degradable PEG4eNB hydrogels 

had cellular processes longer than 30 µm compared to only ~50 % of the cells in non-

degradable PEG4aNB hydrogels cross-linked by the same MMP-sensitive peptide and 

immobilized with 1 mM RGDS (Figure 4.12d).  The analysis of cell average lengths in 

these hydrogels yielded a similar trend (Figure 4.12e). For example, when hMSCs were 

encapsulated in PEG4eNB hydrogels immobilized with 1 mM RGDS, the average cell 

length was ~80 m, as compared to only ~47 m in PEG4aNB hydrogels.  Increasing the 

concentration of immobilized RGDS to 2 mM did not yield significant differences in the 

percentage of cells exhibiting long protrusions or the average cell lengths.  When 

comparing the morphology of hMSCs encapsulated in PEG4eNB or PEG4aNB hydrogels 

immobilized with 2 mM RGDS, the differences between the percentages of cells 

exhibiting long processes and the average cell lengths decreased as compared to those 

found in 1 mM RGDS containing gels.  It is important to note that all of these hydrogels 

were cross-linked by the same MMP-sensitive peptide.  The hydrolytic degradation of 

PEG4eNB hydrogels likely enhanced cell-matrix interactions that led to higher degree of 

cell spreading.  This phenomenon suggested that hydrolytic gel degradation could be 

exploited to achieve a similar level of intracellular signaling at a lower concentration of 

bioactive motif. 

 

While hMSCs encapsulated in gels cross-linked by CGGYC or DTT barely 

survived at longer 3D culture time (Figures 4.8), we found that hydrolytic degradation 

enhanced cell viability (measured by Alamarblue® reagent) in gels cross-linked by 

MMP-sensitive linker even without the presence of RGDS (Figure 4.14a). This trend 

holds when 1 mM of RGDS was incorporated (Figure 4.14b) but the difference in cell 

viability between the two macromers (PEG4eNB and PEG4aNB) diminished when the 

concentration of immobilized RGDS was raised to 2 mM (Figure 4.14c).  This was 

similar to the trend observed in the 3D spreading of hMSCs as shown in Figure 4.13.  

Collectively, these results suggest that hydrolytic degradation, proteolytic degradation, 

and cell-matrix interactions work together in enhancing cell performance in PEG-based 

thiol-ene hydrogels. 
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Figure 4.12. Effect of hydrogel degradation and cell-matrix interaction on hMSC 

morphology. (a – c) Cell-laden hydrogels were stained with Live/Dead staining kit after 

10 days of culture. Representative confocal z-stack images of hMSCs encapsulated in 4 

wt.% PEG-norbornene hydrogels crosslinked by MMPLinker and immobilized with (a) 0 

mM, (b) 1 mM, and (c) 2 mM of CRGDS (Scale: 100μm). (d) Image analysis results 

showing % of hMSCs having cell length of 30 µm or longer. (e) Image analysis results 

showing the average cell lengths of encapsulated hMSCs (N = 4, mean ± S.D.). Asterisk 

represent p < 0.05 within indicated group. 
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Independent evaluation of epithelial and mesenchymal morphogenesis using 

MIN6 β-cells and hMSCs, respectively, have revealed key matrix properties including: 

initial reaction conditions, macromer composition, hydrogel degradability and hydrogel 

bioactivity, to maintain and study long term cellular morphogenesis in 3D. 

 

 

 

 

 

 

 

 

 

 

Figure 4.13. Effect of hydrogel degradation and cell-matrix interaction on hMSC 

morphology 10 days post-encapsulation. Representative confocal z-stack immunostaining 

images of hMSCs stained with Rhodamine-labeled Phalloidin for f-actin (red). Cell 

nuclei were counter stained with DAPI (blue). Cells were encapsulated in 4 wt.% 

PEG4NB hydrogels crosslinked by MMPLinker and immobilized with 0 mM,1 mM, and 2 

mM of CRGDS. (Scale: 100μm)  
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Figure 4.14. Effect of hydrogel degradation and cell-matrix interaction on sustaining 

hMSC survival and proliferation. hMSCs were encapsulated in 4 wt.% PEG-norbornene 

hydrogels crosslinked by MMPLinker and immobilized with (a) 0 mM, (b) 1 mM, or (c) 2 

mM of CRGDS. Viability as time was determined by AlamarBlue® reagent (N = 3; 

Mean ± S.D.). Asterisk represent p < 0.05 within indicated group.  
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4.3 EstablishingTunable Hydrogel Niches for Culturing Pancreatic Exocrine Cells 

Unlike MIN6 β-cells and hMSCs, PANC-1 cells have not been comprehensively 

studies in 3D. This creates a need to evaluate the behavior of these cells in 3D and further 

the understanding towards epithelial – mesenchymal morphogenesis. Towards this end, 

thiol-ene hydrogel matrix was manipulated at: (1) cross-linker level to explore the effect 

of different rates and modes of degradation on PANC-1 cellular morphogenesis, (2) 

macromer molecular weight level to evaluate the effect of stressful microenvironment on 

cellular behavior, and (3) cell–ECM interaction level to observe the changes in PANC-1 

cell morphogenesis due to ECM interaction. Matrix adjustments at these levels will allow 

us to study the independent and synergistic effect of various matrix conditions on cell 

morphogenesis. For all the studies performed in this section 5 wt.% PEG4eNB thiol-ene 

hydrogels were utilized to encapsulate PANC-1 cells. 

 

 

4.3.1 Effect of Macromer Composition on Initial PANC-1 Viability 

As discussed previously, most studies performed on PANC-1 cell have been in 

2D culture and that only on a few occasions PANC-1 cell features in comparison to other 

cell lines have been evaluated in 3D culture [79, 85, 103, 104]. To explore PANC-1 

morphogenesis in thiol-ene hydrogels, we first examined the initial cell viability 

immediately following photoencapsulation. We assessed the viability of encapsulated 

PANC-1 cells at cell packing density of 2 ẋ 10
6
 cell/mL 1 hour post in situ gelation in 5 

wt.% 20 kDa PEG4eNB hydrogels with varying cross-linker type qualitatively using 

Live/Dead staining and quantitatively with CellTiter Glo® reagent (Figure 4.15).   
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Figure 4.15. Effect of cross-linker chemistry on initial viability of photoencapsulated 

PANC-1 cells (5 wt% PEG4NB). (a) Representative confocal z-stack images of PANC-1 

cells stained with Live/Dead staining kit. Numbers shown below each image represent 

the percentage of live cells over total cell count (Scale: 100μm; N = 4, mean ± S.D.). (b) 

Quantitative cell viability (one hour post-encapsulation) determined by CellTiter Glo® 

reagent that measures intracellular ATP concentration. No statistical significant 

difference was found between any two groups (N = 4, mean ± SD).   
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We found that varying crosslinker had no significant effect on initial viability of 

encapsulated PANC-1 cells i.e., in all crosslinker formulations over 90% of cells survived 

the photoencapsualtion process as observed by Live/Dead staining (Figure 4.15a). The 

effect of cross-linker type on initial cell viability was also assessed quantitatively by 

intracellular ATP measurements (Figure 4.15b). These ATP assays results correlated 

directly to the number of metabolically active cells following photo-encapsulation and 

the results agree with the qualitative Live/Dead images as shown in Figure 4.15. These 

results could be attributed to the fact that, at the same functional group concentration, 

changing the type of cross-linker does not cause significant differences in the degrees of 

thiol-norbornene reaction and network cross-linking. These initial viability results show 

that thiol-ene chemistry support high degree of cell survival during and following 

photoencapsulation.  

 

We further evaluated the effect of PEG4eNB macromer molecular weight (M.W.) 

on initial PANC-1 viability (Figure 4.15, 4.18). Cell viability was evaluated in hydrogels 

fabricated using 5 and 20 kDa PEG4eNB macromers and initial viability post-

encapsulation was measured as described previously. Qualitative Live/Dead staining 

results indicated a reduction in viability from ~90% to ~77% with decrease in PEG4eNB 

M.W. regardless of the linker used (Figure 4.17). As explained previously in Section 

4.1.2, that decreasing PEG4eNB M.W. from 20 kDa to 5 kDa resulted in higher hydrogel 

shear modulus i.e., ~3.1 and ~5.5 kPa for 20 kDa and 5 kDa PEG4eNB respectively at the 

same polymer concentration (Figure 4.3).  The drastic increase in modulus due to 

decreasing macromer M.W. resulted in higher network crosslinking [70], causing higher 

degree of environmental stresses which, negatively affect initial PANC-1 cell survival.  
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4.3.2 Influence of Crosslinker Type on Long-Term PANC-1 Growth and Activity 

Depending on the cross-linker chemistry, thiol-ene hydrogels can be manipulated 

to undergo hydrolysis or proteolysis at varying degrees (Table 3.1).  For example, when 

crosslinked with DTT (a non-enzyme sensitive linker), thiol-ene hydrogels undergo slow 

hydrolytic degradation compared to bis-cysteine peptide cross-linkers. When crosslinked 

with CGGYC [27] or MMPscrm (a non-MMP sensitive linker) [89], thiol-ene hydrogels 

only endure fast hydrolytic degradation compared to MMPLinker (MMPs sensitive linker) 

[90, 91] where the hydrogels not only experience fast hydrolytic degradation but are also 

susceptible to MMP proteolysis.  We hypothesized that cross-linker type and sensitivity 

directly affects cellular morphogenesis in 3D thiol-ene hydrogels.  Here, we first 

visualized PANC-1 morphogenesis in 5 wt.% PEG4NB hydrogels over a course of 10 

days using Live/Dead staining followed by confocal imaging at day 4, 7 and 10 (Figure 

4.16a). As shown in Figure 4.16a, PANC-1 cell proliferate in thiol-ene hydrogels 

regardless of the linker used but the rate of proliferation and cell morphogenesis depends 

on linker chemistry. For example, PANC-1 cells proliferate faster in hydrogels 

crosslinked with MMPLinker over a period of 14 days and form cyst-like clusters compared 

to cells in both CGGYC and MMPscrm crosslinked hydrogels, where PANC-1 cells show 

slower proliferation rate and form compact and rounded clusters.  

 

Previously, it has been shown that PANC-1 cells in response to environmental 

stresses such as matrix stiffness, secrete MMPs allowing cells to degrade the surrounding 

ECM to relieve unfavorable stresses [105-110]. Since all bis-cysteine peptide linkers used 

for thiol-ene crosslinking undergo similar rate of hydrogel hydrolytic degradation 

(Figure 4.2), the observe difference in PANC-1 cell morphogenesis may be attributed to 

the varying sensitivity of linkers to cell mediated proteolysis. We hypothesize that 

MMPLinker crosslinked hydrogels due to its sensitivity to cell secreted MMPs allow 

encapsulated PANC-1 cells to remodel their microenvironment and proliferate at a higher 

rate due to coupled effect of both hydrolytic and enzymatic degradation.  On the other 

hand, proliferation of PANC-1 cells when encapsulated in non-MMP sensitive hydrogels 

depends on hydrolytic degradation due to no protease sensitivity.  
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As discussed previously, PANC-1 cells cultured in 3D pancreatic epithelium like 

environment form cysts, a characteristic feature of ductal epithelial cells [72, 111, 112]. 

Similar to previous work, PANC-1 cells in MMPLinker crosslinked hydrogels exhibit their 

cyst-like phenotype due to cell matrix remodeling. Compared to cyst formation in MMP 

sensitive hydrogels, we speculate that PANC-1 cells in non-MMP sensitive hydrogels 

mainly form compact clusters due to the inability of cells to remodel its ECM and cell 

reliance on hydrogel hydrolytic degradation to relieve matrix induced environmental 

stresses.  
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Figure 4.16. Effect of cross-linker chemistry on PANC-1 cell morphogenesis (PEGe4NB: 

20 kDa, 5 wt%) (a) PANC-1 cell morphology visualized using Live/Dead staining and 

confocal microscopy (z-stack images) at day 4, 7, and 10 (Scales: 100µm). (b) Cell 

metabolic activity measured as a function of time by AlamarBlue® reagent. All readings 

were normalized to day-1 values in respective group (N = 4, mean ± S.D.). Asterisk 

represent p < 0.05 between indicated group.  
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Next, we assessed the effect of linker type on long-term PANC-1 cell survival 

quantitatively using AlamarBlue® reagent. We obtained PANC-1 relative metabolic 

activity by normalizing the reagent fluorescence signal to that acquired at day 1 (Figure 

4.16b). Similar to results obtained via Live/Dead staining, we found that PANC-1cells 

are metabolically active in all hydrogel formulations and the cellular activity increases 

over the period of 14 days indicating cell proliferation. Comparing linker types i.e. 

CGGYC, MMPscrm and MMPLinker, we observe slight difference between relative 

metabolic activity profiles until day 10. But at day 14, cells encapsulated in MMPLinker 

crosslinked hydrogels show significantly higher metabolic activity compared to cells in 

CGGYC or MMPscrm crosslinked hydrogels. Studies have shown that the process of cyst 

formation involves three main steps: (1) compact cluster formation due to proliferation or 

migration, (2) cell death in the core due to hypoxia induced by peripheral cells, and (3) 

further peripheral cell proliferation [111]. Some studies have argued that step 3 happens 

first followed by cell death and a few argue that 2 and 3 happen at the same time, but in 

essence the process of cyst formation remains the same throughout literature [72, 112]. 

With the knowledge that PANC-1 cells in MMPLinker crosslinked hydrogels proliferate 

and remodel their matrix and the end result is cyst-like cluster formation, we can 

hypothesize that the similarity in metabolic activity profile of cells in MMPLinker and 

CGGYC or MMPscrm crosslinked hydrogels at day 10 is due to cell death during the 

process of cyst formation in PEG4eNB/MMPLinker hydrogels. And the increase in cell 

metabolic activity at day 14 in PEG4eNB/MMPLinker was due to the outward proliferation 

of the peripheral cells of the cyst. Further studies are required to test the afore mentioned 

hypothesis.            
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Figure 4.17. Effect of cross-linker chemistry on PANC-1 cell morphogenesis at protein 

level. (a) Western blotting analysis for mesenchymal (Vimentin, Snail) and epithelial (β-

catenin and E-cadherin) lineage specific markers 10 days post-encapsulation (C: 

CGGYC, Ms: MMPscrm, ML: MMPLinker). (b) Semi-quantitative analysis of protein band 

intensities. All band intensities were obtained by ImageJ and normalized to the band 

intensity of β-actin in respective group (N = 4, mean ± S.D.). Asterisk represent p < 0.05 

between indicated group.  
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Previous studies performed on kidney, lung and breast carcinoma cells in 2D have 

shown that all these epithelium derived cells are capable of undergoing both epithelial to 

mesenchymal transition (EMT) when subjected to stressful conditions and mesenchymal 

to epithelial transition (MET) when conditions are restored back to match the epithelioid 

cell microenvironment [113, 114]. With this information and observed cell 

morphogenesis in mind, we evaluated PANC-1 cell morphogenesis by measuring cell 

protein expression of key epithelial markers (β-catenin, E-cadherin) and mesenchymal 

markers (Vimentin and Snail) [114] using western blotting and band analysis techniques 

10 days after culture in 5 wt.% PEG4eNB hydrogels (Figure 4.17).  

 

We found that PANC-1 cells in both PEG4eNB/CGGYC and PEG4eNB/MMPscrm 

hydrogels express significantly higher levels of Vimentin and significantly lower levels 

of β-catenin and E-cadherin. In contrary, cell in PEG4eNB/MMPLinker hydrogels show 

higher levels of β-catenin and E-cadherin; and lower levels of Vimentin compared to 

other experimental groups. Previous studies have indicated that epithelial cells including 

PANC-1 cells when cultured on 2D surface express high levels of epithelial markers such 

as cytokeratin, β-catenin, E-cadherin, Claudins and others, and little to no expression of 

mesenchymal markers such as Vimentin, Snail, Slug, N-cadherin and others [72, 73]. 

Comparing information from previous findings, results obtained in our study indicate that 

PANC-1 cell in 3D thiol-ene hydrogels regardless of the crosslinker chemistry, 

experience stress due to network crosslinking and as a consequence express Vimentin and 

Snail1 (EMT markers). PANC-1 cells in PEG4eNB hydrogels with no protease sensitive 

linker (such as CGGYC or MMPscrm), remain in stressed state due to network restriction 

and maintain high expression of the above mentioned EMT markers.  

 

On the other hand, cells encapsulated in protease sensitive hydrogels remodel 

their matrix, opening up the hydrogel network to allow for cell proliferation and cyst 

formation, resulting in high levels of β-catenin and E-cadherin (epithelial markers) and 

relatively lower levels of EMT markers. These western blotting results (Figure 4.17) 

correlate well with the cell viability results acquired using Live/Dead staining and 
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AlamarBlue® assay (Figure 4.16), and provides further insight into the effects of 

changing matrix conditions on PANC-1 cell behavior at protein level.    

 

 

4.3.3 Effect of Gel Stiffness and Degradability on PANC-1 Morphogenesis 

 Several studies have reported that stiffness of hydrogels plays a significant role in 

regulating phenotypes of various cells types [38, 115-117] including epithelial cells, i.e. 

matrix rigidity modulates whether a cell will undergo EMT or not [118]. To study the 

effect of matrix stiffness on PANC-1 cellular morphogenesis and metastasis, we 

encapsulated PANC-1 cells at a cell packing density of 2 ẋ 10
6
 cells/mL in 5 wt.% 5 and 

20 kDa PEG4eNB hydrogels crosslinked by either DTT or MMPLinker. Cell 

morphogenesis was observed using Live/Dead staining, cell viability as a function of 

time was measured using AlamarBlue® reagent, and finally PANC-1 protein expressions 

were assessed using western blotting (Figure 4.19, 4.20).  

 

As shown in Figure 4.19 cells survive in both higher and lower stiffness but with 

varying degree of cell proliferation. We found that more cells die over a period of 10 

days in lower M.W. (5 kDa) PEG4eNB/DTT hydrogels compared to cells encapsulated in 

20 kDa PEG4eNB/DTT hydrogels. Further, we observed that PANC-1 cells in 5 kDa 

MMP sensitive hydrogels show protrusion (like mesenchymal cells) compared to cyst 

formation in 20 kDa protease sensitive PEG4eNB hydrogels (Figure 4.19a, 4.19b). In 

addition to differences in cellular morphology, PANC-1 cells present significantly higher 

metabolic activity with time in MMP sensitive hydrogels regardless of PEG4eNB 

molecular weight, while cells in non-protease sensitive DTT crosslinked show a steady 

activity profile over time (Figure 4.19c, 4.19d). At protein level, PANC-1 cells in 20 

kDa MMPLinker crosslinked PEG4eNB hydrogels express significantly higher levels of 

epithelial markers (β-catenin and E-cadherin) and lower level of mesenchymal markers 

(Vimentin and Snail1) compared to all other experimental groups (Figure 4.20). 
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Figure 4.18. Effect of PEG4eNB molecular weight on initial PANC-1 viability measured 

using Live/Dead staining kit (D: DTT; ML: MMPLinker). Numbers shown below the 

representative confocal z-stack images  are the percentage of live cells over total cell 

count (Scale: 100μm; N = 4, mean ± S.D.). 
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Figure 4.19. Effect of PEG4NB molecular weight and cross-linker chemistry on PANC-1 

cell morphogenesis (PEG4eNB: 5wt%). (a-b) Representative confocal z-stack images of 

PANC-1 cell morphology (Live/Dead stain 10 days post-encapsulation) in gels formed by 

different PEG4eNB molecular weights (a: 5kDa; b: 20kDa) and cross-linker chemistries 

(D: DTT; ML: MMPLinker) (Scales: 100µm). (c-d) Cell metabolic activity measured by 

AlamarBlue® reagent and normalized to day-1 value in the respective group. (c: 5kDa; d: 

20kDa PEG4eNB). (N = 4, mean ± S.D.) Asterisk represent p < 0.05 between indicated 

group.   
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As mentioned previously, PANC-1 cells like other epithelial cells undergo 

epithelial to mesenchymal transition (EMT) in unfavorable or extremely stressful 

conditions [113, 114]. Hydrogels fabricated using lower M.W. PEG4eNB exhibit higher 

shear modulus compared to higher M.W. PEG4eNB hydrogels (Figure 4.3), due to 

formation of tighter network with smaller mesh size. Previous studies have shown that 

stress induced by matrix stiffness creates a hostile environment for cells and triggers 

EMT allowing cells to escape unfavorable matrix conditions [118]. The observed 

protrusion and higher levels of mesenchymal markers in 5 kDa PEG4eNB/MMPLinker 

hydrogels are due to the PANC-1 cell struggle to free itself from the rigid 

microenvironment. Live/Dead images of cells in 5 kDa DTT crosslinked hydrogels do 

not show protrusion due to the insensitivity of hydrogel to MMP secretion but the stress 

induced by the matrix can be clearly seen through protein analysis revealing higher levels 

of Vimentin and Snail1.  These results suggest that PANC-1 cells could be held in 

mesenchymal state if stressful conditions are maintained over time. On the other hand, 

epithelial phenotype can be restored if cells are allowed to remodel the surrounding ECM 

and relieve the induced stresses. 
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Figure 4.20. Effect of PEG4NB molecular weight and cross-linker chemistry on PANC-1 

cell morphogenesis at protein level. (a) Western blotting analysis for mesenchymal 

(Vimentin, Snail) and epithelial (β-catenin and E-cadherin) lineage specific markers 10 

days post-encapsulation (D: DTT, ML: MMPLinker). (b) Semi-quantitative analysis of 

protein band intensities. All band intensities were obtained by ImageJ and normalized to 

the band intensity of β-actin in respective group (N = 4, mean ± S.D.). Asterisk represent 

p < 0.05 between indicated group.  
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4.3.4 Cell Morphology in Blank Slate Hydrogels 

 As discussed previously, PANC-1 cells form cyst like structures in suitable 3D 

microenvironment [72, 111, 112]. But in contrary to the above observation, PANC-1 cells 

in 3D thiol-ene hydrogels exhibit varying morphologies as shown in Figure 4.16a, 4.19a, 

4.19b, 4.21. After a complete screening of Live/Dead images five major morphologies 

were observed, namely: (I) Single cell, (II) Small rounded and compact cell clusters, (III) 

Large and irregular cell clusters, (IV) Small clusters with short cellular protrusions and 

(V) Cyst-like cell clusters. After morphology categorization, immunostaining was 

utilized to visualize the pattern of f-actin (structural protein) and β-catenin (cell-ECM and 

cell-cell interaction protein) [114] (Figure 4.21).  

 

We observed that single cell (I) showed f-actin and β-catenin staining around the 

nuclei indicating cytosolic location of these proteins. Similar protein staining pattern 

were observed in small and rounded compact cell clusters (II) i.e. compact and evenly 

distributed f-actin and β-catenin staining. In contrary, larger and irregular cell clusters 

(III) showed irregular f-actin and β-catenin staining around the cluster with some regions 

with more concentrated protein staining than the other regions. For cell cluster with short 

cellular protrusions (IV) f-actin staining was consistent with the direction of cell 

protrusion and minimal to no β-catenin staining was observed. Lastly, cyst-like clusters 

(V) exhibited concentrated f-actin and β-catenin staining in the hollow core of the 

aggregate and regular staining levels in the peripheral region of the clusters. Studies 

performed on epithelial cyst in 3D have shown that cells concentrate ECM based proteins 

in the hollow core in order to support the cyst architecture and allow for peripheral 

growth in non-interactive matrix [112]. The results obtained are consistent with previous 

studies which present cyst with similar protein staining patterns and feature (using 

Live/Dead staining dead cells marked by red stain were observed in the core of the cyst 

(Figure 4.16a, 4.19a)). 
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Figure 4.21. Representative immunostaining images of PANC-1 cells encapsulated in 

PEG4eNB hydrogels. At day 10 post-encapsulation, PANC-1 cells were stained using 

antibodies targeting β-catenin (green) and F-actin (red). Cell nuclei were counter-stained 

with DAPI (blue). (a) Single cell; (b) Small rounded and compact clusters; (c) Large and 

irregular cell clusters; (d) Small clusters with short cellular protrusions; and (e) Cyst-like 

cell clusters. (Scales: 100µm)  
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After establishing the features commonly exhibited by each PANC-1 cluster, 

Live/Dead images acquired at day 10 were analyzed to assess the effect of macromer 

composition on total population of each morphology category (Figure 4.24a). We found 

that when PANC-1 cells were encapsulated in DTT crosslinked hydrogels regardless of 

the PEG4eNB M.W., major cell population exhibit, single cells (I) and round and 

compact cell clusters  (II) with minimal to no cyst formation. Further, major cell 

population in 5 kDa PEG4eNB/MMPLinker hydrogels had small clusters with short cellular 

protrusions (IV). When cells were encapsulated in MMPLinker crosslinked 20 kDa 

PEG4eNB hydrogels, higher number of hollow cyst like clusters (V) and large and 

irregular cell clusters (III) were observed compared to all other test groups. 

  

In addition to morphology analysis, we also measured the size of encapsulated 

PANC-1 clusters from the Live/Dead staining images obtained 10 days post-

encapsulation (Figure 4.25a). We found that increasing matrix stiffness resulted in 

decreased cluster size, more specifically MMPLinker crosslinked 20 kDa PEG4eNB 

hydrogels supported formation of larger PANC-1 clusters ~74 µm in size compared to 

~56 µm clusters in 5 kDa PEG4eNB hydrogels. These PANC-1 morphology and size 

results in 3D thiol-ene hydrogels suggest that varying macromer composition provide not 

only intrinsic protein level control but also extrinsic phenotypic control.  

 

 

4.3.5 Influence of ECM Motifs on PANC-1 Cell Morphogenesis 

 It should be noted that results shown in Figures 4.16 through 4.21 were obtained 

from PEG4eNB hydrogels without the presence of any bioactive moieties, which have 

proven beneficial in supporting cell survival in 3D on multiple occasions [93, 112, 119-

121]. To evaluate the effect of bioactive motifs on PANC-1 cell survival and 

morphogenesis, we monitored PANC-1 cell behavior in 5wt% CGGYC cross-linked 

PEG4eNB hydrogels immobilized with 0, 1, and 2 mM of CRGDS (fibronectin derived) 

and KCYIGSR (laminin derived) using Live/Dead staining, AlamarBlue® reagent and 

western blotting (Figure 4.22, 4.23). The incorporation of RGDS motif in non-MMP 
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sensitive hydrogels resulted in a higher degree of (1) PANC-1 metabolic activity (Figure 

4.22c) and (2) greater cyst formation (Figure 4.22a), while the addition of YIGSR had no 

effect of on cellular activity (Figure 4.25d) but more dead cells and highly compact 

clusters were observed (Figure 4.25b) compared to both RGD containing hydrogel and 

hydrogels with no bioactive moieties. Protein analysis revealed no significant difference 

in the levels of Vimentin and Snail1 across all test groups. On the other hand, cells in 

hydrogels conjugated with both 1 and 2 mM of YIGSR compared to non-bioactive and 

RGD containing hydrogels endured higher levels of β-catenin and E-cadherin (Figure 

4.23).  
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Figure 4.22. Effect of ECM-mimetic motifs on PANC-1 cell morphogenesis (PEG4eNB: 

20kDa, 5wt%). (a-b) Representative confocal z-stack images of PANC-1 cell morphology 

(Live/Dead stain 10 days post-encapsulation) in gels immobilized with different ECM-

mimetic motifs (a: CRGDS; b: KCYIGSR) (Scales: 100µm). (c-d) Cell metabolic activity 

measured by AlamarBlue® reagent and normalized to day-1 value in the respective group 

(c: CRGDS; d: KCYIGSR). (N = 4, mean ± S.D.) Asterisk represent p < 0.05 between 

indicated group.   
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 Previous studies have shown that RGDS (a fibronectin based adhesive) ligand 

provides adhesion sites for cells and enhances cell morphogenesis, while YIGSR (a 

Laminin based) ligand assists in cell aggregation [121]. The results obtained in this study 

agree with previous finding i.e. PANC-1 cells in the presence of RGDS motif are more 

bioactive and due to matrix interaction express their ductal epithelial phenotype by 

forming more cyst like clusters [112, 121]. On the other hand, PANC-1 cells in the 

presence of YIGSR motif are forced to aggregate and form more rounded and compact 

clusters [121]. Further, cells in all gel formulations experience matrix based stresses as 

indicated by the presence of mesenchymal markers but the ECM support provided by 

RGDS allows cells to proliferate to a higher degree and exhibit their epithelial like 

phenotype. YIGSR conversely, forces cell to aggregate into clusters but does not allow 

them to exhibit ductal epithelial phenotype by restricting cyst formation via intracellular 

stress induction, pushing cells to interact with themselves to survive. This level of 

cellular morphogenesis control via matrix manipulation can further allow us to push 

PANC-1 cells towards endocrine differentiation in 3D.  
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Figure 4.23. Effect of ECM-mimetic motifs on PANC-1 cell morphogenesis at protein 

level. (a) Western blotting analysis for mesenchymal (Vimentin, Snail) and epithelial (β-

catenin and E-cadherin) lineage specific markers 10 days post-encapsulation in gels 

immobilized with different ECM-mimetic motifs (CRGDS; KCYIGSR). (b) Semi-

quantitative analysis of protein band intensities. All band intensities were obtained by 

ImageJ and normalized to the band intensity of β-actin in respective group (N = 4, mean 

± S.D.). Asterisk represent p < 0.05 between indicated group. 
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4.3.6 Cell Morphology in Bioactive Hydrogels 

In addition to cell viability and protein expression, the effects of ECM motifs on 

total population of each morphology category and cluster size were evaluated using 

previously described method (Figure 4.24b, 4.25b). We observed that the number of 

large and irregular cell clusters (III) and cyst like clusters (V) significantly increased with 

increasing concentration of immobilized RGDS in PEG4eNB/CGGYC hydrogels 

compared to hydrogels with 0 mM of RGDS which contains more single cells (I) and 

small rounded and compact cell clusters (II). In contrary to RGDS, increasing YIGSR 

concentration resulted in a slight increased number of small rounded and compact 

clusters (II) but the increase was not found significant when compared to cells in non-

bioactive PEG4eNB/CGCYC hydrogels.  
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Figure 4.24. Categorization of PANC-1 cell morphology in PEG4eNB (at 5wt%) 

hydrogels with: (a) varying molecular weight and cross-linker chemistry; and (b) varying 

ECM-mimetic motifs. Live/Dead staining images were used to analyze cell morphology 

at day-10 post-encapsulation (N = 4, mean ± S.D.). Category I in each gel formulation 

was utilized to perform statistical analysis in (a). 0 mM ligand concentration group in 

each category was utilized for statistical analysis in (b). Asterisk represent p < 0.05. 
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Additionally, cluster size can also be controlled by incorporating bioactive motifs, 

for example addition of RGD resulted in a significant increase in PANC-1 aggregate 

diameter from 58.5 ± 2.9 µm to 71.6 ± 2.3 µm. In contrary, addition of YIGSR reduces 

PANC-1 cell cluster from 58.5 ± 2.9 µm to 52.3 ± 1.1 µm. These morphology and size 

results suggest that in addition to controlling intrinsic cell behavior, cellular 

morphogenesis can also be controlled via step by step matrix manipulation. 
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Figure 4.25. Influence of hydrogel formulation on distribution of PANC-1 cell cluster 

size in PEGe4NB (at 5wt%) with: (a) varying molecular weight and cross-linker 

chemistry;  (b) varying ECM-mimetic motifs. Live/Dead staining images were used to 

analyze cell cluster size at day-10 post-encapsulation (N = 4, mean ± S.D.). Asterisk 

represent p < 0.05 between indicated groups. 
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5. CONCLUSION AND FUTURE DIRECTIONS 

 

 

In summary, this study has shown that thiol-norbornene hydrogels could be 

designed to remain stable, or be tuned to degrade hydrolytically and/or proteolytically. 

Further, hydrogel can be conjugated with ligands to enhance the bioactivity of thiol-ene 

hydrogels. Overall, thiol-ene hydrogels provided a cytocompatible environment for 

promoting MIN6 β-cell, hMSC and PANC-1 cell survival, proliferation, and 

morphogenesis in 3D.  In addition, cell viability, proliferation, and morphology were 

affected greatly by hydrogel formulations, degradability, and bioactivity. Lower 

macromer contents reduced initial cell damage during in situ photo-encapsulation due to 

lower radical concentration, lower degree of cross-linking reaction, and decreased 

network cross-linking density.  More importantly, hydrolytic degradation, proteolytic 

matrix remodeling, and cell-matrix interaction exhibited synergistic effect on promoting 

cell survival, proliferation, and morphogenesis (e.g., larger cell spheroids in MIN6 -

cells, higher degree of cell spreading in hMSCs and increased PANC-1 cyst formation). 

Due to the highly versatile nature of thiol-ene hydrogels, we were able to identify the 

conditions that favored both epithelial and/or mesenchymal morphogenesis for all cell 

types studied.  

 

The results obtained after evaluating various factors both at matrix and cellular 

level that affect epithelial and/or mesenchymal morphogenesis in 3D, indicate that cell 

morphogenesis in 3D can be controlled by simple thiol-ene network manipulation. In this 

study we have established hydrogel formulations that can be: (1) utilized for long-term 

preservation of sensitive cells such pancreatic β-cells and islets: (2) used to study cancer 

metastasis in 3D using various carcinoma cells; and (3) exploited to differentiate exocrine



76 

 

pancreatic cells such as PANC-1 cells towards endocrine function to support cell-based 

therapy for treating type I diabetes.  

 

In future, the information obtained from this study will be utilized to (1) design 

better immunoisolation barriers for islets using thiol-ene chemistry; (2) study and control 

pancreatic cancer metastasis in 3D thiol-ene hydrogels using PANC-1 cells, COLO-357 

cells, ASPC-1 cells and other pancreatic carcinoma cell lines; (3) differentiate PANC-1 

cells (exocrine cells) to islet like clusters (ILCs) (endocrine cells) to provide abundant 

cell supply for islet transplantation. Both study directions will help support therapeutics 

towards pancreatic diseases namely: pancreatic cancer and type I diabetes which affects 

millions of people worldwide.    
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