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ABSTRACT

Chen, Andy Bowei. M.S.B.M.E, Purdue University, August 2013. Application of
Quantitative Analysis in Treatment of Osteoporosis and Osteoarthritis. Major
Professor: Hiroki Yokota.

As our population ages, treating bone and joint ailments is becoming increasingly

important. Both osteoporosis, a bone disease characterized by a decreased density of

mineral in bone, and osteoarthritis, a joint disease characterized by the degeneration

of cartilage on the ends of bones, are major causes of decreased movement ability

and increased pain. To combat these diseases, many treatments are offered, including

drugs and exercise, and much biomedical research is being conducted. However, how

can we get the most out of the research we perform and the treatment we do have?

One approach is through computational analysis and mathematical modeling.

In this thesis, quantitative methods of analysis are applied in different ways to two

systems: osteoporosis and osteoarthritis. A mouse model simulating osteoporosis is

treated with salubrinal and knee loading. The bone and cell data is used to formulate

a system of differential equations to model the response of bone to each treatment.

Using Particle Swarm Optimization, optimal treatment regimens are found, includ-

ing a consideration of budgetary constraints. Additionally, an in vitro model of

osteoarthritis in chondrocytes receives RNA silencing of Lrp5. Microarray analysis

of gene expression is used to further elucidate the mode of regulation of ADAMTS5,

an aggrecanase associated with cartilage degradation, by Lrp5, including the devel-

opment of a mathematical model.

The math model of osteoporosis reveals a quick response to salubrinal and a de-

layed but substantial response to knee loading. Consideration of cost effectiveness

showed that as budgetary constraints increased, treatment did not start until later.
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The quantitative analysis of ADAMTS5 regulation suggested the involvement of IL1b

and p38 MAPK. This research demonstrates the application of quantitative methods

to further the usefulness of biomedical and biomolecular research into treatment and

signaling pathways. Further work using these techniques can help uncover a bigger

picture of osteoarthritis’s mode of action and ideal treatment regimens for osteoporo-

sis.
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1. INTRODUCTION

1.1 Bone Structure and Remodeling

Bone is the major constituent of the skeletal system. It is responsible for struc-

tural support and protection of internal organs, as well as serving as a reservoir for

metabolic calcium and phosphate necessary to maintain mineral homeostasis [1]. The

inner cavity of bones houses the bone marrow, a tissue responsible for the production

of red blood cells through a process called hematopoiesis. Bones are also made up of

three major cell types: osteoblasts, osteoclasts, and osteocytes.

Osteoblasts are bone forming cells responsible for producing and depositing bone

matrix. They are descendants of multipotent mesenchymal stem cells. Osteoblast

progenitors are induced to differentiate by a variety of factors, for example runt-

related transcription factor 2 (Runx2) [2] and activating transcription factor 4 (ATF4)

[3].

Osteoclasts are bone resorbing cells that degrade bone mineral through acidifi-

cation and proteolysis. Osteoclasts are giant multinucleated cells descended from

hematopoietic stem cells, specifically from macrophages. Osteoclast progenitors dif-

ferentiate into active osteoclasts by binding macrophage colony-stimulating factor

(M-CSF) and receptor activator of nuclear factor k-B ligand (RANKL). Osteoclasts

resorb bone by first binding proteins at the bone surface. Within the bound zone,

collagen fibrils are digested and acidified, releasing calcium and phosphate into the

cell body [4].

Osteocytes are descendants of osteoblasts trapped in the bone matrix and are

responsible for orchestrating much of the bone remodeling activity. Osteocyte pro-

cesses link to other osteocytes through the canaliculi, forming a bone signaling net-
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work. Here, they detect perturbations of the bone and activate the appropriate

response [5]. For example, osteocyte expression of sclerostin (Sost), which inhibits

osteoblast activity, is reduced by mechanical stimulation in vivo [6].

Bone remodeling is a process balancing osteoblast-driven bone formation and

osteoclast-driven bone resorption to maintain the bone’s mechanical strength and

structure. The process is contained in what is termed the basic multicellular unit

(BMU) and undergoes five major phases: activation, resorption, reversal, formation,

and termination. Bone remodeling is activated after detection of an initiation signal.

In resorption, partially differentiated mononuclear pre-osteoclasts migrate to the bone

surface and turn into multicellular osteoclasts, which release bone resorbing enzymes.

During reversal, the BMU is prepared for subsequent formation by mononuclear cells.

Formation occurs once mesenchymal stem cells and osteoblast progenitors enter and

begin differentiating and proliferating as mature osteoblasts, that then deposit bone

matrix which is then mineralized. Remodeling is terminated when the resorbed bone

has been replaced [1, 7].

Much research into treating bone diseases has focused on the regulation of bone

remodeling. Several factors have been found to regulate bone remodeling. Parathy-

roid hormone (PTH) is a regulator of calcium homeostasis that was found to stimu-

late bone formation when administered intermittently but stimulate bone resorption

when administered continuously [8]. Glucocorticoids are anti-inflammatory steroids

that also promote apoptosis in osteoblasts and osteoclasts. Excess glucocorticoids

can lead to osteonecrosis and osteoporosis [9].

1.2 Osteoporosis

Osteoporosis is a disease that disrupts bone mineral balance in favor of bone

resorption, leading to weak, fracture-prone bones of reduced density. One of the most

common causes of osteoporosis is menopause in aging women [10]. Menopause is

characterized by a gradual decline in ovarian function, leading to decreased estrogen
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production. Since estrogen inhibits osteoclast activity, its decrease leads to an increase

in bone resorption [11].

To combat this, several treatments are available. Bisphosphonates, such as al-

endronate, ibandronate, risedronate, and zoledronate, are pyrophosphate analogues

that suppress bone resorption by binding to bone mineral and preventing osteoclast

attachment to the bone surface [12]. Denosumab is a human antibody to receptor

activator of nuclear factor-kB (RANK) ligand (RANKL) that blocks its binding to

RANK, a receptor on osteoclasts necessary for osteoclast formation, thereby blocking

osteoclast bone resorption [13, 14]. Teriparatide, recombinant human PTH, mimics

PTH’s bone-forming effects to fight the catabolic effects of osteoporosis [15].

Ovariectomized mice are used as an animal model for postmenopausal osteoporosis

[16]. The ovaries are the primary source of estrogen production in females. By

surgically removing the ovaries, estrogen production decreases, resulting in a decrease

in bone density modeling postmenopausal osteoporosis.

1.3 Knee Loading

Weight-bearing exercise has been demonstrated to counteract some osteoporosis-

induced bone loss [17, 18]. Many different loading modalities have been used to pro-

mote load-driven bone formation. Knee loading has been shown to lead to bone

formation [19]. In this loading method, shown in Figure 1.1, the epiphyses of the

proximal tibia and the distal femur are loaded, increasing intramedullary pressure

in the adjacent bones. This pressure leads to interstitial fluid flow, which has been

shown to induce bone formation [20,21].

1.4 Salubrinal

Injection of salubrinal, a selective inhibitor of the de-phosphorylation of eukaryotic

translation initiation factor 2 alpha (eIF2a) [22], is being investigated as a possible

treatment for osteoporosis. Salubrinal treatment stimulates in vitro matrix deposition
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and expression of activating transcription factor 4 (ATF4) in osteoblasts, critical for

osteoblastogenesis [3], while inhibiting protein expression levels of nuclear factor of

activated T-cells c1 (NFATc1), important in osteoclastogenesis [23], and reducing

differentiation of osteoclasts [24,25].

1.5 Joint and Cartilage Maintenance

Joints are locations at which two or more bones meet. They are responsible

for much of the range of movement of the skeleton. The knee joint in particular is a

compound synovial joint consisting of two condylar joints between the tibia and femur

and a sellar joint between the femur and patella. The lateral and medial condyles

Fig. 1.1. Diagram of knee loading technique. (A) Photograph of knee
loading on mouse. (B) Diagram of knee between loader and stator,
from the side and top. (C) Photograph of piezo actuator that produces
force on the loader. Adapted from [19].
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of the tibia and femur bear articular cartilage, and the meniscus, a thick pad of

cartilage, separates the two. The anterior and posterior cruciate ligaments (ACL and

PCL) serve to stabilize the rotation of the joint [26].

Chondrocytes are the terminally differentiated descendants of the mesenchymal

stem cell line and the single cellular component of adult hyaline cartilage that, un-

der normal conditions, maintain the cartilage matrix [27]. Cartilage anabolism is

controlled by the expression of several genes in chondrocytes, including type II colla-

gen, Sox-9, and Aggrecan [28]. The extracellular matrix (ECM) of cartilage consists

of proteoglycan and hyaluronan complexes embedded in three-dimensional collagen-

composed heterotypic fibrils. The ECM is responsible for much of the cartilage char-

acteristics.

1.6 Osteoarthritis and Wnt Signaling

Osteoarthritis (OA) is a prevalent and chronic condition characterized by a pro-

gressive breakdown of the joint cartilage between two bones caused by abnormal

remodeling by inflammatory factors [29]. Patients with OA often suffer from joint

pain, inflammation, and a general decrease in joint function. Severe cases may even

require joint replacement. In OA, chondrocyte-matrix association is often disrupted,

initially leading to transient proliferation; however, catabolic cytokines are quickly

generated, and the cartilage begins to break down. Loss of proteoglycans and type II

collagen cleavage result in increased water content that decreases tensile strength [27].

Matrix metalloproteinases (MMPs) are well-established proteins that degrade col-

lagens and proteoglycans in OA. Of this family, MMP-1, -2, -3, -8, -9, -10, -11, -13,

and -14 have been implicated as major catabolic players in OA. The a disintegrin and

metalloproteinase with thrombospondin motifs (ADAMTS) family of aggrecanases

has recently been a target of OA study for their proteoglycan degrading proper-

ties [30]. Specifically, ADAMTS4 and ADAMTS5 have been investigated as the ma-

jor aggrecanases of OA. Aggrecan has the ability to form multimolecular aggregates.
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Its hydrophilic properties improve the compression and shear resistance of cartilage

and tendon [30]. Aggrecanases work to disrupt this function, degrading the cartilage

matrix, leading to articular cartilage degradation.

Some evidence suggests that the Wnt signaling pathway is involved in the mech-

anism of osteoarthritis [31]. Wnt3A treatment and forced expression of b-catenin in

rabbit articular chondrocyte cultures stimulated gelatinase activity and expression of

MMP3 and MMP13, as well as ADAMTS4 and ADAMTS5 [32]. Mice induced with

loss of FRZB, an antagonist of the Wnt pathway, after induction of OA, exhibited

greater cartilage loss than wild type, suggesting that Wnt signaling increases cartilage

degradation in OA [33].

Low-density lipoprotein receptor-related protein 5 (LRP5), a transmembrane pro-

tein that acts as a co-receptor for Wnt signaling proteins, is known to be a key regula-

tor of bone formation. Lrp5-knockout mice have deficient bone mass and strength [34].

Its role in OA is less understood. Lrp5-knockout mice exhibit increased cartilage

degradation when OA is induced, suggesting that Lrp5 is necessary to prevent carti-

lage degradation in OA [35]. However, a separate study found that b-catenin and Lrp5

expression was increased in osteoarthritic chondrocytes, and silencing Lrp5 by siRNA

in osteoarthritic chondrocytes downregulated the expression of MMP13, suggesting

that Lrp5 stimulates cartilage degradation [36].

1.7 Metaheuristic Optimization Algorithms

Metaheuristics are optimization procedures that sacrifice optimality for speed in

order to find near-optimal solutions to large complex problems [37]. They are often

helpful to find solutions to problems with a large set of potential solutions. Two such

algorithms are Particle Swarm Optimization (PSO) and Ant Colony Optimization

(ACO). Particle Swarm Optimization simulates the behavior of a swarm of particles

searching for a best solution, mimicking the social behavior of organisms such as

birds, fish, or bees. In PSO, each particle uses its knowledge of its own historical



7

best position and the knowledge of the entire swarm’s historical best position to

move toward an optimum position [38]. For example, in Figure 1.2, Particles 1 and

2 are shown. Each particle is attempting to find the best solution in the solution

space. After every time step, each particle assesses its next move by considering the

best solution its had as well as the best solution in the entire swarm. Eventually, a

near-optimal solution will be settled on.

Ant Colony Optimization mimics the behavior of ant colonies in finding sources of

food, as illustrated in Figure 1.3. At first, ants leave the colony and randomly search

for food. When they find a food source, they retrace their steps back to the ant colony,

depositing pheromones along the way. Other ants will follow these pheromones and,

upon finding food, reinforce the trails. Since the pheromones evaporate, shorter paths

will be more frequently reinforced and thus have stronger pheromone concentrations,

until the near-optimal path (solution) is found [40].

In this thesis, PSO and ACO will be implemented for two separate purposes. PSO

will be utilized for optimizing treatment regimens, because we are looking for a single

1 

2 

1 

1 

2 

2 1 

2 

𝑃1(𝑖) 

𝑃1(𝑖 − 1) 
𝑃1(𝑖 + 1) 

𝑃2(𝑖) 

𝑃2(𝑖 − 1) 

𝑃2(𝑖 + 1) 

𝑃𝑃𝑃𝑃𝑡2 

𝑃𝑃𝑃𝑃𝑡1 𝑔𝑃𝑃𝑃𝑡 

Fig. 1.2. Illustration of Particle Swarm Optimization
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trail #2 

ant 

A 

food nest 

trail #1 

B 

ant colony  
(predicted motif) 

Fig. 1.3. Illustration of Ant Colony Optimization, adapted from [39].

optimal solution. The PSO will be implemented with an exit criteria instead of a

fixed iteration number, which makes the solution time more variable but decreases

excessive computation after an optimal solution is found. ACO will be utilized to

look for potential transcription factor binding motifs (TFBMs), short sequences in

the promoter region of a gene that are a part of the sequence that transcription

factors bind to. For this, we are not necessarily looking for an optimal combination

of TFBMs, but rather we want ideas about which TFBMs are important indicators

of gene expression from experimental conditions.

1.8 Problem Statement

Osteoporosis and osteoarthritis are well-studied diseases, but there is still room

to improve treatment outcomes. New treatments are being researched constantly. In

vivo and in vitro experiments have been used for decades to try to understand the
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molecular pathways involved in bone and joint maintenance. However, the usefulness

of these data can be extended using mathematical modeling techniques.

1.9 Objectives

This thesis aims to apply mathematical concepts to in vivo and in vitro experi-

mental data to improve our understanding of pathways and help improve treatment

outcomes. This will be accomplished in two ways: first, a mouse model of osteoporosis

will be mathematically modeled along with different treatments in order to find the

optimal treatment regimen; second, a series of RNA silencing experiments on chon-

drocytes will be used to help create a model of Lrp5’s involvement in osteoarthritis.



10

2. METHODS

2.1 Osteoporosis Animal Study

C57BL/6 female mice (8 weeks old) were housed four to five mice per cage at the

Indiana University Animal Care Facility and fed with mouse chow and water ad

libitum. All experimental procedures were approved by the Indiana University School

of Medicine Institutional Animal Care and Use Committee to be compliant with

the Guiding Principles in the Care and Use of Animals endorsed by the American

Physiological Society. A timeline of the animal experiments is shown in Figure 2.1.

day 1 

OVX Treatment 
Begins 

Data  
collection 

w2 w4 w3 w5 w6 w7 w8 w1 

Fig. 2.1. Timeline of the experimental protocol

2.1.1 Ovariectomy

Animals were anesthetized using 1.5% isoflurane at flow rate 0.5-1.0 L/min. The

operation site was shaved and cleaned with 70% alcohol and 10% povidone-iodine

solution. An approximately 20 mm incision was cut at the midline dorsal skin, and

the peritoneal cavity was incised to access and remove the ovaries. The wound was

closed by suture, and the mice were given 4 weeks to recover before treatment began.
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2.1.2 Knee Loading

Each mouse was anesthetized in an anesthetic induction chamber using isoflurane.

Each anesthetized mouse was then placed on a custom-made piezoelectric loading

platform where they continued to be mask-anesthetized with 2% isoflurane. Loads

were applied in the lateral-medial direction for 3 minutes/day at 15Hz, with peak-to-

peak force of 0.5 N. These conditions were chosen based on previous studies [19]. For

the sham-loading control, each mouse was prepared in the same way, but the voltage

signal was not applied.

2.1.3 Salubrinal Administration

Twenty-four mice were injected subcutaneously with salubrinal (Tocris Bioscience,

Ellisville, MO, USA) solution dissolved in dimethyl sulfoxide (DMSO) (1 mg/kg body

weight) daily for 4 weeks. The control group (another 24 mice) was subcutaneously

injected with a vehicle control consisting of only solvent DMSO.

2.1.4 Data Collection

The bone mineral density of the femur was determined with peripheral dual energy

X-ray absorptiometry (DXA; PIXImus II; Lunar Corp., Madison, WI, USA) and the

Lunar Piximus software (version 1.47).

Bone marrow-derived cells were collected from sacrificed mice by flushing the iliac,

femur, and tibia with Iscove’s MEM (Gibco-Invitrogen, Carlsbad, CA, USA) supple-

mented with 2% fetal bovine serum using a 23-gauge needle. Low-density gradient

centrifugation was performed to separate the cells. The cells were then plated on

6-well plates at cell density 2 × 106 cells/mL in osteogenic differentiation medium

(MesenCult proliferation kit) supplemented with 10 nM dexamethasone, 50 µg/mL

ascorbic acid 2-phosphate, and 10 mM b-glycerophosphate to induce osteogenic dif-

ferentiation. The medium was changed every other day. After two weeks, the cells

were fixed with citrate-buffered acetone (30 sec), incubated in alkaline-dye mix (30
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min), and then counterstained with Mayer’s Hematoxylin (10 min). The number of

ALP stained and unstained colonies were counted to determine osteoblast activity.

Bone marrow-derived cells were applied to 96-well plates in a-MEM supplemented

with 10% FBS, 30 ng/ml M-CSF, and 20 ng/ml murine receptor activator of nu-

clear factor k-B ligand (RANKL). On day 4, the medium was changed. On day 6,

the adherent cells were fixed and stained using a tartrate resistant acid phosphate

(TRACP) staining kit. TRACP-positive multinucleated cells (more than 3 nuclei)

were identified, and the osteoclast coverage area was determined.

2.2 Osteoarthritis In vitro Study

2.2.1 Cell Culture

C28/I2 human chondrocytes were cultured in DMEM containing 10% fetal bovine

serum and antibiotics (50 units/ml penicillin and 50 µg/ml streptomycin; Life Tech-

nologies, Grand Island, NY, USA). Cells were maintained at 37� and 5% CO2 in a

humidified incubator. 1 ng/ml IL1b (R&D Systems, Minneapolis, MN, USA) stimu-

lation was performed after 10 h in serum-free conditions.

2.2.2 RNA Interference with siRNA

Cells were treated with siRNA specific to Lrp5, IL1b (Life Technologies) and

p38 MAPK (Cell Signaling, Danvers, MA, USA). The selected target sequences for

knockdown of Lrp5a, Lrp5b, p38 MAPK, and IL1b were: Lrp5a, 5’-GUACAGGCCC

UACAUCAUU-3’; Lrp5b, 5’-CGUUCGGUCUGACGCAGUA-3’; p38 MAPK, 5’- G

CCCAUAAGGCCAGAAACU -3’; and IL1b, 5’-CGAUGCACCUGUACGAUCA-3’.

Note that Lrp5a siRNA and Lrp5b siRNA are two independent siRNAs specific to

Lrp5. As a nonspecific control, negative siRNA (Silencer Select #1, Life Technologies

and SignalSilence Control siRNA, Cell Signaling) were used. Cells were transiently
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transfected with siRNA in Opti-MEM I medium with Lipofectamine RNAiMAX (Life

Technologies). Six hours later, the medium was replaced by regular culture medium.

The efficiency of silencing was assessed with immunoblotting and quantitative real-

time PCR at 48 h after transfection.

2.2.3 Quantitative Real-time PCR

Total RNA was extracted using an RNeasy Plus mini kit (Qiagen, Germantown,

MD, USA). Reverse transcription was conducted with high capacity cDNA reverse

transcription kits (Applied Biosystems, Carlsbad, CA, USA), and quantitative real-

time PCR was performed using ABI 7500 with Power SYBR green PCR master mix

kits (Applied Biosystems). We evaluated mRNA levels of ADAMTS5, IL1b, IL6, IL8,

IL12A, IL15, IL16, and IL18 with the PCR primers listed in Table 2.1. GAPDH was

used for internal control, and the relative mRNA abundance for the selected genes

was obtained with respect to the level of GAPDH mRNA.

Table 2.1
Real-time PCR primers used

Gene Forward Primer Reverse Primer

ADAMTS5 5’- CACTGTGGCTCACGAAATCG -3’ 5’- CGCTTATCTTCTGTGGAACCAAA -3’

IL1 5’- GCTGAGGAAGATGCTGGTTC -3’ 5’- TCCATATCCTGTCCCTGGAG -3’

IL6 5’- TACCCCCAGGAGAAGATTCC -3’ 5’- TTTTCTGCCAGTGCCTCTTT -3’

IL8 5’- GTGCAGTTTTGCCAAGGAGT -3’ 5’- ACTTCTCCACAACCCTCTGC -3’

IL12A 5’- GATGGCCCTGTGCCTTAGTA -3’ 5’- TCAAGGGAGGATTTTTGTGG -3’

IL15 5’- AGCTGGCATTCATGTCTTCA -3’ 5’- TGGGGTGAACATCACTTCC -3’

IL16 5’- CACGGTGACACTGGAGAAGA -3’ 5’- TGATGATGTTCCAGGCTTCA -3’

IL18 5’- GCATCAACTTTGTGGCAATG -3’ 5’- ATAGAGGCCGATTTCCTTGG -3’

GAPDH 5’- GCACCGTCAAGGCTGAGAAC -3’ 5’- ATGGTGGTGAAGACGCCAGT -3’
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2.2.4 Western Immunoblotting

Cells were lysed in a radioimmunoprecipitation assay (RIPA) buffer containing

protease inhibitors (Santa Cruz Biotechnology, Santa Cruz, CA, USA) and phos-

phatase inhibitors (Calbiochem, Billerica, MA, USA). Isolated proteins were frac-

tionated using 10% SDS gels and electro-transferred to Immobilon-P membranes

(Millipore, Billerica, MA, USA). The membrane was incubated for 1 h with primary

antibodies followed by 45 min incubation with goat anti-rabbit or anti-mouse IgG

conjugated with horseradish peroxidase (Cell Signaling). We used antibodies against

p38 MAPK, p-p38 MAPK, Lrp5 (Cell Signaling), and b-actin (Sigma). Protein levels

were assayed using SuperSignal West Femto maximum sensitivity substrate (Thermo

Scientific), and signal intensities were quantified with a luminescent image analyzer

(LAS-3000, Fuji Film, Tokyo, Japan).

2.2.5 Gene Expression Microarray

Microarray experiments were conducted using Agilent Whole Human Genome ar-

rays (Human 8 × 60K array, Agilent). Eight RNA samples isolated from 4 pairs of

C28/I2 chondrocyte cells (transfected with control and Lrp5a siRNAs) were labeled

with the Agilent low RNA input fluorescent linear amplification kit. They were hy-

bridized to 8 one-color arrays using the in situ hybridization kit (Agilent). Microarray

data were filtered to remove background noise and a modified t-test was performed

to identify a group of genes that were altered greater than 2-fold or less than 0.5-fold

with statistical significance at p < 0.01.



15

2.3 Computational Analysis

2.3.1 Osteoporosis Treatment Modeling

2.3.1.1 Model Definition

In addition to the OPG/RANK/RANKL pathway interaction with osteoblasts and

osteoclasts defined previously [41], four molecular players, estrogen, sclerostin, ATF4,

and NFATc1, were included with BMD in an expanded mathematical model of bone

remodeling (Figure 2.2). Three experimental conditions were also modeled. OVX

was modeled to reduce bone mineral density (BMD) via estrogen, while knee loading

and salubrinal application elevated BMD via sclerostin and phosphorylated eIF2a

(p-eIF2a), respectively. NFATc1 was added as a p-eIF2a-dependent intermediary

between RANK-RANKL and osteoclast precursor synthesis. ATF4 was included as a

p-eIF2a-dependent promoter of osteoblast differentiation. The associated equations

can be found in Appendix A. The state variables and their reference values are

summarized in Table 2.2.

2.3.1.2 Optimizing the Model Solver

The system of differential equations was initially solved in MATLAB (version 2011b;

MathWorks) using the solver function ode45. To improve calculation speed without

sacrificing solution accuracy, each of the seven types of solvers in MATLAB. For

ode23s, ode23tb, and ode15s, two additional conditions were used setting the maxi-

mum iteration step size (’MaxStep’) at 0.5 and 0.1. In all, 13 solver cases were tried

and applied to 20 randomly generated 8-week treatment regimens. Each solving con-

dition’s accuracy was characterized by comparing it to the solution using the ode45

solver. Solver goodness was judged by balancing the solving time with solution ac-
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Figure 1

Osteoblast 
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Active 
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Osteoclast 
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Loading
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Salubrinal p-eIF2α
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BMD

Fig. 2.2. A networked schematic detailing the molecular and cel-
lular interactions of the model. Ovariectomy (OVX) is modeled to
reduce bone mineral density (BMD) via estrogen, while knee loading
and salubrinal application elevate BMD via sclerostin and phospho-
rylated eIF2a, respectively. OPG: osteoprotegerin; RANK: receptor
activator of nuclear factor kappa-B; RANKL: RANK ligand; p-eIF2a:
phosphorylated eukaryotic translation initiation factor 2a; NFATc1:
nuclear factor of activated T-cells, cytoplasmic 1; and ATF4: activat-
ing transcription factor 4.
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Table 2.2
State variables and initial values

State Variable Description Reference Value

xO OPG 5.5 × 102 nM

xL RANKL 15.9 × 100 nM

xOL OPG-RANKL 8.75 × 102 nM

xKL RANK-RANKL 4.77 × 102 nM

NpOB Precursor Osteoblasts 3200

NaOB Active Osteoblasts 19

NpOC Precursor Osteoclasts 13.8

NaOC Active Osteoclasts 1.38

B Bone Mineral Density 0.315 g/cm3

xSC Sclerostin 1.5 × 10−1 nM

xE Estrogen 1 × 100 nM

xPE Phosphorylated eif2α 1 × 10−1 nM

xA ATF4 2 × 10−1 nM

xN NFATc1 6.27 × 10−2 nM

curacy. Solution accuracy was defined as the difference from ode45 of the final BMD

value.

To model the experimental conditions, salubrinal and loading treatments were

applied during weeks 5-8 under normal and ovariectomized conditions, and the final

BMD, osteoblast, and osteoclast numbers were compared to the experimental results.

2.3.1.3 Parameter Adjustment and Sensitivity

Initial values of the state variables and parameters were approximated to analogous

variables and parameters in the previous model [41]. For new variables and param-

eters, existing literature was consulted to use biologically relevant magnitudes, but



18

most were approximations. After setting initial magnitudes, parameters were ad-

justed to approximate the results of the in vivo ovariectomy experiments under each

treatment compared to the untreated ovariectomy state.

To help identify which parameters to vary and by how much, the sensitivity of

several parameters were determined. These parameters were varied from 1/100 to 100

times their initial value, and the peak changes in BMD and osteoclast or osteoblast

were determined. In each case, salubrinal or loading treatment was applied during

weeks 5-8 to the OVX condition and compared to the sham treatment case. For

the osteoclast-related parameters (kOL, dOL, kKL, and dKL), the largest increases in

BMD from treatment and the largest decreases in active osteoclasts were calculated.

Osteoblast-related parameters (βA, βSC , and kAPE) were varied under treatment to

find the largest increases in BMD and active osteoblast number.

Using this information, the values of parameters were adjusted so that the model

simulation approximated the experimental results. Additionally, variable magnitudes

and long-term dynamics were kept realistic. The parameters and their default values

are summarized in Table 2.3.

Table 2.3: Parameter definitions and values

Parameter Description Value

pO Production of OPG 200 nM/day

dO Degradation of OPG 0.2 1/day

pL Production of RANKL 70 nM/day

dL Degradation of RANKL 2.2 1/day

kOL OPG-RANKL Complex Rate 1 1/(nM day)

dOL OPG-RANKL Dissociation Rate 10 1/day

kKL RANK-RANKL Complex Rate 6 1/(nM day)

dKL RANK-RANKL Dissociation Rate 0.2 1/day

αpOB Synthesis of Precursor Osteoblasts 80 1/day
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Table 2.3: continued

γpOB Degradation of Precursor Osteoblasts 0.01 1/day

αaOB Synthesis of Active Osteoblasts 0.01 1/day

γaOB Degradation of Active Osteoblasts 2 1/day

αpOC Synthesis of Precursor Osteoclasts 1 1/day

γpOC Degradation of Precursor Osteoclasts 0.1 1/day

αaOC Synthesis of Active Osteoclasts 0.2 1/day

γaOC Degradation of Active Osteoclasts 2 1/day

βA ATF4 Interaction with Osteoblasts 0.01 1/(nM day)

βN NFATc1 Interaction with Osteoclasts 50 1/(nM day)

βSC Sclerostin Interaction with Osteoblasts 65 1/(nM day)

pSC Production of Sclerostin 3 nM/day

dSC Degradation of Sclerostin 20 1/day

pE Production of Estrogen 1 nM/day

dE Degradation of Estrogen 1 1/day

kLE Interaction of Estrogen with RANKL 35 1/day

pPE Production of P-eif2α 0.1 nM/day

dPE Degradation of P-eif2α 1 1/day

pA Production of ATF4 0.01 nM/day

dA Degradation of ATF4 0.1 1/day

pN Production of NFATc1 3 nM/day

dN Degradation of NFATc 100 1/day

kNKL Interaction of RANK-RANKL with NFATc1 0.01 1/day

kOSC Interaction of Sclerostin with OPG 600 1/day

kAPE Interaction of P-eif2α with ATF4 0.1 1/day

kNPE Interaction of P-eif2α with NFATc1 15 1/day

xK RANK 1 nM
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2.3.1.4 Treatment Selection

The selection problem in this study was to determine the sequence of three weekly

treatment options (no treatment, knee loading, or salubrinal) over 8 and 16 weeks

which maximally suppressed the decrease of BMD in ovariectomized mice. The opti-

mal sequence was obtained for 8-week treatment by a brute force search of all possible

combinations, while a heuristic search algorithm, particle swarm optimization, was

used to find near-optimal treatment regimens for 16-week treatment.

2.3.1.5 Particle Swarm Algorithm

The particle swarm algorithm in this study was based on our previous implementa-

tion for predicting transcription factor binding motifs [42]. Each particle contained

a probability vector for each treatment for each week. During every run, particle

candidates were created by using those probabilities, and the velocities calculated

updated the probabilities. The velocity was calculated:

Vi(t) = Vi(t− 1) + α
(
λg
(
Pgbest(t− 1) − Pi(t− 1)

)
+ βλPi

(
Ppbest(i)(t− 1) − Pi(t− 1)

))
(2.1)

where Vi is the velocity of the i-th particle, α is the velocity correction factor, β is

the global contribution ratio, Pgbest is the global optimal solution, Ppbest(i) is the i-th

particle’s local best, Pi is the current solution of the i-th particle, and λg and λP i are

random numbers from 0 and 1. Thus the particle’s new position was determined:

Pi(t+ 1) = Pi(t) + Vi(t) (2.2)

The particle’s fitness was determined by the increase in BMD over the baseline OVX

condition at the end of the treatment period. The computation continued until the

global best solution was not improved upon for 5 iterations.

To examine the algorithm’s parameter sensitivity, the velocity correction factor α

and global contribution ratio β were varied and the global best was recorded after
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each iteration. Each parameter combination was performed 10 times in an attempt

to optimize an 8-week training regimen.

2.3.1.6 Treatment Costs

The fitness function was modified to include a unit cost for each type of treatment

such that:

J = (∆B)2 − kcost(εNsal +Nload)
2 (2.3)

where J is the function to minimize, ∆B is the change in the final BMD from the

initial BMD, kcost is the treatment cost contribution, ε is the cost ratio of salubrinal

to knee loading, Nsal is the number of salubrinal injections, and Nload is the number

of loading bouts.

2.3.2 Osteoarthritis Pathway Analysis

2.3.2.1 Transcription Factor Binding Motif Prediction

Using an ant algorithm–based prediction method, potential transcription factor bind-

ing motifs were found. In brief, the ant algorithm is a metaheuristic optimization

technique based on the biological behavior of ant colonies [43]. Ants initially wander

randomly until they find a food source. When they do, they return to the colony,

depositing pheromones along the way. Other ants find and follow these pheromones

so that shorter routes to better food sources will be reinforced. In our application,

paths were sets of 20 6-basepair motifs. Each candidate motif consists of itself and its

reverse complement, since transcription factors are assumed to be direction-agnostic.

Pheromone levels were found by finding the error between the actual gene expression
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levels and the predicted expression levels from the contributions of the chosen motifs.

The predicted expression level was defined as:

Ẑn = Hn×m

((
HT
n×mHn×m

)−1
HT
n×mZn

)
(2.4)

where n is the gene, m is the motif, Ẑn is the predicted gene expression, Zn is the

actual gene expression, and hij in Hn×m is the number of j-th occurring in the i-th

gene’s promoter region (defined as the 1,000-bp region upstream of the gene start

site). The cost function was defined as the squared difference between the predicted

expression and the actual expression level:

Cn =

(
1

(Zn − Ẑn)2

)α

(2.5)

where α > 1 is the pheromone deposition power. The pheromone level p of motif j

after iteration i+ 1 was updated as follows:

pj,i+1 = pj,i(1 − ε) +
1

Cn(j)
(2.6)

where ε is the pheromone evaporation rate, and Cn(j) is the sum of the cost functions

of motif j. After each iteration, the pheromone levels were updated, and the next

TFBMs were chosen based on the current pheromone levels, with motifs with higher

pheromone levels more likely to be chosen.

At the end of the analysis, the TFBMs with the highest pheromone levels were

further analyzed using the TRANSFAC 7.0 Public 2005 database [44] by searching

promoter sites containing the predicted motif sequences. Human genes were chosen

for further analysis via literature search, and potentially important pathways were

identified. These molecules were submitted to further experiments using RNA silenc-

ing, including double silencing combinations.

2.3.2.2 Regulatory Pathway Model

A linear model of the pathway involving Lrp5, p38, IL1b, and ADAMTS5 was built

using data from siRNA-knockout experiments. The model consisted of three state
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variables, x1 (LRP5), x2 (IL1b), and x3 (p-p38), and one measurement variable, y

(ADAMTS5 mRNA level):

∆y = −c̃x1 + fx̃2 + dx̃3 + h (2.7)

c̃ = c+ ex̃2 (2.8)

x̃2 = x2 − ax1 (2.9)

x̃3 = x3 − bx1 + gx̃2 (2.10)

where x̃i represented the apparent contribution of xi. Parameters a, b, and c linked

the effects of Lrp5 to the three state variables, while parameters d to g governed the

other interactions in the pathway, with parameter h representing all interactions not

affected by Lrp5. The final form of the measurement variable was expressed:

∆y = (−c− af − db− adg)x1 + (f + dg)x2 + dx3 − ex1x2 + aex2
1 + h (2.11)

y = y0 + ∆y (2.12)

where y0 is the basal level of ADAMTS5, set to 1. The parameters were solved

algebraically based on experimental data.

2.4 Statistical Analysis

Mean and standard deviation was calculated, and a one-way analysis of variance

(ANOVA) was performed to test for significance among groups. To find significant

differences between different groups, post hoc tests were conducted, such as Tukey’s

test and Bonferroni correction.
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3. RESULTS

3.1 Osteoporosis Model

To build the math model of bone remodeling, experimental data was first collected

to examine the effects of ovariectomy, knee loading, and salubrinal treatment on

the osteoblast activity, osteoclast activity, and bone mineral density of mice. These

results, along with a literature survey of relevant molecules and pathways involved

in bone remodeling, allowed us to build upon our previously defined model of bone

remodeling. The solving conditions were studied so that solutions were accurate and

performed in a reasonable time period. Using parameter sensitivity analysis, the

parameters were tweaked so that the model solution reflected the results obtained

from experiment. Particle Swarm Optimization was then applied to find the optimal

treatment regimens. The fitness of the optimization was altered so that restrictions

of budget were accounted for, and those associated parameters were analyzed.

3.1.1 Effect of Salubrinal and Loading

The effect of salubrinal and loading treatment on ovariectomized mice is shown in

Figure 3.1. After 8 weeks, the BMD of ovariectomized mice decreased by 22%. The

39% increase in osteoclast area accounts for this change. Under 4-week salubrinal

application, the BMD of ovariectomized mice decreased only 13%, with osteoblast

activity increasing 136% while osteoclast activity decreased by 48%. After 4 weeks of

knee loading, the BMD of ovariectomized mice decreased only 12%, with osteoblast

activity increasing 136% osteoclast decreasing 34%.
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Fig. 3.1. Normalized results of ovariectomy and subsequent loading
and salubrinal on BMD, osteoblast, and osteoclast numbers.

3.1.2 Choosing Solver Conditions

The possible solver conditions and their solution times and errors are shown in

Table 3.1. Ode45 was treated as the best solution, and the solution error was found in

relation to that solution. Ode45, ode113, and ode23 were the most accurate solvers,

but each solution took 30 to 60 seconds. The most accurate solver condition under

2 seconds was ode15s with a MaxStep=0.1 option. This option forces the largest

iteration step to be less than 0.1 days. This solver condition was chosen for solving

the model.
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Table 3.1
Solution time and error of several solver conditions

Solver Options Solution Time (s) Error

ode45 60.33 0

ode23 38.48 1.53 × 10−11

ode113 54.20 3.14 × 10−11

ode23t 0.36 1.45 × 10−06

ode15s 0.40 5.88 × 10−07

ode15s MaxStep=0.5 0.39 3.81 × 10−07

ode15s MaxStep=0.1 0.42 9.27 × 10−08

ode23s 1.66 4.84 × 10−07

ode23s MaxStep=0.5 1.67 2.03 × 10−07

ode23s MaxStep=0.1 1.91 1.98 × 10−07

ode23tb 0.39 5.86 × 10−07

ode23tb MaxStep=0.5 0.39 2.21 × 10−07

ode23tb MaxStep=0.1 0.42 1.63 × 10−07

3.1.3 Model Solution of Salubrinal and Loading Treatments

Solving the model under normal conditions with loading during weeks 5-8 resulted

in a 0.4% increase in osteoblast activity and a 0.2% decrease in osteoclast activity

that increased BMD by about 4.5% (Figure 3.2A). Salubrinal treatment did not

change the model solution. Applying OVX to the model, osteoblasts holds steady

while osteoclast activity increases about 4%, resulting in a 33% dip after 8 weeks

(Figure 3.2B). Under loading, osteoblast activity increased 0.4%, osteoclast activity

increased 4%, and BMD decreased only 30%, while under salubrinal application,

osteoblast activity increased 0.3%, osteoclast increased 3%, and BMD decreased by

only 27%. A year later (Figure 3.2C), BMD decrease plateaus at 46%. Salubrinal
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Fig. 3.2. Comparison of the model solutions for baseline (no treat-
ment), salubrinal, and knee loading. (A) Effects of knee loading on
normalized osteoblast number, normalized osteoclast number, and
BMD to the normal mice. (B) Effects of knee loading and salubrinal
on normalized osteoblast number, normalized osteoclast number, and
BMD to the ovariectomized mice. OVX was applied on day 1 and
treatment was applied weeks 5-8. (C) Long-term effects of BMD in
response to 4-week treatment to the ovariectomized mice.
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treatment quickly returns to the ovariectomy baseline after 8 more weeks, but loading

maintains a slight bias, decreasing only 44%.

Figure 3.3 shows a trajectory of the osteoblasts and osteoclasts after OVX and

with loading and salubrinal treatment. After OVX, the osteoclast number increases.

After treatment intervention during weeks 5-8, osteoclast number increases while the

increase in osteoclasts is mitigated.

3.1.4 Parameter Sensitivity of Model

Figures 3.4A and 3.4B show the sensitivity of the osteoclast-related parameters.

The two rate constants for the formation and dissociation of the OPG-RANKL com-

plex, kOL and dOL, trend in opposite directions. Increasing the formation constant

kOL increases the peak BMD from knee loading, while increasing the dissociation con-

stant dOL decreases peak BMD from knee loading. The rate constants of the RANK-

RANKL complex similarly trend in opposing directions. Increasing the formation

constant kKL decreased the peak BMD from salubrinal treatment, while decreasing

dissociation constant dKL decreased the peak BMD from salubrinal treatment.

Osteoblast-related parameters behaved differently (Figure 3.4C-D). Increasing the

sclerostin-dependence constant βSC increased the effect of mechanical loading expo-

nentially. The constant for p-eIF2a effect on ATF4, kAPE, increased the effect of

salubrinal treatment as it increased.

3.1.5 Particle Swarm Parameter Sensitivity

Several different parameter values for velocity correction ratio α and global con-

tribution ratio β were tried. Parameter values α = 1 and β = 1 were found to work

the best (Figure 3.5).
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Fig. 3.3. Changes in the normalized numbers of osteoblasts and osteo-
clasts in response to knee loading and salubrinal on the ovariectomized
mice. (A) Two-dimensional trajectory in the osteoblast-osteoclast
plane. (B) Three-dimensional trajectory, in which the vertical axis
denotes time. Each circle represents position after each week. Note
that the grey, white, and black circles indicate no treatment (OVX),
salubrinal, and knee loading, respectively.
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Figure 5
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Fig. 3.4. Parameter sensitivity of the treatment in weeks 5-8. (A)
Effects of the osteoclast-related parameters (kOL, dOL, kKL, and dKL)
on BMD and the normalized osteoclast number in response to knee
loading. (B) Effects of the osteoclast-related parameters on BMD
and the normalized osteoclast number in response to salubrinal. (C)
Effects of the osteoblast-related parameters (βSC , kAPE, and βA) on
BMD and the normalized osteoblast number in response to knee load-
ing. (D) Effects of the osteoblast-related parameters on BMD and the
normalized osteoblast number in response to salubrinal.
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Figure 6

A B

Fig. 3.5. Parameter sensitivity of the particle swarm search. The hor-
izontal axis denotes the number of times the computational runs were
conducted. (A) Effects of the velocity correction parameter α from 0
to 10 on the change in BMD. (B) Effects of the global contribution
ratio β from 0 to 10 on the change in BMD.

3.1.6 Evaluation of Treatment Regimens

Figure 3.6A shows the best five treatment regimens found among all combinations

of 8-week treatments. Three weeks of knee loading followed by 5 weeks of salubrinal

injection was found to give the best BMD increase. Figure 3.6B shows the osteoblast,

osteoclast, and BMD response to the baseline OVX, the best treatment, 8 weeks of

salubrinal, and 8 weeks of loading. The initial bout of loading allows the optimal

treatment case to work slightly better than the pure salubrinal case.

Figure 3.6C shows the best five treatment regimens found by particle swarm op-

timization. The best treatment was found to start with 10 weeks of loading followed

by 6 weeks of salubrinal. Figure 3.6D shows the osteoblast, osteoclast, and BMD

response in 16 weeks of baseline OVX, the top treatment, 16 weeks of salubrinal, and

16 weeks of loading. The best treatment regimen can be seen to follow the 16-week

loading trajectory until week 11, when salubrinal is introduced.
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Figure 7
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Fig. 3.6. Evaluation of treatment regimens by selecting knee loading
or salubrinal on a weekly basis. (A & B) Top five 8-week treatment
regimens from brute-force search. The changes in the normalized
number of osteoblast and osteoclasts, and BMD in response to no
treatment, treatment #1, salubrinal alone, and knee loading alone are
shown. (C & D) Top five 16-week treatment regimens from particle
swarm search. The changes in response to no treatment, treatment
#1, salubrinal alone, and knee loading alone are shown.
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3.1.7 Evaluating Treatment Costs

Figure 3.7A shows the optimal treatment regimen found by particle swarm for

several values of kcost and ε = 2 (salubrinal is twice as costly as loading). When cost

has no contribution, the treatment regimen begins with 17 weeks of loading followed

by 7 weeks of salubrinal. As cost of treatment becomes increasingly prohibitive, the

treatments move toward the point of data collection at the end, and salubrinal be-

comes scarce (Table 3.2). The response of osteoblast, osteoclast, and BMD to each

treatment regimen is shown in Figure 3.7B. The delayed start of each successively

restrictive kcost parameter value can be seen in the delays of the osteoblast and osteo-

clast numbers. The BMD values of each cost parameter shoot off the baseline OVX

case as treatment begins.
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Fig. 3.7. Optimal treatment regimen considering treatment cost. (A)
Top treatment regimen for each value of kcost as found by particle
swarm search. (B) Responses of normalized osteoblast, osteoclast,
and BMD to each regimen as well as the baseline OVX condition.
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Table 3.2
Change in BMD, cost, and fitness function J for best solution to values of kcost

kcost DBMD Cost J

0 37.68% 0 0.0717

1 × 10−6 33.75% 0.0259 0.1093

2.5 × 10−6 26.66% 0.0276 0.1341

1 × 10−5 14.49% 0.0176 0.1706

3.2 Osteoarthritis Model

To build a potential model for the regulation of ADAMTS5, first several RNA

silencing experiments were performed. Quantitative PCR and Western blotting were

performed to quantify the results of gene knockdown experiments. The gene expres-

sion microarray results of Lrp5 silencing were analyzed with a TFBM prediction algo-

rithm, and several possible genes involved in transcriptional control were identified.

From these, two potentially involved genes, IL1b and p-p38 MAPK, were identified,

and their involvement was validated with RNA silencing. These results were collec-

tively analyzed to create a network model of Lrp5 regulation of ADAMTS5 through

IL1b and p-p38 MAPK, whose parameters were solved and characterized.

3.2.1 Lrp5, IL1b, and p38 MAPK Silencing Affect ADAMTS5

Both microarray and quantitative real-time PCR data revealed that the deletion

of Lrp5 by RNA interference using two different sequences (Lrp5a and Lrp5b) elevated

the level of ADAMTS5 mRNA (Figure 3.8). Western blot analysis revealed that both

sequences of LRP5 siRNA elevated the phosphorylation of p38 MAPK (Figure 3.9A-

B). Applying p38 siRNA decreased total and phosphorylated p38 MAPK, while a

double knockdown with LRP5 siRNA showed a slight recovery in the phosphorylated

p38 MAPK level (Figure 3.9C). ADAMTS5 mRNA levels decreased after p38 siRNA

(Figure 3.9D). Double knockdown of both p38 siRNA and LRP5 siRNA slightly
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Figure 1 

Fig. 3.8. Effects of LRP5 silencing. NC: non-specific siRNA. RNA
interference using two LRP5 siRNAs and its effect on ADAMTS5
mRNA level.

decreases the elevation of ADAMTS5 mRNA caused by a single knockdown of just

LRP5 siRNA.

IL1b is significantly silenced from a single knockdown with IL1b siRNA, while

a double knockdown with both IL1b siRNA and LRP5 siRNA mitigated the IL1b

mRNA elevation induced by a single knockdown with LRP5 siRNA (Figure 3.10A).

Knockdown with only IL1b siRNA did not affect ADAMTS5 mRNA, but a double

knockdown with IL1b siRNA and LRP5 siRNA decreased the ADAMTS5 mRNA

increase observed in a single knockdown with LRP5 siRNA (Figure 3.10B).

3.2.2 TFBM prediction

The ant algorithm software predicted several potential TFBMs. The top predicted

motifs included AAAGCC/GGCTTT, CGTAGC/GCTACG, CTTTTA/TAAAAG,

and TAACCA/TGGTTA. Figure 3.11 shows the final pheromone level of each can-

didate motif, with the best ones labeled. These candidate motifs were located in the

promoter sequence of a variety of genes, shown in Table 3.3. A general review of the

literature involving these genes suggested a few potential genes and pathways that

may be involved in ADAMTS5 regulation. The genes ATF2, MYC, FURIN, SER-

PINA1, and CEBPB were found to be related to Wnt signaling, p38 MAPK signaling,
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Fig. 3.9. Involvement of p38 MAPK in regulation of ADAMTS5
mRNA level in LRP5 silencing. Note that the double asterisk de-
notes p < 0.01. (A-B) Elevated phosphorylation level of p38 MAPK
to LRP5 silencing using two LRP5 siRNAs. (C) Effect of double si-
lencing of Lrp5 and p38 on Lrp5 and p38 MAPK phosphorylation.
(D) Regulation of ADAMTS5 mRNA level in response to p38 siRNA
and/or LRP5b siRNA.

IL1b, or ADAMTS5 by searching through the literature (Figure 3.12). The specific

relationships are detailed further in the Discussion. From the filtered (p < 0.05)
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Fig. 3.11. Pheromone level of potential transcription factor binding
motifs. Top 4 motifs are labeled with relevant genes.

microarray data, LRP5 and WNT3A were found to be downregulated, while MYC,

CEBPB, IL1b, and ADAMTS5 were upregulated (Figure 3.13).

3.2.3 Regulatory Network Model

The results from the experiments led to a linear model of the pathway of LRP5,

p38, and IL1b regulation of ADAMTS5 (Figure 3.14). The pathway depicts LRP5

inhibition of ADAMTS5, IL1b, and p38 MAPK. IL1b stimulation of LRP5’s inhibition
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Table 3.3
Genes whose promoter sequences contained the predicted motifs

Predicted

Motif

Associated

Gene

Transcription

Factor

Promoter Sequence

AAAGCC

PCDHGB4 NFIC GCTCTTGGCCCAAAGCCAGACCGG

ATF2 ACACCGCCAAAGCCCTGC

MYC ENO1 AGGGTCGCGTGAGTATAAAAGCCGGTTTTCGGGG

FGA HNF1A AGGACAAAGCCAAT

GGCTTT

POLA1
NFIC cccgagccgctgATTGGCTttcagg

CFY

RNU6-1 TBP ggcTTTATATAtctt

MMP1 ctGgctttct

MT2A MTF1 gggctttTGCACTCgtcccggctctt

APOB GAAATTCCTCTAGTCAGGTGGCTTTCTAATGGGTA

CCCAGAGCCCTATGACTACCCAGATTGATGGTGCA

CCCAACAGGAC

CTTTTA

ACTB

SRF gTTCCGAaagttgCCTTTTATGG

ELK4

ELK1

MYL3 SRF CCTTTTATGG

HBE1 NFY aCCAATgacttttaagtacc

ADH1B CEBPA CCTTTTATCTGTTTTGACAGTCTGGG

FURIN SP1 CACTTTTAGCTCCTCCCCCCA

PDGFA ccccctCCTTTTATGGagagag

TAAAAG

CD2 GATTAAAAGG

MYC ENO1 AGGGTCGCGTGAGTATAAAAGCCGGTTTTCGGGG

HBG1 ataaaaGG

CGTAGC

GCTACG CEBPB cgtgacgcagCGGTTGCTACGGGCCGCCCTtataaata

TAACCA
HBG1 NFY ggccagccttgccttAACCAATagccttGACAAGgcaaactt

LSP TGCCAAACCCCAAAAACAaagaaccCTAACACCAgcctA

ACCAGAT

TGGTTA

ALB HNF1A tGGTTAGtaattactaa

SERPINA1 TGGTTAATATTCACCAgc

COL1A1 GTGGTTAGC

INS PDX1 cccctggttaagacTCTAATGacccgctgg

TCRA ATF4 CCCATTTCCATGACGTCATGGTTA

HMBS tcAGTGTCCTGGttact

PROC agggccAAGCAAATATTTGTGGttatgga

ANPEP ZFHX3 TGGTTAATTTT
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Fig. 3.12. Involvement of the targeted genes (ATF2, MYC, FURIN,
SERPINA1, and CEBPB) in Wnt signaling, p38 MAPK signaling,
IL1b, and ADAMTS5 from a literature search.
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Fig. 3.13. Heat map of relevant genes from Lrp5 siRNA microarray data.

of ADAMTS5 as well as its own stimulation of ADAMTS5 and p38 are shown. Finally,

p38 stimulates ADAMTS5, and an auxiliary stimulation of ADAMTS5, governed by

parameter h, represents other regulatory factors not accounted for in the model.

Using experimental data (Table 3.4), the values of several parameters were esti-

mated (Table 3.5). The parameters d, e, and h were explicitly determined, while

the others (a, b, c, f , and g) were predicted as a hyperplane in parameter space.

The allowable parameter values relating a, b, and c are depicted as a plane in three-
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Fig. 3.14. Potential network model for LRP5, IL1b, and p38 MAPK
regulation of ADAMTS5.

Table 3.4
Set of experimental data points

x1 x2 x3 y Remark

1 1 1 1 control

0 1 1 2.1 Lrp5 siRNA

1 0 1 1.05 IL1b siRNA

1 1 0 0.8 P38 siRNA

0 0 1 1.6 Lrp5 siRNA and IL1b siRNA

0 1 0 1.8 Lrp5 siRNA and p38 siRNA

dimensional space (Figure 3.15). Sample parameter values are also included as points

on the plane.
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Table 3.5
Regulatory Model Parameter Values

Parameter Value

(a, b, c) 0.05a+ 0.3b+ c ∼= 0.6

d ∼ 0.3

e ∼ 0.45

(f, g) f + 0.3g ∼= 0.5

h ∼ 0.3
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Fig. 3.15. Plane on which parameter values a, b, and c reside. The
three dots mark sample parameter values.
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4. DISCUSSION

The studies presented in this thesis illustrate how quantitative methods can be mar-

ried with experimental data to increase their usefulness. These results may improve

our understanding of pathways and potential intervention in the treatment of osteo-

porosis and osteoarthritis. Specifically, the quantitative analysis of a bone remodeling

math model under administration of salubrinal and knee loading revealed a possible

temporal difference between the two treatments. Quantitative analysis of Lrp5 reg-

ulation of ADAMTS5 suggested an expanded potential regulatory pathway to be

investigated in treating osteoarthritis. Together, these analyses serve as examples of

the promise of using quantitative methods to study new treatment methods.

4.1 Effectiveness of Salubrinal and Knee Loading in Osteoporosis Treatment

Salubrinal treatment and knee loading both improved the bone health of ovariec-

tomized mice, as their bone mineral densities and osteoblast activities increased while

their osteoclast activities decreased. The results demonstrate the promise of both

salubrinal and knee loading in the treatment of post-menopausal osteoporosis, as

both treatments reverse the negative effects of ovariectomy on the mice. Future

studies may collect data at more time points to show the temporal character of the

treatments.

4.2 Building a Mathematical Model of Bone Remodeling

The current model was based on work done previously [41]. While that model

included the effects of the OPG/RANK/RANKL on precursor and active versions of

both osteoblasts and osteoclasts, in order to simulate the experimental conditions, the
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newer model includes the contributions of estrogen, sclerostin, p-eIF2a, ATF4, and

NFATc1, as well as a variable for bone density. Estrogen was included to simulate the

ovariectomized state, where after OVX, estrogen production decreased 75%. In the

model, estrogen acts as an inhibitor of RANKL, as it has been found [45]. Sclerostin

is an inhibitor of Wnt signaling and bone formation that is inhibited by mechanical

loading [6]. Fluid flow-induced loading upregulates OPG [46], most likely by inhibiting

sclerostin downregulation of OPG and upregulation of RANKL [47]. In the model

sclerostin acts as an inhibitor of OPG.

Salubrinal acts by increasing the amount of phosphorylation of eIF2a. This eleva-

tion in phosphorylation has been shown to upregulate ATF4 [48] and downregulate

NFATc1 expression [24]. However, mechanical loading has been shown to slightly

suppress the phosphorylation of eIF2a [49]. This contradiction was modeled using a

deadzone for p-eIF2a’s effect, where loading’s suppression of p-eIF2a did not prop-

agate to ATF4 and NFATc1. The deadzone size was also estrogen-dependent, since

salubrinal only affected the bone density of ovariectomized mice and not normal

mice (data not shown). ATF4 was modeled to increase the differentiation rate of os-

teoblast precursors to active osteoblasts, while NFATc1 was modeled to increase the

production of osteoclast precursors. Binding of RANKL to RANK induces osteoclast

proliferation through NFATc1 [23], and the RANK-RANKL complex was modeled to

stimulate NFATc1. Finally, the active osteoblasts and osteoclasts were modeled to

increase and decrease, respectively, bone mineral density.

4.3 Assessing the Mathematical Model

Defining realistic parameters is an important step in building a useful math model.

Though we tried to use existing literature to help define the parameter values, match-

ing the model to the experimental results was the priority. Parameter sensitivity

analysis (Figure 3.4) was used to identify which parameters could be adjusted and

which direction they needed to go to better match the experimental results. Through
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this process, however, parameter ratios that had a experimental counterpart were

retained. Additionally, we wanted the long-term effects of our simulations to still be

reasonable. For example, early iterations of parameter sets matched the experimental

results at 8 weeks, but if the simulation time was extended to one year, the BMD

would decrease into negative. Thus, parameter sets whose BMD equilibrium after

OVX was reasonable were chosen.

Since BMD was the state variable that subsequent algorithms would use as a

fitness function, its magnitude was more vigorously matched than osteoclast or os-

teoblast numbers. Additionally, the ALP and TRAP staining assays used to quantify

osteoblasts and osteoclasts evalutate their relative activities, not necessarily their

number. Thus, in adjusting parameters to match experimental data, the directional

change in osteoblast and osteoclast numbers were settled for, and only BMD was

numberically matched.

Choosing appropriate solver conditions is also valuable to ensure both an accurate

result and a realistic computational time. For this, we tested a variety of solver

algorithms and solving conditions. Ode45 is the most commonly used solver for well-

behaving systems. For this model, it took about a minute to solve 56 days. A brute

force search of all 6,561 possible 8-week treatment regimens would take 4.5 days. The

most accurate solver that took less than 2 seconds was ode15s with the ’MaxStep’

option set to 0.1. At solving time of 0.42s, the brute force search would take only 45

minutes.

Expanding the brute force search to 16-week treatment regimens would require

43 million solutions. For a solving time 0.42s, that would take 209 days. Thus an

optimization algorithm is required to find the best treatment regimen in a reason-

able amount of time. Particle Swarm Optimization was chosen to find near-optimal

solutions in less than 1000 iterations, or about 7 minutes.
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4.4 Features of Predicted Treatment Regimens

The predictions from the described model revealed unobvious behavior of the

model and suggested a few new treatment strategies to study. Loading was found

to be more effective when applied earlier, as its effects are long term. Salubrinal

seems to have a more immediate effect, thus being more advantageous when applied

closer to the data collection time. Because of this timing mismatch, salubrinal and

loading are not additive, and thus optimizing treatment scheduling is valuable. The

mathematical model suggests that first applying loading then injecting salubrinal will

improve the response in BMD over only loading or only salubrinal. It will be valuable

and interesting to confirm this prediction in vivo. The best treatment regimens found

by particle swarm optimization agreed with those found by a brute force search of all

possible 8-week treatment regimens, confirming the usefulness of particle swarm as a

predictive tool. Adding a cost consideration to the analysis showed how the model

dealt with budgetary constraints. As the contribution of treatment cost increased,

the treatments were pushed later to maximize the effect at the time of measurement.

4.5 Novel Features of Model

To more accurately represent the system dynamics, this model utilized a few novel

features. Experimental data has shown that mechanical loading actually inhibits

the phosphorylation of eIF2a, but it does not interfere with the NFATc1-mediated

regulation of osteoclast activity by RANK-RANKL. Salubrinal was also found to

be ineffective in increasing BMD in non-ovariectomized mice. These effects were

controlled by an estrogen-dependent dead zone function. Within a certain range,

small fluctuations in p-eIF2a did not change ATF4 and NFATc1. However, under

the OVX condition, when estrogen decreased, the dead zone shrinks so that smaller

changes to p-eIF2a affected ATF4 and NFATc1. A non-Markov bias on BMD was

also applied after each bout of mechanical loading. Performing mechanical loading

gradually increased the equilibrium of BMD, approximating experimental results [50].
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4.6 Osteoporosis Model Limitations

This model and optimization method represent a first step in evaluating optimal

treatment protocols, and there are a few limitations future iterations should address.

Though many parameters are based on experimental values, some are crude esti-

mates, adjusted to fit experimental results, which could affect both the timing and

magnitude of the model’s response to stimuli. Additional parameter validation might

be needed for further accuracy. This model considered only a single value of BMD,

but responses may differ depending on bone type and location of stimulus. Addi-

tionally, the dead zone and loading bias are mathematical approximations of complex

interactions unable to be modeled through ordinary linear equations. Though these

are necessary for the model’s accuracy, a more sophisticated understanding of each

mechanism may yield a better mathematical description.

4.7 Role of Lrp5, IL1b, and p38 MAPK in ADAMTS5 Regulation

Our silencing experiments show that Lrp5-mediated signaling is involved in reduc-

ing p38 MAPK signaling and interleukin responses. Silencing Lrp5 elevates the phos-

phorylation of p38 MAPK, and a double deletion with p38 siRNA and Lrp5 siRNA

suppresses the upregulation of ADAMTS5 induced by Lrp5 siRNA. This suggests an

intermediary role for p38 in Lrp5-mediated regulation of ADAMTS5. Similarly, a

double deletion of IL1b and Lrp5 attenuates the increase in the level of ADAMTS5

mRNA caused by Lrp5 siRNA alone. However, unlike in p38 MAPK, where a dele-

tion of p38 significantly decreased transcription of ADAMTS5, a single deletion of

IL1b caused no significant change to ADAMTS5 mRNA level. This observation sug-

gests that p38 MAPK and IL1b act differently in the Lrp5-mediated regulation of

ADAMTS5.
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4.8 Microarray Analysis

To further evaluate genome-wide and siRNA-based experimental results, we em-

ployed the ant algorithm to predict potential TFBMs. Based on these results, ATF2,

MYC, FURIN, SERPINA1, and CEBPB were predicted to regulate transcription of

ADAMTS5. These molecules are all reported to be linked to activation of p38 MAPK,

Wnt signaling, ADAMTS5, and/or inflammatory and degenerative responses. In re-

sponse to Wnt3a, for instance, ATF2 is activated via p38 MAPK in mouse and human

embryonic cell lines [51]. Also, activation of MYC is mediated by p38 MAPK [52], and

it is inhibited by Wnt signaling [53]. FURIN codes a protein that converts ADAMTS5

to its active form [54]. SERPINA1 is up-regulated in chondrocyte cells in response to

IL1b stimulation [55], and CEBPB was reported to mediate IL1b-induced expression

of collagenases such as MMP1 and MMP13 [56].

4.9 Regulatory Model of ADAMTS5

Based on the experimental results, a regulatory network model was developed in

which the parameters representing interactions among Lrp5, IL1b, p38 MAPK, and

ADAMTS5 were estimated using the results of siRNA-based experiments. The up-

regulation of ADAMTS5 by Lrp5 knockdown suggests that Lrp5 inhibits ADAMTS5

expression. Lrp5 knockdown also increases the phosphorylation of p38 MAPK, sug-

gesting an inhibitory role. Silencing p38 decreases ADAMTS5 expression both in

single knockdown and double knockdown with Lrp5 siRNA, implying a stimulatory

role of p-p38 on ADAMTS5. IL1b silencing does not change ADAMTS5 expres-

sion by itself; however, under double knockdown with Lrp5 siRNA, the expression

of ADAMTS5 is reduced compared to the increased expression of single Lrp5 silenc-

ing. Lrp5 silencing also increases the expression of IL1b. This was modeled using a

feedback loop between IL1b and Lrp5, where Lrp5 inhibits IL1b, and IL1b stimulates

Lrp5’s inhibition of ADAMTS5. Thus when IL1b is silenced, the lack of its direct
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stimulation of ADAMTS5 is balanced by its lack of stimulation of Lrp5 inhibition. An

additional stimulation from IL1b to p38 MAPK was added based on literature [57].

Each interaction in the model was labeled with a parameter, a-h. At first ap-

proximation, these parameters can be understood as the relative weights of each

interaction. The results indicated that the components which are not directly linked

to Lrp5, IL1b, or p38 MAPK, represented by h, also provide an effect on ADAMTS5

transcription. The combinational effect of IL1b directly on ADAMTS5 and through

p38 (f and g) sums to 0.5, suggesting its efficacy is greater than those other com-

ponents represented by h. The planar relation between the parameters representing

Lrp5’s effects on IL1b, p38 MAPK, and ADAMTS5 (a, b, and c, respectively) suggest

a larger range of possible values of a and b than for c. For likely values of a and b,

c will be close to f and d in value. Lrp5, however, still applies a large effect on the

expression of ADAMTS5 through IL1b and p38 MAPK.

More experiments will be required to fully solve the parameters and to reveal other

possible pathway features. The model can predict the results of possible experiments,

and the actual results can be used to verify and update the model. Collectively,

the results with siRNA-based experiments were quantitatively interpreted by the

mathematical network model consistent with genome-wide expression data and the

prediction of TFBMs with ant algorithm.
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5. CONCLUSIONS

The work presented in this thesis demonstrates the potential of mathematical analysis

in both finding new possible treatment actions and optimizing treatment outcomes.

Using data gathered from experiments on a mouse model, a math model was created to

simulate salubrinal and knee loading treatments. The regimen of these two treatments

were optimized using Particle Swarm Optimization, and including cost in the analysis

provided a first step toward using this analysis to factor in budgetary constraints

when treating patients. Cell culture experiments were performed on chondrocytes to

further elucidate the molecular action of osteoarthritis. A series of RNA interference

experiments to silence Lrp5, p38 MAPK, and IL1b were performed, and the data

collected was analyzed to predict genes possibly involved. This analysis lead to a

math model of Lrp5 regulation on ADAMTS5.

Future studies can improve and extend the work done here. For the osteoporosis

model, predicted treatments need to be validated using animal studies. These results

can also inform how salubrinal and mechanical loading work together and help re-

fine the pathways and parameters involved. More interventions can also be added to

the model, such as bisphosphonates (through osteoclast impairment) or denosumab

(through RANKL inhibition). Side effect management could also be modeled. For ex-

ample, salubrinal has been found to inhibit cancer responses [58], while PTH therapy

has been found to lead to osteosarcomas in rats [59]. Incorporating these oncological

pathways could assess the possibility of using salubrinal to mitigate the cancer risk

of PTH. Also, parameters could be matched to personalize an individual’s response

to each treatment. This would allow the model to head toward clinical application.

Molecular signaling of osteoarthritis is not fully understood, and this work can

help attack this problem in a different way. Future analysis may include microarray

analysis of several other silencing experiments, and the combined results could lead
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to additional features of this pathway. The regulatory model may expand to include

more molecular players and interactions.
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A. EQUATIONS FOR BONE REMODELING MATH

MODEL

A.1 Differential Equation Definitions

In addition to the OPG/RANK/RANKL pathway interaction with osteoblasts and

osteoclasts defined previously, four molecular players, estrogen, sclerostin, ATF4,

and NFATc1, were included with BMD in an expanded mathematical model of bone

remodeling:

ẋO(t) = pO − dOxO(t) − ẋOL(t) − kOSCxSC(t) (A.1)

ẋL(t) = pL − dLxL(t) − ẋOL(t) − ẋKL(t) − kExE(t) (A.2)

ẋOL(t) = kOLxO(t)xL(t) − dOLxOL(t) (A.3)

ẋKL(t) = kKLxK(t)xL(t) − dKLxKL(t) (A.4)

ṄpOB(t) = αpOB − βSCxSC(t) − (γpOB + αaOB)NpOB(t) (A.5)

ṄaOB(t) = (αaOB + βAxA(t))NpOB(t) − γaOBNaOB(t) (A.6)

ṄpOC(t) = αpOC + βNxN(t) − (γpOC + αaOC)NpOC(t) (A.7)

ṄaOC(t) = αaOCNpOC(t) − γaOCNaOC (A.8)

Ḃ(t) = sOBNaOB(t) − sOCNaOC(t) − dBB(t) + kBmaxBmax(t) (A.9)

ẋSC(t) = pSC − dSCxSC(t) (A.10)

ẋE(t) = pE − dExE(t) (A.11)

ẋPE(t) = pPE − dPExPE(t) (A.12)

ẋA(t) = pA − dAxA(t) + kAPEx̃PE(t) (A.13)

ẋN(t) = pN − dNxN(t) − kNPExPE(t) + kNKLxKL(t) (A.14)
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x̃PE(t) =


xPE(t) − 0.8 xE(t)

xREF
E

xREFPE if xPE(t) ≥
(

1 + 0.8 xE(t)

xREF
E

)
xREFPE

xPE(t) + 0.8 xE(t)

xREF
E

xREFPE if xPE(t) ≤
(

1 − 0.8 xE(t)

xREF
E

)
xREFPE

xREFPE otherwise

(A.15)

Bmax(t) = 1 − e−λBmax(ΣNload) (A.16)

(A.17)

where ẋ is the time derivative of state variable x, k is a rate constant, p is a synthesis

rate, d is a degradation rate, α is a cell synthesis rate, β is a molecular interaction

rate, and γ is a degradation rate. x̃PE(t) is a dead zone function introduced to account

for the low sensitivity to salubrinal in healthy individuals. Bmax accounts for bias

for bone building caused by mechanical loading. The bias grows as the number of

loading bouts increases. Specific definitions and values are found in Table 2.2.

A.2 Simulation of Experimental Conditions

The osteoporotic condition was simulated by decreasing the production by 75%:

pE =
pE

tanh (5(t− 1)) + 2
(A.18)

Loading was simulated using a pulsed decrease in the production of sclerostin and

phosphorylated eIF2a

pSC = pSC − pSC

(
0.55e−50(mod(t,1)−0.5)2

)
(A.19)

pPE = pPE − pPE

(
0.5e−100(mod(t,1)−0.5)2

)
(A.20)

(A.21)

Salubrinal treatment was simulated by a pulsed increase in the phosphorylation of

eIF2a

pPE = pPE + pPE

(
2.4e−100(mod(t,1)−0.5)2

)
(A.22)

(A.23)
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A.3 Reference Value Definitions

Reference values of the state variables (Table 2.3) were derived analytically:

xREFO =
pO − kOSCx

REF
SC

dO
(A.24)

xREFL =
pL − kEx

REF
E

dL
(A.25)

xREFOL =

(
kOL
dOL

)
xREFO xREFL (A.26)

xREFKL =

(
kKL
dOL

)
xREFL xK (A.27)

NREF
pOB =

αpOB − βSCx
REF
SC

γpOB + αaOB + βAxREFA

(A.28)

NREF
aOB =

(
αaOB + βAx

REF
A

γaOB

)
NREF
pOB (A.29)

NREF
pOC =

αpOC + βNx
REF
N

γpOC + αaOC
(A.30)

NREF
aOC =

αaOC
γaOC

NREF
pOC (A.31)

BREF (t) =
sOBN

REF
aOB − sOCN

REF
aOC

dB
(A.32)

xREFSC =
pSC
dSC

(A.33)

xREFE =
pE
dE

(A.34)

xREFPE =
pPE
dPE

(A.35)

xREFA =
pA + kAPEx

REF
PE

dA
(A.36)

xREFN =
pN − kNPEx

REF
PE + kNKLx

REF
KL

dN
(A.37)
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B. MATLAB SOURCE CODE

B.1 Model Function

function dX = dBoneAnt ( t ,X, regimen ) % inputs : time , s t a t e

va r i ab l e s , treatment regimen

dX = zeros (14 ,1 ) ; % i n i t i a l i z e d i f f e r e n t i a l v a r i ab l e

% use g l o b a l l y de f ined parameters

global pO dO pL dL kOL dOL kKL dKL kKOC;

global apOB cpOB aaOB caOB apOC cpOC aaOC caOC bSC ;

global sOB sOC dBMD;

global pSC dSC pE dE kLE kOSC pPE dPE pA dA pN dN kAPE kNPE kNKL

bA bN;

xK = 1 ; % RANK = 1

% p XX i s pe r turbat i on o f parameter va lue XX

p pE = pE ;

p pO = pO;

p pSC = pSC ;

p pPE = pPE;

p pE = pE/(tanh (5* ( t−1) )+3) ; % induce OVX ( es t rogen decreased by

3/4)

% Def ine Treatment Per turbat ions

i f t < ( length ( regimen ) ) ,
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modt = mod( t , 1 ) ; % treatments app l i ed da i l y

switch regimen ( f loor ( t )+1) % choose which treatment to apply

case 1 %s a l

p pPE = pPE + pPE* ( 2 . 4*exp(−100*(modt− .5) ˆ2) ) ;

case 2 %load

p pSC = pSC−pSC* ( . 55*exp(−50*(modt− .5) ˆ2) ) ;

p pPE = pPE−pPE* ( . 5*exp(−100*(modt− .5) ˆ2) ) ;

case 3 %s a l + load

p pSC = pSC−pSC* ( . 55*exp(−50*(modt− .5) ˆ2) ) ;

p pPE = pPE−pPE* ( . 5*exp(−100*(modt− .5) ˆ2) ) + pPE* ( 2 . 4*exp

(−100*(modt− .5) ˆ2) ) ;

end

end

% per turbat i on o f OB/OC parameters by new s t a t e v a r i a b l e s

p aaOB = aaOB + bA*X(13) ;

p apOB = apOB − bSC*X(10) ;

p apOC = apOC + bN*X(14) ;

% d i f f e r e n t i a l equat ions de f ined

dX(3) = kOL*X(1) *X(2) − dOL*X(3) ; %xOL

dX(4) = kKL*xK*X(2) − dKL*X(4) ; %xKL

dX(1) = p pO − dO*X(1) − dX(3) − kOSC*X(10) ; %xO

dX(2) = pL − dL*X(2) − dX(3) − dX(4) − kLE*X(11) ; %xL

dX(5) = p apOB − (cpOB+p aaOB) *X(5) ; %NpOB

dX(6) = p aaOB*X(5) − caOB*X(6) ; %NaOB

dX(7) = p apOC − (cpOC+aaOC) *X(7) ; %NpOC

dX(8) = aaOC*X(7) − caOC*X(8) ; %NaOC

% BMD Bias

kbMax = 3e−6;
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lbMax = 1e−2;

regend = f loor ( t )+1;

i f regend > numel ( regimen ) ,

regend = numel ( regimen ) ;

BMDmax = kbMax*(1−exp(−lbMax*(sum( regimen ( 1 : regend )>=2)) ) ) ;

else

BMDmax = kbMax*(1−exp(−lbMax*(mod( t , 1 ) *( regimen ( regend )>=2)+sum

( regimen ( 1 : regend−1)>=2)) ) ) ;

end

dX(9) = sOB*X(6) − sOC*X(8) − dBMD*X(9) + BMDmax; %BMD

dX(10) = p pSC − dSC*X(10) ; %xSC

dX(11) = p pE − dE*X(11) ; %xE

dX(12) = p pPE − dPE*X(12) ; %xPE

% p−eIF2a deadzone

delPE = 0.8*X(11) /pE*dE ;

i f X(12) >= (1+delPE ) *pPE/dPE,

zPE = X(12)−delPE*pPE/dPE;

e l s e i f X(12) <= (1−delPE ) *pPE/dPE,

zPE = X(12)+delPE*pPE/dPE;

else

zPE = pPE/dPE;

end

dX(13) = pA − dA*X(13) + kAPE*zPE ; %xA

dX(14) = pN − dN*X(14) − kNPE*zPE + kNKL*X(4) ; %xN

B.2 Particle Swarm Optimization of Treatment

parameters ; % i n i t i a l i z e model parameters
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tspan = [0 1 1 2 ] ;

wkno = 16 ;

opts = odeset ( ’MaxStep ’ , . 1 ) ;

[ tOVX,XOVX] = ode15s (@( t ,X) dBoneAnt ( t ,X, 0 ) , tspan ,X0 , opts ) ; % OVX

case s o l u t i o n

% pso paramters

t r i a l s = 10 ;

alpha = 1 ;

eps = 1 ;

p a r t i c l e s = 20 ;

omega = 1 ;

end i t e r = 5 ;

b e s t l o g = zeros (1 , t r i a l s ) ; %be s tva l runs

logruns = zeros (1 , t r i a l s ) ;

b e s t r e g l o g = zeros ( t r i a l s , wkno) ; %best regimens found

for t r = 1 : t r i a l s ,

p = rand ( p a r t i c l e s , wkno , 3 ) ;

pbest = zeros ( p a r t i c l e s , wkno , 3 ) ;

pbes tva l = zeros ( p a r t i c l e s , 1 ) ;

gbest = zeros (1 ,wkno , 3 ) ;

gbe s tva l = 0 ;

v e l = zeros ( p a r t i c l e s , wkno , 3 ) ;

v0 = ve l ;

gsame = 0 ;

i t e r s = 0 ;

runs = 0 ;

regimen = zeros (wkno , 1 ) ;

while gsame < end i t e r ,

i t e r s = i t e r s +1;

gsame = gsame+1;

for i = 1 : p a r t i c l e s ,
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for j = 1 : s ize (p , 2 ) ,

p ( i , j , : ) = (p( i , j , : ) /max(p( i , j , : ) ) ) ;

end

randnos = rand (wkno , 1 ) ;

t o ta lp rob = sum(p( i , : , : ) , 3 ) ;

for k = 1 :wkno ,

i f randnos (k ) < p( i , k , 1 ) / to ta lp rob (k ) ,

regimen (k ) = 0 ;

e l s e i f randnos (k ) < sum(p( i , k , 1 : 2 ) ) / to ta lp rob (k ) ,

regimen (k ) = 1 ;

else

regimen (k ) = 2 ;

end

regW((1+7*(k−1) ) : ( 7* k ) ) = regimen (k ) ;

end

[ t ,X] = ode15s (@( t ,X) dBoneAnt ( t ,X, regW) , tspan ,X0 , opts ) ;

Cred = (X(end , 9 )−XOVX(end , 9 ) ) /XOVX(end , 9 ) ;

runs = runs + 1 ;

i f pbes tva l ( i ) < Cred ,

pbes tva l ( i ) = Cred ;

pbest ( i , : , : ) = p( i , : , : ) ;

end

i f gbe s tva l < Cred ,

gbe s tva l = Cred ;

gbest = zeros (1 ,wkno , 3 ) ;

for k = 1 :wkno ,

gbest (1 , k , regimen (k )+1) = 1 ;

end

gsame = 0 ;

disp ( [ i t e r s , i ] ) ;

end
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end

rg = diag (rand (wkno , 1 ) ) ;

rp = diag (rand (wkno , 1 ) ) ;

for i = 1 : p a r t i c l e s ,

v e l ( i , : , : ) = omega*v0 ( i , : , : ) + reshape ( alpha *( rg * squeeze (

gbest−p( i , : , : ) )+eps* rp* squeeze ( pbest ( i , : , : )−p( i , : , : ) ) )

,1 ,wkno , 3 ) ;

p ( i , : , : ) = p( i , : , : ) + ve l ( i , : , : ) ;

end

v0 = ve l ;

end

be s t l o g ( t r ) = gbe s tva l ;

l og runs ( t r ) = runs ;

[ rmax , imax ] = max( gbest , [ ] , 3 ) ;

b e s t r e g l o g ( tr , : ) = imax−1;

end




