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ABSTRACT 

Stuart G. Ough 

 

THE AUTOMATIC PREDICTION OF PLEASURE AND AROUSAL RATINGS 

OF SONG EXCERPTS 
 

Music’s allure lies in its power to stir the emotions. But the relation between the physical 

properties of an acoustic signal and its emotional impact remains an open area of 

research. This paper reports the results and possible implications of a pilot study and 

survey used to construct an emotion index for subjective ratings of music. The 

dimensions of pleasure and arousal exhibit high reliability. Eighty-five participants’ 

ratings of 100 song excerpts are used to benchmark the predictive accuracy of several 

combinations of acoustic preprocessing and statistical learning algorithms. The Euclidean 

distance between acoustic representations of an excerpt and corresponding emotion-

weighted visualizations of a corpus of music excerpts provided predictor variables for 

linear regression that resulted in the highest predictive accuracy of mean pleasure and 

arousal values of test songs. This new technique also generated visualizations that show 

how rhythm, pitch, and loudness interrelate to influence our appreciation of the emotional 

content of music. 
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CHAPTER ONE: INTRODUCTION 

The advent of digital formats has given listeners greater access to music. Vast 

music libraries easily fit on computer hard drives, are accessed through the Internet, and 

accompany people in their MP3 players. Digital jukebox applications, such as WinAmp, 

Windows Media Player, and iTunes offer a means of cataloguing music collections, 

referencing common data such as artist, title, album, genre, song length, and recording 

year. But as libraries grow, this kind of information is no longer enough to find and 

organize desired pieces of music. Even genre offers limited insight into the style of 

music, because one piece may encompass several genres. These limitations indicate a 

need for a more meaningful, natural way to search and organize a music collection.  

Emotion has the potential to provide an important means of music classification 

and selection to allow listeners to appreciate more fully their music libraries. There are 

now several commercial software products for searching and organizing music based on 

emotion. MoodLogic (2001) allows users to create play lists from their digital music 

libraries by sorting their music based on genre, tempo, and emotion. The project began 

with over 50,000 listeners submitting song profiles. MoodLogic analyzes its master song 

library to fingerprint new music profiles and associate them with other songs in the 

library. The software explores a listener’s music library, attempting to match its songs 

with over three million songs in its database.  

Other commercial applications include All Media Guide (n.d.), which allows 

users to explore their music library through 181 emotions and Pandora.com, which uses 

trained experts to classify songs based on attributes including melody, harmony, rhythm, 

instrumentation, arrangement, and lyrics. Pandora (n.d.) allows listeners to create 
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“stations” consisting of similar music based on an initial artist or song selection. Stations 

adapt as the listener rates songs “thumbs up” or “thumbs down.” A profile of the 

listener’s music preferences emerge, allowing Pandora to propose music that the listener 

is more likely to enjoy. While not an automatic process of classification, Pandora offers 

listeners song groupings based on both expert feature examination and their own pleasure 

ratings. 

As technology and methodologies advance, they open up new opportunities to 

explore more effective means of defining music and will perhaps offer useful alternatives 

to today’s time-consuming categorization options. This paper attempts to further study 

the classification of songs through the automatic prediction of human emotional response.  

The paper makes a contribution to psychology by refining an index to measure pleasure 

and arousal responses to music. It makes a contribution to music visualization by 

developing a representation of pleasure and arousal with respect to the perceived acoustic 

properties of music, namely, bark bands (pitch), frequency of reaching a given sone 

(loudness) value, modulation frequency, and rhythm. It makes a contribution to pattern 

recognition by designing and testing an algorithm to predict accurately pleasure and 

arousal responses to music. 

Organization of the Paper 

Chapter 2 reviews automatic methods of music classification, providing a 

benchmark against which to evaluate the performance of the algorithms proposed in 

chapter 5. Chapter 3 reports a pilot study on the application to music of the pleasure, 

arousal, and dominance model of Mehrabian and Russell (1974). This results in the 

development of a new pleasure and arousal index. In chapter 4, the new index is used in a 
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survey to collect sufficient data from human listeners to adequately evaluate the 

predictive accuracy of the algorithms presented in chapter 5. An emotion-weighted 

visualization of acoustic representations is developed. Chapter 5 introduces and analyses 

the algorithms. Their potential applications are discussed in chapter 6.  
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CHAPTER TWO: METHODS OF AUTOMATIC MUSIC CLASSIFICATION 

The need to sort, compare, and classify songs has grown with the size of listeners’ 

digital music libraries, because larger libraries require more time to organize. Although 

there are some services to assist with managing a library (e.g., MoodLogic, All Music 

Guide, Pandora), they are also labor-intensive in the sense that they are based on human 

ratings of each song in their corpus. However, research into automated classification of 

music based on measures of acoustic similarity, genre, and emotion has led to the 

development of increasingly powerful software (Neve & Orio, 2004; Pachet & Zils, 

2004; Pampalk, 2001; Pampalk, Rauber & Merkl, 2002; Pohle, Pampalk & Widmer, 

2005; Tzanetakis & Cook, 2002; Yang, 2003). This chapter reviews different ways of 

grouping music automatically, and the computational methods used to achieve each kind 

of grouping.  

Grouping by Acoustic Similarity  

One of the most natural means of grouping music is to listen for similar sounding 

passages; however, this is time consuming and challenging, especially for those who are 

not musically trained. Automatic classification based on acoustic properties is one 

method of assisting the listener. The European Research and Innovation Division of 

Thomson Multimedia. worked with musicologists to define parameters that characterize a 

piece of music (Thomson Multimedia, 2002). Recognizing that a song can include a wide 

range of styles, Thomson’s formula evaluates it at approximately forty points along its 

timeline. The digital signal processing system combines this information to create a three 

dimensional fingerprint of the song.  The k-means algorithm was used to form clusters 
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based on similarities; however, the algorithm stopped short of assigning labels to the 

clusters. 

Sony Corporation has also explored the automatic extraction of acoustic 

properties through the development of the Extractor Discovery System (Pachet & Zils, 

2004). This program uses signal processing and genetic programming to examine such 

acoustic dimensions as frequency, amplitude, and time. These dimensions are translated 

into descriptors that correlate to human-perceived qualities of music and are used in the 

grouping process. MusicIP has also created software that uses acoustic “fingerprints” to 

sort music by similarities. MusicIP includes an interface to enable users’ to create a play 

list of similar songs from their music library based on a seed song instead of attempting 

to assign meaning to musical similarities.  

Another common method for classifying music is genre; however, accurate genre 

classification may require some musical training. Given the size of music libraries and 

the fact that some songs belong to two or more genres, sorting through a typical music 

library is not easy. In his master’s thesis, Pampalk (2001) created a visualization method 

called Islands of Music to represent a corpus of music visually. The method represented 

similarities between songs in terms of their psychoacoustic properties. The Fourier 

transform was used to convert pulse code modulation data to bark frequency bands based 

on a model of the inner ear. The system also extracted rhythmic patterns and fluctuation 

strengths. Principal component analysis (PCA) reduced the dimensions of the music to 80 

and then Kohonen’s self-organizing maps clustered the music. The resulting clusters form 

“islands” on a two-dimensional map. 
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Grouping by Genre 

Tzanetakis and Cook (2002) investigate genre classification using statistical 

pattern recognition on training and sample music collections. They focused on three 

features of audio they felt characterized a genre: timbre, pitch, and rhythm.  Mel 

frequency cepstral coefficients (MFCC), a representation of pitch that is popular in 

speech recognition, were used in the extraction of timbral textures. Beat histograms and 

filtering determined rhythm, while signal and amplitude algorithms extracted pitch. Once 

the three feature sets were extracted, Gaussian classifiers, Gaussian mixture models, and 

k-nearest neighbor performed genre classification with accuracy ratings ranging from 

40% to 75% across 10 genres. The overall average of 61% was similar to human 

classification performance. 

Grouping by Emotion 

The empirical study of emotion in music began in the late 19th century and has 

been pursued in earnest from the 1930s (Gabrielsson & Juslin, 2002). The results of many 

studies demonstrated strong agreement among listeners in defining basic emotions in 

musical selections, but greater difficulty in agreeing on nuances. Personal bias, past 

experience, culture, age, and gender can all play a role in how an individual feels about a 

piece of music, making classification more difficult (Gabrielsson & Juslin, 2002; Liu et 

al., 2003; Russell, 2003).  

Because it is widely accepted that music expresses emotion, some studies have 

proposed methods of automatically grouping music by mood. However, as the literature 

review below demonstrates, current methods lack precision, dividing two dimensions of 

emotion into only two or three categories, resulting in four or six combinations. The 
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review below additionally demonstrates that despite this small number of emotion 

categories, accuracy is also poor, never reaching 90%.  

Pohle, Pampalk and Widmer (2004) examined algorithms for classifying music 

based on mood (happy, neutral, or sad), emotion (soft, neutral, or aggressive), genre, 

complexity, perceived tempo, and focus. They first extracted values for the musical 

attributes of timbre, rhythm and pitch to define acoustic features. These features were 

then used to train machine learning algorithms, such as support vector machines (SVM), 

k-nearest neighbors, naïve Bayes, C4.5, and linear regression to classify the songs. The 

study found categorizations were only slightly above the baseline. To increase accuracy 

they suggest music be examined in a broader context that includes cultural influences, 

listening habits, and lyrics. 

The next three studies are based on Thayer’s mood model. Wang, Zhang and Zhu 

(2004) proposed a method for automatically recognizing a song’s emotion along Thayer’s 

two dimensions of valence (happy, neutral, and anxious) and arousal (energetic and 

calm), resulting in six combinations.  The method involved extracting 18 statistical and 

perceptual features from MIDI files. Statistical features included absolute pitch, tempo, 

and loudness. Perceptual features, which convey emotion and are taken from previous 

psychological studies, included tonality, stability, perceived pitch height, and change in 

pitch. Their method used results from 20 listeners to train SVMs to classify 20 s excerpts 

of music based on the 18 statistical and perceptual features. The system’s accuracy 

ranged from 63.0 to 85.8% for the six combinations of emotion. However, music listeners 

would likely expect higher accuracy and greater precision (more categories) in a 

commercial system. 
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Liu, Lu and Zhang (2003) used timbre, intensity and rhythm to track changes in 

the mood of classical music pieces along their entire length. Adopting Thayer’s two axes, 

they focused on four mood classifications: contentment, depression, exuberance, and 

anxiety. The features were extracted using octave filter-banks and spectral analysis 

methods. Next, a Gaussian mixture model (GMM) was applied to the piece’s timbre, 

intensity, and rhythm in both a hierarchical and nonhierarchical framework. The music 

classifications were compared against four cross-validated mood clusters established by 

three music experts. Their method achieved the highest accuracy, 86.3%, but these results 

were limited to only four emotional categories. 

Yang, Liu, and Chen (2006) used two fuzzy classifiers to measure emotional 

strength in music. The two dimensions of Thayer’s mood model, arousal and valence, 

were again used to define an emotion space of four classes: (1) exhilarated, excited, 

happy, and pleasure; (2) anxious, angry, terrified, and disgusted; (3) sad, depressing, 

despairing, and bored; and (4) relaxed, serene, tranquil, and calm. However, they did not 

appraise whether the model had internal validity when applied to music. For music these 

factors might not be independent or mutually exclusive. Their method was divided into 

two stages: model generator (MG) and emotion classifier (EC). For training the MG, 25 s 

segments deemed to have a “strong emotion” by participants were extracted from 195 

songs. Participants assigned each training sample to one of the four emotional classes 

resulting in 48 or 49 music segments in each class. Psysound2 was used to extract 

acoustic features. Fuzzy k-nearest neighbor and fuzzy nearest mean classifiers were 

applied to these features and assigned emotional classes to compute a fuzzy vector. These 

fuzzy vectors were then used in the EC. Feature selection and cross-validation techniques 
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removed the weakest features and then an emotion variation detection scheme translated 

the fuzzy vectors into valence and arousal values. Although there were only four 

categories, fuzzy k-nearest neighbor had a classification accuracy of only 68.2% while 

fuzzy nearest mean scored slightly better with 71.3%. 

To improve the accuracy of the emotional classification of music, Yang and Lee 

(2004) incorporated text mining methods to analyze semantic and psychological aspects 

of song lyrics. The first phase included predicting emotional intensity, defined by Russell 

(2003) and Tellegen-Watson-Clark’s (1999) emotional models, in which intensity is the 

sum of positive and negative affect.  Wavelet tools and Sony’s EDS were used to analyze 

octave, beats per minute, timbral features, and 12 other attributes among a corpus of 500 

20 s song segments. A listener trained in classifying properties of music also ranked 

emotional intensity on a scale from 0 to 9. This data was used in an SVM regression and 

confirmed that rhythm and timbre were highly correlated (.90) with emotional intensity. 

In phase two, Yang and Lee had a volunteer assign emotion labels based on PANAS-X 

(e.g., excited, scared, sleepy and calm) to lyrics in 145 30 s clips taken from alternative 

rock songs. The Rainbow text mining tool extracted the lyrics, the General Inquirer 

package converted these text files into 182 feature vectors. C4.5 was then used to 

discover words or patterns that convey positive and negative emotions. Finally, adding 

the lyric analysis to the acoustic analysis increased classification accuracy only slightly, 

from 80.7% to 82.3%. These results suggest that emotion classification poses a 

substantial challenge. 
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CHAPTER THREE: PILOT STUDY - CONSTRUCTING AN INDEX FOR THE 

EMOTIONAL IMPACT OF MUSIC 

Music listeners will expect a practical system for estimating the emotional impact 

of music to be precise, accurate, reliable and valid. But as noted in the last chapter, 

current methods of music analysis lack precision, because they only divide each emotion 

dimension into a few discrete values. If a song must be classified as either energetic or 

calm, for example, as in Wang, Zhang and Zhu (2004), it is not possible to determine 

whether one energetic song is more energetic than another. Thus, a dimension with more 

discrete values or a continuous range of values is preferable, because it at least has the 

potential to make finer distinctions. In addition, listeners are likely to expect in a 

commercial system emotion prediction that is much more accurate than current systems. 

To design a practical system, it is essential to have adequate benchmarks for 

evaluating the system’s performance. One cannot expect the final system to be reliable 

and accurate, if its benchmarks are not. Thus, the next step is to find an adequate index or 

scale to serve as a benchmark. The design of the index or scale will depend on what is 

being measured. Some emotions have physiological correlates. Fear (Öhman, 2006), 

anger, and sexual arousal, for example, elevate heart rate, respiration, and galvanic skin 

response. Facial expressions, when not inhibited, reflect emotional state, and can be 

measured by electromyography or optical motion tracking. However, physiological tests 

are difficult to administer to a large participant group, require recalibration, and often 

have poor separation of individual emotions ( Mandryk, Inkpen, & Calvert, 2006). 

Therefore, this paper adopts the popular approach of simply asking participants to rate 

their emotional response using a validated index, that is, one with high internal validity. It 
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is worthwhile for us to construct a valid and reliable index, despite the effort, because of 

the ease of administering it.  

The PAD Model 

We selected Mehrabian and Russell’s (1974) pleasure, arousal and dominance 

(PAD) model because of its established effectiveness and validity in measuring general 

emotional responses (Mehrabian, 1995, 1997, 1998; Mehrabian & de Wetter, 1987; 

Mehrabian, Wihardja, Ljunggren, 1997; Russell & Mehrabian, 1976). Originally 

constructed to measure a person’s emotional reaction to the environment, PAD has been 

found to be useful in social psychology research, especially in studies in consumer 

behavior and preference (Havlena & Holbrook, 1986; Holbrook, Chestnut, Olivia & 

Greenleef, 1984 as cited in Bearden, 1999). 

Based on the semantic differential method developed by Osgood, Suci and 

Tannenbaum (1957) for exploring the basic dimensions of meaning, PAD uses opposing 

adjectives pairs to investigate emotion. Through multiple studies Mehrabian and Russel 

(1974) refined the adjective pairs, and three basic dimensions of emotions were 

established:  

Pleasure – relating to positive and negative affective states 

Arousal – relating to energy and stimulation level  

Dominance – relating to a sense of control or freedom to act  

Technically speaking, PAD is an index, not a scale. A scale associates scores with 

patterns of attributes, whereas an index accumulates the scores of individual attributes.  

Reviewing studies on emotion in the context of music appreciation revealed 

strong agreement on the effect of music on two fundamental dimensions of emotion: 
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pleasure and arousal (Gabrielsson & Juslin, 2002; Kim & Andre, 2004; Liu, Lu & Zhang, 

2003; Livingstone & Brown, 2005; Thayer, 1989). The studies also found agreement 

among listeners regarding the ability of pleasure and arousal to describe accurately the 

broad emotional categories expressed in music. However, the studies failed to 

discriminate consistently among nuances within an emotional category (e.g., 

discriminating sadness and depression, Livingstone & Brown, 2005). This difficulty in 

defining consistent emotional dimensions for listeners warranted the use of an index 

proven successful in capturing broad, basic emotional dimensions. 

The difficulty in creating mood taxonomies lies in the wide array of terms that can 

be applied to moods and emotions and in varying reactions to the same stimuli because of 

influences such as fatigue and associations from past experience (Liu et al., 2003; 

Livingstone & Brown, 2005; Russell, 2003; Yang & Lee, 2004). Although there is no 

consensus on mood taxonomies among researchers, the list of adjectives created by 

Hevner (1935) is frequently cited. Hevner’s list of 67 terms in eight groupings has been 

used as a springboard for subsequent research (Bigand, Viellard, Madurell, Marozeau & 

Dacquet, 2005; Gabrielsson & Juslin, 2002; Liu et al., 2003; Livingstone & Brown, 

2005). The list may have influenced the PAD model, because many of the same terms 

appear in both.  

Other studies comparing the three PAD dimensions with the two PANAS 

(Positive Affect Negative Affect Scales) dimensions or Plutchik’s (1980, cited in Halvena 

& Holbrook, 1986) eight core emotions (fear, anger, joy, sadness, disgust, acceptance, 

expectancy, and surprise) found PAD to capture emotional information with greater 

internal consistency and convergent validity (Havlena & Holbrook, 1986; Mehrabian, 
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1997; Russell, Weiss & Mendelsohn, 1989).  Havlena and Holbrook (1986) reported a 

mean interrater reliability of .93 and a mean index reliability of .88. Mehrabian (1997) 

reported internal consistency coefficients of .97 for pleasure, .89 for arousal, and .84 for 

dominance. Russell et al. (1989) found coefficient alpha scores of .91 for pleasure and .88 

for arousal. Bigand et al. (2005) further supports the use of three dimensions, though the 

third may not be dominance. The researchers asked listeners to group songs according to 

similar emotional meaning. The subsequent analysis of the groupings revealed a clear 

formation of three dimensions. The two primary dimensions were arousal and valence 

(i.e., pleasure). The third dimension, which still seemed to have an emotional character, 

was easier to define in terms of a continuity-discontinuity or melodic-harmonic contrast 

than in terms of a concept for which there is an emotion-related word in common usage. 

Bigand et al. (2005) speculate the third dimension is related to motor processing in the 

brain. The rest of this chapter reports the results of a survey to evaluate PAD in order to 

adapt the index to music analysis.  

Survey Goals 

Given the success of PAD at measuring general emotional responses, a survey 

was conducted to test whether PAD provides an adequate first approximation of listeners’ 

emotional responses to song excerpts. High internal validity was expected based on past 

PAD studies. Although adjective pairs for pleasure and arousal have high face validity for 

music, those for dominance seemed more problematic: To our ears many pieces of music 

sound neither dominant nor submissive. This survey does not appraise content validity: 

the extent to which PAD measures the range of emotions included in the experience of 

music. All negative emotions (e.g., anger, fear, sadness) are grouped together as negative 
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affect, and all positive emotions (e.g., happiness, love) as positive affect. This remains an 

area for further research. 

Methods 

Participants 

There were 72 participants, evenly split by gender, 52 of whom were between 18 

and 25 (see Table 1). All the participants were students at a Midwestern metropolitan 

university; 44 were recruited from introductory undergraduate music classes and 28 were 

recruited from graduate and undergraduate human-computer interaction classes. All 

participants had at least moderate experience with digital music files. The measurement 

of their experience was operationalized as their having used a computer to store and listen 

to music and their having taken an active role in music selection. 

Table 1: Pilot Study Participants 

Age Female Male 

18-25 27 25 

26-35 4 8 

36-45 4 2 

45+ 1 1 

Subtotal: 36 36 

Total: 72 

 

The students signed a consent form, which outlined the voluntary nature of the 

survey, its purpose and procedure, the time required, the adult-only age restriction, how 

the results were to be disseminated, steps taken to maintain the confidentiality of 
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participant data, the risks and benefits, information on compensation, and the contact 

information for the principal investigator and institutional review board. The students 

received extra credit for participation and a US$100 gift card was raffled.  

Music Samples 

Representative 30 s excerpts were extracted from 10 songs selected from the 

Thomson Music Index Demo corpus of 128 songs (Table 2). The corpus was screened of 

offensive lyrics.  

Table 2: Song Excerpts for Evaluating the PAD Emotion Scale 

Song Title Artist Year Genre 
Baby Love MC Solaar 2001 Hip Hop 
Jam for the Ladies Moby 2003 Hip Hop 
Velvet Pants Propellerheads 1998 Electronic 
Maria Maria  Santana 2000 Latin Rock 
Janie Runaway Steely Dan 2000 Jazz Rock 
Inside Moby 1999 Electronic 
What It Feels Like 
for a Girl 

Madonna 2001 Pop 

Angel Massive Attack 1997 Electronic 
Kid A Radiohead 2000 Electronic 
Outro Shazz 1998 R&B 

 

Procedure 

Five different classes participated in the survey between September 21 and 

October 17, 2006. Each class met separately in a computer laboratory at the university. 

Each participant was seated at a computer and used a web browser to access a website 

that was set up to collect participant data for the survey. Instructions were given both at 

the website and orally by the experimenter. The participants first reported their 
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demographic information. Excerpts from the 10 songs were then played in sequence. The 

volume was set at a comfortable level, and all participants reported that they were able to 

hear the music adequately. They were given time to complete the 18 semantic differential 

scales of PAD for a given excerpt before the next excerpt was played. 

A seven-point scale was used, implemented as a radio button that consisted of a 

row of seven circles with an opposing semantic differential item appearing at each end. 

The two extreme points on the scale were labeled completely agree. The participants 

were told that they were not under any time pressure to complete the 18 semantic 

differential scales; the song excerpt would simply repeat until everyone was finished. 

They were also told that there were no wrong answers. The order of play was randomized 

for each class. After the survey, participants filled out a post-test questionnaire at the 

same website that queried them on their interest in software for automatically selecting 

music based on mood and acoustic similarity. 

Results 

The standard pleasure, arousal, and dominance values were calculated based on 

the 18 semantic differential item pairs used by the 72 participants to rate the excerpts 

from the 10 songs. Although Mehrabian and Russell (1974) reported mostly 

nonsignificant correlations among the three factors of pleasure, arousal, and dominance, 

ranging from -.07 to -.26, in the context of making musical judgments in this survey, all 

factors showed significant correlation at the .01 level (2-tailed). The effect size was 

especially high for arousal and dominance. The correlation for pleasure and arousal was 

.33, for pleasure and dominance .38, and for arousal and dominance .68. In addition, 

many semantic differential item pairs belonging to different PAD factors showed 
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significant correlation with a large effect size. Those item pairs exceeding .5 all involved 

the dominance dimension (Table 3). In a plot of the participants’ mean PAD values for 

each song, the dominance value seems to follow the arousal value, although the 

magnitude was less (Figure 1). The standard error of mean of pleasure and arousal ratings 

was .06 and .04, respectively. 

In considering the internal reliability of the pilot study, pleasure and arousal both 

showed high mutual consistency, with a Cronbach’s α of .85 and .73, respectively. 

However, the Cronbach’s α for dominance was only .64.  

Table 3: Pearson’s Correlation for Semantic Differential Item Pairs with a 

Large Effect Size  

D 
 Dominant 

Submissive 
Outgoing 
Reserved 

Receptive 
Resistant 

Happy 
Unhappy .05 .23(**) .53(**) 

Pleased 
Annoyed -.14(**) .02 .59(**) 

Satisfied 
Unsatisfied -.07 .11(**) .59(**) 

P 

Positive 
Negative -.01 .14(**) .57(**) 

Stimulated 
Relaxed .61(**) .60(**) -.08(*) 

Excited 
Calm .58(**) .70(**) -.05 

Frenzied 
Sluggish .58(**) .64(**) -.04 

A 

Active 
Passive .60(**) .73(**) .02 

Note: D means Dominance; P means Pleasure; and A means Arousal. 
Judgments were made on 7-point semantic differential scales.  
** Correlation is significant at the 0.01 level (2-tailed). 
* Correlation is significant at the 0.05 level (2-tailed). 
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Figure 1: Participants’ mean PAD ratings for the 10 song. 

 

The percentage of variance explained was calculated by factor analysis, applying 

the maximum likelihood method and varimax rotation (Table 4). The first two factors 

explain 26.06% and 22.40% of the variance respectively, while the third factor only 

explains 5.46% of the variance. In considering the factor loadings of the semantic 

differential item pairs (Table 5), the first factor roughly corresponds to arousal and the 

second factor to pleasure. The third factor does not have a clear interpretation. The first 

four factor loadings of the pleasure dimension provided the highest internal reliability, 

with a Cronbach’s α of .91. The first four factor loadings of the arousal dimension also 

provided the highest reliability, with the same Cronbach’s α of .91.  
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Table 4: Total Variance Explained 

Component Extraction Sums of Squared Loadings 
 Total % of 

Variance Cumulative % 

1 4.69 26.06 26.06 
2 4.03 22.40 48.46 
3 

 

.98 5.46 53.92 
Note: Extraction Method: Maximum Likelihood. 

 
Table 5: Rotated Factor Matrix(a) 

 
Factor 

 1 2 3 
A. Excited–Calm .86 .07 .10 
A. Active–Passive .85 .12 .16 
A. Stimulated–Relaxed .81 -.04 .15 
A. Frenzied–Sluggish .81 .10 .05 
D. Outgoing–Reserved .76 .14 .24 
D. Dominant–Submissive .69 -.08 .27 
A. Tense–Placid .56 -.44 -.17 
D. Controlling–Controlled .43 .00 .40 
A. Aroused–Unaroused .37 .37 .31 
P. Happy–Unhappy .12 .85 .07 
P. Positive–Negative -.01 .85 .13 
P. Satisfied–Unsatisfied -.05 .81 .24 
P. Pleased–Annoyed -.17 .79 .21 
D. Receptive–Resistant -.15 .62 .42 
P. Jovial–Serious .35 .51 -.05 
P. Contented–Melancholic .15 .48 .01 
D. Influential–Influenced .13 .13 .37 
D. Autonomous–Guided .16 .14 .27 

Note: P means pleasure; A means arousal; and D means Dominance.  
Extraction Method: Maximum Likelihood. 
Rotation Method: Varimax with Kaiser Normalization. 

a Rotation converged in 5 iterations. 
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Discussion 

The results identified a number of problems with the dominance dimension, 

ranging from high correlation with arousal to a lack of reliability. The inconsistency in 

measuring dominance (Cronbach’s α=.64) indicated the dominance dimension to be a 

candidate for removal from the index, because values for Cronbach’s α below .70 are 

generally not considered to represent a valid concept. This was confirmed by the results 

of factor analysis: A general pleasure-arousal-dominance index with six opponent 

adjective pairs for each of the three dimensions was reduced to a pleasure-arousal index 

with four opponent adjective pairs for each of the two dimensions. These remaining 

factors were shown to have high reliability (Cronbach’s α=.91). 

Given that these results were based on only 10 songs, a larger study with more 

songs is called for to confirm the extent to which these results are generalizable. (In fact, 

it would be worthwhile to develop from scratch a new emotion index just for music, 

though this would be an endeavor on the same scale as the development of PAD.) 

Nevertheless, the main focus of this paper is on developing an algorithm for accurately 

predicting human emotional responses to music. Therefore, the promising results from 

this chapter were deemed sufficient to provide a provisional index to proceed with the 

next survey, which collected pleasure and arousal ratings of 100 song excerpts from 85 

participants to benchmark the predictive accuracy of several combinations of algorithms. 

Therefore, in the next survey only eight semantic differential item pairs were used. 

Because the results indicate that the dominance dimension originally proposed by 

Mehrabian and Russell (1974) is not informative for music, it was excluded from further 

consideration.  
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The speed at which participants completed the semantic differential scales varied 

greatly; from less than two minutes for each scale to just over three minutes. 

Consequently, this part of the session could range from approximately 20 minutes to over 

30 minutes. A few participants grew impatient while waiting for others. Adopting the 

new index would cut by more than half the time required to complete the semantic 

differential scales for each excerpt. To allow participants to make efficient use of their 

time, the next survey was self-administered at the website, so that participants could 

proceed at their own pace.  
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CHAPTER FOUR: SURVEY - RATINGS OF 100 EXCERPTS FOR PLEASURE AND 

AROUSAL 

A number of factors must be in place to evaluate accurately the ability of different 

algorithms to predict listeners’ emotional responses to music: the development of an 

index or scale for measuring emotional responses that is precise, accurate, reliable, and 

valid; the collection of ratings from a sufficiently large sample of participants to evaluate 

the algorithm; and the collection of ratings on a sufficiently large sample of songs to 

ensure that the algorithm can be applied to the diverse genres, instrumentation, octave 

and tempo ranges, and emotional coloring typically found in listeners’ music libraries.  

In this chapter the index developed in the previous chapter determines the 

participant ratings collected on excerpts from 100 songs.  Given that these songs 

encompass 65 artists and 15 genres (see below) and were drawn from the Thomson 

corpus, which itself is based on a sample from a number of individual listeners, the song 

excerpts should be sufficiently representative of typical digital music libraries to evaluate 

the performance of various algorithms. However, a commercial system should be based 

on a probability sample of music from listeners in the target market. 

Song segment length 

An important first step in collecting participant ratings is to determine the 

appropriate unit of analysis. The pleasure and arousal of listening to a song typically 

changes with its musical progression. If only one set of ratings is collected for the entire 

song, this leads to a credit assignment problem in determining the pleasure and arousal 

associated with different passages in a song (Gabrielsson & Juslin, 2002). However, if the 

pleasure and arousal associated with its component passages is known, it is much easier 
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to generalize about the emotional content of the entire song. Therefore, the unit of 

analysis should be participants’ ratings of a segment of a song, and not the entire song.  

But how do we determine an appropriate segment length? In principle, we would 

like the segment to be as short as possible so that our analysis of the song’s dynamics can 

likewise be as fine grained as possible. The expression of a shorter segment will also tend 

to be more homogeneous, resulting in higher consistency in an individual listener’s 

ratings. Unfortunately, if the segment is too short, the listener cannot hear enough of it to 

make an accurate determination of its emotional content. In addition, ratings of very short 

segments lack ecological validity because the segment is stripped of its surrounding 

context (Gabrielsson & Juslin, 2002). Given this trade-off, some past studies have 

deemed six seconds a reasonable length to get a segment’s emotional gist (e.g., Pampalk, 

2001, 2002), but further studies would be required to confirm this. Our concern with 

studies that support the possibility of using segments shorter than this (e.g., Peretz et al., 

2001; Watt & Ash, 1998) is that they only make low precision discriminations (e.g., 

happy-sad) and do not consider ecological validity. So in this chapter, 6 s excerpts were 

extracted from each of 100 songs in the Thomson corpus. 

Survey goals  

The purpose of the survey is  

(1) to determine how pleasure and arousal are distributed for the fairly diverse 

Thomson corpus and the extent to which they are correlated;  

(2) to assess interrater agreement, to gauge the effectiveness of the pleasure-arousal 

scale developed in the previous chapter;  
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(3) to collect ratings from enough participants on enough songs to make it possible to 

evaluate an algorithm’s accuracy at predicting the mean participant pleasure and 

arousal ratings of a new, unrated excerpt;  

(4) to develop a visual representation of how listeners’ pleasure and arousal ratings 

relate to the pitch, rhythm, and loudness of song excerpts. 

Methods 

Participants 

There were 85 participants, of whom 46 were male and 39 were female and 53 

were 18 to 25 years old (see Table 6). The majority of the participants were the same 

students as those recruited in the previous chapter: 44 were recruited from introductory 

undergraduate music classes and 28 were recruited from graduate and undergraduate 

human-computer interaction classes. Thirteen additional participants were recruited from 

the Indianapolis area. As before all participants had at least moderate experience with 

digital music files.  

Table 6: Survey Participants 

Age Female Male 

18-25 28 25 

26-35 5 13 

36-45 5 6 

45+ 1 2 

Subtotal: 39 46 

Total: 85 
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Participants were required to agree to an online study information sheet 

containing the same information as the consent form in the previous study except for the 

updated procedure. Participating students received extra credit.  

Music Samples 

Six second excerpts were extracted from the first 100 songs of the Thomson 

Music Index Demo corpus of 128 songs (see Table 7). The excerpts were extracted 90 s 

into each song. The excerpts were screened for silent moments, low sound quality and 

offensive lyrics. As a result eight excerpts were replaced by excerpts from the remaining 

28 songs.  
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Table 7: Training and Testing Corpus 
 

Genres Songs Artists 
Rock 24 20 
Pop 14 12 
Jazz 14 6 
Electronic 8 3 
Funk 6 2 
R&B 6 4 
Classical 5 2 
Blues 4 3 
Hip Hop 4 1 
Soul 4 2 
Disco 3 2 
Folk 3 3 
Other 5 5 
Total 100 65 

 
 

Procedures 

The study was a self-administered online survey made available during 

December 2006. Participants were recruited by an email that contained a 

hyperlink to the study. Participants were first presented with the online study 

information sheet including a note instructing them to have speakers or a headset 

connected to the computer and the volume set to a comfortable level. Participants 

were advised to use a high-speed Internet connection. The excerpts were 

presented using an audio player embedded in the website. Participants could 

replay an excerpt and adjust the volume using the player controls while 

completing the pleasure and arousal semantic differential scales. The opposing 

items were determined in the previous study: happy-unhappy, pleased-annoyed, 
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satisfied-unsatisfied, and positive-negative for pleasure and stimulated-relaxed, 

excited-calm, frenzied-sluggish, and active-passive for arousal. The music files 

were presented in random order for each participant. The time to complete the 100 

6 s songs excerpts and accompanying scales was about 20 to 25 minutes. 

Results 

Figure 2 plots the 85 participants’ mean pleasure and arousal ratings for 

the 100 song excerpts. The mean of the mean pleasure ratings was 0.46 

(SD=0.50), and the mean of the mean arousal rating was 0.11 (SD=1.24). Thus, 

there were much greater differences in the arousal dimension than in the pleasure 

dimension.  
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 Figure 2: Participant ratings of 100 songs for pleasure and arousal with 

selected song identification numbers. 

 



   

  28

The standard deviation for individual excerpts ranged from 1.28 (song 88) 

to 2.05 (song 12) for pleasure (M=1.63) and from 0.97 (song 33) to 1.86 (song 87) 

for arousal (M=1.32). The average absolute deviation was calculated for each of 

the 100 excerpts for both pleasure and arousal. The mean of those values was 1.32 

for pleasure (0.81 in z-scores) and 1.03 for arousal (0.78 in z-scores). Thus, the 

interrater reliability was higher for arousal than for pleasure. As Figure 3 shows, 

the frequency distribution for pleasure was unimodal and normally distributed (K-

S test=.04, p>.05); however, the frequency distribution for arousal was not normal 

(K-S test=.13, p=.000) but bimodal: songs tended to have either low or high 

arousal ratings. The correlation for pleasure and arousal was .31 (p=.000), which 

is similar to the .33 correlation of the previous survey. The standard error of mean 

of pleasure and arousal ratings was .02 and .02, respectively. 
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Figure 3: Frequency distributions for pleasure and arousal. The frequency 

distribution for pleasure is normally distributed, but the frequency 

distribution for arousal is not. 

 

A representation was developed to visualize the difference between 

excerpts with low and high pleasure and excerpts with low and high arousal. This 

is referred to as an emotion-weighted visualization (see Appendix). The spectrum 
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histograms of 100 song excerpts were multiplied by participants’ mean ratings of 

pleasure in z-scores and summed together (Figure 4) or multiplied by participants’ 

mean ratings of arousal and summed together (Figure 5). Figure 4 shows that 

frequent medium-to-loud mid-range pitches tend to be more pleasurable, while 

frequent low pitches and soft high pitches tend to be less pleasurable. Subjective 

pitch ranges are constituted by critical bands in the bark scale. Lighter shades 

indicate a higher frequency of occurrence of a given loudness and pitch range. 
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Figure 4: The sum of the spectrum histograms of the 100 song 

excerpts weighted by the participants’ mean ratings of pleasure. 

Critical bands in bark are plotted versus loudness. Higher values 

are lighter. 

 

Figure 5 shows that louder higher pitches tend to be more arousing than 

softer lower pitches.  
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Spectrum Histogram: Arousal
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Figure 5: The sum of the spectrum histograms of the 100 song excerpts 

weighted by the participants’ mean ratings of arousal. Critical bands in 

bark are plotted versus loudness. Higher values are lighter. 

 

Figure 6 and 7 shows the fluctuation pattern representation for pleasure 

and arousal, respectively. Figure 6 shows that mid-range rhythms (modulation 

frequency) and pitches tend to be more pleasurable. Figure 7 shows that faster 

rhythms and higher pitches tend to be more arousing. These representations are 

explained in more detail in the next chapter. 
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Figure 6: The sum of the fluctuation pattern of the 100 song 

excerpts weighted by the participants’ mean ratings of pleasure. 

Critical bands in bark are plotted versus loudness. Higher values 

are lighter. 
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Fluctuation Pattern: Arousal
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Figure 7: The sum of the fluctuation pattern of the 100 song excerpts 

weighted by the participants’ mean ratings of arousal. Critical bands in 

bark are plotted versus loudness. Higher values are lighter. 

 

Discussion 

The 85 listeners’ ratings of the 100 songs in the Thomson corpus show the 

pleasure index to be normally distributed but the arousal index to be bimodal. The 

difference in the standard deviations of the mean pleasure and arousal ratings 

indicates a much greater variability in the arousal dimension than in the pleasure 

dimension. For example, the calm-excited distinction is more pronounced than the 

happy-sad distinction. It stands to reason that interrater agreement would be 

higher for arousal than for pleasure because arousal ratings are more highly 

correlated with objectively measurable characteristics of music (e.g., fast tempo, 
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loud). Further research is required to determine the extent to which the above 

properties characterize music for the mass market in general. The low standard 

error of the sample means indicates that ratings on enough participants concerning 

enough excerpts were collected to proceed with an analysis of algorithms for 

predicting emotional responses to music. 
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CHAPTER FIVE: EVALUATION OF EMOTION PREDICTION METHOD  

Chapter 2 reviewed a number of approaches to predicting the emotional 

content of music automatically. However, these approaches provided low 

precision, quantizing each dimension into only two or three levels. Accuracy rates 

were also fairly low, ranging from performance just above chance to 86.3%. The 

purpose of this chapter is to develop and evaluate algorithms for making accurate 

real-valued predictions for pleasure and arousal that surpass the performance of 

approaches found in the literature. 

Acoustic Representation 

Before applying general dimensionality reduction and statistical learning 

algorithms for predicting emotional responses to music, it is important to find an 

appropriate representational form for acoustic data. The pulse code modulation 

format of compact discs and WAV files, which represents signal amplitude 

sampled at uniform time intervals, provides too much information and 

information of the wrong kind. Hence, it is important to reencode PCM data to 

reduce computation and accentuate perceptual similarities.  

This chapter evaluates five representations implemented by Pampalk, 

Dixon, and Widmer (2003) and computed using the MA Toolbox (Pampalk, 

2006). Three of the methods – the spectrum histogram, periodicity histogram, and 

fluctuation pattern – are derived from the sonogram, which models characteristics 

of the outer, middle, and inner ear. The first four methods also lend themselves to 

visualization and, indeed, the spectrum histogram and fluctuation pattern were 

used in the previous chapter to depict pleasure and arousal with respect to pitch 
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and loudness and pitch and rhythm. The fifth method, the Mel frequency cepstral 

coefficients, which is used frequently in speech processing, does not model outer 

and middle ear characteristics. Pampalk et al. (2003) proposes that, to compare 

acoustic similarity accurately, it is important that the acoustic representation 

retain audio information related to hearing sensation and not other, extraneous 

factors. This is one reason why it is good to use the sonogram as a starting point. 

In addition, the sonogram, spectrum histogram, periodicity histogram, and 

fluctuation pattern are more useful for visualization than MCFF. 

The sonogram was calculated as follows: (1) 6 s excepts were extracted 90 

s into each MP3 file, converted to PCM format, and down sampled to 11kHz 

mono. (2) Amplitude data was reweighted according to Homo sapiens’ 

heightened sensitivity to midrange frequencies (3-4 kHz) as exhibited by the outer 

and middle ear’s frequency response (Terhardt, 1979, cited in Pampalk et al., 

2003). (3) The data was next transformed into the frequency domain, scaled based 

on human auditory perception, and quantized into critical bands. These bands are 

represented in the bark scale. Above 500 Hz, bark bands shift from constant to 

exponential width. (4) Spectral masking effects were added. Finally, (5) loudness 

information was converted to sone, a unit of perceived loudness, and normalized 

so that 1 sone is the maximum loudness value. The sonogram is quantized to a 

sample rate (time interval) of 86 Hz, the frequency is represented by 20 bark 

bands, and the loudness is measured in sone. 

 The spectrum histogram counts the number of times the song excerpt 

exceeds a given loudness level for each frequency band. As with the sonogram, 
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loudness is measured in sone and frequency in bark. Pampalk et al. (2003) report 

that the spectrum histogram offers a useful model of timbre. The periodicity 

histogram represents the periodic occurrence of sharp attacks in the music for 

each frequency band. The fluctuation pattern derives from a perceptual model of 

fluctuations in amplitude modulated tones (Pampalk, 2006). The modulation 

frequencies are represented in Hz. The Mel frequency cepstral coefficients define 

tone in mel units such that a tone that is perceived as being twice as high as 

another will have double the value. This logarithmic positioning of frequency 

bands approximates the auditory response of the inner ear. However, MFCC lacks 

an outer and middle ear model and does not represent loudness sensation 

accurately.  

Statistical Learning Methods  

Even after reencoding the acoustic signal in one of the above forms of 

representation, each excerpt is still represented in a subspace of high 

dimensionality. For example, the fluctuation pattern for a 6 s excerpt has 1200 

real-valued dimensions. Thus, past research has often divided the process of 

categorization into two stages: The first stage reduces the dimensionality of the 

data while highlighting salient patterns in the dataset. The second stage performs 

the actual categorization. A linear model, such as least-squares regression, lends 

itself to a straightforward statistical analysis of the results from the first stage. It 

is, therefore, used in this study to compare alternative methods of data reduction. 

Regression also requires far more observations than predictor variables, especially 
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if the effect is not large (Miles & Shevlin, 2001), which is another reason for 

dimensionality reduction. 

The most common method is principal components analysis. The dataset 

is rotated so that its direction of maximal variation becomes the first dimension, 

the next direction of maximal variation in the residuals, orthogonal to the first, 

becomes the second dimension, and so on. After applying PCA, dimensions with 

little variation may be eliminated. Pampalk (2001) used this method in Islands of 

Music. However, PCA may offer poor performance for datasets that exhibit 

nonlinear relations. 

Many nonlinear dimensionality reduction algorithms, such as nonlinear 

principal components analysis, are based on gradient descent and thus are 

susceptible to local minima. Recently, a couple of unsupervised learning 

algorithms have been developed that guarantee an asymptotically optimal global 

solution using robust linear decompositions: nonlinear dimensionality reduction 

by isometric feature mappings (ISOMAP), kernel ISOMAP, and locally linear 

embedding (LLE).  

ISOMAP uses Dykstra’s shortest path algorithm to estimate the geodesic 

distance between all pairs of data point along the manifold (Tenenbaum, de Silva, 

& Langford, 2000). It then applies the classical technique of multidimensional 

scaling to the distance matrix to construct a lower dimensional embedding of the 

data. LLE constructs a neighborhood-preserving embedding from locally linear 

fits without estimating distances between far away data points (Roweis & Saul, 

2000). Choi and Choi (2007) develop a robust version of ISOMAP that 
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generalizes to new data points, projecting test data onto the lower dimensionality 

embedding by geodesic kernel mapping. In addition to this generalization ability, 

which is based on kernel PCA, kernel ISOMAP improves topological stability by 

removing outliers. Outliers can reek havoc with shortest-path estimates by 

creating short-circuits between distant regions of the manifold.  

Thus, we chose to compare PCA and kernel ISOMAP, because we believe 

they are representative of a larger family of linear and nonlinear dimensionality 

reduction approaches. We also chose to compare these methods to an approach 

that does not reduce the dimensionality of the acoustic representation of a test 

excerpt but instead compares it directly to an emotion-weighted representation of 

all training excerpts—the emotion-weighted visualization of the previous 

chapter—as explained later in this chapter and in the appendix. This approach 

results in one predictor variable per acoustic representation per emotion. 

Survey Goals 

This chapter compares the performance of four different methods of 

automatically estimating a listener’s pleasure and arousal for an unrated song 

excerpt: (1) nearest neighbor, (2) linear and (3) nonlinear dimensionality 

reduction and linear model prediction, and (4) distance from an emotion-weighted 

representation and linear model prediction. Linear dimensionality reduction by 

principle components analysis is compared with nonlinear dimensionality 

reduction by kernel ISOMAP to provide predictor variables for multiple linear 

regression. 

Hence, this chapter has two main goals:  
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(1) to determine whether continuously valued mean pleasure and arousal 

ratings of song excerpts can be accurately predicted by automatic means based on 

previously-rated excepts from other songs; and  

(2) to determine which combination of dimensionality reduction and 

statistical learning algorithms provides the highest predictive accuracy. 

Evaluation Method of Predictive Accuracy 

The jackknife approach (Yang & Robinson, 1986) was used to calculate 

the average error in the system’s prediction. This was used to calculate the 

average prediction error for the nearest neighbor method and to compare the 

performance of PCA and kernel ISOMAP. Regression was performed to calculate 

the least squares fit of the participants’ mean ratings of pleasure and arousal for 

the excerpts from all but the first song on the predictor variables for all but the 

first song. The pleasure and arousal ratings for the first song were then estimated 

based on the predictor variables for the first song and compared to the 

participants’ actual mean ratings for the first song. This difference indicated the 

prediction error for the first song. This process was repeated for the 2nd through 

the 100th song. Thus, the difference between participants’ actual mean ratings of 

pleasure and arousal and the ratings predicted using the proposed approach with 

nearest neighbor, PCA or kernel ISOMAP could be calculated for all 100 songs. 

To simplify method comparison, all participant ratings were converted to z-scores, 

so that prediction error values could also be given in z-scores. 
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Prediction Error Using the Nearest Neighbor Method 

Before comparing PCA and kernel ISOMAP, it is useful to consider the 

prediction error for a simpler method, which may serve as a benchmark. The 

nearest neighbor method was selected for this purpose. The predicted value of 

pleasure and arousal for a given excerpt is determined by the participant mean of 

the nearest excerpt in a given data representation space. Although various metrics 

can be used for distance, the L2 norm was chosen (Euclidean distance). For 

pleasure, the prediction error was 0.48 (in z-scores) in the spectrum histogram 

space, 0.49 in the periodicity histogram space, 0.52 in the sonogram space and 

Mel frequency cepstral coefficients space, and 0.54 in the fluctuation pattern 

space. For arousal, the prediction error was 0.99 in the sonogram space, 0.83 in 

the spectrum histogram space, 1.26 in the periodicity histogram space, 0.92 in the 

fluctuation pattern space, and 0.96 in the Mel frequency cepstral coefficients 

space. The prediction error was also calculated after applying the dimensionality 

reduction methods, but the results were roughly similar. 

Comparison of PCA and kernel ISOMAP Dimensionality Reduction 

Figure 8 and 9 show that nonlinear dimensionality reduction by kernel 

ISOMAP provides predictor variables that result in slightly more accurate 

regression estimates of the participant mean for pleasure than linear 

dimensionality reduction by PCA. Although the figures only list results for 

subspaces ranging in dimensionality from 1 to 30, prediction error was calculated 

for all dimensionality N that were not rank deficient (i.e., 1 to 97 for all data 

representation spaces except periodicity histogram, which was 1 to 4). For 
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pleasure, the prediction error obtained by using PCA was 0.80 (in z-scores, N=1) 

when applied to the sonograms of the 100 excerpts, 0.81 (N=1) when applied to 

the spectrum histograms, 0.88 (N=1) when applied to the periodicity histograms, 

0.81 (N=1) when applied to the fluctuation patterns, and 0.82 (N=1) when applied 

to the Mel frequency cepstral coefficients (Figure 8). For pleasure, the prediction 

error obtained by kernel ISOMAP was 0.77 (N=1) when applied to the 

sonograms, 0.74 (N=3) when applied to the spectrum histograms, 0.81 (N=1) 

when applied to the periodicity histograms, 0.77 (N=5) when applied to the 

fluctuation patterns, and 0.77 (N=9) when applied to the Mel frequency cepstral 

coefficients (Figure 9).  
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Figure 8: The average error in predicting the participant mean for 

pleasure when using PCA for dimensionality reduction.  

 



   

  43

 
 

0 5 10 15 20 25 30

0.75

0.8

0.85

0.9

0.95

1
Kernel ISOMAP: Pleasure

Dimensionality

A
ve

ra
ge

 E
rr

or
 (

z−
sc

or
e)

Sonogram
Spectrum Histogram
Periodicity Histogram
Fluctuation Pattern
MFCC

 
 

Figure 9: The average error in predicting the participant mean for pleasure 

when using kernel ISOMAP for dimensionality reduction.  

 

Figure 10 and 11 show that nonlinear dimensionality reduction by kernel 

ISOMAP provides predictor variables that result in much more accurate 

regression estimates of the participant mean for arousal than linear dimensionality 

reduction by PCA. For arousal, the prediction error obtained by PCA was 0.92 (in 

z-scores, N=3) when applied to the sonograms of the 100 excerpts, 0.91 (N=9) 

when applied to the spectrum histograms, 0.98 (N=1) when applied to the 

periodicity histograms, 0.87 (N=15) when applied to the fluctuation patterns, and 

0.88 (N=12) when applied to the Mel frequency cepstral coefficients (Figure 10). 

For arousal, the prediction error obtained by kernel ISOMAP was 0.40 (N=3) 
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when applied to the sonograms of the 100 excerpts, 0.37 (N=7) when applied to 

the spectrum histograms, 0.62 (N=1) when applied to the periodicity histograms, 

0.44 (N=5) when applied to the fluctuation patterns, and 0.42 (N=13) when 

applied to the Mel frequency cepstral coefficients (Figure 11). 
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Figure 10: The average error in predicting the participant mean for 

arousal when using PCA for dimensionality reduction.  



   

  45

0 5 10 15 20 25 30
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
Kernel ISOMAP: Arousal

Dimensionality

A
ve

ra
ge

 E
rr

or
 (

z−
sc

or
e)

Sonogram
Spectrum Histogram
Periodicity Histogram
Fluctuation Pattern
MFCC

 
 
 

Figure 11: The average error in predicting the participant mean for 

arousal when using kernel ISOMAP for dimensionality reduction. 

 

Prediction error with PCA was highest when using the periodicity 

histogram and was rather similar when using the other forms of data 

representation. Prediction error with kernel ISOMAP was also highest when using 

the periodicity histogram and lowest when using the spectrum histogram. In 

comparing the best combination of data representation form and subspace 

dimensionality for PCA and kernel ISOMAP, prediction error for pleasure was 

8% higher for PCA and prediction error for arousal was 235% higher for PCA. 

Although both PCA and kernel ISOMAP had consistently lower prediction error 

than nearest neighbor for pleasure, for arousal kernel ISOMAP had consistently 
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lower prediction error than nearest neighbor, and nearest neighbor had 

consistently lower prediction error than PCA. 

Prediction Error Using the Distance From an Emotion-weighted Representation  

A representation for pleasure and arousal was separately developed for 

each of the five forms of data representation by summing up the data 

representation of 99 training song excerpts weighted by the participants’ mean 

ratings of either pleasure or arousal. (Figures 4 to 7 of the previous chapter plotted 

the emotion-weighted spectrum histogram and fluctuation pattern representations 

for visualization purposes.) The Euclidean distance (L2 norm) between each 

excerpt’s data representation and the emotion-weighted representation was 

calculated (see Appendix). These values served as predictor variables for linear 

least squares model fitting of the emotion responses. Using the jackknife method, 

the pleasure or arousal of a test excerpt could then be estimated by least squares 

based on its distance from the emotion-weighted representation. 

For pleasure, the prediction error was 0.39 (in z-scores) for sonograms, 

0.75 for spectrum histograms, 0.44 for periodicity histograms, 0.82 for fluctuation 

patterns, and 0.51 for Mel frequency cepstral coefficients.  For arousal, the 

prediction error was 0.29 for sonograms, 0.89 for spectrum histograms, 0.85 for 

periodicity histograms, 0.29 for fluctuation patterns, and 0.31 for Mel frequency 

cepstral coefficients. Thus, when all five predictor variables were used together, 

the prediction error was 0.17 for pleasure and 0.12 for arousal using the jackknife 

method.   
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A regression analysis of the 100 excerpts selected the five predictor 

variables for inclusion in a linear model for pleasure (r2=.95, F=367.24, p=.000) 

and for arousal (r2=.98, F=725.71, p =.000). 

Discussion 

The analyses of this chapter showed some interesting results. Kernel 

ISOMAP resulted in slightly higher predictive accuracy for pleasure and much 

higher predictive accuracy for arousal than PCA. However, the proposed 

technique of using an emotion-weighted representation significantly outperformed 

either method. Predictor variables for pleasure and arousal were derived from a 

test excerpt’s distance from an emotion-weighted representation of training 

excerpts in the subspaces of the five acoustic representations. Prediction error was 

0.17 for pleasure and 0.12 for arousal in z-scores. For all three methods, accuracy 

for arousal tended to be higher than for pleasure, which is consistent with the 

results of the previous chapter. This is probably because pleasure judgments are 

more subjective than arousal judgments. 

Prediction error of 0.17 and 0.12 far exceeds human performance, which 

on average is 0.81 for pleasure and 0.78 for arousal in z-scores, as reported in the 

previous chapter. However, it would be unfair to the human listener to claim that 

the algorithm is several times more accurate at predicting mean pleasure and 

arousal ratings of a new excerpt for which it has no human data. This is because 

we only asked the human listeners to give their own ratings of songs and not to 

predict how they thought most other people would rate them. Therefore, a study 
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requiring listeners to make this prediction is called for to make a more precise 

comparison.  
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CHAPTER SIX: POTENTIAL APPLICATIONS 

We have presented a successful algorithm for the automatic prediction of 

pleasure and arousal ratings in music. But what can we do with such an 

algorithm? Its uses are many. 

Integrating the algorithm into digital jukebox applications would allow 

listeners to organize their music libraries in terms of each song’s pleasure and 

arousal rating. This could offer listeners a better understanding and appreciation 

of their music collection, new ways of discovering unknown artists and songs, and 

a means to create more appealing, meaningful play lists, including play lists with 

the purpose of inducing a certain mood. For example, putting on high pleasure, 

high arousal music might be an appropriate tonic for someone faced with 

performing a spring cleaning. 

From a commercial standpoint, the algorithm could benefit music retailers, 

producers, and artists. Retailers profit from any method that enables listeners to 

discover new pieces of music. As listeners broaden their tastes they become open 

to a broader range of music purchases. Commercially, music producers could use 

the algorithms to predict the emotional impact of a song before releasing it. 

Artistically, musicians could have a quantitative measure of whether a song they 

create contains the intended emotional quality and message. After all, the song 

may affect the artist differently from a potential listener. 

Another multi-billion dollar industry, the computer game industry, 

continually looks for new ways to grab people’s attention. This predictive tool 

could further research into sound engines that dynamically adjust the music to 
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match the in-game mood (Livingstone & Brown, 2005). Computer games could 

be linked to a player’s music library to create a soundtrack that is appropriate for 

what is happening in the game.  

Movies have long used music to create or heighten the emotional impact 

of scenes. Automatic emotion estimation could be used to predict the emotional 

response of moviegoers to musically-scored film, thus saving time and money 

normally spent on market research. It could also be used to find pieces of music 

that had an emotional tone appropriate to a particular scene. Other research 

includes analyzing both video and audio in an attempt to automatically create 

videos (Foote, et al., 2002). 

Music is also an educational tool. According to Picard (1997), emotions 

play a role in learning, decision making, and perception. Educators have studied 

its power to reinforce learning (Standley, 1996) or improve behavior and 

academic performance in children with behavioral or emotional difficulties 

(Črnčec, Wilson & Prior, 2006; Hallam & Price, 1998; Hallam, Price & Katsarou, 

2002). The ability to predict a song’s emotional effect could enhance the use of 

music in education.  

Outside the classroom, music is used as environmental stimuli. The 

shopping and service industries have studied background music’s broad effects on 

consumer behavior, including time spent on premises, amount spent and improved 

attitudes in both retail outlets (Alpert & Alpert, 1990; Chebat, Chebat, & Vaillant, 

2001; Oakes, 2000) and restaurants (Caldwell & Hibbert, 2002). Outside of the 

store, music influences consumers’ affective response to advertisements and their 
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ability to recall its content (Oakes & North, 2006). When strong emotions 

accompany an event, it becomes easier to remember (Dolan, 2002; Levine & 

Burgess, 1997). The algorithm can help businesses and advertisers more critically 

evaluate music selections for the intended environment and message. This in turn 

will increase customer satisfaction and corporate profits. 

Predicting the emotional response of patients to music is crucial to music 

therapy. Its applications include setting a calming environment in hospital rooms 

(Preti &Welsh, 2004), treating chronic pain such as headaches (Risch, Scherg, 

&Verres, 2001; Nickel, Hillecke, Argstatter, & Bolay, 2005), and improving 

recovery from surgery (Giaquinto, Cacciato, Minasi, Sostero, & Amanda, 2006). 

The calming effects of music can have a positive effect on autonomic processes.  

It has been used to regulate heart rate in heart patients (Evans, 2002; Todres, 

2006) and reduce distress and symptom activity (Clark, et al., 2006). Thus, the 

benefits from the automatic estimation of a listener’s emotional response to music 

could range from an increased enjoyment of music to saving lives. 
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CHAPTER SEVEN: CONCLUSION 

This paper has made three main contributions to research on the automatic 

prediction of human emotional response to music: 

The development of a reliable emotion index for music. In the application 

of the PAD index to music, the pilot study identified as unreliable two opponent 

adjective pairs for each of the pleasure and arousal dimensions (chapter 3). In 

addition, it identified the entire dominance dimension as unreliable. The 

elimination of the unreliable adjective pairs and dimension resulted in a new 

index that proved highly reliable for the limited data of the pilot study 

(Cronbach’s α=.91 for pleasure and arousal). The reliability of the index was 

confirmed in the follow up survey. 

The development of a technique to visualize emotion with respect to pitch, 

loudness, and rhythm. The visualizations showed that mid-range rhythms and 

medium-to-loud mid-range pitches tend to be much more pleasurable than low 

pitches and soft high pitches (chapter 4). Unsurprisingly, they also showed that 

faster rhythms and louder higher pitches tend to be more arousing than slower 

rhythms and softer lower pitches. (See Figure 4, 5, 6, and 7.) All visualizations 

were expressed in terms of the subjective scales of the human auditory system. 

The development of an algorithm to predict emotional responses to music 

accurately. Predictor variables derived from a test excerpt’s distance from 

emotion-weighted visualizations proved to be the most accurate among the 

compared methods at predicting mean ratings of pleasure and arousal (chapter 5). 

They also exceeded the accuracy of published methods (chapter 2) and exceeded 
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the accuracy of individual human listeners by an order of magnitude (chapter 4). 

Thus, the proposed technique holds promise for serious commercial applications 

that demand high accuracy in predicting emotional responses to music. 

The American poet Walt Whitman concluded the last essay he would 

write with the words “the strongest and sweetest songs remain yet to be sung” 

(Whitman, 1891, p. 438). When they are, music enthusiasts would like to know, 

and we have a method to help them. 
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APPENDIX: EMOTION-WEIGHTED VISUALIZATION AND PREDICTION 

METHOD 

The proposed method of calculating emotion-weighted visualizations of a 

set of music excerpts for different types of acoustic representations and using the 

visualizations to predict the emotion of a new, unrated music excerpt is given 

below. 

A. Human data collection 

Step 1. K listeners rate N music excerpts using a valid emotion 

index. 

 

B. Index value calculation 

Step 2. An index corresponding to a dimension of emotion is 

calculated from the ratings. 

Step 3. If K > 1, listeners’ index values are averaged for each 

music excerpt. 

Step 4. Index values are converted to z-scores. 

 

C. Emotion-weighted visualization 

Step 5. Each type of acoustic representation is calculated for each 

music excerpt.  

Types may include, but are not limited to, the sonogram, 

spectrum histogram, periodicity histogram, fluctuation 

pattern, and Mel frequency cepstral coefficients. 
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Step 6. For a given type of acoustic representation, each acoustic 

representation is multiplied by the index value (in z-scores) 

for the corresponding music excerpt and summed together.  

The result is an emotion-weighted visualization of the excerpts as a 

whole for each type of acoustic representation. 

 

D. Training the predictive algorithm 

Step 7. For a given type of acoustic representation, the Euclidean 

distance (L2 norm) of each acoustic representation to the 

emotion-weighted visualization is calculated.  

These distance values are emotion predictor variables. 

Step 8. Multiple linear regression is used to calculate regression 

coefficients for the emotion dimension using the emotion 

predictor variables and emotion index values (in z-scores) 

as the outcome variable. 

 

E. Making predictions 

Step 9. The Euclidean distance (L2 norm) from the acoustic 

representations of a new, unrated music excerpt to the 

emotion-weighted visualizations is calculated.  

These are emotion predictor variables for the new, unrated excerpt. 



   

  65

Step 10. The dot product of the emotion predictor variables for the 

new excerpt and the regression coefficients (from step 8) is 

calculated. 

This is the predicted emotion index value of the new music 

excerpt. 
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