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ABSTRACT 

Arvind Kumar Thirumalaiswamy Sekhar 
 
 

PREDICTION BY PARTIAL MATCHING FOR IDENTIFICATION OF 

BIOLOGICAL ENTITIES  

 
As biomedical research and advances in biotechnology generate expansive datasets, the need 

to process this data into information has grown simultaneously. Specifically, recognizing and 

extracting these “key” phrases comprising the named entities from this information databank 

promises a plethora of applications for scientists. The ability to construct interaction maps, 

identify proteins as drug targets are two important applications. Since we have the choice of 

defining what is “useful”, we can potentially utilize text mining for our purpose. In a novel 

attempt to beat the challenge, we have put information theory and text compression through 

this task. Prediction by partial matching is an adaptive text encoding scheme that blends 

together a set of finite context Markov models to predict the probability of the next token in a 

given symbol stream. We observe, named entities such as gene names, protein names, gene 

functions, protein-protein interactions – all follow symbol statistics uniquely different from 

normal scientific text. By using well defined training sets that allow us to selectively 

differentiate between named entities and the rest of the symbols; we were able to extract 

them with a  good accuracy. We have implemented our tests, using the Text Mining Toolkit, 

on identification of gene functions and protein-protein interactions with f-scores (based on 

precision & recall) of 0.9737 and 0.6865 respectively. With our results, we foresee the 

application of such an approach in automated information retrieval in the realm of biology. 
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1. INTRODUCTION  

 

The use of high throughput techniques for characterizing biological entities has attained 

rapid progress in recent years and even lead to the subsequent accumulation of scientific 

literature (Total number of PubMed abstracts is 9437082 as on January 6, 2008 ) (NCBI). 

Eventually researchers have turned their attention towards information retrieval, 

information extraction and text mining over these growing literature databases. 

Benefitting from this intense computational information extraction research focus are 

biologists, bioinformaticians, database curators and even medical scientists to a certain 

extent (Blaschke et al, 2002).   

 

A quick look at the number of searches performed each year on these scientific articles 

just with PubMed (Figure 1) clearly indicates to us the growing dependence of biologists, 

among other users of PubMed, on these literature warehouses for obtaining quality 

information. It would not be surprising therefore that there is a need to develop a very 

efficient system that can automatically annotate the information within these articles 

providing for a more accurate information retrieval. However, one has to note that the 

annotation would naturally stem from the ability to extract named entities, depending on 

whatever we define them to be, from these articles with a certain degree of accuracy.  
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      Figure 1: Number of PubMed searches executed between 1997 and 2007(NCBI). 

While many attempts have been made so far in achieving this through natural language 

processing (Fukuda et al 1998, Collier et al, 2000, Tanabe et al, 2002), dictionary based 

approach (Krauthammer et al, 2004), rule based approach (Krallinger et al, 2005, Seki 

and Mostafa, 2003), and even machine learning approaches using Support Vector 

Machines (Lee et al, 2003) , we take a novel approach to this challenge and attempt to 

return a solution using a data compression technique. Text compression has been widely 

studied and the use of adaptive statistical encoding techniques for text compression and 

their efficiency has already been well proven (Cleary and Witten, 1984). In particular, our 

inspiration to use this method comes from the observation that Prediction by Partial 

Matching (PPM) has been successfully applied in token characterization as in 

characterization of text to belong to one language or the other (Celikel, 2005). PPM uses 

finite context Hidden Markov Model and blends together some of these models to 
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achieve the prediction of the probability with which a specific symbol would appear at a 

given position in an input stream. The advantage is that these models exploit the statistics 

associated with the specific symbol set that form the named entities. Therefore a careful 

selection of the training sets can lead to a very good discrimination of a token as 

belonging to one class of symbols. 

 

In this thesis we work to compose suitable training sets to achieve supreme performance 

measures in extracting key phrases from biomedical text. Our intent was to examine the 

success of using a text compression based text mining approach and study the same over 

two varied entities and observe the merits and demerits from them. The thesis itself is 

outlined to indicate the various terms and concepts that appear in this study, the methods 

involved in composing datasets for training and testing for the two tasks of identifying 

gene function phrases and protein-protein interaction phrases, the key differences in the 

results observed and the causes and solutions to some of the factors affecting the 

performance of the system. 

 

We have used PPM to identify named entities and key phrases including gene functions 

and protein -protein interactions to study the suitability of this approach to tackling the 

problem of text mining in biology. Our results indicate that a very clear and specific 

definition of the named entity may be essential for the complete success of this approach. 

The technique seems very promising and if used with appropriate training sets for 

problems that do not require semantic interpolations it will prove to be a good success. 
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More importantly, the advantage of this method can be well comprehended by looking at 

the numerous applications and benefits that can be derived by using such a technique 

over literature data. Some of the key benefits can be enlisted as: 

• Efficient information retrieval 

• Advanced database curation 

• Ease of annotation  

• Save time and effort 

• Improved data mining and new relation discovery 

• Extension to useful entities such as Protein-Protein interactions 

 

These benefits have resounding implications in the field of biology and medicine. One 

may think , intuitively, that the ability to identify protein-protein interactions will lead to 

improved construction of protein interaction networks and therefore a better 

understanding of how drugs may affect the network as a whole. Not to forget the value of 

identifying key terms themselves, such as drug names/protein names etc reducing the 

time involved in valuable research associated with these entities. Moreover, the ability to 

identify new relations is very significant as human errors in manual curation of these 

articles could lead to non identification of these otherwise useful entities. 
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2. BACKGROUND 
 
 

2.1 Evaluation of Present Systems 

Existing systems for text mining in the biomedical domain attempt to extract protein 

names/gene names or even protein – protein interactions from scientific text. While a 

majority of these approaches combine the extracted terms with the second phase of 

assigning Gene Ontology identifiers, we look to solving the extraction of named entities 

as is. With the task of GO based gene function identification established by the 

(BioCreative) competition, these approaches determine GO terms as a mandatory 

subtask.  The methods that have been established fall under techniques making use of a 

dictionary based approach (Krauthammer et al, 2004), a machine learning approach 

(Stoica and Hearst, 2006, Ehler and Ruch, 2004) or other rule based approaches 

(Krallinger et al, 2005, Seki and Mostafa, 2003). The application of Natural Language 

Processing to gene/protein identification from biomedical text has been described 

(Fukuda et al 1998, Collier et al, 2000, Tanabe et al, 2002). (Raychaudhari et al) have 

shown that abstracts can be classified into major GO ID classes using maximum entropy, 

Naïve Bayes or nearest neighbor method. There have been attempts at identifying gene 

function relationships based on syntactic dependency (Kim and Park, 2004) and using 

sentence similarity through Naïve Bayes (Chiang and Yu, 2003). (Koike et al) have 

utilized shallow parsing and sentence structure analysis to perform automatic extraction 

of gene biological functions. They report a precision of 92% but a low recall of 60%. The 

Medical Knowledge Explorer (MeKE) system uses a Gene name Lexicon with a maximal 

coverage followed by a sentence alignment procedure, utilizing sentence structure 
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analysis to identify functions of gene products(Chiang and Yu, 2003). Compared to these 

systems, our approach to gene function identification has been far more superior in 

performance as it generates a precision of 84.81% and a recall of 94.36%. Protein-protein 

interactions have not yet had the same kind of success rate as those of systems applied to 

gene function identification. (Ahmed et al) have developed an automated interaction 

identifier that performs sentence splitting followed by entity tagging to identify 

interaction phrases. They report a 26.94% precision and a 65.66% recall on the DIP 

dataset. Maximum entropy based approaches for part of speech tagging and their state of 

the art accuracy has been established (Ratnaparkhi et al, 1994). The use of synonym 

based entity recognition followed by a SVM based post processing applied to the 

BioCreative Subtask is described in (Fundel et al, 2005). The method focuses on just the 

identification of protein names and not the interactions. This could potentially be a part of 

a suitable post processing phase which could identify protein names. A synonym based 

identification coupled to entity tagging when applied to protein interaction identification 

resulted in a 47% recall and 93% precision (Otasek et al, 2006) .The precision and recall 

of our system which currently are 60.125% and 80% respectively provide a glimpse of 

the performance improvements that can be achieved. 
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2.2 Terms and Concepts 

Text Mining 
 
Witten, Bray, Mahoui and Teahan define text mining as “The process of analyzing text to 

extract information that is useful for particular purposes” (Witten et al, 1999). This 

definition of text mining is a very appropriate one for the problem we are trying to 

address. Indeed we have the choice of defining what is useful; we can extract selective 

entities from different text streams for a variety of purposes. Some examples of text 

mining would be finding words in Chinese text, finding names and addresses in 

bibliographic references, or classifying text by language, authorship, or genre. 

 

Information Theory 

Information theory is a branch of applied mathematics that deals with techniques to 

quantify information. The field came into existence formally after the work of Claude E 

Shannon was published in his paper “A Mathematical Theory of Communication” 

(Shannon, 1948). Information theory encompasses concepts from fields of science and 

engineering such as adaptive systems, anticipatory systems, artificial intelligence, 

complex systems, complexity science, cybernetics, informatics, machine learning. 

Concepts in information theory have parallels in human communication. Two essential 

features of “language” for communication form the pillars of information theory. First, it 

can be clearly observed that in any given language, words that are more frequently used 

are shorter than words that are less frequently used. The reason for is that sentences 

become much shorter to construct. For example, words such as “I”, “the” appear more in 

common sentences than words such as “apple”, “economics” etc. Second, any receiver 
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should be able to identify the meaning of a sentence even if part of the sentence is 

distorted due to noise. This, one has to note, does not have any correlation to the “quality 

of the meaning” implied by the sentence. A sentence such as “How are you?” is as 

equivalent as a sentence such as “call 911” though the latter has a more significant import 

in the context.  

 

Information theory seeks to provide insights into the classical problem of communicating 

information in the presence of noise and uncertainty. This usually involves 

communication over a noisy channel. When data is transmitted across a noisy channel, 

the ability to reconstruct the data with a certain degree of loss in fidelity is of at most 

importance. The actual uncertainty in the information during transmission came to be 

measured by a quantity known as entropy. Formally, entropy would be quantified in 

terms of the number of bits (or a suitable system) required to represent the given 

information. In general, greater the entropy, larger the bits and vice versa. Shannon 

showed, in his work, that, if the number of bits were to be lesser than the channel 

capacity then information could be transmitted successfully across the channel. This 

paved the way for the emergence of source coding and the other compression schemes 

outlined below.  

 
Text Compression 

Data and text compression refers to the use of encoding to represent the input stream 

using fewer bits (or any other suitable representation) resulting in lesser storage space 

and lesser transmission time (Lelewer and Hirschberg, 1987). One popular instance of 
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compression with which many computer users are familiar is the ZIP file format, which, 

as well as providing compression, acts as an archive tool, storing many files in a single 

output file. Data compression techniques require that both the sender and the receiver 

involved in the communication be aware of the compression method being used. Though 

compression seems to solve storage and space problems, it really involves tradeoffs on 

the requirement of expensive equipment on the receiver end, say, and the actual overhead 

of transmitting the information as is. Also, most compression techniques work well when 

there is some kind of a statistical redundancy in the input stream. In the absence of any 

statistical redundancy, it would not be a surprise to note that the compression algorithm 

actually results in data expansion. 

 

Lossless Data Compression 

As the name suggests, lossless data compression works to compress the input stream in a 

manner that allows its reconstruction perfectly without any loss of information. Lossless 

compression schemes are the ones that mostly make use of statistical patterns in the data. 

These are applied more frequently to textual data such as word files, spreadsheets etc as 

the loss of information from these files is intolerable. Some examples of lossless 

compression schemes would be run length encoding, Lempel Ziv encoding (Lempel and 

Ziv, 1977), DEFLATE etc. 

 

Lossy Data Compression 

In contrast to Lossless Data Compression, this method allows a certain degree of loss in 

fidelity when the original data is reconstructed from the compressed source. This 
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technique is useful in applications such as image and video compression where minor 

alterations remain almost imperceptible. In other words, Lossy Compression schemes, 

achieve a tradeoff between certain features whose alterations are very less perceived as 

opposed to the amount of compression achieved. For example, the human eye can 

tolerate changes in luminance more than changes in the color of images. Therefore 

certain compression algorithms, achieve a good compression ratio by accommodating a 

modification in the luminance values. 

 

“Most of the data compression methods in common use today fall into one of two 

categories: dictionary-based schemes and statistical methods. In the world of small 

systems, dictionary based data compression techniques seem to be more popular at this 

time. However, by combining arithmetic coding with powerful modeling techniques, 

statistical methods for data compression can actually achieve better performance.” 

(Wikipedia). 

 

Dictionary-Based Data Compression 

Certain encoding schemes use a “fixed length” code to represent blocks of data in the 

input stream. These schemes whose encoding symbol set have the same length and are 

independent of the statistical frequency of input symbols are known as dictionary based 

methods. A very popular dictionary based encoding model is the LZW encoding model. 

As a working example, let us consider the ASCII code used to represent characters in the 

input text. 
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The ASCII symbol set has 256 characters to represent from the Standard English 

alphabet. Since a dictionary based approach uses the same length of code for each 

alphabet, we would need to fix a minimum length for this code that can be used to 

represent each of the 256 characters without ambiguity. Using the BIT representation of 

1’s and 0’s we can see that each bit can accommodate 2 characters. Therefore the 

following table (Table 1) indicates how we can arrive at a code length for all the 256 

characters to be encoded. 

 

Code length (number of symbols) Number of characters accommodated 

1 21 =2 

2 22 =4 

3 23 =8 

4 24 =16 

5 25 =32 

6 26 =64 

7 27 =128 

8 28 =256 

Table 1: Number of Bits required for encoding 

Thus we can observe that all symbols have equal code length and this may be arrived by 

using the minimum number of bits required to represent the entire alphabets without 

ambiguity. 
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Though simple to understand and easy to accomplish, the dictionary based methods work 

well for small systems only. The approach was rendered naïve by a look into Shannon’s 

entropy theory which clearly suggests that by adopting a method which would vary the 

length of the code depending on the symbol frequency, we can greatly enhance the 

compression ratio. 

 

Statistical Data Compression 

Another, lossless compression scheme, the statistical data compression method works by 

encoding the input stream of symbols using a “variable length” code system contrary to 

the fixed length code approach of the dictionary based method (Rooij, 2003). The length 

of the code used to represent any symbol is directly related to the frequency or 

probability of occurrence of that symbol in the given text. Thus methods falling in this 

category use the statistical pattern in the data. It is intuitive to understand that by using 

the shorter codes for frequently occurring entities, we can achieve a better compression 

ratio. 

 

Entropy 

One definition of entropy equates it to the degree of disorder in a system (Sommers et al, 

2004). Ordered and disordered states of a system are relative and a system in which 

randomness is maximal is called as a maximally disordered system. As we move further 

away from randomness to non random behavior, we move towards an ordered state. For 

example, a deck of cards which is shuffled and in which numbers appear in any random 

order is said to be maximally disordered. In the same manner a deck of cards which is 
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arranged according to some pattern say the color of the card is said to be moving towards 

an ordered state. Thus by using entropy as a degree of disorder, we can measure how far 

from randomness a system actually is. 

 

Information Entropy 

Extending the concept of entropy to information theory, Shannon defined information 

entropy as the average message length (number of bits) required to communicate the true 

message in the given data is called the entropy. Intuitively, it is also the average 

information content that a receiver is missing when the true value of a random variable is 

not known. 

 

The information entropy of a discrete random variable X, that can take on possible values 

{x1...xn} is 

H(X) = -∑ p(xi) log 2 p(xi) 

Where  

p(xi) = Pr(X=xi) is the probability mass function of X. 

Consider tossing a coin with known, not necessarily fair, probabilities of coming up 

heads or tails. 

Since the result of the toss is unknown, the entropy of this event is maximal. This is 

equivalent to stating that the probability of an outcome is equally likely as another and 

hence there is no bias towards one result. This situation, as a consequence, requires a 

greater number of bits (1 in this case) to deliver the full information. 
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However, if we know the coin is not fair, and that the outcome is biased towards either 

heads or tails, then the uncertainty is reduced. The entropy that measures this uncertainty 

would be expected to lower down as the number of bits required to present the 

information is reduced. 

The extreme case is that of a double-headed coin which never comes up tails. Then there 

is no uncertainty. The entropy is zero: each toss of the coin delivers no information. 

Minimum Description Length 

"The fundamental idea behind the MDL Principle is that any regularity in a given set of 

data can be used to compress the data, i.e. to describe it using fewer symbols than needed 

to describe the data literally." (Grünwald, 1996).Since our hypothesis must capture the 

most regularity in the data; the hypothesis is the one that achieves maximum 

compression. 

 

So far we can see that lossless statistical encoding works best in two general steps. First a 

statistical model for the data stream is generated and second, based on this model, 

encoding is performed. However the way in which the statistical model is used can 

further lead to two sets of encoding procedures. They are: 

 

Non Adaptive Encoding 

In a non adaptive encoding scheme, the statistic table is scanned only once and after this 

single pass, an encoding scheme is directly applied. This essentially means that the model 

statistic has to be also coupled with the actual encoding and transmitted to the decoder. 
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This will make sure that both the encoder and the decoder use the same model. Though 

this works fine in simple case, when large statistical models are generated to achieve 

better compression, the extra baggage of the large model to be transmitted can sideline 

any improvements in the compression itself. Non adaptive encoding is suitable only for 

small statistical models. 

 

Adaptive encoding 

In order to overcome the model addition problem of the non adaptive encoding 

procedure, the adaptive encoding technique was devised. The solution is that instead of 

making a single pass over the input stream to create a statistical model, one can allow 

both the encoder and decoder start with their statistical model in the same state. Each of 

them processes a single character at a time, and updates their models after the character is 

read in. This is very similar to the way most dictionary based schemes such as LZW 

coding work. A slight amount of efficiency is lost by beginning the message with a non-

optimal model, but it is usually more than made up for by not having to pass any statistics 

with the message. 

 

Huffman Encoding 

Huffman encoding was the outcome of an assignment by Huffman in response to the 

challenge proposed by one of his professors at MIT. The algorithm generates a prefix free 

tree producing codes to represent symbols in the given text/data. Huffman algorithm is so 

prevalent in modern computer science and data compression that it is even used 

interchangeably with the encoding procedure itself (Huffman, 1952). 
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Huffman encoding can be easily understood by considering the following example. 

Given a set of symbols and their weights (probabilities) for an input alphabet 

A={a1,a2….an} with weights W={w1,w2….wn} we need to find codes C={c1,c2….cn} 

such that L(c)=∑ wi * length(ci) must be the most optimal code length satisfying 

L(c)<=L(t) for any t(a, w). 

 

Consider the following data table (Table 2) 

Input Symbol a b c d e Sum 

 Weights 0.10 0.15 0.30 0.16 0.29 1 

Output Codeword 000 001 10 01 11  

 Code length 3 3 2 2 2  

 Path length 0.3 0.45 0.6 0.32 0.58 2.25 

Optimality Probability 

budget 

0.125 0.125 0.25 0.25 0.25 1.00 

 Information 

content(bits) 

3.32 2.74 1.74 2.64 1.79  

 Entropy 0.332 0.411 0.521 0.423 0.518 2.205 

Table 2: Example implementation of Information Entropy (adapted from wikipedia) 

 

We are given five symbols a, b, c, d, e whose frequencies or probability of occurrence is 

0.10, 0.15, 0.30, 0.16 and 0.29 respectively. Using the logic of assigning greater code 
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length for a less frequent symbol we assign code words of lengths 3 to a, b and of lengths 

2 to c, d and e. The average path length then turns out to be 2.25. 

 

From the above table we can derive that Shannon’s entropy for the given input symbols is 

2.205. This is the entropy that is least possible for the given input set. Using Huffman 

coding we can see that we can generate an optimal code length of 2.25 which is very 

close to Shannon’s entropy minimum. 

 

A peculiar disadvantage of the Huffman encoding procedure is that, it always assigns an 

integer number of bits as a code length. Therefore if a symbol had a probability of say 

90% then the –log 2 P is equal to 0.15 for the symbol. Huffman encoding can only assign 

either 0 or 1 bit to this symbol and assuming that it assigns 1 bit, we end up with a six 

times larger code. Therefore, Huffman coding had to make way for arithmetic encoding 

which would utilize floating point operations to generate a code to represent the symbol. 

 

Arithmetic Encoding 

Arithmetic encoding uses a procedure that assigns a single floating point number to a 

given symbol set there by encoding it in a non ambiguous and efficient manner devoid of 

the integer problem that Huffman encoding faces. Arithmetic encoding can be established 

by considering the example “Bill Gates” (Nelson, 1991). The distributions necessary to 

perform the actual encoding can be obtained as seen in (Table 3) (Table 4). 
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Character Frequency of occurrence Probability 

b 1 1/10 

i 1 1/10 

l 2 2/10 

g 1 1/10 

a 1 1/10 

t 1 1/10 

e 1 1/10 

s 1 1/10 

Table 3: Probability distribution for input stream (adapted from wikipedia) 

Each character is assigned a range of values between 0 and 1 as follows. 

Character Frequency of occurrence 

b 0.10 -0.20 

i 0.20-0.30 

l 0.30-0.50 

g 0.50-0.60 

a 0.60-0.70 

t 0.70-0.80 

e 0.80-0.90 

s 0.90-1.00 

  Table 4: Estimated Probabilities (adapted from wikipedia) 

 
Space occupies the 0.0 to 0.10 range. 
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Our encoding would proceed as  
 
Character Start value End value 
B 0.10 0.20 
I 0.12 0.13 
L 0.123 0.125 
L 0.1233 0.1235 
space 0.12330 0.12331 
G 0.123305 0.123306 
A 0.1233056 0.1233057 
T 0.12330567 0.12330568 
E 0.123305678 0.123305679 
S 0.1233056789 0.1233056789 

Table 5: Performing the encoding procedure 
 

Thus “Bill Gates” would be coded as 0.1233056789 (Table 5). 
 
It is easy to decode this number back to bill gates by following a procedure that is the 

reverse of the technique mentioned above. Arithmetic coding has also been applied for 

Text compression (Witten et al, 1987).  

 
 
 Prediction by Partial Matching (PPM)  
 
PPM was developed in 1984 by Cleary and Witten soon after arithmetic encoding was 

accomplished in 1976. This was followed by a series of improvements (Moffat, 1990) 

resulting in the version PPMC. The algorithm uses a finite context Markov Model to 

predict the occurrence of the next symbol based on the occurrences of the previous 

symbols in the text used to train the model. In reality, the method actually blends together 

multiple lower order Markov models in the case when a given order is unsuitable for the 

prediction. Thus it recursively falls onto lower order models until the least order where 

every symbol occurs with a probability of 1/|∑| where ∑ is the total number of symbols in 

the alphabet. This accounts for the escape probability in case a symbol was never before 
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seen in the input text used to generate the model statistics. At its introduction, PPM was 

thought to be able to incorporate any order model and the predictions would improve 

with the increasing order. However it was later discerned that an order of “5” works best 

and optimally and as the order increases further, the accuracy falls owing to the escape 

mechanism onto lower order models. The PPM* algorithm that uses an unbound context 

length indicates it is better to use finite deterministic contexts for application such 

classification of text (Hiroyuki et al, 2005). 

 

Though the initial applications of the PPM algorithm were to enable better compression, 

it has been applied to text prediction, language identification, dialect identification, 

language segmentation, word segmentation, text categorization etc. We intend to use 

PPM to perform classification of data as belonging to a specific set of named entities or 

otherwise in biological text. 

 

PPM for classification 

By using a precise definition of the named entities we are looking for, we can construct 

sets of data that are composed only of these entities and sets of data that are devoid of 

these entities in total. This is equivalent to distinguishing the data as belonging to 

different classes namely A and B (if binary classification). An intelligent guess would be 

that by constructing models that have different statistics of symbol occurrence we can 

utilize PPM and cross entropy to identify a token to belong to one of these classes. In 

other words, a token that resembles the model A more closely in its symbol distribution 
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rather than model B would be attributed to belong to the class A as opposed to class B 

and vice versa.  

However, it is very pivotal that the training sets of data used to construct the model 

statistics of the various classes be very representative of that class of entities and also 

provide a clear distinction within the classes generated. Classes of data whose symbol 

statistics may be close to each other may not provide a good classification result as the 

cross entropy would not be substantially larger for one over the other.  

By using models that represent gene function statements and non gene function 

statements and models that represent protein-protein interactions and non interactions, we 

have made an attempt to study the efficacy of PPM to be applied to the realm of 

biological text. We find that the method performs supremely well when the definition of 

the named entity is precise and non ambiguous. As we move into semantic interpolations 

and mining based on meaning and import, we notice that the performance falls markedly. 

 

Proteins and Protein Protein Interactions 

Since protein-protein interactions do not have a very strong defining principle, it required 

careful manual annotation and analysis of the training and testing corpora and the results 

achieved. Protein-protein interactions refer to the association of protein molecules and the 

study of these associations from the perspective of biochemistry, signal transduction and 

networks (Wikipedia). Proteins are the building blocks of life systems. Though it is the 

genes that code for proteins, it is the proteins that actually render the final function to a 

cell or its members. Techniques such as co-immuno-precipitation, FRET, yeast two 
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hybrid assay, tandem affinity purification have all contributed to the ability to study 

protein-protein interactions on a massive scale. 

 

 Proteins are of various forms and structure and, in fact, even their functions are an 

outcome of their structure. It is through a complex interplay of the conformational 

compatibilities that multiple proteins are able to interact with each other and with other 

biological molecules. A simple, elegant example is that of the interactions between 

enzymes, a class of proteins, and their substrates. We are well aware of the lock and key 

and induced fit models which explain how enzymes and substrates interact by virtue of 

their conformational fit. It is impossible to even perceive of the biochemical processes 

that enzymes catalyze within cells, if proteins were not to interact.  

  

A second direct outcome of protein-protein interactions is that of signal transduction. The 

responses that a cell and its components generate to an external stimuli or and 

environmental change is all made possible through signal transduction mediated by a 

cascade of protein interactions triggered by receptors present on the cell exterior. The 

release of second messengers, the production of antibodies conferring immunity, cell 

signaling, everything is a far reaching consequence of interactions among protein 

molecules.  

 

Also, it is critical to examine how proteins can form multimeric complexes by attaching 

with homogeneous or heterogeneous members. These multimeric forms are “active” as 

against the inactive non multimeric forms. We also have scenarios where proteins 
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phosphorylate other protein molecules which then act as molecular switches in a variety 

of biochemical processes. Post translational modification of proteins is carried by 

molecular chaperone proteins that interact with other proteins. 

 

It is blatantly evident that proteins and their interactions are the very essence of the 

functions of the cell and hence studying these would provide a key to open a world of 

opportunities for therapeutic benefits. 

 

2.3 Goals/Hypothesis 

We have a set number of goals to achieve in this thesis. We aim to recognize and extract 

key phrases comprising named entities from biomedical corpora. We look to facilitate 

automated information annotation and enable advanced database curation. Studying text 

mining methods suited for biomedical text and establishing the efficiency of prediction 

by partial matching in this realm is also our focus. 
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3. METHODS 

 

The Prediction by Partial Matching (PPM) text compression scheme has consistently set 

the standards in lossless compression of text since it was originally published in 1984 by 

(Cleary et al, 1984). 

 

Compression methods encode a text string according to a given model. Formally, the 

average number of bits per symbol to encode a text string T can be considered to be the 

cross entropy H (T, Pm, L) with respect to the model Pm and the language L and is given 

by: 

H (T, Pm, L) = -1/n log p T 

This can be applied as a chain rule to extend the formula to include multiple contexts in 

the PPM family of models. 

 

PPM uses the Markov model principle to perform the compression and the prediction. 

Each symbol is encoded based on the probability of the symbol calculated in the context 

of the ‘n’ previous symbols. The value ‘n’ acts as the order of the model. An order of 5 

has been found to work optimally and higher order models do not improve the 

performance much (Cleary, Teahan, Witten, 1990). PPM, in reality, performs a blending 

of different order models through the process of exclusion to remove lower order 

predictions for a given symbol. This is achieved by calculating probabilities for all orders 

lower than the highest order specified. Most importantly a 0 order distribution is 

calculated from the unconditioned probabilities of the symbols and a -1 order model is 
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also constructed where the probabilities of the symbols are the reciprocal of the alphabet 

size leading to very small but finite probability of occurrence. Each of the probabilities in 

all the order models are calculated by considering the frequency counts of the symbols. 

 

The blending mechanism of PPM can be implemented at different levels depending on 

the token size. This can be either character based, word based or even sentence based. 

Compression experiments with a wide range of English (Teahan, 1998) show that word-

based models consistently outperform the character based methods although the 

difference in performance is only a few percent. PPM itself is completely described and 

the two variants, following a series of recommendations by Moffat are called the PPMC 

and the PPMD methods. These two methods differ from PPM itself in that they use a 

different scheme to evaluate the escape probability when PPM switches to a lower order 

model to make a prediction. PPMC uses the number of novel or new symbols that were 

already observed in the given stream to calculate the escape probability. PPMD is a slight 

variation of PPMC where the probability of the escape symbol is the ratio of number of 

never before seen symbols to the total number of observed symbols. PPMD usually 

provides a small but noticeable improvement in prediction in most cases. 

 

3.1 The Noiseless Channel Model 

 Knight, 1999 defines text mining as the process of automated or semi automated 

knowledge acquisition from linguistic sources. Most importantly, one would assume that 

the need to understand text to perform text mining is absolutely superficial. It has to be 

made possible to extract entities without having to understand the semantics involved. 
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The usefulness measure in text mining depends on the application – for example, it might 

be finding words in Chinese text, finding names and addresses in bibliographic 

references, or classifying text by language, authorship, or genre. 

 

Witten et al, 1999 show text compression can alternatively be used as a key technology 

for text mining and classification. Frequently text mining is performed by defining 

dictionaries and grammars and progressively mapping sentences to the desired 

framework that best represents the entities to be identified. Witten et al use supervised 

training to detect sub languages of text instead of explicit programming. Language 

modeling techniques based on the text compression scheme PPM are used to extract 

meaningful low level information about the location of semantic tokens such as names, 

email addresses, locations, URLs and dates. They report an accuracy of 89.4% for names 

and 75% for phone numbers identified. 

 

The type of algorithm commonly used in natural language processing (NLP) applications 

is based on a statistical framework called the “noisy channel model” (Jelinek, 1985). This 

has as its basis a theory developed by Shannon to model a noisy communication channel. 

The key idea is that the target text can be considered to be a corruption of the source text. 

Here, the application is formulated as a communication process- a message sent down the 

communication channel by a sender and the receiver tries to recover the original message 

that is received. This is usually done by finding the target text with maximum probability 

given the observed text. The process of correcting the text is often referred to as 
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decoding. This is usually performed using a dynamic programming search algorithm 

called the Viterbi, 1967 algorithm. 

 

The noisy channel model may seem a rather arbitrary and contentious characterization for 

NLP but leads to more robust and accurate performance than other methods. For our 

purposes, where we wish to exploit language models based on the state of the art text 

compression techniques which have been found to be highly effective in many text 

mining and NLP applications we wish to alter the perspective of the noisy channel model 

statistical framework. Rather than characterize the process as one of noisy 

communication- and therefore requiring a decoding process to recover the original 

message- our approach is to think of the process(perhaps more naturally) as noiseless 

communication and the emphasis is on encoding rather than decoding. Here the sender 

will first find the best encoding of the target message so that it can be sent with lossless 

property to the receiver down the noiseless communication channel. In this case the 

decoding process is of secondary importance mainly to verify the encoding process the 

emphasis instead is placed on how efficiently the target message can be encoded. Also 

encoded is additional information on how to transform the source message into the target 

message. In this case, the search process that of finding the best transformation occurs 

prior to the encoding phase rather than during the decoding phase. 

 

Witten et al apply this approach to text mining. They show how a broad range of patterns 

such as names, email addresses, and URLs can be located in text. With their approach, 
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training data for the model of the target text contains text that is already marked up in 

some order. A correction process is then performed to recover the most probable target 

text from the unmarked up source text. Yeates and Witten, 2000 show how many text 

mining applications can be recast as tag insertion problems- that of reinserting tags back 

into a sequence to reveal the meta–data implicit in it. Some sample applications they 

explore are word segmentation and identifying acronyms in text (Yeates, Bainbridge, 

Witten, 2000). 

 

Teahan and Harper, 2001 have shown that by modifying PPM and enabling the algorithm 

to insert tags in the source text we can identify clearly all symbol locations where the 

method makes a shift between the models that can be either static or dynamic. This would 

be highly useful as it allows the selective advantage of recovering the text just by 

removing the tags off. Also, it indicates that the tagged regions are the regions of interest 

where the stream of symbols are marked up based on the statistical patterns in the 

training data. This tag insertion itself is implemented by using the Text Mining Toolkit 

(TMT) a toolkit for modeling sequential text based on text compression schemes. 
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3.2 Prediction by Partial Matching for Language Identification 

One of the first examples of the application of PPM for classification came when it was 

tested for the ability to identify a text as belonging to a language. The goal is to apply 

PPM to generate different models for different languages (say French, German, Latin, 

and English) based on training text that contains symbols from each of these languages 

respectively. As a first principle, we will thus end with four models one for each of the 

languages with each model having a specific number of bits measuring the entropy of that 

model.  

 

In order to check the efficiency and accuracy of the models and PPM itself as a tool for 

classification, the input stream of symbols is then encoded using the four different 

statistical models generated. This would give rise to what is known as cross entropy 

values i.e. the entropy of the input text with respect to each of the four models 

constructed from the training text. 

 

If the input stream has characteristics/statistical patterns that resemble closely with any of 

the four models generated, the cross entropy of the given stream with respect to that 

model would be very low. As a result the model that was used to generate the least cross 

entropy would be the model that would closely resemble the symbol statistics in the input 

stream. This would enable us to conclude that the given input stream is more associated 

with one model against the other three. The key here is that even if the input stream were 

from a language that was not present in the four models generated; say the input stream 

was from a language like Hindi, we would still ascribe the input stream to belong to one 
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of the four classes that were present. The following figure (Figure 2) indicates the cross 

entropy principle for classification. 

 

Figure 2: Cross entropy principle for a binary classification (Teahan, ppt for TMT) 

 

In the above picture, we represent two models one trained from English Text and another 

from Maori1 text namely Model E and Model M. We then compress our input text to 

calculate the cross entropy with respect to the two models to be 3.73 bits per character 

and 2.00 bits per character for English and Maori respectively. Therefore we would then 

conclude that our text belongs closely with the Maori language than with English. 

 

Therefore we need to understand some salient features. 

 

                                                 
 
 
1 The language of  the original people of  New Zealand 
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1. We are using a relative means to establish that our input stream belongs to one 

class of objects than another but only within the set of classes for which models 

have been generated and a cross entropy is available. 

2. To achieve a good classification, we must be sure to include the classes to which 

the input stream may closely be associated with. There is no way to identify, for 

example, that Hindi is not really any of English, German, Latin or French, if we 

did not realize the importance of our training data generating the models. 

3. We also need to ensure that the training sets are sufficiently large and provide a 

very good difference in the cross entropies achieved. In other words, greater the 

difference in the cross entropy values for the models, greater the chance that our 

input stream belongs to the class with least cross entropy. 

 

The following table (Table 6) illustrates (Teahan) tests on language identification based 
on PPM. 
 
Training/testing English  French German Latin 

English 1.56 2.30 2.38 2.33 

French 2.54 1.71 2.56 2.59 

German 2.64 2.60 1.75 2.59 

Latin 2.87 2.92 2.91 1.97 

 
Table 6: Results of testing PPM over language classification (Teahan, ppt for TMT) 
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We can observe that the cross entropy values along the main diagonal are the least for the 

given row indicating that PPM classifies the text to its correct class based on the 

approach of cross entropy. 

 

3.3 Implementing PPM: A simple example 

PPM clearly works well to identify text as belonging to a particular class based on cross 

entropy. We will examine using a simple example as to how PPM uses the blending of 

finite context Markov models of various orders to generate the symbol probability and 

predict the occurrence of the next symbol in the stream. 

 

In effect the approach of blending lower order Markov models easily removes an 

arbitrary pseudo count being used in case a character that was never before seen in the 

input stream appears. PPM uses the previous “k” symbols to calculate the probability of 

occurrence of the next symbol. To achieve this, the algorithm stores all length-k 

subsequences of characters and calculates a probability distribution of these subsequences 

for different values of k. The algorithm follows a recursive procedure to determine the 

highest order K which can be used to perform arithmetic coding and generate a 

probability for the current symbol. Thus it contiguously switches from order k to lower 

orders until an order which is most suitable for prediction is reached. The test of 

suitability is then to be studied. In case a character that appears in the stream is novel to 

order k then it cannot be assigned a probability with a model of that order. Hence the kth 

order model becomes unsuitable and the next lower order model is chosen. In the case 

that even this model is unsuitable i.e. the character is novel to this model also, then the 
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next lower model is triggered etc. To ensure that the recursion does not proceed 

indefinitely, a final model is present that contains all the characters in the given alphabet. 

Each time the decoder switches from one higher order model to a lower order model it 

generates an escape sequence with a specific probability calculated for that model. Thus 

the algorithm makes sure that all characters are assigned a probability value and also 

avoid the use of arbitrary pseudo counts. 

 

Let us consider an input text “abracadabra”. We shall now observe how PPM will use the 

symbol frequencies to generate models of order k=2, 1, 0, and -1 and use these 

distributions to predict the probability of occurrence of the next symbol in the context. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

34

The following table (Table 7) describes how PPM generates its probability distributions. 

Order k = 2 Order k = 1 Order k = 0 Order k = -1 

Prediction c p Prediction c p Prediction c p Prediction c p 

ab 
r 
esc 

 

 
2 
1

 
2/3 
1/3 

a 
b 
c 
d 
esc 

 
2 
1 
1 
3

 
2/7
1/7
1/7
3/7

a 5 5/16 A 1 1/|A|

ac 
a 
esc 

 
1 
1

 
1/2 
1/2 

b 
r 
esc 

 
2 
1

 
2/3
1/3

b 2 2/16    

ad 
a 
esc 

 
1 
1

 
1/2 
1/2 
 

c 
a 
esc 

 
1 
1

 
1/2
½ 

c 1 1/16    

ba 
a 
esc 

 
2 
1

 
2/3 
1/3 

d 
a 
esc 

 
1 
1

 
1/2
1/2

d 1 1/16    

ca 
d 
esc 

 
1 
1

 
1/2 
1/2 

r 
a 
esc 

 
2 
1

 
2/3
1/3

r 2 2/16    

da 
b 
esc 

 
1 
1

 
1/2 
1/2 

   esc 5 5/16    

ra 
c 
esc 

 
1 
1

 
1/2 
1/2 

         

Table 7: Running example for input stream “Abracadabra” (Cleary et al, 1995) 

 

The above table is generated by first enumerating the different length-k subsequence 

strings in the input. With k=2 we get 7 different strings as in the first column of the table. 

With order k=1 we get 5 strings etc. Each column has an escape sequence whose count is 

equal to the number of “distinct” symbols seen in the input until then. Thus the third 

column of order k=0 has a count of 5 associated with the escape sequence as 5 character 
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were observed in that order. The final column has the lowest order model that would be 

used if a character was totally unseen. 

 

Consider three characters which may appear following the input symbols “abracadabra”. 

The probabilities of occurrence of these characters are shown in (Table 8) below. 

 
Character Probabilities 

(without exclusion)
Probabilities 
(with exclusion) 

Code space occupied 

c 1/2 1/2 -log2(1/2)=1bit 
d 1/2*1/7 1/2*1/6 -log2(1/14)=3.6bits 
t 1/2*3/7*5/16*1/|A| 1/2*3/6*5/12*1/|A|-5 -log2(1/3822.33)=11.9bits 

Table 8: Probability calculation for subsequent characters 
 
If the next character in the stream is ‘c’ then it matches the first column with k=2 where 

‘c’ followed the context “ra” previously. Therefore ‘c’ would be encoded with a 

probability of ½ or 1 bit. 

 

Consider the character ‘d’ appearing following “abracadabra”. We can see that‘d’ never 

followed the characters “ra” previously. Therefore the k=2 order model becomes 

unsuitable and an escape sequence is generated with a probability of ½. Following this 

the next lower order i.e. k=1 model is chosen and it can be seen that‘d’ followed ‘a’ with 

a probability of 1/7. Therefore the combined probability for ‘d’ to appear is the product of 

the two probabilities and equals 1/14 requiring 3.6 bits to encode this symbol.  

Finally, let us consider the case where a symbol was never seen in the text stream. 

Consider the character ‘t’. Since ‘t’ did not occur at all in the input stream it would 

generate an escape sequence for all models irrespective of k. However it will finally end 

with k=-1 where the probability of finding ‘t’ would be 1/|A| or equal to 1/|256|. By 
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multiplying with escape sequence probabilities of all models prior to this, we see that‘t’ 

has a probability of 1/3822.33 and so requires 11.9 bits- a very high value (Cleary et al, 

1995). 

 

3.4 Gene Function Identification  

The transcription and translation of DNA into RNA and proteins respectively constitutes 

the central dogma of life. The small units of heredity within this long double stranded 

DNA helix are the genes. As genes and their products interact with one another, the 

organism develops its phenotype in a specific manner. Therefore an understanding of 

genes and their corresponding functions is a very significant portion of research in 

biotechnology and medicine. By understanding the functions of a gene, one can 

theoretically, target these genes to modify, alter or sometime even knock out the function 

for numerous therapeutic and medical benefits. Such an advantage has led researchers to 

devise high throughput technology such as the Yeast Two Hybrid System and Microarray 

chips to facilitate the simultaneous study of thousands of genes from any given cell of 

any given organism at any given time and condition. 

 

The direct outcome of this biotechnology revolution has been a tremendous overflow of 

gene function information with the concomitant increase of the articles being submitted 

to literature databases such as the PubMed. As more and more articles focusing on genes, 

their functions and methods to modify them were being published, an increasing number 

of researchers using these articles to identify prior information on their gene of interest, 

or to identify medical ramifications of existing functions or even to identify putative drug 
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targets rose considerably. The number of searches being performed on these journal 

articles based on genes grew exponentially between 1997 and 2007 (NCBI). To handle 

such voluminous information and to efficiently allow searches on the articles thereby 

reducing the time and effort involved in locating articles of interest, most public 

databases began to curate these articles to index them based on key terms such as gene 

names, gene functions etc. 

 

One such effort is the ongoing effort of the National Center for Biotechnology 

Information (NCBI) to construct a database “the locuslink” (now superseded by Entrez 

Gene) that would encompass the information annotation for a given gene as derived from 

journal articles. In particular Locuslink has a field that includes the function of the gene 

being studied. This is to allow researchers to retrieve information for the gene function 

from the database. 

 

Constructing such databases that would facilitate proper gene annotation and reduce the 

time involved in identifying them needs the effort of multiple human curators who need 

to go through each article as it gets published and extract the necessary pieces of 

information. This process is laborious, error prone and vulnerable to variability in 

semantic interpretations from one curator to another. With the availability of the 

electronic information storage system and a growing interest in data mining and named 

entity recognition, a possible solution that could alleviate the problems of human curation 

would be to identify named entities in biological corpora. In particular, an effective 

solution to the problem of gene function identification would prove very beneficial in 
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terms of reducing the human intervention in annotation but also providing a first means to 

further entity identification. The gene functions that may result from such an effort could 

be further used to improve search terms for information retrieval. Also, the possibility 

that an automated approach could identify new relations that a manual curator previously 

did not identify is a very realistic one. The final applications seem amazingly 

overwhelming in that this method could be used by scientists in the medical domain to 

extract genes that could be drug targets depending on the function they perform. 

 

To facilitate gene annotations further, NCBI constructed the GeneRIF dataset that 

comprehensively covers the gene functions for the known genes. GeneRIF in itself stands 

for Gene Reference Into Function. GeneRIFs are always associated with specific entries 

in the Entrez Gene database. The records in GeneRIF comprise of the PubMed identifier 

of a scientific publication from which the evidence for the Gene function was obtained. 

Most GeneRIF statements also appear directly taken from the title of the abstract of the 

scientific publication. GeneRIF statements are generated by indexers at NCBI. However, 

users may also submit their own GeneRIF annotations provided a valid Gene ID exists 

for the given gene in the Entrez gene database. Here are some GeneRIFs taken from 

Entrez Gene for GeneID 7157, the human gene TP53. 

• p53 and c-erbB-2 may have independent role in carcinogenesis of gall bladder 

cancer 

• Degradation of endogenous HIPK2 depends on the presence of a functional p53 

protein. 
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• p53 codon 72 alleles influence the response to anticancer drugs in cells from aged 

people by regulating the cell cycle inhibitor p21WAF1 

• Logistic regression analysis showed p53 and COX-2 as dependent predictors in 

pancreatic carcinogenesis, and a reciprocal relationship to neoplastic progression 

between p53 and COX-2. (NCBI) 

Our approach to identifying Gene function phrases makes use of the Prediction by Partial 

Matching algorithm for text compression to classify a token as belonging to gene 

function class or a non gene function class and further markup the token within the input 

text. Therefore the problem is a binary classification problem to be solved using PPM. 

The goal, then, is to collect data representative of gene functions and non gene functions 

to generate two models by using the PPM text compression scheme. Finally, we can 

expect to classify the tokens (words, phrases, sentences etc…) to belong to one of the two 

classes based on the cross entropy approach outlined previously. To construct the model 

for Gene function statements, we chose GeneRIF to be our source, naturally, and to 

represent the non gene functions, we have used a number of different approaches to study 

the system performance. The actual PPM algorithm has been implemented as a toolkit 

using the C language, called as the Text Mining Toolkit (TMT) available at  

http://www.aiia.cs.bangor.ac.uk/TMT 
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3.4.1 GeneRIF for Training  

Since GeneRIF contains a comprehensive set of PubMed identifiers of documents and the 

evidence text of Gene Function statements, it was naturally the choice to be used to pick 

out Gene Functions for training the TMT to generate a Gene Function model. To obtain a 

clean training set, the GeneRIF source was processed to remove the PubMed identifiers 

leaving behind only a collection of Gene Function statements. Using this as our training 

set for Gene Function model, we utilized the TMT to generate model statistics for the 

same. While performing the training we set aside 200 records randomly for testing the 

model.  

 

3.4.2 Non Gene Function Text for Training 

The first model having generated, the question is next to generate the non gene function 

model that can be used to well distinguish the Gene Functions from the non gene 

functions in a given abstract of text. To achieve this, several variants were used along 

with a thorough monitoring of the system performance. In general, the idea is to remove 

any gene function phrases off the abstracts and then use the rest of the abstract phrases, 

which are the non gene functions, to obtain the second model. Therefore, one has to first 

identify all the abstracts which provide the evidence text for GeneRIF, through the 

PubMed identifier present in the GeneRIF source. Then a match is executed to locate the 

gene function statement within the abstract that actually GeneRIF uses as the evidence 

text. This matching is not trivial because GeneRIF evidence text does not have an 

EXACT match with the corresponding statement in the actual abstract. It was identified 

that an exact match occurred only 7.48% of the time further emphasizing our need to 
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slowly vary the non gene function model until saturation in the performance is achieved. 

Once a corresponding phrase is located, the entire abstract without this phrase is then 

appended to the training text required to construct the model for the non gene functions. 

Another rationale behind such a procedure is that the sentence framework within 

biological corpora may be different from the general language framework but 

significantly characteristic of statements that do not talk about genes and their functions 

yet are part of the abstract itself. We noticed that this naïve model worked suitably 

efficiently (better than random guessing) but far less accurate than other variants 

discussed further. 

 

Both the Gene Function and non gene function models were constructed using TMT with 

an order of “5” as it was shown to be the most optimal. Also a character based processing 

was chosen because in general, Biological terms make it difficult to determine word 

boundaries. Specifically, when the terms involve gene names or protein names that could 

be one of several different forms in each text, depending on the style of the author’s 

writing, the boundary of words become difficult to ascertain. 

 

3.4.3 Testing 

To avoid a biased testing by including the abstracts in training to be a part of the test set, 

which would skew the results considerably, we left out 200 abstracts and corresponding 

GeneRIF gene functions from the GeneRIF source even during the training phase. A 

random set of abstracts from this set of 200 formed the test set for the variants 

(modifications to the training set based on performance analysis of the current model) 
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used in the identification of Gene functions. The testing is carried out by using the same 

parameters as for training using TMT. The difference and the special feature of TMT is 

that first it identifies phrases to belong to either gene functions or non gene functions and 

then in the second step it marks up these phrases with appropriate tags specified during 

the training. 

Therefore once TMT marked up gene functions within the abstracts, these were fished 

out selectively using PERL scripts and then compared with the actual GeneRIF 

representative for that abstract. One has to notice that there could be multiple gene 

functions arising out of TMT markup and one has to locate one true representative out of 

these and then finally compare this representative with the actual GeneRIF representative. 

 

3.4.4 Variants 

Variant #2 

This variant was different from the first one in that the first one used only those abstracts 

for training, that had an exact match between the GeneRIF representative and the 

sentence in the abstract. Therefore many gene functions which did not find an exact 

match were left off the training in the first case. However in the second variant, even 

abstracts that had partial matches of a sentence with a GeneRIF representative were 

chosen for the training. But we ensured that the complete sentence which had a partial 

match did not appear in the training data for the non gene function model. 

Variant #3 

The third variant was composed to improve the distinguishing ability of TMT between 

gene functions and non gene functions. In this variant, the non gene function model was 
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enhanced by appending the set of sentences from the King James’ bible  data collection 

available as a part of the TMT. This was because of the observation that some of the false 

positives from variant #2 were actually English sentences which did not have gene 

function mentions. 

Variant #4 

By keeping the non gene function training set as is from Variant #3, we changed the 

Gene Function training set by expanding it to include all the Gene Function statements 

from GeneRIF irrespective of whether they had a partial match with the abstract or not. 

This not only expanded our Gene function repertoire but also improved the performance 

of the system well. Again, we had removed 200 abstracts from the entire set prior to 

training to be used for testing purposes. 

Variant #5 

The final variant in the series had a post processing phase associated with the final results 

of variant #4. This was carried to efficiently identify the best possible representative from 

the set of multiple putative functions marked by TMT. This was carried out by using a 

distance measure to compare the number of word matches between the gene function 

marked and the title of the abstract. As mentioned earlier, the GeneRIF source contains 

representatives frequently isolated from the title of the abstract. Therefore, following this 

we used that function statement that captured the title the best. 

 

Along with the five variants proposed above, a second task was considered to compare 

how the system performed in general without relation to GeneRIF representatives. The 

second subtask performed using the same approach was to restrict the comparison with 
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GeneRIF functions and to directly evaluate all the candidate gene functions manually to 

ascertain whether they were actually gene functions are not. Due to the nature of the 

second task, it eliminated the need to identify a single representative out of the candidates 

from any given abstract and so the fifth variant with the post processing was thwarted for 

this task. However all the evaluations were performed again to ensure there was no bias 

in the system accuracy measurement. 

 

A typical markup example after applying the TMT on the abstract to identify gene 

function is shown (Figure 3). 

 

Figure 3: Example Markup of an abstract by TMT 
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The region of the abstract marked in yellow is the set of statements identified by TMT as 

gene functions. 

The TITLE of the abstract is (Figure 4) 

         

Figure 4: Title of the abstract for test 

Match scores for function 1 with title is 5 whereas that for the second one is 4. 

Post processing yields the first function marked in the abstract and this is the actual 

GeneRIF representative. 

  

3.5 Protein-Protein Interaction identification 

With the successful levels of performance achieved on the gene function identification 

objective, the next phase to apply the technique to a problem that is a bit fuzzier by 

definition as compared to gene functions. The task was to identify protein-protein 

interactions in the biomedical corpora using an approach quite similar to the one 

employed for discerning gene functions from the same text. 

 

Our overall objective remains unchanged in that we are looking to extract protein-protein 

interaction phrases from biomedical corpora facilitating an easy annotation scheme and 

also allowing researchers to identify these valuable entities to construct interaction 

networks and proceed to identify drug targets. 
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Our focus, alternatively, is to determine, how effectively PPM based compression can 

contribute to the same and what differences might arise due to the nature of the problem 

and the entity being tackled. We have proceeded along similar lines to gene function 

identification in that; we have constructed two training sets each representing the class to 

which we would like to classify our input stream. These data sets compose of manually 

curated protein interaction phrases obtained from the intact database and the non protein 

interaction sentences were extracted from Brown’s English corpus frequently used for 

NLP. 

 

3.5.1 Training 

Many different sources were considered to compose compact and sufficiently large 

training set for protein interaction identification. There are multiple approaches that were 

scrutinized. We could create a dictionary of protein names first to identify all occurrences 

of protein names within the article. We could then use a dictionary of interaction terms 

such as “binds to”, “phosphorylates” etc. to identify all sentences that contain a protein 

name as well as the interaction term. Alternatively, we could identify protein-protein 

interaction statements/phrases directly by constructing a dictionary that has both the 

protein names and their interactions together as single entities. 

 

The first method has the disadvantage in it that there are protein interactions within 

biomedical articles that do not actually have protein names associated in the same 

sentence. The protein name would have been mentioned in the beginning of the article 
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and a preposition would be used when talking about its interaction. This leaves us with 

the possibility of missing vital interactions from articles and the inability to discover new 

relations. The second approach is comfortably away from such a disadvantage and 

subsequently, we decided to use this approach. The problem however is to identify a 

suitable source that can provide us with such interaction sentences and phrases. After a 

thorough examination of a multitude of data sources available from the (BioCreative) 

consortium, we decided to make use of the data mining archive provided by the (IntAct) 

database. Some of the sources that were studied included the Yapex corpus, the Plake 

dataset used in the (LLL05) contest, the datasets from Mint, BIND, DIP all of which 

showed performances considerably lesser than the random guess attributed to the textual 

extracts that contain an interaction but are highly non specific. 

 

The Intact data archive for protein-protein interactions is a tab delimited list of PubMed 

identifiers and the evidence protein interactions obtained from the articles corresponding 

to this identifier. The direct utilization of the IntAct data source culminated in a higher 

performance (upto 44%) but was still an issue because the data was more of a collection 

of evidence excerpts than concise evidence sentences or phrases. Our answer to this 

challenge was to create a manual annotation of the evidence text from IntAct data source 

and utilize this concise data set for training and generating a model. About 1169 

interaction sentences were isolated from the IntAct data source and manually refined to 

form our training data. Each of the excerpts that formed the evidence text for Intact data 

archive were scrutinized to filter out any common English constructs that were present 

apart from direct interaction phrases (Figure 8). Also included were sentences that were 
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completely interaction based and did not include non interaction key words. 

Simultaneously we set aside 100 abstracts from the same intact source to act as our test 

set. The test set had zero overlap with the phrases used for training the TMT. 

 

3.5.2 Testing 

The efficiency of PPM to identify protein interaction phrases was tested on 100 abstracts 

chosen randomly from the IntAct data archive. These 100 abstracts did not form part of 

the training set that was obtained by refining the IntAct data archive. The goal was to 

identify all protein interaction phrases within the 100 abstracts and then measure the 

precision and recall of the system. To create the reference list of interactions from the 100 

test abstracts thereby achieving a benchmark to compare the TMT marked phrases with, 

the 100 abstracts were manually annotated to unearth all protein interaction phrases 

within these abstracts. TMT would be applied to the same 100 abstracts and the phrase 

marked up by TMT as interaction fragments would be compared with the manually 

annotated dataset for an overlap. The evaluation of an overlap and the definition of a true 

positive were critical. Our evaluation scheme was straight forward as we chose to 

consider a three word match between a TMT marked phrase and a manually annotated 

phrase. The three words were not to be articles or prepositions so that we can remove 

spurious overlaps that were meaningless. Also critical was the use of a sentence 

boundary. Gene functions are generally complete in the sentence form and do not exist as 

incomplete phrases unlike protein interactions. To overcome this issue, we chose to 

consider a sentence to end at a period and also to begin at a period. For example, if the 

manual annotation of a scientific abstract for protein interactions had two sentences as 
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"A phosphorylates B. B was found to be bound to C." then we used  

"A phosphorylates B" as one sentence and "B was found to be bound to C" as a second 

sentence. Since TMT markup never yielded a unit longer than a sentence (a markup can 

cut across a sentence boundary to span across two sentences at the maximum), it did not 

require a tedious break down. However, even if TMT marked entities as  

"<ppi>phosphorylates B.  B was found to be bound</ppi>" then, "phosphorylates B" 

would be one phrase and “B was found to be bound" was another separate phrase. This 

ensures that our counts for measurement of accuracy were not flawed and the numbers 

had a certain degree of credibility.  

The datasets are available at: http://mypage.iu.edu/~mmahoui/data-set-01-04-08/ 
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As an example let us consider (Figure 5), PubMed Identifier 16253999 

 

Figure 5: Example abstract for markup with TMT 

The manually annotated interaction sentences are in (Figure 6) 

        

Figure 6: Results of manual annotation 
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The TMT marked interaction phrases are as in (Figure 7) 

     

Figure 7: Results of TMT markup 

 

     

Figure 8: Sample manual annotation of Intact PPI, PMID 10369680 
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4. RESULTS 

 

The results are presented in two sections. The first section provides the data obtained 

from the gene function identification test and the second section depicts the results from 

the protein-protein interaction identification experiments. 

 

4.1 Gene Function Identification 

There are two tasks associated with the Gene function identification experiments. The 

first one focuses on the identification and selection of a single gene function 

representative from each of the abstracts tested while the second task is oriented to 

determine all the plausible gene functions from each of the articles. The results are 

published for each of the tasks in Table 9 and Table 10 and for each variant described 

earlier. The system performance is measured in terms of precision and recall where  

 

Precision = Gene functions that were relevant and were retrieved by TMT 

Gene functions that were retrieved in all 

 

Recall =    Gene functions that were relevant and were retrieved by TMT 

Gene functions that was relevant in all 

 

F-score =   2*precision*recall 

  precision + recall 
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Task 1 GeneRIF function identification 

Method  Precision(raw) Recall(raw) Precision(percent) Recall(percent) 

Variant #1 58/91 58/100 63.76 58.00 

Variant #2 79/115 79/100 68.69 79.00 

Variant #3 89/120 89/100 74.17 89.00 

Variant #4 97/125 97/100 77.60 97.00 

Variant #5 

(post 

processed) 

93/95 93/96 97.89 96.87 

Table 9: Performance measures for the 5 variants 

Method F-score 

Variant #1 0.6074 

Variant #2 0.7348 

Variant #3 0.8091 

Variant #4 0.8622 

Variant #5 

(post processed) 

0.9737 

Table 10: F scores for the 5 variants 

The precision is calculated with different denominators in each of the variants, as by 

definition, we need to calculate the precision for the total number of gene function 

phrases retrieved and not the total number of gene function phrases that are actually 

present. The recall however is always calculated for the total number of relevant gene 
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functions and this turns to be 100, one for each of the 100 test abstracts sampled 

randomly from the 200 test records set aside. We notice that the performance improves 

consistently for all the variants and the best performance records an F-score of 0.9737. 

 

Task 2 Gene function identification 

Method  Precision(raw) Recall(raw) Precision(percent) Recall(percent) 

Variant #1 72/103 72/142 69.90 50.70 

Variant #2 105/125 105/142 80.00 73.94 

Variant #3 120/135 120/142 88.90 84.50 

Variant #4 134/158 134/142 84.81 94.36 

Table 11: Performance measures for the 4 variants 

Method F-score 

Variant #1 0.5877 

Variant #2 0.7685 

Variant #3 0.8664 

Variant #4 0.8933 

Table 12: F scores for the 4 variants 

For the second task, we manually identified 42 more gene functions from within the 

100 test abstracts apart from the GeneRIF representatives. By evaluating the PPM 

based gene function phrases against the manually annotated ones, we have obtained 

the foreseen results. The fifth variant is absent here as we do not have the need to 

select a single representative from all of the candidates. We observe again that the 

performance steadily improves with the system performing its best with an F-score of 
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0.8933. 
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Figure 9: Comparative analysis of Precision and Recall for Tasks 1 and 2 

The application of PPM for task 2 shows an improved precision but a weakening 

recall as compared to that of task 1 (Table 11) (Table 12). The reason for this is, with 

an addition of 42 more gene functions the number for false positives from task 1 were 

reduced and there was an increase in the number of true positives. However, as the 

number of gene functions that were actually relevant increased, the corresponding 

false negatives also increased leaving a reduction in the recall values. 

 

4.2 Protein-Protein Interaction Identification 

We achieved a satisfactory performance of PPM when TMT was applied to the task of 

identifying protein–protein interactions. Since our preliminary experiments with 

multiple data sets performed poorly and as we learnt from our result established 

through tasks 1 and 2 of the Gene function identification experiment, we constructed   

our best performing training data and have the set of results measuring the 

performance of the system. However, we note that the performance can be improved 

by considering a post processing phase to reduce the number of false positives 

involved. We notice that the precision is 60.125% and the recall is 80% giving us an 

F-score of 0.6865. The actual matrix constructed is as below. 

 

Measure True Positives False Positives False Negatives 

Value 288 191 72 

Table 13: Performance measures for PPI identification 
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 Manual annotation PPM markup 

Number of Protein-

Protein interactions 

360 479 

Table 14: Total counts of PPI marked 

 

 

Figure 10: Comparison of number of PPI marked manually and by TMT 

(Series 1- Manual annotation, Series 2- TMT annotation) 

The actual comparison of the number of interactions predicted by TMT and the 

number of interactions obtained by manual annotation is depicted in the above bar 
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chart. 

5. DISCUSSION 

 

5.1 Critical Analysis  

In our work, we have attempted to use text compression through the prediction by 

partial matching algorithm for identification of named entities in biomedical corpora. 

We have successfully applied the technique for two different applications to better 

understand the nature of problems to which the text compression based classification 

can be usefully applied. We have chosen to extract entities such as gene functions and 

protein-protein interactions keeping in view the vast impact the success of the method 

can bring on the medical community and also not losing sight of the variability that 

can help us in understanding the required tuning for PPM to be perpetually used to 

extract any named entity from biological text.  Based on our results from the 

experiments performed, we have charted a few conclusions and many reasons for the 

success and failure of PPM on different data sets. We have also let ourselves open to 

address a few interesting issues that can potentially improve the usefulness of PPM as 

an entity extractor and make it available for the scientific community at large.  

 

The difference in performance of PPM on gene functions and protein-protein 

interactions indicates to us several cues to the kind of entities that can be easily 

extracted by this method and the kind of entities that will require a more 

comprehensive training set to be extracted with a similar success if not more. We note 

that the problems we have tried to address are fundamentally different in the precise 
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definitions they carry. Gene function statements, on the one hand, are more clearly 

stated across scientific databases and archives as it is a much more explored and 

researched subject when compared with protein-protein interactions. On the other 

hand, protein-protein interactions are still in the nascent stages of research and they 

do not enjoy the same kind of specificity of datasets that Gene Function datasets 

possess. This leads directly to a reduction in the size of data that can be used to train 

TMT to generate a model representative of that specific class. As a result we observe 

a marked difference in the F-scores for the two problems. It is often believed that 

protein interactions should be more concise and compact as opposed to Gene 

functions. But this is far from what is observed. The datasets we currently have on the 

public domain for protein-protein interactions phrases in articles of scientific journals 

is not really a phrase or a sentence. We actually observe that these are more close to 

paragraphs of text that may have the protein interaction phrase included in them. As a 

result there is a tremendous loss in the precision of the system when evaluated at the 

phrase level. The recall in this case lies very close to a 100% as virtually the entire 

abstract is marked as a protein-protein interaction. In the wake of such a persistent 

problem, we manually curated these public archives (from Intact) to obtain a very 

specific set of phrases that would indicate protein-protein interactions rather than 

paragraphs that contain a large amount of English sentences interleaved. This would 

stand as an independent contribution of ours, a set of 1000 protein interaction phrases 

for text mining purposes. What we observed was a great increase in the precision of 

the system to a satisfactory 60%. However, we noticed certain features of the data set 

we used for training that could be a possible explanation for this behavior.  
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For one, we observe that interaction statements are seldom direct. We see a lot of 

phrases which actually imply an interaction but may not appear to be a simple form of 

“A is bound to B” sentences. These phrases are actually considered interactions solely 

from the semantic perspective and do not even contain the frequent key words 

associated with interaction statements. This leads to a situation where training a 

system to identify protein interactions based on “symbol statistics” may not work 

really well and generate false negatives. Second is the observation that some of the 

key terms in protein interactions such as p53/Creb which actually represents a co-

operation in certain excerpts may also be present anywhere in the same abstract 

without being a part of an interaction sentence. The presence of a large number of 

such patterns biases PPM to mark all such patterns in the test set increasing the 

number of false positives. Third, we notice that the terms present in protein 

interactions are generic English terms that can also be present as a part of interaction 

phrases that have nothing to do with proteins. These phrases could be talking about 

interactions amongst two chemical entities that are not really proteins. This increases 

the false positives as well. The rationale that, by identifying such interaction phrases 

and then performing post processing that includes only interactions with a protein 

name does not work well. This is because; more often than not articles contain 

interaction statements that have pronouns for protein names. By using a rigid model 

as described above, we would lose valuable information and jeopardize the entire 

objective of such an automated entity extractor. 
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5.2 Challenges in Datasets 

Some important contributions from this thesis will benefit the research community 

attempting to perform data mining for entities in biological data. To construct a 

meaningful, comprehensive, suitably sized training set with a good quality, we 

curated the Intact data archive. Manual curation of Intact dataset helped us narrow 

down the paragraphs of evidence text. We have created a data archive of 1169 protein 

interaction phrases that can be used by other researchers. The complex nature of the 

protein interaction phrases required considerable domain knowledge for the manual 

curation. This phase could not be automated as the automation in itself is the 

objective of our study. Also, a naïve string matching algorithm would fail to identify 

biologically significant interaction phrases. Hence we created our own datasets. The 

unavailability of a standard data set for evaluating results also implied a concordant 

annotation of the test abstracts with the same consistency as performed for the 

training sets. A change in the consistency would definitely lead to a bias in the results 

observed. Also the use of domain knowledge aided in analysis of each of the variants 

being studied and the modifications required for an improved accuracy. Without an 

in-depth knowledge of what is being studied, improvements would be impossible. Our 

choice for PERL as a post processing tool comes from our understanding that the post 

processing involves the extension of strings and PERL’s suite of regular expressions 

would be most powerful in achieving this. Some of the challenges in the datasets for 

training and our solutions to them had a direct impact on our results. 
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5.3 Analysis of False Positives 

The analysis of the kind of false positives observed leads us to a few plausible solutions 

which could be adopted as a post processing technique. The table (Table 15) gives a 

complete summary of the kind of errors frequently observed and a suitable solution for 

the same. 

 

Category 
of error 

Reason Example Solution Count 

1 Protein name 
appears without 
an interaction 
phrase 

inase defective mutant of 
Cdc2 fail 
 
E2F.3 

Check for 
occurrence of at 
least 1 interaction 
term from a list 
of terms 

36 

2 Interaction terms 
appear in the 
sentence without 
an actual 
interaction 
implied 

complex that also shares 
subunits with SAG 
 
kDa complex and the 100 
kDa 

Check for 
presence of 
atleast 1 protein 
name in the list , 
but pronouns can 
also be present 
and the rule is 
rigid 

42 

3 Protein name / 
entity 
combinations 
appear with 
slashes similar 
to an interaction 
phrase 

Rag A/Gtr1p are G proteins 
and 
 
lix-loop-
helix/periodicity/AhR 
 
non-Skp1-Cdc53/Cullin-F-
box protein function for the 
fission yeast 

Confirm an 
interaction 
keyword in the 
following or 
preceeding terms 

14 

4 DNA/mRNA 
terms in 
interactions but 
not as protein 
interactions 

DNA lesions, interaction 
with PCNA 
 
-MLL/FBP17-3' fusion 
mRNA 
 
Sites of TAZ mRNA and 

If DNA/mRNA 
key terms are 
present, eliminate 
the phrase 

17 
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protein 
 

Category 
of error 

Reason Example Solution Count 

5 Subunit names 
such as “alpha, 
beta, etc” close 
to protein 
complexes but 
without any 
interaction 
keyword 

with 2alpha:1beta:1gamma 
subunit 
 
ciation of alphaII-betaII 
spectrin may 
 
4alpha and 4beta subunits 
 
H chain-IIA colocalize 
 
 

Subunits should 
not have 
DNA/mRNA and 
should have an 
interaction term 
following.  

13 

6 Protein 
interaction 
method of study  

study, immunoprecipitation 
was 
 
By using the yeast two-
hybrid 

Length of the 
phrase coupled 
with protein 
name presence 

8 

7 Terms 
representing the 
domain ends 
such as “N 
terminal or C 
terminal” 

terminal domain of RNase 
E 
 
demonstrates that the 
carboxy-terminal domain 
of RNase E h 
 
han at the COOH terminus 
of VC 

Length of phrase 
with protein 
name 
combinations 

33 

8 Other chemical 
entities and 
interactions with 
them 

Copper – protein 
interaction 
 
HSP1 – lipid interaction 

Identify protein 
plus frequently 
occurring 
elements and 
chemical 
molecules 

7 

9 Actual False 
positives not in 
the above groups

 
 

 21 

 
Table 15: Analysis of False Positives 
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Figure 11: Distribution of false positives 

 
 

For example the observation that the presence of a slash amidst protein/gene names can 

appear as a protein interaction phrase (Figure 11), one could use a script that detect all 

such phrases containing the slash and check for the presence of common interaction 

keywords (a dictionary of terms) in the same phrase. If such a term is not found the 

phrase could be eliminated from the list of hits. Though some solutions are mentioned in 

the table there may be a few problems in implementing the entire set of solutions. For 

example, using a rigid rule such as the presence of a protein name along with an 

interaction term always could lead to the loss of some of the true positives. Therefore, a 

trade off must first be arrived at and a suitable solution scheme implemented to reduce 

the false positives to the minimum must be used. We certainly are very keen to study 

the results that may be generated by implementing some of our proposed solutions. At 

this moment we leave this as an open problem to be tackled by the interested. 
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6. CONCLUSIONS 

 

From our expansive experiments with PPM as a text compression technique for 

mining key phrases and the results we observe, we can conclude that PPM promises 

to be a very suitable approach for identifying key phrases of interest from scientific 

articles. PPM identifies key phrases with excellent precision and recall when provided 

with a training set of suitable size. This varies from one application to another but by 

having good models with a high degree of distinguishing ability between the phrase of 

interest and the rest of the abstract, the results can be improved further. In cases of 

applications where the key phrase of interest is well defined, as in gene function 

phrases, PPM shows tremendous accuracy. One may need to arrive at a balance 

between precision and recall in specific cases of applications where the key phrase 

may require semantic interpolation. When the identification of all relevant phrases is 

the focus, a lower precision value may be tolerated. When the presence of false 

positives causes an unfavorable impact, a lower recall may be used. A good balance is 

achieved by defining the problem well and constructing comprehensive training sets. 

PPM, therefore promises to be a vital tool for the automation of text mining in 

biology.  
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6.1 Future Work 

These are the predominant reasons for the deviation in the F score across the two 

problems being addressed. Some solutions to these may well be  

1. An increased dataset that contains more specific and well curated 

interaction phrases. As we have used only a portion of the total Intact 

archive (1600 interaction phrases) we could possibly achieve an increase in 

the performance by increasing the size of the training set two or three 

folds. 

2. Follow an iterative approach wherein extracted protein interactions are 

added to the existing training set to create a newer model and then use this 

model to perform the actual test. This could be studied to identify the 

optimal number of iterations required before the performance plateaus or 

begins to drop. 

3. Further develop a model class that contains just the interaction terms 

without protein names to further reduce the false positives that arise. 

4. Test the performance of TMT using a token of a higher level say a word 

based or a sentence based analysis rather than a character based analysis. 

5. An analysis of the distribution of errors indicates the need for a post 

processing scheme to keep the false positives to a minimal level. This 

could also mean a suitable tradeoff between precision and recall depending 

on the end application sought. 

6. Implementing the solutions for false positives as mentioned in (Table 15). 
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