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ABSTRACT 

Yue Wang Webster 

 

A HYBRID APPROACH FOR TRANSLATIONAL RESEARCH 

 

Translational research has proven to be a powerful process that bridges the gap 

between basic science and medical practice. The complexity of translational research is 

two-fold: integration of vast amount of information in disparate silos, and dissemination 

of discoveries to stakeholders with different interests. We designed and implemented a 

hybrid knowledge discovery framework. We developed strategies to leverage both 

traditional biomedical databases and Health Social Network Communities content in the 

discovery process. Heuristic and quantitative evaluations were carried out in Colorectal 

Cancer and Amyotrophic Lateral Sclerosis disease areas. The results demonstrate the 

potential of our approach to bridge silos and to identify hidden links among clinical 

observations, drugs, genes and diseases, which may eventually lead to the discovery of 

novel disease targets, biomarkers and therapies. 

 

  Josette F. Jones, Ph.D., Chair 
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CHAPTER ONE: INTRODUCTION 

Opportunities of Translational Research 

As basic science and medical practice continue their exponential growth in 

complexity and scope, the need of bridging research with practice becomes more urgent. 

Molecular or cellular level discoveries made at lab “bench” need to progress to the 

patient‟s “bedside” as therapies [1]. On the other hand, knowledge gained at “bedside” is 

important for the researchers at the “bench” to better understand the molecular 

mechanisms of diseases [2]. At present, discoveries in one discipline are not efficiently 

transformed into executable knowledge that can be used in the other [3]. Translational 

research is a branch of research that attempts to develop insight into such cross-

disciplinary knowledge transformation and collaboration [4]. In the following sections, 

we show examples of the important roles that translational research plays in life science 

and health care practice. 

Opportunities in Drug Reposition 

Identifying new indications for existing drugs is an important strategy of drug 

discovery. For example, Atorvastatin is an FDA approved drug used to lower cholesterol 

[5]. A drug hunter may want to find other possible diseases that might be treated by 

Atorvastatin. Using a non-translational approach, the drug hunter would query for 

pathways related to Atorvastatin in KEGG and would retrieve no result from KEGG.  

Using a translational approach, the drug hunter would first search for the 

indications of Atorvastatin. The drug hunter would then search for genes that are 

associated with those indications. Next the drug hunter would look for pathways 

associated with those genes in KEGG. The drug hunter would find one of the pathways to 

be the Alzheimer‟s Disease (AD) pathway and may consider AD as a possible new 

indication for Atorvastatin. This hypothesis is supported by other studies that show 

clinical benefit of Atorvastatin in AD patients [6, 7]. The drug hunter can rapidly identify 

such opportunities because clinical and genomic disciplines are effectively connected in a 

translational approach. 
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Opportunities in Target Identification 

Identifying the disease targets is often the first step towards discovering the cure. 

For example, to develop AD treatment, a scientist may first search for all drug-able genes 

associated with AD. A non-translational approach is to search against various biological 

databases for drug-able genes associated with AD. Since the disease has few known 

pathway steps, this approach yields limited success and no drug-able GPCR target can be 

identified.  

Qu et al. described a translational approach in [8]. They first retrieved all genes 

participating in the AD pathway. Next they searched for all pathways associated with 

those genes. Then they repeated the first two steps by searching for genes participated in 

all pathways found in the previous iteration. Using this approach, the authors reported 

that they could identify more novel targets. For instance, they found eight GPCR targets 

that are implicitly associated with AD at the second iteration. Those associations are 

supported by evidence found in multiple studies [9, 10]. One of the genes, SLIT2, is 

found to be involved in neuron recombination and axonogenesis [11-13]. AD-related 

deficits have been observed for the functionally related RNA messages encoding the 

SLIT2 axon guidance receptor factor and the neuroglycan C precursor [14].  

Opportunities in Cross-disease Research 

Today‟s scientists and investigators are faced with a deluge of data from various 

disciplines. Translational research provides a systematic way to identify implicit 

associations and insights “hidden” in large and heterogeneous datasets. Ruttenberg 

proposed in [4] that knowledge should be shared among specialists in different disease 

areas. One success story of this approach is the discovery of NST-729 as a cross-disease 

biomarker for neurodegeneration and as the first molecular probe for Amyotrophic 

Lateral Sclerosis (ALS) [15]. Based on the knowledge that Parkinson‟s Disease (PD), 

AD, Huntington‟s Disease (HD), and ALS share common features at the clinical [16], 

neural [17, 18], cellular [19, 20], and molecular levels [21], Shirvan et al. studied and 

compared the performance of NST-729 cross the transgenic models of two 

neurodegenerative disorders, AD and ALS. Without translational knowledge and tools 

such comparison will not be possible.  
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Besides the use cases we described above. There are other opportunities for 

translational research, such as clinical trial management, longitudinal patient health 

record, epidemiology studies, and public health surveillance [22].  

Challenges in Translational Research 

As show in Figure 1, the knowledge of life science and medical practice evolves 

in a spiral fashion: basic science discoveries lead to clinical studies, and then to medical 

practice tools, which influence the health care policy makers and the public. Knowledge 

gained from clinical studies, medical practice and public health can in turn inform 

chemists and biologists in the laboratory. However, the knowledge transformation is not 

always effective. New discoveries are often stored in their discipline sources that form 

information-silos; and experts tend to interact within their own circles which are social-

silos. One major task of translational research is to overcome these two types of silos.  

basic science 

discoveries

preclinical or 

clinical studies

medical practice

health care 

policy or public 

awareness

refine understanding 

of biological principles

verify hypothesis 

in test subjects

guide organized efforts and 

informed choices of society

provide therapeutic 

insights

Chemical

Biological
Clinical

Public health

Bench Bedside

 
Figure 1. Knowledge evolves in a spiral fashion across bench and bedside 

Heterogeneous Data Sources 

A wide variety of data types and artifacts from different discipline sources are 

involved in translational process. We grouped them into the following major categories: 

chemical, biological, clinical, and public health data.  
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Chemical data is relative straightforward comparing with biological and clinical 

data. The main subject of chemical data is molecules and their interactions both with each 

other and with the environment. Such information (physical properties, chemical 

properties, and reactions) can often be captured in basic data types (numbers and stings). 

2D or 3D structure information can be expressed in special text format. Graphical 

representation is used mostly in visualizing structures, studying molecular dynamics, and 

protein-ligand docking. 

Biological data are more heterogeneous because it encompasses many domains of 

knowledge (molecular and cell biology, genetics, structural biology, pharmacology, 

physiology, etc.). According to Topaloglon [23], most of the information that biologists 

are interested in is available in public reference databases, specialized private data 

sources, and scientific literature. It is estimated that 80% of the biological data are in text 

format, and the rest resides in databases that range from indexed files, to formal 

databases.  

Clinical data is concerned with or based on the actual observation and treatment 

of diseases in patients rather than experiment or theory [24]. It is created, rendered and 

consumed during the health care process. Different from chemical and biological data, 

temporal information is an intrinsic component of clinical data. It is often probabilistic or 

fuzzy in nature. For instance diagnoses are always specified with a degree of certainty. 

Because of its complexity and diversity, data standards play a key role in handling 

clinical data in translational research. There are four major types of clinical data 

standards [25]. Terminology standards define accepted vocabulary and how they should 

be used. In ICD-9 coding, for example, “chest pain” is a valid term and has a specific 

code associated with it, whereas “pain in the chest” is not. Conceptual standards define 

how certain concepts are conveyed. Document standards define information required in a 

certain document and the location of the information. Messaging standards define how 

information is packaged and communicated between parties.  

Most clinical data are concerned with a single patient (individual level data), such 

as laboratory test results, patient demographics, discharge summaries, and progress notes. 

On the other hand, public health data is often concerned with a group of people (high-

level aggregated data) who have common characteristics, such as data used to study 
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disease outbreaks and epidemics. Since the focus of public health is to promote healthy 

behaviors and to prevent diseases through surveillance of cases. Social context is an 

important part of public health data. 

Multiple Data Levels 
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Figure 2. Multi-level data involved in translational research 

Translational research involves capturing and mining a wide spectrum of data 

types across multiple levels: molecule →pathway →cell → organ → individual → 

population segments, subgroups → society. As shown in Figure 2 the data ranges from 

the descriptions of molecular events, to the descriptions of complex biological systems, 

and to the nature-language descriptions of an individual or a group. In addition, both 

spatial and temporal data types are important for translational research. Spatial data is 

necessary for describing compound or protein structures because the same set of atoms 

could have multiple orientations in 3D space. Temporal data types are important for 

clinical and public health discipline, where it is essential to track the condition of a 

patient or the spread of a disease.  

The challenge is in connecting data from different levels. For example, how to 

link molecular data such as gene sequence with data specific to an individual such as a 

patient‟s Electronic Health Record, and with data collected at population level such as 

genome-wide association study of patients from a certain ethnical group.  
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Unique Opportunities and Challenges Presented by HSNC 

Web2.0 refers to web applications that facilitate interactive information sharing, 

interoperability, user-centered design, and collaboration on the World Wide Web, such as 

YouTube, Facebook, and Twitter. Health social network communities (HSNC) are online 

communities where users search, self-track, share and discuss health-related information 

using Web2.0 technologies. Examples of popular HSNC include PatientsLikeMe.com 

(PLM), DailyStrength.org and MedHelp.org. Their primary users are patients with similar 

medical conditions. With the aid of HSNC, the role of those patients is changing. Instead 

of being passive test subjects, they are becoming active participants, information owners, 

or peer leaders.  

For instance, when a fifteen-month clinical trial with 44 patients reported that 

lithium, a drug used to treat bipolar disorder, may delay progression of amyotrophic 

lateral sclerosis (ALS) [26]. Within a few months, an ALS patient gathered 250 ALS 

patients inside PLM to self-experiment with lithium tracking their conditions using social 

networking tools. This patient-driven trial included more test cases than any published 

study of lithium to date [27]. The conclusion of the 250-sample trial was different from 

the previous 44-sample trial. The preliminary analysis of PLM members‟ data showed no 

correlation between lithium and reduced ALS disease progression. This example 

highlighted the potential of HSNC research model, especially in fighting orphan diseases 

that do not fit into the current business model of pharmaceutical industry.  

However, there are many challenges in harvesting the consumer-generated 

information and translating it from “bedside” to “bench”. One obvious issue is the 

consumer-professional vocabulary gap. Vocabularies used in patient-oriented online 

communities are consumer English. On the other hand, most biomedical databases are 

developed for professionals and use discipline-specific vocabularies. For example, PLM 

allows patients to describe their conditions using folksonomy, a user-generated 

taxonomy. Smith and Wicks pointed out that less than half of the symptom terms 

contributed by PLM patients can be mapped to UMLS concepts or synonyms [28].  

Another challenge comes from the fact that the information organization of 

HSNC and biomedical databases are established differently. Information in HSNC is 

organized and stratified by consumers through collaborative filtering, tagging, voting and 
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other Web 2.0 techniques, which is a “bottom-up” approach. On the other hand, 

professionals often define the data schema of research-oriented databases before loading 

the data, which is a “top-down” approach. Therefore, it is not surprising that 62% of the 

“symptoms” used by PLM patients were not categorized as “Signs or Symptoms” in 

UMLS.  

Patients

silo silo

BEFORE BEFORE

AFTER AFTER

PatientLikeMe

WebMD

MedHelp

OMIM

ClinicalTrail.gov

PDR

Medline

KEGG

PatientLikeMe

DrugBank

DrugBank

Practitioners

Medline

ClinicalTrail.gov

PDR

Research Scientists

silo

OMIM

KEGG

DrugBank

 
Figure 3. Bridging the information-silos and the social-silos 

In summary, to address the challenges in translational research as represented by 

Figure 3, a successful knowledge discovery system has to accomplish at least two tasks: 

1) to bridge the silos and discover novel associations; and 2) to deliver the results to the 

users based on their specific needs. Here we propose a hybrid approach that combines 

several technologies to achieve these two aims. The background chapter briefly reviews 

the technologies that form the basis of this approach, as well as the two diseases relevant 

to the case studies. The methodology chapter discusses the uniqueness of the design and 

describes the implementation details. The case study results and observations are reported 

in the results chapter. Key strategies and findings are highlighted in the conclusion 

chapter. Limitations of the approach and future research directions are disused in the 

discussion chapter. 
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CHAPTER TWO: BACKGROUND 

Semantic Web 

One of the fast-growing research areas of informatics, Semantic Web (SW), 

shows great promise in navigating and drawing sophisticated inference from diverse 

digital resources [4, 29, 30]. SW has four building blocks: a mechanism to uniquely 

identify the web resources; a framework to describe web resources; a query language; 

and an ontology language. Each building block can be implemented differently. Here, we 

only discuss the standards recommended by the World Wide Web Consortium 

(www.w3.org). 

Uniform Resource Identifier (URI) is “a compact sequence of characters that 

identifies an abstract or physical resource”. It distinguishes one resource from all others. 

It is the foundation of SW.  

Resource Description Framework (RDF) is a format that describes web resources 

by triples (subject-predicate-object). The subject and object are the resources, and the 

predicate is the relationship between the subject and the object. A subject or object can be 

an organic compound, a gene, a pathway or a patient. Predicate (a.k.a. property) can be 

any relationship between the subject and the object (i.e. causes, regulates, transcribes, 

etc.) For instance, “drug A causes disorder B” can be represented as <A treats B>, where 

A is the subject, B is the object, and “treat” is the property.  

Simple Protocol and RDF Query Language (SPARQL) is a SQL-like query 

language for query SW. It essentially consists of a standard query language, a data access 

protocol and a data model. Using SPARQL, users can form semantic queries that 

otherwise require lengthy and complex SQL statements in a relational database.  

RDF Schema (RDFS) and Web Ontology Language (OWL) have both been used 

in SW applications to encode ontologies. OWL is more expressive than RDFS. The data 

described by OWL ontology is interpreted as a set of “individuals” or “classes” and a set 

of “property assertions” which relate these individuals to each other. The axioms in OWL 

ontology define constraints on the individuals and the types of relationships permitted 

between them. A SW system, therefore, can infer additional information based on the 

axioms.  
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In this work, SW technologies are used to integrate information-silos. We derived 

all URIs from NIH authoritative identifiers, such as EntrezGene ID or UMLS concept ID. 

Therefore entities sharing the same URI are merged into one concept regardless of their 

sources. Two concepts from isolated date sources are connected if they are both 

associated with the same concept, which is the key for semantically bridging the 

information-silos.  

Graph Analysis 

The history of graph analysis in mathematics can be tracked as far back as the 

eighteenth century [31]. Some common terminologies are defined in . A graph G = (V,E) 

is a collection of nodes (V) and edges (E) connecting those nodes. An edge e = (u, v) ∈ E 

connects two nodes u and v. The nodes u and v are said to be incident with the edge e and 

adjacent to each other. The degree d(v) of a node (a.k.a. vertex) v is the number of its 

incident edges. Let (e1, … , ek) be a sequence of edges in a graph G = (V,E). This 

sequence is called a path if there are nodes v0, … , vk such that ei = (vi−1, vi) for i = 1, … , 

k and the edges ei are pair-wise distinct and the nodes vi are pair-wise distinct. The length 

of a path is given by its number of edges, k = |(e1, … , ek)|. A shortest path between two 

nodes u, v is a path with minimal length. The diameter is the maximum shortest path 

length amongst all pairs of nodes in a graph.  

Average degree, diameter, and average shortest path are topology measurements 

often used in graph analysis. Average degree reflects the “connectivity” of a graph. 

Diameter and average shortest path reflect the “compactness” of a graph. A small 

diameter or a low average shortest path length indicates that all the nodes are in 

proximity to each other. A highly connected, compact graph often represents a dense 

knowledge space where concepts are closely related to each other. In such a graph, the 

changes of one node have greater impact on other nodes than it would be in a loosely 

connected graph. 

 
Figure 4. Common terminologies used in graph analysis 
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Graph analysis has drawn much interest among bioinformatics researchers due to 

the rapid growth of publicly available high throughput data [32-39]. Such data have 

provided linkages among chemical, biological, and clinical entities. Chen and colleagues 

surveyed multiple applications that encoded knowledge using graph-based data 

structures. In those applications, biomedical entities are modeled as nodes and the 

relationships as edges (links). The graphs can then be analyzed using conventional graph 

analysis technique or extension of it [38-41]. 

In this case, we are especially interested in applying graph algorithms to rank 

search results. Common approaches [42-45] include concept structure analysis, 

PageRank, and Hyperlink-Induced Topic Search (HITS). PageRank with Priors proposed 

by White and Smyth [46] simulates the steps of a Web surfer, who starts from any of the 

root nodes on the Internet and follows a random link at each step with β as the probability 

of returning to the root nodes. A score is computed for each node on the Internet to reflect 

its probability of being reached by the surfer. This score is used to measure the relative 

“closeness” of a node to the root nodes. K-Step Markov method simulates a similar Web 

surfing scenario as in PageRank, except that the surfer returns to the root nodes after K 

steps and restarts the process. K-Step Markov algorithm estimates the relative probability 

that a surfer will spend time at a node given that the surfer starts in a set of root nodes and 

stops after K steps. HITS with Priors proposed by Kleinberg measures two properties of a 

node: 1) authority score estimates the importance of the node itself; and 2) hub score 

measures the importance of other nodes linked to the current node [47]. Therefore, HITS 

with Priors not only considers the number of links to and from a node but also its 

neighbors‟. 

Gudivada et al. have proposed a modified algorithm to rank genes [48]. In 

traditional WWW ranking analyses, all links are considered equally significant. But in the 

context of biological networks, the importance of a link also depends on the nodes 

connected with it. Using gene and pathway association as an example, Gudivada 

explained that a gene participates in multiple pathways is more important than a pathway 

that has multiple genes since most pathways will include multiple genes. To model this 

nature of biological networks, each link is assigned a subjectivity weight and an 

objectivity weight. Link such as „Gene-HasAssociated-Pathway‟ is assigned a higher 
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subjectivity weight (for gene) and lower objectivity weight (for pathway). The only 

constraint is that for each link the sum of subjectivity and objectivity weights must be 

equal to 1. 

User Profiling 

Translational research has many stakeholders with different perspectives; 

therefore, we use profiling technologies to capture users‟ interests and to control how the 

results are presented. Information that seems to be trivial or irrelevant to one user may be 

important to the other. For example, a drug hunter is interested in discovering novel 

molecules that interact with a certain enzyme. Concepts such as active sites of the 

enzyme, electronic density map of the enzyme, etc. would be most relevant, whereas 

pathway regulated by the enzyme would not. On the other hand, a biologist who is 

interested in the mechanism of a disorder may be interested in the pathway regulated by 

the enzyme.  

There are three stages of user profiling at the information level: information 

representation, information classification, and user profile learning. The primary 

challenge comes from dealing with heterogeneous data encountered in the three stages. 

Most user profiling systems deal with domain knowledge represented by a thesaurus or a 

linear list of terms or concepts which are assumed to be independent of each other [49]. 

To represent a nonlinear structure with inter-related concepts, an ontology can be used to 

form the basis for user personalized searching and browsing [50]. 
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CHAPTER THREE: METHODOLOGY 

Design 

Based on the background research, we propose a hybrid approach, combining 

SW, graph algorithm and user profiling. In terms of implementation, this approach has 

two main steps: 1) to construct a full semantic graph using associations extracted from 

multiple discipline sources; 2) to subtract a sub graph for each user based on the profile 

using pseudo- relevance feedback strategy. We hypothesize that this approach is 

advantageous in discovering hidden associations across disciplines and tailoring the 

results for individual user, which are essential to translational research. The reasons are 

as following. An association can be modeled as two nodes linked by an edge in a graph. 

Therefore, we may model discipline silos as a large, connected graph. Conventional 

graph algorithms can be extended to mine the graph based on user profiles, which allows 

us to deliver the mining results in a user-centric manner to the respective stakeholder. It is 

expensive to conduct graph analyses on a large-scale graph, but we can build virtual sub 

graphs to reduce the cost of the analyses. The sub graphs also capture the personalized 

views of the full knowledge space. Such views are specific to each user and are part of 

the strategy to tailor search results for different stakeholders of translational research. 

To demonstrate this approach and to evaluate its feasibility, we designed and 

implemented a knowledge discovery framework called HyGen. Figure 5 shows the major 

components (layers) of HyGen. Layer A consists of data mining protocols that extract 

associations from various silos. The associations form the full graph in Layer B. Layer C 

manages the user profiles; D creates sub graphs; and E produces the personalized views. 

In the following sections, we describe the design and implementation details of each 

layer.  

Implementation 

Layer A: Extract Associations 

Disease titles, clinical synopses and text fields are downloaded from OMIM 

(ftp.ncbi.nih.gov/repository/OMIM). To insure that a clinical term and its synonyms are 

merged to the same node in the semantic graph, we normalize the terms against UMLS. 

We use MetaMap (http://mmtx.nlm.nih.gov) to extract clinical-relevant terms from short 

phrases in titles and clinical synopses sections and map them to UMLS concepts. For the 
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long free-text fields of OMIM records, we implemented text-mining protocols using 

Pipeline Pilot‟s Text Analytics Collection (accelrys.com) to extract clinical-relevant 

terms, and to map them to UMLS concepts. Our experiments showed that the protocols 

have a higher recall rate (75% to 80%) than MetaMap (less than 25%) when mining 

OMIM text fields. Each gene in OMIM Morbid Map (downloaded from 

ftp.ncbi.nih.gov/repository) is linked with the UMLS concepts extracted from its 

corresponding OMIM record, including the title, the clinical synopsis, and the text field. 

We use similar approach to normalize the drug indications of DrugBank records, as well 

as disease terms of PharmGKB and GAD.  
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User Profile 1 User Profile 2 User Profile 3 User Profile n

Mining Protocol 1

Sub Graph n

Layer A

Layer B

Layer C

Layer D

Layer E

Biology Source

Mining Protocol 2

Clinical Source

Mining Protocol 3

Knowledge 

Base

Normalize

User 1 (Patient)

View 1

User 2 (Scientist)

View 2

User 3 (Practitioner)

View 3

User n

View n

Triples
Triples

 
Figure 5. Major components of HyGen 

The chemical compounds in OMIM record, DrugBank, PharmGKB, and KEGG 

are normalized against CHEMLIST, a dictionary for identifying chemical information in 

the literature [51]. From the normalized compound list, marketed drugs or drug 

candidates in clinical trials phase-II or later are extracted. Each drug or drug candidate is 

then connected with its target genes based on PharmGKB and DrugBank records. Other 

types of associations from genomic, pharmacological, and proteomic sources are also 

incorporated in the full graph. Appendix A lists all associations in the current version of 

HyGen. 
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Layer A was coded in Java. It interacts with MetaMap and Pipeline Pilot‟s Text 

Analytics Collection to recognize and map source-dependent terms to standard 

dictionaries. It uses Jena API (www.jena.sourceforge.net) to create and manipulate the 

associations as RDF triples. The associations harvested by A were loaded into 

AllegroGraph RDFStore (http://www.franz.com/agraph/allegrograph) based on a custom-

built top-level ontology developed in Protégé (shown in Figure 6). 

 
Figure 6. HyGen‟s top-level ontology 

Layer B: Construct Full Graph 

In Layer B, the associations are converted to nodes and edges of the full graph, 

where nodes represent biomedical entities, such as genes, diseases, or compounds; and 

edges represent the relationships between entities. The final full graph is an un-weighted 

directed acyclic graph.  
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HyGen‟s full graph is different from most existing life science networks (graphs) 

in that it allows any types of nodes. For example Chen‟s protein-protein network analysis 

[43] was conducted on proteins linked by their interactions. Yildirim‟s drug-target 

network [35] has two types of node: drugs and proteins linked by drug-target binary 

associations. Goh‟s human disease network [52] has two types of nodes: disorders and 

disease genes linked by the fact that mutations in a gene lead to a specific disorder. 

Campillos‟ drug-drug network has one type of node: drugs linked by their side-effect 

similarity [53]. Li‟s human disease-disease network [54] has one type of node: diseases 

linked by their shared pathways. Different from them, Layer B can integrate many types 

of nodes and enable HyGen to discover associations among different types of biomedical 

entities. 

It is worth mentioning that even though SW technologies are used in this 

implementation, the full graph can be constructed by other tools as long as they allow 

HyGen to merge and connect entities from diverse sources. 

Layer C: Define User Profile 

A user profile (Pi) defines the “seeds”, which are special nodes relevant to a 

certain user. They can be any type, for example “fatigue” (a symptom), “SOD1” (a gene), 

or “riluzole” (a drug). Those nodes are the starting points of the knowledge discovery, 

hence the name “seeds”. In addition, the user can specify in Pi whether the user prefers 1) 

long associations; 2) rare data types; 3) highly connected concepts (hotspots); 4) new 

information; and 5) how to measure the relative importance of a biomedical entity.  

Based on literature research [55] and our experience, we constructed seventeen 

user profile templates for different user groups involved in translational research (see 

Appendix B). Preference and default parameters were empirically defined in the 

templates, based on which users can build their own profiles. Appendix C shows a 

sample profile stored in HyGen. One user can have multiple profiles. Through Layer C, 

the profiles can be updated, deleted, published and copied. 

Layer D: Build Sub Graph 

Based on the full graph, different virtual sub graphs are constructed for different 

user profiles, following an iterative process inspired by the pseudo-relevance feedback 

used in some document retrieval systems. Given a user profile, HyGen begins by 
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traversing the full graph to find all the neighbors of the seeds and marking them as 

discovered. Figure 7 is a sample SPARQL query used to retrieve neighbors of a set of 

nodes. Numerical weights (from 0 to 1) are assigned to the edges based on the data 

sources where the associations are originated. Users can adjust the data source weight 

based on their own experience and needs in the user profiles. For example, if a user is 

very familiar with database A and would like to search for novel information beyond the 

scope of A, then the user can assign a lower score to A.  

 
Figure 7. Sample SPARQL query to expand sub graph iteratively 

Next, HyGen performs graph analysis to rank all the discovered nodes based on 

the criteria defined in the user profile. Any low ranking node is turned back to 

undiscovered. This counts as one step. 

In the subsequent iterations, HyGen searches for undiscovered nodes that are 

neighbors of the discovered nodes; ranks all the discovered nodes; and re-labels them 

discovered or undiscovered according to the ranks. If the user specified the maximum 

number of steps X in the profile, then HyGen stops searching after X steps. Otherwise, 

HyGen stops after it has exhausted all nodes in the full graph. At the end of the final 

iteration, all the discovered nodes and their edges form the virtual sub graph specific to 

the given user profile.  

 
Figure 8. State diagram of a node 
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The state diagram, Figure 8, illustrates how one node‟s state is influenced by the 

node‟s ranking and by its neighbors in each iteration. A node is in one of the two states 

during this process: discovered or undiscovered, with the initial state being undiscovered 

except for the seeds defined by the user profile. An undiscovered node becomes 

discovered if any of its neighbors has been discovered; a node‟s state changes from 

discovered to undiscovered if its ranking is too low. 

In other words, HyGen‟s exploration radiates out slowly from the original seeds, 

acquiring or disowning nodes at each iteration. We named the process of re-ranking 

discovered nodes pseudo- relevance feedback. The term was borrowed from document 

retrieval systems. However, instead of using pseudo- relevance feedback for query 

expansion, HyGen applies this strategy to re-rank and re-arrange the nodes that have 

already been discovered. Adopting pseudo-relevance feedback in this novel way, HyGen 

can quickly construct a user-specific view of the full knowledge space with high 

sensitivity and selectivity. 

Layer E: Output Personalized Views 

 
Figure 9. Output files of HyGen 
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One of the key steps of pseudo- relevance feedback algorithm is to rank and re-

rank nodes based on graph analysis. The rank of a node v is computed as the weighted 

mean of seven factors, each of which has a value between 0 and 1. The definition and 

calculation of each factor can be found in Appendix D. Users can further control the 

ranking by adjusting weights k1 to k7 in their profiles. The final score is computed by 

equation (3-1). The node with the highest score achieves the top ranking. 

 (3-1) 

Once the sub graph is constructed, HyGen can issue semantic queries against it. 

The results are ranked based on the same criteria and weights described above. At the 

end, HyGen generates two main artifacts for the user: an annotated sub graph file 

viewable in CytoScape (www.cytoscape.org); and a set of spreadsheets of sorted 

associations, with their graph attributes, scores, shortest path to the seeds and other 

computed properties. Figure 9 shows a screen capture of the various output files. 
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CHAPTER FOUR: RESULTS 

Case Studies in Colorectal Cancer 

Introduction 

Colorectal Cancer (CRC) also called colon cancer or large bowel cancer, is the 

second leading cause of cancer-related death [56]. CRC disease progression is believed to 

be a step-wise process, where cells change from normal epithelium through polyp form to 

carcinoma. Mutations in two classes of genes: tumor-suppressor genes and proto-

oncogenes, are found to increase the risk of developing CRC. Studies have also shown 

that CRC is related to at least one of three different pathways: termed chromosomal 

instability, microsatellite instability, and the CpG island methylator phenotype [57]. 

Different pathways tend to affect different sets of tumor suppressor genes and are 

characterized by different biological behaviors.  

Early and accurate detection of different types of colorectal cancer may greatly 

improve the chances of survival. Medical interventions should be tailored for individual 

patient. However, this is not the case. Even though great progress was made in 

understanding the molecular basis of CRC, it has translated into few genetic biomarkers 

that are currently used in clinical practice [58]. We believe a translational approach is 

needed to help transform the biological discoveries into clinically diagnostic tools and 

personalized CRC medicine. 

To test HyGen, we carried out a set of case studies tailored for multiple users 

involved in colorectal cancer (CRC). The first user is a health care consumer with little 

medical knowledge; the second user is an experienced practitioner having rich medical 

knowledge; the third user is a pharmacologist with deep understanding of chemistry and 

biology. Three sample profiles were developed for the users (Table 1). Based on the 

profiles, three sub graphs (views) were created and analyzed.  

Table 1. Three sample user profiles in CRC 

 User Description Seeds Preference 

#1 A health care consumer with little 

knowledge of biology or medicine, 

wanting to know possible treatments 

for CRC. 

a single term of 

interest: 

colorectal cancer 

well-established 

information, short 

associations 

#2 A health care practitioner who read 

a review paper on CRC physiology 

32 CRC-related 

genes cited in the 

fresh information, 

medium-length 
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and wondered if such knowledge in 

the biology discipline can help him in 

clinical practice. 

review paper associations, 

hotspots 

#3 A pharmacologist interested in 

disease target and biomarkers, wanting 

to know if knowledge from the clinical 

field can help in drug discovery. 

52 drugs often 

prescribed by 

doctors to CRC 

patients 

fresh information, 

long associations,  

hotspots 

View for a Health Care Consumer 

We simulated the user profile of a CRC patient interested in new therapeutic 

options. The profile Ppat, contained a single seed “colorectal cancer”, and was set up to 

award well-established information and short associations. The single seed expanded to a 

sub graph with 831 edges and 602 nodes. We compared this results with direct SQL 

queries against pharmacological sources that provide drug and disease information 

(DrugBank, PharmGKB, and CTD). Searching for drugs with inductions being CRC or 

its synonyms, we retrieved eight hits using direct SQL query in DrugBank (Figure 10) 

and no hits from PharmGKB (Figure 11). Since the chemical-disease relationship in CTD 

has a broad definition, the search in CTD returned 1030 hits but most of them are not 

compounds that can be taken by human as drugs.  

SELECT DISTINCT d.generic_name, d.drug_type, d.indication_processed

FROM hoi_procs.drugbank_druginfo_general d

WHERE d.drug_type LIKE '%Approved%'

AND (   LOWER (d.indication_processed) LIKE '%colon%cancer%'

     OR LOWER (d.indication_processed) LIKE '%cancer%colon%'

     OR LOWER (d.indication_processed) LIKE '%colorectal%cancer%'

     OR LOWER (d.indication_processed) LIKE '%cancer%colorectal%'

     OR LOWER (d.indication_processed) LIKE '%neoplasm%colon%'

     OR LOWER (d.indication_processed) LIKE '%colon%neoplasm%'

     OR LOWER (d.indication_processed) LIKE '%colon%carcinoma%'

     OR LOWER (d.indication_processed) LIKE '%carcinoma%colon%');
 

Figure 10. SQL used to search for CRC drugs in DrugBank 

SELECT DISTINCT p.entity, pp.entity

FROM hoi_procs.pharmagkb_relations p,

     hoi_procs.pharmagkb_relations pp

WHERE p.pharmagkb_rel_id = pp.pharmagkb_rel_id

AND p.semantic_type = 'DRUG'

AND pp.semantic_type = 'DISEASE'

AND p.relation_type = 'Positively Related'

AND (LOWER (pp.entity) LIKE '%colon%cancer%'

  OR LOWER (pp.entity) LIKE '%cancer%colon%'

  OR LOWER (pp.entity) LIKE '%colorectal%cancer%'

  OR LOWER (pp.entity) LIKE '%cancer%colorectal%'

  OR LOWER (pp.entity) LIKE '%neoplasm%colon%'

  OR LOWER (pp.entity) LIKE '%colon%neoplasm%'

  OR LOWER (pp.entity) LIKE '%colon%carcinoma%'

  OR LOWER (pp.entity) LIKE '%carcinoma%colon%');

 
Figure 11. SQL used to search for CRC drugs in PharmGKB 
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On the other hand, the top 5% associations
1
 identified by HyGen contained 

twenty five drugs, including the eight hits from DrugBank search. Those drugs are listed 

in Table 2. Their ranking scores are the weighted sums of the seven factors discussed in 

Chapter Three. 

Literature research confirmed that it is possible to use those drugs in treating CRC 

patients [59-67]. HyGen‟s full graph contains no more data than what is in the databases 

we queried directly. HyGen helped the patient to identify additional treatment options 

because it has connected the clinical features with the genomic information, and 

pharmacology information. This demonstrates that HyGen is greater than the sum of its 

parts, an important benefit of bridging silos. 

Table 2. Drugs ranked at top 5% of HyGen‟s results 

Drug Indications 

cisplatin 

For the treatment of metastatic testicular tumors, metastatic ovarian 

tumors and advanced bladder cancer. 

vincristine 

For treatment of acute leukemia, malignant lymphoma, Hodgkin‟s 

disease, acute erythraemia, acute panmyelosis. 

topotecan 

For the treatment of metastatic carcinoma of the ovary and small cell 

lung cancer following the failure of first-line chemotherapy. 

idarubicin 

For the treatment of acute myeloid leukemia (AML) in adults. This 

includes French-American-British (FAB) classifications M1 through 

M7. 

daunorubicin 

For remission induction in acute nonlymphocytic leukemia 

(myelogenous, monocytic, erythroid). 

cytarabine 

For the treatment of acute non-lymphocytic leukemia, acute 

lymphocytic leukemia and blast phase of chronic myelocytic leukemia. 

methotrexate 

For the treatment of gestational choriocarcinoma, chorioadenoma 

destruens and hydatidiform mole. Also for the treatment of severe 

psoriasis and severe, active, classical or definite rheumatoid arthritis. 

mercaptopurine 

For remission induction and maintenance therapy of acute lymphatic 

leukemia. 

tamoxifen For the treatment of breast cancer. 

capecitabine 

For the treatment of patients with metastatic breast cancer resistant to 

both paclitaxel and an anthracycline-containing chemotherapy regimen. 

epirubicin 

For use as a component of adjuvant therapy in patients with evidence of 

axillary node tumor involvement following resection of primary breast 

cancer. 

etoposide 

For use in combination with other chemotherapeutic agents in the 

treatment of refractory testicular tumors and as first line treatment in 

patients with small cell lung cancer.  

                                                 
1
 5% is used as the standard cutoff for all results returned by HyGen  
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trimetrexate 

For use, with concurrent leucovorin administration (leucovorin 

protection), as an alternative therapy for the treatment of moderate-to-

severe Pneumocystis carinii pneumonia (PCP) Also used to treat 

several types of cancer including colon cancer.  

raltitrexed For the treatment of malignant neoplasm of colon and rectum. 

pamidronate 

For the treatment of moderate, severe hypocalcaemia associated with 

malignancy. 

paclitaxel 

Used in the treatment of Kaposi‟s sarcoma and cancer of the lung, 

ovarian, and breast. 

oxaliplatin 

Used in combination with infusional 5-FU/LV, is indicated for the 

treatment of advanced carcinoma of the colon.  

mitomycin 

For treatment of malignant neoplasm of lip, oral cavity, pharynx, 

digestive organs, peritoneum, female breast, and urinary bladder. 

levamisole 

For adjuvant treatment in combination with fluorouracil after surgical 

resection in patients with Dukes‟ stage C colon cancer.  

leucovorin 

For the treatment of osteosarcoma (after high dose methotrexate 

therapy). Also used in combination with 5-fluorouracil to prolong 

survival in the palliative treatment of patients with advanced colorectal 

cancer. 

irinotecan 

For the treatment of metastatic colorectal cancer (first-line therapy 

when administered with 5-fluorouracil and leucovorin). 

gemcitabine 

For the first-line treatment of patients with metastatic breast cancer, 

locally advanced metastatic non-small cell lung cancer and as first-line 

treatment for patients with adenocarcinoma of the pancreas. 

fluorouracil 

For the topical treatment of multiple actinic, solar keratoses. also useful 

in the treatment of superficial basal cell carcinomas when conventional 

methods are impractical, Fluorouracil injection is indicated in the 

palliative management of some types of cancer, including colon, 

rectum, breast, and stomach. 

docetaxel 

For the treatment of patients with locally advanced metastatic breast 

cancer after failure of prior chemotherapy. In combination with 

prednisone, in the treatment of patients with androgen independent 

(hormone refractory) metastatic prostate cancer.  

bevacizumab For treatment of metastatic colorectal cancer. 
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View for a Health Care Practitioner 

Scientific discoveries can help practitioners to provide better care to patients. In 

this case study, we simulated the user profile of a medical doctor who is a CRC specialist 

and is interested in other disorders and complications related to CRC. The profile, Pdoc, 

contained 32 known genes related to CRC. Since the user is an expert looking for 

knowledge applicable to medical practices, we set up Pdoc to award fresh but medium-

length associations and nodes with higher degree of connectivity, because highly 

connected nodes are more likely to be organizing functional modules and critical for 

survival. The maximum iteration X was set to 2 and the sub graph finished with 4591 

edges and 2392 nodes. The top disorders associated with CRC are listed in Table 3.  

To judge the novelty of the results, we searched PubMed for original papers 

where the new disorder name and CRC occurred together in the same titles or abstracts. 

The number of co-occurrences is listed in Table 3 as well. The low numbers seem to 

indicate that some suggestions are quite novel, assuming novel information will be less 

known and appear in fewer papers.  

Table 3. Disorders suggested to a practitioner (5% cutoff) 

Disorder Score # Paper 

neural tube defects 1.00 5 

rippling muscle disease 0.97 0 

polydactyly, preaxial IV 0.88 0 

vitamin d-dependent rickets, type I 0.85 0 

mismatch repair cancer syndrome 0.82 11 

dyssegmental dysplasia, silverman-handmaker type 0.82 0 

osteoporosis 0.81 29 

spondylometaphyseal dysplasia, kozlowski type 0.78 0 

premature chromatid separation trait 0.77 0 

neurofibromatosis, type I 0.76 3 

meningioma, familial 0.73 1 

otospondylomegaepiphyseal dysplasia 0.68 0 

The high-ranking disorders may shine lights on the common disease mechanisms 

of CRC and other disorders. For example, we have found that the link between CRC and 

Neural Tube Defects (NTD) is scientifically possible. Folate supplements have been used 

to prevent NTD [68, 69]. There are studies claiming that folate may also lower CRC risk 

[70, 71]. The initial full graph has no direct links between CRC and NTD. Zooming into 

the sub graph as shown in Figure 12, we noticed that mutation in TP53 is linked to 
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increase risk of CRC; TP53 is a gene encoding tumor protein p53, which is involved in 

DNA repair and changes in metabolism; TP53 connects to MTHFR via a drug that is a 

pyrimidine analogue and inhibits the cell‟s ability to synthesize DNA; and MTHFR 

polymorphism is linked to an increased risk for NTD. Those links suggest that CRC and 

NTD pathways may share some common components. By comparing of their pathways 

and biological process, an expert may arrive at new hypnoses about the disease 

mechanisms of CRC and NTD. 

CRC

NTD

MTHFR

TP53

 
Figure 12. Zoom-in view of the sub graph 

The next high-ranking association identified by HyGen, Rippling muscle disease 

(RMD), is a rare autosomal dominant disorder that may occur sporadically [72]. It was 

reported that sporadic RMD could be treated by thymectomy or immunosuppression [73, 

74]. Some RMD patients‟ symptoms were reduced after treated with anti-cancer drugs 

[75]. Experts suggest that sporadic RMD may be a new paraneoplastic or autoimmune 

disease, characterized by certain antibodies response against self [73]. Similar antibodies 

can also sometimes be found in patients with CRC [76, 77].  

The third high-ranking association in Table 3 is preaxial polydactyly. It is a 

congenital anomaly characterized by the presence of more than the normal number of 

fingers. Many believe it is part of a complex genetic syndrome [78, 79]. The gene or set 

of genes responsible for preaxial polydactyly have been localized to chromosome 7q36 

[80, 81]. A homeobox gene HB9 is within the critical region of 7q36 and is also 

expressed in pancreas, small intestine, and colon [82]. The association seems to suggest 

that the two phenotypes, preaxial polydactyly and CRC, are linked through HB9. 

The last example we discuss here is the possible link between CRC and type I 

vitamin D-resistant rickets, VDDRI (ranked 4th in Table 3). Even though no PubMed 

paper contains those two disorders in the same abstract, the practitioner, being an 

experienced physician, may realize that vitamin D is recommended to lower the risks of 
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both diseases. Further research may show him that VDDRI is associated with mutations 

in the gene of the vitamin D receptor (VDR) [83]. Meanwhile, colorectal cells contain 

vitamin D Receptors and are able to convert 25(OH) vitamin D into 1,25(OH)2 vitamin 

D, which may prevent tumor progression in colon. The practitioner may follow up on this 

interesting connection by comparing the lab results of VDDRI and CRC patients, 

especially their 1,25(OH)2 VD level tests. This finding may eventually lead to novel 

diagnosis tools or therapies. 

View for a Biomedical Researcher 

Knowledge discovered during clinical practice provides novel insights of disease 

pathology to researchers working in the basic science discipline. In this case study, we 

simulated the profile of a pharmacologist who is interested in novel disease targets and 

biomarkers related to CRC. This user‟s profile, Psci, consisted of 52 drugs that are often 

prescribed by doctors to CRC patients. Since the user is an expert looking for novel 

associations, we set the maximum iteration X=3. The sub graph expanded to 550 edges 

and 492 nodes including drugs, disorders, genes, pathways, and interactive partners. 

Psci was set to award long associations, recent information, and hotspots because 

highly connected nodes in biological networks are generally found to be essential for 

viability and the delineation of those nodes often leads to new insights and hypotheses 

[37, 39]. The top ranking genes are listed in Table 4. We searched PubMed for original 

papers where the suggested gene and CRC occurred together in the titles or abstracts. The 

number of co-occurrences is listed in Table 4. Assuming novel information will be 

reported by few papers, genes such as CAV3, LYST, TYROBP and DRD1 seem to be 

more “interesting” and may be candidates for future CRC genetic studies. 

Table 4. Genes suggested to a pharmacologist (5% cutoff) 

Gene Score #Paper 

KRAS 1.00 289 

FGFR1 0.88 3 

CAV3 0.76 0 

LYST 0.69 0 

ATM 0.68 32 

TYROBP 0.63 0 

YWHAE 0.59 1 

DRD1 0.58 0 

IFNG 0.58 2 
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TAP2 0.56 1 

CCND1 0.56 9 

CPS1 0.55 0 

NR0B1 0.52 0 

AGT 0.50 1 

EPOR 0.49 0 

RAG1 0.49 0 

SCARB2 0.49 0 

AIRE 0.48 0 

Compare the Three Views 

We compared the topology properties of the three sub graphs discussed above. 

Sub graph No.1 had 831 edges and 602 nodes; No.2 had 4591 edges and 2392 nodes; 

No.3 had 550 edges and 492 nodes. Their node types included drugs, genes, pathways, 

clinical features and disorders. Basic network topology analyses were carried out using 

Network Analyzer (http://med.bioinf.mpi-inf.mpg.de/netanalyzer). Figure 13 shows how 

the user preferences have affected the shortest path distribution of the three sub graphs. 

User profile No.1 was set to reward short associations, thus the Average Shortest Path 

Length (ASPL) of sub graph No.1 was 3.6 and its diameter was 7, the shortest of all three 

sub graphs. Profile No.3 preferred long associations, thus sub graph No.3 had the largest 

ASPL and diameter: 5.91 and 16. Sub graph No.2‟s ASPL and diameter were 4.4 and 11 

respectively, because its user preferred medium-length associations.  

 
Figure 13. Compare the shortest path distributions of the sub graphs 
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Figure 14 shows the degree distributions of the sub graphs with a fitted power 

law. Each point on the graph indicates the number of nodes with a particular degree k for 

k = 0,…,n. A power-law degree distribution is often seen in a scale-free network such as 

many biological networks [84]. In spite of the differences in the size and shortest path, 

the three graphs exhibit similar trend in the degree distributions, suggesting that the scale-

free feature of the full graph has been preserved in the sub graphs independent of the user 

profiles. Such observation indicates that sub-graphing based on user profiles may be used 

to lower the cost of large-scale graph analyses without distorting the nature of the original 

graph. However, it is necessary to point out that we must be cautious when extrapolating 

from sub graph to the properties of the full graph as Stumpf and colleagues have pointed 

out [85]. 

 
Figure 14. Compare the degree distributions of the sub graphs 
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Case Studies in Amyotrophic Lateral Sclerosis 

Introduction 

Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig‟s disease, is a 

progressive, fatal, neurodegenerative disease which usually leads to paralysis and death 

within five years of symptom onset [86]. Since its first report in the mid 1800s, extensive 

research efforts have been spent in battling ALS. However, no cure has been found yet; 

the only FDA-approved drug, riluzole, can prolong life by 3 to 6 months but cannot 

change the course of the disease. Understanding ALS disease mechanism not only can 

lead to early diagnosis tools and effective treatments, but can also improve the knowledge 

of other neurodegenerative diseases. 

To date, the molecular underpinnings of ALS remains elusive [87]. 10% of ALS 

cases are familial ALS (fALS). Various genes have been identified in fALS patients, the 

most important of which is SOD1, whose mutation accounts for up to 20% of all familial 

cases [88]. Other genes implicated in fALS include ALS2, SETX, VAPB, ANG, 

TARDBP, MAPT and DCTN1 [88, 89]. Little is known about the other 90% of the ALS 

cases, namely sporadic ALS (sALS) [90, 91]. Two main strategies have been used in 

identifying causative genes of ALS [92-98]. Candidate gene studies search for genes 

based on priori hypotheses about the disease mechanisms. Genome-wide association 

studies (GWAS) do not make assumptions about the nature or location of the genes but 

need large sample size for association analysis. Although it is believed that genetic 

factors play a central role, very few genes have been found unequivocally implicated in 

ALS [93]. Experts believe that multiple genetic and environmental factors are implicated 

in ALS [99]; to understand its biological heterogeneity requires cross-disciplinary 

collaborations and translational efforts, such as meta-analysis of genetic, toxicology, 

pharmacological, health outcome and environmental data. 

ALS is a complex disease, affected by many factors [92, 99], such as the multiple 

effects of single genes, the interactions of multiple genes, and the interactions of genes 

with environment. HyGen‟s graph approach, therefore, seems ideal to study the intricate 

links among those factors. On the other hand, ALS is characterized by late onset and 

short survival. Association and analysis of data from unrelated individuals are necessary 

because it is difficult to obtain sufficient number of cases required for classical family-
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based studies. It is beneficial to leverage HSNC content in ALS research, because 

information in HSNC is generated by a large number of patients with diverse ethnic and 

environmental backgrounds. For instance, 5% of all ALS patients in the U.S. are 

registered members of PLM. The quantified self-tracked information generated by those 

patients is arguably the largest data set for ALS translational research. We decide to 

expand the scope of HyGen by using traditional research-oriented databases in 

combination with the aggregated content from PLM‟s ALS community. The following 

sections discuss the quantities evaluations and the hypotheses highlighted by HyGen. 

Convert HSNC Content to Graph Nodes 

ALS patients can enter both structured and unstructured data in their PLM 

profiles. Individual-level data are aggregated and reflected in PLM‟s community reports. 

A community symptom report contains the prevalence and severity of the symptoms. We 

extracted the most frequently reported (MFR) symptom terms from ALS community‟s 

symptom report (www.patientslikeme.com/als/symptoms). We then used MetaMap to 

map those symptom terms to UMLS concepts, followed by manual inspection. The top 

ten MFR symptoms and the matching UMLS concepts are displayed in Appendix E. 

A community treatment report contains information such as dosage distribution, 

side-effects reported by patients, patients‟ time on the treatment, and reasons patients 

have started or stopped the treatment. We extracted MFR prescription drug names from 

community treatment report (www.patientslikeme.com/als/treatments) and normalized 

them against CHEMLIST compounds or their synonyms. Since a UMLS concept Id or a 

CHEMLIST Id defines the URI of a node, each MFR symptom term or drug name 

reported in PLM is uniquely mapped to the node that represents the same clinical concept 

or chemical substance in the full graph. To establish mappings of instance-level terms is 

the key to connect patient-generated content with research-oriented biomedical data 

sources. Biomedical ontologies and thesaurus such as UMLS and their companion 

linguistic tools have made it possible to automate a large part of the mapping process. 

The other challenge mentioned previously is that more than half of the symptoms 

submitted by PLM patients were not “Signs or Symptoms” in UMLS [28]. We 

circumvented this problem by defining one general type called “clinical-feature” for 

concepts belonging to multiple UMLS types listed in Table 5. The relationships between 
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clinical-features and other types of nodes were loosely defined (e.g. “related_to_gene” 

and “related_to_drug”). Obviously, the penalty of this approach is a higher false positive 

rate. Therefore the pseudo-relevance feedback strategy (described in the methodology 

chapter) is critical to reduce the number of irrelevant connections.  

Table 5. Merged UMLS semantic types 

semantic group semantic type id semantic type name 

Disorders T019 Congenital Abnormality 

Disorders T020 Acquired Abnormality 

Disorders T033 Finding 

Disorders T037 Injury or Poisoning 

Disorders T046 Pathologic Function 

Disorders T047 Disease or Syndrome 

Disorders T048 Mental or Behavioral Dysfunction 

Disorders T049 Cell or Molecular Dysfunction 

Disorders T050 Experimental Model of Disease 

Disorders T184 Sign or Symptom 

Disorders T190 Anatomical Abnormality 

Disorders T191 Neoplastic Process 

Phenomena T034 Laboratory or Test Result 

Physiology T039 Physiologic Function 

Capture Treatment-Symptom Correlation in HSNC 

We carried out heuristic evaluations in CRC case studies. Heuristic approach has 

limitations in comparison across use cases, due to its relative and qualitative nature. In 

addition, heuristic metrics are hard to automate and to apply in larger tests. However, due 

to the lack of gold standards and quantitative test methods for biomedical hypothesis 

generation systems, heuristic tests are still the most common approaches in evaluating 

systems like HyGen. 

Here we present a quantitative approach using HSNC. The initial full graph of 

HyGen has been compiled from traditional research-oriented data sources, whose content 

is the result of systematic research and analysis. On the other hand, content in HSNC is 

the by-product of health care, which is a Complex System. The associations embedded in 

HSNC reflect the emergent and self-organizing properties of Complex Systems. We 

desire to test whether HyGen can identify the associations in “real-world” health care 

practice (the “bedside”) based on data extracted from research-oriented data sources (the 

“bench”). In other words, starting from PLM‟s MFR drugs, we expect HyGen to retrieve 
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PLM‟s MFR symptoms from the full graph and to rank them high. Similarly, we expect 

HyGen to highlight the proper MFR drugs for PLM‟s MFR symptoms. We expect both 

tests to achieve sufficient statistical significance with p-value less than 0.01. 

The p-value of HyGen‟s results was obtained by permutation testing. Permutation 

test is also called randomization test, where one computes statistic for all possible 

permutations of the data to calculate the exact p-value. In practice, however, an 

approximate p-value is computed by sampling a sufficient large number of possible 

permutations. To establish independent permutations, we constructed N random graphs 

(permutations) by reassigning the edges between nodes in the real full graph. We ran 

HyGen against the real graph and saved the result as the observed statistic. We then ran 

HyGen against each random graph (permutation) and labeled the permutation as 

“success” if it achieved similar or better results than the real graph.  

Therefore, each permutation is a Bernoulli trial with p-value being the proportion 

of all “success” runs represented by equation (4-1) where  is the number of successes; N 

is the total number of permutations;  is the p-value. 

      (4-1) 

In the first experiment, we invoked HyGen using the top ten MFR drugs as the 

seeds. The top ten MFR symptoms were identified and ranked at upper 5% by HyGen 

with p-value less than 0.01 based on 10,000 permutations. In the second experiment, we 

used the top ten MFR symptoms as the seeds. Based on the same condition, HyGen 

identified the top ten MFR drugs with p-values less than 0.01. 

We also computed the enrichment factor (EF) of HyGen‟s results. EF is the ratio 

of the abundance of a particular entity in an enriched environment to its abundance in the 

original environment. The EF of the two experiments can be computed by equation (4-2) 

and equation (4-3) respectively. The top ten MFR symptoms were identified with 36 fold 

enrichment. The top ten MFR drugs were identified with 8 fold enrichment. 

  (4-2) 

   (4-3) 
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Those two simple tests boost the belief that HyGen can use knowledge from the 

scientific discipline to identify associations relevant to health care practices. They also 

illustrate the potential of HSNC as supplementary, empirical data sources for translational 

research. 

Effects of Seeds on Hit Rate 

Having converted PLM‟s MFR terms into graph nodes in previous evaluations, 

we could use all of them as seeds for HyGen to identify potential ALS genes. However 

we decided to find a systematic process for selecting the optimal set of seeds. Based on 

detailed literature research, we defined the gold standard to be twenty ALS genes 

reported in some of the most salient studies to date [54, 90, 91, 94-98, 100-105]. In 

Figure 15, we summarized them according to their dates of publication. 

 
Figure 15. ALS genes used as the gold standard 

Next, we conducted sets of experiments to study how the selection of seeds 

affects HyGen‟s ability to identify candidate genes. A pool of twenty seeds was derived 

from the top MFR terms in PLM community reports. In each set of experiments, HyGen 

built twenty sub graphs (G1 to G20) with increasing number of seeds. The first sub graph 

started from one seed x1randomly picked from the pool; the second sub graph started 

from x1 plus another random seed x2; …; the last sub graph G20 was constructed from all 

twenty seeds. 

{ x1} G1 

{x1, x2} G2 

… 

{x1, x2, …, x20} G20 

For each sub graph, HyGen produced a sorted list of genes associated with ALS. 

We compared the top 5% genes in HyGen‟s list with the gold standard, and called the 

overlapping genes “hits”. Four properties: number of hit, number of nodes, number of 

edges, and average degree were calculated for G1 to G20 and plotted in one chart. Each 
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property p is represented by a line in the chart, and each point (x, y) on the line 

corresponds to a sub graph Gi. The value of x is the number of seeds used to build Gi, and 

y is a normalized value: (px-pmin)/(pmax-pmin) where p is one of the four properties of Gi. 

A sample chart (Figure 16) represents a set of twenty sub graphs. Assuming the 

number of nodes and edges reflect the size of a graph, and the average degree roughly 

corresponds to the connectivity, such chart can be used to study how the seeds affect the 

sub graph and its hit rate. With twenty seeds in the pool, there are more than 2×1018 

(20!) possible charts. We manually analyzed twenty samples and observed two general 

trends: 

 
Figure 16. Visualize properties of twenty sub graphs in one chart 

Observation 1: given more seeds, HyGen built larger and more connected 

networks. The growth of edges and nodes followed roughly the same trend as the growth 

of average degree. In Figure 17, the three dashed lines are of similar shape. 

Observation 2: given more seeds, HyGen did not necessarily identify more hits. 

When connectivity grew rapidly, hit rate increased. In the chart, sharp climbs of the dark 

dashed lines co-occur with climbs of the solid line. In a sufficiently large network, 

addition of low value seeds could negatively impact the hit rate. Plateaus of the dark 

dashed lines often co-occur with the dips of the solid line, especially in the right-hand 

side of the chart. 
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Considering the origin of the seeds and HyGen‟s work flow, those trends are not 

difficult to explain. All twenty seeds have been derived from MFR terms reported by 

ALS patients. The fact that they have emerged from thousands of other terms, suggests 

that they are interrelated, central concepts in ALS knowledge space. Therefore, addition 

of each seed increases both the size and the connectivity of the knowledge space 

(Observation 1). Sharp climbs of the connectivity indicate that the seeds added have filled 

important knowledge gaps in the previous sub graphs. Such high value seeds are more 

likely to increase hit rate. Plateaus of connectivity indicate that the seeds added have not 

remarkably enriched the knowledge in the sub graph. When the graph is large, however, 

adding a low value seed can still increase the total complexity and negatively impact the 

hit rate (Observation 2). As shown by the charts, HyGen becomes more susceptible to 

low value seeds as the graph grows bigger. Such trend has also been observed when 

applying HyGen to CRC. Both ALS and CRC are complex diseases. More experiments in 

other disease areas are needed to study whether this observation can be generalized to 

other multi-system, complex diseases. 

 
Figure 17. A typical chart generated by one of the random trials 

Since adding more seeds does not necessarily improve hit rate, we desire to study 

whether the order in which the seeds are added will make a difference. We compared the 

charts where the seeds were added in random order, with a special case where the seeds 
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were added in a specific order. We extracted the number of patients who reported each 

MFR term from the community reports and used it as an indication of the seed‟s 

prevalence. When building G1-G20 in the special case, we added the most prevalent seed 

first. The chart of the special case is shown in Figure 18. We noticed that the average 

degree increases more rapidly and a high hit rate is achieved with smaller sub graphs. 

The hypothesis is that prevalent terms in patient communities are more relevant to 

their disease and consequently more valuable seeds. Based on the observations, we 

designed a systematic approach to optimize the seeds selection. A sub graph should begin 

with the most relevant seeds. Assuming the connectivity of a sub graph G is a function of 

its seeds y = f(x), any additional seed should be selected such that G could achieve higher 

f’(x) with less nodes and edges. When f’(x) is approaching 0 after adding xn+1. It is 

possible that {x1… xn} may be the optimal set of seeds and adding more seeds could 

reduce the hit rate. When we do not know which nodes are more relevant, multiple 

optimization experiment sets are needed. Each set follows above process with the starting 

seed x1 being randomly selected. After completing all experiments, we may select the set 

that produces the best f’(x) with the smallest sub graph and the fewest seeds. 

 
Figure 18. The chart generated by the special trial  

However, if we can infer the relevancy of the seeds beforehand, the number of 

required experiments is greatly reduced. Data in social networking web sites is usually 

annotated by frequency, customer votes, and other information that can be used to infer 

the relevancy of a term. HSNC, therefore, may be a promising data source for selecting 

and optimizing seeds.  
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Identify ALS Candidate Genes 

We followed the optimization process described above and added the seeds in 

descending order of their prevalence. HyGen has identified fifteen of the twenty gold 

standard genes (75% hit rate) with the six drugs that are used by the most ALS 

community members. The enhancement factor computed by equation (4-4) is 94 fold. 

   (4-4) 

Besides identifying the genes in the gold standard, HyGen has also suggested 

ALS genes that have not been published. Those genes are listed in Appendix F. Each 

gene has been suggested because it has a hidden connection to at least one of the seeds. 

For example, MTHFR has been highlighted based on the following reasoning: genetic 

variation in MTHFR influences a person‟s susceptibility to acute leukemia according to 

Genetic Association Database (GAD); and acute leukemia may be treated by riluzole 

according to DrugBank. Since riluzole is also the drug most commonly taken by ALS 

patients, one possible hypothesis may be that genetic variation in MTHFR could also 

influence one‟s susceptibility to ALS. Based on this suggestion and the informatics 

evidence, a biologist may further study MTHFR‟s potential as a candidate for mutation 

screening in ALS. On the other hand, a specialist may decide to investigate the usage of 

MTHFR genetic test as an early diagnostic tool. Furthermore, in a cross-disease research 

effort, public GWAS data of both ALS and acute leukemia may be integrated to identify 

the connections and interactions between MTHFR and known ALS genes. 

Link Riluzole with Alcoholism 

Starting from the optimal seeds, HyGen has identified other interesting 

associations. For example, HyGen has suggested that riluzole may be relevant to several 

conditions including anxiety, impulsive disorders and alcohol abuse. It is believed that 

the pharmacological properties of riluzole include an inhibitory effect on glutamate 

release. Glutamate system is an important contributor to the pathophysiology of mood 

and anxiety disorders. Thus it is not surprising that HyGen has connected riluzole with 

anxiety and impulsive disorders. Such associations are not novel; using riluzole to treat 

severe mood, anxiety and impulsive disorders was proposed in papers such as [106]. 
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However, the association between alcohol abuse and riluzole is more “interesting” 

and may inspire novel hypotheses. HyGen has linked riluzole to alcohol abuse by two 

steps: <riluzole-inhibits-NMDA> and <NMDA-related_to_disorder-alcoholism>. Based 

on the literature research, HyGen‟s suggestion appears to be biologically relevant. 

Chronic alcohol ingestion increases the binding of glutamate to NMDA receptors. During 

withdrawal, a rebound activation of these receptors occurs and causes alcohol withdrawal 

syndrome, such as seizures and delirium tremens [107]. One may hypothesize that by 

inhibiting NMDA, riluzole could relieve alcohol withdrawal syndrome and reduce 

alcohol abuse problems. In fact, a recent animal study found that riluzole can selectively 

reduce alcohol self-administration and reduce the severity of alcohol withdrawal seizures 

in mice [108]. This study was published after we have already compiled all the 

associations in the full graph. Therefore, we believe HyGen has identified the connection 

between riluzole and alcohol abuse independently. It suggests that starting from 

knowledge embedded in HSNC, HyGen can discover hidden connections and suggest 

relevant hypotheses. 
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CHAPTER FIVE: CONCLUSION 

Summary of Findings  

To address the challenges in translational research, we proposed a hybrid 

approach and implemented a knowledge discovery framework called HyGen [109, 110]. 

Modeling life science and health care knowledge as semantic graph allows HyGen to 

aggregate and connect loosely associated disease and molecular level information into a 

formal structure. Graph-based pseudo- relevance feedback strategy has been developed to 

discover and prioritize associations relevant to users‟ interests. Heuristic and quantitative 

approaches involving two complex diseases have been used to evaluate the framework. 

The results demonstrate that starting from knowledge gained in the “bench”, HyGen can 

discover novel connections and suggest possible hypotheses to users at the “bedside”, and 

vice versa. 

In Colorectal Cancer (CRC) case studies, we simulated three types of 

stakeholders: a health care consumer, a health care provider, and a biomedical researcher. 

A profile was defined for each user; a sub graph (view) was constructed; and novel 

associations were suggested. Literature research has confirmed that the associations 

suggested by HyGen are scientifically possible. Comparison with direct search in the 

original data sources has shown that HyGen can identify additional connections. 

Topological analysis of the sub graphs has suggested that HyGen can deliver views 

reflecting the users‟ preference without distort the nature of the original full graph.  

Health Social Network Communities (HSNC) are emerging resources for 

translational research. In Amyotrophic Lateral Sclerosis (ALS) case studies, we 

converted the most frequently reported terms in the community report of 

PatientsLikeMe.com (PLM) into graph nodes using linguistic tools and large biomedical 

ontologies. By combining content from HSNC (“bedside”) and traditional research-

oriented databases (“bench”), HyGen has identified fifteen of the twenty gold standard 

ALS genes. In addition, HyGen has suggested new candidate genes for future 

investigations, as well as a novel association between riluzole and alcohol abuse.  

In the various case studies, we designed and implemented various strategies to 

overcome the challenges of handling HSNC content. We explored two ways of using 

HSNC content: 1) use it as empirical data for quantitative evaluation; and 2) use it as the 
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starting point (seed) for hypothesis generate. We observed that adding more seeds does 

not necessary improve the hit rate. A rapid increase of the graph connectivity often leads 

to increased hit rate; whereas a plateau may lead to declined hit rate especially in a large 

sub graph. Based on the observations, we proposed a systematic approach to evaluate the 

value of seeds and to optimize the selection of seeds.  

In conclusion, case studies in both disease areas (CRC and ALS) illustrate that the 

knowledge model and approach of HyGen can be applied to other diseases using data 

from both traditional biomedical resources and HSNC. We believe this approach can help 

to bridge information-silos and to accelerate the communication between the “bench” and 

the “bedside”. 

Uniqueness of this Approach 

Although concepts and technologies supporting user profiling have been studied 

by many researchers in the context of retrieving information from the World Wide Web 

[111, 112], fewer reports have been published on applying user profiling technologies to 

rank multi-level and cross-disciplinary biomedical data based on graph attributes. 

With a few exceptions [48], most existing life science networks (graphs) have few 

types of nodes. This approach integrates many types of nodes and discovers associations 

among different types of biomedical entities. 

Currently no studies have been published on the potentials and challenges in using 

HSNC data in translational research. With over twenty large HSNC being launched in the 

last few years [113], there is an increasing need for novel approaches and methods to 

leverage HSNC content. We explored various ways of using HSNC content in HyGen. 

To overcome the challenges in handling HSNC content, we developed a process for 

converting patient-generated terms into graph nodes and reducing false negatives by a 

graph-based pseudo- relevance feedback strategy.  

In summary, we believe this approach is unique in three main aspects: 

a. Personalized ranking is produced based on profiles using graph algorithms. 

b. Graph-based pseudo-relevance feedback strategy is used to refine intermediate 

results. 

c. Online patient community is used as a supplementary data source to 

traditional research-oriented databases. 
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Translational research aims to connect basic research at molecular, cell and 

organism level with clinical practice at individual and population level. By sharing the 

preliminary results here, we hope to elicit a greater interest within the informatics 

community in the development of novel methods and systems for translational research. 
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CHAPTER SIX: DISCUSSION 

Implications of HSNC for Translational Research 

From 2005 to 2009, participation in social networking sites more than quadrupled 

[114]. Many people anticipate the rapid changes in the communication landscape will 

have direct impact on translational research in both knowledge production and 

dissemination [113, 115]. First, the folksonomy constructed by patients of HSNC can 

elicit new health care concepts, coding sets, and classifications for translational research. 

In the future, we may see adoption of consumer-professional vocabulary mapping 

technologies by translational research systems. Certain translational approaches may need 

to completely replace the research-driven taxonomy with consumer-drive folksonomy. 

Second, there are large cohorts of patients who share similar health conditions and 

come from diverse background in HSNC. Access to such individual-level data is critical 

for identifying disease causing factors and for translating biological knowledge into 

personalized medicine. Openness may become an emerging theme in translational 

research community. From technical perspectives, transparency, interoperability, open 

source, and open programming interfaces will become important design philosophies for 

translational research systems. From social perspectives, individuals are more open in 

sharing information when seeking solutions for their health problems [27]. Therefore, 

translational research community needs to increase the effort in engaging and 

empowering health care consumers. Historically translational research tools were 

designed for professionals. In the future, we may see growing demands for consumer-

centric translational research tools and services, especially from HSNC. 

Thirdly, the collective wisdom of patients and professionals in HSNC will 

contribute to the knowledge of treating diseases, as well as preventing them. Historically, 

translational studies concentrated on developing therapies; the focus of future 

translational research may shift toward earlier stages of health care cycle. For example, 

translational researcher may be able to identify risk factors and predict health outcome 

specific for an individual by analyzing the member profiles and the corresponding health-

related information in HSNC. 
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Safety Concerns of Patient-driven Research Model 

One concern of the patient-driven research model is that some patients, 

desperately wanting to cure their illness, may do harm to themselves by overly aggressive 

self-testing. The associations discovered by HyGen or other knowledge discovery tools 

are intended to inspiring novel hypotheses. Those hypotheses should be examined and 

tested under the supervision of experts. Without the proper guidance from medical 

professionals, health care consumers may possibly do damage to self and others. 

Unguided self-testing is especially dangerous when the drugs have a high potential for 

toxicity. Here we caution health care consumers in taking drugs for off-label usage. In the 

case of self-testing drugs and treatments, evidence and rigorous data analysis are 

necessary to ensure the safety and effectiveness of the therapies.  

The legal and ethical concerns related with patient-driven research also need to be 

addressed at social level. We suggest that those issues should be examined in a separate 

and more comprehensive study. 

Limitations and Future Research 

Optimize Ranking Criteria 

One of the limitations of this study is the selection of the ranking criteria. The 

criteria currently used by HyGen were selected based on experience and literature review 

[116, 117]. Assuming an association discovered by HyGen contains a certain piece of 

information. We measure seven aspects of each piece of information: how relevant is the 

information; how specific is the information; how important is the source of the 

information; how fresh is the information; whether the information is directly or 

indirectly associated with the search terms; how rare is the concepts involved in this piece 

of information; and whether this piece of information occupies a central position in the 

knowledge space. Some of those criteria may not be necessary. Some criteria may even 

prevent HyGen from obtaining the optimal ranking. On the other hand, criteria that can 

provide better rankings may have been missed from the list of seven criteria. Therefore, 

the current ranking produced by HyGen may not be optimal.  

To obtain the optimal set of criteria, we need to develop sets of ranked 

associations based on different user profiles and use them as the training sets or gold 

standards. We can then try different combinations of the criteria, compare the results with 
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each gold standard, and identify the optimal criteria set for each type of profile. When 

starting a search, the user‟s profile will be populated with an optimal criteria set pre-

tailored for the given user type. A guideline should also be provided indicating which set 

of criteria is suitable for the types of search questions the user wants to address. 

To establish optimal criteria for different stakeholders and to reduce personal bias, 

a user study of large number of pilot users, preferably consumers and professionals 

interested in multiple disease areas, is needed. We may pursue this study in the future; 

however it is outside the scope of the current dissertation. 

Edge Properties  

HyGen‟s graphs are matrix-based graphs. The edges have only one property: a 

numerical weight assigned according to the data sources. In the future, to reflect the 

complex relationships exist in life science and health care knowledge space, we should 

enable property-based graphs, where properties can be attached to the edges. In property-

based graphs, edges can have any number of key-value pairs as their properties. Today, 

we analyze the graphs based on their topological features. Having edge properties will 

give us the ability to analyze the graph using property-based algorithm. 

Another advantage of a property-based graph is in delivering more user-specific 

views. In a property-based graph, two neighboring nodes may be connected by multiple 

edges. In other words, any types of relationships (edges) can exist between the same pair 

of concept. Some relationships may be present in one view but not in the other based on 

the different user profiles. 

Individual-level Data 

Another limitation of the approach is that HyGen used only aggregated 

community-level data provided by PLM. The major challenge in using individual-level 

data is to keep sensitive patient data private while preserving the connections between 

data points that are necessary for association mining. As the open research model of 

HSNC continues to develop, it may be possible to probe the backend databases for 

associations at the individual-level using social science methods.  

In the future, we need to address the quality shortcomings of patent-generated 

data, such as potential bias, input errors, intentional or unintentional false information. In 

this document, we discussed HyGen‟s technical strategies to alleviate some of the 
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concerns, such as using biomedical ontologies to insure data consistence, using 

community-level frequency count to minimize individual bias and data error, and using 

pseudo-relevance feedback to reduce false associations. However, not all above concerns 

can be overcome by technology. Legal and ethical concerns, intentional false 

information, and other professionalism issues largely have to be addressed by the 

combined efforts from patients, researchers and health care providers. 

Agent-based Information Extraction 

HyGen‟s current data extraction layer is not fully automated. We propose the use 

of intelligent mining agents in the future. A mining agent extracts data from a data source 

and converts the information into triples {c1, r12, c2}. New triples that have been validated 

will be posted on a “blackboard” to share with other mining agents. Each agent decides 

whether the new triples are relevant and takes actions accordingly, for example one agent 

may decide to retrieve additional data, and another agent may decide to re-evaluate some 

conflicting data. There are two key requirements for the agents: a) they shall be able to 

adjust the discovery process as more information becomes available; and b) they shall be 

able to influence the discovery process of each other. 

The major challenge of designing an agent-based information extraction layer for 

HyGen is caused by the complex and transient interrelationships among biomedical data 

sources. Agents need to know the rules for processing the information and rules for 

interacting with each other. Some data sources publish the metadata that can be used to 

derive processing rules. There are also techniques for deriving metadata based on the data 

in the data sources [118, 119]. However, automatic generation of interaction rules for 

agents attached to diverse data sources is still a difficult problem [120]. In the case of 

HyGen, the interaction rules are especially complex due to the heterogeneous nature of 

translational data sources. 
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APPENDICES 

Appendix A. Associations in the Full Graph 

Associations Count Source Database 

gene and CF
2
 150292 OMIM (www.ncbi.nlm.nih.gov) 

GAD (http://geneticassociationdb.nih.gov) 

PHARMAGKB (www.pharmgkb.org) 

gene and gene 310842 BioGrid (thebiogrid.org) 

BIND (bond.unleashedinformatics.com) 

MINT (mint.bio.uniroma2.it) 

IntAct (www.ebi.ac.uk/intact) 

Reactome (reactome.org) 

gene and pathway 91771 KEGG (www.genome.jp/kegg)  

Reactome (www.reactome.org) 

WikiPathways (www.wikipathways.org) 

Panther (www.pantherdb.org) 

PID (pid.nci.nih.gov) 

drug and gene 6552 DrugBank (www.drugbank.ca) 

PharmGKB (www.pharmgkb.org) 

drug and CF 6742 DrugBank (www.drugbank.ca) 

PharmGKB (www.pharmgkb.org) 

  

                                                 
2
 CF stands for Clinical Features 
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Appendix B. Major Stakeholders and Profiles 

Stakeholder Sample Query Preference 

Strategic or 

Portfolio 

Manager 

 Therapeutic focuses of other companies  

 Similar treatment developed by other companies  

 What subset of the population is most likely to 

have a success outcome from this treatment? 

 What subset of the population is most likely to 

have an adverse event from this treatment? 

 Who are the opinion leaders for a therapeutic 

area/drug/pathway? 

X
3
 = 1 

Long
4
 = 0 

Rare
5
 = 0 

Hotspot
6
 = 1 

New
7
 = 1 

R
8
 = Company, Drugs, 

Diseases, Regulators, 

Payers, Patents, Market 

Immunologist  Which immunization regime delivers the most 

antibodies?  

 What process delivers the greatest diversity of 

antibodies? 

X = 2 

Long = 1 

Rare = 1 

Hotspot = 1 

New = 1 

R = Antibodies, immune 

response, molecule (large) 

Cheminforma

tic-ians 
 What molecules are active against this target? 

 Related targets 

 Compounds that are related to an active 

compounds 

 Liabilities associated with a compound 

X = 3 

Long = 1 

Rare = 1 

Hotspot = 1 

New = 0 

R = Molecular Structure, 

Activity, Target, Pathway, 

Assay 

Systems 

Physiologist  

 

 Function of a target (gene/protein/phenotype) 

 Publications on a target 

 Who are the experts on this topic? 

 Do patients have variations in the drug target? 

 What hypotheses have been made about this gene? 

 What are the changes in the sequence of a miRNA 

and variations in the miRNA target region of a 

transcript?  

X = 2 

Long = 0 

Rare = 1 

Hotspot = 1 

New = 1 

R = Receptors, Proteins, 

Genomic Sequences, 

Pathway,  

Biological System 

Cellular and 

Molecular 

Biologist 

 Interactions for X enzymes that are involved in Y 

disease. For all these genes, get the expression and 

aCGH values for all disease samples 

 How do variations in the sequences of genes in the 

pathway X correlate with the extent of disease 

severity, vulnerability and familial predisposition 

to Disease Q?  

 What targets are associated with a disease?  

 Active compounds that affect a target  

 Epigenic regulators for a target 

 Demographics associated with a disease 

 How does the gene variant affect patient survival 

for this disease?  

X = 2 

Long = 1 

Rare = 1 

Hotspot = 1 

New = 1 

R = Disease, Pathway,  

Proteins and Genes 

Associated with Disease 

                                                 
3
 X is a number, indicating the maximum number of iteration 

4
 1 indicates the user prefers long associations, 0 otherwise  

5
 1 indicates the user prefers rare associations, 0 otherwise 

6
 1 indicates the user prefers highly connected entities, 0 otherwise 

7
 1 indicates the user prefers new information, 0 otherwise 

8
 R is a list of concepts that the user is interested in. 
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 What is the underlying aspect of the profile that 

distinguishes high and low risk patients 

(pathway)?  

 What variations are there in disease tissue versus 

germ line genes?  

Medicinal 

Chemist 
 What classes of compounds appear to have 

activity?  

 What is the patent landscape?  

X = 1 

Long = 0 

Rare = 0 

Hotspot = 1 

New = 1 

R = Assay, Activity, 

Fragment, Synthesis, 

chemical properties, 

polypharmacology 

In-Vitro 

Biologist 
 Cell lines in which RNAi data has been generated 

using X reagents 

 Experiments conducted on a target  

 Do proteomic assays of tumor material and serum 

samples identify patterns reflecting outcomes?  

X = 1 

Long = 0 

Rare = 0 

Hotspot = 1 

New = 1 

R = Bioassay, pathway 

In-Vivo 

Biologist 
 What variations in metabolites correlate with the 

efficacy of compounds against Targets 

 Which animal species has the closest genome for 

the pathway/target of this disease?  

 Safety concerns for a compound 

 Markers for clinical assays 

X = 1 

Long = 0 

Rare = 1 

Hotspot = 1 

New = 1 

R = Toxicity, 

Efficacy, animal study 

Clinical Trial 

Formulator or 

Lead 

Physician 

 Which patients are most likely to respond in a 

clinical trial?  

 Other companies running clinical trials in the same 

therapeutic area 

 Known issues in this type of formulation in a drug 

class 

 Known side effects in therapies for this target? 

 Are there risk factors associated with the drug that 

should be taken into consideration (genetic, 

environmental)?  

 What is the treatment regime for this drug?  

 What are the clinical care guidelines for this drug? 

 Are there longitudinal studies available?  

 Do patients have variations in the drug target 

itself?  

X = 2 

Long = 0 

Rare = 1 

Hotspot = 1 

New = 1 

R = Hypothesis, disease, 

biomarker,  

Clinical Trials, 

Interventions 

Sales and 

Marketing 
 Who are the opinion leaders I need to influence?  

 What physicians should I visit?  

 What media should we use for advertising?  

 Should we target internet based advertising?  

X = 3 

Long = 1 

Rare = 0 

Hotspot = 1 

New = 1 

R = Physician, disease, 

market 

Primary Care 

Clinician 
 What are the alternative names for the 

disease/condition/ symptom?  

 What are the diagnostic criteria for the disease?  

 Treatment history 

 Difference between treatments  

 What issues have been seen in this type of 

X = 2 

Long = 0 

Rare = 0 

Hotspot = 1 

New = 1 

R = Patient, Patient 
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formulation in this drug class?  

 What subpopulation demographics are associated 

with this disease?  

 Which population is most likely to respond to this 

therapy?  

 Are there risk factors associated with the drug that 

should be taken into consideration (genetic, 

environmental)?  

 What are the current hot research topic areas for 

disease x?  

 Are there tests I need to perform before 

prescribing this drug?  

 What is the standard disease progression?  

 What is the likely disease progression for this 

patient?  

 What is the predicted outcome for the patient?  

 How quickly will this patient metabolize the drug?  

 Is it likely that the patient will experience a 

recurrence?  

 Where is a patient on a complex, multi-

dimensional risk spectrum based on detailed, 

individual molecular characteristics at genomics 

scale?  

 Are there natural alternatives to this drug? 

 What lifestyle changes should I recommend?  

 Is there a combination of drugs that would work 

best?  

Diagnosis, Disease 

Symptoms, Referral, 

Treatment/Management 

Plan 

Provider  What symptoms or test would show that the 

patient does not have the disease/condition? 

 How is treatment A different from B?  

 Is this course of treatment economical? 

X = 1 

Long = 0 

Rare = 0 

Hotspot = 1 

New = 1 

R = Cost/benefit of 

Therapy, Differential 

Diagnosis, Prognosis for 

Patient 

Patient  Treatment options for disease X 

 What symptoms or tests are related to disease X? 

 Am I at high risk because of my family history, 

lifestyle, and condition? 

 What lifestyle changes should I make 

X = 2 

Long = 1 

Rare = 0 

Hotspot = 1 

New = 1 

R = Cost/benefit of 

Therapy, Diagnosis, 

symptoms, disease, risk 

factors, treatment 
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Appendix C. A Sample User Profile 

# start the search with the following entities/terms 

seeds.DRG.drugName=Riluzole||Baclofen||Lithium||Amitriptyline||Gabapent

in||Lorazepam||Zolpidem||Sertraline||Salbutamol||Citalopram  

# what type of 'things' are you interested in 

dataTypeOfInterest=Gene 

# what centrality algorithm(s) do you prefer? 

scoreTypes=PageRank,Degree,avgDistanceToSeeds  

# how to normalize the graph attributes 

PageRank.max=0.25 

PageRank.min=0.0001 

PageRank.shape=sigmUp  

PageRank.convert=none 

PageRank.weight=1 

Degree.max=100 

Degree.min=4 

Degree.shape=sigmUp  

Degree.convert=none 

Degree.weight=2 

DistanceCentrality.max=10 

DistanceCentrality.min=0 

DistanceCentrality.shape=sigmUp  

DistanceCentrality.convert=none 

DistanceCentrality.weight=1 

avgDistanceToSeeds.max=5 

avgDistanceToSeeds.min=3 

avgDistanceToSeeds.shape=bell 

avgDistanceToSeeds.convert=none 

avgDistanceToSeeds.weight=2 

# do you prefer specific associations 

Specific=No 

# discards any nodes (entities) that are connected to more than 

MaxDegree number of other nodes? 

MaxDegree=100 

MinDegreeScore=0.3 

# do you prefer fresh information 

Fresh=1 

# how much do you trust the sources (0 least trust, 1 most trust) 

OMIM.confidence=1 

KEGG.confidence=.9 

DrugBank.confidence=.4 

GKB.confidence=.4 

Reactome.confidence=.8 

GAD.confidence=.5 

NCI_Nature.confidence=1 

IPA.confidence=.7 

DrugMatrix.confidence=.7 

BioGRID.confidence=.2 

GeneGo.confidence=.7 

Wiki.confidence=.8 

Panther.confidence=.8 

Biobase.confidence=.7 

BIND.confidence=.7  
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Appendix D. Ranking Criteria 

 Meaning Value 

CSA how relevant is v if v is_a R, CSA = 1; else CSA = 0 

SSA how specific is v, e.g. 

“Epithelial Neoplasm” is 

more specific than 

“Neoplasm” 

H
Hv

SAS
 , where Hv is the position of v in the domain ontology 

and H is the total height of the branch where v is found 

TSA how important are the 

sources 

average source weights of all edges.  

FSA how fresh is the information the time difference between now and when v first appeared in its 

source 

LSA how close is v to the seeds average shortest path from v to the seeds 

RSA how rare is v 
M

N
SAR

 N = number of nodes that are of the same semantic type as 

v. M = number of nodes in the full graph 

PSA v‟s probability of being 

reached from the seeds 

PageRank with Priors was computed by the following iterative 

equation [121]: 

v

vd

u

ii Puuvp
in )(

1

)()1( )()|()1()(

 

pv was set to 1/|R| for all seeds and 0 for the rest. 0< β <1, din(v) is 

the in-degree of a v. p(v|u) is the probability of reaching v from 

another node u. We assigned 
0
 to 1 for all nodes in the first 

iteration. 

HITS with Priors was computed by the following iterative equation 

[121]: 
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din(v) and dout(v) are the in-degree and out-degree of v. We assigned 

a
0
 and h

0
 to 1 in the first iteration. 
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Appendix E. Symptoms Reported by ALS Patients 

MFR
9
 symptom UMLS concept Concept Id UMLS type 

Fatigue Actual Fatigue C2364051 Finding 

Fatigue C0015672 SS
10

 

Fatigue C2024893 Finding 

Fasciculations Muscular fasciculation C0015644 SS
 

Stiffness/Spasticity Stiffness C0427008 SS
 

Muscle Spasticity C0026838 SS 

Anxiety Anxiety symptoms C0860603 Finding 

Emotional lability Mood swings C0085633 MBD
11

 

Excess saliva Sialorrhea C0037036 DS
12

 

Depression Actual Depression C2364072 Finding 

Depressed symptom C1579931 SS 

Depressed mood C0344315 Finding 

Depressive disorder C0011581 MBD 

Depressive episode, unspecified C0349217 MBD 

Mental Depression C0011570 MBD 

Pain Actual Pain C2364139 Finding 

Pain C0030193 SS 

Insomnia Sleeplessness C0917801 SS 

Constipation Constipation C0009806 SS 

 

  

                                                 
9
 MFR = most frequently reported 

10
 SS = Sign or Symptom 

11
 MBD = Mental or Behavioral Dysfunction 

12
 DS = Disease or Syndrome 
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Appendix F. Candidate Genes Suggested by HyGen 

Gene Reason for the suggestion
13

 

MTHFR MTHFR <-relatedToDisease-> Acute leukemia {GAD} 

Acute leukemia <-treatedBy-> Riluzole {DrugBank} 

ALB ALB<-isTargetOf->Nortriptyline {DrugBank} 

Nortriptyline<-treats->Depressive disorder {DrugBank} 

ADRA1A ADRA1A<-isTargetOf->Maprotiline {DrugBank} 

Maprotiline<-treats->Depressive disorder {DrugBank}  

TNF TNF<-relatedToDisease->AMYLOIDOSIS {GAD} 

AMYLOIDOSIS<-treatedBy->Riluzole {DrugBank} 

TP53 TP53<-relatedToDisease->Acute leukemia {OMIM} 

Acute leukemia <-treatedBy->Riluzole {DrugBank} 

ABCB1 ABCB1<-relatedToDisease-> Disorder, Bipolar {GAD} 

Disorder, Bipolar <-treatedBy-> Amitriptyline {DrugBank} 

GRIN1 GRIN1<-interactsWith->DRD1{BKL_Proteome} 

DRD1<-relatedToDisorder->Depressive disorder {GAD}  

CDKN2A CDKN2A <-relatedToDisease-> Acute leukemia {OMIM} 

Acute leukemia <-treatedBy-> Riluzole {DrugBank} 

HRAS HRAS <-relatedToDisease-> Acute leukemia {OMIM} 

Acute leukemia <-treatedBy-> Riluzole {DrugBank} 

BAALC BAALC <-relatedToDisease-> Acute leukemia {OMIM} 

Acute leukemia <-treatedBy-> Riluzole {DrugBank} 

ZFYVE26 ZFYVE26<-relatedToDisease-> clonus {OMIM} 

clonus <-treatedBy-> Baclofen {DrugBank} 

  

                                                 
13

 Each row corresponds to an association. The seeds are in bold font. Data sources are inside curly brackets 

and relationships are inside angle brackets. 
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