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ABSTRACT 

Jiangang Liu 

MOLECULAR PROFILING IN BREAST CANCER AND TOXICOGENOMICS 

This dissertation presents a body of research that attempts to tackle the 

‘overfitting’ problem for gene signature and biomarker development in two 

different aspects (mechanistically and computationally). 

In achievement of a deeper understanding of cancer molecular 

mechanisms, this study presents new approaches to derive gene signatures 

for various biological phenotypes, including breast cancer, in the context of 

well-defined and mechanistically associated biological pathways. We identified 

the pattern of gene expression in the cell cycle pathway can indeed serve as a 

powerful biomarker for breast cancer prognosis. We further built a predictive 

model for prognosis based on the cell cycle gene signature, and found our 

model to be more accurate than the Amsterdam 70-gene signature when 

tested with multiple gene expression datasets generated from several patient 

populations. Aside from demonstrating the effectiveness of dimensionality 

reduction, phenotypic dissection, and prognostic or diagnostic prediction, this 

approach also provides an alternative to the current methodology of identifying 

gene expression markers that links to biological mechanism. 

This dissertation also presents the development of a novel feature 

selection algorithm called Predictive Power Estimate Analysis (PPEA) to  
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computationally tackle on overfitting. The algorithm iteratively apply a two-way 

bootstrapping procedure to estimate predictive power of each individual gene, 

and make it possible to construct a predictive model from a much smaller set 

of genes with the highest predictive power. Using DrugMatrix™ rat liver data, 

we identified genomic biomarkers of hepatic specific injury for inflammation, 

cell death, and bile duct hyperplasia. We demonstrated that the signature 

genes were mechanistically related to the phenotype the signature intended to 

predict (e.g. 17 out of top 20 genes for inflammation selected by PPEA were 

members of NF-kB pathway, which is a key pre-inflammatory pathway for a 

xenobiotic response). The top 4 gene signature for BDH has been further 

validated by QPCR in a toxicology lab. This is important because our results 

suggest that the PPEA model not largely deters the over-fitting problem, but 

also has the capability to elucidate mechanism(s) of drug action and / or of 

toxicity.  

 

 

       Yaoqi Zhou, Ph.D., Chair 
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CHAPTER ONE: INTRODUCTION  

 

1.1. Introduction 

For personal medicine, the ability to dissect biological complexity to 

understand the unique characteristics of the individual patient is the key in 

developing effective therapeutic strategies. However, the capacity to 

understand this complexity is often limited by the ability to define relevant 

phenotypes. There is perhaps no better example of this challenge than that 

seen in cancer (Nevins et al, 2007). The complexity of the oncogenic process, 

involving the somatic acquisition of large numbers of mutations coupled with 

variability in a host’s genetic constitution, produces a disease of enormous 

complexity (Potti & Nevins, 2008). Traditional methods of characterizing 

tumors, based on gross visual information along with a limited number of 

biochemical assays, do provide a way to define tumor subgroups with distinct 

biology, it is clear that these classifications are imprecise, creating 

heterogeneous groupings of tumors and patients. Numerous examples show 

that expression profiling, a technology to measure gene expression on a 

genome-wide scale to identify patterns of gene expression, and gene 

signatures, patterns that can be dynamic in response to both physiological and 

patho-physiological processes, can dissect this heterogeneity and complexity. 

The promise for improvement in treatment decision making also attracted 

great attention to these gene signatures. In this study we focus on one 

particular aspect - to develop gene expression signatures or biomarkers that 

1 
 



reflect phenotypes, and to use these signatures as measures of signaling 

pathway activity and other aspects of biological or pathological endpoints or 

events. Thus, the aim of this dissertation is to develop, perfect, and validate 

the methodologies built around this aspect through following two different 

mechanistic and computational approaches.  

 

1.2. Specific aim I: Derive gene signatures for breast cancer prognosis 

in the context of known biological pathways.  

Modeling by using the high dimensional and high noisy genomic data is 

prone to over-fitting and often consist of a large number of genes with no 

obvious functional relevance to the biological effect the model intends to 

predict, which can make it challenging to interpret the modeling results. Also, 

there are significantly challenges lie in interpreting the profiling results to gain 

insights into biological mechanisms. Ultimately, finding gene signatures that 

can be linked to the molecular mechanisms of cancer development is critical 

for translating these markers into the clinic. As described in Chapter Three, we 

attempt to address these two issues mentioned above by developing a novel 

approach to identify gene signatures mechanistically for cancer prognosis in 

the context of known biological pathways. Our rationale for this approach is if 

we attempt to identify gene signatures within well defined pathways, not only 

does this approach alleviate the dimensionality problem, but the mechanism-

based gene signatures should also be more biologically relevant than the 

signatures derived from the entire human transcriptome. In preliminary 
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studies, we first tested more than a thousand well-defined signal pathways or 

functional gene sets from several public or commercial available sources such 

as Ingenuity, GO, KEGG, Biocarta, and Iconix. Preliminary results 

demonstrate that several signal pathways have been potentially linked to cell 

cycle, DNA damage response, DNA repair capacity, mitotic checkpoints, 

hypoxia, and other tumor micro-environmental factors such as glucose 

deprivation and oxidative stresses. Motivated by the initial success, we 

identified the pattern of gene expression in the cell cycle pathway can indeed 

serve as a powerful biomarker for breast cancer prognosis. We further built a 

predictive model for prognosis based on the cell cycle gene signature, and 

found our model to be more accurate than the Amsterdam 70-gene signature 

when tested with multiple gene expression datasets generated from several 

patient populations (Liu et al, 2008). To our knowledge, this is the first gene 

signature that was systematically derived directly from well-defined cancer-

associated signal pathways. The result suggests that the roles of this pathway 

and its interaction with oncogenic networks are key and potentially critical to 

understand and predict behaviors related to sensitivity to cell proliferation 

inhibitors. These initial achievements provide strong incentives for further 

expand, refinement, and validation of the model by integrating genomic data 

with other biological prior knowledge. 
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1.3. Specific aim II:  Develop and Apply new feature selection 

algorithm to alternatively tackle the curse-dimensionality issue for 

biomarker identification from microarray data 

Numerous recent studies demonstrated that gene expression 

signatures not only outperformed traditionally used clinical parameters in 

outcome prediction, but also contribute to a better understanding of the 

biological mechanism. However, the gene signature obtained for the same 

clinical types of patients by different groups differed widely and had only very 

few genes in common. This lack of agreement raised doubts about the 

reliability and robustness of the reported predictive signature, and the main 

source of the problem was shown to be the risk of overfitting. Overfitting that 

arises when the number of training samples is small and the number of 

attributes or features (i.e., the genes) is comparatively large. In such a 

situation, we can easily train a classifier that correctly describes the training 

data but performs poorly on an independent set of data. It is of paramount 

importance to reduce the dimensionality of the data by deleting unsuitable 

features. As described in Chapter Four, we developed a novel algorithm, 

called PPEA, Predictive Power Estimate Analysis in order to improve the 

performance of learning algorithms in computational aspect. This algorithm 

iteratively applies a two-way bootstrapping procedure to manage the number 

of genes equal or less than the number of samples in each splitting subset 

using for machine learning, and then assessed the merit of each individual 

feature by evaluating its strength of class predictability. This gave us the ability 
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to find a small size of feature subsets with high classification performance. 

Using DrugMatrix™ rat liver data in our studies, we identified genomic 

biomarkers of hepatic specific injury for inflammation, cell death, and bile duct 

hyperplasia. We further demonstrated that the signature genes were 

mechanistically related to the phenotype the signature intended to predict (e.g. 

17 out of top 20 genes for inflammation selected by PPEA were members of 

NF-kB pathway, which is a key pre-inflammatory pathway for a xenobiotic 

response). This is important because our preliminary results suggest that the 

PPEA model not largely deters the over-fitting problem, but also has the 

capability to elucidate mechanism(s) of drug action and/or of toxicity. Clearly, it 

will be critical for the further refinement, perfection, and validation of this 

algorithm to much more hetero-genetic datasets like cancer or other type of 

diseases. 

 

1.4. Dissertation structure 

Currently, whole genome microarrays are frequently used in clinical and 

preclinical studies that aim for diagnostic or prognostic prediction, phenotypic 

dissection, and mechanistic understanding. The recurring question when 

working with whole genome microarray data is how to handle the ubiquitous 

“overfitting”. Because of the uniqueness of the resulting microarray data 

whereas the sample size is typically far smaller than the feature size, this 

situation necessitates dimensionality reduction through gene selection to avoid 

data overfitting and improve generalization of discriminant (classifier). This 
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dissertation addresses the issue of overfitting primarily focused on several 

methodologies in feature selection. 

Chapter One contextualizes the dissertation by introducing the way 

feature selection, concerning with problem of overfitting, and proposing 

solutions that are discussed throughout this work. 

Chapter Two introduces the biological background, basic concept, and 

existing methods of molecular profiling in breast cancer and toxicogenomics. 

Chapter Three describes an alternative way to derive gene signatures 

for breast cancer prognosis in the context of known biological pathways. 

Chapter Four gives details for development of a novel algorithm called 

PPEA, which extends feature selection ideas from mechanistic approach to 

computational modeling.  

Finally, Chapter Five summarizes the dissertation, and discusses 

possible limitations and future work. 
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CHAPTER TWO: LITERATURE REVIEW 

 

2.1. History of breast cancer advancements 

Over the past two decades, important medical advances in diagnosis 

and treatment of breast cancer, revolutionized our understanding of breast 

cancer (Gauthier-Villars, 1999; Nevins & Potti, 2007). These advances include 

mammography, surgical improvements, chemotherapy, estrogen-limiting 

hormone therapy, genetic testing and targeted molecular therapy.  

Mammography is now the number one method of breast cancer 

detection. Although controversies arose from the quality of the randomized 

trials that evaluated the effectiveness of mammography, mammography 

screening are credited for raising the 5-year survival rate for localized breast 

cancer (that hasn't spread from its site of origin) from 80% to 98% since the 

1950s (Kriege, 2004; Dershaw, 2005; Berry et al, 2005).  

Introduced in the 1940s, chemotherapy can reduce tumor size before 

surgery, prevent recurrence afterwards and treat cancer that has 

metastasized, that is, spread beyond its initial location. Although it still 

produces side effects, including nausea, exhaustion and bone marrow toxicity, 

chemotherapy is much less harsh today than in years past (Hirsch, 2006).  

As pharmaceutical breakthrough emerged, selective Estrogen Receptor 

Modifiers (SERMs), such as Nolvadex (tamoxifen), and a similar effective 

drug, Evista (raloxifene), fight cancers that need estrogen to grow by limiting 

the ability of estrogen to enter the cancer cell. In high-risk women, this class of 
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drugs was found to reduce recurrence and the development of invasive breast 

cancer by 50% when taken over a 5-year period (Osborne, 1998).  Aromatase 

inhibitors, a class of medications that includes Arimidex (anastrozole), 

Aromasin (exemestane) and Femara (letrozole), work by reducing the 

estrogen available to cancer cells, and have been found to be more effective 

than tamoxifen in women who are postmenopausal and who have estrogen 

positive breast cancer (Mokbel, 2002). 

As a standard of treatment for both early stage and advanced or 

metastatic disease, Herceptin (trastuzumab, Genentech) is a classic example 

in targeted therapy that specifically binds to a particular subtype of breast 

cancer that has over-expression of the HER2/neu protein on its surface. It 

destroys the cancer cells, but very little healthy tissue. The validated 

association of aggressive disease and the over-expression of HER2 in any 

type or stage of breast cancer have created a $4 billion global market for 

Herceptin in 2007. Herceptin paired with chemotherapy cuts recurrence of 

HER2/neu-positive breast cancer by 50% (Hudis, 2007). Still, nearly 50% of 

HER2-positive patients do not respond to Herceptin, and survival benefits are 

transient, often lasting under a year. Furthermore, side effects remain a 

significant problem. 

Taking together, there is mounting evidence that adjuvant systemic 

therapy has resulted in a substantial improvement in both disease-free survival 

and overall survival of patients with breast cancer.  
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2.2. Traditionally prognostic factors 

Despite significant medical advances have been made, we still lack the 

ability to accurately predict if an individual patient would benefit from adjuvant 

therapy. In fact, the majority of women receive treatment unnecessarily for the 

benefit of a few. The importance of discovering strong prognostic and 

predictive markers to identify patients at high risk for relapse and aid in the 

selection of the most appropriate therapy has been long recognized by both 

cancer researchers and clinicians. Until recently, the only validated prognostic 

factors for breast cancer have been clinico-pathologic features such as lymph 

node status, tumor size, histologic grade, proliferative index and age, while 

hormone receptor and HER2/neu status serve as both prognostic and 

predictive factors (Stadler & Come, 2009). Traditional clinical risk classification 

systems like the St. Gallen (Goldhirsch et al, 1998) and National Institute of 

Health guidelines (Eifel et al, 2000) use these clinical and histopathologic 

features to develop treatment recommendations for adjuvant systemic therapy. 

In addition, a computer-based program called Adjuvant! Online, has been 

developed to help health professionals make estimates of the risk of negative 

outcome (cancer related mortality or relapse) without systemic adjuvant 

therapy, estimates of the reduction of these risks afforded by therapy, and 

risks of side effects of the therapy. These estimates are based on clinico-

pathologic information entered about individual patients and their tumors (for 

example, patient age, tumor size, nodal involvement, histologic grade, etc.) 

(Ravdin et al, 2001; Olivotto et al, 2005) However, the prognostic prediction of 
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Adjuvant! is merely based on limited number of prognostic factors (ER, PR 

and HER2 status, proliferation markers, genomic scores not included), and 

has limited efficacy adjustments (only for chemotherapy according to age and 

ER-status in post-menopausal patients) and a short time frame with 

calculations for 10-year outcome or even shorter (aromatase inhibitors, 

taxanes). 

While useful in predicting outcome, the fundamental flaw for these 

prediction approaches is that these clinicopathologic features do not fully 

reflect the biologic complexity of an individual’s tumor. More reliable prognostic 

and predictive models are needed to refine which individual patient would 

derive benefit from adjuvant systemic therapy. 

 

2.3. Molecular profiling advancements  

Since first introduced high-throughput gene expression microarrays 

used fluorescent labeling instead of radioactively labeled targets hybridized to 

46 cDNA probes simultaneously in 1995 (Schena et al, 1995), rapid growth in 

the technology allowed millions of probes to fit on a 1.28 cm2 chip (CeneChip 

expression arrays from Affymetrix) enough to cover whole genome of an 

organism. With the advance of genome sequencing, microarray technology 

has been developed rapidly in many aspects: from hundreds of gene probes to 

tens of thousands of gene probes, from spotted cDNA microarrays to 

photolithography oligonucleotide gene chips, from manual results reading 

system to automated data processing (Schulze & Downward, 2001). While 
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various microarray systems use different chip printing processes, the two most 

important chip types are one-channel arrays (Affymetrix) and two-channel 

arrays (spotted arrays). The Affymetrix one-channel arrays are in situ 

synthesized oligonucleotide arrays that use single fluorescence channel to 

measure expression level of genes of a sample that build up oligos directly on 

a slide. Two-channel arrays (spotted arrays) are made by depositing pre-made 

oligos or cDNAs onto slides and two colors of fluorescence are used to label 

experiment and control samples before hybridization. Use of this technology to 

systemically measure gene expression on a global level has evolved from 

large scale gene mapping and sequencing (Poustka et al, 1986) to transcript 

level analysis and gene signaling pathway identification (Schena et al, 1995; 

Schulze et al, 2004). This technology currently has been widely applied for 

identifying gene expression changes that are reacting to or causing disease 

promises to significantly enhance our understanding of common disorders. 

The transcriptome represents the collection of all RNAs produced in a cell or 

tissue at a defined time in development. Within biological systems it provides 

the critical link in the flow of information between genes and disease. It 

enables researchers to rapidly survey thousands of differentially expressed 

genes, proteins, or metabolites simultaneously, thus employing an integrative 

approach to identify unique biomarker signatures (Lamb et al, 2006; Nevins & 

Potti, 2007). In cancer, for example, elucidation of the role of Kras as 

biomarkers of response to EGFR inhibition in the treatment of colorectal 

cancer exemplifies the recent remarkable achievements that have been made 
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based on molecular profiling (Amado et al, 2008). Identification of novel 

cancer-related targets, gene signatures or biomarkers, and pathways using 

molecular profiling is redefining our understanding of the nature of malignancy, 

and is prompting new, more detailed classifications of malignancy that enable 

the development of specific/personalized cancer therapies (Ioannidis, 2007; 

Geyer et al, 2009a, 2009b). Traditional classifications involving gross 

pathologic hallmarks such as stage and grade are now being further 

augmented by data detailing the over expression of oncogenes, silencing of 

tumor suppressors and presence of mutant forms of relevant markers. In each 

of these cases novel targeted agents and various combination strategies are 

being investigated based on the specific molecular profiles of cancer subtypes 

(Nevins & Potti, 2007). In breast cancer, for example, classification has been 

extended to include metastatic sites (bone, brain), expression of HER2, and 

hormone receptor status. A recently introduced molecular classification is triple 

negative (ER-, PGR- and HER2-) breast cancer, also known as basal-cell 

cancer (Perou et al, 2000). Other classifications include inflammatory breast 

cancer and ductal carcinoma in situ (Yu et al, 2004; Sotiriou et al, 2003, 2006). 

Different treatment strategies are in development for each of these tumor 

types. Similarly, most other malignancies are also undergoing reclassification 

based on specific molecular profiles (Tothill et al, 2008).  

As we know, gene signature or biomarkers are measurable and 

quantifiable cellular characteristics that serve as indicators of normal or 

pathogenic biological processes. Identification of predictive signature or 
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biomarkers of cancer from molecular profiling will arm physicians with 

foreknowledge that will potentially increase efficacy of current treatments, and 

will provide critical information for designing improved treatment strategies 

(Potti et al, 2006). Eventually, it aids in the design of treatment regimens 

tailored specifically to individual patient, and could lead to the identification of 

potential targets for drug development and for evaluating the efficacy and 

adverse effect of lead compounds in clinical trials (Gibbs, 2000).  

 

2.4. Development of gene signature for breast cancer prognosis  

Numerous studies sought to utilize microarray technology in order to 

identify gene expression patterns that could be used to distinguish between 

patients who had the same stage of disease but different responses to 

treatment and hence different overall clinical outcomes (Potti et al, 2006; Lee 

& Havaleshko, 2007). For example, a 70-gene expression signature, often 

referred to as the Amsterdam signature, was developed from gene expression 

profiles of 117 breast tumors and was strongly predictive of a short interval to 

distant metastases in patients with tumors that were lymph node negative 

(van't Veer et al, 2002). The 70-gene signature was further validated in a 

follow-up study of 295 breast cancer patients (van de Vijver et al, 2002). A 

custom-designed array chip of the 70-gene-expression profile, known as 

MammaPrintTM, has recently gained FDA approved. A second large 

prospective clinical trial called the Microarray for Node-negative Disease may 

Avoid Chemotherapy (MINDACT) has being conducted in Europe. This trail 
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will determine if gene-expression profiling using MammaPrintTM can identify 

women who could be spared chemotherapy without compromising long-term 

disease outcome (Bogaerts et al, 2006). 

Although amount evidence showed that gene-expression-based 

biomarkers were more powerful predictors of outcome than traditional clinical 

criteria, there are two major concerns among biologists and physicians 

regarding gene expression signatures obtained from microarray data as 

prognosis markers or predictors for drug responses (Massague, 2007). First, 

gene signatures reported by different studies have little overlap. For example, 

a subset of 64 genes was identified from gene expression profiling data of 159 

population-derived breast cancer patients to give an optimal separation of 

patients with good and poor outcomes (Pawitan et al, 2005). Only three of the 

64 genes were among the 70-gene prognosis signature. In another study, a 

76-gene signature was developed from Affymetrix array data of 286 lymph 

node negative breast cancer patients for risk assessment (Wang et al, 2005). 

Similarly, upon comparison of this 76-gene signature with the Amsterdam 70-

gene signature, only 3 genes overlapped. There are several additional 

prognostic models with various number of genes derived from microarray gene 

expression data including the intrinsic subtype model (Perou et al, 2000; Sorlie 

et al, 2001, 2003), the wound response model (Chang et al, 2005), the 

recurrence score model (Paik et al, 2004) and the two-gene-ratio model (Ma et 

al, 2004). The gene overlap between these models is minimal. Fan and 

colleagues compared five models in a single dataset and found four of the five 
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models to be concordant in their outcome prediction (Fan et al 2006). While 

this result suggested that different prognostic gene signatures may track a 

common set of biological characteristics, the question remains that why there 

is a lack of consensus gene expression models for prognosis. The van't Veer 

dataset, for which the 70-gene signature was derived from (van’t Veer et al, 

2002) was analyzed retrospectively (Ein-Dor et al, 2005). It was found that 

different genes can be identified as prognosis markers depending on which 

subset of patient samples is selected as the training dataset (Ein-Dor et al 

2005), further casting the doubt on the current methodology of developing 

prognostic gene signatures from the whole genome transcription profiles. 

Second, the gene expression signatures for prognosis or drug responses are 

often difficult to interpret with respect to the underlying biology. Up to 30% of 

the signature genes have unknown function while the rest of them are 

associated with various unrelated biological pathways. Ultimately, finding gene 

signatures that can be linked to the molecular mechanisms of cancer 

development is critical for translating these markers into the clinic. Recent 

controversy in deriving gene expression patterns from microarray data to 

predict whether tumors will respond to chemotherapy (Coombes et al, 2007) is 

a reflection of these two issues. 

In Chapter Three, we attempted to address these two issues by 

developing a novel approach to identify gene signatures for cancer prognosis 

in the context of known biological pathways. Our rationale for this approach 

was if we attempt to identify gene signatures within well defined pathways, not 
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only does this approach alleviate the dimensionality problem, but the 

mechanism-based gene signatures should also be more biologically relevant 

than the signatures derived from the entire human transcriptome. In 

preliminary studies, we first tested more than a thousand well-defined signal 

pathways or functional gene sets from several public or commercial available 

sources such as Ingenuity, GO, KEGG, Biocarta, and Iconix. Preliminary 

results demonstrate that several signal pathways have been potentially linked 

to cell cycle, DNA damage response, DNA repair capacity, mitotic 

checkpoints, hypoxia, and other tumor micro-environmental factors such as 

glucose deprivation and oxidative stresses. Motivated by the initial success, 

we identified the pattern of gene expression in the cell cycle pathway can 

indeed serve as a powerful biomarker for breast cancer prognosis. We further 

built a predictive model for prognosis based on the cell cycle gene signature, 

and found our model to be more accurate than the Amsterdam 70-gene 

signature when tested with multiple gene expression datasets generated from 

several patient populations (Liu et al, 2008). To our knowledge, this is the first 

gene signature that was systematically derived directly from well-defined 

cancer-associated signal pathways. The result suggests that the roles of this 

pathway and its interaction with oncogenic networks are key and potentially 

critical to understand and predict behaviors related to sensitivity to cell 

proliferation inhibitors. 
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2.5. Biomarker in organ toxicity  

Many preclinical candidate compounds do not achieve ultimate 

regulatory approval because of induced organ toxicity. Because of organ 

toxicity, up to half of compounds discontinued in drug development are due to 

drug induced liver injury (DILI) including necrosis, steatosis, cholestasis, 

proliferation, inflammation, and bile duct hyperplasia (Ozer et al, 2008). It has 

been well-documented that biomarkers that identify incipient damage that 

leads to preclinical and clinical toxicities will enable better decision-making 

during drug development (Ryan et al, 2008.) Particularly valuable are 

translational biomarkers that bridge preclinical testing species and humans as 

they can expand the usefulness of the former for detection of human liabilities 

(Sistare & DeGeorge, 2007).  

Currently, serum ALT (Alanine aminotransferase) activity level is the 

most frequently relied upon laboratory indicator of hepatotoxic effects 

(Amacher, 1998, 2002). It shows infrequent false negative signals of liver 

histopathological injury as well as limited false positive signals, and is 

considered as the gold standard clinical chemistry marker of DILI. However, it 

does not always correlate well with preclinical histomorphological data, 

although the overall clinical utility of serum ALT measurements is exceptional. 

Our own analysis suggested that ALT was not particularly sensitive for early 

minimal necrosis in rat liver (Liu et al, in preparation). Thus, additional 

genomic signature or biomarkers are sought to add information to serum ALT 
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enzymatic signals, especially as bridge biomarkers in early human trials where 

histopathological data are usually not available. 

Although a sole biomarker is appealing as it can be easier to 

understand, there are few examples in preclinical testing or in clinical practice 

wherein a single measurement is considered definitive. Multiple markers are 

required to capture the biological heterogeneity of organs involved, individual 

variations and disease or toxicity processes (Mendrick, 2008). As described 

above, the technology of molecular profiling underlying pharmacogenomics 

and pharmacogenetics enables assessment of thousands of genes expression 

and single nucleotide polymorphisms (SNPs) simultaneously in each sample. 

Sophisticated machine learning approaches can be employed to identify 

meaningful biomarkers and discover the appropriate weight or influence 

applied to each to generate a final algorithmic conclusion.  

To date, cumulated evidences indicated that molecular profiling could 

achieve following contribution in toxicogenomics: (i) Safety assessment could 

be improved with the ability to link a chemical-elicited phenotype with gene 

expression changes (Phenotypic Anchoring) and the potential to identify subtle 

markers of cellular injury that precipitate overt organ toxicity (Luo et al, 2005). 

(ii) Biomarkers of toxicity can be identified to monitor drug therapy for evidence 

of toxicity or therapeutic outcome and predict exposure levels, particularly, can 

be used as diagnostic tools for traditionally difficult toxico-dynamic monitoring 

(Euna et al, 2008). (iii) Based on the assumption of that toxicants that elicit 

similar pathology or disease will elicit a common pattern of gene expression 
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changes, molecular profiling can be utilized to facilitate high-throughput 

chemical toxicity (Ganter et al, 2005).  

Although there have been only limited reports of success in toxicity 

detection, the use of gene expression signatures or biomarkers in peripheral 

blood cells as sentinels of tissue damage or dysfunction due to disease 

processes is showing great promise in many areas (Baird, 2007; Burczynski & 

Dorner, 2006; Deng et al, 2006; McHale et al, 2007; Mendrick et al, 2007; 

Mendrick, 2008). One excellent example is that, Rick Paules and collaborators 

recently published gene expression signatures in the peripheral blood that 

predict exposure to harmful levels of acetaminophen in the rat, and reported 

that these gene based measurements were more accurate than classical 

clinical pathology and histopathology assessments (Bushel et al, 2007). They 

translated these rat genes into their human orthologs and found they could 

separate acetaminophen-intoxicated patients from control humans.  

 

2.6. Current approaches in signature or biomarker discovery 

Since the first report of a DNA microarray was published in 1995 

(Schena et al, 1995) and the technique became commercially available around 

the year 2000, various methodologies and applications have been developed 

and implemented. Currently, unsupervised learning and supervised learning, 

two basic approaches adopted from machining learning in computer science 

field have been described for the analysis of DNA microarray data (Golub et 

al, 1999). 
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2.6.1. Unsupervised learning  

Unsupervised learning involves the discovery of intrinsic properties in a 

given data set without regard for prior knowledge of the underlying biology. In 

other words, no assumptions is made about what mechanisms might underlie 

for a given gene expression profile. As pioneered by Brown, Botstein and 

colleagues (Eisen et al, 1998), this approach became an effective tool in 

classifying biological samples into categories that were not previously known 

to exist. The power of this approach was exemplified in the work of Perou and 

colleagues, who have used expression patterns to define clinically significant 

subtypes of human breast cancer (Sorlie et al, 2003; Perou et al, 2000). Now, 

numerous examples have been reported in which this approach has been 

used to analyze gene expression data, often uncovering biological complexity 

that was not previously appreciated or the refinement of tumor classification. 

Here I only list a few examples such as hierarchical clustering in R 

(http://cran.r-project.org), Dchip (http://biosun1.harvard.edu/complab/dchip/) 

and GenePattern (http://www.broadinstitute.org/cancer/software/genepattern/). 

Typically, the result of unsupervised clustering is displayed in a color-coded 

matrix called heat map, where samples and genes are sorted according to the 

results of clustering. The heat map is used to represent the expression values 

for each gene in each sample and is the basis of many of the published 

microarray figures.  
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2.6.2. Supervised learning  

By contrast, ‘supervised learning’ strategies do consider existing 

information and, indeed, use it to guide the analysis of the gene expression 

data. This approach has been particularly useful in the identification of gene 

expression patterns that relate to clinically relevant phenotypes such as the 

ability to predict the potential for recurrence of disease. Mostly lies in following 

two aspects, the capabilities of the supervised learning are: (i) the ability to 

specifically drive the analysis to the phenotype of interest, taking advantage of 

the relevant information as a guide; (ii) the approach to find those gene 

expression patterns that relate to the phenotype, when the underlying biology 

relevant to the phenotype is uncertain, or if the clinical outcome reflects 

multiple components of the subtypes defined by unsupervised analysis. As 

likes ‘unsupervised learning’, plentiful applications have been developed and 

published for this approach.  One of excellent examples is Prediction Analysis 

of Microarrays (PAM, http://www-stat.stanford.edu/~tibs/PAM/). However, the 

selection of a unique list of genes by this approach does not offer sufficient 

knowledge to understand the biology of a given system, suggests the 

necessity to incorporate biological knowledge into array analysis.  

 

2.6.3. Gene-set enrichment analysis 

Gene-Set Enrichment Analysis (GSEA) is an approach that was 

developed to go beyond the analysis of patterns on a gene-by-gene basis 

(Subramanian et al, 2005). Traditionally we focus on genes at the top (up 
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regulated) and bottom (down-regulated) of a list ranked by some measure of 

statistical differences or “cutoff” in expression between phenotypes. However, 

a long list of statistically significant genes without any unified biological theme, 

and most of time no individual gene meets the threshold or “cutoff” for 

statistical significance and many genes show subtle differences. Also, single-

gene analysis may miss important effects on pathways because biological 

function or phenomena is orchestrated coordinately by a set of genes in a 

complex network. Unlike traditional approach, GSEA uses statistical measures 

of enrichment of annotated gene sets within expression profiles. The value of 

GSEA and another, similar approach, ‘gene module map’ (Segal et al, 2004), 

is to attempt to examine the true context by looking at representations of gene 

sets that might better reflect the underlying biology. Although the ‘no-cutoff’ 

strategy is the key advantage of GSEA, it is a difficult task to summarize many 

biological aspects of a gene into one meaningful value when the biological 

study and genomic platform is complex (i.e. SNP). In many cases, the 

upstream data processing and comprehensive gene selection statistics cannot 

be simply avoided or replaced by GSEA (Huang et al, 2009). Some similar 

ways to do this are either to use commercially available software (Ingenuity 

Pathway Analysis: http://www.ingenuity.com/; Pathway Studio: 

http://www.ariadnegenomics.com/) or public online applications (DAVID, 

http://david.abcc.ncifcrf.gov/). 
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2.6.4. Connectivity map  

One of fundamental challenges for molecular profiling is to make these 

disease-gene-drug connections. Conceptually, the expression signature as 

representing a distinct and well defined experimental state that can then be 

connected to an otherwise unrelated biological system opens the way for 

applications to inform and understand biological complexity (Lamb et al, 2006). 

The ability of an expression signature to dissect and connect two states, 

where the expression signature is the intermediary, is exemplified in the recent 

studies of Golub and colleagues, which describe a ‘Connectivity Map’ (Lamb 

et al, 2006; Hieronymus et al, 2006; Wei et al, 2006). Based on the creation of 

a large reference library of gene expression signature from cultured human 

cells perturbed with many chemicals and genetic reagents, this library of 

signatures is then used as a database that can be queried with expression 

information for other biological contexts, thereby linking otherwise disparate 

physiological events. The expression signature is represented as a group of 

gene identities, not by the actual properties of expression that are defined in 

the experimental setting, that create its independence of the methodology for 

determining expression, on other hands, differences between assay platform 

or methods of measuring actual expression. However, one of the major 

limitations of this model is that, the signatures for this model were completely 

built on cell cultures, and cells that grow on plastic in a laboratory are very 

different from tissues in a whole organism. Which means that effects 

modulated by specific microenvironments or that involve more than one cell 

23 
 



type are simply inaccessible. Furthermore, perhaps the biggest shortcoming of 

the current Connectivity Map resource is the complexity of the core dataset 

(sample space). Both the number and diversity of the small molecules in the 

collection is extremely low, meaning that the fraction of all possible induced 

cellular states represented is probably quite small. 

 

2.6.5. Feature selection  

The three characteristics of microarray datasets in molecular profiling: 

noise, large number of genes and relatively small number of samples, make 

over-fitting a ubiquitous danger for any tasks of model building and selection in 

molecular profiling (Donoho, 2000; Dudoit et al, 2002). As many pattern 

recognition techniques were originally not designed to cope with large 

amounts of irrelevant features, combining them with feature selection 

techniques has become a necessity in many applications (Guyon & Elisseeff, 

2003; Liu et al, 2002; Wang et al, 2005). The objectives of feature selection 

are manifold, the most important ones can be: (i) to avoid over-fitting and 

defying the curse of dimensionality to improve prediction performance, i.e. 

prediction performance in the case of supervised classification and better 

cluster detection in the case of clustering, (ii) to provide faster and more cost-

effective models and (iii) to gain a deeper insight into the underlying processes 

that generated the data. However, the advantages of feature selection 

techniques come at a certain price, as the search for a subset of relevant 

features introduces an additional layer of complexity and bias in the modeling 
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task. Also, there is no guarantee that the optimal parameters for the full 

feature set are equally optimal for the optimal feature subset. 

Since Kira and Rendell (1992) first described a statistical feature 

selection algorithm called RELIEF that uses instance based learning to assign 

a relevance weight to each feature, plentiful algorithms and methods have 

been developed. The methods given here are a selection from many others 

possible, and mostly based on the chronological literature review. In order to 

address the problem of irrelevant features and the subset selection problem, 

John et al (1994) suggested that features selected should depend not only on 

the features and the target concept, but also on the induction algorithm. 

Further, they claim that the filter model approach to subset selection should be 

replaced with the wrapper model. In the same year, Pudil et al (1994) 

presented a sequential search method, called ‘floating’, characterized by a 

dynamically changing number of features included or eliminated at each step. 

They claimed that this method was computationally more effective than the 

branch and bound method. Two years later, Koller and Sahami (1996) 

developed a method for feature subset selection based on information theory: 

they presented a theoretically justified model for optimal feature selection 

based on using cross-entropy to minimize the amount of predictive information 

lost during feature elimination. In 1997, Jain and Zongker considered various 

feature subset selection algorithms and found that the sequential forward 

floating selection algorithm, proposed by Pudil et al (1994), dominated the 

other algorithms tested. Yang and Pedersen (1997) evaluated document 
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frequency, information gain, mutual information, a Chi-test and term strength, 

and found information gain and Chi-test to be the most effective.  Kohavi and 

John (1997) introduced wrappers for feature subset selection. Their approach 

searches for an optimal feature subset tailored to a particular learning 

algorithm and a particular training set. Yang and Honavar (1998) used a 

genetic algorithm for feature subset selection. 

After the microarray technology had been introduced in 1995, and 

commercialized around 2000, the motivation for applying feature selection 

techniques in bioinformatics area has shifted from being an illustrative 

example to becoming a real prerequisite for gene expression signature 

development or biomarker discovery. In particular, the small sample size and 

high dimensional nature of modeling tasks has given rise to a wealth of feature 

selection techniques being used in many microarray data analyses in both 

supervised learning (i.e., classification) and unsupervised learning (i.e., 

clustering) contexts. The obvious need for these dimension reduction methods 

was realized (Golub et al, 1999; Alon et al, 1999; Ben-Dor et al, 2000; Ross et 

al, 2000), and soon their application became a de facto standard in the field. 

Whereas in 2001, the field of microarray analysis was still claimed to be in its 

infancy, a considerable and valuable effort has since been done to contribute 

new and adapt known feature selection methodologies (Efron & Tibshirani, 

2002).  

Currently, three kinds of methods have generally been studied and 

applied in microarray domain: filter methods (Golub et al, 1999 in early 
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classification), wrapper methods (Maldonadoa & Weber, 2009), and 

embedded methods (Guyon et al, 2002). See Saeys et al (2007) for an 

excellent review on this subject.  

The filter model relies on general characteristics of the training data to 

select predictive features (i.e., features highly correlated to the target class) 

without any learning algorithm involved. Mostly due to that the output provided 

by univariate filter feature rankings is intuitive and easy to understand, and the 

result can be validated by laboratory techniques, the prevalence of these 

univariate filter techniques has dominated the field (Dudoit et al, 2002; Lee et 

al, 2005). Although widely accepted and achieved substantial success for its 

behaviors of fast, scalable, and independent of the classifier, the filter 

techniques has its limitation in which the feature dependencies and interaction 

with classifier have been completely ignored. 

Conversely, the wrapper model uses the predictive accuracy of a 

predetermined learning algorithm to give the quality of a selected feature 

subset, generally producing features better suited to the classification task at 

hand. Wrapper algorithms use the interactions between feature selection and 

the learning algorithm by involving the learning algorithm in the feature 

selection step. A characteristic significance for wrapper methods offers a way 

to perform a multivariate gene subset selection, incorporating the classifier’s 

preference or bias into the search and thus offering an opportunity to construct 

more accurate classifiers (Blanco et al, 2004; Jirapech-Umpai & Aitken, 2005; 

Inza et al, 2004; Li et al, 2004). An interesting hybrid filter-wrapper approach is 
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introduced recently (Ruiza et al, 2005), which crossing a univariately 

preordered gene ranking with an incrementally augmenting wrapper method. 

The disadvantages for this method are computationally intensive, classifier 

dependent selection, and particularly, high risk of over-fitting. 

The embedded method allows the classifier to have the capacity of 

discarding input unneeded features and thus propose a subset of 

discriminative genes. Examples include the use of random forests (a classifier 

that combines many single decision trees) in an embedded way to calculate 

the importance of each gene (Dı´az-Uriarte & Alvarez de Andre´ s, 2006; Jiang 

et al, 2004). Another type of embedded feature selection techniques uses the 

weights of each feature in linear classifiers, such as SVMs (Guyon et al, 2002) 

and logistic regression (Ma & Huang, 2005). These weights are used to reflect 

the relevance of each gene in a multivariate way, and thus allow for the 

removal of genes with very small weights. Partially due to the higher 

computational complexity and classifier dependent selection of wrapper and to 

a lesser degree embedded approaches, these techniques have not received 

as much interest as filter proposals.  

To date, no single recommendation in literature is given for methods in 

either the feature selection or the classification of microarray data (Guyon & 

Elisseeff, 2003). Each of these techniques has its merits. None of them is 

superior to others for all microarray data sets. The particular test used 

depends on the data set under study.  
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In Chapter Four, I will describe that a new algorithm we developed that 

try to take the advantage in both filter (variable ranking) and wrapper methods 

to estimate predictive power of each individual gene. The algorithm iteratively 

applies a two-way bootstrapping to enforce the sample size larger than the 

feature size for each subset whereas the predictive power of individual gene is 

evaluated with an approach called prediction analysis of microarray, PAM 

(Tibshirani et al, 2002). We showed that the relative predictive power of genes 

stabilized after a definite number of iterations, which makes it possible to 

construct a predictive model from a much smaller (the number of genes < the 

number of samples) set of genes with the highest predictive power. Using 

DrugMatrix™ rat liver data, we identified genomic biomarkers of hepatic 

specific injury for inflammation, cell death, and bile duct hyperplasia. We 

further demonstrated that the inflammation genes selected using PPEA were 

mechanistically related to the NF-kB pathway and bile duct hyperplasia (BDH) 

genes related to the oncogenic p53 and ERBB2 pathways. More importantly, 

our models achieved high sensitivity and specificity when tested with 

completely independent datasets generated either in Lilly or in external 

research labs. Top four genes of BDH signature has been successfully 

implemented for a BDH liability assay with QPCR. Thus, we believe that the 

PPEA model may partially overcomes the over-fitting problem, and can be 

used to facilitate genomic biomarker discovery and development for predictive 

toxicology and to elucidate mechanism(s) of drug action and/or of toxicity. 
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CHAPTER THREE: IDENTIFICATION OF A GENE SIGNATURE IN CELL 

CYCLE PATHWAY FOR BREAST CANCER PROGNOSIS USING GENE 

EXPRESSION PROFILING DATA (Paper I, Liu et al 2008) 

 

3.1. Abstract 

Background: Numerous studies have used microarrays to identify 

gene signatures for predicting cancer patient clinical outcome and responses 

to chemotherapy. However, the potential impact of gene expression profiling in 

cancer diagnosis, prognosis and development of personalized treatment may 

not be fully exploited due to the lack of consensus gene signatures and poor 

understanding of the underlying molecular mechanisms.  

Methods: We developed a novel approach to derive gene signatures 

for breast cancer prognosis in the context of known biological pathways. Using 

unsupervised methods, cancer patients were separated into distinct groups 

based on gene expression patterns in one of the following pathways: 

apoptosis, cell cycle, angiogenesis, metastasis, p53, DNA repair, and several 

receptor-mediated signaling pathways including chemokines, EGF, FGF, HIF, 

MAP kinase, JAK and NF-κB. The survival probabilities were then compared 

between the patient groups to determine if differential gene expression in a 

specific pathway is correlated with differential survival.  

Results: Our results revealed expression of cell cycle genes is strongly 

predictive of breast cancer outcomes. We further confirmed this observation 

by building a cell cycle gene signature model using supervised methods. 
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Validated in multiple independent datasets, the cell cycle gene signature is a 

more accurate predictor for breast cancer clinical outcome than the previously 

identified Amsterdam 70-gene signature that has been developed into a FDA 

approved clinical test MammaPrint®.  

Conclusion: Taken together, the gene expression signature model we 

developed from well defined pathways is not only a consistently powerful 

prognosticator but also mechanistically linked to cancer biology. Our approach 

provides an alternative to the current methodology of identifying gene 

expression markers for cancer prognosis and drug responses using the whole 

genome gene expression data.  

 

3.2. Background 

DNA microarray technology has created a new paradigm for 

understanding cancer biology by simultaneous meas-urement of tens of 

thousands of genes in malignant or normal cells. Gene expression profiles 

have been utilized to identify gene signatures for cancer diagnosis and 

prognosis (Quackenbush, 2006). Motivated by the lack of accurate outcome 

prediction with the best clinical predictors of metastasis including lymph-node 

status and histological grade, numerous studies sought to utilize microarray 

technology in order to identify gene expression patterns that could be used to 

distinguish between patients who had the same stage of disease but different 

responses to treatment and hence different overall clinical outcomes. For 

example, a 70-gene expression signature, often referred to as the Amsterdam 
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signature, was developed from gene expres-sion profiles of 117 breast tumors 

and was strongly predictive of a short interval to distant metastases in patients 

with tumors that were lymph node negative (van’t Veer et al, 2002). The 

70-gene signature was further validated in a follow-up study of 295 breast 

cancer patients (Vijer et al, 2002). These studies showed that gene-

expression-based biomarkers were more powerful predictors of outcome than 

traditional clinical criteria. Recently, microarray-based gene expression 

signatures have also been developed to predict patient responses to 

therapeutic agents (Lee et al, 2007; Potti et al, 2006).However, there are two 

major concerns among biologists and physicians regarding gene expression 

signatures obtained from microarray data as prognosis markers or predictors 

for drug responses (Massague, 2007). First, gene signatures reported by 

different studies have little overlap. For exam-ple, a subset of 64 genes was 

identified from gene expression profiling data of 159 population-derived breast 

cancer patients to give an optimal separation of patients with good and poor 

outcomes (Pawitan et al, 2005). Only three of the 64 genes were among the 

70-gene prognosis signature (van’t Veer et al, 2002). In another study, a 76-

gene signature was developed from Affymetrix array data of 286 lymph node 

negative breast cancer patients for risk assessment (Wang et al, 2005). 

Similarly, upon comparison of this 76-gene signature with the Amsterdam 70-

gene signature, only 3 genes overlapped. There are several additional 

prognostic models with various numbers of genes derived from microarray 

gene expression data including the intrinsic subtype model (Perou et al, 2000; 
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Sorlie et al, 2001, 2003), the wound response model (Chang et al, 2005), the 

recurrence score model (Paik et al, 2004) and the two-gene-ratio model (Ma et 

al, 2004). The gene overlap between these models is minimal. Fan and 

colleagues compared five models in a single dataset and found four of the five 

models to be concordant in their outcome prediction (Fan et al, 2006). While 

this result suggested that different prognostic gene signatures may track a 

common set of biological characteristics, the question remains that why there 

is a lack of consensus gene expression models for prognosis. The van't Veer 

dataset, for which the 70-gene signature was derived from (van’t Veer et al, 

2002), was analyzed retrospectively (Ein-Dor et al, 2005). It was found that 

different genes can be identified as prognosis markers depending on which 

subset of patient samples is selected as the training dataset (Ein-Dor et al, 

2005), further casting the doubt on the current methodology of developing 

prognostic gene signatures from the whole genome tran-scription profiles. 

Second, the gene expression signatures for prognosis or drug responses are 

often difficult to inter-pret with respect to the underlying biology. Up to 30% of 

the signature genes have unknown function while the rest of them are 

associated with various unrelated biological pathways. Ultimately, finding gene 

signatures that can be linked to the molecular mechanisms of cancer 

development is critical for translating these markers into the clinic. Recent 

controversy in deriving gene expression patterns from microarray data to 

predict whether tumors will respond to chemotherapy (Coombes et al, 2007) is 

a reflection of these two issues.  
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In this report, we attempted to address the above mentioned two issues 

by developing a novel approach to identify gene signatures for cancer 

prognosis in the context of known biological pathways. Due to the nature of 

high dimensional data spaces in microarray studies where the number of 

measurements (> 10,000 mRNA transcripts) is greatly higher than the number 

of samples, data overfitting is an inevitable issue (Clarke et al, 2008). 

Therefore, our rationale was if we attempt to identify gene signatures within 

well defined pathways, not only does this approach alleviate the dimensionality 

problem, but the mechanism-based gene signatures should also be more 

biologically relevant than the signatures derived from the entire human 

transcriptome. Unsupervised hierarchical clustering analysis was first used to 

divide cancer patients into separate groups based on expression patterns of 

genes in a known pathway. Patient survival in the different groups was then 

compared. If a specific pathway plays a critical role in tumor progression and 

metastasis, patients with distinct gene expression patterns in the pathway may 

have very different clinical outcomes. The results presented here indicate that 

the pattern of gene expression in the cell cycle pathway can indeed serve as a 

powerful biomarker for breast cancer prognosis. We further built a predictive 

model for prognosis based on the cell cycle gene signature and found our 

model to be more accurate than the Amsterdam 70-gene signature when 

tested with multiple gene expression datasets generated from several patient 

populations. 
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3.3. Methods 

3.3.1. Data source  

Five different gene expression profiling datasets on breast cancers 

were analyzed in this study. Multiple datasets were used to demonstrate 

repeatability of the analysis. Specific details on each dataset are summarized 

in Table 1. For each gene expression dataset, 20 molecular pathways were 

analyzed. The 20 pathways were assembled from the Ingenuity Pathway  

databases http://www.ingenuity.com/ and the SuperArray cancer pathway 

array annotations http:// www.superarray.com/home.php. The list of 20 

pathways and genes within each pathway are provided in additional files 

(http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2551605/bin/1755-8794-1-39-

S1.doc). 

 

3.3.2. Data preprocessing  

For each array study based on Affymetrix oligonucleotide platforms, we 

downloaded the .CEL files and generated gene expression values using the 

Affymetrix MAS5 algo-rithm with trimmed mean values normalized to 500. A 

trimmed mean is the average value after removing the lowest 2% and the 

highest 2% of all expression values on the array. Prior to analysis, each data 

set was preprocessed with a log2 transformation and subsequently expression 

of each gene was standardized using median-centering. Data transformation 

and standardization were performed using scripts written in the R statistical 

programming language. When a gene is represented by multiple probe sets on 
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Affymetrix oligonucleotide arrays, the average expression value was used for 

further analysis.  

 

Table 1: Breast cancer gene expression profiling datasets analyzed in this 

study 

Reference Study summary  
Sample 

Size 
Microarray 
platform Data download 

How dataset was 
used in this study 

Van de 
Vijver et 
al.  

Demonstrated that a 
70- gene expression 
signature is a more 
powerful predictor for 
outcome than standard 
clinical and histological 
criteria in 295 primary 
breast cancer patients  295 

Inkjet 
Oligo  

http://www.rii.com/ 
publications/2002/ 
nejm.html 

Initial unsupervised 
analysis to identify 
outcome associated 
pathways 

Wang et 
al.  

Developed a 76-gene 
286 signature to 
predict distant 
metastasis using gene 
expression profiling 
data in 286 node 
negative primary 
breast cancer tumors  286 U133A  

http://  
www.ncbi.nlm.nih.gov/ 
geo/query/ 
acc.cgi?acc=GSE2034  

Initial unsupervised 
analysis to identify 
outcome associated 
pathways; Training 
dataset to build 
prognostic gene 
signature 
models. 

Miller et 
al.  

Identified a 32-gene  
signature from 251 
primary breast cancers 
to distinguish p53-
mutant and wild-type 
tumors and to predict 
prognosis.  251 U133A  

http://  
www.ncbi.nlm.nih.gov/ 
geo/query/ 
acc.cgi?acc=GSE3494  

Initial unsupervised 
analysis to identify 
outcome associated 
pathways; 
Independent dataset 
for validating the 
prognostic gene 
signature models. 

Pawitan 
et al.  

Identified a subset of 
64 genes from gene 
expression profiles in 
159 primary breast 
cancers that give an 
optimal separation of 
good and poor 
outcomes. 159 U133A  

http://  
www.ncbi.nlm.nih.gov/ 
geo/query/ 
acc.cgi?acc=GSE1456  

Initial unsupervised 
analysis to identify 
outcome associated 
pathways; 
Independent dataset 
for validating the 
prognostic gene 
signature models. 

Bild et al.  

Developed gene 
expression signatures 
for oncogenic 
pathways and 
demonstrated these 
signatures are 
predictive of clinical 
outcomes in lung, 
breast and ovarian 
cancers. 171 U95Av2  

http://  
www.ncbi.nlm.nih.gov/ 
geo/query/ 
acc.cgi?acc=GSE3143  

Initial unsupervised 
analysis to identify 
outcome associated 
pathways. 
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3.3.3. Hierarchical clustering  

Each pathway specific data set was analyzed by hierarchical average-

linkage clustering. The clustering was performed using Gene Cluster 3.0 

http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/ or using R 

pro-grams. The resulting numerical output was used by Java Treeview v1.1 

http://jtreeview.sourceforge.net/ to generate the associated heatmaps and 

clustering dendrograms.  

 

3.3.4. Kaplan-Meier survival analysis 

In addition to gene expression data, clinical information for each 

primary tumor sample is provided by the authors in each array study we 

analyzed (Table 1). The clinical data included survival and/or relapse time and 

censoring status. Using the available clinical outcome data, Kaplan-Meier 

analysis was performed on the patient groups defined by the hierarchical 

clustering analysis. An outcome curve for each cluster was produced using 

GraphPad Prism 4. The associated p-values generated from log-rank test in 

Kaplan-Meier analysis was used to represent the statistical significance of 

differential survival probabilities between the two patient groups.  

 

3.3.5. Supervised learning analysis 

The PAM (Prediction Analysis for Microarray) algorithm (Tibshirani et al, 

2002) was used as the classification method. The analysis was implemented 

in the R programming language. A 10-fold cross validation was used by 
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dividing the training dataset into 10 approximately equal-sized groups. The 

model was fitted on the 90% of the samples and tested on the remaining 10%. 

The procedure was repeated 10 times so each of the 10 groups was used as 

the testing samples and contributed to the overall error rate. The amount of 

shrinkage was chosen to minimize the error rate.  

 

3.4. Results  

3.4.1. Gene expression profiling datasets and the analyzed 

pathways  

Although there are dozens of breast cancer microarray studies, the 

available datasets that we could utilize in our study are limited. First, to ensure 

statistical power, we selected datasets with at least 100 patient samples. In 

addition, both gene expression data and patient clinical data such as survival 

time and status needed to be available. To obviate fundamental difference 

inherent in different array platforms, we focused mainly on gene expression 

data based on Affymetrix oligonucleotide arrays, particularly more advanced 

platforms such as U95Av2 or U133 series. We also included the 295-sample 

dataset that served as the basis for the development and validation of the 

original Amsterdam 70-gene prognostic signature (Vijer et al, 2002). As 

indicated in Table 1, five datasets on primary breast tumors were analyzed.  

The datasets in Table 1 were analyzed using 20 molecular pathways 

that were compiled from Ingenuity Pathway databases 

http://www.ingenuity.com/ and the SuperArray cancer pathway array  
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Table 2: Gene expression in specific pathways as prognosis markers 

Pathways  Van de Vijver  Wang  Miller  Pawitan  Bild  

The 70-gene 
signature  5.1E-07*  0.0059*  0.00020*  0.00049*  0.038*  
Angiogenesis  0.069 0.3 0.12 0.0023*  0.711 

Apoptosis  0.5 0.23 0.0017*  0.19 0.055 

Breast cancer  3.2E-08*  0.0035*  2.4E-04*  4.7E-05*  0.050*  

Chemokines  0.16 0.28 0.064 0.00045*  0.64 

Cell Cycle  9.9E-09*  0.0035*  0.0017*  9.5E-05*  0.037*  

DNA damage  2.2E-05*  0.055 0.036*  0.0062*  0.2 

EGF  3.5E-06*  0.25 0.0049*  0.00099*  0.013*  

FGF  4.9E-06*  0.033*  0.0047*  2.1E-06*  0.14 

G1_S  0.0014*  0.00098*  0.0037*  0.0027*  0.21 

G2_M  0.1 0.08 3.5E-04*  0.016*  0.19 

HIF  0.0035*  0.030*  0.19 0.44 0.011*  

JAK  0.67 0.37 0.061 0.084 0.029*  

MAPK  0.0069*  0.94 0.0059*  0.25 0.76 

Metastasis  0.35 0.015*  2.9E-04*  0.00037*  0.44 

NER  0.92 0.8 0.27 0.16 0.64 

NF-κB  0.88 0.91 0.49 0.47 0.11 

p38  0.078 0.35 0.84 0.054 0.077 

p53  9.2E-06*  0.066 0.0065*  5.9E-06*  0.013*  

DNA Repair  1.7E-08*  0.0076*  0.047*  0.023*  0.22 

Cell surface 
signaling  0.045*  0.13 0.025*  4.9E-05*  0.55 

The numbers represent the log-rank test P values in Kaplan-Meier analysis in 

two patient groups defined by hierarchical clustering. *P < 0.05. 

 

annotations http://www.superar ray.com/home.php. These pathways are 

involved in cancer development by directly regulating angiogenesis or 

metastasis processes, by regulating cell cycle, apoptosis, DNA repair, or by 

mediating cell signaling events (Table 2). The genes in each pathway were 

assembled manually from literature information as of February 2007. In 
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addition, we included the Amsterdam 70-gene signature as a control in our 

analysis. We also included a breast cancer gene set that contains 264 genes 

as known molecular markers in the prognosis and diagnosis of breast cancer. 

These genes were derived from literature as well as from previous microarray 

studies (van’t Veer, 2002; Vijver et al, 2002;Paik et al, 2004; Hu et al, 2003). 

The 70-gene signature is a subset of the 264 breast cancer gene model. 

Listed in additional file 1 are the pathway names and genes associated with 

each pathway 

(http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2551605/bin/1755-8794-1-39-

S1.doc). 

 

3.4.2. Overall analysis strategy  

Illustrated in Figure 1 is a flow chart describing the overall analysis. For 

each dataset, we first extracted expression data of genes involved in a specific 

pathway, followed by an unsupervised two-way hierarchical clustering 

analysis. If the hierarchical clustering analysis resulted in several distinct 

patient groups, then patient outcome in these distinct groups were compared 

using the Kaplan-Meier analysis. Our rationale is that if a specific pathway 

plays a critical role in tumor progression and metastasis, patients with distinct 

gene expression patterns in the pathway may have very different clinical 

outcome. This process was repeated for each of the 20 pathways we 

assembled.  
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Gene expression profiling data 

Data pre-processing 

Gene filtering by pathways 

Group patients by hierarchical clustering 

Kaplan-Meier analysis 

Identify pathways associated with clinical outcome 

Build prognostic predictor using supervised methods 

 

Figure 1: Analysis strategy. Hierarchical clustering using gene expression in 

specific pathways is followed by Kaplan-Meier survival analysis. The pathways 

exhibiting strong correlation between gene expression and clinical outcome 

were further examined using supervised methods to build predict models. 

 

The five datasets in Table 1 were analyzed as demonstrated in Figure 1 

for the 20 pathways. For each hierarchical clustering, cancer patients were 

separated into two distinct groups that Kaplan-Meier analysis was applied to. 

Summarized in Table 2 are the log-rank test P values of the Kaplan-Meier 

survival analysis. A P-value of less than 0.05 suggests that the two patient 

clusters have significantly differential survival probabilities.  
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Figure 2: Hierarchical clustering heatmap of breast cancers based on 

expression of genes in breast cancer gene marker set (A), cell cycle pathway 

(B), and NF-κB pathway (C). The dendrograms indicated that patients are 

clustered into two groups (Group1 and Group2) according to their expression 

patterns of the specified gene set. 

 

3.4.3. Identify pathways with gene expressions correlated with 

clinical outcome using unsupervised clustering  

We first tested the Amsterdam 70-gene signature and the breast cancer 

gene set including 264 genes as known molecular markers in the prognosis 
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and diagnosis of breast cancer. Our goal was to examine if patients with 

differential expression patterns of these markers exhibited distinct survival 

probabilities as one would expect. This is a proof-of-concept test and served 

as the positive control in our study. As demonstrated in Table 2, there is 

indeed a significant difference in clinical outcome between the two patient 

groups with distinct expression patterns of genes in the 70-gene signature or 

in the 264 breast cancer gene set. This result is reproducible in all of the five 

datasets (P < 0.05). We would like to emphasize that the five array datasets 

we analyzed were generated from different patient cohorts that included a total 

of 1,162 breast tumor samples. Figure 2A depicts a heatmap of the breast 

cancer gene marker expressions in 159 samples of one dataset (Pawitan et al, 

2005). The column dendrogram revealed these 159 patients were clustered 

into two groups with opposite expression patterns. The two groups exhibited a 

markedly different survival as revealed by the Kaplan-Meier analysis (Figure 

3A).  

We next investigated if gene sets based on any of the well known 

pathways (see additional file 1) could be used as cancer prognosis markers. 

As shown in Table 2, breast cancer patients with differential gene expressions 

in cell cycle had significantly different clinical outcome shown in all of the five 

datasets (P < 0.05), suggesting that the cell cycle pathway may be functionally 

important in breast cancer progression and that the genes in this pathway 

could be used as prognosis markers. EGF, FGF, G1-S and p53 pathways 

exhibited significant correlation between gene expression and survival in 4 
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datasets. This is somewhat expected given that G1-S transition is a part of the 

cell cycle pathway and significant roles of EGF, FGF and p53 pathway genes 

in regulating cell cycle. Figure 2B illustrates in one breast cancer array study 

(Pawitan et al, 2005), tumor samples can be separated into two groups with 

distinct expression patterns of cell cycle genes, and the two groups had 

significantly different survival probabilities (Figure 3B). In contrast, patients 

with distinct expression patterns of genes in the NF-κB pathway (Figure 2C) 

have similar outcomes (Figure 3C).  

 

3.4.4. Confirm prognostic gene signatures in cell cycle pathway 

using supervised classification  

Next we applied the PAM (Prediction Analysis for Microarray) method 

(19), a supervised learning algorithm to confirm the predictive powers of cell 

cycle pathway genes for breast cancer clinical outcome, and to build a gene 

signature prognostic model. We used the Wang study (Wang et al, 2005) as 

the training dataset to build a classification model from the Amsterdam 70-

gene set, the breast cancer marker gene set and the cell cycle pathway gene 

set, respectively, using the PAM algorithm. The models were fitted on 90% of 

the samples and tested on the remaining 10%. Each patient in the 10% testing 

samples was classified into the good or the poor prognosis groups based on 

the model developed using the training data. The procedure was repeated 10 

times so each of the 10 groups was used as the testing sam-ples and 

contributed to the overall prediction accuracy. Kaplan-Meier analysis of the  
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Figure 3: Kaplan-Meier survival analysis of breast cancer patient groups 

defined by the hierarchical clustering analysis shown in Figure 2 for breast 

cancer gene marker set (A), cell cycle pathway (B), and NF-κB pathway (C). 

 

predicted good and poor prognostic groups was performed to assess the 

predictive power of the models. We further carried out independent validation 

in two other datasets based on the same Affymetrix array platforms U133A 

(Table 1). The van de Vijver dataset (3) and the Bild dataset (Bild et al, 2006) 

were based on completely different microarray platforms, an InkJet 

oligonucleotide array and Affymetrix U95Av2 array respectively, and therefore 

were omitted in independent validation analysis due to technical reasons (for 
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example, many genes in the prognostic models built on the Affyme-trix U133A 

arrays are not represented on the InkJet oligo-nucleotide array and Affymetrix 

U95Av2 array). The patient samples in the two validation datasets (Pawitan et 

al 2005; Miller et al, 2005) were classified into the good and poor prognostic 

groups respectively using the models developed from the Wang study (Wang 

et al, 2005), subsequently followed by Kaplan-Meier analysis. The significance 

of differential survival probabilities between the two groups, represented by 

log-rank test P values in the Kaplan-Meier analysis, were recorded as shown 

in Table 3. Both the cell cycle signature we developed and the previously 

identified breast cancer gene signature performed well as prognostic 

biomarkers in training dataset and two independent validation datasets. 

However, the 70-gene Amsterdam signature was less accurate, particularly 

when evaluated using independent datasets. A set of 26 gene transcripts in 

the cell cycle pathway exhibited expression elevations greater than 2 fold in 

the poor prognosis groups in our training dataset (Table 4) and most of these 

genes have well documented roles in cancer development.  

We also randomly selected 232 genes, the number of genes used in 

the breast cancer gene set signature, to build prediction models and the 

random models were similarly assessed in the training dataset and two 

independent datasets as described above. This random testing was repeated 

100 times and the P-values in the Kaplan-Meier analysis were the average of 

the 100 experiments. Interestingly, the classification models based on 

randomly selected genes performed exceptionally well in the training dataset 
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using the10-fold cross validation procedure (Table 3), suggesting if one uses a 

large number of genes to build a prediction model, some of the randomly 

chosen genes will be differentially expressed between the good and poor 

prognosis groups by chance and therefore provide prognostic values. 

However, when analyzed in independent datasets of different patient cohorts, 

the models with random genes did not show predictive power (Table 3), 

demonstrating that microarray based gene expression predictors must be 

tested through multiple independent datasets to validate their robustness, a 

practice that has failed to be recognized by most published studies in the 

literature. 

 

 Table 3: Evaluation of cell cycle gene expression signature as breast cancer 

prognosis markers by supervised methods 

      Dataset   
Gene 

signature 
model 

Number of genes used 
in the classification 

model 

Training and 
testing: Wang 

dataset  

Independent 
validation: Miller 

dataset  

Independent 
validation: Pawitan 

dataset  

The 70-gene 
signature 51 6.10E-05 0.057 0.051 

Breast cancer 232 2.60E-09 0.0012 0.0019 

Cell cycle 108 1.40E-06 0.005 0.0046 

Random 232 1.80E-13 0.14 0.52 

The numbers represent the log-rank test P values in Kaplan-Meier analysis in 

the good and poor prognosis groups predicted by the Amsterdam 70 gene 

signature, the breast cancer gene set, the cell cycle gene set classifier, and 

the randomly selected gene set respectively. 
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3.5. Discussion 

Our analysis demonstrated that differential expression of genes in the 

cell cycle pathway is associated with differential patient outcome in breast 

cancers, suggesting that cell cycle regulation may be one of the most 

important factors contributing to breast cancer progression. In fact, cell 

proliferation markers have been extensively investigated for their prognostic 

values (Colozza et al, 2005; van Diest et al, 2004). A literature search has 

revealed expressions of many cell cycle related genes are correlated with 

breast cancer progression and patient survival as individual outcome 

predictors. Cyclins bind and activate cyclin-dependent kinases to drive cell 

cycle progression. The prognostic role of cyclins has been retrospectively 

assessed in numerous studies. For example, measurement of cyclin E by 

Western Blot and immuno-histochemistry in 395 breast cancer patients 

showed that higher level of total cyclin E is strongly correlated with poor 

outcome (Keyomarsi et al, 2002). Cyclin A, B and D also appeared to be 

strong prognostic markers in some studies (Kuhling et al, 2003; Peters et al, 

2004; Suzuki et al, 2007). CDC25A is a protein tyrosine-threonine 

phosphatase and regulates G1-S and G2-M transitions. Over-expression of 

CDC25A is associated with poor prognosis in breast cancers (Evans, 2000). 

Several independent reports demonstrated that high level E2F1 expression 

correlates with reduced disease-free survival in node-negative breast cancer 

patients (Baldini et al, 2006; Han et al, 2003; Vuaroqueaux et al, 2007). Ki-67 

(MKI67) antigen induces chromatin condensation and is a well known cell 
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proliferation marker. A recent review summarized that Ki-67 expression 

assayed by IHC showed prognostic values in 15 studies where a total of more 

than 5000 tumor samples were analyzed (van Diest et al, 2004). While these 

cell cycle related genes have been individually linked to breast cancer 

outcome, the multi-gene signature we applied in our analysis may provide a 

more accurate predictor, and more importantly these genes are 

mechanistically implicated in breast cancer progression. A close examination 

of gene identities in the cell cycle pathway, the Amsterdam 70-gene signature, 

and the control breast cancer gene signature revealed that the Amsterdam 

signature only included one cell cycle gene (cyclin E2). In contrast, the 232-

gene breast cancer signature and the 108-gene cell cycle pathway have a 25-

gene overlap including several cyclins (cyclin B1, B2, D1, E1, E2), cyclin-

dependent kinases (CDK2, CDK4), tumor suppressors p53 and RB1, and the 

proliferation marker Ki-67, suggesting that predictive power of the control 

breast cancer signature may be due to the presence of these cell cycle related 

genes.  

Adjuvant therapy and hormonal treatment of breast cancer patients 

have been demonstrated to improve survival. However, these treatment 

regimens are costly and could have serious side effects, therefore, should only 

be recommended to high risk patients. Traditional prognostic factors such as 

lymph node status, tumor diameter and histological grades do not accurately 

predict clinical behaviors of the breast tumors and as a result, patients can be 

over-treated or under-treated depending on the clinicpathological guidelines. 
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Identification of additional prognostic markers is important for clinicians to 

select the most appropriate systemic treatments for individual patients 

according to their risks of relapse or death. Cell proliferation is a key feature of 

breast tumor progression and has been widely evaluated as a prognosis 

factor. Although many proliferation markers have been established as robust 

prognosticators, they have not been applied in clinic due to various technical 

barriers. For example, 3H-thymidine labeling index (TLI) was one of the first 

methods developed to evaluate proliferative activity through measuring 3H-

thymidine uptake by tumor cells undergoing DNA synthesis (Lloveras et al, 

1991; Meyer & Connor 1977; Waldman et al, 1991). However, it has never 

been adopted as a standard prognostic marker because the experiment 

requires fresh tumor tissue and a complex and time consuming radioactive 

assay for in vivo administration of labeled substances. Measurement of DNA 

content by flow cytometry has provided a reliable approach to determine tumor 

cell proliferative activity represented by S-phase fraction (SPF) (Hedley et al, 

1987), but the lack of standardized procedure to prepare and analyze tumor 

samples precluded use of this method as a routine assay (Baldetorp et al, 

1995). Application of proliferation antigen Ki-67 is hampered as the Ki-67 

monoclonal antibody could only be used on fresh or frozen tissue since 

fixation greatly reduced immunostaining (Urruticoechea et al, 2005). The 

predictive power of abovementioned cell cycle regulators such as cyclins has 

not yet proved definitive since in some studies the correlation between protein 

level and clinical outcome is not significant (Colozza et al, 2005). The 
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Amsterdam 70-gene expression signature as breast cancer prognosis marker 

has been validated in follow-up studies (Bueno-de-Mesquita et al, 2007; Buyse 

et al, 2006), and a clinical assay MammaPrint® has recently been cleared by 

FDA. However, the two issues associated with the current gene expression 

signature markers for prognosis, i.e. the lack of a consensus gene set and the 

difficulty to understand underlying mechanisms, may prevent them from being 

widely accepted. The cell cycle gene signature we identified in this study has 

provided a prognostic gene expression marker that not only performed better 

than the Amsterdam 70-gene signature but is also mechanistically linked to 

breast cancer progression.  

There have been recent reports to incorporate biological pathway 

information into classification models by using a network analysis approach 

(Chuang et al, 2007) or to identify functional gene sets from various sources 

including Gene Ontology to distinguish two different biological phenotypes 

(Eichler et al, 2007; Subramanian et al,2005). In this study, we assembled 20 

pathways that are known to be involved in cancer development and 

progres-sion, and then extracted expression data of genes only in these 

pathways in order to identify a mechanistic gene sig-nature biomarker for 

breast cancer prognosis. We first selected pathways according to their 

classification powers based on unsupervised analysis, followed by building 

prognostic gene signature models using the standard supervised methods. 

The signature developed after pre-selecting relevant pathways should be more 

reliable and generally applicable as demonstrated by our validation when 
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applied to multiple independent datasets. This is not surprising since the 

signature is derived from the cell cycle pathway and it has been well 

documented that cell cycle control plays a critical role in determining breast 

cancer outcomes.  

We also recognize the limitation of our study. While the cell cycle gene 

signature derived from a training dataset (Wang et al, 2005) performed well in 

prognosis prediction in two independent validation datasets (Pawitan et al, 

2005; Miller et al, 2005), we did not specifically examine how stable the 

signature is by building multiple signatures in different datasets in the context 

of cell cycle pathway and then comparing these signatures for the extent of 

overlap. We reasoned that there could be significant overlap simply due to a 

much smaller gene set that we started with in signature model building. 

Furthermore, we did not attempt to understand the cell cycle signature at the 

individual gene level to interpret the role of each gene in disease progression 

based on the numerical coefficients in the signature model because these 

numerical parameters are heavily impacted by technical variations. 

Nevertheless, our pathway oriented approach and the analysis results strongly 

suggest a critical role of the cell cycle pathway in breast cancer progression, 

which is also consistent with what has been known from a rich collection of 

literature information.  
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Table 4: Expression of cell cycle genes in breast cancers 

Symbol  ID  Fold*  Description 

BIRC5 332 4.25 

Baculoviral IAP repeat-containing 5, antiapoptotic cell cycle regulator, 
expression in many cancers is associated with poor prognosis and 
mediates cancer cell resistance to taxol and radiation; rat Birc5 is 
upregulated in response to acute pancreatitis  

BRCA2 675 2.13 

Breast cancer 2 early onset, a transcription coactivator that binds to 
RAD51 and TP53, regulates cell proliferation, cell cycle progression, and 
DNA repair; mutations in the corresponding gene are associated with 
Fanconi anemia and multiple cancers  

CCNA2 890 3.11 

Cyclin A2, a cyclin-dependent protein kinase regulator, promotes G2/M 
transition, progression through cell cycle, cell proliferation, and 
phosphorylation of proteins; upregulated in male germ cell tumors and 
testicular tumors  

CCNB1 891 2.43 

Cyclin B1, complexes with CDC2 to promote nuclear membrane and Golgi 
disassembly, chromosome condensation, and microtubule reorganization, 
aberrant expression is associated with multiple neoplasms, increased 
expression correlates with Alzheimer disease  

CCNB2 9133 3.28 

Cyclin B2, a CDC2 kinase-associated cyclin that is involved in Golgi 
apparatus disassembly, may function in p53 (TP53)-mediated cell cycle 
arrest at the G2/M transition, may mediate cell cycle arrest and is 
overexpressed in nonendometrioid carcinomas  

CCNE1  898 3.01 

Cyclin E1, a CDK and histone deacetylase regulator, regulates mitotic G1-
S phase transition and promotes cell proliferation, involved in peptidyl-
threonine phosphorylation and aging, aberrant mRNA and protein 
expression is associated with several cancers  

CCNE2  9134 2.75 

Cyclin E2, a cyclin-dependent protein kinase regulator that binds CDK2 
and CDK3, regulates cell cycle checkpoint; mRNA upregulation correlates 
with breast and lung cancer, mouse Ccne2 is overexpressed in TPA-
induced carcinomas and fore stomach cancers  

CDC2  983 2.87 

Cell division cycle control protein 2, a cyclin-dependent protein kinase that 
acts in DNA damage checkpoint, inhibits apoptosis and EGFR signaling, 
expression is increased in Alzheimer disease, viremia associated with HIV 
infection, and various cancers  

CDC20  991 3.72 

Cell division cycle 20, a mitotic checkpoint protein and transcriptional 
repressor, activates the mitotically phosphorylated form of the anaphase 
promoting complex as well as the mitotic spindle checkpoint, 
overexpressed in gastric cancer  

CDC25A  993 2.7 

Cell division cycle 25A, protein tyrosine-threonine phosphatase, regulates 
G1-S and G2-M phase transitions, functions in apoptosis and oxidative 
stress response, activity increases in Alzheimer's disease neurons, 
overexpressed in many cancers  

CDC45L  8318 4.9 

Cell division cycle 45 like, associates with ORC2L, MCM7, and POLA2, 
predicted to be involved in the initiation of DNA replication; corresponding 
gene is located in a chromosomal region frequently deleted in DiGeorge 
syndrome  

CDC6  990 2.47 

Cell division cycle 6, involved in DNA replication initiation, may regulate 
DNA licensing, pre-replicative complex formation and cell proliferation, 
upregulated in cervical intraepithelial neoplasia and cervical cancer, 
downregulated in prostate cancer  

CDKN2A  1029 2.13 

Cyclin dependent kinase inhibitor 2A, interacts with CDK4 and CDK6, 
involved in aging, anoikis, and cell cycle arrest, regulates transcription 
factor activity and cell proliferation, aberrantly expressed in psoriasis and 
several types of cancer  

CHEK1  1111 2.54 

Checkpoint homolog 1 (S. pombe), protein kinase, required for mitotic G2 
checkpoint in response to radition-induced DNA damage, inhibits mitotic 
entry after DNA damage via mechanism involving CDC25, alternative form 
is associated with lung cancer  

CKS1B  1163 2.08 

CDC28 protein kinase regulatory subunit 1B, essential for SKP2-mediated 
ubiquitination of CDKN1A and CDKN1B, regulate cell cycle progression, 
aberrant protein expression is associated with several cancers  

CKS2  1164 2.27 

CDC28 protein kinase regulatory subunit 2, a protein that binds p34 CDC2 
and may regulate cell cycle progression, upregulated in pancreatic cancer 
cell lines  
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E2F1  1869 2.39 

E2F transcription factor 1, inhibits cell proliferation, aberrant expression 
correlates with several neoplasms and Alzheimer disease associated with 
Down syndrome; knockout of mouse E2f1 is associated with early onset of 
diabetes and Sjogren's syndrome  

GTSE1  51512 2.61 

G-2 and S-phase expressed 1, a cell cycle-regulated and microtubule-
associated protein that acts in nuclear-cytoplasmic shuttling of p53 (TP53), 
may play a role in DNA-damage induced apoptosis through regulation of 
p53 function during S and G(2) phases  

KPNA2  3838 2.18 

Karyopherin alpha 2, an NLS binding protein that acts in the nuclear 
transport of proteins and may play a role in V(D)J recombination, 
upregulated in breast cancer; human KPNA2 gene map position correlates 
with fetal growth retardation  

MAD2L1  4085 3 

MAD2 mitotic arrest deficient-like 1 (yeast), mitotic spindle checkpoint 
complex component, inhibits anaphase-promoting complex activation, 
binds MAD1L1, altered expression is linked to several cancers and adult 
T-cell leukemia  

MCM2  4171 2.88 

Mini chromosome maintenance deficient 2, binds chromatin, regulates the 
onset of DNA replication, inhibits the helicase activity of the MCM 4,6,7 
complex, expression is altered and is prognostic in a number of cancers  

MCM4  4173 2.82 

Minichromosome maintenance deficient 4, forms a single stranded ATP-
dependent DNA helicase with MCM6 and MCM7, may monitor sites of 
unreplicated DNA, displacement from replicated chromatin may ensure 
that DNA is only replicated once per cell cycle  

MCM5  4174 2.39 

Mini chromosome maintenance deficient 5, transcriptional coactivator that 
interacts with STAT1, enhances IFNG -induced and STAT1 -dependent 
transactivation, localizes to unreplicated chromatin, upregulated in 
anaplastic thyroid carcinoma  

MCM6  4175 2.15 

MCM6 minichromosome maintenance deficient 6, a component of the 
heterohexameric MCM complex that has ATP-dependent DNA helicase 
activity, acts in DNA replication initiation, upregulated in mantle cell 
lymphoma  

MKI67  4288 2.43 

Ki-67 antigen, induces chromatin compaction, acts in cell proliferation, 
expression is altered in neoplasms including osteosarcoma and prostate, 
breast and esophageal cancer; gene is mutated in cervical, colon and lung 
carcinoma cell lines  

RAD51  5888 2.13 

RAD51 homolog, a DNA binding ATPase that acts in apoptosis, cell 
proliferation, p53-mediated DNA damage response, and double-strand 
break repair via homologous recombination, aberrant expression 
correlates with bloom syndrome and several neoplasms  

*The fold changes represent the ratio of expression in the poor prognosis 

group over that in the good prognosis group in the training dataset (Wang et 

al, 2005). 

 

3.6. Conclusion  

Post-genomic technologies have provided a new paradigm in 

developing tailored therapeutic strategies for treating complex diseases. One 

notable example is the development of gene expression signatures based on 

microarray data to predict prognosis and responses to chemotherapy in 

cancers (Potti et al, 2006). Several studies have revealed that multiplex gene 

69 
 



expression markers are more powerful in predicting clinical outcomes than the 

traditional clinical criteria. However, the promise of applying these gene 

signature biomarkers in clinic is hampered because the underlying biology of 

gene signatures in cancer development is not well understood. Furthermore, 

different studies often report different gene expression predictors for the same 

cancer type and as a result, many biologists and physicians remain skeptical 

of the gene signature concept. In this study, we developed a novel approach 

to derive gene expression signatures for cancer prognosis in the context of 

known biological pathways. Our analysis not only generated mechanism 

based gene signature predictors, but also shed light on the role of different 

molecular pathways in cancer development. To our knowledge, the current 

study is the first effort to integrate gene expression profiling data and well 

known pathway information to develop pathway specific gene expression 

signatures for cancer prognosis, and our approach will likely provide a new 

direction in the Oncogenomics field to develop gene signature biomarkers. 

The predictive power of the cell cycle gene signature for breast cancer 

prognosis as demonstrated in the present study warrants further investigation 

such as prospective clinical trials to explore its utility in clinic. Moreover, the 

methodology we developed could be utilized to identify gene signature 

biomarkers to guide clinical development of novel cancer therapeutic agents.  
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Note added in proof  

While this manuscript was in preparation, using a com-pletely different 

approach, Mosley and Keri described a similar observation that cell cycle 

genes dictate the power of breast cancer prognostic gene list (Mosley & Keri, 

2008).  

 

Availability and requirements  

http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/ cluster/:  providing open 

source clustering software.  

http://www.superarray.com/home.php:  providing path-way focused arrays.  

http://www.ingenuity.com/: providing pathway analysis tools for interpretation 

of genomics data.    
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CHAPTER FOUR: PPEA - A NEW FEATURE SELECTION ALGORITHM FOR 

IDENTIFICATION OF TOXICOGENOMIC BIOMARKERS IN 

HEPATOTOXICITY (PAPER II)  

 

4.1. Abstract 

Toxicogenomics promises to aid in predicting adverse effects, 

understanding the mechanisms of drug action or toxicity, and uncovering 

unexpected or secondary pharmacology. However, modeling adverse effects 

by using the high dimensional and high noise genomic data is prone to over-

fitting. Models constructed in this way often consist of a large number of genes 

with no obvious functional relevance to the biological effect the model intends 

to predict, which can make it challenging to interpret the modeling results. To 

address these issues, we developed a novel algorithm, Predictive Power 

Estimate Algorithm (PPEA). Let ܯ௣ൈ௡ be the expression data matrix for p 

genes and n samples. The algorithm iteratively applies a two-way 

bootstrapping over p and n such that the sample size is larger than the gene 

number for each subset. The predictive power of individual gene is estimated 

from using the prediction analysis of microarray (PAM). We showed that the 

relative predictive power of each individual gene was stabilized after a limited 

number of iterations. Thus, it is possible to construct a predictive model from a 

much smaller set of genes than the sample size with the highest predictive 

power. Applying PPEA to DrugMatrix™ rat liver data, we evaluated and 

ranked predictive power of individual genes as biomarkers of hepatic injury for 
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inflammation, bile duct hyperplasia and cell death. We further demonstrated 

that the top ranked genes were functionally related to the molecular 

mechanisms of the pathologies. More importantly, the models constructed 

from a small number of the top ranked genes achieved high sensitivity and 

specificity when tested with completely independent datasets. Thus, we 

believe that the PPEA model can overcome the over-fitting problem and be 

used to facilitate genomic biomarker discovery and development for predictive 

toxicology and to elucidate mechanisms of drug action and/or of toxicity. 

 

4.2. Background 

Many preclinical candidate compounds do not achieve ultimate 

regulatory approval because of organ toxicity. Up to half of these compounds 

that are discontinued because of organ toxicity are due to DILI including 

necrosis, steatosis, cholestasis, proliferation, inflammation, and bile duct 

hyperplasia (BDH) (Ozer et al, 2008). It has been well-documented that 

biomarkers that identify incipient damage that leads to preclinical and clinical 

toxicities will enable better decision-making during drug development (Ryan et 

al, 2008). Particularly valuable are translational biomarkers that bridge 

preclinical testing species and humans as they can expand the usefulness of 

the former for detection of human liabilities (Sistare & DeGeorge, 2007).  

Although a sole biomarker is appealing as it can be easier to 

understand, there are few examples in preclinical testing or in clinical practice 

wherein a single measurement is considered a definitive. Multiple markers are 
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required to capture the biological heterogeneity of organs involved, individual 

variations and disease or toxicity processes (Mendrick, 2008). The microarray 

technology allows us to observe and assess thousands of genes expression 

simultaneously in each sample. Machine learning algorithms can be applied to 

identify gene signatures or biomarkers. Numerous recent studies have 

demonstrated that gene expression signatures not only outperform traditionally 

used clinical parameters in toxicity or disease outcome prediction, but also 

contribute to a better understanding of the biological mechanism (Fielden et al, 

2005; Luo et al, 2005; Bushel et al, 2007; Zidek et al, 2007; Euna et al, 2008). 

However, the gene signatures obtained for the same biological phenotype by 

different researchers differ widely and have only very few genes in common 

(Fan et al, 2006; Liu et al 2008). This lack of congruence raises doubts about 

the reliability and robustness of the reported predictive signatures and is 

believed to partially result from over-fitting (Dessi & Pes, 2009). Over-fitting 

can raise when the number of training samples is small and the number of 

genes relatively large, since in such a situation we can easily obtain a 

classifier that correctly describes the training data but performs poorly on an 

independent set of data. 

The over-fitting has been closely examined by several studies (Sima & 

Dougherty 2008; Dougherty et al, 2009).  Two studies in logistic and Cox 

regression shows increasing bias and variability, unreliable confidence interval 

coverage, and problems with model convergence as events per variable (EPV) 

declined below 10 and especially below five, leading to the rule of thumb that 
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logistic and Cox models should be used with a minimum of 10 EPV (Vittinghoff 

& McCulloch, 2007; Peduzzi et al, 1996). Therefore, feature selection is 

commonly performed before sample classification, and is even attempted to 

alleviate the above stated problem. Although numerous reports for feature 

selection have been published and some techniques have been claimed better 

than others (Guyon et al, 2002; Zhang et al, 2006; Dess & Pes, 2009; see 

Saeys et al, 2007 for a comprehensive review). To date, no single 

recommendation in literature is given for methods in either the feature 

selection or the classification of microarray data (Guyon & Elisseeff, 2003; 

Saeys et al, 2007). 

Feature selection algorithms mainly fall into two broad categories, the 

filter model or the wrapper model (Das, 2001; Kohavi & John, 1997). The 

widely accepted filter techniques are single-feature based, and demonstrated 

to be effective for improving sample classification accuracy. Some of them are 

statistical tests (t-test, F-test) (Bø et al, 2002), non-parametric tests like TNoM 

(Ben-Dor et al, 2000), S2N ratio (signal to noise ratio) (Golub et al, 1999) etc. 

However, these methods have its limitation in which the interaction with 

classifier and feature dependencies has been completely ignored. However, 

the interactions between genes are important for very numerous-if not all-

biological functions (Barabási & Oltvai, 2004; Gavin et al, 2006). Although the 

wrapper methods use the interactions between features, perform multivariate 

gene subset selection, and incorporate the classifier’s preference or bias into 

the search and thus offer an opportunity to construct more accurate classifiers, 
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the disadvantages are computationally intensive, classifier dependent 

selection, and particularly, high risk of over-fitting (Saeys et al, 2007). In the 

present study, we have developed a new method, Predictive Power Estimate 

Algorithm (PPEA), to evaluate and rank the relative predictive power of 

individual genes. By applying PPEA to DrugMatrix toxicogenomic database, 

we identified and validated three small sets of genes highly predictive of and 

functionally related to liver inflammation, bile duct hyperplasia (BDH) and cell 

death respectively. Furthermore we developed and validated a RT-PCR assay 

as a genomic biomarker to predict BDH. 

 

4.3. Materials and methods 

4.3.1. The PPEA algorithm 
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 Let ܯ௉ൈே be the expression data matrix of P genes as rows and N 

samples as columns, among which ଵܰ samples are labeled as ଵܶ, ଶܶ, … ேܶଵ for 

toxicity class and ଶܰ samples labeled as ܰ ଵܶ, ܰ ଶܶ, … ܰ ேܶଶ for non-toxicity 

class. Thus, ܰ ൌ ଵܰ ൅ ଶܰ. Let ߙ be a predetermined threshold of acceptable 

classification error rate and β be the arbitrarily defined sample split ratio to 

construct training and testing sample sets. Let K be the total number of 

iterations and k be the ݇௧௛ iteration ሺ݇ ൌ 1,2, … , ௉ൈସܧ ሻ. Letܭ
௞  be the 

performance matrix in the ݇௧௛ iteration consisting of P rows, each of which is 

identified by the genes ݃௜ ሺ݅ ൌ 1,2, … , ܲሻ in the data matrix ܯ௉ൈே, and four 

columns corresponding respectively to ௜ܶ
௞ as the total number of times ݃௜ is 

sampled in the ݇௧௛ iteration, ௜ܵ
௞ as the total number of times ݃௜ selected in the 



predictive model in the ݇௧௛ iteration, ௜ܲ
௞ ൌ ௜ܵ

௞ / ௜ܶ
௞ as an estimate of predictive 

power of ݃௜ in the ݇௧௛ iteration, and ܴ௜
௞ ؿ  ሺ1,2, … , ܲሻ as the rank order of 

݃௜ based on its predictive power ௜ܲ
௞. Genes with larger ௜ܲ

௞ are more predictive 

than those with smaller ௜ܲ
௞ and thus ranked higher. Let K be the total number 

of iterations. At the initiation of the algorithm, ܧ௉ൈସ
଴ ൌ 0. For each iteration 

݇ ൌ 1,2, … ,   .execute following steps ,ܭ

Step 1: Apply two-way bootstrapping to the ܯ௉ൈேto obtain a 

bootstrapping sample matrix ܵ௣ൈ௡
௞   consisting of p genes, ݃௝ ሺ݆ ൌ 1,2, … ,  ,ሻ݌

randomly drawn from P genes, ݊ଵ samples from ଵܰ samples of toxicity class 

and ݊ଶ samples from ଶܰ samples of non-toxicity class such that ݊ଵ ଵܰ⁄ ൌ

,ߚ  ݊ଶ ଶܰ⁄ ൌ ݊ ,ߚ ൌ  ݊ଵ ൅ ݊ଶ and ݌ ൏ ݊. n is the sample size of training sample 

set while ሺܰ െ ݊ሻ is the sample size of testing sample set.  

Step 2: Apply Prediction Analysis of Microarray (PAM) to the 

bootstrapping sample matrix ܵ௣ൈ௡
௞   to perform sample classification using the 

nearest shrunken centroid method (Tibshirani et al 2002). To build a predictive 

PAM model, ten-fold cross validation was performed to find out the optimal 

classifier performance which minimizes classification errors for the training set 

ܵ௣ൈ௡
௞  Based on the ten-fold cross validation, a threshold ∆௞ was varied in 

search of the optimal classifier performance. The ∆௞ is chosen when the 

lowest classification errors achieved with the fewest genes 

ଵ݃, ݃ଶ, … ݃ ݎ e ltant PAM model in the current ݇௧௛ iteration  , ௟ ݄݁ݓ ݁ ݈ ൑ The r .݌ su

 ݉௞ ൌ ݂ሺ݃ଵ, ݃ଶ, … , ݃௟ሻ        ݈ ൑   (1)      ݌
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is subsequently tested using the ሺܰ െ ݊ሻ testing samples. Let e be the error rate of 

the model when tested with the testing samples and estimated by (2).  

 ݁௞ ൌ  ௙௔௟௦௘ ௣௢௦௜௧௜௩௘௦ା௙௔௟௦௘ ௡௘௚௔௧௜௩௘௦
ேି௡

      (2) 

In cases where cross validation errors are greater than ߙ for all possible ∆௞ 

value, i.e., no acceptable PAM model can be constructed from genes 

݃ଵ, ݃ଶ, … , ݃௟ ݁ݎ݄݁ݓ ݈ ൑  for training samples, the independent model test using ݌

ሺܰ െ ݊ሻ testing samples described above is omitted and the execution proceeds to 

Step 3b described below. 

Step 3a: If ݁௞ ൑  i.e., the estimated error rate of the model tested with , ߙ

ሺܰ െ ݊ሻ samples is less than the predetermined threshold, the model is deemed to be 

predictive. The performance matrix ܧ௉ൈସ is updated as follows. Each gene, ݃௝ ሺ݆ ൌ

1,2, … , ሻ, in the boostrapping samples ܵ௣ൈ௡݌
௞  is mapped to ݃௜ ሺ݅ ൌ 1,2, … , ܲሻ in ܧ௉ൈସ, 

௜ܶ
௞, ௜ܵ

௞, nd are ated sequentially as follows. a  ௜ܲ
௞  upd

 ܶ௞ ൌ ܶ ିଵ ൅௜ ௜
௞ 1 

 ௜ܵ
௞ ൌ ቊ ௜ܵ

௞ିଵ ൅ 1   ݂݅ ݃௜ א ሺ݃ଵ, ݃ଶ, … , ݃௟ሻ
௞ି           ݂݅ ݃௜ ഥא ሺ݃ଵ, ݃ଶ, … , ݃௟ሻ

 
௜ܵ

ଵ

 ௜ܲ
௞ ൌ  ௜ܵ

௞/ ௜ܶ
௞ 

Step 3b: On the contrary, if ݁௞ ൐  i.e., the estimated error rate of the model ,ߙ

tested with ሺܰ െ ݊ሻ samples is larger than the predefined threshold, the model is 

deemed to be not predictive for independent testing samples thus over-fitting. ௜ܶ
௞, ௜ܵ

௞, 

and ௜ܲ
௞ in the performance matrix ܧ௉ൈସ are updated sequentially as follows. 

 ௞ ିଵ ൅ 1 ௜ܶ ൌ ௜ܶ
௞

 ௜ܵ
௞ ൌ  ௜ܵ

௞ିଵ 

 ௜ܲ
௞ ൌ  ௜ܵ

௞/ ௜ܶ
௞ 
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Sort ௜ܲ
௞ decreasingly, i.e., ௚ܲ೔భ

௞ ൒ ௚ܲ೔మ
௞ ൒ ڮ ൒ ௚ܲ೔ು

௞ , a rank order of genes in term of their 

predicti  p en as ve ower is giv

 ܴ௞ ൌ 1,2, … , ܲ 

Stop criterion. The rank order ܴ௞ is evaluated periodically, say every 10000 

iterations, by computing Spearman correlation coefficient between the current rank 

ܴ௞ and the previous rank ܴ௞ିଵ, i.e., 

ߩ  ൌ 1 െ 6 ∑ ሺோ೔
ೖିோ೔

ೖషభሻమ

௉ሺ௉మିଵሻ
௉
௜ୀଵ  

The algorithm stops if ߩ ൐ 0.99, i.e., the rank may be stabilized even if ݇ ൏  .ܭ

For a better visualization of this methodology, each step of the 

algorithm is illustrated in Figure 1, and the R code is attached as Appendix E. 

Sample T1

Sample T2

Sample T100

Sample N1

Sample N2

Sample N200

……

……

4000 >> (100 + 200)

gene # >> sample #

……

Sample T1

Sample T50

Sample N2

Sample N100

……

……

50 < (50 + 100)
……

gene # < 
sample #

Bootstrapping samples

Bootstrapping genes

PAM (Shrunken centroid)

Success?

Error rate < 20%

NO

Trashed

Gene 1
Gene 2

…
Gene 4000

Enrichment
matrix

YES

Original dataset Subset

Step A: Step B:

Step C:

Step E:

Step F:

Step D:

 Figure 1: The architecture and workflow of PPEA 
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4.3.2. Data preprocessing 

All the animal studies as well as the array analysis were performed by 

Entlos™ and the integrated toxicogenomic data had been stored and 

organized in DrugMatrix® database (Ganter et al, 2005). In the present study, 

all the array data were downloaded from DrugMatrix®. The array data in RU-1 

platform with the detailed animal study information was previously described in 

detail (Natsoulis et al, 2008) and could be publicly accessible from Gene 

Expression Omnibus (GEO accession no. GSE8858). For the signal intensity 

data generated by one-channel oligonucleotide microarrays, we pre-processed 

the data so each gene has zero mean value and unit variance. In all 

classification cases, a 60/40 split-sample procedure was applied and the 

performance was reported as the average of the test results for 1000 random 

partitions of the data. 

Table 1 lists the overview of the positive class compounds and 

experiments for a given phenotype used in this study. The definition for 

positive or negative class is similar as previously described (Natsoulis et al, 

2008). The positive class was usually defined as the set of samples sharing a 

particular property for a given phenotype, while the negative class was often 

defined as the remainder of the sample space. A portion of the sample space 

was sometimes excluded when the true phenotype might not be known for 

some samples because they were not assayed, or they were assayed but 

assay values were missing or uncertain. In other words, the positive and 

negative classes were assigned as the extremes of this distribution and the 

87 
 



intermediate samples were excluded. In present study, the P value of ridit 

score significance for a given phenotype is less or equal to 0.01, and 

percentage of incidence for each experimental group has to be 100 (3/3 

animals for each experiment group) for the positive class, and P great or equal 

to 0.5, and percentage of incidence has to be 0 (0/3 animals) for the negative 

class. This had the advantage of training neither for nor against samples with 

intermediate values.  

 

4.3.3. Performance assessment 

To compare our proposed techniques to the existing ones in terms of 

consistency with the existing techniques and performance, we constructed 6 

different classifiers for the performance evaluation. Six different colors show in 

Figure 4 denotes the corresponding feature selection as follows:  

(i) The classifier ‘Top’, 5 genes selected from the gene set with the 

highest predictive power ranked by PPEA, is labeled as ‘red’. 

This is our desired signature for a given phenotype. 

(ii)  The classifier ‘Bottom’, 5 genes selected from the probe set with 

the lowest predictive power ranked by PPEA, is labeled as 

‘green’. Using this set of genes as one of baseline models to see 

the contrast of discriminative power compared to the ‘Top’ 

signature.  
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(ii) The classifier ‘Random’, 5 genes are chosen at random from the 

whole pre- filtered gene list as well the class labels are shafted 

randomly, is colored as ‘black’. 

(iv) The classifier ‘Whole’, a whole pre-filtered microarray probe set, 

is labeled as ‘blue’. 

(v) The classifier ‘Single’, 5 genes selected using only a single 

iteration of PAM classification, is labeled as ‘light green’.  

(vi) The classifier ‘Iconix’, a corresponding gene signature from 

DrugMatrix™, is labeled as ‘pink’. 

The choice of different colors is a useful heuristic we adopted for 

revealing the feature selection by different methods.  

 

4.3.4. Functional analysis  

The identified top 20 gene sets were subjected to GO analysis by 

Ingenuity (http://www.ingenuity.com/) and DAVID (database for annotation, 

visualization, and integrated discovery; http://apps1.niaid.nih.gov/david/) using 

Fisher’s exact test. 

 

4.3.5. Validation 

4.3.5.1. Validated with independent datasets  

The microarray data in rat whole genome 230 plus 2 platform (RG230-

2) for rat livers treated with Lilly compounds at various doses and times is 

retrieved from DrugMatrix™. The corresponding histopathology data was 
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collected and summarized thorough the curation of Lilly toxicology report, and 

will be used for the validation. 

 

Table 1: Summary description of datasets 

Histopath 
Group Histopathology Names 

# Treat 
ments 

# 
cmpds Compound Names 

Inflammation 

PERIPORTAL, 
INFLAMMATORY CELL 
INFILTRATE, MIXED 
CELL 45 15 

HARRINGTONIN;LOMUSTINE;AFLATOXIN
B1;ETHANOL;TESTOSTERONE;LIPOPOL
YSACC;CARVEDILOL;CERIVASTATIN;4,4';
CARMUSTINE;KETOCONAZOLE;METHAP
YRILEN;DOXAPRAM;1;N 

NONZONAL, 
INFLAMMATORY CELL 
INFILTRATE, MIXED 
CELL 7 6 

STAVUDINE;DOXAPRAM;KETOCONAZOL
E;VECURONIUM 
B;THIOACETAMID;GALLAMINE TR 

CENTRILOBULAR, 
INFLAMMATORY CELL 
INFILTRATE, MIXED 
CELL 31 13 

ISONIAZID;2,3,7,8;BETA;CLOFIBRIC 
AC;LIPOPOLYSACC;ACETAMINOPHE;ALP
HA;N;AFLATOXIN B1;3;CARBON 
TETRA;AMINOSALICYL;THIOACETAMID 

BDH 
BILE DUCT 
HYPERPLASIA 34 9 

LOMUSTINE;N;METHAPYRILEN;2;VINBLA
STINE;CARMUSTINE;CARVEDILOL;4,4';1 

HEPATOCYTE, 
NONZONAL, 
NECROSIS, APOPTOTIC 27 11 

CLOTRIMAZOLE;FENOFIBRATE;ATORVA
STATIN;METHAPYRILEN;PIRINIXIC 
AC;BEZAFIBRATE;SIMVASTATIN;FLUVAS
TATIN;VINBLASTINE;AFLATOXIN 
B1;LOVASTATIN 

Necrosis 

HEPATOCYTE, 
CENTRILOBULAR, 
NECROSIS, 
ONCOCYTIC 10 4 

AMINOSALICYL;CARBON 
TETRA;THIOACETAMID;N 

  

HEPATOCYTE, 
NONZONAL, 
NECROSIS, 
ONCOCYTIC 21 10 

NATEGLINIDE;ALLYL 
ALCOHO;PRALIDOXIME ;MANGANESE 
(I;1;VECURONIUM 
B;DOXAPRAM;EPIRUBICIN;CLOTRIMAZO
LE;HYDROCORTISO 

 

 

4.3.5.2. Validated with QPCR  

The overview of the compounds used for QPCR validation in this study 

is listed in Appendix B. A total of 18 experiments (7 BDH positive and 11 BDH 

negative experiments) were available in the database when the present 

analysis was performed. RNA was extracted from livers of total 48 of animals 

(rats). 18 animals were observed Histopathologically BDH positive and 30 
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animals BDH negative. Quantitative real-time PCR (qRT-PCR) was performed 

for measuring the expression of the four genes selected from top 20 of BDH 

signature based on the fold change of expression. 

 

4.3.6. Statistical analysis 

The statistical analyses were performed with the R statistical package, 

release 2.9 (http://www.r-project.org/). All genes were log-transformed and all 

p-values are 2-sided. 

For the extraction of a predictive gene set, we selected the top 5 of the 

most discriminative genes ranked by PPEA. Sensitivity, specificity, positive 

and negative predictive value (PPV and NPV respectively) were calculated 

and presented with their 95% confidence interval (CI). These genes were 

analyzed with quantitative RT-PCR. 

 

4.4. Results 

4.4.1. Dataset preparation 

The overview of datasets from DrugMatrix™ for three phenotypes in 

liver, inflammation, necrosis, and bile duct hyperplasia (BDH), used in this 

study is summarized in Table 1 and is briefly outlined here. We divided each 

phenotype measurement by severity and incidence, and attempted to find 

patterns of gene expression changes that were able to classify the phenotype. 

Samples were separated into two classes, those that share a given phenotype 

(positive class: the P value of ridit score significance for a given phenotype is 
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less or equal to 0.01, and percentage of incidence is 100 for each 

experimental group) and those that do not (negative class: P >=0.5, and 

percentage of incidence = 0) (Table 1). The positive and negative classes 

were assigned as the extremes and the intermediate samples were excluded. 

This way allows us to identify the most positive and negative compounds 

responsible for each phenotype.  

 

4.4.2. Data preprocessing 

We started from data sets that were from RU1 (Agilent) platform with 

8565 probes without any additional normalization procedure. These datasets 

have already been normalized in DrugMatrix database. 4231 transcriptionally 

informative genes passed the filter with Fold Change >1.5, P value <=0.05, 

and intensity >=2 (range from 1 to 5 for a whole chip, as defined in 

DrugMatrix).  

 

4.4.3. Overview of PPEA 

The idea behind PPEA is very simple. In order to avoid over-fitting, the 

basic idea of the proposed method is to enforce the feature size inversely 

smaller than the sample size in the splitting subset for each iterative 

classification to identify the informative features. This can be achieved by the 

following algorithm.  

The workflow for PPEA is shown schematically in Figure 1, and is 

described more formally in the Materials and Methods section. Here, we 
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summarize the basic elements conceptually. For each iteration, both the 

samples and candidate genes from original dataset are independently 

bootstrapped (re-sampled with replacement) to form a small subset, wherein 

the number of genes is reversely equal or less than the number of samples 

(step A to step B in Figure 1).  Then, PPEA builds a PAM classification for this 

small subset to assess the merit of each feature (gene) by evaluating their 

strength of class predictability in a multivariate model (step C). If this PAM 

model performance pass a certain pre-defined threshold (less than 20% error 

rate in this study), the features (genes) will be ranked and archived in a 

performance metric called predictive power enrichment matrix (step D). In 

other words, if the candidate genes in this subset comprise biologically 

relevant genes or gene combinations, then PAM is expected to perform and 

assign higher importance rank to at least some of the genes. Otherwise, the 

failed subset of features will be discarded. The distribution or stabilization 

status of gene ranks based on their frequency in predictive power enrichment 

matrix is then evaluated periodically. The iteration process will be terminated if 

a predefined number of iterations is reached or when the feature rank 

correlation (Spearman correlation) between two consecutive evaluations 

extends to a plateau, whereas the feature rank stability cannot be further 

improved. It should be noted that the schema for feature search in this 

algorithm is heuristics and suboptimal as it does not exhaustively search in the 

space of all possible combinations. The choices of pre-defined threshold and 

the events per variable (EPV) for the number of features to be selected in the 
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each iteration are purely ad hoc. Although different settings of these 

parameters may affect the results, we have observed that, for most cases 

when the two classes can be reasonably separated with the expression data, 

the classification performances achieved with different settings were very 

close to each other, and the majority of features ranked at the top positions 

were also very stable. 

Figure 2 illustrates the recapitulation of sampling distribution by two-

way bootstrapping with replacement from the original feature set at 3 different 

numbers of iterations, 20k, 100k, and 200k in the predictive power estimate 

matrix. As displayed in Figure 2a, a uniformed distribution for the total number 

of a gene sampled randomly has been achieved at all levels of iteration of 

sampling. It indicates every feature in original set has equal opportunity to be 

selected during this two-way bootstrapping process. Figure 2b shows that the 

number of successful classification involved for each gene. Apparently, each 

gene differentiates itself based on their abilities for the classification, whereas 

the highly successful genes are displayed on the right side, and the poorly 

successful one is located on left side of the table after sorting by its frequency. 

Figure 2c demonstrates that the relative success rate that a gene was used in 

successful modeling, as computed as R=S/T, is mostly similar (overlapped) for 

each gene at three different iteration checkpoints, and an intuitive metric to 

rank the predictive power of each feature (gene).  
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a)

b)

c)

 

Figure 2: Analysis of sampling distribution in the predictive power estimate 

matrix. Two-way bootstrapping is performed at 3 different numbers of 

iterations, 20k, 100k, and 200k. (a) A random number generator with a uniform 

distribution was used so that each of 4000 features (genes) had equal 

chances to be sampled. Y axis is the total # of times a gene was sampled, 

represented as T. (b) A prediction was called a success if sensitivity > 70% 

AND specificity > 80%. Y axis is the total # of times a gene was included in a 

successful modeling, denoted as S. (c) Y axis is the Relative Success Rate 

that a gene was used in successful modeling, computed as R = S/T, which is a 

metric to measure predictive power of the gene. 
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In order to give a complete description of the gene rank transition, 

Figure 3 details the rank shifting at each checkpoint of the iteration for top 10 

genes. The result suggests that the rank for 9 of top 10 genes starts to 

stabilize at early 80k iteration, and tend to be complete plateaued after 220k 

iterating. It indicates that the absorption and fusion for useful information from 

these genes becomes satiated after certain number of iteration.  

20K 40K 60K 80K 100K 120K 140K 160K 180K 200K 220K 240K 260K 280K 300K 320K

NM_017207 23 4 2 3 3 2 2 2 1 1 1 1 1 1 1 1

AF251305 28 3 3 1 1 1 1 1 2 2 2 2 2 2 2 2

AI227885 1 1 1 2 2 3 4 4 4 4 4 4 3 3 4 3

AF169636 17 7 6 5 4 4 3 3 3 3 3 3 4 4 3 4

Y00480 15 16 7 7 5 5 5 5 5 5 5 6 6 5 5 5

BE109691 9 21 13 8 7 6 6 7 7 6 6 5 5 6 6 6

AW143130 5.5 2 4 4 6 7 7 6 6 7 7 7 7 7 7 7

AW915705 2 5 5 6 8 8 9 9 9 8 8 8 8 8 8 8

NM_012959 8 6 8 13 14 12 13 11 10 10 10 10 11 9 9 9

BF282961 16 14 31 30 32 29 28 23 20 15 11 12 12 12 11 10
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Figure 3: Example of top 10 genes Rank shifting at each checkpoint of the 

iteration: (a) shows the index of the 10 top-ranked genes (i.e., features) 

become stabilized when the iteration of splitting reached 280,000. As we can 

see, the rank for 8 out of 10 genes is consistent as early as the iteration reach 

to 8,000. (b) A plot for the same data as shown in (a) for an intuitive 

observation. 
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4.4.4. Performance assessment and comparison 

Our goal is to select a very small subset of features with the maximum 

discriminatory power between the two classes. Since the feature dimension is 

large and the sample size is small, there are usually many combinations of 

features that can give a very small or zero error on the training data. 

Therefore, the "minimal error" criterion for feature selection on this high 

dimensional data structure in the original dataset cannot work. The PPEA 

breaks the original dataset into many small subsets with new low 

dimensionality, and then evaluates the features based on their predictive 

merit. We expect this new gene selection algorithm could yield very small sets 

of genes (often smaller than alternative methods) while preserving high 

predictive accuracy. Using DrugMatrix™ rat liver data, we first applied this 

PPEA algorithm to construct the predictive power enrichment matrix for three 

hepatic specific injuries, inflammation, cell death, and bile duct hyperplasia. 

Then we used top 5 ranked genes from each list as a classifier for model 

validation and performance assessment, where the threshold of 5 is chosen 

based on a common practice in microarray studies, and the practical number 

of genes can be handled in 96-well plate format in a quantitative Polymerase 

Chain Reaction (qPCR) assay. Later is a common approach for wet lab 

validation and biomarker assay implementation. The PPEA is an exploratory 

method, and the optimal (or biologically reasonable) number of the candidate 

genes in a signature would depend on the particular data sets with complex 

trade-off. For presentation clarity and space limitation, we use only BDH 

97 
 



signature here as an example to elucidate the performance and validation of 

this newly developed algorithm. The summary of the result for BDH, cell death, 

and inflammation signature performance assessment and comparison is 

presented in Table 2. 

Recall that we construct 6 different classifiers for the performance 

assessment to verify that the achievable advantage of feature selection with 

our PPEA algorithm does not occur by chance only. First of all, in most of 

cases, the accuracy performance show that the “TOP” 5 genes signature 

generated from PPEA, has significant performance advance comparing to 

other 5 classifiers in term of error rate (Figure 4a), sensitivity (Figure 4b), and 

specificity (Figure 4c). The unsupervised hierarchical clustering result 

suggests that there is clear separation between positive and negative class of 

toxicity for BDH based on their top-20 gene expression (see the heatmap in 

Figure 4d). Next, we highlight some of interesting points as follows: 

i) Of the six classifiers, overall speaking, the classifier “Top” appeared 

to be the best, and the classifier ‘Bottom’ the worst. Recall that the 

classifier ‘Bottom’ is generated from the bottom 5 genes of feature 

set ranked by PPEA. As shown in Table 2, the sensitivity, specificity, 

and error rate for ‘Top’ is 95.3%, 94.5%, and 5.5%, respectively. In 

contrast, the classifier “Bottom” has only 45% and 44.5% for 

sensitivity and specificity, and 55% for error rate, which is 10-fold 

higher than “Top” has. This significant difference demonstrates the 

effectiveness and power of PPEA ranking.  
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ii) We also observe that the other two baseline models, ‘Whole’ and 

‘Iconix’, have good performance. However, the number of features 

for ‘Whole’ and ‘Iconix’ classifier are 4231 and 66, respectively, 

which are much larger than “Top” has. As we know, medical doctors 

and biologists like a small number of features to separate two 

classes of samples. Manually examining a large amount of features 

is tedious and sometimes impossible. As shown in Table 2, a small 

number of most discriminatory features are capable to distinguish 

the two classes well. Otherwise, even with more number of features, 

the distinction would not be necessarily become better and even 

prone to be over-fitted.  

iii) Although the ‘Single’ classifier, which selected with single iteration of 

PAM classification, yields a satisfactory performance, its ability for 

class discrimination is still behind the ‘Top’ classifier. As shown in 

Table 2, the P value of the Student t-test are all significant (<0.05) 

except the sensitivity for ‘Cell Death’ signature. This result indicates 

that PPEA has the capability to enrich the predictive power.   

iv) We notify that the performance for the classifier consisted with 

randomly selected probes only is not the worst as we expected 

among these six classifies. This may due to following several 

reasons: (a) The features are randomly selected from a ‘pre-filtered’ 

set, which about half of the original features have been filtered out, 

and each of the rest is expect to have some degree of predictive 
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As we know, gene signature or biomarkers are measurable and 

quantifiable cellular characteristics that serve as indicators of normal or 

pathogenic biological processes.  If the biomarkers truly reflect this alternation 

to a therapeutic intervention, they should have following properties: (i) 

functional relevance to what they intend to predict, and (ii) highly predictive in 

independent tests.  
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Figure 4 (a) 
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Figure 4 (b) 
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Figure 4 (c) 
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Figure 4 (d) 
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Figure 4: Performance assessment for BDH signature in term of error (a), 

sensitivity (b), specificity (c), and hierarchical clustering (d): Six subsets of 

genes have been used for this performance comparison, and denoted as 

following coloring schema in panel (a - c): ‘black’ for 5 genes selected by 

randomization from the whole pre-selected gene list with shafting class 

labeling, ‘red’ for 5 genes selected from the gene set with the highest 

predictive power ranked by PPEA, ‘green’ for 5 probes selected from the 

probe set with the lowest predictive power ranked by PPEA, ‘blue’ for a whole 

pre-selected microarray probe set, ‘light green’ for 5 probes selected using 

only a single iteration of PAM classification, and ‘pink’ for a corresponding 

gene signature from Iconix. (d) A heatmap for the expression of top 20 genes 

selected from the gene set ranked by PPEA. The positive and negative class 

of toxicity for BDH is labeled in ‘red’ and ‘blue’ at the side bar, respectively. 

 

4.4.5. Functional relevance analysis 

To ascribe that PPEA is capable of identifying the gene signature truly 

functional relevant to what they intend to predict, we further show that the 

signature for BDH is partially associated (12 out of top 20 genes) and may 

mechanistically related to the oncogenic p53 and ERBB2 pathways (Figure 5). 

BDH may be part of a general xenobiotic reaction of the liver but is most 

important as a purely cholangiolar proliferation, usually as a result of exposure 

to carcinogenic compounds such as Phomopsin (Peterson, 1990). It has been  

 

103 
 



Table 2: Performance and comparison of six different signatures 

      Rate (%)       

P-value, 
comparing 

to 'TOP'    

  Signature Cell Death INFLA  BDH    Cell Death INFLA  BDH  

TOP  20.5% 20.9% 5.5% NA NA NA 

BOTTOM  54.2% 52.8% 55.0% 0 0 0 

Error WHOLE  23.9% 25.7% 12.5% 1.13E-30 4.42E-76 3.26E-71 

SINGLE  21.2% 23.9% 9.5% 0.0103051 6E-34 3.98E-30 

ICONIX  23.0% 26.3% 10.0% 5.44E-17 1.19E-92 1.56E-38 

RANDOM  51.2% 50.4% 48.1% 0 0 0 

  TOP  85.1% 84.4% 95.3%   NA NA NA 

BOTTOM  45.8% 47.2% 45.0% 0 0 0 

sensitivity WHOLE  82.3% 81.7% 91.7% 6.69E-13 3.06E-16 1.26E-18 

SINGLE  84.6% 82.0% 91.3% 0.1591644 2.58E-14 1.94E-23 

ICONIX  81.7% 80.5% 93.4% 2.17E-18 1.32E-32 3.55E-07 

  RANDOM  49.4% 49.7% 48.1%   0 0 0 

TOP  75.9% 75.5% 94.5% NA NA NA 

BOTTOM  45.6% 47.2% 44.5% 0 0 0 

specificity WHOLE  72.3% 69.9% 85.3% 1.17E-37 9.52E-109 4.49E-93 

SINGLE  75.1% 72.2% 90.9% 0.0009121 9.05E-44 1.11E-20 

ICONIX  73.9% 69.6% 88.1% 1.39E-12 1.52E-120 2.09E-57 

  RANDOM  47.6% 49.3% 51.0%   0 0 0 

 

reported that cholangiocellular carcinoma frequently developed from bile duct 

hyperplasia (Kurashina et al, 1988), although nodular and biliary hyperplasias 

could not be unequivocally accepted as pre-neoplastic lesions (Smith et al, 

1984).  A typical histopathological observation for BDH is shown in Figure 5c 

(Figure 5b is a normal control). The proliferation of bile duct consists of the 

cells that were often hypertrophic and hyperplastic, which often associated 

with inflammatory cell infiltrates, edema or even periportal fibrosis. This 

observation supports the hypothesis that genes for BDH share specific 

pathways involved with biological mechanism of pre-neoplastic lesions. All 

104 
 



these over-represented biological pathways are closely relevant to cancer- or 

cancer-liked associated cell hyperplasia. Similarly, we found strong 

enrichment of that 17 out of top 20 genes for “inflammation” signature 

identified by PPEA were members of NF-kB pathway, which was a key pre-

inflammatory pathway for a xenobiotic response (See Appendix A for more 

detail.) 

a)
b)

c)

 

Figure 5: Pathway analysis for the enriched biological functions of the top 20 

BDH signature genes. 11 out of top 20 genes are involved with p53 and 

ERBB2 pathways and highlighted with brown color in (a). A typical 

histopathological observation for BDH is shown in (c). The proliferation of bile 

duct consists of the cells that were often hypertrophic and hyperplastic, which 

often associated with inflammatory cell infiltrates, edema or even periportal 

fibrosis. (b) A section of normal liver. 
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4.4.6. Validation with complete independent datasets 

To verify that the feature selection procedure with PPEA does not lead 

to overfitting and can achieve the objective of aggressively reducing the set of 

selected genes, a complete independent dataset is used for performance 

validation. The platform used for this validation set is RG230-2 (Affymetrix) 

and is different from the RU1 dataset used for signature generation. The 

summary result for inflammation signature is listed in Appendix C. As shown in 

Figure 6, top 6 genes for BDH have clear separation between two classes in 

the PCA analysis and achieve decent performance in the SVM classification. 

As mentioned in early section, one significant characteristic of overfitting is 

that easily train a classifier that correctly describes the training data but 

performs poorly on an independent set of data. Our result demonstrates that 

the BDH signature achieves a very good accuracy, sensitivity, and specificity 

in an independent dataset with a different platform, lending further credence to 

PPEA for avoiding overfitting.  

 

4.4.7. Confirmation and assay development with qPCR  

Microarray gene expression profiling is difficult to translate into a toxicity 

liability surrogate assay or a clinical prognostic tool given the large number of 

genes involved (Ramaswamy, 2004; Mendrick, 2008) and required time and 

expertise. qPCR is more clinically applicable, especially when working with a 

small group of highly selected genes. Motivated by the performance 

consistency of PPEA generated top 5 gene signatures for BDH, inflammation,  
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Figure 6: BDH signature validation with an independent dataset: (a) dataset 

information and test procedure; (b) A PCA analysis shows a clear separation 

between positive and negative compounds; and (c) a SVM classifier 

performance matrix shows a satisfactory sensitivity (88%) and specificity 

(78%) has been achieved with top 6 genes. 

 

and cell death among two different microarray platforms (RU1 and RG230-2), 

we performed a small scale of RT-QPCR experiment to test the performance 

of top four genes for BDH signature along with two commonly used control 

gene, cyclophillin and ribosomal protein (RPLRO). Expression Fold Change 

(FC, the expression value of gene of interest vs. control genes) of each gene 

were plotted versus individual animal treated with BDH positive and negative 
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compounds (Figure 7). Apparently, there is a clear separation between 

positive and negative class based on the expression difference of top 4 genes 

in BDH signature, and achieved a very good performance by SVM and PAM 

(see Appendix D for detail).  This result indicates that our methodology 

become applicable across many other biological phenotypes: compiling 

microarray data for bioinformatics analysis, generating a small list of robust 

genes involved in a given phenotype, and deriving a smaller QPCR gene 

signature to predict an outcome of interest or screen preclinical compounds for 

toxicity liability studies. 

 

 

 

Figure 7: A scatter plot of Fold Change (FC, gene of interest vs. house-

keeping gene) versus animals for RT-qPCR of top 4 genes in BDH signature. 

The red and blue bar indicates animals treated with BDH positive (animal 1-
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18) and negative compounds (animal 19-48), respectively. Apparently, there is 

a clear separation between positive and negative class based on the 

expression level of top 4 genes in BDH signature. 

 

4.5. Discussion 

The recurring question when working with microarray data is how to 

handle the ubiquitous “overfitting” in gene expression profiling. Because of the 

uniqueness of the resulting microarray data whereas the sample size is 

typically far smaller than the feature size, this situation necessitates 

dimensionality reduction through gene selection to avoid data overfitting and 

improve generalization of discriminant analysis.  

In this paper, we propose a novel feature selection algorithm termed as 

PPEA to alternatively tackle this fundamental issue. PPEA first applies two-

way bootstrapping to manage the number of genes inversely equal or less 

than the number of samples in each splitting subset using for machine 

learning, and then assess the merit of each individual feature by evaluating its 

strength of class predictability under this new low dimensional sample-feature 

space. This approach is different from the other feature selection algorithms in 

that it assesses gene importance within the context of a multivariate model. 

That enables PPEA to access the gene information contained in complex 

biological interrelationships, rather than relying on the summation of univariate 

relationships within a set. For example, if two genes in a category were related 

to the samples' biological process or state by an “exclusive OR” association, 
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then PPEA could capture that relationship, whereas filter-based summations 

of univariate associations would be likely to overlook it.  

The task of conventional feature selection in microarray analysis is 

considered as a search problem where each state in the search specifies a 

distinct subset of the possible relevant features.  If the search space is too 

large, it is possible that the algorithm cannot discover the most selective genes 

within the search space. Moreover, having too many redundant or irrelevant 

genes increases the risk of overfitting, computational complexity, and cost and 

degrades estimation in classification error. The PPEA algorithm described 

here, in concept, approaches the search space like “divide and conquer”, 

breaking down the search space into certain number of sub-spaces of the 

same (or related) type. These sub-spaces become small enough with a new 

dimensionality (the sample size is reversely larger than the feature size in this 

case) to be solved directly. The solutions to the sub-space are then combined 

to give a solution to the original space. In practical, we realize that the random 

data split in each iteration may creates a characteristic of our method, which is 

that different runs of the algorithm may select different features. An 

unfortunate split of the data set may also remove an important feature, 

affecting thus negatively the classifier’s performance. This situation would be 

avoided if the number of iteration is large enough. In our algorithm, the 

iterative randomly splitting and classification process is terminated when the 

occurrence for each individual feature being randomly selected become 

roughly same (Figure 2), and the stability of ordered features according to their 
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predictive power within each predictive power enrichment matrix is reached 

(Figure 3).  

Figure 2 illustrates the index of the 10 top-ranked genes (i.e., features) 

become stabilized when the iteration of splitting reached 280,000. As we can 

see, the rank for 8 out of 10 genes becomes consistent as early as the 

iteration reach to 80,000. We observe that when the number of iteration further 

increases, the stabilization of rank for each feature does not improve, due to 

the maximization of informative feature utilization. Empirically we prove the 

method’s robustness regarding feature selection by verifying that most of the 

time the same features are selected in different runs providing high classifier 

performance. 

We do not claim that our PPEA methods will find all interesting genes, 

because the schema for feature search in this algorithm is heuristics and 

suboptimal as it does not exhaustively search in the space of all possible 

combinations. However, we demonstrate that the rank transition becomes a 

plateau and the majority of features ranked at the top positions were very 

stable after certain number of iteratively search.  

Our approach may inspire some insight into the biological mechanisms 

behind a biological phenotype as we consider protein-protein interaction (i.e. 

feature dependence) and largely avoiding overfitting. The functional analysis 

demonstrates that the signature genes were mechanistically related to the 

phenotype the signature intended to predict. For example, usually as a result 

of exposure to carcinogenic compounds such as Phomopsin (Peterson, 1990), 
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BDH manifests a purely cholangiolar proliferation and considered as pre-

neoplastic lesions. Our result shows that 12 of top 20 genes for BDH signature 

are partially associated to the oncogenic p53 and ERBB2 pathways (Figure 5). 

We also observed that 17 out of top 20 genes for “inflammation” signature 

identified by PPEA were members of NF-kB pathway, which was a key pre-

inflammatory pathway for a xenobiotic response (see Supplementary Figure 

1). We believe our approach is a step in the right direction to find the genes 

that are truly reflect the alternation to a therapeutic intervention or disease, 

and may contribute to new approaches to dissect the heterogeneity of 

phenotypes and understand disease. Additionally, other methods of 

measuring gene expression such as qPCR can be used, as the number of 

genes to be monitored is rather small. For the liver injury datasets we 

demonstrated that quite accurate diagnoses could be achieved using only the 

gene-expression levels of 5-20 genes.  

 

4.6. Conclusion  

Our method demonstrated its efficiency in finding optimal feature 

subsets with small size and high classification performance. Results show that 

the top-5 classifier performs superior to other 5 comparing classifiers. Our 

approach also shows better performance, not only a providing a very good 

average accuracy, but also with respect to the performance sensitivity and 

specificity in complete independent dataset. Furthermore, our method is 

capable of identifying the gene signature truly functional relevant to what they 
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intend to predict. Thus, we believe that the PPEA model may largely 

circumvents the overfitting problem, and can be used to facilitate genomic 

biomarker discovery and development for predictive toxicology and to 

elucidate mechanism(s) of drug action and/or of toxicity. 
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CHAPTER FIVE: CONCLUSION 

 

5.1. Summary 

Our goal of this study is to develop new algorithm and methods for 

gene expression profiling in breast cancer and toxicogenomics. More 

specifically, this study seeks to develop and refine gene signatures or 

biomarkers for disease classifications, development, progression, outcome, 

and mechanism discovery. The proposed methods are built around these aims 

through following two different aspects.  

The first one as described in Chapter Three is to build the predictive 

models with the genomic-scale molecular information from gene expression 

profiling integrating with prior knowledge of well-defined pathways. Using five 

independent data sets, we show that several molecular pathways involved in 

cancer development by directly regulating angiogenesis or metastasis 

processes, by regulating cell cycle, apoptosis, DNA repair, or by mediating cell 

signaling rely upon a single group of correlated genes to predict breast cancer 

outcome. We also applied the Amsterdam 70-gene signature and the breast 

cancer gene set including 264 genes as known molecular markers in the 

prognosis and diagnosis of breast cancer. Our intention was to examine if 

patients with differential expression patterns of these markers exhibited 

distinct survival probabilities as one would expect. This is a proof-of-concept 

test and served as the positive control in our study. There is indeed a 

significant difference in clinical outcome between the two patient groups with 

118 
 



distinct expression patterns of genes in the 70-gene signature or in the 264 

breast cancer gene set. This result is reproducible in all of the five datasets (P 

< 0.05). We would like to emphasize that the five array datasets we analyzed 

were generated from different patient cohorts that included a total of 1,162 

breast tumor samples. An un-supervised hierarchical clustering revealed a 

cohort of 159 patients was clustered into two groups with opposite expression 

patterns. The two groups exhibited a markedly different survival as displayed 

by the Kaplan-Meier analysis. The result also indicates that the pattern of gene 

expression in the cell cycle pathway can indeed serve as a powerful biomarker 

for breast cancer prognosis. We further built a predictive model for prognosis 

based on the cell cycle gene signature and found our model to be more 

accurate than the Amsterdam 70-gene signature when tested with multiple 

gene expression datasets generated from several patient populations.  

The second aspect is to develop and refine a novel computational 

algorithm named PPEA for feature selection in order to tackle the ‘overfitting’ 

problem in microarray data analysis. As described in Chapter Four, PPEA 

attempts to take advantage from the combination of filter and wrapper 

algorithms by exploiting their best performance in two steps. The algorithm 

first iteratively applies a two-way bootstrapping procedure to estimate 

predictive power of each individual gene by splitting the dataset into certain 

number of small subsets, wherein the feature size is smaller than the sample 

size, and then assessed and ranked the individual features based on its merits 

by evaluating their strength of class predictability. This gave us the ability to 
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find feature subsets with small size and high classification performance. Used 

top 5 genes to build a model, we find that our model not only achieves 

superior predictive accuracy over several other existed models, but also has 

the ability to capture the functional relevance and validated in a complete 

independent dataset. Furthermore, the result obtained from wet lab validation 

with QPCR shows that top 4 genes of the BDH signature have the capability to 

clear discriminate BDH positive and negative compounds.  

 

5.2. Limitations 

We recognized the limitation of the pathway-based classifier in this 

study. One of potential shortcomings is that the pre-defined set of genes 

making up a pathway may be derived from conditions irrelevant to the disease 

of. Second, the majority of human genes have not yet been assigned to a 

definitive pathway. Third, as one of my research committee members in my 

research proposal review points out that this approach ignores the pathway-

pathway interactions that could potentially improve the model performance. In 

addition, it is assumed that each gene within a pathway is equally important to 

pathway activity, which is often not the case. 

As a novel algorithm and has not been tested on more hetero-genetic 

diseases like cancer except DILI, PPEA has a plenty room to be improved. 

One of possible weaknesses concerned by Dr. Jake Chen at my research 

proposal defense meeting is that PPEA could not find all interesting genes, 

because the schema for feature search in this algorithm is heuristics and 
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suboptimal as it does not exhaustively search in the space of all possible 

combinations. We demonstrate that the transition of feature rank based on 

their predictive capabilities becomes very stable after certain number of 

iteratively search. It may indicate the maximization of feature informative 

utilization. 

I realize that the structure-based approach will open up new avenues to 

fundamental understanding of the molecular mechanism associated with 

biological phenotype. However, our preliminary model incorporated the protein 

order/disorder information turns out to be only as efficient as the model based 

on gene expression alone. Thus, I dropped the proposed part of integration 

with protein structure-based modeling in this dissertation. 

 

5.3. Future research 

 Futuristically, the strategy for mechanistic feature selection in the 

context of prior knowledge to integrate functional associations derived from 

various protein structural or unstructured properties, functional genomic and 

proteomic, or other ‘omic’ data sets obtained in both humans and model 

organisms. This integrated network modeling strategy will provide a ranking 

system to classify potential network components from low to high likelihood; 

the components will be evaluated genetically, structurally, and functionally.  
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APPENDICES 

 

Appendix A:  Pathway analysis for the inflammation signature genes 

RELT

 

An analysis for the enriched biological functions of the top 20 inflammation 

signature genes shows that 16 out of top 20 genes are involved with 

inflammatory pathway NFkB and highlighted with brown color. 
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Appendix B:  BDH positive and negative compounds used in qPCR assay 

development 

Animal ID Compound 
BDH 
Class 

1-1 1-napthyl isothiocyanate positive 
1-2 1-napthyl isothiocyanate positive 
1-3 1-napthyl isothiocyanate positive 
2-1 4,4'-methylenediamiline positive 
2-2 4,4'-methylenediamiline positive 
3-1 Carmustine positive 
3-2 Carmustine positive 
3-3 Carmustine positive 
4-1 Carvedilol positive 
4-2 Carvedilol positive 
4-3 Carvedilol positive 
5-1 Lomustine positive 
6-1 Methylpyrilene positive 
6-2 Methylpyrilene positive 
6-3 Methylpyrilene positive 
7-1 Vinblastine positive 
7-2 Vinblastine positive 
7-3 Vinblastine positive 
9-1 Ergocalciferol negative 
9-2 Ergocalciferol negative 
10-1 (+)-Pulegone negative 
10-2 (+)-Pulegone negative 
10-3 (+)-Pulegone negative 
11-1 Auranofin negative 
11-2 Auranofin negative 
11-3 Auranofin negative 
12-1 Diclofenac negative 
12-2 Diclofenac negative 
12-3 Diclofenac negative 
13-1 Ferrocene negative 
13-2 Ferrocene negative 
13-3 Ferrocene negative 
14-1 2-Acetylaminofluorene negative 
14-2 2-Acetylaminofluorene negative 
15-1 Clofibrate negative 
15-2 Clofibrate negative 
15-3 Clofibrate negative 
16-1 Indomethacin negative 
16-2 Indomethacin negative 
16-3 Indomethacin negative 
17-1 N-Nitrosodiethylamine negative 
17-2 N-Nitrosodiethylamine negative 
18-1 Rofecoxib negative 
18-2 Rofecoxib negative 
18-3 Rofecoxib negative 
19-1 Spironolactone negative 
19-2 Spironolactone negative 
19-3 Spironolactone negative 
20-1 CMC vehicle 
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20-2 CMC vehicle 
20-3 CMC vehicle 
21-1 Corn oil vehicle 
21-2 Corn oil vehicle 
21-3 Corn oil vehicle 
22-1 water vehicle 
22-2 water vehicle 
22-3 water vehicle 
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Appendix C:  Summary result for the inflammation signature validated with a 

complete independent data set 

TYPE  DATASET  GROUP  NUMP ERROR SENS  SPEC  PPV  NPV  AUC  

TRAIN  ICONIX TOP  9 23.3% 74.4% 78.9% 78.0% 75.6% 84.5% 

TRAIN  ICONIX RANDOM  9 32.2% 65.6% 70.0% 69.2% 67.1% 74.3% 

TRAIN  ICONIX BOTTOM  9 30.3% 67.8% 71.7% 70.7% 69.4% 76.4% 

TRAIN  ICONIX WHOLE  31042 11.7% 85.6% 91.1% 90.7% 86.4% 97.3% 

TRAIN  ICONIX SINGLE  9 18.3% 78.3% 85.0% 84.0% 79.8% 90.4% 

TRAIN  ICONIX ICONIX  222 15.3% 81.7% 87.8% 87.2% 83.0% 93.5% 

TEST  ICONIX TOP  9 18.8% 62.5% 82.3% 18.0% 97.3% 80.0% 

TEST  ICONIX RANDOM  9 40.0% 58.3% 60.1% 9.1% 95.8% 59.3% 

TEST  ICONIX BOTTOM  9 44.9% 49.2% 55.5% 6.4% 94.7% 53.7% 

TEST  ICONIX WHOLE  31042 17.6% 65.8% 83.4% 20.2% 97.6% 85.2% 

TEST  ICONIX SINGLE  9 13.1% 76.7% 87.6% 27.9% 98.4% 89.3% 

TEST  ICONIX ICONIX  222 17.9% 70.0% 82.9% 20.7% 97.9% 80.8% 

IND  LRLcmpds  TOP  9 22.5% 54.0% 89.2% 72.2% 79.6% 78.6% 

IND  LRLcmpds  RANDOM  9 45.3% 44.8% 59.6% 36.1% 68.4% 55.4% 

IND  LRLcmpds  BOTTOM  9 49.5% 46.0% 52.8% 33.3% 65.6% 47.4% 

IND  LRLcmpds  WHOLE  31042 23.6% 42.4% 93.4% 77.2% 76.5% 75.3% 

IND  LRLcmpds  SINGLE  9 25.7% 38.4% 92.2% 71.2% 75.0% 70.2% 

IND  LRLcmpds  ICONIX  222 24.9% 46.0% 89.6% 68.6% 77.0% 76.9% 

NUMP - number of probes; SENS - sensitivity; SPEC - specificity; PPV - 

positive predictive value; NPV - negative predictive value; AUC - area under 

curve 
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Appendix D:  The ROC and heatmap for the BDH signature validated with 

qPCR  

 

a) 

qPCR: AUC = 0.96
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The RNA was extracted from livers of total 48 of animals (rats). 18 animals 

were observed Histopathologically BDH positive, and 30 animals BDH 

negative. Quantitative real-time PCR (qRT-PCR) was performed for measuring 

the expression of the first four genes of BDH signature. The performance 

assessment for these four gene signature is “Error = 0.104, sensitivity = 0.833, 

and specificity = 0.933”. a) ROC for First four genes of BDH signature, and the 

AUC = 0.96; b) a hierarchical clustering for the first four genes of the BDH 

signature.  
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Appendix E:  The R code for PPEA 

PPEA<-function (M, class.labels, epv, ratio.tt, threshold.error, num.iteration, 
cor.r,num.eva, machine.eva, dir.s, nm.core) { 
#The algorithm iteratively applies a two-way bootstrapping over p and n such 
#that the sample size is larger than the gene number for each subset. The 
#predictive power of individual gene is estimated from #using the prediction 
#analysis of microarray (PAM).  
# 
# 
# Inputs: 
# M: Let M_(p×n) be the expression data matrix for p genes and n          
# samples. 
# class.labels:  A vector of binary labels having the 1's and the 0's. The  
# positive class must be labeled as 1s, and the name of class.labels must  
# be matched with sample names of M 
# epv:  events per variable 
# ratio.tt  The ratio for size of training and testing dataset 
# threshold.error The threshold for error cutoff  
# num.iteration The number of iteration 
# cor.r The Spearman correlation threshold for the iteration stopping 
# num.eva The number of iteration for ppea process evaluation 
# machine.eva PAM or SVM 
# dir.s The directory used for saving the ppea matrix  
# nm.core The stem of the file names 
# 
# Outputs: 
# ppea.list The list contains a ppea matrix at different iteration  
# intervals and corresponding  
# Spearman correlation 
# 
 #ptm <-proc.time()  
 cls.lev<-unique(class.labels) 
 cls.p<-class.labels(class.labels==1) # positive class should be "1" 
 cls.n<-class.labels(setdiff(names(class.labels), names(cls.p))) 
 
 conf.mat<-NULL 
 gene.lst<-NULL 
 ppea.mat<-NULL 
 cor.lst<-NULL 
 gene.wset<-as.vector(row.names(M)) 
 num.print=1 
 for (i in 1:num.iteration){ 
  ## Randomly select samples for training and testing  
  clsp.tr<-sample(cls.p, round(length(cls.p)*ratio.tt)) 
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  clsp.tt<-cls.p((setdiff(names(cls.p), names(clsp.tr)))) 
  
  clsn.tr<-sample(cls.n, round(length(cls.n)*ratio.tt)) 
  clsn.tt<-cls.n((setdiff(names(cls.n), names(clsn.tr)))) 
 
  class.tr<-c(clsp.tr,clsn.tr) 
   class.te<-c(clsp.tt,clsn.tt) 
 
  ## randomly select the probes 
  prbs.r<-NULL 
  prbs.r<-as.vector(sample(row.names(M), 
round(length(class.tr)*(1/epv)))) 
  dta.tr<-M(prbs.r,names(class.tr)) 
  dta.te<-M(prbs.r,names(class.te)) 
 
  trainwts<-100/table(as.vector(class.tr)) 
 
  # for PAM evaluation    
  if (machine.eva=="PAM"|machine.eva=="pam"){  
   library(pamr) 
   library(mda) 
   train.dat <-NULL 
   train.dat <- list(x = as.matrix(dta.tr), y = as.factor(class.tr), 
genenames = row.names(dta.tr), geneid = row.names(dta.tr), sampleid = 
colnames(dta.tr)) 
    mod.pam <- pamr.train(train.dat, threshold.scale=trainwts) 
   mod.cv <- pamr.cv(mod.pam, train.dat) 
   
    # to find the optimized threshold 
   #min0.pos<-which(mod.cv$error==min(mod.cv$error)) 
   #min.pos<-min(min0.pos) 
   #if (mod.cv$size(min.pos)==1){ 
   # min.pos=min(min0.pos) 
   # if (mod.cv$size(min.pos)==1){ 
   #  min.pos=1 
   # } 
   #} 
   #Delta=mod.cv$threshold(min.pos) 
    Delta=0 
             g.lst<-NULL 
   g.lst<-pamr.listgenes(mod.pam, train.dat, Delta, 
genenames = FALSE) 
   g.lst<-list(as.vector(g.lst(,"id"))) 
   names(g.lst)<-"GENE" 
    res.pam<-pamr.predict(mod.pam, dta.te, Delta) 
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    res.te<-cal_confusion(res.pam, class.te) 
   conf.mat<-rbind(conf.mat, res.te) 
   gene.lst(i)<-list(g.lst) 
  } 
  ### 
  if (machine.eva=="SVM"|machine.eva=="svm"){ 

##SVM evaluation  
   library(e1071) 
   dta.tr<-t(dta.tr) 
   dta.te<-t(dta.te) 
   mod.cv <- svm(dta.tr, as.factor(class.tr), kernel="linear", 
cross = 10, na.action = na.omit) 
   res.svm <- predict(mod.cv, dta.te) 
   res.te<-cal_confusion(res.svm, as.factor(class.te)) 
   g.lst<-NULL 
   g.lst<-list(as.vector(prbs.r)) 
   conf.mat<-rbind(conf.mat, res.te) 
   gene.lst(i)<-list(g.lst) 
  } 
  ## evaluate the PPEA matrix at different iteration interval ## 
      if (i==num.print*num.eva){ 
              print (paste("i=", i, sep="")) 
             tb.tot<-NULL 
              tb.tot<-table(unlist(gene.lst))                         
   iter.pass<-NULL 
   iter.pass<-conf.mat(,"Error")<=threshold.error 
   tb.suc<-NULL 
               if (is.na(table(iter.pass)("TRUE"))){ 
                   tb.suc<-as.vector(rep(0, length(unlist(gene.lst)))) 
                   names(tb.suc)<-names(tb.tot) 
               }else{ 
         tb.suc<-table(unlist(gene.lst(iter.pass))) 
               } 
   match.tot<-as.vector(rep(0, length(gene.wset))) 

  match.tot<-replace(match.tot, 
gene.wset%in%names(tb.tot), tb.tot) 

   match.suc<-as.vector(rep(0, length(gene.wset))) 
   match.suc<-replace(match.suc, 
gene.wset%in%names(tb.suc), tb.suc) 
   nm.tot<-paste("TOT.", i, sep="") 
   nm.suc<-paste("SUC.", i, sep="") 
   nm.ratio<-paste("RATIO.", i, sep="") 
   nm.rank<-paste("RANK.", i, sep="") 
   ratio.ts<-NULL 
   ratio.ts<-match.suc/match.tot 
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   rank.s<-as.vector(rep(0, length(gene.wset))) 
   names(rank.s)<-gene.wset 
   ratio.rank<-replace(ratio.ts, is.nan(ratio.ts),0) 
   rank.s<-replace(rank.s,rev(order(ratio.rank)), 
1:length(gene.wset)) 
   ppea.s<-NULL 
   ppea.s<-cbind(match.tot, match.suc, ratio.ts, rank.s) 
   colnames(ppea.s)<-as.vector(c(nm.tot, nm.suc, nm.ratio, 
nm.rank)) 
   row.names(ppea.s)<-gene.wset 
   ppea.mat<-cbind(ppea.mat, ppea.s) 
   if (!is.na(dir.s)){ 
   file.o<-paste(dir.s, nm.core, "_ppea_matrix.csv", sep="") 
   write.table(ppea.mat, file=file.o, sep=",", row.names=T) 
   } 
   # Calculate the Spearman correlation 
   if (num.print>1){ 
   nm.last<-paste("RANK.", num.print*num.eva, sep="") 
   nm.pre<-paste("RANK.", (num.print-1)*num.eva, sep="") 
   cor.s<-NULL 
 cor.s<cor(as.vector(ppea.mat(,nm.last)),as.vector(ppea.mat(,nm.pre)),   
use = "everything", method = c( "spearman")) 
   names(cor.s)<-nm.last 
   cor.lst<-c(cor.lst, cor.s) 
   print(paste("The Spearman correlation is ", cor.s, sep="")) 
   if(cor.s>cor.r){  
   stop("The number of iterations has reached the stable 
stage") 
   } 
              print (paste("i=", i, sep="")) 
   } 
   num.print<-num.print+1 
  } 
 } 
 ppea.list<-list(PPEA=ppea.mat, Correlation=cor.lst) 
 #proc.time() - ptm 
 return(ppea.list) 
} 
 
## construct the confusion matrix 
cal_confusion<-function(c.pred, cls){ 
 # positve has to be "1" 
 # to force the class be '1' and '0' 
 conf.mat<-NULL 
 cls<-replace(cls, as.vector(cls)!=1, 0)  
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 grp.s<-NULL 
 grp.s<-split(c.pred, cls) 
 TP<-NULL 
 FN<-NULL 
 tb.p<-NULL 
 tb.p<-table(grp.s("1")) 
 TP<-as.vector(tb.p("1")) 
 FN<-as.vector(tb.p("0")) 
 TN<-NULL 
 FP<-NULL 
 tb.n<-NULL 
 tb.n<-table(grp.s("0")) 
 TN<-as.vector(tb.n("0")) 
 FP<-as.vector(tb.n("1")) 
 sens<-TP/(TP+FN) 
 spec<-TN/(TN+FP) 
 err<-1-(TP+TN)/(TP+TN+FP+FN) 
 ppv<-TP/(TP+FP) 
 npv<-TN/(TN+FN) 
 conf.mat<-NULL 
 conf.mat<-as.vector(c(TP, FN, FP, TN, sens, spec, err, ppv, npv)) 
 names(conf.mat)<-as.vector(c("TP", "FN", "FP", "TN", "Sensitivity", 
"Specificity", "Error", "PPV",  
"NPV")) 
 return(conf.mat)  
}
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