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CHAPTER ONE: INTRODUCTION 

1.1 IMMUNE SYSTEM 

The immune system is an intricate defense mechanism comprised of biological elements that protect 

the organism against foreign invaders (like bacteria, viruses, etc.) by recognizing and destroying 

them. The immune system is classified based on the time and nature of their actions; the first section 

of the immune system is composed of a layer of epithelial cells that acts as a physical barrier by 

providing an immediate defense against the invading pathogens in a non-specific manner and is 

termed as innate immune system. Innate immunity is triggered by the incoming pathogens that are 

identified by the pattern recognition receptor (PPR). The PPR identifies the incoming pathogen by 

recognizing a pattern specific for each group of microorganisms termed as pathogen-associated 

molecular patterns (PAMPs) invading the host [1]. After recognizing the pathogens, these epithelial 

cells secrete chemicals (enzymes like lysozyme) to carry out cell wall lysing of the pathogen. The cell 

lysing is then followed by engulfing and destroying the pathogen by endocytosis and phagocytosis.    

The second component of the immune system is called the adaptive immune system. Adaptive 

immunity is more specific to the invading pathogens. This type of immunity is characterized by 

immunological memory, through which each pathogen is recalled. What helped to eradicate the 

infectious pathogens is also recalled from the lymphocytes [2] . The lymphocytes belong to the 

category of leukocytes that are mainly concentrated in the central lymphoid systems such as the 

spleen and lymph nodes.  
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The two components of the immune systems complement each other very effectively. In summary, 

the non-specific innate immunity is developed immediately after birth and is effective only when 

challenged whereas the specific adaptive immunity is developed by an organism over a period of time 

by exposing it to immunization and is effective for a long time period as it utilizes immunological 

memory. 

1.2 CELLS INVOLVED IN IMMUNE RESPONSE 

The inflammatory reaction is the result of immune response. It is stimulated when the entering 

pathogen injures the host tissue, which in turn recruits cells by secreting chemokines. Some of the 

essential components that are responsible for the pro-inflammatory response are TNF-α, cytokines 

like IFN- , white blood cells like antigen presenting dendritic cells, lymphocytes like T cells and B 

cells, and effector cells or natural killer cells (NK cells) [3]. Figure 1 gives a clear diversification of 

the blood stem cell into various immune cells that carry out the immune response effectively. 

Out of these components, T cells play a significant role in immune response. These are divided into 

two major classes: T helper cells (CD4
+
 cells) and cytotoxic T cells (CD8

+
 cells) [4]. 
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Figure1: Cells involved in the immune response (Terese Winslow, 2007). Out of these cells, the cells 

that encompassed in the lymphoblast lineage mostly involved in immune response.  

1.3 T-HELPER CELL DEVELOPMENT AND ACTIVATION 

The T helper cells are a subset of lymphocytes that act against the pathogens by stimulating cytokines 

(especially IFN-), leading to an inflammatory response. This category of T cells has CD4
+ 

proteins 

on their surface. The activation of this cell lineage is regulated by the antigen peptides binding to the 

major histocompatibility complex class II (MHC-II) present on the surface of antigen presenting cells 

(APCs) [5]. Additionally, these T helper cells mature and develop in the thymus region [6]. 

The T helper cells also differentiate into many sublineages, like Th1, Th2, Treg, Th17, T follicular 

helper (Tfh) cells, and Th9 (IL-9-expressing) cells. Of these sublineages Th1 and Th2 have a more 
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established participation in the immune response mechanism (Figure 2) [7]. 

 

Figure2: T-helper cell lineages [8] . The activated CD4+ T cell differentiates into many T-helper cell 

lineages which are mediated by different interleukin molecule (Example: The Th1 lineage is mediated 

by IL-12 whereas Th2 lineage is mediated by IL-4).  

The cytokine IFN-γ stimulates the macrophages and dendritic cells to produce interleukin-12, which 

is critical in promoting the Th1 cell lineage development. The IFN-γ cytokine stimulation also 

inhibits the production of other interleukins (like IL-4, IL-10), thus preventing the development of 

other Th cell lineages such as Th2, Treg, etc. 
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1.3.1 TRANSCRIPTION REGULATION IN Th1 CELL DEVELOPMENT 

Transcription regulation is a dynamic process that regulates the expression of genes by employing 

various transcription regulatory elements such as activators, enhancers, and repressors. One of the 

complex transcription regulatory networks in higher eukaryotes is the immune cell transcription 

regulatory network. 

The T cell transcription regulatory network is a complex system regulated by various families of 

factors, such as NF-B, STAT family, and GATA (FIGURE 3) [9]. The transcription regulatory 

network plays an essential role in diversification of the T cell lineage into Th1 and Th2 sublineages. 

The Th1 lineage‟s transcription network is regulated by T-bet which cooperates with another factor 

called STAT4 [10]. 

 

Figure3: Transcription regulation in Th1 cell  [11].The T-bet induces IL-12 expression that enables 

the STAT4 to undergo dimerization process leading the Th1 cell development. 
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T-bet (also called Tbx-21) is a member of the T-box family of transcription factors (TFs). It plays an  

essential role in the activation of IFN-γ production, which eventually leads to the repression of 

interleukin-4 and 5 (IL-4 and IL-5); this plays a major role in the development of Th 2 cell lineage 

[12].  T-bet also induces the expression of IL-12R, enabling STAT4 activation for Th1 cell 

development [13]. STAT4 is a member of the STAT transcription factor family that is regulated by a 

cytokine response [14]. 

The TCR signal transduction cascade activates the master regulators and also the cytokine gene 

framework to induce the transcription process leading to the development of Th1 cell lineage [15]. 

1.4 ROLE OF CIS-REGULATORY MODULE IN TRN (TRANSCRIPTION REGULATORY 

NETWORK) 

A few transcription factors (for example, T-bet and STAT4) work in coordination with each other to 

regulate the transcription regulatory network. Such factors bind to the specific transcription factor 

binding sites (TFBS) that are located very close to each other in the genomic region. These co-

occurring heterotypic or homotypic clusters of TFBS form the base for the transcription regulatory 

network and are referred to as Cis-regulatory modules (CRM) [16]. The CRMs are the main 

components that control the regulation of transcription regulatory networks [17]. The CRM is about 

500-1000 bp in length and is mostly positioned in the upstream region to the transcription start site. 
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Figure 4: Representation of the cis-regulatory module or Cistrome unit. In this representation, the 

transcriptions factors Sp1, c-Myc/Max and others binding to their respective TFBS on the genes 

forming the cis-Regulatory Module or unit. And these sites co-regulated to carry out gene expression. 
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CHAPTER TWO: BACKGROUND 

2.1 STAT4 BIOLOGY 

STAT4 transcription factors are categorized under the family of signal transducers and activators of 

transcription proteins that play a cardinal role in the development of Th1 cell lineage. The activation 

of STAT4 molecules is an orchestra of interactions with other molecules.   The IL-12 molecule binds 

to the IL-12 receptor on the surface of the naive T helper cell (Th0); this binding in turn mediates the 

conversion of the inactive STAT4 molecule to an active homodimer STAT4 molecule. The active 

STAT4 molecule carries the signal from the cell surface to the nucleus, and it then binds to various 

cis-regulatory modules that control the transcription of a number of genes involved in Th1 cell 

development. 

STAT4 has many similar functional domains that belong to the STAT family of proteins, such as the 

DNA-binding domain, a conserved SH2 domain that is involved in dimerization processes and a C-

terminal transactivation domain [18].  
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Figure 5: Biology of STAT4 involvement in Th1 cell development. 

The activation of STAT4 is mediated by the Jak-STAT (Janus kinase-signal transducers and 

activators of transcription pathway). In higher eukaryotes, the Jak-STAT pathway initiates the 

signaling cascades for the stimulation of many cytokines and growth factors. The conversion of  

homodimer  of STAT4 molecules to a heterodimer molecules is also advocated through the Jak-

STAT by enhancing the phosphorylation process, which in turn stimulates the conversion of naive Th 

cells (Th0) to a mature and active state [19].   
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Figure 6: JAK-STAT (Janus kinase/signal transducers and activators of transcription) pathway. The 

highlighted circle depicts how the STAT dimerization is carried out in the Jak-STAT pathway. 

(Courtesy: KEGG Database) 
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2.2 CURRENT UNDERSTANDING OF STAT4 

Numerous wet lab biological studies have been conducted to decipher the transcription regulation 

process of the immune system. For example, one study demonstrates the early target genes of IL-12 

and STAT4 signaling in Th1 cell differentiation [20], and another study deals with the requirements 

for the splice forms STAT4α and STAT4β to mediate responses to IL12 [21]. In addition to these in 

vivo studies, there was also some in vitro computational analysis performed to understand the gene 

transcriptional mechanism of the immune system. Some of the latest computational studies were 

performed in order to obtain an elaborated knowledge about the significance of STAT4 molecules in 

Th1 cell development, which will be discussed in this section. 

A significant study by Lai et al. deals with the role of STAT4 and STAT6 in epigenetic modification 

and transcriptional regulation in Th1 cell development. The study analyzes the STAT4 and STAT6 

histone methylation ChIP-seq data to investigate the transcriptomics of murine STAT4-mediated Th1 

development. The histone methylations focused on in this study were H3k4me3 and H3k27me3. It 

reports that around 63% STAT4 and 59% STAT6 binding sites were colocalized with H3k4me3 

histone methylation patterns in contrary where only 0.3 and 0.5 percentage of STAT4 and STAT6 

binding sites, respectively, were colocalized with H3K27me3.  From these results, it can be inferred 

that STAT4 plays a more significant role in promoting the active transcription regulatory network as 

it promotes H3k4me3 modification patterns more than H3k27me3. On the other hand, STAT6 has an 

antagonizing, repressive effect, promoting H3k27me3 modification patterns. Thus, the biological 

significance of the histone methylation process states that transcription is increased by H3k4me3 

patterns and negatively regulated in the presence of higher H3k27me3 patterns. This study also 

identifies a few genes that may bind to either  STAT4 or STAT6, which can have negative 
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regulations in order to provide lineage-specific expression (to Th1 cell lineage or Th2 cell lineage, 

corresponding to STAT4 or STAT6, respectively) [22]. 

2.3 STAT4 TARGET GENES IN TH1 DEVELOPMENT 

Good et al. identified and characterized STAT4 targets that play a vital role in Th1 cell development 

and receptor signaling. The few potential STAT4 TF targets that were reported through this study 

were furin, Ifng, Il12rb2, and Il18r1 [23-25].  Although a number of STAT4 targets are involved in 

Th1 cell development, the major group of these genes showed a lack of consistency between STAT4 

binding and induction of target gene expression. This inconsistency could be attributed to a number 

of reasons; the strongly binding target gene regulatory sequence need not necessarily induce high 

levels of target gene expressions, and conversely a weak binder did not always show poor expression. 

Furthermore, the presence of other TFB motifs near the STAT4 site can either increase or decrease 

the expression of downstream target genes, which provides confirmatory evidence for this 

discrepancy. The  high throughput of ChIP-on-chip analysis done by Good et al. identified the 

STAT4 consensus for the binding of STAT4 targets and also potential transcription factor binding 

sites, such as NF-B and PPARγ-RXR that play a major role in STAT4-mediated Th1 cell 

development [23]. 

The Good et al. study involved a genome-wide analysis of STAT4 ChIP-on-chip data. The ChIP-on-

chip experiment was performed on a mouse promoter region of 7.5 kb upstream to 2.5 kb 

downstream from the transcription start site (TSS) that identified the 3397 STAT4 binding region, or 

interval sequence that corresponded to 4669 genes. A peak intensity filter cut off at 4 or greater 

refined this set to 1111 interval sequences corresponding to 1540 genes. The study also identified the 
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consensus of STAT4 binding region as “TTCNNNGAA”. A de novo motif analysis on these 1111 

interval sequences identified a couple of potential motifs, such as NF-B and Pparγ-RXR (apart from 

STAT4 which may be an essential cis-regulatory module participant in Th1 development). Two of the 

new potential STAT4 gene targets, Pcgf5 and Mllt3, were also identified from this genome-wide 

analysis [23]. 

2.4 ROLE OF PPARγ-RXR IN T CELL DEVELOPMENT 

Peroxisome proliferator-activated receptor gamma (PPAR-γ) belongs to the family of nuclear 

receptors that are involved in macrophage development, immune response, and T cell-mediated 

inflammation [26]. PPAR-γ is widely expressed in all major cell types, such as T cells, macrophages, 

dendritic cells, endothelial cells, and epithelial cells. The nuclear receptor PPAR-γ/RXR-α 

heterodimer is composed of the peroxisome proliferator-activated receptor gamma (PPAR-γ) and the 

retinoic acid receptor (RXR-α). The phenotypic effects of PPAR-γ-instructed dendritic cells (DC) is 

to enhance phagocytic activity and lead to the modification of cytokine-production profiles, resulting 

in elevated natural killer T (NKT) cell activity. PPAR-γ are involved at different stages of DC 

differentiation [27]. The activation of PPARγ at the transcriptional level of DC development impacts 

the upregulation (TLR4, CD36) and downregulation (IL1R2, IRF4) of the genes involved. Some of 

these genes contribute immensely to the development of the receptor-specific DC phenotype [28]. T 

cell PPAR-γ is also important in regulating the relative abundance of CD8+ and CD4+ T cell subsets. 

It has a repressive action on NF-B, thus providing a check over the stimulation of cytokine 

production. PPAR-γ-RXR plays a pivotal role in modulating the JAK/STAT pathway by inhibiting 

the phosphorylation of specific JAK and STAT molecules, and also the differentiation and activation 

of Th1 cells [29].  
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2.5 COMPUTATIONAL METHODS INVOLVED IN CRM DISCOVERY 

CRM is a complex biological model; it can effectively be deciphered by combining computational 

algorithms and tools along with the wet lab experiments. For example, the TFBs in each CRM unit 

are represented by a position weight matrix (PWM) that are obtained by using statistical approaches 

based on the frequency of the occurrence of the base (A,T,G,C). Databases like JASPAR [30] and 

TRANSFAC [31] act as repositories that have information pertaining to the PWM of the cis-

regulatory DNA sequence and their transacting factors.  

Many informatics-based computational approaches have led to the discovery of many tools in order to 

explore the CRM unit. One such algorithm was developed by Xin et al. that was based on the 

prediction of CRM, which was built on a probabilistic model of evolution [32]. In the study 

performed by Sharan et al., a tool called CREME was developed in order to identify and visualize the 

CRMs in the promoter region for a set of co-regulated genes. Ivan et al. proposed a new algorithm 

named CSam (CRM sampler) and D2z-set in order to predict cis-regulatory modules without any 

information about the motifs [33]. Aerts et al. developed a tool suite (called the Toucan) that could 

predict the CRMs in a set of co-regulated genes. MotifScanner is one of the tools from this suite that 

detects the pre-defined motifs in a DNA sequence, employing a background model and a probabilistic 

estimation of the number of hits (or motifs present) [34]. 

Similarly, there are many computational approaches that are employed to decode the CRM unit that 

might help biologists to understand the cis-regulatory module involvement in a particular 

transcriptional regulatory network. 
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2.5 KNOWLEDGE GAP 

The various wet lab studies serve as a stepping stone to study the biological significance of STAT4-

mediated Th1 cell development. Additionally, the development of technology provides more 

sophisticated methodologies to study this significance. Some of these methodologies, such as high 

throughput (e.g. microarray, ChIP-on-chip) and next generation sequencing (like ChIP-seq and RNA-

seq), generate a cyclopean amount of data that should be analyzed effectively.   

The informatics-based computational approaches are one of the best possible solutions to analyze this 

huge quantity of data. For instance, scanning of the chip from the ChIP-on-chip experiment may give 

many false positive signals and background noise that can hinder the specificity of the analysis. The 

informatics-based algorithms cannot only eliminate the false positive signal but can also normalize 

the data.   
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2.6 RESEARCH QUESTION 

Earlier studies on STAT4 provide a sound insight on the characteristics and the biological importance 

of the immune response from varied frames of references. Good et al. in his study involving high 

throughput data identifies crucial and novel target genes and motifs (NF-kB and Pparγ-RXR) (Good 

SR 2009). 

The aim of this work is to implement various computational techniques (high throughput approaches) 

with biological relevance in order to attain the following: 

a. Decoding the STAT4-mediated transcriptional regulatory networks in Th1 cell development. 

b. Aid the identification of potential STAT4 CRM (cis-regulatory modules) involved in Th1 cell 

development. Furthermore, in vivo studies shall serve as an additional validation for the results 

obtained. 
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CHAPTER THREE: MATERIALS AND METHODS 

3.1 ChIP-on-chip AND MOUSE GENOME DATA 

ChIP-on-chip (Chromatin immunoprecipitation–on-microarray) is a genome-wide location analysis 

technique. This technique identifies and analyzes DNA fragments (or binding sites) that are 

potentially bound by specific DNA binding proteins called the transcription factors. The wet lab 

protocol of this technique involves four steps: cross-linking of the DNA fragment with proteins, 

sonication of the DNA fragment into small pieces, performing immunoprecipitation of DNA-bound 

proteins with monoclonal antibodies, and purification and hybridization of the DNA fragments (or 

binding sites) on a micro array chip [35]. 

 

 

 

 

 

 

 

Figure 7: Wet lab ChIP-on-chip work flow [source: www.Wikipedia.org]. The steps observed in this 

experiment are a) cross-linking and sheering b) immunoprecipitation c) purifying and labeling with 

http://www.wikipedia.org/
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fluorescence tag d) hybridization followed by DNA microarray. 

In this study, Th1 cells stimulated by IL-12 are used to generate the STAT4 ChIP-on-chip data. As 

identified by Good et.al, this data set has 3396 “interval” sequences (with STAT4 binding sites) 

corresponding to 4669 target genes. A measure used to quantitatively estimate STAT4 binding in 

their data set was the “peak binding intensity” with a range of values for all the interval sequences 

from 2.2 to 32.4.  In their analysis, they employed a peak binding intensity filter of 4, which reduced 

the data set to 1111 interval sequences for 1540 genes.  We have considered these data sets in this 

study, viz., the whole set of 3396 interval sequences, and the peak intensity-filtered 1111 sequences 

[23].  

To work with the above data, three sets of sequences were generated based on the 3396 interval 

sequences using the mm9 build of the mouse genome. Each interval sequence with a STAT4 binding 

site was extended on either side (or trimmed equally on both sides) to 2000 bases, forming the 

foreground region (labeled as Foreground).Taking the nucleotide at the end of the foreground region, 

a sequence of a length of 2000 bases was taken to form Background 1 (3‟ or downstream of the 

interval sequence), and from the start nucleotide of the foreground region, an upstream sequence of a 

length of 2000 bases was taken for Background 2 (5‟ or upstream of interval sequence). These three 

sequence sets for each of the interval sequences were equal in length so as to act as controls for the 

sequence length in the cis-regulatory modules (CRM) enrichment studies, and the proximity of the 

background sequences at the 5‟ and 3‟ ends of the foreground sequence was to control the GC content 

of the data. 

 The STAT4-dependent genes identified from the ChIP-on-chip experiments were then classified into 
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three categories based on their temporal expression patterns induction. There are minimal to no 

induction genes set expressed as fold induction patterns of less than or equal to 2 at 4 hours and 18 

hours; transient induction genes sets expressed as fold induction patterns of less than or equal to 2 at 

4 hours and greater than or equal to 2 at 18 hours and sustained induction genes sets that expressed a 

fold induction pattern of greater than or equal to 2 at 4 hours and 18 hours [23].  

3.2  DATABASE FOR ChIP-on-chip DATA 

The need to access both the gene and interval information for establishment of a relationship between 

a gene and interval would be the first stepping stone for the data analysis. However, the raw data 

provided by the Genpathway Company has the gene and interval information in separate sheets. To 

overcome the above difficulty, the data was loaded onto various tables into a MYSQL database on the 

server (belonging to the School of Informatics, IUPUI). This database depicts in a tabular format the 

information from Genpathway, like the gene name, chromosome, interval start and stop, interval 

length, peak value, distance from TSS, and position. 

Statistically this database has around 4699 genes and 11680 interval ids corresponding to 6818 

interval ids of IL12 (replicate 1 and 2) and 4862 interval ids of IL23 (replicate 1 and 2 ). A frontend 

in PHP was created in order to retrieve information conveniently from the database. 
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Figure 8: ER Diagram for the ChIP-on-chip database. It contains gene information (like gene ID, 

gene symbol, chromosome located, peak intensity) and motif information (like motif ID, distance 

from TSS, location, and start position of the motif).  

3.3  SEQUENCE EXTRACTION 

The locations of the 3396 ChIP-on-chip interval sequences pertaining to the IL12 replicated in a bed 

file format were employed to get the foreground and two background sets.  

These interval sequences were mapped onto the UCSC Genome Browser [36] to convert them into 

the corresponding mouse genome mm9 build locations, and the appropriate sequences were then 

retrieved from the mm9 2bit file downloaded from the USCSC genome repository. First, the 2bit file 

was converted to a FASTA file on the command line (using instructions from the web site) [37], and 

then a Perl script (Appendix A) was written and run locally to extract the sequences corresponding to 
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the foreground and backgrounds. Essentially, the Perl script centered the start and end locations of an 

interval sequence (smaller than 2 kb) onto the appropriate chromosomal locations and extended 

equally on both sides to get the 2 kb sequence. For interval sequences already larger than 2 kb, the 

script trimmed the isolated sequences equally on both sides to get 2 kb. These sets of sequences 

containing the interval sequences were labeled the Foreground. We also isolated 2 kb segments of 

background sequences from both of the downstream (3‟) and upstream (5‟) sides of the foreground 

sequences, and these were labeled Background 1 and Background 2, respectively. 

 

 

Figure9: Sequence Extraction of three regions a foreground and two backgrounds based on the 

interval sequence (green colored region). 

A sequence of a length of 3300 kb (-3000 kb upstream and +300 kb downstream), corresponding to 

three sets of genes based on induction patterns, are retrieved using a sequence fetch tool called 

Discern [38], developed by the UITS at IUPUI, and the output is parsed using Perl code (Appendix 

B) to obtain the sequences in FASTA format (that is used for downstream analysis in MEME). 
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3.4  REPEAT MASKER 

The regulatory sequences of the species Mus musculus include repeats in the regions that can share 

the same properties of motifs and hence can show up false positive in the identification of the 

regulatory modules. To avoid this, we masked the repeats in the obtained sequences by using a tool 

called “Repeat Masker” [39].  

3.5  de novo MOTIF DISCOVERY 

The de novo motif discovery is done using an online tool called MEME (Multiple Expectation 

Maximization for Motif Elicitation). MEME is based on an expectation-maximization motif search 

algorithm to discover motifs in a group of related DNA sequences. The identified motifs are 

represented as position probability matrices that describe the probability of each possible letter at 

each position in the pattern. MEME prediction results provide biologically meaningful motifs that are 

selected based on the information content, or the measure of motif strength in terms of conserved a 

position (i.e., the more conserved a position is and the rarer the conserved letters, the higher the 

information content is), and the number of occurrences for that motif [40]. 

In this work, we have used MEME to do a de novo motif search on the three sets of temporal 

induction pattern genes (no induction, transient, and sustained), and we also performed a location 

analysis of STAT4 sites with respect to the two potential motifs NF-κB and PPAR-γ/RXR sites 

identified by Good et al. from their MEME analysis. 
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Figure 10: WebLogo representations from MEME analysis, where motif 2 is STAT4 and motif4 is 

NF-kB and motif 5 is PPARγ- RXR [23] 

 

3.6  DNA MOTIF COMPARISON 

The potential de-novo motifs identified from MEME are compared against many pre-existing motif 

databases to check for similar motifs using a web server called STAMP [41]. It queries the input of de 

novo motifs against databases of known motifs; the input motifs are aligned against the chosen 

database from a list. The results thus obtained give the multiple alignments of the input motifs (when 

two or more motifs are provided in the input), a similarity tree (when three or more motifs are 

provided in the input), and a ranked list of matches in the chosen dataset for each input motif [41].  
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3.7  GENE ONTOLOGY ANALYSIS 

We used the GOstat tool to classify genes containing various CRMs into GO categories. GOstat is a 

gene ontology-based tool that is used to annotate and analyze the function of a list of genes [42].  The 

list of mapped genes obtained after filtering based on the threshold of the 500 bases‟ distance cut-off 

between NF-κB and PPAR-γ/RXR motifs and STAT4 was submitted to the GOstat tool. Sequentially, 

the results in the form of molecular function and biological process annotations were obtained for the 

submitted gene lists with a corresponding p-value (with a cut off of 0.1). 

 

Figure 11: Work flow describing the steps involved in motif prediction analysis. This consists of two 

analysis a) de novo motif analysis and b) location analysis of potential motif with STAT4  
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3.8  CRM (CIS-REGULATORY MODULE) PREDICTION 

The CRM analysis was done using a tool called MotifScanner [34]. MotifScanner is from the 

Toucan2 suite that analyzes regulatory and co-regulatory sequences. The PWMs (position weight 

matrices) serve as inputs in the TRANSFAC format. The sequences of the genes were given in a 

FASTA format while the test sequences were run against a species-specific background model (Mus 

musculus in our case). The tool locates motifs in the input sequences and calculates their 

corresponding scores (based on the probabilistic estimation of the number of hits). It displays the 

consensus of the enriched motifs in the sequences and also the strand on which they are present. 

 

Figure 12: Work flow describing the steps involved in potential CRM prediction analysis. This 

analysis is done with both small data set and whole interval sequence to identify potential CRM. 
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3.9  MAPPING OF ChIP-on-chip AND ChIP-Seq DATA 

The STAT4 ChIP-seq data was mapped with STAT4 ChIP-on-chip data using Perl codes (Appendix 

C). The concept behind the mapping is to identify the STAT4 ChIP-seq tags that are located in a 

particular STAT4 ChIP-on-chip interval sequence range. Using the coordinates of interval sequence, 

the STAT4 ChIP-seq tags corresponding to each interval sequences are retrieved. 

The interval regions pertaining to the ChIP-on-chip data has a small coverage area (between 7.5 kb 

upstream to 2.5 kb downstream to the TSS) whereas the tags pertaining to ChIP-seq data covers the 

entire mouse genome. The length of interval sequence varies from 204 bases to 4710 bases, whereas 

the length of ChIP-seq tags is only 200 bases. Among 3542 STAT4 ChIP-seq tags, only 553 ChIP-seq 

tags were mapped to 192 unique STAT4 ChIP-on-chip interval ids, whereas there were 2984 STAT4 

ChIP-seq data that were not mapped or did not lie in the STAT4 ChIP-on-chip interval range. 

3.10  COLOCALIZATION OF METHYLATION PATTERNS 

The CRM prediction analysis predicted the potential STAT4 CRM that can play a potential role in 

Th1 cell development (in our case the CRM identified is STAT4-PPAR-γ-RXR CRM). The common 

interval ids that carry both STAT4 and PPARγ-RXR sites are taken, and these are mapped to their 

corresponding genes using the database. The coordinates of these genes are then collected from the 

UCSC genome browser, and subsequently, these coordinates are modified based on the length of the 

interval sequence. Furthermore, 2000 bp upstream and downstream were then added to these 

modified coordinates, thus forming three regions: one foreground where our region of interest lies 

and two backgrounds for validation purposes. 
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In co-localization analysis, we mapped the STAT4 ChIP-seq histone methylation data (K4, k27 and 

k36) to the three regions: the foreground and two backgrounds. This analysis provides us the 

information of high histone methylation patterns expressed in the three regions by obtaining the 

normalized tag counts [43]. 

 

Figure 13: Work flow describing the steps involved in colocalization of methylation patterns. 
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3.11  CONSERVATION OF THE POTENTIAL CRM SET 

The potential genes shortlisted for the colocalization analysis were also studied for the conservation 

of the STAT4-PPARγ-RXR CRM. For determining the conservation, we used a web server called 

ECR browser [44]. The organism name (in our case, Mus musculus) and the chromosome region are 

given as inputs. This gives highly conserved regions among a number of organisms and details, like 

the sequences of other organisms (such as chickens, dogs, human build 19, chimps, etc.), length, 

mapping regions with other organisms, and so forth. All these regions can be viewed in separate pop-

up windows, which provide links to check the conserved transcription factor binding site (TFBS) 

regions in the area of interest.  

The conserved TFBS regions are identified by a tool called rVista [45] from the ECR browser tool 

suite. The input parameters include selecting a biological species (in our case we selected vertebrates) 

and then setting the matrix similarity to a predefined value of 0.75, which is to ensure that it will map 

the matrix if it finds 75 similar with the input motifs. The output further enables us to identify the 

number of STAT4 and PPARγ-RXR TFBs of our input species (Mus musculus) and other organisms 

that displayed conservation regions. 
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Figure 14: Work flow describing the steps involved in conservation analysis performed of the genes 

corresponding to potential CRM. 
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CHAPTER FOUR: RESULTS 

4.1  de novo MOTIF ANALYSIS 

The de novo motif analysis performed on the two temporal induction pattern data sets, transient and 

sustained (Figure 15 gives a graphical representation of the binding intensity these genes), used 

MEME and identified few promising de novo motifs that were extracted using automated codes. The 

MEME identifies a set of 30 de novo motifs with their lengths ranging from 6 to 15. These motifs 

were further ranked based on their E-values and information contents.  According to the results, a few 

potential de novo motifs in each of the temporal pattern induction sets (sustained and transient) were 

identified, as shown in Table 1. 

 

Figure 15: The four sets of genes based on the temporal induction patterns that are plotted based on 

their peak binding intensities. 
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Table1.a: Potential de novo motif for the sustained gene set  

 

 

T

a

b

l 

  

Table1.b: Potential de novo motif for the transient gene set. 

 

In the transient gene set, motifs 3, 5, 6, and 8 were identified as potential de novo motifs, whereas in 

the sustained gene set we identified motifs 3, 4, and 5 as potential motifs. After shortlisting the 

potential de novo motifs from the two gene sets, the next step was to annotate them. STAMP was 

used to annotate these potential de novo motifs. The PWMs (position weight matrices) of these motifs 

were parsed out from the MEME result file and were given as inputs to the STAMP tool that 

annotated the motifs of the two gene datasets, as below: 

De novo 

Motif 

Motif Width No. of Sites (out of 12 

genes) 

E-Value Information 

Content(bits) 

Motif 3 15 11 4.7 e
-003

 24.7 

Motif 4 15 12 2.2e
-001

 23.8 

Motif5 11 12 6.0e
+000

 17.7 

de novo Motif Motif 

Width 

No. of Sites ( out of 

10 genes) 

E-Value Information Content(bits) 

Motif 3 15 10 3.1e
-002

 21.0 

Motif 5 15 5 2.0e
+002

 26.1 

Motif6 11 9 3.0e
+003

 18.4 

Motif8 11 10 9.7e
+003

 16.8 
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Figure 16: Annotation of potential de novo motifs from MEME identified using STAMP a) for the 

sustained gene set b) for the transient gene set. 

 

4.2  LOCATION ANALYSIS OF STAT4 CRMS WITH NF-ΚB OR PPARΓ/RXR SITES 

In our earlier work on the ChIP-on-chip data [23], two de novo motifs were identified in the 1111 

STAT4 interval sequences using MEME, an expectation-maximization motif search algorithm [40] . 

Upon a JASPAR database [30] analysis, these two motifs were characterized as being similar to the 

NF-κB and PPARγ/RXR sites [23]. The location distance of either of these sites from the STAT4 site 

was calculated, and a manual filter of an absolute distance of ≤ 500 was employed to restrict the 
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interval sequences carrying potential STAT4 CRMs. This gave us a list of interval sequences with the 

NF-κB or PPARγ/RXR binding site in close proximity to STAT4 in the sequence (Table 2). CRM 

prediction algorithms have focused on a spacing threshold of 200 bases for the relevant TFBs located 

together [46], and hence our approach, albeit less stringent, should find relevant CRMs. In order to 

look for biological relevance in the predicted sequences and CRMs, we mapped the interval 

sequences to their respective target genes. Table 2 shows a partial list of interval sequences that carry 

the PPARγ/RXR site, their corresponding target genes, distance from the STAT4 site, and their peak 

binding intensity. The binding intensities do not seem to have any correlation to the spacing distance 

between the two TFBs in the analyzed interval sequences. 

Table 2: Location distance analysis of STAT4 CRMs with PPARγ/RXR site (partial list) 

Interval Length Start Distance 

from STAT4 

abs 

value 

Genes Peak 

Intensities
a
 

IL12::1::2782 396 175 44 44 Gng8,Ptgir 7.510 

IL12::1::2532 632 185 -377 377 Centa1 4.756 

IL12::1::2463 523 307 70 70 Cdc7 9.523 

IL12::1::2173 518 97 -195 195 Rod1 4.257 

IL12::1::1998 994 933 468 468 Ccnl1 4.765 

IL12::1::2615 3279 2024 494 494 Gimap1,Gimap5 8.834 

IL12::1::1296 1278 496 321 321 Mina,Gabrr3 8.918 

 a - The peak intensities are taken from the ChIP-on-chip data [23] 
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4.3 GO ANALYSIS 

Next, we mapped the lists of genes corresponding to the CRM-carrying interval sequences onto GO 

molecular function and biological process annotations using the GOstat tool [42]. As shown in Tables 

3.A and 3.B for the PPAR-γ-STAT4 CRM genes, a number of relevant categories, specifically with 

respect to immune cell development such as the molecular function, tumor necrosis factor (TNF) 

super family binding (condensed Table 3.B), the biological process, and lymphoid organ development 

(condensed Table 3.A), were significantly enriched in the input gene set compared to a mouse 

genome background. Some interesting genes with potential STAT4 CRMs were identified during the 

location analysis process, such as Mina and the Ltb-Tnf-Lta complex (Table 2), which may play a 

putative role in activating the STAT4 pathway for development of Th1 cells [47-48], and at least in 

the case of the latter gene complex, the GO analysis (Table 3.A, Table 3.B) indicated enrichment in 

our data set. 

Table 3.A: GOStat Biological process. This is the result for PPARγ-Stat4 CRM associated genes 

obtained from Location analysis (partial list) 

Best Gos GO TERM Genes Count Total P-value 

GO:0006334 Nucleosome 

assembly 

hist1h3b hist1h1c hist1h2bb 

hist1h3c hist1h2ab 

5 94 0.0105 

GO:0065004 Protein-DNA 

complex assembly 

hist1h3b hist1h1c hist1h2bb 

hist1h3c hist1h2ab 

5 120 0.0105 

GO:0006333 Lymphoid organ 

development  

hist1h3b hist1h1c hist1h2bb 

hist1h3c hist1h2ab 

5 131 0.0132 

GO:0032602 Chemokine 

production 

sigirr slc37a4 2 8 0.0264 
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Table 3.B: GOStat Molecular function. This is the result for PPARγ-Stat4 CRM associated genes 

obtained from Location analysis (partial list) 

Best Gos GO TERM Genes Count Total P-value 

GO:0004743 Pyruvate kinase activity pkm2  1 2 0.0839 

GO:0043120 Tumor necrosis factor binding tnfrsf4 1 4 0.0839 

GO:0004594 Pantothenate kinase activity pank2 1 4 0.0839 

GO:0005031 Tumor necrosis factor receptor activity tnfrsf4 1 4 0.0839 

GO:0003950 NAD+ ADP-ribosyltransferase activity parp6  1 12 0.1 

GO:0005026 Transforming growth factor beta receptor 

activity, type II 

amhr2  1 1 0.0839 

 

4.4 CRM ANALYSIS 

A cis-regulatory module analysis was performed on the whole STAT4 binding data set from the 

ChIP-on-chip experiment. As described earlier, the interval sequences of the 3396 foreground and the 

corresponding two backgrounds (Background 1 and Background 2) were compared in this analysis. 

For this, a tool called MotifScanner from the Toucan2 suite [34] was used to look for TFBs located in 

the foreground and background sequences. The position weight matrix (PWM) of the motifs NF-κB, 

PPARγ/RXR, Tbox, C-jun/Ap1, HLX, Runx, and STAT4 were inputted to scan for their locations on 

the input sequences. The outputs also included scores based on the probabilistic estimation of the 

number of TFB hits. The motifs, apart from the three previously MEME-identified motifs, were 

included since they also played a potential role in Th1 cell development. For example, the Tbox motif 

was included in this analysis since the corresponding TF, viz., and T-bet have been implicated as the 

master regulators of IL12-mediated Th1 development [12], and the transcriptional regulatory roles of 
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STAT4 vs. T-bet in this biological process are not completely delineated [10]. Table 4 shows a 

sample output from the Foreground data indicating the locations (start and end positions and strand), 

enrichment scores for the STAT4, and three potential CRM motifs. For validation (next section), we 

also undertook another similar CRM analysis (using the same PWMs) on only one set of 3396 

random sequences from the mouse genome generated with the RSAT tool [49]. 

Table 4: MotifScanner output corresponding to the foreground region (partial list) .The output from 

motif scanner gives the start of TFBS located on the input region along with strand and the probabilistic 

score. 

INTERVAL_ID START END SCORE STRAND TFBS 

IL12:1:0 1148 1153 227.995 + id "RUNX"; site "TGAGGT";  

IL12:1:0 1012 1017 2345.17 - id "RUNX"; site "TGTGGT";  

IL12:1:0 1709 1718 161.251 - id "NFkAPPAB"; site 

"GGAATATTCA";  

IL12:1:0 1251 1257 1292.34 + id "HLX"; site "ATAATTG";  

IL12:1:0 780 786 1755.22 - id "HLX"; site "TTAATTG";  

IL12:1:0 52 58 286.024 + id "Tbox"; site "CAAGGTG";  

IL12:1:0 1934 1940 3344.32 - id "Tbox"; site "GTAGGTG";  

IL12:1:1 1374 1379 2345.17 + id "RUNX"; site "TGTGGT";  

IL12:1:1 524 529 2345.17 - id "RUNX"; site "TGTGGT";  

 

As expected, MotifScanner predicted a number of hits on all three sets of sequences for the four 

motifs. In order to control for false positives, we filtered MotifScanner outputs from all three data sets 

for the presence of STAT4 and the second motif (NF-κB, PPARγ/RXR, Tbox, C-jun/Ap1, HLX, or 
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Runx), as shown in Figure 14 for the Foreground sequences. Of the foreground sequences that carried 

the second motif, only about one third of them contained STAT4. This was also the case with the two 

background sequences, except that the frequencies of occurrence for the various pairs of motifs were 

consistently smaller compared to the foreground (14 – 25). We statistically validated only the interval 

sequences that were filtered as shown in Fig. 15 (next section). The number of predicted STAT4 sites 

in the foreground set (=2615) is less than what is expected, based on the MEME predictions for the 

whole interval sequences set (3396); this is probably due to the MotifScanner default parameters 

being more stringent than those in MEME. 

 

Figure 17: Venn diagram representation. Showing the overlap and unique interval ids between PPAR-

γ -Stat4 CRM in the three region foreground and two backgrounds. 
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4.5  STATISTICAL VALIDATION OF THE PREDICTED POTENTIAL CRM SETS 

We applied a statistical approach for validating the enrichment of the three CRM pairs, namely NF-

κB-STAT4, PPAR-STAT4, and Tbox-STAT4 in the foreground compared to the two backgrounds. 

A binomial p-value validation is done on the MotifScanner results from the foreground and the two 

backgrounds. Essentially, the observed frequency of motif hits is calculated for the foreground and 

compared to those of the background sequences. A Fisher‟s exact T-test was done (Table 5), and p- 

value was calculated using a p-value calculator. The observed count of filtered interval sequences 

carrying CRM pairs (Fig 15, highlighted area) is a number of binding sites of the test and a number of 

no binding sites, which is the total number of interval sequences (3380) minus the number of binding 

sites of the test. Similarly the same values are calculated for the random set of 3380 sequences 

generated by RSAT and filled up in the control column in Table 5. Thus, the Fisher‟s method is used 

to calculate the T-test, and the value is used in a p-value calculator to get the p-value. 

 

Figure 18: The highlighted region from this Venn diagram is taken as the #successes in p-value 

calculation. This region is the common interval region shared by PPAR-STAT4 CRM. 
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Table 5: Format of Fisher‟s T-Test calculation for PPAR-STAT4 CRM from above Venn diagram 

followed by p-value calculation using the p-value calculator 

PPAR-STAT4 

CRM 

Test control   P-value 

Binding site 139 76 215  

No Binding site 3241 3304 6545 0.0001 

 3380 3380 6760  

 

Most of the CRM pairs show statistical significance in the observed enrichment seen in the 

foreground sequence set compared to the two neighboring backgrounds (Tables 6). There are some 

exceptions wherein one of the two neighboring backgrounds (Background 1 or Background 2) 

showed a lower p-value compared to the Foreground set (like in the case of NFK_STAT4, where the 

background is enriched compared to the foreground). This may be due to a genuine enrichment of this 

CRM pair in the downstream sequences compared to the original ChIP-on-chip interval sequences 

and cannot be ruled out as a biological exception. 

Table 6: P-value validation for CRM enrichment in Foreground sequences vs. the two Background 

sequences for the whole 3396 ChIP-on-chip interval sequences. 

CRMs Background1 Foreground Background2 

Cjun_STAT4 0.0001 0.4502 0.0001 

HLX_STAT4 0.0001 0.0001 0.0001 

NFK_STAT4 0.0001 0.0105 0.0001 

Runx_STAT4 0.0001 0.0001 0.0001 

T-box_STAT4 0.0001 0.0001 0.0001 

Pparg_STAT4 0.1859 0.0001  0.0569 
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Table 7: P-value validation for CRM enrichment in Small dataset (Sustained and Transient gene list) 

pertaining to regions of 2100 base and 1100 base. 

 Sustained Transient 

 -1000 to +100 -2000 to +100 -1000 to +100 -2000 to +100 

Cjun_Stat4 0.0848 0.1859 0.0001 0.0001 

Hlx_Stat4 0.3144 0.2967 0.0063 0.0001 

NFK_Stat4 0.8032  0.2681 0.0309 0.0001 

Runx_Stat4  0.0985 0.2967 0.0062 0.0001 

Tbox_Stat4 0.3323 0.2488 0.1527 0.0538 

Pparg_Stat4 0.728 0.5431  0.6515 0.2598 

 

4.6  MAPPING ChIP-on-chip AND ChIP-Seq DATA 

The STAT4 ChIP-seq data was mapped with STAT4 ChIP-on-chip (range covering the whole mouse 

genome) data using Perl codes (Appendix C). The interval region pertaining to the ChIP-on-chip data 

has a small coverage area (between 7.5 kb upstream to 2.5 kb downstream to the TSS) when 

compared to the ChIP-seq data that covers the entire mouse genome. The interval length of the ChIP-

on-chip data varies from 204 bases to 4710 bases, whereas it is 200 bases throughout the ChIP-seq 

data. From Table 8, we can get a clear idea of how the ChIP-seq reads 200 bases; each of which are 

covered in a single interval sequence region. For example, (from Table 8) we can see that around four 

ChIP-seq reads are covered in a single interval (IL12::1::22) of a sequence of a length of 1146 bases. 

Similarly, each ChIP-on-chip interval sequence may cover two or more ChIP-seq reads corresponding 

to their length.  
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Table 8: Mapping STAT4 ChIP-Seq data with STAT- ChIP-on-chip data. 

 

Chromosome ChIP-seq 

Start 

ChIP-seq 

End 

Tag 

Count 

ChIP-on-chip 

Start 

ChIP-on-

chip End 

Interval_id 

chr1  37947000 37947199 0.9 37946571  37947717  IL12::1::22 

chr1  37947200  37947399  1.7 37946571  37947717 IL12::1::22 

chr1  37947400 37947599 1.3 37946571  37947717 IL12::1::22 

chr1  37947600 37947799 0.9 37946571  37947717 IL12::1::22 

chr1  38054000  38054199 1.3 38054134  38054483  IL12::1::23 

chr1  38054400 38054599 0.9 38054134  38054483  IL12::1::23 

 

 
 

Figure 19: Pie chart displaying the distribution of ChIP-Seq data. 553 ChIP-Seq reads where found in 

the promoter region that corresponded to 192 ChIP-on-chip interval regions. 

The results obtained can be summarized as: only 553 STAT4 ChIP-seq data mapped to the unique 

192 STAT4 ChIP-on-chip interval ids, whereas there was 2984 STAT4 ChIP-seq data that was not 

mapped or did not lie in the STAT4 ChIP-on-chip interval range. 
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4.7  COLOCALIZATION OF STAT4 SITES WITH METHYLATION PATTERNS 

 

The results from the statistical validation analysis predict the potential STAT4 CRM as STAT4- 

PPAR-RXR. For performing the colocalization STAT4 sites with H3K4me and H3K27me 

methylation patterns, the common interval ids between STAT4 and PPAR-RXR from the Toucan 

outputs are taken and mapped with the 192 interval sequences that were previously mapped with the 

STAT4 ChIP-seq data. Thus, the list of common interval ids was reduced from 139 interval ids to 12 

interval ids that have corresponding ChIP-seq data. Then these 12 shortlisted interval ids were 

mapped to their corresponding genes using the database, giving around 18 genes. The coordinates of 

these mapped genes are collected from the UCSC genome browser, and the coordinates are modified 

based on their length of the interval sequence. The same concept was applied to retrieve the 

foreground and the two background sequences for Toucan analysis. After the modification of the 

coordinates based on the formula 2000-l/2 (where l represents the length of the interval sequence 

corresponding to the gene) and then 2000 bp upstream and downstream to these modified coordinates 

thus forming three regions one foreground where our region of interest lies and two background for 

validation purpose.  

In the colocalization analysis, we mapped the STAT4 ChIP-seq histone methylation data (K4, k27 

and k36) to the above three regions: a foreground and two backgrounds. This is done using Perl codes 

(Appendix D) by employing the same strategy that we used in ChIP-on-chip and ChIP-seq mapping. 

This mapping is also based on their coordinates. All the tag counts corresponding to the ChIP-seq 

data of each gene were summed to get the normalized tag counts pertaining to each gene. The 

normalized tag count of each gene for the three histone methylation patterns corresponding to the 

three regions are tabulated (as shown in the Table 9).   
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Table 9: H3K4me and H3K27me histone methylation patterns. Corresponding to the three regions of a 

foreground and two backgrounds for the 18 shortlisted genes. 

    K4 K27 

Genes Interval_id Peak 

Intensities 

Normalized 

Tag 

BG1 FG BG2 BG1 FG BG2 

Riok1 IL12::1::886  23.83 4.35 3.8 24.4 12.3 - - - 

Ccnl1 IL12::1::1998  5.38 1.70 16 13.6 4 3 - 3.2 

Gimap1 IL12::1::2615 8.83 1.66 18.6 40.8 2.8 2.7 3 - 

Gimap5 IL12::1::2615 8.83 1.66 18.6 40.8 2.8 2.7 3 - 

Ublcp1 IL12::1::440 4.86 0.90 1.6 17 16.8 - 2.1 3.7 

Uqcrc2 IL12::1::2939 13.62 1.57 8.1 29.1 7.7 - - - 

Ccnt2 IL12::1::111 11.81 1.47 0.7 19.5 22.9 - - - 

Acmsd IL12::1::111 11.81 1.47 0.7 19.5 22.9 - - - 

Lfng IL12::1::2539 5.28 1.60 18 20.8 5.1 - - - 

Ttyh3 IL12::1::2539 5.28 1.60 18 17.4 5.1 - - - 

Pkm2 IL12::1::3228 7.00 1.60 13.5 25.8 24.6 - 2.7 - 

Parp6 IL12::1::3228 7.00 1.60 13.5 25.8 24.6 - 2.7 - 

Whsc2 IL12::1::2386 4.99 1.60 7.9 26.7 - - - - 

Pdcd4 IL12::1::1670 13.69 1.60 3.8 17.5 9 1.7 - - 

Whsc1l1 IL12::1::3019 11.33 1.43 4.5 11.6 21.8 1.7 - - 

Letm2 IL12::1::3019 11.33 1.43 4.5 11.6 21.8 1.7 - - 

Zfp36 IL12::1::2812 9.01 1.70 21.8 26.8 26.1 - - - 

Plekhg2 IL12::1::2812 9.01 1.70 21.8 26.8 26.1 - - - 
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The above normalized tags, corresponding to the three regions identifying the foreground that is the 

region of interest, shows a higher K4 methylation pattern compared to the two backgrounds. 

Moreover, the K27 methylation patterns were seen sparsely in the foreground when compared to the 

two backgrounds.  

4.8  CONSERVATION ANALYSIS 

The 18 genes in the subset from the STAT4 ChIP-on-chip and ChIP-seq mapping corresponding to 

the PPAR-STAT4 CRM were analyzed for conservation of PPAR-STAT4 CRM over other spices 

compared to the mouse. The MEME analysis conducted by Good et al. had identified motif 5 as 

PPAR/RXR [23]. We collected those interval sequences and mapped them to their genes, using the 

database we constructed that mapped to around 208 genes. In order to make our experiment more 

precise, the 18 PPAR--STAT4 CRM relevant genes, which were shortlisted in the previous step, 

were mapped with these 208 genes from MEME analysis to find the common genes between the two 

sets, and the number of common genes was found to be 11 genes. Therefore, these 11 genes where 

used for conservation analysis.  

 



 

45 

 

 

Figure 20: Venn diagram displaying the number of common genes between the genes identified in 

MEME analysis and the 18 subset of genes obtained from the previous analysis. The highlighted 

region represent that these two sets had 11 genes common between them.  

Among the 11 genes, only 5 of them showed high conservation. These genes showed conservation 

patterns at three different regions of the 5 genes. Based on their characters, they are intergenic (a 

stretch of a DNA region located between clusters of genes that contain few or no genes), intronic (a 

stretch of a DNA region within a gene that cannot translate into proteins), and transposons and 

repeats (sets of repeats that can be seen at different positions within a genome of a cell). Out of the 5 

genes that showed high conservation, genes that showed conservation in the intergenic region were 

Riok1 and Pdcd4 while the genes that had conservation patterns in the intronic region were Whsc1l1 

and Letm2. The genes that had conservation patterns in the transposons and repeats regions were 

Ublcp1. The organisms that showed high conservations of PPAR-STAT4 CRM (apart from mice) 

were humans, rhesus monkeys, and dogs. 
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Table 10: Percentage identity of the genomic region of the 5 genes corresponding to various 

mammalian species compared with the mouse at three regions: intergenic, intronic, and transposon & 

repeats.  

Genes Region  Identity with Mouse 

  Human DOG Rhesus 

Riok1 Intergenic 70.23 - 67.83 

Pdcd4 Intergenic 69.00 - 69.70 

Whsc1l1 Intronic 71.70 71.40 - 

Letm2 Intronic 68.95 - 71.95 

Ublcp1 Transposon and repeats 70.60 77.60 77.90 

 

Table10 gives a brief idea of the conservation found across a few mammalian species, such as humans, 

dogs, and rhesus monkeys, corresponding to an identical region in mice at various locations of the 

genes. For example, in the case of the gene, Riok1, located on chromosome 13 ranging from 37552898 

- 37554138 in the mouse, it corresponds to a similar region in humans located on chromosome 6 

ranging from 6704809-6707492 regions with an identity of 70.23%.   

 

 

 

 



 

47 

 

Table 11: Frequency of TFBS in various species in comparison to mouse.  This table gives the total 

number of the TFBS and the number of PPARγ and STAT4 TFBS separately. 

   No. of Our 

TFB's 

  No. of Our 

TFB's 

Genes Species No. of our 

TFBS 

Pparγ STAT4 Species No. of our 

TFBS 

Pparγ STAT4 

Riok1 Mouse 

21 3 13 Human 28 7 15 

   Dog    

28 3 16 Rhesus 33 7 17 

Pdcd4 Mouse 

19 4 11 Human 33 1 18 

   Dog    

25 4 15 Rhesus 37 2 21 

Whsc1l1 Mouse 

102 7 71 Human 117 7 71 

51 4 31 Dog 56 2 38 

   Rhesus    

Letm2 Mouse 

21 3 9 Human 28 3 16 

   Dog    

66 1 45 Rhesus 82 5 57 

Ublcp1 Mouse 

21 0 19 Human 15 0 12 

48 2 39 Dog 57 4 41 

48 2 38 Rhesus 46 1 36 
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The above table (Table 11) gives the distribution of TFBs (STAT4 and Pparγ) of mice to their 

corresponding similar regions in other mammalian species. For instance, the gene Riok1 has a 

percentage distribution of our TFBs of about 14% and 62% (PPARγ and STAT4TFBs) corresponding 

to the mouse when compared to the 25% and 54% (PPARγ and STAT4TFBs) of TFBs distribution in 

humans. Hence, the conservation analysis results show that out of 11 genes that were shortlisted for 

biological validation purposes, only 5 genes showed high conservation at different gene locations 

(intergenic, intronic, and repeats). Also, the percentage distribution of our two TFBs (STAT4 and 

Pparγ) of these 5 genes clearly suggests that the frequency of occurrence of our two TFBs seems to 

have some biological relevance that can be validated with further experiments. 
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4.9 WET LAB VALIDATION 

A wet lab validation was performed on the 5 genes that showed conservation from the above analysis 

to check for IL-12 induced stimulation. The experiment was also performed with two PPARγ 

agonists, viz. AZPC and ciglitazoneto to check for stimulation by PPAR. The results were collected 

at a time period of 4 hours and 18 hours. Furin was used as a positive control. Out of the five genes 

Riok1 exhibited IL-12 induced stimulation whereas the gene Pdcd4 exhibited stimulation with 

PPARγ agonist. 

 

Figure 21: Graphs describing the relative expression of conserved genes that were checked for 

stimulation when induced by IL-12 and the two PPARγ agonists. 
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CHAPTER FIVE: DISCUSSION 

STAT4 is one of the critical transcriptional regulators along with T-bet (master regulator) in the 

adaptive immune response [13]. Although it is well characterized as a signaling molecule in Th1 cell 

development, its transcriptional regulatory role is poorly understood. The cytokine IL-12 stimulates 

Th1 cell differentiation, which is mediated by the STAT4 molecule at the cell surface (Figure 4) [50-

51]. This signal is transformed into the nucleus for the transcriptional activity of a number of genes 

controlled by STAT4 binding to their regulatory regions. In this study, we have utilized STAT4-

specific ChIP-on-chip data to identify the STAT4 transcriptional targets active in Th1 cell 

development by focusing on sets of CRMs located on these genes, and this CRM discovery may 

identify the nodes and edges in a TRN central to this biological process. 

Motif prediction analysis 

In the previous work by Good et al., the STAT4-dependent genes were categorized into three groups 

(based on their expression patterns) as no induction, transient, and sustained. The MEME analysis 

was performed on the sustained and transient categories that identified a number of potential de novo 

motifs as 3 and 4 (Table1.a and Table1.b), corresponding to the two categories respectively. These 

motifs were shortlisted based on the low E-values and high information content. The STAMP 

annotation was performed in order to annotate these potential motifs (Figure12). For example, the 

motif 6 corresponding to the transient category was annotated as PPARγ-RXRA, which plays an 

essential role in modulating the JAK/STAT pathway that in turn modulates the differentiation of Th1 

cells [29]. 

 Good et al. in his work identified the NF-κB and PPARγ-RXR motifs as enriched in their interval 
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sequences from the STAT4-specific ChIP-on-chip data [23]. The location analysis results identified 

and characterized the NF-κB or PPARγ/RX interval sequences and their corresponding genes that 

were present within a separation distance of 500 bases from the STAT4 site (Table 2). The CRM is 

defined as two or more TF binding motifs that are present in a fairly small region of the genome 

(hundreds of nucleotides), and hence the reason for setting up a filter of 500 bases is to likely identify 

biologically meaningful CRMs. A number of genes, such as Mina, GIMAP1, and GIMAP5, which 

were implicated in immune cell development, were observed to belong to the filtered class of genes 

with PPARγ/RXR-Stat4 CRM (Table 2). For instance, Mina (a carrier of the NF-κB and PPARγ/RXR 

motifs) represses the IL-4 promoter and thereby depresses the development of T helper 2 cells [47], 

which is another lineage that can differentiate from the pre-Th cell in competition with the Th1 cell . 

Hence, it is possible that our CRM discovery in Mina may be crucial for Th1 cell development. 

Similarly, genes like GIMAP1and GIMAP5 (that are closely related to each other in the GIMAP 

family) promote the Th1 cell lineage survival in the presence of IL-12 molecules [52]. Our analysis of 

these filtered genes shows immune development specific GO categories (Table 3.A and Table 3.B), 

providing more evidence for our CRM classifications. 

Cis-regulatory module analysis 

As a second way to approach CRM discovery, we have used the MotifScanner [34] tool to scan for 

the presence of TFBs in all the STAT4 ChIP-on-chip interval sequences. We isolated an equally-sized 

(2000 bases) foreground and two equally-sized background sequences from each of the interval 

sequences corresponding to in vivo STAT4 binding sites (foreground) and immediately downstream 

and upstream sequences (backgrounds), and these sequences were subjected to motif scanning (Table 

4). The rationale for this approach is to control false positives in the motif prediction. After scanning 
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the motifs NF-κB, PPARγ/RXR, Tbox, C-jun/Ap1, HLX, and Runx on all the STAT4-specific ChIP-

on-chip interval sequences and the sustained and transient sets of genes with 2100 bases and 1100 

bases, interval sequences were filtered for with pairs of motifs (CRMs) corresponding to the STAT4 

and the other motifs. This determined enrichment for STAT4 CRMs in the foreground set when 

compared to the background sets (Figure 13). We have performed a more stringent p–value statistical 

validation of these enrichment results, confirming the observed enrichment of the STAT4 CRMs in 

the whole STAT4 interval sequence (Table 6) and in the two small gene sets (sustained and transient) 

pertaining to a region length of 2100 bases and 1100 bases (Table7), using Fisher‟s T-test followed 

by p-value calculations. We performed a similar statistical validation by generating a random data set 

corresponding to the number of sequences in our small and whole data set using RSAT. Out of all the 

6 CRMs tested (excluding STAT4), the PPARγ/RXR-STAT4 pair showed the best enrichment in the 

foreground compared to the two backgrounds (Table 6), and the CRM pairs (like NF-κB-STAT4, C-

jun-STAT4, HLX-STAT4, and Tbox-STAT4) were found to be enriched in the transient and 

sustained gene sets  ( Table 7). 

Validation of PPARγ/RXR-STAT4 with biological relevance 

Although our CRM discovery needs to be experimentally validated in the lab, our prediction results 

from the de novo motif analysis experiment and the MotifScanner experiments clearly suggest that 

the predicted PPARγ/RXR-STAT4 CRM are important players in the transcriptional regulation of 

Th1 cell development. 

For the biological validation of this potential CRM discovered (PPARγ/RXR-STAT4 CRM), we 

performed a colocalization analysis using the STAT4-specific ChIP-seq and STAT4-specific ChIP-
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seq histone methylation data. The first step was to map the STAT4 ChIP-seq tags to the STAT4 

ChIP-on-chip interval sequences (Table 8). The number of ChIP-seq tags that were mapped to the 

ChIP-on-chip data was only 553; this is because the ChIP-on-chip covers only a promoter region of 

7.5 kb upstream to 2.5 kb downstream, whereas ChIP-seq covers the whole mouse genome (Figure 

15). The second step was to identity the common interval id between the identified 553 ChIP-seq and 

the interval ids of the PPARγ/RXR-STAT4 CRM from the motif scanner results, thus subset list had 

12 interval ids that corresponded to 18 genes (retrieved from the pre-constructed database). In the 

colocalization analysis we mapped the STAT4 ChIP-seq methylation patterns to the gene regions 

corresponding to the foreground and two background regions obtained in a similar fashion as we 

obtained the foreground and two background regions in the CRM analysis (Table 9).  Table 9 gives 

the H3K4me and H3k27me normalized tag count for each gene that shows that the H3k4me 

methylation patterns are high compared to the H3k27me methylation patterns.  Since the H3k4me 

patterns are higher, these genes show a positive response in the TRN (transcription regulatory 

network) involving the PPARγ/RXR-STAT4 CRM because the correlation between the H3k4me 

methylation and transcription process is positive, whereas the correlation between the H3k27me 

methylation and transcription process is negative [53]. 

Conservation analysis 

The number of genes corresponding to the PPARγ motif (Motif 5), from MEME analysis performed 

by Good et al., was around 208 genes [23]. For conservation analysis the common genes, between the 

MEME PPARγ genes and the 18 genes identified in the colocalization analysis corresponding to the  

PPARγ/RXR-STAT4 CRM, were considered (11 genes) (Figure 16). These 11 genes were analyzed 

for the conservation of the PPARγ/RXR-STAT4 CRM over different species like humans, dogs, 
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rhesus monkeys, and mice. The conservation patterns were mainly identified in three regions: 

intergenic, intronic, and transposons and repeats. Out of the 11 genes only 5 genes were observed to 

have a high conservation of our PPARγ/RXR-STAT4 CRM (Table 10). The percentage of the 

occurrence of our PPARγ/RXR-STAT4 CRM was tabulated between the mouse and other 

conservations showing other species (Table 11). The result from conservation analysis of 

PPARγ/RXR-STAT4 CRM of the genes that showed biological significance in the colocalization 

analysis clearly depicts the involvement of the PPARγ/RXR-STAT4 CRM in Th1 cell development at 

the transcription level.   

Limitations 

The analysis we performed includes certain limitations that needs to be taken into account. The first 

limitation applies to the data used in this project. The ChIP-on-chip data and ChIP-seq data where 

generated at different experimental conditions and also the ChIP-on-chip interval region was over 

lifted from mm8 mouse build to mm9 mouse build using overlift tool from UCSC . The second 

limitation was in the sequence retrieval step to obtain the foreground and the two background regions. 

The background regions might have encompassed other interval sequences that could have been the 

reason for some of the CRMs being enhanced in the backgrounds along with the foreground. The 

third limitation is that the information pertaining to the transcription factors (like PWMs) obtained 

from the transcription factor database may not have been annotated correctly, as per the recent 

update. Although the above limitations apply, the analysis performed was directed towards answering 

the research questions for the project.  
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CHAPTER 6: CONCLUSION 

This study employed a combination of bioinformatics and computational tools to understand the 

working of STAT4 in conjunction with the other potential motifs involved in Th1 cell development. 

The STAT4-specific ChIP-on-chip data generated in accordance with the TSS (transcription start site) 

was done so as to discover the CRMs located very closely to the TSS. These CRMs might play a 

pivotal role in Th1cell development.  The identification of several transcriptional regulatory motifs 

that may act in concert with the STAT4 binding site was the first step in determining the STAT4 

CRM that may play an essential role in the Th1 cell development. Also, the genes corresponding to 

the NF-κB and PPARγ/RXR sites were filtered based on their location of less than 500 bases from 

STAT4 sites. A novel finding was the identification of the gene, Mina, which could play a significant 

role in Th1 cell lineage development that was one gene in the filtered subset of genes. 

The study‟s outcome of the CRM discovery could be the initial step in decoding the transcriptional 

regulatory mechanisms in Th1 cell development, specifically the regulatory networks active here. The 

identification of PPARγ/RXR-STAT4 CRM as a potential CRM that may be significantly involved in 

Th1 cell development was provided with biological relevance using the colocalization and 

conservation analyses, thus giving a potential answer for our research question. 

The methodology implemented could be generalized for computational identification of novel 

transcription regulators in Th1 cell development and other biological systems. 
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APPENDICES 

Appendix A 

CODE FOR EXTRACTING SEQUENCE FROM MOUSE GENOME 

Perl code to extract the sequences for the foreground and two background regions 

#! /usr/bin/perl 

use strict; 

#use a hash to avoid retrieving the same IL* more than once 

my %ilIdents; 

#we need to be warned if the same chromosome is being loaded more than once 

my %chrNames; 

open(intervalFile, 'IL12_intervals.txt'); 

my $lastChrName = ''; 

my $chrSequence = ''; 

while (<intervalFile>) 

{ 

  #the regular expression is used to parse the line into 

  #the four pieces (that we're loading into the four variables below) 

  if (/^([^\t]+)\t(\d+)\t(\d+)\t(.+)$/) 

  { 

    # (four variables :-) 

    my $chrName   = $1; 

    my $intStart = $2; 
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    my $intEnd    = $3; 

    my $ilIdent   = $4; 

    if ($ilIdents{$ilIdent}) 

    { 

        #skip this line from the interval file (we've already extracted the interval) 

        next; 

    } 

    else 

    { 

        $ilIdents{$ilIdent} = 1; 

    } 

    if ($chrName ne $lastChrName) 

    { 

     print "Encountered new chromosome (".$chrName.").\n"; 

      #close the chr-specific output files for the previous chromosome (if needed) 

      if ($lastChrName ne '') 

      { 

        close (outFileL); 

        close (outFileC); 

        close (outFileR); 

      } 

      #read in the sequence of the current chromosome 

      print "Loading sequence for ".$chrName."...\n"; 
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      $chrSequence = ''; 

      open(chrSeqFile,'mouse-'.$chrName.'.fa'); 

      while(<chrSeqFile>) 

      { 

        if (!/^>/) 

        { 

          chomp; 

          $chrSequence .= $_; 

        } } 

      close (chrSeqFile); 

      print "Loaded sequence for ".$chrName.".\n"; 

      #open the output files for the left-flank, (padded?) center, and right-flank regions 

      open(leftOutFile,'>mouse-'.$chrName.'-left.fa'); 

      open(centerOutFile,'>mouse-'.$chrName.'-center.fa'); 

      open(rightOutFile,'>mouse-'.$chrName.'-right.fa'); 

      #move "last" to current 

      $lastChrName = $chrName; 

      if ($chrNames{$chrName}) 

      { 

        print chr(7)."WARNING - Reloaded a chromosome!\n"; 

      } 

      else 

      { 
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        $chrNames{$chrName} = 1; }} 

   #print "Determining interval start and end points for L/C/R...\n"; 

    # note:  [1,1] is of length 1, so length([i,j]) = j-i+1 

    my $intLength = $intEnd - $intStart + 1; 

    my $cIntStart = $intStart; 

    my $cIntEnd   = $intEnd; 

    if ($intLength < 2000) 

    { 

        my $intervalAdj = int((2000-$intLength)/2); 

        $cIntStart -= $intervalAdj; 

        $cIntEnd   += $intervalAdj; 

        $intLength = $cIntEnd - $cIntStart + 1; 

        $cIntEnd += ($intLength % 2); 

        $intLength = $cIntEnd - $cIntStart + 1; 

        # $intLength should now be 2000 

    }    #for a center [i, j], let left be [i-1999,i] and right be [j,j+1999] 

    my $lIntStart = $cIntStart - 1999; 

    my $lIntEnd   = $cIntStart; 

    my $rIntStart = $cIntEnd; 

    my $rIntEnd   = $cIntEnd + 1999; 

    #print "Determined interval start and end points for L/C/R.\n"; 

    #determined the interval endpoints, so 

    # write to the files (fasta header line and then sequence data) 
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    print leftOutFile '>'.$chrName. 

                      ' ['.$intStart.','.$intEnd.']-original '. 

                      ' ['.$lIntStart.','.$lIntEnd.']-left '.$ilIdent. 

                      “(length=2000)\n"; 

    print leftOutFile substr($chrSequence,$lIntStart,2000)."\n"; 

    print centerOutFile '>'.$chrName. 

                        ' ['.$intStart.','.$intEnd.']-original '. 

                        ' ['.$cIntStart.','.$cIntEnd.']-center '.$ilIdent. 

                        „(length='. $intLength.")\n"; 

    print centerOutFile substr ($chrSequence,$lIntStart,$intLength)."\n"; 

    print rightOutFile '>'.$chrName. 

                       ' ['.$intStart.','.$intEnd.']-original '. 

                       ' ['.$rIntStart.','.$rIntEnd.']-right '.$ilIdent. 

                       “(length=2000)\n"; 

    print rightOutFile substr ($chrSequence, $rIntStart, 2000)."\n"; 

    #we're done with this line from the interval file 

  }} 

if ($lastChrName ne '') 

{ 

    close(outFileL); 

    close(outFileC); 

    close(outFileR); 

} 
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close(intervalFile); 

Appendix B 

CODE FOR EXTRACTING THE SEQUENCE FROM DISCERN OUTPUT 

Perl code to parse the sequences from the Discern tool 

#! /usr/bin/perl 

use strict; 

use warnings; 

my $output="output.txt"; 

#Opening the html filw 

my $file = $ARGV[0]; 

open(FILE, $file) or die("Unable to open file"); 

open(OUTPUT, ">$output") or die("Unable to open file"); 

$i=0; 

while(<FILE>) 

{ 

my $line = $_; 

chop($line); 

#removing the unwanted text from the html file    

if($line=~s/Get sequences for gene names, UIDs, or specified regions//g || $line=~s/\(This software is 

currently in test status.\)//g ||  

$line=~s/All requests processed successfully.//g) 

{ 

 $line =~ s/(\<.*\>)//g; 

chomp($line); 
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} 

#parsing out the gene name with the FASTA identifier at the beginning of the name 

if($line=~s/.*\/(.*)\s\(UID.*/>$1/ || $line=~s/The\seSummary\srecord.*Gene\shumman\/(.*)\s\(.*/$1/g 

or $line=~s/Gene\sname.*//g) 

{ 

$i++; 

print OUTPUT "\n"; 

print OUTPUT "$line\n"; 

} 

else 

{ 

$line =~ s/(\<.*\>)//g; 

print OUTPUT "$line"; 

} 

} 

print OUTPUT "$i"; 
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Appendix C 

CODE FOR MAPPING ChIP-on-chip WITH ChIP-Seq DATA 

Perl code to map ChIP-seq data with the ChIP-on-chip data 

#! /usr/bin/perl 

$output="result.txt"; 

open(OUTPUT, ">$output") or die("Unable to open file"); 

#we need to be warned if the same chromosome is being loaded more than once 

# first open the ChIP-on-chip interval sequence file and take into an array 

# the second step will be opening the ChIP-seq tag file and taking it into an array  

# condition1: chromosome number ChIP-on-chip interval = chromosome number of ChIP-seq tags 

# condition 2: the start position of ChIP tag should be less than or equal to end position  

#condition 3: the stop position of the ChIP-seq tag should be greater than or  

open(ChIP_chip, "IL12-2-Interval.txt"); 

while (<ChIP_chip>) 

{ 

$line=$_; 

chomp($line); 

@interval=split(/\t/,"$line"); 

open(ChIP_seq, "S4WTTh1.txt"); 

while (<ChIP_seq>) 

{ 
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$line1=$_; 

chomp($line1); 

@chipseq=split(/\t/,"$line1"); 

if($interval[0] eq $chipseq[0]) 

{ 

if($chipseq[1]<=$interval[2]) 

{ 

if($chipseq[2]>=$interval[1]) 

{ 

print OUTPUT "@chipseq\t@interval\n"; 

}}}}} 
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Appendix D 

CODE FOR MAPPING METHYLATION PATTERNS FOR A SUBSET OF GENES 

Perl code to map the STAT4 ChIP-seq methylation patterns to the three regions (foreground and two 

backgrounds) 

 #! /usr/bin/perl 

$output="output.txt"; 

#opening the methylation ChIP-seq tag file 

my $file = $ARGV[0]; 

open (FILE, $file) or die("Unable to open file"); 

#opening the output file  

open (OUTPUT, ">$output") or die("Unable to open file"); 

while(<FILE>) 

{ 

my $line = $_; 

chop ($line); 

@interval=split (/\t/,"$line"); 

#opening the file containing the list of genes for which corresponding methylation patterns from the 

#ChIP-seq methylation file should be extracted 

open (FILE1, "gene.txt") or die("Unable to open file"); 

while(<FILE1>) 

{ 
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my $line1 = $_; 

chop($line1); 

@methyl=split (/\t/,"$line1"); 

# condition1: the start position of the gene should be less than or equal stop position of the ChIP-seq 

tag corresponding to methylation patterns 

#condition 2: the stop position of the gene should be greater than the start position of the ChIP-seq tag 

corresponding to the methylation patterns 

if($interval[1]<=$methyl[2]) 

{ 

if($interval[2]>=$methyl[1]) 

{ 

print OUTPUT 

("$interval[0]\t$interval[1]\t$interval[2]\t$interval[3]\t$methyl[0]\t$methyl[1]\t$methyl[2]\n"); 

}}}} 
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Appendix E 

DISTRIBUTION OF TH1 SPECIFIC GENES AND SUSTAINED AND TRANSIENT GENES 

IN THE PROMOTER REGION AND WHOLE MOUSE GENOME 

A few works were also performed in order to check the distribution of the transient, sustained, and also 

a few important Th1 genes from the Good et al. paper in the promoter region (ChIP-on-chip region) and 

in the whole genome (ChIP-seq) region. 

 

 

 

 

 

 

 

 

 

A) 

 

Figure A:  Distribution chart for transient and sustained genes in the promoter region (common to 

ChIP-on-chip and ChIP-seq regions) and only ChIP-seq region apart from the promoter region 
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B) 

 

Figure B:  Distribution chart for Th1 genes in the promoter region (common to ChIP-on-chip and ChIP-

seq regions) and only ChIP-seq region apart from the promoter region 
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Appendix F 

CRM ANALYSIS FOR IL-23 INTERVAL SEQUENCE 

We also performed the CRM analysis with the IL23 interval sequences utilizing the strategy that was 

applied on IL12 interval sequences and the statistical p-values, which are tabulated. From the p-value 

table below, we can infer that Pparg_STAT4 CRM and Cjun_STAT4 CRM are more enhanced in the 

foreground than in the two backgrounds, which can be worked on in detail to get some biological 

relevance of these CRMs in IL23-stimulated cell development. 

 Table a. P-values of TFBS enrichment in the foreground and background sequences of the IL-23 data 

set. 

CRM Background1 Foreground Background2 

Cjun-STAT4 0.463 0.066 0.216 

HLX_STAT4 0.105 0.627 0.774 

NFK_STAT4 0.105 0.928 0.916 

Runx_STAT4 0.002 0.774 0.928 

Tbox_STAT4 0.012 0.719 0.224 

Pparg_STAT4 0.79 0.237 0.237 
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