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CHAPTER ONE: INTRODUCTION 

Data integration, data mining and methods for computational analysis facilitate 

biological research by providing easy access to a wealth of biological information. While 

individual databases focus on certain areas of biological knowledge, integrated and   

comprehensive use of multiple datasets may provide new insights into research and 

discovery. Biological pathway databases are of special interest since they link together 

molecular entities with metabolic, transduction and regulatory events, and integration 

may work to expand analytical power. 

1.1 Motivation 

The study of bio-molecular pathways is essential in systems biology [1]. A 

pathway refers to a series of biochemical reactions which are linked by having the 

product of one reaction be either a reactant of a subsequent reaction, or an enzyme that 

catalyzes a subsequent reaction. There are three major classes of pathways: metabolic 

pathways, signal transduction pathways, and gene regulatory pathways. Each pathway 

connection can be characterized as the collection of component molecules (DNA, genes, 

proteins, snRNAs, metabolites, and drug compounds) and component molecule 

reaction/interactions. Metabolic pathways usually consist of a series of chemical 

reactions that provide basic biochemical functions to maintain metabolite/protein 

synthesis and energy metabolisms in cells. Signal transduction pathways act to send 

signals between cellular locations.  For example, signal transductions are found to occur 

from cell membrane to cytoplasm and from cytoplasm to nucleus. Gene regulatory 

pathways are responsible for converting genetic information into proteins (gene products) 

1.2 Introduction to Pathways 
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and controlling when and how this information is released in response to intracellular 

signals. Understanding what these pathways are and how they relate to each other 

represents a major step towards simulating biology in silico and devising engineering 

solutions to treat complex human diseases. 

While there are more than 196 online pathway databases of different coverage and 

quality as of September 2007 according to Pathguide [2], our knowledge of human 

pathways is still quite incomplete. For example, BioCarta [3], an open-access expert-

curated pathway illustration database for humans, contains 254 pathways, 2,308 proteins, 

205 compounds, and 880 complexes, and 3,064 interactions as of its June 2004 release. 

The scale of these counts is comparable to those reported in other popular curated human 

pathway databases such as KEGG [4] and Reactome[5]. The limited content of these 

databases suggests that there is still a large gap with at least an order of magnitude 

difference between the “annotated” portion of human pathways and the “un-annotated” 

portion of human pathways.  

In order to make a full account of annotated pathways across the existing set of 

pathway databases, a key step is to develop tools and resources to accomplish the 

integration and analysis. Challenges include the matching of pathway molecular entity 

names, interaction/reaction relationships from heterogeneous pathway databases, and the 

“high level noise” inherent in pathway data generated from text mining or computational 

predictions. For example, in the NCI-Nature curated database [6], component and 

interaction data is provided, whereas pathway regulation data are not reported.  The 

commercially available pathway software, Protein Lounge [7] , only provide users with 

pathway component lists in searchable text whereas pathway interaction and regulation 



 

3 

 

information is embedded in pathway image files and is non-searchable. These database 

resources also represent pathway entities (molecular entities and interaction/regulations) 

in different formats, often incompatible with PSI-MI or BioPAX standard pathway 

exchange formats, except for a few recent tools such as cPATH [8]. Even when the 

formats can be managed and merged at the syntactic level, semantic level incompatibility 

still exists. For example, pathway molecules can be often represented both in theory and 

in practice with any type of public database identifiers, e.g., NCBI Gene ID, Ensembl 

Database ID, Gene Symbol, NCBI GB Accession Number, SwissProt ID, UniProt 

Database ID, and IPI number. The heterogeneity of the pathway data sources, incomplete 

coverage of each pathway database, and syntactic as well as semantic level 

incompatibility among these pathway databases, have all contributed to the current lack 

of high-coverage integration of pathway data for large-scale systems biology studies 

where coverage is essential. 

In this work, I aim to develop a semantically integrated comprehensive human 

pathway database supporting a searchable web interface. This database, the Human 

Protein Database (HPD), was developed to collect pathway data from multiple quality 

pathway sources. My particular focus was to prioritize data collection for human 

signaling pathways. The pathway databases that were chosen for integration are NCI-

Nature Curated data [6], Biocarta [3], Protein Lounge [7]  and Pathway Studio [9]. A 

comprehensive entity-relationship (ER) data model was built with data warehousing 

techniques to facilitate the semantic-level integration of data. With HPD, I have 

constructed a high-coverage human pathway database with integrated information of 

molecules, complexes, regulation relationships of molecules, and reactions involved in 
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signaling and regulatory pathways. HPD provides an integrated view of current pathway 

data from both annotated and predicted resources – 1,895 pathways and 10,631 molecular 

entities. Furthermore, I analyzed similar pathways sharing components, and developed 

methods for merging similar pathways. The usability and feasibility of HPD is validated 

by case studies on Alzheimer’s disease. A prototype web interface of the HPD found 

online at http://discover.uits.indiana.edu:8340/pathway3. 

There are two major contributions of this thesis: 

1.3 Contributions of the Thesis 

   1. Technical Contributions 

A. Present a novel database framework enabling an integrated view of 

pathway data in web-based environment to provide a view of: 

 Proteins, complexes, compounds and reactions involved in the 

pathway, 

 Pathway diagram, 

 Kinase – disease associations and 

 Effect of environmental factors on pathways. 

B. Develop a prototype web interface to query the integrated 

database. 

C. Analyze the merging of similar pathways based on associated 

gene/protein identifiers to better provide the user with comprehensive 

and non-redundant information. 

 

 

http://discover.uits.indiana.edu:8340/pathway3�


 

5 

 

2. Analytical Contributions 

 A. Pilot the discovery of potential biomarkers by integrating pathway data with 

network analysis and gene expression data. 

 
1.4 Organization of the Thesis 

This thesis is divided into six major chapters. Chapter Two of the thesis is a 

background and literature review about signaling pathways. Also describes and compares 

existing signaling pathway databases and source database statistics. Chapter Three 

describes the methodology of constructing HPD including the road map, architecture, 

data integration, user interface and method for merging together similar pathways. 

Chapter Four summarizes the results. Chapter Five presents the case study 1 about 

Alzheimer’s disease and cases study 2 about Tumor Necrosis Factor-r- and Interleukin-1-

Induced Cellular Responses. Finally, Chapter Six concludes the thesis with a discussion. 
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CHAPTER TWO: BACKGROUND 

This chapter introduces topics that are essential towards a better understanding of 

the problem domain and the solutions proposed in this thesis. This chapter starts with 

systems biology and its importance in research and discovery. The latter part of this 

chapter introduces pathway databases and ends with a problem definition and related 

research questions. 

Recent advancements in data analysis and approaches for generating hypotheses 

in the biological domain are leading to more insights into research and discovery. A 

traditional approach to studying biology and human health is to investigate individual 

proteins and genes one at a time, to understand their functionality and their contribution 

towards a specific functional aspect of the organism. This leads to a limited 

understanding of how the human body operates, and how we can best predict, prevent, or 

remedy potential health problems. We have had limited success in curing complex 

diseases such as cancer, HIV, and diabetes, and investigative approaches are being 

changed to investigate the behavior and relationships of the many elements in a 

biological system, Collection and comparison of biology entities requires the ability to 

analyze different data sets as an integrated view. It aims to support the functional 

genomics, proteomics and other systems-based data sets through global examination of 

networks of genes, proteins, metabolites, cells, and tissues. 

2.1 Systems Biology 

Systems biology is the study of an organism based on integrated and interacting 

network analyses of genes, proteins and biochemical reactions. Systems biology can be 

viewed as a cyclical process consisting of laboratory experiments, data generation from 
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experiments and the collection of data, followed by data analysis leading to biological 

insight and finally to hypothesis and further experimentation. The systems biology 

process is illustrated in Figure 2.1.  

 

Figure 2.1 Systems Biology - A cyclical process. 

The study of systems biology is aided by advances in new research technologies 

for: 

• data generation - microarrays, DNA sequencing, quantitative 

proteomics, and mass spectrometry analysis; 

• storing and distributing massive amounts of data through internet; 

• extracting useful information from the data - laboratory information 

management systems (LIMS), bioinformatics pipelines, database 

frameworks; and 

• analysis and data visualization - Cytoscape, ProteoLens. 

Biological  
Insight

Hypothesis

Experiment

Data

Modeling of 
Data
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Signaling pathways represent the cascade of information from plasma membrane 

to nucleus in response to an extracellular stimulus. In general, extracellular signaling 

molecules bind to specific intracellular receptors and initiate the signaling pathway. Here 

we have taken the NF-κB pathway as an example to explain the signaling pathway. NF-

κB pathway activation is shown in Figure 2.2. Inflammatory signals, mainly TNFα, IL-1 

or Toll, bind to their corresponding receptors and lead to activation of TAK1 by 

recruiting receptor-associated proteins, such as MyD88 and IRAK for IL-1R/TLR, 

TRADD and RIP1 for TNF receptor. In turn, these associated proteins recruit TRAF2 or 

TRAF6, both of which are recruited possibly through a non-destructive G76-K63 

polyubiquitin chain-dependent mechanism (Ub63).  

2.2 Literature Review 

 

Figure 2.2 Simplified signal transduction pathways of NF-κB activation [10]. 
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Activated TAK1 or other MAPKKK family kinases, such as NIK and MEKK1, 

phosphorylate and activate IKK complexes which phosphorylate the IκB protein. 

Phosphorylated IκB proteins are recognized and modified by the G76-K48 polyubiquitin 

chain (Ub48) via the SCF-β-TrCP complex. This leads to the proteasome-mediated 

degradation of IκBs. Stress signals result in sequential activation of ASK1, SEK1 and 

JNK. Activated JNK induces the accumulation of β-TrCP protein, which facilitates the 

ubiquitination process of IκB proteins contributing to the activation of NF-κB. The next 

section is about the growth in the signal transduction publications and data. 

         The earliest published article recorded in the MEDLINE database containing the 

term "signal transduction" was published in 1972 [11].  Before 1977, most published 

articles had the term "signal transmission" or "sensory transduction" [12, 13]. After 1977, 

published articles began to appear with the specific term "signal transduction" , and in 

1979 this specific term appears within a paper title [14, 15]. In 1980, there was a review 

article by Rodbell [16, 17] with the extensive use of the term signal transduction. The 

total number of papers published in each year since 1977 with the term signal 

transduction in the title or abstract section are plotted in Figure 2.2. These numbers were 

extracted based on the papers contained within the MEDLINE database. The total 

number of scientific papers related to signal transduction published from 1st Jan 1977 up 

to the 31st December 2007 was 48,377 of which 11,211 were reviews. 

Growth of Data for Signal Transduction 

In the early 1990s, the research papers directly addressing signal transduction 

processes began to appear in large numbers in the scientific literature. There are a number  

http://en.wikipedia.org/wiki/Scientific_literature�
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of landmark or important discoveries in the field of signal transduction, such as the link 

made by Rodbell between metabolic regulation and the activity of GTP and GTP-binding 

proteins [16]. Most of our current knowledge of signal transduction is as a result of 

numerous contributions made to the field over many years by different research groups. 

As seen from the Figure 2.3, there is an exponential growth from the early 1990s.  

 

Figure 2.3 Signal transduction publications graph. 

More publications can generally indicate more data, and the amount of data for 

signal transduction pathway analysis is reflected by the presence of 41 different signal 

transduction pathway databases. In the next section we talk about the existing pathway 

databases.  

http://en.wikipedia.org/wiki/Guanosine_triphosphate�
http://en.wikipedia.org/wiki/Guanosine_triphosphate�
http://en.wikipedia.org/wiki/Guanosine_triphosphate�
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This section is about different existing pathway databases and compared the 

database contents and features. There are about 196 pathway databases. Of these, there 

are about 41 signaling pathway databases. Of these 41 databases, 20 generally consist of 

graphical pathway diagrams. 

2.3 Pathway databases 

The NCI-Nature Curated data[6] is created by Nature Publishing Group editors 

and contains expert-curated signaling pathway information based on known biomolecular 

interactions and key cellular processes. Pathway molecules from NCI-Nature curated data 

are identified by UniProt protein identifiers and are annotated with post-translational 

modification information. There are 32 signaling pathways present in the NCI-Nature 

curated database. Pathways can be browsed in four different formats: SVG, GIF, XML 

and BioPAX format. GIF format and XML format of the pathway is shown in Figures 

2.4(a) and 2.4(b) respectively. 

NCI-Nature Curated data  

a b

 
Figure 2.4 (a) GIF format of the Pathway, (b) XML format of the Pathway. 
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Biocarta represents how proteins interact in dynamic graphical models and also 

gives pathway descriptions along with references. As such, there is no downloadable data 

from Biocarta. But the Pathway Interaction Database (PID) contains a June 2004 

snapshot of pathway data at the BioCarta  web site [3] without additional expert review. 

Pathway molecules are annotated by NCBI Gene ID without associated post-translational 

modifications. There are 254 signaling pathways in Biocarta.  

Biocarta 

 

Figure 2.5 Schematic diagram of pathway in Biocarta. 

Browsing Biocarta and NCI–Nature curated data pathways is similar on the 

Nature PID web site. In Biocarta, these pathways can be browsed through clickable 

images (Figure 2.5). 
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Protein Lounge [7] is a commercially available database of curated signaling and 

metabolic pathways for all organisms. Pathway data was collected from a licensed 

version of the Protein Lounge database to Indiana University. The pathways include 

detailed pathway items and pathway diagram drawings. Pathway molecules derived from 

Protein Lounge are identified by NCBI GB or GI accession numbers. The effect of some 

environmental factors like UV, radiation and stress on pathways is also collected. There 

are 427 signaling pathways in Protein Lounge. Screenshots of Protein Lounge pathways 

and pathway items are shown in Figure 2.6(a) and Figure 2.6(b) respectively. However, 

these items do not provide downloadable data. 

Protein Lounge 

a b

 

Figure 2.6 (a) Schematic diagram of pathway in protein lounge. (b) Pathway items. 
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Pathway Studio/Resnet is commercial software developed by Ariadne Genomics, 

Inc. ResNet is a pathway database extracted from PubMed using Med Scan and natural 

language processing tools from Ariadne Genomics. Simple interaction types between 

molecules, such as regulation, expression, transport and protein modification, are given. 

In the Resnet Database: 

Pathway Studio/ResNet 

 entities are linked together by relations; 

 both entities and relations are annotated with properties; and 

 content and scope of the database can be extended by the user. 

 

Figure 2.7 Pathway generated using pathway studio. 

Pathway data generated using pathway studio is shown in Figure 2.7. A trial 

version of pathway studio, ResNet 4.0, was downloaded for this project during April 

2007. There are about 1,132 pathways present in ResNet[18]. This trial version data has 

partial information about the pathways.  
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The Cancer Cell Map 

Cancer Cell Map [19] defines a pathway as “a collection of all genes/proteins that 

have been described as pathway members in any publication and all the interactions 

between them that can be found described in the literature.” Cancer Cell Map is a 

collection-selected set of human cancer focused pathways. Cancer Cell Map curated the 

pathways which are of scientific interest to research laboratories at Memorial Sloan-

Kettering Cancer Center.  

Biologists can view the pathways using Cytoscape (Figure 2.8a) and view gene 

expression data on any pathway (Figure 2.8b). Each pathway contains proteins and their 

cellular locations as well as different types of physical interactions, such as molecular 

interaction, biochemical reaction, catalysis and transport, post-translational protein 

modifications, original citations, experimental evidence, and links to other databases. 

Only some information is available in the downloaded BioPAX files. 

 

 

(a) (b) 

Figure 2.8 (a) Cytoscape view of Pathway. (b) Expression Data view on Wnt pathway 
using expression viewer software. 
 
 

http://cancer.cellmap.org/cellmap/jsp/images/plugin/expression_viewer.png�
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Pathway Commons [20] provides access to biological pathway information 

collected from public pathway databases, which we can browse or search. Currently, 

Pathway Commons has 994 pathways including 12,550 interactions from 9 different 

organisms. Pathway Commons currently contains Cancer Cell Map, Humancyc, 

NCI/Nature pathway interaction database and Reactome. Biologists can access biological 

pathway information collected from public pathway databases, which we can browse or 

search. Pathways include biochemical reactions, complex assembly, transport and 

catalysis events, and physical interactions involving proteins, DNA, RNA, small 

molecules and complexes. Pathways can be browsed by gene name, gene identifier or 

pathway name, respective examples are p53, P38398 and mTOR. Also, searching can be 

restricted to specific data sources or specific organisms. NCI/Nature curated database is 

taken as an example (Figure 2.9). For this source, it lists the biochemical reactions, 

complex assemblies, transport reactions, and molecules involved in the pathway.  

Pathway Commons 

 

Figure 2.9 Cytoscape view of Pathway in Pathway commons. 
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Cell Signaling Technology, Inc. (CST) [21], is a commercial site committed to 

developing innovative new research tools to help define the mechanisms underlying cell 

function and disease. It is a small pathway portal for showcasing Cell Signaling 

Technology products. CST has 17 signaling pathways and pathway diagrams that are 

clickable and link to more information about each protein and the commercial products 

that are available for that protein. They also have kinase-disease association data, which 

provides how the kinases involved in the different disease types and also provides the 

molecular basis for the disease along with some notes with references (Figure 2.10) 

which support the kinase-disease association. 

Cell Signaling Technology 

 

Figure 2.10 Snapshot of kinase - disease associations from cell signaling technology. 

The Signaling Pathway Database (SPAD) [22] is an integrated database for 

genetic information and signal transduction systems. They have developed an integrated 

SPAD 
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database SPAD to understand the overview of signaling. They divided signaling 

pathways into four categories based on extracellular signal molecules: growth factor, 

cytokine, hormone and stress that initiate the intracellular signaling pathway. SPAD 

provides clickable pathway maps.  

Reactome [5] is an online bioinformatics database of human pathways - DNA 

replication, transcription, translation, the cell cycle, metabolism, and signaling cascades - 

and can be browsed to the molecular details of the signaling cascade. The information in 

Reactome pathways is curated from the published research literature by expert biologists. 

Reactome contains 1,115 pathways. The basic unit of the Reactome database is a reaction. 

Reactions are then grouped into pathways. Figure 2.11 shows the reaction page from 

Reactome. Reactome can infer equivalent reactions in multiple non-human species. 

Reactome  

 

Figure 2.11 Screen shot of Reactome reaction page. 
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Features such as availability, download format, details such as small molecules, 

genes/proteins, and interactions/reactions documented in pathway databases were 

surveyed.  Table 2.1 lays out a comparison of different pathway databases 

Table 2.1 Comparison of pathway databases 

Database URL Content/ 
type(s) of 
data 

Interaction 
Statistics 

Availa-
bility 

Features Data 
download
/format 

The  

Cancer  

Cell Map 

http://cancer.c
ellmap.org/cel
lmap/home.do 

Human-
focused 
cellular 
pathways 
implicated in 
cancer. 

6 pathways   
Genes 
/Proteins:479 
Interactions/ 
Reactions: 
1092 

Free to 
all 
users 

Molecules 
reactions 
cytoscape 
view 

BioPAX 

Protein 
Lounge 

http://www.protei
nlounge.com 

curated 
pathway 
clickable 
images. 
Pathways are 
available for 
many 
organisms.  

254-signaling 
pathways   

Free 
for 
IUPUI  
users 

Pathway 
items 
clickable 
image 

No data 
download 

Pathway 
Interaction 
Database 

(PID) 

http://hpid.org 
 

signaling 
pathways, 
assembled 
by NCICB 
staff from 
publicly 
available 
sources of 
information 
(mainly 
KEGG and 
BioCarta).Pa
thway 
Diagrams 

Free to all users Free to 
all 
users 

Clickable 
image 

XML 

Signaling 
Pathway 
Database 

(SPAD) 

http://www.grt.ky
ushu-u.ac.jp/eny-
doc/ 

Signaling 
Pathways, 
Pathway 
Diagrams 

- Free to 
all 
users  

Clickable 
Image 

No data 
download 

Cell 
Signaling 
Technology 
Pathway 
Database 

(CST) 

http://www.cellsig
nal.com/ 

Contains 
pathway 
diagrams 
that are 
clickable and 
link to more 
information 
about each 
protein and 

17 
Pathways, 
Experimental, 
Predicted    

Free to 
all 
users  

Clickable 
image 

No data 
download 

http://cancer.cellmap.org/cellmap/home.do�
http://cancer.cellmap.org/cellmap/home.do�
http://cancer.cellmap.org/cellmap/home.do�
http://www.proteinlounge.com/�
http://www.proteinlounge.com/�
http://hpid.org/�
http://www.grt.kyushu-u.ac.jp/eny-doc/�
http://www.grt.kyushu-u.ac.jp/eny-doc/�
http://www.grt.kyushu-u.ac.jp/eny-doc/�
http://www.cellsignal.com/�
http://www.cellsignal.com/�
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Based on the above review we chose the NCI-Nature curated database, Biocarta, 

Protein Lounge and Resnet, to integrate and develop a comprehensive pathway database. 

Next, we compared the features between the selected databases in detail (Table 2.2). 

As we see in Table 2.2, NCI-Nature curated data and Biocarta do not provide 

pathway items, categorization of molecules, or pathway reactions at the interface level, 

but do provide this data in raw form. Contrastingly, Protein Lounge provides the pathway 

items without any further categorization of molecules and does not provide pathway 

reactions. Protein Lounge is the only source which provides the effect of environmental 

 

the 
commercial 
products that 
are available 
for that 
protein. 
kinase - 
disease 
associations 

Reactome 
Knowledge 
Base 

http://www.reacto
me.org 

Metabolic 
Pathways, 
Signaling 
Pathways 

1115-pathways   Free to 
all 
users 

Reactions BioPAX, 
SBML 

Biocarta http://www.biocar
ta.com/genes/inde
x.asp 

Pathway 
Diagrams 

315 -pathways Free to 
all 
users 

Clickable 
image 

 

Kyoto 
Encyclopedia 
of Genes and 
Genomes 

(KEGG) 

http://www.geno
me.ad.jp/kegg/ 

Pathway 
Diagrams 

Small 
Molecules: 
13463; 
6461Pathways: 

Free to 
all 
users 

Clickable 
image 

BioPAX 

ResNet http://www.ariadn
egenomics.com/pr
oducts/resnet.html 

Protein-Protein 
Interactions, 
Signaling 
Pathways. 

Genes / 
Proteins: 15000 
Interactions / 
Reactions: 192 
Pathways: 506 

License 
purchas
e 
require
d 

Molecules 
reactions, 
regulation
s 

- 

 Pathway 
Commons 

http://www.pathw
aycommons.org/p
c/home.do 

Protein-Protein 
Interactions, 
biological 
Pathways. 

Pathways: 994 
Physical 
Entities: 16,933  
Interactions: 
12,550 
Organisms: 9 

Free to 
all 
users 

Molecules, 
reactions 

BioPAX 

http://www.reactome.org/�
http://www.reactome.org/�
http://www.biocarta.com/genes/index.asp�
http://www.biocarta.com/genes/index.asp�
http://www.biocarta.com/genes/index.asp�
http://www.genome.ad.jp/kegg/�
http://www.genome.ad.jp/kegg/�
http://www.ariadnegenomics.com/products/resnet.html�
http://www.ariadnegenomics.com/products/resnet.html�
http://www.ariadnegenomics.com/products/resnet.html�
http://www.pathwaycommons.org/pc/home.do�
http://www.pathwaycommons.org/pc/home.do�
http://www.pathwaycommons.org/pc/home.do�
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Table 2.2 Feature Comparisons of Human Signaling Pathway Databases 
 

NCI-Nature 
Curated data 

Biocarta Protein 
Lounge 

Resnet 

Pathway items list -* -* + + 

Pathway description - + + - 
Categorization of  molecules -* -* - + 

Pathway reactions -* -* - + 

Effect of environmental 
factors 

- - + - 

Similar pathways - - + + 

Pathway output format GIF 
XML 

BioPAX 
SVG 

Clickable 
image 

Clickable 
image along 
with pathway 

items list 

Clickable 
image, 

EXCEL 

* Not available from interface, but this data is available for download from PID.  

factors on the pathways. Most of these sources are clickable images. Only Pathway 

Studio/Resnet provides an option for Excel export. NCI-Nature curated data and Biocarta 

data from PID provides XML, GIF, BioPAX and SVG output formats of the pathway.  

Table 2.3 Comparison of source data statistics 
 

NCI-Nature 
Curated 

data 

Biocarta Protein 
Lounge 

Resnet 

pathways 32 254 464 1259 

Molecules 1595 3407  15974 
Complex 23 65 - 135 

Interactions 1306 3064 - 21454 

Data Format XML XML HTML EXCEL 
 

We compared the source data statistics in Table 2.3. Based on this data, we can 

say that these databases differ greatly with respect to the coverage of signaling pathways.  

Database 
Entity 

Database 
Entity 
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Existing pathway databases define pathways by different levels of details such as 

proteins, compounds, complexes and their cellular locations, biochemical reaction, 

catalysis, complex assembly and transport, post-translational modifications, and links to 

other databases (e.g., of protein sequence annotation). Also, the coverage with respect to 

the number of pathways is the main problem with the signaling pathway databases, so 

integration of signaling pathway databases may be essential to provide comprehensive 

information about the pathways. The question is how best we can integrate, organize and 

represent the data of human signaling pathways and annotation information 

computationally to extract new biological knowledge (e.g., validating disease bio-

markers in molecular network context and identifying better drug targets). 

2.4 Problem Statement and Research Question 

Pathway databases have different coverage for specific pathways and may have 

different pathway names. In order to address this problem, we came up with the concept 

of merging similar pathways based on gene/protein identifiers to better provide the user 

with a more comprehensive treatment of the information. 
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CHAPTER THREE: ARCHITECTURAL APPROACH TO HUMAN 

PATHWAY DATABASE 

The previous chapter introduced related work and presented possible research 

questions that can be answered by integration of pathway databases. It gave a brief 

overview of the pathway databases that are used for data integration with a comparison of 

content and features. This chapter details the method road map, architecture of the HPD 

database, and framework of the data integration system describing the various 

components that contribute to the integration. The latter part of this chapter describes the 

method for analyzing pathway merging. The motivation of this work came from the 

heterogeneity in pathways, including observed differences between pathway boundaries 

for similar pathways, between the pathway databases. 

3.1 Approach to Pathway Data Integration  

The Method Roadmap of current research work shown in Figure 3.1 explains the 

overview of tasks like data collection, data integration, methods and results of current 

thesis work. This provides for a quick understanding of the thesis project. 

3.1.1 Roadmap of Methods Used 

 
 

Figure 3.1 Method Roadmap of the thesis. 
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In this section, I describe integration of pathway data from heterogeneous data 

sources into a unified platform, the Human Pathway Database (HPD) using a data 

warehouse approach. 

3.1.2 Goals and Challenges of Integration 

Advances in new research technologies for data generation, for example 

microarrays, DNA sequencing, quantitative proteomics and mass spectrometry analysis 

have generated massive amounts of data. The often accelerating increase in publication 

for different areas of biological research has also provided copious amounts of biological 

data as indicated by Figure 2.2 of the previous chapter. There is also increasing 

heterogeneity in the data especially in biology because of the distribution of data in 

various sources and lack of standard exchange protocols and controlled vocabularies to 

describing data structures and semantics (bioinformatics system integration). In order to 

make a decision based on available data, data integration works to provide a scientist 

with a complete depiction of the system. While integration is important for most 

application domains for providing comprehensive view of the domain, it is a challenging 

task. This is due to heterogeneity of the different data sources i.e. rich diversity in data, 

differences in curation, multiple sources of similar data with different identifying systems, 

and different coverage.   

The objective of systems biology research is to come up with new hypotheses by 

analyzing experimental data. For example, microarray gene expression data against 

publicly available annotation databases may provide better insight into research and 

discovery. Cross analysis of the data across domain boundaries to generate a biological 

hypothesis is a general approach in systems biology studies. Systems biology is the study 
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of an organism, and can provide an integrated and interacting network view of genes, 

proteins and biochemical reactions. Solving a biological question based on systems 

biology studies requires data from different sources such as annotation databases, 

literature findings and experimental data. The aim of this research work is to provide the 

researcher with comprehensive information from data sources with differences in  

coverage of pathway content and designations of pathway boundaries. Figure 3.2 

illustrates the number of pathway databases that are integrated in this project in order to 

perform pathway analysis to generate pathway network views overlaid with kinase – 

disease annotations and the effects of environmental factors.  
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Figure 3.2 Pathway data integration and annotations. 
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Heterogeneity of databases can generally introduces four different types of 

challenges, and these four types of challenges were encountered with the HPD integration.  

Data integration challenges 

Syntactic Heterogeneity:

Syntactic heterogeneity occurs when different names are used to refer to the same 

entity such as can occur from the use of synonyms and the use of different identifiers to 

identify the attributes. For example, in pathway biology, one database identifies  

molecular entities with the UniProt ID system and the other database identifies with the 

Refseq ID system. 

  

Semantic heterogeneity arises when the same term refers to different entities in 

different contexts. For example, this was found for instances with the same name for the 

protein and gene. APP is a synonym for Amyloid beta A4 protein precursor and the gene 

name for the APP protein is also represented as APP. 

Semantic Heterogeneity: 

Data Model Heterogeneity:

This is a common type of heterogeneity encountered during a data integration 

process. This heterogeneity refers to the differences in formats. For example, NCI is 

downloaded in XML format and Protein Lounge data is obtained from HTML format. 

Data model heterogeneity can also refer to the data coming from different types of 

databases. 

  

Schematic Heterogeneity:

Schematic heterogeneity refers to the databases where data is represented in 

structurally different forms although syntactically similar. We found this type of 
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heterogeneity between the NCI – Nature curated database and the Biocarta database with 

respect to the Molecule entity. Figure 3.3 represents the NFATc entity in NCI – Nature 

curated structure of Molecule entity and Figure 3.4 represents the corresponding entity in 

Biocarta. NCI – Nature curated data represents the NFATc under the Molecule entity as a 

protein whereas Biocarta represents the NFATc under the Molecule entity as a protein 

family. 

 
Figure 3.3 Structure of NFATc entity in NCI – Nature curated data. 

 
                Figure 3.4 Structure of NFATc entity in Biocarta. 

 Most of the above heterogeneities were taken care of during the development of 

HPD. A data warehouse approach was used to integrate the data. 

3.2 Pathway Data Warehouse and Database Application 

Data warehousing

3.2.1 Strategy 

 is a popular approach for data integration where data from 

different sources are extracted, transformed, and loaded into source and queried with a 

single schema. 

http://en.wikipedia.org/wiki/Data_Warehousing�
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The data were extracted from four different sources: NCI-Nature Curated data [6], 

Biocarta [3], Protein Lounge [7],  and Pathway Studio [9]. The data are in varying 

formats. Figure 4.3 shows the framework graphically. In the next few sections, a step–by-

step methodology is shown for the development of this framework and the various tools 

that could assist in the development.  

There are two main steps in the data warehousing approach. 

1. Development of a unified data model. 

2. Development of software programs. 

Based on our experience working with pathway data and lessons learned from 

pathway XML data representation standards such as SBML [23] and BioPAX [24], we 

developed a pathway entity-relationship (ER) data model for HPD (Figure 3.5). 

3.2.1.1 Development of a Unified Data Model 

 

Figure 3.5 ER diagram for the HPD. 
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The data model in Figure 3.5 unifies the representation of all integrated pathway 

entities, including molecules, complexes, compounds, regulatory relationships of 

molecules, and reactions involved in signaling and regulatory pathways.  

The data model allows flexible representation and management data on all types 

of pathway “HPD Molecules”, many-to-many relationships among them as “Molecular- 

Interactions”, multiple names and aliases from different database sources for each HPD 

molecule, and current/future review comments about each “HPD Pathway”. The 

semantics of relationships among different entities are represented in an Entity-

Relationship (ER) data model. 

In this section, we talk about a series of software programs that were developed to 

get the data from source databases and transform the data such that it can fit into the 

unified data model and then loaded into the warehouse. Framework and database 

statistics are specified in detail in Figure 3.6. 

3.2.1.2 Development of Software Programs 

A data parsing step was required to convert data into a tab-delimited format. 

Altova XML spy was used to parse the XML data from NCI-Nature Curated data and 

Biocarta data into a relational format. While validating the parsed data, I found errors 

with the Biocarta data parsing, the I wrote a Perl script to parse the Biocarta data. Protein 

Lounge does not provide options for data download, so the HTML pages related to 

human signaling pathways were accessed by passing the pathway name variable into the 

URL, and subsequently parsed.  Pathway studio data was downloaded in EXCEL format.  
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Figure 3.6 Overview of pathway data integration process. 

Except for Protein Lounge, the other databases selected for integration (NCI, 

Biocarta, and Pathway Studio) consist of only human pathways. As this work focuses on 

humans, steps were taken to limit the data to be integrated to Homo sapiens data. The 

data from Protein Lounge had data from 14 different organism categories encompassing 

fungi and other diverse types of unicellular and multi cellular eukaryotes as well as 

bacteria. To collect only human pathways, we have taken the following two steps with 

Protein Lounge: 
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1. A Perl program was written to extract only human pathways, where it rejects the 

pathways which have other organisms’ categorical names in the pathway name, 

e.g., cAMP signaling in S.Cerevisiae. 

2. We mapped the proteins involved in pathways to human UniProt identifiers to 

collect human signaling pathways. 

Vigorous data cleansing to remove potential errors and duplications was 

performed in the transforming of data to fit into the data model. Oracle’s SQL Loader 

was used to load the final data into tables. As the data files and tables to be loaded are 

created, control files were created for each table to control data loading from the 

corresponding data file. The SQL Loader was executed to read the control file and to load 

the data. A log file was produced that describes what happened and describes any errors 

that may have occurred. An ODBC-managed database loaded data from access to Oracle.  

The data warehouse of pathway information was developed on BIO10G2, an 

Oracle database available on the libra45 server, and this serves as a maintained platform 

for future pathway analysis studies within the laboratory. The warehouse can be used as a 

‘one-stop shop’ for answering any of the questions that the source databases can handle, 

as well as those that require integrating knowledge that the individual sources do not have. 

Overall, it was more difficult to create a data warehouse than might be initially 

anticipated because of the heterogeneity between the databases, inconsistency between 

the databases, and issues with mappings between common identifiers. 
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The query performance was optimized by creating indexes for all the required 

attributes over different tables in the database. An index optimizes the query performance 

by ordering rows to speed access.  

3.2.2 Query Processing 

 In order to process the queries from the front end, PHP’s OCI Extension module 

was used to connect Oracle to PHP because the OCI extension module is optimized and 

provides more options such as CLOBs, BLOBs, BFILEs, ROWIDs than the alternative 

ORA Extension module. 

User interface-flow diagrams [25] were used to represent the overview of the user 

interface of HPD database. A high-level overview and architectural approach was 

implemented to understand the complete user interface for this system. Factors like 

simplicity, usability, clarity, and speed have been considered during the design of the 

HPD website. The HPD website is available 

at 

3.2.3 Architecture of Web Application  

http://discover.uits.indiana.edu:8340/pathway2/. 

The HPD database is a typical 3-tier web application, an application program that 

is organized into three major parts, each of which is distributed to a different place in a 

network. The 3-tier application uses the client/server computing model (Figure 3.7). The 

three parts are:  

• The presentation layer,  

• The application logic layer, 

• The database layer. 

http://discover.uits.indiana.edu:8340/pathway2/�
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In the next few paragraphs, I describe these layers in detail. Figure 4.2 presents an 

overview of the structure and technologies of HPD’s hardware and software architectures. 

The application presentation layer provides the graphical user interface. It is 

responsible for receiving inputs, presenting data, and controlling the user interface. The 

application presentation layer receives an HTTP request and returns a response in the 

form of an HTML document. HTML was used for defining content structures and images 

on the web page.  

Presentation Layer 

Database
SQLHTTP 

HTML tables

Presentation 
Layer

Application Logic 
Layer

Database 
Layer

Browser
 (IE, Firefox)

Desktop
(PC/ MAC)

HTML

Database server 
(libra-45)

PHP Script

Web server 
(Apache)

 

                            Figure 3.7 3-Tier Architecture of HPD. 

The business logic exists in this layer and it is located on a local area network 

server. The business logic of the application decides if all conditions are met and 

implements use case scenarios. It processes requests according to the business rules: for 

example, deciding whether to reject input data or to send it to the database. In this sense, 

the business logic acts as the server for client requests from the user interface. In turn, it 

determines what data is needed (and where it is located) and acts as a client in relation to 

Application Logic Layer 
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a third tier of programming. The functionality of the program is found in the application 

layer, and application layer functionality was developed with PHP. 

This layer includes the database and manages the persistence of application 

information. It is powered by an Oracle relational database server. Functions are used to 

execute database server-side processes related to data integrity. Queries are used for 

presenting data to applications. The data was stored in database tables. 

Database Layer 

PHP provides two extension modules that can be used to connect to Oracle:    

(1) Oracle functions (ORA), and  

(2) Oracle Call-Interface functions (OCI).  

The OCI Extension module was used to connect to Oracle using PHP since it is 

optimized. A 3-tier architecture was chosen because of its flexibility, maintainability, 

reusability, scalability and reliability [26]. 

It is observed that there is much inconsistency with respect to the pathway 

boundary and the component information between the pathway databases. The same 

pathway appears in different databases which are inconsistent and each source has 

different names for the same pathway.  Since anecdotal examination shows pathway 

boundaries to be vague, the merging of similar pathways can help provide more 

comprehensive information of the pathway in a non-redundant fashion. Towards this, we 

came up with a ‘Pathway Mergability’ concept. 

3.2.4 Pathway Mergability 

We analyzed similar pathways sharing components and developed methods for 

merging similar pathways.  To assess how many pathways could be merged, we used 
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clustering techniques to identify similar pathways based on pathway components (instead 

of by names). In a pathway clustering process, since a pathway is represented as a set of 

molecules, we define the similarity score Si, j of two different pathways as shown in 

Equation 1.  

(1) 

In Equation 1, Pi and Pj denote two different pathways. Their intersection Pi∩Pj 

denotes a common set of molecules that are mapped with the same UniProt ID, and their 

union PiUPj is calculated as |Pi|+ |Pj|- |Pi∩Pj|. Here α is a weight coefficient, which we 

use to take into account the varying degree of contributions from calculations based on 

the union and the overlap. Based on our experiments to observe the effects of different α 

values on Si,j, we determined that when α = 0.8, the score Si,j distribution of all the 

pathways is closest to a Poisson distribution Therefore, we set α = 0.8 for the rest of 

analysis performed in this work.  

 

Figure 3.8 Pathway mergability examples (A) Example 1 (B) Example 2. 

A B 
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We define the similarity as Eq. (1) with the condition as {Si,j 0.2, and |Pi 

∩Pj| >2}[43]. Figure 3.8 gives contrasting examples of how this mergability concept 

works. In Example 1 (Figure 3.8 a), pathway merging is not possible since there in only 

one common element between the pathways. Whereas in Example 2 (Figure 3.8 b), there 

are three common elements between the pathways (black nodes), and this successfully 

meets the pathway merging condition. 

In the next chapter we talk about more examples and results based on these 

concepts. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

37 

 

CHAPTER FOUR: RESULTS 

The previous chapter detailed the methodology for the HPD database including 

the road map of development, architecture, and components and approaches associated 

with data integration, including the methods for pathway mergability. This chapter 

summarizes the results, overlapping analysis, and merging of pathways based on the 

methods described in the previous chapter. This chapter also presents analyses of how 

single proteins can be involved in multiple pathways as a way of characterizing the 

general significance of different proteins to the overall cellular network. The final part of 

this chapter describes the HPD web interface. 

We performed a source pathway database overlapping analysis by applying a 

pathway merging condition {Si, j >= 0.2, and |Pi ∩Pj| >2} as described in Section 3.2.4 

with results shown in Table 4.1. 

4.1 Overlap of Pathways among Source Databases 

Table 4.1 Pairwise comparisions of pathways between the data 

sources 
 

Protein 
Lounge 

NCI -Nature 
Curated data 

Biocarta Resnet 

Protein Lounge (427)  
 

- 7 88 104 

NCI -Nature curated 
data (32) 

4 - 12 8 

Biocarta (254) 65 22 - 112 
Resnet (1182) 210 31 700 - 

 
Table 4.1 compares the number of overlapping pathways between each of the four 

data sources used for HPD.  For instance, 4 pathways from NCI -Nature curated data 

Source Source 
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overlap with 7 pathways from Protein Lounge, and 65 pathways from the Biocarta data 

overlap with 88 pathways from Protein Lounge. 

Table 4.2 shows the number and names of distinct pathways from each of the four 

data sources that overlap with all of the other data sources. 

Table 4.2 Number Of Pathways overlapping between all the data sources 

 
Source 

Number of 
pathways 
overlap 

 
Pathway Name 

Protein 
Lounge 

3 • HGF Pathway  
• Apoptotic Pathways Triggered By HIV1 
• TWEAK Pathway 

 

NCI 2 • hiv-1 nef: negative effector of fas and tnf 
• signaling pathways activated by hepatocyte 

growth factor receptor (c-met) 

Biocarta 12 • inhibition of cellular proliferation by gleevec 
• fas signaling pathway (cd95) 
• ceramide signaling pathway 
• tnfr1 signaling pathway 
• caspase cascade in apoptosis 
• il-2 receptor beta chain in t cell activation 
• fc epsilon receptor  signaling in mast cells 
• pdgf signaling pathway 
• induction of apoptosis through dr3 and dr4/5 

death receptors 
• hiv-1 nef: negative effector of fas and tnf 
• tnf/stress related signaling 
• sodd/tnfr1 signaling pathway 

 

Resnet 17 • DR3 and DR4-5 pathways 
• Caspases 
• 4-1BB ligand 
• IL23 
• GITR Ligand 
• CD30L 
• CD27L 
• KLRG1 -> MYC signaling pathway 
• SEMA6B -> FOS signaling pathway 
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• EPOR -> VAV1 signaling pathway 
• EPOR -> STAT1 signaling pathway 
• EPOR -> CEBPA signaling pathway 
• GRIN1 -> FOS signaling pathway 
• GRM2 -> FOS signaling pathway 
• GRM5 -> FOS signaling pathway 
• TNFSF10-TNFRSF1A 
• TNFSF4-TNFRSF9 

 

 

A pathway that overlaps among Protein Lounge, NCI-Nature curated data and 

Biocarta data is the “Apoptotic Pathways Triggered By HIV1” pathway from Protein 

Lounge, the “HIV-1 nef: negative effector of fas and tnf” pathway from the NCI-Nature 

curated database, and the “hiv-1 nef: negative effector of fas and tnf” pathway from the 

Biocarta database. The two pathways share a similarity score of 0.3 (30% of molecules 

from each pathway are identical). This similarity score is low because NCI-Nature 

curated data categorizes molecules into proteins, protein complexes, metabolic 

compounds, and RNA, whereas Protein Lounge contains only protein molecules. Even 

though these pathways are both related to apoptosis induced by HIV-1, the NCI-Nature 

curated pathway does not have as many details on the apoptosis pathway as the Protein 

Lounge data source.  Protein Lounge describes the comparable pathway as having a Nef 

protein that down regulates cell surface expression of the primary HIV1 receptor CD4 by 

increasing endocytosis of cell surface CD4, and further implicates enzymatic activity of 

ASK1-induced apoptosis and apoptosis-suppressing activity of MKK7 and JNK. The 

omission of important details on molecular mechanisms of Nef and other regulatory 

mechanisms of apoptosis may be perplexing to users who choose to query only one of the 

available sources of pathway data and, in this instance, be particularly the case for users 
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who know that Nef may accelerate the development of AIDS in HIV-infected individuals 

[27]. Therefore, integrated HPD pathways could provide additional insights to 

researchers studying pathway data. 

Extensive proteins may be shared across different pathways in HPD. Pathway-

spanning proteins may be considered to be those proteins that are shared among 

multiple HPD pathways. Table 4.3 shows the results from querying the database to find 

out the proteins that span across pathways and identifies the top 10 pathway-spanning 

proteins. Several proteins in the list, including MK01_HUMAN, RAF1_HUMAN, and 

MK03_HUMAN, are kinases involved in the MAPK/ERK pathway - a signal 

transduction pathway that couples intracellular responses to the binding of growth factors 

to cell surface receptors. Activation of this pathway promotes cell division. 

AKT1_HUMAN plays an important role in glucose transport. MK08_HUMAN and 

MK14 _HUMAN responds to activation by environmental stress and pro-inflammatory 

cytokines by phosphorylating a number of transcription factors. FOS_HUMAN is a 

proto-oncogene protein that plays an important role in cell proliferation and 

differentiation. These pathway-spanning proteins are universal “control proteins” that 

regulate many aspects of cell energy metabolism, growth, differentiation, and emergency 

response. 

4.2 Pathway-Spanning Proteins 
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Table 4.3 Top ten proteins involved in the pathways 

 
UniProt ID 

(Protein 
Identifier) 

 

 
Protein 

Description 

 
No. of 

Pathways 
involved 

 
 

Function 

MK01_HUMAN Mitogen-
activated protein 
kinase 1 

786 
 

• Initiation and 
regulation of 
meiosis, mitosis, 
and post mitotic 
functions in 
differentiated cells. 

 
RAF1_HUMAN RAF proto-

oncogene 
serine/threonine-
protein kinase 

568 • Involved in the 
transduction of 
mitogenic signals 
from the cell 
membrane to the 
nucleus.  

 
AKT1_HUMAN Protein kinase B 566 • Plays a role in 

glucose transport.  
• Mediates the anti 

apoptotic effects.  
• Mediates insulin-

stimulated protein 
synthesis. 

• Promotes glycogen 
synthesis by 
mediating the 
insulin-induced 
activation of 
glycogen synthase. 

MK03_HUMAN Mitogen-
activated protein 
kinase 3 

532 • Involved in both 
the initiation and 
regulation of 
meiosis, mitosis, 
and post mitotic 
functions in 
differentiated cell. 

MK08_HUMAN Mitogen-
activated protein 
kinase 8 

452 • Responds to 
activation by 
environmental 
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stress and pro-
inflammatory 
cytokines by 
phosphorylating  a 
number of 
transcription factors 

SHC1_HUMAN SHC-
transforming 
protein 1 

428 • Signaling adapter 
that couples 
activated growth 
factor receptors to 
signaling pathway.  

• Cytoplasmic 
propagation of 
mitogenic signals.  

• Involved in signal 
transduction 
pathways that 
regulate the cellular 
response to 
oxidative stress and 
life span.  

SRC_HUMAN Proto-oncogene 
tyrosine-protein 
kinase Src 

413 • The kinases c-Src 
(Giepmans et al. 
2001; Sorgen et al. 
2004), play an 
essential role in the 
phosphorylation of 
Cx which leads to 
its degradation. 

• c-Src appears to 
associate with and 
phosphorylate 
Cx43 leading to 
closure of gap 
junctions.  

MK14_HUMAN Mitogen-
activated protein 
kinase 14 

403 • Responds to 
activation by 
environmental 
stress, 
pro-inflammatory 
cytokines and 
lipopolysaccharide 
(LPS) by 
phosphorylating a 
number of 
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transcription 
factors. 

MP2K1_HUMAN MAP kinase 
kinase 1 

388 • Catalyzes the 
phosphorylation of 
MAP kinases. 
Activates ERK1 
and ERK2 MAP 
kinases. 

FOS_HUMAN Proto-oncogene 
protein c-fos 

361 • Has a critical 
function in 
regulating the 
development of 
cells destined to 
form and maintain 
the skeleton.  

• Have an important 
role in signal 
transduction, cell 
proliferation and 
differentiation. 

 

We have taken mTOR Pathway as an example to show the merged pathway. The 

merged pathway is shown in Figure 4.1. The merged pathway is generated using data 

from both NCI-Nature curated data and Biocarta data with the condition as {Si,j 0.2, and 

|Pi ∩Pj| > 2}. The mergability scoring of the mTOR pathway is 0.3 and |Pi ∩Pj| is 4. The 

mTOR pathway regulates skeletal muscle atrophy and hypertrophy. As shown in Figure 

4.1, the nodes that are common to both NCI-Nature curated data and Biocarta data are 

shown in green and the edges that are common to both databases are shown in orange. 

The edges from the NCI-Nature curated data are shown in red and the edges from 

Biocarta are shown in green. By merging the pathways, we found a protein 

2A5D_HUMAN that is not present in NCI-Nature curated data, and a protein 

IRS1_HUMAN that is not present in Biocarta. This is evidence for how pathway 

4.3 Pathway mergability 
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mergability can help provide comprehensive information along with the non–redundancy 

for pathway analysis. 

  
Figure 4.1 Merged Pathway Network of mTOR Pathway. 

In this work, the aim is to develop an integrated comprehensive human pathway 

database resource providing an integrated view of current pathway data from both 

annotated and predicted resources with the total number of: 

4.4 Web Interface 

Pathways                                                                       1,895 

                    Molecular entities (proteins/complexes/compounds)           10,631 

                    Reactions                                                                                4,370 

                    Kinase –disease associations                                                    149  

 Node common to both NCI and Biocarta  

  

Edge from Biocarta 

Edge from NCI-Nature Curated data Common Edge 
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The diversity of pathway data was taken into account before designing the 

comprehensive database system. With HPD, this high-coverage human pathway database 

act to integrate information of proteins, complexes, compounds and reactions involved in 

signaling pathways along with kinase-disease annotations. The interface was designed to 

be user-friendly. The database is publicly available and can be accessed within the 

Discovery Informatics and Computing Group website at 

http://discover.uits.indiana.edu:8340/pathway2/ 

The following figure 3.8 gives an overview of HPD website where it shows the 

work flow of the HPD webservice. 

Over view of HPD User Interface 

 

Figure 4.2 Flow diagram of HPD User Interface. 

http://discover.uits.indiana.edu:8340/pathway2/�
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The web page for pathway searching has been designed to be as simple to use as possible. 

Figure 4.3 shows a screenshot of the pathway search interface, indicating where a protein 

is to be keyed in as a UniProt identifier. 

 

 

Figure 4.3 (a) Screenshot of the search page. Figure 4.3 (b) Zoomed view from oval 

region in 4.3(a). 

(a) 

(b) 
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The results of a protein name search “MK08_HUMAN” in HPD are shown in Figure 4.4 

and consist of a list of curated and predicted pathways and a link for kinase-disease 

association. 

 

 

Figure 4.4 (a) Screenshot of the pathway list page. (b) Zoomed view from oval 

region in (a). 

(a) 

(b) 
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The user can find more details about the pathways that are involved by selecting 

the pathway name from the list. Detailed information about pathways starts with a page 

like that shown in Figure 4.5 that links the user to a listing of pathway proteins (Figure 

4.6), listings of complexes or compounds, and a diagram of the pathway (Figure 4.7). In 

Figure 4.6, proteins are further linked to UniProt entries, giving detailed information 

about the proteins. 

 

 

Figure 4.5 (a) Screenshot of the pathway details page. (b) Zoomed view from oval 

region in (a). 

(a) 

(b) 
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Figure 4.6 (a) Screenshot of proteins involved in the pathway page. (b) Zoomed view 

from oval region in (a). 

(a) 

(b) 
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Figure 4.7 Screenshot of the pathway diagram page. 

The kinase-disease association link takes the user to the details and references 

about the involved diseases as shown in Figure 4.8. 
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Figure 4.8 (a) Screenshot of the kinase-disease association page. (b) Zoomed view 

from oval region in (a). 

The effect of environmental factors on pathways has also been integrated into 

HPD. Pathways are grouped by environmental factors, and the environmental factors tab 

on the HPD interface lists the most common environmental factors that affect the 

(a) 

(b) 
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pathways (Figure 4.9). Selection of an environmental factor lists the pathways that are 

affected (Figure 4.10). 

 

 
 

Figure 4.9 (a) Screenshot of list of environmental factors. (b) Zoomed view from 

oval region in (a). 

(a) 

(b) 
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Figure 4.10 (a) Screenshot of list of pathways affected by environmental factors. (b) 

Zoomed view from oval region in (a). 

(b) 

(a) 



 

54 

 

Further selections on listed pathways provide information about the effects that 

are due to the environmental factor. For example, when the environmental factor UV is 

selected, the HPD interface lists 10 pathways that are affected by UV. Further selection 

of the ‘p53 signaling’ pathway lists the effects of ‘apoptosis’ and ‘angiogenesis 

inhibition’. 

Table 4.4 presents a comparison of interface features of HPD with other sources. 

As we can see in Table 4.4, the most unique features of HPD are kinase-disease 

associations and the effect of environmental factors when compared to other source 

databases. HPD is designed to be both a resource for the laboratory scientist to explore 

known and predicted pathways, and to facilitate bioinformatics initiatives exploring 

pathway networks. 

Table 4.4 Comparison of HPD database features with the other sources 
 

 
 

NCI-
Nature 
Curated  
data  

 
BIOCARTA  

 
PROTEIN 
LOUNGE  

 
RESNET  

 
HPD  

List of pathway 
items  

        

Categorization of 
pathway items 
(proteins, 
complexes and 
compounds  
interface) 

       

Pathway diagram           

Kinase- disease 
Annotation  

      

Effect of 
environmental 
factors on the 
pathways 

       

Source 
Feature 
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CHAPTER FIVE: CASE STUDIES 

This chapter is a case study of Alzheimer’s disease that starts with expanding a 

seed list of Alzheimer’s disease-proteins with the pathway data from HPD. The expanded 

set of proteins is then expanded further with protein – protein interactions from the 

HAPPI database. The analysis then proceeds to overlay the twice-expanded set with gene 

expression data. A network analysis that includes visualization of integrated networks is 

then conducted to find significant proteins related to Alzheimer’s disease. This work 

represents an approach to a common challenge in the field of biology where new 

opportunities for discovery are arrived at by integration of publicly available databases.  

5.1 Case Study 1: Alzheimer's Disease  

A flowchart for the case study of Alzheimer’s disease proteins using the 

integrated HPD is shown in Figure 6.1. Alzheimer’s disease is a progressive and fatal 

neurodegenerative disease and is the most common form of dementia. Today it is the 

seventh-leading cause of death in the United States [28]. More than 5 million Americans 

have been diagnosed with Alzheimer’s disease, and the number of diagnoses is expected 

to quadruple in the next 40 years. 

5.1.1. Introduction 

AD destroys brain cells and causes problems with memory, thinking and 

behavior. Plaques and tangles are the most common abnormalities associated with the 

disease and are prime suspects in the damaging and killing of nerve cells. Plaques are 

deposits of beta-amyloid protein fragments that build up between nerve cells. Tangles are 

twisted fibers of tau protein that form inside dying cells.  

Even healthy persons develop plaques and tangles with age, but those with 



 

56 

 

Alzheimer’s disease tend to develop a greater degree of plaques and tangles. In the initial 

stages of Alzheimer’s disease, plaques and tangles tend to develop in areas important in 

learning and memory and then spread to other regions. There is not yet a cure for 

Alzheimer’s disease, however patients with Alzheimer’s disease can get temporary relief 

from a few drugs. For example, Tocopherol is a drug for Alzheimer’s disease that acts as 

an antioxidant and delays the damage to the nerve cells, and this inspires the question of 

whether there may be a better way to treat the disease, delay its onset, or prevent it from 

developing. 

 

Figure 5.1 Flow Chart for case study. 

In this study, I have made an attempt to build a network of linking between 

proteins with both pathway data and protein interaction data for a seed list of proteins 

directly implicated with Alzheimer’s disease. Gene expression analysis is also used to 
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enrich this network and visualization is used to provide comparative views of new 

information arising from this overall effort shown in Figure 5.1. 

5.1.2. Constructing Alzheimer’s disease integrated network 

The 20 top scoring proteins related to Alzheimer’s disease (AD) were obtained 

from previous work [29]. Initially, the genes related to Alzheimer’s disease were 

retrieved from the OMIM database [3] in which the “description” field contains the term 

“Alzheimer” by performing a search. 65 OMIM gene records were retrieved. The genes 

were then mapped to their protein identifiers. 70 Alzheimer’s disease-related proteins 

were obtained after mapping gene symbols to protein SwissProt IDs. The increase in 

protein count from gene record count is due to one-to-many mappings between a gene 

and its multiple splice variant forms at the protein level.  

5.1.2.1 Data Set of Alzheimer’s disease Related Genes 

In the work by [2], the Online Predicted Human Interaction Database (OPHID) 

[30] was used to expand the initial set based on protein interaction data. Protein 

interacting pairs were drawn such that at least one member of the pair belongs to the 

seed-AD-set. This set of interacting pairs was called the Alzheimer’s disease-interaction-

set. The proteins that were expanded from the initial seed-AD-set by new proteins 

involved in the Alzheimer’s disease interaction set were denoted as the enriched-AD-set 

(a superset of seed-AD-set). The Alzheimer’s disease-interaction-set contains 775 human 

protein interactions and the enriched-AD-set contains 657 human proteins identified by 

SwissProt IDs. Next, the relevance score was calculated for each protein in the enriched 

Alzheimer’s disease-set [29]. We selected 20 top-scoring proteins for this case study (see 

Table 5.1.). 
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Table 5.1 20 top-scoring proteins of Alzheimer’s disease 

UniProt id Rank 
A4_HUMAN 1 

LRP1_HUMAN 2 
PSN1_HUMAN 3 
PIN1_HUMAN 4 
FHL2_HUMAN 5 
PSN2_HUMAN 6 

NP1L1_HUMAN 7 
S100B_HUMAN 8 
CDK5_HUMAN 9 
NOG1_HUMAN 10 
CLUS_HUMAN 11 

NCOA6_HUMAN 12 
CATB_HUMAN 13 
ARLY_HUMAN 14 
FLNB_HUMAN 15 

CTND2_HUMAN 16 
APBA1_HUMAN 17 
C1TC_HUMAN 18 
ODO2_HUMAN 19 
MK10_HUMAN 20 

 

The Alzheimer’s disease pathway reaction network was generated by expanding 

the 20 top-scoring Alzheimer’s disease related proteins with pathway reactions from 

HPD database such that at least one member of the 20 top-scoring proteins belongs to a 

pathway in HPD. I chose the NCI-Nature curated database and the Biocarta database to 

generate a pathway reaction network since these two databases provide directed reactions 

for the pathways. Of 20 top-scoring proteins, 4 proteins are found in 16 pathways, such 

that at least one member of the 20 top-scoring proteins belongs to a pathway (Table.5.2). 

To explain the significance of these pathways in Alzheimer’s disease, I chose an example 

5.1.2.2 Generation of Pathway Network for Alzheimer’s disease proteins 



 

59 

 

of selected presenilin action in the Notch and Wnt signaling pathway. This pathway plays 

a major role in brain development. Studies have established several characteristics of this 

pathway such as how 1) PS proteins function as components of Notch signal transduction, 

2) β-catenin and GSK-3β are transducers of the Wnt signaling pathway, and 3) β-catenin 

and GSK-3β are connected through the Dishevelled (Dvl) protein, a known transducer of 

the Wnt pathway [31]. 

Table.5.2 Pathways involved using 20 top-scoring proteins 

Pathway_Name Source 
caspase cascade in apoptosis NCI- Nature  curated 

Data 
lissencephaly gene (lis1) in neuronal migration and 

development 
NCI- Nature  curated 

Data 
pdgfrb signaling pathway NCI- Nature  curated 

Data 
presenilin action in notch and wnt signaling NCI- Nature  curated 

Data 
reelin signaling pathway NCI- Nature  curated 

Data 
role of hdac class iii NCI- Nature  curated 

Data 
bioactive peptide induced signaling pathway Biocarta 
deregulation of cdk5 in alzheimers disease Biocarta 

fosb gene expression and drug abuse Biocarta 
hiv-1 nef: negative effector of fas and tnf Biocarta 

How progesterone initiates the oocyte maturation Biocarta 
lissencephaly gene (lis1) in neuronal migration and 

development 
Biocarta 

mapkinase signaling pathway Biocarta 
phosphorylation of mek1 by cdk5/p35 down regulates the 

map kinase pathway 
Biocarta 

rac1 cell motility signaling pathway Biocarta 
regulation of ck1/cdk5 by type 1 glutamate receptors Biocarta 
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The 20 top-scoring proteins are expanded to 127 proteins using the pathway data. 

Among these 127 proteins, I found 98 new proteins that are not present in the seed set 

and enriched-AD-set (Table 5.3).  

Table.5.3 List of new proteins obtained after expansion using pathway data 
 

UNIPROT ID ACC1 HGNC SYMBOL 
2A5D_HUMAN Q14738 PPP2R5D 
ACTS_HUMAN P68133 (null) 

ADCY1_HUMAN Q08828 ADCY1 
AG22_HUMAN P50052 AGTR2 
AKT1_HUMAN P31749 AKT1 
ANGT_HUMAN P01019 AGT 
AP2A_HUMAN P05549 TFAP2A 
APAF_HUMAN O14727 APAF1 
APC_HUMAN P25054 APC 

AXN1_HUMAN O15169 AXIN1 
BID_HUMAN P55957 BID 

CAP1_HUMAN Q01518 CAP1 
CASP2_HUMAN P42575 CASP2 
CASP6_HUMAN P55212 CASP6 
CASP9_HUMAN P55211 CASP9 
CASPA_HUMAN Q92851 CASP10 
COF2_HUMAN Q9Y281 CFL2 
CRKL_HUMAN P46109 CRKL 
CYC_HUMAN P99999 (null) 

DAXX_HUMAN Q9UER7 DAXX 
DBLOH_HUMAN Q9NR28 DIABLO 
DVL1_HUMAN O14640 DVL1 
DYN2_HUMAN P50570 DNM2 
EGR1_HUMAN P18146 EGR1 

ERBB4_HUMAN Q15303 ERBB4 
FADD_HUMAN Q13158 FADD 
FAK1_HUMAN Q05397 PTK2 
FAK2_HUMAN Q14289 PTK2B 

FBW1A_HUMAN Q9Y297 BTRC 
GAB1_HUMAN Q13480 GAB1 
GAS2_HUMAN O43903 GAS2 
GDIS_HUMAN P52566 ARHGDIB 
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GNA11_HUMAN P29992 GNA11 
GRAB_HUMAN P10144 GZMB 

H4_HUMAN P62805 (null) 
HIF1A_HUMAN Q16665 HIF1A 
IKKA_HUMAN O15111 CHUK 
IKKB_HUMAN O14920 IKBKB 
IPPD_HUMAN Q9UD71 PPP1R1B 

K1C18_HUMAN P05783 KRT18 
KC1A_HUMAN P48729 CSNK1A1 
KC1D_HUMAN P48730 CSNK1D 
KS6A1_HUMAN Q15418 RPS6KA1 
LIMK1_HUMAN P53667 LIMK1 

LIS1_HUMAN P43034 PAFAH1B1 
M3K13_HUMAN O43283 MAP3K13 
M3K14_HUMAN Q99558 MAP3K14 
M3K1_HUMAN Q13233 MAP3K1 
M3K5_HUMAN Q99683 MAP3K5 
M3K7_HUMAN O43318 MAP3K7 

MAP1B_HUMAN P46821 MAP1B 
MK03_HUMAN P27361 MAPK3 
MK07_HUMAN Q13164 MAPK7 
MK14_HUMAN Q16539 MAPK14 
MLRV_HUMAN P10916 MYL2 
MP2K1_HUMAN Q02750 MAP2K1 
MP2K2_HUMAN P36507 MAP2K2 
MP2K3_HUMAN P46734 MAP2K3 
MP2K4_HUMAN P45985 MAP2K4 
MP2K5_HUMAN Q13163 MAP2K5 
MP2K7_HUMAN O14733 MAP2K7 
MYLK_HUMAN Q15746 MYLK 

MYOD1_HUMAN P15172 MYOD1 
MYPT2_HUMAN O60237 PPP1R12B 

NLK_HUMAN Q9UBE8 NLK 
NUMA1_HUMAN Q14980 NUMA1 
O00211_HUMAN O00211 (null) 
P2BA_HUMAN Q08209 PPP3CA 
P85A_HUMAN P27986 PIK3R1 
PAK1_HUMAN Q13153 PAK1 
PARP1_HUMAN P09874 PARP1 
PCAF_HUMAN Q92831 PCAF 
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PERF_HUMAN P14222 PRF1 
PGFRB_HUMAN P09619 PDGFRB 
PK3CA_HUMAN P42336 PIK3CA 
PLCG1_HUMAN P19174 PLCG1 
Q53ZZ1_HUMAN Q53ZZ1 FASLG 
Q59FU8_HUMAN Q59FU8 FAS 

Q5TC39_HUMAN Q5TC39 (null) 
RAF1_HUMAN P04049 RAF1 
RASH_HUMAN P01112 HRAS 
RELN_HUMAN P78509 RELN 
RPGF1_HUMAN Q13905 RAPGEF1 
SATB1_HUMAN Q01826 SATB1 
SIRT1_HUMAN Q96EB6 (null) 
SOS1_HUMAN Q07889 SOS1 

SPTA2_HUMAN Q13813 SPTAN1 
SRBP1_HUMAN P36956 SREBF1 
TAB1_HUMAN Q15750 MAP3K7IP1 
TNFA_HUMAN P01375 TNF 
VAV2_HUMAN P52735 VAV2 
VIME_HUMAN P08670 VIM 

 
These new proteins are related to Alzheimer’s disease. We further explored the 

pathway network and analyzed it using gene expression data from gene expression 

profiles. 

I expanded the above pathway network using protein-protein interaction data from 

HAPPI database such that one member of the pathway reaction pair belongs to a protein-

protein interaction in HAPPI database. The protein-protein interaction data from HAPPI 

database enabled further expansion of the network to encompass 149 proteins.  

5.1.2.3 Further expansion using HAPPI data  
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Overlapping analysis was used to show those proteins that overlap between the 

OPHID and HPD expanded networks as is shown in Figure 5.2. 

5.1.2.4 Overlap of Proteins among Networks 

128
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92

573

32

16

4

a

c

b

[a] 65 AD gene records from OMIM expanded with OPHID to 625 proteins
[b] The top 20 scoring proteins from OPHID expansion [2]
[c] 4 out of the top 20 scoring proteins expanded using HPD.

20

 

Figure.5.2 Overlap of proteins between the networks. 

The above figure represents the overlap of proteins between the OPHID and 

pathway networks.36 proteins overlap between OPHID and HPD expansion networks. 

Four of these 36 proteins, A4_HUMAN, CDK5_HUMAN, PIN1_HUMAN, and 

PSN1_HUMAN, are also present in the set of 20 top scoring proteins [29]. Three of these 

four proteins, A4_HUMAN, PSN1_HUMAN, and PIN1_HUMAN, are present in the top 

4 list. 

The Alzheimer’s disease gene expression data obtained from a published 

expression microarray data set, derived from a microarray analysis of brain tissues from 

31 individuals, including 9 healthy individuals, 7 incipient Alzheimer’s disease patients, 

8 moderate Alzheimer’s disease patients, and 7 severe Alzheimer’s disease patients [32]. 

5.1.3 Gene expression analysis 
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The gene expression value for each gene is calculated from gene-mapped probe sets 

identified by its AFF_ID [32] and contains a single gene expression value. I mapped each 

probe set gene expression value to a gene. The statistical average is taken to represent the 

aggregated expression value if multiple probe sets map to one gene.  

To discover Alzheimer’s disease related proteins which may act as biomarkers or 

drug targets in the Alzheimer’s disease pathway network, I calculated the differential 

expression levels (as fold changes) for each gene [33]. This analysis involves the 

following steps: 

1. Calculate the average gene expression for each group, for the genes from 

pathway and protein-protein interaction expansion list. 

2.  Calculate relative gene expression for the pairs of Alzheimer’s disease patient 

groups (incipient, moderate, and severe) with the normal control group.   

Relative gene expression values are calculated according to standard gene expression 

analysis conventions using the following formula [33]: 

 

 

 

ReExp (pro_id) represents the differential gene expression ratio for the diseased stage 

versus the normal control condition for a given protein with pro_id as the gene identifier, 

Exp1 (pro_id) is the absolute gene expression value for the same protein under condition 

1, and Exp2 (pro_id) is the absolute gene expression value for the same protein under 

condition 2. I chose a threshold of 1.5 to filter significant differential gene expression 

values due to natural variability of gene expressions. Tables 6.4 & 6.5 list proteins/genes 
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(here, I refer to the two distinct molecular entities interchangeably, because I use a 

standard ID mapping table available from the UniProt database [34] and can map 

between genes identified by standard gene symbols and corresponding proteins identified 

by unique UniProt identifiers) that are up-regulated and down-regulated with the relative 

gene expressions in pathway networks respectively.  

Table 5.4 List of up-regulated proteins in integrated network data sources 
 

Gene 
Symbol 

UniProt Id  Relative  
expression 

Disease state Source  

ARHGDIB GDIS_HUMAN 1.517 Incipient HPD 
AXIN1 AXN1_HUMAN 4.722 Incipient HPD 
AXIN1 AXN1_HUMAN 3.576 Moderate HPD 
AXIN1 AXN1_HUMAN 6.311 Severe HPD 
BID BID_HUMAN 1.507 Moderate HPD 
KAPCB PRKACB 1.593 Moderate HAPPI 
KAPCG PRKACG 1.556 Incipient HAPPI 
KAPCG PRKACG 2.878 Moderate HAPPI 
KAPCG PRKACG 2.364 Severe HAPPI 
KNG1 KNG1 1.536 Severe HAPPI 
MAP2K1 MP2K1_HUMAN 1.547 Incipient HPD 
MAP2K2 MP2K2_HUMAN 1.528 Moderate HPD 
MAP2K2 MP2K2_HUMAN 1.611 Severe HPD 
MAPK3 MK03_HUMAN 1.536 Moderate HPD 
PAK1 PAK1_HUMAN 2.431 Incipient HPD 
PAK1 PAK1_HUMAN 1.938 Severe HPD 
RELN RELN_HUMAN 1.56 Moderate HPD 
SATB1 SATB1_HUMAN 1.606 Moderate HPD 
SREBF1 SRBP1_HUMAN 2.378 Incipient HPD 
SREBF1 SRBP1_HUMAN 2.413 Moderate HPD 
SREBF1 SRBP1_HUMAN 2.941 Severe HPD 
VAV2 VAV2_HUMAN 2.262 Incipient HPD 
VAV2 VAV2_HUMAN 2.443 Moderate HPD 

 
In the above table (Table 5.4), we listed all the genes that are up regulated at 

different stages (incipient, moderate and severe) of Alzheimer’s disease. We found 
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AXIN1 and SREBF1 genes have significant up regulation in Alzheimer’s disease i.e. 

relative expression is 2 fold difference when compared to normal patients. A graph is 

plotted against relative expression of AXIN1 and SREBF1 and different stages of 

Alzheimer’s disease patients with sample size of 7 or 8 for incipient, moderate, severe 

patients as shown in Figure 5.3. There is significant increase in relative expression from 

moderate to severe. We studied these two proteins for the validation based on the already 

existing work. 

 

Figure.5.3 Relative expressions of AXIN1 and SREBF1 in different stages of AD and 

Standard error bars are shown. 

AXIN1 is known as the Axis inhibition protein. Substitution of certain residues on 

the conserved region of one of the variants, the AXIN1 D545E protein, leads to the 

binding of -catenin and negatively regulates the Wnt signaling pathway by interacting 

with GSK-3  and -catenin; mediating the signal from GSK-3beta to beta-catenin 
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ultimately leads to beta-catenin degradation [35]. This substitution has been described in 

patients with sporadic medulloblastomas [36] and the  variant AXIN1 G700S substitution 

leads to binding to the catalytic subunit of protein phosphatase 2A [37]. The variant 

AXIN1 G700S has been described in patients with both hepatoblastoma and hepatocellular 

carcinoma. 

The SREBF1 transcription factor controls the expression of most enzymes of 

cholesterol synthesis. It has been associated with atherosclerosis or high cholesterol 

levels. Polymorphisms within the SREBF1 in Alzheimer's disease are also likely to affect 

cholesterol and lipoprotein status in the periphery, via diverse metabolic pathways, and in 

so doing may well contribute to atherosclerotic pathology [38]. Also, the SREBF1 

transcription factor is found to be up-regulated in Alzheimer’s disease. 

Table.5.5 List of down-regulated proteins in pathway network 
 

Gene 
Symbol 

Uni Prot Id  Relative  
expression 

Disease 
state 

Data 
set  

AKT1 AKT1_HUMAN -1.542 Severe HPD 
DOCK3 DOCK3 -1.978 Severe HAPPI 
GD SERPINE2 -1.635 Severe HAPPI 
MYL2 MLRV_HUMAN -1.708 Incipient HPD 
MYL2 MLRV_HUMAN -1.602 Moderate HPD 
MYOD1 MYOD1_HUMAN -2.024 Moderate HPD 
PCAF PCAF_HUMAN -1.569 Incipient HPD 
PTK2B FAK2_HUMAN -1.912 Severe HPD 

 
 

Table 5.5 shows the genes that are down-regulated at different stages of 

Alzheimer’s disease. PCAF and MYOD1 form a complex with SIRT1. SIRT1 activation 

extends lifespan and promotes longevity and healthy aging in a variety of species, 

potentially delaying the onset of age-related neurodegenerative disorders. In mammalian 
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systems, sirtuin activators protect against axonal degeneration, poly-glutamine toxicity 

and microglia-mediated amyloid beta toxicity. It suggests there to be potential therapeutic 

value of sirtuins in patients with neurodegenerative diseases, such as Alzheimer's disease. 

In this regard, PCAF and MYOD1 may be involved in the activation of SIRT1.  

This approach helps in eliminating non specific genes. Usually in microarray 

analysis there are lots of genes which are up and down regulated. It is difficult to find 

those genes which have some biological significance and there may be lots of up 

regulated genes which may be false positive. So in this approach we try to integrate the 

pathway network to find those specific genes which are also up regulated in the 

microarray data. So in this way we increase the specificity of finding genes related to 

Alzheimer’s disease. 

Using the ProteoLens visualization tool [39], I show how the integrated pathway 

and protein interaction network expands from the seed list of 20 top scoring Alzheimer 

disease proteins. A 1.5 cut off for relative gene expression is used for incipient, moderate 

and severe patients as shown for the comparisons of patient groups in the Figures 5.4, 5.5 

and 5.6. Figure 5.7 shows a single network from data based on a 1.3 cut off for relative 

gene expression for all the patients (incipient, moderate and severe).  

5.1.3.1 Visualization 
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The integrated network with gene expression values of normal vs incipient 

patients is shown in Figure 5.4. 

Figure 5.4 Integrated pathway and interaction network  expanded from 20 top-scoring AD proteins*, 
overlaid with gene expression data of incipient patients. Protein node size as shown in proportion to 
their  degree of connectivity  in the network. Color legend for expression values and kinase- disease 
association and shape of the nodes is  as follows.
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The integrated network with gene expression values of normal versus moderate 

patients is shown in Figure 5.5. 

 

Figure 5.5 Integrated pathway and interaction network  expanded from 20 top-scoring AD proteins*, 
overlaid with gene expression data of moderate patients. Protein node size as shown in proportion to 
their  degree of connectivity  in the network. Color legend for expression values and kinase - disease 
association and shape of the nodes is  as follows.
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The integrated network with gene expression values of normal versus severe 

patients is shown in Figure 5.6. 

Figure 5.6 Integrated pathway and interaction network  expanded from 20 top-scoring AD proteins*, 
overlaid with gene expression data of severe patients. Protein node size as shown in proportion to their  
degree of connectivity  in the network. Color legend for expression values and kinase - disease 
association and shape of the nodes is  as follows.
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The integrated network with gene expression values of normal versus all patients 

is shown in Figure 5.7. 

 

Figure 5.7 Integrated pathway and interaction network  expanded from 20 top-scoring AD proteins*, 
overlaid with gene expression data of all(incipient, moderate, severe) patients. Protein node size as 
shown in proportion to their  degree of connectivity  in the network. Color legend for expression values 
and kinase - disease association and shape of the nodes is  as follows.
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All proteins are shown as nodes. Proteins from pathways are represented as 

rectangle shaped nodes, proteins from protein-protein interactions are represented as oval 

shaped nodes, and proteins in both pathways and interactions are represented as hexagon 

shaped nodes. Expression values up and down are represented using red (up) and green 

(down). The kinase-disease association nodes are represented using a yellow color. The 

size of the node is proportional to the number of degree connectivity associated with each 

protein, counting both pathway and interaction connections. In Figure 6.6, there is an 

overlap between up-regulated, down-regulated, and “no change” proteins. This is because 

of different expression values between different stages of Alzheimer’s disease in patients. 

The overall outcome to this case study of pathway analysis using HPD was the finding of 

AXIN1 and SRBPF1 proteins to be of potential significance in Alzheimer’s disease. 
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Tumor Necrosis Factor-alpha (TNFR) and Interleukin-1 (IL-1) are pro-

inflammatory cytokines which mediate the innate immune response [40]. Dysregulation 

of innate immune response may contribute to chronic inflammatory diseases such as 

arthritis [41], diabetes  and cancer. The expression of these cytokines are mediated by 

similar transcription factors. However, TNFR and IL-1 receptor differ in their 

sensitivities to a known initiator (lipopolysaccharide, LPS) of the innate immune 

response in knock-out mice. The contrasting responses to LPS indicate that TNFR and 

IL-1 regulate different processes. A large-scale proteomic analysis of TNFR- and IL-1-

induced responses was performed to identify processes uniquely regulated by TNFR and 

IL-1 by integration with pathway data. 

5.2 Case study 2: Tumor Necrosis Factor-r- and Interleukin-1-Induced Cellular 

Responses: integrating with pathway information 

The proteins that changed significantly (p < 0.05) upon TNFR or IL-1 treatment 

[42] were mapped to UniProt IDs using the mapping data downloaded from Ensembl 

using their BioMart tool. Using these proteins, we generated a human pathway network 

using the HPD (Human Pathway Database), which is an integrated human signaling 

pathway database developed in-house. This database has comprehensive information 

about human signaling pathways. We used pathway data from NCI-Nature curated 

database and Biocarta since they provide not just the content of a pathway, but also the 

ordering of molecular content within each pathway. After integrating protein expression 

data, we found FAF1, which is a splice isoform of Fas Associated Factor 1, to be 

5.2.1 Generation and Analysis of Pathway Network 
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expressed high both in TNF treated and IL-1 treated cells. FAF1 was originally identified 

as a protein that binds to the cytoplasmic tail of the Fas protein. 

 

 

 

When immune cells are activated, especially T-cells, they either survive or they 

die.  For example, when T-cells are treated with the protein IL-2, they survive. When 

Figure 5.8 (A) Network generated using proteolens (Partial) (B) NCI- Nature 
curated database – Fas signaling Pathway (C) Biocarta - Fas signaling pathway 
(D) Protein Lounge – Fas signaling pathway 
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these cells are treated with IL-2, this activates the IL-2 receptor, leading to the activation 

of the transcription factor NF-κB and also the activation of the IL IκB kinase complex 

(IKKα, IKKβ and IKKχ).  IKKα and/or IKKβ will phosphorylate a protein, IκBα, which 

is bound to the transcription factor NF-κB. Phosphorylation of IκBα targets it for 

ubiquitin dependent degradation by the proteasome.  Removal of IκBα allows NF-κB to 

go nuclear and activate genes, like the inhibitors of apoptosis that prevent cell death and 

therefore promote cell survival. When Fas Ligand binds to the Fas receptor on T-cells, it 

promotes cell death by activating proteases like the caspases.   

The pathway network (Figure 5.8 a) is visualized from data from HPD, and is 

generated with ProteoLens with the highlighting of the FAF1 protein in red color; Fas 

signaling pathway diagrams from source databases are shown in Figures 5.8 b-d. As 

shown in the diagrams, when Fas ligand binds to Fas, it also leads to the activation of 

FAF1 (mechanism unknown).  But the activated FAF1 binds to IKKβ and prevents it 

from phosphorylating IκBα - this prevents NF-κB signal transmission to the nucleus and 

activates survival signals. TNF and IL-1 also lead to an increase in FAF1 protein levels 

even though both TNF and IL-1 activate NF-κB activity. Too much NF-κB activity is 

will lead to a chronic inflammatory response. Activation of FAF1, after the initial 

activation of NF-κB, will therefore prevent the continued activation of NF-κB.  

In general the outcome to this second case study has been that pathway 

knowledge from HPD helps to better integrate molecular signals with physiological 

responses. Both case studies suggest the potential for a comprehensive pathway data 
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source to link meaningfully to analyses such as those involving protein interactions, gene 

expression, and cellular physiology. 
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CHAPTER SIX: CONCLUSION 

The publication of the draft human genome consisting of 30,000 genes is just the 

beginning of genome biology. The complexity and wealth of molecular and cellular 

function of proteins in biological processes can be approached with biological networks 

such as protein-protein interaction networks and pathway networks. Hence, pathway 

databases documenting pathway information are necessary tools for network biology. 

6.1 Conclusion 

HPD, the Human Pathway Database, is the most comprehensive data warehouse 

of  1,895 human signaling pathways, 10,473 molecular entities and 22,974 biological 

reactions and has unique annotations with information on kinase-disease associations and 

perturbation effects of different environmental factors which helps in network biology 

based systems biology studies. First, this integrated pathway database provides a single 

relational database platform providing users with integrated views of pathway data and 

also the data warehouse approach enhances access for the end user. Second, the kinase-

disease annotation provides notes and references for  how the kinase is involved in a 

disease. Third, information related to effects of environmental factors gives information 

on pathway perturbations associated with exposure of cells to different types of 

environmental conditions. Overall, the HPD acts as a resource for building up pathway 

networks and gives basic information to researchers when they encounter proteins of 

interest related to signaling pathways. 

The potential for merging similar pathways—“pathway mergability” —was 

created based on gene/protein identifiers, and is a novel method that we developed in this 

study to provide  comprehensive information since there are differences in pathway 
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boundaries and pathway content for 100% of pair-wise comparisons of signal 

transduction pathways between any 2 of the 4 databases in our study. An ideal purpose 

for pathway merging is to provide non-redundant pathways. 

We successfully developed a systems biology approach to analyze the proteomics 

and genomics data by coupling this data with pathway data. We applied this approach to 

two case studies: Alzheimer’s disease study, and Tumor Necrosis Factor alpha- and 

Interleukin-1-Induced Cellular Responses. In the Alzheimer’s disease case study, the 

proteins involved in Alzheimer’s disease are categorized as the set of seed proteins. We 

constructed a pathway network based on the seed proteins. Then, we analyzed the 

pathway network by coupling with gene expression data to find significant proteins 

related to Alzheimer’s disease. We performed gene expression analyses to find 

significantly enriched over-expressed and under-expressed proteins. We found AXIN1 

and SREBF1 proteins to have differences in gene expression from incipient to severe 

patients indicating some potential consideration of them as biomarkers for Alzheimer’s 

disease. ProteoLens was used to visualize the networks. In the Tumor Necrosis Factor 

alpha- and Interleukin-1-Induced Cellular Responses case study, we have taken the 

statistically significant proteins to expand using the pathway data. Then, we coupled with 

protein expression analysis. This shows that over-expression of FAF1 protein in both 

TNFα treated and IL-1 treated cells. This helps to better integrate the molecular signal 

with physiological response. These findings in the two case studies strongly support the 

future developing of a framework for evaluating functional genomics and proteomics 

data using pathway networks. 
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Comprehensive access to databases in the field of bioinformatics is very essential, 

especially for pathway analysis. Pathway databases have been growing exponentially, for 

example, the NCI/Nature curated database adds pathways frequently. So, there is a need 

to keep HPD up to date.  There are about 41 signaling pathway databases. Of these, 20 

are pathway diagrams and we looked only at four databases. Expanding HPD by 

integration with other databases like Reactome will lead to even more comprehensive 

analyses. 

6.2 Discussion 

Protein Lounge pathway items are not categorized, so there is a need to develop 

strategies for categorizing these pathway items, for example, by using UniProt and 

Chemical Accession identifier systems. Also, Protein Lounge provides reaction 

information in their pathway descriptions. So there is a need for developing text mining 

techniques to mine the reaction data. 

Mapping the proteins involved in the pathways to UniProt IDs is required for 

pathway mergability. So far, we have achieved 80% mapping to UniProt IDs. With the 

increase in biological data, we may in the future find better data sets for mapping. With 

the pathway mergability concept, the similarity score is computed based on the similar 

proteins present between pathways. In order to increase the specificity of this scoring 

function, we can also consider the compounds that are involved in the pathway by 

mapping them to standard chemical accession identifiers. 

This database can be extended by integrating the protein compound interaction 

data, which may lead to insights in drug target discovery. The architectural approach may 

also be extended to an organism like the mouse (Mus musculus) in order to integrate gene 
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regulation data as there can be more data available in organisms other than humans. The 

analyses in this thesis suggest that developing pathway analysis tools based on the HPD 

may potentially involve utilities for producing graphical views in order to accelerate 

analysis.  
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