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Terms and definitions used in this thesis: 
 

 Proposition: Atomic unit of semantic meaning capturing in whole or part the 

knowledge within a declarative sentence. 

 Knowledge Domain: The set of all propositions that represent the knowledge 

within a specialized field of study such as radiology. 

 Corpus: A large collection of related documents or reports from which a semantic 

knowledge base can be derived. 

 Mapping: Linking sentences from the corpus to semantic proposition(s). 

 Semantic Hierarchy:  a taxonomic arrangement of semantic propositions, using 

knowledge categories to facilitate browsing. 

 Discourse level: The organization of information in paragraphs or a document. . 

One problem addressed by discourse analysis is resolving anaphora by referring 

to previous sentences. 

 Computational Linguists (CL): Researchers who study an interdisciplinary field 

dealing with the statistical and/or rule-based modeling of natural language from a 

computational perspective. 

 Ontology: In computer science, ontology is the product of an attempt to 

formulate an exhaustive and rigorous conceptual schema about a domain. 

Ontology is typically a hierarchical data structure containing all the relevant 

entities and their relationships and rules within that domain (e.g. a domain 

ontology). The computer science usage of the term ontology is derived from the 

much older usage of the term ontology in philosophy. 
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Abstract: 
At present, the healthcare industry uses codified data mainly for billing purpose. 

Codified data could be used to improve patient care through decision support and 

analytical systems. However to reduce medical errors, these systems need access to a 

wide range of medical data. Unfortunately, a great deal of data is only available in a 

narrative or free text form, requiring natural language processing (NLP) techniques for 

their codification. Structuring narrative data and analyzing their underlying meaning from 

a medical domain requires extensive knowledge acquired through studying the domain 

empirically. Existing NLP system like MedLEE has a limited ability to analyze free text 

medical observations and codify data against Unified Medical Language System (UMLS) 

codes. MedLEE was successful in extracting meaning from relatively simple sentences 

from radiological reports, but could not analyze more complicated sentences which 

appear frequently in medical reports. An important problem in medical NLP is, 

understanding how many codes or symbols are necessary to codify a medical domain 

completely. Another problem is determining whether existing medical lexicons like 

SNOMED-CT and ICD-9, etc. are suitable for representing the knowledge in medical 

reports unambiguously. This thesis investigates the problems behind current NLP 

systems and lexicons, and attempts to estimate the number of required symbols or codes 

to represent a large corpus of radiology reports. The knowledge will provide a greater 

understanding of how many symbols may be needed for the complete representation of 

concepts in other medical domains. 
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Introduction: 
Natural Language Processing (NLP) is an interdisciplinary subject of artificial 

intelligence (AI) of machine learning and linguistics. There are several instances where 

the NLP techniques have been used to extract the meaning of a particular word of a 

sentence or simply the occurrence/absence of a word in a language corpus. Most of the 

earlier NLP systems were heavily depended upon grammatical rule based technology 

which had many limitations towards representing the corpus completely and thus forming 

a valid ontology. 

In later days the need for application of NLP techniques in medical domain has 

been realized mainly to process medical claims and billings. At that point importance of 

NLP to codify data in medical decision support for improved patient care was thought to 

be hard enough since the medical reports were written in „Natural Language‟ or in a free 

text form. SNOMED is the first well known lexicon based medical coding system that 

attempted to analyze and codify the medical data, mainly the terminologies or concepts 

available in a free text form. In more recent time, Medical Language Extraction and 

Encoding (MedLEE) system was developed to capture the underlying meaning or 

semantics of relatively simple medical sentences of radiology domain in free text form to 

some extent. Though there is a considerable amount of time has been invested by the 

scientists to extract the semantics of the medical „free text‟ data to improve patient care 

with fewer errors in decision making and to build an accurate coding system, no attempts 

have been made until now to fully and empirically measure the knowledge base to know 

the number of codes or propositions or symbols to represent the medical information 

source or corpus. Since the probability of semantic frequency of propositions has been 

calculated, Zipf-Mandelbrot formula has been used for the symbol estimation purposes, 
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though incomplete mapping of the corpus doesn‟t answer the ultimate usefulness of the 

Zipf-Mandelbrot law in measuring the current corpus and other medical domain too. 

Background: 

History of NLP: 

The notion that natural language could be treated in a computational manner grew 

out of a research program, back in the mid 1900s, based on Claude E. Shannon‟s 

mathematical logic (1948), advanced by Frege, Russell, Wittgenstein, Tarski, Lambek 

and Carnap. The first Russian- to-English translation projects of the 1950s, led to new 

research and development in order to automate the analysis and understanding of 

unstructured or “free” text [Inc., T.A.I. 2001]. Three key developments laid the 

foundation for natural language processing. In the early1950s formal language theory 

treated a language as a set of strings allowed by context-free languages and provided the 

underpinnings for computational syntax [Bird, S. et al. 2005]. In late 1950s the 

development of symbolic logic provided a formal method for capturing selected aspects 

of natural language relevant in expressing logical proofs. In the mid- 1960s – the ELIZA 

program was developed at MIT [Weizenbaum, J. 1966]. This was one of the most 

popular artificial intelligence programs of its time, and versions of it exist for most 

machines, including personal computers. ELIZA is a question answering system with 

fixed pattern-matching templates for keywords such as: How many (F) does (N) have?, 

where F is the feature and N is a noun. Each template had a predefined semantic function, 

like count (F,N). If user‟s query matched with the template, it was mapped to the 

corresponding semantic function, and eventually obtained the answer, K= count (F,N). 

This answer was substituted into a new template: N has K F. Finally subscripts are 
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eliminated and the answer in natural language form returned to the user. This approach to 

NLP is known as semantic grammar. Though still widely used in spoken language 

system, it suffers from brittleness, duplication of grammatical structure in different 

semantic categories, and lack of domain knowledge and portability [Allen, J. 1995]. 

In late 1960s the concept of “conceptual dependency” was introduced by Roger 

Schank and Larry Tesler in the field of natural language processing. The theory was 

implemented in a semantic parser for natural language. The parser was not concerned 

with the syntactic structure of the input sentence, but rather, it was concerned with 

underlying meaning of the input [Schank, R.; Tesler, L. 1969]. Schank believed that 

computers must have an understanding of domain knowledge before they could make any 

decisions. Schank and Tesler in their paper stated: 

 

This approach tried to correct a major weakness of ELIZA, namely the superficiality of 

its understanding and lack of focus on the relevant topic at hand. 

Another linguistic tool for studying actual human languages was developed by 

Charles J. Fillmore in 1968. The model is known as Case Grammar theory. Appendix 1 

represents the basic ideas that define a case structure grammar [Schmidt, C. F]. 

According to this concept, each verb has a set of named slots that can be filled by nouns. 

Each slot explains the semantic role of its filler with respect to the verb. The relationship 

 

The parser utilizes a conceptually-oriented dependency 

grammar that has at its highest level the network which 

represents the underlying conceptual structure of a linguistic 

input. The parser also incorporates a language-free 

semantics that checks all possible conceptual dependencies 

with its own knowledge of the world. 
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between the verb and noun phrase is known as „case‟. The „cases‟ represent deep 

structure or semantic relevance even when the surface structure is different. Table 2 

describes the difference between the surface vs. deep structure: 

 

 

 

 

Table 2: Surface structure vs. deep structure 

Casual agents are characteristics of action verbs, in which an agent brings some process 

about. This type of action verb (took, in example) always consists of a casual agent (e.g. 

John) and an object (e.g. medicine) [Parunak, V. 1995]. 

The first commercial research on NLP started in 1980s. Interest grew not only in 

understanding natural language, but also in the generation of written language. 

Researchers concentrated on the goal of discovering a partial understanding of the input 

rather than extracting the complete meaning of every sentence.  In the early 1990s 

emphasis was placed on using a large corpus for creating natural language processing 

applications [Bates, M. 1995]. 

Surface Deep 

John medicine John medicine 

John took medicine          subject direct 

object 

Casual 

agent 

object 

Medicine was taken by 

John 

prep.object subject Casual 

agent 

object 
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History of Medical Lexicons and NLP: 

Research in natural language processing in biomedicine began at the University 

Of Geneva, Switzerland in 1987 [Baud, R. et al. 1995]. The main directions of 

development were: a medical language analyzer, a language generator, a query processor, 

and dictionary building tools to support the Medical Linguistic Knowledge Base (MLKB) 

depending on conceptual graph knowledge representation [Baud, R. H., A. M. Rassinoux, 

et al. 1995].
 
Several methodologies, based on unification grammar appeared promising. 

Researchers focused on semantic representation in a domain, typically combined with 

syntax or symbolic driven methods. Researchers also began to formulate theories on 

discourse processing. “A discourse is an extended sequence of sentences produced by one 

or more people with the aim of conveying or exchanging information” [Ramsay, A. 

2003]. The majority of the domain- specific natural language processing research used 

either the Unified Medical Language System (UMLS) or the General Architecture for 

Language and Nomenclatures (GALEN) ontology [Rindflesch, T. 2003]. 

GALEN was concerned with the computerization of clinical terminologies. The 

major goals of the research were to: 

1) Allow clinical information to be captured, represented, manipulated, and displayed in a 

radically more powerful way [Rector. 2003] and 

2)  Support re-use of information to integrate medical records, decision support and other 

clinical systems. Their concern with the computerization of clinical terminologies led to 

the replacement of the static hierarchy of traditional clinical terminologies with a 

descriptive logic to help make them reusable and therefore better support computerized 

medical applications using clinical terminology [Rector, A. P.239-252. 1999]. 
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The GALEN project established the ontology, and GALEN Representation and 

Integration Language (GRAIL) formalism demonstrated the feasibility of combining 

concepts. GALEN-IN-USE developed the Common Reference Model (CRM) for 

Medical Procedures, a key element for systems which needed to support knowledge 

exchange between medical records, decision support, information retrieval and natural 

language processing systems in healthcare [Rector, A. P.75-78.1994]. (See appendix 2 for 

detail representation schema) 

The UMLS is a major synthesis of biomedical ontologies developed by National 

Library of Medicine (NLM), and serves as a resource to represent knowledge in across 

the biomedical domain. The UMLS is basically aggregation of domain specific 

knowledge bases, such as SNOMED CT, ICD-10, and CPT and can be applied in the 

development of computer systems which performs a variety of functions involving one or 

more types of information, i.e., patient records, guidelines, public health data, etc. The 

UMLS is focused on overcoming two important barriers to the development of 

information systems which can help health professionals make better decisions. These 

barriers are the disparity in the terminologies used in different information sources and by 

different users, and the sheer number and distribution of machine-readable information 

sources that might be relevant to any user inquiry [Humphreys, B.L.; Lindberg, D.; 

Schoolman, H.M., and Barnett, G.O.1998]. 

The UMLS Knowledge Source Server (UMLSKS) is the set of machines, 

programs and Application Programmer Interfaces (APIs), written in Java, that allow 

access to the UMLSKS services. There are three types of UMLSKS: the Metathesaurus, 
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the Semantic Network, and the SPECIALIST lexicon. The Metathesaurus is a large, multi 

purpose, multi-lingual vocabulary database, which contains information about biomedical 

and health related concepts, synonyms, and relationships between them. The purpose of 

the Semantic Network is to provide a consistent categorization of all the concepts in the 

Metathesaurus and thus provide a set of useful relationships between concepts. The 

lexical entry for each word or phrase from the Metathesaurus stores the syntactic and 

semantic information needed by the SPECIALIST lexicon system.  (Appendix 3 shows 

the results of queries from these three UMLSKS components) 

The first attempt at classifying diseases systematically was made by Sauvages 

with his comprehensive classification published under the title „Nosologia Methodica‟ 

[Knibbs, G.H. 1929]. Today the major classification for diseases in the International 

Classification of Diseases, Tenth Revision, Clinical Modification, ICD-10-CM, published 

by the Center of Medicare and Medicaid Services. All codes in ICD-10-CM are 

alphanumeric, i.e., one letter followed by two numbers. Of the 26 available letters, all but 

the letter U is used, which is reserved for additions and changes that may need to be 

incorporated in the future, or for classification difficulties that may arise between 

revisions. Some three-character categories have been left vacant for future expansion and 

revision (http://www.ingenixonline.com/content/icd10/structure.asp). (Appendix 4 shows 

the diagnosis codes derived from ICD-10 CM.) 

As more health care professionals agree upon the adoption of Electronic Medical 

Record (EMR) for sharing patient care information, the Federal Government has taken 

the initiative in endorsing standards for EMR interoperability. Since health information 
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coders use the narrative information from patient‟s reports, the government‟s effort to 

promote robust but complex coding standards will require new technology to assist 

coders. The NLM strongly believes the SNOMED CT lexicon will serve as lead clinical 

language standard for the national health information infrastructure [Jamieson, P. 2006]; 

however, after studying SNOMED-CT, several weaknesses have been found which may 

create certain constraints for proper coding of medical conditions: 

1. The example in figure 2 shows there is multiple concept IDs for „place‟. Another 

instance of multiple mapping is: „Displaced fracture‟ (134341006) and „Fracture 

with displacement‟ (123735002). For information retrieval, only one code should 

represent the sentence semantically, otherwise some reports will not be indexed 

properly for data mining, and some rules would not trigger in decision support 

applications. 

 

2. SNOMED CT is not corpus-driven. There are many terms that have no relevancy 

with any medical domain. For example, concept id 257653003 represents „open 

sea‟. The utility of 368,000 terms for medical data mining is unclear. The sheer 

number of codes makes it difficult to correctly assign the correct codes to a 

medical document. SNOMED does not offer training to coders to efficiently and 

reliably code over its entire code set. 

 

3. SNOMED CT is biased towards pathological analysis of the medical report. 

Domains such as radiology are not adequately represented through this 

terminology. 
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4. SNOMED CT is fairly good when representing one or two word phrases. For 

example, to represent a sentence such as “there is left lower lobe pneumonia”, a 

well defined SNOMED concept is “left lower zone pneumonia”. This concept is 

totally unambiguous. On the other hand, concepts combination like “new”, “lung 

structure”, “radiographic opacity”, “no”, “abnormal”, “radiographic infiltrate of 

lung” do not precisely represent the meaning of the sentence like “there are no 

focal areas of abnormal opacity overlying the lungs to suggest infiltrate” for 

extraction  of related data. SNOMED CT is difficult to use when many concepts 

must be used to represent a single sentence in a medical report [Jamieson, 2003] 

These unanswered questions restrict the utility of SNOMED and create hindrances for 

building a strong NLP extraction methodology for data mining and decision support 

[cross reference: Jamieson unpublished work] 

MedLEE--A Medical Parser using a Semantic Grammar: 

A medical NLP system for information extraction was developed by Carol 

Friedman at Columbia University, known as Medical Language Extraction and Encoding 

(MedLEE). The goal was to help physicians to extract information to communicate with 

the decision support system, in order to reduce health care cost, and eliminate coding 

errors. Her method involves taking the structured output generated by MedLEE and 

matching both findings and modifiers to obtain the most specific UMLS code. This 

system is guided by a semantic grammar consisting of patterns of semantic classes, such 

as degree + change + finding, which would match „mild increase in pleural effusion‟.  

These classes are built based on UMLSKS [cross ref. Rindflesch, T.C. et. al. 2003]. 
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Currently, MedLEE parses a medical text document into a series of observations, with 

associated modifiers and modifier values. These observations are organized into sections 

corresponding to sections of the medical document. The result of the parser is an XML 

document of observations, with these observations linked to the corresponding narrative 

text [Nielson, J. & Wilcox, A. 2004]. The main components of this system are pre-

processor, parser, error recovery module, phrase regularizer and encoder. Fig. 1 shows 

the knowledge components and the workflow for creating structured data: 

 

Figure 1: MedLEE Knowledge components: 

From processing free text to creating structured data 

 

Other Medical NLP Systems: 

There are some other NLP systems developed in medicine such as A Query 

Analyzer (AQUA), RECIT (an acronym for Representation du Contenu Informationnel 

des Textes médicaux), etc. [cross ref. Rindflesch, 2003]. Most of these systems are rule 

based, where the narrative text follows some pre-defined grammar rules to extract the 

desired information; but there are certain problems associated with the rule based frame 

works. Pre-defined rules can be successful for interpreting a simple sentence, however, a 
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challenge all medical NLP systems face is that valid semantic knowledge is commonly 

found in syntactically incorrect sentences, and that less commonly invalid semantics 

(nonsense) can be found in syntactically correct sentences. 

As sentence complexity increases, some computational linguists add new formulas in 

order to make the logical reasoning complete. This leads to the well known “Frame 

Problem” in artificial intelligence, namely, additive functions make it impossible to 

express a rule with an open ended set of exceptions. For example, it is possible to create 

rule to frame the semantics of the sentence like „The ventricles are prominent‟ with first 

order predicate logic (FOPL), where the relations or predicates (i.e., prominent) are 

placed on the left hand side and terms or body parts (cerebral sulci and ventricles) are 

placed to the right, such as (Prominent: Cerebral Sulci). FOPL can modify only a single 

subject at a time. If the sentence becomes larger with more complex concepts like „The 

cerebral sulci and ventricles are prominent, compatible with mild diffuse cerebral 

atrophy‟, FOPL must use more complex structures or it may fail to capture the entire 

meaning of the sentence. 

The extraction of key words or noun phrases from the medical text is not complete 

enough to represent the knowledge required in decision support and data mining. For 

example, the natural language parser can pullout terms from clinical reports using 

shallow parsing, and then alert clinicians about a possible adverse drug reaction. 

However, to go beyond simple concept spotting requires a deeper knowledge of the 

domain. MedLEE lacks a knowledge representation framework for representing many 

medical concepts and their relations. A domain-independent knowledge representation 

must be granular enough to represent all the information expressed in the free text. If not, 
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precision will be lost for both researchers performing text analysis and informaticists 

designing decision support systems. Appendix 5 shows the input and output of MedLEE, 

whose primary goal was to analyze free text radiological reports. It is capable of 

capturing the radiological phrases in a structured format, but at the same time, its lack of 

domain knowledge does not make allow it to reject semantic nonsense, or recognize 

when it simply can‟t fully analyze a given sentence. Table 3 shows a few meaningless but 

real radiological sentences and their representation in MedLEE. Structuring any 

syntactically correct word irrespective of its semantic value raises questions about the 

competence of the NLP system, and the range of phenomena it can truly extract. 

 

Actual ‘no-sense’ radiological 

sentence 

MedLEE representation 

1. Heart size is mediastinal 

contour. 

 

finding: size of heart 

bodyloc>> mediastinum 

idref>> 14 

code>> UMLS:C0025066_mediastinum 

idref>> [14] 

code>> UMLS:C1278909_entire 

mediastinum 

idref>> [14] 

certainty>> high certainty 

idref>> 12 

idref>> 8 

parsemode>> mode4 

sectname>> report summary item 

sid>> 2 

code>> UMLS:C0744689_heart size 

idref>> [8] 
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2. The patient has had prior 

surgical removal of the 

ballbladder . 

 

procedure:surgery 

idref>> 18 

parsemode>> mode4 

sectname>> report summary item 

sid>> 2 

 

procedure:procedure 

idref>> 18 

parsemode>> mode4 

sectname>> report summary item 

sid>> 2 

bodyloc>> biliary tract 

idref>> 18 

code>> UMLS:C0005423_biliary 

tract structure 

idref>> [18] 

code>> UMLS:C1278928_entire 

biliary tract 

idref>> [18] 

code>> UMLS:C0005427_biliary 

tract surgical procedures 

idref>> [18] 

 

3. The lungs show lung volumes . 

 

bodymeas:lung volume 

idref>> 14 

parsemode>> mode4 

sectname>> report summary item 

sid>> 2 

code>> UMLS:C0231953_lung volume 

idref>> [14] 

 

4. The lung volumes are 

somewhat lobe. 

problem: low lung volume 

certainty>> high certainty 

idref>> 14 

degree>> low degree 

idref>> 16 

idref>> [10,16] 

parsemode>> mode4 

sectname>> report summary item 

sid>> 2 

 

bodymeas:lung volume 

certainty>> high certainty 

idref>> 14 

degree>> low degree 

idref>> 16 

idref>> [10,16] 

parsemode>> mode4 

sectname>> report summary item 

sid>> 2 

degree>> low degree 

idref>> [10,16] 

code>> UMLS:C0231953_lung volume 

idref>> [10,16] 

 

Table 3: MedLEE‟s information extraction and coding of some real „no-sense‟ sentences  
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Thus, to develop a high precision semantic retrieval system, it is very important to 

have a deep understanding of the domain knowledge. There are many ways in which 

knowledge can be represented in a computer system. One way is to use a set of 

propositions that represent the knowledge within a specialized field of study, such as 

radiology. Currently computational linguists are only able to analyze 30% of English 

sentences and transform them into structured forms [Rebholz-Schuhmann D, et al. 2005]. 

Unfortunately, there are a limited tools and methods available for systematically 

categorizing a large domain knowledge into „knowledge elements‟. BioTeKS, a tool 

developed by IBM researchers, is capable in pointing out some semantic categories and 

their relations using automated annotators [Mack R. et al. 2004], but fail to extract the 

broader semantic relationships found in medical reports without creating and refining a 

large rule-based grammar especially within a complicated domain [Jamieson, P. 2004]. 

 

Table 4 shows a comprehensive list of some existing NLP systems and lexicons 

including their characteristics and limitations: 

NLP systems 

and lexicons 

Characteristics Limitations 

ELIZA Question answering system with 

fixed pattern-matching templates for 

keywords. 

Brittleness, duplication of 

grammatical structure in 

different semantic categories, 

and lack of domain knowledge 

and portability. 

GALEN 

Ontology 

Allows clinical information to be 

captured, represented, manipulated, 

and displayed in a radically more 

powerful way. Demonstrates 

Only pre defined, restricted 

combinations of concepts are 

allowed. 
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feasibility of combining concepts. 

UMLS 

lexicons 

Can be applied in the development of 

computer systems which performs a 

variety of functions involving one or 

more types of information, i.e., patient 

records, guidelines, public health data, 

etc. 

 

 

Only one-to-one relationships 

are mapped 

– Only terms from source 

vocabularies present; no new 

terms added 

– No unifying hierarchy is 

present, only those that exist 

in source vocabularies 

– Not extensible (i.e., in the 

SNOMED sense) 

 

ICD-10 CM 

lexicons 

All codes are alphanumeric, i.e., one 

letter followed by two numbers. Used 

in disease classification. 

Limited coding systems. 

Granularity often inadequate. 

SNOMED-CT 

lexicons 

A standard with more than 368,000 

codes to analyze health records. 

Compositional in nature. 

Coding ambiguity. Ignores 

context. Granularity often 

inadequate, e.g., no coding for 

„gross‟ soft tissues. Highly 

conceptual based hierarchy. 

(Chute, 2005) 

 

MedLEE : 

IR And 

Coding 

system 

Most sophisticated natural language 

information extraction system. 

Knowledge base is not clearly 

specified. Mainly focused on 

absence or presence of key 

phrases in the sentence. 

 

Table 4: Different NLP systems including characteristics and limitations 
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Significance: 

Importance of Natural Language Processing (NLP): 

Informatics can help solve one of the most vexing problems in US health care -- rising 

cost. The public demands high quality care at an affordable price which is increasingly 

difficult to deliver. Quality improvement is particularly important in chronic disease 

management since chronic diseases account for 75% of total health care costs in the US. 

Prevention of long term complications depends on the implementation of essential 

evidence-based services [CDC. 2004] which could dramatically lower costs. 

Researchers have developed decision support tools such as antibiotic advisors, which 

have lowered costs and reduced hospital stays [Kuperman, G.J. et al. 2003]. However, the 

lack of semantic and conceptual understanding of structured healthcare terminology is a 

barrier to deploying decision support applications and improving clinical management. 

Medical documents –electronic or paper, are rich in biomedical information but most of 

the information is recorded in a narrative text (natural language) form. W. Giere stated, 

“… although it is possible to structure medical records and to use codes or abbreviations, 

for much of the data which is frequent and typical, there can be no medical record or no 

useful electronic patient information without narrative text, i.e. “free text” [Giere, 2004]. 

Drawing medical conclusions from this enormous repository of unstructured free text 

data and creating a knowledge base for a high quality treatment is one of the grand 

challenges in health informatics. 

For computer supported decision making, all data relating to health care events, 

including free text data should be analyzed. Free text information must be semantically 

understood, extracted and converted into a structured coded form [Hripcsak, G; 

Friedman, C et al. 1995]; Natural language processing (NLP) is a computational field that 
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attempts to convert free text into structured form to perform tasks like translation, speech 

recognition, summarization, information extraction, and document categorization. A NLP 

system must be able to represent knowledge in a form appropriate for computer 

manipulation. Statistical and logical modeling of natural language is studied by 

computational linguists (CL). Their goal is the development of a description of natural 

language, where a theory guides the descriptive format, and a methodology establishes 

the procedures for obtaining the description. Both the descriptive format and 

methodology significantly impact the system‟s design [Nirenburg S, Raskin, V. 2004].  

According to computational linguists a text string with one given semantic meaning 

should be represented by unique symbol(s), and two text strings with the same semantic 

meaning should be represented by the same unique symbol(s) [Cimino, JJ. et al.1994]. 

For example, words like „normal‟ and „unremarkable‟ should share the same unique 

symbol since both of them represent the same meaning semantically. 

To create a knowledge base or ontology, a specification of conceptualization 

(Gruber, T. 1993) is required. CLs require a keen understanding of the way knowledge is 

organized in the free text, and NLP techniques which can extract that knowledge in order 

to represent the document‟s semantics. Knowledge representation (KR) is not typically 

concerned with the physical details of how knowledge is encoded, but the overall 

conceptual scheme [Jackson, P. 1999]. Jamieson (in press) states that unless a 

computational system knows how and what to represent in free text documents, users 

cannot mine the free text successfully. Most existing coding systems are focused on 

building lexicons, overlooking the importance of the KR at the semantic level. Natural 

language processing must develop new schemes for knowledge representation to 
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accurately reflect document semantics. However, current NLP systems rarely describe 

methods for evaluation their KR schemes [Robert H. Baud et al.1997]. 

 

Why Knowledge Representation is Important in Medical NLP: 

Despite the rigorous research in medical NLP, Lee and Bryant (2002) have stated 

that there had been limited successful attempts made to automate the extraction of 

knowledge from documents written in a natural language. First, NLP involves the 

integration of many forms of knowledge, including syntactic, semantic, lexical, pragmatic 

and domain knowledge [Chen, H. ET. Al., 2005]. Another reason is the ambiguity of 

some terms, and the complicated hierarchies of existing classifications and concepts such 

as the Systematized Nomenclature of Medicine- Clinical Terms (SNOMED CT). For 

example, the phrase „displaced fracture‟ and „fracture with displacement‟ have two 

separate identifiers in SNOMED-CT, even though the semantics of those phrases are 

equivalent.  The design problems of existing classifications and coding systems must be 

addressed before one can extract knowledge through natural language processing. 

Redundancy and inconsistent vocabularies as well as the lack of granularity are obstacles 

which make interoperability difficult among different information systems. For example, 

„yes‟ and „no‟ can be represented in different ways in different databases like y = yes and 

n= no, 1= yes, 2= no or 0=y, 1=n. Without creating a unique identifier for „yes‟ and „no‟, 

the operation of a query system could be impaired. For example, there is no such concept 

identifier available to describe “focal infiltrate” in ICD-10-CM. because the term 

“infiltrate” does not exist in the ICD-9 lexicon since it doesn‟t imply disease. 
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Beside the hurdles of ambiguity, granularity and hierarchical complexity, existing 

coding systems are not corpus based. The word „corpus‟ is defined as a large collection of 

related written documents. A corpus should aim for balance and comprehensiveness 

within a specific sampling frame, in order to allow a variety of language to be studied, 

because without limiting the domain boundary, it is impossible to collect all of the 

utterances of a natural language within one system [McEnery, Tony. 2003]. Studying a 

medical corpus empirically helps to better understand and analyze the pattern of the 

related documents in free text and build a strong knowledge base to process the free text 

with few limitations. Some clinical applications (table1) that have used corpus based 

NLP technology are as follows: [Chen, H. 2005] 

Clinical Domain Application 

Progress notes Quality Assessment 

Pathology Key diagnoses for indexing 

Radiology, Emergency 

Medicine 

Coding for billing 

Discharge summary ICD-9 CM for indexing 

 

Table1: Some clinical applications that use corpus based NLP technology 

Problem Statement: Sentence Based Semantic Analysis in 

Medical Domain: 
As previously mentioned, medical reports are being actively researched by 

computational linguists for various reasons: 

 The need to improve medical decision making 

 The availability of manpower to manually structure and codify free text. 
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 The limitations of free text for data mining and decision support 

 There is a large corpus of published  reports 

 

A review of the literature [Greenes, RA. 2003, Calzolari, N. 2003, Zarri, GP. 1996] 

confirms that medical knowledge representation is a key component in medical natural 

language processing. The knowledge construction activity has consumed significant 

effort among investigators trying to develop a comprehensive standardized health 

lexicon. The Unified Medical Language System (UMLS) sponsored by the National 

Library of Medicine has been in development for over 20 years. Despite this concentrated 

effort, there is not a well structured code set by which most medical report sentences can 

be represented semantically. The methodology for constructing an adequate knowledge 

representation system is a challenging research area that has received little formal 

analysis. Most knowledge representation schemes have not been empirically driven and 

few have been scaled to encompass a substantial medical domain such as radiology. A 

good NLP system grounded with a comprehensive sentential semantic knowledge base 

would allow the physicians to use the free text in a report for text mining and decision 

support and must meet the following criteria: 

 Semantically equivalent text string(s) should have same unique 

symbol(s). 

 One symbol = one meaning only. 

 Identify sentences with only valid semantics. 

 Document the system‟s abilities and limitations to the end users to 

avoid confusion. 
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Most knowledge representation research has focused only on terminology or 

lexicons. Alan Rector in his article “Clinical Terminology: Why Is It so hard?” points out 

several obstacles to terminology development. Scaling terminology by an order of 

magnitude or more from current code sets like ICD-9 or CPT is notoriously difficult, and 

requires a change in methodology and technique [Rector AL. P.239-252. 1999, Rector 

AL. P.1-4.1999]. Beside scalability, there are fundamental conflicts between the needs of 

users and the requirements for developing software. Few medical computational linguists 

have articulated a coherent semantic theory or described in detail their formal concept 

representation system for modeling the semantics of medical sentences. Without 

articulating a semantic theory it is impossible to extract the free text sentences from the 

medical reports that are equivalent in meaning to each other [Jamieson P.W. 2006]. 

The sentential semantic theory is based on sentential logic or propositional logic. It is that 

branch of logic that studies ways of combining or altering statements or propositions to 

form more complicated statements or propositions. Joining two simpler propositions with 

the word "and", “or” is two common ways of combining statements. When two 

statements are joined together with "and", “or” the complex statement formed by them is 

true if and only if both the component statements are true. For example, „No abnormal 

filling defects or extravasation of contrast was noted‟ can be more completely 

represented by the propositions: „There are no abnormal filling defects‟ and „There was 

no extravasation of contrast was noted‟. 

There are several benefits of the knowledge representation of descriptive text at 

the sentential semantic level. First of all, it eliminates ambiguity underlying the 
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knowledge contained in the sentence, e.g. the phrase „There is mild atrophy‟ may 

indicates both „mild cerebral atrophy‟ and „mild muscle atrophy‟; however, 

understanding  the correct context makes it possible to identify and code the sentence in 

an unambiguous way. Next, a corpus-driven knowledge base is an efficient way to 

express concepts with the fewest codes. For example, to represent a sentence „NG tube is 

in place with its tip not seen in the film‟ in SNOMED-CT (Systematized Nomenclature of 

Medicine-Clinical Terms) six different types of code are required (see figure 2); while a 

sentential knowledge representation technique has an advantage to express the meaning 

only with one unique proposition (see figure 3). These ideas, if properly applied will 

facilitate text mining and semantic queries with high precision, and make decision 

support easier for health informaticists to implement. 

 

 

 

 

 

Figure 2: Example use of SNOMED-CT codes to represent typical 

medical sentence. 

Text line in a medical report: “NG tube is in place with its tip not seen in the 

film”. 

NG – Nasogastric tube, NGT- Nasogastric tube -> 17102003 

Place -> 246297005, 257557008 

Catheter Tip -> 116204000 (closest match for „tip‟) 

Not seen -> 47492008 

Plain film -> 168537006 (closest match for „film‟) 
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Figure 3: Usage of proposition in Rdx Editor to represent one unmapped medical text 

line. 

Numbers on the right hand side showing frequency of occurrence of that line in the 

corpus 

 

One of the reasons it is difficult for a NLP system‟s to extract and codify the 

meaning of free text is that language understanding is very knowledge intensive. One 

way to improve a NLP system is to create a rich semantic knowledge base that mirrors 

the content of the domain it is trying to analyze.  Existing NLP systems frequently do not 

describe their semantic knowledge in enough detail, so one can determine exactly what 

they are capable of extracting. It is critically important to have a thorough understanding 

of the system‟s knowledge structures including predicates, terms, and operators. The data 

structures can reveal whether a NLP system can represent the semantics of a phrase, 
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sentence, or a larger textual unit like a paragraph or document. Even when a NLP 

system‟s data structures are disclosed, it is still important to understand precisely which 

concepts can be represented. For example, consider the following concepts: „The patient 

is status post craniotomy‟, „The patient is status post left craniotomy‟, „The patient is 

status post left frontal parietal craniotomy‟, „The patient is status post left temporo-

parietal craniotomy‟, and „The patient is status post left temporo-occiptial craniotomy.‟ 

Clearly, there are differences in “granularity” between these concepts. If a researcher was 

only interested in finding patients that have had a craniotomy, or a procedure where the 

neurosurgeon entered the skull, then the top level concept, „The patient is status post 

craniotomy‟ would be the only concept the NLP system would be required to represent. 

But what if the researcher were a neurosurgeon that wanted to find all cases in which a 

left temporo-parietal craniotomy was performed.‟? In this case, if the NLP did not have 

an entry in its knowledge base which describes this concept, it is highly unlikely that the 

NLP would be able to locate reports that described this procedure. 

Another problem most NLP systems fail to confront is the inevitable mismatch 

between the documents they wish to analyze and the knowledge base they wish to use. 

Knowledge is very context specific. If the semantic knowledge base is not derived from 

the source documents being analyzed it is highly likely some concepts will not be 

represented.  These observations frame the power of a natural language processing 

system in a new light. The heart of the system is much more than the NLP text extraction 

algorithms. The quality and depth of knowledge representation are critically important. 

Given how important the semantic knowledge base is for the overall success of the NLP 

system it is surprising that very little information exist to describe and quantify how large 



27 

 

a knowledge base is needed to represent a knowledge domain. While we know the 

frequency of words in various collections of documents, the informatics community has 

no understanding of how many concepts are needed to represent the knowledge in a 

domain like radiology.  This has critical ramifications for the development of code sets 

like SNOMED CT, which are attempting to model the clinical domain. 

 

Statistical Sentential Semantics: 
This thesis attempts to answer how many semantic symbols are needed to 

represent the radiology domain. The research will examine, which symbols are most 

important from the standpoint of representing most of the content. It will attempt to 

empirically determine the frequency distribution of sentences mapped to sentential 

propositions (a convenient way of representing statements in natural language). I will 

examine Zipf‟s Law and a related equation, the Zipf-Mandelbrot equation to see if one 

can predict the distribution of the semantics of a domain. If this is successful, a prediction 

will be made of how many propositions will be required to represent a certain percentage 

of the domain. It also shows how well Zipf-Mandelbrot law represents the actual data of 

this particular corpus. 

The keys to this research are: 

(1) Empirically deriving from a large corpus of radiology documents the 

propositions needed to cover a portion of the sentences in the domain. For 

this research, I will use a knowledge base with over 2 million sentences 

that have had their semantics fully characterized. 
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(2) Understanding the mathematics of information communication and coding. 

Probably the greatest mathematician to formulate a coherent theory in this 

area is Claude Shannon. Shannon considered a source of information as 

one that generates words composed from a finite number of symbols. 

These are transmitted through a channel, with each symbol spending a 

finite time in the channel. He used statistics with the assumption that if xn 

is the nth symbol produced by the source the xn process is a stationary 

stochastic process. Our problem is not so very different. However, instead 

of words, we are working with larger units of semantic information called 

propositions. Instead of transmitting symbols through a channel, we need 

to map sentences to propositions. Each symbol (proposition) used by the 

Rdx editor has a certain probability of occurrence based on the frequency 

distribution of concepts in the corpus. 

 

Research Methodology and Results: 
The frequency of propositions and other linguistic units play a central role in 

corpus linguistics. Indeed, the use of frequency information distinguishes the corpus-

based methodology from other non-empirical approaches in computational linguistics. In 

order to study the proposition frequency distribution, we counted all the instances of 

semantically equivalent sentences that were mapped to a given proposition that occur in 

the corpus of interest [Baroni, M. 2006], for our case the radiology domain. 
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Rdx Editor: 

Semantically annotating sentences is a labor intensive process. Rdx, is a semantic 

annotation tool (see figure 3), that makes it easier to semantically tag each sentence in a 

domain. The first step is to segment each report into sentences. For our domain there are 

4.4 million sentences of which slightly over 2 million are unique. Propositions are created 

and then arranged in a knowledge base to represent the underlying meaning of the 

segmented sentences from the radiological reports. Sentences equivalent in meaning 

(semantics) are mapped to the same proposition(s). Mapping sentences and creating 

propositions is done through a semi-automated process using different statistical methods 

such as K nearest neighbor (K-NN) method. This method computes the nearest neighbor 

or the nearest matching to the unknown target sentence in the corpus. The K highest 

ranked sentences that were previously mapped to the same proposition(s) were retrieved, 

sorted by the 7 most relevant pre-mapped sentences first in the list.  Propositions in the 

knowledge base have been arranged according to the semantic hierarchy, not the 

conceptual hierarchy. The most general propositions are presented at the higher level in 

the knowledge base followed by the more specific one. Sentences with high ambiguity 

and personal information have been marked as „skipped‟. The mapping is checked, 

revised and approved by the senior medical editor, who has the sufficient domain 

knowledge. 

The sample size: 

The radiology corpus contains over 4 million sentences. Currently, 50% of total 

corpus sentences have been mapped to approximately 5700 propositions of the semantic 

knowledge base. About 63,800 sentences (1.45% of entire corpus sentences) has been 

marked as „skip‟ because a sentence contains only a single word (none, otherwise, Dr., 
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etc.) which can be easily ignored for the semantic analysis purposes and about 12,053 

(0.27% of 4 million sentences) sentences containing personal information (Doctor‟s 

name, patient‟s name, etc.) which have been deleted to maintain the HIPAA privacy rules 

and regulations. Other sentence like “Otherwise normal exam” has been skipped due to 

its highly ambiguous nature. The sentence is mainly dependent on the prior sentence of 

the report and without discourse understanding, this sentence can‟t be analyzed. 

Procedures and Statistical analysis: 

A SQL stored procedure has been developed (see appendix 6) to count the current 

semantic frequencies of sentences mapped to propositions. Figure 4 shows the outcome 

of the stored procedure. The numbers in „totfreq‟ column demonstrate the weighted 

frequencies of all text lines in the corpus that have been mapped. The more frequently a 

proposition is used to map sentences, the more weight is has.  „Statement‟ is the ranked 

propositions in a descending order. 

To compare the actual and predicted trend of frequency vs. ranks of first 10,000 

data points, a graph (figure 5a) has been drawn. Note that each axis is plotted on a log 10 

scale. 

After reviewing existing power-law formulas, to model the behavior of the semantic 

frequency accurately and estimate an approximate number of total propositions required 

to cover whole corpus, The Zipf‟s law has been applied. The Zipf‟s-Mandelbrot formula 

(a special case of Zipf‟s original formula) was used for first 100 propositions to adjust the 

higher frequency more closely to fit the Zipfian straight line. The formula is as follows: 

Term (semantic) frequency =  
C

K  r
` a
ffffffffffffffffffffffffff

 , where C (2113489), K (6.3) and    (1.33) are 

the three parameters that have been used to provide a fit for the actual data (partially 
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shown in figure 4. The rank of the propositions is represented by the symbol „r‟ (1, 2, 

3…n). 

In deriving the formula,   has been calculated to get the slope of the line. Three data 

points from the excel spreadsheet have been selected to calculate the slope accurately. 

Parameter C symbolizes the point where the slope cuts the Y axis. It has been estimated 

using Y intercept formula: Y=mx +b, where m is the slope, x is the value of X axis (rank) 

and b indicates Y-interception point. The final step is to calculate the K value to 

minimize the distance error between actual data point and predicted data point at the 

higher frequency level, i.e., first 100 highest ranked propositions. Various values of K (0, 

4, 5.5, 6.3, and 7) have been examined to fit the actual data best (see appendix 7).The 

total number of mapped lines has been summed up to 2259944(adjusted predicted value). 

The linear portion of the curve derived from the actual data, follows the formula 

originally developed by Zipf, since Mandelbrot‟s formula doesn‟t correspond to a straight 

line in double logarithmic space. The Zipf‟s equation is as follows: 

Frequency (semantic sentences) =  
C

r
` a
ffffffffffff

 , where  (1.33) is the slope of the line, C 

(2113489) is the Y-intercept and r (1…n) is the rank of the proposition. The total number 

of actual adjusted mapped lines is 2194133. 

Finally, comparison between the actual data curve and estimated data curves 

based on K value (figure 6) has been performed to prove the efficiency of the formula in 

representing a model for estimating the extent of knowledge base in the radiology corpus. 

In addition to the frequency counting, statistics regarding the percentage of total corpus 

area covered by the current propositions were measured. The area covered by each 

proposition was estimated based on the cumulative semantic frequency of ranked 
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propositions, i.e., if the first proposition in rank covers 141,851 semantically equivalent 

sentences and second highest proposition is linked to 107,812 sentences, together they 

cover about 4.36% of the corpus. To analyze the data, first 5,500 ranked propositions and 

their corresponding predicted frequency counting has taken into account  The data 

predicts about 52.26% of the corpus can be mapped to 10,000 propositions (figure 7). 

The nature of the graph suggests that approximately first 3,000 propositions have the 

most frequent text lines that rapidly cover almost half of the corpus area. From data 

mining perspective, these propositions contain the most important concepts or 

knowledge. The linear portion of the graph represents rarer sentences with lower 

frequencies that may need a new proposition to represent the underlying meaning. 

Increase in the rate of creating propositions does not imply greater coverage of the 

corpus, since semantic frequencies are in lower ranges (in most of the cases less than 5 

occurrences). 

In addition to the Zipf‟s law, a brief attempt has been made to calculate the average 

entropy of the propositions using Shannon‟s theory of communication (see appendix 8) 

and correlate it with Zipf‟s law. The formula of information entropy derived by Shannon 

is: 

H= - ∑ Pi * log2 Pi (bits per symbol) 

Where H = informativeness per symbol or uncertainty, Pi = probability of i
th

 symbol. The 

entropy has been measured from the sentential semantic probability distribution in the 

corpus. The calculated average semantic entropy is 8 bits per symbol in this radiology 

corpus, which suggests 2 to the power 8 or 256 symbols, represent most of the semantics 



33 

 

of the 2 million sentences in the corpus. Discussing the theory of communication in detail 

beyond the entropy calculation and definition are out of scope of this research paper. 

 

 

Figure 4: Table showing top ranked propositions by frequency of mapped sentences in 

the corpus 
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Actual Semantic frequency distribution of radiology concepts

following Zipf's law
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Figure 5a: Distribution of actual and predicted semantic frequency vs. rank of first 10,000 

propositions in log-log scale 
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Actual and predicted semantic frequency of radiology concepts using

Zipf and Zipf-Mandelbrot formula 

(Semantic Frequency = 2113489/(6.3+r)^1.33)
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Figure 6: Actual and predicted semantic frequency distribution using Zipf and Zipf-

Mandelbrot law 
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Figure 7: Prediction of corpus coverage by 10,000 propositions. 
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Discussion: 

Semantics and Zipf’s Law: 

Currently, medical natural language processors do not adequately extract the 

semantics of medical reports at the sentence level. Many NLP systems like MedLEE 

identify key phrases using simple “chunkers” that are based on part of speech tagging. 

Syntactical and/or semantic analysis is mostly performed using rule base technology. 

However, we propose that semantic analysis of free text can be replaced by stochastic 

method or statistical modeling to facilitate the scaling of semantic extraction in a 

complex domain. Rule based technology is efficient for knowledge extraction of a limited 

number of concepts or analyzing a small and simple sentence. As the sentences grow in 

complexity, it is impractical to add rules because the entire system becomes 

unmanageably complex. Returning to the example given by Jamieson, the NLP system 

that wants to semantically interpret the phrase „There are no new breast masses to 

suggest malignancy‟ must make it clear which terms are modifiers and what terms they 

modify, or placing the predicates into a more general structure. Only the NLP system 

with deep understanding of a medical domain can perform the semantic analysis 

completely. It is very easy to delete some portion of the sentence where the granular 

analysis is not intended in the NLP system, but eliminating a significant part from the 

sentence doesn‟t reflect system‟s semantic analytical ability at the sentence-level. For 

example, if the system is only interested in clinical finding like „breast masses‟ from the 

sentence „There are no new breast masses to suggest malignancy‟ it might ignore the 
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malignancy portion. Thus, leaving a significant chunk of the sentence from processing 

degrade the overall NLP power of the system. It is also important to know that a sentence 

is not only a „bag of words‟; rather, it is a combination of „inter-related words or 

concepts‟ that express the full semantic of the sentence. For example, considering the 

above radiological phrase, sentential semantics is not the aggregation of each individual 

term in the sentence; instead, it is the reproduction of the same complex concept 

represented in different ways in medical reports. Finding this similarity in meaning 

among various sentences in a medical domain avoids ambiguity and misclassification of 

codes [White, M. D., Kolar, L. M., & Steindel, S. J. 1999] for data mining, decision 

support and interoperability. 

 

Why Zipf’s Law: 

We have calculated the frequency of symbols (propositions) according to their 

rank in this paper and the result shows a decrease in frequency as the ranks increase and 

interested in predicting the number of propositions required to map the corpus, we tested 

our data using Zipf‟s law to see if the trend of the line also follows the Zipf‟s law. 

Originally, this law was utilized in bibliometrics (library and information science) for 

quantitative analysis and statistics to describe the pattern of words occurring in a 

decreasing frequency manner within the text. The rank of a word on that text multiplied 

by its frequency will equal a constant. Zipf‟s law is often used to predict the frequency of 

words within a text. This law shows the probability of occurrence of words or other items 

starts high and tapers off. Thus, a few items occur very often while many others occur 

rarely. However, Zipf‟s law can also model the World Wide Web surfing process [Cunha, 
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C. R., Bestavros, A., Crovella, M. E. 1995] to show the relationship between page “hits” 

and page rank. Figure 8 shows a Zipf distribution for incoming page requests to 

www.sun.com during a one-month period [Nielsen, J. 1997] 

 

Figure 8: Zipf distribution for incoming page requests to www.sun.com during 

a one-month period 

 

Baroni (2006) showed that Zipf-Mandelbrot law correctly modeled the frequency 

distribution of words in various corpuses. The Brown Corpus of Present-Day American 

English consists of 1,014,312 words of running text of edited English prose printed in the 

United States during the calendar year 1961. The British National Corpus (BNC) is a 100 

million word collection of samples of written and spoken language from a wide range of 

sources, designed to represent a wide cross-section of British English from the later part 

of the 20th century, both spoken and written. The latest edition is the BNC XML Edition, 

released in 2007. „The world of the Wars‟ was written by Herbert George wells in 1897 

consists of 60,308 words. This novel was written in response to several historical events. 
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The la Repubblica corpus has 325,290,035 tokens of Italian newspaper text. The corpus 

of Japanese webpage contains 2,175,736 tokens. 

The usefulness of the Zipf‟s law in figuring out the required symbols in representing 

sentential knowledge of the partial corpus is a unique and important outcome of this 

research. Zipf's law stated that, in a corpus of natural language utterances, the frequency 

of any word is roughly inversely proportional to its rank in the frequency table. So, the 

most frequent word will occur approximately twice as often as the second most frequent 

word, which occurs twice as often as the fourth most frequent word, etc. Zipf's law is a 

consequence of independently categorizing items, and rank ordering the categories. 

Therefore, it can be applied to many natural distributions [Wheeler, E. S., 2002] and falls 

under a more general rubric of scaling phenomena. Property of the subject matter is 

trivial at this point. 

We propose that instead of using „words‟ as symbols representing the semantic meaning 

in a corpus,  „propositions‟ better model the semantic meaning of sentences in the corpus. 

We use propositions as our atomic unit and calculate the rank-frequency distribution. The 

graph of rank-frequency distribution in figure 13 actually shows that the semantic 

distribution of the corpus follows Zipf‟s law except in the higher frequency area. The 

Zipf‟s-Mandelbrot formula has been applied to make the curve more look like a straight 

line as Zipf mentioned in his theory.  The green solid line and red dotted line using Zipf-

Mandelbrot law shows the current and future trend of the semantic distribution. At 

present, there are little over 5,600 propositions in the knowledge base and the green solid 

line follows the Zipfian distribution. If this distribution pattern continues in the future 

(red dotted line), it will be easier for us to predict the approximate number of propositions 
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required to cover the radiology corpus (at least 70- 80% of the corpus is the target).The 

deviation of the actual empirical data at the low end is due to a variety of factors, 

including the fact the corpus is not fully mapped yet to have enough accumulated 

propositions of low-frequency interest. 

 

Prediction of estimating the probability of semantic symbols in a certain corpus is unique 

from another aspect. Most of the existing coding systems like SNOMED CT, CPT, ICD -

9 CM, do not try to derive the symbols empirically from a particular corpus at the 

sentential semantic level. Sometimes unclear meanings of some of the concepts fail to 

represent the semantics of the sentence found in free text form within a corpus and thus 

make the usage of coding system difficult. For example, the phrase „right heart murmur‟ 

might suggest EITHER Cardiac murmur with PMI on right chest wall OR murmur 

diagnosed as originating from right side of heart 
 
[Wilcke, 2000].  Also, we do not know 

exactly how many codes are necessary to cover all the information in the clinical domain, 

though SNOMED CT has 368,000 codes primarily designed to cover all aspects of 

pathological concepts. Their coding system does not define the code „open sea‟ or how it 

is related to a medical concept. The lack of a gloss or „use case‟ makes it difficult to 

apply the codes correctly.  The designers of SNOMED CT frequently create 

circumstances where two different symbols can describe the same semantic meaning, 

e.g., „fractured dislocation‟ and „dislocation with fracture‟ which makes it extremely 

difficult to find out the proper number of symbols needed to cover the semantics of any 

domain. 
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Zipf‟s law can determine the rank-frequency distribution of propositions through 

calculating the probability of the semantic occurrence of a particular proposition by 

simply dividing the frequency of similar semantic sentences mapped to given proposition 

by total number of mapped lines. This law is not deterministic in nature; it completely 

depends upon empirical study of the domain contains lot of training data to examine the 

probability distribution. Other power laws like Lotka‟s law and Bradford‟s law are very 

domain specific, which are not applicable to serve the purpose of this research paper. 

 

Shannon’s Law and Semantic Entropy: 

 Entropy is a measure of the randomness of a random variable. It is also a measure 

of the amount of information of a random variable. The field of information theory was 

developed by Claude Shannon in the 1940s [Manning, C. D. a. S. H., 2000.] He was 

interested in the problem of maximizing the amount of information that one can transmit 

over an imperfect communication channel such as a noisy phone line. For any 

„information‟ source and „communication channel‟, Shannon wanted to determine 

theoretical limit of data compression, i.e., the least information required for maximum 

communication- which turns out to be given by entropy „H‟
1
. If all the symbols are 

equiprobable, then the entropy or uncertainty reaches its maximum. With a variable 

probability, the uncertainty of occurrence of symbols diminishes.  

However, According to Weaver [Shannon, C. E. a. W., W.,1949], the 

„information‟ in Shannon‟s theory of communication can be semantically valid or 

invalid; in fact, a non sense message (at word level) contains same weight as the 

semantically valid message. Shannon used Zipf‟s law to calculate the entropy of English 
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text that outputs words independently with Zipf‟s probabilities [Schroeder, M., 2002]. 

Later, others have used this formula to measure semantic entropy, i.e., the measurement 

of semantic ambiguity and uninformativeness of words in text corpora [Melamed, I. D., 

1998].  Yarowsky (1993) compared the entropy of homophones (aid/aide, censor/sensor, 

cellar/seller, etc.) based on different conditional contexts. Resnik (1995) suggested that 

measuring conceptual  semantic similarity using information content provides quite 

reasonable results, significantly better than the traditional method of simply counting the 

number of intervening is-a links (Gold is a metal, dime is a coin, etc.). The main 

limitation of all these papers is their emphasis on semantic entropy analysis from the 

lexical point of view; none of these researches have attempted to measure the semantic 

informativeness (entropy or uncertainty) at the sentence level. 

Existing medical natural language processing systems depend heavily on lexicons 

and outside commonsense knowledge rather than an empirical analysis of the domain to 

formulate their semantic knowledge bases. This research paper attempts to calculate the 

least number of propositions (symbols) required to represent the semantic information of 

a medical corpus by calculating sentential semantic probability and entropy of the corpus 

using Zipf‟s law and Shannon‟s theory of communication. Refinement of this entropy 

calculation depends upon more complete annotation of our corpus. 
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Limitation of the study: 
This research paper is focused on estimation of required propositions to cover an 

entire corpus, however, certain limitations with respect to the analysis and data that may 

affect the accuracy of the results. 

 A fully built knowledge base is not available yet. 

 Current trend of the semantic frequency distribution line in fig. 5a doesn‟t 

guarantee to follow Zipf‟s law; thus, current estimation of the propositions might 

become incorrect in future. 

 The system is still challenged by the lumping and splitting of the information in 

the knowledge base which may affect the number of required propositions to map 

the entire corpus. 

 Semantic mapping needs medical editorial skill to insure accuracy. It might affect 

the frequency counting. 

 

 

Conclusion: 
The need for an automated biomedical NLP system has been realized by the medical 

professionals for past several years to provide inexpensive but quality patient care with an 

improved decision support system. Using binary classification and FOPL, most of the existing 

Medical NLP systems are interested in extracting presence or absence of certain clinical findings 

from medical reports and coding against SNOMED, UMLS. On the other hand, limited efforts 

have been made to codify medical concepts through semantic understanding of the free text. As a 

NLP system, MedLEE has somewhat succeeded in capturing „deep surface‟ meaning from 

comparatively simple sentences of the medical reports, but there are several instances where it 

fails to pull out the correct understanding of the complex sentences with multiple medical 

concepts. By extracting underlying meaning from each sentence of each medical report, Rdx 

Editor is the first tool to attempt structuring the free text and codify it at the sentence level. 
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Semantic analysis has been made possible only by the extensive knowledge of the domain and 

computational linguistics. 

Besides finding the gaps in the current NLP systems, this paper specifically addresses the 

need for measuring the symbols or propositions to semantically cover a medical corpus like 

radiology using Zipf‟s-Mandelbrot law. This law has been variously used to count the word 

frequency, thus retrieving most frequent words from a given corpus. Applying it to a medical 

corpus to find the most frequent proposition that has the maximum number of semantically 

equivalent sentence is a unique attempt in the world of NLP research. In addition, attempting to 

use Shannon‟s theory of communication in calculation of semantic entropy of a small medical 

corpus like radiology is another important aspect of this research paper. Both Zipf‟s law and 

Shannon‟s theory are helpful in deriving the most frequent or informative proposition from the 

corpus. The most distinct part of this entire research paper is finding a way to estimate the 

number of propositions to cover a small corpus like radiology. From the current trend of the 

frequency line (fig. 5a), it has been predicted that to semantically map this particular corpus, we 

need around 78,000 -84,000 propositions in our knowledge base.  If this radiology corpus 

follows the Zipf‟s law, which is currently going in that direction, calculating the total number of 

symbols will be easier for the researcher to predict the required number of codes for other 

medical domain with no hassle. 
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Appendices: 

 

 

Appendix 1 
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Appendix 2 

 

 

GALEN representation of concepts: 

Left hand side is the terminology representation and right hand side implies various 

relationships associated with  terminologies 
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Appendix 3 

 

UMLSKS Methathesaurus 
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UMLSKS Semantic Network 
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UMLSKS SPECIALIST Lexicon 
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Appendix 4 

 

Case: Cerclage for Cervical Incompetence 

A 30-year old female presents to the outpatient surgery center for placement of a cervical 

cerclage to treat an incompetent cervix. She is currently at 14 weeks gestation. 

PMH: The patient‟s previous pregnancy was terminated due to her incompetent cervix, 

resulting in a second-trimester spontaneous abortion. The patient has had no further 

complications. Her current pregnancy has been otherwise uncomplicated. 

PMSH: Patient is a Caucasian female, nonsmoker, ETOH negative. She is currently 

unemployed. 

HPI: The patient is G2P0Ab1 (Gravida: 2 Parity: 0 Abortus:1) Prenatal records and tests 

have been received for review. Cervical exam and obstetric ultrasound confirm the 

diagnosis of incompetent cervix; Cervix length < 25 mm. 

Procedure: Under epidural anesthetic, a band of strong 0.2 in (5 mm) suture thread was 

stitched around the cervix, and the thread was tightened to hold the cervix firmly closed. 

The patient tolerated the procedure well and was discharged with instructions. 

 

Pre-procedure Diagnosis: Pregnancy complicated by incompetent cervix 

Post-procedure Diagnosis: same 

Maternal care for cervical incompetence, 

second trimester 
O34.32 

Diagnosis codes derived by ICD-10 CM from a medical report 
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Appendix 5 

MedLEE input: 
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MedLEE output: 
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Appendix 6 

 
set ANSI_NULLS ON 

set QUOTED_IDENTIFIER ON 

GO 

-- ============================================= 

-- Author:  Lopa 

-- Create date: 02/20/2007 

-- Description: <freq count> 

-- ============================================= 

ALTER PROCEDURE [dbo].[freqcount] 

 Add the parameters for the stored procedure here 

@current_date datetime 

AS 

BEGIN 

-- SET NOCOUNT ON added to prevent extra result sets from 

-- interfering with SELECT statements. 

SET NOCOUNT ON; 

 

 Insert statements for procedure here 

select sum (med.freq) as totfreq, map.propid into #t1 

from maplines map, medline med, proposition p 

where 

map.medlineid = med.id and 

map.propid = p.id 

group by map.propid 

 

select totfreq, p.statement from #t1, proposition p 

where 

#t1.propid = p.id and 

@current_date >= 02202007 

order by totfreq desc 

END 

 

SQL source code for semantic frequency count 
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Appendix 7 

 

 

Table showing different K values to be tested in Zipf‟s-Mandelbrot Law 

 

 



55 

 

Appendix 8 

 
Frequency Ranks Probalility log 2 (C) Entropy Max. probability Log 2 (col.F) Max.Entropy

144654 1 0.050764286 -4.300042315 -0.218288577 0.0001 -13.28771238 -0.001328771

108225 2 0.037980041 -4.718614732 -0.17921318 0.0001 -13.28771238 -0.001328771

77940 3 0.027351946 -5.192212696 -0.142017123 0.0001 -13.28771238 -0.001328771

68416 4 0.024009632 -5.380242869 -0.129177654 0.0001 -13.28771238 -0.001328771

62048 5 0.021774872 -5.521191919 -0.12022325 0.0001 -13.28771238 -0.001328771

61266 6 0.021500441 -5.539489965 -0.119101475 0.0001 -13.28771238 -0.001328771

58061 7 0.020375691 -5.617007207 -0.114450403 0.0001 -13.28771238 -0.001328771

55539 8 0.019490631 -5.681075426 -0.110727742 0.0001 -13.28771238 -0.001328771

53821 9 0.018887723 -5.726407431 -0.108158795 0.0001 -13.28771238 -0.001328771

53675 10 0.018836486 -5.730326341 -0.107939212 0.0001 -13.28771238 -0.001328771

49816 11 0.017482224 -5.837967443 -0.102060656 0.0001 -13.28771238 -0.001328771

42563 12 0.014936886 -6.064976786 -0.090591866 0.0001 -13.28771238 -0.001328771

40769 13 0.014307307 -6.127104057 -0.087662358 0.0001 -13.28771238 -0.001328771

36345 14 0.012754766 -6.292819722 -0.080263445 0.0001 -13.28771238 -0.001328771

35844 15 0.012578947 -6.312844984 -0.079408945 0.0001 -13.28771238 -0.001328771

31800 16 0.011159763 -6.485549862 -0.072377196 0.0001 -13.28771238 -0.001328771

30709 17 0.010776891 -6.535915094 -0.070436847 0.0001 -13.28771238 -0.001328771

29393 18 0.01031506 -6.599104012 -0.068070152 0.0001 -13.28771238 -0.001328771

27621 19 0.009693201 -6.688811075 -0.064835992 0.0001 -13.28771238 -0.001328771

27335 20 0.009592834 -6.703827252 -0.064308699 0.0001 -13.28771238 -0.001328771

26995 21 0.009473515 -6.72188441 -0.063679875 0.0001 -13.28771238 -0.001328771

24594 22 0.008630918 -6.856270231 -0.059175908 0.0001 -13.28771238 -0.001328771

23057 23 0.00809153 -6.949371814 -0.056231048 0.0001 -13.28771238 -0.001328771

22228 24 0.007800604 -7.002198482 -0.054621376 0.0001 -13.28771238 -0.001328771

21503 25 0.007546175 -7.050038675 -0.053200828 0.0001 -13.28771238 -0.001328771

20124 26 0.007062235 -7.145659533 -0.050464324 0.0001 -13.28771238 -0.001328771

19900 27 0.006983625 -7.161808196 -0.050015383 0.0001 -13.28771238 -0.001328771

19207 28 0.006740426 -7.21294443 -0.048618321 0.0001 -13.28771238 -0.001328771

19073 29 0.006693401 -7.223044844 -0.048346735 0.0001 -13.28771238 -0.001328771

19055 30 0.006687084 -7.224407019 -0.048310217 0.0001 -13.28771238 -0.001328771

14791 31 0.005190693 -7.589857033 -0.03939662 0.0001 -13.28771238 -0.001328771

13118 32 0.004603578 -7.763028847 -0.035737705 0.0001 -13.28771238 -0.001328771

13062 33 0.004583925 -7.769200814 -0.035613435 0.0001 -13.28771238 -0.001328771

13060 34 0.004583223 -7.76942173 -0.035608994 0.0001 -13.28771238 -0.001328771

12956 35 0.004546726 -7.780956254 -0.035377875 0.0001 -13.28771238 -0.001328771

12468 36 0.004375469 -7.836346567 -0.034287693 0.0001 -13.28771238 -0.001328771

11960 37 0.004197194 -7.896359238 -0.033142549 0.0001 -13.28771238 -0.001328771

11906 38 0.004178243 -7.902887828 -0.033020187 0.0001 -13.28771238 -0.001328771

11730 39 0.004116478 -7.924373614 -0.032620513 0.0001 -13.28771238 -0.001328771

11004 40 0.003861699 -8.016548582 -0.030957497 0.0001 -13.28771238 -0.001328771

10773 41 0.003780633 -8.047156568 -0.030423344 0.0001 -13.28771238 -0.001328771

10732 42 0.003766244 -8.052657668 -0.030328277 0.0001 -13.28771238 -0.001328771

10651 43 0.003737819 -8.063587739 -0.030140228 0.0001 -13.28771238 -0.001328771

10215 44 0.003584811 -8.123887423 -0.029122597 0.0001 -13.28771238 -0.001328771

9527 45 0.003343367 -8.224482733 -0.027497461 0.0001 -13.28771238 -0.001328771

9225 46 0.003237384 -8.270955811 -0.02677626 0.0001 -13.28771238 -0.001328771

8899 47 0.003122979 -8.322861496 -0.02599212 0.0001 -13.28771238 -0.001328771

8832 48 0.003099466 -8.33376455 -0.025830221 0.0001 -13.28771238 -0.001328771

8753 49 0.003071742 -8.346727152 -0.025638994 0.0001 -13.28771238 -0.001328771  

Portion of the table showing Entropy calculation according to Shannon‟s formula 

 



56 

 

References: 
                                                 

ICD-10 Corner. from http://www.ingenixonline.com/content/icd10/structure.asp 

The Burden of Chronic diseases and Their Risk Factors. (2004). CDC-National and State 

Perspectives(February). 

Allen, J. (1995). Natural Language Understanding (Second ed.): The Benjamin/ 

cummings Publishing Company, Inc. 

Baroni, M. (2006). 39 Distributions in text. from 

http://sslmit.unibo.it/~baroni/publications/hsk_39_dist_rev2.pdf 

Bates, D. W., Ebell, M., Gotlieb, E., Zapp, J., & Mullins, H. C. (2003). A proposal for 

electronic medical records in U.S. primary care. J Am Med Inform Assoc, 10(1), 

1-10. 

Bates, D. W., Kuperman, G. J., Wang, S., Gandhi, T., Kittler, A., Volk, L., et al. (2003). 

Ten commandments for effective clinical decision support: making the practice of 

evidence-based medicine a reality. J Am Med Inform Assoc, 10(6), 523-530. 

Bates, M. (1995). Models of natural language understanding. Proc Natl Acad Sci U S A, 

92(22), 9977-9982. 

Baud, R. H., Rassinoux, A. M., & Scherrer, J. R. (1992). Natural language processing and 

semantical representation of medical texts. Methods Inf Med, 31(2), 117-125. 

Baud, R. H., Rassinoux, A. M., Wagner, J. C., Lovis, C., Juge, C., Alpay, L. L., et al. 

(1995). Representing clinical narratives using conceptual graphs. Methods Inf 

Med, 34(1-2), 176-186. 

Baud, R. H. R., Jean-Marie; Wagner, Judith C; Rassinoux, Anne-Marie; Lovis, Christian; 

Rush, Philippe; Trombert-Paviot, Beatrice; Scherrer, Jean-Raoul.(1997). 

Validation of concept Representation Using Natural Language Generation. AMIA 

Annual Fall Symposium (formerly SCAMC),841. 

Bird, S. K., E.; Loper, E. (2005). NLTK: Introduction to Natural Language Processing. 

from http://nltk.sourceforge.net/tutorial/introduction/index.html 

Bodenheimer, T., & Grumbach, K. (2003). Electronic technology: a spark to revitalize 

primary care? Jama, 290(2), 259-264. 



57 

 

                                                                                                                                                 

Calzolari, N. (2003). Natural Language Processing and Knowledge Engineering. 

Proceedings. 2003 International Conference on Volume , Issue , 26-29 Oct. 2003 

Page(s): 16 – 18. 

CDC. (2004). The Burden of Chronic Diseases and Their Risk Factors. National and 

State Perspectives (February). 

Chen, H., Fuller, S.S., Friedman, C. & Hersh, W. (2005). Medical Informatics: 

Knowledge Management and Data Mining in Biomedicine (Vol. 2): Springer. 

Chute, C. (2005). Advances in Knowledge Management and Data Mining in Biomedicine. 

New York: Springer-Verlag. 

Cimino, J. J., Clayton, P. D., Hripcsak, G., & Johnson, S. B. (1994). Knowledge-based 

approaches to the maintenance of a large controlled medical terminology. J Am 

Med Inform Assoc, 1(1), 35-50. 

Cunha, C. R., Bestavros, A. , Crovella, M. E. (1995). Characteristics of WWW Client-

based Traces. 

Doyle, P. (1997). AI Qual summary - Natural Language [Electronic Version]. 

Eiselt, K. H., Jennifer. (1998). Augmented Transition Networks. 

Evans, R. S., Classen, D. C., Pestotnik, S. L., Lundsgaarde, H. P., & Burke, J. P. (1994). 

Improving empiric antibiotic selection using computer decision support. Arch 

Intern Med, 154(8), 878-884. 

Friedman, C., & Hripcsak, G. (1999). Natural language processing and its future in 

medicine. Acad Med, 74(8), 890-895. 

Friedman, C., Shagina, L., Lussier, Y., & Hripcsak, G. (2004). Automated encoding of 

clinical documents based on natural language processing. J Am Med Inform 

Assoc, 11(5), 392-402. 

Giere, W. (2004). Electronic Patient Information -- Pioneers and MuchMore. A vision, 

lessons learned, and challenges. Methods Inf Med, 43(5), 543-552. 

Greenes, R.A. (2003). Decision support at the point of care: Challenges in knowledge 

representation, management and patient-specific access. Adv Dent Res 17:69-73. 

Gruber, T. (1993). A translation approach to portable ontologies. Knowledge Acquisition, 

5(2):199-220, 



58 

 

                                                                                                                                                 

Hripcsak, G., Friedman, C., Alderson, P. O., DuMouchel, W., Johnson, S. B., & Clayton, 

P. D. (1995). Unlocking clinical data from narrative reports: a study of natural 

language processing. Ann Intern Med, 122(9), 681-688. 

Humphreys, B. L., Lindberg, D., Schoolman, H.M., and Barnett, G.O. (1998). The 

Unified Medical Language System: An Informatics Research Collaboration. J Am 

Med Inform Assoc., 5 (1)(Jan–Feb). 

Inc., T. A. I. (2001). Integrated Development Environments for Natural Language 

Processing [Electronic Version]. 

Jackson, P. (1999). Introduction to Expert Systems (2nd ed.): Addison-Wesley Longman 

Limited. 

Jamieson, P.W. (2003). Process for constructing a semantic knowledge base using a 

document corpus. Unpublished manuscript, Indianapolis. 

Jamieson, P. W. (2004). USA Patent No. 

Jamieson, P. W. (2006). USA Patent No. 

Jamieson, P. W. (2006). Representing and Extracting Knowledge from Free Text Medical 

Records.Unpublished manuscript, Indianapolis. 

Joachims, T. (2001). Learning to classify text using support vector machines: methods, 

theory and algorithms.: KAP. 

Johnson, S. B. (1999). A semantic lexicon for medical language processing. J Am Med 

Inform Assoc, 6(3), 205-218. 

Knibbs, G. H. (1929). The International classification of Disease and Causes of Death 

and its revision. Medical Journal of Australia. 

Knobby, G. H. (1929). The International classification of Disease and Causes of Death 

and its revision: Medical Journal of Australia. 

Kuperman, G. J., & Gibson, R. F. (2003). Computer physician order entry: benefits, 

costs, and issues. Ann Intern Med, 139(1), 31-39. 

Lee, B.-S. B., Barrett R. (2002). Contextual Knowledge Representation for Requirements 

Documents in Natural Language. American Association for Artificial Intelligence. 

Mack, R. e. a. (2004). Text analytics for life science using the Unstructured Information 

Management Architecture. IBM Systems Journal(September). 



59 

 

                                                                                                                                                 

Manning, C. D. a. S. H. (2000). Foundation of Statistical Natural Language Processing 

(2nd ed.): The MIT Press Cambridge, MA. 

McEnery, T. (2003). Corpus Linguistics: Oxford University Press. 

Melamed, I. D. (1998). Measuring Semantic Entropy [Electronic Version] from 

http://citeseer.ist.psu.edu/cache/papers/cs/1921/ftp:zSzzSzftp.cis.upenn.eduzSzpu

bzSzmelamedzSzpaperszSzSemEnt.pdf/measuring-semantic-entropy.pdf. 

Nielsen, J. (1997). Zipf Curves and Website Popularity. from www.useit.com 

Nielson, J., Wilcox, A. (2004). Linking Structured Text to Medical Knowledge. 

MEDINFO. IMIA. 

Nirenburg, S. R., V. (2004). Ontological Semantics: The MIT Press, Cambridge, MA. 

Parunak, V. (1995). Case Grammar: A linguistic tool for engineering Agent-Based 

Systems [Electronic Version] from www.iti.org/~van. 

Ramsay, A. (2003). Discourse: Oxford University Press. 

Rebholz-Schuhmann, D., Kirsch, H., & Couto, F. (2005). Facts from text--is text mining 

ready to deliver? PLoS Biol, 3(2), e65. 

Rector, A. L. (1999). Clinical terminology: why is it so hard? Methods Inf Med, 38(4-5), 

239-252. 

Rector, A. L. (1999). Terminology and concept representation languages: where are we? 

Artif Intell Med, 15(1), 1-4. 

Rector, A. L., & Nowlan, W. A. (1994). The GALEN project. Comput Methods 

Programs Biomed, 45(1-2), 75-78. 

Rector, A. L., Rogers, J. E., Zanstra, P. E., & Van Der Haring, E. (2003). OpenGALEN: 

open source medical terminology and tools. AMIA Annu Symp Proc, 982. 

Resnik, P. (1999). Semantic Similarity in a Taxonomy: An Information-Based Measure 

and its Application to Problems of Ambiguity in Natural Language [Electronic 

Version], 11, 95-130 from 

http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume11/resnik99a.pdf. 

Rindflesch, T. C., & Fiszman, M. (2003). The interaction of domain knowledge and 

linguistic structure in natural language processing: interpreting hypernymic 

propositions in biomedical text. J Biomed Inform, 36(6), 462-477. 



60 

 

                                                                                                                                                 

Schank, R. C. T., L. (1969). A Conceptual Dependency Parser for Natural Language. 

Paper presented at the International Conference On Computational Linguistics; 

Proceedings of the 1969 conference on Computational linguistics  

Schmidt, C. F. Case Grammar. from 

http://www.rci.rutgers.edu/~cfs/305_html/Understanding/CaseGram1.html 

Schroeder, M. (2002). Power laws: from Alvarez to Zipf. Glottometrics, 4, 39-44. 

Shannon, C. E. a. W., W. (1949). The Mathematical Theory of Communication (Illini 

book edition, 1963 ed.): University of Illinois Press, Urbana and Chicago. 

Shapiro, S. C. (1982). Generalized Augmented Transition Network Grammars for 

Generation from Semantic Networks. American Journal of Computational 

Linguistics, 8(1). 

Stuhlinger, W. H., Oliver; Stoyan, Herbert; Muller, Michael. Intelligent Data Miningfor 

Medical Quality Management. 

Weizenbaum, J. (1966). ELIZA - A computer program for the study of natural language 

communication between man and machine. 

Wheeler, E. S. (2002). Zipf's Law and why it works everywhere. Glottometrics, 4, 45-48. 

White, M. D., Kolar, L. M., & Steindel, S. J. (1999). Evaluation of vocabularies for 

electronic laboratory reporting to public health agencies. J Am Med Inform Assoc, 

6(3), 185-194. 

Wilcke, J. R. a. H., Allen W. (2000). Evaluating Performance for Summarizing 

Veterinary Cardiovascular Findings. [Electronic Version]. 

Wilson, D. a. S., D. (2002). Relevance Theory. In G. a. H. Ward, L. (Ed.), Handbook of 

Pragmatics (pp. 607-632): Oxford:Blackwell. 

Yarowsky, D. (1993). One sense per collocation. Paper presented at the DARPA 

Workshop on Human Language Technology. 

Zarri, G.P. (1996). NKRL, a Knowledge Representation Language for Narrative 

             Natural Language Processing. 

 

 

 



61 

 

                                                                                                                                                 

CURRICULUM VITAE 

 

NAME:  Lopamudra Chatterjee 

EDUCATION:  MS, Health Informatics, IUPUI, 2008 

     BA, Education, University of Calcutta, India, 1995 

HONORS, AWARDS, FELLOWSHIP:  Recipient of the Guidant Fellowship 2006 for 

advance research in data mining and natural language processing. 

RESEARCH and TRAINING EXPERIENCE:  Advance research in Natural Language 

Processing and statistical analysis of radiological knowledge base. 

WORK EXPERIENCE: Data Analyst, March 2008 – present, MDWise Hoosier Alliance           

                  Data Analyst, 2007, American Health Data Institute 

                                       Graduate intern, May 2006 – September 2006, Logical                  

      Semantics, Inc. 

PUBLICATION (in progress):  Usefulness of Nursing Management Minimum Data Set 

(NMMDS) in finding rare nursing management articles that meets the nurse executive's 

need to produce accurate, reliable, and useful data for decision making. 

 


