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ABSTRACT 
 

 

Prabhu Verleker, Akshay. M.S.B.M.E., Purdue University, December 2011. Monte Carlo 
Simulation to Study Propagation of Light through Biological Tissues. Major Professor: 
Keith Stantz. 

 

 

Photoacoustic Imaging is a non-invasive optical imaging modality used to image 

biological tissues. In this method, a pulsating laser illuminates a region of tissues to be 

imaged, which then generates an acoustic wave due to thermal volume expansion.  This 

wave is then sensed using an acoustic sensor such as a piezoelectric transducer and the 

resultant signal is converted into an imaging using the back projection algorithm. Since 

different types of tissues have different photo-acoustic properties, this imaging modality 

can be used for imaging different types of tissues and bodily organ systems.  

 

This study aims at quantifying the process of light conversion into the acoustic 

signal. Light travels through tissues and gets attenuated (scattered or absorbed) or 

reflected depending on the optical properties of the tissues. The process of light 

propagation through tissues is studied using Monte Carlo simulation software which 

predicts the propagation of light through tissues of various shapes and with different 

optical properties. This simulation gives the resultant energy distribution due to light 

absorption and scattering on a voxel by voxel basis. 

 

The Monte Carlo code alone is not sufficient to validate the photon propagation. 

The success of the Monte Carlo code depends on accurate prediction of the optical 

properties of the tissues. It also depends on accurately depicting tissue boundaries and 

thus the resolution of the imaging space. Hence, a validation algorithm has been designed 
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so as to recover the optical properties of the tissues which are imaged and to successfully 

validate the simulation results. The accuracy of the validation code is studied for various 

optical properties and boundary conditions. The results are then compared and validated 

with real time images obtained from the photoacoustic scanner. The various parameters 

for the successful validation of Monte Carlo method are studied and presented. 

 

This study is then validated using the algorithm to study the conversion of light to 

sound. Thus it is a significant step in the quantification of the photoacoustic effect so as 

to accurately predict tissue properties. 
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1. INTRODUCTION 

 

 

1.1 Problem Statement 

Recent advances in the field of optical imaging and photoacoustic tomography, 

for medical diagnosis, has created a need for quantification of the passage of light 

through biological tissues and the need to understand the acoustic response of materials. 

The use of optical/acoustic tissue phantoms and simulation modeling has provided 

insights into the theory of light propagation as well as challenged some of the old 

concepts in optics and acoustics. Various studies over the years have provided new inputs 

into the stochastic nature of light propagation and have resulted in the emergence of 

Monte Carlo simulation as a major tool for validation of optical studies. 

 

The use of Monte Carlo simulation not only validates light transport, but can also 

be used as a means to understand the conversion of optical energy into acoustic energy. 

These methods provide a means of validating the photoacoustic effect and combined with 

the use of optical and acoustic phantoms, they provide a methodical approach to 

quantifying the data as produced by the photoacoustic scanner. The ultimate goal of such 

a study would be to recover the optical properties of the substance imaged, thereby 

deriving valuable inputs for medical diagnostic applications. 

 

 

1.2 Photoacoustic Tomography (PCT) 

Photoacoustic Imaging is an optical imaging technique used to image tissues. In this 

modality, a pulsated laser is used to illuminate the object, which causes localized heating 

and volume expansion and results in an acoustic wave. The high frequency acoustic 

signal is then sensed using array of ultrasound sensors. The image contrast is proportional 
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to the energy absorbed by the tissue being imaged. This imaging modality thus gives a 

fairly accurate representation of the optical properties of the tissues. The final image is 

obtained using a filtered back projection algorithm. 

 

Since the PCT image depends on the absorption coefficient of the object, it has 

several advantages over other imaging methods (CT and MRI) such as good spatial 

resolution and direct visualization of the optical properties (absorption coefficient) of the 

object being imaged. It is also a safe imaging technique as it uses a non-ionizing, low 

power laser source and causes no harm to tissues. Most importantly functionalized and 

quantitative images can be obtained using PCT. 

 

PCT is most commonly used in imaging hemoglobin levels in blood. This is 

because hemoglobin has different absorption properties for different wavelengths. Also 

the response of oxy and de-oxy hemoglobin is different at the same wavelength. This 

gives an accurate representation of the amount of oxy and de-oxy hemoglobin 

concentration in blood vessels. This provides PCT with a unique advantage for 

applications in tumor studies and as a functionalized imaging modality. 

 

 

1.3 Review of Light Propagation through Biological Tissues 

Optical imaging techniques for medical applications require a thorough 

understanding of the nature of light propagation through biological tissues. Photoacoustic 

tomography being dependent on laser light propagation and absorption relies on the 

optical properties of the tissues being imaged. A variety of models have been developed 

which predict the fluence, transmission and reflection of light in tissues. Most of these 

methods are approximations of the radiative transport theory such as the diffusion based 

theory1. Studies involving measurement of attenuation cum scattering coefficients, 

penetration depth, and anisotropy factors have been performed at different wavelengths 

for different biological tissues1.  
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The transport theory deals with the propagation of laser light energy through 

tissues. It is considered to be more accurate as compared to Maxwell’s equation since it 

takes into account the inhomogeneous nature of biological tissues1. The radiative 

transport Equation 1 is as follows:  

.ݏ ,ݎሺܮ׏ ሻݏ ൌ 	െሺܽߤ ൅ 	µݏሻܮሺݎ, ሻݏ ൅ 	µݏ ׬ ,ݏሺ݌ ,ݎሺܮ1ሻݏ 1ሻ݀ସగݏ      (1) 

 

Where L(r,s) is the radiance of light travelling in direction s which is a unit 

vector. ߤa is the absorption coefficient while µs is the scattering coefficient. The addition 

of these two gives the total attenuation coefficient. Thus the above Equation 1 states that 

the radiance of light gets reduced with scattering and absorption and increases due to 

scattering from direction s1 into direction s. Also the trems dw refers to the solid angle in 

the direction of s1 and p(s,s1) refers to the phase function. The phase function refers to 

the scattering angle and can be characterized by the parameter g which is also known as 

the anisotropy factor and is the cosine average of the phase function. 

 

The basic assumption of the radiative transport theory is that it assumes the 

scattering and absorbing particles to be homogeneously distributed within the medium. 

This along with the knowledge of the scattering and absorption coefficients gives the 

light distribution or fluence as well as absorbed energy within the medium. However in 

order to predict the above mentioned optical properties, we have to find a solution to the 

transport equation. This leads to several approximations depending on the type of 

irradiance and such as diffuse or collimated types as well as the optical boundary 

conditions1 which are in turn dependent on the indices of reflection. For a depth which is 

far from the source of light, two solutions have been derived to account for unscattered 

transmission and an asymptotic fluence-rate. 

 

Unscattered transmission is explained using Beer’s Law which is given as1: 

ܶ ൌ ݁ିఓ௧     (2) 
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Where t is the thickness and T is the transmission (unscattered) while μ refers to 

the total attenuation coefficient. This shows that the light is attenuated in an exponential 

manner through the bulk of the tissue. Consequently the fluence rate also decreases 

exponentially with the rate of decay proportional to the effective attenuation coefficient1. 

 

A further modification of the Beer’s Law is made so as to account for scattered 

components as follows1: 

,ݎሺܮ ሻݏ ൌ ,ݎ௖ሺܮ	 ሻݏ ൅	ܮௗሺݎ,  ሻ     (3)ݏ

 

Where Lc is the light which has had no interaction with the tissues while Ld is the 

part which has undergone scattering. Thus using this diffuse theory approximation in the 

RTE equation, the fluence can be simplified to1: 

߮ሺݎሻ ൌ ׬	 ,ݎௗሺܮ ሻ݀߱ସగݏ      (4) 

 

The factors which affect the accuracy of the diffuse approximation are the 

anisotropy factor, the ratio of scattering-to-absorption coefficients and the depth of the 

tissue from the light source along with the boundaries2. The most commonly used phase 

function which is compatible with the diffusion equation is the Henyey- Greenstein 

function3. The delta-Eddington phase function which makes use of the Henyey-

Greenstein scattering is found to be ideal for light propagation in tissues. This is done by 

the following substitutions4: 

௚ಹಸ
ଵା௚ಹಸ

ൌ 	݃     (5) 

௦ሺ1ߤ െ ݃ுீ
ଶ ሻ ൌ        (6)	௦ଵߤ	

 

This gives the total fluence rate in a slab of finite depth as4: 

߮ሺݖሻ ൌ 		 ܽଵ expሺ݇ݖሻ ൅ ܽଶ expሺെ݇ݖሻ ൅ ܽଷexp	ሺെߤ௧ݖሻ     (7) 

 

Where z is the depth while k is approximately equal to μୣ୤୤. This condition is 

valid only if the absorption coefficient is significantly lower than the scattering 
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coefficient. As per the diffusion theory the reflectance R and the transmittance T are 

given by5,6,7,8 : 

ܴ ൌ 	െ ఓೞ௚

ఓೌାሺଵି௚ሻఓೞ
൅ ݄/2ሺܽଵ݇ െ ܽଶ݇ െ ܽଷ݇ሻ     (8) 

ܶ	 ൌ ఓೞ௚௘షഋ೟೟

ఓೌାሺଵି௚ሻఓೞ
െ	ሺܽଵ݇݁௞௧ െ ܽଶ݇݁௞௧ െ ܽଷߤ௧݁ିఓ೟௧ሻ     (9) 

 

The total transmission is the sum of the transmission as shown by Equation 2 and 

the one shown by Equation 9. The measurement of total reflectance and transmission 

gives the three optical coefficients namely the absorption coefficient (μa), scattering 

coefficient (μs), and the anisotropy factor (g). The reduced scattering coefficient can be 

calculated by using the following equation 9, 10: 

௦ଵߤ ൌ ሺ1 െ ݃ሻߤ௦     (10) 

 

However, when we consider tissues with mismatched boundaries and different 

optical properties, then the relation between reflectance, transmission and the three 

optical parameters become complicated and needs iterative methods to recover these 

properties. One of the most commonly used iterative methods is Monte Carlo simulation 

which can recover the optical properties of the media. 

 

 

1.4 Monte Carlo Simulations 

The first people to introduce Monte Carlo simulations into the area of laser 

propagation through tissues were Wilson and Adam 11, 12. As per the definition given by 

Lux13 : A Monte Carlo method involves the construction of a stochastic model where the 

physical quantity to be measured is equal to the expected value of a random variable. 

This is determined using multiple independent sampling of the random variable. 

   

The current approach uses Monte Carlo simulation to simulate the propagation of 

light through tissues with certain optical properties and uses an iterative algorithm to 

calculate backwards the absorption coefficient of the object (e.g. tumor) being imaged. 
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The iterative recovery of the absorption coefficient also serves as a validation method for 

the Monte Carlo algorithm14. The accuracy and effectiveness of the Monte Carlo 

algorithm depends on the number of photons being simulated which determines the 

signal-to-noise ratio14 and thus affects the efficiency of the iterative back-calculation of 

the absorption coefficient. With a sufficiently large number of photon packets, the Monte 

Carlo is seen to be a more effective method of optical property recovery as compared to 

the Diffusion theory. This comes at the cost of the simulation time due to the large 

number of iterations15. However the computation time could be minimized using better 

processing powers as available today. This project uses the GPU based CUDA software 

which utilizes the parallel processing power of the GPUs and thus reduces computation 

time as compared to the previous Monte Carlo versions which were based on serial 

processing using CPUs16, 17, 18. 

 

 

1.5 Parallel Processing using CUDA 

Computation using parallel processing is always seen to enhance the speed of 

computation and reduce the processing time. Graphical Processing Units (GPUs) are 

made of multiple cores and hence, offer a massive increase in parallel computation 

capabilities as compared to Central Processing Units (CPUs) 16, 17, 18. Even a low cost 

GPU gives more than a thousand times faster computation power as compared to a 

standard CPU which uses serial computation. Since photon migration problems use 

complex algorithms and can be adapted to several independent parallel computations, 

GPU processing can be applied for increasing the efficiency of the Monte Carlo 

simulations for photon transport through complex media. 

 

Due to very low latency of memory, well optimized process pipelines and 

hierarchy based thread structure; GPUs provide a well optimized computing platform for 

parallel computation16. Since photon propagation is an independent phenomenon, use of 

parallel computation capabilities of the GPU has been well optimized and can reduce the 

computation times as compared to serial processing methods. This project utilizes the 
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GPU based Monte Carlo software as was developed by Dr Qianqian Fang and Dr David 

Boas which utilizes the parallel processing of Nvidia GPUs using the Compute Unified 

Device Architecture16. This code uses the several parallel random number generators to 

generate photon packets which travel through complex media which are denoted by a 

voxelated space. Thus complex shapes are created using by denoting specific voxels with 

optical properties to represent different media for photon propagation14, 16. 

 

 

1.6 Recovery of Optical Properties 

The most important criteria for any successful simulation are its validation 

techniques. Similarly for the Monte Carlo algorithm to be declared as successful in 

simulating propagation of photons through complex tissue structures, it has to be able to 

accurately predict the optical coefficients of the object being imaged/ simulated. The 

recovery of the absorption and scattering coefficients, the anisotropy factor and the 

refraction coefficient are important in order to determine the optical properties of the 

tissue. Successful recovery would also prove the validity of the Radiative Transfer 

Equation and thus validate the photon transport method as simulated by the Monte Carlo 

method14. The recovery of all the three optical properties simultaneously not only 

requires accurate prediction of boundary conditions, but also requires very large 

computation times. Hence, prior knowledge of two out of three optical properties has 

been used by most researchers for validation purposes. Since the current Monte Carlo 

code is based on the energy absorbed per unit volume of the voxel space, recovery of the 

absorption coefficient for known values of scattering coefficient, anisotropy factor and 

the refraction coefficient are considered as appropriate method for this study. 

 

In order to study the process of recovery of absorption coefficients, we need to 

understand the equations which allow us to do so. The Beer Lambert Law can be applied 

for a light of beam of incident intensity I0 on a slab of thickness x. As shown in Equation 

2 the light transmission (no units) is logarithmically dependent n the product of the 
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absorption coefficient per unit length (μunit) of the substance16 and the path length x 

which is the thickness of the slab. This relation is shows as follows: 

ܶ ൌ ݁ିఓೠ೙೔೟௫     (11) 

 

The transmission (T) is also defined as the ratio of the light intensity of the beam 

(I1) coming out of the slab to the light intensity (I0) of the beam incident on the slab and 

is given by: 

ܶ ൌ 	       (12)	ଵ/I଴ܫ

 

From Equations 11 and 12 it can be determined that: 

 ݁ିఓೠ೙೔೟௫     (13)	଴ܫ	ଵୀܫ

 

The amount of energy which has been absorbed by a substance is given by the 

relation: 

௔௕ܧ ൌ ଴ܫሺݐܸ െ  ଵሻ     (14)ܫ

 

From Equations 13 and 14 and by using Taylor expansion for a small x, it can be 

derived that: 

௔௕ܧ ൌ ݔ௨௡௜௧ߤ଴ܫݐܸ ൌ  ௔     (15)ߤ߶ܸ

 

Where φ is the fluence and µ is the absorption coefficient. Thus the equation 

which would be used for the recovery of absorption coefficient becomes16: 

௔ߤ ൌ  ௔௕/߶     (16)ܧ	

The units for the absorption coefficient are mm-1. 

 

Determining the optical properties give a direct indication of the physical and 

chemical composition of the tissue being imaged and hence, is used as a tool in diagnosis 

of cancer. Though simultaneous recovery of all the optical properties would be ideal, it 

would require enormous amounts of computation time and would need complex 

algorithms to determine the interdependence between the optical properties. Hence, the 
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recovery of absorption coefficient which directly affects the energy deposition within 

each voxel is considered and implemented, with known values of anisotropy factor, 

refraction coefficient and scattering coefficient. This improves the speed of recovery as 

well as accuracy of the computation results. 

 

The use of the Equation 16 which relates between the absorption coefficient, the 

fluence and the energy absorbed, allows us to recover the absorption coefficient when the 

other two quantities, i.e., the energy absorbed and the fluence in the voxel are given. In 

order to determine these quantities for every voxel, the Monte Carlo has to be able to 

generate a voxelated map of the fluence and the energy maps. The current code which 

was used could generate the fluence profile for every voxel. So in order to recover the 

energy absorbed, the following relation was used as stated in Equation 16: 

௔௕ܧ ൌ  ௔߶     (29)ߤ	

 

It is important at this point to note that the value of μa used here, is an arbitrary 

input value used for that particular iteration of the Monte Carlo program and recovers the 

fluence ߶. In every such iteration the value of recovered μa is updated and becomes the 

new arbitrary value for the next run of the Monte Carlo simulation. Thus the updated 

value of μa becomes the input for the next simulation run which then outputs the fluence 

profile, and both these quantities (߶ and μa) are used to recover the value of the energy 

absorbed. 

 

The next problem is the updating of the absorption coefficient. This process 

requires a reference energy map which could be used to derive the new values of the 

absorption coefficient. It uses the relation in Equation 16 in the following form: 

௔௞ାଵߤ  ൌ  ෡/߶௞     (30)ܪ	

 

Here H෡ is a reference energy map, μୟ୩ାଵ is the recovered absorption coefficient 

and ϕ୩ is the fluence profile obtained for the iteration k. The value of  μୟ୩ାଵ becomes the 

input value for the next simulation run. 



10 
 

2. OBJECTIVES 

 

 

This study is a continuation of the study done by Jye Cheong14. The Monte Carlo 

code used in the previous study involved smooth object boundaries and computation 

using serial processing. The Monte Carlo code used in this study involves voxelated 

space with rough edges along voxel boundaries. Also the computation here is done using 

parallel processing power of CUDA enabled Graphical Processing Units (GPUs) 

provided by Nvidia. The code used in this study has been originally developed by Dr 

Qianqian Fang16 and has been modified to suit the needs of photoacoustic imaging 

scenario as well as with the optical properties of tumors found in breast cancer tissues. 

 

 

2.1 Specific Aims 

The goal is to remove the need to simulate an object based on predefined 

(mathematically defined) surface boundaries. The MC algorithm should be able to read a 

3D image, where each voxel in this image has a unique µs, g, µa (note: n, the index of 

refraction, remains constant for all voxels).The main objectives of this study are as 

follows: 

  SA1: Simulate and compare the absorption and photon fluence distribution for a 

sphere, an ellipse, and a heterogeneous object. 

 SA2:  Test convergence of the iterative MC photon correction algorithm using the 

new MC algorithm for objects in SA1, and for different levels of noise. 
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 SA3:  Test convergence, accuracy, and precision of the MC photon correction 

algorithm for 3D FBP PCT images. 

 

 

2.2 Methodology 

As state earlier the Monte Carlo method involves statistical sampling of the events 

(photon-tissue interactions) which occur under local rules of propagation. The deflection 

angle for scattering event and the step-size for photon interaction is decided using 

probability distributions. In this method each photon is assumed to be having particle 

properties. The optical properties are assumed to be macroscopic and distributed 

uniformly over small unit volumes known as voxels. Since any statistical analysis 

requires a large number of sampling events, similarly the Monte Carlo simulation too 

requires large number photons to be simulated for successfully predicting the photon 

transport through complex media. 

 

The code used is able to simulate objects with different shapes in a 3 dimensional 

voxelated space. The object boundaries are defined as per the dimensions of the object 

and it encompasses specific voxels as denoted by the Cartesian coordinate system used. 

The Cartesian coordinates are useful in denoting the 3D space and have been used to 

defines, object boundaries, position of the source as well as the domain boundaries. The 

direction of the light beam to be simulated is also designated in vector form using the 

Cartesian coordinate system. 

 

The photons can be launched from any point within the observation space (three 

dimensional space) and travel in the direction as denoted by the vector coordinates. The 

photons interact with the voxels which lie in the path before travelling to the boundary of 

the observation space. Upon reaching the observation space boundary, one can either 

choose for the photons to exit the domain space or to be reflected back. Since the 

photoacoustic model uses water as the domain for tissue boundaries, we have chosen to 

allow the photons to be exited from the observation space at the domain boundary. In a 
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different study, the user can always allow the boundary reflections to take place 

depending on the imaging modality used. 

 

The domain space is defined by 3 dimensional units called as voxels. The voxel is 

a cuboid of definite dimensions. The dimensions can be defined as needed by the user. In 

this study we have defined voxels with 1mm sides, thus having a volume of 1mm3. The 

voxel size affects the computation time of the code and also affects the smoothness of the 

object boundary. Larger the voxel size lesser is the computation time, while smaller voxel 

size implies larger computation times. However smaller voxel size results in smoother 

object boundaries and more accurate depiction of the object space and boundaries. This 

comes at a cost of the computation time. However using the Monte Carlo software on 

CUDA based parallel processing platform minimizes this disadvantage and allows us to 

increase the speed more than a thousand times as compared to serial processing 

techniques using traditional CPU based software. This is a major advantage of the current 

software as compared to the code used in the previous study14, 16. 

 

This study also modifies the existing code as developed by Fang et al16, which 

used only a pencil shaped beam. Photoacoustic imaging systems use laser beams which 

have super-Gaussian beam profiles. Hence, in order to replicate and validate the imaging 

system we need to achieve a beam profile as close to the one used in the real present day 

systems. This study has modified the existing code to simulate a super-Gaussian beam 

profile which is similar to the beam as used in the machine developed by Optosonics Inc. 

This will allow for more accurate prediction of optical properties as those which have 

been determined from the PCT images. 
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3. MONTE CARLO SIMULATION 

 

 

3.1 Algorithm and Flowchart 

Figure 3.1 shows the flowchart of the Monte Carlo software. The random nature 

of light can be simulated successfully by assigning a random variable to the random 

quantity to be simulated. In this case the random variable is a number having a normal 

distribution and is used to determine the step size and the scattering direction of the 

propagating photon. 

  

 

Figure 3.1 Monte Carlo algorithm for photon propagation16 
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3.1.1 Photon Packet Generation and Launch 

The photons are generated based on random number generators which decide the 

angle of photon propagation, the step size and the scattering angle. The nature of random 

number generation is explained in several books13, 19, 20. The random number generated is 

normally distributed between 0 and 1 as mentioned by L. Wang. It is this number which 

is used to initialize the above parameters of photon propagation. 

 

 

3.1.2 Photon Propagation, Absorption and Energy Deposition 

For a voxel volume of ΔV, based on the conservation of energy equation21 the raw 

probability which accumulates in the volume is given by: 

Fሺr̅, tሻ ൌ ୔ሺ୰ത,୲ሻ୉౗/୉౪
∑ ∑ ୔൫୰ഠ,തതത୲ౠ൯μ౗ሺ୰ഠഥሻΔ୚Δ୲ౠ౟

     (17) 

 

Where Pሺr̅, tሻ is the ‘raw probability’ and has no units, at position r and time t. 

The ratio of total energy which has been absorbed is given by Ea/Et in the time period or 

time-gate of Δt16. Fሺr̅, tሻ is the fluence (mm-2s-1) and μa is the absorption coefficient 

(mm-1).  

 

The free path of a photon is derived from a random number generator. It is a 

number between 0 and 1 and is used to determine the photon step size which is given by 

the following function: 

ܵ1 ൌ 	െ lnሺߝሻ  ௧     (18)ߤ/

 

Where S1 is the step size and ln(ε) is the free path obtained from the random 

number generator. The term μt stands for the transmission coefficient and is equal to the 

sum of the absorption and scattering coefficients given as: 

௧ߤ ൌ ௔ߤ	 ൅	ߤ௦     (19) 

 

It can be thus derived that the step size is dependent on the absorption and 

scattering coefficients and is thus different in different media. Hence, the Monte Carlo 
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code needs to compute the step size every time the photon enters a voxel having different 

optical properties as compared the previous voxel which the photon has exited.  

 

The step size is updated along every axis using vector addition in the Cartesian 

coordinate system in order to determine and update the new location. 

 

Once the photon travels along a distance equal to the step size, the interaction of 

the photon is determined at that spot known as the interaction site. At every such site, the 

photon is either scattered or absorbed. Accordingly the partial weight of the photon is 

reduced and the lost weight is then deposited in that particular voxel where the interaction 

occurs. The weight absorbed is given by: 

ݓ∆ ൌ ሺఓೌݓ
ఓ೟
ሻ     (20) 

 

Here ∆w is the weight lost by the photon whose initial weight ‘w’ now becomes 

w - ∆w. Thus the ratio of weight lost by the photon is dependent on the ratio of the 

absorption coefficient to the total transmission coefficient. Thus while absorption 

property plays a direct role in the energy absorbed by the medium the scattering 

coefficient also influences the total transmission coefficient and is affects the energy 

deposited by the photon. Accordingly the energy deposited at that voxel increases by ∆w. 

It is important to note that the weight of the photon is measured n terms of energy units. 

 

 

3.1.3 Photon Scattering 

The photon interaction at the interaction site results in the scattering of the 

photon. The angle of scattering is derived from the scattering function22, 12 and the cosine 

of the scattering deflection angle (θ) is given as follows: 

ሻߠሺݏ݋ܥ ൌ ଵ

ଶ௚
ሺ1 ൅ ݃ଶ െ ቂ ଵି௚మ

ଵି௚ାଶ௚ఌ
ቃ
ଶ
		݂݅	݃ ് 0     (21) 

ሻߠሺݏ݋ܥ ൌ ߝ2 െ 1		݂݅	݃ ൌ 0     (22) 
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Where ε lies between 0 and 1 and g can have values from -1 to 1. Scattering is 

also determined by the azimuthal angle ψ which has a normal distribution from 0 to 2π 

determined using the relation: 

ψ ൌ 2πε     (23) 

 

The deflection and azimuthal angles are then used to determine the new direction 

of the photon after the scattering event. The unit vector directions in the x, y and z axis 

are as follows: 

′௫ߤ ൌ
ௌ௜௡ఏ൫ఓೣఓ೥஼௢௦టି	ఓ೤ௌ௜௡ట൯

ටଵିఓ೥
మ	ା	ఓೣ஼௢௦ఏ

	     (24) 

 

′௬ߤ ൌ
ௌ௜௡ఏ൫ఓ೤ఓ೥஼௢௦టି	ఓೣௌ௜௡ట൯

ටଵିఓ೥
మ	ା	ఓ೤஼௢௦ఏ

	     (25) 

 

′௭ߤ ൌ
ିௌ௜௡ఏ஼௢௦ట

ටଵିఓ೥
మ	ା	ఓ೥஼௢௦ఏ

	     (26) 

   

 

3.1.4 Creating Objects using Voxels 

The MCX software allows users to define voxel space by assigning different 

optical properties to voxels. The software originally was used with a few media types. In 

this project different objects were created by using simple geometric equations which 

would assign voxels lying within a geometric shape. Thus a sphere, ellipsoid, cuboids 

were created using Matlab script. A binary file containing ‘unichar’ characters was 

created to designate voxels with different optical properties. The process of assigning 

regions is shown as in Figure 3.214. 
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Figure 3.2 Assigning voxels to regions14 
 

 

3.1.5 Reflection at Object Boundaries 

Since the object boundaries are defined by voxels, the voxel faces also form the 

interface between two media. Hence, the angle of incidence and reflection can be 

determined by determining the angle made by the photon with respect to the voxel 

boundaries of two voxels with different optical properties. The mechanism of 

determining the reflection interface is shown by the example in Figure 316. The photon is 

assumed to be travelling from a medium to air denoted by the respective voxel properties. 

Each neighboring interface is calculated by calculating the time of flight from the current 

point in the photon trajectory. In the first example (a) in the figure, the interface C1 is 

calculated from the position PN and the properties of the neighboring voxel is determined. 

Since it is found to be of the same type, the shortest time of flight is calculated backwards 

from the next point PN+1 in the photon trajectory. Thus the interface C2 is identified. Here 

both the voxels are seen to have different optical properties and hence, C2 is determined 
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to be the reflection interface between the medium and air. The second example (b) in 

Figure 3.3 shows the photon trajectory through three such interfaces. In this case both C1 

and C2 form the interfaces of voxels with the same optical properties and thus based on 

their orientation, the orientation of the interface C3 is determined in a unique manner as 

each interface in the x, y and z direction can be passed only once when the step size is 

equal to one voxel edge length. Thus the process of calculating the time of flight 

backwards gives a unique way of determining the reflection interfaces. The reflection 

coefficient, calculated from the Fresnel’s equation is then multiplied to the photon packet 

weight16. 

 

 

 

Figure 3.3 Mechanism for reflection between two mediums16 (a) Photon path with two 
interfaces (b) Photon path with three interfaces 
 

 

3.1.6 Time Gates and Photon Migration 

The flight of the photon is binned in the form of user specified independent time-

gates and is useful in addressing time related problems in photon migration. The fluence 



19 
 

is saved in the graphics memory known as global memory of the graphics card. Time 

gates are also divided into different groups and each group (containing multiple time 

gates) is run independently.  

 

The use of graphics card limits the time taken to write into the global memory 

which is slow as compared to writing/reading from the constant and shared memories, 

which are smaller and insufficient in size as compared to the global memory. The 

reduction of global memory access is an area of research for designing efficient Monte 

Carlo software. 

 

 

3.2 Simulation with Pencil Beam 

The original code developed by Fang et al16 simulated a light source to generate a 

pencil beam which was one voxel wide at the source (point source). The observations 

below show some of the simulations performed using this beam. Even though this beam 

does not resemble a ‘real life’ light source, it nevertheless is the foundation on which this 

research has been based, wherein the light source used in the actual scanner was 

simulated by using multiple point sources. 

 

Some simple simulations were first performed in order to study the working of the 

original algorithm using the point source. Figures 3.4 and 3.5 show the fluence images 

from simulations performed by emulating a spherical object in the path of a pencil beam. 

The voxels designating the medium (water) have the following properties: absorption 

coefficient = 0.000001 mm-1, scattering coefficient = 0.002 mm-1, anisotropy factor = 1, 

refractive index = 1.3; while the object have been given the properties as: absorption 

coefficient = 3 mm-1, scattering coefficient = 0.005 mm-1, anisotropy factor = 0.935, 

refractive index = 1.3. In Figure 3.5, an object with a scattering coefficient = 0 is 

simulated while the absorption coefficient is the same as the previous. Thus Figure 3.5 

represents an object with high absorption with no scattering.  
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The PCT scanner uses a laser beam which resembles a super-Gaussian 

distribution and hence, the Monte Carlo code needs to be modified so as to generate a 

real life laser beam profile. 

 

 

 

 
Figure 3.4 Fluence image of a Monte Carlo simulation. The radius of the sphere is 10 
voxels, with each voxel having side equal to 1 mm. The medium surrounding the sphere 
has low scattering and absorption coefficients while the voxels within the sphere have 
been assigned absorption coefficient of 3 mm-1 and scattering coefficient of 0.005 mm-1.  
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Figure 3.5 Fluence image of a Monte Carlo simulation. The radius of the sphere is 10 
voxels, with each voxel having side equal to 1 mm. The medium surrounding the sphere 
has low scattering and absorption coefficients while the voxels within the sphere have 
been assigned absorption coefficient of 3 mm-1 and scattering coefficient of 0 mm-1. 
 

 

3.3 Generation of a Super Gaussian Beam 

The laser beams used in various scanners have different beam profiles depending 

on the type of laser and optical path of the beam. Hence, a Monte Carlo simulation needs 
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to generate a beam which closely resembles, if not matches, the energy distribution of the 

real beam. Hence, in this study the existing Monte Carlo code was used and modified to 

generate a beam model which would resemble the super Gaussian beam distribution used 

in the Photoacoustic scanner.  

 

In order to generate such a beam, an iterative approach was used to generate 

multiple pencil shaped beams which would be used to create a resultant beam which 

would have the divergence of a real laser beam. A probability distribution function whose 

output distribution resembled the super Gaussian shape was used. The magnitude 

distribution function of the beam is given as follows: 

ܣ ൌ ଴݁ܣ	
ିቀభ

మ
ቁሺ ೝ
భబ
ሻఱ      (27) 

 

The direction of the beam is given in the form of the directional vectors which are 

generated using random angle sampling. The angle between two vectors is constant and 

the incremental angle is given as: 

௜௡௖ߠ ൌ 	  ሻ     (28)ݖ/ଵሺ1ି݊ܽݐ

 

Here, z is the distance between the source and the object along the azimuthal axis. 

Thus the magnitude is uniformly distributed along by using equal number of incremental 

beam angles along the x and y axis. Figure 3.6 shows the quiver plot of the directional 

vectors while Figure 3.7 shows the magnitude plot of the beam. 
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Figure 3.6 Quiver plot of 3 dimensional vectors of the super Gaussian beam profile  
 
 

 

 

 
Figure 3.7 Magnitude plot of the beam profile 
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Figure 3.8 Simulation results of beam profile: (a) & (c) show the gray scale images of 
normalized beam fluence profile as generated by the Monte Carlo code. (b) & (d) show 
the corresponding cross sectional fluence graphs which have been normalized to their 
gray scale values.   
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4. RECOVERY OF ABSORPTION COEFFICIENTS USING ITERATIVE 

ALGORITHM 

 

 

4.1 Iterative Recovery Method 

The focus of this study is to quantify the process of near infra-red (NIR) 

absorption and thermoelastic conversion of molecules, which show high photoacoustic 

properties. This conversion process depends on the optical absorption coefficient of the 

molecules and hence, one must first derive this in order to be able to extract the 

thermoelastic conversion coefficient. Thus the success of this technique depends on the 

accurate prediction of the absorption coefficient of the tissues being imaged.   

   

To accomplish this goal, the photon fluence distribution within the tissue is required. 

Hence to determine this in, an iterative algorithm has been developed to determine the 

photon fluence without a priori knowledge of the absorption coefficient. It utilizes the 

direct relationship between the fluence and the energy distribution as suggested in 

Equation 16. Thus the fluence output in every iteration of the Monte Carlo is used along 

with the energy distribution from the PCT scanner in order to predict the absorption 

coefficient of each voxel is predicted on a voxel by voxel basis. Thus the original Monte 

Carlo code is used in the form of a simulated routine to accurately predict the absorption 

coefficient of the imaged molecules. The voxel by voxel comparison followed in this 

iteration is the unique feature of this study.  

 

The flowchart for the recovery of the absorption coefficient is given in Figure 

4.114. In order to determine these quantities for every voxel, the Monte Carlo must be 

able to generate a voxelated map of the fluence and the energy distribution. The energy-

fluence relationship is used as stated in Equation 16. 
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In every such iteration the value of recovered μa is updated as follows: 

௔௞ାଵߤ ൌ  ෡/߶௞     (30)ܪ	

 

Here H෡ is a reference energy map, μୟ୩ାଵ is the recovered absorption coefficient 

and ϕ୩ is the fluence profile obtained for the iteration k. A merit function is used to 

compare the two energy maps. In case of a mismatch, the value of  μୟ୩ାଵ becomes the 

input value for the next simulation run. The design of the merit function plays a critical 

role in ensuring the accuracy of the iteration routine. 

 

 

 

 

Figure 4.1 Iterative algorithm flowchart for recovery of absorption coefficient14 
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4.2 Merit Function 

The merit function is the criteria used to determine the accuracy of match between 

the Monte Carlo energy map and the reference energy map. The magnitude of statistical 

errors arising from this mismatch is the best possible prediction of the accuracy of the 

absorption coefficient recovery. The two maps are compared on a voxel by voxel basis 

and the resultant percentage mismatch is analyzed. Two kinds of errors are considered: 

(1) percent difference between the two individual voxels, and (2) percentage of total 

number of matching voxels. In this study a match of 95% is considered as a match for 

both the above criteria. The statistical errors are analyzed and it is observed that they 

reduce after every iteration thereby demonstrating the accuracy of the merit function. The 

results are depicted in the next section. 

Thus the following factors affect the accuracy of this iterative technique: (1) the 

merit function, (2) number of photons simulated, and (3) range of absorption coefficients 

within the tissues. In this study, the reference map has been generated by using a Monte 

Carlo simulation with known optical properties of tissues1, 3, 11, 12, 14, 17.  

 

 

4.3 Simulation and Iterative Recovery Results 

 

 

4.3.1 Optical Properties of Tissues 

Table 4.1 shows the list of optical properties such as the absorption coefficient 

(µa), reduced scattering coefficient (µs1), anisotropy factor (g) and refractive indexes (n) 

used in the simulations:. The scattering coefficient, anisotropy factor and refractive index 

were mostly unchanged. The purpose of this simulation study was to recover the 

absorption coefficient for constant values of the other three optical parameters. A total of 

about 20 simulations were performed using different combinations of the above 

properties. However due to time and space constraints the details of only one such 

simulation has been shown in Section 4.2.3. A summary of these simulations is shown in 

the Figure 4.2. 
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Table 4.1 Optical properties of tumors.  
 

µa (mm-1) µs
1 (mm-1) g n 

0.001  0.9 0.91 1.3 

0.004 0.9 0.91 1.3 

0.005 0.9 0.91 1.3 

0.0075 0.9 0.91 1.3 

0.01 0.9 0.91 1.3 

0.02 0.9 0.91 1.3 

0.025 0.9 0.91 1.3 

0.05 0.9 0.91 1.3 

 

 

The different optical properties as shown in table 1 were simulated. The number 

of iterations required for the algorithm to converge increases with an increase in the 

optical absorption coefficient. The higher the absorption coefficient of the object, greater 

is the time required for the iterative routine to converge. It must be noted that the iteration 

begins with absorption coefficient of the object set to zero, while those of the medium are 

set to the known values. Hence, if the difference between the two is large, then we need 

more computation time to predict the absorption coefficient of the object. Figure 4.2 

confirms this reasoning, wherein µa = 0.05 requires 7 iterations to converge as compared 

to 4 iterations for µa = 0.001. More work needs to be done, to study the dependence of 

convergence on the relationship between the optical properties of the tissue from the 

surrounding medium.  
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Figure 4.2 Iteration count versus percentage for simulations with different optical 
absorption coefficients µa. More number of iterations (i.e., more computational time) is 
required with increase in absorption coefficient of the imaged tissues. 
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4.3.2 Tumor Model 

Figure 4.3 shows a typical model of a tumor as depicted in a Monte Carlo 

simulation. 

 

 

 

Figure 4.3 Structure of a tumor model. The inner core is hypoxic or devoid of oxygen 
content while the outer core has excess of blood vessels. This creates a difference in 
optical properties between the two regions. 
 

As stated in the figure, the outer shell consists of a highly dense network of blood 

vessels and is hence, rich in oxygen content, while the inner core is devoid of oxygen. 

This creates a difference in the effective absorption coefficient values between the two 

regions. This study tries to depict this model in its simulation studies in order to emulate 

real time tumors.  

 

 

4.3.3 Sample Simulation Results 

The following figures show the results for one such simulation. The tumor model 

was simulated. The figures include normalized fluence images, fluence profile graphs and 

the graph of iteration count versus iterative percentages. 

 



31 
 

In this sample simulation, the following optical properties were assigned: The 

inner hypoxic core of the tumor was assigned absorption coefficient of 0.001 mm-1, 

reduced scattering coefficient = 0.9 mm-1, anisotropy factor g = 0.91 and refractive index 

= 1.3. The outer shell of the tumor had absorption coefficient = 0.025 mm-1, reduced 

scattering coefficient = 0.9 mm-1, anisotropy factor g = 0.91 and refractive index = 1.3. 

The medium had absorption coefficient = 0.002 mm-1, reduced scattering coefficient = 

0.000001 mm-1, anisotropy factor g = 1 and refractive index = 1.3. These were the values 

assigned to obtain the reference energy map. During the iteration recovery cycle, the 

voxels lying in the region of interest were assigned the same optical properties as above, 

however the absorption coefficient of these voxels was set to 0. Thus after every iteration 

the absorption coefficient was updated until the two energy maps finally converged as 

determined by the merit function.  

 

Figure 4.1 (a) shows the gray scale image of fluence (units = 1/m2s) which has 

been normalized. The two concentric circles show the inner and outer regions of the 

tumor. Figure 4.4 (b) shows the corresponding normalized fluence plot along the z axis. 

The tumor extends from z = 47 to z = 57.  The figure shows the exponential decay of the 

light fluence along the z axis within the tumor. 

 

Figure 4.5 shows the gray fluence images, similar to that shown in Figure 4.4(a) 

for various iterations. It is important to note that the fluence and energy maps converge 

with the reference maps at the 6th iteration. Hence, the images (f) and (g) in Figure 4.5 

look alike. A more descriptive version of this iterative convergence is shown in Figures 

4.6, 4.7 and 4.8, which show the fluence plots along the x, y and z axis respectively for 

iterations 1-6 and the reference. The fluence plots are seen to converge with the reference 

fluence at iteration 6. The absorption coefficient obtained after iteration 6 shows greater 

than 95% match as decided by the merit function. To further investigate the convergence 

of recovered absorption coefficient, the systemic errors along the x, y and z axis have 

been plotted in Figure 4.10 along with the corresponding gray scale maps. The systemic 

error is the ratio of the difference in the reference absorption coefficient and the measured 
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absorption coefficient to the reference absorption coefficient value, i.e., (µref - 

µmeasured)/ µref. Thus it is seen that the systemic error reduces with increase in iteration 

count and is least when the two energy maps converge at the 6th iteration.  Another 

interesting phenomenon observed is the dependence of the systemic error on the distance 

from the light source along the azimuthal direction. This could be due to the decrease in 

the number of photons as we travel further away from the beam. On the other hand, the 

systemic error in the x-y plane is fairly constant. Figure 4.9 shows the absorption 

coefficient map in gray scale at iteration 6. The iteration count versus percentage is 

plotted in Figure 4.11. The convergence to 100% occurs at iteration 6. 

 

 

 

 
Figure 4.4 (a) Gray Scale image of fluence distribution 
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Figure 4.4 (b) Magnified fluence along center of the object 
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Figure 4.5 Gray scale fluence images in x-y plane at z = 50mmg. Figures (a) - (d) show 
fluence images for iterations 1 to 4 and (e) shows the reference fluence image 
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Figure 4.6 (a) – (e) Fluence plots across the object along x axis: Figures (a) to (d) show 
the normalized fluence graphs for iterations 1 to 4. Figure (e) shows the reference 
fluence.   
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Figure 4.6 (a) – (e) Continued 
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Figure 4.7 (a) – (e) Fluence plots across the object along y axis: Figures (a) to (d) show 
the normalized fluence graphs for iterations 1 to 4. Figure (e) shows the reference fluence 
graph. 
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Figure 4.7 (a) – (e) Continued  
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Figure 4.8 (a) – (e) Fluence plots across the object along z axis: Figures (a) to (d) show 
the normalized fluence graphs for iterations 1 to 4. Figure (e) shows the reference fluence 
graph. 
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Figure 4.8 (a) – (e) Continued 
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Figure 4.9 Recovered absorption coefficients along (a) x, (b) y and (c) z axis, and the 
corresponding gray scale image of absorption coefficient map. Note that the absorption 
coefficients are symmetrical in x, y and z directions throughout the spherical tumor.  
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Figure 4.10 (a) – (c) Systemic error plots and maps. Figures (a) - (c) show the plots of 
systemic error for iterations 2 - 4 as a function of distance along x, y and z axis in the 
region of interest. Also shown are the corresponding gray scale systemic error maps in 
the x-y  and y-z plane within the core of the tumor at z = 50mm. The merit function 
shows convergence over the entire tumor. Note that the systemic error for iteration 1 is 
100% or 1 and is hence ignored. 
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Figure 4.10 (a) – (c) Continued 
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Figure 4.10 (a) – (c) Continued 
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Figure 4.11 Plot of iteration count versus percentage 
 

 

4.3.4 Change in Region of Interest 

The region of interest defines the region in which the iterative algorithm operates. 

It is the area over which the absorption properties are adjusted after each iteration, so as 

to achieve a match between the reference and simulation energy maps. The merit function 

is used to determine the criteria for convergence. As discussed earlier a convergence of 

95% or greater is considered as the criteria to achieve a successful recovery of absorption 

properties.  
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Figure 4.12 Region of interest. The large cube shows the imaging domain while the 
sphere shows the tumor as depicted within this imaging space. The blue cube surrounding 
the sphere is the region of interest. The region of interest can be varied in both size and 
position depending on the area of interest for iterative recovery of the absorption 
coefficient. 
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Figure 4.13 Graph of percentage versus iteration count.  The figure shows the data for 
three regions of interests (ROIs) of different volumes. It is seen that the algorithm 
converges quickly for smaller regions as compared to the larger regions. Thus larger 
regions consume more computation time [a * (n + 1) time units] as compared to the 
smaller regions [a * n time units] as it requires more iterations. Here a*n is the 
computation time for n number of iterations each running for time = a units. Thus the 
computation time increased only fractionally (n + 1) minutely with an increase in the 
volume of the ROI. 
 
 

Thus we can be conclude that a larger region of interest can be used at a minor 

cost of computation time so as to converge over a larger area and to effectively extract 

the absorption coefficient within the ROI. However the capability of the graphics card o 

handle large amounts of memory also limits the increase in the region of interest. In this 

study the Nvidia card GTX 580 was used. It could support an ROI of 1000mm3 due to 

the limitations of the shared and global memories of the card. However large ROIs could 
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be simulated by mapping the recovered absorption coefficients to a fixed set of values as 

determined by the global and shared memory limitations of the card. This method could 

be effective in increasing the ROI for convergence and would use less computation 

power. However such a method could introduce an error while assigning approximate 

values for absorption coefficients. 

 

 

4.3.5 Change in Number of Photons 

The efficiency of the iteration routine also depends on the number of photons 

simulated. More the number of photons, greater is the optical resolution. A smoother 

fluence profile decreases the systemic error. In this study, the simulation was done using 

different photon numbers to study its effect on fluence and energy profiles and its 

effectiveness in iterative recovery of the absorption coefficient. Three photon sizes (1000, 

10000 and 50000) were generated and its effects on fluence profiles were studied. Figure 

4.14 (a - c) shows the normalized fluence profiles through the object centers around the 

object.   

 

The fluence curve becomes smoother with an increase in the number of photons. 

A larger number of photons increases the fluence which in turn helps creates smoother 

transition of energy change between voxels. This helps in more accurate prediction of 

optical properties of the object simulated. However an increase in the number of photons 

also increases the computation time. The parallel multithreading capability of the Nvidia 

graphics card could be used to reduce the computation time by using more number of 

threads while increasing the number of simulated photons.  

 

The need for more photons to be simulated also reinforces the belief that 

sufficient illumination is required in real life imaging systems in order to acquire more 

information within an image. The need for more number of photons also requires graphic 

cards capable of handling more number of multithreading tasks. In this study a maximum 

of 100000 photons (per launch) have been simulated, without significantly increasing the 
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computation time and by using the multithreading capability of Nvidia graphics cards. 

However the limit is reached when the global and shared memories of the graphics card 

can no longer support the simulation. 

 

 

 

 
Figure 4.14 Magnified fluence through object center for (a) 1000 photons, (b) 10000 
photons, and (c) 50000 photons 
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5. FLUENCE STUDIES FOR INTEGRATION WITH PCT SCANNER 

 

 

In order to successfully validate the iterative Monte Carlo code which was 

developed to improvise the image reconstruction with the PCT scanner, we need to be 

able to measure the fluence, generated by the propagation of the laser beam, at different 

points inside the tissues. The current studies which have been used so far for this purpose 

are thermal calorimetric measurements using a calorimeter and electric measurements 

using a photodiode. However these techniques cannot be used to measure the fluence 

inside a mouse within the PCT scanner, as they depend on the orientation of the detector 

to the incident light beam. Hence, for our purpose we need an isotropic detector which 

absorbs/detects photons equally in all directions and is easily incorporated within tissues 

during PCT scans. Hence, an optical fiber with a spherical tip attached to it was designed 

and calibrated. The design was based on the idea proposed by Michael Shaffer from Dr 

Stanz’ laboratory and was calibrated to measure isotropic absorption of light photons. 

Although the dosimetry measurements using tissue phantoms could not be made in this 

study, the angular response of these probes was studied to determine its isotropic nature 

and to obtain the best possible design.  

 

 

5.1 Design of Fluence Probe 

The probe is designed such that the photons collected by the imaging tip to be 

able to enter the optical fiber. The spherical nature of the tip helps in collecting photons 

equally in all directions, while the highly scattering material used in preparing the tip 

needs ensures that light undergoes multiple scattering events before entering the fiber tip. 

This ensures a uniform isotropic response which is independent of the incident angle of 

the light beam23, 24. Along with my colleague and mentor Michael Schaffer, we were able 
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to produce two types of probes using highly scattering materials such as Titanium dioxide 

and Nylon. The fractional volumes of the material used (TiO2 or Nylon) for the probe tip 

determines the number of scattering events per unit length, and thus the scattering 

coefficient23, 24. 

 

The fiber optic correction factor (Fc) needs to be applied in order to take into 

account the portion of the solid angle which is blocked due to introduction of the fiber 

optic tip23, 24. This is given by: 
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Substituting in the limits of integration and simplifying: 

)](cos[arcsin1
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    (33) 

Here d and D are the diameters of the fiber and probe respectively. The Table 5.1 

shows the effect of the sphere diameter on Fc: 

 

Table 5.1  Relative cable gain due to blind spot on sphere 
 

Fiber Diameter 

(mm) Sphere Diameter (mm) Fc 

0.4 0.8 1.0718 

0.4 1.2 1.0294 

0.4 1.5 1.0184 

0.4 2 1.0102 

0.4 2.5 1.0065 
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The following mold in Figure 5.1 (designed and machined by Michael Shaffer, 

Exacto Machine and Tool Inc., Indianapolis, IN) was used to cast the spherical probes: 

 

 

 
Figure 5.1 Mould design for casting spherical probes 
 

 

5.2 Measurement of Angular Response using PIN Photodiode 

In order to record the amount of light entering the fiber, the optical cable is 

connected to a ET-2030PIN photodiode (ET-2030 PIN Electro Optics Technology Inc., 

Traverse City, MI). The output of the photodiode is connected to a digital oscilloscope 

(Tektronix TDS3052B), whose output is normalized by the spectral response of the ET-

2030 unit. The experimental setup is shown in Figure 5.2. 
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Figure 5.2 Experimental set up for measuring equatorial and azimuthal angular response 
of the fluence probes 
 

The photodiode is operated in the Photo Conductive (PC) mode below the 

breakdown voltage of the diode so as to achieve a greater linear range for change in 

photon fluence, at the expense of generating more dark current. The peak voltage of the 

diode is measured by coupling the photodiode to the oscilloscope using a 50 ohm 

impedance setting, while sampling is done with pulsed Q-switched signal as trigger to 

adjust timing delay. 
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5.3 Probe Calibration 

In the current study the probe will be calibrated against a wavelength of 696 nm 

which is the wavelength of light used to perform tumor imaging studies. This is done by 

measuring the output peak voltage across various equatorial and azimuthal angles. A 

stepper motor is used to rotate the probe around its axis for equatorial measurements 

while the azimuthal angle is changed by manually adjusting the probe axis with respect to 

the light beam. The equatorial angles range from 0 to 360 degrees in steps of 15 degrees 

while the azimuthal angles are changed in steps of 10 degrees from 0 to 150 degrees. The 

physical limitations such as the scanner dimensions and the probe dimensions prevented 

us from taking the entire azimuthal range of 180 degrees. The PCT LOM is then used to 

take measurements of the beam output power at each data point and is used to normalize 

the photodiode output. 

 

 

5.4 Summary of Angular Responses 

Based on the concentration of titanium dioxide or nylon, the following graph was 

plotted of the diffusion coefficient versus concentration in Figure 5.3. The equatorial 

uniformity of the nylon and titanium probes is shown in Figure 5.4 while the azimuthal 

response is shown in Figure 5.5. 

 

 

Figure 5.3 Plot of diffusion coefficient versus wavelength 
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Figure 5.4 Equatorial response of Nylon and Titanium spheres. The equatorial response 
of the titanium probes is more uniform as compared to nylon probes 
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Figure 5.5 Azimuthal response of Nylon and Titanium spheres. The equatorial response 
of the titanium probes is more uniform as compared to nylon probes 
 
 

 

The equatorial and azimuthal responses of the probes varies with probe 

concentration, diameter and the depth of penetration of the optical fiber within the probe 

sphere. Overall the equatorial and azimuthal responses of the titanium sphere are more 
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uniform as compared to nylon spheres. However in order to justify this observation, 

statistical analysis was performed to measure the standard deviation of the probe 

responses. The variation was measured by calculating the ratio of the standard deviation 

to the average values of the normalized rms values. The standard deviation plots are 

shown in Figure 5.6 while the plots showing variation of the angular responses is shown 

in Figure 5.7.  

 

 

 
 
Figure 5.6 Standard deviation plots for equatorial and azimuthal responses of Titanium 
and Nylon probes. Titanium probes show more uniform response as compared to the 
Nylon probes  
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Figure 5.7 Equatorial and Azimuthal variations of Titanium and Nylon probes. Titanium 
probes show less variation as compared to the Nylon probes 
 

The variation and standard deviation plots in Figures 5.6 and 5.7 were used to 

determine the best possible probe combinations. Since titanium probes showed a more 

uniform response, two such probes were identified and compared, namely the probes with 

1.5 mm and 2 mm diameters. These were made with 5 mg/ml concentration of titanium 

dioxide. The plots of equatorial and azimuthal variation is plotted in Figure 5.8. 
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Figure 5.8 Equatorial and Azimuthal variation of titanium probes with 1.5 mm and 2 mm 
diameters 
 

From Figure 5.8, it is seen that the equatorial and azimuthal variation of the probe 

with 2 mm diameter is less compared to the probe with 1.5 mm diameter. This is due to 

the fact that larger diameter allows a more uniform distribution of fluence within the 

sphere. 

 

The Table 5.2 shows the final summary of the probe responses. The responses 

have been graded manually into 3 categories, namely good, fair and bad. A good 

response is one which has low values of standard deviation and variation in both the 

azimuthal and equatorial response, while a bad response shows higher values. A fair 

response indicates a grade between good and bad. The results from these analysis shows 

that titanium probes having a diameter of 1.5 mm show a uniform response and is 

recommended for further calibration and tissue fluence studies.  
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Table 5.2  Summary of angular response of Titanium and Nylon probes 
 

Type Specs Equatorial Uniformity Azimuthal Uniformity 

TIO2 1.5 122.667 Good Fair 

TIO2 1.5 9.1 Fair  Poor 

TIO2 1.5 18.2 Good Fair 

TIO2 1.5 13.65 Fair Good 

TIO2 2 9.1 Good Good 

Nylon 3 R 0.063 A Fair  Fair  

Nylon 3 R/3 0.021 A Fair  Fair  

Nylon 3 R/3 0.021 B Fair  Fair  

Nylon 3 R/2 0.034 A Bad Fair  

Nylon 3 R/2 0.034 B Bad Bad 

Nylon 3 R 0.063 B Fair Bad 

 

 

Thus optical dosimetry probes could be potentially used to determine the fluence 

and energy distributions within tissues. The data obtained via these probes can be used to 

calibrate the PCT scanner and used to obtain the energy profiles, which could in turn be 

used as reference energy maps to extract the optical coefficients within tissues of 

complex geometry using the iterative routine. While this being a pilot study, further 

studies need to be performed to determine the energy profiles of these probes with respect 

to the laser output power. 
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6. CONCLUSION AND FUTURE WORK 

 

 

This study has been a continuation of the work done by Dr Stantz and Jye Cheong 

in developing an effective method to quantify the photoacoustic effect in tissues which 

show high rate of opto-acoustic conversion properties. The role of the absorption 

coefficient in this conversion process has been studied at a molecular scale. The 

uniqueness of this study lies in its ability to extract and recover the absorption properties 

of the imaged object on a voxel by voxel basis in a 3 dimensional medium. Thus its 

inherent ability to be integrated with the PCT scanner makes it a unique technique for 

calibrating the scanner. This study however needs to be integrated with sufficient data 

obtained through fluence studies in tissues using the dosimetry probes. The need to obtain 

the photoacoustic coefficient of conversion is the main focus of this study. Thus further 

research needs to be conducted to study the process of conversion of light fluence into 

thermo elastic expansion and subsequently the generation of the acoustic wave. This 

requires the study of the thermal and elastic properties of the molecules and their 

dependence on the light distribution within the tissues. The PCT scanner output could be 

used to determine this property through the use of the back projection algorithm to obtain 

the reference energy profile. Once integrated with the PCT images, the iterative recovery 

method using Monte Carlo could form a powerful diagnostic tool to determine the optical 

and acoustic properties of the imaged tissues. This would help in the diagnosis of cancer 

and other ailments. 

 

This entire study was divided into several steps. The first part of the study looked 

at the best possible way to implement multithreading and parallel processing so as to 
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reduce the computational speed. This was done by making use of the basic Monte 

Carlo code as developed by Dr Fang and modifying it to suit the imaging environment in 

a photoacoustic scanner. The second part dealt with simulations which were performed to 

study the performance of the Monte Carlo algorithm so as to determine its efficacy and 

accuracy in a photoacoustic environment. Finally the iteration algorithm was developed 

and implemented so as to extract the absorption coefficient from the simulated object by 

iterative recovery method. In all these studies the Monte Carlo code was found to 

perform satisfactorily and was validated with the help of the iteration method. 

 

Simulations were performed with known optical properties (referred in previous 

studies) so as to recover the absorption coefficient through the iterative method. The 

effects of the photon numbers, change in regions of interest, as well as use of different 

values of optical coefficients was studied. The iterative routine was able to converge 

within 4-6 iterations and hence, was found to be effective in time and efficiency to 

recover the optical properties of the tissue. The fluence studies performed using the 

isometric probes were successful in producing a isotropic response and hence, hold a 

promise to be used to determine the fluence within tissues in a real imaging system. 

 

Future work in this research has to involve fluence based studies to determine the 

energy distribution in tissues and to validate it with the Monte Carlo software. A part of 

this work has already been done with the design of isotropic fluence probe to study tissue 

illumination.  Such isotropic probes can be used to determine fluence within tissue 

samples as well as optical phantoms so as to study the distribution of light energy and 

thus could be used to determine the optical properties of the tissues. These properties 

could act as the preliminary inputs to the Monte Carlo software. However in order to 

validate the PCT scanner, we will have to determine the energy distribution using back 

projection algorithm as used in the scanner and thus a reference energy map can be 

obtained. Furthermore, such a map serves as a reference map to compare the Monte Carlo 

output with the PCT output and o determine the accuracy of the iteration algorithm. Thus 

the absorption coefficient can be determined based on these two inputs (fluence and 



63 
 

energy maps). The same iterative method can also be used to determine the other optical 

properties by using sufficient details of the other optical parameters.  

 

More work needs to be done in areas of understanding the acoustic conversion 

from absorbed photon energy and to determine the relationship between the light energy 

and acoustic energy due to the volumetric expansion. Use of optical and acoustic 

phantoms would help in order to quantify this relationship. Tissues have complex 

structures and boundaries and hence, the optical properties vary depending on the 

geometry, type and depth of the tissues. These details need to be represented within 

optical phantoms so as to get more real life structures which could be imaged and 

validated using Monte Carlo techniques. This work is currently in process at Dr Stantz’s 

research laboratory.   
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