
Graduate School ETD Form 9 
(Revised 12/07)       

PURDUE UNIVERSITY 
GRADUATE SCHOOL 

Thesis/Dissertation Acceptance 

This is to certify that the thesis/dissertation prepared 

By  

Entitled

For the degree of   

Is approved by the final examining committee: 

       
                                              Chair 

       

       

       

To the best of my knowledge and as understood by the student in the Research Integrity and 
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of 
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.  

      

Approved by Major Professor(s): ____________________________________

                                                      ____________________________________ 

Approved by:   
     Head of the Graduate Program     Date 

Nancy Giovanni Tanjung

In Vitro and In Silico Analysis of Osteoclastogenesis in Response to Inhibition of
De-phosphorylation of eIF2-alpha by Salubrinal and Guanabenz

Master of Science in Biomedical Engineering

Dr. Hiroki Yokota

Dr. Julie Ji

Dr. Sungsoo Na

Hiroki Yokota

Edward J. Berbari 11/11/2013



IN VITRO AND IN SILICO ANALYSIS OF OSTEOCLASTOGENESIS IN

RESPONSE TO INHIBITION OF DE-PHOSPHORYLATION OF EIF2a BY

SALUBRINAL AND GUANABENZ

A Thesis

Submitted to the Faculty

of

Purdue University

by

Nancy Giovanni Tanjung

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Biomedical Engineering

December 2013

Purdue University

Indianapolis, Indiana



ii

ACKNOWLEDGMENTS

I would like to thank the Lord for the wisdom and perseverance that He has

bestowed upon me during this thesis project and throughout my life: ”I can do

everything through Him who gives me strength.” (Philippians 4:13).

I would like to express my profound gratitude and deep regards to my thesis

advisor, Dr. Hiroki Yokota, for his excellent leadership, guidance, patience, and

encouragement throughout the course of this thesis. Without him giving me the

opportunity to do thesis research, I would not have gained the skills and knowledge I

have right now. The written, verbal, research, and time management skills he taught

me from time to time shall carry me a long way in the journey of life on which I am

about to begin.

I would also like to express my sincere and deepest gratitude to Dr. Kazunori

Hamamura, for his excellent and tremendous support and guidance throughout the

thesis project. His patience, motivation, and immense knowledge have made it possi-

ble to get this project going and produce high quality data. It is such an honor to be

taught by and work with a great scientist like him. My deepest gratitude also goes

to Momoko Hamamura for her wonderful help and support throughout this thesis.

Without her cheerful and kind personality, my days would not have been as bright

as they were.

My sincere gratitude also goes to the rest of my committee members: Dr. Julie

Ji and Dr. Sungsoo Na, for their encouragement, patience, and insightful comments.

Without them, this thesis could not be completed.

I am grateful to have my co-worker, Andy Chen, to help and support me tremen-

dously with math and programming. I am also thankful to have my friend, Mario

Soliman, to always motivate and support me emotionally. They both have kept me

from giving up and I am blessed to have them throughout the course of this thesis. I



iii

would like to also thank my lab members and friends for supporting and encouraging

me with their best wishes.

Finally, I would like to appreciate and thank my parents, my brother, and my host

family for their unconditional support and prayers throughout my college career.

Their patience, love, and understanding have motivated, encouraged, and kept me

going. Without them and their support, I would not be able to reach the achievements

that I have right now.



iv

TABLE OF CONTENTS

Page

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Bone Remodeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background of Osteoporosis . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Current Available Treatment and Side Effects . . . . . . . . . . . . 2

1.4 Effects of eIF2a Phosphorylation . . . . . . . . . . . . . . . . . . . 4

1.5 Salubrinal and Guanabenz as Inhibitors of eIF2a Dephosphorylation 5

1.6 Elevation of eIF2a Phosphorylation by Salubrinal and Guanabenz in
Bone Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7 Questions, Hypothesis, and Approach . . . . . . . . . . . . . . . . . 8

2 MATERIALS AND METHODS . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 In Vitro Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Cell Culture . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 TRAP Staining . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Quantitative Real-time PCR . . . . . . . . . . . . . . . . . . 11

2.1.4 Western Immunoblotting . . . . . . . . . . . . . . . . . . . . 11

2.1.5 Validation of Gene Involvement by RNA Interference . . . . 13

2.1.6 miRNA Array Profiling . . . . . . . . . . . . . . . . . . . . . 13

2.1.7 mRNA Array Profiling . . . . . . . . . . . . . . . . . . . . . 13

2.1.8 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 In Silico Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Gene Prediction Analysis . . . . . . . . . . . . . . . . . . . . 14

2.2.2 MicroRNA (miRNA) Prediction Analysis . . . . . . . . . . . 15



v

Page

3 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Inhibition of Osteoclastogenesis in RAW264.7 Cells by Salubrinal and
Guanabenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Downregulation of NFATc1 in RAW 264.7 Cells by Salubrinal and
Guanabenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Reduction of RANKL-induced NFATc1, C-fos, TRAP, and OSCAR 19

3.4 Temporal Profile of P-eIF2a and NFATc1 . . . . . . . . . . . . . . 23

3.5 Recovery of NFATc1 Expression by RNA Interference for eIF2a . . 25

3.6 Effect of Salubrinal and Guanabenz on Some Known Signaling Path-
ways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.7 NFATc1 Expression Pattern and the Predicted Regulatory Network 25

3.8 Predicted mRNAs Regulating NFATc1 . . . . . . . . . . . . . . . . 29

3.9 qPCR Validation of Potential Stimulators and Inhibitors of NFATc1 29

3.10 Validation of Zfyve21 and Ddit4 as Potential Inhibitors of NFATc1 29

3.11 Predicted MicroRNAs Regulating NFATc1 . . . . . . . . . . . . . . 36

3.12 Target Prediction Analysis of the Predicted Regulators . . . . . . . 40

4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Inhibition of Osteoclastogenesis by the Elevation of eIF2a . . . . . 44

4.2 Possible Involvement of New Regulators . . . . . . . . . . . . . . . 45

4.3 Prediction of Stimulators and Inhibitors of NFATc1 . . . . . . . . . 46

4.3.1 In Vitro Validation of Zfyve21 and Ddit4 as Inhibitors of NFATc1 47

4.3.2 Preliminary Prediction of MicroRNAs . . . . . . . . . . . . . 48

4.4 Future Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

APPENDICES

APPENDICES: MATLAB SOURCE CODE . . . . . . . . . . . . . . . . . . 58

A Prediction of Potential Gene Regulators . . . . . . . . . . . . . . . 58

A.1 Gene Screening . . . . . . . . . . . . . . . . . . . . . . . . . 59



vi

Page

A.2 Gene Distance and P-value . . . . . . . . . . . . . . . . . . . 67

B Prediction of Potential MicroRNA Regulators . . . . . . . . . . . . 73

B.1 MicroRNA Screening . . . . . . . . . . . . . . . . . . . . . . 73

B.2 MicroRNA Distance and P-value . . . . . . . . . . . . . . . 79



vii

LIST OF FIGURES

Figure Page

2.1 Real-time PCR primers used . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Effect of the addition of salubrinal and guanabenz on cell mortality and
relative cell number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Inhibition by salubrinal of RANKL-driven maturation of RAW264.7 pre-
osteoclasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Reduction of RANKL-induced NFATc1 on protein expression by salubrinal
and guanabenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Effects of salubrinal on mRNA expression levels of NFATc1, c-Fos, TRAP,
and OSCAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Effects of guanabenz on mRNA expression levels of NFATc1, c-Fos, TRAP,
and OSCAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6 Evaluation of the potential involvement of eIF2a in salubrinal- and guana-
benz-driven down-regulation of NFATc1 . . . . . . . . . . . . . . . . . 24

3.7 Reduction in salubrinal/guanabenz driven suppression of NFATc1 expres-
sion by RNA interference specific for eIF2a . . . . . . . . . . . . . . . . 26

3.8 Temporal expression profile of p-ERK, p-p38 MAPK, p-NFkB, p-eIF2a
and NFATc1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.9 Schematic of the predicted regulatory network . . . . . . . . . . . . . . 28

3.10 Predicted stimulatory and inhibitory genes . . . . . . . . . . . . . . . . 30

3.11 Validation by qPCR on predicted stimulators having p < 0.05 . . . . . 31

3.12 Predicted stimulators validated by qPCR . . . . . . . . . . . . . . . . . 32

3.13 Validation by qPCR on predicted inhibitors having p < 0.05 . . . . . . 33

3.14 Predicted inhibitors validated by qPCR . . . . . . . . . . . . . . . . . . 34

3.15 Schematic of regulatory network after qPCR validation . . . . . . . . . 35

3.16 Evaluation of Zfyve21 as a potential inhibitor of NFATc1 . . . . . . . . 37

3.17 Evaluation of Ddit4 as a potential inhibitor of NFATc1 . . . . . . . . . 38



viii

Figure Page

3.18 Predicted stimulatory and inhibitory microRNAs . . . . . . . . . . . . 39

3.19 Predicted targets between stimulatory miRNAs and inhibitory genes . 41

3.20 Predicted targets between inhibitory miRNAs and stimulatory genes . 42

3.21 Predicted targets between inhibitory miRNAs and stimulatory genes . 43



ix

ABSTRACT

Tanjung, Nancy Giovanni. M.S.B.M.E, Purdue University, December 2013. In Vitro
and In Silico Analysis of Osteoclastogenesis in Response to Inhibition of De-phos-
phorylation of EIF2a by Salubrinal and Guanabenz. Major Professor: Hiroki Yokota.

An excess of bone resorption over bone formation leads to osteoporosis, resulting

in a reduction of bone mass and an increase in the risk of bone fracture. Anabolic

and anti-resorptive drugs are currently available for treatment, however, none of these

drugs are able to both promote osteoblastogenesis and reduce osteoclastogenesis. This

thesis focused on the role of eukaryotic translation initiation factor 2 alpha (eIF2a),

which regulates efficiency of translational initiation. The elevation of phosphorylated

eIF2a was reported to stimulate osteoblastogenesis, but its effects on osteoclastogene-

sis have not been well understood. Using synthetic chemical agents such as salubrinal

and guanabenz that are known to inhibit the de-phosphorylation of eIF2a the role of

phosphorylation of eIF2a in osteoclastogenesis was investigated in this thesis.

The questions addressed herein were: Does the elevation of phosphorylated eIF2a

(p-eIF2a) by salubrinal and guanabenz alter osteoclastogenesis? If so, what regu-

latory mechanism mediates the process? It was hypothesized that p-eIF2a could

attenuate the development of osteoclast by regulating the transcription factor(s) amd

microRNA(s) involved in osteoclastogenesis. To test this hypothesis, we conducted

in vitro and in silico analysis of the responses of RAW 264.7 pre-osteoclast cells to

salubrinal and guanabenz.

First, the in vitro results revealed that the elevated level of phosphorylated eIF2a

inhibited the proliferation, differentiation, and maturation of RAW264.7 cells and

downregulated the expression of NFATc1, a master transcription factor of osteo-

clastogenesis. Silencing eIF2a by RNA interference suppressed the downregulation of
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NFATc1, suggesting the involvement of eIF2a in regulation of NFATc1. Second, the in

silico results using genome-wide expression data and custom-made Matlab programs

predicted a set of stimulatory and inhibitory regulator genes as well as microRNAs,

which were potentially involved in the regulation of NFATc1. RNA interference exper-

iments indicated that the genes such as Zfyve21 and Ddit4 were primary candidates

as an inhibitor of NFATc1.

In summary, the results showed that the elevation of p-eIF2a by salubrinal and

guanabenz leads to attenuation of osteoclastogenesis through the downregulation of

NFATc1. The regulatory mechanism is mediated by eIF2a signaling, but other sig-

naling pathways are likely to be involved. Together with the previous data showing

the stimulatory role of p-eIF2a in osteoblastogenesis, the results herein suggest that

eIF2amediated signaling could provide a novel therapeutic target for treatment of

osteoporosis by promoting bone formation and reducing bone resorption.
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1. INTRODUCTION

1.1 Bone Remodeling

Bone is remodeled continuously during adulthood through the resorption of old bone

by osteoclasts and the formation of new bone by osteoblasts. Osteoclasts are de-

rived from hematopoietic stem cells while osteoblasts are derived from pluripotent

mesenchymal stem cells. This bone remodeling event is important for renewing the

skeleton while maintaining its anatomical and structural integrity. Under normal

conditions, osteoclasts would adhere to bone and proceed to remove it by acidifi-

cation and proteolytic digestion. Shortly after the osteoclasts leave the resorption

site, osteoblasts would invade the area and begin the process of forming new bone

by secreting osteoid, which is a matrix of collagen and other proteins, and eventually

mineralize them [1,2]. At the end of the bone remodeling process, the surface of the

bone is covered by lining cells, which are a distinct type of terminally differentiated

osteoblasts that control the microenvironment of the bone [3].

1.2 Background of Osteoporosis

Elevated bone resorption and reduced bone formation in the remodeling process

leads to osteoporosis, where a reduction in bone mass, quality, and strength occurs

resulting in an increased susceptibility to bone fractures [4]. Both men and women

experience osteoporosis, primarily as a consequence of the aging process and the loss

of gonadal function, but it is commonly diagnosed in postmenopausal women [5, 6].

Beginning around the fourth or fifth decade of life, both men and women lose bone

at a rate of 0.3 to 0.5 percent per year. After menopause, the rate of bone loss
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can increase as much as 10-fold [7–10]. Osteoporosis causes more than 8.9 million

fractures annually and is estimated to affect 200 million women worldwide, of which

80% are women aged 60 years or older [11, 12]. Blume et. al. estimated that the US

medical costs for osteoporosis range from $10 to $22 billion each year. In addition

to the financial burden, osteoporosis and osteoporotic fractures are also associated

with sustained disability, physical limitations, psychosocial impairment, and reduced

quality of life [13].

Many factors could lead to the development of osteoporosis, including mineral de-

ficiencies, hormone deficiencies, and long term disuse or the lack of activity. However,

it is mainly caused by the aging process and more commonly experienced by women

than men due to the drastic decrease in estrogen level during and after menopause [4].

Bone loss as a result of aging is associated with a progressive decline in the supply

of osteoblasts in proportion to the demand of them. The demand, in this case, is

determined by the frequency in which new multicellular units are created and new

cycles of remodeling are initiated [14–16]. Estrogens are the primary female hormones

produced by the ovaries and have an important role in maintaining the appropriate

ratio of osteoblasts and osteoclasts [17]. When the estrogen level is reduced, the os-

teoclast activity is increased, resulting in longer bone resorption periods [18]. Bone

loss caused by aging and menopause not only differ in the underlying cellular changes

but also in the affected skeletal locations. Aging-related bone loss occurs primarily in

cortical bone while postmenopausal bone loss occurs primarily in trabecular bone [1].

1.3 Current Available Treatment and Side Effects

In the past 20 years, many therapeutic treatments have been developed to prevent

osteoporosis, yet cost, efficiency, and side effects are still the issues needed to be

tackled. Most of these treatments involve the administration of drug supplements,

dietary changes, and prevention of falls or impacts to avoid fractures. Although they

might show promise in reducing the harmful effects of osteoporosis, there are many
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disadvantages due to the adverse side effects. Calcium and vitamin D supplements

have shown some success in clinical studies to raise the calcium content in the bone

and help to inhibit osteoclast precursors [19–22]. However, a study in 2012 by Moyer

et al. said the effects of calcium and vitamin D supplements seemed to be limited

for the patients who already show symptoms of osteoporosis [23]. Another study also

showed a linkage between the use of calcium supplements and an increased risk of

cardiovascular disease and heart attack [22,24]. Hormone replacement therapies have

also been used to prevent osteoporotic fractures and reduction in bone mass in post-

menopausal women. However, an increased risk of breast cancers has been reported

as a side effect for long-term hormone replacement therapies [25, 26].

Human hormones and antibodies have also been used to prevent and treat osteo-

porosis. Parathyroid hormone (PTH) has been given to osteoporosis patients as a

daily injection and was proven to be able to stimulate pre-osteoblasts to mature into

bone-forming osteoblasts which would lay down collagen and mineralize matrix [27].

However, since the bone formation is always coupled with bone resorption, once pre-

osteoblasts are stimulated, they release cytokines that can also activate osteoclasts

activity. Therefore, in the long term, this treatment could lead to a re-equilibration

such that resorption catches up to formation of bone. Since PTH therapy has the

potential risk of carcinogenicity, the treatment is limited to those most severely af-

fected and for a maximum of two years [28, 29]. Denosumab, an FDA-approved

antibody, is an antiresorptive agent due to its property that inhibits the activation

of osteoclasts by mimicking the action of osteoprotegerin (OPG), a decoy receptor

for receptor activator of nuclear factor kappa-B ligand (RANKL) [30,31]. RANKL is

a cytokine belonging to the tumor necrosis family found in osteoblasts and involved

in T cell-dependent immune responses as well as differentiation and activation of os-

teoclasts [32, 33]. Denosumab is administered subcutaneously only twice a year and

the effect is potentially reversible. However, the immune system might be affected,

and the long term effect is still unknown [34]. All agents that are given parenterally

require professional training and aseptic technique to administer those [35].
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Synthetic drugs are taken orally and could be made to give the same bioavailability

as parenteral drugs. The cost is usually cheaper and does not require any professional

training. The most widely prescribed synthetic drugs to treat post-menopausal os-

teoporosis are bisphosphonates. Bisphosphonates inhibit osteoclast progenitor devel-

opment and promote osteoclast apoptosis while preventing osteocyte and osteoblast

apoptosis [36]. Although this mechanism seems appealing, there are some significant

side effects accompanying the benefits. Bisphosphonates have been associated with

an increased risk of osteonecrosis of the jawbone, which is indicated by the exposure

and death of bone tissue through lesions in the mouth [37, 38]. Another concern

would be that micro-damage may start appearing in the bone and eventually lead to

fracture since bisphosphonates alter the bone remodeling cycle [39]. Since the cur-

rently available therapeutic drugs are still inadequate, a new effective treatment for

osteoporosis is needed.

1.4 Effects of eIF2a Phosphorylation

eIF2a signaling plays a key role in determining cell fate, especially under stress

conditions, due to its ability to promote either cellular recovery and pro-survival

pathways or apoptosis. eIF2a has been known to be phosphorylated in response to

different stressful conditions which potentially lead to cellular apoptosis in cells such

as viral infection, nutrient deprivation, oxidation, and stress in the endoplasmic retic-

ulum [40–42]. Phosphorylation of eIF2a reduces global protein translation and shifts

the translation machinery to favor the translation initiation of some selective stress

response genes, including activating transcription factor 4 (ATF4). This transient

attenuation of protein synthesis is believed to reduce the load of substrates presented

to the folding machinery in the ER lumen during stress and giving time for the chap-

erones, proteases, and stress responsive genes to try recovering the cells [42].

How exactly eIF2a chooses the cellular fate in the presence of stress is compli-

cated and not well understood. When eIF2a phosphorylation is induced by mild
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stresses, the stress could be alleviated by the activation of pro-survival signaling [43].

However, in response to severe prolonged stress, the phosphorylation of eIF2a would

lead to the apoptosis pathway [44]. Both pro-survival and apoptosis signaling might

vary between cell types and between eIF2a phosphorylation inducers (stress or com-

pounds). In most cases, part of the decision has been reported to be mediated by

C/EBP homologous protein (CHOP). The phosphorylation of eIF2a is known to up-

regulate the translation of ATF4, which activates the expression of CHOP. Therefore,

CHOP expression is stringently dependent upon eIF2a phosphorylation [45]. CHOP

upregulates GADD34 and ER oxidase 1a (ERO1a) which restores the activity of gen-

eral protein synthesis through the de-phosphorylation of eIF2a and enhances protein

folding in the ER, respectively. CHOP also stimulates the production of reactive

oxygen species which induce oxidative stress that, when too strong, would lead to cell

death [46]. A study on mouse embryonic fibroblasts cells identified some downstream

of CHOP (DOC) genes such as DOC4, which has signaling properties that effect the

process of regeneration of cells, and DOC 6, which contributes to the development

of programmed cell death [45]. This ability of CHOP to promote cellular recovery or

cell death indicates that there is a fine balance in the cell condition to determine the

outcome of adaptation to and alleviation of stress [47]. This balance might depend

on the level of cellular stress, the cell types, and the cellular context; however, the

key still lies with the regulation of eIF2adependent translation which is important in

modulating ER protein folding load and in managing stress [48].

1.5 Salubrinal and Guanabenz as Inhibitors of eIF2a Dephosphorylation

Salubrinal was first discovered for its cytoprotective and anti-apoptotic effects on

rat pheochromocytoma PC12 cells exposed to a cytotoxic environment and apoptotic

stimulus specific for endoplasmic reticulum stress (ER stress). When the mechanism

on how salubrinal protects the cells from ER stress was further investigated, it was

found that salubrinal induced rapid and robust eukaryotic initiation factor 2 subunit
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alpha (eIF2a) phosphorylation. Salubrinal is distinct from ER stress inducers like

Tunicamycin, in that salubrinal phosphorylation of eIF2a does not depend on any

single known eIF2a kinase such as PERK, GCN2, PKR, and HRI, and does not

cause any disturbance or stress to the cells [49]. Instead, it was found to inhibit the

de-phosphorylation of eIF2a by interacting with protein phosphatase 1 (PP1) and

prevent it from forming a dimer with growth arrest and DNA damage (GADD) 34,

a mechanism that is not found in any chemicals that induce the phosphorylation of

eIF2a [40, 49].

Through changing the phosphorylated level of eIF2a salubrinal may induce a

stimulatory or inhibitory effect depending on administration conditions such as dose,

as well as cell types and physiological states. For example, it was reported that

salubrinal suppressed tunicamycin-induced cardiomyocyte apoptosis [50]. Salubrinal’s

pro-survival effects were also reported in human bronchial epithelial cells in response

to cigarette smoke extract, and human neuroblastoma cells to ceramide [51, 52]. On

the other hand, the responses to salubrinal apparently differ when it was administered

to cancer cells. For instance, salubrinal stimulated the pro-apoptotic pathway in

leukemic cells [53] and increased radiation-induced cell death in chondrosarcoma cells

[54]. Moreover, it suppressed the survival and growth of multiple myeloma cells, head

and neck carcinoma cells, and breast cancer cells [55–57].

Another synthetic agent, guanabenz acetate (guanabenz), utilizes a mechanism of

action similar to that of salubrinal. Guanabenz is an FDA-approved drug currently

used to treat patients with high blood pressure. The structure of guanabenz is smaller

than salubrinal, and when immersed in an acidic environment, it breaks down into

2,6-dichlorobenzaldehyde and aminoguanidine [58]. It was reported that guanabenz is

also capable of selectively inhibiting GADD34-mediated dephosphorylation of eIF2a

through interacting with PP1 and GADD34 dimer. Guanabenz was shown to exert

a cytoprotective effect against ER stress by prolonging eIF2a phosphorylation and

translation attenuation in HeLa cells [41]. Guanabenz was also shown to protect

photoreceptors from retinal degeneration, which was caused by abnormal protein
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retention in the ER [59]. Both salubrinal and guanabenz have been used as selective

inhibitors of eIF2a dephosphorylation, and the effects of eIF2amediated signaling in

ER-stress related diseases have been investigated using various cells and tissues.

1.6 Elevation of eIF2a Phosphorylation by Salubrinal and Guanabenz in Bone Cells

Previous studies indicate that there is a close association of ER stress with os-

teoporosis. To our knowledge, however, no therapeutic agents for osteoporosis have

been targeted to eIF2amediated signaling. Stress in the ER could be caused by aging,

genetic mutations, diet, or environmental factors, which include some of the factors

influencing osteoporosis. A study in 2010 correlated the pathogenesis of osteoporosis

with ER stress response in the osteoblasts of osteoporosis patients. This study found

that ER molecular chaperones, such as BiP (immunoglobulin heavy-chain binding

protein) and PDI (protein-disulfide isomerase) are downregulated in osteoblasts from

osteoporosis patients [60]. Another study showed that ER stress sensor PERK (pro-

tein kinase-like ER kinase) is associated with lowered bone mineral density (BMD)

and abnormal compact bone development [61].

The observed phenotypes of PERK-deficient mice are very similar to those of

ATF4-deficient mice. As mentioned before, eIF2a phosphorylation induces the ex-

pression of ATF4 which is known to be the key transcription factor for osteoblast

terminal differentiation and bone formation. Mice that are ATF4-deficient exhibit a

marked reduction or delay in the mineralization of bones [62]. Analyses on bone tis-

sues revealed that PERK-deficient mice show severe osteopenia caused by a deficiency

in the number of mature osteoblasts and impaired osteoblast differentiation [63]. In-

terestingly, ER stress was reported to be involved during osteoblasts differentiation

induced by bone morphogenic protein 2 (BMP2) in culture through the PERK-eIF2a-

ATF4 signaling pathway, which was then followed by the promotion of osteogenic

genes such as osteocalcin (OCN) and bone sialoprotein (BSP) [64].
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A separate study in our research group revealed that the elevation of p-eIF2a by

salubrinal and guanabenz stimulates development of osteoblasts. This study showed

that in osteoblasts, elevation of phosphorylated eIF2a by salubrinal and guanabenz

enhances mineralization, stimulates expression of ATF4, and promotes osteoblast dif-

ferentiation in vitro [65,66]. Using a rat animal model, the subcutaneous injection of

salubrinal showed accelerated closure of surgically generated bone wounds by modi-

fying the expression of stress-sensitive genes [67]. Administration of salubrinal also

promotes osteoblast differentiation in bone marrow-derived cells taken from ovariec-

tomized (OVX) mice, an animal model that exhibits osteoporosis-like symptoms due

to the drastic decrease in estrogen [68]. Taken together, salubrinal and guanabenz

could enhance osteoblast development and promote bone formation through the ele-

vation of phosphorylated eIF2a .

Since the elevation of phosphorylated eIF2a was shown to have a positive effect

on the development of osteoblasts, its effect on the development of osteoclasts needs

to be investigated. Osteoblasts and osteoclasts extensively interact through molec-

ular pathways including RANK/RANKL/OPG and Wnt signaling [69]. Therefore,

osteoclastogenesis is potentially regulated by signaling molecules that also affect os-

teoblastogenesis. Furthermore, osteoclastogenesis is influenced by various stresses

such as estrogen deficiency and disuse or unloading [64]. However, eIF2amediated

signaling on bone resorption has not been well understood, particularly its role in the

development of osteoclasts.

1.7 Questions, Hypothesis, and Approach

The goal of this thesis was to investigate the effect of the inhibition of eIF2a de-

phosphorylation by salubrinal and guanabenz on the development of osteoclasts. The

questions addressed were: Does the elevation of p-eIF2a by salubrinal and guanabenz

alter osteoclastogenesis? If so, what regulatory mechanism mediates the process?

The elevation of p-eIF2a suppresses the global translation efficiency and induces tran-
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scription regulation on cellular development. Thus, It was hypothesized that p-eIF2a

attenuates the development of osteoclast by regulating the transcription factor(s) and

microRNA(s) involved in osteoclastogenesis.

To test this hypothesis, we administered salubrinal and guanabenz to RAW 264.7

pre-osteoclasts cells. Using an in vitro approach, we determined the mRNA and pro-

tein levels of regulatory molecules involved in osteoclastogenesis, including NFATc1

that is the key transcription factor of osteoclast development. This in vitro approach

includes TRAP staining, quantitative PCR for mRNAs and microRNAs (miRNAs),

western blot, and gene silencing by RNA interference. MicroRNAs are a class of

small non-coding regulatory RNAs that regulate mRNA expression. The binding of

miRNAs to the 3’-untranslated region (UTR) of their target mRNAs is considered

to reduce expression of mRNAs [70]. A genome-wide microarray analysis was con-

ducted to determine the expression levels of mRNAs and microRNAs. Through in

silico approaches with custom-made Matlab programs, we predicted stimulatory and

inhibitory genes as well as microRNAs that were potentially involved in the regulation

of NFATc1. Furthermore, we predicted microRNAs that potentially regulate the reg-

ulatory gene candidates. RNA interference was used to evaluate in silico predictions.
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2. MATERIALS AND METHODS

2.1 In Vitro Analysis

2.1.1 Cell Culture

RAW 264.7 mouse pre-osteoclast (monocyte/macrophage) cells were cultured in a-

MEM media containing 10% fetal bovine serum and antibiotics (50 units/ml penicillin

and 50 µg/ml streptomycin; Life Technologies, Grand Island, NY, USA). Cells were

grown in culture dishes and maintained in a humidified incubator at 37� containing

5% CO2.

2.1.2 TRAP Staining

The effect from different doses of salubrinal and guanabenz on osteoclastogenesis

was observed using TRAP staining. The RAW264.7 cells were plated at a density

of 5 × 103/cm2 into a 12-well plate or a 60 mm dish, and cultured with 20 ng/ml

RANKL in the presence and absence of 0.1–20 µM Salubrinal or 1–20 µM Guanabenz

acetate (Tocris Bioscience, Ellisville, MO, USA). The culture medium was replaced

every 2 days. After 5 days of culture, the cells were stained for TRAP using an acid

phosphatase leukocyte kit (Sigma, St. Louis, MO, USA). The number of TRAP-

positive cells containing three or more nuclei was determined.
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2.1.3 Quantitative Real-time PCR

To obtain the mRNA levels of genes involved in osteoclastogenesis, quantitative

real-time polymerase chain reaction (PCR) was used. Total RNA was extracted using

an RNeasy Plus mini kit (Qiagen, Germantown, MD, USA). Reverse transcription was

conducted with high capacity cDNA reverse transcription kits (Applied Biosystems,

Carlsbad, CA, USA), and quantitative real-time PCR was performed using ABI 7500

with Power SYBR green PCR master mix kits (Applied Biosystems). We evaluated

the mRNA levels with the PCR primers listed in Figure 2.1. GAPDH was used for

internal control. The relative mRNA abundance for the selected genes with respect to

the level of GAPDH mRNA was expressed as a ratio of Streated/Scontrol, where Streated

was the mRNA level for the cells treated with chemical agents, and Scontrol was the

mRNA level for control cells.

2.1.4 Western Immunoblotting

To quantify the protein levels of different genes involved in osteoclastogenesis,

Western immunoblotting was conducted. Cells were lysed in a radioimmunoprecipi-

tation assay (RIPA) buffer containing protease inhibitors (Santa Cruz Biotechnology,

Santa Cruz, CA, USA) and phosphatase inhibitors (Calbiochem, Billerica, MA, USA).

Isolated proteins were fractionated using 10-15% SDS gels (BioRad, Hercules, CA,

USA) and electro-transferred to Immobilon-P membranes (Millipore, Billerica, MA,

USA). Membranes were incubated for 1 hour with primary antibodies followed by

a 45-minute incubation with goat anti-rabbit or anti-mouse IgG conjugated with

horseradish peroxidase (Cell Signaling, Danvers, MA, USA). We used antibodies

against NFATc1 (Santa Cruz), p-eIF2a (Thermo Scientific, Waltham, MA, USA),

eIF2a p38 and p-p38 mitogen activated protein kinase (MAPK), extracellular signal-

regulated kinase (ERK) and p-ERK, nuclear factor kappa B (NFkB) p65 and p-NFkB

p65 (Cell Signaling), and b-actin (Sigma, St. Louis, MO, USA). Protein levels were

assayed using a SuperSignal west femto maximum sensitivity substrate (Thermo Sci-
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Fig. 2.1. Real-time PCR primers used

Gene Forward Primer Reverse Primer

NFATc1 5’- GGTGCTGTCTGGCCATAACT -3’ 5’- GCGGAAAGGTGGTATCTCAA -3’

c-Fos 5’- AGGCCCAGTGGCTCAGAGA -3’ 5’- CCAGTCTGCTGCATAGAAGGAA -3’

TRAP 5’- TCCTGGCTCAAAAAGCAGTT -3’ 5’- ACATAGCCCACACCGTTCTC -3’

OSCAR 5’- ACACACACACCTGGCACCTA -3’ 5’- GAGACCATCAAAGGCAGAGC -3’

Dscr1 5’- CCCGACAAACAGTTCCTCAT -3’ 5’- CACACTGGGAGTGGTGTCTG -3’

Dusp2 5’- TGGAAATCTTGCCCTACCTG -3’ 5’- CTCCTGGAACCAGGCACTTA -3’

Jdp2 5’- CTTCCCAGCTCTGCTCTGAC -3’ 5’- GCCTTTTCCTTCGCTCTTCT -3’

Adora2b 5’- GCGAATAAAAGCTGCTGTCC -3’ 5’- CCTGGAGTGGTCCATCAGTT -3’

Ptpn22 5’- ATAGCAACCCACACGACTCC -3’ 5’- TGCTCCAAATGTTACCACCA -3’

Syt16 5’- GGAGACGGAGACAGCTTTTG -3’ 5’- GTTGACACCACTTCGGTCCT -3’

Nfkb1 5’- CTGACCTGAGCCTTCTGGAC -3’ 5’- GCAGGCTATTGCTCATCACA -3’

Lats1 5’- AAAGACGTTCTGCTCCGAAA -3’ 5’- TTCAGGAAAGATGCCCATTC -3’

Hipk2 5’- CTTCCAGCACAAGAACCACA -3’ 5’- ACCTTCACTCGGTACGGTTG -3’

Traf1 5’- CTGGCGGTCTTAAAGGAGTG -3’ 5’- AAACACACGCAGCTTCTCCT -3’

Bcl3 5’- GGACCTTTGATGCCCATTTA -3’ 5’- CGGTAGACAGCGGCTATGTT -3’

Myo1e 5’- GGTTATGCTTATCGGCGTGT -3’ 5’- CTTCTCCCAAGCTGGAACTG -3’

Tnip1 5’- AAGAGGAGGAGAAGGCCAAG -3’ 5’- CCTTGTAGGCATGGTGAGGT -3’

Dhrsx 5’- GACCCTGTGACCTCCAACAT -3’ 5’- CCTCCGACACCTTCTAGCTC -3’

Ddit4 5’- CTCTGGGATCGTTTCTCGTC -3’ 5’- GACACCCCATCCAGGTATGA -3’

Cbr3 5’- ACACCCTTCGACATTCAAGC -3’ 5’- TGCAGTTCTCAAGGGCTTTT -3’

Usp2 5’- CTTCTGGGATCTCTCGTTGC -3’ 5’- TGTTGTGAGCTTGCTGGTTC -3’

Sgk1 5’- CATGCAAACACGCTGAAGTT -3’ 5’- CCCTTTCCGATCACTTTCAA -3’

Ypel3 5’- AACCACGACGACCTCATCTC -3’ 5’- GCTCATATTTCCAGCCCAAA -3’

Zfyve21 5’- GGGGACAGTCATCGTGAAAT -3’ 5’- AGCTTGGTAGCCTTGTGCAT -3’

Ttf2 5’- GCCCAAAACTGAGAAAGCTG -3’ 5’- ACCAAAAGCTGGGTTTCCTT -3’

Cutc 5’- TCGGATTGAACTGTGCTCTG -3’ 5’- AAACCATCGGCACCATAAAG -3’

Tpd52 5’- ATTTTCATCGGTTGGCTCAG -3’ 5’- TGTTCTGGAGGAGGCTCTGT -3’

GAPDH 5’- TGCACCACCAACTGCTTAG -3’ 5’- GGATGCAGGGATGATGTTC -3’

entific), and signal intensities were quantified with a luminescent image analyzer

(LAS-3000, Fuji Film, Tokyo, Japan). To determine intensities, immunoblotting im-

ages were scanned with Adobe Photoshop CS2 (Adobe Systems, San Jose, CA, USA)

and quantified using ImageJ.
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2.1.5 Validation of Gene Involvement by RNA Interference

To ensure the potential involvement of genes in osteoclastogenesis, silencing by

RNA interference was performed. Cells were treated with siRNA specific to eIF2a

Dusp2, Dscr1, Ptpn22, Sgk1, Ddit4, and Zfyve21 (Life Technologies). As a nonspecific

control, a negative siRNA (Silencer Select #1, Life Technologies) was used. Cells were

transiently transfected with siRNA for the specific genes or control in Opti-MEM I

medium with Lipofectamine RNAiMAX (Life Technologies). Six hours later, the

medium was replaced by regular culture medium. The efficiency of silencing was

assessed with immunoblotting or quantitative PCR 48 hours after transfection.

2.1.6 miRNA Array Profiling

To obtain a list of microRNA potentially regulating osteoclastogenesis, a miRNA

microarray was generated. The total RNA from RAW 264.7 samples treated with

RANKL, RANKL+Salubrinal, and RANKl+Guanabenz were extracted after 4 hours

of treatment. For miRNA array profiling, five g of total RNA from three con-

trol samples, three RANKL samples, three RANKL+Salubrinal samples, and three

RANKL+Guanabenz samples were sent to LC Sciences (Houston, TX, USA) for

miRNA array analysis using Sanger miRBase Release 16.0. Samples were analyzed

using µParaflo Microfluidic Biochip Technology. Multiple redundant regions were in-

cluded on the chip and each region further comprised a miRNA probe region plus

multiple control probes. Statistics were done with ANOVA analysis.

2.1.7 mRNA Array Profiling

To obtain a list of genes potentially regulating osteoclastogenesis, an mRNA mi-

croarray was generated. For this, 250 g of total RNA from three control samples, three

RANKL samples, three RANKL+Salubrinal samples, and three RANKL+Guanabenz

samples were sent to OCI Genomics Center (Toronto, ON, CA). The samples were

analyzed on Illumina MouseWG-6 v2.0 chip. The samples were labeled using Illu-
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mina TotalPrep-96 RNA Amplification kit (Ambion). Hybridization onto two Mouse

WG-6 V2 Beadchips was conducted using 1.5 ng of cRNA from each of the samples.

The data was then imported in GeneSpring V12.5 for analysis. Statistics were done

with one-way ANOVA.

2.1.8 Statistical Analysis

Three or four independent samples were conducted in each experiment and data

were expressed as mean ± S.D. For comparison among multiple samples, ANOVA and

post-hoc tests were conducted. Statistical significance was evaluated at p < 0.05. The

single and double asterisks and daggers indicate p < 0.05 and p < 0.01, respectively.

2.2 In Silico Analysis

2.2.1 Gene Prediction Analysis

In order to predict potential stimulators and inhibitors of NFATc1 in response

to the administration of salubrinal and guanabenz, we defined two parameters using

genome-wide microarray data: distance, di, and root-mean-square (rms) p-value, pi

for gene i. The parameter di served as an indicator of resemblance (di ≈ 0) and

dissemblance (di ≈ 1; reciprocal) to the mRNA expression profile of NFATc1, while

the parameter pi indicated representative statistical significance. The expression pro-

files of NFATc1 and gene i were evaluated under 4 culture conditions (j = 1 to 4),

including control (j = 1), treatment with RANKL (j = 2), treatment of RANKL and

salubrinal (j = 3), and treatment with RANKL and guanabenz (j = 4).
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The distance, (0 ≤ di ≤ 1), between NFATc1 and gene i, was defined using

Pearson’s correlation coefficient, ri (−1 ≤ r ≤ 1):

di =
1− ri

2
(2.1)

ri =

∑n
j=1 xjyij − nx̄ȳi√(∑n

j=1 x
2
j − n(x̄)2

)(∑n
j=1 y

2
j − n(ȳi)2

) (2.2)

where xj represented NFATc1 mRNA levels for j = 1 to n (n = 4), and yij was the

mRNA levels of gene i for j = 1 to n. The variables x̄ and (ȳi) were the mean mRNA

levels of xj and yij for all values of j. The rms p-value, pi, for gene i was defined:

pi =

√
(piR)2 + (piS)2 + (piG)2

3
(2.3)

where piR was the p-value (Student’s t-test) between j = 1 & 2, piS was the p-value

between j = 2 & 3, and piG was the p-value between j = 2 & 4. To better visualize

the prediction result, two plots of rms p-value (pi) vs. distance (di) were generated

using Excel, one of predicted stimulators and one of predicted inhibitors.

After making sure no repetition of genes occurs, a list of candidate genes was

selected based on some criteria using fold change, fij, such that for gene i:

|fij| > 1.1 for j = 2 to 4 (2.4)

fi2 < 0, fi3 & fi4 > 0 or fi2 > 0, fi3&fi4 < 0 (2.5)

|fij| ≤ |fi2| for j = 3 and 4 (2.6)

Note that fi1 for the control sample was defined to be 1, fi2 was determined with

respect to j = 1 (control), and fi3 and fi4 to j = 2 (RANKL treatment). One-

thousand-twenty-five genes were inputted into the analysis.

2.2.2 MicroRNA (miRNA) Prediction Analysis

A similar approach was established to predict potential miRNA stimulators and

inhibitors of NFATc1 using the parameters dm for distance and pm for rms p-value
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for miRNA m. The parameter dm indicated the resemblance (dm ≈ 0) and dissem-

blance (dm ≈ 1) of the miRNA expressions to the NFATc1 expression profile, and the

parameter pm indicated statistical significance. The miRNA expressions were also

evaluated under 4 culture conditions (j = 1 to 4): control (j = 1), treatment with

RANKL (j = 2), treatment of RANKL and salubrinal (j = 3), and treatment with

RANKL and guanabenz (j = 4). All miRNAs were analyzed except for the ones with

p-value > 0.05 and signals < 500.

The distance, dm (0 ≤ dm ≤ 1), between NFATc1 and miRNA m, was also defined

using Pearson’s correlation coefficient, rm (−1 ≤ rm ≤ 1):

dm =
1− rm

2
(2.7)

rm =

∑n
j=1 xjymj − nx̄ȳm√(∑n

j=1 x
2
j − n(x̄)2

)(∑n
j=1 y

2
j − n(ȳm)2

) (2.8)

where xj represented NFATc1 expression levels for j = 1 to n (n = 4), and ymj was

the expression levels of miRNA m for j = 1 to n. The variables x̄ and ȳm were the

mean expression levels of xj and ymj for all values of j. The rms p-value, pm, for

miRNA m was defined:

pm =

√
(pmR)2 + (pmS)2 + (pmG)2

3
(2.9)

where pmR = p-value (Student’s t-test) between j = 1 & 2, pmS = p-value between

j = 2 & 3, and pmG = p-value between j = 2 & 4. To better visualize the prediction

result, two plots of rms p-value (pm) vs. distance (dm) were generated using Excel,

one of predicted stimulator miRNAs and one of predicted inhibitor miRNAs. One-

thousand-two-hundred-sixty-five microRNAs were inputted into the analysis.

Further analysis was conducted to see if the predicted miRNAs could potentially

target the predicted mRNAs using miRNA Targets, a target prediction computational

tool. All of the predicted miRNAs were analyzed at each available binding energy

using both the miRanda and RNA hybrid algorithms. Using a Perl script, the output

genes of the target prediction analysis were examined for matches with our predicted
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stimulators and inhibitors including the lowest binding energy at which it was found.

The results were put into a table for ease of observation.
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3. RESULTS

3.1 Inhibition of Osteoclastogenesis in RAW264.7 Cells by Salubrinal and Guanabenz

In response to 0.1–20 µM salubrinal for 24 h, we examined cell mortality and live

cell numbers of RAW264.7 pre-osteoclasts. Cell mortality ratio did not present sta-

tistically significant differences in the presence and absence of RANKL (Fig. 3.1).

The number of live cells was increased by ∼50% by incubation with RANKL, and
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Fig. 3.1. Effect on cell mortality and relative cell number after the
addition of salubrinal (Sal,top) and guanabenz (Gu,bottom).
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administration of 10–20 µM salubrinal reduced the numbers approximately by 10%.

Similar to salubrinal, administration of 1 and 5 µM guanabenz did not alter cell

mortality and the number of live cells, although its administration at 10 and 20 µM

reduced the number of live cells in 24 h. With the stimulatory role of RANKL, the

number of TRAP-positive multi-nucleated cells was significantly increased by the ad-

dition of RANKL. However, administration of 0.5 µM to 20 µM salubrinal reduced the

number of TRAP-positive cells in a dose-dependent manner (Fig. 3.2A). Consistent

with salubrinal’s inhibitory action, guanabenz also attenuated osteoclastogenesis of

RAW264.7 cells in a dose-dependent manner. Compared to the number of TRAP-

positive multi-nucleated cells of 377 ± 39 (RANKL only), guanabenz reduced the

number of differentiated osteoclasts to 364 ± 38 (1 µM), 288 ± 51 (5 µM), 189 ± 25

(10 µM), and 73 ± 16 (20 µM) (Fig. 3.2B).

3.2 Downregulation of NFATc1 in RAW 264.7 Cells by Salubrinal and Guanabenz

Addition of RANKL to the culture medium significantly induced NFATc1 produc-

tion (Fig. 2A). The RANKL-induced protein expression of NFATc1 was reduced by

the administration of 5–20 µM salubrinal at day 2 and maintained its elevated level

on day 4 (Fig. 3.3A). Administration of 10–20 µM guanabenz after 2 days showed a

similar result, and the effect of both salubrinal and guanabenz was dose-dependent

(Fig. 3.3B).

3.3 Reduction of RANKL-induced NFATc1, C-fos, TRAP, and OSCAR

Addition of RANKL also increased the mRNA levels of NFATc1, TRAP, and

OSCAR, and administration of 20 µM salubrinal significantly reduced their mRNA

levels (Fig. 3.4). On day 2 for instance, the RANKL-driven increase was 9.4 ± 0.5 fold

(NFATc1), 1.9 ± 0.1 fold (c-fos), 165 ± 4.2 fold (TRAP), and 467 ± 22 fold (OSCAR).

The reduction by 20 µM salubrinal was 46% (NFATc1), 32% (c-fos), 35% (TRAP),

and 21% (OSCAR). Consistent with the observed dose response, administration of
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Fig. 3.2. Inhibitory effects of salubrinal on RANKL-driven matura-
tion of RAW264.7 pre-osteoclasts. CN = control, and Sal = salubri-
nal. The single and double asterisks indicate p < 0.05 and p < 0.01
in comparison to the RANKL-treated cells, respectively. (A) Dose-
dependent suppression of RANKL driven activation of osteoclasts by
salubrinal and guanabenz. (B) Dose-dependent suppression of TRAP-
positive multi-nucleated cells by salubrinal and guanabenz.
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Fig. 3.3. Reduction of RANKL-induced NFATc1 on protein expres-
sion by salubrinal and guanabenz. (A) Expression of NFATc1 2 days
and 4 days after RANKL and salubrinal (B) Expression of NFATc1 2
days after RANKL and guanabenz.
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Fig. 3.4. Effects of salubrinal on mRNA expression levels of NFATc1,
c-Fos, TRAP, and OSCAR. CN = control. The single and double
asterisks indicate significant decreases with p < 0.05 and p < 0.01
in comparison to the RANKL-treated cells, respectively. The single
and double daggers indicate significant increases with p < 0.05 and
p < 0.01 in comparison to the RANKL-treated cells, respectively. (A)
Messenger RNA levels (2 days after RANKL administration). (B)
Messenger RNA levels (4 days after RANKL administration).
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salubrinal at 0.1–1 µM did not contribute to significant reduction in these mRNA

levels except for NFATc1 and c-fos on day 4. The RANKL-induced mRNA levels of

NFATc1, c-Fos, TRAP, and OSCAR were also reduced by administration of 20 µM

guanabenz (Fig. 3.5).
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Fig. 3.5. Effects of guanabenz on mRNA expression levels of NFATc1,
c-Fos, TRAP, and OSCAR. CN = control. The single and double
asterisks indicate significant decreases with p < 0.05 and p < 0.01 in
comparison to the RANKL-treated cells, respectively.

3.4 Temporal Profile of P-eIF2a and NFATc1

The temporal expression profile revealed that the addition of RANKL transiently

reduced the phosphorylation level of eIF2a (2–8 h) and elevated NFATc1 by 13.4

± 3.2 fold (24 h) (Fig. 3.6A). This induction of NFATc1 was partially suppressed

by salubrinal with an increase in the level of p-eIF2a. In the early period (2–4 h),

administration of 20 µM salubrinal increased the level of p-eIF2a but did not alter

the level of NFATc1. In the later period (8–24 h), however, the level of NFATc1 was
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Figure 3 

B 

Fig. 3.6. Evaluation of the potential involvement of eIF2a in salubri-
nal and guanabenz-driven down-regulation of NFATc1. (A) Western
blot analysis of p-eIF2a and NFATc1 with and without 20 µM (A)
salubrinal and (B) guanabenz. The normalized level of 1 was defined
as the level for the cells that were not treated with RANKL without
administration of salubrinal or guanabenz.
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significantly reduced by 48% (8 h) and 44% (24 h) (Fig. 3.6A). Similar to the effect

from salubrinal, the temporal expression profile of p-eIF2a and NFATc1 in response

to 20 µM guanabenz revealed that p-eIF2a was upregulated in 2 h, and NFATc1 was

partially suppressed in 8 h (Fig. 3.6B).

3.5 Recovery of NFATc1 Expression by RNA Interference for eIF2a

To evaluate the effects of eIF2a on the expression of NFATc1, we employed RNA

interference specific for eIF2a and compared it to a non-specific control (NC) (Fig.

3.7A). In response to 20 µM salubrinal, RAW264.7 cells transfected with the con-

trol siRNA demonstrated a reduction of NFATc1 by 56%. However, the expression of

NFATc1 was reduced only by 20% in the cells transfected with eIF2a siRNA. Further-

more, 20 µM guanabenz decreased the level of NFATc1 by 43% in the cells transfected

with the control siRNA but the transfection of eIF2a siRNA abolished the suppressive

effect of guanabenz (Fig. 3.7B & 3.7C). The phosphorylation level of NFkB was not

significantly altered by transfection with eIF2a siRNA.

3.6 Effect of Salubrinal and Guanabenz on Some Known Signaling Pathways

Administration of 20 µM salubrinal did not significantly alter the RANKL-induced

phosphorylation level of ERK, p38 MAPK, and NFkB (Fig. 3.8). However, adminis-

tration of salubrinal increased the phosphorylation level of eIF2a in 15 min.

3.7 NFATc1 Expression Pattern and the Predicted Regulatory Network

To further identify the genes potentially targeted by salubrinal and guanabenz to

regulate NFATc1, we employed in silico mRNA analysis. Since NFATc1 is the main

focus of this study, its expression pattern is used as a base line for the analysis. Figure

3.9A shows the NFATc1 expression pattern is significantly up-regulated by RANKL

treatment, reduced by 15% after addition of salubrinal, and significantly reduced by
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Fig. 3.7. Reduction in salubrinal/guanabenz-driven suppression of
NFATc1 expression by RNA interference specific for eIF2a. Sal =
salubrinal, Gu = guanabenz, and NC = non-specific control siRNA.
The single and double asterisks indicate significant changes to the
RANKL-treated NC siRNA cells with p < 0.05 and p < 0.01, respec-
tively. The single and double daggers indicate significant changes to
the salubrinal or guanabenz-treated NC siRNA cells with p < 0.05
and p < 0.01, respectively. (A) eIF2a level after transfecting siRNA
specific to eIF2a. (B) Western blot analysis of p-NFkB and NFATc1.
(C) Comparison of the expression level of NFATc1 between control
siRNA and eIF2a siRNA.
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Figure 4 
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Fig. 3.8. Temporal expression profile of p-ERK, p-p38 MAPK, p-
NFkB, p-eIF2a , and NFATc1 in the presence and absence of 20 µM
Salubrinal. Western blot analysis of p-ERK, p-p38 MAPK, p-NFkB,
and p-eIF2a at 15, 30, 60, and 120 min.

57% after addition of guanabenz. The similar expression pattern of NFATc1 mRNA

after 4 hr treatment, which is the length of time chosen for microarray samples, is

shown in the proposed regulatory network for salubrinal/guanabenz regulation of

NFATc1 (Fig. 3.9B). A1 and B1 pathway: salubrinal / guanabenz directly regu-

lates the inhibitor / stimulator genes of NFATc1. A2 and B2 pathway: salubrinal

/ guanabenz regulates inhibitor / stimulator genes of NFATc1 through activating /

de-activating microRNAs.
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Fig. 3.9. Schematic of the predicted regulatory network. (A) Western
blot analysis of NFATc1 after 24 hours treatment of RANKL, RANKL
+ salubrinal, and RANKL + guanabenz. This NFATc1 pattern is
used to categorize the mRNA and miRNA expression patterns. (B)
Predicted regulatory network for salubrinal/guanabenz-driven down-
regulation of NFATc1.
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3.8 Predicted mRNAs Regulating NFATc1

Figure 3.10 shows the plot of the output from the mRNAs MatLab prediction

program for potential stimulators and inhibitors. Note that the closer the distance

value of an mRNA to the minimum distance (0), the more similar its expression

pattern is to NFATc1. On the other hand, the closer the distance value is to the

maximum distance (1), the more opposite its expression pattern is to NFATc1. The

stimulator group has the furthest distance of 0.097 from NFATc1, while the inhibitor

group has the furthest distance of 0.903 from the reciprocal of NFATc1. Evaluation of

a set of candidates with significant rms p-value (< 0.05) was conducted. From 1025

genes, 57 regulators were predicted which includes 40 stimulatory and 17 inhibitory

genes.

3.9 qPCR Validation of Potential Stimulators and Inhibitors of NFATc1

Using qPCR, an expression pattern of 17 stimulatory and 9 inhibitory genes were

confirmed. Dscr1, Dusp2, Ptpn22, Jdp2, Adora2b, and Syt16 was confirmed to have

similarity to that of NFATc1 (Fig. 3.11 and 3.12). The other set of genes such as

Zfyve2, Ypel3, Ddit4, Sgk1, Cbr3, and Usp2 were confirmed to have their opposite

expression pattern to that of NFATc1 (Fig. 3.13 and 3.14).

The diagram in Figure 3.15 shows the predicted NFATc1 regulatory pathway with

the qPCR validated genes as the potential NFATc1 regulators. These validated genes

need to be further validated, including a loss-of-function assay by RNA interference.

If none of these validated genes are confirmed to be an inhibitor of NFATc1, more can-

didates could be chosen, validated, and analyzed from the pool of potential regulating

genes (gray circles, Fig. 3.12 and 3.14).

3.10 Validation of Zfyve21 and Ddit4 as Potential Inhibitors of NFATc1

Further confirmation using RNA interference did not validate some of the genes,

however, Zfyve21 and Ddit4 showed potential involvement as NFATc1 inhibitors (Fig.
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Stimulatory genes 

Inhibitory genes 

Fig. 3.10. Global identification of stimulatory and inhibitory genes in
the distance vs. rms p-value plane. (Top) mRNAs having the same
expression pattern as NFATc1 (stimulators). (Bottom) mRNAs hav-
ing the opposite expression pattern as NFATc1 (inhibitors). Shaded
areas indicate genes with p < 0.05.
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Figure 13 Fig. 3.11. mRNA levels of the predicted stimulators having significant
p-value (p < 0.05).
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Fig. 3.12. Predicted stimulators validated by qPCR having p < 0.05.
Hollow, black, and gray circles represent confirmed, unconfirmed, and
not yet confirmed stimulators, respectively.
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Figure 14 

Fig. 3.13. mRNA levels of the predicted inhibitors having significant
p-value (p < 0.05).
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Fig. 3.14. Predicted inhibitors validated by qPCR having p < 0.05.
Hollow, black, and gray circles represent confirmed, unconfirmed, and
not yet confirmed stimulators, respectively.
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Fig. 3.15. Schematic of the predicted regulatory network with genes
confirmed by qPCR validation
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3.16 and 3.17). Figures 3.16B and 3.17B show the effectiveness of siRNA in suppress-

ing the expression of Zfyve21 and Ddit4 after 72 hr of siRNA transfection. In Figure

3.16C, treatment of 20 µM guanabenz reduced the NFATc1 expression by 36% com-

pared to RANKL treatment, but the transfection of Zfyve21 siRNA nearly abolished

the suppressive effect of guanabenz. A similar result was observed with Ddit4 siRNA

samples (Fig. 3.17C). Treatment of 20 µM salubrinal decreased the level of NFATc1

expression by 72% compared to RANKL treatment but recovered by 25% in Ddit4

siRNA samples. Western blot results also showed significant reduction in the sup-

pressive effect of salubrinal and guanabenz in the samples treated with Zfyve21 and

Ddit4 siRNA (Fig 3.16D and 3.17D). The genes such as Zfyve21 and Ddit4, which

showed potential involvement after RNA interference, should be further validated

using a gain-of-function assay by plasmid overexpression.

3.11 Predicted MicroRNAs Regulating NFATc1

Similar to the mRNAs, the miRNAs were correlated to NFATc1 and divided

into stimulator and inhibitor groups (Fig. 3.18). Again, distance values of 0 in-

dicated similarity with the NFATc1 expression pattern, and distance values of 1

indicate expression patterns opposite to NFATc1. The more likely candidates are

said to be the ones with a distance value less than 0.3 or greater than 0.7. Many

candidates with significant rms p-values are shown in the NFATc1-like group, but

only one, miR-5109, is found with significant rms p-value in the NFATc1-reciprocal

group. Regardless of the significance of the rms p-values, miRNAs with small dis-

tance values (< 0.3 or > 0.7) were analyzed with the target prediction tool.
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Fig. 3.16. Evaluation of Zfyve21 as a potential inhibitor of NFATc1
in response to salubrinal and guanabenz. The single and double as-
terisks indicate significant changes to the RANKL-treated NC siRNA
cells with p < 0.05 and p < 0.01, respectively. (A) Zfyve21 level after
transfecting with siRNA specific to Zfyve21 for 48 hr. (B) Expres-
sion level of Zfyve21 on control, RANKL, and RANKL + guanabenz
treated samples between negative control siRNA and Zfyve21 siRNA
after 72 hr. (C) Comparison of NFATc1 expression level between
negative control siRNA and Zfyve21 siRNA on control, RANKL, and
RANKL + guanabenz treated samples. (D) Western blot analysis
of NFATc1 between negative control siRNA and Zfyve21 siRNA on
control, RANKL, RANKL + salubrinal, and RANKL + guanabenz
samples.
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C B 

NFATc1

β-actin 
siRNA:       NC      Ddit4     NC     Ddit4      NC     Ddit4    NC      Ddit4 

D 

control  RANKL   Sal  Gu 

A 

re
la

tiv
e 

m
R

N
A 

ab
un

da
nc

e 

0.5 

1.0 

0 
siRNA:       NC      Ddit4 

Ddit4 1.5 

**  

**  

0 
siRNA:     NC   Ddit4      NC    Ddit4      NC    Ddit4 

NFATc1 

2.0 

4.0 

control        RANKL           Sal 
re

la
tiv

e 
m

R
N

A 
ab

un
da

nc
e 

6.0 

** 
**  

0 
siRNA:     NC    Ddit4     NC    Ddit4    NC    Ddit4 

Ddit4  

0.5 

1.0 

control        RANKL           Sal 

re
la

tiv
e 

m
R

N
A 

ab
un

da
nc

e 

1.5 

**  

** 
**  

Fig. 3.17. Evaluation of Ddit4 as a potential inhibitor of NFATc1 in
response to salubrinal and guanabenz. The single and double aster-
isks indicate significant changes to the RANKL-treated NC siRNA
cells with p < 0.05 and p < 0.01, respectively. (A) Ddit4 level after
transfecting with siRNA specific to Ddit4 for 48 hr. (B) Expression
level of Ddit4 on control, RANKL, and RANKL + guanabenz treated
samples between negative control siRNA and Ddit4 siRNA after 72
hr. (C) Comparison of NFATc1 expression level between negative
control siRNA and Ddit4 siRNA on control, RANKL, and RANKL +
guanabenz treated samples. (D) Western blot analysis of NFATc1 be-
tween negative control siRNA and Ddit4 siRNA on control, RANKL,
RANKL + salubrinal, and RANKL + guanabenz samples.
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Stimulatory miRNAs 

Inhibitory miRNAs 

Fig. 3.18. Global identification of stimulatory and inhibitory microR-
NAs in the distance vs. rms p-value plane. (Top) miRNAs having the
same expression pattern as NFATc1 (stimulators). (Bottom) miR-
NAs having the opposite expression pattern as NFATc1 (inhibitors).
Shaded area indicates genes with p < 0.05.
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3.12 Target Prediction Analysis of the Predicted Regulators

Based on the mechanism of microRNA, stimulator miRNAs were linked to the in-

hibitory genes and inhibitor miRNAs to the stimulatory genes. Figure 3.19 shows the

likeliness of stimulator miRNAs to target inhibitory genes, including eIF2a at various

binding energy levels. Figures 3.20 and 3.21 show the likeliness of inhibitor miRNAs

to target stimulatory genes, including NFATc1 itself, at various binding energy levels.

Priority of validation will be given to the miRNAs with the most negative energy

levels and predicted by the two algorithms.



41

 miRanda 

eIF2s1 Agap1 Pacs2 Ttf2 
Pla2g1

5 Tob1 Sgk1 
Zfyve2

1 Cutc Gins4 Paox Cbr3 
Tnfaip8

l2 Ddit4 Usp2 Xbp1 Ypel3 Tpd52 
RNA 

Hybrid 

miR-222-3p -22   -10   -10 -10 -10   -10 
-30 -30 

miR-221-3p -10 -26 -10 -10   -10 -10 -10   -10 
-26 

miR-5620-3p -22 -10   -30 -10   -10   -10   -10 -10 
-36 -30 -36 -30 

miR-3472 -10   -26   -24 
-30 -33 

miR-3095-3p -24 -26 -10   -10 -22   -22   -10   -22 
-30 

miR-466h-3p -33  -26   -24   
-36 -36 -26 -30 

miR-669a-3-
3p 

-10   

miR-669f-3p -30 -10 -36   -10   -10 
-36 -36 

miR-466g -24 -10   -10 -10   
-33 

miR-669a-3p -26  -30 -10   

miR-574-3p -26   -26   -10 -10   -10   
-30 

miR-466i-5p -10 -36 -10 -10   -26   -10   -26   
-39 -33 

miR-574-5p -10 -39 -24   -30   -10   
-39 -30 -30 

miR-669p-3p -30  -10   
-36 -33 

miR-466f-3p -30 -10 -36   -10   -10   -10 
-39 -39 -30 

miR-466f-5p -24   -22   -24   
-33 -33 

miR-466q -30  -30 -10   -10   -10   -10   
-36 

miR-3470a -10 -10   -10   -10   -10 
-30 

miR-467c-3p -26  -10   

miR-467g -30  -30   -10   
-33 -33 

miR-669c-3p -30 -10 -30 -10   -10 -10   -10 -24   -10   
-33 -33 

miR-1187 -22 -30 -10   -10   -10   -30   -10 -10 
-33 

miR-669e-5p -10 -10 -22 -10   -10   -10   -10 -10   
-26 

miR-466f -22 -26   -26   -30   
-33 -33 

miR-466i-3p -33  -33   
-36 -36 -30 

miR-466j -30   -24   
-33 -33 

miR-654-3p 
-30 

miR-346-5p -26   -24   -30   
-39 -33 -33 -33 -39 -33 -33 -33 

miR-328-3p -30   -26   -30 -30 -24   
-39 -36 -36 -33 -30 -30 -30 -33 

miR-466h-5p -30   
-26 

miR-467e-3p -26  -10   

miR-467f -30  -30   
-33 -30 

Figure 10 

Fig. 3.19. Predicted targets and binding energy between stimulatory
miRNAs and inhibitory genes. Orange cells are the results obtained
by the miRanda algorithm, while the blue cells are obtained by the
RNAhybrid algorithm.
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Fig. 3.20. Predicted targets and binding energy between inhibitory
miRNAs and stimulatory genes. Yellow cells are the results obtained
by the miRanda algorithm, while the green cells are obtained by the
RNAhybrid algorithm.
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Figure 12 Fig. 3.21. Continuation of predicted targets and binding energy be-
tween inhibitory miRNAs and stimulatory genes. Yellow cells are the
results obtained by the miRanda algorithm, while the green cells are
obtained by the RNAhybrid algorithm.
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4. DISCUSSION

Experimental results demonstrated that the differentiation of RAW 264.7 pre-osteo-

clasts to multi-nucleated osteoclasts was inhibited by the administration of salubrinal

and guanabenz, both of which block the dephosphorylation of eIF2a and elevate the

level of p-eIF2a. The growth area of the multinucleated cells was reduced by both

agents significantly. Partially silencing eIF2a using RNA interference significantly

recovered salubrinal- and guanabenz-driven reduction of NFATc1 expression. By

evaluating microarray-derived expression of transcription factors, potential regulators

involved in salubrinal- and guanabenz-driven regulation of NFATc1 were predicted

and evaluated. By considering thermodynamic binding energy of miRNAs to pre-

dicted genes, we may also be able to facilitate the selection of miRNAs for further in

vitro validation. The results herein suggest that the elevation of p-eIF2a by salubrinal

and guanabenz is capable of regulating osteoclastogenesis by targeting NFATc1, and

eIF2a mediated signaling may play a significant role not only in osteoblastogenesis

but also in osteoclastogenesis.

4.1 Inhibition of Osteoclastogenesis by the Elevation of eIF2a

The results revealed that salubrinal and guanabenz suppresses RANKL–induced

osteoclastogenesis through the suppression of its master regulator NFATc1. It has

been reported that NFATc1 plays an essential role in osteoclastogenesis. NFATc1-

deficient embryonic stem cells fail to differentiate into osteoclasts in response to

RANKL and ectopic expression of NFATc1 causes precursors to undergo osteoclast

differentiation even in the absence of RANKL [71, 72]. NFATc1 also induces tar-

get genes responsible for osteoclast differentiation and function, including OSCAR,

TRAP, cathepsin K, c-Src, and integrin av/b3 [73–75]. Inactivation of NFATc1 by cy-
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closporin A (CsA) was reported to attenuate RANKL-mediated pre-osteoclast cell-cell

fusion into multinucleated osteoclasts [76]. Our data clearly showed that both salu-

brinal and guanabenz suppress NFATc1 expression level and reduce the growth area

of multinucleated osteoclasts in a dose-dependent manner. The number of TRAP

positive cells and the mRNA levels of NFATc1, OSCAR and TRAP were also de-

creased.

The elevation of p-eIF2a corresponds to the down-regulation of RANKL-induced

NFATc1 by salubrinal and guanabenz. In response to various stresses, the level of

p-eIF2a is raised and cells undergo either a survival or apoptosis pathway. It was

previously observed in osteoblasts that salubrinal’s action mimics the induction of a

pro-survival program without imposing damaging stresses, which result in the upreg-

ulation of ATF4 without inducing apoptosis [65]. Salubrinal- and guanabenz- induced

elevation of p-eIF2a also suppresses NFATc1 without any significant changes in cell

mortality or relative cell number. Together with siRNA results, where partially si-

lencing eIF2a significantly suppressed the reduction of NFATc1 by salubrinal and

guanabenz, eIF2amediated signaling showed a prominent role in attenuating osteo-

clastogenesis.

4.2 Possible Involvement of New Regulators

Regulation of NFATc1 by salubrinal and guanabenz-induced phosphorylation of

eIF2a however, was not significantly linked to some known early signaling pathways

involved in bone remodeling. The MAPK signaling pathway is known to be activated

by RANKL-RANK binding which phosphorylates ERK, p38, and JNK, leading to

osteoclast differentiation [32]. NF-kB plays a critical role in the regulation of the

cell cycle, cell adhesion, cytokine production, and cellular processes in macrophages.

Osteoclast formation and their functions are mediated by RANKL-induced NF-kB

activation [77]. Our data showed that the addition of RANKL to RAW 264.7 cells up-

regulates the level of phosphorylated ERK, p38, and NF-kB. However, administration
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of salubrinal and guanabenz did not make any detectable change in their expression

level at least up to 2 hours. The result indicates that the elevation of p-eIF2a, which

results in global translation attenuation, reduced the expression of NFATc1 in the

translational level. The result also reveals, however, that the mRNA level of NFATc1

was also reduced in response to salubrinal and guanabenz. Since the expression level

of NFATc1 was reduced transcriptionally and partially silencing eIF2a did not recover

NFATc1 expression level fully, the results suggest that regulator(s) yet to be identified

are involved in the downregulation of NFATc1 by salubrinal and guanabenz.

4.3 Prediction of Stimulators and Inhibitors of NFATc1

The in silico prediction method allows for systematic targeting of potential NFATc1

regulators. One-thousand-twenty-four potential regulators of NFATc1 obtained from

genome wide microarray were investigated. The goal was to obtain a group of can-

didate transcription factors up-stream of NFATc1 which are induced by RANKL

and regulated by salubrinal and guanabenz. Four hours was the length of time of

treatment chosen due to the observation where the expression level of NFATc1 sig-

nificantly changed by RANKL at 8 hours of treatment. Therefore, sometime before

8 hours should be appropriate to detect the change in mRNA levels of the regula-

tor candidates. NFATc1 mRNA expressions pattern was used as a base line for the

analysis where it is up-regulated by the treatment of RANKL and down-regulated by

both salubrinal and guanabenz. The ideal stimulator candidate displays the change

in expression pattern similar to that of NFATc1, while the ideal inhibitor candidate

displays the change in expression pattern opposite to that of NFATc1.

The two parameters (distance and p-value) facilitated to selecting the candidate

stimulators and inhibitors of NFATc1. Distance (between 0 and 1) was determined

using Pearson’s correlation coefficient, which measures similarity of mRNA expression

pattern of a gene of interest to that of NFATc1. The closer the distance to 1, the

more similar the expression pattern of the gene is to that of NFATc1. Conversely, the
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closer the distance to 0, the more different the expression pattern is. Several methods

for selecting candidate regulators were considered before choosing Pearson’s correla-

tion. Rank correlation methods, such as Spearman’s and Kendall’s correlations, are

capable of showing whether or not a gene tends to be similar or opposite in pattern to

NFATc1. However, they are not able to show whether or not the increase or decrease

in expression level is proportional to NFATc1. Euclidian distance was also consid-

ered since it could give the measurement of how far a gene’s expression level was to

NFATc1 expression level. However, the measurement is based strictly on the value

of NFATc1 expression level. Applying the root mean square (rms) p-value allows

to define representative statistical significance among the four groups of microarray

samples. The genes with the most significance and the closest distance were validated

using qPCR to confirm their expression patterns. Among them, 6 inhibitory and 6

stimulatory genes were confirmed, creating a smaller pool of gene candidates. Further

validation will test whether or not they are upstream of NFATc1.

4.3.1 In Vitro Validation of Zfyve21 and Ddit4 as Inhibitors of NFATc1

Among the 12 qPCR confirmed genes, Zfyve21 and Ddit4 were validated for their

upstream involvement in regulating NFATc1 using loss-of-function or siRNA silencing

method. Partial knock-down by siRNA of both Zfyve21 and Ddit4 resulted in partial

up-regulation of NFATc1 expression level, suggesting their inhibitory role on NFATc1.

It is possible, however, that these genes both inhibit and are inhibited by NFATc1.

Therefore, further investigation is required to evaluate the possibility of inhibitory

feedback involvement instead of upstream inhibition on NFATc1.

It has been reported that Zfyve21 is expressed in most tissues including adherent

cell lines, and it regulates the disassembly of focal adhesions (FAs) by promoting the

de-phosphorylation of FAK at Tyr397 [78]. However, the role Zfyve21 in osteoclast

has not been studied. Studies reported that Ddit4 is induced by a wide variety of

stresses, such as hypoxia, oxidative stress, food deprivation, and ER stress [79–82].
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Interestingly, a study on hepatocytes showed that Ddit4 is induced by the activation

of PERK p-eIF2a ATF4 [82]. It has not been reported, however, whether Ddit4 is

induced by p- eIF2a in osteoclasts. Further investigation needs to be done to clarify

the role of Ddit4 and Zfyve21 in regulating osteoclast development by salubrinal and

guanabenz.

4.3.2 Preliminary Prediction of MicroRNAs

The involvement of microRNA was preliminarily examined by using a similar in

silico method to correlate the microRNA array expressions to NFATc1 expressions.

Similar to the genes, the microRNAs are categorized into potential stimulators and

inhibitors of NFATc1. However, since microRNA binding of the 3’ UTR of its tar-

get mRNA results in gene silencing, the definition of stimulator and inhibitor for

microRNA is different. In the regulation of NFATc1, stimulator microRNAs would

ideally silence the genes inhibiting NFATc1 expression. On the other hand, inhibitor

microRNAs would silence the genes stimulating NFATc1 or NFATc1 itself. NFATc1

is not the only target gene of interest, and thus all predicted regulators should be

taken into count. It is possible that a single microRNA could interact with multiple

mRNAs and each of those mRNAs could have multiple microRNA binding sites [84].

A study on the pathogenesis of liver cancer found that Ddit4 is a possible target

of miR-221 [85]. In our analysis, miR-221-3p was included as a potential stimulator,

and Ddit4 was one of its targets. This example indicates that categorizing the mi-

croRNAs using Pearson’s method can generate a library of potential stimulatory and

inhibitory microRNAs that could interact with the predicted target genes. Current

analysis using Pearson’s method alone may not be sufficient, and further analysis is

recommended to identify the role of microRNAs in salubrinal- and guanabenz-driven

regulation of NFATc1.

We also employed an online integrated tool, ”miRNA targets”, which implements

two miRNA analysis algorithms that provide prediction of target sites based on their
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thermodynamic binding stability. Both algorithms used full length mRNAs instead

of relying on 3’ UTR regions, which includes 5’-region as well as the coding regions

and is not restricted to the seed region and experimentally validated miRNA. This

makes it possible to examine a wider set of potential target genes. Constructing a

table that lists a set of miRNAs and their target genes facilitates in silico analysis and

is useful for selecting microRNAs for future in vitro validation. For example, after a

gene is validated and confirmed to regulate NFATc1, its potential miRNA candidates

could be chosen based on the prediction from binding energy stability. Then, those

candidates could be qPCR validated in the order from most significant (pi value) and

closest distance (di value) to the least.

4.4 Future Studies

The prediction results may lead to future research directions in vitro, in vivo,

and in silico. First, more microarray data could be obtained from samples treated

with NFATc1 siRNA which would be an aid in selecting genes upstream of NFATc1.

Obtaining a microarray data from samples treated with eIF2a siRNA could also be

useful as an aid in selecting genes with downstream involvement of eIF2a. Second,

more prediction result for microRNA could be obtained from other algorithms that

use different criteria for its prediction. The current result is based on thermodynamic

binding stability only and other criteria such as complete seed pairing, conservation

in related species, and multiple target binding sites, could strengthen the prediction

result. Third, gain-of-function by plasmid overexpression could be used following the

loss-of-function by siRNA to further confirm the regulators involvement in regulating

NFATc1. After the role of candidate regulators of interest is validated by these

functional assays, examining a phenotype of knockout mice could be the next logical

step.
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5. CONCLUSIONS

Using in vitro experimental methods, administration of salubrinal and guanabenz was

shown to inhibit the differentiation of RAW 264.7 pre-osteoclasts to multi-nucleated

osteoclasts through the downregulation of NFATc1 without inducing apoptosis. The

results also support the involvement of eIF2a signaling in the regulation of NFATc1

by salubrinal and guanabenz. Some of the known signaling pathways for osteoclas-

togenesis were not affected by the administration of salubrinal and guanabenz, and

an in silico microarray-evaluation method was conducted to predict the potential in-

volvement of other signaling pathways. The generated informative graphs were able

to direct our focus towards an efficient and selective gene validation. Preliminary in

silico microRNA results will be useful for future guidance in discovering the involve-

ment of microRNA in salubrinal- and guanabenz-driven regulation of NFATc1.

In summary, the results in this thesis demonstrate that salubrinal and guanabenz

are capable of attenuating osteoclastogenesis through the suppression of NFATc1

through eIF2a signaling and other signaling pathway(s). The latter might be driven by

transcription factor(s) and microRNA(s), which have not been identified as a regulator

of osteoclastogenesis. Together with the previous study on osteoblasts, the results in

this thesis suggest that salubrinal and guanabenz are able to regulate the development

of both osteoblasts and osteoclasts. Currently, no therapeutic agent for osteoporosis is

based on eIF2a signaling and no drugs regulate development of osteoblasts as well as

osteoclasts. Although further study and analysis are recommended to further identify

the mechanism of action of eIF2a-mediated signaling in bone remodeling, this thesis

supports a possibility of developing a novel synthetic drug for treatment and care of

those suffering from osteoporosis.



LIST OF REFERENCES



51

LIST OF REFERENCES

[1] S. C. Manolagas and R. L. Jilka, “Bone marrow, cytokines, and bone remodeling.
emerging insights into the pathophysiology of osteoporosis.,” The New England
journal of medicine, vol. 332, no. 5, pp. 305–311, 1995.

[2] A. Parfitt, “Osteonal and hemi-osteonal remodeling: The spatial and temporal
framework for signal traffic in adult human bone,” Journal of cellular biochem-
istry, vol. 55, no. 3, pp. 273–286, 1994.

[3] S. C. Miller and W. S. Jee, “The bone lining cell: a distinct phenotype?,” Cal-
cified tissue international, vol. 41, no. 1, pp. 1–5, 1987.

[4] L. A. Armas and R. R. Recker, “Pathophysiology of osteoporosis new mechanistic
insights,” Endocrinology and metabolism clinics of North America, vol. 41, no. 3,
2012.

[5] F. Vescini and F. Grimaldi, “Pth 1–84: bone rebuilding as a target for the
therapy of severe osteoporosis,” Clinical Cases in Mineral and Bone Metabolism,
vol. 9, no. 1, p. 31, 2012.

[6] D. W. Dempster, C. L. Lambing, P. J. Kostenuik, and A. Grauer, “Role of
rank ligand and denosumab, a targeted rank ligand inhibitor, in bone health
and osteoporosis: a review of preclinical and clinical data,” Clinical therapeutics,
vol. 34, no. 3, pp. 521–536, 2012.

[7] J. Gallagher, D. Goldgar, and A. Moy, “Total bone calcium in normal women:
effect of age and menopause status,” Journal of bone and mineral research, vol. 2,
no. 6, pp. 491–496, 1987.

[8] R. P. Heaney, “Estrogen-calcium interactions in the postmenopause: a quanti-
tative description,” Bone and mineral, vol. 11, no. 1, pp. 67–84, 1990.

[9] B. Nordin, A. Need, A. Bridges, and M. Horowitz, “Relative contributions of
years since menopause, age, and weight to vertebral density in postmenopausal
women.,” Journal of Clinical Endocrinology & Metabolism, vol. 74, no. 1, pp. 20–
23, 1992.

[10] R. Eastell, P. D. DELMAS, S. F. HODGSON, E. F. ERIKSEN, K. G. MANN,
and B. L. RIGGS, “Bone formation rate in older normal women: concurrent as-
sessment with bone histomorphometry, calcium kinetics, and biochemical mark-
ers,” Journal of Clinical Endocrinology & Metabolism, vol. 67, no. 4, pp. 741–748,
1988.

[11] O. Johnell and J. Kanis, “An estimate of the worldwide prevalence and disabil-
ity associated with osteoporotic fractures,” Osteoporosis International, vol. 17,
no. 12, pp. 1726–1733, 2006.



52

[12] X. Wu, S. Guo, X. Ma, G. Shen, C. Yang, K. Xie, J. Liu, W. Guo, Y. Yan, and
E. Luo, “Screening of osteoprotegerin-related feature genes in osteoporosis and
functional analysis with dna microarray,” European journal of medical research,
vol. 18, no. 1, p. 15, 2013.

[13] S. Blume and J. Curtis, “Medical costs of osteoporosis in the elderly medicare
population,” Osteoporosis International, vol. 22, no. 6, pp. 1835–1844, 2011.

[14] A. Parfitt, “The two-stage concept of bone loss revisited,” Triangle, vol. 31,
pp. 99–110, 1992.

[15] A. Parfitt, “Bone-forming cells in clinical conditions,” Bone, vol. 1, pp. 351–429,
1990.

[16] E. F. Eriksen, S. F. Hodgson, R. Eastell, B. L. RIGGS, S. L. Cedel, and W. M.
O’Fallon, “Cancellous bone remodeling in type i (postmenopausal) osteoporosis:
quantitative assessment of rates of formation, resorption, and bone loss at tissue
and cellular levels,” Journal of Bone and Mineral Research, vol. 5, no. 4, pp. 311–
319, 1990.

[17] Q. Yang, J. Jian, S. B. Abramson, and X. Huang, “Inhibitory effects of iron on
bone morphogenetic protein 2–induced osteoblastogenesis,” Journal of Bone and
Mineral Research, vol. 26, no. 6, pp. 1188–1196, 2011.

[18] M. N. Weitzmann, R. Pacifici, et al., “Estrogen deficiency and bone loss: an
inflammatory tale,” Journal of Clinical Investigation, vol. 116, no. 5, pp. 1186–
1194, 2006.

[19] T. Shibata, A. Shira-Ishi, T. Sato, T. Masaki, A. Sasaki, Y. Masuda, A. Hishiya,
N. Ishikura, S. Higashi, Y. Uchida, et al., “Vitamin d hormone inhibits osteoclas-
togenesis in vivo by decreasing the pool of osteoclast precursors in bone marrow,”
Journal of Bone and Mineral Research, vol. 17, no. 4, pp. 622–629, 2002.

[20] A. Cranney, T. Horsley, S. O’Donnell, H. Weiler, L. Puil, D. Ooi, S. Atkinson,
L. Ward, D. Moher, D. Hanley, et al., “Effectiveness and safety of vitamin d in
relation to bone health,” 2007.

[21] H. A. Bischoff-Ferrari, W. C. Willett, E. J. Orav, P. Lips, P. J. Meunier, R. A.
Lyons, L. Flicker, J. Wark, R. D. Jackson, J. A. Cauley, et al., “A pooled analysis
of vitamin d dose requirements for fracture prevention,” New England Journal
of Medicine, vol. 367, no. 1, pp. 40–49, 2012.

[22] G. Jones, “Vitamin d and analogues,” Principles of bone biology. Third edition.
Section: pharmacological mechanisms of therapeutics, Academic Press Inc, San
Diego (CA), pp. 1777–1799, 2008.

[23] V. A. Moyer, “Vitamin d and calcium supplementation to prevent fractures in
adults: Us preventive services task force recommendation statement,” Annals of
Internal Medicine, 2013.

[24] I. R. Reid and M. J. Bolland, “Calcium supplements: bad for the heart?,” Heart,
vol. 98, no. 12, pp. 895–896, 2012.

[25] I. Persson, “Cancer risk in women receiving estrogen-progestin replacement ther-
apy,” Maturitas, vol. 23, pp. S37–S45, 1996.



53

[26] B. L. Riggs, S. Khosla, and L. J. Melton, “Sex steroids and the construction and
conservation of the adult skeleton,” Endocrine reviews, vol. 23, no. 3, pp. 279–
302, 2002.

[27] J. Alexander, I. Bab, S. Fish, R. Müller, T. Uchiyama, G. Gronowicz, M. Na-
hounou, Q. Zhao, D. White, M. Chorev, et al., “Human parathyroid hormone
1–34 reverses bone loss in ovariectomized mice,” Journal of Bone and Mineral
Research, vol. 16, no. 9, pp. 1665–1673, 2001.

[28] C. J. Rosen and J. P. Bilezikian, “Anabolic therapy for osteoporosis,” Journal
of Clinical Endocrinology & Metabolism, vol. 86, no. 3, pp. 957–964, 2001.

[29] D. M. Black, S. R. Cummings, D. B. Karpf, J. A. Cauley, D. E. Thompson,
M. C. Nevitt, D. C. Bauer, H. K. Genant, W. L. Haskell, R. Marcus, et al.,
“Randomised trial of effect of alendronate on risk of fracture in women with
existing vertebral fractures,” The Lancet, vol. 348, no. 9041, pp. 1535–1541,
1996.

[30] S. R. Cummings, J. S. Martin, M. R. McClung, E. S. Siris, R. Eastell, I. R. Reid,
P. Delmas, H. B. Zoog, M. Austin, A. Wang, et al., “Denosumab for prevention
of fractures in postmenopausal women with osteoporosis,” New England Journal
of Medicine, vol. 361, no. 8, pp. 756–765, 2009.

[31] J.-J. Body, P. Bergmann, S. Boonen, J.-P. Devogelaer, E. Gielen, S. Goemaere,
J.-M. Kaufman, S. Rozenberg, and J.-Y. Reginster, “Extraskeletal benefits and
risks of calcium, vitamin d and anti-osteoporosis medications,” Osteoporosis In-
ternational, vol. 23, no. 1, pp. 1–23, 2012.

[32] H. Yasuda, N. Shima, N. Nakagawa, K. Yamaguchi, M. Kinosaki, S.-i. Mochizuki,
A. Tomoyasu, K. Yano, M. Goto, A. Murakami, et al., “Osteoclast differentiation
factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is
identical to trance/rankl,” Proceedings of the National Academy of Sciences,
vol. 95, no. 7, pp. 3597–3602, 1998.

[33] D. Lacey, E. Timms, H.-L. Tan, M. Kelley, C. Dunstan, T. Burgess, R. Elliott,
A. Colombero, G. Elliott, S. Scully, et al., “Osteoprotegerin ligand is a cytokine
that regulates osteoclast differentiation and activation,” Cell, vol. 93, no. 2,
pp. 165–176, 1998.

[34] E. Canalis, “New treatment modalities in osteoporosis,” Endocrine Practice,
vol. 16, no. 5, pp. 855–863, 2010.

[35] D. Dickson, O. Hargie, and N. Morrow, Communication skills training for health
professionals. Nelson Thornes, 1996.

[36] H. Fleisch, “Bisphosphonates: mechanisms of action,” Advances in Organ Biol-
ogy, vol. 5, pp. 835–850, 1998.
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APPENDICES: MATLAB SOURCE CODE

The appendices include two categories of MATLAB source code: one to predict gene

regulators and the other to predict microRNA regulators that potentially regulate

NFATc1. The programs were run using MATLAB R2010a software. The input of the

programs were the microarray-derived data, including feature names, signal values,

fold change values, and p-values. The programs output a list of predicted genes

and microRNAs potentially regulating NFATc1 along with a distance (di) and RMS

p-value (pi), ordered by distance from NFATc1 expression pattern.

A Prediction of Potential Gene Regulators

The code for ”Gene Screening” and ”Gene Distance and P-value” are included in

this category. The purpose of the ”Gene Screening” code is to filter the microarray

data and divide the genes into two groups: stimulatory and inhibitory genes. This

program takes the names, signal values, fold change values, and p-values 1025 genes

as input. It outputs genes with stimulatory and inhibitory characteristics. The pro-

cedure has four sections. First, the microarray data is imported and each column was

put into individual arrays. Second, the duplicated genes are removed, and the re-

maining genes are filtered based on fold change criteria. Third, the genes are divided

into stimulatory and inhibitory groups. Fourth, the output is written to an Excel file

with one sheet of stimulatory genes and one sheet of inhibitory genes.

The purpose of the ”Gene Distance and P-value” code is to calculate the distance

and p-value of each gene using Pearson’s correlation method and RMS, respectively.

The inputs are the names, signal values, and p-values of the stimulatory and inhibitory

genes from ”Gene Screening” result. NFATc1 signal values are also used to calculate

each gene’s distance from NFATc1 expression pattern. The output of this program
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would be the calculated distance (di) and p-value (pi) of each gene. The procedure

includes five sections. First, the stimulatory and inhibitory gene data are imported,

and each column was put into individual arrays. Second, the mean signal value of

each treatment category is calculated for each gene. Third, the distance (di) of each

gene is calculated using Pearson’s correlation method. Fourth, the p-value of each

gene is calculated using RMS. Fifth, the gene names, distance, and p-value are written

into an Excel file ordered by distance.

A.1 Gene Screening

clear , clc

%Matlab input : names , f o l d change , pvalue , s i g n a l va lue s o f genes

f i l e = ’ genematlabnormal ized . x l sx ’ ;

%ONE: import ing data in to i nd i v i dua l a r rays

%Control (C) and RANKL (R) treatments

[numR str ingR ] = x l s r e ad ( f i l e , 1 ) ;

Rname = str ingR ( 3 :end , 1 ) ;

RFC = numR( : , 2 ) ;

RlogFC = numR( : , 3 ) ;

Rpval = numR ( : , 4 ) ;

Rdef = str ingR ( 3 :end , 5 ) ;

Racc = str ingR ( 3 :end , 6 ) ;

R1 = numR( : , 7 ) ;

R2 = numR( : , 8 ) ;

R3 = numR( : , 9 ) ;

C1 = numR( : , 1 0 ) ;

C2 = numR( : , 1 1 ) ;
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C3 = numR( : , 1 2 ) ;

%RANKL+sa l u b r i n a l (S) treatment

[ numS s t r i ngS ] = x l s r e ad ( f i l e , 2 ) ;

Sname = s t r i ngS ( 3 :end , 1 ) ;

SFC = numS( : , 2 ) ;

SlogFC = numS( : , 3 ) ;

Spval = numS ( : , 4 ) ;

S1 = numS( : , 5 ) ;

S2 = numS( : , 6 ) ;

S3 = numS( : , 7 ) ;

%RANKL+guanabenz (G) treatment

[numG str ingG ] = x l s r e ad ( f i l e , 3 ) ;

Gname = str ingG ( 3 :end , 1 ) ;

GFC = numG( : , 2 ) ;

GlogFC = numG( : , 3 ) ;

Gpval = numG ( : , 4 ) ;

G1 = numG( : , 5 ) ;

G2 = numG( : , 6 ) ;

G3 = numG( : , 7 ) ;

%TWO: removing dup l i c a t e s and f i l t e r i n g based on f o l d change

va lue s

%con t r o l and RANKL treatment

[Rname a ] = unique (Rname) ; %removing dup l i c a t e s

RFC = RFC(a ) ;

RlogFC = RlogFC( a ) ;

Rpval = Rpval ( a ) ;

Rdef = Rdef ( a ) ;

Racc = Racc ( a ) ;
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R1 = R1( a ) ;

R2 = R2( a ) ;

R3 = R3( a ) ;

C1 = C1( a ) ;

C2 = C2( a ) ;

C3 = C3( a ) ;

%e l im ina t e s genes i f f o l d change i s −1.1<0<1.1

a = find ( ( (RFC > 1 . 1 ) + (RFC < −1.1) ) >= 1) ;

Rname = Rname( a ) ;

RFC = RFC(a ) ;

RlogFC = RlogFC( a ) ;

Rpval = Rpval ( a ) ;

Rdef = Rdef ( a ) ;

Racc = Racc ( a ) ;

R1 = R1( a ) ;

R2 = R2( a ) ;

R3 = R3( a ) ;

C1 = C1( a ) ;

C2 = C2( a ) ;

C3 = C3( a ) ;

%s a l u b r i n a l treatment

[ Sname b ] = unique (Sname) ; %removing dup l i c a t e s

SFC = SFC(b) ;

SlogFC = SlogFC (b) ;

Spval = Spval (b) ;

S1 = S1 (b) ;

S2 = S2 (b) ;

S3 = S3 (b) ;

%e l im ina t e s genes i f f o l d change i s −1.1<0<1.1

b = find ( ( (SFC > 1 . 1 ) + (SFC < −1.1) ) >= 1) ;

Sname = Sname(b) ;
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SFC = SFC(b) ;

SlogFC = SlogFC (b) ;

Spval = Spval (b) ;

S1 = S1 (b) ;

S2 = S2 (b) ;

S3 = S3 (b) ;

%guanabenz treatment

[Gname c ] = unique (Gname) ; %removing dup l i c a t e s

GFC = GFC( c ) ;

GlogFC = GlogFC( c ) ;

Gpval = Gpval ( c ) ;

G1 = G1( c ) ;

G2 = G2( c ) ;

G3 = G3( c ) ;

%e l im ina t e s genes i f f o l d change i s −1.1<0<1.1

c = find ( ( (GFC > 1 . 1 ) + (GFC < −1.1) ) >= 1) ;

Gname = Gname( c ) ;

GFC = GFC( c ) ;

GlogFC = GlogFC( c ) ;

Gpval = Gpval ( c ) ;

G1 = G1( c ) ;

G2 = G2( c ) ;

G3 = G3( c ) ;

%count ing the l ength o f l i s t from each treatment category

l 1 = length (Rname) ; %RANKL treatment

l 2 = length (Sname) ; %s a l u b r i n a l treatment

l 3 = length (Gname) ; %guanabenz treatment

s im i l a r n e g = [ ] ;

s im i l a r p o s = [ ] ;

threes im = [ ] ;
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threes im neg = [ ] ;

three s im pos = [ ] ;

s im i l a r = [ ] ;

%THREE: Putt ing in to s t imu la to ry and i nh i b i t o r y groups

%Find common genes in s a l u b r i n a l and guanabenz treatments

for i 1 = 1 : l2 ,

for i 2 = 1 : l3 ,

i f strcmp (Sname( i 1 ) , Gname( i 2 ) ) ,

s im i l a r = [ s im i l a r ; Sname( i 1 ) SFC( i 1 ) Spval ( i 1 )

SlogFC ( i 1 ) GFC( i 2 ) Gpval ( i 2 ) GlogFC( i 2 ) S1 ( i 1 ) S2 (

i 1 ) S3 ( i 1 ) G1( i 2 ) G2( i 2 ) G3( i 2 ) ] ;

i f ( SFC( i 1 ) < 0 && GFC( i 2 ) <0) ,

s im i l a r n e g = [ s im i l a r n e g ; Sname( i 1 ) SFC( i 1 )

Spval ( i 1 ) SlogFC ( i 1 ) GFC( i 2 ) Gpval ( i 2 ) GlogFC

( i 2 ) ] ;

e l s e i f (SFC( i 1 ) >0 && GFC( i 2 ) >0) ,

s im i l a r p o s = [ s im i l a r p o s ; Sname( i 1 ) SFC( i 1 )

Spval ( i 1 ) SlogFC ( i 1 ) GFC( i 2 ) Gpval ( i 2 ) GlogFC(

i 2 ) ] ;

end

end

end

end

twosimSname = s im i l a r ( : , 1 ) ;

twosimSFC = ce l l2mat ( s im i l a r ( : , 2 ) ) ;

twosimSpval = s im i l a r ( : , 3 ) ;

twosimSlogFC = s im i l a r ( : , 4 ) ;
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twosimGFC = ce l l 2mat ( s im i l a r ( : , 5 ) ) ;

twosimGpval = s im i l a r ( : , 6 ) ;

twosimGlogFC = s im i l a r ( : , 7 ) ;

SS1 = s im i l a r ( : , 8 ) ;

SS2 = s im i l a r ( : , 9 ) ;

SS3 = s im i l a r ( : , 1 0 ) ;

SG1 = s im i l a r ( : , 1 1 ) ;

SG2 = s im i l a r ( : , 1 2 ) ;

SG3 = s im i l a r ( : , 1 3 ) ;

l 4 = length ( twosimSname ) ;

%Find common genes in RANKL, s a l ub r i na l , and guanabenz treatments

%Then put in to s t imu la to ry and i nh i b i t o r y groups

%St imulatory = po s i t i v e f o l d change in RANKL, negat ive f o l d

change in s a l u b r i n a l and guanabenz

%Inh i b i t o r y = negat ive f o l d change in RANKL, p o s i t i v e f o l d change

in s a l u b r i n a l and guanabenz

%added f i l t e r i n g cond i t i on where the abso lu t e va lue o f s a l u b r i n a l

and guanabenz exp r e s s i on cannot exceed con t r o l

for i 3 = 1 : l4 ,

for i 4 = 1 : l1 ,

i f strcmp ( twosimSname ( i 3 ) , Rname( i 4 ) ) ,

i f ( twosimSFC( i 3 ) < 0 && twosimGFC( i 3 ) < 0 && RFC(

i 4 ) > 0 && (−1*twosimSFC( i 3 ) ) < RFC( i 4 ) && (−1*

twosimGFC( i 3 ) ) < RFC( i 4 ) ) ,

threes im neg = [ threes im neg ; twosimSname ( i 3 )

twosimSFC( i 3 ) twosimSpval ( i 3 ) twosimSlogFC ( i 3 )

twosimGFC( i 3 ) twosimGpval ( i 3 ) twosimGlogFC( i 3

) RFC( i 4 ) Rpval ( i 4 ) RlogFC( i 4 ) Rdef ( i 4 ) Racc (
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i 4 ) C1( i 4 ) C2( i 4 ) C3( i 4 ) R1( i 4 ) R2( i 4 ) R3( i 4 )

SS1 ( i 3 ) SS2 ( i 3 ) SS3 ( i 3 ) SG1( i 3 ) SG2( i 3 ) SG3( i 3

) ] ;

e l s e i f ( twosimSFC( i 3 ) > 0 && twosimGFC( i 3 ) > 0 &&

RFC( i 4 ) < 0 && twosimSFC( i 3 ) < (−1*RFC( i 4 ) ) &&

twosimGFC( i 3 ) < (−1*RFC( i 4 ) ) ) ,

three s im pos = [ three s im pos ; twosimSname ( i 3 )

twosimSFC( i 3 ) twosimSpval ( i 3 ) twosimSlogFC ( i 3 )

twosimGFC( i 3 ) twosimGpval ( i 3 ) twosimGlogFC( i 3

) RFC( i 4 ) Rpval ( i 4 ) RlogFC( i 4 ) Rdef ( i 4 ) Racc (

i 4 ) C1( i 4 ) C2( i 4 ) C3( i 4 ) R1( i 4 ) R2( i 4 ) R3( i 4 )

SS1 ( i 3 ) SS2 ( i 3 ) SS3 ( i 3 ) SG1( i 3 ) SG2( i 3 ) SG3( i 3

) ] ;

end

end

end

end

%FOUR: Putting in to Excel f i l e , shee t 2 i s f i n a l s t imu la to ry

group and shee t 4 i s f i n a l i n h i b i t o r y group .

header1 = { ’ Genes that are down−r egu l a t ed in Sa lub r i na l and

Guanabenz compared to RANKL’ } ;

header2 = { ’Gene Symbol ’ , ’ S a l ub r i na l FC ’ , ’ Pvalue S/R ’ , ’

S a l ub r i na l Log FC ’ , ’Guanabenz FC ’ , ’P value G/R ’ , ’Guanabenz

Log FC ’ } ;

x l sw r i t e ( ’ Gene r e s t r i c t ed ’ , header1 , ’ Sheet1 ’ , ’A1 ’ )

x l sw r i t e ( ’ Gene r e s t r i c t ed ’ , header2 , ’ Sheet1 ’ , ’A2 ’ )
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x l sw r i t e ( ’ Gene r e s t r i c t ed ’ , s im i l a r neg , ’ Sheet1 ’ , ’A3 ’ )

header3 = { ’ Genes that are down−r egu l a t ed in Sa lub r i na l and

Guanabenz compared to RANKL, but up−r egu l a t ed in RANKL

compared to Control ’ } ;

header4 = { ’Gene Symbol ’ , ’ S a l ub r i na l FC ’ , ’ Pvalue S/R ’ , ’

S a l ub r i na l Log FC ’ , ’Guanabenz FC ’ , ’P value G/R ’ , ’Guanabenz

Log FC ’ , ’RANKL FC ’ , ’P value R/C ’ , ’RANKL Log FC ’ , ’Gene

d e f i n i t i o n ’ , ’ Access ion number ’ , ’C1 ’ , ’C2 ’ , ’C3 ’ , ’R1 ’ , ’R2 ’ , ’

R3 ’ , ’ S1 ’ , ’ S2 ’ , ’ S3 ’ , ’G1 ’ , ’G2 ’ , ’G3 ’ } ;

x l sw r i t e ( ’ Gene r e s t r i c t ed ’ , header3 , ’ Sheet2 ’ , ’A1 ’ )

x l sw r i t e ( ’ Gene r e s t r i c t ed ’ , header4 , ’ Sheet2 ’ , ’A2 ’ )

x l sw r i t e ( ’ Gene r e s t r i c t ed ’ , threes im neg , ’ Sheet2 ’ , ’A3 ’ )

header5 = { ’ Genes that are up−r egu l a t ed in Sa lub r i na l and

Guanabenz compared to RANKL’ } ;

header6 = { ’Gene Symbol ’ , ’ S a l ub r i na l FC ’ , ’ Pvalue S/R ’ , ’

S a l ub r i na l Log FC ’ , ’Guanabenz FC ’ , ’P value G/R ’ , ’Guanabenz

Log FC ’ } ;

x l sw r i t e ( ’ Gene r e s t r i c t ed ’ , header5 , ’ Sheet3 ’ , ’A1 ’ )

x l sw r i t e ( ’ Gene r e s t r i c t ed ’ , header6 , ’ Sheet3 ’ , ’A2 ’ )

x l sw r i t e ( ’ Gene r e s t r i c t ed ’ , s im i l a r po s , ’ Sheet3 ’ , ’A3 ’ )

header7 = { ’ Genes that are up−r egu l a t ed in Sa lub r i na l and

Guanabenz compared to RANKL, but down−r egu l a t ed in RANKL

compared to Control ’ } ;

header8 = { ’Gene Symbol ’ , ’ S a l ub r i na l FC ’ , ’ Pvalue S/R ’ , ’

S a l ub r i na l Log FC ’ , ’Guanabenz FC ’ , ’P value G/R ’ , ’Guanabenz

Log FC ’ , ’RANKL FC ’ , ’P value R/C ’ , ’RANKL Log FC ’ , ’Gene

d e f i n i t i o n ’ , ’ Access ion number ’ , ’C1 ’ , ’C2 ’ , ’C3 ’ , ’R1 ’ , ’R2 ’ , ’

R3 ’ , ’ S1 ’ , ’ S2 ’ , ’ S3 ’ , ’G1 ’ , ’G2 ’ , ’G3 ’ } ;
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x l sw r i t e ( ’ Gene r e s t r i c t ed ’ , header7 , ’ Sheet4 ’ , ’A1 ’ )

x l sw r i t e ( ’ Gene r e s t r i c t ed ’ , header8 , ’ Sheet4 ’ , ’A2 ’ )

x l sw r i t e ( ’ Gene r e s t r i c t ed ’ , threes im pos , ’ Sheet4 ’ , ’A3 ’ )

’ done ’

A.2 Gene Distance and P-value

clear

clc

% Matlab inputs : gene names , s i g n a l values , and p−va lue s − t h i s

a l s o i n c l ud e s NFATc1

f i l e = ’ t opda ta r e s t r i c t edno rma l i z ed . x l sx ’ ;

% ONE: import ing data in to i nd i v i dua l a r rays

%N = NFATc1−l i k e , R = r e c i p r o c a l

%C = contro l , R= RANKL, S= sa l ub r i na l , G = guanabenz

%st imu la to ry group

[numN str ingR ] = x l s r e ad ( f i l e , 1 ) ;

%gene names

Ngenename = str ingR ( 2 :end , 1 ) ;

%gene f o l d change va lue s

NSFC = numN( : , 1 ) ;

NGFC = numN( : , 2 ) ;

NRFC = numN( : , 3 ) ;

%gene s i g n a l va lue s

NS1 = numN( : , 4 ) ;

NS2 = numN( : , 5 ) ;
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NS3 = numN( : , 6 ) ;

NG1 = numN( : , 7 ) ;

NG2 = numN( : , 8 ) ;

NG3 = numN( : , 9 ) ;

NR1 = numN( : , 1 0 ) ;

NR2 = numN( : , 1 1 ) ;

NR3 = numN( : , 1 2 ) ;

NC1 = numN( : , 1 3 ) ;

NC2 = numN( : , 1 4 ) ;

NC3 = numN( : , 1 5 ) ;

%gene p−va lue s

PNS = numN( : , 1 6 ) ;

PNG = numN( : , 1 7 ) ;

PNR = numN( : , 1 8 ) ;

%i nh i b i t o r y group

[numR str ingR ] = x l s r e ad ( f i l e , 2 ) ;

%gene names

Rgenename = str ingR ( 2 :end , 1 ) ;

%gene f o l d change va lue s

RSFC = numR( : , 1 ) ;

RGFC = numR( : , 2 ) ;

RRFC = numR( : , 3 ) ;

%gene s i g n a l va lue s

RS1 = numR( : , 4 ) ;

RS2 = numR( : , 5 ) ;

RS3 = numR( : , 6 ) ;

RG1 = numR( : , 7 ) ;

RG2 = numR( : , 8 ) ;

RG3 = numR( : , 9 ) ;

RR1 = numR( : , 1 0 ) ;
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RR2 = numR( : , 1 1 ) ;

RR3 = numR( : , 1 2 ) ;

RC1 = numR( : , 1 3 ) ;

RC2 = numR( : , 1 4 ) ;

RC3 = numR( : , 1 5 ) ;

%gene p−va lue s

PRS = numR( : , 1 6 ) ;

PRG = numR( : , 1 7 ) ;

PRR = numR( : , 1 8 ) ;

%putt ing in to 1 array

NS = [NS1 NS2 NS3 ] ;

NG = [NG1 NG2 NG3 ] ;

NR = [NR1 NR2 NR3 ] ;

NC = [NC1 NC2 NC3 ] ;

%put in to 1 array

RS = [RS1 RS2 RS3 ] ;

RG = [RG1 RG2 RG3 ] ;

RR = [RR1 RR2 RR3 ] ;

RC = [RC1 RC2 RC3 ] ;

%TWO: c a l c u l a t i n g mean s i g n a l va lue s

%c a l c u l a t i n g mean s i g n a l va lue s f o r s t imu la to ry genes f o r each

treatment category (N = NFATc1− l i k e )

NSa = mean(NS, 2 ) ;

NGa = mean(NG, 2 ) ;

NRa = mean(NR, 2 ) ;

NCa = mean(NC, 2 ) ;

%c a l c u l a t i n g mean s i g n a l va lue s f o r i n h i b i t o r y genes f o r each

treatment category (R = r e c i p r o c a l )
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RSa = mean(RS, 2 ) ;

RGa = mean(RG, 2 ) ;

RRa = mean(RR, 2 ) ;

RCa = mean(RC, 2 ) ;

%put in to l ength

l 1 = length (NSa) ;

l 2 = length (RSa) ;

dN = zeros ( l1 , l 1 ) ;

dR = zeros ( l2 , l 2 ) ;

pNmean = zeros (1 , l 1 ) ;

pRmean = zeros (1 , l 2 ) ;

Ngenename2 = transpose (Ngenename ) ;

Rgenename2 = transpose (Rgenename ) ;

% THREE and FOUR: c a l c u l a t i n g each genes ’ d i s t ance and p−va lue s

us ing Pearson ’ s c o r r e l a t i o n method and RMS p−value

Rsquare l ike = zeros (1 , l 1 ) ;

R l ike = zeros (1 , l 1 ) ;

Rsquarerep = zeros (1 , l 2 ) ;

Rrep = zeros (1 , l 2 ) ;

NFS = NSa(1 , 1 ) ;

NFG = NGa(1 , 1 ) ;

NFR = NRa(1 , 1 ) ;

NFC = NCa(1 , 1 ) ;

%c a l c u l a t i n g d i s t ance and p−value f o r s t imu la to ry group

for a = 1 : l1 ,

G = NSa( a ) + NGa( a ) + NRa( a ) + NCa( a ) ;
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N = NFS + NFG + NFR + NFC;

Gsquare = (NSa( a ) ˆ2) + (NGa( a ) ˆ2) + (NRa( a ) ˆ2) +(NCa( a ) ˆ2) ;

Nsquare = (NFSˆ2) + (NFGˆ2) + (NFRˆ2) + (NFCˆ2) ;

GN = (NSa( a ) *NFS) + (NGa( a ) *NFG) + (NRa( a ) *NFR) + (NCa( a ) *NFC

) ;

Rsquare l ike ( a ) = ( (GN − ( (G*N) /4) ) / ( sqrt ( ( Gsquare − ( ( (G)

ˆ2) /4) ) * ( Nsquare − ( ( (N) ˆ2) /4) ) ) ) ) ˆ2 ;

R = ( (GN − ( (G*N) /4) ) / ( sqrt ( ( Gsquare − ( ( (G) ˆ2) /4) ) * (

Nsquare − ( ( (N) ˆ2) /4) ) ) ) ) ;

R l ike ( a ) = (1−R) /2 ;

pNm(a ) = sqrt ( ( ( (PNS( a ) ˆ2) + (PNG(a ) ˆ2) + (PNR(a ) ˆ2) ) /3) ) ;

end

%ca l c u l a t i n g d i s t ance and p−value f o r i n h i b i t o r y group

for a = 1 : l2 ,

G = RSa( a ) + RGa( a ) + RRa( a ) + RCa( a ) ;

N = NFS + NFG + NFR + NFC;

Gsquare = (RSa( a ) ˆ2) + (RGa( a ) ˆ2) + (RRa( a ) ˆ2) + (RCa( a ) ˆ2) ;

Nsquare = (NFSˆ2) + (NFGˆ2) + (NFRˆ2) + (NFCˆ2) ;

GN = (RSa( a ) *NFS) + (RGa( a ) *NFG) + (RRa( a ) *NFR) + (RCa( a ) *NFC

) ;

Rsquarerep ( a ) = ( (GN − ( (G*N) /4) ) / ( sqrt ( ( Gsquare − ( ( (G) ˆ2)

/4) ) * ( Nsquare − ( ( (N) ˆ2) /4) ) ) ) ) ˆ2 ;

R = ( (GN − ( (G*N) /4) ) / ( sqrt ( ( Gsquare − ( ( (G) ˆ2) /4) ) * (

Nsquare − ( ( (N) ˆ2) /4) ) ) ) ) ;

Rrep ( a ) = (1−R) /2 ;

pRm(a ) = sqrt ( ( ( (PRS( a ) ˆ2) + (PRG(a ) ˆ2) + (PRR(a ) ˆ2) ) /3) ) ;

end

%so r t i n g in the order from c l o s e s t to f u r t h e s t d i s t anc e
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[ l s o r t b ] = sort ( Rsquare l ike , ’ descend ’ ) ;

R l ike = Rl ike (b) ;

l ikename = Ngenename2 (b) ;

l ikenamed = transpose ( l ikename ) ;

pNm = pNm(b) ;

[ r s o r t c ] = sort ( Rsquarerep , ’ descend ’ ) ;

Rrep = Rrep ( c ) ;

repname = Rgenename2 ( c ) ;

repnamed = transpose ( repname ) ;

pRm = pRm( c ) ;

% FIVE : Put the names , d i s tance , and p−value in to an Excel f i l e ,

shee t 1 i s s t imu la to ry group and shee t 2 i s i n h i b i t o r y group

header5 = { ’ Pearsons Distance t ab l e f o r top NFATc1− l i k e genes ’ } ;

x l sw r i t e ( ’ c l u s t e r r e s tno rm ’ , header5 , ’ Sheet1 ’ , ’A1 ’ )

x l sw r i t e ( ’ c l u s t e r r e s tno rm ’ , l ikename , ’ Sheet1 ’ , ’B2 ’ )

x l sw r i t e ( ’ c l u s t e r r e s tno rm ’ , likenamed , ’ Sheet1 ’ , ’A3 ’ )

x l sw r i t e ( ’ c l u s t e r r e s tno rm ’ , l s o r t , ’ Sheet1 ’ , ’B3 ’ )

x l sw r i t e ( ’ c l u s t e r r e s tno rm ’ , Rl ike , ’ Sheet1 ’ , ’B4 ’ )

x l sw r i t e ( ’ c l u s t e r r e s tno rm ’ , pNm, ’ Sheet1 ’ , ’B5 ’ )

header6 = { ’ Pearsons Distance t ab l e f o r top NFATc1−r e c i p r o c a l

genes ’ } ;

x l sw r i t e ( ’ c l u s t e r r e s tno rm ’ , header6 , ’ Sheet2 ’ , ’A1 ’ )

x l sw r i t e ( ’ c l u s t e r r e s tno rm ’ , repname , ’ Sheet2 ’ , ’B2 ’ )

x l sw r i t e ( ’ c l u s t e r r e s tno rm ’ , repnamed , ’ Sheet2 ’ , ’A3 ’ )

x l sw r i t e ( ’ c l u s t e r r e s tno rm ’ , r so r t , ’ Sheet2 ’ , ’B3 ’ )

x l sw r i t e ( ’ c l u s t e r r e s tno rm ’ , Rrep , ’ Sheet2 ’ , ’B4 ’ )

x l sw r i t e ( ’ c l u s t e r r e s tno rm ’ , pRm, ’ Sheet2 ’ , ’B5 ’ )
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’ done ’

B Prediction of Potential MicroRNA Regulators

The code for ”MicroRNA Screening” and ”MicroRNA Distance and P-value” are

included in this category. The purpose of the ”MicroRNA Screening” code is to filter

the microarray data. This program takes the names, signal values, and p-values of

1625 microRNAs as input. The output is a list of filtered microRNAs. The procedure

has four sections. First, the microarray data is imported, and each column was put

into individual arrays. Second, the mean signal values and fold change values of

each microRNA are calculated for each treatment category. Third, the microRNAs

are filtered using filtering conditions based on signal value and p-value. Fourth, the

output is written to an Excel file.

The purpose of the ”MicroRNA Distance and P-value” code is to calculate the

distance and p-value of each microRNA using Pearson’s correlation method and RMS,

respectively. The inputs are the names, signal values, and p-values of the filtered

microRNAs from the results of ”MicroRNA Screening”. NFATc1 signal values are also

used to calculate each microRNA’s distance from NFATc1 expression pattern. The

output of this program would be the calculated distance (di) and p-value (pi) of each

microRNA. The procedure includes four sections. First, the filtered microRNA data

is imported, and each column was put into individual arrays. Second, the distance

(di) of each microRNA is calculated using Pearson’s correlation method. Third, the

p-value of each microRNA is calculated using RMS. Fourth, the microRNA names,

distance, and p-value are written into an Excel file ordered by distance.

B.1 MicroRNA Screening

clear , clc

%Matlab input : microRNA names , s i g n a l values , p−va lue s
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f i l e = ’miRNArawdata . x l sx ’ ;

%ONE: import ing data in to i nd i v i dua l a r rays

[numR str ingR ] = x l s r e ad ( f i l e , 1 ) ;

%microRNA names

name = str ingR ( 2 :end , 1 ) ;

%microRNA s i g n a l va lue s C = contro l , R = RANKL, S = sa l ub r i na l , G

= guanabenz

C1 = numR( : , 1 ) ;

C2 = numR( : , 2 ) ;

C3 = numR( : , 3 ) ;

R1 = numR( : , 4 ) ;

R2 = numR( : , 5 ) ;

R3 = numR( : , 6 ) ;

S1 = numR( : , 7 ) ;

S2 = numR( : , 8 ) ;

S3 = numR( : , 9 ) ;

G1 = numR( : , 1 0 ) ;

G2 = numR( : , 1 1 ) ;

G3 = numR( : , 1 2 ) ;

%microRNA p−va lue s

PRC = numR( : , 1 3 ) ;

PSR = numR( : , 1 4 ) ;

PGR = numR( : , 1 5 ) ;

%putt ing in to one array

C = [C1 C2 C3 ] ;

R = [R1 R2 R3 ] ;

S = [ S1 S2 S3 ] ;

G = [G1 G2 G3 ] ;

%TWO: c a l c u l a t i n g mean s i g n a l va lue s and f o l d change va lue s
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%get the average o f the s i g n a l va lue s

Cmm = mean(C, 2 ) ;

Rmm = mean(R, 2 ) ;

Smm = mean(S , 2 ) ;

Gmm = mean(G, 2 ) ;

%r a t i o c a l c u l a t i o n ( f o l d change )

ratRC = log2 (Rmm./Cmm) ;

ratSR = log2 (Smm./Rmm) ;

ratGR = log2 (Gmm./Rmm) ;

%THREE: f i l t e r i n g based on s i g n a l mean and p−value

%a l s o compi l ing to make sure they are the same length in each

category l i s t

%e l im ina t i ng i f s i g n a l mean i s l e s s than 500 and have poor p−

value

a = find ( ( ( PRC <= 0.05 )+( (Cmm >= 500) .* (Rmm >= 500) ) )>=1)

;

Cm = Cmm(a ) ;

Cname = name( a ) ;

C1 = C1( a ) ;

C2 = C2( a ) ;

C3 = C3( a ) ;

Rm = Rmm(a ) ;

Rname = name( a ) ;

R1 = R1( a ) ;

R2 = R2( a ) ;

R3 = R3( a ) ;

r a t r c = ratRC( a ) ;

c = find ( ( ( PSR <= 0.05 )+( (Smm >= 500) .* (Rmm >= 500) ) )>=1) ;

Sm = Smm( c ) ;
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Sname = name( c ) ;

S1 = S1 ( c ) ;

S2 = S2 ( c ) ;

S3 = S3 ( c ) ;

r a t s r = ratSR ( c ) ;

d = find ( ( ( PGR <= 0.05 )+( (Gmm >= 500) .* (Rmm >= 500) ) )>=1) ;

Gm = Gmm(d) ;

Gname = name(d) ;

G1 = G1(d) ;

G2 = G2(d) ;

G3 = G3(d) ;

r a t g r = ratGR(d) ;

%f i nd the matches , make them the same length at the end

l 1 = length (Cname) ;

l 2 = length (Rname) ;

l 3 = length (Sname) ;

l 4 = length (Gname) ;

sim = [ ] ;

dim = [ ] ;

s = [ ] ;

for i 1 = 1 : l1 ,

for i 2 = 1 : l2 ,

i f strcmp (Cname( i 1 ) ,Rname( i 2 ) ) ,

sim = [ sim ; Cname( i 1 ) Cm( i 1 ) C1( i 1 ) C2( i 1 ) C3( i 1 ) Rm(

i 2 ) R1( i 2 ) R2( i 2 ) R3( i 2 ) r a t r c ( i 2 ) ] ;

end

end

end

name1 = sim ( : , 1 ) ;

sCm = sim ( : , 2 ) ;
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sC1 = sim ( : , 3 ) ;

sC2 = sim ( : , 4 ) ;

sC3 = sim ( : , 5 ) ;

sRm = sim ( : , 6 ) ;

sR1 = sim ( : , 7 ) ;

sR2 = sim ( : , 8 ) ;

sR3 = sim ( : , 9 ) ;

s r a t r c = sim ( : , 1 0 ) ;

for i 1 = 1 : l3 ,

for i 2 = 1 : l4 ,

i f strcmp (Sname( i 1 ) ,Gname( i 2 ) ) ,

dim = [ dim ; Sname( i 1 ) Sm( i 1 ) S1 ( i 1 ) S2 ( i 1 ) S3 ( i 1 ) Gm(

i 2 ) G1( i 2 ) G2( i 2 ) G3( i 2 ) r a t s r ( i 1 ) r a t g r ( i 2 ) ] ;

end

end

end

name2 = dim ( : , 1 ) ;

dSm = dim ( : , 2 ) ;

dS1 = dim ( : , 3 ) ;

dS2 = dim ( : , 4 ) ;

dS3 = dim ( : , 5 ) ;

dGm = dim ( : , 6 ) ;

dG1 = dim ( : , 7 ) ;

dG2 = dim ( : , 8 ) ;

dG3 = dim ( : , 9 ) ;

d r a t s r = dim ( : , 1 0 ) ;

dratgr = dim ( : , 1 1 ) ;

l 5 = length (name1) ;

l 6 = length (name2) ;

for i 1 = 1 : l5 ,

for i 2 = 1 : l6 ,



78

i f strcmp (name1( i 1 ) ,name2( i 2 ) ) ,

s = [ s ; name1( i 1 ) sCm( i 1 ) sC1 ( i 1 ) sC2 ( i 1 ) sC3 ( i 1 ) sRm

( i 1 ) sR1 ( i 1 ) sR2 ( i 1 ) sR3 ( i 1 ) dSm( i 2 ) dS1 ( i 2 ) dS2 (

i 2 ) dS3 ( i 2 ) dGm( i 2 ) dG1( i 2 ) dG2( i 2 ) dG3( i 2 ) s r a t r c

( i 1 ) d ra t s r ( i 2 ) dratgr ( i 2 ) ] ;

end

end

end

%new matched data and s i g n a l above 500

name = s ( : , 1 ) ;

Cm = ce l l 2mat ( s ( : , 2 ) ) ;

C1 = s ( : , 3 ) ;

C2 = s ( : , 4 ) ;

C3 = s ( : , 5 ) ;

Rm = ce l l 2mat ( s ( : , 6 ) ) ;

R1 = s ( : , 7 ) ;

R2 = s ( : , 8 ) ;

R3 = s ( : , 9 ) ;

Sm = ce l l 2mat ( s ( : , 1 0 ) ) ;

S1 = s ( : , 1 1 ) ;

S2 = s ( : , 1 2 ) ;

S3 = s ( : , 1 3 ) ;

Gm = ce l l 2mat ( s ( : , 1 4 ) ) ;

G1 = s ( : , 1 5 ) ;

G2 = s ( : , 1 6 ) ;

G3 = s ( : , 1 7 ) ;

RoC = Rm./Cm;

SoR = Sm./Rm;

GoR = Gm./Rm;
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%FOUR: putt ing output in to an Excel f i l e

header2 = { ’microRNA names ’ , ’ Control Mean ’ , ’C1 ’ , ’C2 ’ , ’C3 ’ , ’

Rankl Mean ’ , ’R1 ’ , ’R2 ’ , ’R3 ’ , ’ S a l ub r i na l Mean ’ , ’ S1 ’ , ’ S2 ’ ,

’ S3 ’ , ’Guanabenz Mean ’ , ’G1 ’ , ’G2 ’ , ’G3 ’ , ’FC−RC’ , ’FC−SR ’ , ’

FC−GR’ } ;

x l sw r i t e ( ’ miRNAforc lusternewrestr ’ , header2 , ’ Sheet3 ’ , ’A2 ’ )

x l sw r i t e ( ’ miRNAforc lusternewrestr ’ , s , ’ Sheet3 ’ , ’A3 ’ )

’ done ’

B.2 MicroRNA Distance and P-value

clear

clc

%Matlab input : f i l t e r e d microRNA names , s i g n a l values , p−va lue s (

a l s o in c lude NFATc1’ s )

f i l e = ’ c lustermiRNArestr . x l s ’ ;

%ONE: import ing data in to i nd i v i dua l a r rays

[numN str ingR ] = x l s r e ad ( f i l e , 1 ) ;

%microRNA names

Ngenename = str ingR ( 2 :end , 1 ) ;

%microRNA s i g n a l va lue s and p−va lue s . C = contro l , R= RANKL, S=

sa l ub r i na l , G= guanabenz

Cm = numN( : , 1 ) ;

C1 = numN( : , 2 ) ;

C2 = numN( : , 3 ) ;

C3 = numN( : , 4 ) ;

Rm = numN( : , 5 ) ;



80

R1 = numN( : , 6 ) ;

R2 = numN( : , 7 ) ;

R3 = numN( : , 8 ) ;

PRC = numN( : , 9 ) ;

Sm = numN( : , 1 0 ) ;

S1 = numN( : , 1 1 ) ;

S2 = numN( : , 1 2 ) ;

S3 = numN( : , 1 3 ) ;

PSR = numN( : , 1 4 ) ;

Gm = numN( : , 1 5 ) ;

G1 = numN( : , 1 6 ) ;

G2 = numN( : , 1 7 ) ;

G3 = numN( : , 1 8 ) ;

PGR = numN( : , 1 9 ) ;

%TWO and THREE: Pearson ’ s Cor r e l a t i on based on NFATc1 expr e s s i on

and RMS p−va lue s c a l c u l a t i o n

NFS = Sm(1 ,1 ) ;

NFG = Gm(1 ,1 ) ;

NFR = Rm(1 ,1 ) ;

NFC = Cm(1 ,1 ) ;

l 1 = length (Cm) ;

Rsquare = zeros (1 , l 1 ) ;

R l ike = zeros (1 , l 1 ) ;

for a = 1 : l1 ,

G = Sm(a ) + Gm(a ) + Rm(a ) + Cm(a ) ;

N = NFS + NFG + NFR + NFC;

Gsquare = (Sm( a ) ˆ2) + (Gm(a ) ˆ2) + (Rm(a ) ˆ2) +(Cm(a ) ˆ2) ;

Nsquare = (NFSˆ2) + (NFGˆ2) + (NFRˆ2) + (NFCˆ2) ;
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GN = (Sm(a ) *NFS) + (Gm(a ) *NFG) + (Rm(a ) *NFR) + (Cm(a ) *NFC) ;

Rsquare l ike ( a ) = ( (GN − ( (G*N) /4) ) / ( sqrt ( ( Gsquare − ( ( (G)

ˆ2) /4) ) * ( Nsquare − ( ( (N) ˆ2) /4) ) ) ) ) ˆ2 ;

R = ( (GN − ( (G*N) /4) ) / ( sqrt ( ( Gsquare − ( ( (G) ˆ2) /4) ) * (

Nsquare − ( ( (N) ˆ2) /4) ) ) ) ) ;

R l ike ( a ) = (1−R) /2 ;

pNm(a ) = sqrt ( ( ( (PRC( a ) ˆ2) + (PSR( a ) ˆ2) + (PGR(a ) ˆ2) ) /3) ) ;

end

%so r t i n g from c l o s e s t to f u r t h e s t

Ngenename2 = transpose (Ngenename ) ;

[ l s o r t b ] = sort ( Rsquare l ike , ’ descend ’ ) ;

R l ike = Rl ike (b) ;

l ikename = Ngenename2 (b) ;

l ikenamed = transpose ( l ikename ) ;

pNm = pNm(b) ;

% FOUR: putt ing output in to an Excel f i l e

header5 = { ’ Pearsons Distance t ab l e ’ } ;

x l sw r i t e ( ’ PNnorest ’ , header5 , ’ Sheet1 ’ , ’A1 ’ )

x l sw r i t e ( ’ PNnorest ’ , l ikename , ’ Sheet1 ’ , ’B2 ’ )

x l sw r i t e ( ’ PNnorest ’ , l ikenamed , ’ Sheet1 ’ , ’A3 ’ )

x l sw r i t e ( ’ PNnorest ’ , l s o r t , ’ Sheet1 ’ , ’B3 ’ )

x l sw r i t e ( ’ PNnorest ’ , Rl ike , ’ Sheet1 ’ , ’B4 ’ )

x l sw r i t e ( ’ PNnorest ’ , pNm, ’ Sheet1 ’ , ’B5 ’ )

’ done ’


