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ABSTRACT 

 

 

Shih, Han. M.S.B.M.E., Purdue University, May 2013. Step-growth Thiol-ene 

Photopolymerization to Form Degradable, Cytocompatible and Multi-structural 

Hydrogels. Major Professor: Chien-Chi Lin. 

 

 

 Hydrogels prepared from photopolymerization have been used for a variety of 

tissue engineering and controlled release applications. Polymeric biomaterials with high 

cytocompatibility, versatile degradation behaviors, and diverse material properties are 

particularly useful in studying cell fate processes. In recent years, step-growth thiol-ene 

photochemistry has been utilized to form cytocompatible hydrogels for tissue engineering 

applications. This radical-mediated gelation scheme utilizes norbornene functionalized 

multi-arm poly(ethylene glycol) (PEGNB) as the macromer and di-thiol containing 

molecules as the crosslinkers to form chemically crosslinked hydrogels.  While the 

gelation mechanism was well-described in the literature, the network properties and 

degradation behaviors of these hydrogels have not been fully characterized.  In addition, 

existing thiol-ene photopolymerizations often used type I photoinitiators in conjunction 

with an ultraviolet (UV) light source to initiate gelation. The use of cleavage type 

initiators and UV light often raises biosafety concerns. The first objective of this thesis 

was to understand the gelation and degradation properties of thiol-ene hydrogels.  In this 

regard, two types of step-growth hydrogels were compared, namely thiol-ene hydrogels 

and Michael-type addition hydrogels.  Between these two step-growth gel systems, it was 

found that thiol-ene click reactions formed hydrogels with higher crosslinking efficiency. 

However, thiol-ene hydrogels still contained significant network non-ideality, 

demonstrated by a high dependency of hydrogel swelling on macromer contents. In 

addition, the presence of ester bonds within the PEGNB macromer rendered 



xv 
 

thiol-ene hydrogels hydrolytically degradable. Through validating model predictions with 

experimental results, it was found that the hydrolytic degradation of thiol-ene hydrogels 

was not only governed by ester bond hydrolysis, but also affected by the degree of 

network crosslinking.  In an attempt to manipulate network crosslinking and degradation 

rate of thiol-ene hydrogels, different macromer contents and peptide crosslinkers with 

different amino acid sequences were used. A chymotrypsin-sensitive peptide was also 

used as part of the hydrogel crosslinkers to render thiol-ene hydrogels enzymatically 

degradable. The second objective of this thesis was to develop a visible light-mediated 

thiol-ene hydrogelation scheme using a type II photoinitiator, eosin-Y, as the only 

photoinitiator. This approach eliminates the incorporation of potentially cytotoxic co-

initiator and co-monomer that are typically used with a type II initiator. In addition to 

investigating the gelation kinetics and properties of thiol-ene hydrogels formed by this 

new gelation scheme, it was found that the visible light-mediated thiol-ene hydrogels 

were highly cytocompatible for human mesenchymal stem cells (hMSCs) and pancreatic 

MIN6 -cells.   It was also found that eosin-Y could be repeatedly excited for preparing 

step-growth hydrogels with multilayer structures.  This new gelation chemistry may have 

great utilities in controlled release of multiple sensitive growth factors and encapsulation 

of multiple cell types for tissue regeneration.   
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1.  INTRODUCTION 

 

 

1.1  Photopolymerization for Preparing Hydrogels 

Photo-initiated radical polymerizations have received significant attention for in 

situ cell encapsulation and controlled delivery of biological molecules [1-6]. The major 

benefits of radical-mediated mechanism are their rapid and ambient gelation conditions, 

and the stability of the covalently crosslinked networks.  A variety of synthetic 

macromers are increasingly developed for radical-mediated hydrogel synthesis via chain-

growth, step-growth or mixed-mode photopolymerization [7]. In the chain-growth 

photopolymerization (Figure 1.1A) such as the formation of poly(ethylene glycol)-

diacrylate hydrogels, radicals created by photoinitiators attack the available unsaturated 

carbon-carbon bond to form crosslinks. In a step-growth photopolymerization 

mechanism, an orthogonal reaction occurs between a proton rich species (e.g. thiol) and a 

π-bond at a unity stoichiometric ratio. For example, Figure 1.1B shows the formation of 

radicals from photoinitiators which deprotonate sulfhydryl groups to form thiyl radicals. 

These thiyl radicals propagate along the π-bond (e.g., norbornene or acrylate) to form 

chemical crosslinks. A mixed mode polymerization is the combination of both chain-

growth and step-growth polymerizations. Although radical-mediated photo-gelation is 

well-established, its methodology has remained relatively unchanged for the past few 

decades. Mechanistically, a photoinitiator is required to initiate the chain-growth 

photopolymerization.  Following light exposure, a type I or cleavage-type photoinitiator 

(Figure 1.2A and 1.2B) readily absorbs photons and decomposes into two primary 

radicals to initiate gelation [8, 9]. On the other hand, a type II photoinitiator abstracts a 

hydrogen from a co-initiator to generate secondary radicals and initiate crosslinking [8-

11]. 
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(A) 

 

 

(B) 

 

 

 

Figure 1.1  Schematics of hydrogels formed by: (A) Chain-growth photopolymerization 

of linear PEG-acrylate. (B) Step-growth photopolymerization of 4-arm PEG-norbornene 

and di-thiol containing crosslinkers at a unity molar ratio. 
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Water solubility and molar absorptivity at cytocompatible wavelengths are 

commonly used to evaluate the suitability of a photoinitiator to initiate 

photopolymerization for hydrogel synthesis.  Only a few photoinitiators are considered 

cytocompatible, including type I initiators Irgacure-2959 (I-2959, Figure 1.2A) [12, 13] 

and lithium arylphosphanate (LAP, Figure 1.2B) [14], as well as type II initiator eosin-Y 

[10, 11, 15]. Commercially available I-2959 has low water solubility (< 0.5 wt%) and 

low molar absorptivity at 365 nm (ε < 10 M
-1

cm
-1

).  Added to these limitations is the fact 

that I-2959 cannot be used for visible light-mediated photocrosslinking due to its near 

zero molar absorptivity at wavelengths higher than 400 nm.  While LAP is highly water-

soluble (> 5 wt%) and has high absorbance at 365 nm (ε ~ 200 M
-1

cm
-1

), its utility in 

visible light range is also very limited (ε ~ 30 M
-1

cm
-1 

at 405 nm) [14]. Type II 

photoinitiator eosin-Y (Figure 1.2C), on the other hand, is highly water-soluble and can 

be readily excited by visible light (ε > 100,000 M
-1

cm
-1 

at 516 nm).  An example of this 

type of gelation is the synthesis of chain-growth poly(ethylene glycol) diacrylate 

(PEGDA) hydrogels.  Unfortunately, a co-initiator (e.g., triethanolamine (TEOA, Figure 

1.2D) and a co-monomer (e.g., 1-vinyl-2 pyrrolidinone (NVP, Figure 1.2E) are required 

for generating sufficient radicals to achieve high and rapid functional group conversion.  

This prerequisite makes adjusting the compositions of a macromer precursor solution 

complicated and is perhaps the main reason why UV-mediated photopolymerizations, 

even with biosafety concerns, is still a preferred method for preparing hydrogels.  
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(A) 

 

 

(B) 

 

 

 

(C)     (D)            (E) 

                    

 

 

Figure 1.2  Photo-cleavage of type I (A) I-2959 and (B) LAP photoinitiator into radicals. 

Conventional type II photoinitiator (C) eosin-Y requires (D) co-initiator TEOA and (E) 

co-monomer NVP to generate sufficient radicals.  
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To overcome the disadvantages facing hydrogels formed by chain-growth 

photopolymerizations, Anseth and colleagues recently introduced a new class of PEG-

peptide hydrogels based on radical-mediated orthogonal thiol-ene photo-click reaction 

[1].  In this system, low intensity and long wavelength (5 – 10 mW/cm
2
, 365 nm) 

ultraviolet light was used to generate thiyl radicals (from bis-cysteine-containing 

oligopeptides), which crosslinked with ene moieties on norbornene-functionalized 4-arm 

PEG (PEG4NB) to form a step-growth network (Figure 1.3).  This reaction scheme 

preserves all advantages offered by photopolymerizations, including rapid, ambient, and 

aqueous reaction conditions, as well as spatial-temporal control over gelation kinetics.  

Step-growth thiol-ene photo-click reactions are not oxygen inhibited [2], thus yielding 

more rapid gelation kinetics compared to chain-growth photopolymerizations [3]. 

Comparing to a step-growth Michael-type gelation (Figure 1.4B), thiol-ene photo-click 

reactions have reduced disulfide bond formation due to radical-mediated cleavage [4], 

thus increasing the extent of crosslinking that results in higher mechanical properties at 

similar macromer contents [1].  Furthermore, the orthogonal and step-growth nature of 

norbornene-sulfhydryl reaction permits dynamic modification of hydrogel biochemical 

and biophysical properties in the presence of cells [1].  Several cell types have been 

encapsulated successfully by these PEG-peptide hydrogels, including human 

mesenchymal stem cells [5], fibroblasts [1, 6], fibrosarcoma [6], valvular insterstitial 

cells [7], and radical-sensitive pancreatic -cells [3].  Enzymatically degradable peptides 

could also be utilized to crosslink thiol-ene hydrogels for enzyme-responsive controlled 

release applications [8, 9].  

 

  



6 
 

 

Figure 1.3  Schematics of photopolymerization and hydrolytic degradation of step-growth 

thiol-ene hydrogels. PEG-tetra-norbornene (PEG4NB) reacts with a bi-functional 

crosslinker DTT (dithiothreitol), in a step-growth manner, to form thioether linkage and 

crosslinked hydrogels. Hydrolytic degradation of the network occurs due to ester bond 

hydrolysis. 
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1.2  Degradable Hydrogels for Tissue Engineering Applications 

An ongoing effort in biomaterial science and engineering is to design hydrogels 

with tunable and predictable degradation behaviors, because degradable hydrogels are 

particularly useful as provisional matrices for tissue regeneration and as carriers for 

controlled protein delivery [10-13].   Among all degradation mechanisms, hydrolytic 

degradation of synthetic hydrogels has received significant attention due to the simplicity 

of hydrolysis mechanism and well-defined polymer chemistry [14-16].  A classical way 

of preparing hydrolytically degradable hydrogels is by chain-growth photopolymerization 

of acrylated macromers, such as poly(lactic acid)-b-poly(ethylene glycol)-b-poly(lactic 

acid) (PLA-b-PEG-b-PLA) tri-block copolymers that hydrolyzed to form lactic acid, PEG 

and poly-acrylate (Figure 1.4A) [14, 17].  The hydrolytic degradation rate of these 

hydrogels could be tuned and predicted by using copolymers with different lengths of 

lactide repeating units [15, 16].  Similarly, other hydrolytically labile ester bonds could 

be incorporated to the termini of PEG macromers prior to acrylation or methacrylation 

[18, 19].   

 

In addition to the chain-growth polymerized hydrogels, step-growth polymerized 

gels could also be rendered hydrolytically degradable.  For example, Hubbell and co-

workers developed Michael-type addition hydrogels through nucleophilic reactions 

between acrylates on multi-arm PEG macromer and sulfhydryl groups on the crosslinkers 

[20, 21].  Thioether-ester linkages formed between acrylate and sulfhydryl moieties were 

hydrolytically labile and the degradation rates of these hydrogels could be tuned by 

controlling macromer concentration and functionality (Figure 1.4B) [20, 22, 23].  

Bowman and colleagues performed experimental and theoretical investigations on 

hydrolytic degradation of step-growth thiol-acrylate and thiol-allylether photopolymers 

[24-27].  Degradation was readily tuned and predicted using monomers with different 

concentration, functionality, and degradability.  More recently, Leach and colleagues 

developed hydrolytically degradable Michael-type hydrogels based on 4-arm PEG-

vinylsulfone (PEGVS) and PEG-diester-dithiol [28, 29].  Degradation of these step-

growth hydrogels was altered by tuning the number of methylene groups between the 
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thiol and ester moieties in the PEG-diester-dithiol linkers. In the above examples, acidic 

by-products (i.e., carboxylic acid) are obtained from the ester hydrolysis mechanism. 

     

(A)  

 

 

(B) 

 

Figure 1.4  Schematics of hydrolytic degradation of: (A) chain-growth hydrogel formed 

by homopolymerization of PLA-b-PEG-b-PLA tri-block copolymer. (B) Step-growth 

Michael-type hydrogel formed by PEG-tetra-acrylate and di-thiol containing crosslinkers. 

Degradation occurs at the ester bonds on the PLA blocks and at the thioether-ester bonds. 

 

 

While these degradable hydrogels have found various successful applications, 

limitations and challenges exist.  For instance, chain-growth photopolymerized hydrogels 

are known to form dense hydrophobic polyacrylate chains [30] that yield network 

heterogeneity and high molecular weight degradation products [14-16].  On the other 

hand, the formation of step-growth Michael-type hydrogels often requires long gelation 

time that leads to the formation of high degrees of network defects [22]. It has been 

shown that high macromer functionalities (e.g., 8-arm PEG-acrylate) and concentrations 

(e.g., > 50 wt%) were necessary for step-growth Michael-type addition hydrogels to 

approach an ‘ideal’ network structure [22].  
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Although, in recent years, thiol-ene photopolymerized hydrogels discussed in 

previous section have emerged as an attractive class of biomaterials, the structure-

property relationships of these hydrogels have not been extensively characterized.  For 

example, an ‘ideal network’ was often mentioned in previous publications even with the 

use of low macromer concentrations (2 wt% to 10 wt% of PEG4NB) [1, 5, 8].   

Furthermore, these thiol-ene hydrogels are susceptible to hydrolytic degradation due to 

the presence of an ester bond between the cyclic olefin and PEG backbone (Figure 1.3). 

 

 

1.3  Multilayer Polymeric Biomaterials for Tissue Engineering Applications 

Polymeric biomaterials with multilayer structures have great potential in 

biomedical applications, such as construction of complex tissues [31, 32], controlled 

release of multiple drugs at different rates [33-38], and immunoisolation for allo- or 

xeno-grafts [39, 40].  Many physical and chemical cross-linking methods have been 

developed for fabricating multilayer polymers or hydrogels.  For example, 

polyelectrolytes with opposite charges could be self-assembled into multilayer films or 

membranes [34, 36, 37, 41].  These layer-by-layer (LbL, Figure 1.5A) approaches have 

been used successfully in producing films with nano-scale thickness for applications such 

as controlled drug delivery and cell surface coating [34, 37, 42].  However, the building 

blocks for LbL films usually comprise positively charged polymers that are potentially 

cytotoxicity.  Further, the LbL assembly processes are often lengthy and may not be ideal 

for encapsulating sensitive cells. Other disadvantages include limitations in 

bioconjugation and drug loading capacity, as well as instability of the physically bonded 

films in vivo.  The utility and diversity of multilayer biomaterials would greatly benefit 

from a chemically cross-linking method that provides long-term material stability, 

simplicity in coating procedures, and diversity in bioconjugation.   

 

An attractive method to fabricate stable multilayer polymers or hydrogels is 

photopolymerization.  This is because photopolymerization offers many benefits, 

including rapid and mild cross-linking conditions, as well as spatial-temporal control in 
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polymerization kinetics that permits the creation of complex material structures and 

functionalities [1, 13, 43].   A common approach to fabricate multilayer hydrogels is to 

prepare a layer of gel with pendent (meth)acrylate moieties that serve as anchors for 

subsequent homopolymerization of (meth)acrylated monomers (Figure 1.5B) [44, 45].  

Either UV or visible light could be used to cross-link multilayer polymers, as long as 

appropriate initiator species are included in the subsequent monomer solutions.  On the 

downside, current photopolymerization systems for forming hydrogels carry risks of 

cellular damages caused by UV light, radical species, and other cytotoxic compositions 

required in cross-linking reactions.  Furthermore, currently available photochemistries for 

forming multilayer hydrogels are all based on chain-growth polymerizations that may not 

be ideal for some cell and protein encapsulation [3, 46].  

 

Multilayer hydrogels could be fabricated using a light-independent approach.  For 

instance, Bowman and colleagues have developed an enzymatic coating procedure for 

forming multilayer hydrogels (Figure 1.5C) [47-49].  The formation of hydrogel coating 

on a core gel was mediated by glucose oxidase (GOx), which reacts with its substrate 

glucose released from a core gel to generate hydrogen peroxide (H2O2).  Hydrogen 

peroxide further reacts with ferrous ions (Fe
2+

) to generate hydroxyl radicals, which 

initiate chain-growth polymerization through vinyl monomers.  To control thickness of 

the hydrogel coating, one could simply control the reaction time or adjust concentrations 

of various components in the monomer solutions [48, 49].  However, since this 

polymerization method is light-independent, it also loses the benefits of 

photopolymerizations.  Another disadvantage of this method is that a total of three 

initiating species (glucose oxidase, glucose, Fe
2+

) are required, which complicate material 

preparation.  Finally, this enzymatic reaction produces highly cytotoxic H2O2 and 

requires the addition of a second enzyme, catalase, to increase the cytocompatibility of 

this method for cell encapsulation [47].  
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(A)                                    (B) 

    

 

(C) 

 

 

Figure 1.5  Approaches to form multilayer hydrogels. (A) Layer-by-layer (LbL) [41],  (B) 

light-dependent homopolymerization of immobilized (meth)acrylated moieties [44] and 

(C) light-independent enzymatic coating [49]. Schemes were obtained from cited 

references.
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2.  OBJECTIVES 

 

 

2.1  Overview 

While step-growth thiol-ene photopolymerization has been widely used for tissue 

engineering and controlled release applications, the network ideality and degradation 

behaviors are not well described in literatures. Furthermore, the existing studies restricted 

the utility of thiol-ene photo-click chemistry to the use of UV light and a type I 

photoinitiator. The combination of a UV light source and a cleavage type photoinitiator 

often raise biosafety concerns. Therefore, a mild visible light source and a type II 

photoinitiator appear as an attractive alternative. In a conventional photopolymerization 

involving a type II photoinitiator, potentially cytotoxic co-initiator and co-monomer are 

required to achieve rapid gelation. The addition of these co-initiating species complicates 

the gelling mechanism and offsets the advantages of using visible light. To overcome the 

above mentioned limitations of the current thiol-ene hydrogelation, three specific aims 

are proposed. 

 

 

2.2  Specific Aim 1: Characterize Thiol-ene Hydrogel  

Network Ideality and Degradability 
 

This aim focuses on characterizing network crosslinking efficiency of thiol-ene 

hydrogels as compared to Michael-type addition hydrogels. Hydrogels rheological 

properties and swelling were measured to reveal gel network ideality. Hydrolytic 

degradation of thiol-ene hydrogels was systematically studied through experimental 

efforts and theoretical modeling. In addition, thiol-ene hydrogels network ideality and 

degradability were manipulated by using different macromer concentrations and peptide 

crosslinkers. 
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2.3  Specific Aim 2: Develop a Visible Light-mediated  

Thiol-ene Photo-click Mechanism 
 

 This aim focuses on developing a visible light-mediated thiol-ene hydrogels by 

using eosin-Y as the only photoinitiator to yield efficient gelation. This work also 

attempts to examine the cytocompatibility of these thiol-ene hydrogels using human 

mesenchymal stem cells (hMSCs) and sensitive pancreatic MIN6 -cells using long-term 

viability assays and confocal imaging of cell viability using live/dead staining kit.   

 

 

2.4  Specific Aim 3: Establish a New Approach to Form  

Multilayer Thiol-ene Hydrogels 
 

This aim focuses on examining the re-excitability of eosin-Y for initiating 

sequential photocrosslinking. This work also aims to develop a simple experimental setup 

for forming multilayer hydrogels. 
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3. MATERIALS AND METHODS 

 

 

3.1 Materials 

4-arm PEG-OH (20 kDa) and 4-arm PEG-amine (20 kDa) were purchased from 

JenKem Technology USA.  Fmoc amino acids and coupling reagents for peptide 

synthesis were acquired from Anaspec.    Eosin-Y disodium salt, TEOA and NVP were 

purchased from Fisher Scientific. Linear PEG (10 kDa) and all other chemicals were 

obtained from Sigma-Aldrich unless noted otherwise.  

 

 

3.2  PEG Macromers and Photoinitiator Synthesis 

Poly(ethylene glycol)-tetra-norbornene (PEG4NB) and PEG-di-norbornene 

(PEGdNB) were synthesized using an established protocol [1, 5]. A day before the 

synthesis, required glassware and measured PEG-OH (4-arm or linear) were placed in 

oven (at 120 
o
C) and vacuum oven (at 37 

o
C and 25 mmHg) to dry, respectively. Briefly, 

norbornene anhydride was formed by reacting 5-norbornene-2-carboxylic acid and 

coupling reagent N,N’-dicyclohexylcarbodiimide (DCC) in anhydrous dichloromethane 

(DCM) for 1 hour at room temperature under constant nitrogen gas purging.  The latter 

was filtered through a fritted funnel into a second flask containing PEG-OH (8-arm, 4-

arm or linear), 4-(dimethylamino)pyridine (DMAP), and pyridine in anhydrous DCM.  

After overnight reaction, the product was washed with 5 vol% sodium bicarbonate 

solution twice, 5 vol% of hydrochloric acid and brine once, followed by precipitation in 

cold ethyl ether (on an ice bath).  The product was then filtrated, re-dissolved in 

minimum amount of DCM, and re-precipitated in cold ethyl ether.  
1
H NMR (Bruker 

Avance III 500) was used to confirm the degree of PEG functionalization (> 90 %, 

Appendix A). 
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Poly(ethylene glycol)-tetra-amide-norbornene (PEG4aNB) was synthesized by 

reacting norbornene acid (5-fold excess to amine groups) with PEG-tetra-amine in DMF 

using HBTU/HOBT as coupling reagents.  After overnight reaction at room temperature, 

the product was precipitated in cold ethyl ether and purified with the same protocol for 

PEGNB purification.  
1
H NMR (Bruker Avance III 500) was used to confirm the degree 

of PEG functionalization (> 90 %, Appendix B). 

 

Poly(ethylene glycol)-tetra-acrylate (PEG4A) and poly(ethylene glycol)-di-

acrylate (PEGDA)  were synthesized following an established protocol. PEG-OH (4-arm 

or linear) were dried in toluene using azeotropic drying method for 2 hours under 

nitrogen. In an addition funnel, acryloyl chloride was dripped slowly to the round flask 

containing dried PEG-OH (4-arm or linear) with triethylamine (TEA). After overnight 

reaction, the solution was filtered through a thin layer of neutral aluminum oxide. Sodium 

carbonate was added to the solution and the heterogeneous solution was stirred for 2 

hours in the dark.  The solution was then filtered through Hyflo filtration aid, rotovap to 

reduce solvent volume and the clear solution obtained was precipitated in cold ether.  

High degree of PEG functionalization (> 90 %, Appendix C) was confirmed by 
1
H NMR 

(Bruker Avance III 500).  

 

The synthesis of photoinitiator lithium arylphosphinate (LAP) was described as 

reported elsewhere [50]. In brief, an equal amount of 2,4,6-trimethylbenzoyl chloride was 

added slowly to the round bottom flask containing desired amount of dimethyl 

phenylphosphonite. The setup was purged with nitrogen at room temperature until the 

completion of dripping 2,4,6-trimethylbenzoyl chloride. After overnight reaction, 4-molar 

excess of lithium bromide in 2-butanone was added to the reaction mixture which was 

heated to 50 °C. Solid precipitates of lithium phenyl-2,4,6-trimethylbenzoylphosphinate 

were formed after 10 minutes. The product was cooled to room temperature and 

maintained for 4 hours. To purify the product, the mixture was filtered through a fritted 

funnel, washed with 2-butanone for 3 times, and washed with cold ethyl ether to remove 
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unreacted lithium bromide. 1H NMR prediction (500 MHz, D2O, δ): 7.57 (m, 2H), 7.42 

(m, 1H), 7.33 (m, 2H), 6.74 (s, 2H), 2.09 (s, 3H) and 1.88 (s, 6H). (Appendix D) 

 

 

3.3  Microwave Assisted Solid-Phase Peptide Synthesis (SPPS) 

All peptides were synthesized following the process of Fmoc Solid Phase Peptide 

Synthesis (SPS) with a microwave peptide synthesizer (CEM Discover SPS). A 

condensed version of a peptide synthesis procedure involved: swelling, deprotection, 

coupling, cleavage and washing. First, Fmoc-Rink-amide-MBHA resin was swelled in 

dimethylformamide (DMF) for 15 minutes. Second, deprotection procedures (in 20 % 

piperidine/DMF with 0.1 M HOBt) were performed in the microwave for 3 minutes at 75 

o
C with microwave power set at 20 W. Third, 5-fold molar excess of Fmoc-protected 

amino acids with HBTU (5-fold molar excess) were dissolved in an activation solution 

(0.28 M DIEA in DMF). This dissolved solution was added to the deprotected resin to 

perform coupling using the microwave for 5 minutes at 75 
o
C and 20 W. To reduce 

racimification, cysteine was coupled at 50 
o
C with the same procedure for 10 minutes. 

Nihydrin test was conducted after each deprotection or coupling procedure to ensure 

complete removal of Fmoc (negative result) or coupling of amino acid (positive result). 

In the final stage, peptide was cleaved from the resin in a 5 mL of cleavage cocktail 

solution (95 vol% trifluoroacetic acid – TFA, 2.5 vol% triisopropylsilane – TIPS, 2.5 

vol% distilled water and 250 mg of phenol) in the microwave for 30 minutes at 38 
o
C and 

20 W. Peptide product was precipitated in cold ether, dried in vacuuo and stored in -20 

o
C. HPLC (PerkinElmer Flexar system) was used to purify peptide (> 90 %), and mass 

spectrometry (QTOF, Agilent Technologies) was used to confirm the peptide sequence. 

Furthermore, Ellman’s assay (PIERCE) was used to quantify the concentrations of  the 

prepared stock solution by quantifying the sulfhyldryl group. 
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3.4  Hydrogel Fabrication 

Step-growth thiol-ene hydrogels were formed by radical-mediated 

photopolymerization between macromer (i.e., PEG4NB) and di-thiol containing 

crosslinkers, such as dithiothreitol (DTT) or cysteine-containing peptides (Figure 1.3).  

Unless otherwise stated, a unity molar ratio between thiol and ene groups was used.  

Thiol-ene photopolymerization was initiated by either 1 mM LAP under ultraviolet light 

exposure (365 nm, 5 mW/cm
2
) for 3 minutes or 0.1 mM eosin-Y under visible light 

exposure (400 to 700 nm, 70,000 Lux) for 4 minutes in buffer solutions.  Step-growth 

Michael-type hydrogels were formed from PEG4A and DTT (at stoichiometric ratio) in a 

humidified oven (37 
o
C) for overnight to ensure complete gelation at pH 8.0.  Chain-

growth visible light-mediated PEGDA hydrogels were formed by radical-mediated 

photopolymerization using 0.1 mM of eosin-Y under visible light exposure at an intensity 

of 70,000 Lux using a fiber optic microscope illuminator (AmScope).  Co-initiator (0.75 

vol% of TEOA) and co-monomer (0.1 vol% NVP) were added in PEGDA precursor 

solution.   

 

 

3.5  Hydrogel Swelling 

For swelling studies, each gel was prepared from 50 μL precursor solution.  After 

gelation, hydrogels were incubated in ddH2O at 37 
o
C on an orbital shaker for 48 hours to 

remove uncrosslinked (sol fraction) species.  Gels were then dried and weighed to obtain 

dried polymer weights (WDry).  The dried polymers were then incubated in 5 mL of buffer 

solution (pH 6.0, pH 7.4 or pH 8.0 PBS) at 37 
o
C on an orbital shaker.  At pre-determined 

time intervals, hydrogels were removed from the medium, blotted the gel surface with 

Kimwipe tissue, and weighed to obtained swollen weights (WSwollen).  Hydrogel mass 

swelling ratios (q) at equilibrium were defined as:  

  
        

    
      (3.1) 
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As described by Metters et al. [15, 16], the mass swelling ratio (q) of a 

hydrolytically degrading network increases exponentially as a function of degradation 

time: 

     
            (3.2) 

Here, q0 represents the initial mass swelling ratio before significant occurrence of 

degradation and khyd is the apparent pseudo first-order ester hydrolysis rate constant, 

which was obtained via exponential curve fitting to the experimental swelling data.   

  

 To quantify hydrogel swelling, circular hydrogel discs were prepared from 50 μL 

precursor solution.  Immediately after gelation, hydrogels were incubated in ddH2O at 37 

o
C on an orbital shaker for 24 hours to remove sol fraction.  Gels were then dried and 

weighed to obtain dried polymer weights (WDry).  The dried polymers were incubated in 5 

mL of buffer solution (pH 7.4 PBS) at 37 
o
C on an orbital shaker.  At equilibrium 

swelling (after 48 hours), hydrogels were removed from the medium, blotted dry with 

Kimwipe, and weighed to obtain swollen weights (WSwollen).  Hydrogel mass swelling 

ratios (q) were determined by a ratio of WSwollen to WDry. 

 

 

3.6  Rheometry 

For rheometrical property measurements, hydrogel slabs were fabricated between 

two glass slides separated by 1 mm thick spacers.  Circular gel discs (8 mm in diameter) 

were punched out from the gel slabs using a biopsy punch and placed in pH 7.4 PBS for 

48 hours.  Strain sweep (0.1 % to 20 %) oscillatory rheometry was performed on a Bohlin 

CVO 100 digital rheometer.  Shear moduli of the hydrogels were measured using a 

parallel plate geometry (8 mm) with a gap size of 800 μm.  Tests were performed in the 

linear viscoelastic region (LVR).   

 

In situ gelation rheometry for thiol-ene hydrogels was conducted in a light cure 

cell at room temperature.  Briefly, the macromer solution was placed on a quartz plate in 

the light cure cell, and irradiated with UV light (Omnicure S1000, 365 nm, 5 mW/cm
2
) 
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through a liquid light guide or a fiber optic microscope illuminator (AmScope, 400 to 700 

nm, 70,000 Lux).  In situ gelation rheometry for Michael-type hydrogels was measured at 

37 
o
C using an 8 mm parallel plate geometry.  Time sweep in situ rheometry was 

performed with 10 % strain, 1 Hz frequency, 0.1 N normal force, and a gap size of 100 

μm. Gel point (i.e., crossover time) was determined at the time when storage modulus 

(G’) surpassed loss modulus (G”).  

 

 

3.7  Network Structure of Step-growth Hydrogels 

 A perfectly crosslinked (or ‘ideal’) thiol-ene or Michael-type hydrogel network 

without defects can be estimated by means of hydrogel equilibrium swelling [22]. 

Considering the structural information of the step-growth hydrogels (i.e., macromer 

molecular weight and functionality), the average molecular weight between crosslinks 

(  
̅̅ ̅̅ ) is defined as [22]:  

  
̅̅ ̅̅    

   

  
   

   

  
     (3.3) 

Here, MWA and MWB represent the molecular weight of PEG4NB and crosslinker, 

respectively. fA and fB are the number of reactive functionality for PEG4NB (or PEG4A) 

and crosslinker.  With a known   
̅̅ ̅̅ , the ideal network crosslinking density or density of 

elastically active chains (vc) and polymer volume fraction (v2) can be calculated based on 

the Flory-Rehner theory [51]:  

   
  

  ̅̅ ̅̅   ̅̅ ̅
 

                           
  

  
      

    
  

      (3.4) 

Here,    ̅̅ ̅ is  the specific volume of PEG (0.92 cm
3
/g at 37 

o
C), V1 is the molar volume of 

water (18 cm
3
/mole) and ᵡ12 is the Flory-Huggins interaction parameter for a PEG-H2O 

system (0.45).  After obtaining v2, ideal hydrogel mass swelling ratio q can be obtained 

using the following equation: 

   
  ̅̅ ̅

          ̅̅ ̅     ̅̅ ̅
    (3.5) 

where   ̅̅ ̅ is the specific volume of water (1.006 cm
3
/g at 37 

o
C). 
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3.8  Prediction of Hydrolytic Degradation of Thiol-ene Hydrogel 

The statistical-co-kinetic model established by Metters and Hubbell for predicting 

the hydrolytic degradation of step-growth hydrogels takes into account of ester bond 

hydrolysis kinetics and the structural information such as the connectivity of the ideal 

hydrogel networks.  Based on this model, the degradation of thiol-ene hydrogels was 

assumed to be purely due to ester bond hydrolysis with a pseudo-first order degradation 

kinetics [15, 16].  With this assumption, the fraction of hydrolyzed ester bonds (PEster) at 

any given time in the system is expressed as: 

         
       

        
           (3.6) 

Here, k’ is the pseudo-first order ester bond hydrolysis rate constant.  [Ester] and [Ester]0 

are the current and initial numbers of intact ester bonds in the system. 

  

 The fraction of intact elastic chains (i.e., crosslinkers such as DTT or bis-cysteine 

containing peptides) within these crosslinked networks at any given time is expressed as: 

                   
          (3.7) 

where N is the number of degradable units (i.e., ester bonds) connected to one elastic 

chain (e.g., N = 2 for the case of PEG4NB-DTT hydrogels). 

 

To obtain the degree of crosslinking in the system, one must also consider the 

connectivity of multi-arm PEG macromers. For an ideal step-growth network, the 

fraction of fA-armed macromer with i arms still connected to the network at any time 

point during ester hydrolysis is expressed as:
13

  

     
 

   

           
      

        
            

    (3.8) 

 

With this information, the crosslinking density of the degrading network is 

expressed as: 

    ∑  
 

 
      

  
            (3.9) 

Here, i ≥ 3 because any fA-arm (fA ≥ 3) macromer with only two arms connected to intact 

elastic chains forms an extended loop, rather than a crosslink.  [A]0 represents the 
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concentration of  fA-arm macromers (e.g., PEG4NB) in the equilibrium swelling state 

before the onset of network degradation, which is correlated to the crosslinking density of 

a network: 

     
  

  
          (3.10) 

 

When the functionalities of the macromer and crosslinker (fA = 4 and fB = 2) are 

taken into account, the crosslinking density of a perfectly crosslinked thiol-ene network 

in the equilibrium state could be derived from Equations 3.4 to 3.10 and expressed as:     

                                      (3.11) 

For gels with non-idealities, based on Equations 3.4, 3.5, and 3.11, [A]0,actual is obtained 

using actual crosslinking density as: 

            
         

        
         (3.12) 

where vc,actual represents the experimental crosslinking density converted from 

experimental mass swelling ratio using Equations 3.4 and 3.5 and vc,ideal represent ideal 

crosslinking density calculated based on   
̅̅ ̅̅  derived from Equation 3.3. 

 

 

3.9  Enzymatic Degradation 

 4 wt% PEG4NB hydrogels (30 μL/gel) were crosslinked by bis-cysteine 

containing peptides with different percentages of chymotrypsin-sensitive (CGGYC: 

arrow indicates cleavage site) and non-sensitive (CGGGC) sequences.  Hydrogels were 

fabricated using methodology described above and incubated in 500 μL PBS containing 

0.5 mg/mL of chymotrypsin at room temperature on an orbital shaker.  At specific time 

points, hydrogels were removed from the chymotrypsin solution, blotted dry, measured 

the swollen mass, and placed back into the chymotrypsin solution.  Fresh chymotrypsin 

solution was prepared every 15 minutes to ensure enzyme activity. Percent mass loss is 

defined as: 

               
       

  
         (3.13) 
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where Wt is the gel weight measured at specific time points and W0 is the mass measured 

at equilibrium swelling (48 hours).  

 

 In a separate experiment, 4 wt% of PEG4NB hydrogels were crosslinked by 

CGGYC and CGGDC at a percent molar ratio of 20 to 80 %. These gels were incubated 

in pH 7.4 PBS that was changed every two days. At specific time point, these gels were 

treated with chymotrypsin solution for 30 minutes on an orbital shaker. Fresh 

chymotrypsin solution was prepared every 15 minutes to ensure enzyme activity. After 

the chymotrypsin treatment, the hydrogels were washed with chilled (4 
o
C) PBS for 1 

hour to deactivate enzyme activity. These gels were incubated in pH 7.4 PBS at 37 
o
C for 

swelling study.  

 

 

3.10  Cell Encapsulation 

 To study the cytocompatibility of type II initiator, eosin-Y, desired density (5   

10
6
 cells/mL) of hMSCs or mouse insulinoma cells (MIN6, 2   10

6
 cells/mL) were 

suspended in the following sterile polymer precursor solutions: (1) PEG4NB and DTT; 

(2) PEG4aNB and DTT; or (3) PEGDA, TEOA, and NVP.  All precursor solutions 

contained 0.1 mM of eosin-Y and 0.1 mM of CRGDS for hMSCs encapsulation.  

Precursor solutions (25 μl) were exposed with the same visible light source (70,000 Lux) 

for 4 minutes at room temperature.  hMSCs cell-laden hydrogels were incubated in low-

glucose DMEM supplemented with 10 % fetal bovine serum (FBS, Gibco), 1 ng/mL 

basic fibroblast growth factor (bFGF, Peprotech), and 1   antibiotic-antimycotic 

(Invitrogen) at 37 
o
C and 5 % of CO2. MIN6 cell-laden hydrogels (25 μl) were cultured in 

high-glucose DMEM supplemented with 10 vol% fetal bovine serum (FBS), 50 μM β-

mercaptoethanol, and 1   antibiotic-antimycotic.   

 

 To quantify long-term cell viability, cell-laden hydrogels were incubated in 500 

μL Alamarblue®  reagent (AbD Serotec, 10 % in cell culture medium) at 37 
o
C and 5 % 

of CO2.  After 14 hours of incubation, 200 μl of media were transferred to a 96-well plate 
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for fluorescence quantification (excitation: 560 nm and emission: 590 nm) using a 

microplate reader (BioTek, Synergy HT). In addition, at specific time points cell-laden 

hydrogels were stained with Calcein AM (0.25 μL/mL, stained live cells) and Ethidium 

homodimer-1, EthD, (2 μL/mL, stained dead cells) for confocal microscopy imaging 

(Olympus Fluoview, FV1000). Four images were taken per hydrogel and each Z-stack 

confocal image contained 11 slices with 10 μm increment per slice. The number of live 

and dead cells was counted separately per Z-stack image to determine percent cell 

viability, which is the number of live cells divided by the sum of live and dead cells.  

 

 

3.11  Retention and Recovery of Eosin-Y in Hydrogels 

Immediately after polymerization, hydrogel discs (8 mm diameter   1 mm height) 

were immersed into scintillation vials containing 2 mL of PBS (pH 7.4) at 37 
o
C.  At 

specific time points, a portion of solution (200 μL) was transferred to a clear 96-well 

plate and fresh PBS was added to maintain a constant volume (2 mL).  Absorbance (516 

nm) of the collected samples was measured by a microplate reader (BioTek Synergy HT) 

and correlated to a standard curve generated from known concentrations of fresh eosin-Y.  

Mass balance calculations were performed to determine the quantity of eosin-Y retained 

in the hydrogels.  In a similar manner, eosin-Y was recovered from the buffer and the 

concentration was determined by absorbance measurement using eosin-Y solutions with 

known concentrations.  

 

 

3.12  UV/Vis Absorbance of Eosin-Y Containing Samples 

Eosin-Y and various components (i.e., DTT and PEGdNB) were dissolved in PBS 

(pH 7.4) and exposed to visible light for 4 minutes.  Non-gelling macromers were used 

(e.g., PEGdNB) to prevent gelation and facilitate solution-based UV/Vis spectrometric 

measurements.  Concentrations of the components were equivalent to those used in 

gelation studies.  The spectra of the solutions were measured between 400 and 600 nm at 

1 nm increment using a microplate reader (BioTek Synergy HT) in UV/Vis absorption 
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mode.  Prior to measurements, the solutions were diluted down to equivalent of 0.02 mM 

eosin-Y to ensure that the absorbance values measured were within the linear range of a 

standard curve generated using known eosin-Y concentrations. 

 

 

3.13  Multilayer Hydrogel Fabrication and Characterization 

In the three-layer hydrogel experiment, all layers were formed with 10 wt% 

PEG4NB and DTT at a unity stoichiometric ratio.  Gels were prepared in a 1 mL syringe 

with the tip cut off.  The bottom layer was formed under visible light (70,000 Lux) for 4 

minutes using 2.0 mM eosin-Y as the only photoinitiator.  The macromer precursor 

solutions in the middle and top layers (25 μL each) contained only PEG4NB and DTT (5 

% of 0.2 μm Fluoresbrite® blue microparticles in the top layer were added for 

visualization purpose).  These layers were formed by sequential visible light exposure for 

10 minutes each (200,000 Lux).  The formation of the thick coating gel construct was 

achieved in a similar manner.  A gel disc (2 mm diameter   1 mm height) was pre-

formed using 2 mM eosin-Y and placed in a 1 mL syringe filled with macromer solution 

(10 wt% PEG4NB and DTT).  The set up was exposed under visible light through a 

gooseneck light guide (200,000 Lux) for 10 minutes.   

 

 

3.14  Data Analysis 

Data analysis and curve fitting were performed on Prism 5 software.  The pseudo-

first order rate constant (k’) was determined using Matlab 2010 built-in curve-fit tool 

function.  A best-fit k’ was determined based on Matlab built-in trust region algorithm 

with an R
2
 value of 0.95 or greater.  Unless otherwise noted, all experiments were 

conducted independently for three times and the results were reported as mean ± S.D.. 
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4. RESULTS AND DISCUSSION 

 

 

4.1 Step-growth Thiol-ene vs Michael-type Polymerization 

 The network ideality and hydrolytic degradation behaviors of step-growth thiol-

ene hydrogels received little attention in previous reports.  Given the attractive features 

offered by this new class of biomaterials, we were interested in characterizing and 

understanding these properties.  In addition, while it has been suggested that thiol-ene 

photopolymerization produces hydrogels with higher degree of crosslinking when 

compared to Michael-type addition hydrogels, no direct experimental comparison has 

been made to verify this claim. Here, we prepared step-growth thiol-ene or Michael-type 

hydrogels using PEG4NB or PEG4A macromers.  DTT was used as a hydrogel 

crosslinker for both systems.  Since PEG4NB and PEG4A used in this study have the 

same molecular weight (MWA = 20 kDa) and functionality (fA = 4), hydrogels crosslinked 

by these macromers without any structural defect would have the same degree of 

crosslinking at identical macromer concentration (i.e., 4 wt%).  Therefore, variations in 

hydrogel physical properties (e.g., swelling, modulus, and etc.) could be used to evaluate 

the network connectivity.  We first characterized the gelation kinetics of these two step-

growth hydrogel systems via in situ rheometry.  As shown in Figure 4.1, the gel point of 

thiol-ene photo-click reaction was ~265-fold faster than that of Michael-type addition 

reaction (3 ± 1 vs 689 ± 18 seconds).  While the time required to reach complete gelation 

for thiol-ene photo-click reaction was less than 3 minutes (Figure 4.1A), it took almost 25 

– 30 minutes for the Michael-type reaction to reach complete gelation (Figure 4.1B).  In 

addition, the final shear modulus (G’) for thiol-ene hydrogels was one order of magnitude 

higher than that of Michael-type hydrogels (2030 ± 80 Pa vs 470 ± 20 Pa), indicating 

improved network connectivity in thiol-ene hydrogels. 
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(A)      (B) 

 

Figure 4.1  In situ rheometry of step-growth hydrogels: (A) Thiol-ene photo-click 

polymerization (4 wt% PEG4NB-DTT). UV light was turned on at 30 seconds (Dotted 

line). (B) Michael-type addition (4 wt% PEG4A-DTT). Dotted line at 15 seconds 

indicates temperature reached 37 
o
C. 

  

 

We further compared these two gel systems using hydrogel equilibrium swelling 

and shear modulus, both of which are directly related to hydrogel crosslinking density 

[52].  Based on Equation 3.3, the molecular weight between crosslinks (  
̅̅ ̅̅   of these two 

step-growth hydrogel systems without defect should be identical (neglecting the minor 

difference in the molecular weight of norbornene and acrylate moiety) and was calculated 

as 10,154 Da.  Accordingly, the ideal mass swelling ratio of a perfectly crosslinked step-

growth hydrogel (qeq, ideal) was calculated as 9.6 using Equations 3.4 and 3.5 (Table 4.1 

and dashed line in Figure 4.2).  Experimentally, however, we found that thiol-ene 

hydrogels, when compared to Michael-type gels at identical macromer compositions, had 

lower mass swelling ratio (28.5 ± 2.2 vs 44.5 ± 3.8) and higher elastic modulus (~1 vs 

~0.2 kPa) at the equilibrium state. These experimental results confirmed a previous 

notion that radical-mediated thiol-ene reaction, when compared to Michael-type 

conjugation reaction, produce step-growth hydrogels with faster gelation kinetics, less 

structural defects, higher degree of crosslinking, and improved gel mechanical properties. 
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Table 4.1  Characteristics of step-growth Michael-type and thiol-ene hydrogels 

(4 wt%, 20 kDa, 4-arm PEG-derivatives crosslinked by DTT, pH 7.4, N = 4).  

   
̅̅ ̅̅  (Da) qeq, ideal qeq, actual G’eq, actual (kPa) 

PEG4A (Michael-type) 10,154 9.6 44.5 ± 3.8 0.2 ± 0.1 

PEG4NB (Thiol-ene) 10,154 9.6 28.5 ± 2.2 1.1 ± 0.1 

 

 

 

4.2   UV Light-mediated Thiol-ene Hydrogelation Using Photoinitiator LAP 

 

 

4.2.1 Crosslinking Efficiency 

As shown in Table 4.1, an ‘ideal’ step-growth network with a fixed macromer 

composition and without defect should only have a single equilibrium swelling ratio.  

Furthermore, the swelling ratio should be independent of macromer concentrations at 

equilibrium state.  The experimental equilibrium mass swelling ratios of PEG4NB-DTT 

gels, however, exhibited high dependency on PEG4NB macromer concentration as 

shown in Figure 4.2.  For example, when the concentration of PEG4NB macromer was 

increased from 4 wt% to 20 wt%, swelling ratios decreased from 28.5 ± 2.2 to 12.1 ± 0.2 

and approached ideal equilibrium swelling ratio (9.6).  Hydrogels with low swelling 

ratios (at higher macromer contents) had higher elastic moduli (~1 kPa and ~10 kPa for 4 

wt% and 10 wt% PEG4NB-DTT hydrogels, respectively). This inverse relationship was 

commonly observed in chemically crosslinked networks, including chain-growth PEGDA 

hydrogels.  
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Figure 4.2  Effect of PEG4NB macromer concentration on hydrogel equilibrium swelling 

(left y-axis) and elastic modulus (right y-axis). Swelling ratio of an ideal network was 

calculated based on the molecular weight between crosslinks (  
̅̅ ̅̅ ) of given macromer 

molecular weights (MWPEG4NB = 20 kDa, MWDTT = 154 Da) and functionalities (fPEG4NB = 

4, fDTT = 2). 

 

The trend observed in Figure 4.2 could be attributed to a higher tendency of 

cyclization at lower PEG4NB contents.  At diluted macromer concentrations, higher 

extent of intramolecular reactions led to formation of more primary cycles.  

Consequently, lower degree of intermolecular crosslinking resulted in increased gel 

swelling, and vice-versa [22]. The network defects resulted from different degrees of 

intramolecular and intermolecular reactions was the major reason for the dependency of 

experimental equilibrium swelling ratios on macromer concentrations [22].  

 

The strong dependency between macromer concentration (especially at lower 

concentrations) and network ideality in thiol-ene hydrogels was beneficial in that the 

physical properties (e.g., swelling and modulus) of these thiol-ene hydrogels could be 

easily tuned for biological applications (Figure 4.2).  For example, hydrogel shear moduli 

obtained (~1 to 10 kPa) using current thiol-ene hydrogel formulations were within a 

physiologically-relevant range and could be used to study the effect of matrix stiffness on 

cell fate processes [53, 54]. More importantly, the gelation time for these thiol-ene 
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hydrogels was drastically shortened when compared to the crosslinking of chain-growth 

PEGDA or step-growth Michael-type hydrogels.  

 

 

4.2.2 Effect of pH on Degradation of PEG4NB-DTT Hydrogels 

As stated previously, thiol-ene hydrogels could be degraded hydrolytically via 

ester hydrolysis.  We found that the degradation of thiol-ene hydrogels was pH-

dependent (Figure 4.3).  PEG4NB-DTT hydrogels incubated in acidic condition (pH 6.0) 

were stable with an almost constant swelling ratio over a 45-day period, whereas 

hydrogels with the same compositions exhibited increasing swelling over time in slightly 

basic conditions (pH 7.4 and pH 8.0).  We conducted exponential curve fittings using the 

swelling data of degrading hydrogels and found high degree of correlation between the 

fitted curves with the experimental data (dashed curves, R
2
 = 0.98 for both pH 7.4 and pH 

8.0 in Figure 4.3), indicating that the degradation of thiol-ene hydrogels was most likely a 

result of pseudo-first order ester bond hydrolysis.  

 

Figure 4.3  Effect of buffer pH on mass swelling ratio of 4 wt% PEG4NB-DTT 

hydrogels.  Symbols represent experimental data while dashed curves represent 

exponential curve fitting to the experimental data. The apparent degradation rate 

constants (khyd) for gels degraded in pH 7.4 and pH 8.0 were 0.024 ± 0.001 and 0.057 ± 

0.002 day
-1

, respectively.  Solid curves represent model predictions with best-fit kinetic 

rate constants: k’pH 7.4 = 0.011 day
-1 

and k’pH 8.0 = 0.027 day
-1

. No curve fitting or model 

prediction was made for gels degraded in pH 6.0 due to the stability of gels in acidic 

conditions. 
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Since the two basic pH conditions yielded significantly different degradation rates 

(Table 4.2), we were interested to know if gel degradation in different pH values assumed 

the same degradation mechanism.  A previous study concerning the degradation of thiol-

acrylate photopolymer networks revealed that, if the degradation follows the same ester 

hydrolysis mechanism at an elevated pH value (e.g., from pH 7.4 to pH 8.0), the two 

degradation profiles could be described using a pseudo-first order equation [26]:  

                 
             (4.1) 

 

If the network degradation was purely due to ester bond hydrolysis without the 

influences from other environmental factors, the degradation could be described using the 

same ester hydrolysis rate constant (k’).  Using this k’, two degradation curves (at pH 7.4 

and pH 8.0) would overlap after adjusting the degradation time to account for the 4-fold 

increase in the OH
-
 ion concentrations between the two pH values [26].  Similarly, the 

factor of 4 could be incorporated into k’ to reflect the accelerated degradation kinetics. 

Consequently, one would expect to obtain a 4-fold increase in the ratio of the apparent 

degradation rate constants (khyd) for hydrogels degraded in the two pH values.  However, 

the exponential curve fitting performed in Figure 4.3 (khyd = 0.024 ± 0.001 and 0.057 ± 

0.002 day
-1

 pH 7.4 and pH 8.0, respectively) yielded a khyd ratio of 2.4, rather than the 

ideal 4-fold increase (Table 4.2).  This significantly lowered khyd ratio suggested that the 

degradation was not solely governed by simple ester bond hydrolysis and other factors 

could also play a role on the degradation rate of these thiol-ene hydrogels.  

 

In addition to the experimental work, we also utilized a statistical-co-kinetic 

model to predict the hydrolytic degradation of thiol-ene hydrogels.  Using this model 

(Equation 3.11), we chose a best-fit k’ of 0.011 day
-1

 (R
2
 = 0.96) and 0.027 day

-1
 (R

2
 = 

0.95) for the degradation of 4 wt% PEG4NB-DTT hydrogels in pH 7.4 and pH 8.0, 

respectively (Table 4.2).  Note that these k’ values were selected only to validate the 

model predictions at different degradation conditions, and by no means to suggest any 

‘ideality’ in the crosslinked network since the gels at these conditions were not ‘ideal’ as 

discussed in the previous sections.  As stated above, if the thiol-ene network degradation 



31 
 

was governed solely by ester bond hydrolysis, a k’ of 0.044 day
-1

 (4-fold of k’pH7.4 = 

0.011 day
-1

) could be used to predict gel degradation occurred at pH 8.0.  However, the 

best-fit k’ was 0.027 day
-1

 (R
2
 = 0.95) for degradation occurred at pH 8.0, which only 

yielded a ratio of 2.5 (compared to k’pH7.4 = 0.011 day
-1

), and again was much slower than 

the theoretical 4-fold difference (Table 4.2).  A potential explanation for this 

phenomenon is base-catalyzed oxidation of thioether bond forming between norbornene 

and thiol groups (Figure 4.3), which was likely promoted at higher pH values [55]  and 

influenced the rate of ester hydrolysis.  Another possible reason for the lower-than-

predicted degradation rate at higher pH values was that the degradation process produced 

acidic by-products (Figure 4.3), which decreased acidity and retarded the degradation.  

Furthermore investigations, however, are required to elucidate the exact mechanisms. 

 

Table 4.2  Hydrolytic degradation rate constants for PEG4NB-DTT hydrogel network. 

(N = 4) 

[PEG4NB] 

(wt%) 
pH khyd (day

-1
) R

2
khyd 

Ratio of 

khyd, pH 8.0/khyd, pH 7.4 
k’ (day

-1
) R

2
k’ 

Ratio of 

k’ pH 8.0/k’ pH 7.4 

4 

7.4 0.024 ± 0.001 0.98 

2.4 

0.011 0.96 

2.5 

8.0 0.057 ± 0.002 0.98 0.027 0.98 

10 

7.4 0.020 ± 0.001 0.98 

2.5 

0.009 0.95 

2.3 

8.0 0.050 ± 0.001 0.99 0.021 0.96 

 

 

4.2.3 Effect of Macromer Concentration on Degradation of  

PEG4NB-DTT Hydrogels 

We further evaluated the hydrolytic degradation of PEG4NB-DTT hydrogels with 

different macromer concentrations (4 and 10 wt%) in pH 7.4 (Figure 4.4A) and pH 8.0 

(Figure 4.4B).  We observed experimentally that hydrogels prepared from a precursor 

solution containing lower weight content of PEG4NB (e.g., 4 wt%) degraded at a slightly 

faster rate, regardless of pH values (Table 4.2).  This study suggested that the effect of 

macromer concentration affected not only the initial network crosslinking (i.e., network 



32 
 

ideality), but also the rate of network hydrolytic degradation.  Previously, Metters et al. 

successfully predicted the degradation of step-growth Michael-type addition hydrogels 

crosslinked by multi-arm PEG-acrylate and DTT.  In their study, the degradation profiles 

were predicted using a single k’, indicating the hydrolysis of thioether-ester bonds 

forming between PEG-acrylate and DTT was not affected by factors other than simple 

hydrolysis (e.g., macromer concentration, crosslinking efficiency, etc.).  In fact, previous 

models developed for predicting the hydrolysis of PEG hydrogels were based on the 

assumptions that the factors affecting hydrolysis could be ‘lumped’ into a pseudo-first 

order hydrolysis rate constant or k’ [14-16, 22].  These factors include water or 

hydronium ion concentrations, temperature, pH values, etc.  For highly swollen hydrogels 

(q > 10), these factors are often negligible and thus the degradation profiles of the 

hydrogels could be predicted using the same k’ regardless of macromer composition or 

degree of network crosslinking (under constant temperature and pH value).  While the 

degradation of thiol-ene hydrogels was mediated by ester bond hydrolysis, our data 

suggested that it was also affected by other environmental and/or structural factors (such 

as densities of cyclic olefin groups and thioether bonds at different macromer contents).      

 

(A)                                                   (B)  

           

Figure 4.4  Hydrolytic degradation of PEG4NB-DTT hydrogels with different macromer 

concentrations in (A) pH 7.4 and (B) pH 8.0 PBS. Symbols represent experimental data, 

dashed curves represent exponential fit, and solid curves represent model prediction (See 

Table 4.2 for hydrolysis rate constants selected). 
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4.2.4  Effect of Initial Crosslinking Density on Degradation of  

PEG4NB-DTT Hydrogels 

Results in Figure 4.4 revealed that the degradation rate of thiol-ene hydrogels 

could be affected by the degree of initial network crosslinking, a characteristic different 

from Michael-type addition hydrogels.  In order to further validate this observation, we 

conducted additional studies using both theoretical and experimental approaches.  We 

first predicted, using Equation 3.11, the degradation profiles of ideal thiol-ene hydrogels 

with different degrees of crosslinking by varying the stoichiometric ratios of thiol to ene 

moieties (i.e., R[thiol]/[ene] = 0.6, 0.8, and 1).  This parametric manipulation yielded 

hydrogels with different initial crosslinking densities ([A]0, ideal = 5.78   10
-4

, 7.71   10
-4

,
 

and 9.63   10
-4 

M for R[thiol]/[ene] = 0.6, 0.8, and 1, respectively).  In these predictions, a 

fixed hydrolysis rate constant (k’ = 0.063 day
-1

) was selected based on a value reported 

for the degradation of step-growth Michael-type hydrogels [56]. As shown in Figure 4.5, 

the ideal initial mass swelling ratio at different degree of network crosslinking (R[thiol]/[ene] 

= 0.6, 0.8 and 1) varied only slightly between 9.6 and 11.9.  Since the assumption in this 

prediction was that the rate of degradation is independent of the initial degree of network 

crosslinking, a single k’ (0.063 day
-1

) was used to predict the degradation profiles at 

various degrees of initial network crosslinking.  Using this k’, one can see that the three 

degradation profiles display slight variations. 

 

Figure 4.5  Model prediction of thiol-ene hydrogel degradation starting from different 

initial crosslinking (R[thiol]/[ene] = 0.6, 0.8 and 1; k’ = 0.063 day
-1

). 
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To validate the prediction shown in Figure 4.5, we designed thiol-ene hydrogels 

with different initial degree of crosslinking by altering the concentrations of crosslinker 

used (DTT, R[thiol]/[ene] = 0.6, 0.8 and 1) while keeping a constant PEG4NB macromer 

content (4 wt%) during gelation.  As expected, decreasing initial network crosslinking 

(e.g., R[thiol]/[ene] = 0.6) resulted in a significant increase in initial hydrogel swelling (q = 

69.2 ± 3.0) due to increased network non-ideality (Figure 4.6A).  This phenomenon was 

similar to the results shown in Figure 4.2 where hydrogels prepared from lower PEG4NB 

weight contents had significantly higher initial swelling.  When the difference in the 

initial degree of swelling was taking into account in model prediction, one would expect 

similar degradation trends as shown in Figure 4.5 where the profiles could be predicted 

using a single k’.  Interestingly, our experimental results showed that thiol-ene network 

crosslinked with low R[thiol]/[ene] exhibited not only very high equilibrium swelling ratios, 

but also much faster degradation rates (Table 4.3).  When the degradation profiles were 

fitted with Equation 3.11, the best-fit k’ values were 0.035, 0.017, and 0.011 day
-1

 for 

R[thiol]/[ene] = 0.6, 0.8, and 1, respectively (Table 4.3).  In another word, the degradation 

rate constants were accelerated (2- to 3-fold) as a function of network non-ideality.  

These results were different from previous reports for Michael-type hydrogels where a 

single k’ could be used to describe the degradation occurred at different initial 

crosslinking densities. [22]  The accelerated gel degradation was confirmed via 

rheometrical measurements where gels reached complete disintegration by day 21 and 

day 28 for R[thiol]/[ene] = 0.6 and 0.8, respectively (Figure 4.6B).  While the mechanisms or 

factors affecting the hydrolytic degradation rate of thiol-ene hydrogels at different initial 

crosslinking densities are unknown, a general trend observed from our studies was that 

thiol-ene hydrogels with higher degree of crosslinking degraded at a slower rate than gels 

with lower degree of crosslinking. 
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(A)                         (B) 

   

Figure 4.6  Effect of initial network crosslinking on PEG4NB-DTT hydrolytic 

degradation. (A) Mass swelling ratio and (B) elastic moduli of 4 wt% PEG4NB-DTT 

hydrogels with R[thiol]/[ene] = 0.6, 0.8, and 1.  Symbols represent experimental data, dashed 

curves represent exponential fit, and solid curves represent model prediction (See Table 

4.3 for degradation rate constants selected). 

 

 

Table 4.3  Hydrolytic degradation rate constants for PEG4NB-DTT 

hydrogel network with different stoichiometric ratios. (N = 4) 

R[thiol]/[ene] [A]0, ideal (M) khyd (day
-1

) R
2
khyd k’ (day

-1
) R

2
k’ 

0.6 5.78 10
-4

 0.073 ± 0.002 0.96 0.035 0.95 

0.8 7.71 10
-4

 0.035 ± 0.004 0.97 0.017 0.96 

1 9.63 10
-4

 0.024 ± 0.001 0.98 0.011 0.96 

 

 

4.2.5 Effect of Crosslinker Sequence on Network Properties of  

PEG4NB-peptide Hydrogels 

In previous sections, we have learned that there was a high inter-dependency 

between the degree of thiol-ene hydrogel network crosslinking and the subsequent 

degradation rates using DTT as a hydrogel crosslinker.  Recent studies have shown that 

PEG hydrogels crosslinked by peptide crosslinkers are useful in creating biomimetic 

extracellular microenvironments [5, 21].  Here, we investigated the influence of peptide 

sequences on the crosslinking and degradation of step-growth thiol-ene hydrogels.  As a 

model system to illustrate the importance of peptide sequences on thiol-ene hydrogel 
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degradation, we synthesized six simple peptide crosslinkers with amino acid variation: 

CGGGC, CGGYC, CGGLC, CGGKC, CGGDC and CDGDC.  The molecular weights of 

these six peptide crosslinkers (MWB) varied slightly between 394 to 511 Da (Table 4.4), 

which would only cause minimum influence in the chain length between adjacent 

crosslinks due to the relatively large PEG4NB macromolecules (MWA = 20 kDa) used. 

 

Table 4.4  Parameters for PEG4NB-peptide hydrogel network. (pH 7.4, N = 4) 

Peptide 

Crosslinker 

MWB 

(Da) 
Gel Point (sec) khyd (day

-1
) R

2
khyd k’ (day

-1
) R

2
k’ 

CGGGC 394 5.3 ± 0.1 0.049 ± 0.001 0.98 0.026 0.96 

CGGYC 501 4.5 ± 0.5 0.036 ± 0.004 0.99 0.018 0.98 

CGGLC 451 4.3 ± 1.4 0.036 ± 0.002 0.99 0.017 0.98 

CGGKC 466 20.3 ± 0.1 0.020 ± 0.015 0.62 

N.A. CGGDC 453 2.9 ± 0.6 0.038 ± 0.001 0.94 

CDGDC 511 2.6 ± 1.2 0.027 ± 0.001 0.97 

 

Table 4.4 shows the biophysical properties of 4 wt% PEG4NB-peptide hydrogels 

crosslinked by peptide crosslinker with different sequences.  These PEG4NB-peptide 

hydrogels all had rapid gel points (~4 to 5 seconds), which were consistent with our 

previous studies in thiol-ene hydrogels [3].  Similar to the degradation of PEG4NB-DTT 

gels shown in Figure 4.4 and 4.6, PEG-peptide hydrogel degradation rates were affected 

by the initial degree of network crosslinking.  As shown in Figure 4.7, peptide sequences 

affected both initial crosslinking as well as subsequent hydrolytic degradation rate.  At 

the same macromer weight content (4 wt%), the initial swelling ratios of PEG4NB-

peptide hydrogels were significantly higher than that of PEG4NB-DTT hydrogels.  As a 

result, these PEG4NB-peptide hydrogels exhibited faster hydrolytic degradation rates 

(Table 4.4). Interestingly, hydrogels crosslinked by CGGGC and CGGYC peptides had 

similar initial swelling (Figure 4.7A), but the degradation rate constant was significantly 
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lower for gels crosslinked by CGGYC (~26% lower in khyd; ~30% lower in k’. Table 4.4).  

Furthermore, hydrogels crosslinked by peptides containing aromatic (e.g., CGGYC) or 

hydrophobic (e.g., CGGLC) residues yielded slower degradation rates compared to gels 

crosslinked by simple CGGGC linker, potentially due to steric hindrance and 

hydrophobic effect of tyrosine and leucine residues that retarded degradation (Table 4.4).  

As expected, the swelling of these PEG4NB-peptide hydrogels was inversely correlated 

to the elastic moduli (Figure 4.7B).  Hydrogels crosslinked by CGGGC peptide degraded 

completely in about 15 days (modulus dropped from ~1.0 kPa to ~0.1 kPa from day 0 to 

day 14), while gels crosslinked with CGGYC or CGGLC lasted at least 21 days until 

complete gel disintegration. In addition, we also evaluated the effect of charged amino 

acid on thiol-ene hydrogels crosslinking (Figure 4.7C). When a positively charged amino 

acid, lysine (K), was incorporated, the gelation was significantly hindered resulting in 

prolonged gel point (Table 4.4, ~20 seconds). Conversely, when a negatively charged 

aspartic acid (D) was incorporated in the 5-mer crosslinking peptide, the rate of gelation 

was about 7-folds faster than having positively charged lysine (Table 4.4, ~3 seconds). 

We believe that the presence of negatively charged amino acid assisted hydrogen 

deprotonation from the cysteine. To further prove this, two aspartic acids were 

incorporated in a 5-mer peptide. As predicted, slightly faster gelation rate, lower swelling 

ratio (Figure 4.7C) and higher elastic modulus (Figure 4.7D) were observed when these 

peptide crosslinkers containing two aspartic acids were used. Note that model prediction 

was not employed to predict the swelling ratio of hydrogels crosslinked by charged 

peptides due to the assumptions made by Flory-Rehner theory. This study revealed that 

the degradation of thiol-ene hydrogels could be easily tuned by altering identity of the 

peptide crosslinkers.  
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(A)                             (B) 

  

 

(C)                                        (D) 

  

 

Figure 4.7  Effect of crosslinker peptide sequences on PEG4NB-peptide hydrogels 

degradation. (A) Mass swelling ratio and (B) elastic modulus of PEG4NB hydrogels 

crosslinked by CGGGC, CGGYC or CGGLC peptides.  (C) Mass swelling ratio and (D) 

elastic modulus of PEG4NB hydrogels crosslinked by CGGKC, CGGDC or CDGDC 

peptides. PEG4NB-DTT hydrogels were used for comparison.  Symbols represent 

experimental data, dashed curves represent exponential curve fits, and solid curves 

represent statistical-co-kinetics model fits to the experimental data. (4 wt% PEG4NB-

peptide hydrogels, pH 7.4, N = 4) 
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4.2.6 Dual-mode Enzymatic and Hydrolytic Degradation of  

Thiol-ene Hydrogels 

Many step-growth hydrogels have been prepared for protease-sensitive 

degradation by incorporating peptidyl substrates as hydrogel crosslinkers [3, 5, 8, 21, 57-

61].  Here, we sought to combine enzymatic and hydrolytic degradation properties of 

thiol-ene hydrogels and create dual-mode degradable hydrogels without altering hydrogel 

molecular structure or hydrophilicity.  By combining peptide crosslinkers with different 

protease sensitivities, we found that the degradation behaviors of thiol-ene hydrogels 

could be easily manipulated and changed from completely surface erosion to bulk 

degradation.  Here, hydrogels were crosslinked by 4 wt% PEG4NB and stoichiometric 

ratio of non-cleavable CGGGC and/or chymotrypsin cleavable CGGYC peptides at 

various compositions (percent molar ratio of CGGYC:CGGGC = 100:0, 75:25, 50:50, 

25:75 and 0:100, Figure 4.8).  Note that the overall molar ratio of thiol to ene moieties 

was stoichiometric balanced for all conditions (R[ene]/[thiol] = 1).  When these gels were 

exposed to chymotrypsin solution, hydrogels contained high percentage of CGGYC 

crosslinker (100% to 75%) eroded rapidly by surface erosion, evidenced by linearly 

increasing mass loss profiles as time.  These gels reached complete erosion at around 10 

and 16 minutes for gels incorporated with 100% and 75% of CGGYC, respectively 

(Figure 4.8).  Interestingly, when the total content of CGGYC peptide was decreased to 

50% and 25%, chymotrypsin treatment led to increased gel mass (i.e., negative mass 

loss).  These gels continued to swell and gained mass for the remaining course of study, 

indicating that protease treatment led to a ‘loosened’ gel structure and increased water 

uptake.  The degradation mode was likely be transitioned from a surface erosion to a bulk 

degradation mechanism.  On the other hand, chymotrypsin treatment had no effect on the 

swelling or mass loss of thiol-ene hydrogels crosslinked by non-chymotrypsin sensitive 

linker (CGGGC).  These results suggested that by altering protease sensitivity of 

PEG4NB-peptide hydrogels through elegant selection of peptide crosslinkers, the mode 

of degradation profiles could also be manipulated and may be used to dynamically 

control growth factor delivery in the future. 
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Figure 4.8  Effect of peptide crosslinkers on PEG4NB-peptide hydrogels 

erosion/degradation. PEG4NB hydrogels crosslinked by different percentage of 

chymotrypsin sensitive (CGGYC) and non-degradable (CGGGC) peptides.  Figure 

legends indicate the percent molar ratio of CGGYC:CGGGC. (4 wt% PEG4NB-peptide 

hydrogels, pH 7.4, N = 4)  

 

 

 Additionally, 4 wt% PEG4NB-peptide hydrogels were prepared with 

chymotrypsin sensitive CGGYC and non-enzymatic degradable CDGDC at the percent 

molar ratio of CGGYC:CDGDC as 20:80. Here, CDGDC was selected due to its stability 

in hydrolytic degradation (Figure 4.7C). On specific days, these PEG4NB-peptide 

hydrogels were treated with chymotrypsin to selectively cleave CGGYC. This enzyme 

treatment intentionally cleaved the hydrogel network to increase the uptake of water. The 

resulting network was more susceptible to hydrolytic degradation compared to hydrogels 

that were not treated with chymotrypsin solution. In Figure 4.9, hydrogels that were not 

treated with chymotrypsin solution undergo steady degradation throughout 16 days. On 

the other hand, gels treated with chymotrypsin all reached complete disintegration by 16 

days (swollen mass ~100 mg). For example, gels treated with chymotrypsin solution on 

day 2 had an accelerated rate of hydrolytic degradation and hydrogels degraded within 12 

days. The resulted suggested potential applications in user-controlled therapeutic drug 

delivery and could be used to study biological phenomenon for controlling cell behavior. 
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Figure 4.9  Effect of selective enzyme treatment on PEG4NB-peptide hydrogels 

erosion/degradation. PEG4NB hydrogels crosslinked by chymotrypsin sensitive 

(CGGYC) and non-degradable (CDGDC) peptides (percent molar ratio of 

CGGYC:CDGDC = 20:80).  Figure legends indicate the specific day when gels were 

treated with chymotrypsin solution. (4 wt% PEG4NB-peptide hydrogels, pH 7.4, N = 4)  

 

 

4.3 Visible Light-mediated Thiol-ene Hydrogelation Using Photoinitiator Eosin-Y 

 

 

4.3.1 Gelation Kinetics: Step-growth Thiol-ene vs Chain-growth Photopolymerization 

Thiol-norbornene photo-click hydrogels have increasingly been used in cell 

encapsulation studies [18, 20-22]. Prior reports on this new type of hydrogels, however, 

all used a cleavage type photoinitiator (I-2959 or LAP, Figure 1.2A and 1.2B) under 365 

nm UV light exposure.  Here, we demonstrate that thiol-norbornene gelation could be 

achieved using a visible light source (400 – 700 nm) with eosinY as the only 

photoinitiator (Figure 4.10).  Upon visible light exposure, eosin-Y was excited to abstract 

hydrogen from thiol-containing crosslinkers, such as dithiothreitol (DTT), thus forming 

thiyl radicals.  These radicals propagate through the norbornene moieties on multi-arm 

PEG macromers to form thioether bonds and carbonyl radicals.  The termination of these 

carbonyl radicals is accomplished via abstracting hydrogen from other thiol-containing 

molecules [23].  
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Figure 4.10  Initiation and polymerization mechanisms for visible light-mediated thiol-

ene photopolymerization using eosin-Y (EY) as the sole photoinitiator which was excited 

by a visible light (400 to 700 nm) to initiate the photo-click reaction. The reactions result 

in gel cross-linking as R1-SH and R2-norbornene represents a bi- and tetra-functional 

cross-linker, respectively. 

 

 

We first examined the gelation kinetics with in situ photo-rheometry in a light 

cure cell using 10 wt% PEG4NB20kDa (20 mM norbornene) and a stoichiometric-balanced 

thiol groups (from crosslinker DTT).  0.1 mM eosin-Y was added in the precursor 

solution as the photoinitiator.  As shown in Figure 4.11A, this visible light-mediated step-

growth thiol-ene reaction reached gel point rapidly (19 ± 2 seconds).  The gel point was 

almost twice as fast as that in a conventional chain-growth PEGDA crosslinking reaction 

(37 ± 1 seconds) where equivalent macromer content (10 wt% PEGDA10kDa or 20 mM 

acrylate), a co-initiator (0.75 vol% TEOA) and a co-monomer (0.1 vol% NVP) were used 

(Figure 4.11B and Table 4.5).  As described in the previous section, unlike chain-growth 

photopolymerizations of vinyl monomers (e.g., PEGDA), thiol-ene reactions are not 

oxygen inhibited [24], and hence resulted in a fast gelation even without using co-

monomers. 
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(A)       (B) 

 

Figure 4.11  In situ photo-rheometry of: (A) Step-growth thiol-ene photo-gelation using 

PEG4NB and DTT. Eosin-Y was used as the only photoinitiator, which was excited by a 

visible light (400 to 700 nm) to initiate the photo-click reaction. (10 wt% or 5 mM 

PEG4NB-DTT, 0.1 mM eosin-Y, 70,000 Lux).
 
(B) Chain-growth PEGDA hydrogels 

formed by visible light-mediated photopolymerizations (step-growth PEG4NB-DTT or 

chain-growth PEGDA hydrogels).  Visible light (70,000 Lux) was turned on at 30 

seconds.  Gel compositions: 10 wt% PEGDA macromer and 0.1 mM eosin-Y for all gel 

formulations. 0.75 vol% TEOA and 0.1 vol% NVP added for chain-growth PEGDA 

gelation. (N = 3; error bars are omitted for clarity)  

 

 

Table 4.5  Characteristics of hydrogels formed by visible light-mediated thiol-ene 

photopolymerization. (10 wt% PEG macromer and 0.1 mM of eosin-Y for all conditions. 

0.75 vol% TEOA and 0.1 vol% NVP added for PEGDA gelation, N = 3) 

Intensity (Lux) Macromer system Gel point (seconds) G’@ 600 sec (kPa) 

25,000* PEG4NB-DTT 366 ± 19 0.15 ± 0.04 

60,000 * PEG4NB-DTT 114 ± 3 1.9 ± 0.5 

70,000 

PEG4NB-DTT 19 ± 2 12 ± 1.5 

PEGDATEOA/NVP 37 ± 1 17 ± 1.6 

* At 600 seconds, this intensity did not yield complete gelation. 
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4.3.2 Effect of Light Intensity on Gel Properties 

We also examined the gelation kinetics under different light intensities. Similar to 

other photopolymerization systems, significantly delayed gel points (19 ± 2 to 366 ± 19 

seconds) and decreased final shear moduli (12 ± 1.5 to 0.15 ± 0.04 kPa) were obtained at 

lower light intensities (25,000 to 70,000 Lux, Figure 4.12 and Table 4.5).  We found that 

this eosin-Y-only, visible light-mediated hydrogelation was unique to the thiol-

norbornene system because gelation did not occur with PEG-tetra-acrylate alone unless 

co-initiator TEOA and co-monomer NVP were also added.  Furthermore, we found that 

the co-monomer NVP, when added into the precursor solution, inhibited thiol-norbornene 

gelation.  Further investigations are required to elucidate the underlying mechanisms.   

 

Figure 4.12  Effect of visible light intensity on the gelation kinetics of thiol-ene hydrogels 

(light was turned on at 30 seconds, N = 3). Error bars in figure were omitted for clarity.  

 

 

4.3.3 Effect of Macromer Concentration on Gel Properties 

We also evaluated the effect of macromer concentrations on network crosslinking 

using a gelation time of 4 minutes (G’ higher than 95% of the final value, Figure 4.11A).  

As expected, there was an inverse correlation between macromer concentrations and gel 

points.  Increasing macromer concentrations resulted in an increased in final gel moduli 

(Figure 4.13A) with accelerated gel points (Figure 4.13B).  Furthermore, the gel fractions 

of thin hydrogels (thickness = 1 mm) were between 94% and 99% (Table 4.6), indicating 
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high gelation efficiency.  Unlike chain growth PEGDA system where final gel moduli 

were affected by the necessary use of co-monomer NVP [15], the final moduli of visible 

light-mediated step-growth thiol-ene hydrogels were more readily controlled by 

macromer content in the precursor solution (Figure 4.13B).  Eosin-Y is a red dye used in 

a common histological staining (i.e., Hematoxylin and eosin staining).  Due to its intense 

red color, the thiol-ene gels formed with 0.1 mM eosin-Y appeared red-to-yellowish after 

gelation (Figure 4.13C).  However, the color faded and the gels became transparent after 

swelling for 48 hours, suggesting that the eosin-Y may release into the buffer.  As shown 

in Figure 4.13D, the equilibrium mass swelling ratios and shear moduli of these step-

growth hydrogels exhibited high dependency on macromer concentration, indicating the 

existence of network non-ideality [25]. A similar trend in UV-mediated step-growth 

thiol-ene networks was observed in Figure 4.2 [23]. Furthermore, decreased network 

crosslinking efficiency was observed with thicker gel samples (3 mm), evidenced by 

decreased gel fractions and increased equilibrium swelling at lower macromer contents 

(Table 4.6).  We believe this was due to higher light attenuation caused by red eosin-Y.   

 

Table 4.6  Effect of gel thickness on gel fraction and equilibrium swelling ratio of 

hydrogels formed by visible light-mediated thiol-ene photopolymerization. (10 wt% 

PEG4NB-DTT, N = 3) 

[PEG4NB] (wt%) 

Gel fraction (%) Swelling ratio 

Gel thickness (mm) Gel thickness (mm) 

1 3 1 3 

5 94.0 ± 2.1 80.6 ± 3.1 24.3 ± 1.9 32.7 ± 0.9 

10 99.3 ± 1.2 90.5 ± 3.3 21.3 ± 0.1 23.3 ± 0.8 

15 98.4 ± 0.6 93.2 ± 3.6 16.9 ± 0.8 18.5 ± 0.7 

20 98.7 ± 0.6 95.8 ± 1.3 14.2 ± 0.1 17.4 ± 0.6 
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(A)       (B) 

 

(C)       (D) 

                         

Figure 4.13  (A) Effect of macromer (PEG4NB) content on the gelation kinetics and (B) 

gel point.  (C) Photographs of visible light-cured thiol-ene hydrogels (left) before and 

(right) after swelling for 24 hours (10 wt% PEG4NB with DTT as crosslinker, 0.1 mM 

eosin-Y as the initiator, length of a square grid = 1 mm). (D) Mass swelling ratio and 

elastic modulus of hydrogels at equilibrium swelling (N = 3). Error bars in (A) were 

omitted for clarity.  

 

    

4.3.4 Effect of Eosin-Y Concentration on Gel Properties 

We have shown that the cross-linking of step-growth thiol-norbornene hydrogels 

could be initiated by visible light exposure with eosin-Y as the only photoinitiator [62].  

Here, we further explored this unique, simple, yet effective photopolymerization method 

for preparing step-growth hydrogels with multilayer structures.  We first investigated the 

effect of initiator concentration on thiol-ene gelation kinetics.  For thin samples such as 
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eosin-Y concentration resulted in faster gelation rate as demonstrated by the rapid gel 

points shown in Figure 4.14B.  For example, gelation using 2.0 mM eosin-Y reached gel 

point within 2 seconds or 10-fold faster than gelation with 0.1 mM eosin-Y (gel point ~24 

seconds).  The final elastic moduli of these thin gels, however, were ranging between 

~6.4 kPa to ~9.1 kPa for different eosin-Y concentration used (0.1 to 2.0 mM, Figure 

4.14A).  As shown in Figure 4.10, eosin-Y was sensitized to an exited state upon visible 

light exposure [63].  The excited eosin-Y carbanion is capable of extracting hydrogen 

from proton-donating thiols, such as DTT or cysteine-bearing peptides/proteins, to 

generate thiyl radicals responsible for initiating thiol-ene photopolymerization and 

gelation [1]. The process repeats in a rapid step-growth manner to form a thiol-ene 

hydrogels [9]. Therefore, higher eosin-Y concentration leads to a higher initiation rate 

and faster gelation. 

 

(A)       (B) 

 

Figure 4.14  Effect of eosin-Y concentration on (A) gelation kinetics and (B) gel points of 

PEG4NB-DTT hydrogels formed by visible light-mediated thiol-ene 

photopolymerization.  (PEG4NB: 10 wt%; N = 3) 
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While more initiators in the precursor solution accelerated initiation rate in thin 

hydrogel samples, higher eosin-Y concentration negatively affected network cross-

linking efficiency in bulky hydrogels under the same gelling conditions (i.e., 

polymerization time and light intensity).  This phenomenon was especially prominent for 

thicker gels.  We fabricated thiol-ene hydrogels with two thicknesses (1 and 3 mm) using 

different eosin-Y concentrations (0.1 to 2.0 mM, polymerized for 4 minutes) and 

characterized gel fractions and equilibrium swelling ratios.  As shown in Figure 4.15A, 

while thinner gels (e.g., 1 mm) had high gel fraction (> 95 %) regardless of eosin-Y 

concentrations, thicker gels (e.g., 3 mm) prepared with 2.0 mM eosin-Y had significantly 

lower gel fractions (72.5 ± 0.7 %) compared to gels prepared with 0.1 mM eosin-Y (90.5 

± 3.3 %).  In general, gels with lower gel fractions reached higher equilibrium swelling 

ratios due to lower cross-linking efficiencies (Figure 4.15B) [9].  Interestingly, gels 

prepared with 1 mm thickness also exhibited higher swelling ratios at high eosin-Y 

concentrations (i.e., 1.5 and 2.0 mM), even though the dependency with eosin-Y 

concentration was less prominent compared to thicker gels.  At higher eosin-Y 

concentrations, there is a higher tendency of eosin-Y quenching and termination that 

results in pendent polymer chains (Figure 4.10).  While this type of network non-ideality 

did not cause reduction in gel fraction, it effectively decreases network cross-linking 

density that leads to higher gel swelling. For example, although all samples having a 

thickness of 1 mm have a similar gel fraction, the effects of light attenuation and eosin-Y 

quenching resulted in increased swelling ratio at high eosin-Y concentrations (e.g., 1.5 

and 2.0 mM, Figure 4.15). 
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(A)       (B) 

  

Figure 4.15  Effect of gel thickness and eosin-Y concentration on (A) gel fraction and (B) 

equilibrium swelling ratio of PEG4NB-DTT hydrogels formed by visible light-mediated 

thiol-ene photopolymerization for 4 minutes.  (PEG4NB: 10 wt%; N = 3)  

 

Comparing data presented in Figure 4.14 and Figure 4.15, it is clear that while 

eosin-Y serves as a visible light photoinitiator for thiol-ene reactions, it may also hinder 

network cross-linking, especially at a higher concentration or when it was used to form 

thicker gels.  The lower gelation efficiency at a higher eosin-Y concentration was 

believed to be a result of a higher degree of light attenuation in thicker samples caused by 

the red eosin-Y.  Light attenuation may result in slight network heterogeneity following 

cross-linking.  However, due to the nature of orthogonal step-growth thiol-ene chemistry, 

these thiol-ene hydrogels will inherently be more homogeneous than all other chain-

growth photopolymerized hydrogels. If desired, other parameters (e.g., light intensity and 

macromer concentrations) could be tuned to improve network cross-linking at higher 

eosin-Y concentration [62].  

 

 

4.3.5 Sequestering of Eosin-Y in Thiol-ene Hydrogels 

As shown in Figure 4.16A, gels cross-linked using higher eosin-Y concentrations 

appeared redder, even after extended (48 hours) incubation in PBS to leach out the 

residual dye.  In addition, we found that a significant amount of eosin-Y became 

permanently sequestered in the gels in an eosin-Y concentration dependent manner 
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(Figure 4.16B).  For example, after 48 hours incubation in PBS, roughly 26 nmol (or 

25%) of eosin-Y retained in hydrogels fabricated using 2.0 mM eosin-Y. The 

sequestration of eosin-Y in these hydrogels was more noticeable in gels cross-linked with 

higher eosin-Y concentrations.  

 

(A)            (B) 

       

 

Figure 4.16  (A) Photographs of thiol-ene hydrogels formed by visible light-mediated, 

eosin-Y initiated thiol-ene photopolymerizations before (left) and after (right) swelling 

for 48 hours (eosin-Y concentration from left to right: 0.1, 0.5, 1.0, 1.5, 2.0 mM). (B) 

Effect of eosin-Y concentration on its retention in thiol-ene hydrogels. (PEG4NB: 10 

wt%; N = 3) 

 

 

The sequestration of eosin-Y in PEG hydrogels (mesh size: ~20 nm for 10 wt% 

PEG4NB-DTT hydrogels) was unexpected because it was unlikely for eosin-Y (MW 

~692 Da) to be physically ‘trapped’ within the highly swollen and permeable gels.  Based 

on the principles of radical polymerization, one potential explanation for the 

sequestration of eosin-Y is the quenching or termination reaction of protonated and 

radical-bearing eosin-Y (EY-H●) due to reactions with live carbonyl radicals on cross-

linked PEG-norbornene or thiyl radicals on pendent DTT (Figure 4.10).  A second 

possibility for the retention/sequestration of eosin-Y in the hydrogels was the existence of 

binding affinity between eosin-Y and these PEG hydrogels.  To test the hypothesis of 

potential binding affinity between eosin-Y and thiol-ene hydrogel, UV/Vis absorbance 
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spectra of eosin-Y before and after visible light exposure were assessed in the presence of 

different relevant components (i.e., PEGdNB, DTT, or both) separately.  The results 

shown in Figure 4.17A indicate that visible light exposure did not significantly affect the 

absorbance signature of eosin-Y (both maximum absorbance and peak wavelength).  On 

the other hand, the inclusion of DTT not only decreased ~52 % of maximum absorbance, 

but also caused a slight shifting of eosin-Y peak wavelength from 517 nm to 505 nm 

(Figure 4.15B), suggesting the occurrence of photochemical reaction between DTT and 

eosin-Y.  Interestingly, a shifting of peak wavelength from 516 nm to 522 nm was 

observed in the presence of PEGdNB with minimal change in maximum absorbance 

(Figure 4.17C).  No spectrophotometric difference was found when PEGdNB was 

replaced with hydroxyl-terminated PEG (data not shown).  Further, visible light exposure 

in the presence of eosin-Y, PEGdNB, and DTT (i.e., with thiol-ene reactions) resulted in 

a higher degree of reduction in eosin-Y maximum absorbance (~64 %), while the peak 

wavelength shifted from 522 nm to 510 nm (Figure 4.17D), a phenomenon similar to that 

shown in Figure 4.17B.  The shifting in peak wavelength from 516 nm to 522 nm without 

chemical reaction suggests binding affinity between eosin-Y and PEG (potentially due to 

hydrogen bonds).  On the other hand, visible light exposure in the presence of chemically 

reactive species (e.g., DTT and PEGdNB) caused a shifting of peak wavelength back to a 

lower value (i.e., 12 nm difference).  This phenomenon implies a change in eosin-Y 

molecular structure, potentially due to reactions between excited eosin-Y and the reactive 

macromer species (e.g., adduct to PEG hydrogel network).  
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Figure 4.17  UV/Vis spectra of eosin-Y before (solid line) and after (dashed line) visible 

light exposure for 4 minutes in the presence of different components: (A) eosin-Y only; 

(B) eosin-Y and DTT; (C) eosin-Y and PEGdNB; (D) eosin-Y, PEGdNB, and DTT.  

Wavelengths indicated in each figure represent the peak absorbance before (top) and after 

(bottom) light exposure. (E) UV/Vis spectra of freshly prepared (solid line) and 

recovered (dashed line) eosin-Y. The wavelength of the peak absorbance for both 

samples was at 516 nm. Eosin-Y concentration in all measurements: 0.02 mM (N = 3). 
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4.3.6 Re-excitability of Eosin-Y to Form Thiol-ene Hydrogels 

As described earlier, excess eosin-Y was released into the buffer solution during 

hydrogel swelling.  From results shown in Figure 4.17, it is clear that eosin-Y, even after 

light exposure, still absorbs light in the visible light range.  Since eosin-Y is not a 

cleavage type photoinitiator, we hypothesized that the excess eosin-Y could be used to 

initiate additional thiol-ene photo-click reactions.  To demonstrate this feasibility, the 

spectrophotometric property of eosin-Y recovered from a pre-formed hydrogel was 

evaluated and compared to freshly prepared eosin-Y at an equivalent concentration (0.02 

mM).  The absorbance spectrum of the recovered eosin-Y overlaps with freshly prepared 

eosin-Y and still peaked at 516 nm (Figure 4.17E), suggesting that eosin-Y could be re-

excited for sequential cross-linking reactions.  It is important to note that in Figure 4.17B 

and Figure 4.17D, the measurements were conducted in the presence of reactive species 

while the samples used in Figure 4.17E were recovered eosin-Y from a cross-linked PEG 

gels.  When recovered eosin-Y (at 0.1 mM) was used to initiate visible light-mediated 

thiol-ene gel cross-linking, the gel point was roughly 10 seconds slower compared to 

gelation using fresh eosin-Y (Figure 4.18).  Furthermore, a significantly lower elastic 

modulus (~3.6 and ~6.4 kPa for gels prepared using recovered and fresh eosin-Y, 

respectively) after 240 seconds of light exposure (Figure 4.18) and a lower gel fraction 

was obtained (92 % and 99 % for 1 mm thick gels prepared with recovered and fresh 

eosin-Y, respectively).  While the recovered eosin-Y does not have the same initiation 

capacity compared to freshly prepared eosin-Y, it is important to note that the eosin-Y 

concentration was kept low at 0.1 mM and a higher concentration may be used to 

compensate the slightly lower initiation capacity.  Nonetheless, recovered eosin-Y 

retained the ability to re-initiate thiol-ene photopolymerization to fabricate hydrogels or 

conjugate biomolecules.  
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Figure 4.18  Evolution of elastic (G’) and viscous (G”) moduli during in situ gelation of 

PEG4NB-DTT using fresh or recovered eosin-Y at 0.1 mM as photoinitiator (PEG4NB: 

10 wt%, N = 3). Error bars were neglected for clarity. 

 

 

4.4   Cytocompatible and Multi-structural Thiol-ene Hydrogels  

Formed by Visible Light 

 

 

4.4.1 Cytocompatibility of Thiol-ene Hydrogels Using Type II Photoinitiator 

We evaluated the cytocompatibility of these visible light-mediated thiol-ene 

hydrogels using hMSCs (encapsulated at 5 × 10
6
 cells/mL).  Our results revealed that 

visible light-mediated thiol-ene hydrogels were highly cytocompatible for hMSCs 

following photoencapsulation (Figure 4.19A and 4.20, ~95 % initial viability determined 

by live/dead staining) and prolonged in vitro culture (Figure 4.19B).  On the other hand, 

the viability of hMSCs encapsulated in conventional visible light-mediated chain-growth 

PEGDA hydrogels was relatively low and declined rapidly as time (Figure 4.19A and 

4.19B).  Although one may argue that the higher hMSC viability in thiol-ene hydrogels 

could be a result of hydrolytic degradation of PEG4NB hydrogels [23], our controlled 

experiments using hydrogels crosslinked by an amide-linked, non-degradable PEG4aNB 

macromer also supported higher degree of hMSC survival as compared to the chain-

growth PEGDA hydrogel (Figure 4.19B).  Interestingly, it was reported that visible light-
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mediated chain-growth PEGDA gels supported survival of hMSCs [26]. In that particular 

study, however, the cells were encapsulated at an extremely high density (25   10
6
 

cells/mL), which might promote cell survival due to paracrine signaling.  We also 

examined the cytocompatibility of hydrogels crosslinked by different concentrations of 

eosin-Y (0.1 and 1 mM) but did not find significant cellular damage even at high eosin-Y 

concentration (Figure 4.20).   
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Figure 4.19  Cytocompatibility of visible light-mediated thiol-ene photopolymerizations. 

(A) Representative confocal z-stack images of hMSCs stained with Live/Dead staining 

kit on day 1 and 14.  hMSCs were encapsulated (5 × 10
6
 cells/mL) in step-growth 

degradable PEG4NB-DTT (left column) or non-degradable PEG4aNB-DTT (middle 

column) hydrogels, as well as chain-growth non-degradable PEGDA hydrogels (right 

column). All gel were fabricated with 10 wt% PEG macromer, 1 mM CRGDS, and 0.1 

mM eosin-Y.  In chain-growth PEGDA photopolymerization, TEOA (0.75 vol%) and of 

NVP (0.1 vol%) were added to facilitate gelation. (Scale: 100 μm). (B) hMSCs viability 

measured by Alamarblue®  reagent (N = 3). 
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0.1 mM 1.0 mM 

  

Figure 4.20  Confocal z-stack images of hMSCs stained with Live/Dead staining kit (day 

1 post-encapsulation). hMSCs were encapsulated in 10 wt% PEG4NB-DTT hydrogels 

crosslinked using 0.1 or 1.0 mM eosin-Y (cell packing density: 5 × 10
6
 cells/mL , scale: 

100 μm).  

 

An early and important application of visible light-mediated chain-growth 

PEGDA hydrogels was the formation of conformal coating for isolated islets [11]. We 

were interested in comparing the cytocompatibility of our visible light-initiated thiol-ene 

gels with the conventional PEGDA system by means of pancreatic -cell encapsulation.  

We encapsulated radical sensitive MIN6 -cells at 2 × 10
6
 cells/mL in both systems and 

found that cell viability was significantly higher in the visible light-initiated thiol-ene gels 

compared to the PEGDA system (Top panel, Figure 4.21).  Furthermore, MIN6 -cells 

formed spherical aggregates only in the thiol-ene hydrogels but not in conventional 

PEGDA hydrogels (Bottom panel, Figure 4.21A).  We have recently reported a similar 

result using UV-mediated thiol-ene photopolymerization [20]. We believe the significant 

cell death (for both hMSCs and MIN6) in the chain-growth PEGDA system was a 

collective result of high concentrations of radical species [27], formation of dense 

hydrophobic polyacrylate kinetic chains, and the potential cytotoxicity from TEOA and 

NVP. 
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Figure 4.21  (A) Confocal z-stack images of MIN6 cells stained with Live/Dead staining 

kit. Cells were encapsulated in PEG4NB-DTT or PEGDA hydrogels using 0.1 mM eosin-

Y (scale: 100 μm).  (B) MIN6 viability quantified by Alamarblue® reagent. (10 wt% 

PEG hydrogels, cell packing density: 2 × 10
6
 cells/mL, 0.75 vol% TEOA and 0.1 vol% of 

NVP were used in PEGDA hydrogels, N = 3, mean ± S.D.) 
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4.4.2 Multi-structure Thiol-ene Hydrogels 

Proof-of-principle studies were conducted to explore the utility of the new 

interfacial thiol-ene gelation scheme on forming multilayer hydrogels.  As shown in 

Figure 4.22A, we synthesized a three-layer hydrogel construct using sequential visible 

light-mediated thiol-ene photopolymerizations.  To fabricate this simple multilayer 

hydrogel, we only added eosin-Y in the bottom layer.  The formation of the middle and 

top layers was due to the diffusion of eosin-Y from the immediate adjacent layer.  

Although no additional initiator was added in the middle and top layers, the thickness of 

each layer after 10 minutes visible light exposure was similar (~2 mm). This was due to 

the use of a fixed pre-polymer solution volume (25 μL) in each layer and a three-fold 

higher light intensity (200,000 Lux) that resulted in complete gelation. Controlled 

experiments also showed that the formation of multilayer gels was not due to initiator-

free polymerization as gelation did not occur (after 60 minutes light exposure) without 

the presence of eosin-Y.  In addition, Figure 4.22B shows the formation of a thick gel 

coating (~ 5 mm diameter  6 mm height cylinder) from a thin hydrogel disk (2 mm 

diameter  1 mm height).  This coating was formed without the inclusion of additional 

initiator in the coating macromer solution.  More importantly, light attenuation was not a 

significant issue in forming this thick construct because there was no eosin-Y in the 

precursor solution and the gel cross-linking reaction was initiated from the surface of the 

core gel.  The results of Figure 4.22A and 4.22B show that the formation of the 

multilayer construct was not solely due to eosin-Y diffusion but surface-mediated 

polymerization. In Figure 4.22, surface-mediated polymerization might have played a 

more significant role in allowing the growing of subsequent gel layers beyond the 

diffusional distant of eosin-Y. Due to the step-growth nature of the reactions, we believe 

that the properties in each layer will remain similar.  However, from the view point of 

constructing biomimetic tissues with multilayer constructs, it is actually beneficial to 

have layer of gels with different properties.  Future studies will focus on generation and 

characterization of multilayer gel structures with different material properties (e.g., 

crosslinking density, reaction kinetics, etc.).   
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While conventional visible light-mediated photopolymerization techniques could 

be used to fabricate multilayer hydrogels [44, 64, 65], additional initiating species and co-

monomers are required to generate sufficient radicals for initiating cross-linking.  

Furthermore, prior visible light gelation systems were all based on chain-growth 

photopolymerization that has been shown detrimental to sensitive cells and growth 

factors [3, 46].  Chain-growth polymerized gels also have heterogeneous network 

structures [66], which may not be ideal for releasing therapeutically-relevant molecules.  

The unique visible light-mediated interfacial thiol-ene gel coating system is comparable 

to the glucose oxidase (GOx) mediated gel coating system reported by Bowman and 

colleagues [47-49].  The GOx-mediated gel coating system, however, uses multiple 

initiator components (i.e., GOx, glucose, and ferrous ion) to initiate polymerization 

reactions.  Because the process produces highly cytotoxic hydrogen peroxide (H2O2), a 

second enzyme, catalase, has to be included in the macromer solution to prevent cellular 

damage.  Another disadvantage of GOx-mediated polymer coating system is that GOx, 

being a bulky enzyme (Rh ~43 Å ), is effectively trapped within the growing polymer 

layer.  The presence of this additional component in the gel coating may cause unwanted 

complications.  The interfacial thiol-ene gelation scheme presented here overcomes many 

disadvantages associated with other multilayer hydrogel systems and additional work is 

underway to exploit the utilities of this gel coating system in tissue engineering 

applications. 
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(A)              
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Figure 4.22  (A) Photograph of a three-layer thiol-ene hydrogel formed from sequential 

visible light-mediated thiol-ene photopolymerization. PEG4NB macromer concentration 

was 10 wt% in each layer. Eosin-Y concentration in the bottom layer was 2.0 mM.  5 

wt% of blue microparticles was added in the top layer for visualization purpose. (B) 

Photograph of an example small gel disc (left, 2 mm diameter × 1 mm height) used to 

fabricate a thick gel coating (right, 6 mm diameter × 6 mm height). (Note: gel in the left 

curled up due to partial drying) 

(Scale: 5 mm)
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5. CONCLUSIONS AND RECOMMENDATIONS 

 

 

In summary, we have shown that PEG hydrogels formed by step-growth thiol-ene 

photopolymerizations exhibited high degree of tunability in network crosslinking and 

degradation.  In addition to the improved network properties compared to Michael-type 

hydrogels, we also found that thiol-ene hydrogels were hydrolytically degradable and the 

degradation was base-catalyzed and followed a bulk degradation mechanism.  Through 

experimental and theoretical investigations, we found that the degradation of thiol-ene 

hydrogels was primarily governed by ester bond hydrolysis and was accelerated as 

network non-ideality increases.  In addition, we were able to tune and predict the 

hydrolytic degradation behavior of thiol-ene hydrogels by manipulating the degree of 

network crosslinking and peptide crosslinker sequences.  By altering thiol-ene hydrogel 

protease sensitivity, the mode of thiol-ene hydrogels degradation could be switched from 

surface erosion to bulk degradation. Furthermore, we have demonstrated an innovative 

approach for forming thiol-norbornene hydrogels by visible light-mediated, eosin-Y-

initiated photo-click reactions.  This gelation scheme preserves the rapid and efficient 

step-growth network crosslinking without the use of cytotoxic co-initiating components, 

thus ensuring high cytocompatibility for hMSCs and MIN6 -cells. We have also 

developed a simple yet effective visible light-mediated interfacial thiol-ene 

photopolymerization scheme that can be used to create multilayer gel structures for 

biomedical applications.  In addition to characterizing the effects of eosin-Y 

concentration on gel cross-linking efficiency, we also verified that part of the eosin-Y 

retained its ability to re-initiate thiol-ene photo-crosslinking.  Utilizing this unique 

property, we have further designed step-growth hydrogels with multilayer structures and 

a wide range of thicknesses (from tens of microns to a few millimeters).  No additional 

initiator is required in the preparation of hydrogel coating or multilayer gel, given that
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sufficient eosin-Y is available from the core or adjacent hydrogel layers.  This complete 

step-growth multilayer hydrogel system does not require and does not generate any 

cytotoxic components.  Therefore, these multilayer gels may serve as a highly 

cytocompatible platform for creating complex multifunctional tissue substitutes.  

 

This thesis work has demonstrated the three specific aims by exploring the 

degradability of thiol-ene hydrogels, developing an alternate approach to form 

cytocompatible thiol-ene hydrogels for cell encapsulation and demonstrating a light-

dependent polymerization to form multilayer construct. Future investigations can focus 

on exploring the utility of using thiol-ene photo-click polymerization as a platform to 

study biological phenomenon. Future studies could focus on improving the statistical-co-

kinetic model to predict degradability of thiol-ene hydrogels with various macromer or 

crosslinker functionalities. In addition, tissue engineering studies such as designing 

biomimetic microenvironements or stem cell niche could be conducted by exploiting the 

advantage of hydrogels degradability. The visible light-mediated thiol-ene 

photopolymerization could be employed in clinical-related studies. Lastly, further 

understanding on the generation and characterization of multilayer gel structures with 

different material properties (e.g., crosslinking density, reaction kinetics, etc.) could be 

useful for controlled multiple drugs or proteins delivery.  
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