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ABSTRACT 

This dissertation revolves around three issues on the urban area of Port-au-Prince, Haiti: 

the population distribution pattern, its estimation from remote sensing images, and its 

relationship with environmental quality. It follows a three-paper format. Paper 1 examines the 

population density pattern by the monocentric and polycentric models, based on the 2003 census 

data. The regression results show a poor fitting power of monocentric functions, and improved 

but less than satisfactory R2 by polycentric functions. A five-sector conceptual model is proposed 

to capture the urban structure shaped by the absence or lack of institutional enforcement of land 

use regulations and urban planning. Paper 2 proposes a population estimation model based on 

Landsat ETM+ images that are widely available. The subpixel vegetation-impervious surface-

soil (VIS) fractions derived from the Landsat multispectral bands (the mean value of houses 

fraction image, the mean value of vegetation and the standard deviation of vegetation fraction 

image) are used as predictors for urban population density. The research indicates that the 

geographically weighted regression (GWR) model, which accounts for spatial non-stationarity, 

performs much better than its Ordinary Least Square counterpart. Paper 3 uses multiple factors to 

assess and map the urban environmental quality (UEQ). In addition to parameters typically 

considered in previous studies, this study includes natural hazards and other parameters unique to 

Port-au-Prince. Crowdedness, waste, lack of vegetation, presence of slums and water body 

pollutions are considered as the most critical factors (negatively) affecting the quality of the 

environment in Port-au-Prince. All are exacerbated by population pressure on the resources, i.e., 

population density. The scores for corresponding factors are integrated together by weights 

extracted from a panel of local experts. The overall UEQ results are validated by field surveys. 

Each paper discusses important implications of major findings for public policy and planning. 
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CHAPTER I INTRODUCTION 

Empirical studies of urban population density patterns help us understand spatial 

structures of modern cities. Population is at the heart of economic and social activities in a city, 

and there are plentiful studies of urban population density patterns in developed countries (1989). 

It is commonly observed that there is a negative relationship between population density and 

distance to gravitation point(s) called city center(s), which means that population density 

declines as moving away from city center(s). This function entails a trade-off between shorter 

travel distance and time to workplace (and higher rent) and more amenities (but longer commute 

to work). These amenities include larger lots size, lower crime rate, lower air pollution, lower 

noise level, and more greenness, etc. In other words, the structure of an urban area can be 

captured by its population density pattern. This pattern has also been found in some cities in 

developing countries such as Beijing and Shenyang in China, and Calcutta in India. However, 

can these models represent the urban complexion in cities of Latin America like Port-au-Prince? 

Unlike cities in developed countries where options for the tradeoff are always available, 

the urban area of Port-au-Prince is affected by at least two major constraints. One is the limited 

availability of residential lands as the city is confined by the coastline on the one side and 

mountains on the other. The other constraint is economic means, as the city is dominated by low-

income settlers whose choice of residence is dictated by their affordability and availability of 

space with very little concerns of commuting time or amenities. The affordability of residential 

lands in cities like Port-au-Prince is intimately linked to their intrinsic quality such as the 

environmental quality. The majority of the population is mostly low-income, and left with few 

choices but to share land with minimal or no amenities. As jobs are mostly in the informal 

sectors and unstable, commuting time is hard to plan and certainly not a priority in residential 
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choice. This affects density as defined by the population pressure on land. Therefore, it is not 

surprising that the distances from the city center and other subcenters are not as important as 

supposed in explaining population density in Port-au-Prince. 

The shortage of quality population data is not uncommon in developing countries, and 

may represent a hindrance to critical planning and effective policy that govern modern cities. 

The increasing availability of high resolution satellite images and recent progress in remote 

sensing modeling have made it possible to estimate population distribution from the images. 

Although the models are far from surrogate for accurate counts by census, they nevertheless 

provide useful estimates of population pattern and may be critical in planning resource and 

service allocations in events such as an earthquake and other major natural disasters. 

A new paradigm needs to be proposed, in this dissertation, from the perspective of urban 

environmental quality (UEQ). Density alone is insufficient to decipher the urban structure of 

Port-au-Prince. Urban environmental quality, composed of multiple factors, is considered a more 

comprehensive indicator that defines the urban structure of Port-au-Prince. Factors include those 

commonly found in the literature such as vegetation and traffic-related pollution (gas emission 

and noise), coastal pollution, and water pollution. Many other parameters such as susceptibility 

of natural disasters (flooding, landslide and coastal surge) and exposure to disamenity that are 

unique to Port-au-Prince are also considered. In cities in much of the world familiar to most of 

us, people are drawn to areas with amenities, and thus drive up land price and raise population 

density there. In Port-au-Prince, most residents are low-income with very little economic means, 

and can only afford to settle in crowded areas that are plagued by a variety of disamenity (natural 

disasters, pollutions, noise etc.). When a city such as Port-au-Prince without significant 
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development of multi-story residential buildings, this leads to a close correlation of high 

population density and poor UEQ score, a counter-intuitive phenomenon.          

This dissertation assesses several issues in relation to population density patterns in the 

urban area of Port-au-Prince with GIS-based spatial analysis methods. Specifically, the 

objectives pursued in this dissertation are three-fold:  

1. Examining the urban structure of Port-au-Prince as shaped by its population density 

pattern; 

2. Proposing a model to estimate population from high resolution satellite imageries, 

and validating the model in reference to census data.  

3. Assessing and integrating various UEQ factors and using the result to refine our 

understanding of the urban structure. 

The working hypotheses for this dissertation are as follows: 

1. Distance from CBD is not a significant predictor of population density in Port-au-

Prince. 

2. Population density can be estimated by variables derived by the V-I-S model from 

remote sending images, and the estimation is more accurate by the Geographically 

Weighted Regression (GWR) than the Ordinary Least Square (OLS) model. 

3. Urban Environmental Quality (UEQ) in Port-au-Prince is population-driven, and 

higher population density is correlated with poorer UEQ. 

The dissertation follows a three-paper format. Chapter III is based on a paper published 

in Cities (Joseph and Wang, 2010) that examines the urban structure of Port-au-Prince by its 

population density patterns based on the 2003 census data at the census block (Section 

d’énumération or SDE) and district levels. Chapter IV is based on a paper published in 
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GIScience & Remote Sensing (Joseph et al., 2012) that uses a combination of variables derived 

from a Landsat ETM+ image to estimate population in Port-au-Prince. Chapter V makes the third 

paper to assess and map the UEQ of Port-au-Prince. All three papers share the same issues 

related to the study area and data sources that are discussed in the preceding Chapter II. Chapter 

VI makes a summary of the findings and presents the conclusions. It also discusses the 

shortcomings of the research, proposes ways for future improvement, and outlines specific 

implications for urban planning and contributions in other domains. 
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CHAPTER II STUDY AREA AND DATA SOURCES 

II.1 Study Area 

The study area is Port-au-Prince, the administrative, commercial and political capital city 

of Haiti, but the second smallest city of the country. According to the fourth general population 

and housing census by the Haitian Institute of Statistics and Informatics (IHSI) (2006), the city 

had a population of over 750,000 (9% of the country’s population) in a total area of 36 square 

kilometers in 2003. The populated urban area had 732,157 residents in about 26 square 

kilometers, which is 28160 people per square kilometer. Port-au-Prince is a coastal city with 

elevation rising from around the sea level in the northwest to over 600 meters in the southeast 

(Figure 1). Along with several highly populated cities around Port-au-Prince, the larger 

metropolitan area had a population close to 3 million. People commute daily between these cities 

and Port-au-Prince. Prior to the earthquake, downtown Port-au-Prince had the largest 

commercial center in the larger metropolitan area.  

The basic geographic unit for this study is Section d’énumération or SDE for the purpose 

of statistical reporting (similar to “census block” in the U.S.). A SDE is the smallest unit in a 

communal section (similar to “county” in the U.S.). A SDE is delimited by geographic features 

such as waterways, mountains and roads, and generally contains 150-200 houses (IHSI 2006). 

SDEs are delineated by the IHSI’s internal cartographic and spatial division. A maximum of five 

contiguous SDEs are grouped to form a district, which is a higher and larger spatial construct 

than SDE used in the census. Our study area has 670 SDEs and 171 districts.  The average size 

of the SDEs was 0.038 km2 with the smallest SDE of just 0.0028 km2 and the largest SDE of 

0.86 km2. Population density varied a great deal across SDEs with an average density as high as 

50,166 persons per km2. Basic descriptive statistics for the study area are presented in Table 1.  
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Table 1 : Basic statistics in urban Port-au-Prince 

 SDE level (n=670) District level (n=171) 

 Area 
(km2) Population Density 

(people/ km2) 
Area 
(km2) Population Density 

(people/ km2) 

Minimum 0.0028 206 598 0.03 2,403 4,215 

Average 0.038 1,093 59,718 0.19 5,423 50,166 

Maximum 0.86 2,786 335,828 0.93 9,809 159,063 

Total 25.47 732,157 28,757 25.47 732,157 28,757 
 

Most of the SDEs had population slightly over 1,000 and area of less than 0.04 km2. The 

most populous SDE had 2,786 residents, and the largest SDE in terms of area size was less than 

1 km2. The average population density at the SDE level in Port-au-Prince was as high as 59,718 

persons per km2. 

  
Figure 1 : Study area - Port-au-Prince, Haiti. a) Location within the West department; b) 

DEM 
 

II.2 Data Sources 

Demographic data were collected from the Haitian Institute of Statistics and Informatics 

(IHSI), which implemented the general population census of 2003. The reporting census unit is 

(a) (b) 
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the “Section d’énumeration” (SDE). In addition to population, the number of buildings in each 

SDE is also reported. However, these data were not available in GIS format. Only a PDF map 

and an Excel file were distributed. 

A Landsat 7 Enhanced Thematic Mapper Plus (ETM+) image (path 009 row 047) was 

used in this research. It was obtained on March 7th 2003 from the USGS Earth Resource 

Observation Systems Data Center after corrections for radiometric and geometrical errors and 

had 2% of clouds. The image scene was rectified and registered to the boundaries of the census 

units (SDE). In addition, high resolution satellite images were acquired from Google Crisis 

Response Website (http://www.google.com/relief/haitiearthquake/geoeye.html) for reference. 

These images were true color and included 4-m resolution IKONOS images and 1.65 m 

resolution GeoEye-1 images. These images were acquired the week following the earthquake 

that struck the metropolitan region of Port-au-Prince on January 12, 2010. These images were 

used for visual inspection and referencing though changes over time and from the earthquake 

might have occurred.  

Waterways and roads were obtained from the National Center for Geographic 

Information System (CNIGS) and the United Nations mission in Haiti. Other physical data such 

as city centers, public markets, slums, coastline, and cemetery were digitized from a topographic 

map published by the Hydrographic and Topographic Center of the Defense Mapping Agency 

and updated with the Ikonos image aforementioned. Peaks, sinks and elevation data were also 

digitized from the same topographic map with the contours 10 meters apart. They were used to 

generate the Digital Elevation Model (DEM) at 10 m resolution.  

Data used for weighing the parameters and to validate the results were compiled from 

two separate surveys, a field survey carried face-to-face out on 407 residents in Port-au-Prince, 

http://www.google.com/relief/haitiearthquake/geoeye.html�
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and an expert survey generated from Survey Monkey and distributed by email. Samples of the 

survey are provided in Appendix 5. 
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CHAPTER III POPULATION DENSITY PATTERNS IN PORT-AU-
PRINCE, HAITI: A MODEL OF LATIN AMERICAN CITY?1

III.1 Introduction 

 

Since the classic work by Clark (1951), population density functions have been used as 

an effective way to capture urban spatial structures. McDonald (1989) considers the population 

density pattern as “a critical economic and social feature of an urban area.” Empirical research of 

urban population density, while plenty in developed countries, is much less in developing 

countries (Mills and Tan 1980). Examples of previous studies on third-world cities include Berry 

and Kasarda (1977) for Calcutta, India, and Wang and Zhou (1999) and Wang and Meng (1999) 

for Beijing and Shenyang, China, respectively. In these three cases, a negative exponential 

gradient similar to Western cities was observed. The main difference between them resided in 

the trend over time. Whereas it remained constant in Calcutta, indicating the absence of 

suburbanization, the density gradient became flatter over time in Beijing and Shenyang. 

However, the literature on this topic is almost nonexistent in poor countries such as Haiti. 

One major obstacle is the lack of reliable data. While population data have become more 

accessible recently, Haiti does not have a spatial database system like the TIGER files in the U.S. 

that accompanies the release of population censuses. This research builds a Geographic 

Information System (GIS) at the SDE (Section d’énumération) level for Port-au-Prince, the 

capital city of Haiti, and links with the most recent census data for the study area in 2003 to 

examine its population density patterns. No other socioeconomic variables such as income or 

household size in Port-au-prince are available for our study. On the methodological front, earlier 

work of population density patterns is based on the monocentric model, i.e., how population 

                                                           
1 Joseph, M. & F. Wang (2010) Population Density Patterns in Port-Au-Prince, Haiti: A Model 
of Latin American City. Cities, 27, 127-136 
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density varies with distance from one single center. Since the 1970’s, more and more studies 

have adopted the polycentricity framework that recognizes multiple centers in a city (Ladd and 

Wheaton 1991, Berry and Kim 1993). Polycentricity recognizes secondary centers or subcenters 

in addition to the central business district (CBD) in most large cities. This research applies both 

the monocentric and polycentric models to Port-au-Prince, and analyzes the impacts of the 

primary center as well as subcenters on citywide population distribution.  

There has been some descriptive work on urban issues of Port-au-Prince, but no 

systematic study of population density patterns. Are urban density patterns observed for cities in 

developed and/or developing countries applicable to Port-au-Prince? If they are different, what 

factors account for the differences? Griffin and Ford (1980, 1993) suggested a Latin American 

city model. In their model, the elite occupy the urban core, and the massive low-income residents 

settle in the periphery. As a result, high concentrations of population are found in the peripheral 

areas in contrast to the trend observed in cities in developed countries. Does this model fit Port-

au-Prince?  

This case study is not a trivial addition to the rich literature of empirical work of urban 

density functions. Unlike western cities with structured urban planning, the development of Port-

au-Prince, though in a free market economy, has taken place under political instability that 

resulted in anarchy and unregulated land uses, particularly for the last two decades. The political 

slackness has shaped the urban landscape of Port-au-Prince, and its imprints on its population 

distribution need to be assessed. This endeavor has significant implications. Understanding the 

population distribution sets the baseline for urban planners and governmental institutions to plan 

and deliver basic social and environmental goods and services. It will also help inform private 

businesses to make the best decision in allocating their investment resources.  
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III.2 Data preparation 

IHSI published the 2003 population and housing census in 2006 including a map of 

SDEs. However, no spatial data such as GIS were released. To reconstruct the GIS database for 

this study, we scanned the map printout, used control points to geocode the map, and digitized it 

into a shapefile in the ArcGIS platform. Attribute data from the census contained each SDE’s 

name, id, other geographic delimitation (e.g., district), and demographic information such as 

population and housing units. The attribute data were processed, saved as a CSV file, and then 

joined with the newly-constructed shapefile for subsequent spatial analysis. The shapefile at the 

district level was created by using the “dissolve” tool in ArcGIS given the corresponding ids 

between SDEs and districts. Distances from each SDE (or district) to the major center and 

subcenters of Port-au- Prince were between its centroid and these centers. Area and population 

density for each SDE (or district) were also computed in ArcGIS. Figures 2 and 3 show the 

population density distribution in Port-au-Prince at the SDE and district levels, respectively. The 

high density areas are located northeast and southwest of the city center, which house some of 

the poorest residents that have moved to the city recently. The southeast area towards the edge of 

the city is on a higher ground with relatively low densities, and is occupied by upper-income 

residents. Some low-density spots around the city center are either commercial/industrial areas or 

governmental buildings. 

Analysis of population density patterns begins with identifying the city center. The city 

center of Port-au-Prince is chosen as the intersection of two major roads, namely Boulevard 

Jean-Jacques Dessalines and Rue Pavée. This intersection with the busiest traffic in Port-au-

Prince also anchors the roads leading to two other adjacent cities, Carrefour and Petion-Ville, 
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part of the larger metropolitan area. It is the commonly recognized center of Port-au-Prince in the 

heart of its central business district (CBD).  

 
Figure 2 : Population density in Port-au-Prince at the SDE level 2003 

 
Figure 3 : Population density in Port-au-Prince 2003 at district level 
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In absence of local knowledge, Alperovich (1982) proposed a method to help identify the 

city center. The method identifies the city center as the location producing the highest R2 in 

fitting the population density functions. In order to further validate the location selection of the 

city center, we experimented with eight other possible alternatives such as the intersection of 

Rue Capois at Lalue, Turgeau (College Canado Haïtien), Nazon (Lalue and Martin Luther King), 

Carrefour Petit Four, the National Palace, the intersection of Mgr Guilloux and Oswald Durand, 

and Portail Léogane. Given the small size of the study area, some of these sites are separated by 

less than a kilometer. The results indicated that our selection of the city center yielded the 

highest R2 among the six centers with a negative density gradient. The other two centers with a 

positive density gradient were excluded in the analysis. The remaining six centers were also 

considered candidates for multiple centers in the polycentric model and will be subsequently 

referred to as Centers 1, 2… and 6 in the descending order of R2 values. See Figures 2 and 3 for 

their locations. 

III.3 Population density patterns by the monocentric model 

The monocentric model assumes a city to evolve around one center, i.e., the central 

business district (CBD), which serves as the sole provider for employment (Muth, (1969) ; Mills, 

(1972)). In the vicinity of the CBD, one pays for more expensive housing, and is compensated by 

a shorter commuting distance to work. Therefore, everybody values proximity to the CBD, and 

population density is expected to decrease with distance from the CBD.  

Various functions have been proposed to capture the trend of declining population 

density (Dr) with distance from the CBD (r) (Wang 2006): 

Linear: Dr = a + br      (1) 

Exponential: Dr = aebr     (2) 
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Logarithmic: Dr = a + blnr     (3) 

Power: Dr = arb      (4) 

Polynomial: Dr = a+br + cr2     (5) 

Tanner-Sherratt: lnDr = a + br2    (6) 

Newling: lnDr = a + br + cr2     (7) 

Among the above seven functions, the exponential function fits most cities in the world 

the best. 

To assess the possible presence of Modifiable Area Unit Problem (MAUP), the same 

models were applied to the data at both the SDE and district levels. The results are consistent 

between the two geographic units. Each model at the district level yields a greater R2 than the 

corresponding model in the SDE level. This is not surprising since a district on average is 

composed of four to five SDEs and thus has their average (smoothed) values of distance (r) and 

density (Dr). 

The regression results from the monocentric functions are summarized in Table 2. All 

functions yielded a R2 value smaller than 0.10 with the highest R2 in the Newling’s model and 

the lowest in the power function. Figure 4 shows how the population density changes with 

distance from the city center at the district level, and a trend line of polynomial function is used 

to capture the general pattern. Evidently, urban densities in Port-au-Prince do not closely follow 

the general trend of declining density with farther distance from the city center. One may 

describe the trend as lower densities near the city center, increasing up to 2 kilometers, and then 

decreasing toward the edge. While this indicates a weak association between population density 

and distance, the t-values in most models are indeed statistically significant and represent the 

expected negative correlation between them.  
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III.4 Population density patterns by the polycentric model 

The monocentric functions assume that population densities are identical at the same 

distance from the city center regardless of directions. The lack of fitting power of the 

monocentric functions leads us to look for alternative models. Polycentric functions consider 

more than one center from which densities vary with distances (Small and Song 1994). The 

underlying rationale is the necessity for residents to access several centers including the CBD 

and sub-centers for services and activities. There are different assumptions about the influences 

of multiple centers, ranging from perfectly substitutable to completely complementary (Heikkika 

et al. 1989). This paper tests two most plausible assumptions.  

 
Figure 4 : Population density at the district level fitted by a polynomial function 

The first argues that the influences are complementary and that access to all centers is 

required. In this case, the polycentric density is defined as the product of the monocentric 

exponential functions, i.e., multiplicative effects (McDonald and Prather 1994). The model’s 

logarithmic transformation is written as: 

      (8) 
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where D is the population density of an area, ri is the distance between the area and each center i 

(= 1, 2 …), and a0 and bi are parameters to be estimated.  

The second proposition assumes the polycentric density as the sum of center-specific 

monocentric functions, i.e., additive effects (Griffith, (1981); Small and Song, (1994)). Based on 

the exponential density function, the polycentric function is written as: 

Table 2 : Regression results for the monocentric density functions 

 SDE level (n = 670) District level (n =135 ) 
a b c R2 a b c R2 

Linear 77111 
(18)*** 

-7203 
(-4.3) 

*** 

 
0.027 65307 

(9.0) *** 
-6232 
(-2.3) *  0.036 

Exponential 11.05 
(123) *** 

-0.16 
(-4.6) 

*** 

 
0.030 10.98 

(61) *** 
-0.175 
(-2.6) **  0.047 

Logarithmic 65023 
(22) *** 

-6943 
(-2.1) * 

 0.007 54127 
(11) *** 

-5140 
(-1.0)  0.007 

Power 10.70 
(175) *** 

-0.12 
(-1.8) 

 0.005 10.65 
(87) *** 

-0.12 
(-1.0)  0.007 

Polynomial 44195 
(5.6) *** 

25373 
(3.8) 

*** 

-6666 
(-5.0) 

*** 
0.063 29686 

(2.3) * 
29390 
(2.6) ** 

-7355 
(-3.2) ** 0.106 

Tanner-
Sherratt 

10.95 
(191***) 

-0.04 
(-6.1) 

*** 
 0.053 10.88 

(95) *** 

-0.05 
(-3.5) 

*** 
 0.086 

Newling’s 10.14 
(64) *** 

0.74 
(5.5) 

*** 

-0.18 
(-6.8) 

*** 
0.093 9.82 

(31) *** 
0.97 
(3.6) *** 

-0.24 
(-4.4) 

*** 
0.167 

Note: t values are in parentheses;*** significant at 0.001, ** significant at 0.01, * significant at 
0.05. 

       (9) 

where D and ri are the same notations as in equation (8), and ai and bi are parameters to be 

estimated. 

As explained earlier, we had six candidate sites for multiple centers. These sites are the 

intersections of major roads that attract significant commercial activities. After numerous 
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attempts, the additive effect model in equation (9) would not converge with five or more centers. 

Therefore, only centers 1-4 were included in the regression analysis, and the results are presented 

in Table 3. 

The multiplicative effect model in equation (8) yielded R2 = 0.095. Note that first two 

centers had positive density gradients (b1 and b2), against the intuition of distance decay effect. 

The other two centers had negative gradients that were statistically significant. The additive 

effect model as in equation (9) had R2 close to 0.20. All four centers had negative gradients that 

were statistically significant. The results indicate that the additive effect model better captures 

the population density pattern in Port-au-Prince. 

Table 3 : Regression results for the polycentric models at the SDE level 

 Multiplicative Effects Additive Effects 

a0 
10.113 

(61.37)*** 
 

a1 
 -355890 

(-9.33)*** 

b1 
2.306 

(6.71)*** 
-0.685 

(-7.36)*** 

a2 
 -296943 

(-9.41)*** 

b2 
1.643 

(5.34)*** 
-1.196 

(-7.02)*** 

a3 
 530005 

(8.42)*** 

b3 
-3.676 

(-6.27)*** 
-0.497 

(-14.13)*** 

a4 
 -67259 

(-3.64)*** 

b4 
-0.173 

(-2.74)** 
-1.650 

(-2.66)** 
R2 0.095 0.199 

Note: t values are in parentheses;*** significant at 0.001, ** significant at 0.01, * significant at 
0.05. 
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III.5 A model of Latin American City? 

As illustrated in Figure 5, the Griffin-Ford model for Latin American’s cities includes 

five constructs (Griffin and Ford, (1980, 1993). The CBD is the commercial center and the 

primary location of employment and entertainment for the city. The spine/sector, a commercial 

zone, is a longitudinal extension of the CBD surrounded by the residences of the elite and the 

upper-middle class. This area is marked by the presence of natural and man-built amenities for 

the wealthy. The zone of maturity hosts a relatively stable population in constantly improving 

residences. The zone of in situ accretion is a transitional zone between the periphery and the 

zone of maturity, with modest houses and others in building process. Not all area in this zone has 

adequate public infrastructures. Finally, the squatter settlements zone houses the poor, many of 

whom have recently arrived from even poorer rural areas. Housing quality in the zone is 

undesirable with minimal public services.   

 
Figure 5 : A generalized model of Latin American city structure (based on Griffin & Ford, 

(1980)) 

Port-au-Prince bears some resemblances to the Griffin-Ford model in several aspects: 

primarily the role and location of the CBD along with the commercial spine, and the squatter 
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settlements on the edge of the city. The CBD in Port-au-Prince is the convergence point of main 

transportation activities with heavy traffic in daytime, but becomes empty after sunset. 

Governmental offices and major private commercial buildings dominate the landscape of the 

CBD and the commercial spine with a multitude of small retail and service stores. One main 

scene, common in Latin American cities, is the presence of widespread street merchants. 

However, in contrast to the Griffin-Ford model, areas adjacent to the commercial spine in Port-

au-Prince do not possess the amenities that attract the upper-middle class resident. It could be 

more likened to the zone of maturity, with average housing and public services. Housing and 

population density in this area is stable and unlikely to change barring major urban renovation 

projects. There are also variations within the area in different parts of the city.  

The elite and the upper-middle class are located in the east and southeast areas with 

natural vegetation and high-quality housing despite steep topography. The areas are provided 

with mandatory public services, in contrast to no or minimal services for the zone of squatters 

with similar topography. The lots in the areas are also bigger than those in the transitional zone. 

Despite steep slopes in the areas, the land price is driven up by a high demand for housing and 

diminishing land availability. While the housing is similar to those in suburban areas in western 

cities, the areas are purely residential with no retail stores in the vicinity. 

Areas of squatter settlements have some of the highest population and housing densities, 

and also account for the highest percentage of population in Port-au-Prince. This zone is not 

necessarily limited to the peripheral areas as suggested by the Griffin-Ford model, rather 

widespread in places short of infrastructures and public services with complex topography. 

Residents are drawn to the areas for availability of open space or low-price land, proximity to the 

CBD or the commercial spine, and convenience of access to public transportation. Some of the 
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residents have to travel a long distance to work outside of the city. Some pockets of high 

densities are less than 1.5 kilometers southwest of the CBD and close to the sea. These 

shantytowns have recently been built on former landfills prone to flood and high tide. Major 

high-density concentrations are in northeast and south-southwest areas at two to three kilometers 

from the CBD. There is also a small high-density “island” in the southeast area, surrounded by 

upper-middle class housing. This small pocket is close to a ravine, unattractive for others and 

occupied by squatter inhabitants. The low population density in the south-southeast edge is rather 

attributable to the topographic conditions that have hindered its development.  

Port-au-Prince also has an area similar to the zone of maturity in the Griffin-Ford model 

but not in the same morphologic regularity. It reflects an upward socioeconomic mobility of low-

income to the middle class, replacing long-established residents that moved out of Port-au-Prince 

or emigrated to North America or Europe. This area, not purely residential, is located eastward 

from the CBD. Private schools, medical clinics and other retail services mingle in these 

neighborhoods.  

III.6 Five conceptual zones in Port-au-Prince 

A conceptual model (Figure 6) is designed to further advance our understanding of urban 

structure in Port-au-Prince. Based on our field work and review of satellite images of the city, we 

identified five zones on the district map. These five zones are a combination of zones in the 

Burgess’s (1925) concentric model and sectors in the Hoyt’s (1939) model. Therefore, we use 

the term “zone” and “sector” loosely and interchangeably in the following discussion.  

The first sector is the commercial quarter (see Figure 7) and radiates from the city center 

outward in all direction up to about 1.5 kilometers along the axes of main streets. The seaport at 

the northwest corner is Haiti’s largest in term of commodity throughputs. The average population 
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density of over 50,000 people per square kilometer in this sector is attributable to the 

concentration of long-time low-income households in this sector, most of whom rely on the 

informal commerce for a living. This sector also includes main public administration buildings, 

public parks and market places.  

 
Figure 6 : Five conceptual zones in Port-au-Prince 

The second sector is a transitional zone between the commercial and the residential areas 

with mixed land uses (see Figure 8), bearing some resemblance to the zone of maturity in the 

Griffin-Ford model. Activities in the sector range from groceries to retail stores, services and 

schools, buffered along the main streets. Housing quality in this sector is better than zone 1. 

Better amenities are found toward the edges of the city, and thus it is difficult to draw a clear 

boundary from sector 3 in some areas. The population density is slightly higher than sector 3. 

The third sector is the high-income residential (see Figure 9) with an average density of 

about 25,000 persons per square kilometer. It is located relatively far from the city center in the 

southeastern region of Port-au-Prince with high elevation and often difficult terrain. The sector is 
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occupied by high-income minorities with best amenities (large lots, less vehicle traffic, rich 

vegetation, etc.) with no or minimal commercial activities. As explained previously, this area is 

punctuated by a small pocket of slums in the middle, which carries a high density of near 93,000 

in two SDEs. 

 
Figure 7 : Port-au-Prince CBD 

 
Figure 8 : Transitional zone in Port-au-Prince 

Sectors 4 and 5 are termed “disamenity-north” and “disamenity-south” (see Figure 10), 

separated by the transitional sector. The disamenity-south sector is in the south and southwest 
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areas, and the disamenity-north sector is in the north. They share many characteristics: lack of 

basic services and amenities, unpaved or poorly maintained roads, high population density, 

difficult topography, poor sanitation, and most prone to natural disasters.  

 
Figure 9 : High-income residential area in Port-au-Prince 

 
Figure 10 : Disamenity zone in South Port-au-Prince 

Figure 11 shows the average population density in each zone declining in the order of 

disamenity-north, disamenity-south, commercial, transition and high-income zones. The 

lackluster fitting power of the monocentric models can be easily explained by the higher 
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densities in the two disamenity zones on the city’s outskirt than the central commercial zone at 

the heart of the city. A regression model with dummy variables is constructed to test whether 

population density indeed varies significantly across different zones. 

 
Figure 11 : Average population density by sector 

Four dummy variables (x2, x3, x4 and x5) are used to code each SDE that falls within one 

of the five zones. The commercial sector (zone 1) is used as the reference zone coded as x2 = x3 = 

x4 = x5 = 0. The transition sector (zone 2) is coded as x2 = 1 and x3 = x4 = x5 = 0, the high-income 

sector (zone 3) as x3 = 1 and x2 = x4 = x5 = 0, the disamenity-north sector (zone 4) as x4 = 1 and x2 

= x3 = x5 = 0, and the disamenity-south sector (zone 5) as x5 = 1 and x2 = x3 = x4 = 0. A regression 

model can be constructed as below to test whether and how the population density varies 

significantly across the zones (Wang 2006): 

554433221 xcxcxcxccD ++++=     (10) 

We tested the regression model (10) by defining the dependent variable D as both the population 

density and its logarithm in each SDE. The results are presented in Table 4. 
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= x3 = x4 = x5 = 0, and coefficients c2, c3, c4 and c5 represents the density (or logarithm of density) 

difference between sector 1 and sectors 2, 3, 4 and 5, respectively. All coefficients are 

statistically significant, and validate the conceptual model for the urban structure in Port-au-

Prince. In both models, the highest coefficient is c4 (indicating the highest density) in the 

disamenity-north zone, and then c5 (second highest density) in the disamenity-south zone, and 

both c4 and c5 are positive (indicating higher densities than the reference zone, i.e., the 

commercial zone); the negative c2 and c3 indicate that the transition and high-income zones have 

lower densities than the reference (commercial) zone, and the more negative c3 than c2 shows the 

lowest density in the high-income zone. The regression analysis not only confirms the findings 

from Figure 11 but also shows that the density gaps are statistically significant across the five 

zones.  

III.7 Conclusions 

Port-au-Prince has experienced tremendous growth in recent years because of migrations 

from rural areas and other cities. As the capital city of Haiti, centralization of political power, 

public services and economic activities helps propel its growth. The political transition from a 

dictatorship to succession of short-lived governments has left strong imprints on the recent 

development of Port-au-Prince. Political instability has undermined the governmental power to 

manage land development and natural resources. For the last 20-25 years, many shantytown 

neighborhoods have been erected on marginal lands by taking advantage of the institutional 

volatility and some natural barriers. These barriers take one or more of the following forms: high 

slopes, proximity to floodplains and rivulets, and adjacency to municipal waste conducts and the 

sea. The informal housing, known as bidonvilles (in former French colonies), has some common 

features: no tenure security, lack of basic infrastructures, being dominated by substandard 
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dwellings, and occupying areas unsuited for land use regulations and ill-fitted for development 

(Pamuk 2006). “The bidonvilles are anarchically sprawling in Canapé-Vert, in Bourdon, and 

Carrefour-Feuilles… And although since 1940 the lawmakers have declared these areas 

protected, the law has never been made functional” (Métropole 2003). That is to say, these 

squatter zones of high population density are not necessarily “developed” for easy access to 

employment in the city center but rather because of availability of non-regulated marginal lands.  

The urban structure in Western cities and elsewhere (e.g., cities in China) is shaped by 

market forces or government planning strategies (Feng, Wang and Zhou 2009). However, Port-

au-Prince has very little planning, and land use irregularity is the norm. Leapfrogging causes a 

patchwork development process on the urban periphery, and leads to the formation of a 

“discontiguous entity” (Crowley 1998). In addition, lower-status socioeconomic groups have 

more restricted activity space, and their ‘‘cognitive maps’’ may not be as far reaching as those 

better off (Lynch 1960). In a city with the largest segment of population living in the substandard 

squatters, not all residents have the mobility to reach what the city has to offer. Therefore, the 

distance from the CBD does not play an important role in shaping the density patterns as much 

as in cities of developed countries. This explains the poor fitting power of monocentric functions 

and less than satisfactory R2 by the polycentric functions. After all, the very foundation for any 

density functions is the assumption that residents value the access to the center(s) of a city for 

jobs or other activities.  

Like many cities in developing countries, suburbanization is taking place in the larger 

metropolitan area of Port-au-Prince. The process has been fueled by the deterioration of living 

conditions near the city center due to crowdedness and institutional carelessness. The impact is 

felt beyond the administrative limit of the city. The recent development of adjacent cities with 
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more open land and better amenities has been partially supported by this flight of median-to-

high-income classes from Port-au-Prince. The displacement creates a void, quickly being filled 

by residents of low-to-median income, who could not afford in the past. The city is becoming “a 

conglomeration of nondescript office buildings, slums, old Victorian houses with ‘gingerbread’ 

trim, modern cement block houses, and million-dollar homes” (Denis 2009).  

Future work will advance the study in several directions. First, the study area can be 

expanded to a bigger region in order to better understand the interaction between the city and its 

surrounding rural areas. The second issue is to consider all land uses. Population density merely 

reflects the residential land use. Other land uses (e.g., commercial, industrial and public) interact 

with residential and influence its density pattern. The third direction is to collect data of more 

demographic and socioeconomic variables so that more meaningful social areas can be 

identified. Finally, data of more than one census year will help us examine the changes over time 

and possible forces behind the changes.  
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CHAPTER IV USING LANDSAT ENHANCED THEMATIC MAPPER 
PLUS IMAGERY FOR POPULATION ESTIMATION WITH 
GEOGRAPHICALLY WEIGHTED REGRESSION IN PORT-AU-PRINCE, 
HAITI2

IV.1 Introduction 

 

Analysis of population density patterns is fundamental in urban studies. As population 

serves as both supply (labor) and demand (consumers) in an economic system, the distribution of 

population represents that of economic activities (Wang 2006). In addition, urban population is 

an important parameter for urban environment (Benn 1995, Sutton et al. 2001).  Reliable 

population data are essential for effective planning in resource allocation and disaster 

preparation. However, such data are often not available at adequate geographic scales or not 

updated in a timely fashion in developing countries. The problem is particularly troublesome in 

Haiti. The last 2003 census was carried out after over twenty years from the previous one. This 

results in a loss of one decennial of demographic data. In addition, even the most recent census 

does not accompany with any spatial database system like the Topologically Integrated 

Geographic Encoding and Referencing (TIGER) files for the U.S. census. The database is 

published in a spreadsheet along with a map in PDF format showing the delimitation of the 

census units, but the digital version of the database is not available to the public.   In the wake of 

2010 Haiti Earthquake this information deficiency did not facilitate an objective evaluation of 

the affected population particularly in the most vulnerable zones. This situation prevented the 

institutions to deploy appropriate relief operations where most needed, and the estimation of 

casualties were just speculation. We found that it was critical and urgent to develop a model that 

                                                           
2 Joseph, M., L. Wang & F. Wang (2012) Using Landsat Imagery and Census Data for Urban 
Population Density Modeling in Port-au-Prince, Haiti. GIScience & Remote Sensing, 49, 228-
250. 
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can provide information about the population at detailed level for Port-au-Prince, yet the next 

census expected in 2013 may be jeopardized because of financial constraints.  

The success of remote sensing analysis in deciphering the biophysical characteristics of 

urban ecosystems has provided a basis for the study of urban morphology, biophysical systems , 

and human systems (Ridd 1995). Population estimation is one of the specific domains that have 

taken advantage of the application of remote sensing through direct visual interpretation of 

analogue images (e.g. dwelling counts, measurement of homogenous areas or urban areas, and 

categorization or generalization of land use and) or digital image analysis for the generation of 

explanatory variables to include in regression analysis.  Remote sensing (RS) has been used to 

estimate human settlement patterns when census or surveyed data are not available (Harvey 

2002b). While an accurate estimate of urban population remains a challenge, some basic 

understanding of population patterns by RS may still prove to be very useful, especially for 

emergency planning or post-disaster reconstruction in underdeveloped countries such as Haiti.  

Major techniques for population estimation by RS include the traditional dasymetric 

mapping (Holz, Huff and Mayfield 1973, Langford and Unwin 1994, Fisher and Langford 1996), 

regression models (Shroeder 1990, Langford, Maguire and Unwin 1991, Yuan, Smith and Limp 

1997, Sutton et al. 2001, Harvey 2002b, Qiu, Woller and Briggs 2003, Wu and Murray 2007) 

and geostatistical models (Paez, Uchida and Miyamoto 2002, Wu and Murray 2005, Lo 2008, 

Harris, Fotheringham and Charlton 2010, Joseph and Wang 2010a, Lloyd 2010, Qiu, Sridharan 

and Chun 2010).  

The use of remote sensing imagery for population estimation has recently gained 

momentum with the increasing availability of high resolution images. Several sensors have been 

used to this end with performance and accuracy commensurate with the improvement of sensors.  
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In their seminal review of usage of remote sensing to estimate population, Wu et al. 

(2005) reports early applications of aerial photographs to count dwelling units through visual 

interpretation by Green (1956) applying the method proposed by Porter (1956), Hsu (1971), 

Collins and El-Beik (1971), Dueker and Horton (1971) and (Forster 1985). Tobler (1969) used 

satellite imagery in 1969 to directly correlate population and urban areas with the aid of images 

from the Gemini space flight program (Wu et al. 2005). Photographically-generated residential 

land use types were also used to estimate population counts (Anderson and Anderson 1973, 

Kraus, Senger and Ryerson 1974). To alleviate the time-consuming method of dwelling unit 

count, Lo (1988) adopted a raster approach to extract density of residential building with aerial 

and space photographs 

Since the launch of  Landsat 1 the first reported use of a modern sensor was by Lo and 

Welch (1977) who applied Landsat Multispectral  Scanner (MSS) images from 1972 to 1974 to 

correlate populations and classified urban areas of Chinese cities through a function referred to 

as the allometric growth model (Wu et al. 2005). Subsequently Iisaka and Hegedus (1981) 

extracted mean reflectance values of the four MSS bands as surrogates in population estimation 

regression.  

Since then, taking advantage of the increasing availability of higher resolution images, 

population estimation models have also been derived from different types of sensors such as 

Landsat Thematic Mapper (TM) (Langford et al. 1991, Yuan et al. 1997, Harvey 2002a, 2002b, 

Wu and Murray 2005); Landsat Enhanced Thematic Mapper (ETM+) (Li and Weng 2005, Lu, 

Weng and Li 2006, Wu and Murray 2007); high resolution QuickBird imagery (Galeon 2008, 

Garrison 2010); IKONOS (Liu 2003, Sengupta et al. 2003, Liu, Clarke and Herold 2006); high 

resolution multi-spectral SPOT image (Weber, Hirsch and Serradj 1994, Lo 1995); imaging radar 



31 
 

systems (SAR) (Henderson and Xia 1997); nighttime urban light images (Sutton 1997, Sutton et 

al. 1997, Dobson et al. 2000, Prosperie and Eyton 2000, Sutton et al. 2001, Lo 2001, 2002); 

Light detection and ranging (LIDAR) point cloud data (Wu, Wang and Qiu 2008, Fang, Harini 

and Yongwan 2010). Lu et al (2010) found that combining two different sensors, QuickBird and 

LIDAR data, greatly improved population estimation models over other models based on 

spectral data. 

It is generally accepted that the urban population density is positively related to the 

intensity of human modification to the earth surface, namely the land use and land cover 

(LULC). However, land use classification is improperly used as an indicator of population. 

Jensen (1983) contends that the process of creating LULC types induces loss of biophysical 

information. Moreover, Webster (1996) argues that land use is not directly linked to information 

about housing and its utilization in population models can create estimation errors. Recent efforts 

in population estimation have seen the use of the Vegetation-Imperviousness-Soil (VIS) urban 

model (Ridd 1995, Wu 2004, Lu and Weng 2006, Weng and Quattrochi 2007) to quantify human 

disturbance to the natural land covers (Li and Weng 2005, Wu et al. 2005, Lu and Weng 2006, 

Wu and Murray 2007, Morton and Yuan 2009). Ridd (1995) established the V-I-S model in 

which an urban environment can be characterized by its biophysical composition in terms of 

vegetation, impervious surface, and soil. An impervious surface consists of materials that prevent 

water to infiltrate the soil (Ridd 1995, Ji and Jensen 1999). Impervious surface fraction provides 

the proportion of a pixel made of impervious material and preserves considerable amount of 

information about housing density (Ji and Jensen 1999). The VIS model has recently gained 

more popularity because of its potentiality to provide context for population distribution. 
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However, to the best of our knowledge, no studies have been reported using VIS to estimate 

population for cities in the developing world such as Haiti. 

Another issue with population estimation methods concerns the assumption of 

stationarity implied by global regression models such as the Ordinary Least Square (OLS) 

method. Most studies on population estimation assessed the OLS model as a starting point of 

their analysis (Sutton et al. 1997, Harvey 2002b, Qiu et al. 2003, Li and Weng 2005, Lu and 

Weng 2006, Wu and Murray 2007). OLS assumes the normal distribution of the dependent 

variable and independence among the observations and/or the residuals. When these assumptions 

are not satisfied, the estimation of the coefficients can be biased. For instance, the presence of 

autocorrelation in the data may lead to wrong conclusions on the relationship between the 

dependent and the independent variables (Qiu et al. 2010). In short, global models cannot handle 

the problem of spatial non-stationarity (Langford 2006). Some suggest that regional regression 

fitted independently for each sub-region or analysis unit can provide greater estimation precision 

(Yuan et al. 1997) by taking into account in their measurement the fact that the social processes 

vary from one place to another (Fotheringham, Brunsdon and Charlton 2002). The 

Geographically Weighted Regression (GWR) (Fotheringham et al. 2002, Huang and Leung 

2002) takes into account local variations and aptly deals with the issue of spatial autocorrelation, 

and thus improves the accuracy of population estimation over the global OLS model. The use of 

the GWR has emerged as a promising technique in improving population estimation (Yu and Wu 

2004, Langford 2006, Lo 2008).  

This research aims to construct a population regression model for Port-au-Prince by RS 

data. Specifically, based on the Landsat ETM+ data, we use the urban VIS model to extract 

explanatory variables and the GWR method to capture spatial variability in the influence of each 
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variable on population density. The model has potential for future uses of estimating population 

patterns in Port-au-Prince or areas of a similar setting in absence of census data. Such data will 

be useful to support research and planning in disaster management, mitigation and post-disaster 

recovery.   

IV.2 Data processing 

The IHSI released the population (and housing units) data and a map of SDEs, but no 

spatial data in GIS or other socio-demographic information. To reconstruct the GIS database for 

this study, we scanned the map printout, used control points to geocode the map, and digitized it 

into a shapefile in the ArcGIS platform. 

In order to match with the 2003 census data, the Landsat 7 Enhanced Thematic Mapper 

Plus (ETM+) image (path 009 row 047) on March 7 of 2003 was obtained from the USGS Earth 

Resource Observation Systems Data Center (http://landsat.usgs.gov/index.php). Landsat 7 

ETM+ was the only sensor for which high resolution images were available for the area of study 

for the period the census was implemented. This specific image was chosen for its lowest 

percentage of cloud cover (2%) with high quality. It was right before the failure of the scan line 

corrector of the ETM+ on May 31th 2003, and thus acquisition of any ETM+ images afterwards 

was not feasible. The image already had the radiometric and geometrical corrections completed. 

For additional reference, high resolution satellite images of this area were obtained from Google 

Crisis Response Website (http://www.google.com/relief/haitiearthquake/geoeye.html). These 

color images include 4-m resolution IKONOS images and 1.65-m resolution GeoEye-1 images. 

These images were acquired in the week after the Haiti’s earthquake on January 12, 2010. 

Although there were significant changes after 2003 particularly from the earthquake, the images 

were useful for visual inspection and reference for our analysis.  

http://www.google.com/relief/haitiearthquake/geoeye.html�


34 
 

Following the procedure described in Wu and Murray (2003), we processed the Landsat 

ETM+ image to obtain the V-I-S fraction images by using the Linear Spectral Mixture Analysis 

(LSMA). This algorithm decomposes the images into a number of components called 

endmembers after eliminating noise such as the effect of water. Endmembers are a combination 

of spectra made of pure land cover types, and each endmember corresponds to a pure land cover. 

Endmembers were located by visual examination of scatter plots for spectral information of an 

image’s band combinations (Rashed, Weeks and Gadalla 2001). Three processes were performed 

in LSMA: (1) using the maximum noise fraction (MNF) transformation, which is a cascade 

principal component (PC) transformation, to guide the selection of endmembers from the 

reflectance image, (2) computing the pure pixel index (PPI) in aid of the selection of 

endmembers after 15,000 iterations at a threshold of 2.5, and (3) using the N-Visualization tool 

in the ENVI software to define the endmembers by selecting the corner pixels in the n-

dimensional feature space.  

Three endmembers were identified by examining the spectral curves and locations of the 

endmembers in high resolution images, as plotted in Figure 12(a). The linear unmixing algorithm 

produced three fraction images of endmembers and one image of the root mean square error 

(RMSE) of the least square fitting. Two constraints were applied to the least square fitting to 

ensure that the fraction of each endmember is positive and that the sum of them equals to one 

following the procedure developed by Chang & Heinz (2000). The fraction images of the three 

endmembers are displayed in Figure 12 (b) – (d). The residuals of the linear unmixing are 

expressed in Root Mean Square Error (RMSE) in Figure 12(e). The mean RMSE is 0.017, better 

than the value reported in (Wu and Murray 2003).  

  



35 
 

IV.3 Defining variables in regression models 

As suggested by the VIS model, urban population density can be predicted by variables 

related to the fractions of vegetation, residential houses and concrete pavement (impervious 

surface), and soil captured by remote sensing data. This section discusses the definitions of these 

variables for subsequent regression models. 

 
Figure 12 : a) Spectral reflectance curves of the endmembers from the Landsat ETM+ 

image, (b) – (e) Fraction images of each endmember (house, soil, vegetation, and shadow), 
(f) RMSE of the fully constrained linear unmixing calculation 
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IV.3.1 Population density and its transformation 

Population density, as the dependent variable in regression models, is measured as the 

number of people per km2 at the SDE level. Several transformations on population density have 

been used in the literature to maximize a model’s fitness. Transformation is recommended for 

datasets with increasing residuals for larger values of the dependent variable or when the 

standard deviation is proportional to the mean value (Keene 1995). This trend in the residual 

happens because the change in the dependent variable represents a percent of the value instead of 

an absolute value (Hopkins 2000). The logarithmic (log) function transposes non-uniform 

residuals to uniform residuals and provides the optimal estimate of percent change. In other 

terms, the log transformation weighs observations according to a ratio scale and lessens problems 

related to percent changes from baseline.  Therefore, models derived from log-transformed 

absolute values are likely fit for the data better and mitigate the problem of underestimation or 

overestimation reported for most linear population estimation (Keene 1995, Hopkins 2000). The 

logarithmic transformation is also used in modeling the spatial pattern of population density 

decay with distance from the city center (Clark 1951).  

Others suggest the square root transformation. The Box-Cox function provides a valid 

approach of integrating these transformations (Keene 1995), as expressed below: 
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where y is the original data, and λ is the power to which y is raised in order to normalize its 

distribution. When λ = 0, a log transformation is required; when λ = 0.5, a square root 

transformation is recommended; and when λ =1, no transformation is necessary. 

Figure 13 plots the frequency distributions of population density in the study area, and 

those of post-transformations. The positive skewness of the original data indicates the need of 
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data transformation. Either the log or the square root transformation converts the data closer to 

normality (median slightly larger than mean in both). Both transformations were assessed at the 

early stage of our analysis, and the log transformation was chosen for a slight advantage in 

fitness of the models. By doing so, the change in the dependent variable represents a percent of 

the value instead of an absolute value.  

 
Figure 13 : Box-Cox transformation of population density: a) Strong positive skewness of 

original data (median < mean), b) Log transformation, c) Square root transformation. 
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IV.3.2 Defining explanatory variables 

All explanatory variables were based on the Landsat ETM+ images, and were aggregated 

to the SDE level to match with the census data. In addition to the means of three endmembers 

(vegetation, houses, soil), we tested the standard deviation of vegetation as an indicator for 

vegetation’s spatial continuity. In a typical urbanized area in a developing country such as Port-

au-Prince in Haiti, it is commonly observed that a high population density tends to be associated 

with less and highly-fragmented vegetation. The standard deviation of vegetation fraction 

captures the degree of variation in vegetation cover across image pixels within a SDE. If the 

standard deviation is low, the area may be highly vegetated with small fragments of built-up 

areas or low vegetation cover in a high density residential area. A high standard deviation of 

vegetation cover represents possible fragmentation of both vegetation and residential areas, 

which corresponds to low population density residential areas (e.g., the mountainous area to the 

south).   

IV.3.3 Selecting explanatory variables 

In order to help select variables in regression models, we began with simple bivariate 

correlation analysis between logarithm of population density and each measure of fraction 

variables. Table 1 reports the correlation coefficients and the significance level of each variable.  

All explanatory variables extracted from the RS data correlate with population density 

with statistical significance, but the strength of correlation varies. The mean of vegetation 

fraction has a strong negative correlation with population density (r=-0.74). The standard 

deviation of vegetation fraction also has a negative correlation with population density (r=-0.66). 

Areas with a higher vegetation fraction or a higher-fragmented vegetation cover encompass 

fewer buildings thus lower population density. Soil fraction abundance has the weakest 
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relationship with population density, and its coefficient even has an unexpectedly positive sign. 

One likely explanation is the unique linkage between soil fraction and population density in the 

study area because of the presence of bare soil (unpaved streets) in high-density squatter areas 

and reflectance from buildings made of makeshift materials in these areas. Residential houses, 

directly representing impervious surface fraction, has a moderate correlation coefficient of 0.47 

with an expected positive sign. We suspect that the complexity of building structure in the study 

area might have dampened the contribution of this variable in estimating population.   

One concern inherent to a multivariate regression model is the issue of collinearity 

among explanatory variables as some of the explanatory variables may correlate with each other 

and contain duplicated information. Multi-collinearity leads to erroneous estimates of 

coefficients and corresponding standard errors in the regression model and thus misinterpretation 

of influence of each explanatory variable. Multicollinearity affects the ability to generalize the 

model (Shroeder 1990). Advances in statistical software enable us to compute several indicators 

for diagnosis of multicollinearity such as the tolerance value, the Variance Inflation Factor 

(VIF), and the condition number (K). 

The tolerance value represents the proportion of variability exclusively accounted for by 

an independent variable, and is equal to the result of subtracting from one the squared multiple 

correlation between a specific independent variable and the other independent variables involved 

in the regression (1 - R2) (Norusis 1983).  VIF, considered as the most reliable indicator to assess 

multicollinearity, is the excess of variance associated with each variable when multicollinearity 

is present in the regression (Shroeder 1990). VIF indicates by how much multicollinearity 

degrades the precision of the model (Fox 1984) and is equal to the inverse of the tolerance 

number: 
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The other indicator, condition number (K), is generated from the eigenvalues that are 

issued from factor analysis. The condition number is formulated as the square root of the 

proportion of the largest to the smallest eigenvalue:  

 

in which lmax and lmin are the largest and the smallest eigenvalues issued from the 

collinearity diagnostic statistics. A greater probability of collinearity is associated to smaller 

eigenvalues. A common rule of thumb is: (1) a tolerance value equal or less than 0.01, (2) VIFs 

of 10 or higher, and (3) a condition number K greater than 15 are sources of concerns for multi-

collinearity. If K is greater than 30, there are definitely serious reasons to be alarmed (Shroeder 

1990, Simon 2004, Weng and Quattrochi 2007). 

Table 4 presents the multi-collinearity diagnostic result for the chosen model after we 

experimented with numerous plausible combinations of explanatory variables. The model is free 

of any apparent concerns for multicollinearity. The selected explanatory variables include the 

mean value of houses, the mean of vegetation and the standard deviation of vegetation. 

Table 4 : Multi-collinearity diagnosis for the OLS model 

Variables 
Collinearity diagnostic 

R2 F 
Tolerance VIF Condition number 

Mean_House 0.72 1.4 
11.6 0.45 181.0 Mean_Veg 0.29 3.5 

Stdv_Veg 0.33 3.0 
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IV.4 Model estimation and assessment 

In order to develop the model for estimating population density as well as validate it, the 

study area was divided into two datasets. The whole area of 670 SDEs was randomly divided 

into a training data set and a validation data set, each with 335 SDEs. 

IV.4.1 OLS regression 

An Ordinary Least Square (OLS) regression model was first fitted, and the result for the 

training area is written as: 

Log(Dens) = 11.17 + 3.21 Mean_House  - 4.03 Mean_Veg – 1.68 Stdv_Veg 
                 (107.4)  (3.2)               (-10.07)              (-1.74) 

where the corresponding t-values in parentheses indicate that the first two explanatory variables 

are statistically significant at 0.01, but not the variable Stdv_Veg (standard deviation of 

vegetation). The model yielded a R2 = 0.62. Both the positive sign of Mean_House (mean of 

house fraction) and the negative sign of Mean_Veg (mean vegetation fraction) are expected. 

Although the variable Stdv_Veg is not significant, it has the expected negative sign.  

IV.4.2 Geographically weighted regression 

In an OLS model, the coefficient of each explanatory variable is assumed constant across 

the whole study area. However, the measurement of the relationship is affected by variability 

over space, termed “spatial non-stationarity” (Lo 2008). In our study area, the spatial non-

stationarity might be associated with different land use and land cover types and various stages 

of urban development in different parts of the city. Additional causes of non-stationarity may 

include spatial variability of classification errors and aggregation of data from satellite images to 

SDEs (Lo 2008). The geographically weighted regression (GWR) method (Shroeder 1990, 
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Fotheringham et al. 2002) can be used to mitigate the problem. The mathematical expression of 

the GWR regression is as follows: 

∑
=
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            (1) 

where k indexes the explanatory variable x and its corresponding coefficient a, and i indexes the 

location (i.e., i = 1, 2, …, 335 of SDEs in our study). For instance, aik is the estimated coefficient 

of k-th variable at location i. Similarly, the GWR model is to explain the logarithms of 

population density by three remotely-sensed predictors (k = 1, 2, 3): the mean values of the 

fraction image of the houses endmember, the mean value of vegetation and the standard 

deviation value of vegetation.  

The estimator for this model takes into account measurements of the independent 

variables not only available at the location i, but also is equally conditioned on the relative 

location of i to other observations nearby based on a weighting schema. Observations closer to a 

point i considered are given more weights than neighbors farther apart. A spatial kernel, fixed or 

adaptive, is used to establish a limit to the number of neighbors around the point considered. For 

an evenly distributed dataset, a fixed kernel is recommended; otherwise, an adaptive kernel is 

used. Given the irregularly distributed configuration of the data used in this study, an adaptive 

kernel with 30 nearest neighbors was applied, as suggested by the GWR tool. The GWR 

produces parameter estimates for each point considered and thus accounts for the spatial non-

stationarity in each predictor’s influence on population density.  

The GWR model also yielded an adjusted R2=0.80, a significant improvement over the 

OLS model with R2 = 0.62. In addition, the corrected Akaike’s Information Criterion (AIC) 

index is used to measure the relative performance of a model. The AIC is a natural way to 

compare complex models with prior distributions in that it is based on the posterior distribution 



43 
 

of the log-likelihood, following the Bayesian model framework built by Dempster (1974). The 

AIC builds a trade-off between the data fit of the model and the complexity of the model. A 

smaller AIC value indicates a better data fit and a less complicated model. The GWR’s AIC = 

466, smaller than the AIC=562 by the OLS. Therefore, the GWR outperformed the OLS in 

fitting the training data set.  

IV.5 Validation of the models 

The above discussion on R2 and AIC examines the fitness of a model on the training data 

set, which does not necessarily converts to its prediction power. A model may score in high 

fitness and accuracy values in the testing area, but fail to reproduce the same results in the 

validation area. The extensibility of a model is its ability to demonstrate stability (robustness) by 

providing similar estimation results when applied to a different spatial or temporal context. 

The performance of a model can be evaluated through several characteristics such as bias, 

consistency, accuracy, validity, and robustness (Harvey 2002a). The presence of bias in a model 

is indicated by the consistent underestimation or overestimation of the dependent variable. 

Variability or conversely consistency refers to the range of values of the estimation error for 

individual cases, large or small. Bias and variability are two components or cause of inaccuracy 

in the estimates. In this study, these three aspects together are measured by two indicators: the 

mean absolute proportional error (mean % error or MAPE) and the median absolute proportional 

error (median % error). The robustness of a model is tested by the application of the estimation 

coefficients to the validation area.   

The relative or proportional estimation error is expressed as  
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where REk is the relative error for case k; PE is the population estimate from a model; and PO is 

the true population obtained by census. Then, the mean % error (MAPE) is defined as follows 

Mean % error = ∑
=

n
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Ek

n
R

1
  

The median % error is the 50th percentile of the ordered n values of EKR , where n 

represents the total number of observations in the data set. The mean and median % errors are 

used together because of the distorting influence of a few outliers on the mean (Harvey 2002a, 

Lu and Weng 2006). 

In addition, the overall estimation bias (Total Relative Error) is assessed such as 

R = 100*)(

O
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where PE and PO represent the total predicted population and the total observed 

population, respectively, for the area considered.  

To validate a model, the regression result based on the training data set is applied to the 

validation data set. The GWR algorithm includes a feature that permits estimating coefficients at 

locations with no data, such as SDEs in a validation set (Fotheringham et al. 2002). To this end, 

the algorithm interpolates the fitted GWR coefficients to the known locations of the validation 

area using the parameters provided (such as kernel type, bandwidth method, distance, and 

number of neighbors) to launch the regression. Figure 14b displays the predicted population 

density by the GWR, in comparison to the observed population density in Figure 14a. Overall, 

the two maps exhibit a strong consistency across the study area, and most SDEs stay in the same 

density classification. This suggests that in general the model performed well in reproducing and 

predicting population density in the study area.  
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The differences between observed and estimated densities are residuals. Residuals by 

GWR are shown in Figure 15, and by OLS in Figure 16. The light colors point out to low 

residuals while the darker colors of both spectrums indicate either overestimation or 

underestimation. Our discussion here focuses on Figure 15. Largest over-predicted densities are 

mostly located in the south-southwest and northern-northeastern regions, which are characterized 

by very high population density, poor housing conditions, unpaved streets and abrupt terrain 

(Joseph and Wang, 2010). Most cases of large underestimation by RS signals are also located in 

areas where housing density is extremely high and correspond to small census units. Some cases 

of underestimation were also observed south-southeast of the city center. This area is host to 

some public parks, government buildings and a mix of commercial-residential housings where 

many people lived there in contrast to expectation or the model’s prediction. Conversely, 

estimated census tracts were observed along the spines going from north of the city center 

eastward, and south of this road eastward (in the neighborhood of Lalue, Ave John Brown). 

Since the model correlates the presence of man-built structures with high density, this 

commercial area had few residents living there, and thus was over-predicted by the model. Note 

that the residuals by GWR shown on Figure 15 do not exhibit obvious clusters, whereas the 

residuals by OLS in Figure 16 displays clear clusters of oveprediction mainly in the commercial 

and the transition zones in the northwest area and underprediction in high density areas in the 

south.  

Table 5 presents the performance indicators of the OLS and GWR. The advantages of the 

GWR model are clear with a significant higher accuracy in population estimates. 

Understandably, the errors in the validation area are higher than those in the training area. The 

mean (MAPE) and median proportional errors for the validation area by GWR were 40.4 and 
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27.3 respectively, higher than 26.1and 19.8 for the training area. The total relative error was 

equal to 8.1% in the validation area compared to 2.8% for the training area. A large discrepancy 

was noticed in the minima (0.01 and 0.1) and the maxima (314 and 513.5) of the mean 

proportional error between the training and the validation areas. Since the selection of the 

training and the validation areas were randomly made, we suspect that this difference in the 

mean and the median is inherent to the specific characteristic of the SDEs in each dataset. 

Overall, the difference is not substantial enough to undermine the robustness and validity of the 

model.  

 
Figure 14 : Observed vs. predicted population density from GWR  

IV.6 Spatial variability of linkage between RS signals and population density 

By analyzing the spatial variations of GWR coefficients, we can develop a better 

understanding of the urban development, living environment quality, and spatial segregation of 

population in Port-au-Prince.  
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Table 5 : Indicators of regression model performance 

Model Data set 
Mean % 

Error 
Median % 

Error 
Total % 

Error 

OLS model 

Training Area 
(n=335) 54.4 32.0 11.1 

Validation Area 
(n=335) 83.9 30.8 24.9 

GWR model 

Training Area 
(n=335) 26.1 19.8 2.8 

Validation Area 
(n=335) 

40.4 27.3 8.1 

 

 
Figure 15 : Estimation residuals by GWR 

The spatial variations of regression coefficients in the GWR model are mapped in Figures 

17-19. Both the sign and value of each of the three coefficients vary over space, and indicate 

high spatial non-stationarity. The coefficients for mean fraction image of houses 

(“Mean_House”) exhibit high positive values in the south-southeast area but negative in the 

northwestern corner as well as the northeastern area (Figure 17). The southeastern region had 

more vegetation cover than anywhere else in the study area with relatively scarcely distributed 
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residential houses and thus the population prediction model put heavier weight on the housing 

land identified from the remote sensing image. The opposite can be said for the north areas of 

high population density. In other words, the housing coefficient represents the potential of the 

land in supporting more population growth.   

 
Figure 16 : Estimation residuals by OLS 

Figure 18 displays the pattern of the coefficients for “Mean_Veg” (mean fraction image 

of vegetation). The coefficients decline towards the east and southeast (higher elevation areas). 

The lowest (negative) values are observed in the northwestern tip of the area with little 

vegetation present. That is to say, on top of the overall negative relationship between Mean_Veg 

and population density, the effect is amplified by even more negative coefficients in high-

vegetation (low-population-density) areas and positive coefficients in low-vegetation areas.  

Figure 19 depicts the variation in the coefficient estimates for “Stdv_Veg” (standard 

deviation of vegetation fraction). The coefficients range from the lowest (-80.5) in the northwest 

region to the highest (13.5) in the southeast. The pattern is in a strong contrast to Figure 18 for 
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“Mean_Veg”. The southeast area has higher vegetation (and thus higher Mean_Veg) implying 

that it is less fragmented (and thus lower Stdv_Veg). Therefore, the model honors more on the 

spatial fragmentation (e.g. by changing land from vegetation to houses) of residential houses and 

vegetation cover than the amount of vegetation. The land to the north-east has little vegetation 

(Figure 12d) cover within the built-up area. Thus, increasing the spatial fragmentation of 

vegetation (e.g. by planting more trees) is not appreciated by the model.  

 
Figure 17 : Spatial variation of coefficient for mean fraction image of houses in GWR 
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Figure 18 : Spatial variation of coefficient for mean fraction image of vegetation in GWR 

 
Figure 19 : Spatial variation of coefficient for standard deviation of vegetation in GWR 

IV.7 Summary and concluding comments  

This paper has attempted to identify a suitable model for population estimation from 

remote sensing image in Port-au-Prince, Haiti. Explanatory variables used in the regression were 
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fraction images extracted from Landsat ETM+ images by spectral mixture analysis. These 

variables at the pixel level from remote sending image were aggregated to the SDE level to 

match with the population data from the census. Our initial models tested a wide range of 

explanatory variables related to the fractions of vegetation, impervious surface and soil, and 

standard deviation of vegetation. Based on various diagnosis statistics for multi-collinearity, 

three variables were kept: the mean value of houses, the mean of vegetation and the standard 

deviation of vegetation. The dependent variable was defined as the logarithms of population 

density in order to improve the model’s fitting power. An OLS regression model was tested and 

achieved a R2 of 0.62. Due to spatial non-stationarity, the geographically weighted regression 

(GWR) was employed to permit the variation of each coefficient across the SDEs, and generated 

an adjusted R2=0.80. The AIC for the GWR was also smaller that the AIC for the OLS, and thus 

the GWR was a better model considering both the data fit and the model’s complexity.  

By randomly splitting the study area into a training data set and a validation data set, we 

were able to assess the accuracy of these models. Based on the indicators such as mean 

proportional errors, median proportional errors and total relative errors, the advantages of the 

GWR model was further validated. A number of conclusions can be drawn from the study. First, 

urban population density can be estimated from fraction images extracted via spectral mixture 

analysis with reasonable accuracy. Secondly, the logarithm transformation of population density 

yielded better fitting power than the square root transformation or population density itself. 

Thirdly, not all endmembers from RS data and their related statistics (mean, standard deviation) 

contributed to the explanation power of the regression models. Finally, the GWR regression was 

a better model than the OLS in terms of a better fit for the training data set (even after accounting 

for the model’s complexity) as well as a higher accuracy for the validation data set.  
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The results show the promise of using remote sensing data to estimate urban population 

density in a region of a developing country. This is particularly important for a country the study 

area such as Haiti, which was anticipated to conduct its next national census in 2013 but seems 

unlikely to take place since much of the attention in the aftermath of the earthquake has been 

focused on reconstruction efforts with no plans of implementing a national census. Updated 

information about the distribution of population is crucial in planning for service delivery and 

other purposes in Port-au-Prince and beyond. 
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CHAPTER V ASSESSMENT AND MAPPING OF URBAN 
ENVIRONMENTAL QUALITY IN PORT-AU-PRINCE, HAITI   

V.1 Introduction 

The world is undergoing an unprecedented process of urbanization. According to the 

Economic and Social Affairs division of the United Nations, over sixty percent of the world’s 

population is expected to settle in urban areas by 2030 (UN 2003). The internal structure of a 

city, particularly in developed countries, is hardly random and conforms to some stunning 

regularity (Stutz and Warf 2007). However, the expansion of urban population in countries of the 

less-developed world has taken place in absence of required development of services and 

facilities in order to maintain the urban environment adequate and healthy (Hardoy, Mitlin and 

Satterthwaite 2001). The inadequate management of the impacts of rapid urbanization results in 

deterioration of the human health, the environmental quality, the quality of life and the urban 

productivity of the residents, mainly the poorest (Leitmann, Bartone and Bernstein 1992).  

There is a rich body of literature on studies of quality of life (QOL), which have turned 

toward urban areas mainly because of the increasing urbanization trend observed lately and the 

concomitant alteration of the living conditions. The domains of QOL encompass physical, 

material, environmental, emotional, social, behavioral, psychological, and spiritual aspects, and 

can be approached objectively or subjectively across different cultures and disciplines 

(WHOQOL-Group 1995, Testa 1996, Cummins 1997, Felce 1997, Haas 1999, Hagerty et al. 

2001, Janse et al. 2004).  The measurement of these domains may include indicators as broad 

and diverse as health, physical environment, natural resources, personal development, security, 

socio-economic status, psychological elements, housing, neighborhood conditions, demographic 

status, and education  (Dahmann 1985, Bonaiuto et al. 1999, Haas 1999, Mitchell, Namdeo and 

Kay 2001, Kjellstrom 2007, WHO 2007, Fleury-Bahi, Félonneau and Dorothée 2008, Hur and 
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Morrow-Jones 2008, Rehdanz and Maddison 2008, Walton, Murray and Thomas 2008, Hur, 

Nasar and Chun 2009, Metropolitan-Studies-Group 2010). In the (Mercer 2011) report, the 

concept QOL is based on objective and unbiased measurements that target the mesosystem and 

macrosystem levels as conceptualized by Schalock (1996). 

The implementation of effective policies should take into consideration the 

multidimensional aspect of QOL and furthermore be built on a spatial approach. More 

specifically, sound environmental policies need to identify places of high exposure to harmful 

environmental conditions, followed up by actions to protect the affected populations. The goals 

are first, in the long run, to bring up corrective actions to deteriorated neighborhoods; second to 

slow the process of declining environmental quality; and third, prevent further similar 

environmental issues. In that vein, Lo and Faber (1997) underline the necessity for planners and 

government agencies to continually evaluate the quality of life of the jurisdiction under their 

control in order to ensure the delivery of services to the population and to identify areas with 

problems. In poor countries with limited financial resources needed to mitigate these problems, it 

is even more crucial to focus the attention on areas where the problems are most severe and 

likely to worsen in order to prevent further degradation of the environment and the impairment 

of life conditions. The assessment of environmental quality at a detailed spatial resolution is of 

utmost importance in urban planning as it will help determine the degree of severity, affected 

areas, stakeholders and related corrective actions. The ultimate goal is to enhance environmental 

health and promote social and environmental justice and sustainability. 

Urban environmental quality (UEQ) represents one dimension of the broader concept 

QOL (1998). UEQ is more concerned with the physical, material domain of QOL. However, 

while the factors within this domain are objective or tangible, their assessment may be based on 
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facts (objective) or perception (subjective). Previous studies of UEQ included factors derived 

from different sources such as census, satellite data, physical data, and environmental data. UEQ 

embodies the interplay of many interrelated parameters from different spheres such as the 

domestic environment, the public environment, the physical environment, and even the 

atmosphere (Tzeng et al. 2002, Nichol and Wong 2005). Some studies integrate social 

environment, economic environment and residential environment (e.g. Bonaiuto et al. (1999), 

Bonaiuto et al. (2006), Lotfi and Solaimani (2009), Rehdanz and Maddison (2008)). The present 

study focuses the parameters from the physical and the public environment. The list of factors 

include vegetation density, greenness, NDVI, leaf area index, heat island intensity, impervious 

surface temperature, population/household density, aerosol optical depth, building density, 

building height, noise, air pollution, land use/land cover, water quality, land quality, drainage 

facility, solid waste, park, open spaces, accessibility to roads, etc. (Lo and Faber 1997, Bonaiuto 

et al. 1999, Tzeng et al. 2002, Jensen et al. 2004, Kelay 2004, Nichol and Wong 2005, Sanesi et 

al. 2006, Li and Weng 2007, Rehdanz and Maddison 2008, Nichol and Wong 2009, Rahman et 

al. 2011). The list is contingent to data availability and adjustable according to the specific 

environmental context of the study area. Most UEQ studies have given much attention to 

manmade and technologically-generated environmental hazards, but much less to natural 

hazards. Natural hazards trigger environmental degradation and destroy the resources of the 

natural systems. Left unsolved, landslides and flooding, among other hazards, can potentially 

sink urban centers into environmental chaos (Nyambod 2010). Among the exceptions are 

Majumder et al. (2007) that included flashflood as a factor in assessing the UEQ of Chittagong 

Metropolitan City in Bangladesh, and Romero et al. (2012) that considered exposure to flood and 

waterlogging in the assessment of urban environmental segregation in Santiago de Chile. 
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Information on location, probability and anticipated impacts are useful to assess impacts to the 

urban systems (Heiken, Fakundiny and Sutter 2003).  

This study is built upon the existing literature on UEQ, with an emphasis of natural 

hazards that are critical to the residents in our study area. The objective is to integrate some 

unique factors in Port-au-Prince with other commonly-used physical and demographic 

parameters in previous studies, and develop a comprehensive measurement of environmental 

quality in Port-au-Prince. Population density is examined with relationship to various UEQ 

factors. Results are used to refine the five-sector conceptual model developed previously in 

Chapter III. 

V.2 Parameters of urban environmental quality  

The variables used in this study are derived from high resolution remote sensing images, 

census data and GIS-processed physical parameters. Factors affecting environmental quality are 

grouped according to their sources and the nature of their contributions to the general UEQ.  The 

first group, subdivided into two subgroups, belongs to the physical environment and addresses 

environmental amenity (vegetation, greenness or green areas), or environmental disamenity 

(pollution) such as gas emission and noise from traffic, pollution from water bodies and the sea 

coast, pollution from solid waste and dusts. The second group is from the public domain and 

encompasses, in addition to crowdedness, factors that are unique to Port-au-Prince. Those factors 

are: public markets, slums, and cemetery. Finally, the last group contains three natural hazards, 

including flooding, landslide susceptibility, and coastal surge.  

Due to the deficiency of spatial data for the study area and because of the limited 

resources, some potential factors that typically impact UEQ could not be included in the 

implementation of the model.  This is the case of trashes dumped on the streets in open sky and 



57 
 

dusts from poorly paved and unpaved roads. Their prediction over space and time was simply not 

possible.  The following parameters are objective in the sense that their assessment did not rely 

upon individuals’ perception. However, their measurement includes subjective methods induced 

by the utilization of ordinal scales based on proximity. There is not much support from the 

literature as to the exact distance threshold to use for the proximity parameters. The thresholds 

used are experimental and arbitrarily chosen by lack of better choice. Nevertheless, the degree of 

impact assigned to each threshold is logical and is consistent to Tobler’s First Law of Geography 

regarding the influence of distance on relationship (Tobler 1970). A list of parameters and sub-

parameters along with their operationalization can be found in Appendix II.  

V.2.1 Group 1: Physical domain factors 

V.2.1.1 Environmental amenity: Greenness/Vegetation 

Within the physical or environmental domain green space in urban areas embodies a 

fundamental element contributing to the quality of the environment and has been incorporated in 

most studies. Green spaces provide many tangible and intangible benefits. Vegetation within an 

urban area understandably represents a great amenity that makes life more enjoyable and more 

pleasant for many reasons such as mitigation of heat waves and positive impact on the health and 

the emotional well-being of citizens (Li et al. 2005, Sanesi et al. 2006, Lafortezza et al. 2009);  

correction of air–temperature exchange and provision of shade to create a comfortable 

environment for people (Nikolopoulou and Steemers 2003, Shashua-Bar and Hoffman 2003, 

Gomez, Gil and Jabaloyes 2004); promotion of accelerated recovery from surgery and relief 

from stress, and the restoration of the cognitive capacities (Ulrich 1984, Kaplan 1995, Bonaiuto 

et al. 1999, Bonaiuto, Fornara and Bonnes 2003, Hartig 2004, Hartig and Cooper-Marcus 2006).  
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Greenness was extracted from a Landsat Enhanced Thematic Mapper Plus (ETM+) 

image processed with the Vegetation-Imperviousness-Soil (VIS) model using the Linear Spectral 

Mixture Analysis (LSMA). For more details about the procedures  see (Joseph, Wang and Wang 

2012). The continuous values were converted to an ordinal scale from 1 to 4 using the natural 

breaks Jenks classification scheme (Jenks 1967). The natural breaks (Jenks) classification 

method, among the most popular used in GIS software (Osarangi 2002, Longley et al. 2005) is 

deemed appropriate for rearranging similar values (ESRI 1996) and leads to a relatively low loss 

of information compared to other classification techniques (Osarangi 2002). Unless indicated, 

the same categorization procedures used for greenness were also utilized for the other parameters 

for similar operation. 

 
Figure 20 : Distribution of greenness in Port-au-Prince. More vegetation spotted at the 

south-southeastern edge of the city. 

According to experts vegetation represents the most significant feature after crowdedness 

and waste that affects UEQ with a score of 11.2%. This score represents the average weight of 

vegetation obtained as the ratio of the total score attributed to vegetation by the sixteen experts to 
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the total combined score for all the parameters. It is important to mention that the scores for 

crowdedness and waste were redistributed to the other parameters proportionally to their original 

score. Figure 20 displays the vegetation cover map resulting from the VIS/LSMA process. The 

bulk of greenness available is mostly found in the south-southeastern edge of the city. While the 

southeastern part of the city corresponds to the neighborhoods of the upper-income residents, the 

south portion is more related to remote and less accessible areas with steep slopes that slow the 

advance of squatters. The presence of vegetation in some way improves the environmental 

quality of this zone in spite of the presence of derisory houses.  

About eighty eight percent (88%) of the population live in neighborhoods with low to 

very-low green spaces and most of the slums are included in this vegetation-deprived region. 

Some dark spots of low to very low green cover are noticed in the southeastern zone. This is due 

to recent extension of the city mostly by squatters who systematically get rid of the vegetation in 

order to build their houses, inducing higher risks of erosion and landslide. Another striking but 

not unforeseen contrast is the density of population between areas with lowest and densest green 

cover with 66,737 versus 16,709 people per square kilometer, respectively. This underscores the 

pressure of population on the natural resources and the impact of high population density on 

UEQ.  

V.2.1.2 Gas emission and noise from traffic 

As sub-products of the physical environment both noise and air pollution contribute to 

deteriorate the quality in the surrounding neighborhoods (WHO 1998). Van Leeuwen et al. 

(2006) underlines the reliance of good quality of life of people living in large cities on the quality 

of the urban environment. Identified as the main sources of air pollution in urban cities, motor 

vehicles generate carbon monoxide, hydrocarbons and nitrogen oxides. These major air 
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pollutants are the main environmental-related causes of lung malfunction, lung cancer, 

cardiovascular diseases, respiratory symptoms, stroke, neurobehavioral problems, premature 

mortality, and possible exacerbation of asthma, (Richman 1994, Venn et al. 2000, Venn et al. 

2001, Jerrett et al. 2002, Maheswaran and Elliott 2003, Nafstad et al. 2003, Greene and Pick 

2006). In addition, studies have demonstrated that noise pollution has adverse effects on health 

as well. These include high blood pressure, speech interference, sleep hindrance, fatigue, 

headache, gastro-enteric disorders, loss of appetite, depression, and irritation. Noise pollution 

interferes with other relaxation activities in the neighborhood and causes discontent with the 

nearby environment (USEPA 1981, Yoshida et al. 1997).  

Many studies incorporate air pollution and noise pollution as main contributors of a low 

environmental quality (e.g. Dahman (1985), Dike (1985), Giannias (1996), the Ontario Social 

Development Council (1997), Shafer, Koo Lee and Turner (2000), Rehdanz and Maddison 

(2008), Nichol and Wong (2009), Schweitzer and Zhou (2010), etc.).  

Models of exposure to air pollution include parameters as broad and diverse as proximity 

to high traffic roads, traffic counts, emission and pollutants data, road type, traffic density, traffic 

frequency, vehicle type, land use, meteorological and atmospheric conditions, building height, 

presence and type of buildings, etc. (English et al. 1999, Elliott et al. 2001, Hoek et al. 2001, 

Hoek et al. 2002, Langholz et al. 2002, Wilhelm and Ritz 2003, Ferguson, Maheswaran and Daly 

2004, Schikowski et al. 2005). All modeling approaches but the proximity model requires data 

about the level of pollutants concentration or health outcomes information that is not readily 

available and for which the implementation is very costly. Given the limited purpose of the 

current study the proximity model is indicated in spite of its drawbacks. These drawbacks 

include the lack of scientific base for the choice of the maximum distance and the different 
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thresholds within this distance. They are chosen arbitrarily and not supported by existing 

literature. The application of the proximity approach can result in misclassification. (Jerrett, 

Arain and Kanaroglou 2005). Finally, it is difficult to determine potential and future exposure 

(Zou et al. 2009). 

Some studies assess distance to roads from a precise location of the exposed subjects, 

schools or residences (van Vliet et al. 1997, Wilkinson et al. 1999, Janssen et al. 2001, Venn et 

al. 2001, Hoek et al. 2002). Other studies calculate distance from census units centroid 

(Maheswaran and Elliott 2003), or establish a buffer around the roads or around the residences 

(English et al. 1999, Sahsuvaroglu et al. 2009). Distance to roads is used in conjunction with 

traffic density, building density, and elevation. Based on air emission dispersion models and 

previous studies of exposure assessment (Verluis 1994, English et al. 1999, Hoek et al. 2001, 

Sahsuvaroglu et al. 2009) a maximum distance of 200 meters was considered with three 

threshold values of 50, 100 and 200 meters. Traffic density data is not readily available. This 

information was generated based on road type (primary, secondary, and arterial street) adjusted 

with information drawn from a panoramic view of the traffic volume at peak hours obtained 

from a Google Earth image of Port-au-Prince. The impervious fraction generated from the same 

procedure described earlier for vegetation was used as surrogate for building density. An 

impervious fraction represents the fraction of impervious material included in a pixel and that 

holds information about the density of houses (Chapter IV, page 33-34). These different sub- 

parameters affecting gas emission were integrated through weighted linear combination using the 

weights obtained from the expert opinion survey. The experts’ survey included one section to 

evaluate the weights of the four sub-parameters mentioned above affecting air pollution from and 

three others affecting noise nuisance from traffic. 
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Heavier traffic generates more pollution and vice-versa. Denser buildings trap and 

prevent pollution dispersion, and higher elevation is usually associated with more air scattering 

resulting in lower pollution levels.   

Statistical and mathematical models associated to on-site measurements of noise levels 

include predictors such as wind velocity and direction, traffic speed, lane width, roadway width, 

number of lanes, traffic volume and composition, road gradients, road surface, and physical 

barriers (Ali and Tamura 2003, Calixto, Diniz and Zannin 2003, Pamanikabud and Tansatcha 

2003, Banerjee et al. 2008). As for the air pollution the purpose of this paper is beyond the scope 

of measuring noise pollution but rather to determine exposure levels. Thus an experimental 

distance of 500 meters to roads with increments of 100, 300, and 500 meters were combined with 

traffic density and buildings density data to generate the noise exposure surface. With the same 

causal relationship used for gas emission pollution, these sub-parameters were combined 

according to the same procedure utilized for air pollution. Separate weights were obtained from 

the experts for distance, traffic density and building density. 

Gas emission from traffic was ranked sixth over 11 factors investigated in the expert-

opinion survey. Gas emission is exacerbated by the lack of regulations of traffic or the 

reinforcement thereof and by the too large fleet of cars exceeding the capacity of the roads. This 

is directly linked to the large population concentrated in Port-au-Prince. No regular and 

comprehensive inspection for gas emission is conducted by the service of transportation over the 

vehicles fleet, though many vehicles use diesel at a cheaper price than gasoline with the gasoline 

having a negative effect on the quality of the environment. In addition, the vehicles fleet mostly 

includes used car imported from the United States that do not comply with the standards applied 

in the United States. Lastly, regular maintenance of vehicles is rather atypical. The map in Figure 
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21 depicts areas affected by different pollution levels from gas exhaust. Worst conditions (high 

to very high) of gas emission pollution affect 66% of the entire population for a corresponding 

average density of 62,000 people per square kilometer. The population density in low to 

moderate pollution is only 55,333. 

Noise pollution comes right after gas emission pollution in the experts’ survey but it 

severely affects slightly more people than gas emission from traffic (67%). As for gas emission, 

noise pollution is density-dependent as areas more severely distressed include higher population 

density than areas with low to moderate noise pollution: 64,000 versus 52,000. The map of 

exposure to noise pollution is displayed in Figure 22.  

 
Figure 21 : Exposure to gas emission from traffic 

Typically, noise nuisance from traffic originates from vehicles’ engines and is 

exacerbated by the unrelenting use of horns by drivers. In addition to these sources, loud music 

in certain traffic circles, notably the axes Carrefour-Downtown and Carrefour-Feuilles-

Downtown significantly contribute to increase the noise burden. The high decibel level in these 
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autobuses is used as a strategy to attract customers, particularly the youngest. The higher the 

noise level, the more likely and the more quickly the seats are filled-up. This has had serious 

consequences on passengers who are unable to receive or place a call because of music 

interference. One expert mentioned protestant churches’ worship or prayer services and night 

clubs as additional sources of noise nuisance. 

 
Figure 22 : Noise pollution exposure from traffic 

V.2.1.3 Pollution from waterways 

Dikes, waterways, and rivulets impinge on the physical environment in several ways. 

They transport solid sediments and trashes containing polluted agents and discharging bad smell 

to the surrounding environment. Stagnant water triggers breading of mosquitoes, which serve as 

vectors for malaria (Dike 1985). This has the potential to physically affect the health of the 

residents and the aesthetical impression of a neighborhood (Tzeng et al. 2002, Majumder et al. 

2007, Rahman et al. 2011). Very often in Port-au-Prince no distance isolates polluted waterways 
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from people’s residences, increasing the vulnerability of the residents and particularly women 

and children. At low altitude and gentle slope, the conditions are even more severe.  

To estimate pollution originating from water bodies, a Euclidean distance was generated 

from the waterways and reclassified into distance thresholds of 0-100, ≥100 -200, ≥200 -300 

meters and beyond. Distance was combined with other parameters like elevation, slope, and 

housing density (Number of houses per square kilometer). Worst cases of exposure to pollution 

from water courses were identified closer to water ways, at lower altitude, gentle slope and high 

habitat density. These parameters were integrated using raster map algebra. 

 
Figure 23 : Pollution from waterways 

The darkest color on the map in Figure 23 portrays areas were worst cases of pollution 

from watercourses occur. Two slums (ironically called Cité Leternel and Cité de Dieu – standing 

for City of the Lord and City of God) are entirely located in areas with very high risk of water 

pollution. Water pollution is considered by the experts as the third most important UEQ factor 

with an average weight of 10.12% just behind vegetation and slums. Nevertheless, there is part 
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of this pollution that has not yet been accounted for. It relates to the many channels that are part 

of the drainage system filled with stagnant water, clogged with sediments, domestic residues, 

plastic bottles, plastic bags, and other solid wastes.  

Water pollution affects about 54% of the population, especially in areas where the 

population is more concentrated. The average population density at high and very high risks of 

water pollution is over 70,000 people per square kilometer, while the population density in the 

remainder of the area is only 48,000.  

V.2.1.4 Pollution from the seacoast 

Typically, the seacoast is an attractive place for relaxation, meditation, and recreation of urban 

residents. In fact, in the past (before 1986), Port-au-Prince’s boulevard Harry Truman along the 

seacoast was a very attractive place for tourists. However, the inefficient planning and 

management of the seacoast caused its surrounding environment to become unappealing and not 

suitable for touristic activities. For example, the most prominent slums are erected on landfill and 

previously open areas illegally occupied by low-income squatters close to the seashore (UNEP 

1996). This statement, however, cannot be generalized to all Haiti’s coastal cities or the entire 

extent of the coasts. By contrast to Port-au-Prince other coastal cities for which landfills and 

open space are not available don’t face with the same issues of coastal pollution. The north 

section of Cap-Haitian’s boulevard, the second largest city of Haiti illustrates well this fact (See 

Figure 32 in Appendix 1).  

The seacoast is now the ultimate repository of domestic and industrial waste, solid 

residuals, and even human refuse. Solid waste in the form of plastic bags, rags, used tires, cans, 

and bottles are sinks for mosquitoes breeding, which eventually spread malaria and dengue.  
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Exposure to pollution located on the seashore is dependent upon distance combined with 

other parameters such as land use, housing density, and proximity to the waterways’ mouth. A 

distance of up to 1,000 meters from the seacoast was computed with thresholds of 300, 500, 700 

and 1,000 meters. Higher housing density intensifies pollution; residential land use exacerbates 

coastal pollution more than its commercial counterpart due to the discharge of human and 

domestic wastes to the sea. Furthermore, since the waterways carry polluting materials to the sea, 

sections of the shoreline located near a watercourse were considered more vulnerable.  

 
Figure 24 : Extent of coastal pollution 

Figure 24 shows that areas more severely affected by coastal pollution are located along 

the southeastern tip of Port-au-Prince, which feature the presence of the two slums 

aforementioned. The population affected by high and very high exposure to coastal pollution is 

roughly 138,000 representing approximately 19% of the entire population. This factor was 

classified fifth for its weight in environmental quality immediately after flooding and before 

traffic pollution.  
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V.2.2 Group 2: Public domain factors 

V.2.2.1 Public marketplaces 

Market places include traditional markets located indoor and clearly identified, and 

ambient markets that typically take place either preeminently in specific areas or just randomly 

on the streets. However, either because the capacity inside the buildings is exhausted or because 

merchants are looking for more exposure of their goods, rarely have the limits of these building 

contained the merchants. As a result, the markets extend beyond their assigned physical 

boundaries and generate multiple environmental problems. The impact of public markets on 

environmental quality has not been previously reported in the literature, probably because the 

impact of public markets is specific to urban areas in developing countries. Nevertheless, indoor 

public market places and informal street markets are potential sources of waste and affect the 

aesthetic and the sanitation conditions of neighborhoods in which they are located.  These 

markets inhabit unspeakable deleterious hygienic conditions that are either harmful to the 

attendants or people living in their proximity. Evidences suggest that the degradation observed in 

the urban environment is closely related to activities of the informal economic sector of Port-au-

Prince (Howard 1998).  Due to inadequate rubbish collection service, these markets are sinks for 

agricultural and food-related solid waste that decompose rapidly under the sun and are hosts to 

and attract mosquitoes that can transmit diseases to residents living nearby. In addition, they 

generate offensive stench that spreads to the neighborhoods and are a source of noise during the 

day. Another hazard associated to street markets is their imbrications with traffic that very often 

induces injuries and deadly accidents. Not to mention the impediment to pedestrian circulation 

and, in case of emergency, a hindrance to fire department and police actions to bring relief.  
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While indoor markets were digitized as polygons, ambient markets were identified with 

high resolution aerial images and Google Earth images and digitized as lines. Euclidean distance 

to markets was computed on both features and subsequently combined to retain the locations 

indicating the worst case scenarios.  

Public markets have recently increased with the escalating rural-to-urban migration, 

political instability, and compression of jobs in the formal economy particularly in the assembly 

industry. Attempts to suppress markets with coercive actions have been a failure, because the 

socioeconomic forces that influence the evolution of the markets are ignored. Although the 

experts rank this phenomenon as among the four least important environmental problems, over 

150,000 people (21% of the entire population) are affected at high to very high exposure levels 

with a corresponding population density of 69,000 people per square kilometer.  

V.2.2.2 Cemetery 

While in developed countries a cemetery is a sacred and secure place that poses no 

problem for the immediate environment, the main cemetery of Port-au-Prince is not a peaceful 

sanctuary for the deceased. Sanitation conditions inside the cemetery are very precarious and are 

mainly affected by overcrowding, the inappropriate disposal of the corpses and vandalism. 

Because the hosting capacity of the cemetery is overwhelmed and as a result of vandalism, often 

dead bodies are left exposed to the open sky for a long time. Many instances have been reported 

where debris of coffins and remains of cadavers are left outside allowing the wind, runoffs and 

mosquitoes to spread bad smell and infectious agents throughout the surrounding neighborhoods. 

The bad condition of the environment around the central cemetery of Port-au-Prince is at least 

affecting those living in the vicinity. To illustrate the situation prevailing in the cemetery an 

image is exhibited in Figure 33 in Appendix 1. 
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Figure 25 : Exposure to public markets and cemetery pollution 

A Euclidean distance was computed from the cemetery and distance thresholds of 200, 

300 and 400 meters were adopted. Problems from the cemetery are the least-weighted non-

natural environmental hazards for Port-au-Prince according to the experts’ survey. Cemetery had 

an average weight of 7.1% in the experts’ survey and affects 25,000 people (3.4%). The extent of 

exposure to cemetery pollution is displayed in Figure 25 along with public market pollutions. 

V.2.2.3 Slums/informal settlements 

Slums feature many environmental features that unquestionably create conditions for a 

deteriorated urban quality. Hardoy and Satterthwaite (1991) point out three problems affecting 

the neighborhood environment in which many poor households live. These include dangerous 

sites, household garbage not collected and inadequate infrastructure. They enlighten the situation 

as follows: 

...These are large clusters of illegal housing on dangerous sites, for instance on steep 
hillsides, floodplains or desert land,… around solid waste dumps, beside open drains and 
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sewers, or in industrial areas with high levels of air pollution. They also develop in sites 
subject to high noise levels, for instance close to major highways or airports.  
  
Other risks associated with poor infrastructure comprise flooding, waterlogged soil, and 

dormant pools, which can transmit diseases. People with lower income choose to live there not 

being unaware of the danger but because the location of these sites meets more urgent lodging 

needs. Hence a slum is by itself a direct indicator of poor environmental quality.   

The slums were digitized with the combination of a 1994 topographic map and a more 

recent orthophoto (2005). In addition to the areas within the slums, selected buffers of 100 and 

200 meters were also included. Adjustments were made for location, size and level of 

deprivation in amenities of the communities. For instance, a slum community located on the 

seashore faces different adverse conditions than another built on the hill. A larger slum is likely 

to host more problems (e.g. access, concentration, and sanitation) than a smaller one. Obviously, 

a slum with fewer vegetation cover is worse off than one with higher rate of greenness.   

Among the parameters distressing the urban environment of Port-au-Prince slums were 

ranked second with an average weight of 10.2% on the experts’ scale. At the time of the last 

census (2003), the southernmost space now occupied by shantytowns was not a very populated 

area. More recent aerial images indicate significant squatter in progress. The next census will 

need to redefine the SDE borders and include these recently populated areas.  Over 64% (almost 

471,000) of the population lived in areas defined as shantytowns with a population density of 

around 73,500 people per square kilometer versus 35,400 for the remainder of the study area. If 

the 200 meters buffer is excluded the population density within the slums exceeds 83,000 people 

per square kilometer and the house density is estimated at 14,700 houses by square kilometer. 

The spatial extent of slums in Port-au-Prince is shown in Figure 26. 
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Figure 26 : Slums and immediate surroundings 

V.2.2.4 Crowdedness 

Overcrowding is another intervening factors that has been assessed as determinant of the 

conditions of a neighborhood (Amerigo and Aragones 1997, Chan 1999, Cramer, Torgensen and 

Kringlen 2004, Fleury-Bahi et al. 2008, Hur and Morrow-Jones 2008, Walton et al. 2008). The 

relationship between population density and environmental externalities can be easily understood 

when considering issues with rubbish collection, traffic jam, and constant pressure on the natural 

resources. Cramer et al. (2004) found that the general quality of life decreases as a result of an 

increase in population density. Higher population density is correlated with the occurrence of 

more negative events and a higher density also negatively affects the perception of neighborhood 

quality. Another impact of density (compactness) is perceived on health and materialized by a 

higher exposure to and human inhalations of pollutants (Marshall et al. 2005, Schweitzer and 

Zhou 2010). In the context of Port-au-Prince population density and crowdedness are used 

interchangeably because of the negative consequences associated with population density. 
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Since it is assumed that population density underscored UEQ, population density was left 

apart and was not included as a parameter in the processing of the model. Population density will 

be used to test the relationship between population density and the different parameters 

intervening in UEQ.  

Crowdedness was ranked in-tandem with waste as the top two problems that affect 

environment quality in Port-au-Prince. 

V.2.3 Group 3: Natural hazard domain factors 

Previous UEQ studies usually fail to include the component natural hazards as a 

contributing factor of environmental quality. The safety and security aspects, when referred to in 

the study of urban environmental quality, have been linked to man-made features along with 

other socio-economic characteristics, but not to natural hazards. The impact of hazards such as 

landslides and floods on land and neighborhood values have been investigaged. Some studies 

have found negative correlation while others did not find any significant correlation (Babcock 

and Mitchell 1980, Tobin and Montz 1988, 1990, 1994, Schaefer 1990). Coastal populations are 

much at-risk as proven by the deadly events occurred in the last 10 years and these risks are 

heightened by sea level rise as a result of global climate change (Tralli et al. 2005). In Port-au-

Prince these events are aggravated by some anthropogenic components such as accelerated tree-

cutting on high slopes, the obstruction of the drainage network, and the low rate of water 

infiltration due to urbanization (road and residential constructions) (Howard 1998, Mathieu et al. 

2000). Recently, many flashfloods have paralyzed activities in the metropolitan area and offered 

a repugnant spectacle for the environment. People living in the proximity of the sea face risks of 

tsunamis and coastal surge (though the perception of tsunami is very low in Port-au-Prince 

because no recent events have been reported). The residents’ perception about the safety of a 



74 
 

residential location is affected both by the impact of recent events and the potentiality for the 

occurrence of further events.  Therefore natural hazards cannot be understated.  

V.2.3.1 River and flash flooding 

Flood hazard models are built with variables such as elevation, land cover information, 

and water bodies (Islam and Sado 2000). The assessment of flood hazards can also take 

advantage of the ability of remote sensing technologies to identify flooded areas (Islam and Sado 

2000, Tralli et al. 2005). Absence or lack of detailed data limits the ability to include all the 

fundamental variables suggested by the hydrologic modeling system (HMS) developed by the 

Hydrologic Engineering Center of the US Army Corps of Engineers (Peters 1998) or the model 

developed by HAZUS-MH Level-2 (Scawthorn et al. 2006), which requires topography-related 

and hydrologic information. The non-availability of some data to include in a model impose a 

trade-off between sophistication and simplicity regarding the accuracy of the outputs (Bates and 

De Roo 2000). The Stream Flow Model (SFM) 3.3 flood model, a semi-distributed hydrologic 

model assuming uniform flood heights along the stream channel is particularly suited for the 

monitoring of flood where adequate hydrologic data are not available (Artan, Restrepo and 

Asante 2002, Gall, Boruff and Cutter 2007). A semi-distributed model is a conceptual model in 

which a watershed is further divided into several sub-basins (Guleid et al. 2007). A similar 

approach was used by De Roo et al. (De Roo et al. 2007). In a study funded by the Oxford 

Committee for Famine Relief Great Britain assessing natural hazards and risks affecting Haiti, a 

height of 6 meters was used above the rivers to model flooding. This height represented the 

minimal for the entire country (Mathieu et al. 2000). The modeling of the floodplain for Port-au-

Prince is a modified version of the SFM 3.3. It takes into account the fact that the study area is 

not crossed by any major river. Most importantly, the actual state of the waterways is such that 
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they are usually loaded with sediments and solid waste that can cause an event or lesser 

magnitude to raise water level above the river bed and generate flooding.  

To begin with, a water surface was created with height of the river derived from the 

DEM. Second, a grid of 30x30 meters was generated to which the mean elevation from the DEM 

surface was added. This represents the terrain elevation at each cell of the grid. These two steps 

enabled the computation of the elevation difference between the river at its flooding level and the 

surrounding terrain. However, to ensure that only areas closer to the river were included, 

distance from each cell of the grid to each point of the river was computed. Combining several 

distance thresholds to rivers, elevation, and height difference, queries were applied to determine 

locations at risk of flooding at several levels. The resulting map is displayed in Figure 27. 

 
Figure 27 : Flood probability for a 100-year event 

According to the experts, flooding ranks as the top natural hazard affecting the urban 

environment in Port-au-Prince. Areas with highest probability of flooding correspond to the 

location of the shantytowns “Cité Leternel” and “Cité de Dieu”. Other vulnerable regions include 
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the gorges neighboring the waterways in Bourdon where people have decided to build their 

houses in spite of recent reported casualties from run-off and flash flooding events. Twenty six 

(26%) percent of the population representing about 190,000 people is exposed at high and very 

high risks if an event capable of producing flows from three to five meters were to occur. The 

obstruction of the channels by sediments and trashes can easily force flows out of the canal beds 

even with the occurrence of an event of lesser magnitude than a 100-year flood. 

V.2.3.2 Landslide 

The occurrence and probability of landslides are influenced by as many and diverse 

event-controlling parameters as past occurrence of events, slope, landform, illumination, aspect, 

elevation, rainfall, plan curvature, profile curvature, soil type and surface land use, proximity to 

the road network, and the hydrological profile (Irrigaray Fernandez et al. 1999, Ayalew, 

Yamagishi and Ugawa 2004, Young, Kil Jin and Choi 2010, Kelly 2010). Ayalew et al. (2004) 

acknowledge that, while the inclusion of all the variables can increase the accuracy of landslide 

susceptibility models, as a minimum requirement a model must include the topographic 

attributes.  

The Mora-Vahrson (1994) method to assess natural susceptibility to landslide hazard was 

utilized in an analysis of multiple natural hazards study for the Haiti in 2010 (MULTI-

MENACE-HA 2010). This method superimposes several characteristics intrinsic to slope failure 

such as geology/lithology, topography, humidity, seismic activity and rain intensity. However, 

this approach is more appropriate for macro-zonation of landslide hazard than for determining 

the predisposition of a micro-zone such as Port-au-Prince to landslide. Detailed geology for the 

area is missing, along with most of the data needed for the other indicators. Ayalew et al’s 

(2004) suggestion is retained to include parameters such as slope gradient (greater than 20%), 
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proximity to roads (50 meters), proximity to waterways (50 meters), and housing density (greater 

than 5000/km2). These parameters were combined with the Local Cell Statistics tool using the 

“minimum” operand. 

Landslide susceptibility was ranked in 9th position by the experts. The occurrence of 

landslides has increased over the last decade due to anarchical constructions on steep slopes and 

along the rivulets in unstable soils. Forty two thousand (42,000) people lived in areas with high 

and very high susceptibility of landslides. Areas susceptible to landslides are displayed in Figure 

28 along with coastal flood hazard. 

 
Figure 28 : Costal flooding and landslide susceptibility in Port-au-Prince 

V.2.3.3 Coastal flood hazard (Wave surge) 

The assessment of coastal flooding takes into account the flood depth above ground 

determined by deducting the ground surface from the flood surface (Scawthorn et al. 2006). 

Considering an event that would generate waves that are five meters above ground, four 
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thresholds of risks based on classification of elevation by natural breaks (Jenks) were generated. 

The resulting surface is displayed in Figure 28 along with coastal flooding. 

Sea surge does not appear to be a vital concern for residents in Port-au-Prince. Ranked 

last by the experts, it affects only 3% of the coastal population. That includes mainly three 

shantytowns located on the coast, the seaport and a portion of the commercial centre 

(downtown). 

V.2.4 Summary of the parameters 

A summary of the average weight scored by each parameter in the experts’ survey along 

with their corresponding population density is displayed in Table 6. Crowdedness and waste are 

not displayed in the table since they were not included in the model. However, they were ranked 

first and second most important parameters affecting UEQ. After redistribution of their scores 

proportionally to the initial weight of the other parameters, vegetation, slums, waterways 

pollution, flooding, sea pollution, and gas emission exposure were, by descending order, the six 

most important parameters included in the UEQ model. From a brief examination of the column 

with population density it can be inferred that higher population density is related to lower UEQ 

levels and vice-versa. This is true for all the parameters except for public markets, cemetery and 

wave surge. The point biserial coefficient can be used to validate the correlation observed. 

The point biserial coefficient is a special case of the Pearson’s moment correlation 

coefficient that is designed to test correlation between one dichotomous variable (e.g. low and 

high UEQ) and an interval or ratio variable (e.g. population density) (Shaw and Wheeler 1994). 

For all the 11 parameters the Pearson correlation coefficient generated from the point biserial 

application yielded -0.42. This indicates that as UEQ decreases population density increases. The 

lower population density associated with lower UEQ for the three parameters aforementioned 



79 
 

may be directly related to their small geographic extent that does not include other very 

populated neighborhoods. High population density in these outside-neighborhoods serves as 

outliers that offset the effect of inside-neighborhoods with high population on the trend observed. 

After removing these three variables the Pearson coefficient increased to -0.63, significant at the 

0.01 confidence level.  

Table 6 : Weight and population density by parameter of the UEQ model 

Parameters Experts’ weight UEQ level Population density 
Vegetation Cover/ 
Greenness 

0.1121 
Low-Very Low 66,737 
Moderate - High 16,709 

Shantytowns  0.1019 
Low-Very Low 35,416 
Moderate - High 73,458 

Waterways 
pollution 0.1012 

Low-Very Low 70,393 
Moderate - High 47,901 

Flooding 0.0965 
Low-Very Low 60,855 
Moderate - High 59,337 

Sea Pollution 0.0949 
Low-Very Low 61,230 
Moderate - High 59,395 

Gas Emission from 
traffic 0.0942 

Low-Very Low 62,311 
Moderate - High 55,333 

Noise pollution 
from traffic 0.0918 

Low-Very Low 63907 
Moderate - High 52,064 

Public Markets 0.0872 
Low-Very Low 57,306 
Moderate - High 69,016 

Landslide 
Susceptibility 0.0802 

Low-Very Low 61,477 
Moderate - High 59,594 

Cemetery  0.0716 
Low-Very Low 53,159 

Moderate – High 59,920 

Wave Surge  0.0685 
Low-Very Low 52,694 

Moderate – High 59,934 
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V.3 Integrating factors for UEQ assessment 

Several obstacles may arise with the integration process of the individual parameters 

affecting UEQ. Those include  the difference in spatial extent, the non-uniform scale 

measurement (ordinal or continuous) and the difference of spatial units (Pixel, SDE, buffers) (Lo 

and Faber 1997, Nichol and Wong 2009). To circumvent these difficulties, the parameters were 

converted to raster format with a unique pixel size of 30 meters over the full extent of the area, 

and then integrated with weighted raster overlay.  

The weighted linear combination technique (WLC) used by Ayalew et al. (2004), a 

process similar to the Analytical Hierarchy Process (AHP) (Saaty 2005), was applied for the 

overlay operation. To determine the weights, an online survey (sample is provided in Appendix 

V-a) was distributed at the secondary-level to 40 pre-identified experts of which 16 completed 

and returned their survey. The professional profile and the educational background of the experts 

are also provided in Appendix V-b. The experts assigned a number from one to ten to all the 13 

potential parameters listed in the questionnaire with one meaning unimportant and 10 extremely 

important. To standardize the weights, the sum of the answers for a parameter was divided by the 

total score for all the parameters. However, since crowdedness and waste was not included in the 

final model, their scores were redistributed proportionally according to the initial respective 

weight of the other 11 parameters. This procedure generates a weight between 0 and 1for each 

parameter with the sum of the weights equals to one. The weight can also be expressed as a 

percentage. For example, the total score attributed to vegetation by the 16 experts amounted to 

144.  The score for the eleven parameters and for all the experts totaled 1285. The average 

weight of vegetation was found by dividing 144 by 1285, which yields 0.112 or 11.2%. 
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After additive linear combination of all the parameters with their respective standardized 

weight as coefficient (see Nichol and Wong (2009)) the GIS overlay results in a single composite 

UEQ for each SDE according to the following formula: 

 

Where n= the number of parameters, wi the percentage of variance or weight of factor i as 

indicated by the experts; and Fi = factor i. 

The entire process was performed within the Model Builder environment in ArcMap (See 

flow chart in Appendix III (IIIa & IIIb) and the Python codes in Appendix IV). For mapping 

purposes, the whole UEQ range was reclassified into four classes using the quantile technique. 

The quantile classification scheme was retained for its ability to establish a balance in the 

distribution of the features among classes. Brewer and Pickle’s (2002) surveying many 

respondents to evaluate seven classification methods, found that the quantile technique was more 

appropriate for conveying patterns of mapped rates. This technique, while retaining a similar 

number of features in each UEQ class allowed visualizing areas with concerns more than did 

other classification methods. 

The map in Figure 29 depicts the composite UEQ at pixel level. The darkest color in the 

southwest and the northeast where the lowest urban environmental quality conditions are spotted 

correspond to the location of the two disamenity zones north and south identified in Chapter III. 

The east-southeastern edge displays the highest UEQ, consistent with the location of the 

residences of the upper-income sector. For once, dark colors characterizing areas with low to 

very low UEQ appear in the commercial zone.  

Over 682,000 people (93%) fall within the ranges of moderate to very low UEQ. The 

corresponding population density is 63,200 people per square kilometer. The exclusion of the 
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“moderate” category would increase the population density to about 74,250 for a proportion of 

62% of the population. This indicates that not far from two-third of urban residents of Port-au-

Prince are exposed to or living in worst environmental conditions. At the opposite end, only 

50,000 people live in areas with high UEQ with a corresponding population density of about 

15,500. This clearly emphasizes the weight of population pressure on environmental quality.  

 
Figure 29 : UEQ index for Port-au-Prince at pixel level (30m) 

The test of the relationship between population density and UEQ was tested over the 

ranked values of population density and UEQ with Gamma and Somer’s D statistical parameters. 

High population density was expected to be found in areas with lowest UEQ. While Gamma tests 

the symmetrical measure of association between two ordinal variables, Somer’s D is an 

asymmetric extension of Gamma that incorporates the number of pairs not tied on the 

independent variable. Field (2005) recommends to use Gamma and Somer’s D for the directional 

relationship between two ordinal variables. Values of Gamma and Somer’s D range between -1 

and 1. Whereas values closer to 0 indicate a weak relationship, values near -1 or 1 indicate strong 
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negative or positive relationship, respectively. Gamma and Somer’s D are given by the following 

formulas:  

 

 

Where P = number of concordant pairs 

Q = number of discordant pairs 

Tg = number of ties in the dependent variable 

For a dependent variable Y and an independent variable X a pair is termed concordant if 

the subject ranks higher on both X and Y. A pair is discordant if the subject ranks higher on X 

but lower on Y (Agresti 2002). 

The test of the relationship between the ranked values of population density and UEQ 

ranked values (both ranked with Natural Breaks) achieved a Gamma value of -0.54 and a 

corresponding Somers’s D value of -0.37. Both statistics were significant at 99% confidence 

interval and suggest a moderate inverse relationship between population density and urban 

environmental quality. Highest population concentrations are likely to be found in areas with 

degraded urban environmental standards and areas with be best environmental amenities are 

occupied by less dense population.   

The other goal pursued in this paper was to evaluate, based on the UEQ index, the 

prospect of refining the five-sectors model conceptualized by Joseph and Wang (2010b). In fact, 

the previous model was oversimplified with the categorization based only on land use and visual 

inspection of a high resolution image. In addition, the model was aggregated at SDE level, 

implying homogeneity within a SDE and ignoring possible differences inherent to variation in 
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the physical environment and population distribution. This paper offers the benefits of a finer 

study unit and a more comprehensive assessment through the integration of a mosaic of 

indicators.  

The new structure was derived by combining the UEQ scores at SDE levels, population 

density and the previous sector structure, all converted to grids with the weighted overlay tool. 

Population density, UEQ, and the original sector were assigned an arbitrary weight of 0.5, 0.3, 

and 0.2, respectively. The resulting raster in Figure 30 was then aggregated to seven large 

polygons (Figure 31) through manual digitization.  

The new structure introduces a new conceptual sector termed “in situ accretion”, in 

reference to the Latin America cities model proposed by Griffin–Ford (1993). This sector, 

located at the edge of the city, hosts houses comparable to the shantytowns and possesses little or 

no infrastructure. The lands have been freshly occupied, and squatter is still ongoing. Another 

characteristic of this sector embodied by the other inland in situ accretion zone is the high 

vulnerability of the houses. They are built on marginal lands, on the hills, and in floodplains. The 

transitional zone and the residences of the upper income shrank because of the presence of the in 

situ zone of accretion in Bourdon’s Valley and Canapé-Vert. The commercial sector could be 

divided into the formal sector (south) and the informal (north). However, the informal section 

was rather linked to the disamenity zone north, which also contains slums at the northwestern tip 

of Port-au-Prince. The disamenity zone south still holds but it is stripped off of the southwestern 

most portions that now become the sector of “in situ accretion”.  
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Figure 30 : Refinement of the sector model at pixel level 

 
Figure 31 : Refinement of the sector conceptual model for Port-au-Prince 
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V.4 Validation of UEQ by field survey 

V.4.1 Implementation of the survey 

To assess the accuracy of the UEQ index and validate the results a face-to-face survey 

was administered to 407 individuals selected by random stratification from 10% of the SDEs 

(67) under the constraint that each SDE was represented by six to seven respondents in each 

stratum extracted from the five sectors identified in Joseph and Wang (2010). The strata were 

chosen so as to ensure representation in the survey of respondents from the different sectors. The 

respondents were asked first, to evaluate the general environmental quality in their respective 

neighborhood; and second, evaluate the contribution to environmental quality of each parameter 

in their neighborhood. A sample of the survey is provided in Appendix V-c (English) and 

Appendix V-d (French). The range of values varied on a scale of 1 to 5, with 1 standing for the 

worst case scenario and 5, the best case. To standardize the range of values of the UEQ model 

(one to four) and that of the survey (one to five), the highest values of the survey four and five 

were combined into four, which means high UEQ. 

Due to theft risks for the GPS equipments, the surveyors were advised not to use the GPS 

units to collect the geographic location of the respondents. Therefore, information about the 

specific location of the respondents was not available. The scores at individual level were 

aggregated to SDE by retaining the highest frequency of responses (majority) within a SDE.  

The responses to the survey indicate that more than 60% of the population was living in 

low to very low urban environmental conditions. When residents living in moderate situation are 

added to this number, the total represents over 90%. Only 10% of the population was living in 

good to very good conditions. These numbers in general reflect the results of the model.  
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V.4.2 Accuracy tests 

Two types of control were applied to test the accuracy of the model. First, we looked at 

independence between the prediction of the model and the actual data collected on the field. The 

strength of the relationship was tested with two correlation measures, including Spearman’s rho 

(ρ) and Kendall’s tau, both used for testing ordinal relationships (Shaw and Wheeler 1994, 

Higgins 2003). Spearman’s rho is comparable to the Pearson product moment correlation 

coefficient. It only converts the data to ranks before calculating the coefficient.  The formula of 

Spearman’s rho is as expressed below: 

 

Where D = the difference between the ranks of corresponding values of the UEQ of the 

survey and the UEQ of the model, and N = the number of pairs of values (67). Spearman’s rho 

takes values between -1 and 1. Values closer to one indicate strong correlation.  

For the UEQ index, Spearman’s rho was equal to 0.27 (in absolute value), significant at 

the 95% confidence interval, which points to a weak but significant association between the 

results of the survey and those of the model.  

Kendall’s tau also tests the strength of relationship between ordinal variables. However, it 

offers the advantage over Spearman’s rho to be able to interpret its value as a measurement of 

the probabilities of observing concordant and discordant pairs (Shaw and Wheeler 1994). The 

formula of Kendall’s tau is: 

 

In which P is the sum of cases ranked after the given item by both rankings, and n 

represents the number of paired items. 
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Kendall’s tau absolute value of 0.31, significant at 99% confidence interval, substantiates 

the weak-to-modest relationship between the survey and the model’s results. It indicates that 

there is over 30% chance that the correspondence between the results of the model and the field 

survey does not follow a random process but about 70% chance that the ranks issue from the 

model are assigned randomly when compared to the perceptions collected from the field survey. 

The second type of control assessed accuracy comparing the prediction of the model to the 

survey results on a case by case basis. Exact match and closely match ranked cases from both 

sources were added up. Closely match cases are considered particularly between low and very 

low and between moderate and high UEQ because the difference between these categories may 

be fuzzy. The classification method used does not establish a clear and definite division of the 

values. In addition, the judgment of different respondents even within the same SDE might not 

entirely help grasp the contrast among adjacent classes (e.g. low and very low or moderate and 

high).  

Twenty nine (29), representing 43.3% of the 67 SDEs exactly matched the predictions of 

the UEQ model. Thirty (30), or 44.8% other SDEs were classified in adjacent UEQ levels. The 

addition of close matches and exact matches represent about 88% of the SDEs, meaning that 

88% of the SDEs might have been more or less correctly classified. This can be considered an 

important achievement of the model in terms of accuracy. 

The same association test was performed for each individual parameter of the model. The 

results are displayed in Table 6. Only four parameters of the model have significant bivariate 

correlations (as indicated by Spearman’s rho and Kendall’s tau, which both have a value over 

25%). The correspondence matrix points toward an improved performance of the model. Five 

parameters achieved at least 40% of cases that exactly match while nine out of the 11 parameters 
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have at least 70% of cases exactly or closely matched. This was consistent with Spearman and 

Kendall’s statistics.  

Table 7 : UEQ model and lay-persons survey results comparison 

Parameters Spearman’s 
rho 

Kendall’s 
tau 

% of Exact 
match 

% of Close 
match 

Total exact & 
close match 

Traffic air pollution 0.28* 0.25* 25.4 46.3 71.7 
Vegetation cover 0.36** 0.32** 40.3 43.2 83.5 
Traffic noise  0.06 0.055 29.8 40.3 70.1 
Water pollution 0.08 0.07 17.9 44.8 62.7 
Shantytowns 0.27* 0.24* 23.9 47.8 71.7 
Flooding 0.19 0.17 23.9 47.7 71.6 
Public markets  0.08 0.07 26.9 37.8 64.7 
Landslide 0.14 0.14 70.1 25.4 95.5 
Sea pollution 0.22 0.21 68.7 23.9 92.6 
Coastal surge 0.40** 0.40** 95.5 3.0 98.5 
Cemetery 0.23 0.23 81.0 17.9 98.9 
** Correlation is significant at the 0.01 level (2-tailed); * Correlation is significant at the 0.05 
level (2-tailed). 

V.5 Discussions and conclusions 

While attempting to replicate a phenomenon of the real world, a model must incorporate 

to the extent possible all or most relevant predictors that influence the phenomenon under study. 

This endeavor may be restrained by the availability of reliable data. When ordinal data is applied 

in the analysis, the outcome depends on measurements based on a series of logical assumptions, 

but not necessarily scientifically established. The proximity analysis is a case in point. The use of 

divergent methods will yield different outcomes and conclusions. It is however essential to 

conduct a field study to validate the findings of the theoretical model.   

Since urban environmental quality is a geographical phenomenon by nature, overlooking 

some site-specific parameters would result in under-specifying the model.  Likewise, some 

factors that work for one place may be redundant or irrelevant in another location. The experts 
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were in agreement with the choice of parameters included in the model. Although public waste 

and dust were dropped from the model due to measurement issues and unavailability of data, 

other parameters fully or partially embodied the extent of these two parameters. For instance, 

dust can be geographically covered by air pollution from traffic; and waste could be represented 

by public markets, river pollution, coastal pollution, and slums.  

The model built in this research achieved an overall average Urban Environmental 

Quality Index for Port-au-Prince of 2.17 on a scale whose minimum is 1.25 (high UEQ) and 

maximum 3.2 (low UEQ). The corresponding median value is 2.12. Not surprisingly 

neighborhoods with the highest UEQ are located on the east and southeast edges of Port-au-

Prince, which corresponds to the residences of the upper-income people and the less accessible 

zones (south-east) due to high elevation and difficult terrain. The latest has not suffered yet from 

the full extent of population pressure like the other slums. The existence so far of some 

vegetation cover and their location far from features of the public domains and pollution sources 

boosted their UEQ rank. However, this situation can quickly change if nothing is done to stop the 

ongoing squatter process in this region as revealed by recent high resolution images. 

Neighborhoods with the lowest UEQ carry a host of environment problems ranging from 

pollution to natural-related hazards. But most importantly their exposure is underlined and 

aggravated by the highest housing and population densities. They are located in the southwest 

and the north regions of Port-au-Prince corresponding to the two disamenity sectors (south and 

north respectively). The northwestern tip, part of the commercial sector, also is included among 

the SDEs with lowest UEQ. This is due to the presence of a large strip of public markets (formal 

and informal) with advanced degraded conditions (e.g. Marché Croix des Bossales) and a slum 
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(Wharf Jérémie). Coastal pollution, water pollution, lack of vegetation, and flooding are the 

other environmental problems that plague these neighborhoods.  

Though not purposefully integrated in the model, population density is a central 

parameter for a more accurate UEQ that captures details that the other surrogates fail to embody. 

Several SDEs of the northeastern section of downtown or the commercial sector display high 

UEQ while in reality these neighborhoods are adjacent to the north disamenity zone known for 

its low living standards as confirmed by the field survey. This area is spared of the impact of 

several parameters that lack of vegetation, pollutions from traffic, and public markets alone 

could not offset.  

The statistics in Table 6 portraying the prediction accuracy of each model’s parameter 

may reveal several aspects with regard to the perception of the population about urban 

environmental quality. First, there might be a distortion from the respondents induced by a too 

microcosmic view of the definition of neighborhood that is different and much smaller than a 

SDE. This might have affected the response given for a specific parameter. For instance, a 

respondent living in a neighborhood doted of some trees in his neighborhood might attribute a 

rank of moderate to very good for greenness while, in fact, based on the 30x30 meters processed 

image, the percentage of vegetation ranks the SDE as having a low UEQ.  On the other hand, if a 

localized feature affects negatively his/her immediate residence, a respondent would tend to 

generalize the issue to the entire SDE.  This stereotype tendency may even imply greater impact 

for large SDEs affected by the ecological fallacy problem. Second, an environmental issue such 

as landslide has very localized extent that barely extends to an entire SDE. If a respondent’s 

neighborhood is not particularly impacted by this problem, he tends to provide answers that 

show his lack of awareness or concern while the issue is objectively and spatially assessed by the 
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model. This creates a discrepancy between the two. Another source of discrepancy explained by 

the high percentage of closely matched cases lies in the ranking process, completely subjective 

from the respondents, semi-objective from the model. Yet the surveyors might have contributed 

to the subjectivity by personally interpreting the respondents’ thought or if their judgment is 

influenced by their own observation of the state of the environment at the location of the survey. 

Finally, there is the generalized tendency of respondents in Haiti, particularly those with less 

formal education to be pessimistic in providing answers regarding the conditions of their 

environment. This stems for a strategic behavior that consists of providing careful answers that 

leave windows of opportunities open in the case that the goal of the survey is the future 

realization of some improvement projects.  Overall, the perception of the individuals verbalized 

in the field survey corroborates the objective assessment of the model. 

Through the integration of factors from the physical environment, the public domain, and 

natural hazards, this study confirmed the multidimensional characteristic of urban environmental 

quality. The most important factors affecting UEQ are, according to the experts, crowdedness, 

waste, greenness, shantytowns, and different sources of pollution. The study also indicates that 

natural hazards are not to be ignored in the assessment of UEQ for Port-au-Prince. As 

anticipated, UEQ is a population-driven phenomenon. Areas with highest population densities 

are those with worst urban environment conditions. This is also substantiated by all the 

parameters except proximity to cemetery and coastal surge. The model elucidates the types of 

environmental issues that areas even smaller than a SDE face with and it puts in evidence 

“problem-neighborhoods” (Adrianse 2007), to which the attention of urban planners should 

focus. Finally, the UEQ enabled to refine the sector model, pointing to the existence of a new 
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sector similar to the in situ accretion zone of the Latin America cities model (Griffin and Ford 

1993).  

The UEQ model could be improved in several ways. First, more empirical researches are 

needed in order to include sub-parameters and proven objective measurements. For instance, the 

component building height could be incorporated in the determination of gas emission and noise 

pollution from traffic. It could be measured with LIDAR data contingent availability. Aerial 

photos taken after landslide and flood events could be used to delimit more accurately landslide 

susceptibility and floodplains. Direct measurement, whenever possible, is always better than 

approximation. 

Second, it is imperative that the other critical parameters such as waste, highly ranked by 

the experts, and dust are integrated in the model. Further research needs to determine methods 

for their measurement. For instance, the component soil in the VIS fraction could be used as 

surrogate for dust after combinations with road and housing features. 

Third, the field survey needs to follow the same ordinal scale than that used in the model 

to avoid any ambiguity. In addition, in spite of the difficulty to use mobile GPS to record the 

location of the respondents, this information could be useful for a more precise comparison 

between perception and objective measures. Lastly an odd number of surveys per SDE would 

facilitate generalization better than an even number. 

The UEQ model offers several practical applications. First, by identifying the specific 

environmental causes and targeting the locations of the problems, policy-makers are provided 

with information on where to concentrate their improvement efforts and in what sector. Second, 

the results call to the adoption of policies to prevent further resources depletion and ensure 

environmental sustainability. Ongoing squatters and encroachment of the lands are identified in 
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areas very prone to natural hazards. Loss of lives and assets can be avoided with the adoption of 

appropriate measures in these fragile areas. Third, the causes to the urban environmental 

problems investigated here are multi-faceted. They have to be dealt with a consortium of 

stakeholders including several governmental entities, non-governmental organizations, donors, 

the private sector, but more importantly the communities directly affected. It cannot be 

emphasized enough that urban planning is made for people of the communities and with people 

from the communities. Only their involvement early in the planning process until the 

implementation can ensure durability and effectiveness of development and improvement 

projects. Because they live in the communities and face the problems every day, members of the 

communities are expert in their own way. Their input must not be disregarded. First they need to 

acknowledge the problems their community is facing with; second they need to appropriate the 

problems by having a sense of ownership and pride of their community. This will stimulate their 

interest for involvement in improvement activities implemented in their neighborhood. 

Finally, the results invoke adopting a sector-oriented approach in regard of each of the 

parameters investigated. This will allow focusing and concentrating energy and resources to 

solve one problem at a time instead of investing limited resources to solve several problems 

while not reaching any concrete results.  
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CHAPTER VI CONCLUDING COMMENTS 

This chapter presents a summary of the results and discussions articulated in previous 

chapters. Port-au-Prince, the capital of Haiti is the study area about which this dissertation was 

implemented. The urban area of Port-au-Prince, the second smallest city in Haiti, comprises a 

very high population density that makes it one of the most overcrowded cities in the world. This 

high density is mainly associated to massive rural-to-urban migration mainly associated to the 

decline of the agricultural sector and an effort of development of the manufacture. This 

considerable movement of the population toward the capital has occurred in a context of 

overwhelmed urban resources (including natural and infrastructure) and exhausted reception 

capacity. The political vacuum and/or instability of the last 30 years have furthermore 

exacerbated the issue with the failure of the governments to have a global planning vision and to 

regulate the lands. Consequently Port-au-Prince has suffered countless issues among which an 

unarticulated urban structure and panoply of environmental problems. This dissertation targeted 

three goals: 

1. Examine the urban structure of Port-au-Prince in comparison with that of cities in 

developed countries;  

2. Given the context of data availability constraints revealed in this research, the second 

objective was to elaborate a model to estimate population at census level using 

remote sensing imageries; 

3. Assess and map urban environmental quality in Port-au-Prince and refine the sector 

model elaborated while attempting to address the first objective.   
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VI.1 Objective 1 

Chapter III addressed the first objective by examining the population density pattern of 

Port-au-Prince through two theoretical models: the monocentric structure and the polycentric 

structure. These models predict an inverse relationship between population density and distance 

decay from city center(s). This type of relationship is termed density function. For the 

monocentric structure that assumes the existence of one city center serving as the main provider 

of services and jobs for the whole city in a context of market economy, population density 

decreases from this city center to its edge. Several mathematical forms of the density function 

where tested for Port-au-Prince based on 2003 census data. None of the mathematical forms of 

the monocentric model examined yielded significant results that validated the expected negative 

exponential density pattern for Port-au-Prince as indicated by the low coefficients of regression 

(R2). The density pattern was also investigated with the polycentric structure, which at the 

opposite of the monocentric counterpart, assumes the existence of several city centers from 

which population density declines. Though the correlation measures improved, they were not 

satisfactory enough to validate the anticipated negative density gradient. 

These results indicated that Port-au-Prince urban structure does not conform to the 

configuration empirically proven for cities in developed and developing countries. This 

counterintuitive result is mostly explained by the failure of governments to apply proper 

planning and land use regulations. Consecutively empty spaces and marginal lands have been 

filled out by substandard dwellings that don’t respect any urban land use and zoning principles. 

Thus density patterns observed in Port-au-Prince have little to deal with the specific location of 

and distance from city center(s).  The structure bears some resemblance with that observed for 

cities in Latin American countries with some differences. 
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Finally, a model was proposed, which attempted to reproduce the socio-functional 

characteristics of Port-au-Prince with five geographic sectors including a commercial center, a 

transitional zone mixed with businesses and the residences of low to middle income, the 

residences of the upper-income people, and two zones of disamenity mainly characterized by the 

presence of shantytowns. 

VI.2 Objective 2 

Chapter four dealt with the second objective of this dissertation consisting in elaborating 

a regression model to estimate population. To this end, a high resolution LANDSAT ETM plus  

image was used along with census data for 2003. The V-I-S methodological approach was 

privileged for its ability to link spectral information from remotely-sensed images to human-built 

characteristics of the landscape that embody population density. The LSMA procedure was 

applied to derive fractions of image’s components from which surrogates were generated for 

correlation with census data. 

Multicollinearity tests were performed on several potential explanatory variables to 

ensure non-redundancy or over-specification of the model and retain only the non-correlated 

variables. The three retained variables were mean value of house fraction, mean value of 

vegetation fraction and standard deviation of vegetation fraction. Population density, the 

independent variable was transformed into different mathematical forms including logarithm and 

square root to increase model’s fitness. The logarithmic transformation, which produced new 

absolute values that are likely fit and mitigate the problem of underestimation or overestimation 

was demonstrated to be more appropriate for such task. In addition, the Geographically 

Weighted Regression model, a local model that assumes non-stationarity of social processes and 

admits spatial variations was used as an alternative to the global Ordinary Least Square model. 
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The GWR model achieved a satisfactory correlation coefficient of 0.80, a large 

improvement over the OLS model as indicated by a smaller AICc value. The model was 

internally validated based on the training data set with a mean proportional error of 26.1% and a 

total proportional error of 2.3%; and externally validated on a validation sample with a mean 

proportional error of 40.4% and a total proportional error of 8.1%. 

VI.3 Objective 3 

To achieve the third goal, a set of parameters derived from existing literature pertaining 

to Urban Environmental Quality (UEQ) to which was added some study area-specific parameters 

and three natural hazards was aggregated by Weighted Linear Combination in a spatial analyst 

environment. Each parameter was assigned a weight acquired from local experts through an 

online survey. An individual-based field survey was conducted to validate the results achieved 

by the model. 

The respondents to the expert’s survey confirmed the relevance of the parameters chosen 

to include in the model and they classified crowdedness, waste, vegetation, slums and water 

pollution as the five most relevant factors affecting environmental quality in Port-au-Prince. 

Most of the parameters were found to underscore population density. Areas most affected by 

environmental problems were also those with highest population density. This UEQ-Density 

relationship was substantiated by several association tests such as Spearman’s rho and Kendal’s 

tau. These two tests added to an accuracy matrix were also used to determine how close the 

predictions of the model were to the respondents’ perception of the reality. Forty three (43%) of 

the UEQ cases were accurately classified and over 88% of the cases were approximately 

classified. However, taking each parameter individually, Spearman’s rho and Kendal’s tau 
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results showed some substantial discrepancies that might have revealed a lack of awareness from 

the population about certain environmental problems that plague their neighborhood. 

The UEQ model was finally applied to refine the sector model proposed in chapter III. 

One new sector, likened to the in-situ accretion sector of the Griffin-Ford model for cities in 

Latin America, emerged. Moreover, by taking into account more specific characteristics that the 

model in Chapter three failed to consider, the location and the size of each sector was adjusted. 

Overall, about two-third of Port-au-Prince’s population are living under worst environmental 

conditions. 

VI.4 Contributions of the research 

The contribution of Chapter IV is straightforward. The model proposed can be used to 

estimate population in non-census years as well as for areas with similar patterns where census 

data is not available.  

The following considerations concern both Chapter III and Chapter V.  

Most of the environmental problems Port-au-Prince is facing with are demographic by 

nature, related to the too much pressure of the population on the resources. Policies that the 

government and law makers adopt of fail to adopt potentially impact the structure of cities. These 

policies determine the location, the distribution and other patterns of physical features found in 

an urban area. One of the main incidences is manifested on how population is distributed across 

the city.  When population settlements are not spread according to the respect of urban zoning 

and land use principles, many environmental consequences result.  

The research calls to the adoption of policies and actions with potential result in two 

prospects: corrective and preventive.  
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VI.4.1 Corrective measures 

The current state of the environment in Port-au-Prince needs to be redressed with specific 

actions aimed at lessening the impact on the residents’ health and well-being as well as 

decreasing the number of individuals more deeply affected (currently two third according to the 

UEQ assessment). This represents a big challenge to the extent that this requires undoing the 

existing structure at a huge social and financial cost. But this is an imperative intervention. 

Specifically, the government and urban planners need to intervene in the following areas:  

• Adopt land use and zoning regulations capable of transforming the conditions of 

identified neighborhoods from worst environmental conditions to a decent a livable situation for 

humans;  

• Create buffer zones along the gorges near the waterways and in areas identified as 

susceptible to landslides and affected by environmental pollution;   

• Promote measures that encourage street merchants to engage in formal indoor trade 

activities while utilizing coercive instruments against non-compliant citizens;  

• Improve existing and increase public infrastructure such as roads, drainage network and 

public markets;  

• Increase vegetation and greenness with the implementation of vertical urban gardening 

programs using the roof of houses and planting trees along the streets and in the hills. These 

would help increase the vegetative cover and prevent erosion.  

• The transportation service needs a reinforcement of its capacity to monitor and control 

gas emission. Above all, as it is a customary usage in many developed countries, each vehicle 

should pass an inspection test once a year including a gas emission test. Vehicles that fail the 

inspection test from circulation should not be allowed to operate unless appropriate correction is 
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performed. The consolidation of the many individual operators of public transportation into 

consortium of operators would also contribute to decrease traffic density and in the same vein 

reduce pollution from traffic.  The dislocation of street’s merchants and the elimination of the 

current practice of using the street corners of large arteries as parking space or repair site should 

also alleviate traffic density and prevent the concentration of polluted gas that affect the ambient 

population;  

• The institution in charge of sanitation needs to define appropriate localization and 

availability of dumpsters in relation to population distribution. The sanitation situation would 

greatly recover with the provision of more dumpsters in proportion with the needs of the 

neighborhoods and by ensuring regular collection of garbage. These interventions must be 

accompanied with public awareness and education messages as well as the adoption of coercive 

measures against those who refuse to comply.  

• Since the holding capacity of the cemetery is exhausted, Port-au-Prince is in need of 

another cemetery in sync with the growth of the population. Thorough monitoring is needed to 

ensure proper handling of the coffins. In addition, a mechanism to protect the area of the 

cemetery against vandals should be put in place. 

• The street markets phenomenon is a multi-faceted and complex problem that should be 

addressed cautiously. In several instances the police has intervened with muscular actions to 

displace the street merchants but without success. A good understanding of the problem is 

required before appropriate measures can be adopted. Street markets reflect a process of 

“informalization” of the economy that highlights the inability of the formal economy (such as 

manufacture) to absorb the jobs’ supply available. It is also an indicator of pauperization of the 

population that has to make a living on a very fragile and derisory commercial asset. Brutally 
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depriving the street merchants of this livelihood without offering alternative would severely 

affect their livelihood. This phenomenon also represents an expression of the overpopulation of 

the metropolitan area mainly fueled by massive rural exodus. Finally, it is due to the weakness of 

the public institutions to manage space of the public domain. Any strategy to solve this issue 

should consider this backdrop and should include policies with both short-term and long-term 

goals.   

VI.4.2 Preventive measures 

The main goal of the preventive measures is to promote sustainability and avoid further 

replications of the environmental predicaments identified. To this effect, urban planners need to 

work conjointly with law-makers to elaborate and adopt environmental laws to prevent the 

depletion of resources. However, only a strong and stable government with high willingness and 

commitment for change can create the conditions required for the implementation of the 

identified strategies. 

Since crowdedness represents the cornerstone of almost every single environmental 

problem identified in Port-au-Prince, it is imperative to adopt policies that have long-term socio-

economical impacts that are likely to change the residents’ status as well as those living in the 

back country so that they don’t feel the urge to leave their village or city. Basically, the goal of 

these policies would be to counterbalance the push factors with pull factors that give most rural 

residents enough reasons to stay where they are (e.g. education, leisure, electricity, health, 

substantial source of income, security, etc.).  

Another important milestone is to organize neighborhood’s associations that persuade 

residents to take ownership of their neighborhoods. These local organizations are to be provided 

with appropriate training, collaboration and minimum financial support to ensure their 
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effectiveness. Finally, in addition to civic education to young students through school and public 

education of the entire population through any form of media, the last important aspect is to 

foster synergy through partnership between different stake holders, public, private, local, 

international organizations and other potential groups. 

Regarding areas prone to natural disasters, the government should take appropriate 

measures to prevent further loss of lives and assets by displacing and relocating the population 

under threats. 

VI.5 Limitations and propositions for improvements 

In chapter III, population density needs to be analyzed over a larger extent including 

surrounding cities with which Port-au-Prince share the metropolitan areas. Another approach to 

population density would be the ambient population concept. Future works need to estimate 

ambient population and test it as dependent variable.  Finally, urban structural change over time 

can be examined with data for several censuses. One main constraint for that is the availability of 

data. The population estimation model proposed in chapter IV needs to be validated in an urban 

area other than Port-au-Prince. Finally the UEQ model needs to include parameters such as waste 

and dust pollution as suggested. In addition, the measurement of some parameters can be refined 

by the inclusion of some sub-parameters contingent availability of data. Given the subjectivity-

loaded of the ordinal approach, it is important to consider the objective measurement of some 

parameters included to the extent possible.  
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APPENDICES 

Appendix I : Figures 

 

 
Figure 32 : Top: Port-au-Prince, H. Truman Boulevard, south, occupied by a slum. 

Bottom: Cap-Haitian, north section of boulevard, a common place used for relaxation. 
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Figure 33 : Old and broken coffin exposed to plain sky in the cemetery of Port-au-Prince 
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Appendix II: Table  

Table 8 : Parameters used in the model and processing 

Domains Sub-domains Parameters Sub-parameters Operationalization 

Group I 
Physical 
Domain 

Environmental 
amenity Greenness Vegetation fraction Obtained from V-I-S 

with LSMA 

Environmental 
pollution 

Traffic gas 
emission 

Elevation 
0-240 meters 

(Classification with 
NB Jenks) 

Distance from roads Up to 200 meters 

Building density 
Impervious fraction 
(Classification with 

NB Jenks) 

Traffic density 

Traffic density field 
based on road types 
and usage obtained 
from Google Earth 

images observation at 
peak hours 

Traffic noise 

Distance from roads Up to 500 meters 

Building density 
Impervious fraction 
(Classification with 

NB Jenks) 

Traffic density 

Traffic density field 
based on road types 
and usage obtained 
from Google earth 

images observation at 
peak hours 

Water 
pollution 

Distance to 
waterways Up to 400 meters 

Habitat density (Classification with 
NB Jenks) 

Elevation 
0-240 meters 

(Classification with 
NB Jenks) 

Slope 0-50% 
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Table 8 continued 

Domains Sub-Domains Parameters Sub-parameters Operationalization 

Group I 
Physical 
Domain 
(Cont.) 

Environmental 
pollution 
(Cont.) 

Coastal 
pollution 

Distance to coast Up to 1000 meters 

Habitat density Classification with 
NB Jenks 

Land use  

Waterways near the 
coast 

Proximity and 
concentration 

(waterways length by 
coast section) of 

waterways to coast 

Group II 
Public 

Domain 

 Slums  Slums and 200 meters 
buffer 

Public 
markets  

300 meters buffer 
around lines and 

polygons 
Cemetery  400 meters 

Group III 
Natural 
Hazards 
Domain 

 

Flood 
probability Floodplains  

Difference between 
terrain height and 

river height for a 100-
year event 

Distance thresholds 
within floodplains up 

to 500 meters 
Elevation thresholds 

up to 50 meters 

Landslide 
susceptibility 

Slope >= 20% 

Habitat density Classification with 
NB Jenks 

Distance to water 50 meters 
Distance to roads 50 meters 

Coastal 
Surge  

Difference between 
ground elevation and 
sea level for an event 
that could raise sea 

water up to 5 meters 
above ground 
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Appendix III: UEQ Model Builder 

Appendix-III-a : Model global view 

 

L1C2 L1C3 

 

 

L2C2 L2C3 L2C4 

 

 

L3C2 L3C3 

L3C4 

L4C2 L4C2 

L4C3 

L4C4 

L5C1 L5C2 L5C3  

LiCj stands for Line i & Column j corresponding to the label of the detailed grids in the 
following pages. 
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Appendix-III-b: Model detailed view 
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Appendix IV: UEQ Model Python Script 

# UEQ_Script.py 
# Created on: 2012-05-23 16:00:28.00000 
#   (generated by ArcGIS/ModelBuilder) 
# Usage: UEQ_Script <rivulets_Proj__2_> <dem_30m_mask> <SDE_BND_Proj> 
<LineStreet_Markets> <cemetery_Proj> <Veg_frac_Proj> 
<Coastline_Merged__3_> <Market_Poly_Proj> <UN_PAP_RoadsProj> 
<dem_30m_mask__4_> <Imperv_FracProj> <UN_PAP_RoadsProj__5_> 
<Shantytowns__3_>  
# Description:  
# Model built to assess the environmental quality of Port-au-Prince, Haiti 
from multiple parameters. 
# ------------------------------------------------------------------------
--- 
 
# Import arcpy module 
import arcpy 
 
# Check out any necessary licenses 
arcpy.CheckOutExtension("spatial") 
 
# Set Geoprocessing environments 
arcpy.env.scratchWorkspace = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output" 
arcpy.env.outputCoordinateSystem = "" 
arcpy.env.extent = "777213.689602015 2048755.22666333 785664.268421347 
2054658.29067428" 
arcpy.env.cellSize = "30" 
arcpy.env.mask = "" 
arcpy.env.workspace = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb" 
 
# Script arguments 
rivulets_Proj__2_ = arcpy.GetParameterAsText(0) 
if rivulets_Proj__2_ == '#' or not rivulets_Proj__2_: 
    rivulets_Proj__2_ = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\rivulets_Proj" # provide a default 
value if unspecified 
 
dem_30m_mask = arcpy.GetParameterAsText(1) 
if dem_30m_mask == '#' or not dem_30m_mask: 
    dem_30m_mask = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\dem_30m_mask" # provide a default 
value if unspecified 
 
SDE_BND_Proj = arcpy.GetParameterAsText(2) 
if SDE_BND_Proj == '#' or not SDE_BND_Proj: 
    SDE_BND_Proj = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\SDE_BND_Proj" # provide a default 
value if unspecified 
 
LineStreet_Markets = arcpy.GetParameterAsText(3) 
if LineStreet_Markets == '#' or not LineStreet_Markets: 
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    LineStreet_Markets = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\LineStreet_Markets" # provide a 
default value if unspecified 
 
cemetery_Proj = arcpy.GetParameterAsText(4) 
if cemetery_Proj == '#' or not cemetery_Proj: 
    cemetery_Proj = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\cemetery_Proj" # provide a default 
value if unspecified 
 
Veg_frac_Proj = arcpy.GetParameterAsText(5) 
if Veg_frac_Proj == '#' or not Veg_frac_Proj: 
    Veg_frac_Proj = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Veg_frac_Proj" # provide a default 
value if unspecified 
 
Coastline_Merged__3_ = arcpy.GetParameterAsText(6) 
if Coastline_Merged__3_ == '#' or not Coastline_Merged__3_: 
    Coastline_Merged__3_ = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Coastline_Merged" # provide a 
default value if unspecified 
 
Market_Poly_Proj = arcpy.GetParameterAsText(7) 
if Market_Poly_Proj == '#' or not Market_Poly_Proj: 
    Market_Poly_Proj = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Market_Poly_Proj" # provide a 
default value if unspecified 
 
UN_PAP_RoadsProj = arcpy.GetParameterAsText(8) 
if UN_PAP_RoadsProj == '#' or not UN_PAP_RoadsProj: 
    UN_PAP_RoadsProj = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\UN_PAP_RoadsProj" # provide a 
default value if unspecified 
 
dem_30m_mask__4_ = arcpy.GetParameterAsText(9) 
if dem_30m_mask__4_ == '#' or not dem_30m_mask__4_: 
    dem_30m_mask__4_ = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\dem_30m_mask" # provide a default 
value if unspecified 
 
Imperv_FracProj = arcpy.GetParameterAsText(10) 
if Imperv_FracProj == '#' or not Imperv_FracProj: 
    Imperv_FracProj = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Imperv_FracProj" # provide a default 
value if unspecified 
 
UN_PAP_RoadsProj__5_ = arcpy.GetParameterAsText(11) 
if UN_PAP_RoadsProj__5_ == '#' or not UN_PAP_RoadsProj__5_: 
    UN_PAP_RoadsProj__5_ = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\UN_PAP_RoadsProj" # provide a 
default value if unspecified 
 
Shantytowns__3_ = arcpy.GetParameterAsText(12) 
if Shantytowns__3_ == '#' or not Shantytowns__3_: 
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    Shantytowns__3_ = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Shantytowns" # provide a default 
value if unspecified 
 
# Local variables: 
Roads_Rast_tif = UN_PAP_RoadsProj 
Main_Roads1 = Roads_Rast_tif 
MainRoadDist = Main_Roads1 
RoadistLT50 = MainRoadDist 
Slope_road = RoadistLT50 
Slop_RoadRec = Slope_road 
Lanslid_Susc = Slop_RoadRec 
Landslid_Extr = Lanslid_Susc 
Lands_Reclass = Landslid_Extr 
Weighted_UEQ = Lands_Reclass 
WeightUEQ_REC = Weighted_UEQ 
Mean_UEQ = Lands_Reclass 
Mean_UEQ_Rec = Mean_UEQ 
Max_UEQ = Lands_Reclass 
Output_direction_raster__7_ = Main_Roads1 
Roads_Dist = Roads_Rast_tif 
RoadsDistRec = Roads_Dist 
Output_direction_raster__8_ = Roads_Rast_tif 
Cemet_Dist = cemetery_Proj 
Cemetery_UEQ = Cemet_Dist 
Cemet_Extr = Cemetery_UEQ 
Cemet_Reclass = Cemet_Extr 
Output_direction_raster__6_ = cemetery_Proj 
MarkLineDist = LineStreet_Markets 
MarkLine_Rast = MarkLineDist 
Market_Comb = MarkLine_Rast 
MarkPol_Extr = Market_Comb 
Mark_Pol_Rec = MarkPol_Extr 
Output_direction_raster__5_ = LineStreet_Markets 
Coast_LU_shp = Coastline_Merged__3_ 
CoastLU_Rast = Coast_LU_shp 
Coast_LU_Rec = CoastLU_Rast 
Sea_Pollution = Coast_LU_Rec 
SeaPol_Extr = Sea_Pollution 
Sea_Pol_Rec = SeaPol_Extr 
CoastDensRast = Coast_LU_shp 
CoastDens_Rec = CoastDensRast 
Coast_Dist = Coastline_Merged__3_ 
Output_direction_raster__9_ = Coastline_Merged__3_ 
Water_dist = rivulets_Proj__2_ 
WaterDistLT50 = Water_dist 
Slope_water = WaterDistLT50 
Slop_WaterRec = Slope_water 
WatDExtBuf400 = Water_dist 
WaterDistClas = WatDExtBuf400 
Water_poll = WaterDistClas 
WaterPolClass = Water_poll 
Wat_Pol_Extr = WaterPolClass 
WaterPol_Rec = Wat_Pol_Extr 
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Output_direction_raster__2_ = rivulets_Proj__2_ 
HabDensRast_tif = SDE_BND_Proj 
habdens_GT_5k = HabDensRast_tif 
Slope_Dens = habdens_GT_5k 
Slop_DensRec = Slope_Dens 
DensExtBuf400 = HabDensRast_tif 
HabDensClas = DensExtBuf400 
Slope_dem_30 = dem_30m_mask 
Slop_GT_20 = Slope_dem_30 
SlopExtBuf400 = Slope_dem_30 
Slope_ReClas = SlopExtBuf400 
DEM_LT_5m = dem_30m_mask 
Coastal_Surge__3_ = DEM_LT_5m 
CoastSurgClas = Coastal_Surge__3_ 
Coas_SurgExtr = CoastSurgClas 
CoastSurgRec = Coas_SurgExtr 
Elev_Class = dem_30m_mask__4_ 
Elev_Reclass = Elev_Class 
Traf_AirPol = Elev_Reclass 
AirPol_Extr = Traf_AirPol 
Air_Pol_Rec = AirPol_Extr 
SlumsCondRast = Shantytowns__3_ 
SlumsCondRec = SlumsCondRast 
slums_Comb = SlumsCondRec 
Slums_Extr = slums_Comb 
slums_Rec = Slums_Extr 
MarkPolyDist = Market_Poly_Proj 
Mark_Pol_Rast = MarkPolyDist 
Output_direction_raster__4_ = Market_Poly_Proj 
ImpFracPrExt = Imperv_FracProj 
Build_DensRec = ImpFracPrExt 
Noise_Poll = Build_DensRec 
TrafNois_Extr = Noise_Poll 
NoisPoll_Rec = TrafNois_Extr 
Traf_Dist = UN_PAP_RoadsProj__5_ 
Traf_Dist_Rec = Traf_Dist 
Output_direction_raster__3_ = UN_PAP_RoadsProj__5_ 
Road_Buff200_shp = UN_PAP_RoadsProj__5_ 
Traff_Dens = Road_Buff200_shp 
TrafDens_Rec = Traff_Dens 
Road_Buff300_shp = UN_PAP_RoadsProj__5_ 
Noise_Dens = Road_Buff300_shp 
NoisDens_Rec = Noise_Dens 
Nois_Dist = UN_PAP_RoadsProj__5_ 
Nois_Dist_Rec = Nois_Dist 
Output_direction_raster__11_ = UN_PAP_RoadsProj__5_ 
Veget_Reclass = Veg_frac_Proj 
Veg_Rec_Extr = Veget_Reclass 
Shantytowns__2_ = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Shantytowns" 
UN_PAP_RoadsProj__4_ = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\UN_PAP_RoadsProj" 
Coastline_Merged = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Coastline_Merged" 
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SDE_BND_Proj__3_ = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\SDE_BND_Proj" 
SDE_BND_Proj__4_ = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\SDE_BND_Proj" 
Floodplains_Poly__2_ = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Floodplains_Poly" 
rivulets_Proj_Clip = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\rivulets_Proj_Clip" 
SDE_BND_Proj__2_ = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\SDE_BND_Proj" 
Coast_LU__2_ = "Coast_LU" 
Dust_Poll_Buff_Var_shp = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Dust_Poll_Buff_Var.shp" 
Coast_Dist_Rec = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Coast_Dist_Rec" 
Dust_Rast = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Dust_Rast" 
Dust_PollRec = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Dust_PollRec" 
Slums_Buff100_shp = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Slums_Buff100.shp" 
Slums_Buff200_shp = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Slums_Buff200.shp" 
Slums_Buff100_Rast_tif = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Slums_Buff100_Rast.tif" 
Slums_Buff200_Raste_tif = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Slums_Buff200_Raste.tif" 
Slumbuf100Rec = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Slumbuf100Rec" 
Coast_Buf1500_shp = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Coast_Buf1500.shp" 
Slumbuf200Rec = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Slumbuf200Rec" 
Build_Height = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Build_Height" 
Flood_Rast = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Flood_Rast" 
Flood_Prob = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Flood_Prob" 
BuildHgt_Rec = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\BuildHgt_Rec" 
Wat_NearCoast = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Wat_NearCoast" 
Flood_Extr = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Flood_Extr" 
Floods_Rec = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Floods_Rec" 
Water400_Buff_shp = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Water400_Buff.shp" 
Coast_Riv_Rec = "C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Coast_Riv_Rec" 
 
# Process: Euclidean Distance (2) 
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arcpy.gp.EucDistance_sa(rivulets_Proj__2_, Water_dist, "", "30", 
Output_direction_raster__2_) 
 
# Process: Euclidean Distance (4) 
arcpy.gp.EucDistance_sa(Market_Poly_Proj, MarkPolyDist, "", "30", 
Output_direction_raster__4_) 
 
# Process: Euclidean Distance (5) 
arcpy.gp.EucDistance_sa(LineStreet_Markets, MarkLineDist, "", "30", 
Output_direction_raster__5_) 
 
# Process: Buffer (6) 
arcpy.Buffer_analysis(UN_PAP_RoadsProj__4_, Dust_Poll_Buff_Var_shp, 
"Dust_Buff", "FULL", "ROUND", "NONE", "") 
 
# Process: Feature to Raster 
arcpy.FeatureToRaster_conversion(Dust_Poll_Buff_Var_shp, "Dust_Cond", 
Dust_Rast, "30") 
 
# Process: Reclassify (3) 
arcpy.gp.Reclassify_sa(Dust_Rast, "VALUE", "1 4;2 3;NODATA 1", 
Dust_PollRec, "DATA") 
 
# Process: Euclidean Distance (6) 
arcpy.gp.EucDistance_sa(cemetery_Proj, Cemet_Dist, "", "30", 
Output_direction_raster__6_) 
 
# Process: Polyline to Raster (2) 
arcpy.PolylineToRaster_conversion(UN_PAP_RoadsProj, "Traf_Dens", 
Roads_Rast_tif, "MAXIMUM_LENGTH", "NONE", "30") 
 
# Process: Raster Calculator (14) 
arcpy.gp.RasterCalculator_sa("Con(\"%Roads_Rast.tif%\", 1,\"\", \"Value<= 
2\")", Main_Roads1) 
 
# Process: Euclidean Distance (7) 
arcpy.gp.EucDistance_sa(Main_Roads1, MainRoadDist, "", "30", 
Output_direction_raster__7_) 
 
# Process: Euclidean Distance (8) 
arcpy.gp.EucDistance_sa(Roads_Rast_tif, Roads_Dist, "", "30", 
Output_direction_raster__8_) 
 
# Process: Raster Calculator (16) 
arcpy.gp.RasterCalculator_sa("Con(\"%Roads_Dist%\" 
<=100,1,Con(\"%Roads_Dist%\" <= 200,2,Con(\"%Roads_Dist%\" <= 300,3,4)))", 
RoadsDistRec) 
 
# Process: Euclidean Distance (9) 
arcpy.gp.EucDistance_sa(Coastline_Merged__3_, Coast_Dist, "", "30", 
Output_direction_raster__9_) 
 
# Process: Polygon to Raster (4) 
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arcpy.PolygonToRaster_conversion(Shantytowns__3_, "Conditions", 
SlumsCondRast, "MAXIMUM_AREA", "NONE", "30") 
 
# Process: Raster Calculator (7) 
arcpy.gp.RasterCalculator_sa("Con(\"%SlumsCondRast%\" == 
1,1,Con(\"%SlumsCondRast%\" == 2,2,4))", SlumsCondRec) 
 
# Process: Buffer 
arcpy.Buffer_analysis(Shantytowns__2_, Slums_Buff100_shp, "100 Meters", 
"OUTSIDE_ONLY", "ROUND", "NONE", "") 
 
# Process: Polygon to Raster (5) 
arcpy.PolygonToRaster_conversion(Slums_Buff100_shp, "Conditions", 
Slums_Buff100_Rast_tif, "MAXIMUM_AREA", "NONE", "30") 
 
# Process: Raster Calculator (20) 
arcpy.gp.RasterCalculator_sa("Con(\"%Slums_Buff100_Rast.tif%\" == 
1,2,Con(\"%Slums_Buff100_Rast.tif%\" == 2,3,4))", Slumbuf100Rec) 
 
# Process: Buffer (2) 
arcpy.Buffer_analysis(Slums_Buff100_shp, Slums_Buff200_shp, "Dist_Buff2", 
"OUTSIDE_ONLY", "ROUND", "NONE", "") 
 
# Process: Polygon to Raster (6) 
arcpy.PolygonToRaster_conversion(Slums_Buff200_shp, "Conditions", 
Slums_Buff200_Raste_tif, "MAXIMUM_AREA", "NONE", "30") 
 
# Process: Reclassify (20) 
arcpy.gp.Reclassify_sa(Slums_Buff200_Raste_tif, "VALUE", "1 3;2 4;NODATA 
5", Slumbuf200Rec, "DATA") 
 
# Process: Cell Statistics 
arcpy.gp.CellStatistics_sa("C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\SlumsCondRec;C:\\Temp_Work\\
Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Slumbuf100Rec;C:\\Temp_Work\
\Summer-Fall_2011\\Paper_3.Data\\Intermediate_output\\Slumbuf200Rec", 
slums_Comb, "MINIMUM", "DATA") 
 
# Process: Extract by Mask (8) 
arcpy.gp.ExtractByMask_sa(slums_Comb, SDE_BND_Proj__3_, Slums_Extr) 
 
# Process: Reclassify (25) 
arcpy.gp.Reclassify_sa(Slums_Extr, "VALUE", "1 2 4;3 3;4 2;5 1", 
slums_Rec, "DATA") 
 
# Process: Raster Calculator (12) 
arcpy.gp.RasterCalculator_sa("Con(\"%dem_30m_mask%\", 
\"%dem_30m_mask%\",\"\", \"Value<= 5\")", DEM_LT_5m) 
 
# Process: Buffer (3) 
arcpy.Buffer_analysis(Coastline_Merged, Coast_Buf1500_shp, "1500 Meters", 
"FULL", "ROUND", "ALL", "") 
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# Process: Extract by Mask 
arcpy.gp.ExtractByMask_sa(DEM_LT_5m, Coast_Buf1500_shp, Coastal_Surge__3_) 
 
# Process: Reclassify (29) 
arcpy.gp.Reclassify_sa(Coastal_Surge__3_, "Value", "0.67998182773590088 
1.7248649718239903 1;1.7248649718239903 2.8203069777227938 
2;2.8203069777227938 3.7977783060632646 3;3.7977783060632646 
4.9943380355834961 4;NODATA 4", CoastSurgClas, "DATA") 
 
# Process: Extract by Mask (11) 
arcpy.gp.ExtractByMask_sa(CoastSurgClas, SDE_BND_Proj__3_, Coas_SurgExtr) 
 
# Process: Reclassify (19) 
arcpy.gp.Reclassify_sa(Coas_SurgExtr, "VALUE", "0.67998182773590088 
1.7248649718239903 4;1.7248649718239903 2.8203069777227938 
3;2.8203069777227938 3.7977783060632646 2;3.7977783060632646 
4.9943380355834961 1", CoastSurgRec, "DATA") 
 
# Process: Extract by Mask (16) 
arcpy.gp.ExtractByMask_sa(Imperv_FracProj, SDE_BND_Proj__2_, ImpFracPrExt) 
 
# Process: Reclassify (4) 
arcpy.gp.Reclassify_sa(ImpFracPrExt, "Value", "-1.4988010832439613e-015 
0.030776413157580836 1;0.030776413157580836 0.092329239472745461 
2;0.092329239472745461 0.18081142730079452 3;0.18081142730079452 
0.98999999999999999 4;1 1065098961 NODATA", Build_DensRec, "DATA") 
 
# Process: Euclidean Distance (3) 
arcpy.gp.EucDistance_sa(UN_PAP_RoadsProj__5_, Traf_Dist, "", "30", 
Output_direction_raster__3_) 
 
# Process: Raster Calculator (13) 
arcpy.gp.RasterCalculator_sa("Con(\"%Traf_Dist%\" <= 
50,4,Con(\"%Traf_Dist%\" <= 100,3,Con(\"%Traf_Dist%\" <= 200,2,1)))", 
Traf_Dist_Rec) 
 
# Process: Buffer (4) 
arcpy.Buffer_analysis(UN_PAP_RoadsProj__5_, Road_Buff200_shp, "200 
Meters", "FULL", "ROUND", "LIST", "OBJECTID;Traf_Dens") 
 
# Process: Polygon to Raster (8) 
arcpy.PolygonToRaster_conversion(Road_Buff200_shp, "Traf_Dens", 
Traff_Dens, "MAXIMUM_AREA", "NONE", "30") 
 
# Process: Reclassify (12) 
arcpy.gp.Reclassify_sa(Traff_Dens, "VALUE", "1 4;2 3;3 2;4 1;NODATA 1", 
TrafDens_Rec, "DATA") 
 
# Process: Raster Calculator (5) 
arcpy.gp.RasterCalculator_sa("Con(\"%dem_30m_mask (4)%\" <= 
60,1,Con(\"%dem_30m_mask (4)%\" <= 143,2,Con(\"%dem_30m_mask (4)%\" <= 
240,3, 4)))", Elev_Class) 
 
# Process: Reclassify (14) 
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arcpy.gp.Reclassify_sa(Elev_Class, "VALUE", "1 4;1 2 3;2 3 2;3 4 1;NODATA 
1", Elev_Reclass, "DATA") 
 
# Process: Weighted Sum 
arcpy.gp.WeightedSum_sa("C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Build_DensRec VALUE 
0.228;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Traf_Dist_Rec VALUE 
0.287;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\TrafDens_Rec VALUE 
0.304;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Elev_Reclass VALUE 0.18", 
Traf_AirPol) 
 
# Process: Extract by Mask (12) 
arcpy.gp.ExtractByMask_sa(Traf_AirPol, SDE_BND_Proj__3_, AirPol_Extr) 
 
# Process: Reclassify (22) 
arcpy.gp.Reclassify_sa(AirPol_Extr, "Value", "0.99900001287460327 
1.8887343993410468 1;1.8887343993410468 2.5209140949882567 
2;2.5209140949882567 3.0594375394284725 3;3.0594375394284725 
3.9960000514984131 4", Air_Pol_Rec, "DATA") 
 
# Process: Buffer (7) 
arcpy.Buffer_analysis(UN_PAP_RoadsProj__5_, Road_Buff300_shp, "300 
Meters", "FULL", "ROUND", "LIST", "OBJECTID;Traf_Dens") 
 
# Process: Polygon to Raster (9) 
arcpy.PolygonToRaster_conversion(Road_Buff300_shp, "Traf_Dens", 
Noise_Dens, "MAXIMUM_AREA", "NONE", "30") 
 
# Process: Reclassify (21) 
arcpy.gp.Reclassify_sa(Noise_Dens, "VALUE", "1 4;2 3;3 2;4 1;NODATA 1", 
NoisDens_Rec, "DATA") 
 
# Process: Euclidean Distance (11) 
arcpy.gp.EucDistance_sa(UN_PAP_RoadsProj__5_, Nois_Dist, "", "30", 
Output_direction_raster__11_) 
 
# Process: Raster Calculator (15) 
arcpy.gp.RasterCalculator_sa("Con(\"%Nois_Dist%\" <= 
100,4,Con(\"%Nois_Dist%\" <= 300,3,Con(\"%Nois_Dist%\" <= 500,2,1)))", 
Nois_Dist_Rec) 
 
# Process: Weighted Sum (3) 
arcpy.gp.WeightedSum_sa("C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Build_DensRec VALUE 
0.268;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\NoisDens_Rec VALUE 
0.372;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Nois_Dist_Rec VALUE 0.36", 
Noise_Poll) 
 
# Process: Extract by Mask (13) 
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arcpy.gp.ExtractByMask_sa(Noise_Poll, SDE_BND_Proj__3_, TrafNois_Extr) 
 
# Process: Reclassify (24) 
arcpy.gp.Reclassify_sa(TrafNois_Extr, "Value", "1.2680000066757202 
2.0790625046938658 1;2.0790625046938658 2.6126562533900142 
2;2.6126562533900142 3.0928906272165477 3;3.0928906272165477 4 4", 
NoisPoll_Rec, "DATA") 
 
# Process: Buffer (8) 
arcpy.Buffer_analysis(rivulets_Proj_Clip, Water400_Buff_shp, "400 Meters", 
"FULL", "ROUND", "NONE", "") 
 
# Process: Extract by Mask (14) 
arcpy.gp.ExtractByMask_sa(Water_dist, Water400_Buff_shp, WatDExtBuf400) 
 
# Process: Raster Calculator (4) 
arcpy.gp.RasterCalculator_sa("Con(\"%WatDExtBuf400%\" <= 
200,1,Con(\"%WatDExtBuf400%\" 
<=200,2,Con(\"%WatDExtBuf400%\"<=400,3,4)))", WaterDistClas) 
 
# Process: Polygon to Raster (3) 
arcpy.PolygonToRaster_conversion(SDE_BND_Proj, "Hab_Dens", 
HabDensRast_tif, "CELL_CENTER", "NONE", "30") 
 
# Process: Extract by Mask (10) 
arcpy.gp.ExtractByMask_sa(HabDensRast_tif, Water400_Buff_shp, 
DensExtBuf400) 
 
# Process: Reclassify 
arcpy.gp.Reclassify_sa(DensExtBuf400, "VALUE", "0 4072 4;4072 9559 3;9559 
17811 2;17811 65000 1", HabDensClas, "DATA") 
 
# Process: Slope 
arcpy.gp.Slope_sa(dem_30m_mask, Slope_dem_30, "PERCENT_RISE", "1") 
 
# Process: Extract by Mask (6) 
arcpy.gp.ExtractByMask_sa(Slope_dem_30, Water400_Buff_shp, SlopExtBuf400) 
 
# Process: Raster Calculator (8) 
arcpy.gp.RasterCalculator_sa("Con(\"%SlopExtBuf400%\" <= 5,1, 
Con(\"%SlopExtBuf400%\" <= 15,2, Con(\"%SlopExtBuf400%\" <= 
25,3,Con(\"%SlopExtBuf400%\" <=50,4,5))))", Slope_ReClas) 
 
# Process: Weighted Sum (4) 
arcpy.gp.WeightedSum_sa("C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\WaterDistClas VALUE 
0.15;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\HabDensClas VALUE 
0.25;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Elev_Class VALUE 
0.35;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Slope_ReClas VALUE 0.25", 
Water_poll) 
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# Process: Reclassify (30) 
arcpy.gp.Reclassify_sa(Water_poll, "VALUE", "1 1.8960937224328518 
4;1.8960937224328518 2.4894530791789293 3;2.4894530791789293 
3.0828124359250069 2;3.0828124359250069 4.0999999046325684 1;NODATA 1", 
WaterPolClass, "DATA") 
 
# Process: Extract by Mask (7) 
arcpy.gp.ExtractByMask_sa(WaterPolClass, SDE_BND_Proj__3_, Wat_Pol_Extr) 
 
# Process: Reclassify (15) 
arcpy.gp.Reclassify_sa(Wat_Pol_Extr, "VALUE", "1 1;2 2;3 3;4 4", 
WaterPol_Rec, "DATA") 
 
# Process: Raster Calculator (2) 
arcpy.gp.RasterCalculator_sa("Con(\"%Coast_RivDist%\" <= 
300,1,Con(\"%Coast_RivDist%\" <= 500,2, Con(\"%Coast_RivDist%\" <= 700,3, 
Con(\"%Coast_RivDist%\" <= 1000, 4,5))))", Coast_Dist_Rec) 
 
# Process: Buffer (5) 
arcpy.Buffer_analysis(Coastline_Merged__3_, Coast_LU_shp, "Buffer", 
"FULL", "ROUND", "NONE", "") 
 
# Process: Polygon to Raster 
arcpy.PolygonToRaster_conversion(Coast_LU_shp, "Coastal_LU", CoastLU_Rast, 
"CELL_CENTER", "NONE", "30") 
 
# Process: Reclassify (26) 
arcpy.gp.Reclassify_sa(CoastLU_Rast, "VALUE", "1 1;2 2;3 3;4 4;NODATA 4", 
Coast_LU_Rec, "DATA") 
 
# Process: Polygon to Raster (2) 
arcpy.PolygonToRaster_conversion(Coast_LU_shp, "Hab_Dens", CoastDensRast, 
"CELL_CENTER", "NONE", "30") 
 
# Process: Reclassify (27) 
arcpy.gp.Reclassify_sa(CoastDensRast, "VALUE", "1 1;2 2;3 3;4 4;NODATA 4", 
CoastDens_Rec, "DATA") 
 
# Process: Polygon to Raster (11) 
arcpy.PolygonToRaster_conversion(Coast_LU__2_, 
"Coast_Int_Wat_Stats.SUM_Shape_Length", Wat_NearCoast, "CELL_CENTER", 
"NONE", "30") 
 
# Process: Reclassify (28) 
arcpy.gp.Reclassify_sa(Wat_NearCoast, "Value", "0 1000 3;1001 3000 2;3001 
8000 1;NODATA 4", Coast_Riv_Rec, "DATA") 
 
# Process: Weighted Sum (5) 
arcpy.gp.WeightedSum_sa("C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Coast_Dist_Rec VALUE 
0.2;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Coast_LU_Rec VALUE 
0.3;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\CoastDens_Rec VALUE 
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0.3;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Coast_Riv_Rec VALUE 0.2", 
Sea_Pollution) 
 
# Process: Extract by Mask (4) 
arcpy.gp.ExtractByMask_sa(Sea_Pollution, SDE_BND_Proj__3_, SeaPol_Extr) 
 
# Process: Reclassify (17) 
arcpy.gp.Reclassify_sa(SeaPol_Extr, "VALUE", "1 1.5874999649822712 
4;1.5874999649822712 2.7874998934566975 3;2.7874998934566975 
3.7874998338520527 2;3.7874998338520527 4.1999998092651367 1", 
Sea_Pol_Rec, "DATA") 
 
# Process: Raster Calculator (3) 
arcpy.gp.RasterCalculator_sa("Con(\"%Slope_dem_30%\" >= 20,1)", 
Slop_GT_20) 
 
# Process: Raster Calculator (6) 
arcpy.gp.RasterCalculator_sa("Con(\"%Water_dist%\"  <=  50,1)", 
WaterDistLT50) 
 
# Process: Boolean And 
arcpy.gp.BooleanAnd_sa(Slop_GT_20, WaterDistLT50, Slope_water) 
 
# Process: Reclassify (5) 
arcpy.gp.Reclassify_sa(Slope_water, "VALUE", "1 1;NODATA 4", 
Slop_WaterRec, "DATA") 
 
# Process: Raster Calculator (17) 
arcpy.gp.RasterCalculator_sa("Con(\"%MainRoadDist%\" <=  50,1)", 
RoadistLT50) 
 
# Process: Boolean And (2) 
arcpy.gp.BooleanAnd_sa(Slop_GT_20, RoadistLT50, Slope_road) 
 
# Process: Reclassify (6) 
arcpy.gp.Reclassify_sa(Slope_road, "VALUE", "1 2;NODATA 4", Slop_RoadRec, 
"DATA") 
 
# Process: Raster Calculator (18) 
arcpy.gp.RasterCalculator_sa("Con(\"%HabDensRast.tif%\" >= 5000,1)", 
habdens_GT_5k) 
 
# Process: Boolean And (3) 
arcpy.gp.BooleanAnd_sa(Slop_GT_20, habdens_GT_5k, Slope_Dens) 
 
# Process: Reclassify (8) 
arcpy.gp.Reclassify_sa(Slope_Dens, "VALUE", "1 3;NODATA 4", Slop_DensRec, 
"DATA") 
 
# Process: Cell Statistics (5) 
arcpy.gp.CellStatistics_sa("C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Slop_WaterRec;C:\\Temp_Work\
\Summer-
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Fall_2011\\Paper_3.Data\\Intermediate_output\\Slop_RoadRec;C:\\Temp_Work\\
Summer-Fall_2011\\Paper_3.Data\\Intermediate_output\\Slop_DensRec", 
Lanslid_Susc, "MINIMUM", "DATA") 
 
# Process: Extract by Mask (9) 
arcpy.gp.ExtractByMask_sa(Lanslid_Susc, SDE_BND_Proj__3_, Landslid_Extr) 
 
# Process: Reclassify (13) 
arcpy.gp.Reclassify_sa(Landslid_Extr, "VALUE", "1 4;1 2 3;2 3 2;3 4 1", 
Lands_Reclass, "DATA") 
 
# Process: Reclassify (16) 
arcpy.gp.Reclassify_sa(MarkPolyDist, "Value", "0 100 1;100 200 2;200 300 
3;300 5000 4;NODATA 4", Mark_Pol_Rast, "DATA") 
 
# Process: Raster Calculator (9) 
arcpy.gp.RasterCalculator_sa("Con(\"%MarkLineDist%\" <= 100,1, 
Con(\"%MarkLineDist%\" <= 200,2,Con(\"%MarkLineDist%\" <= 300,3,4)))", 
MarkLine_Rast) 
 
# Process: Cell Statistics (4) 
arcpy.gp.CellStatistics_sa("C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\Intermediate_output\\Mark_Pol_Rast;C:\\Temp_Work\
\Summer-Fall_2011\\Paper_3.Data\\Intermediate_output\\MarkLine_Rast", 
Market_Comb, "MINIMUM", "DATA") 
 
# Process: Extract by Mask (2) 
arcpy.gp.ExtractByMask_sa(Market_Comb, SDE_BND_Proj__3_, MarkPol_Extr) 
 
# Process: Reclassify (10) 
arcpy.gp.Reclassify_sa(MarkPol_Extr, "VALUE", "1 4;2 3;3 2;4 1", 
Mark_Pol_Rec, "DATA") 
 
# Process: Raster Calculator (11) 
arcpy.gp.RasterCalculator_sa("Con(\"%Cemet_Dist%\" <= 
200,1,Con(\"%Cemet_Dist%\" <= 300,2,Con(\"%Cemet_Dist%\" <= 400,3,4)))", 
Cemetery_UEQ) 
 
# Process: Extract by Mask (3) 
arcpy.gp.ExtractByMask_sa(Cemetery_UEQ, SDE_BND_Proj__3_, Cemet_Extr) 
 
# Process: Reclassify (9) 
arcpy.gp.Reclassify_sa(Cemet_Extr, "VALUE", "1 4;1 2 3;2 3 2;3 4 1", 
Cemet_Reclass, "DATA") 
 
# Process: Polygon to Raster (10) 
arcpy.PolygonToRaster_conversion(Floodplains_Poly__2_, "Flood_Prob", 
Flood_Rast, "CELL_CENTER", "NONE", "30") 
 
# Process: Reclassify (11) 
arcpy.gp.Reclassify_sa(Flood_Rast, "VALUE", "1 4;2 3;3 2;4 1;NODATA 1", 
Flood_Prob, "DATA") 
 
# Process: Extract by Mask (5) 
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arcpy.gp.ExtractByMask_sa(Flood_Prob, SDE_BND_Proj__3_, Flood_Extr) 
 
# Process: Reclassify (18) 
arcpy.gp.Reclassify_sa(Flood_Extr, "VALUE", "1 1;2 2;3 3;4 4", Floods_Rec, 
"DATA") 
 
# Process: Reclassify (7) 
arcpy.gp.Reclassify_sa(Veg_frac_Proj, "Value", "-2.2204460492503131e-015 
0.11322939395904348 4;0.11322939395904348 0.31626141071319391 
3;0.31626141071319391 0.53491127490997126 2;0.53491127490997126 
0.999542236328125 1", Veget_Reclass, "DATA") 
 
# Process: Extract by Mask (15) 
arcpy.gp.ExtractByMask_sa(Veget_Reclass, SDE_BND_Proj__3_, Veg_Rec_Extr) 
 
# Process: Weighted Sum (2) 
arcpy.gp.WeightedSum_sa("C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\slums_Rec VALUE 
0.1019;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\CoastSurgRec VALUE 
0.0685;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Air_Pol_Rec VALUE 
0.0942;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\NoisPoll_Rec VALUE 
0.0918;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\WaterPol_Rec VALUE 
0.1012;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Sea_Pol_Rec VALUE 
0.0949;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Lands_Reclass VALUE 
0.0802;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Mark_Pol_Rec VALUE 
0.0872;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Cemet_Reclass VALUE 
0.0716;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Floods_Rec VALUE 
0.0965;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Veg_Rec_Extr VALUE 0.1121", 
Weighted_UEQ) 
 
# Process: Reclassify (2) 
arcpy.gp.Reclassify_sa(Weighted_UEQ, "VALUE", "1.0001000165939331 
1.6215031240135431 1;1.6215031240135431 2.0327257686294615 
2;2.0327257686294615 2.498778099194169 3;2.498778099194169 
3.3394999504089355 4", WeightUEQ_REC, "DATA") 
 
# Process: Polygon to Raster (7) 
arcpy.PolygonToRaster_conversion(SDE_BND_Proj__4_, "Build_Height", 
Build_Height, "MAXIMUM_AREA", "NONE", "30") 
 
# Process: Reclassify (23) 
arcpy.gp.Reclassify_sa(Build_Height, "VALUE", "1 4;2 3;3 2;4 1;NODATA 1", 
BuildHgt_Rec, "DATA") 
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# Process: Cell Statistics (2) 
arcpy.gp.CellStatistics_sa("C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Floods_Rec;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\slums_Rec;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\NoisPoll_Rec;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\CoastSurgRec;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Air_Pol_Rec;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\WaterPol_Rec;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Sea_Pol_Rec;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Lands_Reclass;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Cemet_Reclass;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Mark_Pol_Rec;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Veg_Rec_Extr", Mean_UEQ, "MEAN", 
"DATA") 
 
# Process: Reclassify (31) 
arcpy.gp.Reclassify_sa(Mean_UEQ, "Value", "1 1.3636363744735718 
1;1.3636363744735718 1.8181818723678589 2;1.8181818723678589 
2.2727272510528564 3;2.2727272510528564 3.1818182468414307 
4;3.1818182468414307 129830184 5", Mean_UEQ_Rec, "DATA") 
 
# Process: Cell Statistics (3) 
arcpy.gp.CellStatistics_sa("C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Floods_Rec;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\slums_Rec;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\NoisPoll_Rec;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\CoastSurgRec;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Air_Pol_Rec;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\WaterPol_Rec;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Sea_Pol_Rec;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Lands_Reclass;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Cemet_Reclass;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Mark_Pol_Rec;C:\\Temp_Work\\Summer-
Fall_2011\\Paper_3.Data\\PAP_UEQ.mdb\\Veg_Rec_Extr", Max_UEQ, "MAXIMUM", 
"DATA") 
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Appendix V: Surveys 

Appendix V-a: Experts’ Survey 

As an experienced professional, researcher or professor acquainted with the urban environment 
of Port-au-Prince, I am requesting your input to help weighing parameters affecting the quality 
of the environment in Port-au-Prince. Your participation will me complete my dissertation as 
Ph.D. candidate in Urban Geography at Louisiana State University in Baton Rouge, LA. Your 
answers will be used to generate an urban environmental quality (UEQ) index for Port-au-
Prince, which will then be mapped. 

Your participation is greatly appreciated. 

Myrtho Joseph, Ph.D. candidate 

 

What is your current occupation? 
What is your major? (e.g. B.S./M.S./Ph.D. in environmental management, environmental 
studies, agronomy, water resources, natural resources, economy, civil engineering, geography, 
urban planning, public policies, urban architecture, sanitation, disaster management or any 
related field. 
 
On a scale of 1 to 10, with 1 meaning extremely low and 10 extremely high, how would you rate 
these variables in relation to their impact on air pollution from traffic? 

Parameters 1 2 3 4 5 6 7 8 9 10 
Traffic Density           
Building Height           
Building Density           
Elevation           

 
On a scale of 1 to 10, with 1 meaning extremely low and 10 extremely high, how would you rate 
these variables in relation to their impact on noise pollution from traffic? 

Parameters 1 2 3 4 5 6 7 8 9 10 
Traffic Density           
Building Height           
Building Density           
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On a scale of 1 to 10 with 1 meaning very low and 10 extremely important, how would you rate 
these parameters regarding their impact on environmental quality in Port-au-Prince? 

Parameters 
Scale 

1 2 3 4 5 6 7 8 9 10 
Vegetation/Greenness           

Crowdedness           

Solid waste           

Public markets           

Gas emission from traffic           

Noise pollution from traffic           

Polluted waterways           

The cemetery           

Flood-prone areas           

Landslide susceptibility           

Polluted seacoast           

Coastal surge/Tsunami           

Shanty towns           
Other (Please specify) 
 

 

  

 

 

 

 

 



153 
 

Appendix V-b: Professional profile and educational background of the experts  

Experts Occupation Education Level 

1. 

Director of promotion and environmental 

education and durable development 

(DPREEDD) 

B.S. in Civil Engineering 

M.S. Tourism & town planning, 

M.S. in Public Entities Management 

Ph.D. candidate in Town Planning 

and Development 

2. Environmental compliance specialist 
M.S. in Navigation and Related 

Applications 

3. Research and Teaching Assistant M.S. in Environmental Sciences 

4. 
Teacher-Researcher at Quisqueya 

University 
Ph.D. in Urban Hydrology 

5. Graduate student Ph.D. in Human Geography 

6. 
North-East program unit manager – Plan-

International 
M.S. in Agronomy 

7. 
Water, sanitation & hygiene division 

manager 

B.S. in Civil Engineering 

M.S. in Environmental Management 

8. 
Energy & environment management 

specialist 

M.S. in Energy and Environmental 

Management 

9. NGO’s coordinator B.S in Civil Engineering 

10. Agronomist B.S. in Agronomy 

11. Civil Engineering and Environment 
Ph.D. candidate in Environmental 

Hydrology 

12. 
Director of Water Quality & Environment 

Laboratory at Quisqueya University 

Ph.D. in Urban Sanitation and 

Environment 

13. Finance & Management M.S. in Urban Planning 

14. Development projects manager 
M.S. in Natural Resources and 

Environment Management 

15. Engineer-Agronomist M.S. in Urban Planning 

16. Food security management B.S. in Agronomy 
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Appendix V-c: Lay-persons survey (English version) 

Having lived in this neighborhood before the January 2010 earthquake, we solicit your 
participation to this survey which objective is to evaluate the conditions of the environment in 
your neighborhood. The information you provide will allow us to define and map a general index 
of environmental quality for Port-au-Prince. 

We sincerely thank you for your participation. 
______________________________________________________________________________ 

Longitude     Latitude   

1-1. SDE number 

 
1-2. Survey number 

 
2. Have you lived in this neighborhood before the earthquake ? (If yes, continue the survey ; 
otherwise stop and find the next qualified respondent) 

Yes No 
  

3. Gender 

Male Female 
  

4. Age 

 

18-25 

 

 

26-35 

 

36-45 

 

46-55 

 

56-65 

 

>65 

 

Don’t 
know 

 

5. What is your highest education level? 

Never 
attended 

schol 

 

Elementary 
school 

A few 
years in 
middle 
school 

At least 
11th 
grade 

 

Professional 
school 

Some 
undergraduate 

studies 

Completed 
university 

At least a 
masters’ 

Degree 

 

 

No 
answer 

 
 
 
6. What are the general conditions of the neighborhood where you live? 
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Very bad 

1 

 

Bad 

2 

 

Fair 

3 

 

Good 

4 

 

Very good 

5 

 

7. On a scale of 1 to 5 with one meaning very bad and 5 very good (9: not applicable or not a 
problem), how do you qualify your neighborhood regarding the following aspects: 

  1 2 3 4 5 9 

1) Vegetation 

(Greenness)       

2) Crowdedness 
      

3) Solid waste 
      

4) Public markets 
      

5) Gas emission 
from traffic       
6) Noise pollution 
from traffic       
7) Polluted 
waterways       
8) Proximity to the 
cemetery       
9) Living in flood-
prone areas       
10) Living in zones 
susceptible to 
landslide        

11) Living near the 
polluted seacoast       
12) Coastal surge 
(Tsunami)       
13) Shantytowns 

      
 

Other (Provide details, please.) 
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Appendix V-d: Lay-persons survey (French version) 

Ayant vécu dans ce quartier avant le tremblement de terre, nous sollicitons votre participation à cette 
enquête visant à évaluer les conditions de l'environnement dans votre quartier de résidence. Les 
informations fournies permettront de définir un indice général des conditions de l'environnement à 
Port-au-Prince, qui sera ensuite reproduit sur une carte géographique.  
 

Merci infiniment de votre participation. 
______________________________________________________________________________ 

Longitude      Latitude   

1-1. Numéro de la section d'énumération (SDE) 

 

1-2. Numéro du questionnaire 

 

 

2. Avez-vous vécu dans ce quartier avant le tremblement de terre? (Si oui, continuer l'enquête, 
sinon, terminer) 

Oui Non 
  

3. Quel est votre sexe? 

Homme Femme 
  

4. Quel est votre age? 

18-25 

 

26-35 

 

36-45 

 

46-55 

 

56-65 

 

>65 

 

Ne sait pas 

5. Quel est votre plus haut niveau d'éducation? 

N'a 
jamais 

fréquenté 
l'école 

 

Ecole 
primaire 

Quelques 
années en 
secondaire 

Bac, au 
moins 

première 
partie 

 

Ecole 
professionnelle 

Quelques 
années à 

l'université 

Achevé 
l'université 

Au moins 
une 

maîtrise 

Pas de 

réponse 

  

       

  

 

  

 

 

    
  

  



157 
 

6. Dans quelle condition générale se trouve le quartier dans lequel vous vivez? 

Très mauvaise 

1 

 

Mauvaise 

2 

 

Passable 

3 

 

Bonne 

4 

 

Très bonne 

5 

 

7. Sur une échelle de 1 à 5 1 signifiant très mauvaise et 5 très bonne (9 pas applicable, ou ce n'est 
pas un problème), comment est la qualité de votre quartier en ce qui a trait aux aspects suivants: 

 
1 2 3 4 5 9 

1) Vegetation, espace vert 
      

2) Trop de gens entassés dans le quartier 
      

3) Exposition aux ordures ménagères et 
autres fatras       

4) Marchés publics 
      

5) Pollution de l'air à cause du traffic 
      

6) Bruit provenant du traffic 
      

7) Proximité d'une rivière ou d'un 
ruisseau        

8) Proximité du cimetière de Port-au-
Prince       

9) Risques d'inondations 
      

10) Risques de glissement de terrains 
(éboulement)       

11) Proximité de la mer polluée 
      

12) Marée montante ou raz-de-marée 
      

13) Proximité d'une bidonville 
      

 

Autres (donnez des détails svp) 
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VITA 

Myrtho Joseph was born in 1968 in Plaisance, located in Haiti’s north department. Trained in 
Economics and Statistics at undergraduate level, his 10 years of work experience in data analysis 
and in cartography and several short seminars received in GIS in the US during these 10 years 
developed his interest for the fields of Geography and Environmental Sciences. Deeply 
concerned with the deterioration of the urban and rural environment in Haiti, he has decided to 
pursue graduate studies in Geography and Environment. With the support of a Fulbright 
scholarship he completed a Master of Sciences in Natural Resources Information Science in 
2007 at the University of Arizona. Then he moved to Baton Rouge to pursue a Ph.D. in Human 
Geography with a focus on Urban Geography. 
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