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Abstract 

This dissertation provides deeper understanding on the application of Vegetation-

Impervious Surface-Soil (V-I-S) model in the urban land use characterization and 

population modeling, focusing on New Orleans area.  

Previous research on the V-I-S model used in urban land use classification 

emphasized on the accuracy improvement while ignoring the discussion of the stability of 

classifiers. I developed an evaluation framework by using randomization techniques and 

decision tree method to assess and compare the performance of classifiers and input 

features. The proposed evaluation framework is applied to demonstrate the superiority of 

V-I-S fractions and LST for urban land use classification. It could also be applied to the 

assessment of input features and classifiers for other remote sensing image classification 

context.  

An innovative urban land use classification based on the V-I-S model is 

implemented and tested in this dissertation. Due to the shape of the V-I-S bivariate 

histogram that resembles topological surfaces, a pattern that honors the Lu-Weng’s urban 

model, the V-I-S feature space is rasterized into grey-scale image and subsequently 

partitioned by marker-controlled watershed segmentation, leading to an urban land use 

classification. This new approach is proven to be insensitive to the selection of initial 

markers as long as they are positioned around the underlying watershed centers.  

This dissertation links the population distribution of New Orleans with its 

physiogeographic conditions indicated by the V-I-S sub-pixel composition and the land 

use information. It shows that the V-I-S fractions cannot be directly used to model the 

population distribution. Both the OLS and GWR models produced poor model fit. In 
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contrast, the land use information extracted from the V-I-S information and LST 

significantly improved regression models. A three-class land use model is fitted 

adequately. The GWR model reveals the spatial nonstationarity as the relationship 

between the population distribution and the land use is relatively poor in the city center 

and becomes stronger towards the city fringe, depicting a classic urban concentric pattern. 

It highlighted that New Orleans is a complex metropolitan area, and its population 

distribution cannot be fully modeled with the physiogeographic measurements.  
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1. Chapter 1 Introduction 

 

Urban is a complex dynamic dissipative system, characterized by massive energy 

and heat exchange with the outside environment and frequent modifications due to the 

human occupation and activity. Urban analysis is one of the most fascinating and 

challenging realms in remote sensing and geographic information science (GIS). The 

urban land use pattern and the urban population distribution represent the physical and 

socioeconomic environment of an urban area, revealing the urban structure from two 

distinct aspects. The knowledge about the urban land use and land cover (LULC) 

provides indispensable input for a variety of studies including urban planning, urban 

climate, urban hydrology and urban landscape, etc. However, reliable urban land 

characterization in a quick and repetitive manner still present challenges due to the 

heterogeneity and complexity of urban physical environment. Urban population 

distribution is also an essential feature for urban analysis. However, the demographic 

survey and update is a time-consuming and costly undertaking that involves tremendous 

field work and human resources. In the United States, the national demographic data is 

collected via the decennial census survey by the United States Census Bureau (USCB). In 

some developing counties, such a census survey system may not even exist. This large 

census interval and gap hinges researches and applications that require demographic 

input.  

These two urban features are also associated with each other. On one hand, human 

activities impact and alter the urban landscape (such as, urbanization and suburbanization, 
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Kaplan et al. 2008) and also produce the so-called urban head island (UHI, Kim 1992, 

Voogt 2003, Weng 2009). On the other hand, miscellaneous urban landscape and 

different living environments, in return, also play important roles in directing or 

reflecting the immigration of population. Recent literature has witnessed a growing 

interest and application of using physiogeographic conditions derived from remotely 

sensed signals in modeling the urban population.  This dedicated dissertation works on 

the advances in the development of quick and reliable methods to characterize urban land 

use patterns and the urban population distribution modeling based on the subpixel 

information and land use information.  

1.1 Literature Review 

1.1.1 Urban land characterization 

The urban landscape is composed of dynamic and complex land use features. The 

remote sensing image classification has been widely employed to obtain historical and 

present the LULC conditions (Anderson et al. 1976, Jensen 2007). Although being 

referred to interchangeably, the concept of “land use” (LU) and the concept of “land 

cover” (LC) are intrinsically distinct with respect to the natural and anthropogenic urban 

landscape. LC refers to the physical properties of the earth surface, which can be directly 

identified from the spectral characteristics; while LU, mostly being associated with large 

scale researches, represents a higher level understanding of the earth surface and is 

inferred from the land cover composition and configuration (Mesev 2010). Normally, a 

LU class (e.g. information class) is from by a certain spatial composition and 

arrangement of several LC classes (e.g. spectral class) (Herold et al. 2003). Previously, 

only spectral information obtained from remotely sensed images (such as the band 



3 

 

spectral reflectance/radiance, band ratio, vegetation indices, etc.) was used for LULC 

classification, which mainly produced LC classes. In addition, the process of assigning 

pixel to a certain “spectral class” is ambiguous. For instance, a pixel spectrally 

resembling the forest class might actually be enclosed in the “commercial” land use area, 

e.g. a small tree-stand isolated in the central business district (CBD) area. The “salt-and-

pepper” appearance from traditional image classification methods was also produced in 

this manner. They are all due to the lack of consideration of the spatial configuration and 

arrangement of pixels, especially when high-resolution images are used. To solve the 

problem, there have been three ways suggested in the literature to embrace spatial 

information in urban land use classification: 

 Spectral mixture (sub-pixel analysis) techniques with medium resolution image 

(Adams et al. 1995, Li and Zhao 2003, Lu and Weng 2004, Lu and Weng 2005, Lu 

and Weng 2006, Ridd 1995, Souza et al. 2005, Ward et al. 2000); 

 To use textures and spatial metrics calculated from individual pixel and its 

neighbors in high resolution images (Berberoglu et al. 2000, Carr 1996, Chica-

Olmo and Abarca-Hernández 2000, Emerson et al. 2005, Franklin and Peddle 1990, 

Gong et al. 1992, Haralick et al. 1973, Herold et al. 2003, Herold et al. 2002, Lark 

1996, Lu et al. 2010, Myint 2003, Myint and Lam 2005a, Myint et al. 2006, Wu et 

al. 2006); 

 To use image object produced by aggregating pixels instead of single pixel as the 

basic unit for classification, so spatial arrangement and configuration of these 

pixels in image objects could be derived and used (Baatz and Schäpe 2000, Myint 

et al. 2011, Wang et al. 2004, Xu and Li 2010, Zhou and Troy 2008). 
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Poorly selected classifiers also produced problems. Parametric classifier, such as the 

widely-used Bayesian approach (e.g. maximum likelihood classifier, MLC), requires 

homogeneity and normality assumptions. Yet selections of training samples and classes 

that satisfy these assumptions remained a challenge (Myint and Lam 2005a). 

1.1.1.1 Vegetation-Impervious Surface-Soil model 

The V-I-S model (Ridd 1995) has brought the investigation and mapping of urban 

landscape into a new era. V-I-S model assumes that urban land use patterns are formed 

by different configuration of three primitive components, namely, Vegetation and 

Impervious Surface and Soil. V-I-S fractions are generally derived from the medium 

resolution image and reflect the biophysical and morphological composition and 

configuration of the urban land use patterns (Figure 1.1). Due to the heterogeneity issue 

of the Impervious Surface component and the fact that the V-I-S model didn’t include the 

Shade/Shadow component that is incurred by tall buildings and trees (Weng and 

Quattrochi 2007) , the V-I-S model is also adjusted in different study areas, giving rise to 

several similar models. Among them were V(egetation), L(ow Albedo) and H(igh Albedo) 

model (Small 2001); V(egetation), L(ow Albedo), H(igh Albedo) and S(hade) model 

(Weng et al. 2006, Wu and Murray 2003); S(ubstrate),V(egetation) and D(ark Surface) 

model (Small and Lu 2006). Subsequent classifications based on the V-I-S fractions were 

proven to be more accurate for quantifying the urban morphology and characterizing the 

urban landscape (Lu and Weng 2006, Weng et al. 2007, Weng and Quattrochi 2007). V-I-

S model and its variants were utilized extensively in urban landscape mapping(Hu and 

Weng 2009, Lu et al. 2003, Lu and Weng 2004, Lu and Weng 2005, Lu and Weng 2006, 

Rashed et al. 2001, Rashed et al. 2003, Small 2001, Small and Lu 2006, Weng and Hu 
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2008), urban sprawl analysis (Kaya et al. 2004, Li and Zhao 2003, Madhavan et al. 2001, 

Phinn et al. 2002, Ward et al. 2000, Yang et al. 2003b) and urban heat island (UHI) 

studies (Weng 2001, Weng et al. 2007, Weng et al. 2006, Weng et al. 2004, Yuan and 

Bauer 2007). 

 

Figure 1-1 Ternary feature space visualization of V-I-S model and its relation to urban 

land use (Source: Ridd 1995) 

1.1.1.2 Textures and Spatial Metrics 

Conventional spectral based classification techniques have been criticized for its lack 

of consideration of spatial configuration and arrangement of image’s pixel. Textures 

derived from remote sensing images have bridged the hole, providing the spatial 

information for the classification.  The most frequently used texture is the Grey Level 

Co-occurrence Matrix (GLCM, Haralick et al. 1973). GLCM-based textures have been 
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extensively used in assisting the urban LULC classification (Franklin et al. 2000, 

Franklin and Peddle 1989, 1990, Gong et al. 1992, Herold et al. 2003, Lu et al. 2010, 

Ravikumar 2008, Van Coillie et al. 2007). Semi-variance is another texture statistics that 

describes the spatial variability and models the dependence and correlation of pixels with 

its neighborhoods respect to distance and direction (Chica-Olmo and Abarca-Hernández 

2000, Lark 1996). Lark derived a statistic that incorporates the difference of DN values of 

pixels separated by particular spatial interval (lag) and direction, which later made 

important contribution to the discrimination of land cover classes (Lark 1996). Semi-

variances at different lag could be fitted using theoretical functions, producing so-called 

variogram to reveal the spatial autocorrelation (Lloyd 2006). Research effects have been 

devoted in utilizing coefficients of fitted theoretical variogram functions and the semi-

variances at various lags as texture measures in assisting characterizing urban land use 

and land cover pattern (Berberoglu et al. 2000, Carr 1996, Chen and Gong 2004, Chica-

Olmo and Abarca-Hernández 2000, Lark 1996, Maillard 2003, Wu et al. 2006).  

While texture measurements are based on the continuous grey-level pixels, spatial 

metrics is mostly based on a categorical patch-based representation of the urban 

landscape (Herold et al. 2003). Usually, a patch is a clump of aggregated pixels as a 

homogeneous region. The minimum spatial unit for classification is composed of several 

adjacent patches, called land use regions (Herold et al. 2003). The landscape metrics (aka 

spatial metrics) were derived to measure the arrangement and configuration of patches 

and pixels in each land use region for classification (Gustafson 1998, Mcgarigal et al. 

2002). Spatial metrics describe the configurations and patterns of urban landscape and are 

useful for urban land characterization (Herold et al. 2003, Herold et al. 2002). For 
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example, Herold et al. (2003) developed a spatial-metrics-based technique for land use 

classification. Given the fact that the land use object is composed of land cover objects, 

Herold firstly classified the IKONOS image to generate land cover objects (aka patches) 

of three kinds (e.g. buildings, green vegetation and the rest) using object-oriented 

classification. Then, ancillary data was used to aggregate the land cover objects into land 

use regions, which are the basic spatial units for the subsequent land use classification. 

Seven GLCM-based textures and 22 spatial metrics measurements were derived for each 

land use region. The final classification demonstrated the successfulness of the 

incorporation of conventional textural statistics and spatial metrics. Spatial metrics were 

also used in investigating other urban phenomenon, such as population distribution (Liu 

et al. 2006). 

1.1.1.3 Object oriented approach 

The object-oriented classification method developed recently is capable of 

generating more accurate LULC classes due to its consideration of spatial configuration 

and arrangement of pixels. The object-oriented classification introduces multi-resolution 

image segmentation and further develops a hierarchical network of image objects at 

various scales. Image segmentation is a bottom-to-up region-growing process that 

depends on the color (spectral), shape (spatial compactness and smoothness), texture and 

contextual information and aggregates pixels into homogenous image object primitives 

(Baatz and Schäpe 1999, 2000, Benz et al. 2004), which are the basic units for the 

subsequent classification. The scale parameter defines the stop criteria for merging the 

pixels or small image objects into larger ones (Baatz and Schäpe 1999, 2000, Benz et al. 

2004). A high scale parameter would lead to large image objects with excessive 
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heterogeneity (under-segmentation) whilst a low scale parameter would lead to many tiny 

image objects (over segmentation) that are no different from individual pixels as they 

cannot capture meaningful spatial and spectral homogeneity. Therefore, selecting the 

scale parameter is crucial in image segmentation. The heterogeneity of every image 

object is dependent on the spectral color and shape of that image object. The ratio of their 

contribution to heterogeneity is defined by the color and shape parameter (Baatz and 

Schäpe 2000). The optimum output of the image segmentation is the maximized intra-

object homogeneity and inter-object heterogeneity. After the image segmentation, a rule-

based fuzzy classification (similar to traditional pixel-based decision-tree classification) 

or a nearest neighbor (NN) classification (similar to traditional pixel-based supervised 

classification) or a combination of both will follow using these image objects instead of 

single pixel (Baatz and Schäpe 1999, 2000, Benz et al. 2004). The member functions in 

fuzzy classification determine that to what extent a certain image object should be 

classified to a certain class by using expert knowledge.  

Object-oriented classification has been applied widely on remote sensing images 

with high spatial resolution, such as IKONOS and QuickBird. A variety of spectral (e.g. 

band ratio, vegetation indices, texture, etc.) and spatial (e.g. shape, area, elongation, 

perimeter, roundness, etc.) attributes of image objects were used to determine the fuzzy 

rules for classification.  For instance, a rectangle-shaped medium-sized image object with 

low Normalized Difference Vegetation Index (NDVI) derived from high resolution 

images should be classified as “rooftop” instead of “transportation road” or “parking lot” 

(Hu and Weng 2010b). Nevertheless, the spectral resemblance of these three categories 

would make them otherwise not separable if spatial information is not considered. In the 
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literature, representative applications of object-oriented classification include but not are 

limited to: urban impervious surface mapping (Hu and Weng 2010b, Li et al. 2010a, 

Yuan and Bauer 2006, Zhou and Wang 2008), LULC mapping(Geneletti and Gorte 2003, 

Myint et al. 2011, Shackelford and Davis 2003, Xu and Li 2010, Zhou and Troy 2008), 

change detection (Walter 2004), building extraction and damage detection (Li et al. 

2010b, Liu et al. 2005), mangroves mapping (Myint et al. 2008, Wang et al. 2004), forest 

mapping (Van Coillie et al. 2007), shrub encroachment monitoring (Laliberte et al. 2004) 

and more. 

1.1.2 Urban population modeling 

Demographic data is mainly collected to match with the political administrative 

divisions (such as, census tract, census block, etc). However, this does not necessarily 

mean the underlying phenomenon matches with these arbitrary definitions of areas 

(Eicher and Brewer 2001). Early population modelers were interested in disaggregating 

population to finer spatial unit and probably also re-aggregate them into another (target 

layer). The former leads to “dasymetric mapping” (without re-aggregation) and the latter 

(with re-aggregation) is called “areal interpolation”. Nowadays, remote sensing provides 

an efficient and repetitive way to derive physiogeographic variables that are related to 

population to predict population distribution using regressions. More advanced 

population regression models may consider the spatial pattern and spatial nonstationarity.  

1.1.2.1 Areal interpolation and dasymetric mapping 

The most-developed areal interpolation technique is the weighted areal interpolation 

(Goodchild et al. 1993, Goodchild and Lam 1980, Lam 1983). The weighted areal 

interpolation performs spatial intersect firstly between the source layer and the target 
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layer, producing spatial segments and partitioning the population in the source spatial 

features proportionally to the area. The resultant population for the target spatial feature 

is calculated as the sum of population in the constituent spatial segments. Although the 

assumption of proportionality is ideal, weighted areal interpolation needs no ancillary 

data inputs and is easy to implement in a GIS environment. 

“Dasymetric mapping” refers to techniques that disaggregate spatial data into finer 

zones in a fashion that maximizes the inter-zonal heterogeneity and maximizes the intra-

zonal heterogeneity. Ancillary information is generally required to do so (usually, land 

use information). It departs from the “areal interpolation” method as the disaggregation 

process is not based on the area and there is no re-aggregation process. Dasymetric 

mapping is a remedy to the problematic assumption of an even distribution of population 

regardless of the underlying land use patterns. Land use information was used in the 

dasymetric mapping of population by Wright (1936) in his seminal paper when GIS was 

not even an ubiquitous tool. Wright categorized the land use types into “populated” and 

“unpopulated” and distributed the population only to the “populated” area to produce a 

more reasonable demographic map. This binary case was later extended by Mennis (2003) 

and Langford (2006) in three-class applications. Frequent and efficient dasymetric 

estimation of population was made feasible when satellite and aerial images assist by 

providing land use information through image processing and classification. The 

drawback of dasymetric mapping is that the average population density for each land use 

class is assumed to be fixed and need to be estimated through regressions or directly 

required from the previous empirical studies, meaning that dasymetric mapping neglected 

the possible heterogeneity within land use classes (Liu 2003, Maantay et al. 2007). 
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In addition to polygonal approach, the pixel-based dasymetric mapping was also 

studied since remote sensing images played an important role as the data source. Pixel 

based estimations generate the population surface and are believed to be one of the 

solutions to the modifiable areal unit problem (MAUP) that was always encountered in 

the polygonal dasymetric mapping practices (Harvey 2002a, Mennis 2003). Tobler (1979) 

proposed a “pycnophylactic interpolation” approach to conduct volume-preserving 

interpolation of smooth surface for areal measurement. He adopted a lattice of point 

superimposed on the polygon feature, and by using iterative calculations he adjusted the 

values assigned to each point in the lattice preserving the sum for each polygon-defined 

region (pycnophylactic property) whilst enhancing the smoothness. This method was 

extended by replacing the lattice with the Triangular Irregular Network (TIN) (Rase 

2001). Although TIN introduced the difficulty in implementation, it had the advantages in 

delineating polygons more precisely, especially for irregular polygons. Tobler’s method 

and the like were mathematical smoothing techniques that didn’t use any other ancillary 

data input for population estimation and thus compromised their reliability. Other 

population surface generation endeavors using dasymetric techniques can be found in 

Martin (1989), Langford and Unwin (1994) and Mennis (2003). 

1.1.2.2 Conventional regression  

Modern and more robust population modeling methods prefer statistical tools. The 

rationale is the underlying relationship between the population distribution and the 

socioeconomic and physiogeographic conditions of residential areas. Linear regression 

models establish the empirical relationship between population/population density (or 

their transformations) and multiple predictive variables. The increasing availability and 
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resolution of remote sensing images provide the ancillary data for population estimation 

besides census data. Physiogeographic information extracted from the remote sensing 

images was widely used in the regressions on population. Among them were spectral 

reflectance (Hsu 1973, Iisaka and Hegedus 1982, Lo 1995), night-time illumination 

(Dobson et al. 2000, Lo 2001, Sutton 1997), vegetation indices (Li and Weng 2005), land 

use and land cover (Dobson et al. 2000, Langford et al. 1991, Lo 1995, Mennis 2003, 

Yuan et al. 1997), sub-pixel fractions (Li and Weng 2005, Lu and Weng 2006, Morton 

and Yuan 2009), textures (Li and Weng 2005, Liu et al. 2006), temperature (Li and Weng 

2005) and spatial metrics (Liu 2003). Harvey (2002b) developed a method in which the 

population count for individual TM pixel was updated by iteratively using an OLS 

(Ordinary Least Square) calibration until convergence is achieved. His method used band 

reflectance and band-to-band ratio as the predictive variables in the regression. Liu et al. 

(2006) used three different indicators of texture: the GLCM, semi-variance, and spatial 

metrics in predicting the population at a homogenous urban patches level for the Santa 

Barbara and highlighted that spatial metrics was the superior predictor. Previous studies 

on the population regression showed that the estimations tend to be subjected to relative 

large bias (underestimation of high population densities and overestimation of low 

population densities) when population density is at its extremes (e.g. very high or very 

low, Harvey 2002a, Li and Weng 2005). Three remedies were reported in the literature to 

deal with this problem: stratification, scaling and pixel-based regression. Li and Weng 

(2005) used multiple linear regressions to estimate the population density for the city of 

Indianapolis, Indiana and found out the model fit was improved after a stratification 

based on the population density into three categories (low, medium and high residential). 



13 

 

Lo (2003) divided the census tracts of Atlanta into two groups (the periphery and the 

center) to improve the population estimation. The allometric models were developed for 

each group for two time periods (1990 and 1997) and slight improvement of the model 

accuracy was achieved after the stratification. Yuan et al. (1997) employed the regional 

regression and scaling techniques to improve the estimation performances. Harvey 

(2002a) compared the zone-based approach (Census Collection Districts of Australian 

cities) and pixel-based approach (TM imagery). The pixel-based approach utilized the 

untransformed TM six bands in the regression in an iterative manner and was more robust 

at the extremes of population density. Similar work and consistent conclusion can be 

found in Wu and Murray (2005). 

1.1.2.3 Considering the spatial dependency and spatial nonstationarity  

In a geographical research, the variable of interest usually demonstrates the spatial 

dependency and spatial nonstationarity; hence the conventional linear regression as a 

global analysis is incapable of capturing the local variation and characteristics (Brunsdon 

et al. 1998, Foody 2003, Fotheringham et al. 2002, Fotheringham et al. 1998). Population 

distribution is spatially auto-correlated. To address the issue of spatial autocorrelation, 

spatial dependence and spatial heterogeneity of the relationship in the context of the 

geographical research, two spatial analysis methods, namely, geographically weighted 

regression (GWR) and spatial autoregressive regression, were employed in a variety of 

applications. 

Geographically weighted regression (GWR) is a well-established regional regression 

technique developed by Fotheringham et al. (1998) that assigns weights to individual 

observation according to their distances to the local regression location. It follows that 
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estimated coefficients of GWR model vary spatially. Geographical patterns, local patterns 

and local goodness-of-fit can be mapped and compared in a GIS environment.  Many 

successful researches using GWR in all kinds of geographical scales followed. Other than 

the population modeling, the application of GWR can also be found in regional 

development mechanism studies (Yu 2006), urban growth (Mark et al. 2008), NDVI-

rainfall relations (Foody 2003) and so on. 

Attempts of applying GWR or regional regression in population estimation were new 

tracks in the literature recently. Yuan et al. (1997) conducted a land-use based dasymetric 

mapping globally in the entire study area in Arkansas as a whole and for its regional four 

individual counties. Three out of the four county models were found to outperform the 

global model in terms of goodness of fit. Langford (2006) reported a better regional 

regression models between population and land cover as opposed to a global approach 

and confirmed the spatial nonstationarity in his study. Yu and Wu (2004) used both GWR 

and OLS to estimate the local segregation index at census group level using variable 

extracted from the ETM+ imagery, demonstrating that GWR was able to capture local 

patterns. Liu et al. (2006) utilized GWR on population with spatial metrics and the 

population density for Santa Barbara south coastal urban area. The slope estimate varied 

geographically for all the spatial metrics used. High R
2
 was found at low and 

intermediate populated areas. Lo (2008) fitted both of the OLS and GWR based on a 

four-class land use model and reported a 28% increase of the model performance for 

local GWR model. It was also revealed in his study that a regional regression approach 

based on the census tracts aggregated by counties was superior to the global OLS model. 
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Autocorrelation and spatial dependence are always violations of regular regression 

assumptions. Spatial econometrics is an analogous discipline to the classical 

Econometrics (Anselin 1988), and temporal autocorrelation and spatial autocorrelation 

are analogous counterparts in these two disciplines. There are three major spatial 

autoregressive regression models (Baller et al. 2001, Fotheringham et al. 2000): spatial 

lag model, spatial error model and spatial autoregressive moving average model. Chi and 

Zhu (2008) gave a comprehensive review of many aspects and issues that relate to the 

application of spatial autoregressive regression in demographic analysis in the context of 

ESDA (Exploratory Spatial Data Analysis). Griffith and Wong (2007) used spatial 

autoregressive regression to deal with the spatial autocorrelation problem with case 

studies on the 20 largest metropolitan areas in the US according to the 2000 census, and 

reports good fits for both mono-centric and polycentric cities.  

1.2 Problem statement and research hypothesis 

Several research gaps can be found in the practice of urban land use mapping. 

Although as reported in the current literature, V-I-S fractions and LST were proven to be 

more accurate in characterizing the urban landscape and qualifying the urban morphology 

due to their consideration of the land cover mixture characteristics of the urban land use, 

there was a scarcity of studies focusing on the stability of classifiers built on V-I-S 

fractions and LST. Although the superiority of V-I-S fractions over the multispectral 

reflectance as input features in urban land use classification was well identified, current 

explorations and discussions only emphasized the accuracy improvement, seldom was 

their superiority viewed comprehensively from both accuracy and model stability. 

Moreover, classification methods applied with V-I-S fractions were conventional 
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approaches, namely, the MLC(Lu et al. 2003, Lu and Weng 2004, Lu and Weng 2005, Lu 

and Weng 2006, Rashed et al. 2001), and decision tree(Lu and Weng 2004, Rashed et al. 

2001), failing to embrace other promising modern classifiers, such as the support vector 

machine (SVM) and the ensemble classifiers, that attracted interests in the remote sensing 

science community. All of these research gaps also hold true for land surface temperature 

(LST) variable used as input for characterizing urban land use. LST derived from thermal 

bands was also found closely related to urban biophysical characteristics, and was applied 

to studies on UHI, LULC mapping and urban sprawl (Lo et al. 1997, Weng 2001, Weng 

2009, Weng et al. 2007). The accuracy and stability performance of the collaboration of 

V-I-S fractions and LST in the urban land use classification remained an unanswered yet 

interesting question. Given the success and popularity of object-oriented classification in 

the recent literature, the study on applying object-oriented classification based on V-I-S 

fractions and LST was also uncommon; and the optimal classifier and the stability of 

object-oriented classification in this context were unknown to the urban remote sensing 

researchers. 

The second problem lies in the population modeling with remote sensing data. 

Although V-I-S fraction images have been used in regression with urban population and 

success applications were reported extensively, it is still questionable if such models can 

be generalized to other places in the world.  

I have the following hypotheses to be tested in the research: 

1. The superiority of classifiers can be evaluated by using a randomization approach 

and the Kappa-error diagram by the evaluation framework introduced in chapter 2. This 

hypothesis is tested in chapter 3. 
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2. The superiority of input features for image classification can be evaluated by 

looking at the tree depth and complexity. This hypothesis is tested in chapter 3. 

3. The urban land use classes can be extracted from applying watershed 

segmentation on the V-I-S feature space image. This hypothesis is tested in chapter 4. 

4. The use of V-I-S fractions and land use information extracted from remote sensing 

images can result in efficient regression models for modeling and predicting urban 

population distribution in New Orleans. The relationship between urban population 

distribution and these physiogeographic measurements exhibits spatial nonstationarity. 

These hypotheses are tested in chapter 5. 

1.3 Research design  

1.3.1 Study area  

This research uses New Orleans as the study area. New Orleans is the largest city in 

the Louisiana State and is a metropolitan area with modern industrial and ethnic 

development despite of its geographical location being around a hurricane-threatened 

community. New Orleans is in the subtropical environment and undergoes evident UHI 

effect, especially in the warm weather due to large amounts of paved and dark colored 

surfaces and the greenhouse gas release in urban communities (Baseline Greenhouse Gas 

Emission Profile, 2001). The dynamic land use of New Orleans made it a good place for 

urban LULC studies.  

New Orleans is sandwiched between the Lake Pontchartrain, Mississippi River and 

the Gulf of Mexico. The topography of New Orleans resembles a bowl with the northern 

part having the lowest elevation. The flow of the Mississippi river across the city 

resembles an up-side-down Ω symbol. The major part of the city is also below the sea 
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level. All of these drawbacks made New Orleans exposed to a variety of periodic natural 

disasters, such as hurricanes, flooding and storm surge. The population of New Orleans 

experienced massive decline during the last decade due to the natural hazards (especially 

Hurricane Katrina). These natural hazards have resulted in a large displacement of New 

Orleans’ residents of different race, age and socioeconomic status (Fussell et al. 2010, 

Groen and Polivka 2009). A challenging opportunity is to study the urban population and 

population decline and its relationship with community vulnerability reflected from the 

socioeconomic and physiogeographic conditions, so to help better understanding of 

disaster prevention, vulnerability, and resilience of the coastal communities. Modern 

geospatial technologies from GIS and remote sensing have laid a solid foundation for 

such a research.  

1.3.2 Methods and data flows 

Multiple GIS, remote sensing, and statistical methods are adopted in this research. 

Based on a randomization technique in statistics, I constructed an evaluation framework 

for selecting optimal input feature and classifiers (algorithm) for land use and land cover 

classification. The evaluation framework put emphasize on the discussion of stability of 

classifiers. Such an evaluation framework can provide valuable guidance to land use and 

land cover classification in remote sensing.  

By using the evaluation framework, multiple combinations of input data (band 

reflectance, V-I-S fraction images, and LST) and algorithms (maximum likelihood 

classifier, support vector machine, classification tree, random forest, etc.) are compared 

and evaluated in the study area by using the Landsat TM data. The interest is to test 

whether or not the use of V-I-S fraction images and LST could significantly improve the 
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accuracy and stability of supervised classification in both pixel-based and object-based 

approaches as opposed to the conventional spectral reflectance variables in the urban land 

use classification.   

In this research I developed an innovated approach of land use classification as the 

marker-controlled watershed segmentation in the V-I-S feature space (e.g., histogram). 

This method extends Ridd’s V-I-S model (Ridd 1995) and Lu-Weng’s urban land use 

model (Lu and Weng 2006), by collapsing land cover classes (V-I-S) to land use classes 

in a triangulated coordinate system in the V-I-S feature space. This is the first realization 

of the conceptual urban feature space triangle models for land use classification. 

Watershed segmentation defines “watersheds” from the pixel clusters, which are a nature 

form of urban land use structures in the V-I-S feature space. Markers are used to control 

the number of “watersheds” to avoid over-segmentation.  This watershed-segmentation 

based approach is data driven and easy to implement. 

It is interesting to know if the V-I-S image fractions or the derived LULC 

information from the preceding analysis can be used as explanatory variables to estimate 

population in New Orleans. If it holds true, it is possible to use remote sensing to fuse 

intercensal gaps of population data, and therefore to facilitate the study of population 

dynamics and people’s migration pattern. First, the global Ordinate Least Square (OLS) 

regression is evaluated. The residual map of the OLS regression would reveal if there is 

any spatial nonstationarity in the model. If strong spatial nonstationarity is identified, a 

local regression model (e.g., GWR) would be preferred.  

Figure 1.2 displays the methodology and the data flow of this research.  
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Figure 1-2 Research design and data flows 

 

The objectives of this research are: 

1. to establish several reliable remote sensing image classification methodologies 

for urban land use characterization; 

2. to  select an appropriate regression model for urban population from remotely 

sensed information;  

3. and to study the pattern of population distribution and relate it to the V-I-S 

fractions and land use information. 
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Specifically, upon finishing the dissertation, the following research questions are to 

be answered: 

1. Is the evaluation framework capable of providing comprehensive assessment of 

V-I-S fractions and LST in urban land use mapping?  

2. In addition to the accuracy improvement, would the incorporation of V-I-S 

fractions and LST also be able to improve the stability of classifier?  

3. Are there optimal classifiers associated with the V-I-S fractions and LST or their 

combination as input? 

4. According to the evaluation framework, would the object-oriented classification 

benefit the accuracy or stability? What is the optimal classifier in this context? 

5. Would the marker-controlled watershed segmentation in the V-I-S feature space 

provide a good classification result? 

6. Is there a strong association between the 2010 population and V-I-S sub-pixel 

information and the urban LULC from remote sensing? 

1.4 Significance of the research 

This dissertation will contribute to the GIS and remote sensing application in urban 

geography in general and in the following specific aspects: 

 This research extends the V-I-S urban remote sensing model and classification by 

introducing an innovative comprehensive evaluation framework for guiding the 

selection of classifiers and input data. The significance of the evaluation framework is 

that, in addition to the traditionally performed accuracy assessment, it can provide the 

assessment of classifiers’ stability. Although the evaluation framework is initially 
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developed for urban land use research, it could be future extended to the general 

applications of remote sensing image classification.   

 This research is among the few to provide comprehensive comparisons and 

evaluations of multiple types of input (band reflectance, V-I-S fractions and LST) 

plus a variety of classifiers (MLC, SVM, decision tree, random forest). The 

evaluation results and conclusions would guide remote sensing practitioners and 

urban planners in their future work of urban land use characterization.  

 This research is the very first to rasterize the Ridd’s V-I-S triangle model (Ridd 1995) 

and Lu-Weng’s triangle model (Lu and Weng 2006) to visualize the V-I-S feature 

space, which is followed by the development of an innovated method of using 

marker-controlled watershed segmentation processing algorithm to partition the V-I-S 

feature space in the rasterized triangle system. The new method can directly 

transform V-I-S fraction images to urban land use classes that match with the 

previously defined urban land use conceptual models.   

 This research would also shed lights on the understanding of the population 

distribution in a disaster-prone urban area of New Orleans and relate it to the 

physiogeographic conditions derived from remote sensing data. 

1.5 Chapter organization 

The rest of this dissertation is divided into six chapters. Chapter 2 elaborates the 

evaluation framework to assess the performance of input features and classifiers used in 

remote sensing image classification. Chapter 3 applies this proposed evaluation 

framework in the context of both pixel-based classification and object oriented 

classification to evaluate the benefits of using the V-I-S fractions and LST in urban land 
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use classification and to reveal the superiority of these inputs. Chapter 4 introduces the 

developed marker-controlled watershed segmentation in the V-I-S feature space for urban 

land use classification. Chapter 5 investigates the urban population distribution of New 

Orleans with the V-I-S sub-pixel information and the land use characterization. Summary 

of findings and contributions of the dissertation and future research tracks could be found 

in Chapter 6. Chapter 3~5 can also be regarded as standalone journal-style articles, which 

are also related to one another under the central topic of the dissertation. 
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2. Chapter 2 A comprehensive evaluation framework for 

assessing classifiers and input features 
 

Previously, comparisons of input features and the classifier selection were limited to 

the overall classification accuracy or the Kappa statistics. However, it is could be 

questionable for the accuracy reported from one sample of the data set because the 

accuracy might be different if another set of training and testing sample data is used. This 

potential variability in the accuracy brings up the definition of classifiers’ stability, 

namely, a measure of the consistency in classification decisions generated from different 

samples. This chapter describes the evaluation framework which takes into account for 

both the classifiers’ accuracy and stability. This evaluation framework can also assess the 

importance of input features in the classification. I also introduce the classifiers that are 

used and compared in our research. This chapter illustrates tools we used to answer 

research question 1~4. The application of the framework is in Chapter 3. 

2.1 Overview of the evaluation framework 

The evaluation framework employs the classification tree technique to evaluate the 

importance/superiority of input features and the randomization technique to evaluate the 

classifiers’ performance in both accuracy and stability. Figure 2.1(a) displays the three 

criteria for evaluating input features. Specifically, the classification tree structure and the 

sequence of variable being selected for branch splitting of trees are used to indicate the 

input feature’s superiority. A random forest of trees is considered by using these two 

criteria to draw conclusions with statistical significance. The increase of the badness-of-

fit on the Out-of-Bag (OOB) samples is also employed to reveal the superiority of input 

features. The evaluation of classifiers is depicted in Figure 2.1(b) from two aspects: the 
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Kappa-Error diagram and the ANOVA test. The following subsections elaborate the 

evaluation framework in detail.  

(a) 

(b) 

Figure 2-1 Evaluation Framework. (a) The evaluation of input features; (b) the evaluation 

of classifiers. 
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2.1.1 Variable selection sequence and complexity of classification tree (CART) 

The first two criteria for evaluating the superiority of input features originated from 

the Classification and Regression Tree (CART). The CART produces classification rules 

by recursively seeking the most significant variable and the associated cut-off value for 

splitting. The fitted tree tends to select variables with great variability and separability in 

the early splits. The algorithm proceeds until no further splitting can be found to reduce 

the node impurity (Gini index) or gain information (entropy) by a predefined threshold 

(controlled by the complexity parameter – cp). The gini index and entropy of a given 

node are defined as: 

            ∑     (    )                                                (1) 

          ∑   
 
                                                        (2) 

where    is the portion of class   in the node. Impure node features high gini index 

and entropy.  

This selective splitting mechanism of the tree classifier determines that the sequence 

of variable chosen for splitting is regarded as an indicator of variables’ importance and 

superiority. A tree’s complexity highlighted by its depth and the number of nodes also 

indicates the capability of input variables in separating designated classes. Generally, 

trees with more levels (depth) and nodes are due to the inability of the input variable to 

separate the designed classes. In other words, the simpler a fitted tree is, the superior and 

more relevant the input variables are. 

2.1.2 Randomization technique 

Randomization technique is critical in this evaluation framework. Randomizing 

training samples (called “bootstrapping” if with replacement and “sub-sampling” if 
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without replacement) creates multiple training datasets through drawing samples with 

replacement from the original sample pool, and the bootstrap samples are used for 

producing an ensemble of classifiers (Hastie et al. 2009, pp.249). The contribution of the 

randomization technique to the evaluation framework is threefold. First, not only can 

these produced classifiers be considered together to obtain a final classification, but also, 

and more importantly, they could be investigated individually for the stability assessment 

of base classifiers that constitute the ensemble. Second, the conclusion regarding the 

superiority of input features by criteria introduced in Section 2.1.1 could be drawn 

repeatedly from an ensemble of tree classifiers (random forest); hence, the statist ical 

significance is obtained. Third, randomization provides an innovative Out-of-Bag (OOB) 

method (Hastie et al. 2009, pp. 593) to look at the variable’s importance in the random 

forest. In the random forest, each tree is built with bootstrap samples. The prediction of a 

given observation is constructed by averaging only those tree classifiers corresponding to 

bootstrap samples in which this observation did not appear. Hence, the OOB idea is 

similar to the N-fold cross validation (Hastie et al. 2009, pp.593).  Variable’s importance 

is measured by the increase of the badness-of-fit on OOB samples after a random 

permutation of the variable’s value. Alternatively put, if a given input feature is important, 

the random permutation would lead to a significant degradation of the model. On the 

contrary, if a given input feature is not important in the first place at all, the random 

permutation would not make a big difference on the model fit.  

2.1.3 Kappa-Error diagram 

Previously, the variability of the overall accuracy was adopted as a measure of 

stability of classifiers (Huang et al. 2002).  However, this indicator still casts problems 
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because classifiers with similar overall accuracy might still have discrepant or even 

distinct classification results; hence it is not reasonable to conclude the stability just from 

consistent accuracy reports. For instance, one certain classifier is trained multiple times 

(say, three times, producing classifier-1, classifier-2 and classifier-3) using different 

training data. Due to the use of different training data, the classifier-1 may confuse Class-

A and Class-B; the classifier-2 may confuse Class-D and Class-A; and classifier-3 

confuses Class-A and Class-D and Class-C. Although these three classifiers may have 

close overall classification accuracies around, say, 75%, they are making different 

classification decisions as they confuse different classes. So, in this case, this classifier is 

not considered as a stable one. 

 This research introduces the Kappa-Error diagram for the stability assessment. 

Kappa-Error diagram (Margineantu and Dietterich 1997) is superior to the variability of 

the overall accuracy as a measure of the stability of classifiers. The Kappa-Error diagram 

visualizes the accuracy and the stability of a classifier in a single scatter plot. First,   sets 

of bootstrap samples are produced for fitting a classifier   times, producing   
   (  

 )   pairs of classifiers. Then, the Kappa-Error diagram is constructed by taking the 

mean error rate of pairwise classifiers on the validation dataset as   and corresponding 

degree of agreement (indicated by the Kappa statistic as  . The Kappa-error pattern for a 

stable and accurate classifier will display a compact point cloud located at the lower right 

corner in the diagram indicating a low error rate and a high Kappa statistic (meaning 

consistent and stable, see Figure 2.2).  Kappa-Error diagram has not been widely adopted 

in the remote sensing classification applications with only few exceptions, such as 
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DeFries et al. (2000) and Chan et al. (2001). The use of Kappa-Error diagram is 

promoted in this research by demonstrating its value in the classifier evaluation. 

 
Figure 2-2 Kappa-Error Diagram, image courtesy of Margineantu and Dietterich (1997) 

2.2 Classifiers 

Other than the aforementioned tree classifier, other four types of classifiers Figure 

2.1(b) are also investigated for comparisons. They are maximum likelihood classifier 

(MLC), tree-based ensembles, which include bagging (bootstrapped aggregation) and 

Random Forest (RF), and support vector machine (SVM).  

2.2.1 Maximum likelihood classifier 

As a parametric classifier, the MLC relies on multivariate normality assumptions and 

is mathematically equivalent to the Bayesian Quadratic Discriminant Analysis (QDA).  

(Richards and Jia 2006, pp. 194-199). It assigns the given pixel to the class when the 
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posterior probability of that class is a maximum. That the decision rule is quadratic is due 

to the heterogeneity of the within-class variance matrix.  

According Bayesian theorem, we have the posterior probability of pixel   belonging 

to the class   as the following: 

 (  | )   
 (    )

 ( )
 

 ( |  ) (  )

 ( )
                                   (3) 

The decision rule is: 

        (  | )    (  | )                                         (4) 

Under the assumption of the multivariate normality and canceling the common factor 

 ( ), we take the log on both sides and get denote: 

   ( )     (  )  
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  (    )                             (5)                          

where    is the sample variance-covariance matrix of class  ,    is the sample mean 

vector for class  ,    stands for the population  ;   (  ) is the prior probability of the 

class  ;   is the number of classes being considered. If assuming equality of the prior 

probability, which also leads to removing of the ½ as the common factor, one gets: 

  ( )     |  |  (    )
   

  (    )                                    (6) 

The decision rule reduces to: 

         ( )    ( )                                                   (7) 

After mathematical deduction, the rule can be rewritten as quadratic function: 
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where   
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 MLC is the most popular classifier used by the remote sensing community and is 

implemented in most remote sensing packages. Yet selections of training samples and 

classes that satisfy the normality assumptions remained a challenge (Myint and Lam 

2005b).  Due to its popularity, MLC is used in this research as the benchmark classifier. 

2.2.2 Ensemble classifier 

Ensemble classifier is a committee formed by fitting a collection of base classifiers 

and makes classification decisions by a (weighted) majority vote (Hastie et al. 2009, pp. 

605). The base classifiers are produced as independent and uncorrelated to each other as 

possible through randomization to reduce the estimation variation, which generally leads 

to improved classification performance. I embrace two popular ensembles in this research, 

namely, bagging and random forest. 

Bagging 

Bagging stands for “bootstrapped aggregation”. Bagging is the most straight forward 

ensemble method in which a large number of bootstrapped samples were generated from 

the original training dataset and used to fit the same number of models for later averaging 

or majority vote. Tree model is not the only but the most used model in bagging method. 

Since bootstrap is a re-sampling process with replacement; for growing each tree, a 

certain part of training samples are never used, called Out of Bag (OOB) samples. OOB 

sample error is a more reasonable way to evaluate the model performance because it is 

derived from the data that are not used in growing the tree. OOB sample also provides a 

mechanism to evaluate the variable importance. For each predictor, its importance can be 
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determined by averaging the increase in prediction error of OOB samples over bagging 

trees after randomly shuffling the values of that predictor. More technical details about 

bagging can be found in the seminal paper of Breiman (1996), in which he offered 

mathematical explanation of the reason for which Bagging works and applied Bagging on 

both simulated and realistic datasets. He suggested that Bagging can only be used with 

unstable classifiers as its base, such as tree classifier; it probably would not result in 

much improvement with stable learners, like SVM (Chan et al. 2001). 

Random Forest 

Random forest is a general case of Bagging when the base classifier is the single tree 

classifier. Most of the time, random forest outperforms Bagging as it reduces the 

correlation between trees classifiers by randomly selecting only a portion (tuning 

parameter) of predictors from the variable pool for splitting when growing each 

individual tree. Since classification trees trained use different sets of variables for each 

branch splitting, the reduction of correlation is achieved and so does the prediction 

variance. A number of (lowly) correlated trees are produced in this way, forming a 

random forest. Random forest applied on simulated data indicated that it is able to 

achieve an adequate performance even if some input variables are noisy or useless (junk 

variables). The OOB idea is also available in random forest. For more technical details, 

see Breiman (2001) and Liaw and Wiener (2002). 

Random Forest (RF) differs from Bagging method in two aspects. First, it only uses 

trees as the base classifier; second, only a random subset of all input features is 

considered in growing a tree classifier. The selected input feature subsets vary over the 

entire forest, which further reduces the correlation among tress (Breiman 2001).  
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A band selection mechanism of hyper-spectral remote sensing imagery by using 

random forest was suggested by Chan and Paelinckx (2008). 25 out of 126 spectral bands 

of airborne HyMap imagery were selected, spectral location of which indicated the 

importance of SWIR bands for ecotope classification. Generally speaking, machine 

learning classifiers were shown to be superior to their conventional counterparts. 

Gislason et al. (2006) compared several ensemble methods applied on multi-source 

remote sensing data and concluded that random forest achieves both the best accuracy 

and the fastest speed. However, inconsistent conclusions regarding the improvement of 

ensembles on their base classifier were also found in the literature. The improvement of 

ensembles depends on the dataset (Lawrence et al. 2004), sample size and selected base 

classifiers (Foody et al. 2007, Joelsson et al. 2005, Lawrence et al. 2006, Wang et al. 

2008). Cautions should be taken when applying ensembles. The stability of base 

classifiers is crucial to the performance of ensembles; ensemble method achieves little 

improvement if the base classifier is adequately stable (Breiman 1996, Chan et al. 2001, 

Dietterich 2000).    

2.2.3 Support vector machine 

SVM is a machine learning technique that seeks the linear (sub) planes as the class 

boundaries while maximizing the margin between the class boundaries. It turns out the 

classification decision rule only involves the inner product of partial training datasets that 

are located at the class boundaries and are so called “support vectors”. In Figure 2.5, they 

are two hypothetical class plotted in 2-D feature space. The class boundary are the central 

black line and the two dashed line are parallel to the class boundary and are determined 

by        and       . The key data points determining the class boundary 
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are support vectors in grey in Figure 2.5. SVM is a classifier to assign classification label 

according to:  

                        (    )  

                        (     )                              (10) 

Where    is a given vector to be classified and    is the class label. The above 

formula can be combined as: 

  (     )                                                        (11) 

The margin is the perpendicular distance between the two dashed lines in Figure 2.5, 

namely, 
‖ ‖ 

 
, which should be maximized. Hence, the Lagrange form of the SVM is 
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The dual problem of SVM is: 
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Taking derivative of (4) leads to two conditions: 

       ∑   
 
                                                            (14) 

∑   
 
                                                               (15) 

The dual problem can be solved by quadratic programming. Under the KKT 

condition and Mercer Theorem, the optimal solution is sparse in   , meaning most of the 

   have to be zero. From Figure 2.3, we see that only those data points (so-called support 

vectors, rendered in grey color) whose    coefficients are nonzero are contributing to 

calculating   . Substituting (2) and (4) in (1), one gets the solution of SVM as the 

following: 
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Hence, both the dual and the solution only involve the inner product of support 

vectors in the training dataset and vectors that need to be classified. 

 

Figure 2-3 Illustration of SVM classifier in a two-class linear separable case; and grey 

features are the support vectors. 

 

When the data  in the original feature space are not linearly separable, SVM adopts a 

technique called “kernel-trick” (Schölkopf and Smola 2002), which attempts to project 

datasets into higher dimensional feature space to achieve the linear separability by using 

kernel mapping functions. This “kernel trick” idea is based on the fact that the regular 

solutions of SVM only involves the inner product of the support vectors; and kernels can 
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be regarded as the inner product in the mapped feature space (with higher or even infinite 

dimensions). Once the kernel is defined, the actual mapping function is implicit and need 

not to be known (Schölkopf and Smola 2002). The most frequently used kernels include 

linear kernel (inner product, no mapping), polynomial kernel, and Gaussian kernel, etc. 

SVM problem can be solved by quadratic programming using Lagrange Multiplier 

method (Burges 1998, Schölkopf and Smola 2002).  

Recent literature has witnessed a growing interest in the application of SVM 

classifier in the remote sensing image classifications (Brown et al. 1999, Bruzzone and 

Carlin 2006, Foody and Mathur 2004a, Foody and Mathur 2004b, Huang et al. 2002, Li 

and Wan 2010, Mathur and Foody 2008, Melgani and Bruzzone 2004, Pal and Foody 

2010).  SVM has been compared with MLC (Huang et al. 2002), decision tree (Foody 

and Mathur 2004a, Huang et al. 2002) and neural network (Foody and Mathur 2004a, 

Huang et al. 2002) and demonstrated its superiority. The classical SVM is two-class 

SVM (TCSVM), and was extended to be multi-class SVM because remote sensing 

classification usually deals with more than two classes. Melgani and Bruzzone (2004) 

evaluated four different multi-class strategies of SVM (e.g. one-against-all, one-against-

one, binary hierarchical balanced tree-based and binary hierarchical tree based one-

against-all) and showed that the one-against-all and one-against-one strategies had better 

performance. Spectrally weighted kernels (Guo et al. 2008a) were developed to extend 

SVM-based methods for hyper-spectral image classification. It was based on the fact that 

the useful information for classification is not evenly distributed among all spectral bands. 

One-class SVM (OCSVM) has been an emerging type of SVM recently developed to 

cater for the requirement for feature detection and one-class classification (Schölkopf and 



37 

 

Smola 2002, Tax and Duin 2004). In OCSVM, only one class is of interest so that 

analysts need only to train that specific class occurred in the study area. OCSVM projects 

data into high–dimensional space and uses a hyper-sphere instead of hyper-plane as the 

decision boundary (Schölkopf and Smola 2002). Sanchez-Hernandez et al. (2007) 

adopted a series of one-class classifiers including the OCSVM for mapping a specific 

land-cover class (fens) and the result highlighted the potential of accurate classification. 

Li et al. (2010b) utilized OCSVM to detect the damaged building class at both pixel-

based level and object-based level and the result showed that the object-based level with 

texture input produced much better results. Other applications of OCSVM can be found 

in (Guo et al. 2008b, Li and Xu 2010, Li and Guo 2010, Li et al. 2011, M Noz-Mar  et al. 

2010). A most recent detailed review of SVM applied in the remote sensing community 

was furnished by Mountrakis et al. (2010).  

The software R in the public domain is used to construct the evaluation framework 

since it has implemented all the aforementioned classification algorithms (Table 2.1). The 

reading and writing functions for raster images and shapefile vector files are available in 

the R package rgdal. 

Table 2.1 R packages with the implementation of different classification algorithms. 

Classification method R package 

Maximum Likelihood Classification MASS 

Classification Tree rpart 

Random Forest randomForest 

Bagging randomForest 

Support Vector Machine e1071 
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2.3 Summary 

This chapter elaborates the evaluation framework for assessing the performance of 

classifiers and different input feature configurations. It serves as the basis for Chapter 3. 

The evaluation framework borrows tools from the machine learning community. It uses 

the randomization technique to train classifier multiple times to study their stability, 

which has been ignored in previous studies. The tree structures are analyzed in the 

evaluation framework to study the importance of input features. The OOB-based 

importance mechanism is also used to order the importance of input features. The Kappa-

Error diagram is a visualization tool in the framework for compare classifiers.  

This framework is not limited to any particular classifier, nor any input variables or 

classification application. As an example, in chapter 3, we apply this evaluation 

framework to deeply look at the superiority of V-I-S model and LST in urban land use 

classification.   
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3. Chapter 3 Evaluation of V-I-S fractions and Land 

Surface Temperature for urban land use classification 
 

3.1 Introduction 

In remote sensing of urban land use and land cover (LULC), the most widely used 

Bayesian approach (or maximum likelihood classifier, MLC) has been criticized for its 

difficulty in retaining the normality assumption when used with the image spectral bands. 

Recently, there was a growing interest in the application of non-parametric and 

assumption-free classifiers. Examples included the decision tree, support vector machine 

(SVM), and ensemble classifiers (Chan and Paelinckx 2008, Chan et al. 2001, Friedl and 

Brodley 1997, Gislason et al. 2006, Ham et al. 2005, Joelsson et al. 2005, Lawrence et al. 

2006, Lawrence and Wright 2001, Pal and Mather 2003, Yang et al. 2003a).  Upon the 

desire for seeking more relevant input features, the Vegetation-Impervious Surface-Soil 

(V-I-S) model (Ridd 1995) opened a new avenue for the urban LULC studies and was 

applied and extended by many others (Lu and Weng 2004, 2006, Phinn et al. 2002, Small 

2001, Small and Lu 2006). In addition, land surface temperature (LST) derived from 

thermal bands was also found closely related to urban biophysical characteristics (Lo et al. 

1997, Weng 2009, Weng et al. 2007).  

It is of great interest to bridge several research gaps existing in the urban land use 

classification using the V-I-S model and LST. First, the stability of classifiers built with 

V-I-S fractions and LST was not explored; Second, current discussions on the superiority 

of V-I-S fractions and LST were limited to the aspect of accuracy improvement only, and 

hardly was it scrutinized from other aspects; Third, no comparative studies were found on 

using V-I-S fractions and LST in training different classifiers in attempt to identify the 



40 

 

best classifier. This chapter applies the evaluation framework introduced in chapter 2 to 

demonstrate the superiority of V-I-S fractions and LST over the conventional 

multispectral reflectance in the urban land use classification and to identify the most 

suitable classifiers for different input feature configurations. The chapter answers the 

research questions 1~4. 

3.2 Study area and data 

Several land use classes are identified in the study area of New Orleans. The 

southwest contains major vegetated areas composed of forest, agricultural land and 

wetland; the City Park to the south shore of Lake Pontchartrain and the Audubon Park in 

the uptown neighborhood also have large coverage of vegetation; the residential area is 

mainly located to the north and southeast of the Mississippi River; commercial and 

industrial areas are predominantly constructed along the Mississippi river and in the 

central city. Water areas are evident as the Mississippi River across the city and canals as 

well as bayous in the southwest.  

Baton Route (Figure 3.1), the capital and the second largest city of the Louisiana 

State is also included as an additional test site to verify major conclusions and to 

demonstrate the generalizability of the current study.  The economy development of 

Baton Rouge depends on the petrochemical industry. The CBD area is to the north of 

Baton Rouge and in the north of CBD locate massive amount of oil refineries. The 

residential areas are mainly established in the east and south of the city. Baton Rouge is a 

dynamic urban area with a diversity of land use patterns that is similar to New Orleans. 

These two urban areas are representative of the majority of the U.S. urban environment. 

http://en.wikipedia.org/wiki/Lake_Pontchartrain
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Figure 3-1 Study area of New Orleans and Baton Rouge. (Landsat 22/39 and 23/39) 
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3.2.1 Data source and classification scheme  

The Landsat TM image used in this analysis (Path/Row 39/22 for New Orleans 

acquired on 22 August 2005 and Path/Row 39/23 for Baton Rouge acquired on 16 

October 2005) was acquired on August, 2005, as to expect a better UHI effect than other 

seasons. The bands 1~5 and 7 were calibrated with the image metadata to compute the 

spectral reflectance. The 1-m resolution Digital Orthophoto Quarter Quadrangles 

(DOQQs) acquired in the time of the year was used for validation. A rigorous image co-

registration between DOQQs and the TM image was performed in the UTM Zone 15, 

North American Datum 1983 projection system to ensure the locational accuracy of our 

analysis. A classification scheme with four classes of “Commercial and Industrial”, 

“Residential”, “Vegetated” and “Water” was adopted (Table 3.1). These land use classes 

are commonly encountered in U.S. urban area. 

Table 3.1 Description of Land use classes adopted in this study 

Category Description 

Commercial and Industrial Areas predominantly constructed for 

human activities associated with 

commercial and industrial events, 

including, buildings, parking lot, shopping 

centers, transportation roads, etc. 

Residential Areas predominantly constructed for 

human dwelling and residential purpose.  

Vegetation Large homogenous areas of vegetation 

cover, including forests, forested wetlands, 

grassland, shrubs, etc.  

Water Mississippi River, lakes, ponds and canals. 

 

Training samples were specified by identifying polygons of homogenous land use 

areas in the Landsat TM scene in New Orleans, which comprised of 628 pixels of 

“Commercial and Industrial” land use, 541 pixels of “Residential” land use, 471 pixels of 
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“Vegetated” land use and 173 pixels as “Water”. For Baton Rouge site, the training 

samples covered 195 pixels of “Commercial and Industrial”, 368 pixels of “Residential”, 

481 pixels of “Vegetation” and 133 pixels of “Water”. Random points were generated 

and V-I-S visually interpreted from the DOQQ to identify the reference data of land use 

classes. 

3.2.2 Feature extraction 

The fraction images were derived from the Landsat TM image by using the linear 

spectral mixture analysis (LSMA) method (Wu and Murray 2003). Endmember selection 

is the most critical step in the application of V-I-S model. Endmembers can be selected 

directly from the image or from the data collected from the field trip or from a spectra 

library. However, image endmember is more favored as it bears consistent systematic 

errors (due to atmospheric effect and distortions incurred by sensor’s motion and 

underlying topography) and is under the consistent scale with all pixels in the image 

(Settle and Drake 1993). In addition, it is the most available as compared to the other two 

approaches for the endmember extraction. Image endmember can be determined in an 

unsupervised manner. These unsupervised methods Visualize the pixel vectors in the 

high-dimensional hyperspace to form a point cloud contained in the hyper-dimensional 

convex. Endmember can be found by iterative projecting (ortho-projection and oblique 

projection) data vectors.  Algorithms falling into this category include Pure Pixel Index 

(PPI, Boardman et al. 1995), Sequential Maximum Angle Convex Cone (SMACC, 

Gruninger et al. 2004), Convex Cone Analysis (CCA, Ifarraguerri and Chang 1999) and 

N-FINDR (Winter 1999). The imperviousness component is the most complicated 

component in the V-I-S model due to its large heterogeneity and lack of unique 
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endmembers, leading to bias (Lu and Weng 2006, Weng and Quattrochi 2007). To 

address this issue, two approaches were reported in the literature. One is Multiple 

Endmember method (MESMA, Powell et al. 2007, Rashed et al. 2003, Roberts et al. 

1998). MESMA seeks more than one endmember for each V-I-S component, especially 

for the imperviousness component and determines the best endmember combination at a 

per-pixel level that has the least Root Mean Square Error (RMSE) in the unmixing 

process. The best endmember combination varies across the entire image scene. Another 

solution is the spectral normalization method (Hu and Weng 2010a, Morton and Yuan 

2009, Voorde et al. 2008, Wu 2004), which reduces the heterogeneity between 

endmembers through normalization. For example, after the normalization, the spectra of 

dark vegetation and bright vegetation become more similar; the dark impervious surface 

and bright impervious surface also achieves a more desirable spectral homogeneity (Wu 

2004). 

A normalization procedure (Wu 2004) was performed prior to the LSMA in order to 

reduce the spectra variance of endmembers, followed by Minimum Noise Fraction (MNF) 

transformation to reduce the data dimensionality and to eliminate noise in the TM image. 

Endmembers were extracted based on the scatter plots of MNF components. The 

impervious surfaces were mainly man-made features with high albedo, such as buildings, 

transportation roads, parking lots, river deck, etc. The spectrum of soil was mixed with 

that of low albedo features. Vegetation was predominately found as the forests and 

grassland.  LSMA assumes the spectral reflectance profile of the mixed pixel is the linear 

(weighted) combination of the constituent endmember’s spectral reflectance profile and 

the weight is determined by the fractions (abundance). LSMA is expressed as: 
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                                         (1) 

where   is the number of endmember, which is 3 in this case;   is the band index; 

   is the fraction of     endmember to be estimated;  (  ) is the pixel reflectance of band 

 , and   = 1,2,3,4,5,7.  The value of     is subject to the sum-to-unity constraint: 

∑      
                                                              (2) 

This linear spectral unmixing problem can be solved by quadratic programming in 

Matlab or IDL (Interactive Data Language) that minimizes the square error (SE).  

                   ̂        ∑   (  )  ∑     (  )
 
                                              (3)                                                        

LSMA produced three fraction images: impervious surface + high albedo fraction 

image (Figure 3.2(a)), low albedo + soil fraction image (Figure 3.2(b)), and vegetation 

fraction image (Figure 3.2(c)). The overall root mean square error (RMSE) of the LSMA 

was 0.045.  

 

Figure 3-2 V-I-S fraction images and LST image. 
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Various algorithms were developed to recover the absolute value of LST from 

thermal infrared (TIR) bands, including the Radiative Transfer Equation (RTE) based 

algorithm (Berk et al. 1989, Schmugge et al. 1998, Sobrino et al. 2004), mono-window 

algorithm (Qin et al. 2001) and single-channel algorithm (Jiménez-Muñoz and Sobrino 

2003). These models usually require additional data input (water vapor content, etc.) and 

prior knowledge about the underlying surface for atmospheric correction and emissivity 

adjustment. However, in this study use of LST is for the classification purpose. Therefore, 

the relative measurement was sufficient for mapping LST spatial variation and relating it 

to the LULC patterns (Weng 2009); hence LST was computed by using the standard 

calibration procedure (Landsat Project Science Office, 2002). The formula for converting 

radiance to temperature is: 

           
  

   (
  
  

  )
                                                     (4) 

where    
is the land surface temperature in degree Kelvin;   and  are pre.launch 

calibration constant for Landsat TM with the value of 607.76 K and 1260.56, respectively. 

Figure 3.2(d) shows the LST image obtained from the TM band 6. The UHI effect 

was evident in New Orleans during the period of study. The average LST of the southern 

forest area was much lower than the commercial area. 

A ten-dimensional composite input dataset for classification is made by stacking 

three fraction images, six multispectral reflectance images from TM bands 1 through 5 

and 7, and the LST image. Various combinations of these input bands are possible for 

classification. Specifically, this research is interested in testing the following three 

commonly used input feature configurations:  

1) Six original spectral bands of TM only; 
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2) V-I-S fractions and LST synergy; 

3) Combination of six original spectral bands of TM and V-I-S fractions and LST 

(the full data dimension, a total of ten bands). 

 

3.3 Pixel based classification 

3.3.1 Classification results 

The classification results using the six-band multispectral reflectance data (TM band 

1.5 and 7) are shown in Figure 3.3. Regardless of the classifier being used, multispectral 

reflectance input produced evident “salt and pepper” effect as marked in the maps, which 

is a common problem associated with the pixel-based classification. Two salient 

misclassification regions were noticed. One was the bayou area with vegetation coverage 

to the southwest of the scene; and the other was the vegetated area to the north of the 

southwest canals. Both were misclassified to the “residential” land use. Note that the 

sliver areas in the southern forest area were misclassified as “residential” as well and 

those pixels appeared isolated. These misclassifications revealed the incapability of 

spectral reflectance in distinguishing the urban land use patterns. In contrast, as seen in 

Figure 3.4, classifiers built with V-I-S fractions and LST were notably improved by 

alleviating the “salt and pepper” problem, producing reasonable and homogenous 

vegetated area in the southwest. Table 3.2 and Table 3.3 summarize error matrices of 10 

classification scenarios (2 input feature configuration × 5 classifiers). As we can see from 

these tables, classification accuracy was also improved when using V-I-S fractions and 

LST instead of the six-band multispectral data. 
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Figure 3-3 Classification results with only multispectral reflectance variable used as the 

input. Red circles mark the “salt-and-pepper” effect from the image classification.  Red 

rectangles mark the salient misclassification regions. 
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Figure 3-4 Classification results with V-I-S fractions and land surface temperature. As 

compared to figure 4, the “salt and pepper” problem is alleviated. More homogenous area 

of vegetated area to the southwest of the study area is produced. The salient 

misclassification regions in Figure 3.3 are also eliminated. 
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Table 3.2 Confusion matrices of all classifiers (with spectral band reflectance as the input variables) 

 

 

 

 

Classified 

 Data 

Reference Data Ref.  

Totals 

Class.  

Totals 

Number 

 Correct 

Producer 

Accuracy 

User  

Accuracy Commercial Residential Vegetation Water 

MLC 

Commercial 50 7 8 5 97 70 50 0.52 0.71 

Residential 39 110 43 6 123 198 110 0.89 0.56 

Vegetation 8 6 96 2 148 102 96 0.65 0.86 

Water 0 0 1 16 29 17 16 0.55 0.94 

Overall accuracy: 0.69; Kappa  Statistic: 0.55 
  

CART 

Commercial 50 6 7 1 97 64 50 0.52 0.78 

Residential 41 111 49 5 123 206 111 0.90 0.54 

Vegetation 6 6 91 3 148 106 91 0.61 0.86 

Water 0 0 1 20 29 21 20 0.69 0.95 

Overall accuracy: 0.69; Kappa  Statistic: 0.55 
  

Bagging 

Commercial 52 5 10 1 97 68 52 0.54 0.76 

Residential 41 114 49 5 123 209 114 0.93 0.55 

Vegetation 4 4 87 3 148 98 87 0.59 0.89 

Water 0 0 2 20 29 22 20 0.69 0.91 

Overall accuracy: 0.69; Kappa  Statistic: 0.55 
  

Random  

Forest 

Commercial 52 5 7 1 97 65 52 0.54 0.80 

Residential 41 112 50 6 123 209 112 0.91 0.54 

Vegetation 4 6 89 2 148 111 89 0.60 0.88 

Water 0 0 2 20 29 22 20 0.69 0.91 

Overall accuracy: 0.69; Kappa  Statistic: 0.55 
  

SVM 

Commercial 51 5 7 0 97 63 51 0.53 0.81 

Residential 38 112 39 7 123 196 112 0.91 0.57 

Vegetation 8 6 101 1 148 116 101 0.68 0.87 

Water 0 0 1 21 29 22 21 0.72 0.95 

Overall accuracy: 0.72; Kappa  Statistic: 0.60  
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Table 3.3 Confusion matrices of all classifiers (with V-I-S fractions and LST as input variables) 

  

 

 

Classified 

 Data 

Reference Data Ref.  

Totals 

Class.  

Totals 

Number 

 Correct 

Producer 

Accuracy 

User  

Accuracy Commercial Residential Vegetation Water 

MLC 

Commercial 47 10 7 1 97 65 47 0.48 0.72 

Residential 37 109 18 1 123 165 109 0.89 0.66 

Vegetation 12 4 122 8 148 146 122 0.82 0.84 

Water 1 0 1 19 29 21 19 0.66 0.90 

Overall Accuracy: 0.75; Kappa Statistic: 0.64 
  

CART 

Commercial 47 11 9 1 97 68 47 0.48 0.69 

Residential 38 108 33 1 123 180 108 0.88 0.60 

Vegetation 11 4 105 8 148 128 105 0.71 0.82 

Water 1 0 1 19 29 21 19 0.66 0.90 

Overall  Accuracy : 0.70; Kappa  Statistic: 0.57 
  

Bagging 

Commercial 51 13 13 1 97 78 51 0.53 0.65 

Residential 36 107 25 1 123 169 107 0.87 0.63 

Vegetation 9 3 109 8 148 129 109 0.74 0.84 

Water 1 0 1 19 29 21 19 0.66 0.90 

Overall  Accuracy : 0.72; Kappa  Statistic: 0.60 
  

Random  

Forest 

Commercial 52 11 16 1 97 80 52 0.54 0.65 

Residential 37 109 25 1 123 172 109 0.89 0.63 

Vegetation 7 3 106 8 148 124 106 0.72 0.85 

Water 1 0 1 19 29 21 19 0.66 0.90 

Overall  Accuracy : 0.72; Kappa  Statistic: 0.60     

SVM 

Commercial 44 9 5 0 97 58 44 0.45 0.76 

Residential 42 111 43 2 123 198 111 0.90 0.56 

Vegetation 10 3 99 7 148 119 99 0.67 0.83 

Water 1 0 1 20 29 22 20 0.69 0.91 

Overall  Accuracy : 0.70; Kappa  Statistic: 0.55 
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3.3.2 Evaluation framework-guided selection of input features 

As mentioned before, this research is interested in testing three specific combinations 

of input data: (1) multispectral reflectance only, (2) V-I-S fractions and LST combination, 

and (3) the composite of (1) and (2). 

3.3.2.1 Multispectral reflectance only 

All classifiers were trained repeatedly (by      times) with bootstraping samples 

for producing the Kappa-Error diagram. Figure 3.5(a) shows the accuracy performances 

of all classifiers trained with different input feature combinations. When used with the 

multispectral reflectance as the only input feature, all classifiers result in low accuracy 

(indicated by lowly-elevated green boxes in Figure 3.5(a)). The tree classifier appeared as 

the most spreaded box, indicating that it is the most unstable classifier when using the 

spectral reflectance data only. Due to the instability and weakness of the single tree 

classifier, tree-based ensemble classifiers can improve the stability of individual tree 

classifiers. However, the improvement was only statistically significant in stability, not 

much in accuracy as seen from the Analysis of Variance (ANOVA) tests using multiple 

comparisons with Tukey-Kramar adjustment (Freund and Wilson 2002, pp. 256-257) 

(Table 3.4). The ANOVA test indicated that the SVM classifier stood out in both 

accuracy and stability. In the Kappa-Error diagram (Figure 3.6(a)), classifiers trained 

with band spectral reflectance depicted a more compact point cloud for those tree-based 

ensemble methods as compared to single tree classifier. Again, the SVM classifier 

demonstrated its power by arriving at the lower-right corner of the Kappa-Error diagram. 
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Table 3.4 Multiple comparisons in terms of accuracy and stability of different classifiers 

trained by band spectral reflectance variables only 

Classifier Accuracy Difference p-value Implication 

CART-BAGGING 0.8% 0.9994 Randomization achieves no 

significant accuracy 

improvement on the single tree 

classifier. 

CART-RF 0.2% 0.9513 

SVM-BAGGING 2.0% <0.0001 SVM significantly outperforms all 

other classifiers. SVM-MLC 2.0% <0.0001 

SVM-RF 1.9% <0.0001 

SVM-CART 2.0% <0.0001 

Classifier Kappa Difference p-value Implication 

CART-BAGGING -0.08 <0.0001 Randomization improves the 

stability of the single tree 

classifier significantly. 
CART-RF -0.12 <0.0001 

SVM-BAGGING 0.07 <0.0001 SVM is significantly more stable 

than any other classifiers, 

especially as opposed to the single 

tree classifier. 

SVM-CART 0.15 <0.0001 

SVM-RF 0.04 <0.0001 

SVM-MLC 0.02 <0.0001 

3.3.2.2 Synergy of V-I-S fractions and LST 

The performance of MLC benefits significantly from replacing the band reflectance 

input with the V-I-S fraction and LST combination input (see Figure 3.5(a) for a clearly 

elevated blue box for the MLC and Table 3.5 for significant p-values when testing 

accuracy performance of MLC against other classifiers). The performance was even 

better than a synergy of V-I-S fractions and LST and all spectral reflectance variables 

together. A possible explanation is as follows: according to Ridd’s V-I-S model 

(Ridd1995) and Lu-Weng’s model (Lu and Weng 2006), certain urban land use type can 

identified as cluster of points at certain locations in the V-I-S feature space (see Figure 

3.7 for our case). Hence, the distribution of V-I-S fractions and LST in the feature space 

displays several bell-shaped (Gaussian-like) surfaces with each individual peak 

corresponding to a certain urban land use type, which matches with the MLC’s normality 

assumption, and thus leads to the optimal Bayesian decision boundary of the classes.  
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Figure 3-5 Accuracy and stability comparisons of five classifiers for three different input 

feature configurations (New Orleans, LA). 
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Figure 3-6 Kappa-Error diagrams produced by three different input feature configurations: 

(a). Multispectral reflectance only; (b). V-I-S fractions and LST combination; (c). 

Composite of (a) and (b), e.g., all features being included. 
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However, the similar pattern cannot be found for the case when the multispectral 

reflectance is used as the data input. Similar finding was also stated in Pal and Mather 

(2003): “the MLC algorithm is preferred unless there is particular reason believing that 

the data do not follow a Gaussian distribution”. Hence, although being criticized in the 

literature the MLC stands as a good classifier as long as its basic assumption is met by 

carefully selecting the input features. In this study, we found that the use of V-I-S 

fractions and LST data made the normality assumption to be more closely satisfied. 

The tree classifiers built with V-I-S fractions and LST had more stability than their 

counterparts built with the multispectral reflectance input, as highlighted by the fact that 

the “Accuracy” box for CART was less spread out (Figure 3.6(a)) and the “Kappa” box 

for CART was more elevated (Figure 3.6(b)) and a significant p value (p<0.001) in Table 

3.5. The point cloud for the tree classifier was more compact in Figure 3.6 (b) than Figure 

3.6(a). The commonly reported improvement caused by using tree-based ensembles over 

single tree classifier was, however, not observed (Table 3.6). This result was different 

from the case when the multispectral reflectance was used. Hence, the improvement of 

tree-based ensembles over the single tree classifier was not significant because the tree 

classifier as the base classifier was adequately accurate and stable when trained with V-I-

S fractions and LST combinations. This confirms with the conclusion from previous 

theoretical (Breiman 1996) and empirical studies (Chan et al. 2001). Random forest and 

Bagging had 1.9% and 3.0% accuracy increase, respectively. 

In an urban environment, commercial and industrial areas have evident UHI effect 

due to the thermal property of underlying surfaces (buildings, transportation network, 

parking lots, etc) and massive human activities generating extra heat. These areas usually 
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have higher surface temperatures as opposed to more vegetated areas in the suburban area 

(forest and grassland, etc). On the contrary, the “Vegetated” areas are less disturbed by 

human activities, and undergo transpiration through leaves to lower the surface 

temperature. Hence, LST has the ability to differentiate the vegetated areas from those 

built-up areas. However, “Water” with high thermal inertia also appears cool in the day 

time, making it not separable from the “Vegetated” areas by merely using LST.  The 

“Residential” area has intermediate surface temperature in between, so it might be 

confused with “Commercial and Industrial” land use or “Vegetated” land use depending 

on the relative amount of vegetation coverage (the “V” component) and man-made 

materials (the “I” component). The lack of separability in terms of LST was clearly seen 

in Figure 3.2(d). Although these land use classes (“Vegetated” along with “Water”, or 

“Residential”  along with “Commercial and Industrial”) have similar LSTs, their V-I-S 

configuration differ considerably. This is where V-I-S fractions input come into play to 

increase the separability. As such, V-I-S fractions and LST are complementary to each 

other and make an ideal input data configuration for urban land use classification. 

3.3.2.3 Full data dimension 

Table 3.7 demonstrated how much gain could be obtained by the addition of V-I-S 

fractions and LST to the conventional spectral-based classification. MLC received little 

benefits because the use of spectral reflectance variables, as they violate the assumptions 

of MLC and the impact was great enough to interfere the use of V-I-S fractions and LST. 

On the contrary, the tree and tree-based ensembles were enhanced in accuracy due to the 

addition of V-I-S fractions and LST. The improvement in accuracy for CART, Bagging 

and random forest was 1.7%, 3.0%, 2.4%, respectively. The best classifier to be used for  
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Figure 3-7 Slice density maps of distribution of V-I-S fractions and LST in the study area. 

The distribution is Gaussian-like and each bump represents a certain land use pattern. (a) 

“Impervious surface” fraction as x and “Vegetation” fraction as y; (b) “Impervious 

surface” fraction as x and “Low Albedo + Soil” fraction as y. Land  use classes are 

labeled with  (A) Water; (B) Vegetated; (C) Residential; (D) Commercial. 

 

Table 3.5 Multiple comparisons in terms of accuracy and stability of different classifiers 

built with V-I-S fractions and LST combination. 

Classifier Accuracy difference p-value Implication 

CART-BAGGING -2.2% <0.0001 Ensembles slightly improve 

accuracy on CART. The base tree 

classifier was sufficiently stable, 

making less room for potential 

improvement. 

CART-RF -1.2% 0.0026 

   

MLC-BAGGING 2.7% <0.0001 MLC classifier is the most 

accurate classifier when built with 

V-I-S fractions and LST. 
MLC-CART 5.0% <0.0001 

MLC-RF 3.7% <0.0001 

MLC-SVM 4.3% <0.0001 

Classifier Kappa  difference p-value Implication 

CART-BAGGING -0.02 <0.0001 Improvements on stability 

achieved by ensembles are less 

than as in Table 3 or even none. 

The base tree classifier is 

sufficiently stable, making less or 

no room for potential 

improvement. 

CART-RF -0.06 <0.0001 

   

MLC-BAGGING 0.03 0.0224 MLC classifier is also the top 

stable classifier when built with 

V-I-S fractions and LST. 
MLC-CART 0.04 0.5475 

MLC-RF -0.01 <0.0001 

MLC-SVM 0.02 <0.0001 
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this input feature configuration was the Bagging method. SVM remained its good 

performance regardless of the addition of input features. 

 

Table 3.6 Performance comparison between (a) V-I-S fractions and LST (b) band 

spectral reflectance only. The differences were calculated by subtracting (b) from (a). 

Classifier Accuracy difference p-value Implication 

BAGGING 3.0% <0.0001 Bagging, RF and MLC classifier are 

improved when band spectral reflectance 

input is replaced by V-I-S fractions and 

LST. 

CART 0.8% 0.1767 

MLC 6.0% <0.0001 

RF 1.9% <0.0001 

SVM -0.6% 0.6843 

Classifier Kappa difference p-value Implication 

CART 0.06 <0.0001 More stable trees are produced when 

trained with V-I-S fractions and LST. 

 

Table 3.7 Performance comparison between (a) All input features (b) band spectral 

reflectance only. The differences were calculated by subtracting (b) from (a). 

Classifier Accuracy difference p-value Implication 

BAGGING 3.0% <0.0001 Adding V-I-S fractions and LST 

variable would not enhance the MLC 

classifier as the assumption still 

remained violated. Tree classifier 

gained accuracy; tree-based ensemble 

classifiers achieved the highest 

accuracy.  

CART 1.7% <0.0001 

MLC 0.3% 0.9983 

RF 2.4% <0.0001 

SVM 0.0% 1.0000000 

Classifier Kappa difference p-value Implication 

BAGGING 0.03 <0.0001 Slight but statistically significant 

stability improvement is achieved by 

adding V-I-S fractions and LST. 
CART 0.06 <0.0001 

MLC 0.03 <0.0001 

RF 0.01 <0.0001 

SVM -0.02 <0.0001 

 

3.3.3 Discussions on the superiority of V-I-S Fractions and LST  

In additon to the revealed stability and accuracy improvement, the superority of V-I-

S fractions and LST  was also explored from other two aspects: (1) the tree structure (e.g. 

the sequence of variable being selected and the tree size) of single classification tree and 

trees in the forest; (2) the variable importance determined by OOB samples. The latter 
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would provide an alternative way for band selection, such as the application in hyper-

spectral remote sensing (Chan and Paelinckx 2008). 

In our case study, the tree classifier built with the ten-dimension dataset using the 

“Gini index” criteria picked up all V-I-S fractions and LST (Figure 3.8 (a)) in the earlier 

splits, which, however, only adopted one spectral band reflectance (B5), indicating that 

the decrease of the overall lack-of-fit could not be achieved much by using spectral 

reflectance data. The “information gain” criterion was also specified and the fitted tree 

picked up the V-I-S fractions and LST for their early splits and ignored most of the 

spectral reflectance variables (Figure 3.8 (b)). Tree was pruned to cp = 0.001 because 

beyond this cp value little accuracy improvement would result.  

Delving into the grown forest to view each single fitted tree further confirmed the 

relevance of V-I-S fractions and LST with the urban land use classes. All ten input 

features were used for growing the random forest. The forest size (number of random 

trees) was set to 500 as with this number the random forest can achieve the least OOB 

error rate. The increase of the badness-of-fit can be represented by either the decrease in 

accuracy (equivalent to the increase in OOB error rate) or increase in “node impurity”. 

The greater importance of V-I-S fraction and LST should be observed in Figure 3.9.  
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(a) 

Figure 3-8 (a). Tree fitted with cp=0.001 and “Gini index” criteria; (b). Tree fitted with 

cp=0.001 and “information gain” criteria. (IMP=Impervious Surface fraction, 

VEG=Vegetation fraction, LOW= Low albedo + Soil fraction, TEMP=LST, 

COM=Commercial, RES=Residential, VEG=Vegetated, WATER=Water). 
 

|
IMP>=0.652

VEG< 0.1326

LOW>=0.0073

B5>=0.2011

TEMP>=21.93

LOW>=0.264

B5< 0.2091

LOW< 0.4019

COM

COM RES VEG

COM RES VEG

VEG WAT
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(b) 

Figure 3.8 Continued. 

 

To evaluate the input feature’s superiority with statistical significance, a forest 

consisting of 500 overfitted trees was grown for individual inspections. The average size 

of the 500 trees (# of nodes, returned from the R package randomForest) when only 

|
TEMP>=22.37

VEG< 0.1326

B3>=0.1255

B5>=0.2061

VEG< 0.2229

LOW< 0.4209

TEMP>=21.93

IMP< 0.402

COM

COM COM RES

RES

RES VEG VEG

WAT
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Figure 3-9 Variable importance comparisons based on the increase in the badness-of-fit 

on OOB samples in random forest. LST is the most important input feature. Band spectral 

reflectance is less important than the LST and V-I-S fractions in urban land use 

classification. (IMP=impervious surface fraction, VEG=Vegetation fraction, LOW= Low 

albedo/Soil fraction, TEMP=LST)  

 

spectral reflectance was used was about 77 nodes; and this number was reduced to 49 

when V-I-S fractions and LST were used instead. The ANOVA test returned a significant 

p-value (p<0.001). The frequencies of the ten input variables being used as the first five 

splitting variables are summarized in Table 3.8.  The first five splits were generally based 

on the use of V-I-S fractions and LST, suggesting their superiority over the band 

reflectance for urban land use studies. Another finding in the analysis was that the 
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infrared bands (B4, B5 and B7) of Landsat TM carry more information for separating 

urban land use classes than the visible bands. 

Table 3.8 Deep investigation of individual trees in the Bagging method (The random 

forest method was replaced with the Bagging method to guarantee the fairness. In random 

forest, the probability of V-I-S fractions and LST being selected for growing a single tree 

to that of band spectral reflectance is 4:6, which is not fair). A preference on using V-I-S 

fractions and LST for splitting tree should be noticed. 

Input Feature Root node 2
nd

  node 3
rd

 node 4
th
 node 5

th
 node 

B1 72 43 79 8 39 

B2 36 10 35 6 10 

B3 78 50 52 21 23 

B4 0 25 0 68 54 

B5 3 21 3 52 36 

B7 7 33 15 67 10 

VEG 115 96 130 39 106 

IMP 148 77 95 23 34 

LOW 0 44 19 64 79 

TEMP 41 101 72 18 73 

 

3.3.4 Generalizability and limitation  

To test the generalizability of the results, the same analysis was also conducted on 

the test site of Baton Rouge, LA. SVM classifier was still the best classifier among all 

classifiers being considered for the conventional spectral based classification. Except for 

SVM, all classifiers were boosted when replacing the band reflectance with V-I-S 

fractions and LST combination as input features. This was indicated by the prevalently 

more elevated and less spread blue boxes as compared to their green counterparts (see 

Figure 3.10). Especially, the improvement was the most significant for MLC classifier. 

The difference in accuracy for MLC was 0.10 with a significant p value. This could be 

attributed again to the superiority of V-I-S fractions and LST combined input as they 

have nearly multivariate normal distribution and meet the MLC assumption. Given the V-

I-S fractions and LST combination as the input, although MLC was not the best classifier 
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among five tested classifiers for Baton Rouge test site, it still managed to achieve a 

comparable level of accuracy to those modern machine learning classifiers.  

 

Figure 3-10 Accuracy and stability comparisons of five classifiers for three different 

input feature configurations (Baton Rouge, LA). 

Tree classifier was again made more stable (but not more accurate) by either using 

ensemble approach or replacing the band reflectance input with the V-I-S fractions and 

LST, which could be clearly seen in Figure 3.10 (a) where the “Accuracy” box B (band 
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reflectance + Bagging), C (band reflectance + random forest) and D (V-I-S fractions and 

LST combination + CART) were less spread out than A (band reflectance + CART) as 

well as in Figure 3.10 (b) where the “Kappa” box B (band reflectance + Bagging), C 

(band reflectance + random forest) and D (V-I-S fractions and LST combination + CART) 

were more elevated than A (band reflectance + CART). The addition of V-I-S fractions 

and LST to the multispectral reflectance also improved the tree-based ensemble 

classifiers significantly, which was also the same as the case for New Orleans. The final 

classification result is displayed in Figure 3.11. 

 

Figure 3-11 Classification of Baton Rouge with MLC+V-I-S+LST input. 

 

The V-I-S model is the most suitable input when the classes of interest have 

distinguishable differences in their V-I-S structures. This is true for our two study areas 

and most of the U.S. urban areas where residential parcels are predominantly composed 
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of individual houses with adequate vegetation coverage. Therefore, the V and I fraction 

quantities can distinguish different land use classes, e.g. “Residential class” is in between 

the “Commercial and Industrial class” and “Vegetation class”. However, for some 

developing countries, such as Haiti and China, the majority of population lives in multi-

story apartments and the average vegetation coverage is limited. Hence, the boundary 

between “Residential class” and “Commercial and Industrial class” becomes fuzzy. 

Hence, the superiority of V-I-S derived land use classification might be only likely to be 

applicable in the U.S. urban environment and the like. The conclusion may also be not 

applicable if a different or more detailed classification schema is to be adopted, such as a 

breakdown of vegetation class to be “Forest” and “Pasture” class. However, the current 

classification schema is very common in the literature of the U.S. urban studies. These 

four land use classes belong to Anderson Level-I classes (Anderson et al. 1976). Given a 

moderate resolution image, this is a reasonable and applicable land use classification 

schema. The classification results of this study are useful for a level-II classification with 

higher spectral/spatial resolution images. For example, the land use class boundary could 

be used as constraints for the segmentation in a subsequent object-oriented classification 

with a more detailed classification schema. 

3.4 Object oriented approach 

3.4.1 Design of research 

I also applied the evaluation framework to investigate the superiority of V-I-S 

fractions and LST in the context of object-oriented classification. Commercial software 

Definiens (formerly known as “eCognition”) was used to perform the multi-resolution 

segmentation on the V-I-S+LST composite image. The V-I-S fractions and LST were 
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stretched from fractional numbers to 0~255 (e.g., 8 bit = 1 byte) so that the software can 

produce meaningful image objects (the scale parameter has to be set to integers, but the 

original data scale is in terms of fractions, which is less than 1).  

The setting of the scale parameter controls the segmentation and is critical to the 

analysis. It is interesting to test two specific scale parameters: 15 and 30. A “trial-and-

error” approach was adopted to investigate the scale parameter, which indicated a scale 

parameter between 15~30 was an appropriate range for our data. Scale parameter values 

outside this range led to obvious either over-segmentation or under-segmentation. This 

research did not consider the shape or compactness parameter and therefore the default 

value of 0.5 was applied. The same 800 ×500 image stack of New Orleans was 

segmented, resulting in 3363 image objects with a scale parameter of 15 and 843 image 

objects with a scale parameter of 30 (Figure 3.12). The image objects were exported as 

shapefiles with layer means for V-I-S fractions, LST and band reflectance. Random 

image object samples were collected to be used as the training dataset.  

For accuracy assessment, the same set of 397 points used in previous study was used 

as the reference data. However, the classification was based on the image objects,  the 

resultant classification results, which were in terms of image objects, cannot be directly 

used for accuracy assessment due to the scale inconsistency between the reference data 

and classification result (the former being points and the latter being image objects). As 

such, the classified image objects, which were in forms of polygon shapefiles, was then 

converted to raster. The zonal statistics tool was used to extract the assigned classes for 

each of the 397 test points from the produced raster image. The whole process was 

automated with a combination of R and Python scripts. Figure 3.13 summaries this work 
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flow. Only two input feature configurations, namely, band reflectance input only, V-I-S 

and LST synergic input were compared in this object oriented classification context. 

(a) 

(b) 

Figure 3-12 Image segmentation from Definiens for New Orleans. (a) scale parameter = 

15 (b) scale parameter =30. 
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Figure 3-13 Data processing flow for the object oriented classification scenario. 

3.4.2 Performance of classifiers 

The classification results of five classifiers are summarized in Table 3.9.  Figure 3.14 

displays the comparison of these classifiers with different input feature configuration 

when the entire training dataset is used. It is obvious that object oriented classification is 

superior to the conventional spectral based classification in terms of accuracy. The best 

scenario is the object-oriented classification using a scale parameter of 30 for 

segmentation and V-I-S fraction and LST as input features and SVM as the classifier. 

The overall accuracy was as high as 81%. Figure 3.15 displays the classification result of 
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the best scenario. Notice that the “salt-and-pepper” effect is further removed by 

classifying the image in terms of image objects instead of individual pixels. 

Table 3.9 Accuracy and Kappa summary of classification result of different set of image 

objects using different classifiers and input feature configurations. (a) scale parameter = 

15; (b) scale parameter =30. 

(a) 

Multispectral reflectance only Synergy of V-I-S fractions and LST 

Classifier Accuracy Kappa Classifier Accuracy Kappa 

MLC 0.81 0.73 MLC 0.80 0.71 

CART 0.78 0.69 CART 0.74 0.62 

BAGGING 0.78 0.69 BAGGING 0.78 0.68 

RF 0.78 0.69 RF 0.78 0.68 

SVM 0.78 0.68 SVM 0.80 0.71 

 

(b) 

Multispectral reflectance only Synergy of V-I-S fractions and LST 

Classifier Accuracy Kappa Classifier Accuracy Kappa 

MLC 0.80 0.71 MLC 0.80 0.71 

CART 0.74 0.63 CART 0.79 0.70 

BAGGING 0.76 0.66 BAGGING 0.79 0.70 

RF 0.76 0.65 RF 0.79 0.70 

SVM 0.77 0.67 SVM 0.81 0.72 

 

From Figure 3.16, tree classifier is again the worst classifier with the lowest accuracy 

and stability in the object oriented classification scenario when used with the band 

reflectance as the input. The ensembles improve both the accuracy and the stability of 

tree classifier. The adoption of V-I-S fractions and LST also benefit the tree classifiers. 

The SVM classifier is the most robust classifier. The accuracy of MLC doesn’t benefit 

from using V-I-S fractions and LST instead of band reflectance, however, the stability is 

improved. All of these properties hold true for both scale parameters (Figure 3.16 for 

scale parameter of 15 and Figure 3.18 for scale parameter of 30). When compared to the 

pixel based classification case (Figure 3.6), the point cloud is much lower, but not as 
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significant more to the right as to the low, meaning the benefit of the object oriented 

classification is more in terms of accuracy than stability. 

 

Figure 3-14 Comparisons of classification accuracy with respect to different classifiers 

and input feature configurations, and different classification principles (pixel-based vs 

object-oriented classification). 

 

The difference between these two scale parameters is subtle. A clear trend is that the 

prevalent elevated blue boxes as compared to the green boxes, for both accuracy boxplot 

and kappa boxplot. The Kappa-Error diagram displays a much more compact cloud 

points for V-I-S+LST input as compared to band reflectance input (Figure 3.17 for scale 

parameter of 15 and Figure 3.19 for scale parameter of 30). When compared to the pixel 
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based classification case (Figure 3.6), the point cloud is much lower, but not as 

significant more to the right as to the low, meaning the benefit of the object oriented 

classification is more in terms of accuracy than stability. 

 

Figure 3-15 Classification result using object oriented method. 

 

The averaged nodes used in tress in the forest were 14 for band reflectance input and 

15 for V-I-S in the case of scale parameter = 15. ANOVA test suggested no significant 

difference between these two different input feature configurations in terms of tree 

complexity. And 22 vs 23 for the case of scale parameter =30. The higher scale 

parametercase resulted in slightly more complex trees. However, both cases showed  
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Figure 3-16 (a) Accuracy boxplot for scale parameter = 15; (b) Kappa boxplot for scale 

parameter = 15. When compared to figure 3(a), both blue and green boxes are generally 

elevated from the range [0.7, 0.75] to [0.75, 0.8], indicating the accuracy superiority of 

object oriented classification. 
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Figure 3-17 Kappa error diagram for scale parameter =15. (a) Band reflectance as the 

input; (b) V-I-S+LST as the input.  A obvious more compact point cloud for (b) than (a) 

should be noticed  
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Figure 3-18 (a) Accuracy boxplot for scale parameter = 30; (b) Kappa boxplot for scale 

parameter = 30. This figure doesn’t show too much difference when compared to its 

counterpart where scale parameter=15. 
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Figure 3-19 Kappa error diagram for scale parameter =30. (a) Band reflectance as the 

input (b) V-I-S+LST as the input.  A obvious more compact point cloud for (b) than (a) 

should be noticed. 
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significant less complex trees for object oriented classification as compared to pixel 

based classification (recall that the number is 77 vs 49 for the case of pixel based 

classification, please refer to page 64 in section 3.3.3).  

From Figure 3.20 and Table 3.10, although vegetation fractions and LST was still 

among the most important ones, the benefit of using V-I-S fractions and LST over band 

reflectance was reduced in the object-oriented classification as compared to the pixel 

based classification, which means that the object-oriented approach can compensate the 

inadequacy of the band reflectance as the input. 

 
Figure 3-20 Importance of variables from the OOB sample. 
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Table 3.10 The number of times of each variable being used for first five splits for the 

500 trees for the object oriented classification case. 

Input Feature Root node 2
nd

  node 3
rd

 node 4
th
 node 5

th
 node 

B1 131 42 26 10 46 

B2 75 12 20 21 13 

B3 104 44 19 20 27 

B4 1 48 3 56 53 

B5 8 66 7 61 45 

B7 55 27 18 50 38 

VEG 34 72 34 45 38 

IMP 71 31 19 24 40 

LOW 9 53 17 58 46 

TEMP 12 96 7 18 57 

 

3.5 Conclusion 

The selection of classifiers is closely related to the selection of input features for 

urban land use classification. In an earlier chapter,  this research proposes an evaluation 

framework based on the classification tree and statistical randomization methods to offer 

a comprehensive evaluation of the superiority of input features and the performance of 

classifiers. A case study using the framework showed the superiority of the V-I-S 

fractions and LST over the direct use of multispectral band reflectance in urban land use 

classification. The investigations and discussions were made based on (1) the sequence of 

variable being selected in growing trees; (2) tree complexity; (3) Kappa-Error diagram; (4) 

increase of badness-of-fit on OOB samples; and (5) ANOVA tests.  Four major 

conclusions can be drawn as following. 

First, the analysis results from this research promote the use of V-I-S fraction images 

and the LST in urban land use studies, because in addition to the improvement on the 

overall classification accuracy, which was already documented in the previous literature 

and also  confirmed in the present study by using the evaluation framework, the use of V-

I-S fractions and LST combination as the input for urban land use classification can: (1) 
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alleviate the “salt and pepper” problem; (2) is preferred by tree and tree-based ensembles 

for branch splitting; (3) lead to less complex trees when achieving stopping criteria; (4) 

improve the stability of tree classifiers; (5) appear nearly normal distribution for urban 

land use classes and make the parametric MLC a reliable classifier. These advantages of 

V-I-S fractions and LST revealed from the evaluation framework complete a 

comprehensive assessment on their superiority in the context of urban land use 

classification. 

Second, the MLC classifier is comparable with the modern statistical learning 

classifiers or even outperforms them when the V-I-S fractions and LST are used instead 

of the direct use of spectral bands. This is consistent with previous reports that MLC 

classifier could be superior to non-parametric methods if the normality assumption is 

properly met. In this case, the histogram of V-I-S fractions and LST displays adequate 

normality, and the use of other complex classifiers becomes unnecessary. It is 

recommended to use MLC classifier in conjunction with V-I-S fractions and LST as the 

input in urban land use classification due to its adequacy and simplicity. However, the 

MLC is only suitable when V-I-S fractions and LST are used as the only input features. 

Replacing them with or including the band reflectance, regardless of enriching the data 

input, might degrade the multivariate normal distribution and subsequently degrade the 

MLC classifier.  

Third, the direct use of spectral bands is not recommended for any classification 

approach being considered, except for the SVM, which maintains consistently high 

classification accuracy and robustness. The tree classifier trained with multispectral band 

reflectance lacks stability, leaving room for potential improvements through 
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randomization achieved by tree-based ensembles. Specifically, tree-based ensembles 

increase the classification stability, but no statistically significant accuracy improvement 

is found. The SVM achieves the highest overall accuracy and stability when multispectral 

band reflectance is the only input. Therefore, SVM is recommended for those urban land 

use studies which do not use the derivation of V-I-S fractions and LST. The addition of 

V-I-S fractions and LST to the multispectral reflectance contributes to the improvement 

of ensemble classifiers in the urban land use classification significantly. The tree-based 

ensemble classifiers and SVM are suitable for the case when the full data dimension is 

used. 

Fourth, the object-oriented classification generally achieves higher accuracy than the 

pixel based methods. The SVM classifier remains as the best classifier in this scenario. 

The two different scale parameter used bears little difference in performances. In the 

application of the urban LULC classification, the conclusion about the accuracy and 

stability benefit of the V-I-S fractions and LST used as alternative input for pixel based 

approach also holds true for the object oriented approach. However, the importance of V-

I-S fractions and LST revealed from the tree complexity and OOB sample becomes less 

significant in object-oriented classification.  

A general guideline for urban land use classification inferred from this research is 

that the remote sensing analyst can choose to use either object-oriented method or the 

transformation from band reflectance to V-I-S images + LST to perform an adequately 

accurate and reliable classification. If none of them is used, then the SVM classifier is 

strongly recommended. Despite of the fact that conclusions of this study have minor 

limitations on locations and classification schema, this research is among the few to 



82 

 

investigate the stability of V-I-S fractions and LST in urban land use classification. The 

evaluation framework developed could also be applied in other urban environment and 

considered in the assessment of input features and classifiers in other remote sensing 

classification endeavors. Future study could be applying the evaluation framework for the 

assessment of texture variables and object oriented classification in urban land use 

investigation.  A different classification schema may also be considered.  
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4. Chapter 4 Urban land use classification through 

watershed segmentation in the V-I-S feature space 
 

4.1 Introduction 

The Vegetation-Impervious Surface-Soil (V-I-S) model (Ridd 1995) has been widely 

applied in urban landscape studies (Madhavan et al. 2001, Ward et al. 2000, Wu and 

Murray 2003) and extended by many others (Lu and Weng 2004, Phinn et al. 2002, Small 

2001, Small and Lu 2006). Land use/land cover (LULC) classification based on V-I-S 

fractions has been found to be more accurate than the conventional spectral based 

classification (Lu and Weng 2004, Rashed et al. 2003). Comparative studies have shown 

that other than accuracy improvement, using V-I-S fractions could also improve 

classifiers’ stability compared to the conventional band data because sub-pixel fractions 

quantitatively measure spatial composition of land cover (Tang et al. 2012).  The Lu-

Weng urban landscape model (Lu and Weng 2004) conceptually partitions the V-I-S 

ternary feature space (e.g., histogram of frequency of occurrence of each V-I-S fraction 

combination) to define LULC classes. However, no practical partition of the V-I-S 

feature space that matches Lu-Weng’s triangle was attempted. The V-I-S histogram, if 

plotted upside down, bears resemblance to topographic depressions. Therefore, the 

inverse histogram can be partitioned into LULC regions approximating the Lu-Weng’s 

urban model using the watershed segmentation algorithm, which has been widely adopted 

for partitioning digital image’s feature space (Soille 2002) and the filtered gradient (Li 

and Xiao 2007) of multispectral images for classification. This chapter illustrates the 

procedure of urban LULC classification through the watershed segmentation in the V-I-S 
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feature space. The advantages and limitations of this method also are discussed.  The 

chapter answers the research question 5. 

4.2 Test sites and remote sensing images 

I selected two urban areas for case studies: New Orleans and Baton Rouge in 

Louisiana, U.S.A. New Orleans (Figure 4.1) is a metropolitan port city traversed by the 

Mississippi River. The southwest part of New Orleans is undeveloped and comprises 

forest, agricultural land, and wetlands; the residential area is mainly located to the north 

and southeast of the Mississippi River; commercial and industrial areas are 

predominantly constructed along the Mississippi River and in the central city. Baton 

Rouge (Figure 4.1) is the second largest city and the capital of Louisiana, whose 

economic development is dominated by the petrochemical industry with large oil 

refineries constructed in the north of the Central Business District (CBD). The residential 

areas are mainly established in the east and south of the city. The Mississippi River 

borders the western edge of the city. These two areas represent the typical southern U.S. 

urban environment.  

Two Landsat 5 Thematic Mapper (TM) images (Path/Row 39/22 for New Orleans 

acquired on 22 August 2005 and Path/Row 39/23 for Baton Rouge acquired on 16 

October 2005) were used for extracting V-I-S fractions. 1-m resolution Digital 

Orthophoto Quarter Quadrangles (DOQQ) acquired in October 2005 were used as the 

reference. An image-to-image registration between the DOQQ and TM data was 

performed using a first-order polynomial transformation and nearest-neighbor resampling 

to ensure the locational accuracy. The resultant Root Mean Square Error (RMSE) was 

less than half the size of a TM pixel. 
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Figure 4-1 Study sites: (a) Baton Rouge and (b) New Orleans. The images are standard 

false-color composites of Landsat.5 TM. Bright areas are the commercial and industrial 

areas. Vegetation appears red and the dark linear feature is the Mississippi River. Areas 

with a fine textural appearance are the residential regions. 

4.3 Procedures 

The WS-based approach comprises several steps of data processing. A flow chart 

summarizing the whole procedure is provided in Figure 4.2 and is explained below and 

the algorithm is implemented by using IDL programming language (Tang 2008). 

4.3.1 V-I-S fraction extraction and feature space rasterization 

The first step is to extract the V-I-S fraction images, based on which the V-I-S 

feature space image is to be constructed. The TM data are calibrated to reflectance for 

bands 1 through 5 and 7. A normalization procedure (Wu 2004) is employed in order to 

reduce the spectral variance of endmembers prior to the spectral unmixing. The V-I-S 

fraction images are then derived using the Sequential Maximum Angle Convex Cone 

Algorithm (SMACC, Gruninger et al. 2004) with the sum-to-unity constraint.  SMACC 
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Figure 4-2 Work flow of the proposed watershed segmentation method for LULC 

classification. 

 

(available in ENVI software) sequentially seeks a set of spectral basis for spectral 

expansion. The final set of the spectral basis is the endmember spectra and the 

corresponding expansion coefficients are the endmember fractions. The first basis is set 

to be the brightest pixel (the longest vector), and the rest of the spectral basis is 

determined as the longest residual vector after data vectors being approximated by the 

spectral expansion using the previously found spectral basis (e.g. the pixel with the 

largest residual norm, namely, the vector with the maximum angle away from the convex 
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formed by the currently existing set of basis). The expansion coefficients can be updated 

simultaneously as the spectral basis is sequentially added to the set. 

The V-I-S fraction images are then converted to a V-I-S feature space image using a 

triangle grid system (Figure 4.3) similar to the Lu-Weng’s model by equation (1). The 

entire rasterized feature space consists of 500×434 (434=[500cos(π/3)]) grid pixels, 

whose values are the count of V-I-S fraction image pixels mapped to the relevant pixel’s 

location in the triangle grid system. 

           X= 500(f1+f2/2)       

                                                      Y = 500cos(π/3)(1-f2)                                    (1) 

where f1 and f2 are the fraction of the Impervious Surface and the fraction of Soil, 

respectively. (X, Y) is the coordinate in the grid system. The V-I-S feature space image of 

the New Orleans data displays four underlying LULC classes (Figure 4.4a). The case for 

the Baton Rouge data has the same pattern (Figure 4.4b). 

4.3.2 Marker controlled watershed segmentation 

By treating an image as a topographic surface with underlying watersheds, WS 

simulates an immersion process which progressively floods the surface to find 

watersheds (Vincent and Soille 1991). The watershed boundaries are at where floodwater 

from adjacent watersheds meets. If feature space image is turned upside down, the cluster 

peaks will become depressions, which can be treated as identified watersheds in the WS 

algorithm. However, because in the general concept of LULC classification classes are 

peaks of feature space image, we still use the regular unflipped image in all illustrations. 

Hence, the term “minima” in the original WS algorithm is presented as “maxima” in the 

V-I-S feature space here. 
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Figure 4-3 Rasterization of the V-I-S feature space .The grid is composed of 500×434 

pixels. The black dot represents a given TM pixel with f1 as the Impervious Surface 

fraction and f2 as the Soil fraction being mapped to the gird. The origin of the grid is set 

to the upper left. The value of a pixel in this grid is the frequency of TM pixel being 

mapped to the considered pixel’s location. 

 

In the watershed segmentation algorithm, each local minima corresponds to a 

watershed and serve as the seeds to grow the watershed. However, due to random noise 

and complexity nature of the V-I-S feature space, there is still significant number of 

irrelevant local maxima other than the four major peaks corresponding to four LULC 
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Figure 4-4 (a) V-I-S feature space rasterization for New Orleans data; (b) V-I-S feature 

space rasterization for Baton Rouge data. The black dots in represent the underlying 

centers for peaks (LULC classes). 

 

centers. Over-segmentation would result due to these spurious local maxima (Figure 4.5).  

Hence, to suppress the over-segmentation and to honor the pattern of the four clusters in 

the V-I-S feature space, WS need to be controlled by markers via the maxima imposition, 

which can be implemented through a series of morphological operations, including 

geodesic dilation and morphological reconstruction (Soille 2002, Vincent 1993). Both 

operations involve marker image (  ) defined as the following: 

             (x) = 255, if x is the marker location 

                                        (x) = 0, otherwise                                     (2) 

where x is location in the V-I-S feature space triangle grid system. 

Geodesic Dilation 

Here I denote   as the maximum operator,   as the minimum operator, I as the grey 

image and    as the marker image. Geodesic dilation of size 1 of the marker image    

with respect to I (denoted by   
 (  )) is defined as the pixel-wise minimum between the I 



90 

 

 

Figure 4-5 Over segmentation of the V-I-S feature space for the New Orleans case, if the 

WS process is not marker controlled. 

 

and the elementary dilation of the image     (Soille 2002, Vincent 1993) as the following: 

  
 (  )    (  )                                                                (3) 

where   (  )  denotes the dilation operation on the marker image. Figure 4.6 

illustrates the geodesic dilation for a simplified 1-D case. 

 
Figure 4-6 Illustration of geodesic dilation of size 1. (a) the maker image    is in grey 

and the image I is in white; (b) the elementary dilation of marker image   , e.g.,   (  ) , 



91 

 

in grey; (c) the point-wise minimum between the grey and the white in (b), e.g., the 

geodesic dilation. The hypothetic grey image is the courtesy of Soille (2002, page 298). 

 

The (i+1)
th
 iteration of geodesic dilation of the marker image    with respect to I is 

defined as: 

   
   (  )    

 ( 
 
 (  ))    

 ( 
 
 (( 

 
   (  ))    

 ( 
 
 (  

 (  
   (  

 (  ))            (4) 

Morphological Reconstruction by Dilation 

Morphological reconstruction by dilation of the marker image    with respect to I 

(denoted by   
 (  )) is iterative geodesic dilation until convergence is achieved (Soille 

2002, Vincent 1993).  It follows that: 

             
 (  )     

 (  ), such that   
 (  )     

   (  )                                             (5) 

R stands for reconstruction. The superscript   indicates that the reconstruction is 

through dilation as there is a counterpart called morphological reconstruction by erosion, 

which is used for minima imposition.  

In this research, image maxima are imposed by utilizing the aforementioned 

morphological reconstruction by dilation. First, locations of initial markers are digitized 

through a user graphic interface as the approximate watershed centers in the V-I-S feature 

space image to represent the underlying LULC centers. Then, assuming the V-I-S feature 

space image is scaled over 8 bits (0~255), the marker image (  ) is constructed using 

equation (2), and is thereby used to supress irrelevant local maxima. The maxima 

imposition is then defined as the morphological reconstruction by dilation of    with 

respect to      , namely,      
 (  ) . The reconstruction by dilation is illustrated in 

Figure 4.7 for a simplified case. 
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Figure 4-7 Illustration of morphological reconstruction by dilation. (a) the maker image 

   is in grey and the image I is in white (with three local minima); (b) the geodesic 

dilation of size 1; (c) the 2
nd

 geodesic dilation; (d) the 3
rd

 geodesic dilation; (e) the 4
th

 

geodesic dilation; (f) the 5
th
 geodesic dilation, also the reconstruction by dilation as the 

convergence is achieved. The hypothetic grey image is the courtesy of Soille (2002, page 

298). 

Maxima imposition removes the local irrelevant minima and only keeps the maxima 

defined in the marker image.  In Figure 4.7, the middle one of the three local maxima, 

which is not marked in the marker image, is filtered out and removed. 

4.3.3 Classification and accuracy assessment 

Vincent (1993) and Soille (2002) showed that maxima imposition removed all local 

maxima except for the location where initial markers are defined. In our study, the 

complement of the V-I-S feature space image after the maxima imposition has only four 

local minima and is then segmented by watershed segmentation. The pixels in the same 

watershed are assigned a certain watershed label (namely, A, B, C and D in Figure 4.8(a) 

and Figure 4.8(b)). The pixels belonging to watershed boundaries are assigned the label 

of the most prevalent watershed among their neighbors using a majority filter. 
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Figure 4-8 Watershed segmentation on the V-I-S feature space image derived from 

Landsat TM. (a) WS result of New Orleans. Black regions are areas with frequency of 

zero-occurrence; (b) TM (left) and DOQQ (right) (A = Vegetation; B= Residential; C = 

Commercial and Industrial; D =Water). 
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The corresponding four LULC classes in the watershed segmentation are Vegetation 

(A), Residential (B), Commercial and Industrial (C) and Water (D), according to Lu-

Weng’s triangle (Figure 4.8(c) and reference data from DOQQ (Figure 4.8(d)). As a 

result, all the original TM pixels are classified to one of these four classes based on their 

V-I-S feature space locations in the watersheds. 

A simple random sampling was used for accuracy assessment for both test sites, and 

397 points for New Orleans and 117 points for Baton Rouge were visually interpreted 

from the DOQQ and assigned the LULC class as the reference. A maximum likelihood 

classification (MLC) was also performed on the TM spectral bands to be used as the 

benchmark to evaluate the performance of our new method. 

4.4 Results and discussion 

4.4.1 Comparison between the new method and MLC 

The maps of LULC classification from the WS-based method are displayed in Figure 

4.9. The new method achieves slightly higher accuracy compared to MLC. The accuracy 

is improved from 69.5% to 72.8% for New Orleans (Table 4.1) and from 69.8% to 71.4% 

for Baton Rouge (Table 4.2).  The kappa coefficient increases from approximately 0.55 to 

0.60 for both sites after using the new method. The new method has higher producer’s 

accuracy for the Vegetation class and the Water class for both test sites, as well as the 

higher producer’s accuracy for the Commercial and Industrial class for Baton Rouge area 

and the Residential class for New Orleans area.  
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Figure 4-9 Classification results with WS method for (a) Baton Rouge and (b) New 

Orleans. 

 

 

Table 4.1 Error Matrix for New Orleans test site. (a) Classification with MLC where 

Kappa=0.56 with overall accuracy as 69.5%; (b) Classification with WS and Kappa=0.60 

with overall accuracy as 72.8% (UA = user’s accuracy and PA = producer’s accuracy). 

 (a) 

Classified Data 

Reference Data 
UA 

(%) 
Commercial and 

Industrial 
Residential Vegetation Water Total 

Commercial and 

Industrial 
52 7 9 2 70 71 

Residential 39 110 48 1 198 56 

Vegetation 8 6 98 0 112 88 

Water 0 0 1 16 17 94 

Total 99 123 156 19 397  

PA (%) 53 90 63 84   
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(Table 4.1 Continued) 

(b) 

Classified Data 

Reference Data 
UA 

(%) 
Commercial and 

Industrial 
Residential Vegetation Water Total 

Commercial and 

Industrial 
40 1 1 0 42 95 

Residential 49 115 37 1 202 57 

Vegetation 8 7 116 0 131 89 

Water 2 0 2 18 22 82 

Total 99 123 156 19 397  

PA (%) 40 94 74 95   

 

Table 4.2  Error Matrix for Baton Rouge test site. (a) Classification with MLC and 

Kappa=0.55 with overall accuracy as 69.8%; (b) Classification with WS and Kappa=0.59 

with overall accuracy as 71.4% (UA = user’s accuracy and PA = producer’s accuracy).  

(a) 

Classified Data 

Reference Data 
UA 

(%) 
Commercial and 

Industrial 
Residential Vegetation Water Total 

Commercial and 

Industrial 
21 2 1 0 24 88 

Residential 8 41 22 1 72 57 

Vegetation 0 2 17 0 19 90 

Water 0 0 0 4 4 100 

Total 29 45 40 5 119  

PA (%) 72 91 43 80   

 

(b) 

Classified Data 

Reference Data 
UA 

(%) 
Commercial and 

Industrial 
Residential Vegetation Water Total 

Commercial and 

Industrial 
28 7 3 0 38 74 

Residential 1 29 14 0 44 66 

Vegetation 0 9 23 0 32 72 

Water 0 0 0 5 5 100 

Total 29 45 40 5 119  

PA (%) 97 64 58 100   

 

Both WS-based classification and MLC honor the shape, orientation and size of 

classes for LULC classification, but in different ways. To be specific, MLC considers the 
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center of the class and the variance-covariance matrix of the normal distribution through 

parametric fitting, e.g., the maximum likelihood estimation (MLE). The watershed 

segmentation considers the class center via initial markers specified by users; the 

flooding process grows the watersheds by following the natural shapes of LULC clusters 

in the V-I-S feature space.  

Although MLC is one of the most used image classification methods, WS has a 

number of advantages over it: (1) MLC is a mathematically parametric classifier based on 

the assumption of multivariate normality. The training data samples should be 

representative enough for parametric fitting for every LULC class. In reality, the 

normality assumption can only be approximated, which leads to biased class decision 

boundaries. Watershed segmentation is a non-parametric method; namely, it has no 

assumptions about the shape or distribution of the classes as long as the histogram 

displays clustering patterns (representing underlying watersheds). (2) A paradox of MLC 

is that the decision boundaries will be different if a different sample set from an extended 

or clipped input image is used to train the classifier because the MLE would be altered. 

WS has no such an issue because the class decision boundary fits locally to the dataset, so 

extending or clipping the input image will not affect the segmentation boundary. (3) WS 

requires minimal user input – just initial markers; hence, the chance to introduce 

uncertainty and subjectivity from the training dataset is reduced.  MLC, on the contrary, 

needs separable training samples for different LULC classes.  

4.4.2 Sensitivity to the initial marker specification 

One important (and the only) input from the user is the imposition of initial markers 

for watershed segmentation. Theoretically, initial markers should be defined as the 
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watershed centers to partition the V-I-S feature space. However, since I employ manual 

on-screen digitizing in our study, this might introduce human subjectivity and error if the 

segmentation is sensitive to the marker locations. Therefore, this research tested the 

tolerance of the WS algorithm to human-imposed digitization error. The test was based 

on 50 randomized initial marker sets, which were generated by introducing a random 

perturbation of 30 pixels off from the LULC class centers in the V-I-S feature space. In 

addition, we added one more test scenario by using the geometric centers (mean) of the 

training data used in the MLC. The results show that the segmentation is not sensitive to 

the markers locations. All these different initial marker specifications lead to the same 

watershed segmentation result, which consequentially leads to the same labeling and 

classification. This test result validates the approach to the marker imposition by user on-

screen digitizing. As long as the digitized markers are located inside the underlying 

watersheds, the segmentation algorithm will produce exactly the same result. Therefore, 

human subjectivity is not an issue in this method.   

Figure 4.10 also gives a simplified (1-D) illustration. Figure 4.10(a) is the feature 

space image represented by the height of the columns. The two black columns represent 

two markers. Figure 4.10 (b) is the image imposed by the makers. Figure 4.10(c) is the 

final maxima imposition result using the morphological reconstruction. Two inverse 

watersheds are grown and met at the red dot as their boundary (figure 4.10(c)). Figure 

4.10(d)~(f) showed the process of a different maxima imposition. Starting from figure 

4.10 (d), the same maxima imposition was processed, however, with two different marker 

locations in the vicinity of the ones in figure 4.10(a). Figure 4.10(f) is the final maxima 

imposition and the watershed boundary (red dot) is located at the same location. 
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Figure 4-10 Sensitivity analysis of the location of markers. (a)–(c) are the maximum 

imposition from an imperfectly located maker as compared to (d).(f). The resultant 

watershed boundaries (red dot) are same. The hypothetic grey image is the courtesy of 

Soille (2002, page 298). 

 

Other methods such as the nearest neighbor method (Richards and Jia 2006, p. 

263~264) can also perform feature space segmentation. However, the nearest neighbor 

method only partitions the feature space according to the distance to the markers, without 

regarding to the shape, size, orientation, height (density) of the features. The nearest 

neighbor method fails if the adjacent land use regions in the V-I-S feature space are 

different in size (Figure 4.11), which is very likely to occur in real-world data. In contrast, 

the watershed segmentation is based on morphologic feature of the surface described by 

the V-I-S feature space image, and follows the natural divides of the clusters to define the 

classes. Figure 4.11 compares the partition results from the two methods illustrated in 1-

D case.  
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Figure 4-11 Comparison of two feature space partition methods. The red dot is the 

partition boundary. (a) Erroneous partition from the nearest neighbor method which 

defines the boundary by its distance to the markers. (b) Watershed segmentation results in 

the expected boundary. 

4.5 Conclusion 

This chapter introduced and tested an innovative urban LULC classification method 

of applying the WS in the V-I-S feature space. WS exploits the natural gaps between 

LULC classes and has no strict assumption on the distribution of classes in the V-I-S 

feature space. Compared to the conventional method, maximum likelihood classification, 

our new method requires less user input and improves classification accuracy. The study 

also shows that WS is tolerant to the human induced subjectivity and error; therefore, on-

screen digitizing is the feasible way of imposing initial markers to guide the segmentation.  
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It is worth noting that there is variability in land use land cover conditions other than 

the two cases we presented in this letter. For instance, if vegetation (e.g. forested areas) is 

very limited in the scene, it may not stand out as a significant LULC cluster; so it could 

be submerged and suppressed in the watershed segmentation process and mixed with 

other classes. In some other areas, residential areas could show a pattern of multiple 

clusters (such as, high density residential and low density residential areas). In this case, 

additional initial markers would be needed to separate these classes. Hence, our new 

method is data driven and the number of initial marker has no preconceived knowledge. 

Currently, this method is only applicable to urban studies because it is based on the V-I-S 

model and the Lu-Weng urban triangle model. In the future, applying this method to 

other environments and classification purposes is possible and expected.   
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5. Chapter 5 Investigation of urban population distribution 

in New Orleans with the sub-pixel and land use 

characterization  
 

5.1 Introduction 

A large body of literature has been established to report the use of remotely sensed 

signals to investigate the urban population distribution. Derived indicators for the 

population process from remote sensing data included spectral reflectance (Hsu 1973, 

Iisaka and Hegedus 1982, Lo 1995), night-time illumination (Dobson et al. 2000, Lo 

2001, Sutton 1997), vegetation indices (Li and Weng 2005), land use and land cover 

(Dobson et al. 2000, Langford et al. 1991, Lo 1995, Mennis 2003, Yuan et al. 1997), sub-

pixel fractions (Joseph et al. 2012, Li and Weng 2005, Lu and Weng 2006, Morton and 

Yuan 2009, Wu and Murray 2007), textures (Li and Weng 2005, Liu et al. 2006), 

temperature (Li and Weng 2005) and spatial metrics (Liu 2003).  

The V-I-S model (Ridd 1995) is a success in urban remote sensing. The V-I-S model 

reveals the fractional composition of vegetation and impervious surface, two major 

components of an urban area, which were frequently used to regress the population 

(population density) and its transforms. Joseph et al. (2012) used sub-pixel information to 

model the population in the Port-au-Prince, Haiti and highlighted three inputs that greatly 

contributes to a successful population model for Port-au-Prince, namely, the fraction of 

housing, the fraction of vegetation and the standard deviation of vegetation fractions. 

Morton and Yuan (2009) used power function fitting to establish the relationship between 

population density and the %ISA (percentage of impervious surface area). Other 

examples using V-I-S sub-pixel information in population regression could be found at Li 
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and Weng (2005) and Wu and Murray (2007). Land use and land cover (LULC) provides 

another input for population models. Langford et al. (1991) for the first time used 

multivariate regression with the land use information as a dasymetric mapping method to 

investigate the urban population. The application of using LULC as input for population 

regression was followed by many others with success, including Langford and Unwin 

(1994), Lo (1995), Yuan et al. (1997) and Lo (2008). Li and Weng (2010) compared 

these two types of input in investigating the population density of Marion County, 

Indiana with Landsat ETM image and termed them as “spectral response method” and 

“land use based method”, respectively. The result showed that the latter input was 

superior as it achieved smaller mean relative error. 

Recently, there is a growing interest of using local models to address the spatial 

dependency and spatial nonstationarity. Application of local models of population is also 

seen in the literature, examples are the regional models (Langford 2006, Yuan et al. 

1997), GWR model (Liu et al. 2006, Lo 2008, Yu and Wu 2004) and  spatial 

autoregressive regression (Griffith and Wong 2007).  

Such population regression analysis is not seen for the city of New Orleans. The 

purpose of this study is straightforward: to use the regression models to link the urban 

population distribution and the V-I-S fraction and the urban land use classes for the city 

of New Orleans. Specifically, this research focuses on two analyses. One is the “spectral 

response method”: to use the V-I-S sub-pixel information as the input. The spatial 

configuration of V-I-S may reveal the underlying land use and thus can be related to the 

population process. The spatial fragmentation level of vegetation fractions is believed to 

relate to population. Hence, the V-I-S fractions and their standard deviation are used as 
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explanatory variable to model the population. The second analysis is the “land use based 

method” that employs the regular dasymetric mapping by using the land use information 

as the regression input. I hope to see how these physical environment measures could 

contribute to the population model for the case of New Orleans. The chapter answers the 

research question 6. 

5.2 Data source 

The census 2010 data (Summary File 1, SF1) has been released in the public domain 

and downloadable from the United State Census Bureau website 

(http://www2.census.gov/census_2010/04-Summary_File_1/Louisiana/). The census tract 

level population data for two major parishes in the New Orleans Metropolitan Area: the 

Orleans Parish and the Jefferson Parish are obtained from the Census Bureau. The 2010 

census tract boundary is available in the Topologically Integrated Geographic Encoding 

and Referencing (TIGER) files. Several large census tracts that cover the southern area 

and are out of the metropolitan are removed. These have resulted in totally 299 census 

tracts being included in the analysis (Figure 5.1).  

The environment variables for population modeling are extracted from remotely 

sensed images. A Landsat Thematic Mapper (TM) image (Path/Row 39/22) acquired on 

10/07/2010 is downloaded from USGS Glovis website (http://glovis.usgs.gov/) to derive 

the V-I-S fraction images and the LST image. The 1-m resolution Digital Orthophoto 

Quarter Quadrangles (DOQQs) acquired in the time of the year were used for reference. 

 

http://www2.census.gov/census_2010/04-Summary_File_1/Louisiana/
http://glovis.usgs.gov/


105 

 

 

Figure 5-1 299 selected census tracts in Orleans Parish and Jefferson Parish. 

5.3 Methods 

5.3.1 Regression Analyses  

This study conducts two analyses to investigate the relationship between the urban 

population and the physiogeographic conditions. The two analyses differ from each other 

in terms of the type of explanatory variable being used. The first analysis uses the V-I-S 

sub-pixel fractions and their spatial variations to explain the population distribution. The 

second model is based on the land use information extracted from V-I-S configurations 

considering the Lu-Weng’s urban triangle model. A previous study by Tang et al. (2012) 

shows that the synergy of V-I-S fractions and LST could improve both the accuracy and 

stability of classifier and also meet the normality assumptions of maximum likelihood 
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classifier (MLC). Hence, we used V-I-S fractions in conjunction with LST to train a 

MLC classifier to classify the TM image. A four-class schema is adopted considering the 

major land use classes in Lu-Weng’s urban triangle model, e.g., Residential, Commercial 

and Industrial, Vegetation and Water. The area of land use classes for each census tract is 

used as the explanatory variable in the second analysis. Both analyses used Ordinary 

Least Square (OLS) regression and Geographically Weighted Regression (GWR) method 

due to their popularity in recent population modeling. GWR model is used to examine the 

spatial nonstationarity. Figure 5.2 illustrates the data flow and the analytical procedures.  

 

Figure 5-2 Procedures of population modeling using two types of input. 
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5.3.2 GWR 

Geographically Weighted Regression (GWR) allows the regression coefficients to 

vary over space to investigate the spatial nonstationarity.  The model can be expressed as: 

                                                                  (1) 

Notice that the    have the subscripts  , indicating that the coefficients are location 

variant. GWR performs weighted regressions locally at every observation location using 

weighted least square approach and the solution is given by 

                                           (     )  X  Y                                                      (2) 

Where    is the diagonal matrix with diagonal elements being weight of 

observations for location  , and    is the coefficient set for location  . The weighted 

regression employs weighting functions (usually monotone decreasing functions of the 

distance) to assign weights to observations. The closer observations play more important 

roles than distant ones in each local regression.  In this research, we adopted the 

commonly-used Gaussian kernel to calculate spatial weights. The Gaussian kernel is 

defined as: 

   ( )    (    
 )                                               (3) 

The parameter of   determines the shape of the kernel function that controls how fast 

weights are decreasing with the distance. The parameter   is determined by the leave-

one-out cross-validation: 

   = ∑      ̂( )( )   
                                          (4) 

where  ̂( )( ) is the fitted value of    with the observation at location   omitted from 

the model calibration process.    is the parameter of the weighting kernel. GWR chooses 

the desired   parameter such that    is a minimum. 



108 

 

A good aspect of GWR is that the local coefficients, local t-test and local R
2 

can be 

calculated and mapped to investigate their spatial variations. Once the GWR is fitted, two 

following questions are often of the interest (Brunsdon et al. 1998, Fotheringham et al. 

2002, Leung et al. 2000, Yu 2006): 

 Does the GWR model describe the data significantly better than the OLS model?  

 Does each set of parameters exhibit significant variation over the study region, 

e.g., the test of spatial nonstationarity?  

Statistical tests were developed to address these two questions. Model fit 

comparisons are usually dealt with by employing the sum of squared residuals (SSE) and 

pivotal-method based hypothesis testing (Casella and Berger 2002). The distribution of 

the GWR’s sum of square residuals was proven to be related to an approximate 
2
 

distribution with non-integer degree of freedom, which becomes the basis to construct the 

likelihood ratio (LR) tests (F test here) to compare the goodness-of-fit between the GWR 

and OLS model. It is analogous to the conventional F-test to compare nested OLS models. 

The only difference is that the F-test for OLS model comparison has integer degree of 

freedom and the distribution is exact; however, in the F-test for OLS and GWR model 

comparison, the degree of freedom is non-integer and the distribution is approximate 

(Brunsdon et al. 1999). Two specific F-tests (Brunsdon et al. 1999, Fotheringham et al. 

2002) and two others (Leung et al. 2000) were developed in this manner to compare 

GWR model with its OLS counterpart. The spatial nonstationarity can be examined by 

Monte Carlo (MC) randomization tests (see Brunsdon et al. 1999, Brunsdon et al. 1998, 

Fotheringham et al. 2002 page. 93 for details). However, its computational burden is 

overwhelming. An approximate F-test was developed to test the spatial nonstationarity of 
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parameters, see Leung et al. (2000) for detailed mathematical deduction. The R package 

spgwr has implemented the GWR algorithm and all these statistical tests. 

5.3.3 Model comparison 

To compare the model fit and their performance on predictions, the 299 census tracts 

were splitting into the training dataset and the validation dataset. The training part 

contained 80% of original census tracts and the rest went to the validation dataset.  

Models are compared with one another in terms of prediction accuracy. I use two 

goodness-of-fit indicators in this research: Root Mean Square Error (RMSE) and Mean 

Absolute Percentage Error (MAPE) defined as the following. 

      √
∑ (  ̂   )

  
   

 
                                                     (5) 

      √
∑ |

  ̂   
  

| 
   

 
                                                      (6) 

5.4 Analysis and result 

5.4.1 Population and sub-pixel configurations 

Input feature for analysis-1 include the V-I-S fractions and their standard deviation at 

the census tract level. The standard method for extracting V-I-S fractions introduced in 

section 3.2 was applied to the TM image that is subset to the New Orleans area. The 

Zonal Statistics tool was used to aggregate the V-I-S fractions of the pixel level to the 

census tract level. The mean and the standard deviation of V-I-S fractions were calculated.  

Due to the fact that the V-I-S sub-pixel fractions sum up to one, throwing them all to 

the regression model would cause the linear dependency (multicolinearity) problem. 

Hence, only the Vegetation fraction and the Impervious Surface fraction are used in the 
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regression model as different composition of V and I fractions are related to different 

land use patterns in urban that may be associated with the underlying population process. 

I also considered the standard deviation of vegetation fractions because the 

vegetation fragmentation level is found to be related the population distribution. Instead 

of the absolute population value, the population density (PD) and its logarithm transform 

and square root transform were selected as dependent variables. These transforms served 

the purpose of removing the skewness and reducing the heterogeneity. Table 5.1 indicates 

that the population density and its square root transform are more related to the V-I-S 

sub-pixel information than its logarithm transform. 

Table 5.1 Correlation between transforms of population density and explanatory variables. 

 Mean Imperviousness Mean Vegetation Std of V fraction 

Population Density (PD) 0.27 -0.19 -0.41 

Logarithm of PD 0.13 -0.12 -0.39 

Square root of PD 0.26 -0.16 -0.47 

 

The best OLS model among the three favors the square root transform of PD as the 

dependent variable; however, the regression model gives a poor fit. The R
2 

was only 

0.2420 (the other two inferior models have R
2
 of 0.19 and 0.16). The model also 

suggested that the fraction of vegetation was not significantly related with the population 

(Table 5.2). The GWR model was also poor. The local R
2 

ranged from 0.19~0.28.  

Compared to similar studies that were conducted in other places, such as Port-au-Prince 

(Joseph et al. 2012), Columbus, Ohio(Wu and Murray 2007), and the seven counties in 

Twin Cities Metropolitan Area, Minnesota (Morton and Yuan 2009), etc, the relationship 

between the remote sensing sub-pixel configurations and population distribution was not 

statistical significant. This indicates the inadequacy of the V-I-S fraction input to model 

the population in New Orleans. Reason could be that the New Orleans is a complicated 
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area; the population is not only directed by the physiogeographic variables but also the 

socioeconomic process. 

Table 5.2 OLS model fit of population density and sub-pixel information 

Variable DF 
Parameter 

Estimate 

Standard 

Error 
t Value Pr > |t| 

Intercept 1 80.07599 9.37107 8.55 <.0001 

Impervious surface fraction 1 -42.69073 18.45390 -2.31 0.0214 

Vegetation fraction 1 -2.24136 13.15354 -0.17 0.8648 

Std of vegetation fraction 1 -225.41501 25.15871 -8.96 <.0001 

5.4.2 Population and land use 

Input features for analysis-2 are mainly the area of different land use classes of 

census tracts. In this research, I only considered the classification schema adopted used in 

Chapter 3 and 4, namely, 1) Residential; 2) Commercial and Industrial; 3) Vegetation; 4) 

Water.  I used V-I-S fraction and LST along with a maximum likelihood classifier to 

produce the land use classification result (Figure 5.3). The classification accuracy was 

78.0% indicated by 300 test samples that were generated by a random sampling method. 

Due to the fact that “Water” class is not an inhabitable land use class, it is excluded 

from the model. Hence, the final regression model is as the following: 

                                                                   (7) 

Where Com, Reg, and Veg are the area of the commercial and industrial, residential 

and vegetation land use with in a census tract. 

There will be no population if there is no land use for any of these three classes. So 

the regression model without the intercept seems to be more appropriate. 

                                                                 (8) 
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Figure 5-3 The land use map of study area, 2010, produced using V-I-S fractions and 

LST as the input and a MLC classifier. 

 

 

The model fit with and without the intercept term is shown in table 5.3 and table 5.4 

respectively. Both models achieved a much better fit than the model fitted with the sub-

pixel fraction information. 

Table 5.3 Model fit using land use information with intercept (R
2
=0.6392) 

Variable DF 
Parameter 

Estimate 

Standard 

Error 
t Value Pr > |t| 

Intercept 1 901.50 90.45 9.966 <.0001 

Commercial and Industrial 1 42.39 113.06 0.375 0.7080 

Residential 1 2227.25 104.88 21.237 <.0001 

Vegetation 1 -238.96 121.76 -1.963 0.0506 
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Table 5.4 Model fit using land use information without intercept (R
2
=0.8811) 

Variable DF 
Parameter 

Estimate 

Standard 

Error 
t Value Pr > |t| 

Commercial and Industrial 1 366.15 125.00 2.929 0.00366  

Residential 1 2963.66 85.91 34.498 <.0001 

Vegetation 1 -444.72 138.50 -3.211 0.00147 

 

Based on both models, it is shown that the strongest relationship with the population 

was the residential land use. Vegetated land use imposes a negative effect on the 

population distribution. Y is the population, not population density as the x is in terms of 

area already. This model has a good R
2
. There is no significant multicollinearity problem.  

The GWR model returns an adjusted R
2
= 0.75. The F-test suggested that the GWR 

achieved a much improvement over OLS model. All three input parameters had spatial 

nonstationarity pattern as seen in Table 5.5. 

Table 5.5 Spatial nonstationarity test results 

Parameter F statistic Num d.f. Den d.f. p value 

Commercial and Industrial 2.9868 22.1471 278.47 <0.001 

Residential 6.9566 63.3263 278.47 <0.001 

Vegetation 2.7962   28.2279 278.47 <0.001 

 

High local coefficients for commercial and industrial land use could be found at the 

Metairie community and CBD (Figure 5.4), where there were constructed with shopping 

center and mall that attracted people occupation or the other way . In the contrary, the 

relation is reversed in the East New Orleans, lower 9
th
 Ward and the south. Although 

ANOVA test suggested that the spatial-nonstationarity exists for the residential land use, 

the coefficient did not change the sign over space (Figure 5.5). The region with small 

value of coefficients could be founded at the City Park area and its southern 
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neighborhood. Lower 9
th
 ward, East New Orleans and the mid-city also had relatively 

smaller coefficients. These areas with small local estimated parameter for the residential 

land use were majorly located in the Orleans Parish that was badly flooded during the 

Hurricane Katrina. The Jefferson’s Parish, such as Metairie community had higher 

estimated coefficients for the residential land use. This spatial discrepancy highlighted 

that the population are more crowded in the residential area that were less exposed to the 

potential flooding. The local model agrees with the global model in terms of the sign of 

the vegetation land use for the majority part of the study area (Figure 5.6). The sign is 

reversed in the East New Orleans and the southeastern Jefferson Parish. This also 

indicates the strong spatial nonstationarity of this variable. 

 

 

Figure 5-4 Spatial variation of the regression coefficient for “commercial and industrial” 

land use. 
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Figure 5-5 Spatial variation of the regression coefficient for “residential” land use. 

 
Figure 5-6 Spatial variation of the regression coefficient for “vegetation” land use. 
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The use of GWR model make possible to map the local model fit in terms of R
2
 

(Figure 5.7). It is shown that the model fit was the poorest in the city-core and becomes 

better as the distance from the city-core increases. The pattern of R
2
 displays a concentric 

pattern, which is a classic urban spatial pattern of Chicago school.  

Table 5.6 displays the comparison result between the OLS model and GWR model 

for the land use based population regression. The GWR just achieved a slightly higher 

prediction power than the OLS model. Generally speaking, both the OLS and GWR 

model failed to achieve an adequate prediction accuracy, which indicated that the 

population in New Orleans could not be fully modeled by just considering 

physiogeographic indicators. 

 

 

Figure 5-7 Spatial variation of the local R
2
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Table 5.6 Comparison of regression model performance 

Model RMSE(TEST) MAPE(TEST) RMSE(TRAINING) MAPE(TRAINING) 

OLS 951.7712 0.6408385 845.0236 0.5228068 

GWR 910.7484 0.6332819 725.1055 0.4791138 

 

5.5 Conclusion  

The urban population distribution could be modeled by using the physiogeographic 

measures derived from remote sensing. This study used two types of variables that can be 

derived from remotely sensed images that reflect the urban physical environment 

conditions: the V-I-S fractions and the land use class. OLS model and GWR model were 

fitted using these two types of input to examine the association between population and 

these inputs. 

The relationship between population and the V-I-S fractions is not strong or 

significant. Both the global and the local model had poor model goodness-of-fit. This 

indicates that the direct use of V-I-S fractions to model the population is not adequate in 

New Orleans, although the similar applications were proven success in other urban area. 

The land use map extracted from the V-I-S fractions and LST achieved an overall 

accuracy of 78.4% and demonstrated its strength in population modeling for New Orleans. 

I considered the three-class model, embracing the Residential land use, Vegetation land 

use and the Commercial and industrial land use and exclude the water class. The OLS 

model returned a model with R
2
=0.64. The model fitted with no intercept parameter 

returned a high R
2
=0.89.  The relationship also exhibits spatial nonstationarity. The local 

model fit is relatively poor in the city core and the model fit improves as the distance 

from the city center increases, depicting a classic concentric urban pattern.  
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6. Chapter 6 Summary 

This dissertation focuses on the advances in urban environment remote sensing 

methodology, urban population regression model, and spatial analysis of urban 

population decline. Specifically, this dissertation addresses the inadequacies of previous 

research in the understanding of 1) the superiority of the V-I-S model and LST used in 

land use classification; 2) urban population modeling from the V-I-S components and 

other environment measurements, e.g., land use. This research chooses New Orleans, LA 

as the key study area, for its unique geographic settings and history of hurricane related 

disasters. Baton Rouge, the capital of Louisiana, is used to test the generalization of the 

knowledge learned from this research about remote sensing and urban study methodology. 

The tasks of this research include: 1) to develop an evaluation framework for 

assessing and comparing classifiers and input features with an emphasize on the stability 

discussions; 2) to apply the proposed evaluation framework on the urban land use 

classification for investigating the superiorly of the V-I-S model and LST used as the 

classification input; 3) to implement and test the idea of urban land use classification by 

partitioning the V-I-S feature space using marker-controlled watershed segmentation and 

explore the property and advantage of this new method; and 4) to establish the 

relationship between the population distribution of New Orleans and physiogeographic 

conditions derived from remote sensing data. 

6.1 Summary of findings 

(1) I propose a comprehensive evaluation framework to investigate the performance 

of classifiers and input features for urban environment remote sensing. The framework 

utilizes the randomization technique to quantify the stability of classifiers, which was 
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generally ignored in previous remote sensing classification applications. The decision 

tree method is used to compare the importance and relevance of input features for a given 

classification context. This evaluation framework is applied in the context of the urban 

land use classification. Four modern classifiers are evaluated by this framework, 

benchmarked by the standard MLC method.  

(2) In the light of a general improvement to the classifiers when the V-I-S model and 

LST is used in urban land use classification, some guidelines for urban remote sensing 

are inferred. The V-I-S fractions and LST input not only improves the accuracy, but more 

importantly, also improves the stability of classifiers. The tree classifier has been shown 

as an unstable and weak classifier when being used with conventional spectral based 

classification. The randomization in the tree-based ensembles improves the stability of 

tree classifier. V-I-S fractions and LST display more importance and relevance to urban 

land use classes than the conventional band reflectance as they are favored by tree and 

tree-based ensembles for branch splitting. The use of them also leads to less complex 

trees than band spectral reflectance as the classification input. These conclusions apply to 

the cases of both pixel-based classification and object-oriented classification. The 

distribution of V-I-S fractions in the feature space is close to the normal distribution 

which makes the normality assumption more realistic, hence, the MLC classifier, 

although being criticized in the literature, works well with the input of V-I-S fractions 

fraction and LST. The object oriented classification further improves the accuracy but not 

much significantly improvement is found in stability. SVM classifier is the most robust 

classifier for all cases. A general guideline for urban land use classification inferred from 

this research is that the remote sensing analyst can choose to use either object-oriented 
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method or the transformation from band reflectance to V-I-S images + LST to perform an 

adequately accurate and reliable classification. They are suggested to be used with MLC. 

If none of them is used, then the SVM classifier is strongly recommended. 

(3) This research invented a new land use classification method. Land use classes 

form clusters in the V-I-S feature space. If viewed upside down, these clusters resemble 

topographic water catchments. Hence, a marker-controlled watershed segmentation 

method is explored to partition the V-I-S feature space into LULC regions to assist a 

semi-unsupervised classification. The result shows that when compared to a traditional 

MLC-based approach with V-I-S fractions, the watershed segmentation method achieves 

slightly higher accuracy. The markers that are used for controlling the watershed 

segmentation process can be specified by using on-screen digitizing and can be casually 

selected as long as they are close to the underlying watershed centers. This successful 

method adds new knowledge to the methodology of urban remote sensing and digital 

image processing. 

(4) Regression models are employed to map the link the urban physiogeographic 

conditions and the population in New Orleans from the 2010 Census.  Two types of input 

are considered: V-I-S sub-pixel fractions and land use information. The result shows that 

the population distribution could not be directly explained by the sub-pixel fractions in 

New Orleans. The land use information extracted from V-I-S fractions and LST produces 

a reasonable regression model with high R
2
. However, neither OLS nor GWR predict the 

population adequately. The GWR analysis suggests the spatial nonstationarity of the 

relationship which displays a concentric pattern, namely, the model fit is the lowest in the 

city core and increases with the distance from the city center. This study indicates that 
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New Orleans is a sophisticated city and the population models fitted with only 

physiogeographic variables still have room to improve. 

6.2 Suggestions for future research 

In addition to V-I-S and LST, textual variables could be included as input data for 

image classification and evaluated in the evaluation framework. The commonly used 

texture algorithms are: GLCM-based textural statistics, fractal dimensions, spatial metrics, 

and Gabor filter. Both the fractional variables and textural variables can enhance the 

performance of urban LULC classification by providing the spatial information. An 

interesting future research track would be conducting a comparison between them with 

emphasize on the discussion of the classification stability. 

It is necessary to test more study areas for the new watershed-segmentation-based 

image classification method developed in this research. The areas should cover a variety 

of urban types that could result in a different look in the V-I-S feature space (e.g., 

more/less clustering centers). 

More research efforts could be devoted to consider the incorporation of the 

socioeconomic data collected from census survey in the urban analysis. For example, it is 

desirable to include socioeconomic data in the population regression model in addition to 

the physiogeographic measurements used in this research. The historical population can 

also be used to model and predict the present population. The socioeconomic data (such 

as the parcel data) can also be considered in the urban LULC mapping and urban land 

characterization.  These suggest other future research tracks. 
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