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ABSTRACT 

An automated synoptic weather classification system, based on the weather types devised 

by Robert Muller for Louisiana, is presented in this thesis and an application of the classification 

system to precipitation variability in Louisiana is demonstrated. The automated classification 

presented here is a hybrid classification system that uses sea level pressure composites for each 

Muller weather type as seeds in a correlation procedure to classify daily NCEP/NCAR 

Reanalysis sea level pressure patterns. The resulting hybrid classification is automated, objective, 

and has value in describing the surface weather variability in Louisiana. In the second part of this 

research project, the newly developed hybrid classification system is used to establish 

relationships between synoptic weather types and precipitation variability in Louisiana. Weather 

types that produce precipitation in Louisiana are identified and, using linear regression models, 

the frequency of rainy weather types is used to predict seasonal rainfall for each of the nine 

Louisiana climate divisions. Averaged among all climate divisions, synoptic weather type 

frequency accounts for 25% of the interannual precipitation variability in winter, 14% in spring, 

19% in summer, and 25% in fall. While the models are better at predicting the decadal scale 

variability and trends during fall and winter, these results indicate that synoptic frequency alone 

is insufficient to describe precipitation variability in Louisiana. Future work will need to identify 

additional predictors. However, the automated hybrid classification system presented in this 

study can be used for many additional applications in historical and future climate research for 

Louisiana. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Louisiana is located in the Southeast United States, a region that is characterized by large 

shifts in weather conditions from year to year, especially in terms of precipitation. One common 

way to study weather variability for a location is using synoptic climatology. Synoptic 

climatology is a sub-field of climatology that focuses on establishing relationships between 

synoptic scale atmospheric circulation patterns and the surface environment (Yarnel 1993). The 

primary methodology of synoptic climatology is synoptic classification, or the grouping of 

similar circulation patterns into classes called synoptic types. In most contexts, a circulation 

pattern is a field of some atmospheric variable, often sea level pressure or geopotential height 

(Huth et al. 2008). There are a wide variety of different synoptic classification methodologies 

and schemes, which are discussed in more detail in Chapter 2. The choice of synoptic 

classification for use in a particular study is dependent on a variety of factors including study 

region, weather phenomena, research question, etc. Oftentimes, a researcher will develop their 

own unique classification scheme to match their research purposes.  

Since there is a limited amount of synoptic climatological research in the south central 

United States, it is still unclear how much synoptic type variability contributes to surface climate 

variability and trends in Louisiana. Only one synoptic weather typing system exists exclusively 

for Louisiana climate related studies; the Muller weather typing system for Louisiana (Muller 

1977). While this system has been successful for many applications, it is a manual system that is 

both subjective and time-consuming. The Muller system has limited applicability for studying 

long term and/or future climate impacts. This thesis will present an automated classification 

system for classifying synoptic weather typing system for Louisiana that attempts to capture the 
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essence of the Muller system. Automated classification systems open up many additional 

applications by providing a fast, objective way to produce long-term synoptic type catalogs for a 

region. Having the ability to produce large datasets broadens the scope of potential research to 

include applications that require long term data, such as establishing relationships between 

synoptic type frequency and surface phenomena. These applications are very important in 

climate change research and can serve as the basis for a relatively new area of research 

investigating synoptic types in future climates using general circulation models (GCMs), as well 

as synoptic-based statistical downscaling of GCM projections. In particular, the discovery of 

statistical relationships between variables that are less accurately portrayed by the GCMs, like 

precipitation, are of great interest for statistical downscaling (Lee 2012).  

For Louisiana, the various GCM’s disagree about the sign and magnitude of future 

precipitation changes (Keim et al. 2011, Kunkel et al. 2013), likely due to process-based errors in 

the models (Hope 2006, Finnis et al. 2009). As a result, until precipitation dynamics in the 

models are improved substantially, statistical downscaling based on more accurately predicted 

GCM variables is the only option to generate accurate precipitation predictions (Lee 2012). One 

type of statistical downscaling is synoptic-based statistical downscaling, where models use 

synoptic type frequency to predict surface variables. However, this is only a viable option if 

there is a strong relationship between synoptic type and the surface variable in question. There 

has yet to be a study investigating the statistical link between synoptic type frequency and 

precipitation in Louisiana. However, precipitation has been broadly linked to synoptic-scale 

controls (Muller 1977, Trewartha 1981, Keim 1996). By quantifying the relationship between 

synoptic types and precipitation in Louisiana, this study will serve as the first step in evaluating 
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the feasibility of developing a statistical downscaling model for the region. Therefore, the 

objectives of this thesis are: 

1. Develop an automated synoptic classification system that will have wide reaching 

climate and weather applications for Louisiana. 

2. Use the newly developed classification system to study the influence of synoptic scale 

weather variability on interannual to decadal scale precipitation variability in Louisiana. 

1.2 Summary 

The second chapter of this thesis presents a new method of synoptic classification for 

Louisiana. The requirements for the classification system are 1) that it has wide applicability to 

Louisiana weather and climate investigations and 2) that it is able to classify weather patterns 

both quickly and objectively. The proposed method is an objectification of the Muller Weather 

Typing system for Louisiana, a widely used manual classification system in the region for 

applications ranging from air quality research (Muller and Jackson 1985) to the quantifying the 

effect of El Niño-Southern Oscillation events on weather type frequencies (McCabe and Muller 

2002). The goal of the procedure is not to recreate the Muller weather typing system, but to 

develop a new classification system that is able produce a synoptic type catalog that describes 

the synoptic variability of Louisiana in a way that is consistent with the manual Muller Weather 

Types, yet has the advantages of being both objective and automated. The third chapter of this 

thesis is an application of the newly developed classification system to study precipitation 

variability in Louisiana. In Chapter 3, regression models are developed using synoptic type 

frequency to predict seasonal rainfall for Louisiana’s climate divisions. By investigating the 

statistical relationships between synoptic weather types and rainfall in Louisiana, this study is a 

first step toward creating improved climate change projections for precipitation in the Louisiana. 
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Lastly, Chapter 4 includes a summary of findings and a discussion of future work related to this 

project.  
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CHAPTER 2. AN AUTOMATED PROCEDURE FOR CLASSIFYING SYNOPTIC TYPES 

FOR LOUISIANA, USA BASED ON THE MANUAL MULLER WEATHER TYPING 

SCHEME 

 

2.1 Abstract 

This study presents an automated hybrid synoptic classification procedure for classifying 

Louisiana weather types, based on the manual weather typing system devised by Robert Muller. 

The goal of the procedure is to produce a synoptic classification system for Louisiana that 

harnesses the strengths of both manual and automated classifications, while eliminating the 

weaknesses. The Muller weather types archive from 1981 – 2001 is used in conjunction with the 

NCEP/NCAR Reanalysis dataset to develop sea level pressure composites for each Muller 

weather type. The composites are used as seeds in an automated correlation-based algorithm to 

generate weather types from 1981-2001. Results of the automated procedure are compared to the 

Muller weather type catalog. Despite systematic differences between the two classifications, the 

automated procedure correctly matched the Muller weather type at one or more of the point 

locations for 57% of the days. In addition, the automated catalog captured the seasonal 

distribution and interannual variability of the Muller types remarkably well. The hybrid synoptic 

weather classification system applied to weather properties at Shreveport and New Orleans 

showed significant differences between weather types, demonstrating that although the 

automated procedure does not replicate the Muller weather type classification exactly, it is 

homogenous within itself and has value for describing the variability of surface weather in 

Louisiana. In fact, it is arguably advantageous for some applications, due to its objectivity, 

speed, and reproducibility. 
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2.2 Introduction 

Synoptic classification is a commonly used approach within the field of climatology. It 

focuses on establishing relationships between synoptic scale atmospheric circulation patterns and 

the surface environment (Yarnel 1993). Synoptic scale features that make up the atmospheric 

circulation pattern are generally between 1000 to 2500 kilometers in size (Huschke 1959), and 

include ridges, troughs, cyclones, and anticyclones. The location and strength of synoptic 

features can be indicative of the occurrence of different surface meteorological phenomena. In 

fact, various sectors of cyclones and anticyclones can produce dramatically different weather 

conditions (Keim et al. 2005). To capture this variability, synoptic patterns reduce the complex 

atmosphere into a manageable number of discrete reoccurring patterns, or synoptic types (Yarnel 

1993). Synoptic classification is a useful tool for climatological research, and has a wide range of 

applications. Examples of applications include studying the relationship of synoptic types to 

precipitation occurrence (Fragoso and Gomes 2008, Bettolli et al. 2010, Raziei et al. 2012), 

linking synoptic type frequency to Pacific teleconnection frequency (Coleman and Rogers 2007), 

investigating synoptic types in future climates using general circulation models (GCMs) (Hope 

2006), and synoptic-based statistical downscaling of GCM projections (Wetterhall et al. 2009), 

among many others.  

There are many different techniques used to perform synoptic classification. However, 

each classification follows the same general procedure of defining classification types and then 

assigning each individual map pattern to a type (Huth et al. 2008). The earliest classifications 

were done manually and are implicitly subjective (Hess and Brezowsky 1952, Lamb 1972, 

Muller 1977). These classifications depended greatly on the experience of the researcher to 

recognize important patterns (Huth et al. 2008, Yarnel 1993). While the development and 
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application of manual classifications are still found in recent synoptic climatology (Keim et al. 

2005), the methods of synoptic classification have vastly evolved as computers have advanced to 

facilitate the analysis of large, complex datasets. A range of automated methods has emerged, 

including correlation-based methods (Lund 1962), cluster analysis (Kalkstein et al. 1987), 

principal component analysis (PCA) (Richman 1986), self-organizing maps (Hewitson and 

Crane 2002), and fuzzy clusters (Bardossy et al. 1995). Although automated techniques have not 

been found to be significantly more accurate than manual techniques, they have some important 

advantages (Yarnel 1993). In addition to being much faster than manual techniques, automated 

techniques are considered to be more objective and are often 100 percent reproducible. However, 

despite the advantages of automated techniques, there is very little control over the synoptic 

patterns that the computer defines, and often non-significant patterns emerge or patterns that are 

known to be important do not appear (Frakes and Yarnel 1997). The main advantage of manual 

techniques is that the user has control of the weather types chosen, thus can ensure the types  

represent the important patterns for the region (Keim et al. 2005). 

In addition to manual and automated classifications, there are some weather type 

classifications in which the weather types are defined subjectively by the researcher, but the 

individual cases are assigned objectively using an automated procedure (Schwartz 1991, Jones et 

al. 1993, Kalkstein 1996, Frakes and Yarnel 1997, James 2007, Beck et al. 2007). These synoptic 

classifications are referred to as hybrid or mixed classifications (Huth et al. 2008, Frakes and 

Yarnel 1997). Hybrid classifications aim to harness the strengths of both manual and automated 

techniques, since they are both automated and reproducible, yet allow for the expertise of the 

researcher to be used to define the synoptic types. The methods of hybrid classifications vary. 

Some hybrid techniques classify synoptic types using subjectively defined thresholds of weather 
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variables for each type (Schwartz 1991, Kalkstein 1996). Other hybrid techniques are automated 

versions of manual classifications, such as the Bergen school mid-latitude cyclone model (Frakes 

and Yarnel 1997), the Hess and Brezowsky Grosswetterlagen for central Europe (James 2007), 

and the Lamb Weather Types for the British Isles (Beck et al. 2007, Jones et al. 1993). These 

types of hybrid classifications are created using pattern correlation between prototypes of each 

weather type and the individual cases (Huth et al. 2008). These classifications are useful because 

the manual classifications they are based on are well-known and are proven to describe 

atmospheric variability well for their prospective regions. In a comparison study of the ability of 

74 weather type classifications to identify associations of weather types with drought in 

northwest Europe, the objectivized Grosswetterlagen (James 2007), a hybrid map pattern 

classification, outperformed all other classification methods, even the manual Grosswetterlagen 

(Fleig et al. 2010).  

This paper centers on objectivizing a manual weather typing scheme for Louisiana that 

was developed in the 1970s by Muller (1977). The Muller weather types are a very unique 

synoptic type catalog and have a wide array of applications (Muller and Jackson 1985, McCabe 

and Muller 1987, Faiers 1988, Faiers 1993, Faiers et al. 1994, Rohli and Henderson 1997, 

McCabe and Muller 2002). The applications of the Muller weather range from studying the 

effect of the El Nino Southern Oscillation on synoptic type frequency and properties of winter 

precipitation in New Orleans (McCabe and Muller 2002), to evaluating air quality potential at 

Shreveport, LA(Muller and Jackson 1985), to creating an index of evaporation by weather type 

for Southern Louisiana (McCabe and Muller 1987). While the Muller weather type catalog is 

useful for climate studies, its temporal coverage is limited, and types have not been cataloged in 

over 10 years. This study aims to use a correlation-based hybrid synoptic classification 
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procedure, similar to that used by Frakes and Yarnel (1997), to blend the Muller Weather Typing 

scheme for Louisiana with an automated correlation based classification technique. Furthermore, 

this research will determine whether the hybrid procedure outlined below produces a synoptic 

type system that describes the synoptic variability of Louisiana in a way that is consistent with 

the manual Muller weather types. A successful automated hybrid procedure using the Muller 

weather types as prototypes could be used to generate a long-term weather type catalog for 

Louisiana, including intra-diurnal classifications of weather types. The resultant catalog will 

provide a baseline for studying climate trends and their impacts in the region. In addition, the 

hybrid method will be appropriate for studying climate model output and for further application 

in synoptic climatology, especially since the Muller catalog is no longer maintained.  

2.3 Data 

2.3.1 NCEP/NCAR Reanalysis Dataset 

This study utilizes sea level pressure data from the National Center for Atmospheric 

Research (NCAR)/National Centers for Environmental Prediction (NCEP) Reanalysis I Dataset 

(Kalnay et al. 1996). This dataset was assembled from a variety of climate data sources, 

including land surface, satellite, aircraft, and rawinsonde data (Kalnay et al. 1996). There are 

many different atmospheric variables included in the dataset, including both surface and upper-

air data. These data are available 4 times daily at six-hourly intervals (6Z, 12Z, 18Z, 00Z) from 

1948 to present. The data are in the form of global grids, with 2.5 degree grid spacing.  An 

example of the data grid overlaid on the continental United States can be found in Figure 2.1. All 

of the sea level pressure maps in this thesis show surfaces interpolated from gridded datasets.  
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Figure 2.1. A 20
o
N –55

o
N by 60

o
W – 135

o
W subset of the NCAR/NCEP Reanalysis I dataset 

grid overlaid on the continental United States.  

 

2.3.2 Muller Weather Type Catalog 

The Muller weather typing scheme for Louisiana was developed in the 1970s by Robert 

Muller and maintained until mid-2002 by the Louisiana Office of State Climatology (LOSC). A 

manual synoptic classification was produced for 0600 and 1500 CST (12Z and 21Z) for New 

Orleans from January 1, 1961 – October 31, 2002 and for Shreveport, Monroe, Baton Rouge, and 

Lake Charles from January 1, 1981 – October 31, 2002. The Muller Weather Typing scheme is a 

subjective classification of surface maps, based primarily on pressure patterns and the location of 

fronts; however, the researcher also takes into account certain local climate parameters, including 

temperature, precipitation, clouds, relative humidity and winds, when assigning each surface 

map to a weather type. Therefore, there are instances in which the entire state is experiencing the 

same weather type and other times when 2 or more weather types are present within the state at 

the same time. For this reason, the weather types were determined separately for each individual 
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city or point location. The eight Muller Weather types are briefly described below as they were 

outlined in Muller and Willis (1983) with examples shown in Figure  2.2. 

1. Continental High (CH): This weather type is characterized by surface high pressure over 

the central US extending down into Louisiana, which causes north to northeasterly winds 

over the region. The weather associated with this type is fair and cold. 

2. Pacific High (PH): This weather type occurs in Louisiana after the passage of a Pacific 

cold front. Normally, a surface low pressure system is situated to the northwest of the 

region, causing west to northwest winds to usher in dry air over Louisiana. The typical 

weather associated with this type is fair and mild.  

3. Gulf High (GH): This weather type occurs when a high pressure system is located south 

of Louisiana over the Gulf of Mexico. In these situations, the location of the high 

pressure system causes southwest surface winds and brings fair and warm weather to 

Louisiana.  

4. Coastal Return (CR): This weather type occurs when a high pressure system is located to 

the northeast of the region. This pattern causes easterly winds and brings fair and mild 

weather to Louisiana.  

5. Gulf Return (GR): This weather type occurs when a surface high pressure system moves 

far enough east of the region to cause the surface winds over Louisiana to shift to 

southeasterly, ushering in warm, moist air from the Gulf of Mexico. In addition, the 

pressure gradient is often enhanced by a developing low pressure system over Texas. The 

weather associated with this weather type in Louisiana is fair, warm, and humid.  
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Figure 2.2. Examples of sea level pressure patterns showing isobars, high and low pressure 

centers, and fronts for each of the 8 original Muller Weather Types (From Muller and Willis 

1983). 
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6.  Frontal Gulf Return (FGR): This weather type is characterized by a frontal low pressure 

system that is close enough to the region to affect its weather. Normally, an approaching 

low pressure system causes south to southwest winds, and brings turbulent and stormy 

weather to Louisiana.  

7. Frontal Overrunning (FOR): This weather type occurs when a front becomes stationary 

along the northern Gulf coast.  Often during this kind of pattern, waves of low pressure 

form and move eastward along the front. Normally, this weather type brings northeasterly 

winds and rain to the region. 

8. Gulf Tropical Disturbance (GTD): This weather type occurs when a tropical system, 

ranging from a tropical wave to a Category 5 hurricane, impacts Louisiana. This weather 

type brings strong, shifting winds and rainy weather to the region.  

An archive of Muller weather types for Louisiana was created and maintained by Robert 

Muller and his students until early 2002. Dr. Muller originally began the classification in the 

1970’s. He later trained his students to use the system, and they extended the classification for 

New Orleans back to 1961. Additionally, in the late 1990’s and early 2000’s, Dr.Muller’s 

students assisted in weather typing for all cities. The entire archive was utilized in this study.  

2.4 Automated Muller Weather Typing Procedure 

2.4.1 Muller Weather Types Sea Level Pressure Composites 

A weakness of automated synoptic typing techniques is the loss of valuable 

climatological expertise in defining meaningful synoptic types for a region, inherent in manual 

classifications. By using composite sea level pressure grids for each Muller weather type as 

seeds in a correlation-based synoptic typing algorithm, we preserve the valuable researcher 

knowledge that was used to define the Muller synoptic types in the manual typing procedure. 
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Daily sea level pressure data were collected from the NCAR/NCEP Reanalysis dataset for the 

region from 20
o
N –50

o
N by 65

o
W – 125

o
W from 1948 to 2012. This area covers the entire 

continental United States, as well as the Gulf of Mexico. To create the composite sea level 

pressure grids for each Muller type, a 21-year subset of the 12Z Muller synoptic type catalog 

from 1981 to 2001, maintained in the Louisiana Office of the State Climatology and Southern 

Regional Climate Center, was used to assign each corresponding NCEP/NCAR Reanalysis I 

daily sea level pressure grid to the correct Muller weather type. This subset is referred to as the 

training dataset. The time period from 1981 to 2001 was chosen because the Muller weather type 

archive includes types for all five cities starting in 1981, with 2001 as the last full year of data 

available. The training dataset was then refined to include only “non-transition” days, or days on 

which the Muller synoptic type was the same at all 5 locations: Shreveport, Monroe, Lake 

Charles, Baton Rouge, and New Orleans. The choice to include only “non-transition” days in the 

calculation of the Muller weather type composites was made to ensure separation between the 

types by preventing the influence sea level pressure grids that were in transition between two 

weather type situations. Of the 7670 0600 CST sea level pressure grids from 1981 – 2001, 4202 

of them were “non-transition”.  

Using the grids from the training dataset, the average sea level pressure field for each 

Muller weather type was calculated. Since there are seasonal differences in sea level pressure 

pattern intensity, each sea level pressure grid was standardized before the seasonal means were 

calculated. According to the study of Yarnel (1993), standardization is necessary to remove the 

seasonal influences on absolute pressure patterns so that only the generalized map pattern 

remains, making seasonal pressure patterns from different seasons comparable. Each daily sea 

level pressure grid was standardized using the following formula known as the Z-transformation: 
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    ̅

 
                                     (Equation 1) 

where    is the standardized grid point value,    is the original grid point value,  ̅ is the mean 

value of all of the grid points, and   is the standard deviation of all of the grid point values 

(Yarnel 1993).  

2.4.2 Hybrid Correlation Based Automated Procedure 

There are several different methods that can be used to develop a hybrid weather type 

classification. The goal of the hybrid classification presented here is to automatically classify 

daily sea level pressure grids using the pre-defined Muller classification system. A correlation-

based method was chosen for this study because it is ideal for performing a targeted 

classification using predefined types (Schoof and Pryor 2006). Correlation based methods for the 

synoptic classification of gridded data were first introduced by the study of Lund (1962). The 

study of Kirchhofer (1973) improved upon the Lund (1962) methodology of correlation-based 

classifications by introducing correlation thresholds for sub scale map patterns. The methodology 

of  Kirchhofer (1973) is widely accepted and has been used extensively in synoptic classification 

studies (McKendry et al. 1995, Saunders and Byrne 1996, Saunders and Byrne 1999, Frakes and 

Yarnel 1997, Schoof and Pryor 2006, El-Kadi and Smithson 2000). The Kirchhofer classification 

scheme is based on the Kirchhofer score (SS), or the sum of squares value between the 

normalized grid point values of two map patterns (Yarnel 1993). To perform a classification, the 

SS is calculated for every possible pair of gridded map patterns. The researcher sets a SS 

threshold that represents a cut-off point at which two grids are considered similar. The 

observation day grid with the highest amount of threshold exceedances is selected as a keyday. 

The keyday can also be understood as the observation day that has the most number of 
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observational days with similar sea level pressure grids. Keydays  represents typical synoptic 

patterns (Yarnel 1993). Next, the keydays and all similar days are removed from the dataset, and 

the process is repeated until there are no days left. Each observation is then assigned to the 

keyday for which it has the highest SS value above the chosen threshold. If an observation has no 

SS value above the threshold, it is considered unclassified (Yarnel 1993). The choice of 

correlation threshold impacts how many keydays are chosen, how many unclassified days there 

are in the classification, and the within and between group variance of the weather types (Yarnel 

1993). An overview of a correlation based classification procedure in synoptic climatology is 

presented in Figure 2.3.  

The classification performed in this study is a targeted Kirchhofer classification (Frakes 

and Yarnel 1997, Schoof and Pryor 2006). Instead of allowing the algorithm to define the 

keydays as in a traditional Kirchhofer classification, keydays were predefined as the Muller sea 

level pressure composites. Therefore, the choice of correlation threshold has no impact on the 

number of keydays chosen. Theoretically, the choice of correlation threshold is still important in 

a targeted Kirchhofer classification. Higher correlation thresholds should minimize within group 

variance, but result in a high number of unclassified days, whereas lower correlation thresholds 

result in higher within group variance with a lower number of unclassified days. However, the 

study of Frakes and Yarnel (1997) found no significant advantages in minimizing within group 

variance by choosing higher correlation thresholds over lower correlation thresholds with much 

higher percentages of days classified. In fact, they found that the within-group variance of the 

hybrid weather types with a correlation threshold of r = 0.00 was actually less than the within-

group variance of the manual classification weather types. For this reason, I chose to eliminate  
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Figure 2.3. A flowchart of a correlation based classification of map patterns in synoptic 

climatology. (Figure from Frakes and Yarnel 1997).   
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the correlation thresholds from the classification procedure and simply assign each observation 

to the keyday that had the lowest SS value. To determine the most appropriate weather type, the 

SS was calculated between an individual sea level pressure grid and each Muller sea level 

pressure composite grid, using the formula: 

 

   ∑ (       )
  

   
                                         (Equation 2)  

 

where SS is the Sum of Squares or Kirchhofer score, N is the number of grid points, Gxi is the 

normalized value of grid point i on sea level pressure grid x, and Myi is the normalized value of 

grid point i on the Muller sea level pressure composite grid y (Yarnel 1993). Using this 

procedure, all sea level pressure grids are classified. A variety of different sized subsets of the 

gridded NCAR/NCEP Reanalysis data were experimented with for use in the sum of squares 

procedure (Figure 2.4). Using each of the grid sizes, daily weather types were produced using the 

procedure from 1981 to 2001 and compared with the Muller weather types. The table 2.1 reports 

the percentages of days that had an exact weather type match between the Muller and hybrid 

datasets for one or more of the point locations. It was found that when using gridded data that 

covered the large areas, many of the features that are significant to Louisiana weather got 

“washed out” by the variability of other synoptic features across the country, and fewer daily 

matches occurred. On the other hand, the small grid that centered on Louisiana (H in Figure 2.4) 

did not offer enough information about the synoptic conditions to produce a good classification.  
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Figure 2.4. The subsets of the NCAR/NCEP reanalysis gridded dataset that were used in the 

correlation procedure.  

 

Table 2.1. The coordinates and percentage of days that had an exact weather type match between 

the Muller and hybrid weather classification catalogs for the grids shown in Figure 2.4.  

 

Grid 
Upper Right 
Coordinates 

Lower Left 
Coordinates 

Daily 
Matches  

A 50 N, -65 W 20 N, -125 W 55% 

B 47.5 N, -87.5 W 22.5 N, -177.5 W 42% 

C 47.5 N, -65 W 22.5 N, -95 W 43% 

D 45 N, -70 W 25 N, -110 W 46% 

E 37.5 N, -87.5 W 27.5 N , -110 W 50% 

F 37.5 N, -75 W 20 N, -105 W 55% 

G 35 N, -80 W 25 N, -100 W 57% 

H 35 N, -87.5 W 27.5 N, -95 W  53% 
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Through trial and error, it was found that calculating the sum of squares between subsets 

of the grids from 25
o
N –35

o
N by 80

o
W – 100

o
W (G in Figure  2.4) produced a classification that 

was the most similar to the manual Muller weather types on a daily time scale. This subset 

covers a 1000 x 2000 kilometer area centered on New Orleans, LA. The hybrid procedure was 

first used to classify only the sea level pressure grids in the training dataset, which includes all 

12Z sea level pressure grids from 1981 – 2001. After the procedure was evaluated according the 

methods described below, all 12Z sea level pressure grids from 1948 – 2012 were classified 

using the hybrid procedure.  

2.4.3 Evaluation of Hybrid Classification  

The hybrid classification was first evaluated by comparing the automated and manual 

classifications for each sea level pressure grid in the training dataset on a daily basis to determine 

what percentage of the grids were classified as the same type using both methods. However, it is 

important to note that the automated hybrid procedure defines weather types for the entire state, 

whereas the Muller system defines weather types individually for each point location. This 

difference makes it somewhat challenging to compare the two classifications. Since only one 

classification was performed for the entire state in the hybrid procedure, results were compared 

to the manual Muller classification at each of the 5 cities to determine if the hybrid procedure 

performed better at some locations than at others. Monthly and annual frequencies of each 

weather type were compared and correlation coefficients were calculated between datasets to 

determine if the hybrid classification captured the same seasonal and annual distribution of 

weather types as the Muller classification. Finally, using the hybrid classification catalog from 

1948 – 2012, mean weather properties at each city (wind speed and direction, visibility, cloud 

cover, temperature anomaly, dew point depression, and precipitation days) were calculated from 
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World Meteorological Organization (WMO) Surface Hourly Data for each hybrid weather type 

to evaluate whether the hybrid classification captures differences in observed weather between 

weather types. To further explore differences between the weather types, pairwise multivariate 

tests for equality were conducted on the mean weather properties for each type. 

2.5 Results and Discussion 

2.5.1 Muller Weather Types Sea Level Pressure Composites 

Sea level pressure composites for the eight Muller Weather Types are shown in Figure 

2.5. For the most part, the composites capture the main synoptic level features that are 

characteristic of each type and the wind flow over Louisiana is correct for most types. For 

example, the sea level pressure composite for the Pacific High type has high pressure system in 

the west and low pressure in the midwest, with northwesterly flow over Louisiana. This pattern 

is similar to that described by Muller and Willis (1983) for a typical Pacific High pattern. This 

holds true in most cases; however, one composite that does not have a very distinct pattern is the 

Frontal Overrunning composite. This is likely because the location of the surface cold front is 

important to delineating this weather type in the Muller classification, though these fronts are not 

included in the pressure patterns of the NCEP Reanalysis dataset. As such, it will be difficult for 

the automated procedure to distinguish it from some of the other weather types using pressure 

patterns alone. The Gulf Tropical Disturbance sea level pressure composite detects low pressure 

in the eastern Gulf, but the low pressure system is elongated and offset to the west of Louisiana. 

This is likely due to the fact that there is a large amount of variability in tropical patterns, 
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Figure 2.5. Muller Sea Level Pressure Composites created using grids from the testing dataset. 

(CH = Continental High, PH = Pacific High, GH = Gulf High, CR = Coastal Return, GR = Gulf 

Return, FGR = Frontal Gulf Return. FOR = Frontal Overrunning, GTD = Gulf Tropical 

Disturbance). 
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which range from weak tropical disturbances to major hurricanes, and can affect Louisiana from 

any position in the Gulf of Mexico under a variety of atmospheric conditions. While this 

composite should be able to identify most of the tropical systems in the automated classification, 

it will also classify extra-tropical Gulf lows, which commonly form off the coast of Texas in 

winter and spring (Hsu 1992), as Gulf Tropical Disturbances. Both of these weather patterns 

cause disturbed weather in Louisiana, so instead of eliminating the pattern from the automated 

classification, we chose to rename the class Gulf Low (GL) and accept that this will cause some 

disagreement between the two classification systems.  

2.5.2 Evaluation of Hybrid Classification  

The 1981 to 2001 sea level pressure composites for both the Muller and hybrid 

classifications are displayed in Figure 2.6. The red box indicates the grid that was used in the 

automated procedure. If the hybrid classification was a perfect replica of the Muller 

classification, the composites for each classification would be identical. While there are some 

minor differences, such as the strength of the high and low pressure systems, the main synoptic 

features are the same for both classifications. Most importantly, the orientation of the sea level 

pressure gradient over Louisiana is very similar between the two classifications for each weather 

type. This is important because the Muller classification relies heavily on wind direction, and the 

pressure gradient orientation largely determines wind direction. The similarity between the 

Muller and hybrid sea level pressure composites suggests that the hybrid system, while not 

replicating the Muller system, may serve as an acceptable surrogate. 
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Figure 2.6. Sea level pressure composites by weather type for the a) Muller and b) hybrid 

classifications. The red bounding box shows the grid area used in the classification algorithm. 

(CH = Continental High, PH = Pacific High, GH = Gulf High, CR = Coastal Return, GR = Gulf 

Return, FGR = Frontal Gulf Return. FOR = Frontal Overrunning, GTD = Gulf Tropical 

Disturbance, GL = Gulf Low).  

a) Manual Muller b) Hybrid 
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(Figure 2.6 continued) 

 

 

 

 

a) Manual Muller b) Hybrid 
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A comparison of the Muller and hybrid classifications on a daily basis revealed that the 

hybrid classification correctly matched the Muller weather type at one or more of the points. The 

hybrid classification correctly identified the Muller weather type in 41% of the cases (Table 2.2).  

The highest percentage classified correctly was 45 % at Lake Charles. At first consideration, 

these figures seem low. It is important to remember that the purpose of a hybrid classification is 

not to exactly replicate the original manual classification; instead, the goal is to provide an 

acceptable alternate that can be used for applications that benefit from using automated 

methodologies (Huth et al. 2008). In the hybrid classification literature, these results of this study 

are comparable to the results of other similar studies. For example, the objectivized 

Grosswetterlagen classification had a 39.1 % daily correspondence with the manual 

Grosswetterlagen classification (James 2007). However, the classification is considered highly 

successful. In fact, it outperformed over 70 other classifications in an inter-comparison study of 

their power to analyze drought in north-western Europe. Other daily correspondence values 

between manual classifications and their objectivized versions are 42 % in Frakes and Yarnel 

(1997) and 34.7 % in Kruger (2002). Compared to these previous studies, the objectivized 

Muller classification had slightly better success on the daily timescale at each point location.   

Figure 2.7 shows the total number of days from the testing dataset assigned to each 

weather type for each classification, with the number of Muller days presented as the average of 

the number of days classified as each weather type at the five Louisiana cities. This figure shows 

that the hybrid classification under classifies the Continental High and Frontal Overrunning 

types, and over classifies the Pacific High and Gulf Disturbance types. Yet, the total number of 

days classified as Gulf High, Coastal Return, Gulf Return, and Frontal Gulf Return types is 

similar for both the Muller and hybrid Classifications.  
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Figure 2.7. Chart comparing the total number of days from the testing dataset classified as each 

weather type between the Muller manual typing scheme and the hybrid typing procedure from 

1981 - 2001.  

 

A more detailed look at the performance of the hybrid classification can be seen in Table 

2.2, which shows the percentage of the Muller weather types that were matched in the hybrid 

classification by weather type for each of the five Louisiana cities. The comparison of the two 

classifications by weather type reveals that the hybrid procedure is better at identifying some of 

the Muller weather types than others. For instance, at Shreveport, 72% of the Gulf Return grids 

were classified correctly using the hybrid procedure, whereas only 32% of the Frontal 

Overrunning grids were identified correctly. The various disagreements between the Muller and 

hybrid classifications can likely be attributed to one of two sources: the subjectivity of the Muller 

classification system or the limitations of the correlation algorithm in identifying certain weather 

patterns.  
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Table 2.2. A) The percentages of Muller classification grids by type from the testing dataset that 

were classified as each of the weather types in the hybrid classification from 1981 – 2001 for 

Shreveport, Monroe, Lake Charles, LA. B) Same, but for Baton Rouge, and New Orleans, LA. 

 
 

A) Hybrid Classification CH PH GH CR GR FGR FOR GD 

Shreveport 

CH 34% 7% 6% 4% 1% 1% 7% 1% 

PH 24% 55% 15% 1% 0% 4% 14% 1% 

GH 4% 6% 43% 3% 6% 7% 2% 2% 

CR 18% 3% 9% 51% 15% 9% 14% 13% 

GR 2% 4% 21% 23% 72% 31% 8% 23% 

FGR 1% 14% 3% 2% 4% 32% 10% 6% 

FOR 15% 7% 2% 8% 0% 5% 32% 7% 

GL 2% 3% 1% 8% 2% 10% 13% 46% 

Total Agreement  =  44% 

Monroe 

CH 33% 7% 5% 3% 0% 1% 7% 0% 

PH 20% 58% 14% 1% 1% 5% 18% 1% 

GH 4% 7% 43% 2% 5% 8% 2% 3% 

CR 22% 4% 8% 47% 11% 8% 12% 8% 

GR 4% 6% 25% 30% 72% 23% 8% 20% 

FGR 1% 11% 3% 1% 8% 36% 8% 8% 

FOR 13% 6% 2% 8% 0% 7% 33% 6% 

GL 2% 1% 1% 8% 3% 12% 12% 53% 

Total Agreement  =  44% 

 Lake Charles 

CH 36% 6% 5% 5% 1% 2% 11% 1% 

PH 23% 63% 16% 1% 1% 7% 17% 1% 

GH 4% 5% 41% 3% 5% 3% 1% 3% 

CR 20% 3% 9% 48% 20% 8% 16% 22% 

GR 2% 4% 21% 26% 63% 17% 7% 20% 

FGR 1% 10% 4% 2% 6% 36% 4% 6% 

FOR 12% 5% 3% 9% 1% 13% 34% 9% 

GL 2% 2% 1% 6% 3% 15% 9% 38% 

Total Agreement  =  45% 
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(Table 2.2 continued) 

B) Hybrid Classification CH PH GH CR GR FGR FOR GD 

Baton Rouge 

CH 34% 8% 5% 4% 0% 2% 12% 1% 

PH 19% 65% 15% 1% 1% 12% 21% 2% 

GH 4% 6% 40% 2% 5% 4% 2% 3% 

CR 25% 3% 8% 44% 10% 5% 14% 17% 

GR 5% 5% 25% 33% 61% 10% 7% 22% 

FGR 1% 9% 3% 2% 16% 32% 3% 8% 

FOR 11% 4% 2% 8% 2% 18% 33% 8% 

GL 1% 1% 1% 5% 5% 17% 8% 39% 

Total Agreement  =  42% 

New Orleans 

CH 35% 8% 4% 4% 0% 2% 14% 1% 

PH 18% 65% 16% 1% 1% 15% 21% 1% 

GH 5% 6% 40% 3% 5% 3% 2% 3% 

CR 25% 3% 8% 43% 9% 5% 15% 18% 

GR 6% 6% 25% 34% 60% 9% 7% 22% 

FGR 0% 7% 3% 2% 17% 28% 2% 9% 

FOR 10% 3% 2% 8% 2% 22% 32% 9% 

GL 1% 1% 1% 5% 5% 16% 7% 37% 

Total Agreement  =  41% 

 

The seasonal frequency of the weather types was compared between the two 

classifications (Figure  2.8). The Muller seasonal frequency values were computed as the average 

of the seasonal frequency of each weather type at the five Louisiana cities. Similar to the daily 

comparison, the seasonality of some of the weather types was captured better by the hybrid 

procedure than others. However, considering the daily alliance of the Muller and hybrid 

classifications was less than 60%, the seasonal distribution of the Muller weather types was 

reproduced remarkably well in the hybrid classification. The Pearson’s correlation coefficient 
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was calculated between the Muller and hybrid seasonal frequencies for each weather type (Table 

2.3). The seasonal frequencies of all weather types, except for Frontal Overrunning and Gulf 

Tropical Disturbance/Gulf Low, for the Muller and hybrid classifications are significantly 

correlated at the 95 % confidence level. This result could indicate that a large number of the 

misclassified grids are assigned to a weather type with a similar sea level pressure pattern that is 

just as likely to occur during a particular season. For example, while 40% of the Coastal Return 

grids were classified correctly by the hybrid procedure at New Orleans, 25% of them were 

assigned to the Gulf Return type (see Table 2.2). This is not that surprising, since the Coastal 

Return Type often transitions into the Gulf Return Type when the high pressure system shifts 

farther east of Louisiana. It is likely that some of the Coastal Return types in the Muller 

Classification that were “mistyped” in the hybrid classification were in transition between 

Coastal Return and Gulf Return. Since the Coastal Return and Gulf Return Types cause very 

similar types of weather for Louisiana, this error is not really detrimental to the hybrid 

classification. The major differences in seasonality between the two classifications are associated 

with the Gulf Tropical Disturbance/Gulf Low and Frontal Overunning weather types. In the 

Muller classification, the seasonal frequency of   the Gulf Tropical Disturbance type is centered 

on the hurricane season. However, in the hybrid classification, there are also baroclinic low 

pressure systems included in this type, which occur from late fall to spring (Hsu 1992). This 

helps to explain the double peak in the seasonality of the Gulf Low weather type in the hybrid 

classification, one in spring and one in summer.  
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Figure 2.8. Graphs comparing the seasonal frequency of the Muller and hybrid classifications 

from 1981-2001. (CH = Continental High, PH = Pacific High, GH = Gulf High, CR = Coastal 

Return, GR = Gulf Return, FGR = Frontal Gulf Return. FOR = Frontal Overrunning, GD = Gulf 

Tropical Disturbance, GL = Gulf Low). 

CR 
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Table 2.3. Pearson correlation coefficients (* = significant at 95% confidence level) between the 

seasonal frequency of the Muller and hybrid classification weather types from 1981 – 2001 for 

the State of Louisiana.  (CH = Continental High, PH = Pacific High, GH = Gulf High, CR = 

Coastal Return, GR = Gulf Return, FGR = Frontal Gulf Return. FOR = Frontal Overrunning, GD 

= Gulf Tropical Disturbance, GL = Gulf Low). 
 

Manual Muller Classification 

Hybrid Classification CH PH GH CR GR FGR   FOR GD 

CH 0.90 * --   --   --   --   --   -- -- 

PH --   0.96 * --   --   --   --   -- -- 

GH --   --   0.97 * --   --   --   -- -- 

CR --   --   --   0.74 * --   --   -- -- 

GR --   --   --   --   0.93 * --   -- -- 

FGR --   --   --   --   --   0.93 * -- -- 

FOR --   --   --   --   --   --   0.43 -- 

GL --   --   --   --   --   --   -- 0.44 

 

The interannual variability of the weather types in the two classifications was evaluated 

(Figure 2.9). The Muller annual frequency values were computed as the average of the 

interannual frequency of each weather type at the five Louisiana cities. Similar to the previous 

results reported, the interannual variability was captured by the hybrid procedure more 

accurately for some weather types than for others; however, the annual comparisons showed less 

covariability than the seasonal comparisons. The Pearson’s correlation coefficient was calculated 

between the Muller and hybrid seasonal frequencies for each weather type (Table 2.4). Although 

the correlations are not as strong for interannual variability as they are for seasonality, six of the 

eight weather types have significant correlations at the 95 % confidence level. While the annual 

hybrid time series captures most of the annual rainfall peaks in the Muller classification, it does 

not always capture the same trends. For example, in the Muller classification, there is an 

increasing precipitation trend in the Gulf Return type. This same trend is not evident in the 

hybrid classification. 
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Figure 2.9. Graphs comparing the annual frequency of the Muller and hybrid classifications from 

1981-2001. (CH = Continental High, PH = Pacific High, GH = Gulf High, CR = Coastal Return, 

GR = Gulf Return, FGR = Frontal Gulf Return. FOR = Frontal Overrunning, GD = Gulf Tropical 

Disturbance, GL = Gulf Low). 
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Table 2.4. Pearson correlation coefficients (* = significant at 95% confidence level) between the 

annual frequency of the Muller and hybrid classification weather types from 1981-2001 for the 

State of Louisiana. (CH = Continental High, PH = Pacific High, GH = Gulf High, CR = Coastal 

Return, GR = Gulf Return, FGR = Frontal Gulf Return. FOR = Frontal Overrunning, GD = Gulf 

Tropical Disturbance, GL = Gulf Low). 

 

Manual Muller Classification 

Hybrid Classification CH PH GH CR GR FGR   FOR GD 

CH 0.60 * --   --   --   --   --   -- -- 

PH --   0.54 * --   --   --   --   -- -- 

GH --   --   0.67 * --   --   --   -- -- 

CR --   --   --   0.13 
 

--   --   -- -- 

GR --   --   --   --   0.49 * --   -- -- 

FGR --   --   --   --   --   0.46 * -- -- 

FOR --   --   --   --   --   --   0.29 -- 

GL --   --   --   --   --   --   -- 0.53 * 

 

Despite the observed differences between the two classifications, the hybrid procedure 

was used to classify all sea level pressure grids from 1948 – 2012. Hourly meteorological data 

from the World Meteorological Organization were collected for New Orleans and Shreveport, 

LA from 1948 – 2012 and averaged for each hybrid weather type (Tables 2.5 and 2.6). These two 

locations were chosen for the analysis to provide a comparison between two different parts of the 

state, as New Orleans is located in extreme southeast Louisiana and Shreveport in located in 

extreme northwest Louisiana. Differences in observed weather between the hybrid weather types 

are evident at both New Orleans and Shreveport. One-way multivariate analysis of variance 

(MANOVA) tests were used on the data to determine if the differences in the mean weather 

properties among the hybrid weather types are significant. The number of rainfall hours, sky 

cover, and wind direction were excluded from the analysis because they are not continuous 

variables, and therefore violate one of the assumptions for a MANOVA test. For both New 

Orleans and Shreveport, the MANOVA results indicated significant differences in mean weather 

properties between the weather types. To discern the nature of the differences, multiple pairwise 
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tests were applied to the data at New Orleans and Shreveport. All of the multivariate pairwise 

mean comparisons for the weather types at New Orleans and Shreveport were found to be 

significantly different from each other at the 95% confidence level. The results illustrates that, 

although the hybrid procedure does not produce an identical Muller weather type classification, it 

still has value in describing the variability of surface weather in Louisiana.  

Table 2.5. Mean weather properties from 1948-2012 by hybrid weather type for New Orleans, 

LA. (CH = Continental High, PH = Pacific High, GH = Gulf High, CR = Coastal Return, GR = 

Gulf Return, FGR = Frontal Gulf Return. FOR = Frontal Overrunning, GD = Gulf Tropical 

Disturbance, GL = Gulf Low). 

 

New Orleans N 
Wind 

Direction 
Wind 
Speed  

Sky 
Cover  Visibility 

Dewpoint 
Depression  

 
Temperature 

Anomaly  
Rainfall 
Hours 

    (degrees) (mph) (%) (mi) (oF) (oF)   

CH 2726 126 8.46 39 9.19 7.56 -5.61 44 

PH 3079 256 8.72 54 8.40 5.28 -1.55 132 

GH 1609 236 4.07 43 7.47 3.37 -1.80 16 

CR 4212 114 4.36 48 7.17 3.98 -1.54 72 

GR 5713 152 4.28 54 6.70 2.96 1.41 92 

FGR 1880 178 6.74 71 6.59 2.74 5.90 128 

FOR 2913 133 7.27 70 7.01 4.19 1.64 247 

GL 1610 127 6.71 76 6.72 3.15 3.44 203 

 

Table 2.6. Mean weather properties from 1948-2012 by hybrid weather type for Shreveport, LA 

as in Table 2.5. 

 

Shreveport N 
Wind 

Direction 
Wind 
Speed  

Sky 
Cover  Visibility 

Dewpoint 
Depression  

 
Temperature 

Anomaly  
Rainfall 
Hours 

    (degrees) (mph) (%) (mi) (oF) (oF)   

CH 2688 151 4.47 30 10.93 5.14 -12.71 13 

PH 3044 272 7.79 35 11.41 5.85 -11.42 49 

GH 1595 194 5.02 40 9.90 4.02 5.04 12 

CR 4160 139 4.10 54 8.92 3.69 2.43 110 

GR 5614 166 7.37 70 8.38 2.96 7.61 230 

FGR 1852 212 7.32 74 8.29 2.93 4.87 223 

FOR 2838 157 7.40 65 9.23 4.65 -3.21 217 

GL 1585 141 6.29 79 7.43 2.86 5.13 262 
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2.5.3 Limitations 

One of the main limitations involved in automating a manual classification system is the 

subjectivity of the original system, which causes a certain amount of variability within the 

weather types. Although the Muller system had guidelines for assigning weather patterns to 

particular weather types, the decision was ultimately up to the researcher. Sometimes, the choice 

of one weather type over another in a particular situation was not distinct. It is also likely that the 

researcher introduced slight changes to his technique over the years. To complicate matters, 

various researchers were responsible for weather typing during certain time periods. One 

example of subjectivity in the Muller classification system was the distinction between Pacific 

and Continental High types. Patterns dominated by high pressure systems with Pacific origin 

were classified as Pacific High weather types. Often, once these high pressure systems moved 

eastward over the central US, the patterns that were originally Pacific High were then classified 

as Continental High. Dr. Muller considered this change from Pacific High to Continental High to 

occur when the wind at New Orleans shifted to the north (Rohli and Henderson 1997). Yet, this 

distinction was very subjective. This particular example explains why a high percentage of the 

Muller Continental High patterns are classified as Pacific High patterns in the Hybrid procedure 

(see Table 2.2). One way to quantify the subjectivity of the original Muller system is to calculate 

the within type variability for each weather type. Future work could investigate if the within type 

variability varies between different time periods. For instance, is the within type variability 

higher during periods when researchers other than Dr. Muller performed the classifications? Or, 

does the within type variability decrease with time as Dr. Muller refines his technique? This type 

of analysis could help refine the training dataset to only include a time period with low within 

type variability, perhaps minimizing some of the error introduced into the hybrid procedure.  
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Another limitation in this study was the restriction of the correlation algorithm used to 

perform the hybrid classification. Whereas the Muller system takes into account the local 

observed weather properties and the placement of fronts, the hybrid system relies simply on the 

sea level pressure pattern to assign types. This difference limits the ability of the correlation 

algorithm to detect certain weather types. For example, there is a large disparity between the 

Muller and hybrid systems for the Frontal Overrunning pattern, since the Muller system relied on 

frontal placement to assign this type and there is no distinct pressure pattern for the correlation 

algorithm to detect. Future research could incorporate different levels of the atmosphere into the 

hybrid classification to help identify weather types. Specifically, for the Frontal Overrunning 

type, there are some distinguishing features at 500 millibar geopotential height layer, such as 

shortwave troughs that, in addition to the sea level pressure pattern, could help a correlation 

algorithm identify the type correctly.  

2.6 Summary and Conclusions 

This study achieved the goal of producing a synoptic classification system for Louisiana 

that harnesses the strengths of both manual and automated classifications. The objective Muller 

weather typing system was used to classify daily 12Z NCEP/NCAR sea level pressure grids, and 

sea level pressure composites were generated for each Muller weather type. These composites 

were used as seeds in an automated correlation-based procedure to produce hybrid weather types 

for Louisiana. Compared on a daily basis, the Muller weather types and the hybrid weather types 

matched at one or more point locations on 57 % of the days in question. The hybrid classification 

developed in this study performed slightly better than other similar hybrid classification efforts 

on a daily time scale (Frakes and Yarnel 1997, James 2007). The hybrid classification was also 

successful at reproducing the seasonal and annual variability of most of the Muller weather 
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types. The hybrid classification was applied to weather properties at New Orleans and 

Shreveport, and significant differences were found between the mean weather properties of 

different hybrid weather types, illustrating the classification has some ability to describe surface 

weather variability in Louisiana.  

While I consider the hybrid classification successful, it is important to note that it should 

not be considered synonymous with the manual Muller classification. The inherent subjectivity 

of the manual Muller classification system, as well as limitations of the correlation-based 

procedure, prevented the hybrid procedure from directly replicating the Muller classification 

system exactly. The most fundamental difference between the two classifications is that the 

Muller classification is performed separately for individual point locations, so at any instance 

different locations in the state can have different weather types than each other, while the hybrid 

classification assigns a single weather type to the entire state. While the hybrid classification 

catalog is homogeneous within itself, it is not recommended that it should be used to extend the 

Muller weather type catalog. The capabilities of each classification are unique, and both are 

valuable tools for studying the synoptic climatology of Louisiana. Unlike the manual Muller 

weather typing scheme, the hybrid procedure can be used to classify thousands of sea level 

pressure patterns in a matter of minutes, making it feasible to use this classification procedure to 

study the long term, and even the future, climate. While other automated synoptic classification 

methods have similar advantages, they lack any control over the definition of synoptic types. 

Yet, the procedure outlined in this study captures the intent Dr. Robert Muller had about 

classifying the weather patterns of Louisiana; therefore in this researcher’s opinion, provides a 

better description of weather variability for the region than other automated techniques could 

offer.  
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The hybrid classification system and the daily synoptic type catalog generated in this 

study could be used for a wide range of climate related applications in Louisiana. These include, 

but are not limited to, analyzing the frequency and variability of weather types, studying the 

variability of surface weather phenomena, and investigating the effect of synoptic type 

variability on ecological and biological processes. The hybrid classification is also well suited to 

adaptation for use with GCM output. This opens up a whole suite of additional applications for 

studying future climate in Louisiana. Establishing relationships between synoptic type frequency 

and trends in surface phenomena is very important in climate change research and can serve as 

the basis for a relatively new area of research investigating synoptic types in future climates 

using GCMs. These relationships can be used to develop synoptic-based statistical downscaling 

of GCM projections, which can provide more accurate projections for certain weather variables 

than general GCM output (Lee 2012).  
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CHAPTER 3. A SYNOPTIC CLIMATOLOGICAL INVESTIGATION OF PRECIPITATION 

VARIABILTY IN LOUISIANA, USA 

3.1 Abstract 

Variability in daily and seasonal rainfall occurrence has a profound effect on many 

economic sectors in Louisiana, including agriculture, transportation, and industry. Links between 

synoptic atmospheric circulation and precipitation occurrence in this region suggest that 

variability in synoptic type frequency contributes, in some degree, to precipitation variability in 

Louisiana. The goal of this study is to establish relationships between rainfall and synoptic types 

to serve as a basis for developing a precipitation statistical downscaling model for Louisiana 

from Global Climate Models (GCMs). Sea level pressure grids from 1948 to 2012 were 

objectively classified according to a hybrid classification system based off of the subjective 

Muller weather typing system for Louisiana.  Linear regression models, with synoptic frequency 

as the predictors and seasonal rainfall as the predictands, were used to determine how much of 

the precipitation variability in Louisiana can be explained by synoptic type variability. The 

results show that, although models based on synoptic variability cannot sufficiently explain the 

interannual variability of precipitation in Louisiana in any season, they are able to predict longer-

term precipitation variability and trends in winter and fall. This study is an important first step to 

developing a precipitation downscaling model for Louisiana, yet it has been determined that 

additional predictors are necessary to accurately model long-term precipitation variations in 

spring and summer that could improve interannual predications for all seasons.  

 

 

 



 

46 
 

3.2 Introduction 

Precipitation in Louisiana, as in the rest of the Southeast United States, varies 

considerably from year to year. For most of 2010 and 2011, the entire state of Louisiana was in a 

severe or extreme drought (USDM 2012). In 2012, Louisiana received above normal 

precipitation and experienced one of its ten wettest summers on record (NOAA 2012). The 

interannual and decadal variability of precipitation has a sizable hydrologic  impact in this 

region, as even small shifts in seasonal precipitation timing and amounts directly affect the 

hydrologic cycle, altering runoff, soil moisture, and crop yields (Karl and Riebsame 1989). As a 

result, variability in daily and seasonal rainfall occurrence has a profound effect on many 

economic sectors in Louisiana, including agriculture, transportation, and industry (Keim et al. 

2011). A better understanding of the controls of precipitation variability in Louisiana could assist 

in short and long-term forecasting for this region, as well as provide valuable insight into future 

precipitation changes that may occur due to climate change.  

Synoptic scale systems have been identified as one of the primary controls of 

precipitation in Louisiana and the rest of the Southeast United States (Keim 1996, Muller 1977, 

Trewartha 1981). Most heavy precipitation events in the region are associated with synoptic-

scale systems, including frontal and tropical weather systems (Keim and Faiers 1996). The study 

of Muller (1977) describes three synoptic situations that typically produce “stormy” weather in 

Louisiana. These synoptic types are Frontal Gulf Return, which occurs when a frontal boundary 

moves across the state, Frontal Overrunning, which occurs when a front becomes stationary in 

the Gulf of Mexico, and Gulf Tropical Disturbance, which occurs when a tropical system moves 

over the state. There is some indication that the influence of synoptic-scale atmospheric 

circulation patterns Louisiana precipitation occurrence varies seasonally. The study of Faiers 
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(1988) found that the occurrence of winter precipitation at Lake Charles, Louisiana is strongly 

linked to the prevailing synoptic type. On the other hand, another study found that precipitation 

occurs in Louisiana under all synoptic  weather types in July and August, possibly indicating less 

synoptic influence during summer (Muller 1977) . Synoptic-scale atmospheric circulation 

patterns have been shown to have a strong impact on summer precipitation occurrence in certain 

other parts of the Southeast United States, such as Atlanta, Georgia (Diem 2012). Due to the 

linkage between synoptic atmospheric circulation and precipitation in the region, it is 

hypothesized that variability in the seasonal occurrence of synoptic scale systems contributes, in 

some degree, to precipitation variability in Louisiana.   

The goal of this study is to increase the knowledge of rainfall variability in Louisiana by 

identifying daily synoptic circulation patterns and associating them with different rainfall 

conditions. This approach, called synoptic classification, is commonly used within the field of 

synoptic climatology. Synoptic classification helps to increase our understanding of 

environmental systems by reducing the complexity into a manageable number of discrete 

reoccurring patterns, or synoptic types (Yarnel 1993). Although it is acknowledged that many 

small-scale processes play a large role in generating rainfall in Louisiana, it is the intent of this 

research to identify the synoptic scale processes that help to organize the micro-and meso-scale 

rainfall processes that generate precipitation.  

The discovery of statistical relationships between observed precipitation and synoptic 

types will be useful for creating improved climate change projections for precipitation in 

Louisiana. The current precipitation projections from various general circulation models (GCMs) 

are in disagreement about the sign and magnitude of precipitation changes for the majority of the 

southeast United States (Keim et al. 2011, Kunkel et al. 2013). Studies comparing GCM 
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projections with observed precipitation in other regions have found that precipitation errors in 

the models are largely process-based and that the errors in projecting general circulation patterns 

are relatively small (Hope 2006, Finnis et al. 2009). The 2007 IPCC report stated that the GCMs 

have shown a significant improvement in projecting general atmospheric circulation since 2001 

(IPCC 2007). Statistical downscaling based on synoptic methods are useful in climate change 

research because they take advantage of the more accurate GCM variables, such as general 

circulation, temperature, and pressure patterns, to predict variables that are less accurately 

portrayed by the GCMs, like precipitation (Lee 2012). Relationships between rainfall and general 

circulation patterns, or synoptic types, found in this study could serve as a basis for developing a 

precipitation statistical downscaling model for Louisiana, and perhaps the Southeastern U.S. The 

objectives of this study are to:  

1. Identify the synoptic weather types that are associated with rainy conditions in 

Louisiana. 

2. Determine if the variability of synoptic type frequency can describe precipitation 

variability in Louisiana. 

3.3 Data 

3.3.1 Daily U.S. Unified Precipitation Gridded Dataset 

The precipitation data used in this study was taken from the Daily U.S. Unified 

Precipitation dataset from the Climate Prediction Center (CPC). The daily dataset was compiled 

from two main rain gauge data sources: the Climate Prediction Center dataset, which includes 

River Forecast Center data and 1
st
 order stations that report precipitation accumulations from 

12Z to 12Z, and the National Oceanic and Atmospheric Administration (NOAA)/National 

Climatic Data Center (CDC) hourly precipitation dataset that was aggregated into a 12Z to 12Z 
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window for each day (Higgins et al. 1996). The dataset reported daily precipitation as the 24-hr 

accumulation from 12Z the day before to 12Z of the reporting day. The precipitation data were 

subject to standard quality control procedures, including standard deviation and buddy checks. 

The data were gridded onto a 0.25 x 0.25 degree grid using a Cressman scheme (Higgins et al. 

1996). Daily precipitation values were reported as the precipitation accumulation from 12Z on 

the previous day to 12Z of the day in question.  

3.3.2 Sea Level Pressure Dataset 

This study utilized sea level pressure data from the National Center for Atmospheric 

Research (NCAR)/National Centers for Environmental Prediction (NCEP) Reanalysis I Dataset.  

This dataset was assembled from a variety of climate data sources, including land surface, 

satellite, aircraft, and rawinsonde data (Kalnay et al. 1996). There are many different 

atmospheric variables included in the dataset, including both surface and upper-air data. The data 

are available four times daily at six-hourly intervals (6Z, 12Z, 18Z, and 00Z) from 1948 to 

present. The data are in the form of global grids, with 2.5 degree grid spacing.   

3.4 Methods 

3.4.1 Creation of a Climate Division Daily Precipitation Dataset 

To investigate the statistical relationship between precipitation and synoptic types, a daily 

precipitation dataset is necessary for comparison with daily synoptic types. Rather than using 

individual station data, which would be applicable to a limited number of points where long-term 

station data are available, or raw gridded data, which would require the development of hundreds 

of separate statistical models, the U.S. Unified Precipitation Dataset was aggregated to produce 

daily precipitation values for each of the nine Louisiana climate divisions (see Figure 3.1).  
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Figure 3.1. NCDC Climate Divisions of Louisiana. (Image courtesy of the Louisiana Office of 

State Climatology). 

 

Climate divisions are defined by the National Climatic Data Center (NCDC) as regions of nearly 

homogenized climate (Guttman and Quayle 1996). The climate division dataset provided by 

NCDC was made up of monthly temperature and precipitation, as well a variety of other monthly 

climate variables and indices; however, daily climate variables were not included in the dataset. 

Since it is assumed the climate divisions represent areas in Louisiana with similar precipitation 

characteristics, a daily climate division precipitation dataset would be ideal to establish sub-
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regional relationships between synoptic types and precipitation. Therefore, a daily climate 

division precipitation dataset was generated from the US Unified Precipitation Dataset using the 

climate division boundaries. Using a Geographic Information Systems (GIS) technique called 

zonal statistics (ESRI 2008), the arithmetic average of all of the grid cell values that fell within a 

particular climate division is taken as the daily precipitation for that division.   

3.4.2 Synoptic Type Classifications 

The synoptic classification system used in this study was a hybrid classification system 

based on the subjective Muller weather typing system for Louisiana presented in Chapter 2. The 

objectification of well-known subjective weather typing systems are useful for historical and 

future climate applications because they are able to classify large datasets, including GCM 

output, efficiently and are based on classifications that are widely used and accepted in the 

scientific community (Huth et al. 2008). The Muller weather types have been used successfully 

for a variety of research investigations in Louisiana (Muller and Jackson 1985, McCabe and 

Muller 1987, Faiers 1988, Faiers 1993, Faiers et al. 1994, Rohli and Henderson 1997, McCabe 

and Muller 2002). 

While the hybrid classification system implemented here is not an exact replication of the 

Muller weather typing system for Louisiana, it is an objective alternative that represents the main 

features of the Muller system and has the ability to classify thousands of sea level pressure 

patterns in a matter of minutes. For this study, daily 00Z and 12Z synoptic classifications were 

performed on the NCEP/NCAR sea level pressure grids for the period from 1948 to 2012. Each 

sea level pressure grid was assigned to one of the eight synoptic types: Continental High (CH), 

Pacific High (PH), Gulf High (GH), Coastal Return (CR), Gulf Return (GH), Frontal Gulf Return 

(FGR), Frontal Overrunning (FOR), or Gulf Low (GL) (see Figure  2.2 from Chapter 2).   
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3.4.3 Identification of Wet Synoptic Types 

From preliminary investigations, it was found that some rainfall occurs during all of the 

hybrid synoptic weather types, making it difficult to distinguish which types were relatively wet 

by just looking at rainfall totals associated with each type. Instead, daily precipitation anomalies 

were calculated for each synoptic type from the climate division daily precipitation dataset to 

determine if a particular weather type is associated with above or below average rainfall. Four 

sets of precipitation anomalies were produced, one for each season, since it has been suggested 

that there may be seasonal variation in the synoptic types associated with precipitation processes 

(Muller 1977). The seasons were defined as winter (December, January, and February), spring 

(March, April, and May), summer (June, July, and August), and fall (September, October, and 

November). The precipitation anomalies were calculated by subtracting the average daily 

precipitation for all days in a season from the average daily precipitation for only the days that 

belong to each synoptic type. A day was considered to belong to the synoptic type of its 00Z sea 

level pressure pattern. It was assumed that the 00Z synoptic type would best represent the 

synoptic conditions that produced precipitation over the 24-hr period from 12Z to 12Z. A 

synoptic type that has positive rainfall anomaly for a particular climate division was considered a 

“wet” pattern for that division and season. 

3.4.4 Linear Regression Models 

Linear regression models were used to determine how much of the precipitation 

variability in Louisiana can be explained by synoptic type variability. This approach has been 

used in multiple studies to determine the relationship between atmospheric circulation and 

precipitation (Goodess and Jones 2002, Brisson et al. 2011, Hanssen-Bauer and Forland 1998). 

Before the regression analysis could be performed, the monthly frequency of each synoptic type 
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was calculated by counting the number of 00Z occurrences of each synoptic type. Time series of 

the seasonal frequency of each type from 1948-2012 for winter, spring, summer, and fall were 

generated. The frequencies of the “wet” synoptic types were used as predictor variables in a 

multiple linear regression analysis, with monthly rainfall as the predictand. The choice of “wet” 

synoptic types for each climate division and season was based on the precipitation anomaly 

analysis. Regression analyses were performed for each season and climate division separately, 

yielding 36 regression models. To increase the sample size, three separate monthly precipitation 

values were used for each season rather than the seasonal mean (Goodess and Jones 2002). The 

regression model for any season/division can be expressed as:  

        ∑ (       )
 
                                            (Equation 3) 

where P is the modeled monthly precipitation,     is the i
th

 “wet” synoptic type monthly 

frequency,     is the regression intercept and    is the regression coefficient for the i
th 

ST 

(Montgomery and Peck 1982). The models were calibrated using monthly data from 1948 – 

2012.  

3.4.5 Contribution to Observed Rainfall Variability and Trends 

The ultimate goal of the regression analysis was to determine if models developed from 

synoptic type frequencies have enough skill for precipitation downscaling in this region. To 

investigate, the models were used to generate seasonal precipitation for the entire study period 

from 1948 to 2012. In addition to a yearly comparison of data, which is very noisy, the modeled 

values were smoothed using a low-pass Gaussian filter (standard deviation = 3 years) to remove 

high frequency noise and better represent the ability of the model to reproduce long-term 

variability and trends (Hanssen-Bauer and Forland 1998). While it allows for the analysis of 

decadal scale variability, this process comes at the expense of any shorter term modes of 
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variability that may be present in the data, such as the El Nino Southern Oscillation. Modeled 

data were then compared to the observed data to determine if the models, dependent solely on 

synoptic type frequency, can sufficiently reproduce the observed variability and trends.  

3.5 Results and Discussion 

3.5.1 Seasonal Daily Synoptic Type Precipitation Anomalies 

The mean daily rainfall, as well as the synoptic type average daily rainfall anomalies, for 

each of the climate divisions and seasons can be found in Figure 3.2 to Figure 3.5. The FGR, 

FOR, and GL synoptic types were most commonly associated with positive rainfall anomalies. 

This is consistent with the original Muller weather typing scheme, in which the aforementioned  

types are associated with stormy weather in Louisiana (Muller 1977). All three of these types are 

characterized by some sort of synoptic forcing mechanism, whether baroclinic or barotropic, that 

can generate widespread rainfall in the region. In addition to the expected types, there were some 

other types that were associated with positive rainfall anomalies in some seasons and climate 

divisions. The GR type was associated with small positive rainfall anomalies during summer for 

all of the climate divisions, and during the fall in the Northwest climate division (See Figure 3.4 

and Figure 3.5). In regards to the summer, the moisture flux associated with the GR type, which 

funnels warm, moist air northward over the state, likely fuels thunderstorm development in 

summer even without the upper-level forcing to initiate widespread precipitation. It is noted by 

Muller (1977) that precipitation can occur under all weather types during the summer, so this 

result is not unexpected. During fall, the GR type is often associated with upper-level low 

pressure development over the Texas panhandle, which is close enough to provide precipitation 

forcing in the Northwest climate division. The only other synoptic type that is ever associated 

with positive precipitation anomalies is the PH type.  
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Figure 3.2. Winter normals and daily precipitation anomalies for Continental High(CH), Pacific 

High(PH), Gulf High(GH), Coastal Return(CR), Gulf Return(GR), Frontal Gulf Return(FGR), 

Frontal Overunning(FOR), and Gulf Low(GL) weather types from 1948 - 2012.  
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Figure 3.3. Spring normals and daily precipitation anomalies as in Figure 3.2. 
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Figure 3.4. Summer normals and daily precipitation anomalies as in Figure 3.2.  
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Figure3.5. Fall normals and daily precipitation anomalies as in Figure 3.2. 
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Table 3.1. The amount of precipitation variance (R
2
) explained by synoptic frequency for the 

nine Louisiana climate divisions for winter, spring, summer, and fall determined using regression 

models. The data is expressed as percentages.  

 

  Winter Spring Summer Fall 

Northwest 26.9 12.1 11.2 15.1 

North Central 28.9 12.9 18.1 19.5 

Northeast 
29.1 

15.4 14.0 19.1 

West Central 28.4 10.0 12.2 17.2 

Central 29.2 12.6 24.5 19.1 

East Central 17.2 19.7 23.1 31.2 

Southwest 25.1 13.1 18.8 26.7 

South Central 21.3 15.7 21.1 31.8 

Southeast 17.0 17.1 25.7 44.2 

 

This is not consistent with the original Muller weather types. However, the positive anomalies 

only appear in the eastern part of the state because PH patterns often follow FGR patterns. Since 

I am classifying the weather types for the entire state, the influence of the frontal system is still 

causing rainfall in the eastern climate divisions, even though it has cleared in the western 

divisions and Pacific High pressure is building into the state from the northwest. In addition, the 

hybrid procedure has been shown to sometimes assign sea level pressure patterns to the PH type 

that would usually be associated with the FOR type in the Muller system. This is likely 

contributed to the positive rainfall anomalies associated with the PH type. This result is an 

artifact of not having the frontal boundaries included in the analysis of the pressure patterns. 

3.5.2 Linear Regression Models 

Multiple linear regression models were calibrated using data from years of 1948 to 2012 

for each of the 9 climate divisions for all 4 seasons, resulting in 36 regression models. The 
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adjusted R-squared of each multiple linear regression model measures the proportion of the 

precipitation variance that can be explained by the predictor variables (the frequency of each 

“wet” synoptic type). The explained variance ranges from 10% at the West Central climate 

division in spring to 44.2% at the Southeast climate division in fall (Table 3.1). Averaged over 

all climate divisions, the explained variance is approximately 25% for winter, 14% for spring, 

19% for summer, and 25% for fall. 

A residual analysis was applied to the regression models to test the assumptions of linear 

regression. Normality was tested by plotting a histogram of the residuals for each model. The 

residuals of each model appear approximately normal by visual inspection of the data plots; 

however, they fail the Shapiro-Wilk test for normality. Small errors in normality do not greatly 

affect the models, but large deviations from normality can affect confidence intervals 

(Montgomery and Peck 1982). For the purposes of this analysis, we assume normality. 

Regression is robust to normality errors and plots of the residuals ranked in increasing order 

resemble straight lines, indicating approximate normality (Montgomery and Peck 1982). The 

next assumption tested was heteroscadasticity. Visual examination of plots of the model 

residuals vs. the precipitation estimates revealed some non-linearity in the models (Montgomery 

and Peck 1982).  For the purpose of this exploratory analysis, we assumed homoscedasticity, but 

acknowledge that future work may need to incorporate non-linear models or attempt data 

transformations to make the relationship between precipitation and synoptic type linear. The 

normality and homoscedasticity plots can be found in Appendix B. The final assumption tested 

was independence. The Durbin-Watson (D-W) test determined that the data were independent, as 

each D-W statistic is near 2 (Table 3.1.). 
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Table 3.2. The Durbin-Watson Statistic for the multiple linear regression models for each season 

and climate division. 

 

Climate Division Winter Summer 

Northwest 1.93 1.94 

North Central 2.12 1.92 

Northeast 2.05 1.97 

West Central 2.03 2.04 

Central 2.24 1.84 

East Central 2.10 2.02 

Southwest 1.90 2.04 

South Central 2.02 1.82 

Southeast 1.77 1.76 

  Spring Fall 

Northwest 2.02 1.86 

North Central 1.94 1.83 

Northeast 1.86 1.90 

West Central 1.90 1.93 

Central 1.91 1.94 

East Central 1.96 1.84 

Southwest 1.91 2.13 

South Central 1.97 2.16 

Southeast 1.84 2.21 

 

3.5.3. Ability of Models to Explain Variability and Trends  

Despite the fact that the precipitation models developed from synoptic frequency only 

account for 10 to 44% of the interannual variability of precipitation, it is possible that they may 
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still be able to reasonably reproduce long-term (decadal-scale) variability and trends (Hanssen-

Bauer and Forland 1998). This is because, although the precipitation causes is irregularly 

distributed, over longer time scales, the randomness of precipitation is smoothed out (Hanssen-

Bauer and Forland 1998). The smoothed regression modeled results versus observed 

precipitation for each season and climate division can be found in Figure 3.6 – Figure 3.9. The 

smoothed results represent decadal scale variability in the data.  

The smoothed modeled versus precipitation series show, that during the winter and, 

especially, the fall, the models account for most of the observed long-term precipitation features 

in the Southeast climate division. However, during spring and summer, the models do not 

adequately capture the observed variability and trends. In summer, weak pressure patterns set up 

over the area, making it hard to distinguish between weather types. In addition, convective 

rainfall often occurs during non-stormy weather types due to the intense surface heating that is 

received during summer in this region. While the spring results are somewhat surprising and 

deserve further investigation, the poor performance of the models is likely due to large amounts 

of variability in precipitation amounts during stormy weather types in spring. Overall, the results 

suggest that the models based on synoptic variability cannot sufficiently explain the interannual 

variability of precipitation in Louisiana; however, they have the skills necessary to predict 

longer-term variability and trends in winter and fall. It is likely that additional predictors are 

necessary to model long-term precipitation variations in the spring and summer, and could 

improve predictions in winter and fall as well. 
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Figure 3.6. Smoothed winter modeled and observed precipitation for each climate division from 1956 to 2005. 
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Figure 3.7. Smoothed spring modeled and observed precipitation for each climate division from 1955 to 2005. 
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Figure 3.8. Smoothed summer modeled and observed precipitation for each climate division from 1955-2005. 
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Figure 3.9. Smoothed fall modeled and observed precipitation for each climate division from 1955 to 2005. 
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3.5.4 Limitations 

 This study is limited by a few different factors. First, and most importantly, the multiple 

linear regression models used in the study depend on a linear relationship between each input 

variable and the predictand. As determined in the residual analysis, this is not always the case 

with the data used in this study. Future work should focus on finding a remedy for this weakness 

by using data transformations or non- linear models. Additionally, this type of analysis is limited 

by the irregularity of precipitation, making it hard to predict using a simple model. Additional 

analyses could use models with more predictors or try use different Gaussian filters to detect 

sources of regular variability in the region, such as the El Nino Southern Oscillation. Finally, the 

models based on synoptic frequency are limited by the power of the synoptic classification 

system to capture rainfall variability. There are some weaknesses in the hybrid classification 

system, which are discussed in Chapter 2. Future improvements to the synoptic classification 

system could improve the results of this study. 

3.6 Summary and Conclusions 

Precipitation in Louisiana varies considerably from year to year. To predict the future 

effects of climate change, there is a need to better understand the controls of rainfall processes in 

this region. This study was successful in identifying the synoptic patterns that are important to 

precipitation generation in Louisiana, and the results were mostly consistent with the original 

Muller weather typing system for Louisiana. However, it was determined that the variability of 

synoptic types can only account for a small portion of the interannual rainfall variability in 

Louisiana. This is likely due to a combination of reasons. The first is that precipitation is 

irregularly distributed in time and space, and is therefore very difficult to predict on short time 

scales. The second is that, in addition to synoptic atmospheric circulation, there are likely other 
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factors controlling rainfall in this region. Some possible additional predictors that could be 

included in a precipitation model for this region are air temperature, sea surface temperature 

(SST) and aerosol forcing.  

On longer time scales, however, the predictability of the models improved for some 

seasons. In winter and fall, the synoptic-based models do an adequate job of reproducing the 

observed decadal variability and long-term precipitation trends. Therefore, synoptic-based 

models may be a good candidate for determining future decadal precipitation variability and 

trends from GCM outputs for these seasons. However, this does not provide any solutions for 

spring and summer. While this study was an important first step to developing a statistical 

downscaling model for Louisiana, additional research must be conducted to identify predictors 

that can improve the predictability of the models for Louisiana precipitation.  
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CHAPTER 4. SUMMARY AND CONCLUSIONS 

Automated synoptic classification has many applications for studying current and future 

climate variability in a region. Louisiana is located in the South Central United States, a region 

that is known for exhibiting large amounts of variability in surface weather, especially 

precipitation. However, there are currently no widely accepted automated synoptic weather 

classification systems for this region. The primary goals of this thesis were to 1) present an 

automated synoptic weather type classification system for climate related studies in Louisiana 

and 2) use the newly created synoptic classification system to determine the relationship between 

synoptic type frequency and precipitation variability in Louisiana.  

 A new method of synoptic weather classification for Louisiana was presented in Chapter 

2. The main objective of the new classification system was to avoid the weaknesses of both 

manual and automated classification systems by creating a hybrid classification system based on 

the Muller weather typing scheme for Louisiana. NCEP/NCAR Reanalysis sea level pressure 

data from 12Z each day from 1981 – 2001 were typed using the Muller weather type archive, and 

sea level pressure composites were generated for each Muller weather type. For the hybrid 

procedure, these composites were used as seeds in a correlation algorithm to determine the most 

appropriate weather type for each day. The Muller and hybrid types from 1981 – 2001 were 

compared at daily, seasonal, and annual resolution. At a daily resolution, the hybrid types match 

the Muller weather types at one or more location on 57 % of the days. For most of the weather 

types there is significant agreement at the seasonal and annual resolutions. One sources of 

discrepancy between the Muller and hybrid types was the inability of the hybrid procedure to 

distinguish between tropical and baroclinic low pressure systems. The hybrid system also had 

difficulty identifying the Muller FOR type because it does not have a strong surface pressure 
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signature. However, the goal of the procedure was not to replicate the Muller classification 

system, but to create a new system that was automated and captured the essence of the Muller 

weather types. The hybrid classification is homogenous within itself, and preliminary 

investigations show it has value in describing the variability of surface weather in Louisiana. The 

strengths of the automated hybrid system are its objectivity, speed, and reproducibility, making it 

an advantageous candidate for long-term climate studies. It is also easily adaptable to GCM 

output, opening up new applications for studying future synoptic climatology in the region.  

The automated hybrid classification system presented in this study can be used for 

seemingly endless applications in climate and climate impact research for Louisiana. This could 

include updates to older studies that used the Muller classification systems (Muller and Jackson 

1985, Faiers 1988, Faiers 1993, Faiers et al. 1994, Keim and Faiers 1996, McCabe and Muller 

2002), as well as completely new studies, such as synoptic climatological investigations of future 

climates using GCMs. In addition, future work related to this project could include developing 

hybrid classification systems for other regions using the methodology presented in this study or 

even expanding the classification developed here to include other parts of the South Central U.S., 

since the entire region experiences the similar synoptic patterns. 

 The newly developed automated classification system was used to study Louisiana 

precipitation variability in Chapter 3. Using the hybrid weather classification system and gridded 

daily precipitation data, wet synoptic types, or synoptic types that are associated with above 

average daily rainfall, were identified for each climate division and season. The frequency of the 

wet synoptic types was used to create a regression model to predict seasonal precipitation for 

each climate division. The models developed from synoptic frequency only account for 10 – 

44% of the interannual variability of precipitation in Louisiana. Averaged among all climate 
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divisions, the explained variance is 25% for winter, 14% for spring, 19% for summer, and 25% 

for fall. Applying a smoothing technique to the modeled and observed rainfall data shows that 

the predictability of the models is slightly improved on decadal time scales. However, more 

research must be done to identify additional predictors before we can move forward with the 

development of a statistical downscaling model for Louisiana. While the research presented in 

this thesis was an important first step, the results suggest that a model based solely on synoptic 

frequency cannot adequately describe the variability and trends in observed precipitation data for 

all seasons. Therefore, the next step for this project will be to investigate other variables that will 

improve the predictability of the models so that the project can move forward.  
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APPENDIX A. R PROGRAM FOR HYBRID CLASSIFICATION 

# Create a Function to Subset NetCDF Data 

nnrsubset = function (datapath, type, mode,level,lat1, lat2, lon1, lon2, startyear, endyear, startmonth, 

endmonth, obstime){ 

  library(ncdf) 
  library(mapproj) 
  library(maps) 
  library(fields) 
  library(RColorBrewer) 
  library(chron) 

  path1 = datapath 
  path2 = type 
  path3 = endyear 
  ncFile = ncFile <- paste(path1,path2,".",path3,".nc", sep='') 
  nc <- open.ncdf(ncFile) 
  print(nc) 
   

  # get attributes (not data) of variable 

  att.get.ncdf(nc,type,"long_name") 
  att.get.ncdf(nc,type,"_FillValue") 
   

  #Read in Lat and Lon 

  lat <- get.var.ncdf(nc,"lat",verbose=F) 
  nlat <- dim(lat) 
  lon <- get.var.ncdf(nc,"lon") 
  nlon <- dim(lon) 
   

  # get index for lat lon subset 

  wherenearest = function(val, matrix){ 
 dist = abs(matrix-val) 
  index = which.min(dist) 
  return(index)} 
   
  lower_left_lon_lat = c(lon2,lat2)  
  upper_right_lon_lat = c(lon1,lat1)  
   
  ix0 = wherenearest( lower_left_lon_lat[1],  lon )  
  ix1 = wherenearest( upper_right_lon_lat[1], lon )  
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  iy0 = wherenearest( lower_left_lon_lat[2],  lat )  
  iy1 = wherenearest( upper_right_lon_lat[2], lat )  
   
  countx = ix1 - ix0 + 1  
  county = iy0 - iy1 + 1  
   

  # get time dimension 

  t <- get.var.ncdf(nc,"time") 
  tunits <- att.get.ncdf(nc,"time","units") 
   

  # print t and tunits 

  head(t) 
  tunits$value 
   

  # get "real" times 

  chron((t/24)-2,origin=c(month=1, day=1, year=0001)) 
  time = chron((t/24)-2,origin=c(month=1, day=1, year=0001)) 
   
  # get data subset 

  if (type == "hgt"){ 
    x = length(t) 
    subset = get.var.ncdf(nc,type, start = c(ix0,iy1,level,1), count = c(countx,county,1,x)) 
    dim(subset)} else 
   if (type == "slp"){x = length(t) 
    subset = get.var.ncdf(nc,type, start = c(ix0,iy1,1), count = c(countx,county,x)) 
    dim(subset)} 
  
##################################################################################### 

  # Create a matrix of Lat/Lon 

  lon = rep(seq(lon2, lon1, by = 2.5), each = county) 
  lat = rev(rep(seq(lat2,lat1,by = 2.5), countx)) 
  tMat <- matrix(c(lon,lat),nrow=length(lat),ncol=2) 
   

  # Put data in Loc Dataframe 

  names = time 
  colnames = c("hours", "month", "year", seq(1, length(lat))) 
  Loc = data.frame(row.names = names, hours(time), months(time), years(time)) 
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   for (j in 1:countx){ 
    for (k in 1:county){ 
      Loc = cbind(Loc,subset[j,k,])}} 
   
names(Loc) = colnames 
   

##################################################################################### 

 # Subset  the remaining data 
 
 y = c(startyear:(endyear-1)) 
  y = rev(y) 
  y = as.numeric(y) 
  path1 = datapath 
  path2 = type 
 
  nc <- open.ncdf(ncFile) 
  print(nc) 
   
  for (i in y){ 
     
    ncFile = ncFile <- paste(path1,path2,".",i,".nc", sep='') 
    nc <- open.ncdf(ncFile) 
    print(nc) 
     
    # get attributes (not data) of slp 
     
    att.get.ncdf(nc,type,"long_name") 
    att.get.ncdf(nc,type,"_FillValue") 
     
    #Read in Lat and Lon 
    lat <- get.var.ncdf(nc,"lat",verbose=F) 
    nlat <- dim(lat) 
    lon <- get.var.ncdf(nc,"lon") 
    nlon <- dim(lon) 
     
    # get index for lat lon subset 
     
    wherenearest = function(val, matrix){ 
       
      dist = abs(matrix-val) 
      index = which.min(dist) 
      return(index)} 
     
    lower_left_lon_lat = c(lon2,lat2)  
    upper_right_lon_lat = c(lon1,lat1)  
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    ix0 = wherenearest( lower_left_lon_lat[1],  lon )  
    ix1 = wherenearest( upper_right_lon_lat[1], lon )  
    iy0 = wherenearest( lower_left_lon_lat[2],  lat )  
    iy1 = wherenearest( upper_right_lon_lat[2], lat )  
     
    countx = ix1 - ix0 + 1  
    county = iy0 - iy1 + 1  
     
     
    #read in levels 
     
    #lev <- get.var.ncdf(nc,"level") 
    #nlev <- dim(lev) 
     
    library(chron) 
     
    # get time dimension 
    t <- get.var.ncdf(nc,"time") 
    tunits <- att.get.ncdf(nc,"time","units") 
     
    # print t and tunits 
    head(t) 
    tunits$value 
     
    # get "real" times 
    chron((t/24)-2,origin=c(month=1, day=1, year=0001)) 
    time = chron((t/24)-2,origin=c(month=1, day=1, year=0001))             
     
     
    # get data subset 
     
    if (type == "hgt"){ 
       
      x = length(t) 
       
      subset = get.var.ncdf(nc,type, start = c(ix0,iy1,level,1), count = c(countx,county,1,x)) 
      dim(subset)} else 
         
        if (type == "slp"){x = length(t) 
                            
                           subset = get.var.ncdf(nc,type, start = c(ix0,iy1,1), count = c(countx,county,x)) 
                           dim(subset)} 
     
    # Put data in Loc Dataframe 
     
    lon = rep(seq(lon2, lon1, by = 2.5), each = county) 
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    lat = rev(rep(seq(lat2,lat1,by = 2.5), countx)) 
     
    names = time 
    colnames = c("hours", "month", "year", seq(1,length(lat))) 
     
     
    Loc2 = data.frame(row.names = names, hours(time), months(time), years(time)) 
     
    for (j in 1:countx){ 
      for (k in 1:county){ 
        Loc2 = cbind(Loc2,subset[j,k,])}} 
     
    names(Loc2) = colnames 
     
    Loc = rbind(Loc,Loc2) 
  } 
   
##################################################################################### 
   
  #Subset data to include only observation time and months of input 
   
  twelve = subset(Loc, hours == obstime) 
   
  month = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec") 
   
  summertwelve = data.frame() 
   
  for (i in c(startmonth:endmonth)){ 
  monthname = month[i] 
  monthtwelve = subset(twelve, month == monthname) 
  summertwelve = rbind(summertwelve, monthtwelve)} 
   
  timedetails = summertwelve[, 1:3] 
   
  final = summertwelve[, 4:(length(lat)+3)] 
   
  final = as.matrix(final) 
   
  if (mode == "S"){ 
     
    list = list("subset" = final, "locations" = tMat, "timedetails" = timedetails) 
     
    } else 
       
      if (mode == "T"){ 
         
        list = list("subset" = t(final), "locations" = tMat, "timedetails" = timedetails) }  
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  return(list)} 
 

############################################################################## 

# Preform Hybrid Classification 

# Extract sea level pressure grids from nnrsubset list 

subset = nrrsubset$subset 

# Standardize sea level pressure grids 

subset_standard = t(subset) 
subset_standard = scale(subset_standard, center = TRUE, scale = TRUE) 
subset_standard = t(subset_standard) 
 
# Read in Muller Weather types from excel file and assign to sea level pressure grids  
file2 = "J:/Thesis/Muller Types/1981-2001 Procedure/Muller_Types_81_01_Non_Transition.csv" 
Muller = read.csv(file2,header = TRUE, sep = ",") 
Muller = cbind(Muller, subset_standard) 
 
# Aggregate by Muller Type to calculate mean grids for each  
Muller_mean = aggregate(Muller, by = list(Muller$Baton.Rouge.6Z), FUN = mean) 
Muller_mean = Muller_mean[,6:148] 
Muller_mean = Muller_mean[2:9,] 
 
# Calculate sum of squares between each grid and each mean grid 

kirch = data.frame(row.names = rownames(subset1)) 

for (i in 1:8){ 
  grid = matrix(as.numeric(rep(Muller_mean[i,], 7670)), nrow = 7670, byrow = TRUE) 
  grid = grid - subset_standard 
  squares = grid^2 
  sumofsquares = rowSums(squares) 
  kirch = cbind(kirch, sumofsquares)} 
 
# Find minimum kirch score and assign a weather type to each grid 

kirch = kirch * -1 
kirch$types = max.col(kirch) 
types2 = data.frame(rownames(kirch), kirch$types)  
write.csv(hybridtypes, file = "Hybrid_Types.csv") 
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APPENDIX B. RESIDUAL ANALYSIS 

 

Figure A.1. Histogram of Winter Regression Model Residuals for the A) Northwest B) North 

Central C) Northeast D) West Central E) Central F) East Central G) Southwest H) South Central 

I) Southeast Climate Divisions. 
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Figure A.2. Histogram of Spring Regression Model Residuals for the A) Northwest B) North 

Central C) Northeast D) West Central E) Central F) East Central G) Southwest H) South Central 

I) Southeast Climate Divisions. 
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Figure A.3. Histogram of Summer Regression Model Residuals for the A) Northwest B) North 

Central C) Northeast D) West Central E) Central F) East Central G) Southwest H) South Central 

I) Southeast Climate Divisions. 
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Figure A.4. Histogram of Fall Regression Model Residuals for the A) Northwest B) North 

Central C) Northeast D) West Central E) Central F) East Central G) Southwest H) South Central 

I) Southeast Climate Divisions. 
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Figure A.5. Winter Regression Model Residuals vs. Winter Precipitation Estimates for the A) 

Northwest B) North Central C) Northeast D) West Central E) Central F) East Central G) 

Southwest H) South Central I) Southeast Climate Divisions. 
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Figure A.6. Spring Regression Model Residuals vs. Spring Precipitation Estimates for the A) 

Northwest B) North Central C) Northeast D) West Central E) Central F) East Central G) 

Southwest H) South Central I) Southeast Climate Divisions. 
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Figure A.7. Summer Regression Model Residuals vs. Summer Precipitation Estimates for the A) 

Northwest B) North Central C) Northeast D) West Central E) Central F) East Central G) 

Southwest H) South Central I) Southeast Climate Divisions. 
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Figure A.8. Fall Regression Model Residuals vs. Fall Precipitation Estimates for the A) 

Northwest B) North Central C) Northeast D) West Central E) Central F) East Central G) 

Southwest H) South Central I) Southeast Climate Divisions. 
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