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ABSTRACT 

This dissertation is an investigation of the initiation of motion in aeolian sediment transport. The 

chapters within address transport thresholds for dry sands and spatiotemporal variability of 

surface moisture on natural beaches, both critical concerns for the study of aeolian processes. 

Results indicate a new model of transport threshold conditions provides substantial 

improvement in predictive capability. Field measurements closely match model predictions.  In 

addition, results indicate that small scale variability and near surface gradients of surficial 

moisture are important components to aeolian systems. New techniques for measuring beach 

surface moisture provide improved accuracy over previous approaches. 
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1. INTRODUCTION 

This dissertation presents investigations of the initiation of motion in aeolian transport. 

At the initiation of motion in dry sands aerodynamic forces must overcome inertial forces, and 

almost exclusively, the threshold condition is framed as a balance between these forces 

following the work of Bagnold (1936). Since Bagnold’s seminal work (1936) many studies have 

reported observations and analyses of the transport threshold for dry sands (e.g., Chepil, 1945; 

Kawamura, 1951; Zingg, 1953; Chepil, 1959; Belly, 1964; Kadib, 1965; Lyles and Krauss, 1971; 

Lyles and Woodruff, 1972; Greeley et al., 1973; Greeley et al., 1976; Iversen et al., 1976; Logie 

1981; Iverson and White, 1982; Logie 1982, McKenna Neuman and Nickling, 1989; Cornelis and 

Gabriels, 2004). However, the resulting models predict a wide range of threshold values and 

observations often do not agree between studies. Thus, there is a clear lack of a confident basis 

for predicting aeolian transport thresholds for even the simplest conditions, and this lack  

fundamentally limits our understanding of aeolian processes and our ability to model mass flux 

at any range of spatiotemporal scale (Sherman et al., 1998; Sherman et al., 2012). 

 In addition to the inertial force, any cohesive forces associated with intergranular 

moisture will require a corresponding increase in the aerodynamic force required to initiate 

transport (Belly, 1964; McKenna Neuman and Nickling, 1989; Cornelis and Gabriels, 2003). A 

number of studies have addressed the effects of surface moisture content on thresholds of 

motion (e.g. Akiba, 1933; Chepil, 1956; Belly, 1964; Bisal and Hsieh, 1966; Kawata and Tsuchiya, 

1976; Azizov, 1977; Horikawa et al., 1982; Logie, 1982; Hotta et al.; 1984; Sarre, 1988; McKenna 

Neuman and Nickling, 1989; Gregory and Darwish, 1990; Ismailov et al., 1991; Shao et al., 1996; 

Cornelis et al., 2004; Davidson-Arnott et al., 2008), but experimental results and models 

predictions of moist sand thresholds again vary widely for a given set of conditions (Horikawa et 

al., 1982; Namikas and Sherman, 1995; Cornelis and Gabriels, 2003).  Overall, despite almost 80 
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years of aeolian research, no consensus on threshold conditions for a given sand size or set of 

environmental conditions has been developed (Horikawa et al., 1984; Sarre, 1987; Cornelis and 

Gabriels, 2003), and the initiation of motion remains a key source of uncertainty for modeling 

aeolian systems.   

In response to this problem, this dissertation focuses on improving understanding of the 

transport threshold for dry sands, and also advancing knowledge of spatiotemporal variability in 

surficial moisture, a key limiting factor for rates of aeolian transport.  An additional original 

intent of this work was to extend the studies of dry sand thresholds to moist sands, but despite 

a prolonged field presence the conditions encountered were not sufficient to induce transport 

of moist sands. Thus, the studies presented here are somewhat discrete, but each study makes a 

significant contribution to our understanding of critical controls on aeolian transport thresholds, 

particularly in the coastal environment.  

Chapters 2-4 of this dissertation focus on improving our understanding of 

spatiotemporal variability of surficial moisture on natural beaches, and developing improved 

techniques to quantify surficial moisture on beaches. Perhaps one of the most critical concerns 

involved in understanding the role that moisture plays in transport processes is that application 

of much available theoretical work to field situations is not currently possible. Spatiotemporal 

variability in surficial moisture on beaches is not well understood, which has prompted a 

number of recent studies seeking to more fully document and explain beach moisture dynamics 

(e.g. Atherton et al., 2001; McKenna Neuman and Langston, 2003, 2006; Zhu, 2006; Darke and 

McKenna Neuman, 2008; Darke et al., 2009; Delgado-Fernandez et al., 2009; Namikas et al., 

2010; Schmutz and Namikas, 2012). However, much of this work has been focused on meso-

scale monitoring and there is still a need to investigate variability over the small scale, as well as 
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near surface gradients in moisture with depth. For these purposes, improved technology is 

needed that can accurately measure moisture at the sediment surface.  

Chapter 2 discusses small-scale variability of near-surface moisture and its potential 

effects on estimates of the total beach surface area available for transport. This work was 

designed to assess whether or not we need to incorporate small-scale variability, which is 

readily apparent in the field on many beaches, when scaling up to meso-scale modeling and 

sediment budgeting efforts. Chapter 3 presents a comparison of depth-integrated and surface 

measurements of moisture designed to assess potential errors associated with the use of depth-

integrated measurements and to provide a key incremental step in understanding variability in 

near-surface moisture gradients.  

Chapters 3 and 4 both present new techniques designed to collect measurements of 

moisture at the sediment surface. Accurate measurements of moisture in the top few layers of 

grains are needed to study surficial moisture in terms of aeolian transport under field 

conditions, but current techniques are inadequate for this goal. One of the most significant 

hindrances to accurate quantification of the relationship between near-surface moisture and 

transport thresholds and mass flux is this  lack of suitable measurement techniques. Both 

Chapters 3 and 4 discuss current trends in moisture measurement technologies and assess the 

use of a handheld spectroradiometer for measuring moisture at the surface. Chapter 4 presents 

data from the field test of an inexpensive narrow band radiometer designed for this purpose as 

part of this dissertation. 

Chapters 5 and 6 address uncertainty regarding transport thresholds for dry sands. 

Chapter 5 presents a new model of threshold conditions developed through a re-examination of 

observations reported in previous research. The new model differs from previous approaches in 

that it defines threshold conditions as a function of the grain-size range as well as grain mass. 
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The potential importance of grain-size range has been noted by several researchers (e.g., Grass, 

1971; Logie, 1981; Gerety and Slingerland, 1983; Namikas and Sherman, 1995; Davidson-Arnott 

et al., 2008), but this parameter has not previously been explicitly included in a model of the 

threshold condition. Further, by using a grain size distribution that is based on grain mass rather 

than diameter to represent grain size, and relating threshold directly to the mass of a 

representative grain, the approach developed here represents a significant theoretical 

departure from the traditional approaches. It also provides substantially improved predictive 

accuracy of aeolian transport thresholds. Chapter 6 presents results from a series of field 

experiments designed to validate the new threshold model. It shows that field results agree very 

well with model predictions for sands from the field sites. 
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2. SMALL-SCALE VARIABILITY IN SURFACE MOISTURE ON A FINE-GRAINED BEACH: 

IMPLICATIONS FOR MODELING AEOLIAN TRANSPORT1 

 

2.1 Introduction 

 It has long been recognized that water in intergranular pore spaces can produce 

cohesive forces, and that these forces can in turn retard or prevent aeolian sediment transport 

(Haines, 1925; Chepil, 1956; Belly, 1964; Svasek and Terwindt, 1974, McKenna Neuman and 

Nickling, 1989; Namikas and Sherman, 1995; Davidson-Arnott et al., 2008). Physically based 

models of this effect are available at the scale of individual grains (e.g., McKenna Neuman and 

Nickling, 1989). However, the influence of intergranular moisture on aeolian transport at 

intermediate spatial scales (hundreds of meters to a few kilometers) is poorly understood due to 

a lack of knowledge regarding the spatial and temporal distribution of surface moisture on real 

world beaches. New measurement technology, in the form of compact, minimally destructive, 

and rapid moisture content sensors, has recently enabled workers to obtain rapid, repetitive 

measurements covering relatively large areas (typically grids covering a few tens to hundreds of 

square meters). Consequently, recent studies have begun to provide insight into the nature of 

spatial and temporal variability in the surface moisture content of beaches (Atherton et al., 

2001; Wiggs et al., 2004; Yang and Davidson-Arnott, 2005; Zhu, 2007; Davidson-Arnott et al., 

2008). 

      To date, the sample spacing used to map beach surface moisture content has been 

relatively coarse, typically involving sampling intervals on the order of 5 m (e.g. Zhu, 2007; 

Davidson-Arnott et al., 2008). However, we have observed substantive variation in moisture 

content at much smaller spatial scales on the fine-grained beaches of the northern Gulf of 

Mexico. Informal observations during field work for Zhu (2007) frequently showed repeatable 

moisture content differences exceeding 10% (by weight) over distances of centimeters to tens of 

                                                           
1
 Reproduced with permission of Earth Surface Processes and Landforms. See APPENDIX I 
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centimeters. These observations led to concern regarding how well actual surface moisture 

distributions are represented by a relatively coarse grid and motivated the present study.  

This paper addresses two main issues. First, it seeks to quantify and characterize the 

nature of small-scale (< 1 m) variations in surface moisture content on a beach. The second goal 

is to assess the implications and potential influence of small-scale moisture variability for 

aeolian transport at larger scales. We focus specifically on the relative portion of beach area that 

would be available or unavailable for transport in order to examine the latter issue, as 

determined by whether local moisture content is above or below a specified threshold level 

above which transport is assumed to be prevented. 

 

2.2 Study Site and Field Methods 

Study Site 

      Field experiments were conducted at Padre Island National Seashore, on Padre Island, 

Texas (latitude and longitude approximately 27.48º N 97.28º W). The beach consists of very-well 

sorted, fine to very fine quartz sands, with a mean grain size of approximately 0.14 mm. The 

beach at Padre Island is generally dissipative to intermediate, with low wave energy levels and a 

micro-tidal range (typically < 1 m). The berm at the study site was about 40-60 m in width, 

relatively flat (1-3o), and graded into a vegetated foredune ridge approximately 1 to 2 m in 

height at its landward edge (Figure 2.1).  

     The water table is very shallow at this site (typically about 70-90 cm deep at the 

foredune toe, and progressively shallower in the seaward direction), and the strong capillary 

forces associated with the fine sediments are capable of drawing moisture to the surface over 

large portions of the berm. Thus, high surface moisture levels are maintained even during 

extended dry periods (Zhu, 2007). We have observed aeolian transport events on numerous 
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Figure 2.1 Study site at North Padre Island, TX.  Viewed from the foredune. 

 

occasions at this beach, and they are characteristically highly variable both in space (being 

restricted mainly to higher, drier zones close to the foredune) and time (it is common for 

transport to decrease or stop although wind speeds remain constant or increase, as the 

uppermost layer of dry material is stripped away exposing the damper sediment beneath). We 

therefore believe variability in surficial moisture content exerts a critically important control on 

aeolian processes in this and similar environments. 

 

Surface Moisture Measurements      

      Surface moisture measurements were made with a Type ML2x Theta probe (Delta-T 

Devices, Cambridge, England). The length of the probe sensor rods, which is 60 mm as supplied 

by the manufacturer, was an issue of concern for our application. The resulting measurements 

are integrated over too great a depth to be considered a reasonable approximation of the 

‘surface’ moisture content. Thus, the unit used here was modified following Yang and Davidson-
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Arnott (2005) to reduce the active sensor length to 14 mm. The modification involves simply 

encasing a portion of the sensor rods in dielectric foam.  Yang and Davidson-Arnott reported no 

significant loss of accuracy using 20 mm of exposed probe length, and Schmutz (2007), in a 

comparative study testing different variations of this method (e.g. probe length, grain size), 

found that when only 15 mm of exposed probe length, the standard error of measurement only 

increased by 0.9 % moisture content and precision was not significantly affected.  

      A square aluminum guide was used to control sampling locations in order to standardize 

the spatial pattern of measurements. Measurements were collected at 10 cm intervals over a 40 

cm by 40 cm grid providing a data set comprised of 25 individual measurements. The specific 

locations on the beach where these grid data sets were collected were determined by trial and 

error, so as to represent the entire range of probe output (approximately 0-750 mV from 

completely dry to fully saturated sediment). Basically, the probe was inserted into the beach 

surface and the output read, repeatedly. When a reading fell into a part of the output range for 

which no data had been collected, the frame was placed around that area and a full 25 point 

data set collected. In total, 44 grid data sets were collected between 07/27/2006 and 

07/30/2006. All measurements were collected between approximately 13:00 and 16:00 hrs.  

 

Probe Calibration 

        The manufacturer supplies a 3rd order polynomial calibration for the Theta probe that 

produces values of volumetric moisture content (Delta-T Devices, 1999).  The more common 

convention, however, when dealing with surface moisture on beaches, is to report gravimetric 

moisture content.  Accurate values of bulk density are required to convert between the two.  

Thus, in order to avoid a potential source of error during conversion, a site-specific calibration 

was designed to relate probe output to gravimetric moisture content (Figure 2.2). 
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Figure 2.2 Calibration curve for moisture probe. R2 value ≈ 0.97. 

 

 We targeted calibration points at small intervals that represented the full range of probe 

output (approximately 0 to 750 mV). To accomplish this, surface moisture measurements were 

taken at arbitrary locations on the beach. When a targeted output was observed, a circular core 

of the sediment that produced the reading was collected (65 mm diameter x 14 mm depth, 

equivalent to the sampling volume of the probe). The samples were then sealed in canisters and 

transported back to the laboratory for standard gravimetric moisture content determination. 

 Calibration curves for the Theta probe presented in coastal literature have varied from 

linear (Yang and Davidson-Arnott, 2005) to polynomial (Atherton et al., 2001 and Schmutz, 

2007).  According to Schmutz (2007) and Yang and Davidson-Arnott (2005), salinity and grain 
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size are two factors that contribute to this variability.  In this study, we chose to use a 6th order 

polynomial (R2 = 0.97) because it produced the lowest standard error (1.45%) while still 

including all of the measurement points.  

 Considering the probe modification (≈ 75% reduction in length), we felt a 0.45% increase 

in standard error over the manufacturer supplied calibration (1% error) was acceptable.  One 

issue was the relatively unresponsive range between about 200 and 350 mV.  Because there was 

no a priori knowledge of the calibration before the experiment, this caused there to be a large 

number of measurement sets with mean moisture contents between 6 and 7% (Table 2.1).  

However, the range of standard deviations within these sets was very low (0.4 – 0.8% moisture 

content), so there was not a significant effect on subsequent analyses.  

 

Table 2.1 Mean, standard deviation, and range in surface moisture contents for grid data set. 

Data Set Mean SD Range Data Set Mean SD Range 

27 0.0 0.0 0.2 38 8.0 2.0 6.9 
25 0.0 0.1 0.2 44 9.7 2.6 8.3 
22 0.0 0.1 0.2 35 10.0 2.6 10.2 
43 0.3 0.1 0.4 33 10.1 1.9 8.1 
37 0.8 0.2 1.0 20 10.2 1.9 8.2 
21 0.8 0.6 2.6 32 11.1 1.8 6.3 
4 4.1 1.3 5.0 6 14.1 3.5 12.0 
39 5.4 1.0 3.7 40 15.1 4.1 14.2 
1 5.4 1.2 3.9 7 15.7 1.9 7.5 
36 5.4 0.8 2.5 30 15.9 2.0 8.0 
5 5.9 0.9 2.6 10 16.2 3.5 11.5 
3 6.4 0.7 3.5 9 16.9 2.9 12.7 
42 6.4 0.4 1.6 28 17.0 1.9 7.3 
2 6.5 0.4 1.7 8 21.9 2.2 8.9 
41 6.6 0.2 1.2 12 23.8 0.5 1.9 
26 6.6 0.4 1.9 13 24.0 0.3 1.2 
18 6.7 0.2 1.0 31 24.1 0.3 1.1 
24 6.7 0.3 1.1 11 24.2 0.3 1.2 
23 6.7 0.3 1.0 34 24.3 0.2 1.0 
19 6.8 0.5 1.9 15 24.4 0.1 0.5 
17 6.8 0.8 3.5 14 24.5 0.1 0.3 
16 6.9 0.5 1.6 29 25.2 0.5 1.7 
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2.3 Results and Analysis 

Measured Small-Scale Variability 

      Table 2.1 provides the mean (x), standard deviation (σ), and range (difference between 

highest and lowest moisture content) for each grid data set, ordered by the mean within-grid 

surface moisture content. Mean moisture contents ranged from 0 to approximately 25 % 

gravimetric moisture content, representing conditions from completely dry (near the dune toe) 

to fully saturated (swash zone). These data show that small-scale variability in moisture content 

is smallest for very dry sediments and increases fairly consistently with higher moisture levels, 

up to a content of about 15 %. Variability then begins to decrease, becoming minimal once again 

for very wet sediments. The relationship between mean moisture content and the magnitude of  

small-scale variability (Figure 2.3) was found to be reasonably well approximated (R2 = 0.75) by a  

Gaussian distribution:  

σ = 3.04*exp(-((x-14.56)/6.83)^2)                                                                                           (2.1) 

where σ is the standard deviation, and x is the mean moisture content of a grid data set. 

 

Estimating Beach Area Available for Aeolian Transport  

 The specific issue at hand is to model the proportion of beach area that will have 

moisture contents above or below a given threshold level, taking into account the small-scale 

variability described above. In order to accomplish this, the assumption is made that each 

moisture measurement reported for larger-scale grids (e.g., Zhu, 2007, Davidson-Arnott et al., 

2008) approximates the mean content for the immediately surrounding area. Given this 

assumption, these larger-scale grid measurements can then be considered comparable to the 

grid data set mean values reported above, and equation 1 can be used to represent the 
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Figure 2.3 Plot of the mean surface moisture content for each measurement set versus the 
within-set standard deviation. The curve is a best fit Gaussian function (R2 = 0.75). 
 
 

expected small-scale variability in moisture content for the area surrounding each larger-scale 

grid measurement.  

 Several threshold moisture contents (above which aeolian transport is restricted or 

eliminated) have been reported in the literature. These include 4 % (Azizov, 1977, Wiggs et al., 

2004), 7% (Sherman et al., 1998), and 14% (Sarre, 1988). All of these values are considered here, 

and cumulative distribution functions (CDFs) were calculated from equation 1 for each (Figure 

2.4). For a given observed moisture content (again assumed representative of the mean value 

for the surrounding area) each curve on Figure 2.4 identifies the proportion of the surrounding 

area expected to be at or below the threshold content represented by that curve. Thus, they 
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Figure 2.4 Cumulative distribution functions for each threshold value. Curves represent the 
proportion of surrounding area expected to be at or below the critical threshold moisture 
content for a given mean moisture content. Dotted lines refer to the example in the text. 
 
 

indicate the proportion of the surrounding area expected to be available for aeolian transport.  

Given a surface moisture measurement of 15%, for example, the curve for the 14% threshold 

indicates that about 39% of the surrounding area would be expected to have moisture levels at 

or below the threshold value (Figure 2.4). In this case, a substantial portion of the surrounding 

area would be available for transport, despite an observed moisture content exceeding the 

critical threshold. Similarly, measurements below threshold do not necessarily indicate that the 

entire surrounding area is available for transport.  

It is worth noting here that the magnitude of this effect is greater for higher threshold 

values. Consider, for example, the case of a 4% threshold value and a measured content of 5% 
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(1% above the threshold value, as in the previous example). In this case only about 2% of the 

surrounding area would be expected to have moisture contents at or below the threshold 

(Figure 2.4). 

      

Application of the Model to a Typical Beach 

      The final step needed to assess the potential significance of small-scale variations in 

surface moisture for aeolian transport is to examine the model output in the context of real-

world moisture distributions. From Figure 2.4 it is apparent that only areas of beach surface that 

exhibit surface moisture contents close to the threshold value will be significantly influenced by 

small-scale variability (specifically how close depends on the selected threshold value, as shown 

in the previous section). Hence, the question is how much of the actual beach surface has 

moisture levels that are close enough to a given threshold for small scale variability to become a 

significant issue.  

To examine this issue, six larger-scale surface moisture maps (Figure 2.5) from the same 

study site are used. The larger-scale maps were derived from a 20 m (alongshore) by 60 m 

(cross-shore) grid with 5 m spacing between sample points (Zhu, 2007). The measured moisture 

contents were interpolated (linear interpolation) onto a 0.5 by 0.5 meter grid so that each cell in 

the interpolation would be of equal area to the grid data set used previously to characterize 

small-scale variability.  

To provide initial estimates of the proportion of beach area available for aeolian 

transport, the number of cells with moisture levels equal to or smaller than each of the three 

threshold values were counted and divided by the total number of cells in the interpolated 

moisture maps. Next, the CDFs from Figure 2.4 were used to model small-scale variability within 

each cell and the beach area available for transport was recalculated for comparison.  
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 As shown in Table 2.2, when small-scale variability in surface moisture is taken into 

account there are only minimal changes in the estimated area of beach surface available for 

transport. The maximum change in available beach surface area exceeded 1% in only two cases. 

This does not seem particularly worrisome, especially when considered in light of the many 

potential sources of error generally involved in sediment transport modeling. Interestingly, the 

largest influence of small scale variability (when averaged for all six maps) does not occur with a 

threshold value of 14%, despite the fact that the CDFs in Figure 2.4 suggest a stronger influence 

should be found with a higher threshold value. This indicates that the actual surface moisture 

distributions found at this site are an important factor in determining the significance of small 

scale variability to aeolian transport.  

 

2.4 Summary and Conclusions 

      The two goals of this paper were to quantify small-scale variations in surface moisture 

on a fine grained beach and to explore the significance of those results in terms of modeling 

beach surface area available to aeolian transport. Variability tended to be smallest for very dry  

or very wet sediments and largest at intermediate moisture levels, following an approximately 

normal distribution. It was found that surface moisture content can be highly variable over small 

areas, with differences of up to about 14% by weight occurring within the 0.5 m2 grid data set.  

These results indicate that there is a potential for disparity between observed surface moisture 

values in the field and actual surface moisture conditions, particularly in the mid ranges of 

possible moisture contents.  For example, if the actual mean surface moisture content for a 

small area was 10 %, according to Equation 1, there is a 32 % chance that an observed value 

would be at least ± 2 %.  Potential for error is greater when taking into account the range of 

observed values in a small area from Table 2.2.1.  Measurement set 35, for example, had a mean
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Figure 2.5 Moisture maps for assessment of input of impact of small-scale variability (data from Zhu 2007). The top of each map coincides with 
the dune toe and the bottom falls within the swash zone. Data were collected at 5 m intervals on a 20 m by 60 m grid. 
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Table 2.2 Influence of small-scale variability (SSV) on beach area available for aeolian transport. 

   Area Available for Transport (%)     

   4% Threshold  

                             

7% Threshold  14 % Threshold 

Map # Date  Without SSV With SSV Difference Without SSV With SSV Difference  Without SSV With SSV Difference 

MS 1 7/29/2005  35.2 35.4 0.2 51.9 52.7 0.8 69.8 68.6 -1.2 

MS 2 7/30/2005  49.1 49.2 0.1 65.1 65.2 0.1 74.8 74.5 -0.3 

MS 3 7/30/2005  31.1 31.1 0.0 40.5 41.0 0.6 48.6 48.2 -0.4 

MS 4 8/2/2005  49.4 49.3 -0.1 54.0 55.1 1.1 71.5 71.7 0.2 

MS 5 7/30/2005  43.5 43.2 -0.3 53.5 54.3 0.8 67.1 66.6 -0.6 

MS 6 7/31/2005  46.1 46.1 -0.1 56.0 56.9 0.9 72.0 71.7 -0.3 

       Average:    0.0   0.7   -0.4 
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moisture level of 10.0 %, and the range was 10.2 %.  Such disparities could potentially cause 

difficulties in research involving surficial moisture conditions, e.g. endeavors to establish critical 

moisture values for transport. 

      To address the second goal of this paper, cumulative distribution functions were used to 

model small-scale variations in surficial moisture in the context of three ‘threshold’ values 

suggested in the literature (4%, 7%, and 14%). It was found that the larger the specified 

threshold level, the greater the significance of small-scale variability in terms of beach area 

available for aeolian transport (i.e. at or below the threshold moisture content). These functions 

were used to model small-scale variability in surface moisture distributions mapped at the same 

site but on a much coarser grid. It was found that the change in the estimated area available for 

aeolian transport resulting from consideration of small-scale variability was negligible, typically 

less than 1%. Thus, at this site small-scale variability does not have significant implications for 

aeolian transport modeling in terms of the surface area available to transport, and a relatively 

coarse sampling grid (5m) provides an adequate characterization of beach moisture contents for 

this purpose.  It should be noted, however, that this analysis did not consider the effects of 

small-scale variability to other potentially significant transport parameters, such as fetch length 

or beach drying time.  Further work should be conducted to investigate other potential impacts 

of variability in surface moisture. 
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3. COMPARISON OF SURFACE MOISTURE MEASUREMENTS TO DEPTH-INTEGRATED MOISTURE 

MEASUREMENTS ON A FINE-GRAINED BEACH2 
 

3.1 Introduction 

 The measurement of surface moisture on beaches is a fundamental component of field 

studies that seek to define and model beach groundwater pathways and reservoirs (e.g., Turner, 

1993; Atherton et al., 2001; Namikas et al., 2010), or investigate the role of surface moisture in 

aeolian transport processes (e.g., Sherman et al., 1998; Wiggs et al., 2004; Davidson-Arnott et 

al., 2008; Oblinger and Anthony, 2008; Bauer et al., 2009; Edwards and Namikas, 2009; Namikas 

et al., 2010; Nield et al., 2011). However, measurement of moisture content at the surface of 

the sediment bed is difficult and available techniques are subject to significant limitations. 

Traditionally, surface scrapings have been collected to assess surficial moisture conditions, and a 

number of more recent studies have employed depth-integrated soil moisture probe 

approaches that avoid several key limitations associated with the former. Both of these 

approaches quantify moisture integrated over depth to some degree, and consideration of 

moisture measurements with regard to aeolian process studies raises the issue of how 

accurately depth-integrated sampling represents moisture content at the surface. While the 

available literature does not completely assume (through a general lack of warnings to the 

contrary) that one can be used to represent the other, data characterizing the level of error 

between depth integrated and surface moisture measurements are limited. This information is 

certainly important, however, in interpreting results of many oft-cited studies on the effects of 

surficial moisture on aeolian transport thresholds and transport rates. This study addresses this 

issue through a comparison of depth integrated time domain reflectometry (TDR) 

measurements with optical measurements of surface moisture contents obtained with a 

portable spectroradiometer on a fine-grained beach. 

                                                           
2
 Reproduced with permission of Journal of Coastal Researh. See APPENDIX II 
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 Techniques that have been used to measure beach surface moisture can be grouped 

into three basic approaches: manual sample extraction, in situ indirect measurement, and 

remote sensing techniques. The manual sampling approach involves collecting scrapings or 

shallow samples of surface sediment for laboratory analysis (e.g., Sarre, 1988, Kroon and 

Hoekstra, 1990; Gares et al., 1996; Nordstrom et al., 1996; Jackson and Nordstrom, 1997, 

Sherman et al., 1998; Wiggs et al., 2004; Davidson-Arnott et al., 2005). Subsequent 

determination of gravimetric moisture content by weighing, drying, and reweighing the sample 

provides a direct measure of moisture content, making this potentially the most accurate 

approach, although the depth of sediment collected for analysis has varied significantly between 

studies. However, this method is time consuming to an extent that significantly limits the ability 

to sample moisture contents across large areas with detailed resolution. Perhaps more 

importantly, sample extraction destroys the sediment surface so that the ability to repetitively 

sample at a given location (e.g. to document temporal changes) is compromised. Together, 

these limitations restrict the utility of this approach for many applications. 

 There are a number of commercially available in situ soil moisture sensors, including 

capacitance probes, neutron probes, and tensiometers. Recently, several studies have reported 

in situ measurements of beach surface moisture conducted with a TDR sensor, such as the 

Delta-T Theta probe (Atherton et al., 2001; Wiggs et al., 2004; Yang and Davidson-Arnott, 2005; 

Davidson-Arnott et al., 2008; Oblinger and Anthony, 2008; Bauer et al., 2009; Davidson-Arnott 

and Bauer, 2009; Edwards and Namikas, 2009; Namikas et al., 2010; Schmutz and Namikas, 

2011, Nield et al., 2011). This technique overcomes many of the limitations associated with 

extraction sampling; measurements can be rapidly collected and the process causes minimal 

surface deformation. This allows for collection of large numbers of measurements to 

characterize spatial variability, and also allows repeated sampling at a given measurement 
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station to document temporal variability (e.g., Yang and Davidson-Arnott, 2005; Edwards and 

Namikas, 2009; Namikas et al., 2010). A weakness, however, lies in the sensor length. As 

supplied by the manufacturer, the active length of this type of probe is typically on the order of 

a few cm (6 cm for the Theta probe). Thus, measurements are integrated over depth rather than 

providing a true ‘surface’ measurement. While this issue can be circumvented somewhat by 

modifying the probes to reduce sampling depth (e.g., Tsegaye et al., 2004; Yang and Davidson-

Arnott, 2005; Davidson-Arnott et al., 2008; Bauer et al., 2009; Edwards and Namikas, 2009; 

Namikas et al., 2010; Schmutz and Namikas, 2011), the ability of measurements integrated over 

even these shallow depths to accurately describe conditions at the surface has been described 

sparingly in the literature. Certainly, there is a fundamental assumption that there is some 

departure between moisture measured over some depth and the ‘true’ moisture content in the 

top few layers of grains (which are of the most importance for beach-aeolian process studies) 

because of near-surface vertical moisture gradients. However, field data or discussions 

describing the nature of this departure (either directly or indirectly) are currently limited to a 

handful of studies and restricted to the lower half of typical gravimetric moisture levels 

(approximately 0 to 14%) found on most beaches (e.g. Wiggs et al., 2004; Darke et al., 2009; 

Nield et al., 2011). 

 Partially in response to the concerns described above, several recent studies have 

employed remote sensing techniques to attempt to measure and map surface moisture by 

relating brightness values derived from digital photography to surface moisture contents 

(McKenna Neuman and Langston, 2003, 2006; Darke and McKenna Neuman, 2008; Darke, 

Davidson-Arnott, and Ollerhead, 2009; Delgado-Fernandez, Davidson-Arnott, and Ollerhead, 

2009, Delgado-Fernandez and Davidson-Arnott, 2011, Delgado-Fernandez, 2011), or using a 

terrestrial laser scanner (Nield and Wiggs, 2011, Nield et al., 2011). The remote sensing 
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approach has several distinct advantages. It is non-destructive, it allows for instantaneous 

sampling of large areas, and measurements are restricted to the uppermost few layers of grains. 

For these reasons, it clearly holds promise, and potentially represents a valuable tool for 

characterizing meso-scale spatio-temporal variability in surface moisture. However, results to 

date show comparatively large levels of error, with the scatter in calibrations often  exceeding 

±10% moisture content for a given surface brightness for the digital photography method 

(McKenna Neuman and Langston, 2003, 2006; Darke and McKenna Neuman, 2008; Darke, 

Davidson-Arnott, and Ollerhead, 2009; Delgado-Fernandez, Davidson-Arnott, and Ollerhead, 

2009). Similarly, moisture measurement error for the terrestrial laser scanner (TSL) method used 

by Nield and Wiggs (2011) and Nield et al. (2011) increases dramatically as moisture level 

increases, and in fact appears to be essentially incapable of discriminating variability in moisture 

above levels of 7 or 8%. These errors could be due to the reliance on visible wavelengths for 

both methods; according to Lobell and Asner (2002), the primary influence of water in the 

visible range of the electromagnetic spectrum is to change refractivity at the soil surface. Thus, it 

may be that once moisture content is sufficient to cover soil particles the effect of increased 

moisture levels on reflectance decreases significantly, thereby reducing measurement 

resolution. This could limit the potential of the visible spectrum for moisture measurement, but 

there is much stronger absorption of infrared wavelengths by water, and thus the incorporation 

of infrared signals (e.g., Kano, McClure, and Skaggs, 1985; Slaughter, Pelletier, and Upadhyaya, 

2001; Lobell and Asner, 2002; Weidong et al., 2002; Weidong et al., 2003; Mouazen et al., 2007) 

could enhance the effectiveness of remote sensing approaches. 

In this study, we compare two sets of depth-integrated beach surface moisture 

measurements obtained from a Theta probe with surface measurements from a handheld 

spectroradiometer capable of collecting relative reflectance measurements in the wavelength 
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range of 325 to 1075 nm. The goal of this study is to compare depth-integrated moisture 

measurements to conditions at the surface of the bed. As an ancillary component, some 

discussion of the spectroradiomter’s utility is provided as a simple introduction to a promising 

technology for measuring beach surface moisture.  

 

3.2 Study Site and Methods 

Study Site 

The study was conducted at Padre Island National Seashore, on Padre Island, Texas, at a 

site about 3 km from the northern border of the park (approximately 27.48°N 97.28°W). The 

beach sediments consist of very-well sorted, fine to very fine quartz sands, with a mean grain 

size of approximately 0.14 mm. The beach is generally multi-barred dissipative to intermediate, 

with low wave energy levels and a micro-tidal range (typically <1 m). During the study, the berm 

was about 30 m in width and relatively flat (1–3°), and the beach was backed by a 1 to 2 m 

foredune ridge. 

 

Instrumentation 

 The TDR probe used in this study is a Delta-T Theta sensor produced by Delta-T Devices, 

Cambridge, UK (Figure 3.3.1). The device is designed to measure the dielectric constant in a 

volume of soil. A signal at some frequency is applied to a transmission line, which in turn is 

connected to the probe. The transmission line is of fixed impedance, and the impedance of the 

probe is determined by the dielectric properties of the surrounding soil (Gaskin and Miller, 

1996). The difference in impedance causes a portion of the original signal to be reflected back 

toward the source, thus setting up a standing wave of voltage amplitude between the incident 

signal and the reflected signal on the transmission line (Gaskin and Miller, 1996). The amplitude 
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of the standing wave can be related to impedance and the soil dielectric constant through a 

series of equations (Huang et al., 2004). Manufacturer supplied calibrations can be used to 

convert the probe output to volumetric moisture content, or site-specific calibrations can be 

conducted by the user to convert output to gravimetric moisture content. 

  The sensing prongs are approximately 6 cm long and encapsulate a cylinder 

approximately 2.5 cm in diameter (Figure 3.1). Some studies have utilized the full length of the 

probe (e.g., Atherton, Baird, and Wiggs, 2001; Wiggs et al., 2004). More recently, researchers 

have modified these probes to reduce sampling depth by encasing some portion of the probe in 

a dielectric foam block, thus reducing the active probe length (Yang and Davidson-Arnott, 2005; 

Zhu, 2007; Davidson-Arnott et al., 2008; Bauer et al., 2009; Davidson-Arnott and Bauer, 2009; 

Edwards and Namikas, 2009; Namikas et al., 2010; Schmutz and Namikas, 2011) (Figure 3.1). 

Although the measurement resolution of the probe decreases as the active probe length is 

reduced (Yang and Davidson-Arnott, 2005; Schmutz and Namikas, (2011), there does not seem 

to be a significant decrease in accuracy. Schmutz and Namikas (2011) report that reducing the 

active probe length to 1.5 cm (from 6 cm at full length) increases the standard error of 

measurement from ± 1.0 to ± 1.9 % moisture content. 

 The spectroradiometer used in this study is an ASD (Analytical Spectral Devices) 

FieldSpec® HandHeld (HH) model UV/VNIR (325-1075 nm) spectroradiometer (Figure 3.2). This 

device measures radiance or reflectance intensity over the wavelength range of 325 to 1075 nm 

at sampling intervals of 1.6 nm. After passing through the fiber optic head, light energy is 

directed through a diffraction grating that separates the wavelength components for 
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Figure 3.1 A) Picture of Delta-T Theta Probe showing standard measurement dimensions, and B) 
Probe modified with foam blocks to restrict sampling depth to 1.5 cm. 
 

 
Figure 3.2 Spectroradiometer being used to collect a white reference measurement at North 
Padre Island, TX. Note the shadow over the panel. This is unavoidable in the field, but as long as 
measurement geometry is not significantly altered between white reference and actual sample 
measurements (about 10 seconds apart), this is not a major issue. 
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independent measurement by a 512 channel silicon photodiode array. Incident photons are 

converted into electrons that are integrated over a user-set interval. Available integration times 

range from a few ms (milliseconds) to several minutes (ASD, 2002). Output spectra result from 

the average of a user-set number of recorded spectra. For example, if integration time is set to 

272 ms, and averaging interval is set to 10, the instrument will output a spectrum every 2.7 

seconds. The instrument is controlled by a computer program and output spectra are saved 

directly to the computer’s hard drive (Figure 3.2).  

 For relative reflectance measurements, a reference measurement is collected using a 

white reference panel made of a material that approaches 100% reflectivity across the 

measurement spectrum. In this case, we used a 3.2 cm diameter, 5 mm thick spectralon diffuse 

white reference panel (> 99% reflectance from 400-1500 nm). This allows comparison of 

measurements obtained under different ambient lighting conditions (e.g., cloudy vs. sunny), as 

long as measurement geometry is not altered, e.g. location with respect to objects (because of 

shadows), instrument height, angle to the surface, etc. A ratio of the white reference spectra to 

the target spectra produces the relative reflectance spectra. Thus, the spectral signal of the 

illumination source is removed, given again that the measurement geometry is not significantly 

altered (ASD, 2002). The relative reflectance value of the white panel itself is equal to 1 across 

the entire measurement range, and decreases at any particular wavelength as the amount of 

light reflected from the target decreases at that wavelength. In the case of these experiments, 

higher moisture levels in the sample will absorb more incident energy, and therefore have lower 

relative reflectance values. 

 Conversion of relative reflectance values (R) to absorbance (A) as A=log(1/R) has been 

found to remove nonlinearity associated with the absorption process (e.g., Weidong et al., 

2002), and was found here to provide improved results versus the raw relative reflectance 
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Figure 3.3 Laboratory spectroradiometer measurements conducted prior to field study on two 
separate 3 mm thick samples of moist native Padre Island, Texas sand. Two sets of 
measurements (closed and open symbols) were conducted periodically as the sand dried and 
moisture content was established by weighing the sample. Standard error (SE) is reported in 
percent moisture content. 
 
 

values. Figure 3.3 shows results from a set of preliminary laboratory tests undertaken to assess 

the potential of this device for measuring beach surface moisture in the field. The plot shows 

values from the 970 nm wavelength versus gravimetric moisture content from two 

approximately 3 mm thick samples of sand initially saturated samples in sediment trays dried 

over time, on separate occasions under different lighting and measurement conditions, but 

show good agreement. The high R2 value (0.98) and low standard error (0.95% moisture 



32 
 

content) indicate that this instrument is potentially well suited to measure beach surface 

moisture contents.  

 There does appear to be some systematic difference between results from the two 

separate tests, but this is likely due to small differences in sample thickness, sediment mixture, 

and instrument position/measurement angle. Given the relatively high accuracy of the overall 

relationship, however, this was considered acceptable, and it was concluded that the 

spectroradiometer should provide reasonably accurate moisture values. Further tests on 

different sands produced similar results, with R2 values above 0.98 in all cases standard error 

less than 1.0% in all cases. 

 

Field Experiments 

A total of 16 collocated sets of moisture measurements were obtained spanning the 

range of beach sub-environments along a cross-shore transect from dune toe to swash zone as 

follows. First, the modified Theta probe was inserted into the beach surface to a depth of 1.5 cm 

and a depth-integrated measurement was collected. Immediately afterwards, 6 

spectroradiometer readings of the sediment surface were collected, and average values from 

these were used for subsequent analyses. The Theta probe has a diameter of 2.5 cm, and the 

spectroradiometer collects reflected energy within the diameter of a cone subtending a full 

angle of about 25°. Here, the instrument was held approximately 5 cm from the bed, which 

provides a comparable sampling diameter of about 2.2 cm. Once the spectra were collected, a 

coring tube of the same dimensions as the sampling volume of the Theta probe was used to 

extract the sediment sample for determination of gravimetric moisture content. The tube was 

inserted into the surface to a depth of 1.5 cm and a trowel was used to seal the bottom of the 

tube and retrieve the sample. The extracted samples were immediately sealed in plastic bags 
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and gravimetric moisture contents were determined in the laboratory using standard methods 

immediately upon return from the field. A second set of 14 observations was collected using the 

same methods, except that the full 6 cm Theta probe length was used and the core depth was 

adjusted to correspond. 

 An additional procedure was conducted to calibrate spectra recorded by the 

spectroradiometer to the moisture content of the uppermost layers of grains. Spectra were 

collected at 7 locations on the beach that looked visibly different in terms of moisture content, 

starting with very dry sediments near the dune toe and moving to nearly saturated sediments 

near the swash zone. Again, six spectra were recorded at each location. Following each 

measurement, a sediment sample about 1.5 mm thick was removed from the surface using a 

stiff plastic card and transported back to the laboratory for gravimetric moisture analysis (Figure 

3.4). Unfortunately, two were compromised during transport and only 5 data points were 

available for the spectroradiometer calibration. However, given the robust laboratory test 

results (Figure 3.3), we deemed this to be acceptable for the scope of this exercise. 

 

3.3 Results and Analysis 

Instrument Calibrations 

 Figure 3.5 shows calibration curves obtained for the 1.5 and 6 cm Theta probe lengths 

versus measured gravimetric moisture content. The R2 values for the 1.5 and 6 cm probe lengths 

are approximately 0.98 and 0.99, respectively. Note that the standard error is approximately 

doubled for the shortened probe length, from 0.61% for the 6 cm probe length to 1.22 % with 

the 1.5 cm probe length. The latter is within the range of previously published error values with 

the same probe length (e.g., Edwards and Namikas, 2009; Schmutz and Namikas, 2011). 
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Figure 3.4 Sample taken to field calibrate the spectroradiometer. Coin shown for scale is 24 mm 
in diameter and approximately 1.5 mm thick.  
 
 

 Figure 3.6 shows the field calibration for the spectroradiometer for log(1/R) at a 

wavelength of 970 nm versus measured gravimetric moisture content of the 1.5 mm thick 

surface samples. The R2 value is approximately 0.99, and the standard error is about ±1.5% 

moisture content. This value is somewhat higher than that obtained in preliminary laboratory 

experiments (Figure 3.3), but still similar to published levels of error determined for very low 

moisture contents with the TSL method (Nield and Wiggs, 2011, Nield et al., 2011) and for the 

full scale range for a modified Theta probe  (Yang and Davidson-Arnott, 2005; Edwards and 

Namikas, 2009; Schmutz and Namikas, 2011), and also comparable to that found for the 1.5 cm 

Theta probe results in this study. It is possible that the error is somewhat larger than expected 

because of the small number of data points available.  
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Figure 3.5. Theta probe calibrations for 1.5 cm and 6 cm probe lengths. Curves are 4th order 
polynomials. Standard error (SE) is reported as percent moisture. 
 

Figure 3.6 Spectroradiometer field calibration. Curve is a quadratic polynomial. Standard error 
(SE) is reported as percent moisture. 
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 We also fit a spectroradiometer calibration for the 1.5 and 6 cm deep samples, which is 

shown in Figure 3.7. While there is still a reasonable relationship between A and gravimetric 

moisture content in both cases (R2 ≈ 0.87 for the 1.5 cm deep sample, 0.77 for the 6 cm deep 

sample), the standard error is 3.28 and 3.10 % moisture content, respectively, compared to the 

0.61 and 1.22 % standard error values from the Theta probe. As expected, these results indicate 

that the spectoradiometer is well suited to measure moisture at the beach surface, while it does 

not accurately predict moisture conditions integrated over the top few cm of sediment. 

Conversely, the Theta probe is well suited to measure moisture content integrated at some 

depth, but not well suited to predict moisture content at the surface, which agrees with findings 

from Nield et al. (2011).  

 Despite the above discrepancy, it is apparent that the TDR probe and the 

spectroradiometer are both capable of providing a consistent, reasonably accurate indication of 

the moisture content of the sediment thickness they are intended to sample. The question 

remains as to how well depth-integrated values are representative of the conditions at the 

surface.  

 

Comparison of Depth-Integrated Moisture to Surface Moisture 

The depth-integrated moisture contents measured with the Theta probe are compared 

with the surface moisture measurements from the spectroradiometer in Figure 3.8. It is clear 

that there is substantial disagreement between the two. Because the respective instruments 

used here produce accurate measures of surface and depth integrated moisture contents, the 

scatter in Figure 3.8 can likely be attributed to natural gradients in moisture with depth. It is 

readily apparent that depth-integrated moisture contents can differ quite a bit from the surface 

contents at the same locations. 
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Figure 3.7 Best-fit relationships between spectroradiometer readings and gravimetric moisture 
content for the 1.5 cm and 6 cm core depths.  Curves are a quadratic polynomials. Standard 
error (SE) is reported as percent moisture. 
 
  

 Moisture contents for the full 6 cm depth were higher than the surface moisture for all 

but one observation. Moisture levels from the surface and at depth were most similar for very 

dry sediments near the dune toe. On average, the 6 cm depth-integrated moisture levels were 

approximately 4.4% higher than at the surface, but in the extreme case, a depth-integrated 

moisture content of 15.9 % corresponded to a surface moisture of 3.6 %. These results suggest 

that to this depth, strong vertical moisture gradients exist near the surface across most of the 

beach, except in dry, loose sediments near the dune toe. Even more problematic, the magnitude 

of overestimation increased substantially with increasing moisture content, suggesting that 
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moisture gradients steepen across the mid beach, possibly because the bottom of the 

integrated volume is increasingly more connected via capillary action to the water table as 

beach elevation decreases towards the swash zone. For two saturated swash zone samples, 

surface moisture predictions from the spectroradiometer exceeded the maximum gravimetric 

moisture level possible for beach sands because a thin layer of water was present above the 

sediment surface. Thus, these data are not shown, but it can be assumed that surface and 

depth-integrated moisture would match for very wet sediments due to vertically ubiquitous 

saturation in the swash zone. 

For the shallower 1.5 cm sampling depth, the disagreement between the depth-

integrated measurements and the surface measurements is not as large, but is much more 

variable. Depth-integrated moisture levels are higher than at the surface by about 2.5% on 

average, although moisture contents were higher at the surface in a few instances. The 

increased variability in the relationship between surface moisture and depth-integrated 

moisture suggests that over this shallower integration depth, near-surface gradients are less 

predictable, particularly in the mid beach. At this depth, sediments are likely further detached 

from the water table, and as such likely subject to more variability in the magnitude and 

direction of gradients. Again, data from two saturated samples are not shown for the same 

reasons as above, but the best agreement between the surface moisture and depth-integrated 

moisture for this depth occurred with very dry or very wet sediments, which agrees with 

intuitive expectations that in very dry or wet regions near the dune toe or swash zone, there will 

be less vertical variability in moisture content. There were also several instances on the upper 

mid beach, near the dune toe, where the surface was dry, but there was significant moisture at 

depth. 
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Figure 3.8 Comparison of depth-integrated moisture measurements from the Theta probe 
versus surface moisture measurements from the spectroradiometer. Linear best-fit relationships 
are shown for each probe sampling depth. Depth-integrated measurements generally 
overestimated moisture at the surface. Depth-integrated moisture content and surface moisture 
content were similar for very dry or very wet conditions, i.e. at the dune toe and near the swash 
zone, and most of the departure occurred in the mid beach area. 
 
  

 In all, it is apparent that the use of measurements integrated over even relatively 

shallow depths are likely to overestimate actual surface moisture content across much of the 

beach surface, particularly in intermediate moisture zones across the mid beach and transport 

intensive areas near the dune toe (e.g. where sediments on the surface may be dry, but there is 

moisture at depth). Thus, depth-integrated moisture data may not be appropriate to represent 

conditions at the air-sediment interface, and could potentially produce misleading experimental 

results designed to assess the effects of moisture on aeolian processes. Interestingly, although 
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the magnitude of departure is larger, there appears to be a more predictable relationship 

between surface moisture and the 6 cm sampling depth than for the 1.5 cm sampling depth. 

According to these data, the larger sampling depth can be used to predict moisture at the 

surface to within about 0.7%, while the standard error of prediction for surface moisture from 

the 1.5 cm measurements is about 2.8% moisture content. 

 

3.4 Discussion and Conclusions 

The goal of this study was to compare depth-integrated moisture measurements to 

conditions at the surface. Comparison of surface moisture measurements obtained with a 

spectroradiometer with depth-integrated measurements obtained with a Theta probe revealed 

that the depth-integrated measurements were higher at the surface of the bed by an average of 

2.5% moisture for 1.5 cm deep samples and 4.4% moisture for 6 cm deep samples. There was 

enough scatter and variability in the magnitude of overestimation to suggest that the depth-

integrated measurements may not suitably characterize surface moisture levels for studies 

focused on aeolian transport, where only the top few layers of grains are usually considered 

important. However, the difference between the surface moisture and moisture over depth was 

often negligible for areas near and on the dune toe and swash zone, as one might expect. The 

largest departures between surface and depth-integrated moisture occurred on the mid beach 

area, where there is likely a complex interplay between capillary and atmospheric processes 

that determine moisture at the surface. Perhaps most important for aeolian studies was the 

overestimation of moisture on the the upper mid beach near the dune toe, where sediments at 

the surface were dry but moist to some degree at depth. It was also found that measurements 

integrated over increasingly large depths tend to depart from surface moisture content by an 

increasingly large amount across the beach surface, as would be expected. There was, however, 



41 
 

a more predictable relationship between surface moisture and depth-integrated moisture at 

larger depths. 

Admittedly, this research is not definitive in terms of the magnitude or direction of near 

-surface moisture gradients we could expect under different scenarios (e.g. drying/wetting 

cycles), with different grain sizes, or with different inclement conditions, but adds to a very 

sparse existing framework with regards to the behavior of moisture near the surface of the 

sediment bed. In terms of aeolian transport research, these results imply that previous studies 

that employed depth-integrated moisture measurement techniques may have underestimated 

the transport-limiting influence of surface moisture. For example, the oft-cited Chepil (1956), 

Hotta et al. (1984), Sherman et al. (1998), and Davidson-Arnott et al. (2008) used measurement 

depths of 0.64, 0.5, 0.5, and 2.0 cm, respectively. Further, uncertainty regarding ‘true’ surface 

moisture seems to be greatest on areas of the beach likely to experience transport, e.g. the 

upper mid beach. As moisture is a key control on transport thresholds and rates, much more 

work is needed still to investigate the nature of near-surface gradients, especially in terms of 

spatial variability across the beach. 

An ancillary goal was to briefly evaluate the utility of a hand-held spectroradiometer for 

measuring beach surface moisture contents. From a practical standpoint, the spectroradiometer 

is somewhat cumbersome to use in the field because of the need to control the device with a 

computer and the need to record frequent white reference measurements. Sampling speed is 

therefore relatively slow, and it would not be a very practical instrument for repeated moisture 

content mapping of large areas, as in McKenna Neuman and Langston (2006), Darke and 

McKenna Neuman (2008), Delgado-Fernandez et al. (2009), Darke et al. (2009), Namikas et al. 

(2010), Delgado-Fernandez and Davidson-Arnott, 2011, Delgado-Fernandez (2011), or Nield et 

al., (2011). However, the device is very well suited to sample smaller numbers of points at 
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regular intervals and it appears to potentially provide a significantly more accurate 

characterization of moisture content at the surface than previous non-destructive remote 

sensing attempts (McKenna Neuman and Langston, 2003, 2006; Darke and McKenna Neuman, 

2008; Dark et al., 2009; Delgado-Fernandez, Davidson-Arnott, and Ollerhead, 2009, Nield and 

Wiggs, 2011, Nield et al., 2011).  

We admit this assertion is based on a small sampling of calibration points, but when 

considered together with the laboratory calibration and the available body of work from the 

agricultural and remote sensing fields (e.g., Kano et al., 1985; Slaughter et al., 2001; Lobell and 

Asner, 2002; Weidong et al, 2002; Weidong et al., 2003; Mouazen et al., 2007) , the results from 

this study suggest that  infrared wavelengths can potentially provide improved information 

regarding surface moisture content on beaches in comparison to visible wavelengths. An 

approach that used infrared filters or sensors with digital photography might prove to be a 

useful advance by combining the accuracy from infrared signals with the measurement ease and 

spatio-temporal resolution of digital photography. More work is needed to develop accurate, 

non-destructive, and rapid techniques to quantify moisture content at the beach sediment 

surface. 
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4. SIMPLE INFRARED TECHNIQUES FOR MEASURING BEACH SURFACE MOISTURE3 

4.1 Introduction 

It is well known that surficial moisture exerts significant control on aeolian transport 

processes.  Identification of spatiotemporal variations in surficial moisture is a critical need in 

coastal aeolian research, and contemporary field studies of aeolian processes often incorporate 

some form of surface moisture measurement (e.g. Davidson-Arnott et al., 2008; Bauer and 

Davidson-Arnott, 2009; Davidson-Arnott, et al., 2009; Nield et al., 2011). Conceptually, the role 

of moisture is simple: cohesion caused by inter-granular water adds additional resistance to 

motion (beyond inertial forces), which manifests as an increase in entrainment threshold and a 

decrease in the rate of mass transport (see Hotta et al. (1984), Namikas and Sherman (1995), 

and Cornelis and Gabriels (2003) for detailed reviews). However, the degree to which moisture 

influences transport processes under field conditions is still largely unknown.  

 Numerous models that describe the influence of surface moisture on aeolian transport 

in either empirical or theoretical terms have been proposed (e.g. Akiba, 1933; Chepil, 1956; 

Belly, 1964; Kawata and Tsuchiya, 1976; Azizov, 1977; Horiwaka et al., 1982; Hotta et al., 1984; 

Sarre, 1988; McKenna Neuman and Nickling, 1989; Gregory and Darwish, 1990; Shao et al., 

1996; Cornelis et al. 2004a, 2004b, 2004c). However, a key limitation substantively restricts the 

application of such models to field situations. Essentially, an inability to quantify surface 

moisture content with appropriate precision and with sufficient spatial and temporal resolution 

leading up to and during transport events has seriously limited progress in the understanding of 

how surface moisture influences thresholds and mass transport rates and affects transport 

dynamics in the complex conditions found on a natural beach. Consequently, the pursuit of 

improved field measurement techniques has been an area of focus in the literature, and a 

                                                           
3
 Reproduced with permission from Earth Surface Processes and Landforms. See APPENDIX III 
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number of technical advances have been made in recent years (e.g. Atherton et al., 2001; Yang 

and Davidson-Arnott, 2005; McKenna Neuman and Langston, 2003, 2006; Darke and McKenna 

Neuman, 2008; Darke, et al., 2009; Delgado-Fernandez et al., 2009, Nield and Wiggs, 2011). 

There is still need for improvement, however, in our ability to precisely, rapidly and 

nondestructively measure moisture where it is most significant for aeolian processes – the 

uppermost few layers of grains. This paper examines the potential of a new approach to the 

problem, the use of handheld infrared remote sensing, and presents results from field tests 

designed to assess the suitability of an inexpensive narrow-band infrared radiometer as a tool to 

measure beach surface moisture and a comparison with a standard commercial 

spectroradiometer. 

 

4.2 Background 

A variety of methods have been used to measure surface moisture on beaches, 

including collecting sediment scrapings from the surface (e.g., Sarre, 1988, Kroon and Hoekstra, 

1990; Gares et al., 1996; Nordstrom et al., 1996; Jackson and Nordstrom, 1997, Sherman et al., 

1998; Wiggs et al., 2004; Davidson-Arnott et al., 2005), commercial soil moisture probes (Svasek 

and Terwindt, 1974, Atherton et al., 2001; Wiggs et al., 2004; Yang and Davidson-Arnott, 2005; 

Davidson-Arnott et al., 2008; Oblinger and Anthony, 2008; Bauer et al., 2009; Davidson-Arnott 

and Bauer, 2009; Edwards and Namikas, 2009; Namikas et al., 2010), and remote sensing 

techniques such as digital photography (McKenna Neuman and Langston, 2003, 2006; Darke and 

McKenna Neuman, 2008; Darke et al., 2009; Delgado-Fernandez et al., 2009, Delgado-

Fernandez, 2011) and a terrestrial laser scanner (Nield and Wiggs., 2011, Nield et al., 2011). Each 

approach has specific advantages and shortcomings with regard to accuracy and resolution 

(spatial and temporal). For example, surface scraping is generally considered to provide the 
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most accurate measurement, but the collection process effectively destroys the surface and 

thereby complicates repeated sampling of the same location (which is needed to document 

temporal change in moisture content). Many commercial probes can be used to document 

temporal change with high resolution, but they generally sample a volume that is large enough 

to make their application to a very thin surface layer problematic.   

 In general, remote sensing approaches hold great promise for aeolian process studies 

because they overcome two fundamental problems associated with surface scrapings and 

probes: 1) the integrity of the surface is preserved undisturbed; and 2) only the top few layers of 

grains are sampled. Recent studies have demonstrated the potential utility of remote sensing 

approaches to characterize meso-scale spatio-temporal patterns in surficial moisture conditions 

(McKenna Neuman and Langston, 2003, 2006; Darke and McKenna Neuman, 2008; Darke et al., 

2009; Delgado-Fernandez et al., 2009;  Delgado-Fernandez, 2011; Nield and Wiggs, 2011;  Nield 

et al., 2011). However, the highest level of accuracy reported from brightness measurements to 

date is a standard error of 3% to 4% (Darke et al., 2009), and in many cases, the scatter in 

calibrations exceeds approximately 10% moisture content for a given surface brightness 

(McKenna Neuman and Langston, 2003, 2006; Darke and McKenna Neuman, 2008; Darke, 

Davidson-Arnott, and Ollerhead, 2009; Delgado-Fernandez, Davidson-Arnott, and Ollerhead, 

2009), which would introduce considerable uncertainty in transport rate modeling. Terrestrial 

laser scanning appears to hold great promise for the future, but it is currently a cutting edge 

technology that is potentially expensive and produces large amounts of data that require a great 

deal of post processing (Nield and Wiggs, 2011, Nield et al., 2011). Further, scatter in the 

calibration of the laser scanner  appears large above low moisture contents, and appears to 

increase until moisture above levels of 7 or 8% cannot be predicted with certainty. 
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The use of infrared spectroscopy is an established method for determining water content of soil 

samples in agricultural and remote sensing research (e.g. Slaughter et al., 2001;  Lobell and 

Asner, 2002; Weidong et al., 2002a;  Mouazen et al., 2007). Infrared wavelengths are strongly 

absorbed by water, and thus reflection of infrared energy from moist surfaces is strongly 

influenced by water content. Portable spectroradiometers have recently become commercially 

available for measuring irradiation and reflectance in the field. However, most are relatively 

expensive (about US$8000 for the model used in this study). Further, practical use in the field 

can be cumbersome because of measurement protocol and the need for a dedicated laptop 

computer (and potentially a power source as well) (Edwards et al., 2012). Thus, while accuracy 

and spectral range make portable spectroradiometers appealing for measuring moisture 

content, in situations where mobility and the ability to make rapid, frequent measurements are 

important they may be less than ideal logistically. However, simpler designs have been 

developed that utilize a ratio of just two infrared bands, rather than the large range of 

wavelengths employed by commercial spectroradiometers (e.g. Kano et al., 1985; Heusinkveld 

et al., 2008), and these have also been used successfully to quantify moisture in agricultural soils 

and leafy tissues. This study involved the development of a similar device that relies on a single 

infrared band to measure surface moisture. In this paper, the construction of the device is 

described, and the accuracy and usability of the new sensor is compared with a commercial 

handheld spectroradiometer. 

 

4.3 Instrumentation 

Narrow-Band Radiometer 

The theory of operation behind the narrow-band radiometer is straightforward. Water 

absorbs energy throughout the near infrared portion of the electromagnetic spectrum, but 
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certain narrow bands of wavelengths are absorbed much more strongly. These absorption peaks 

occur at approximately 970 nm, 1200 nm, 1450 nm, and 1940 nm. The absorption band at 1940 

nm is by far the strongest, and at this wavelength wetter sands should absorb much higher 

amounts of energy than dry sands. Thus, if a constant infrared energy level is applied to the 

beach surface, energy in this band received at a sensor should be inversely related to the water 

content at the surface. 

The major components of the narrow-band radiometer (NBR) consist of a light source to 

generate infrared energy and a photodetector that is mounted behind a narrow bandpass filter 

that only allows a small band centered around 1940 nm to pass. The instrument housing was 

constructed of PVC pipe, and consisted of a light chamber and the main detection chamber 

(Figure 1). The photodetector and light were mounted on solid core aluminum disks (heatsinks) 

which fit inside the PVC joints and basic circuitry was housed above. The sensing end of the 

device was capped with a quartz glass disk to prevent moisture or other contaminants from 

getting inside. A GU-5.3 socket  MR-16 50 watt halogen bulb was used as the light source and 

was mounted in a 12/24 Volt ceramic socket which was mounted to the heatsink in the light 

chamber. The photodetector was a ThorLabs model FGA20 InGAas photodiode in a TO-18 

package (3 leads: anode, cathode, case ground). This particular sensor has a range of about 1200 

to 2600 nm, with peak response from about 1900 to 2300 nm. The bandpass filter was the same 

diameter of the sensor package and had a 40 nm bandwidth centered on 1940 nm. A reverse 

bias of approximately 1.6 Volts was applied to the photodiode via a voltage regulator powered 

by a nine volt battery, and output photocurrent was converted to voltage with a 1 kOhm load 

resistor. The light source was powered using a 12 Volt 7 amp-hour battery. Total cost of 

components was about US$800.    
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Practical operation of the device is also straightforward. In this configuration, as the 

amount of moisture in a sample increases, the amount of energy that strikes the detector and 

thus the current generated and resulting voltage output decrease. Output voltage was 

measured at 1 Hz using a portable external data logger that also recorded time and ambient 

temperature. The photodetector continuously outputs a signal, but for a sample measurement, 

the light can be switched on a few seconds before to record a base level voltage and to mark 

each measurement in the logged data sequence. Next, the instrument is held just above the 

sample area for a few seconds to record a measurement voltage. Finally, the instrument is 

removed from the sample and the light is left on for a few seconds more and then switched off. 

Each measurement takes about 10 seconds to make. For the tests conducted in this study, the 

light was left on for the duration of each because they were conducted over a very short period 

of time.  
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Figure 4.1 Schematic of the narrow-band radiometer and circuit. Vo and RL refer to output 
voltage and load resistor, respectively. 
 
 

 

Portable Spectroradiometer. 

The spectroradiometer used in this study was an ASD (Analytical Spectral Devices) 

FieldSpec® HandHeld (HH) model UV/VNIR (325-1075 nm) Spectroradiometer. This device 

records radiance or reflectance data over the wavelength range of 325 to 1075 nm. The 

instrument is controlled by a computer and spectra are saved directly to the hard drive. For 

relative reflectance measurements, a white reference panel made of a material that approaches 

100% reflective across the measurement spectrum is used so that measurements made under 

different or changing ambient lighting conditions (e.g. cloudy vs. sunny) are comparable. A ratio 

of the reference spectra to the target spectra produces relative reflectance (R) values, thus 

removing spectral characteristics of the illumination source, given that the measurement 

geometry is not significantly altered between these measurements (ASD, 2002). 

 

4.4 Methods 

Field tests of the two instruments were conducted: 1) in the Padre Island National 

Seashore (PINS), Padre Island, Texas, about 3 km from the northern border of the park 

(approximately 27.458°N, 97.283°W); and 2) at two locations in the St. Joseph Peninsula State 

Park (approximately 29.878°N, 85.237°W), on the distal end of the peninsula (SJP1) and near the 

public camping area (SJP2). The Padre Island site consisted of very-well sorted, fine to very fine 

quartz sands, with a mean grain size of approximately 0.15 mm. The St. Joseph Peninsula sites 

consisted of  well sorted quartz sands with a mean grain size of approximately 0.30 mm. 
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 One test of the NBR was conducted at each of the three sites. After each measurement 

was taken, a 1.5 mm thick layer of the measured sediment was collected (roughly 5 grains deep 

at SJP and 10 grains deep at PINS). The samples were sealed in plastic bags and initial weights 

were recorded the day of extraction. Moisture contents were subsequently determined in the 

laboratory using standard gravimetric techniques.  Ambient air temperature was also recorded 

in conjunction with surface moisture sensor measurements.  

Two field tests of the spectroradiometer were conducted for comparison, one at SJB1 

and one at the PINS site (Edwards et al., 2012). For each measurement, a white reference 

measurement was conducted, and 6 spectra were recorded immediately after. Relative 

reflectance at 970 nm (a weak water absorption band) was averaged for each sample. 

Gravimetric moisture contents of the sediments were determined in the same manner as above. 

 

4.5 Results 

Narrow-band radiometer 

Figure 4.2 shows an example of instrument output from one of the field calibration tests 

(SJP1). Each of the peaks in the series represents one of the target measurement points. Despite 

moisture level, reflection of energy from the sand surface is higher than base level output for all  

possible values. However, moister sands absorb more energy, and the measurement peak is  

 



54 
 

 
Figure 4.2 Example of instrument output from the SJB1 field test of the narrow-band 
radiometer. Each peak represents one of calibration sample. The measured gravimetric 
moisture content for each sample is labeled under each peak. 
 

lower with respect to the base level output. Of note, the signal systematically increased during  

the test. This occurred because the light source remained on for the duration and the detection 

chamber heated up through time. Similarly, instrument response is generally related to ambient 

temperature, with higher temperatures causing the signal to increase. For example, the starting 

base level and average in-run temperature were approximately 450 mV and 11.4 C° for SJP1, 

and 500 mV, 14.0 C° for calibration SJP2. This effect was evident during bench testing when the 

instrument was logged for long periods of time, but we considered this to have a negligible 

effect for surface moisture measurement because a given volume of water in the target sample 

will absorb the same amount of energy which would cause the same signal increase, 

independent of base level. Thus, the difference between base level and each peak of given 

moisture content will be approximately equal for a range of ambient temperature. Temperature 

also affects the amount of infrared absorption by water and the response of the photodiode, 

but these effects are small given the small range in temperatures during use. 

 To calibrate the NBR to surface moisture, the difference in voltage output between the 

base level and each measurement point (instrument output  = peak – base level) was compared 
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to moisture content from the surface scraping. Figure 4.3 shows the calibration curves for both 

SJP field tests. The dry sediment instrument output was about 60 mV. For each test, output 

decreased exponentially as moisture content increased. Independently, the calibrations have R2 

values of 0.99 and standard error values of 0.4 and 0.6 % moisture content, respectively. It is 

encouraging that near-identical results are obtained from two different locations on two 

different days. The agreement between the calibrations is evident in the combined calibration 

curve (R2 = 0.98, standard error = 1.0 % moisture). There was a slight difference in grain size 

between the two locations (approximately 12 km apart), and this likely contributed to the small 

difference in calibrations.  

Figure 4.4 shows the results from the field calibration at the PINS site. Instrument 

response is just as strongly correlated to moisture content (R2 value of 0.99). Accuracy is lower 

than for either of the SJB tests considered independently, but on par with the combined results 

(standard error = 1.0 % moisture content). Instrument output on the whole was larger for these 

sands, which indicates that more infrared energy is reflected as a whole, but had a smaller full-

scale range, varying by only about 25 mV as opposed to almost 60 mV for the SJB sites.  

 

Spectroradiometer 

Figure 4.5 shows an example of spectra measured for a range of moisture contents from 

the SJB1 field test recorded by the spectroradiometer. Of note, the signal becomes saturated (R 

= 1.0) to varying degrees in the visible wavelengths for this particular sediment. Also, trends in R 

with respect to wavelength are generally persistent for different moisture levels. There is a large 

amount of variability for each moisture level in the ultraviolet and visible portions of the 

spectrum, but the spectra become much smoother in the infrared. In this range, the maximum 
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difference in R between saturated and dry sand in the water absorption band at 970 nm is 

evident (Figure 4.5). 

 Figure 4.6 shows the results of the spectroradiometer field calibrations for the SJB1 (6a) 

and PINS (6b) sites (field calibration data for PINS site after Edwards et al., 2012). In 

agricultural/remote sensing soil moisture studies, relative reflectance values (R) are commonly 

converted to absorbance  (A=log(1/R)) to remove nonlinearity associated with the absorption 

process (Weidong et al., 2002b), and this convention was found here to provide a better 

relationship than using raw R values. These calibrations produced R2 values of 0.99 and 0.98 and 

standard errors of 1.0 and 1.5 % moisture content, respectively. 

 

 
Figure 4.3 Exponential calibration curves for the SJB field tests of the narrow-band radiometer. 
Standard error is reported in percent gravimetric moisture content. 
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Figure 4.5 Exponential calibration curve for the PINS field test of the narrow-band radiometer. 
Standard error is reported in percent gravimetric moisture content.  

 

Overall, relative reflectance was lower (higher A) for the PINS site than for the SJB1 site. 

For the larger grains at the SJP1 site, values for R ranged from approximately 0.74 for dry sand 

to about 0.36 for saturated sands (26% moisture content), and for the finer PINS sands, R values 

ranged from approximately 0.57 for dry sands to 0.21 for saturated sands (26 % moisture).  

 



 

 

Figure 4.5 Selected relative reflectance (
value of 1 represents saturation of the signal with respect to the white reference measurement. 
The water absorption band at 970 nm is marked to highlight the
NIR range of the spectra in R 

 
 

4.6 Discussion and Conclusions

The full-scale range of instrument response varied by site for both instruments, in each 

case being smaller for the PINS site. This s
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Selected relative reflectance (R) spectra from the SJB1 spectroradiometer field test.  A 
value of 1 represents saturation of the signal with respect to the white reference measurement. 
The water absorption band at 970 nm is marked to highlight the maximum difference over the 

R for different moisture levels. 

4.6 Discussion and Conclusions 

scale range of instrument response varied by site for both instruments, in each 

case being smaller for the PINS site. This suggests that the instruments do not ‘see’ water as well 

 

) spectra from the SJB1 spectroradiometer field test.  A 
value of 1 represents saturation of the signal with respect to the white reference measurement. 

maximum difference over the 

scale range of instrument response varied by site for both instruments, in each 

uggests that the instruments do not ‘see’ water as well  



 

 
Figure 4.6 Polynomial calibration curves for the a) SJB and b) PINS field tests of the 
spectroradiometer. Gravimetric moisture content is related to log(1/
from Edwards et al. (2012).  
 
 

and sediment geometry at the surface. Further, R was lower at the PINS site, while absolute 

output from the NBR was higher. It is hard to make a direct comparison to address this issue 

because of the difference in measurement wavelength betwe

that while the PINS sediments reflect less energy at 970 nm than the SJB sediments, they reflect 

more at 1940 nm. This also may be due to the difference in basic measurement principles, active 

versus passive, or again due 

necessary for both instruments.
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Polynomial calibration curves for the a) SJB and b) PINS field tests of the 
spectroradiometer. Gravimetric moisture content is related to log(1/R) at 970 nm. PINS data 

 

and sediment geometry at the surface. Further, R was lower at the PINS site, while absolute 

output from the NBR was higher. It is hard to make a direct comparison to address this issue 

because of the difference in measurement wavelength between the two instruments. It may be 

that while the PINS sediments reflect less energy at 970 nm than the SJB sediments, they reflect 

more at 1940 nm. This also may be due to the difference in basic measurement principles, active 

versus passive, or again due to sediment characteristics. As such, site specific calibrations are 

necessary for both instruments. 
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 Both of these techniques provide suitable means and high levels of accuracy (< 1.5% 

moisture in all cases) for determination of surface moisture content on beaches. For the SJP 

sites, the NBR outperformed the spectroradiometer in the individual tests, but when the results 

were combined, accuracy was nearly identical. The NBR also outperformed the 

spectroradiometer at the PINS site, but this is potentially due to the relatively small number of 

calibration samples for the latter (two samples were compromised during transport). 

 The difference in spectral variability across the visible wavelengths and across infrared 

wavelengths revealed in Figure 5 is intriguing. Recent studies using brightness values derived  

from digital photography of visible wavelengths have shown promise for collecting spatially and 

temporally extensive measurements of beach surface moisture, but calibration results have 

generally shown fairly large standard errors (McKenna Neuman and Langston, 2003, 2006; 

Darke and McKenna Neuman, 2008; Darke et al., 2009; Delgado-Fernandez et al., 2009). These 

results suggest that this methodology could potentially be improved by restricting data 

collection to infrared wavelengths. 

In terms of practical usability, both instruments are reasonable for conducting point 

measurements of moisture at the sediment surface. Measurement protocol and data processing 

are simple for both, and both produce accurate results. However, measurement time for the 

NBR is much shorter (≈ 10 s) than for the spectroradiometer (≈ 60 s). Also, because the NBR has 

an on-board light source and shields ambient radiation, there is no need to conduct reference 

measurements, which should be done for every measurement with the spectroradiometer. 

Further, because of greater portability, the NBR is easier to use when measuring large numbers 

of points. 

 For aeolian process studies, the measurement approach described in this paper may 

best be suited to smaller-scale studies where measurements are conducted at limited locations. 



61 
 

Although both instruments are remote sensing instruments, they are handheld, and require the 

researcher to be near the measurement point. This could potentially prove disadvantageous in 

meso-scale studies where it might require the researcher to traverse a larger study area during 

transport events, which could interfere with other measurements. However, for micro-scale 

studies, these technologies are portable, and provide accurate measurements of the top few 

layers of grains of the sediment bed. Further, accurate point measurements are useful for 

studies of the behavior of beach hydrology and surface moisture, independent of transport 

events. 

 Overall, optical infrared methods seem well suited to conduct measurements of beach 

surface moisture. For aeolian process studies, accurate measurements of moisture restricted to 

the top few layers of grains are desirable, and both of the instruments tested here meet those 

criteria. Further, the NBR performed equally as well (or slightly better than) the 

spectroradiometer, and is significantly less expensive. More work is needed to refine the 

application of these methodologies, but the results of this study indicate this is a promising 

avenue for improving the measurement of beach surface moisture. 
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5. PREDICTING THRESHOLD SHEAR VELOCITY FOR INITATION OF AEOLIAN TRANSPORT OF 

QUARTZ SANDS AS A FUNCTION OF MASS AND GRAIN SIZE-RANGE 

 

5. 1 Introduction 

Collectively, models of threshold shear velocity for the initiation of aeolian transport 

generate a wide range of predictions. In addition, many predictions differ significantly from 

experimental observations of the threshold of motion for quartz sands under terrestrial 

conditions (normal ranges of air pressure), particularly for larger sized grains. Thus, a basis for 

confident prediction of transport thresholds is not currently available, and determining whether 

a given wind event will generate transport – particularly in the frequent case of low energy wind 

conditions, where shear velocity is near threshold – is uncertain at best. Further, many mass flux 

models are at least in part a function of threshold shear velocity, and the lack of confidence 

regarding threshold predictions is a possible source of significant error in transport modeling. 

Thus, uncertainty regarding threshold conditions undermines efforts to model systems at meso- 

to regional scales, both in terms of numbers of transport events and total mass flux (Sherman et 

al., 2011). 

This paper presents a re-analysis of previously published experimental observations of 

transport thresholds. It demonstrates that threshold shear velocity is linearly proportional to the 

square root of the mass of a representative grain, where the representative grain is defined as 

having the diameter of the mean grain size determined from the distribution of grain mass, 

rather than from the distribution of diameters. Based on available data, this linear relationship 

provides a reliable prediction of threshold conditions for quartz sand grains, and given that the 

data were drawn from studies that spanned a range of experimental conditions and techniques 

across nearly 8 decades, is thought to provide a much more reliable approximation of threshold 

conditions. 
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5.2 Models and Observations of Aeolian Transport Thresholds  

For the case of dry grains where interparticle cohesion is ignored (Gregory and Darwish 

1990), most models of aeolian transport thresholds relate threshold shear velocity (u*t (m/s)) to 

the square root of mean grain diameter (d50 (mm)), following Bagnold’s (1936) approach:  

 

�∗� = ����	�

�
 ���             (5.1) 

  

where ρs and ρa  are the density of sediment and air (g/cm3 and kg/m3), respectively, g is 

acceleration due to gravity (m/s2) and A is a dimensionless coefficient.  Equation 5.1 is based on 

the balance of particle moments for aerodynamic and inertial forces which can be described in 

terms of threshold shear stress (τt) imparted on the grain by the wind. Stress is related to 

threshold shear velocity as: 

 

�∗� =  � ��
�
                                          (5.2) 

 

This approach performs reasonably well at describing the nature of the relationship 

between threshold shear velocity and grain size for smaller grains, but from a practical 

standpoint, the utility of this approach is limited for two reasons. First, the accuracy of 

predictions essentially depends on independent experimental determination of A, which 

Bagnold (1936) suggested was constant (0.1) for grains larger than about 0.2 mm (Figure 5.1). 

There is a general consensus that A should be near constant for sand sized grains (e.g. Bagnold, 

1941; Greely and Iversen, 1985; Cornelis and Gabriels, 2004), but there has been no consensus 
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in the literature regarding the value. Researchers have suggested values ranging from 0.09 

(Chepil, 1945) to 0.2 (Lyles and Krauss, 1971; Lyles and Woodruff, 1972) based on independent 

experimental observations, and still others have defined A as a complex function of the products 

of terms depending on particle Reynold’s number and particle size (e.g. Greeley et al., 1973; 

Iversen et al., 1976; Greeley et al. 1976; Iverson and White, 1982; Shao and Lu, 2000; Cornelis 

and Gabriels, 2004)). Regardless of the method, A must be determined independently 

depending on experimental conditions, either by simply adjusting the value, parameterization, 

or curve fitting (Merrsion, 2012). Further, because most models have been developed using only 

independent experimental data, or data from limited studies, selection of appropriate values of 

A is problematic. Essentially, there is a lack of analyses that combine observations of thresholds 

from more than a few studies, and overall, the lack of a consensus regarding this value leads to 

uncertainty in prediction of transport thresholds for practical applications. 

Second, Equation 5.1 performs reasonably well at small grain sizes but tends to 

significantly underestimate threshold shear velocities of larger grains observed by other 

researchers (e.g. Belly, 1964; Kadib, 1965) (Table 5.1, Figure 5.1). The relationship described by 

Equation 5.1 does not account for an apparent exponential increase in threshold shear velocity 

with increasing grain size, and thus will underpredict thresholds for larger grains, regardless of 

the value of A (Figure 5.1). This could be due to defining threshold conditions in terms of grain 

diameter. Physically, grain mass (and thus weight force) increases exponentially while grain 

diameter increases linearly with increasing grain size. Thus, a model that defines threshold shear  
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Table 5.1 Data used in model development 

Study d50 (mm) Sorting dm (mm) 

Observed 

u*t (m/s) τ (N/m2) 

Predicted u*t from Equation 1 

(Bagnold 1936) 

McKenna Neuman and Nickling  1989 0.19 0.28 0.21 0.25 0.08 0.15 

 

0.27 0.32 0.32 0.27 0.09 0.18 

 

0.51 0.19 0.53 0.38 0.18 0.24 

McKenna Neuman 2003, 2004 0.27 0.43 0.34 0.32 0.13 0.17 

Belly 1964 0.44 0.40 0.54 0.42 0.22 0.22 

Logie 1982 0.24 0.65 0.51 0.34 0.14 0.16 

Horiwaka et al. 1983 (Yoneza sand) 0.28 0.44 0.34 0.25 0.08 0.18 

Kadib 1965 (sand B) 0.31 0.36 0.35 0.44 0.24 0.19 

Kadib 1965 (sand D) 1.00 0.29 1.12 1.00 1.23 0.34 

Kadib 1965 (sand E) 0.82 0.51 1.00 0.90 0.99 0.31 

Kawamura 1951 0.21 0.65 0.27 0.23 0.07 0.15 

Lyles and Krauss 1971 0.24 0.06 0.24 0.32 0.13 0.16 

 

0.51 0.04 0.50 0.48 0.28 0.24 
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0.72 0.04 0.72 0.52 0.33 0.29 

Bagnold 1936 0.24 0.06 0.24 0.22 0.06 0.16 

Logie 1981 0.15 0.04 0.15 0.28 0.10 0.13 

 

0.21 0.04 0.21 0.32 0.13 0.16 

 

0.30 0.04 0.30 0.35 0.15 0.18 

 

0.43 0.04 0.43 0.41 0.21 0.22 

Chepil 1959 0.20 0.06 0.20 0.27 0.09 0.15 

 

0.27 0.02 0.27 0.32 0.12 0.18 

 

0.36 0.04 0.36 0.36 0.16 0.20 

 

0.51 0.04 0.50 0.44 0.24 0.24 

 

0.72 0.04 0.72 0.53 0.34 0.29 

Cornelis and Gabriels 2004 0.16 0.09 0.16 0.25 0.08 0.13 

 

0.36 0.11 0.36 0.32 0.13 0.20 

  0.28 0.28 0.31 0.30 0.11 0.18 

 



 

Figure 5.1 Transport threshold models and observed thresholds from data in Tab
 

velocity directly in terms of grain mass could potentially perform better at predicting thresholds 
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1) The model should have a different form than Equation 5.1 in order to avoid  
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2) For the case of dry sand

Equation 5.2,  
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3) The model should account for natural variability of grain size-range, i.e. threshold 

conditions should differ for sediments that may have the same mean diameter, but 

different size distributions. 

Data for the analysis (Table 5.1) were parsed from the literature based on the following criteria: 

there is an experimental observation of transport threshold, there is a sufficient description of 

grain size distribution to conduct the analysis, experimental conditions were clearly defined, and 

results deemed reliable. For model development, values of ρs and ρa of 2650 and 1.2 kg/m3, 

respectively, are used in all calculations. 

 

5.3 Predicting threshold shear velocity as a function of grain mass and size-range 

 In Bagnold’s (1936, 1941) scheme, which was theoretically derived as a balance of 

particle moments at the initiation of transport, sediment size is represented by mean grain 

diameter, and this approach has largely remained throughout subsequent research. Given the 

theoretical constraints of this approach, the form of Equation 5.1 is correct, but by using this 

force balance, the A coefficient is introduced and there is uncertainty regarding its value. Upon 

consideration of the basic physics at the onset of motion of dry sands (that aerodynamic forces 

overcome weight force), it follows that the threshold of motion should be related to grain mass, 

and that a model directly relating threshold shear stress to grain mass should describe threshold 

conditions at the initiation of motion, with the condition that the relationship is restricted to 

sand-sized, quartz grains under normal atmospheric conditions.  

Essentially, this approach ignores force direction, grain resting angles, and grain 

rotation, which simplifies the force balance and describes the threshold of motion as the 

difference between observed threshold stress and grain weight. According to theoretical 

considerations (Merrison, 2012), for grains above about 0.08 mm in diameter, weight force 



 

becomes several orders of magnitude larger than interparticle bonding force as grain size 

increases. Thus, the key assumption o

simply in terms of mass, should be valid over the range of experimental da

Figure 5.2). Further, by simplifying the model to consider only quartz grains in air, threshold 
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comes several orders of magnitude larger than interparticle bonding force as grain size 

increases. Thus, the key assumption of this analysis, that thresholds for sand 

should be valid over the range of experimental da

Figure 5.2). Further, by simplifying the model to consider only quartz grains in air, threshold 

be dependent only on grain weight, and the model should provide a solution 

to predicting the transport thresholds of most naturally occurring sands.  

Forces that resist motion in transport systems for quartz grains. Above a grain 
diameter of about 0.08, weight force becomes several orders of magnitude larger than adhesive 

 grain for experimental observations are also plotted.

comes several orders of magnitude larger than interparticle bonding force as grain size 

f this analysis, that thresholds for sand can be defined 

should be valid over the range of experimental data used (Table 1, 

Figure 5.2). Further, by simplifying the model to consider only quartz grains in air, threshold 

, and the model should provide a solution 

 

Forces that resist motion in transport systems for quartz grains. Above a grain 
diameter of about 0.08, weight force becomes several orders of magnitude larger than adhesive 

erimental observations are also plotted. 
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Defining grain size distributions in terms of mass 

 To define transport thresholds in terms of grain mass, it is first necessary to consider 

how mass is distributed within a sediment sample. Further, the dependence of transport 

thresholds on the range of grain sizes in a sediment sample has been noted by several 

researchers (e.g. Grass, 1971; Logie, 1981; Davidson-Arnott et al., 2008), and explicit inclusion of 

grain size-range should improve model performance, and from a physical standpoint, it clearly 

makes sense to account for the range in grain sizes. Consider, for example, the relative masses 

of grains with diameters of 0.5 mm, 0.1 mm, and 0.3 mm (the average of the first two). The 

largest grain would be nearly 5 times more massive than the average size, and the smallest 

nearly 30 times less massive. Clearly, using the mean size alone as an indicator of the weight 

force resisting motion could produce significant error. 

Generally, grain size-range distributions are expressed in terms of weight fractions 

(frequency) over small ranges of diameter. However, grain mass does not increase linearly with 

diameter, but rather to the 3rd power of diameter. Thus, given a range of grain sizes normally 

distributed in a sediment bed, the diameter of the grain that represents the mean of the 

distribution of mass within the size-range will be larger than the most frequent grain in terms of 

mean diameter.  

 For example, consider the grain size distributions, in phi units (φ), described by a mean 

diameter of 2φ (0.25 mm) and sorting values of 0.2, 0.4, 0.6, and 0.8 (Figure 5.2). To 

approximate the distribution of mass contained in these grain distributions, the diameter 

defining each class can be converted to a volume (of a sphere), and then to mass using a density 

of 2.65 g/cm3 for quarts grains. This yields the mass of a single grain corresponding to the 

midpoint of each size-range class, which when multiplied by the frequency of each class, 

transforms the distribution in terms of frequency of grain diameters to a distribution of the 
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concentration of mass over the grain size-range (Figure 5.3). The mean of this new distribution 

represents the mean grain diameter that corresponds to the center of mass in the sediment bed 

(mass mean). For a given grain size distribution, the mass mean, dm in φ is defined as: 

 

�� = ∑(� ∗ �� ∗ �∗��
� ) ��                 (5.3)  

 

Where f is the frequency of each size class, m is the midpoint of each size class in φ, n is the 

number of size classes, and ρs is the sediment density. 

 Because grain mass increases exponentially with grain diameter, the mass mean is 

increasingly shifted to larger diameters as grain size-range increases, even though there are 

actually larger numbers of grains of smaller diameter. In this example, the difference between 

the mean diameter and the mass mean in φ for each distribution is: 1) 2 – 1.92 = 0.8, 2) 2 – 1.67 

= 0.33, 3) 2 – 1.25 = 0.75, and 4) 2 – 0.67 = 1.33. These differences correspond to shifts of 0.014, 

0.064, 0.17, and 0.38 mm from the original mean of 0.25 mm, respectively. Clearly, if grain size-

range is represented in terms of mass rather than diameter, increasing size-range in a sediment 

bed can have a dramatic effect on the mass mean of a given distribution. In this example, the 

mass mean is more than double the mean diameter for a sorting value of 0.8, and approximately 

70% larger for a sorting value of 0.6. These sorting values would generally be considered on the 

higher end for beach sands, but even for the 0.4 sorting value, there was an increase of 

approximately 25%. Conversely, as mean grain diameter increases for a given sorting value, the 

mass mean will also increasingly become larger (Figure 5.4).  

 

 

 



 

Model development 

 For the data from Table 5.1

(N/m2) and the mass of a representative grain of size 

mean grain size by dm rather than 

This is expected given the exponential increase in m

 

Figure 5.3 Distributions of mass (dotted line) for grain size distributions with mean grain 
diameter of 0.25 mm. 
 

degree of shift from mean diameter to the mass mean with increasing mean diameter.

the strength of the relationship indicates that 

range in terms of transport mechanics. 
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For the data from Table 5.1, there is a strong linear relationship (R2 = 0.97) between 

and the mass of a representative grain of size dm  (kg) (Figure 5.5). Clearly, by defining 

rather than d50, error is significantly reduced for larger grains (Figure 5.5). 

This is expected given the exponential increase in mass with grain diameter and the relative 

Distributions of mass (dotted line) for grain size distributions with mean grain 

degree of shift from mean diameter to the mass mean with increasing mean diameter.

trength of the relationship indicates that dm is an appropriate description of grain size

range in terms of transport mechanics.  

, there is a strong linear relationship (R2 = 0.97) between τt  

(Figure 5.5). Clearly, by defining 

, error is significantly reduced for larger grains (Figure 5.5). 

ass with grain diameter and the relative  

 

Distributions of mass (dotted line) for grain size distributions with mean grain 

degree of shift from mean diameter to the mass mean with increasing mean diameter. Overall, 

is an appropriate description of grain size-
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Based on the model assumptions, for an individual grain of size dm, the amount of stress 

acting over the surface area of the grain required to initiate transport should be proportional to 

the square of grain weight. 

 

��� ∝ (4 3⁄ % �� 2⁄ � ��)'               (5.4) 

 

where Ap is the surface area (4πdm/22) of the representative grain. To verify this physically, τ 

from the observed data times surface area of a grain of size dm are plotted against mass in 

Figure 5.6. Clearly, the strength of this relationship (even though both sides are dependent on 

dm) indicates that for sand-sized, quartz grains, a simplified physical approximation describing 

the relationship between shear stress and the weight of a single grain representing a given grain 

size-range is adequate to approximate threshold shear stress (Figure 5.6). Based on specific 

observations of thresholds and assuming an average value of  ρa = 1.2 kg/m3  (Table 1), Equation 

5.4 becomes approximately: 

 

(�� ≈ 4 ∗ 10,' + 0.46, + 7.1 ∗ 10	1             (5.5) 

 

where m is grain weight in kg.  

 Equations 5.4 and 5.5 essentially describe the ratio of forces responsible for motion to 

weight force at the initiation of motion over the range of grain sizes for which saltation occurs. 

Indeed the lower boundary of the relationship, 7.1*10-9, is approximately equivalent to the 

lower limit of observed saltation thresholds, and theoretically represents an inversion point 

below which transport thresholds increase as grain size decreases (Merrsion, 2012). 

 



 

 
Figure 5.4 Cumulative distribution functions of the increase between 
mean grain sizes and sorting values. As the
mean diameter, or the mean size in terms of diameter increase for a given range, this 
discrepancy becomes more pronounced.
 

From a modeling standpoint, it is more convenient to express transport threshold

u*t. Substituting Equation 5.2 into 5.4

 

 �∗�  ∝ �2/��45 '⁄ 6
�


   

 

Based on observed data and assuming an average value of  
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Cumulative distribution functions of the increase between d50  and 
mean grain sizes and sorting values. As the range of grain sizes present increases for a given 
mean diameter, or the mean size in terms of diameter increase for a given range, this 
discrepancy becomes more pronounced. 

From a modeling standpoint, it is more convenient to express transport threshold

Substituting Equation 5.2 into 5.4 can be rearranged to: 

       

Based on observed data and assuming an average value of  ρa = 1.2 kg/m3 (Figure 5.7), Equation

  

and dm for  a range of 
range of grain sizes present increases for a given 

mean diameter, or the mean size in terms of diameter increase for a given range, this 

From a modeling standpoint, it is more convenient to express transport thresholds in terms of 

        (5.7) 

(Figure 5.7), Equation 



 

Figure 5.5 Shear stress versus d

 
 

5.7 can be approximated by:

 

�∗� ) 0.97 ∗ �2 �⁄ �45 '⁄ 6
�
 - 0

 

5.4 Conclusions 

 The goal of this study was to develop a model of aeolian transport thresholds for quartz 

sand grains that predicts threshold shear velocity bas

influence of grain size-range. This was accomplished by defining grain size in terms of the
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Shear stress versus d50 and dm, and errors associated with a linear fit.

be approximated by: 

0.2        

The goal of this study was to develop a model of aeolian transport thresholds for quartz 

sand grains that predicts threshold shear velocity based on grain mass and encapsulates the

range. This was accomplished by defining grain size in terms of the

 

, and errors associated with a linear fit. 

        (5.8) 

The goal of this study was to develop a model of aeolian transport thresholds for quartz 

ed on grain mass and encapsulates the 

range. This was accomplished by defining grain size in terms of the 



 

Figure 5.6 Plot shear stress for the projected area of the dm grain versus grain mass, following 
Equation 5.5. 
 
 
distribution of grain mass rather than diameter and by restricting model development to the 

range of grain sizes where weight force is the dominant force resisting motion. This approach 

performs well for specific observations of threshold from the literature, and whi

are of somewhat limited extent, given the range of experimental conditions and techniques, it is 

reasonable to assume that the model presented here represents average threshold conditions. 

The model provides accurate predictions (RMSE = 0.05 

occurring sand sizes and concurs with theoretical and observed lower limits of saltation 

thresholds.  
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Plot shear stress for the projected area of the dm grain versus grain mass, following 

n of grain mass rather than diameter and by restricting model development to the 

range of grain sizes where weight force is the dominant force resisting motion. This approach 

performs well for specific observations of threshold from the literature, and whi

are of somewhat limited extent, given the range of experimental conditions and techniques, it is 

reasonable to assume that the model presented here represents average threshold conditions. 

The model provides accurate predictions (RMSE = 0.05 m/s u*t) over a range of naturally

occurring sand sizes and concurs with theoretical and observed lower limits of saltation 

 

Plot shear stress for the projected area of the dm grain versus grain mass, following 

n of grain mass rather than diameter and by restricting model development to the 

range of grain sizes where weight force is the dominant force resisting motion. This approach 

performs well for specific observations of threshold from the literature, and while these data 

are of somewhat limited extent, given the range of experimental conditions and techniques, it is 

reasonable to assume that the model presented here represents average threshold conditions. 

) over a range of naturally 

occurring sand sizes and concurs with theoretical and observed lower limits of saltation 



 

Figure 5.7 Plot of Equation 5.7 and 5.8 for observed data for 
where dm is measured in mm
theoretical and observed saltation threshold (0.2 m/s) in terms of threshold shear velocity 
(Merrsion, 2011), and there is a near one to one relationship between the square root of the 
ratio of grain volume to density of air and threshold shear velocity.
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6. FIELD MEASURMENTS OF AEOLIAN TRANSPORT THRESHOLDS 

6.1 Introduction 

This chapter presents results from a series of experiments designed to field validate the 

model developed in Chapter 5. Field measurements of aeolian transport were recorded at two 

locations, Padre Island, TX, and St. Joseph Peninsula, FL. These locations were chosen because of 

the difference in native sediment; the Padre Island sand typically has a mean grain diameter of 

about 0.15 mm, and the St. Joseph Peninsula sediment is typically about twice as large in terms 

of mean diameter, and thus approximately 8 times as massive. Given this discrepancy and the 

basis of the model in grain mass, this was deemed a suitable range to test the validity of the 

model under field conditions. The Padre Island sands are near the lower limit of natural 

sediment size for which saltation is the main mode of transport, as discussed in Chapter 5, and 

the St. Joseph Peninsula sand is just slightly larger than the 0.25 to 0.30 mm diameter often 

cited as typical of dune sand. Further, differences in sorting (0.29 for Padre Island, 0.44 on 

average for St. Joseph Peninsula) between the two sites were desirable to test the model as 

well, given that determination of the mass mean (dm) is based on grain size-range. 

 For each location, 3-D wind measurements were recorded in conjunction with saltation 

events, and data are analyzed to compare to model predictions of threshold shear velocity. 

Model predictions are made based on grain size distributions of sand collected at each study site 

following the method outlined in Chapter 5. In total, there are about 192 minutes of data from 

St. Joseph Peninsula, and about 210 minutes of data from Padre Island, with periods of both 

near-continuous and intermittent transport. Results indicate that the model performs well 

under field conditions, particularly for the Padre Island data, when transport was predominantly 

intermittent, and thus a large number of transport ‘on-off’ events were recorded. 

 



85 
 

6.2 Study Sites and Methods 

The Padre Island experiment (PINS) was conducted at Padre Island National Seashore, 

on Padre Island, Texas, at a site about 3 km south of the northern border of the park 

(approximately 27.48°N 97.28°W, Figure 6.1). Sands at the study site consisted of very-well 

sorted, fine to very fine quartz sands, with a mean grain size of approximately 0.15 mm (Figure 

6.2a, Table 6.1). The berm was about 50 m wide and relatively flat (1–4°), and the beach was 

backed by a 1 to 2 m foredune ridge (Figure 6.1a).  

St. Joseph Peninsula (SJP) is a large spit that extends northward into the Gulf of Mexico 

from the Apalachicola region of Florida (Figure 6.1). Experiments were conducted on a wide 

sand flat at the distal end of the spit where there was minimal vegetation or topographic 

variability (approximately 29.88°N, 85.39°W, Figure 6.1b). The distal flat was backed by an 

approximately 1.5 m foredune. The sand at the field site was moderately well to well sorted 

medium quartz sand, with a mean grain diameter of about 0.31 mm (Figure 6.2b, Table 6.1). 

 

Instrumentation 

Wind measurements were conducted with RM Young 8100 3D ultrasonic anemometers. 

By measuring the three component (u,v,w) wind vectors, these instruments provide data 

necessary to evaluate near surface turbulence. Each velocity component can be separated by 

Reynolds decomposition into mean and turbulent components, so that: 

  

� = � - �8            

9 = 9 - 98  

: = : - :8                 (6.1) 



 

Figure 6.1 Location map and picture of field site from foredune at a) Padre Island National 
Seashore, Texas, and b) St. Joseph Peninsula, Florida. 
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Location map and picture of field site from foredune at a) Padre Island National 
Seashore, Texas, and b) St. Joseph Peninsula, Florida.  

 

Location map and picture of field site from foredune at a) Padre Island National 
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Figure 6.2 Grain size curves of both d50 (continuous line) and dm (dashed line) shown for the a) 
PINS and b) SJP. dm was calculated as decribed in Chapter 5. The SJP grain size curves are 
average values from several sediment samples collected in the field. PINS grain characteristics 
were nearly identical during the field study.   
 

where overbars denote time averaged values and primes indicate fluctuation about the mean. 

Given that measurements are taken in the constant stress boundary layer, these instruments 

can provide reliable measurements of Reynolds stress (RS) at the bed: 

 

;< =  =��′:′                 (6.2) 

 

and shear velocity can thus be calculated by: 

 

�∗ = ?|�8:8|                                      (6.3) 

 

 Before calculation of turbulent fluctuations, it is necessary to rotate the axes of the 

measured wind vectors so that they are oriented with the mean flow streamline. This can be 

done computationally, post-measurement (van Boxel et al. 2004) by systematically forcing the 

different components to zero. The first rotation, yaw rotation, orients u into the wind direction 

by requiring that 9̅, the mean transverse component, becomes zero, such that: 
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�B = ��CDEF - 9�EG�F  

9B = =��EG�F - 9�CDEF  

:B = :�  

with F = arctan MN
OP               (6.4)  

 

where u0,v0, and w0 are the measured velocity data and overbars indicate time-averaged values. 

 The second rotation, pitch rotation, orients u along the slope of the streamline and w 

perpendicular to the streamline by requiring :P  to be zero, such that: 

 

�' = �BCDE∅ - :BEG�∅      

9' = 9B  

:' = =�BEG�∅ - :BCDE∅  

with ∅ = arctan RSNNNN
OSNNNN               (6.5) 

 

The third rotation, roll rotation, is intended to orient v along the stream surfaces and w 

perpendicular to the stream surfaces by requiring the covariance between them to  equal zero, 

such that: 

 

�� = �'  

9� = 9'CDET + :'EG�T  

:� = −9'EG�T + :'CDET  

with T = 0.5arctan 'M�R�NNNNNNN
M��NNNNN	R��NNNNNN              (6.6) 
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This rotation essentially encapsulates cross-stream contributions to total stress, although they 

are usually negligible in comparison with alongstream components.  

 Saltation events were measured with a Wenglor model YH08RCT8 fork sensor, which are 

designed for counting small objects in production settings, but have been used successfully to 

detect saltating grains (e.g. Davidson-Arnott et al., 2009; Sherman et al., 2011). The sensor emits 

a visible (red) laser beam from one fork, and counts switch closures when detection of the beam 

at the other fork is interrupted. For these experiments, the interest was simply the occurrence 

of saltation, so no calibration was performed on the fork sensors in terms of total mass flux or 

saltation intensity associated with switch closure counts.  

 

Experimental Design 

Data from PINS were recorded on June 10th, 2010, from approximately 1145 to 1515 hrs, 

in two approximately 110 minute intervals (PINS 1 and PINS 2). Four anemometers were 

mounted in sets of 2 at 2 stations on a cross-shore transect (Figure 6.3). The sampling volume of 

the anemometers in each set was 35 and 140 cm from the bed, and the fork sensor sampling 

path was approximately 1 cm above the bed. Data were recorded at 32 Hz using a computer 

based USB data acquisition system.  

Before each measurement interval, the sand surrounding Mast 1 was wetted for 

approximately 5 meters in the windward direction to isolate the measurement area from the 

potential influence of grains saltating from the upwind direction. A sediment sample was 

collected between the two measurement intervals and standard sieving techniques were used 

to produce grain statistics for input into the model of threshold shear velocity (Figure 6.2a, Table 

1).  



 

Figure 6.3 Photograph of experimental setup for PINS data. Mast 1 was approximately 5 met
landward of Mast 2 (pictured).
 

Two sets of data for SJP were collected on consecutive days, February 24

2010 (SJP 1 and SJP 2).  Four

crossshore transect (Figure 6.5). The anemomete

bed, and a fork sensor was placed at the bed below each station. The sampling path of the fork 

sensors was about 1 cm above the bed. Sediment samples were taken from each mast before 

and after each measurement int

 

Table 6.1 Grain size statistics and transport threshold predictions and measurements for field 
sites 

    

Dataset d50 (mm) 

PINS 1 0.15 

PINS 2 0.15 

SJP 1 Mast 1 0.29 

SJP 1 Mast 2 0.32 

SJP 2 Mast 1 0.34 

SJP 2 Mast 2 0.29 
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Photograph of experimental setup for PINS data. Mast 1 was approximately 5 met

landward of Mast 2 (pictured). 

Two sets of data for SJP were collected on consecutive days, February 24

2010 (SJP 1 and SJP 2).  Four anemometers were deployed in sets of 2 at 2 stations on a 

crossshore transect (Figure 6.5). The anemometers were mounted at 35 and 140 cm above the 

bed, and a fork sensor was placed at the bed below each station. The sampling path of the fork 

sensors was about 1 cm above the bed. Sediment samples were taken from each mast before 

and after each measurement interval (Figure 6.2b, Table 6.1). 

Grain size statistics and transport threshold predictions and measurements for field 

      Measured u

Sorting (φ) dm (mm) Predicted u*t (m/s) 35 cm

0.29 0.17 0.24 0.24

0.29 0.17 0.24 0.24

0.43 0.37 0.34 0.31

0.49 0.43 0.38 0.32

0.41 0.40 0.36 0.30

0.41 0.37 0.34 0.31

Photograph of experimental setup for PINS data. Mast 1 was approximately 5 meters 

Two sets of data for SJP were collected on consecutive days, February 24th and 25th, 

anemometers were deployed in sets of 2 at 2 stations on a 

rs were mounted at 35 and 140 cm above the 

bed, and a fork sensor was placed at the bed below each station. The sampling path of the fork 

sensors was about 1 cm above the bed. Sediment samples were taken from each mast before 

Grain size statistics and transport threshold predictions and measurements for field 

Measured u*t (m/s) 

35 cm 140 cm 

0.24 0.25 

0.24 0.25 

0.31 0.33 

0.32 0.32 

0.30 0.33 

0.31 0.35 
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Data were logged on a stand-alone data logger at approximately 8.6 Hz, which was the 

fastest scan rate allowable. This resulted in an uneven time step with respect to saltation 

measurements, which were logged at 1 Hz. Subsequently, estimates of shear velocity were 

resampled to 5 Hz, and then synchronized to the fork sensor measurements.  

 
Figure 6.4 Experimental setup for SJP. 
 

6.3 Results and Analysis 

PINS Data and Analysis 

During the PINS experiment, saltation occurred only at Mast 1, the landward station, 

which was approximately 5 meters seaward of the foredune toe. Thus, only data from that 

station are included here. For these data, the sampling volumes of Sonic 1 and Sonic 2 were 

approximately 35 and 140 cm from the bed, respectively. 

Figures 6.5 and 6.6 show the raw, uncorrected velocities measured by each 

anemometer and the post-rotation, corrected velocities for the two PINS data collections, PINS 

1 and PINS 2, respectively. The effect of the data rotations on the resultant mean flow vectors 

are readily apparent. Angles of rotation from Equations 6.4-6.6 were determined from 1 



 

Figure 6.5 Velocities of u, v, and 
(a-f) and after (g-l) data rotation for PINS 1 data.
 

minute block averages of successive velocity values. Because there were no large shifts in wind 

direction during the measurement periods, this approach was satisfactory for forcing required 

components to 0. Following dat

fluctuate about 0. Thus, fluctuations in 

turbulent stress (RS) and shear velocity (

values of u* can be calculated by decomposing the series following Equation 6.1.

Instantaneous values of 

increased slightly throughout PINS 1 and then declined slightly throughout PNS 2.  In terms of

thresholds and mass flux estimates, values of 

data series, would be expected to essentially maintain continuous transport at this location. 

However, transport during both collection intervals was highly intermi

transport did not occur.  
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, and w (left to right) from Sonic 1 (a-c, g-i) and Sonic 2 (d
l) data rotation for PINS 1 data. 

minute block averages of successive velocity values. Because there were no large shifts in wind 

direction during the measurement periods, this approach was satisfactory for forcing required 

components to 0. Following data rotation, alongstream flow is described by 
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thresholds and mass flux estimates, values of u* near 1 m/s, which were common during both 

data series, would be expected to essentially maintain continuous transport at this location. 

However, transport during both collection intervals was highly intermittent, and fully sustained 
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Figure 6.6 Velocities of u, v, and 
(a-f) and after (g-l) data rotation for PINS 2 data.
 

On closer examination, most of the highe

high frequencies. The influence of high frequency (over 1 Hz) turbulence on aeolian transport 

processes is questionable (Butterfield, 1999), so while transport thresholds may be very 

frequently surpassed, if the causal oscillation is not of sufficient length in time, the influence 

may be minimal. This is not surprising, given that while instantaneous stress resulting from 

these high frequency fluctuations is relatively high (or low), their overall contributio

spectral power is low. Indeed, while transport events seem to be near normally distributed over 

the range of u* for both PINS 1 and PINS 2 (Figures 6.8 and 6.9), there is no clear correlation 

between the two, i.e. there are relatively few tra
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Figure 6.7 Instantaneous threshold shear velocity for a) Sonic 1, b) Sonic 2, and c) transport 
measurements from PINS 1 data.
 

This strongly suggests that transport events result from relatively low frequ

velocity and u*.  

Based on spectral analysis, it was determined that for PINS 1 and 2, transport occurred 

predominantly at frequencies of approximately 0.19 and 0.023 Hz, or on time intervals of about 

5 and 44 seconds. Similarly, power

spectra. Based on these observations, instantaneous values of 

frequency components that did not appear to correlate to transport (FIR lowpass filter, Kaiser 

window, 0.2 Hz cutoff) (Figure 6.10). R

of identifying transport thresholds, and in terms of validating the model developed in Chapter 5. 

First, there is a clearly defined lower boundary of saltation thresho

94 

Instantaneous threshold shear velocity for a) Sonic 1, b) Sonic 2, and c) transport 
measurements from PINS 1 data. 

This strongly suggests that transport events result from relatively low frequency changes in wind 

Based on spectral analysis, it was determined that for PINS 1 and 2, transport occurred 

predominantly at frequencies of approximately 0.19 and 0.023 Hz, or on time intervals of about 

5 and 44 seconds. Similarly, power was highly concentrated in the lowest frequencies of 
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Hz cutoff) (Figure 6.10). Results of this transformation are very promising in terms 
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Figure 6.8 Transport versus shear velocity for a) Sonic 1 and b) Sonic 2 from PINS 1 data.

Figure 6.9 Transport versus shear velocity for a) Sonic 1 and b) Sonic 2 from PINS 2 data.
 

and 6.12). Above this limit, transport events appea

The existence of these two separate axes of correlation indicates that physically, once threshold 

is surpassed, transport occurs over the range of higher values of 

cease causing transport. Basically, transport continues to occur after threshold conditions have 

been reached if u* continues to increase. Second, the value of the threshold boundary, taken as 

the average of the minimum value of 
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The existence of these two separate axes of correlation indicates that physically, once threshold 
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Figure 6.10 Filtered shear velocity for a) Sonic 1 and b) Sonic 2 for PINS 1 data.
 

sensor, agrees very well with predictions from the model based on the grain size

PINS sand. (Table 6.1).  

 

SJP Data and Analysis 

For the SJP experiment, transport was near continuous for much of SJP 1 and 

intermittent for SJP 2 (Figure 6.13 and 6.14). Similarly to the PINS data, transport occurred at 

relatively low frequencies of about 0.36 and 0.012 Hz, or about 3 and 80 seconds in time, and 

transport events are widely distributed across the range of instantaneous 

6.16). Shear velocity data were filtered according to transport and 

0.05 Hz cutoff ) Figure 6.17).

The filtered u* are better correlat

there is not a sharp threshold boundary as was evident in the PINS data (Figure 6.18 and 6.19). 

There do appear to be lower thresholds bounds at about 0.25 m/s for SJP 1 and 0.22 to 0.28 m/s 

for SJP 2, but they are not distinct as was the case with the PINS data. Instead, transport events 
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Figure 6.11 Transport versus filtered shear velocity for a) Sonic 1 and b) Sonic2 from PINS 1 data.

Figure 6.12 Transport versus filtered shear velocity for a) Son
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Transport versus filtered shear velocity for a) Sonic 1 and b) Sonic2 from PINS 2 data.
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ic 1 and b) Sonic2 from PINS 2 data. 



 

6.13 Instantaneous threshold shear velocity for Mast 1, a) Sonic 1, b) Sonic 2, and c) transport, 
and Mast 2, d) Sonic3 e) Sonic 4, and f) transport measurements from SJP 1 data.
 

appear to occur over a fairly wide 

middle of the range. The data for SJP 1 especially appear normally distributed with respect 

which seems logical given the near continuous state of transport. 

For both SJP 1 and SJP 2, winds w

sand was entering the measurement area for each mast form the upwind direction. Given this 

observation, the roughly 0.25 threshold boundary for the SJP data likely corresponds to a lower  

impact saltation threshold, where energy is imparted to grains at res

lowering the amount of stress needed to initiate transport. If we consider the impact threshold 

to be about 75 to 80% of the fluid threshold (Bagnold 1941, Belly 1964), this agrees 

98 

Instantaneous threshold shear velocity for Mast 1, a) Sonic 1, b) Sonic 2, and c) transport, 
and Mast 2, d) Sonic3 e) Sonic 4, and f) transport measurements from SJP 1 data.

appear to occur over a fairly wide range of u*, although most events are clustered towards the 

middle of the range. The data for SJP 1 especially appear normally distributed with respect 

which seems logical given the near continuous state of transport.  

For both SJP 1 and SJP 2, winds were blowing onshore, and during transport events, 

sand was entering the measurement area for each mast form the upwind direction. Given this 

observation, the roughly 0.25 threshold boundary for the SJP data likely corresponds to a lower  

hreshold, where energy is imparted to grains at rest from those in motion, 

lowering the amount of stress needed to initiate transport. If we consider the impact threshold 

to be about 75 to 80% of the fluid threshold (Bagnold 1941, Belly 1964), this agrees 

 

Instantaneous threshold shear velocity for Mast 1, a) Sonic 1, b) Sonic 2, and c) transport, 
and Mast 2, d) Sonic3 e) Sonic 4, and f) transport measurements from SJP 1 data. 

, although most events are clustered towards the 

middle of the range. The data for SJP 1 especially appear normally distributed with respect u*, 

ere blowing onshore, and during transport events, 

sand was entering the measurement area for each mast form the upwind direction. Given this 

observation, the roughly 0.25 threshold boundary for the SJP data likely corresponds to a lower  

from those in motion, 

lowering the amount of stress needed to initiate transport. If we consider the impact threshold 

to be about 75 to 80% of the fluid threshold (Bagnold 1941, Belly 1964), this agrees fairly well  



 

6.14 Instantaneous threshold shear velocity for Mast 1, a) Sonic 1, b) Sonic 2, and c) transport, 
and Mast 2, d) Sonic3 e) Sonic 4, and f) transport measurements from SJP 2 data.
 

with the predicted fluid threshold for each mast and data set

value of u* for all transport detections, this value also agrees well with, but in most cases  

slightly lower than the predicted threshold for each mast and data set. Overall the evidence 

indicates that the system was mixe

that the average value of shear velocity for each transport detection is a fair indicator of 

threshold conditions for these data. 
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and Mast 2, d) Sonic3 e) Sonic 4, and f) transport measurements from SJP 2 data.

with the predicted fluid threshold for each mast and data set (Table 6.1). If we take the mean 

for all transport detections, this value also agrees well with, but in most cases  

slightly lower than the predicted threshold for each mast and data set. Overall the evidence 

indicates that the system was mixed through time in terms of fluid and impact thresholds, and 

that the average value of shear velocity for each transport detection is a fair indicator of 

threshold conditions for these data.  

 

Instantaneous threshold shear velocity for Mast 1, a) Sonic 1, b) Sonic 2, and c) transport, 
and Mast 2, d) Sonic3 e) Sonic 4, and f) transport measurements from SJP 2 data. 

1). If we take the mean 

for all transport detections, this value also agrees well with, but in most cases  

slightly lower than the predicted threshold for each mast and data set. Overall the evidence 

d through time in terms of fluid and impact thresholds, and 

that the average value of shear velocity for each transport detection is a fair indicator of 



 

Figure 6.15 Transport versus instantaneous threshold shear v
Sonic 3, and d) Sonic 4 for SJP 1 data.
 

6.4 Conclusions 

The goal of this chapter was to test the model developed in Chapter 5 against field 

measurements of aeolian transport thresholds. Overall, the model performed we

threshold conditions, and was particularly accurate for the PINS data. For the PINS data, model 

predictions were within about .01 m/s of field measurements of threshold shear velocity. 

Further, the results presented here indicate that tran

low frequency turbulent structures, and that high frequency oscillations of stress, even when far 

above threshold values, may have little impact on saltation events. 

Given the apparent mixed fluid and impact thres

periods at SJP, definitive conclusions cannot be drawn from these data as to how well model 
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Figure 6.16 Transport versus instantaneous threshold shear velocity for a) Sonic 1, b) Sonic2, c) 
Sonic 3, and d) Sonic 4 for SJP 2 data.
 

predictions agree with fluid threshold values. However, agreement is still very close using 

average values of shear velocity for transport detections. Overall, the results of these tests are 

very promising, but more work is needed to further 
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Figure 6.17 Filtered shear velocity for a) Sonic 1, b) Sonic 2, c) Sonic 3, and d) Sonic 4 for SJP 1 
data. 

Figure 6.17 Filtered shear velocity for a) Sonic 1, b) Sonic 2, c) Sonic 3, and d) Sonic 4 for SJP 1 
data. 
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Figure 6.18 Transport versus filtered threshold shear velocity for a) Sonic 1, b) Sonic2, c) Sonic 3, 
and d) Sonic 4 for SJP 1 data.

Figure 6.19 Transport versus filtered threshold shear velocity for a) Sonic 1, b) Sonic2, c) Sonic 3, 
and d) Sonic 4 for SJP 2 data.
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Transport versus filtered threshold shear velocity for a) Sonic 1, b) Sonic2, c) Sonic 3, 
and d) Sonic 4 for SJP 2 data. 
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7. SUMMARY AND CONCLUSIONS 

 The goal of this dissertation was to advance understanding of the initiation of motion in 

aeolian transport. Individual chapters focused on two key areas of concern: quantifying 

spatiotemporal variability in surficial moisture, which is a limiting factor for transport processes, 

and improving predictive capability for transport thresholds of dry sands. These two foci were 

chosen because they represent critical components of aeolian processes where uncertainty 

limits understanding of process level dynamics and ability to model aeolian systems.  

The first three chapters focused on surficial moisture. There were two general 

objectives for this set of studies. First, the studies were designed to examine small scale 

variability in surface moisture in terms of both horizontal and vertical distributions of moisture 

on a fine grained beach. Second, Chapters 3 and 4 were designed to develop improved moisture 

measurement techniques for application to aeolian process studies. Most importantly, these 

studies explored non-destructive methods to accurately estimate moisture in just the top few 

layers of grains. Chapters 5 and 6 presented the development and field testing of a new model 

for threshold conditions at the initiation of motion for quartz sands. The model was developed 

based on the assumption that for sand sized grains, transport thresholds should be directly 

proportional to grain weight. Further, the model also assumed that by redefining grain size 

distributions in terms of mass rather than diameter, predictive accuracy would be improved.  

The model was tested under field conditions at two different sites with characteristically 

different grain size-ranges spanning a range representative of sand found on most 

beachesbeaches, particularly in the Gulf Coast region. 

Results indicate that surficial moisture in beach sands is highly variable over space and 

with depth. In Chapter 2, it was found that surface moisture content can be highly variable over 

small areas, with differences of up to about 14% by weight occurring within a 0.5 m2 area, which 
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indicate that there is a potential for error even over very small scales, particularly for mid ranges 

of possible moisture contents. This has potentially significant ramification in terms of modeling 

aeolian transport thresholds, especially considering that critical limiting values of moisture are 

poorly understood. In this particular study, however, it was found that this variability would 

have negligible effects on beach-wide estimates of area available to transport given theoretical 

critical moisture values.  

Results from Chapter 3 indicate that there is considerable variability in near surface 

moisture gradients, again particularly for mid range levels of moisture typically found over most 

of a natural beach. This finding reinforces the need in aeolian process studies to restrict 

measurements of moisture to a very thin layer just at the surface. Further, results from Chapter 

3 indicate that measurements of moisture integrated over even very shallow depths may 

significantly overestimate the limiting effects of moisture on transport processes. 

The handheld netradiometer developed for work presented in Chapter 5 proved to be 

an accurate, simple, and reliable tool to estimate moisture at the surface of the bed. This 

approach has several advantages, including simplicity, low cost, and portability. Perhaps the 

most novel application would be the ability to use remote sensing technology to measure 

surface moisture at night, which is not possible with other remote sensing based approaches.  

The model developed in Chapter 5 appears to provide a simple,  accurate method to 

estimate levels of shear stress needed to initiate motion for quartz sands. The model is based on 

experimental observations spanning nearly 80 years, and given the range of experimental 

designs and sand sizes used to produce those data, it can be reasonably concluded that the 

model provides a good estimate of average threshold conditions in terms of environmental 

conditions (.e.g. humidity, air density, temperature) over the range of sand sized grains 

commonly found in natural environments. Results from the field tests presented in Chapter 6 
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indicate that the model performs well for natural sands, but more work is needed to test this 

model under a larger variety of sand sizes and environmental conditions. 

Overall, the work presented in this dissertation provides significant advances in the 

study aoelian transport systems. These studies have provided critical analysis of current trends 

in beach surface moisture monitoring, improved our understanding of spatiotemporal variability 

in surficial moisture on beaches, and discussed improved technologies for measuring moisture 

at the surface of the sediment bed. Further, the model of transport thresholds presented 

represents a potential shift in the way aeolian systems are modeled as a whole, and should 

provide increased accuracy for threshold and mass flux models. 
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OTHER PERSON OR ENTITY FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, 
EXEMPLARY OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN CONNECTION 
WITH THE DOWNLOADING, PROVISIONING, VIEWING OR USE OF THE MATERIALS REGARDLESS OF 
THE FORM OF ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT, 
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14. In the event of any conflict between your obligations established by these terms and conditions 
and those established by CCC’s Billing and Payment terms and conditions, these terms and 
conditions shall prevail.  
 
15. WILEY expressly reserves all rights not specifically granted in the combination of (i) the license 
details provided by you and accepted in the course of this licensing transaction, (ii) these terms 
and conditions and (iii) CCC’s Billing and Payment terms and conditions.  
 
16. This Agreement will be void if the Type of Use, Format, Circulation, or Requestor Type was 
misrepresented during the licensing process.  
 
17. This Agreement shall be governed by and construed in accordance with the laws of the State of 
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Use by non-commercial users  
 
For non-commercial and non-promotional purposes individual users may access, download, copy, 
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right for the author not to have the work altered in such a way that the author's reputation or 
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  Where content in the article is identified as belonging to a third party, it is the obligation of the 
user to ensure that any reuse complies with the copyright policies of the owner of that content.  
  If article content is copied, downloaded or otherwise reused for non-commercial research and 
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further explicit permission from Wiley and will be subject to a fee. Commercial purposes include:  
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  Copying, downloading or posting by a site or service that incorporates advertising with such 
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quotations with an appropriate citation) that is then available for sale or licensing, for a fee (for 
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