
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2014

Electrical resistivity employed at the Livonia
Mound site (16PC1), Pointe Coupee Parish,
Louisiana
Jennifer Patricia Gardner
Louisiana State University and Agricultural and Mechanical College, jgardner36025@gmail.com

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Social and Behavioral Sciences Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Gardner, Jennifer Patricia, "Electrical resistivity employed at the Livonia Mound site (16PC1), Pointe Coupee Parish, Louisiana"
(2014). LSU Master's Theses. 1803.
https://digitalcommons.lsu.edu/gradschool_theses/1803

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1803&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1803&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1803&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1803&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1803&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/1803?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1803&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


ELECTRICAL RESISTIVITY EMPLOYED AT  

THE LIVONIA MOUND SITE (16PC1),  

POINTE COUPEE PARISH, LOUISIANA 
 

 

 

 

 

 

A Thesis 

Submitted to the Graduate Faculty of the 

Louisiana State University and  

Agricultural and Mechanical College 

in partial fulfillment of the  

requirements for the degree of 

Masters of Arts 

 

in 

 

The Department of Geography and Anthropology 

 

 

 

 

 

 

 

 

 

 

 

by 

Jennifer Patricia Gardner 

B.A., Salisbury State University, 2000 

B.A., Salisbury University, 2007 

May 2014 



ii 

 

ACKNOWLEDGEMENTS 

The journey to pursue my graduate degree took me down several different pathways with 

the first taking me to Louisiana.  In my wildest dreams I never imagined that following my 

passion would take me so far away from my home in Maryland.  The credit for my success 

would not have come to fruition without the assistance of many individuals.   First, I would like 

to thank the Town of Livonia, the Historical Society of Pointe Coupee Parish, and Brad Bergeron 

(adjacent property owner) for granting me permission to work at the Livonia Mound site.  A 

special thanks to Mr. Tucker for obtaining the necessary permission to complete the field work.  

Mr. Tucker volunteered his time in the not so ideal weather conditions of December when the 

temperature dipped below freezing, and May when the temperature reached into the mid 90s.   

To my committee, I want to express my heartfelt appreciation to Dr. Rebecca Saunders, 

Dr. Brooks Ellwood, and Dr. Rob Mann.  Dr. Saunders, thank you for becoming my adviser.  

You stepped in when I thought my dreams of finishing were shattered.  Without your continual 

support, guidance, and patienc throughout this journey, my dream of receiving my masters 

degree would not have come true. You pushed me to work hard (as you should have), past what I 

thought I was capable of doing.  I am stronger now at the end of this journey, and I thank you! 

Ms. Dana Sanders, you are the heart of the Department of Geography and Anthropology.  

I will always be thankful for all that you have done to assist me with finishing my degree.  You 

make sure that all the graduate students make their deadlines.  You were my mom away from 

home, always there to give me that hug or that push back into reality.  I could not have reached 

the end of this chapter at LSU without you.   

Thank you to my fabulous volunteers at Livonia Mound Site and at King George Island. 

Without assistance from Jessica Harrison, Julie Doucet, Harry Brignac, Jr., Kellye French, 

Jessica Bush, Christopher Triche, Cory Sills, David Richardson, Mark Robinson, and Colt 



iii 

 

Buffington, I would be still be out in the field collecting data or lost in the middle of a cypress 

swamp.   

To Dr. Amanda Evans, thank you for taking me under your wing by becoming my 

mentor and guiding me down the next path.  Amanda exemplifies what it means to possess grace, 

strength, knowledge, and a commitment for excellence.   Thank you for not only being such a 

fabulous mentor, but for becoming such a wonderful friend!    

A tremendous amount of people contributed to the completion of my thesis, out of the 

academic, setting through friendship, support, and understanding my need to sacrifice my time 

with them to achieve my dreams and goals.  Thank you for welcoming me back with open arms!  

I am truly fortunate to have such wonderful friends in Maryland, Pennsylvania, and Louisiana.   

To my loving parents, words will never do justice for all the unconditional love and 

support you continually show me, even when my dream took me 1,700 miles away from home.  

Because of your love and encouragement for me, I am the person I am today and able to 

accomplish my dreams. I am the luckiest girl in the world because I have you as my parents.  To 

my brother, Kenny Gardner, thank you for endless support and patience with me.  I am the 

luckiest sister to have you there to continually encourage me to succeed.  Tiffany Markuski, 

thank you for helping me bring back the non-thesis Jenny (I haven’t seen her in a long time).  To 

Alexis Norris, I look forward to becoming Aunt Jenny.  Remember, you are a smart young lady 

and able to accomplish anything you want with hard work and passion. 

Thank you to the Ballard Family (Nolen, Johnelle, and Bruce) for becoming my 

Louisiana family as your first “foreign exchange student.”  Louisiana is a world different than 

the one I grew up in Maryland.  When I missed my family, you welcomed me as your own.  

Your love and support over these past four years has been critical to my success.  



iv 

 

Kathy Raab, thank you for taking your time to help with editing my thesis.  I appreciate 

all of your assistance and confidence that my writing will improve.  You are an amazing aunt and 

you are always doing for others.  I do not know how I will ever be able to repay you for your 

help.  Betty Gray you have taught me that strength comes when you think you have nothing left 

to give, and crying is not showing weakness, rather a release from being strong for too long.  

Jake Aiello, you are my living legend, a special thanks for showing me strength, determination, 

and courage comes with a smile and laughter. You continually show me that to succeed in life 

you need to be willing to face your fears head on.  To the Gray and Gardner clans, I appreciate 

all of your love and support through the years.  I look forward to spending more time together, 

especially now that my Masters degree is not consuming all of my spare time.  I am the luckiest 

girl to have such a wonderfully close family.   

Dana Raab, you helped me realize that some of the greatest writers have to work at their 

craft; it is not something that comes naturally.  It comes through hard work and learning to love 

the written word as a new way of expressing myself.  My writing still needs lot of work, but 

thank you for igniting this desire.  

Thank you Neal Johnson and Robert Honeycut for reminding me that stepping out of my 

box is what brought me to Louisiana in the first place.  Thank you to Jermaine Miles (because he 

always likes to go first), Jamie Tindle, Dustin Miller, Linda Dickerson, Lauren Modenbach, 

Ryan Glick, Mary Beth Groze, Hale Gonzales, Gene, Pam Knighton, Jenny, Blane, Steve Delk, 

Josh Dixon, Kristen Baker, Allen, Andrew, and  Beau for your friendship and strength comments 

which have helped me to continue to live by the golden rules. 

I dedicate my thesis to the late Michael Thomas Gray (my cousin) and to the late 

Florence Lee Gardner (my grandmother). Michael showed me life is to be lived on your own 

terms, and it is not that you got to the finish line, but how you got there that determines your 



v 

 

character.   To Florence Gardner, in loving memory, thank you for encouraging me to pass 

through doors that women before me have not.  You taught me to be an independent, strong 

woman and to be proud of it!  I thank you!  I will always miss you both and I am a better person 

because of having you both in my life. 

 

  



vi 

 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS………………………………….……………………………. ii 

LIST OF TABLES…………………………………………….………………………....... vii 

LIST OF FIGURES………………………………………….……………………………. viii 

ABSTRACT………………………………………………….……………………………. ix 

CHAPTERS 

1. INTRODUCTION…………………………………………………..………...…… 

2. CULTURAL OVERVIEW………………………………………….……….…….. 

3. PREVIOUS INVESTIGATIONS……………………….…………………………. 

4. METHODS……………………………………………………………………...…. 

5. RESULTS……………………………………………………………………...…... 

6. CONCLUSION AND RECOMMENDATIONS……………………..…………... 

 

1 

3 

10 

16 

23 

39 

REFERENCES…………………………………………………………………………….. 43 

APPENDIX 

A. RAW PSEUDOSECTION ELECTRICAL RESISTIVITY DATA……….……… 

B. RAW AREA A ELECTRICAL RESISTIVITY DATA……………….…………. 

C. RAW MAGNETIC SUSCEPTIBILITY DATA……………………………….…. 

D. MAGNETIC SUSCEPTIBILITY ILLUSTRATIONS…………………….……… 

 

48 

71 

101 

109 

VITA…………………………………………………………………………………….…. 111 

 

  



vii 

 

 

LIST OF TABLES 

 

Table 3-1 Livonia Mounds Core 1 Description……………………………………………..13 

Table 3-2 Livonia Mounds Core 2 Description……………………………………………..14 

Table 3-3 Livonia Mounds Core 3 Description……………………………………………..15 

 

  



viii 

 

LIST OF FIGURES 

Figure 1-1 Aerial view of the Livonia Mound Site (16PC1) in Pointe Coupee Parish….. 1 

Figure 3-1 Topographic Map of the Livonia Mound Site (16PC1)……………………... 11 

Figure 4-1 Topographic Map with view of fieldwork survey lines on Livonia Mound… 22 

Figure 5-1 West Transect Pseudosection, Contour 2.4 Ωm……………………………... 24 

Figure 5-2 West Transect Pseudosection, Contour 4.8 Ωm……………………………... 26 

Figure 5-3 North Transect Pseudosection, Contour 6.4 Ωm…………………………….. 27 

Figure 5-4 North Transect Pseudosection, Contour 12.8 Ωm…………………………… 29 

Figure 5-5 East Transect Pseudosection, Contour 5.1 Ωm……………………………… 31 

Figure 5-6 East Transect Pseudosection, Contour 10.3 Ωm…………………………….. 32 

Figure 5-7 South Transect Pseudosection, Contour 14.3 Ωm…………………………… 34 

Figure 5-8 South Transect Pseudosection, Contour 28.6 Ωm…………………………… 35 

Figure 5-9 Area A, Contour 2.4 Ωm…………………………………………………….. 37 

Figure 5-10 Area A, Contour 4.8 Ωm…………………………………………………….. 38 

 

 

  



ix 

 

ABSTRACT 

Electrical resistivity was used at the Livonia Mound site (16PC1) to identify construction 

breaks, possible human burials, and other cultural activity below the surface.  Resistivity 

transects traveled across the mound and the level surface directly south of the mound; this latter 

section was called Area A.  Four transects stretched across the north, south, west, and east slopes 

of the mound; as a result, four vertical profiles were created from the apparent resistivity (a) 

values.  The standard deviation of each transect was computed using the a values from the four 

pseudo-sections to establish the base-line for analysis.  a values for Area A were figured 

separately because of the differences in temperature at the times the surveys were taken which 

impact the moisture within the soil.   

Four areas of high a were identified; these anomalies could represent human burials or 

other cultural activity beneath the surface.  Area A and the west transect produced anomalies 

hinting at cultural activity below the surface, although no definitive evidence of human burials 

was found.  The vertical profiles from the east and west transect show evidence that the top 3.0 

m were deposited in a single construction episode.  High a anomalies in the north and south 

transects distort the profiles; thus there was no conclusive evidence to support or refute a single-

phase construction episode for the top 3.0 m of the remaining mound.   
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CHAPTER 1 

INTRODUCTION 

The Livonia Mound site (16PC1) is a Coles Creek mound complex located within the city 

limits of the town of Livonia (Figure 1-1), in southeast Louisiana.  Previous historical accounts 

of the site mention three possible mounds; however, only Mound A remains at the site (Jones 

and Shuman 1987; Mann 2002, 2004, & 2007).   The three-mound complex is positioned along 

the eastern bank of Bayou Grosse Tete on top of a natural levee and to the left of a little street 

called Bayou Road.  The most intact mound is also visible from the main highway, Mississippi 

River Trail, which runs through the town of Livonia.  Historically, the water level in Bayou 

Grosse Tete was higher before the Morganza Floodway altered the watershed (Jones and 

Shuman 1987).  

 
Figure 1-1. Google Aerial of Livonia Mound Site (16PC1) in Pointe Coupee Parish 

 

My thesis research at the Livonia Mound site involves using apparent resistivity (a) to 

credibly identify construction phases within the first three meters of the Mound A’s subsurface.  
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The remote sensing is an extension of the work done by Dr. Brooks Ellwood’s 

Geoarchaeological class on the LSU Campus Mounds in the fall of 2007.  Ellwood’s class 

employed a, ground penetrating radar, cesium vapor magnetometer, and magnetic susceptibility 

studies to explore internal stratigraphy of the mounds.  I chose the a method to run survey lines 

at different electrode spacing (e.g. 0.5 m, 0.75 m, 1.0 m etc) over the earthen structure at Livonia 

Mound site.  In this thesis, I report my findings using a methods.  Electrical Resistivity, a quick 

and non-destructive geophysical method, identifies non-conformities below the earth’s surface 

(Clark 1990; Ellwood 2009). Non-conformities are the result of disturbances that produced either 

higher or lower a values from the immediate background (Clark 1990; Ellwood 2009).  An 

additional survey grid, Area A, was established directly south of the mound.  The lines ran 

parallel from east to west with the electrode spacing at 0.5 m.    

In Chapter 2, I provide an overview of the cultures of the Baytown and the Coles Creek 

periods (Roe 2007; Saunders, R. 2007).  Chapter 3 highlighted the previous research at the 

Livonia Mound site.  I discuss the a method and how it was administered at the site in Chapter 

4.  In Chapter 5, the a results are presented and the work is compared with previous research 

completed at the Livonia Mound site and the LSU Campus Mound Site (16EBR6).  In the final 

chapter, I summarize the research findings and make recommendations for further research at the 

Livonia Mound Site.  
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CHAPTER 2 

CULTURAL OVERVIEW 

 Louisiana has over 700 Indian mounds according to the records at the Division of 

Archaeology (Milner 2004; Saunders, R. 2007; Gibson 2000); the bulk of these were built during 

the Baytown and Coles Creek periods (Neuman 1984).  The Baytown (A.D. 400 - 700) and 

Coles Creek (A.D. 700 - 1000) periods can be distinguished on the basis of material culture.  

However, there is a substantial amount of continuity between the two, with Coles Creek mound 

sites often built on Baytown foundations (Anderson 2004; Gibson 2000; Homburg 1991; 

McIntire 1958; Milner 2004; Roe 2010; Roe and Schilling 2010; Saunders, R. 2007).  The 

subsistence practices, settlement patterns, social organization, and mortuary treatment from the 

Baytown and Coles Creek periods will be discussed below, sources include: Anderson 2004; 

Gibson 1994, 2000, 2006; Homburg 1991; Jeter et al. 1989; Lee 2010; Neuman 1988; McIntire 

1958; Milner 2004; Roe 2010; Roe and Schilling 2010; Saunders, R. 2007; Smith et al. 1983. 

Baytown Period (A.D. 500-750) 

The Baytown Period represents the progression in social development between the 

Marksville and Coles Creek periods.  Within this period, two cultures are described, Baytown 

and Troyville.  The Troyville culture occupied the southern portion of the Lower Mississippi 

River Valley (LMRV), where the Livonia Mounds are located.  The northern culture, Baytown, 

will not be discussed here.   

Population grew during Troyville; as a result, sites associated with the Troyville culture 

stretched from the Louisiana Gulf Coast shoreline to the southern border of Arkansas (Jeter et al. 

1989; Lee 2010).   At one point Troyville culture was referred by Williams (Quoted in Lee 

2010:136; Williams 1963:297) as a “good gray culture,” but now it is regarded as the catalyst for 

the development of the later Mississippian chiefdoms observed by early explorers (Lee 2010).   
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Subsistence 

In southern Louisiana, the fishing, hunting, and gathering subsistence practices 

established during the Archaic period remained relatively intact until the introduction of 

agriculture around A.D. 1200 (Carr and Stewart 2004; Ford and Willey 1941; Gibson 1994, 

2004; Jeter et al. 1989; Neuman 1984; Milner 2004; Rees 2010; Saunders, 2004, 2010; Smith et 

al. 1983).  Fish and shellfish provided most of the protein; white-tailed deer were also exploited, 

along with other medium and smaller mammals.  Persimmons, grapes, sunflower seeds, and nuts 

(e.g., pecans, acorns) also continued to be staples in the subsistence system (Jeter et al. 1989; Lee 

2010).  The Baytown period saw the introduction of new hunting devices, the bow and arrow, 

which revolutionized deer hunting (Jeter et al. 1989; Neuman 1984; Lee 2010).   

Settlement Pattern 

Very few Troyville villages have been identified, so little can be said of a settlement 

pattern (Lee 2010).  However, it is believed that most of the Troyville population lived in small 

dispersed hamlets tied to regional ceremonial centers.  Surrounding villages joined together to 

celebrate festivities for common civic ceremonies and feasts at the mound sites. 

With some major exceptions, like the Troyville site itself, Troyville mounds are generally 

low, flat-topped or domed mounds.  The lack of post molds on the surface suggests that the 

mounds did not support structures (Jeter et al. 1989; Lee 2010).   The elevated flat-topped 

mounds either served as stages for the public to view the aforementioned rituals (Knight 2001) or 

as residences for the elite (Roe and Schilling 2010:158).   

Social Organization 

According to Lee (2010:137) “Baytown societies are thought to correspond with a tribal 

or local level of sociopolitical organization.  Leadership positions were achieved by individuals 

rather than ascribed or inherited, and power was only temporarily vested in these individuals.” 
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Influences from the Hopewell area declined in the Troyville period. Instead, Troyville people 

increased interaction with other cultures along the northern Gulf coast as far east as the Florida 

panhandle.  The relationship can be seen in pottery surface decoration.  The same complex 

motifs can be found on pottery from Louisiana and Florida (Jeter et al. 1989; Lee 2010).   

Mortuary Treatment  

Mortuary practices are highly variable; human remains are found as primary and 

secondary burials and as cremations; primary burials may be extended or flexed.  The general 

lack of grave-goods associated with individuals suggests that an egalitarian social structure 

prevailed until the end of the Baytown period in south Louisiana (Lee 2010).  Burial-goods in 

direct association with the burials were discovered at the Old Creek Site (16LA102) and Gold 

Mine site (16RI13) (Jeter et al. 1989).  However, at the Gold Mine site, the items were simply 

pebbles or other mundane objects. The discovery of 26 ceramics vessels and 41 burials located in 

an ossuary or a small mound at the Old Creek site (16LA102) and yielded a new view into the 

mortuary practices of the Troyville people (Jeter et al. 1989).  Especially with the discovery of a 

distinctive deep bowl, that Jeter et al. (1989:152) described as having “Churupa Punctuated 

decoration encircling the rim and a Mulberry Creek Cord Marked body.” This bowl was found 

among other Baytown plain ceramic vessels or other variant types of Troyville ceramics found in 

direct association with burials (Lee 2010).   This discovery diverges from the overall known 

mortuary practices, which suggest no class or status differentiation (Jeter et al. 1989; Lee 2010; 

Neuman 1984; Saunders, 2007).  Dog burials are found with human remains at the Greenhouse 

and the Gold Mine sites in Troyville contexts, suggest that such burials were a common practice 

during that time period (Jeter et al. 1989; Lee 2010; Neuman 1984).   

 The discovery of eight bathtub-shaped pits at the Greenhouse site, some of which were in 

close proximity to the mounds, is consistent with finds at other Troyville sites and hints at a 
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potential relationship between feasting and mortuary practices (Lee 2010).  Ford (1951:104) 

noted that Fowke considered these “barbeque pits.”  The depth (thickness) of the ash at the base 

of the pits demonstrates their repeated use and suggests that feasting was held as an integral part 

of ceremonial activity associated with the mortuary treatment of ancestors (Jeter et al. 1989; Lee 

2010; Knight 1989).    

Coles Creek Period 

 The transition from the Baytown to the Coles Creek is apparent in the changes in 

settlement patterns, subsistence strategies, ceramic technology, and mortuary practices (Roe 

2010; Roe and Schilling 2010; Stephonaitis 1986).   New styles of ceramics (e.g., Pontchartrain 

Check Stamped) and new projectile points, clearly used as arrowheads instead of darts (e.g., 

Collins, Bayougoula), appear (Brown 1984; Jeter et al. 1989; Keller et al. 1983). 

Subsistence 

Although the addition of bow and arrow technology, introduced during the Baytown 

period may have increased hunting success (Lee 2010), the diet of inland residents living away 

from mound sites consisted of mainly fish and turtles, whereas the diet of residents living at 

coastal sites emphasized estuarine fishes and shellfish (Brown 1980; Roe and Schilling 2010).  

Wild plants, especially plants with starchy seeds, such as maygrass and knotweed, remained the 

primary plant foods (Listi 2007; Roe and Schilling 2010).  However, for the first time in 

Louisiana prehistory, there is evidence that high-status folks at mound sites had nicer cuts of deer 

meat, which were consumed in greater quantities on top of the mounds than at non-mound sites 

(Milner 2004; Roe 2010; Roe and Schilling 2010; Steponaitis 1986;). Maize became a minor 

component late in the Coles Creek Period (Fritz and Kidder 1993; Jeter et al. 1989; Listi 2011; 

Milner 2004; Roe 2010; Roe and Schilling 2010; Saunders 2007; Shelley 1977; Steponaitis 
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1986). It is likely that maize was initially used as a status or ritual item because early agriculture 

was “an environmental [and health] catastrophe,” according to Larsen (2006).    

Settlement Pattern 

Ford and Willey (1941:344) said, “The most marked features of this new complex [Coles 

Creek] was the construction of rectangular flat-topped mounds about a court and plaza.” Coles 

Creek mounds were built on top of natural levees of relic distributary systems, and in western 

coastal Louisiana, along the chenier plain (remnant beach ridges) (Jeter et al. 1989; Roe and 

Schilling 2010). Many Coles Creek mound centers began during the Baytown period; Coles 

Creek peoples subsequently expanded on these bases. Saunders (2007) noted that mound centers 

“became more elaborate as sociopolitical roles developed, and political positions became 

inherited.” This enlargement of the ceremonial centers resulted from the ability of the social 

leaders to motivate their people through religious beliefs or institutions (Roe and Schilling 2010).  

Coles Creek sites in southern Louisiana typically contain three to four mounds around an 

open space, called a plaza.  These mound centers contained both flat-topped and conical mounds 

(Roe and Schilling 2010).  Plazas were said to be kept free of debris and were built by filling in 

the gulleys and leveling the rises to create a flat activity areas (Roe and Schilling 2010).  The 

lack of cultural debris exemplifies the sacred nature of the mounds to the people (Roe and 

Schilling 2010; Saunders, R. 2007). 

  The earthen structures at the mound-and-plaza sites were typically no more than 6 m 

high, varying in shape and size, although there are notable exceptions (Roe and Schilling 2010).  

In northern Louisiana, for instance, some later Coles Creek mound sites rival Mississippian 

mound sites in size (Roe and Schilling 2010; Roe 2010).  When comparing the size of mound 

centers, it is apparent that there was some competition between the residents (Roe and Schilling 

2010).  The construction of similar mound-and-plaza centers throughout the Coles Creek region 
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indicates a common meaning and function, even though the centers were said to be autonomous 

(Roe and Schilling 2010).   

Flat-topped mounds, usually the largest mounds at a site, were ideal for public rituals 

(feasting or mortuary).  They allowed the audience, non-elites, to view from below (Saunders 

2007).  Evidence of wooden posts on the summits of some flat-topped mounds suggests people 

were living on top of the mounds (Roe and Schilling 2010); other flat-topped mounds probably 

supported temples or charnel houses.  Still others have no evidence of structures at all (Roe and 

Schilling 2010), and their function remains unclear.   

 Villages (non-mound sites) were located at junctions of smaller distributaries and 

streams (Roe and Schilling 2010).  While Keller et al. (1983) describe the Coles Creek people as 

living a more sedentary lifestyle than previous cultures, small camps or resource procurement 

camps were established between the non-mound sites and the mound centers (Roe and Schilling 

2010; Jeter et al. 1989).  By the end of the Coles Creek period, people were living in larger 

villages (Roe and Schilling 2010).  These villages possibly supported the elites living at the 

restricted mound centers.   

Social Organization  

As the population grew and placed more demand on resources, it appears that the Coles 

Creek people moved away from the egalitarian social organization and into hierarchical polities 

(Roe and Schilling 2010).  However, differences in faunal remains and artifact assemblages at 

mound and non-mound sites are subtle, and the lack of status or wealth reflected in grave goods, 

indicates a lower level of social stratification among the Coles Creek as compared with 

Mississippian sites (Roe and Schilling 2010:159).   
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Mortuary Treatment 

Coles Creek burial treatment is quite variable.  Many individuals do not appear to receive 

any special treatment, although the remains were not haphazardly buried (Roe 2010; Roe and 

Schilling 2010; Steponaitis 1986).  Burials were often placed on the outer layers of fill or in a pit 

as secondary or primary burials. Grave goods were rarely seen in direct context with burials 

inside the mounds.  Grave goods, when present, show no evidence of status differentiation in the 

grave preparation when compared to those without goods (Roe 2010; Roe and Schilling 2010; 

Steponaitis 1986).  Remains within the burial mounds show two types of patterns: concentrated 

as bundles, or scattered (Jeter et al. 1989).  Secondary burials have been interpreted as the result 

of emptying a charnel house (Roe and Schilling 2010).   

Summary 

 The Baytown and Coles Creek periods were a time of evolution.  Baytown period is more 

commonly referred to in Louisiana as the Troyville.  Troyville was a time when the population 

begun to expand, the development of the bow and arrow, and the mounds were the foundation 

for Coles Creek and later mounds.  The Coles Creek period saw the development of political 

leadership becoming inherited over ascribed, rectangular flat-topped mounds around a court-and-

plaza, and maize made its introduction as a minor component in subsistence rituals. 
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CHAPTER 3 

PREVIOUS INVESTIGATIONS 

 

Kniffen and Beecher originally documented the Livonia Mound site (16PC1), in 1938, 

noting two, and possibly three, mounds (Jones and Shuman 1987:131).  Subsequently, in the 

early 1950s, the grandmother of Patrick Betty (former property owner) bulldozed the second 

mound at the site.  Patrick Betty was in attendance at the clearing and recalled two sets of two 

human burials unearthed on the south side of the mound. One set was located southwest, towards 

the river, and contained what he believed to be two Native Americans.  The second pair of 

burials was positioned on the southeast side; Betty believed these to be historical burials because 

of the tattered remains of clothing (Personal Communication, Patrick Betty 2010). 

Weinstein and Burden conducted a surface collection in 1975, where they recovered shell 

(presumably Rangia cuneata) and Bayou Cutler phase ceramics (Jones and Shuman 1987:131; 

Mann 2002:43).  They also collected pottery from the Delta Natchezan Phase of the the 

Mississippi Period (Jones and Shuman 1987:131; Mann 2002:43).   

Jones and Shuman (1987) were the first to map the mound; they said the location of the 

second mound was marked by a “very low rise and scatter of Rangia cuneata shells” (Jones and 

Shuman 1987:131). However, they found no evidence a third mound.  Jones and Shuman 

(1987:132) recovered diagnostic aboriginal sherds recovered during a surface collection that 

demonstrated a Coles Creek occupation.  They also indicated that the one standing conical 

mound was 9.4 m tall, with a basal diameter of 50.3 m (Jones and Shuman 1987:131; Mann 

2004), and noted difficulty in mapping due to the overgrowth of grasses and briars on the mound.  

However, they were able to record the shallow depression located at the top of the mound 

resulting from the temporary burial of a woman who died during the 1927 flood.  They did not 

mention what happened to the burial or when it was moved. 
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Mann’s (2002) initial visit to the site was at the request of the Livonia town officials 

during their acquisition of the property.  The town officials were taking precautions to protect 

and preserve the mound; as a result, they sought direction from Mann to assist with the 

preservation efforts (Mann 2002).  A manicured lawn, with a few trees, has replaced the 

overgrown grasses and briars.  Mann gathered a small surface collection of unidentifiable plain 

sherds eroding out of a looter’s pit (Mann 2002:44).   Later, with help from State Archaeologist 

Chip McGimsey, Mann (2004) completed the first topographic map of the Livonia Mound site to 

include all three mounds (Figure 3-1).  They also extracted three soil cores.   

 
Figure 3-1. Topographic map of Livonia Mound site (16PC1) showing soil core locations 

(Mann 2004).  Used by permission of author. 
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The topographic map clearly illustrates all three mounds and the extraction points of the cores.  

The three soil cores (two from the remaining mound and one from the “plaza” showed no 

definitive proof of a construction sequence (Table 3-1) (Mann 2004).  Core 1 was removed from 

the summit of Mound A (Figure 3-1), measured 9.6 m long, with evidence for basketloading 

appears at 60 cm below the surface; the soil is mixed with both A and B horizon soils (Mann 

2004).  In the same moundfill horizon at 90 to 368 cm below the surface, a ceramic sherd was 

found at 292 cm below the surface and approximately 20 cm is missing from the soil core 

between 368-387 cmbs (Mann 2004).  Between 520-525 cmbs, a possible surface is described as 

consisting of “deformed laminated wash faces.” This is contained among the moundfill horizon, 

between 368 and 600 cm depth in the core (Mann 2004).  This suggests a possible construction 

phase at this level; the thin soil lense does provide any adequate evidence indicating that Mound 

A may have been built in different construction sequences (Mann 2004:18).  Cores 2 and 3 do 

not yield at this level, the same soil deposit.  Between 600.0 and 835.0 cm below the surface in 

Core 1, individual basketloading becomes more difficult to distinguish as in above horizons.  

Also, the horizon below the presumed base of the mound is not the same soil as the soil 

described in Cores 2 and 3.  The C horizon is described both Cores 2 and 3, but is not seen in 

Core 1 (Mann 2004).   Mann and McGimsey added Baytown Plain, Pontchartrain Checked 

Stamped, and Plaquemine Brushed to the collection of ceramics recovered at the site (Mann 

2004:19).   
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Table 3-1. Livonia Mounds Core 1 Description (From Mann 2004: Table 2, P. 18) 

Debth 

(cmbs) 
Horizon Description 

0-10 A1 
10YR5/2 silt loam-strong fine to very fine subangular blocky structure and 

slighly hard to hard dry consistence. 

10-20 A2 
10YR5/3 silt loam-strong fine to very fine subangular blocky structure and 

slightly hard to hard dry consistence. 

20-35 A/B 10YR5/3-5/4 silt loam-strong very fine subangular blocky structure 

35-60 Bw 
10YR6/3 silt loam-strong fine to medium subangular blocky structure, few 

distinct silt coats on ped bases. 

60-90 Moundfill 
Silt to silt loam-mixed basketloaded episodes of A and B horizon, very 

homogenous-influenced by overlying B horizon processes. 

90-368 Moundfill 

Silts to silt loam-composed primarily of A horizon basketloaded sediments, 

many including midden (with bone, charcoal, and ceramic.) Missing ca. 20 

cm. 

368-

600 
Moundfill 

Silts and very fine sands-very homogenous, little evidence of basketloading, 

which is most evident between 490-510 cm with basketloads of A horizon 

with some midden (charcoal and burned soil).  510-525 cm basketloads with 

deformed laminated wash faces, some of which are horizontal, possible 

surface. 

600-

835 
Moundfill 

Silt loams and clay loams (with some lenses of alluvial clay) - very 

heterogeneous unit, as you move lower in this unit sediment block become 

smaller and basketloads become difficult to discern, perhaps due to the 

nature of the parent material.  Presumed base of mound. 

835-

960 
Moundfill 

2.5Y5/2-4/1 fine sandy loam to clayey silt loam - unit appears more 

homogenous than moundfill above, individual soil blocks are smaller and do 

not have distinct outlines.  Iron staining is distinct to prominent and few to 

common in abundance along pores and ped faces.  Very few charcoal and 

burnt bone flecks.  Strong very fine to fine subangular blocky structure.  In 

this zone we continue to see soil mottling similar to obvious moundfill that 

does not appear to be present at a similar depth in Core 3, off the mound 

core.  The coupled with the presence of cultural inclusions (e.g., burnt bone 

at 886 cm) suggests this is still moundfill, if so base of mound may be sitting 

in a cup-shaped basin.  Unable to core any deeper. 

 

 Core 2 was extracted from the southern toe of Mound A (Figure 3-1) and measured 3.6 m 

long (Table 3-2).  Like Core 1, Core 2 shows clear evidence of moundfill from 45.0 to 263.0 cm 

below to surface (Mann 2004).  The core reaches the base of the mound between 260 and 263 cm 
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below the surface.  The A horizon in Core 2 is equivalent to the A1 Horizon in Core 1, but 

double the thickness.  From 45.0 to 120.0 cm below the surface, basketloaded moundfill is the 

most prominent feature in the core (Mann 2004).  Below 120.0 cmbs, the evidence for the 

individual basketloads becomes less prominent, with fewer specks of charcoal and burnt bone 

(Mann 2004). At 263.0 cm below the surface, the soil transitions into a C horizon, and is 

described as very fine sand to very fine sandy loam (Mann 2004).  This change in soil texture 

and C horizon are present in Core 3 (Mann 2004).  

Table 3-2. Livonia Mounds Core 2 Description (From Mann 2004: Table 2, P. 18) 

Debth 

(cmbs) 
Horizon Description 

0-20 A 
10YR5/2 silt loam - strong fine to very fine subangular blocky structure and 

slightly hard to hard dry consistence. 

20-45 Bw 
10YR6/3 silt loam - strong fine to medium subangular blocky structure, few 

distinct silt coats on ped bases. 

45-120 Moundfill 

10YR7/2 to 10YR5/1 sandy loam to silt loam - basketloaded moundfill, but 

not the A horizon basketloads typical of Core 1.  Looks much like basal unit 

of Core 3, the natural levee deposits. 

120-

200 
Moundfill 

10YR5/3 to 10YR4/2 silt loam - fairly homogenous moundfill.  Individual 

basketloads are not visible and very few charcoal and burnt bone flecks are 

visible. 

200-

263 
Moundfill 

10YR5/1-5/2 - homogenous very fine loam to silt loam, with very few 

charcoal flecks.  This unit is distinguished primarily by the presence of 

numerous horizontal 10YR7/3 very fine sand wash lenses, these occur 

primarily in bands between 200 - 210 cm, 222 - 227 cm, 237 - 254 cm, and 

260 - 263 cm is the supposed base of Mound A. 

263-

300 
C 

Natural levee-grading upward from the homogenous very fine sand into a 

very fine sandy loam into a silt loam, moderate to strong subangular blocky 

structure and firm, moist consistence.  Some iron staining among pores and 

ped faces. 

 

 Core 3 was extracted from south of Mound A (Figure 3-1) in the “plaza,” and is 2.4 m in 

length, having the same A horizon (Table 3-3) seen in Core 1 and Core 2 (Mann 2004).  At 160 

to 240 cm below the surface, Mann (2004) documents three individual flood deposits that are 

each 15 to 30 cm thick.  Core 3 shows no evidence of basketloading below the surface. 
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Table 3-3. Livonia Mounds Core 3 Description (From Mann 2004: Table 2, P. 18) 

Debth 

(cmbs) 
Horizon Description 

0-15 A 
10YR5/2 silt-strong very fine to fine subangular blocky structure, slightly 

hard to dry consistence. 

15-25 A/B 
10YR3/1 silt loam with common medium 10YR4/3 mottles-strong very fine 

to fine subangular blocky structure, slightly hard dry consistence. 

25-50 Bw 
10YR4/3 silt loam-strong fine subangular blocky structure, very few iron 

stains on pore faces. 

50-160 C 

Natural levee-bottom of unit homogenous fine sand grading upward to very 

fine sand at ca. 130 cm and into a very fine sandy loam by 115 cm.  By 80 

cm grades into a silt loam.  From 120-150 cm sediment is characterized by 

moderate to strong subangular blocky structure, with firm moist consistence, 

few distinct iron stains among pores and on ped faces.  120-160 cm has 

enough silt to have a strong fine subangular blocky structure and a friable 

moist consistence. 

160-

240 
C 

Natural levee-series of at least 3 flood deposits each characterized by a very 

fine sandy loam overlain by clay lense, individual flood deposits are 15-30 

cm thick. 

 

In 2006, Mann monitored the property directly south of the Mound A (Figure 3-1), during 

brush clearing, and recovered either an Alba or Scallorn arrow point.  This point was the first 

projectile point to be discovered at the site (Mann 2007:44), and supports a Late Coles 

Creek/Mississippi period occupation for the Livonia Mound site (Mann 2007:44).  In 

summarizing the previous works at the site, Mann (2002, 2004, & 2007) recommended shovel 

testing and limited excavations be undertaken at the site.   

 

  



 

16 

 

CHAPTER 4 

METHODS 

 

Ellwood’s Geoarchaeology class in February 2008 studied the Louisiana State University 

(LSU) Campus mounds (16EBR6) by employing four geophysical methods: magnetic 

susceptibility (MS), electrical resistivity (ER), ground penetrating radar (GPR), and cesium 

vapor magnetic gradiometer.  For my thesis research, I chose electrical resistivity for the remote 

sensing technique at the Livonia Mound site (16PC1). Electrical resistivity, known as apparent 

resistivity (a), is a non-destructive, sensitive, quick, easy and inexpensive method capable of 

producing profiles that establish a sites’ layout and boundaries, allowing telltale patterns to 

emerge (Clark 1990; Ellwood 2009; Ellwood and Harrold 1993; Matney and Donkin 2006; 

Samouëlian et al. 2005; Williams 1984).  a  remotely pinpoints water-filled cavities, water 

tables, and burials, present without disturbing the soil’s function or structure (Clark 1990; 

Ellwood and Harrold 1993; Samouëlian et al. 2005).  Diagrams produced, known as 

pseudosections, allow the researcher to identify features (e.g. burials) located in the subsurface 

(Atkinson 1963; Darwin et al. 1990; Ellwood and Harrold 1993).   

Because a  is quick and non-destructive, it is an attractive method for archeological 

research (Britt et al. 2002; Clark 1990; Ellwood 2009; Hargrave et al. 2007; Matney and Donkin 

2006; Weymouth 1986).  a  produces effective results by measuring the bulk electrical 

properties of soils below the surface (Ellwood 2009).   During reconnaissance surveys, a is 

capable of identifying historic or prehistoric archaeological sites, e.g., foundations, trash 

middens, sub-sided mounds, filled ditches, etc. (Aitken 1961; Atkinson 1952; Clark 1990; 

Ellwood 2009; Hertz and Garrison 1993; Matney and Donkin 2006; Samouëlian et al. 2005; 

Weymouth 1986; Williams 1984).   a surveys do not possess the ability to self-filter; as a result, 

background noise (e.g. rebar) directly impacts the potential targets (Ellwood 2009; Britt et al. 
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2002; Clark 1990; Samouëlian et al. 2005).  In addition when the probe separation is too wide, a 

surveys do not always detect very small or low-contrast targets (Britt et al. 2002).    

To properly identify anomalies as cultural as opposed to natural signals, one must 

understand those landscape features that produce different a patterns (Britt et al. 2002; Ellwood 

2009).  Low a values have a direct correlation to cultural disturbances (Clark 1990; Ellwood 

2009; Ellwood and Harrold 1993), but low values can also result from natural factors.  

Understanding how natural factors, such as trees and moisture content, impact not only the 

surface, but the subsurface, is also instrumental in effectively analyzing data (Clark 1990; 

Ellwood 2009; Ellwood and Harrold 1993).  

Different electrode arrays are used to collect a  data (e.g. double dipole, twin electrode, 

square array, etc.) (Clark 1990).  The Wenner Array, the most common method used, was chosen 

for this field research because of its compatibility with the Williams Instrument used during the 

surveys.  The popularity of the Wenner Array comes from its consistent and reproducible results 

with the lowest margin of error (Samouëlian et al. 2005, Ellwood 2009; Ellwood and Harrold 

1993).  The Williams Instrument has a rotary switch, allowing the four electrodes to be equally 

spaced electrodes to be easily reconfigured by moving only one electrode at a time (leap frog) to 

take readings at each point along the survey (Clark 1990; Ellwood 2009; Ellwood and Harrold 

1993; Samouëlian et al. 2005; Weymouth 1986; Williams 1984). This method has the greatest 

possibility of detecting horizontal structures (Samouëlian et al. 2005).   

The Williams Resistivity Meter was used to collect the a  measurements in the field.   

The instrument generates a 145 Hz current into the ground by way of four electrodes; the two 

outside electrodes allows current to flow into the ground and the inner two electrodes measure 
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the potential difference (voltage) developed in the subsurface using the Wenner configuration, 

the four electrodes are equally spaced e.g., 0.5 m, 0.75 m (Ellwood and Harrold 1993).   

Instead of running only one survey line over the mound at 1.0, 2.0 and 3.0 m spacings, as 

had been done at the LSU Mounds, I ran four transect lines, one each across the north, east, west, 

and south slopes of the Livonia Mound.  The use of multiple spacings created vertical profiles 

(pseudosections) that were examined for lithological variations beneath the surface, which could 

indicate construction stages, human burials or other cultural activity, and/or erosion.  

Factors Controlling a 

Undisturbed soils tend to produce a homogenous a pattern (Clark 1990).  Disturbances, 

or anomalies, have the potential to be positive or negative (to increase or decrease resistivity) 

when their values are compared to the background; positive anomalies produce higher values 

than the background and negative anomalies have lower values (Ellwood and Harrold 1993).   

Temperature, moisture content, organisms, relief (slope), parent material, and time play 

into the ability to measure the current flow through soils and rocks.  Outside factors, such as 

power lines, may also interfere or exaggerate results (Britt et al. 2002; Ellwood 2009; Ellwood 

and Harrold 1993; Samouëlian et al. 2005).  Knowledge of the external factors allows proper 

identification of targets or anomalies below the surface (Samouëlian et al. 2005).  General 

knowledge of the area’s temperature and weather patterns remains vital to understanding their 

impact on a readings (Samouëlian et al. 2005).   

In the Northern Hemisphere, November through February are correlated with the greatest 

(largest) a values, while June and July have the lowest (Samouëlian et al. 2005).  Cold 

temperatures tend to increase the resistance measurements, while the opposite holds true when 

temperatures rise (Samouëlian et al. 2005).  Large amounts or lack of rainfall can interfere with 

the electrodes ability to connect with the soil or create water tables that mask features (Clark 
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1990; Samouëlian et al. 2005). To avoid any possible misinterpretation during data acquisition, it 

is fundamental to recognize any variation in temperature or amount of rainfall, especially when 

collecting data on different days, months, or years (Samouëlian et al. 2005).  Without notations, 

researchers generally assume the data were collected under similar stable conditions (Bottraud et 

al. 1984b in Samouëlian et al. 2005).   

Subsurface water retention is directly related to the parent material (e.g., stone, clay, 

gravel or sand) (Clark 1990; Ellwood and Harrold 1993).  For example, stone is more resistant to 

moisture; therefore, a measurements are higher with porous rock (100 to 10^5 Ωm) rather than 

non-porous rock (10^3 to 10^6 Ωm) (Clark 1990; Ellwood and Harrold 1993; Ellwood 2009).  

Soils mixed with clay absorb more water, thus producing measurements ranging from 5 to 150 

Ωm; whereas soils with sand and gravel are highly resistive producing values that range from 50 

to 10,000 Ωm (Clark 1990; Ellwood and Harrold 1993).  Changes to the soil compaction, such as 

due to bioturbation, can create air gaps, ultimately affecting how the soil retains water (Clark 

1990).    High volumes of recent rainfall will hinder running survey lines (Britt et al. 2002).   On 

the other hand, when the soil is dry, the poor contact with the soil and electrodes (Ellwood 2009; 

Britt et al. 2002).  May hinder the electrodes ability to make contact with the soil and as a result, 

it can produce false positives (Hertz and Garrsion 1993).   

The amount of moisture retained in the subsurface by the soils and rocks directly 

contributes to the a value measured in the field (Aiken 1961; Samouëlian et al 2005).  Water 

retention increases the capability of the electrical conductivity and therefore decreases a values 

(Clark 1990; Samouëlian et al. 2005).   

Because vegetation affects moisture, it must be taken into account. Large trees draw 

ground water, creating high a readings; moderate to low growth trees do not produce similar a 

readings (Ellwood and Harrold 1993).   The trees protect the soil from the sun’s leaching rays, 
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and so help to retain moisture (Clark 1990; Ellwood 2009; Ellwood and Harrold 1993; 

Samouëlian et al 2005).  Survey work done during in freezing weather avoids the difficulties in 

detecting features or anomalies that can be caused by high water table retention (Aiken 1961).  

According to Clark (1990), rainfall that contains dissolved carbon dioxide and carbonic acid 

from the atmosphere forms a conductivity electrolyte through reaction with the minerals in the 

soil.  These minerals also contain weakly conductive organic acids, which can affect the 

resistance measured in the soil.  Monitoring the precipitation over several months before starting 

survey work ensures that the fieldwork is conducted when there has not been an increase or 

decrease in precipitation (Clark 1990).  Recent rainfall, even during a survey, does not always 

directly affect the a collected; however, heavy rainfall has the potential to create non-existent, 

anomalies near-surface anomalies (Clark 1990). 

Creating Pseudosections 

Pseudosections depict vertical contour profiles, illustrating the widespread horizons in the 

subsurface.  Each a value directly correlates to the reading taken in the field (Clark 1990; 

Darwin et al. 1990; Ellwood 2008; Ellwood and Harrold 1993).  These readings provide a 

continuous profile of electrical subsurface values, while simultaneously illustrating the 

homogenous soils horizontally or vertically (Clark 1990; Edward 1977 in Samouëlian et al. 

2005; Ellwood 2009; Ellwood and Harrold 1993).  Separate strata can be distinguished even 

though the results are not directly correlated to specific dates in time (Hertz and Garrison 1998). 

In theory, the spacing between the electrodes is equivalent to the vertical depth of 

penetration into the subsurface (Clark 1990; Edwards in Samouëlian et al. 2005; Ellwood and 

Harrold 1993; Samouëlian et al. 2005; Williams 1984). Repeating the survey line at different 

electrode spacing may take longer; however, increasing the line spacing with each pass produces 

vertical pseudosection in the survey area (Aiken 1961; Hertz and Garrison 1993).  With too large 



 

21 

 

or small a separation, the feature could be missed or, as Aiken (1963) says, “the feature forms 

only a fraction of the volume” (Ellwood 2010).   

a is calculated for each resistance reading measured in the field using the following 

formula: 

              a =2πRD,                                                                  (1) 

Where R is the resistance measured and D is the distance between electrodes (Ellwood 2009).  

The results are expressed in Ohm-meter (Ωm) (Aiken 1961; Darwin et al. 1990; Ellwood 1994, 

2009; Ellwood and Harrold 1993; Samouëlian et al. 2005; Williams 1994).  The focus should be 

on all the a readings in comparison to the surrounding area and whether the values conform or 

show abnormality, rather than on the individual readings (Aitken 1961; Ellwood 2009; Ellwood 

and Harrold 1993).  a should not be interpreted as a timeline description of the subsurface, but 

rather thought of as deposits bounded together genetically (Ellwood and Harrold 1993; Hertz and 

Garrison 1998; Ellwood 2009; Samouëlian et al. 2005).    

Fieldwork 

Geophysical archaeological fieldwork was accomplished in three stages: surveying, data 

processing, and interpretation (Clark 1990).  The actual interpretations of the results are 

discussed in Chapter 5.   The surveying and data processing is the main focus here.  The mound 

pseudosections were completed in December 2010, when temperatures were in the low to mid 

30s.  Because of the steep slope of the mound and the large depression at the summit, the transect 

lines were set on the mound slopes (Figure 4-1).  Concrete debris covered the area west of the 

mound, a house with a storm drain pipe sat directly north, and a road lay directly to the east.    

This left only the section directly south of the Livonia Mound (called Area A) suitable for survey 

off the mound. The a work in Area A was done over ten consecutive days in May 2011, when 
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the temperatures ranged from the mid 80s to mid 90s.  No precipitation was recorded leading up 

to the fieldwork in May 2011.  

 
Figure 4-1. Google Aerial View of Area A and Pseudosection Lines Drawn across the mound.  

 

Data for the West Transect survey were taken at 0.5, 0.75, 1.0, 1.5 m intervals using the 

Williams Instrument.  Because the resistance readings were higher in the field for the North, 

West, and South transects than the West Transect, I decided to incorporate additional electrode 

intervals at 2.0, 3.0, and 4.0 m to the North, West, and South Transects.  The West Transect was 

begun at the southern end and terminated at 50.0 m, due to the metal drainage pipe at the 

northern end.  The North Transect ran from west to east along the northern slope, measuring 46.0 

m.  The East Transect ran in the same fashion as the West Transect, measuring 44.5 m along the 

eastern slope of the mound.  The South Transect ran in the same direction as the North Transect 

and measured 43.5 m along the south side of the mound.  The survey of Area A represented a 

total of 29 lines running at 0.5 m electrode spacing, covering an area 7.0 m wide by 38.0 m long, 

266.0 square meters.   
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CHAPTER 5 

RESULTS 

After all the data were collected, the a values were calculated, then the standard 

deviation was calculated for each individual transect and Area A using the equation below:   

 

Where N is total number of in the data set, µ is the mean of all values, and xi  represents the 

individual x values.  The base contour line for the each pseudosection is set at half of the 

standard deviation.  After all the contour maps were completed, it became evident that 

comparing the results would be an issue.  The results are presented below.  However, difficulty 

arose when comparing the pseudosection data to Area A.  The Transect data were collected in 

December 2010, when the temperatures hovered in the low 30s.  Area A was collected in May 

2011, when the temperature reached well into the 90s.  The a values collected in Area A are 

much smaller than the South Transect, which only was 2.0 m north.  The disparity in 

temperatures leaching the moisture from the soil appears to have impacted the ability to compare 

Area A results with the psuedosections.   

 The a values were downloaded into the Surfer 6.0 program to create the contour maps.  

Atkinson (1963) recommends the minimum contour line spacing to be drawn at half of the 

standard deviation.  Each data set produced a different standard deviation and this information 

was used to interpret the site’s boundary, anomalies, and/or features.   Setting the minimum 

contour line at half the standard deviation as Atkinson (1963) recommends, ended up masking 

the features below the surface (discussed below).  Instead of, setting the contour line at the 

standard deviation simplified the pseudosections allowing for identification of anomalies.  Each 

 

(2) 
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of the pseudosections is discussed individually; in addition, the Area A a survey results are 

presented.   

West Transect  

 A total of 241 readings were recorded along the West Transect, at 0.5, 0.75, 1.0, and 1.5 

m spacings (refer to Appendix A for the values). The average a for this transect was 13.7 Ωm.  

The highest a value was at 31.3 Ωm, while the lowest value was 0.1 Ωm.  The contour line for 

the pseudosection was plotted at 2.4 Ωm (half of the standard deviation of 4.8 Ωm).   The 

pseudosection does not appear to be homogenous below the surface (see Figure 5-1); especially 

considering that the West Transect travels over a subtle and smooth slope.  Even with the 

irregularities below the surface, one negative (W-5) and six positive anomalies have been 

identified as points of interest.  The values on and off the mound are too low to suggest a perched 

water table is below the surface.    

Figure 5-1.  West Transect Pseudosection running from the south to the north (see Figure 4-1 for 

location). 

 

South of the mound (the mound begins at 19.9 m), anomalies W-1, W-2, and W-3 were 

defined (Figure 5-1).  Values for these anomalies ranged from 26.4 and 28.8 Ωm, which is 
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slightly elevated from the immediate background (19.2 to 21.6 Ωm).  The shape and size of W-1 

may be a little distorted due to its location at the beginning of the line.  Anomaly W-1 is located 

at 3.0 m, 0.75 m below the surface, and is 1.0 m in depth by 1.5 m in width.    The next two 

anomalies, W-2 and W-3, are close in proximity and may be one anomaly.  W-2 appears at 8.0 

m, stretching 1.0 m in depth by 0.5 m in width, with a values reaching between 24.0 and 26.4 

Ωm.  W-3, which is just 1.0 m north of W-2, is similar in shape, has the same point of origin as 

W-2 and has the same a.  The anomaly is 1.5 m long by 0.75 m wide. 

The next anomaly, W-4, is within the mound. It begins at 27.0 m, one meter below the 

surface, and extends to the base of the pseudosection.  It is 1.0 m in length by 1.5 m in width. 

The values for this anomaly range between 26.4 to 28.8 Ωm.  The last group of anomalies (W-5, 

W-6, and W-7) occurred toward the north end of the line.  W-5 is the only negative anomaly 

along the west transect; it emerges at 38.0 m, 1.0 m below the surface.  The a values decrease 

for W-5 to between 4.8 to 7.2 Ωm, while the background ranges between 12 to 14.4 Ωm.  The 

contour map creates a diamond silhouette for W-5 that measures 0.5 m in length by 0.5 m in 

width.  Anomaly W-6 sits three meters away at the same distance below the surface as W-5.  W-

6 values max out at 26.4 Ωm, more than double a values of W-5.  W-6 anomaly has the same 

outline as W-5 although a little larger, with measurements of 0.75 m long by 0.75 m wide.  W-7 

appears at 38.0 m, one meter below the surface, with the a values ranging from 16.8 to 19.2 

Ωm; it is just slightly higher than the background (12.9 to 14.4 Ω), and barely registers on the 

contour map.  

Changing the contour line from half of the standard deviation, 2.4 Ωm, to the standard 

deviation, 4.8 Ωm, results in the identification of more anomalies below the surface.  Figure 5-2 

illustrates a more homogenous a composition, where the majority of the geoelectric composition 
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on the mound falling between 0.0 and 9.6 Ωm.  Four anomalies (W-2, W-3, W-5, and W-7) from 

Figure 5-1 all but disappear when the contour line is increased to 4.8 Ωm.  The details in Figure 

5-1, present before the change in contour lines seen in Figure 5-2, have reduced.  W-1 appears 

even smaller in size and the anomaly is distorted due to its location at the beginning of the line.  

The anomaly is at 3.0 m and 1.5 m below the surface; it measures 1.0 m long by 0.25 m wide.  

Anomalies W-4 and W-6 shape and size did not changed from a lot from Figure 5-1.    

 
Figure 5-2. The West Transect pseudosection with the contour line set at 4.8 Ωm 

 

 Three new anomalies (W-8, W-9, and W-10) appear on the surface, with the new contour 

lines.  Anomaly W-8 appears at 6.0 m, with a values ranging from 9.6 and 14.4 Ωm, dipping 1.0 

m below the surface.  Both W-9 and W-10 anomalies have a values ranging 14.4 and 19.2 Ωm, 

stretching to over 1.0 m below the surface.  W-9 is a narrow anomaly; where W-10 is 5.0 m long.  

These three new surface anomalies suggest to activity after the mound was built.  The a values 

for the anomalies along the West Transect do not indicate to a perched water table or any 

possible burials below the surface.  They do, however, imply potential cultural or biological 

activity just below the surface.  The first 10.0 m do overlap Area A (Figure 4-1), which is 

defined by Mann 2004 as part of the “plaza.”  
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North Transect 

 A total of 256 readings were recorded along the North Transect, at 0.5, 0.75, 1.0, and 1.5 

m, with two additional readings at 2.0 and 3.0 m spacings (Figure 5-3).  The North Transect 

crosses the northern slope of the mound, with the readings procured from west to east.  The 

average a value equals 30.9 Ωm, which is twice as much as the west transect.  The highest (97.0 

Ωm) and lowest (8.3 Ωm) a values are also higher than the west transect. The highest a value 

of 97 Ωm is found at 23.5 m along the transect and at 1.0 m below the surface; however, the 

reading gets absorbed into the background and no anomalies appear at this location on the 

pseudosection.  The contour line for the north pseudosection is set at half the standard deviation, 

6.4 Ωm.  The background a values off the mound range from 19.2 to 25.6 Ωm.   

 
Figure 5-3.  Electrical Resistivity Pseudosection North Transect (see Figure 4-1 for location) 

The electrical values appear to be more homogenous on the western side of the mound, 

however, there is a greater level of a detail as the transect crosses over the mound.   The soil a 

patterns show a general progression increasing a  values with depth.   On the mound, the a 

values steadily increase as electrode spacing gets wider, thus penetrating deeper below the 
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surface.  Even with the high amount of activity below the surface, nine anomalies appear in the 

pseudosection and are discussed below. 

 Because of the two trees located between 35 and 40 m, the steep slope, and the animal 

burrows present at the base of the mound the apparent resistivity values are distorted towards the 

end of the transect.  Anomaly N-1 appears west of the mound, at 5.0 m, 1.0 m below the surface.  

N-1 is 1.0 m in length by 0.5 m in width, with the values peaking between 32.0 and 38.3 Ωm.  N-

2, emerges at 18.0 m, 2.0 m below the surface; it is shaped like a tear drop (0.75 m in length by 

0.5 m in width).  The values of the anomaly peak between 51.2 to 57.6 Ωm.  Anomalies N-3, N-

4, and N-5 demonstrate the greatest variation from the background resistivity, which has values 

ranging between 25.6 and 44.8 Ωm.  N-3, at 23.0 m, is located at the bottom of the 

pseudosection, and the size is probably exaggerated due to its location.  The values for N-3 range 

between 57.6 and 64 Ωm, and it measures 2.0 m long by 0.5 m wide.  N-4, at 23.5 m, is another 

strong positive anomaly, with a values peaking between 57.5 to 64.0 Ωm.  Anomaly N-5 

produces the highest a values, from 83.2 to 89.6 Ωm and is interpreted to have great potential 

for cultural activity (e.g., possible human burial) in the outer fill of the mound.  N-5 starts at 26.0 

m, and continues to 35.0 m (9.0 m in length by 2.5 m in width) and 0.5 m below the surface.  

Anomaly N-6 materializes at 32.0 m mark, 1.25 m below the surface, and is possibly a part of N-

5.  It is very small, barely registering on the contour map.  a drops from 51.2 to 57.6 Ωm.    

The last two anomalies, N-7 and N-8, are found where the transect travels down the slope 

of the mound towards the road.  Two trees are present at 35 m, at the crest of the mound before 

the slope drops off.  The high a values for N-7 and N-8 are the direct result of the soil around 

the tree roots absorbing the moisture.  Anomaly N-7, at 38.0 m, is 2.0 m below the surface and 

shaped like a diamond 0.5 m long by 0.25 wide, with values between 57.6 and 64.0 Ωm.  N-8 is 

five meters away at 43.0 m, with the same values as N-7; however, this feature is much larger, 
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2.0 to 3.0 m long by 1.5 m wide.  The anomaly appears at 1.25 m below the surface, and bottoms 

out at 2.5 m below the surface.   

 
Figure 5-4. The North Transect pseudosection with the contour line set at 12.8 Ωm 

 

 The contour line for the North Transect changes from 6.4 to 12.8 Ωm (see Figure 5-4); 

this grouping reinforces five anomalies from Figure 5-3.  N-3 at 23.0 m, appears at 1.5 m below 

the surface; it is 1.0 m in length by 0.5 m width, with values peaking between 51.2 and 64.0 Ωm.  

Anomaly N-4 is 1.0 m away from N-3, at one meter below the surface.  It has the same values 

but is larger, stretching to 1.0 m in length by 0.5 m in width.   

N-5 starts at 26.0 m and stretches to 35.0 m at the base of the pseudosection, with the ρa 

values reaching 76.8 and 88.6 Ωm.  The anomaly is 10.0 m long and 2.0 m wide, and it begins 

just below the surface.  N-7 and N-8 appear larger in the Figure 5-4, with N-7 measuring 1.0 m 

long by 2.0 m wide and N-8 recorded at 4 m long by 2.0 m wide.  Both anomalies’ ρa values 

range from 55.0 to 66.0 Ωm.     

 All of the anomalies along the North Transect are of interest.  The ρa values below the 

surface are not as homogenous as in the West Transect, which is apparent when comparing the 

lines side by side.  The temperature during data acquisition was in the low 30s, eliminating water 
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as a factor interfering with the analysis or the results.  N-5’s size and high ρa values suggest 

human burial(s) or cultural activity beneath the surface.  The other anomalies may be the direct 

result of cultural activity during the mound construction, or to erosion, which is obvious along 

the slope.  The elevated levels, from 40.0 to 45.0 m, are likely the direct result of the steep slope 

and erosion present before the mound was cut off by the road.   

East Transect  

 The East Transect runs parallel to the West Transect (see Figure 4-1), and cuts across the 

east side of the mound from the south to the north (Figure 5-3).  A total of 242 readings were 

recorded, with the same electrode spacings as the North Transect.  The average a reading is 17.6 

Ωm, the highest is 80.7 Ωm, and the lowest is 0.1 Ωm.  The contour line is drawn at a half 

standard deviation, 5.15 Ωm.  The a values for the East Transect are on the lower side, with 

values barely reaching 15.3 Ωm.  As with the West Transect, the beginning of the East Transect 

is within Area A.  Within the mound, there are four anomalies. There are relatively high values 

south of the mound, but these are not labeled as anomalies because they begin at the surface.  

The elevated apparent resistivity values are likely due to bioturbation or modern activity at the 

surface. 

 Anomaly E-1 at 15.0 m is 1.5 m below the surface; it has values between 30.6 to 35.7 

Ωm.  This is a significantly higher than the background values recorded south of the mound, 

which were between 0.1 and 20.4 Ωm.  E-1 has an oval shape that is 1.5 m long and 2.0 m wide.  

E-2 may be important, with a values from 66.3 to 71.4 Ωm.  This anomaly starts at 20.0 m, 2.0 

m below the surface, with background values hovering between 25.2 and 30.6 Ωm.  E-2 is 6.0 m 

in length by 1.0 m in width; this size and peak may indicate cultural activity.  E-3 is at 25.0 m 

and 1.0 m below the surface; the values are only slightly elevated from the background (25.5 to 

30.6 Ωm), and the anomaly measures 0.5 m in diameter.  E-4 at 35.0 m, 2.0 m below the surface, 
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does not appear to be of interest.  This anomaly’s values range between 15.3 to 20.4 Ωm, with a 

background of 10.2 to 15.3 Ωm, and is 0.5 m long by 1.0 m wide.  E-4 is noteworthy because the 

values around the anomaly are fairly homogenous, and these values stand out when compared to 

the background.     

 
Figure 5-5.  Electrical Resistivity Pseudosection East Transect (see Figure 4-1 for location)  

 Anomaly E-1 at 15.0 m is 1.5 m below the surface; it has values between 30.6 to 35.7 

Ωm.  This is a significantly higher than the background values recorded south of the mound, 

which were between 0.1 and 20.4 Ωm.  E-1 has an oval shape that is 1.5 m long and 2.0 m wide.  

E-2 may be important, with a values from 66.3 to 71.4 Ωm.  This anomaly starts at 20.0 m, 2.0 

m below the surface, with background values hovering between 25.2 and 30.6 Ωm.  E-2 is 6.0 m 

in length by 1.0 m in width; this size and peak may indicate cultural activity.  E-3 is at 25.0 m 

and 1.0 m below the surface; the values are only slightly elevated from the background (25.5 to 

30.6 Ωm), and the anomaly measures 0.5 m in diameter.  E-4 at 35.0 m, 2.0 m below the surface, 

does not appear to be of interest.  This anomaly’s values range between 15.3 to 20.4 Ωm, with a 

background of 10.2 to 15.3 Ωm, and is 0.5 m long by 1.0 m wide.  E-4 is noteworthy because the 
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values around the anomaly are fairly homogenous, and these values stand out when compared to 

the background.     

 
Figure 5-6. The East Transect pseudosection with the contour line set at 10.3 Ωm 

 

The shift in the contour line from 5.15 to 10.3 Ωm in the East Transect (Figure 5-8) 

highlights significant differences in the geoelectric pseudosection, with only two anomalies (E-2 

and E-3) remaining from Figure 5-5.  Five new anomalies surface with the increase in the 

contour line setting.  The size of E-2 was reduced to 6.0 m long by 1.0 m wide, starting 2.0 m 

below the surface.  The details become more defined, with the values peaking between 61.8 to 

72.1 Ωm.  E-7, E-8, and E-9 are new anomalies that appear on the surface of the pseudosection.  

E-9 runs almost 4.0. m in length, dipping 1.0 m below the surface, and a  values range from 

20.6 to 30.9 Ωm.  E-7 and E-8 are 1.5 m in length, with values peaking between 30.9 and 41.2 

Ωm.  These three anomalies, with the addition of E-3, suggest to activity occurring after the 

mound was in the present location.  The activity at the surface likely was the result from animals 

or removing the shrubbery in efforts to clean off the debris.  Anomalies E-5 and E-6 are located 

at the beginning and the end of the mound with a values for both anomalies ranging from 0.0 to 

10.3 Ωm.  These low values are also where the transect lines stretch across the steep slope of the 
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mound; this pattern is the result of the water draining off the mound producing low a values.  

The high a values at the north end of the pseudosection are likely due to the concrete caveats 

retaining the moisture as the result of modern disturbances. 

 The a values below the surface are homogenous.  Evaluation of the East Transect 

suggests the mound was of a single phase of construction through the first three meters.  The a 

values demonstrate little to no change on or off the mound.  E-2 apparent resistivity values hint 

towards another potential human burial.  The anomaly is not nearly as large or with the same 

high apparent resistivity values as N-5, but a similar pattern of increasing a values at the base of 

the pseudo-section occurs within E-2.  

South Transect  

The south transect runs parallel to the north transect, cutting across the southern slope of 

the mound (see Figure 4-1 for location); a total of 240 a readings were recorded (Figure 5-4).  

The highest a value is 307.9 Ωm, the lowest is 20.1 Ωm, and the average reading is 51.0 Ωm.  

These a values are considerably higher for this line than the three previous pseudosections 

discussed.  Readings were taken from the west to the east, with the same electrode spacing as 

seen in North and East Transects.  The steep slope of the mound made taking the readings along 

this side of the mound extremely difficult.  a values off the mound are consistent for the first 

10.0 m on the mound (Figure 5-4).  The values on the mound, almost half way across the mound, 

significantly increase.  Five anomalies are of potential interest, with one negative anomaly that is 

discussed below.   

Surface anomaly S-1 at the 16.0 m mark, has a values reaching 85.8 to 100.1 Ωm; S-1 

measures 1.5 m long by 1.0 m wide.  These are unusually high surface values, which may be the 

direct result of bioturbation.  Large a values are observed at 27.0 m, just one meter below the 
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surface, with values between 185.0 and 200.2 Ωm; S-2 is 2.0 m in length by 1.0 m in width.  The 

background values range from 42.9 to 85.8 Ωm, which is high given the a values previously 

noted in the discussion of the other pseudosections.  Anomaly S-3 produces relatively large a 

values ranging from 128.7 to 143.0 Ωm.  S-3 is at 28.0 m, starting 1.0 m below the surface; it is 

only 0.5 m around and is less than 2.0 m away from S-2.  S-3 and S-2 may be part of the same 

anomaly that stretches 5.0 m long by 3.0 m wide; the only way to confirm this is through 

excavation or coring. 

Figure 5-7.  Electrical Resistivity Pseudosection South Transect (see Figure 4-1 for location) 

S-4 appears just before 33.0 m, 1.0 m below the surface, with a values between 85.8 to 

100.1 Ωm.  The anomaly is in the shape of an oval that is 1.0 m long by 0.5 m wide.  The values 

suggest that the S-4 anomaly may be the result of cultural activity.  Negative anomaly, S-5, at 

40.0 m, 1.5 m below the surface, has a values drop to 14.3 to 28.6 Ωm.  This is a dramatic shift 

from other anomalies seen along this line.  S-5 is no more than 0.5 m wide by 0.5 m long, with 

the a drastically decreased from the background values of 42.9 to 85.8 Ωm. 
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Figure 5-8. Electrical Resistivity Pseudosection South Transect with contour at 28.6 Ωm 

 

 Changing the contour lines from 14.3 to 28.6 Ωm played a major effect for the South 

Transect (Figure 5-9) than it did for the previously discussed transects.  The contour lines greatly 

decreased almost any activity before the mound and placing more of an emphasis on S-2 

anomaly.  The South Transect retained four anomalies (S-1, S-2, S-4, and S-5) and three new 

surface anomalies appear when the contour lines were increased.  S-6, appears at 10.0 m, is 5.0 

m long, and dips 1.0 m below the surface.  The a values do not exceed 28.6 Ωm.  S-7 and S-9 

have a values ranging between 28.6 and 57.2 Ωm.  S-7 starts at 28.0 m and measures 4.0 m 

long.  S-9 may be connected to S-7, and measures 8.0 m long and dips almost 1.5 m below the 

surface.  These three new anomalies suggest to activity on the surface after the mound was 

already constructed. 

 The apparent resistivity values along this transect illustrates the greatest variation below 

the surface.  The contour lines off the mound appear to be homogenous; whereas the values are 

the complete opposite.  The earthen mound could be the result of a single construction phase; 

however, the anomalies and the variation along this South Transect would not be able to support 

or rebut the statement.  All of the anomalies’ values show high probability of being possible 
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human burials with values well over 88.0 Ωm, except for S-1 at the surface.  S-1 is likely to be 

the result of erosion or bioturbation at the surface.   

The a values for the pseudosections have considerably differences resulting than North 

Transect, with less activity and almost no variation below the surface.  The first section of North 

Transect aligns with the end part of West Transect, possibly aligning W-6 and N-1 to be a part of 

the same anomaly.  West Transect runs parallel to East Transect, south to north, with the 

apparent resistivity values for both off the mound ranging from 0.0 to 22.0 Ωm.  However, the 

East Transect values off the mound are larger.  The es may be the result of East Transect 

additional electrode spacings at 2.0 and 3.0 m.  The greatest differential is discerned in E-2, 

which starts 2.0 m below the surface and goes further in depth than West Transect, 1.5 m below 

the surface.  Beyond the extra electrode spacings there is little difference when comparing the 

apparent resistivity values.  However, the a values for West Transect do not match up to South 

Transect, even after the values are grouped together.  The values for West Transect do not 

exceed 33.0 Ωm, where South Transect 4 values go well beyond West Transect a even at the 

point where the two lines intersect (West Transect at 15.0 m with South Transect at 5.0 m).   

Area A 

 Electrical resistivity surveys over Area A were performed in May, 2012, five months 

after the pseudosection fieldwork on the mound was completed.  A total of 29 lines (Line 101 to 

129, starting in the south) were spaced 0.5 m apart, with each line running parallel up the south 

slope of the mound.  The electrodes were also spaced at 0.5 m; starting east, along the road, 

moving westward towards the river.  The a values from this work are drastically lower than 

those for the pseudosection work; however, Area A does show great potential for cultural 

activity.  A total of 2,146 readings, covered 532 square meters were taken.  a values ranged from 
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67.5 Ωm to 0.3 Ωm (Figure 5-9).  A trailer and electrical pole were a few meters away from Line 

101 and possibly interfered with the first couple lines.  The average a value is 3.7 Ωm, with 2.7 

Ωm the half standard deviation.  A total of 32 anomalies of interest were identified.  The 

anomalies in Area A show a potential pattern for rows of sugarcane.   

 

 

Figure 5-9.  Electrical Resistivity Contour Map – Area A  

The a values for anomalies and to set the contour line for Area A are on the lower range.  To 

clear up the map for analysis, the contour line was changed from 2.4 Ωm to 4.8 Ωm and Lines 

101 and 102 were removed.  This change seen in Figure 5-10 changes the perspective of what a 

values are beneath the surface in the “plaza.”  The activity level does not look as intense as 
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Figure 5-9 with its 32 anomalies.  Figure 5-10 has twelve anomalies with a values between 14.4 

and 28.8 Ωm.  The sugarcane pattern is more prevalent when the contour line changed.  The 

presence of sugar cane cropping may provide evidence for Coles Creek or Baytown function, it 

does suggest to the land’s function after the Coles Creek period. 

 
Figure 5-10. Area A Contour Map at 4.8 Ωm 
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CHAPTER 6 

CONCLUSION AND RECOMMENDATIONS 

Several thousand years divide the Archaic and Coles Creek mounds.  However, mounds 

played a ceremonial function in both cultures.   Large Coles Creek period conical mounds were 

also acknowledged as a place to bury their dead.  The pseudosections do provide sufficient 

evidence that the Livonia Mound Site functioned for ceremonial purposes and possibly as a 

burial mound.  Expanding Area A contour lines for from 2.4 to 4.8 Ωm, brought forth a a 

pattern suggest sugar cane was harvested directly south of the mound.  Evidence of sugar cane 

harvesting does not give insight into function at the Livonia Mound Site during Coles Creek or 

Baytown periods.  It does suggest to the sites use and function after the mound was built.   Area 

A, the “plaza”, also shows great potential for cultural activity directly to the south of the mound.  

Unfortunately, the remaining area of the “plaza” at the Livonia Mound Site has been heavily 

impacted by houses, with a road running directly through the center of the site.  As a result, 

research is limited to the mound and the immediate area surrounding the mound.    

The Livonia Mound Site demonstrates potential for cultural activity just below the 

surface in the mound and in the “plaza” directly south of the mound.  After examining the 

pseudosections and Area A, a total of three to four possible groups of human burials within the 

first 3.0 m of the pseudosections are believed to be identified in the moundfill.  The North (N-5), 

East (E-2), and South (S-2 & S-3) transects show high probability of being directly associated 

with human burials.   The anomalies identified in the West Transect do not suggest any burials, 

but do suggest cultural activity at the point where Area A overlaps with the line.  The apparent 

resistivity (a) values in Area A provide substantial evidence that people were living or 

participating in cultural activity directly off the mound, in the “plaza.”  This activity goes against 

Roe and Schilling (2010) assumption that plazas were said to be kept free of debris. 



 

40 

 

The West and East transects appear to have homogenous moundfill.  The a values 

suggest that within the top 3.0 m of mound fill, and the top layer of the mound was built during a 

single construction phase.  Conversely, the a values for any of the pseudo-sections do not mirror 

or match well at their points of intersections.  However, when you compare the North and South 

transects with the East and West Transects, there is a completely different story.  The large value 

of the anomalies in the North and South Transects raises more questions about what is going on 

below the surface or at the surface, and the cause for these differences in a  values.  One might 

question why the mound is slumping along the southern and western sides, while the northern 

and eastern sides of the mound see high levels of erosion. 

The West and East Transects stretch into Area A and the South Transect runs parallel to 

Area A only a few meters away.  However, the pseudosection a values in comparison Area A 

were nearly double.  Thus, evaluating the results together as a whole becomes tricky.  The 

dramatic shift between the Transects and Area A supports the theory of Samouëlian et al. (2005) 

that temperature (hot vs. cold) directly affects resistivity values.   

In my opinion, the electrical resistivity survey work done at the Livonia Mound Site 

appears to be static.  To fully understand the scope of the Livonia Mound site, this research 

needs to be expanded upon and duplicated with some alterations.  Providing a comparison of the 

earlier results with current data would provide a more distinct insight into internal changes in the 

mound’s composition.   

Recommendations 

Fortunately, the Livonia Mound Site (16PC1) is in no apparent danger as a result of the 

Town of Livonia assuming ownership.  All the work described in this thesis will assist in the 

Town’s aspiration to put the site on the National Register for Historical Places (NRHP).  If the 

Town of Livonia plans on further investigating the mound, I highly recommend waiting to core 
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or excavate into the sides of the mound.  Ideally, this thesis research should be repeated and built 

upon.   

The next investigation should include a magnetometer gradiometer survey, one of the 

methods used at the LSU Campus Mound Site (16EBR6).  This method was highly successful at 

the LSU Mound site and will give additional insight into the results presented here.  A set 

arbitrary pattern of repeating the electrical resistivity survey, I suggest every five years, with 

place a hold on digging or coring at the site.  Changes from the first investigation should be 

compared with the second, five years later, then again at the ten year mark.  Withdrawing a core 

could change or impact the possible results, so coring or opening test pits should wait.   

Due to an error in judgment, I recommend that the next investigation add two additional 

electrode spacings at 2.0 and 3.0 m to the West Transect.  It might be beneficial to do more if 

possible (e.g. 4.0 and 5.0 m spacings) for all transects.  Adding these additional spacings would 

give a more solid comparable assessment where all pseudosections reach the same depth below 

the surface.  Also, two additional survey lines on both sides of each transect should be in the next 

investigation.  Repeating Area A at 0.5 m and adding 1.0 m spacings during the winter months 

will give results that will be comparable to the results of the pseudosections.  The fieldwork 

should include four pseudo-sections in the “plaza” to possibly identify activity between or below 

the layers of flood deposit.  Also, all the fieldwork should be gathered at the same time during 

the fall, winter, or spring months.   

Soil development within the mounds evolved over thousands of years, and we are 

continuing to learn about these amazing earthen structures.  Thus, repeating and adding the 

additional electrical resistivity survey lines would monitor the ongoing activity beneath the 

mound’s surface. The slopes of the Livonia Mound Site are gently eroding and/or slumping, with 

the trees possibly serving as a vehicle to maintain or erode the mound’s form and height.   
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Each mound is uniquely built with no two mounds comprised of the same composition.  

The LSU Campus Mounds site serves as a good example.  As a result, long term study of the 

geological composition will provide more clues to the interior workings of these earthen mounds, 

shedding light on their previous function and the intent of the people who built them.  This 

research is merely a starting point and needs to be continually built upon, because soil 

composition changes.  Repeating the fieldwork will provide a model to potentially identify 

evidence of erosion, slumping, or sliding occurring at the Livonia Mound Site and other mound 

sites.  The results presented here as a starting point to understand the composition of the mounds.  

They provide a base from which to monitor these modifications.   
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APPENDIX A 

RAW PSEUDOSECTIONS ELECTRICAL RESISTIVITY DATA 

West Transect: 0.5 m 

 

West Transect: 0.5 m  

Distance Resistance 
Apparent 

Resistivity  
Distance Resistance 

Apparent 

Resistivity 

0.75 7.7 24.2 
 

17.75 3.8 11.9 

1.25 5.75 18.1 
 

18.25 3.5 11.0 

1.75 6.3 19.8 
 

18.75 4.7 14.8 

2.25 6.5 20.4 
 

19.25 3.5 11.0 

2.75 5.7 17.9 
 

19.75 3.7 11.6 

3.25 6.5 20.4 
 

20.25 4.0 12.6 

3.75 6.2 19.5 
 

20.75 3.4 10.7 

4.25 6.7 21.0 
 

21.25 4 12.6 

4.75 5.2 16.3 
 

21.75 3.5 11.0 

5.25 5.3 16.7 
 

22.25 4.2 13.2 

5.75 3.6 11.3 
 

22.75 3.6 11.3 

6.25 6.25 19.6 
 

23.25 4 12.6 

6.75 6.0 18.8 
 

23.75 3.3 10.4 

7.25 5.9 18.5 
 

24.25 3.3 10.4 

7.75 6.6 20.7 
 

24.75 3.3 10.4 

8.25 6.1 19.2 
 

25.25 3.2 10.1 

8.75 7.35 23.1 
 

25.75 2.75 8.6 

9.25 6.2 19.5 
 

26.25 3.4 10.7 

9.75 6.5 20.4 
 

26.75 3.2 10.1 

10.25 5.4 17.0 
 

27.25 2.9 9.1 

10.75 5.0 15.7 
 

27.75 2.9 9.1 

11.25 5.2 16.3 
 

28.25 2.7 8.5 

11.75 4.2 13.2 
 

28.75 3.3 10.4 

12.25 4.5 14.1 
 

29.25 3.2 10.1 

12.75 4.5 14.1 
 

29.75 3.3 10.4 

13.25 4.4 13.8 
 

30.25 3.0 9.4 

13.75 3.4 10.7 
 

30.75 3.45 10.8 

14.25 3.6 11.3 
 

31.25 3.4 10.7 

14.75 4.0 12.6 
 

31.75 3.7 11.6 

15.25 3.4 10.7 
 

32.25 3.9 12.3 

15.75 2.9 9.1 
 

32.75 3.6 11.3 

16.25 3.6 11.3 
 

33.25 3.8 11.9 

16.75 4.2 13.2 
 

33.75 4.1 12.9 

17.25 3.95 12.4 
 

34.25 4.0 12.6 
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West Transect: 0.5 m 

  
Distance Resistance 

Apparent 

Resistivity     

34.75 4.7 14.8 
 

   35.25 4.7 14.8 
 

   35.75 4.65 14.6 
 

   36.25 4.15 13.0 
 

   36.75 4.4 13.8 
 

   37.25 3.6 11.3 
 

   37.75 3.4 10.7 
 

   38.25 4.4 13.8 
 

   38.75 3.55 11.2 
 

   39.25 4.75 14.9 
 

   39.75 3.5 11.0 
 

   40.25 4.2 13.2 
 

   40.75 4.3 13.5 
 

   41.25 4.7 14.8 
 

   41.75 4.4 13.8 
 

   42.25 4.55 14.3 
 

   42.75 4.7 14.8 
 

   43.25 5.1 16.0 
 

   43.75 4.9 15.4 
 

   44.25 4.35 13.7 
 

   44.75 4.8 15.1 
 

   45.25 5.1 16.0 
 

   45.75 4.2 13.2 
 

   46.25 5.4 17.0 
 

   46.75 4.1 12.9 
 

   47.25 4.4 13.8 
 

   47.75 4.1 12.9  
   48.25 4.3 13.5  
   48.75 4.35 13.7  
   49.25 5.05 15.9  
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West Transect: 0.75 m 
 

West Transect: 0.75 m 

Distance Resistance 
Apparent 

Resistivity  
Distance Resistance 

Apparent 

Resistivity 

1.125 2.55 12.0  28.875 1.8 8.5 

1.875 3.4 16.0  29.626 1.4 6.6 

2.625 3.0 14.1 
 

30.376 1.55 7.3 

3.375 3.6 17.0  31.126 1.6 7.5 

4.125 4.1 19.3 
 

31.876 1.95 9.2 

4.875 3.3 15.6  32.626 2.3 10.8 

5.625 2.75 13.0  33.376 2.5 11.8 

6.375 3.8 17.9 
 

34.126 2.3 10.8 

7.125 3.7 17.4  34.876 2.95 13.9 

7.875 4.1 19.3  35.626 2.35 11.1 

8.625 4.1 19.3  36.376 2.75 13.0 

9.375 4.5 21.2  37.126 2.55 12.0 

10.125 2.9 13.7  37.876 2.4 11.3 

10.875 3.7 17.4  38.626 2.4 11.3 

11.625 2.9 13.7  39.376 2.2 10.4 

12.375 2.9 13.7  40.126 0.2 0.6 

13.125 2.5 11.8 
 

40.876 5.6 26.4 

13.875 2.3 10.8  41.626 2.4 11.3 

14.625 1.8 8.5  42.376 3.4 16.0 

15.375 2.2 10.4 
 

43.126 2.65 12.5 

16.125 2.2 10.4  43.876 2.6 12.3 

16.875 2.0 9.4  44.626 2.7 12.7 

17.625 1.5 7.1  45.376 2.9 13.7 

18.375 2.3 10.8  46.126 2.55 12.0 

19.125 1.9 9.0  46.876 2.45 11.5 

19.875 2.1 9.9  47.626 2.3 10.8 

20.625 1.2 5.7  48.376 2.35 11.1 

21.375 1.65 7.8  
   22.125 1.55 7.3  
   22.875 2.0 9.4  
   23.625 1.6 7.5  
   24.375 1.5 7.1  
   25.125 1.4 6.6  
   25.875 1.6 7.5  
   26.625 1.2 5.7  
   27.375 1.2 5.7  
   28.125 1.35 6.4  
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West Transect: 1.0 M 
 

West Transect: 1.0 M 

Distance Resistance 
Apparent 

Resistivity  
Distance Resistance 

Apparent 

Resistivity 

1.5 2.9 18.2 
 

37.5 1.85 11.6 

2.5 4.4 27.6 
 

38.5 3.4 21.4 

3.5 5.0 31.4 
 

39.5 2.8 17.6 

4.5 3.9 24.5 
 

40.5 2.2 13.8 

5.5 3.45 21.7 
 

41.5 2.4 15.1 

6.5 4.2 26.4 
 

42.5 3.0 18.8 

7.5 4.7 29.5 
 

43.5 2.6 16.3 

8.5 4.4 27.6 
 

44.5 2.4 15.1 

9.5 4.2 26.4 
 

45.5 2.9 18.2 

10.5 3.6 22.6 
 

46.5 2.05 12.9 

11.5 3.5 22.0 
 

47.5 2.3 14.5 

12.5 3.0 18.8 
 

48.5 2.15 13.5 

13.5 2.8 17.6 
 

   14.5 2.5 15.7 
 

   15.5 2.65 16.7 
 

   16.5 2.6 16.3 
 

   17.5 3.0 18.8 
 

   18.5 2.8 17.6 
 

   19.5 2.15 13.5 
 

   20.5 1.75 11.0 
 

   21.5 2.35 14.8 
 

   22.5 2.1 13.2 
 

   23.5 2.5 15.7 
 

   24.5 2.25 14.1 
 

   25.5 2.05 12.9 
 

   26.5 1.6 10.1 
 

   27.5 2.3 14.5 
 

   28.5 1.3 8.2 

    29.5 2.05 12.9 

    30.5 2.4 15.1 

    31.5 2.7 17.0 

    32.5 2.2 13.8 

    33.5 2.35 14.8 

    34.5 2.95 18.5 

    35.5 2.2 13.8 
    36.5 2.9 18.2 
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West Transect: 1.5 m 
    

Distance Resistance 
Apparent 

Resistivity 

    2.25 2.35 22.1 
    3.75 1.7 16.0 
    5.25 2.1 19.8 
    6.75 1.8 17.0 
    8.25 1.5 14.1 
    9.75 1.9 17.9 
    11.25 1.7 16.0 
    12.75 1.1 10.4 
    14.25 0.9 8.5 
    15.75 1.2 11.3 
    17.25 1.1 10.4 
    18.75 0.9 8.5 
    20.25 0.9 8.5 
    21.75 0.55 5.2 
    23.25 0.85 8.0 
    24.75 0.6 5.7 
    26.25 0.4 3.8 
    27.75 2.55 24.0 
    29.25 0.9 8.5 
    30.75 0.75 7.1 
    32.25 1.5 14.1 
    33.75 0.9 8.5 
    35.25 1.0 9.4 
    36.75 1.0 9.4 
    38.25 1.3 12.3 
    39.75 1.15 10.8 
    41.25 0.9 8.5 
    42.75 1.35 12.7 
    44.25 1.1 10.4 
    45.75 1.25 11.8 
    47.25 1.4 13.2 
      



 

53 

 

North Transect: 0.5 m 

 

North Transect: 0.5 m  

Distance Resistance 
Apparent 

Resistivity  
Distance Resistance 

Apparent 

Resistivity 

0.75 6.1 19.2 
 

19.25 7.2 22.6 

1.25 6.5 20.4 
 

19.75 4.7 14.8 

1.75 7.0 22.0 
 

20.25 8.3 26.1 

2.25 7.2 22.6 
 

20.75 6.45 20.3 

2.75 7.7 24.2 
 

21.25 8.2 25.8 

3.25 8.2 25.8 
 

21.75 6.7 21.0 

3.75 8.5 26.7 
 

22.25 7.0 22.0 

4.25 9.35 29.4 
 

22.75 7.7 24.2 

4.75 7.2 22.6 
 

23.25 7.5 23.6 

5.25 7.7 24.2 
 

23.75 7.3 22.9 

5.75 6.65 20.9 
 

24.25 9.4 29.5 

6.25 6.65 20.9 
 

24.75 8.5 26.7 

6.75 6.9 21.7 
 

25.25 7.55 23.7 

7.25 7.4 23.2 
 

25.75 5.65 17.7 

7.75 7.7 24.2 
 

26.25 7.9 24.8 

8.25 7.8 24.5 
 

26.75 10.9 34.2 

8.75 6.4 20.1 
 

27.25 8.35 26.2 

9.25 5.5 17.3 
 

27.75 8.4 26.4 

9.75 6.8 21.4 
 

28.25 8.4 26.4 

10.25 6.8 21.4 
 

28.75 8.5 26.7 

10.75 7.8 24.5 
 

29.25 8.25 25.9 

11.25 7.8 24.5 
 

29.75 8.8 27.6 

11.75 7.2 22.6 
 

30.25 8.9 28.0 

12.25 6.0 18.8 
 

30.75 7.1 22.3 

12.75 7.3 22.9 
 

31.25 8.05 25.3 

13.25 6.5 20.4 
 

31.75 8.0 25.1 

13.75 7.6 23.9 
 

32.25 13.1 41.2 

14.25 5.6 17.6 
 

32.75 7.1 22.3 

14.75 4.8 15.1 
 

33.25 13.7 43.0 

15.25 6.35 19.9 
 

33.75 6.35 19.9 

15.75 5.3 16.7 
 

34.25 8.8 27.6 

16.25 6.25 19.6 
 

34.75 6.9 21.7 

16.75 4.0 12.6 
 

35.25 9.5 29.8 

17.25 5.35 16.8 
 

35.75 7.6 23.9 

17.75 4.9 15.4 
 

36.25 9.35 29.4 

18.25 2.65 8.3 
 

36.75 8.3 26.1 

18.75 4.9 15.4 
 

37.25 11.15 35.0 
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North Transect: 0.5 m 

  
Distance Resistance 

Apparent 

Resistivity     

37.75 11.55 36.3 
 

   38.25 11.9 37.4 
 

   38.75 11.0 34.6 
 

   39.25 12.0 37.7 
 

   39.75 12.1 38.0 
 

   40.25 14.1 44.3 
 

   40.75 10.7 33.6 
 

   41.25 12.8 40.2 
 

   41.75 10.4 32.7 
 

   42.25 8.85 27.8 
 

   42.75 11.7 36.8 
 

   43.25 8.6 27.0 
 

   43.75 9.9 31.1 
 

   44.25 12.8 40.2 
 

   44.75 11.4 35.8 
 

   45.25 9.6 30.2 
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North Transect: 0.75 m 
 

North Transect: 0.75 m 

Distance Resistance 
Apparent 

Resistivity  
Distance Resistance 

Apparent 

Resistivity 

1.125 3.5 16.5  28.875 5.55 26.2 

1.875 4.2 19.8  29.626 6.05 28.5 

2.625 4.2 19.8 
 

30.376 6.3 29.7 

3.375 4.45 21.0  31.126 5.5 25.9 

4.125 4.9 23.1 
 

31.876 8.8 41.5 

4.875 3.7 17.4  32.626 6.4 30.2 

5.625 4.2 19.8  33.376 5.8 27.3 

6.375 3.1 14.6 
 

34.126 7.1 33.5 

7.125 4.0 18.8  34.876 5.8 27.3 

7.875 4.1 19.3  35.626 5.3 25.0 

8.625 3.4 16.0  36.376 4.9 23.1 

9.375 2.9 13.7  37.126 6.7 31.6 

10.125 3.75 17.7  37.876 8.85 41.7 

10.875 4.3 20.3  38.626 7.8 36.8 

11.625 3.75 17.7  39.376 9.55 45.0 

12.375 3.7 17.4  40.126 10 47.1 

13.125 4.1 19.3 
 

40.876 8.4 39.6 

13.875 4.1 19.3  41.626 8.5 40.1 

14.625 4.1 19.3  42.376 7.0 33.0 

15.375 3.8 17.9 
 

43.126 7.9 37.2 

16.125 3.6 17.0  43.876 9.1 42.9 

16.875 3.8 17.9  44.626 8.1 38.2 

17.625 4.0 18.8  
   18.375 3.7 17.4  
   19.125 3.4 16.0  
   19.875 5.0 23.6  
   20.625 4.6 21.7  
   21.375 5.5 25.9  
   22.125 5.35 25.2  
   22.875 6.15 29.0  
   23.625 5.9 27.8  
   24.375 5.75 27.1  
   25.125 6.5 30.6  
   25.875 4.7 22.1  
   26.625 7.2 33.9  
   27.375 7.25 34.2  
   28.125 5.5 25.9  
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North Transect: 1.0 M 
 

North Transect: 1.0 M 

Distance Resistance 
Apparent 

Resistivity  
Distance Resistance 

Apparent 

Resistivity 

1.5 3.25 20.4 
 

38.5 7.4 46.5 

2.5 3.55 22.3 
 

39.5 7.25 45.6 

3.5 4.2 26.4 
 

40.5 7.5 47.1 

4.5 4.5 28.3 
 

41.5 8.8 55.3 

5.5 3.85 24.2 
 

42.5 7.5 47.1 

6.5 4.55 28.6 
 

43.5 7.0 44.0 

7.5 3.9 24.5 
 

44.5 6.2 39.0 

8.5 3.55 22.3 
 

   9.5 4.0 25.1 
 

   10.5 4.1 25.8 
 

   11.5 4.75 29.8 
 

      

12.5 4.8 30.2 
 

   13.5 3.35 21.0 
 

   14.5 4.4 27.6 
 

   15.5 3.7 23.2 
 

   16.5 5.2 32.7 
 

   17.5 4.35 27.3 
 

   18.5 5.8 36.4 
 

   19.5 7.1 44.6 
 

   20.5 6.5 40.8 
 

   21.5 5.9 37.1 
 

   22.5 4.75 29.8 
 

   23.5 15.5 97.4 
 

   24.5 5.3 33.3 
 

   25.5 4.2 26.4 
 

   26.5 9.4 59.1 
 

   27.5 4.95 31.1 
 

   28.5 7.6 47.8 

    29.5 6.85 43.0 

    30.5 7.05 44.3 

    31.5 9.0 56.5 

    32.5 7.4 46.5 

    33.5 6.05 38.0 

    34.5 6.6 41.5 

    35.5 4.35 27.3 
    36.5 6.3 39.6 
    37.5 7.55 47.4 
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North Transect: 1.5 m 
 

North Transect: 2.0 m 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

2.25 2.2 20.7 
 

3 2.15 27.0 

3.75 2.25 21.2 
 

5 1.5 18.9 

5.25 4.6 43.4 
 

7 1.65 20.7 

6.75 2.85 26.9 
 

9 2.05 25.8 

8.25 2.3 21.7 
 

11 2.9 36.4 

9.75 2.4 22.6 
 

13 2.45 30.8 

11.25 3.3 31.1 
 

15 2.2 27.7 

12.75 2.95 27.8 
 

17 1.75 22.0 

14.25 2.4 22.6 
 

19 4.5 56.6 

15.75 2.7 25.4 
 

21 2.85 35.8 

17.25 2.0 18.8 
 

23 2.2 27.7 

18.75 2.0 18.8 
 

25 2.4 30.2 

20.25 2.8 26.4 
 

27 5.4 67.9 

21.75 3.9 36.8 
 

29 5.5 69.1 

23.25 2.9 27.3 
 

31 3.8 47.8 

24.75 3.95 37.2 
 

33 3.4 42.7 

26.25 3.35 31.6 
 

35 2.7 33.9 

27.75 5.75 54.2 
 

37 2.6 32.7 

29.25 5.8 54.7 
 

39 5.1 64.1 

30.75 3.95 37.2 
 

41 3.3 41.5 

32.25 4.65 43.8 
 

43 4.65 58.4 

33.75 4.5 42.4 

    35.25 4.9 46.2 
    36.75 3.25 30.6 

    38.25 3.8 35.8 

    39.75 4.45 41.9 

    41.25 6.4 60.3 

    42.75 7.0 66.0 

    44.25 5.85 55.1 
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North Transect: 3.0 m 

    
Distance Resistance 

Apparent 

Resistivity 

    4.5 1.7 32.0 

    7.5 1.7 32.0 

    10.5 1.8 33.9 

    13.5 1.8 33.9 

    16.5 2.3 43.4 

    19.5 2.6 49.0 

    22.5 3.4 64.1 

    25.5 1.9 35.8 

    28.5 4.6 86.7 

    31.5 3.9 73.5 

    34.5 2.8 52.8 

    37.5 1.9 35.8 

    40.5 2.2 41.5 
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East Transect: 0.5 m 

 

East Transect: 0.5 m  

Distance Resistance 
Apparent 

Resistivity  
Distance Resistance 

Apparent 

Resistivity 

0.75 8.1 25.4 
 

19.25 7.25 22.8 

1.25 9.1 28.6 
 

19.75 6.2 19.5 

1.75 10.85 34.1 
 

20.25 7.2 22.6 

2.25 7.6 23.9 
 

20.75 9.7 30.5 

2.75 11.75 36.9 
 

21.25 5.8 18.2 

3.25 6.3 19.8 
 

21.75 9.0 28.3 

3.75 6.8 21.4 
 

22.25 9.1 28.6 

4.25 5.7 17.9 
 

22.75 6.5 20.4 

4.75 4.55 14.3 
 

23.25 8.85 27.8 

5.25 4.6 14.5 
 

23.75 6.9 21.7 

5.75 13.2 41.5 
 

24.25 6.4 20.1 

6.25 4.9 15.4 
 

24.75 5.9 18.5 

6.75 6.6 20.7 
 

25.25 8.5 26.7 

7.25 9.1 28.6 
 

25.75 6.5 20.4 

7.75 6.6 20.7 
 

26.25 5.9 18.5 

8.25 4.1 12.9 
 

26.75 3.9 12.3 

8.75 7.6 23.9 
 

27.25 5.7 17.9 

9.25 6.2 19.5 
 

27.75 5.5 17.3 

9.75 5.65 17.7 
 

28.25 4.75 14.9 

10.25 6.5 20.4 
 

28.75 6.15 19.3 

10.75 17.2 54.0 
 

29.25 6.2 19.5 

11.25 6.5 20.4 
 

29.75 6.2 19.5 

11.75 5.3 16.7 
 

30.25 5.4 17.0 

12.25 10.8 33.9 
 

30.75 4.9 15.4 

12.75 12.1 38.0 
 

31.25 3.8 11.9 

13.25 6.75 21.2 
 

31.75 3.0 9.4 

13.75 4.65 14.6 
 

32.25 5.3 16.7 

14.25 8.7 27.3 
 

32.75 4.5 14.1 

14.75 6.1 19.2 
 

33.25 6.0 18.8 

15.25 5.9 18.5 
 

33.75 2.8 8.8 

15.75 6.4 20.1 
 

34.25 2.25 7.1 

16.25 6.25 19.6 
 

34.75 2.6 8.2 

16.75 6.25 19.6 
 

35.25 3.2 10.1 

17.25 8.15 25.6 
 

35.75 4.2 13.2 

17.75 6.5 20.4 
 

36.25 5.4 17.0 

18.25 6.9 21.7 
 

36.75 4.7 14.8 

18.75 7.2 22.6 
 

37.25 5.15 16.2 
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   East Transect: 0.5 m 

  
Distance Resistance 

Apparent 

Resistivity     

37.75 5.7 17.9 
 

   38.25 7.5 23.6 
 

   38.75 6.2 19.5 
 

   39.25 7.8 24.5 
 

   39.75 4.9 15.4 
 

   40.25 7.7 24.2 
 

   40.75 5.4 17.0 
 

   41.25 7.65 24.0 
 

   41.75 8.65 27.2 
 

   42.25 6.5 20.4 
 

   42.75 10.1 31.7 
 

   43.25 25.7 80.7 
 

   43.75 23.7 74.5 
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East Transect: 0.75 m 
 

East Transect: 0.75 m 

Distance Resistance 
Apparent 

Resistivity  
Distance Resistance 

Apparent 

Resistivity 

1.125 2.8 13.2  28.875 2.5 11.8 

1.875 3.6 17.0  29.626 3.0 14.1 

2.625 4.3 20.3 
 

30.376 2.1 9.9 

3.375 3.6 17.0  31.126 1.8 8.5 

4.125 3.2 15.1 
 

31.876 2.3 10.8 

4.875 1.8 8.5  32.626 2.25 10.6 

5.625 2.5 11.8  33.376 1.15 5.4 

6.375 3.4 16.0 
 

34.126 1.8 8.5 

7.125 4.25 20.0  34.876 1.0 4.7 

7.875 4.2 19.8  35.626 2.1 9.9 

8.625 2.9 13.7  36.376 2.75 13.0 

9.375 1.4 6.6  37.126 2.1 9.9 

10.125 4.0 18.8  37.876 3.5 16.5 

10.875 3.0 14.1  38.626 3.2 15.1 

11.625 3.9 18.4  39.376 3.6 17.0 

12.375 3.25 15.3  40.126 3.4 16.0 

13.125 7.0 33.0 
 

40.876 5.1 24.0 

13.875 3.7 17.4  41.626 4.8 22.6 

14.625 4.5 21.2  42.376 4.55 21.4 

15.375 4.15 19.6 
 

43.126 5.5 25.9 

16.125 2.15 10.1  
   16.875 5.5 25.9  
   17.625 4.4 20.7  
   18.375 3.75 17.7  
   19.125 4.7 22.1  
   19.875 3.9 18.4  
   20.625 4.5 21.2  
   21.375 5.1 24.0  
   22.125 4.85 22.9  
   22.875 3.5 16.5  
   23.625 4.7 22.1  
   24.375 4.0 18.8  
   25.125 4.9 23.1  
   25.875 3.6 17.0  
   26.625 3.3 15.6  
   27.375 3.4 16.0  
   28.125 2.7 12.7  
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East Transect: 1.0 M 

 

East Transect: 1.0 M 

Distance Resistance 
Apparent 

Resistivity  
Distance Resistance 

Apparent 

Resistivity 

1.5 1.8 11.3 
 

38.5 2.9 18.2 

2.5 2.4 15.1 
 

39.5 3.65 22.9 

3.5 2.1 13.2 
 

40.5 4.0 25.1 

4.5 1.9 11.9 
 

41.5 4.4 27.6 

5.5 2.1 13.2 
 

42.5 3.25 20.4 

6.5 2.8 17.6 
 

   7.5 2.7 17.0 
 

   8.5 2.0 12.6 
 

   9.5 0.1 0.6 
 

      

10.5 2.6 16.3 
 

   11.5 3.5 22.0 
 

   12.5 1.35 8.5 
 

   13.5 0.8 5.0 
 

   14.5 4.0 25.1 
 

   15.5 3.1 19.5 
 

   16.5 2.15 13.5 
 

   17.5 2.8 17.6 
 

   18.5 2.8 17.6 
 

   19.5 3.7 23.2 
 

   20.5 3.8 23.9 
 

   21.5 3.3 20.7 
 

   22.5 3.6 22.6 
 

   23.5 1.0 6.3 
 

   24.5 3.55 22.3 
 

   25.5 3.8 23.9 
 

   26.5 2.4 15.1 
 

   27.5 1.9 11.9 
 

   28.5 2.4 15.1 

    29.5 1.0 6.3 

    30.5 1.65 10.4 

    31.5 1.65 10.4 

    32.5 0.15 0.9 

    33.5 2.7 17.0 

    34.5 1.7 10.7 

    35.5 1.8 11.3 
    36.5 1.5 9.4 
    37.5 1.6 10.1 
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East Transect: 1.5 m 
 

East Transect: 2.0 m 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

2.25 1.5 14.1 
 

3 1.0 12.56 

3.75 1.2 11.3 
 

5 0.15 1.9 

5.25 1.7 16.0 
 

7 1.2 15.1 

6.75 1.6 15.1 
 

9 0.3 3.8 

8.25 0.5 4.7 
 

11 0.4 5.0 

9.75 0.3 2.8 
 

13 0.5 6.9 

11.25 2.4 22.6 
 

15 2.6 32.7 

12.75 1.0 9.4 
 

17 2.2 27.7 

14.25 0.1 0.9 
 

19 1.4 17.6 

15.75 3.8 35.8 
 

21 1.1 13.8 

17.25 1.8 17.0 
 

23 0.45 5.7 

18.75 1.75 16.5 
 

25 1.2 15.1 

20.25 1.8 17.0 
 

27 1.1 13.8 

21.75 2.1 19.8 
 

29 0.4 5.0 

23.25 0.4 3.8 
 

31 0.3 3.8 

24.75 3.6 33.9 
 

33 0.6 7.5 

26.25 1.8 17.0 
 

35 1.8 22.6 

27.75 1.6 15.1 
 

37 0.65 8.2 

29.25 0.5 4.7 
 

39 0.8 10.1 

30.75 0.8 7.5 
 

41 1.65 20.7 

32.25 0.6 5.7 
    33.75 0.5 4.7 
    35.25 0.9 8.5 
    36.75 1.3 12.3 
    38.25 1.3 12.3 
    39.75 2.3 21.7 
    41.25 2.3 21.7 
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East Transect: 3.0 m 
    

Distance Resistance 
Apparent 

Resistivity 

    4.5 0.35 6.6 

    7.5 0.35 6.6 

    10.5 0.4 7.5 

    13.5 1.4 26.4 

    16.5 0.2 3.8 

    19.5 4.0 75.4 

    22.5 0.9 17.0 

    25.5 0.9 17.0 

    28.5 0.8 15.1 

    31.5 0.1 1.9 

    34.5 0.2 3.8 

    37.5 0.1 1.9 
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South Transect: 0.5 m 

 

South Transect: 0.5 m  

Distance Resistance 
Apparent 

Resistivity  
Distance Resistance 

Apparent 

Resistivity 

0.75 9.9 31.1 
 

19.25 13.65 42.9 

1.25 9.5 29.8 
 

19.75 14.8 46.5 

1.75 9.85 30.9 
 

20.25 10.9 34.2 

2.25 8.2 25.8 
 

20.75 11.2 35.2 

2.75 9.3 29.2 
 

21.25 10.3 32.4 

3.25 8.6 27.0 
 

21.75 10.4 32.7 

3.75 9.1 28.6 
 

22.25 11.1 34.9 

4.25 8.9 28.0 
 

22.75 13.6 42.7 

4.75 10.9 34.2 
 

23.25 18.0 56.5 

5.25 9.6 30.2 
 

23.75 14.6 45.9 

5.75 10.4 32.7 
 

24.25 17.7 55.6 

6.25 9.6 30.2 
 

24.75 20.95 65.8 

6.75 8.35 26.2 
 

25.25 31.15 97.9 

7.25 9.05 28.4 
 

25.75 24.8 77.9 

7.75 10.5 33.0 
 

26.25 20.4 64.1 

8.25 10.8 33.9 
 

26.75 17.0 53.4 

8.75 10.0 31.4 
 

27.25 14.8 46.5 

9.25 9.3 29.2 
 

27.75 16.8 52.8 

9.75 8.6 27.0 
 

28.25 14.4 45.2 

10.25 8.15 25.6 
 

28.75 13.1 41.2 

10.75 8.4 26.4 
 

29.25 9.2 28.9 

11.25 9.0 28.3 
 

29.75 14.15 44.5 

11.75 8.4 26.4 
 

30.25 10.4 32.7 

12.25 6.4 20.1 
 

30.75 14.6 45.9 

12.75 7.2 22.6 
 

31.25 15.8 49.6 

13.25 6.5 20.4 
 

31.75 18.2 57.2 

13.75 9.1 28.6 
 

32.25 20.7 65.0 

14.25 9.1 28.6 
 

32.75 15.95 50.1 

14.75 8.65 27.2 
 

33.25 15.15 47.6 

15.25 9.1 28.6 
 

33.75 14.1 44.3 

15.75 10.5 33.0 
 

34.25 13.8 43.4 

16.25 11.7 36.8 
 

34.75 13.8 43.4 

16.75 36.4 114.4 
 

35.25 11.4 35.8 

17.25 32.0 100.5 
 

35.75 12.2 38.3 

17.75 7.4 23.2 
 

36.25 11.5 36.1 

18.25 8.55 26.9 
 

36.75 13.2 41.5 

18.75 10.3 32.4 
 

37.25 12.85 40.4 
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South Transect: 0.5 m 

  
Distance Resistance 

Apparent 

Resistivity     

37.75 16.7 52.5 
 

   38.25 12.4 39.0 
 

   38.75 16.0 50.3 
 

   39.25 13.5 42.4 
 

   39.75 13.0 40.8 
 

   40.25 11.65 36.6 
 

   40.75 10.0 31.4 
 

   41.25 16.1 50.6 
 

   41.75 18.9 59.4 
 

   42.25 19.3 60.6 
 

   42.75 18.1 56.9 
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South Transect: 0.75 m 
 

South Transect: 0.75 m 

Distance Resistance 
Apparent 

Resistivity  
Distance Resistance 

Apparent 

Resistivity 

1.125 6.5 30.6 
 

28.875 14.25 67.2 

1.875 7.2 33.9 
 

29.626 15.1 71.2 

2.625 7.0 33.0 
 

30.376 17.2 81.1 

3.375 6.35 29.9 
 

31.126 16.1 75.9 

4.125 5.85 27.6 
 

31.876 15.4 72.6 

4.875 7.4 34.9 
 

32.626 15.8 74.5 

5.625 7.8 36.8 
 

33.376 11.0 51.8 

6.375 7.9 37.2 
 

34.126 12.1 57.0 

7.125 6.35 29.9 
 

34.876 12.4 58.4 

7.875 6.5 30.6 
 

35.626 12.4 58.4 

8.625 5.65 26.6 
 

36.376 13.7 64.6 

9.375 6.7 31.6 
 

37.126 12.1 57.0 

10.125 6.2 29.2 
 

37.876 14.5 68.3 

10.875 6.5 30.6 
 

38.626 13.5 63.6 

11.625 6.7 31.6 
 

39.376 12.1 57.0 

12.375 5.8 27.3 
 

40.126 12.1 57.0 

13.125 4.9 23.1 
 

40.876 13.9 65.5 

13.875 4.8 22.6 
 

41.626 14.5 68.3 

14.625 5.1 24.0 
 

42.376 16.0 75.4 

15.375 5.1 24.0 
 

   16.125 4.7 22.1 
 

   16.875 9.9 46.7 
 

   17.625 9.3 43.8 
 

   18.375 8.5 40.1 
 

   19.125 9.0 42.4 
 

   19.875 9.6 45.2 
 

   20.625 9.4 44.3 
 

   21.375 9.7 45.7 
 

   22.125 10.3 48.5 
 

   22.875 10.35 48.8 
 

   23.625 10.8 50.9 
 

   24.375 14.8 69.7 
 

   25.125 19.5 91.9 
 

   25.875 23.7 111.7 
 

   26.625 19.65 92.6 
 

   27.375 11.9 56.1 
 

   28.125 17.5 82.5 
 

   



 

68 

 

South Transect: 1.0 M 

 

South Transect: 1.0 M 

Distance Resistance 
Apparent 

Resistivity  
Distance Resistance 

Apparent 

Resistivity 

1.5 5.8 36.4 
 

38.5 9.5 59.7 

2.5 5.8 36.4 
 

39.5 7.4 46.5 

3.5 4.5 28.3 
 

40.5 8.4 52.8 

4.5 8.1 50.9 
 

41.5 6.05 38.0 

5.5 6.5 40.8 
 

   6.5 6.0 37.7 
 

   7.5 6.2 39.0 
 

   8.5 6.0 37.7 
 

      

9.5 6.7 42.1 
 

   10.5 5.4 33.9 
 

   11.5 6.65 41.8 
 

   12.5 5.6 35.2 
 

   13.5 6.3 39.6 
 

   14.5 6.4 40.2 
 

   15.5 5.1 32.0 
 

   16.5 4.3 27.0 
 

   17.5 4.7 29.5 
 

   18.5 5.5 34.6 
 

   19.5 8.7 54.7 
 

   20.5 7.3 45.9 
 

   21.5 6.9 43.4 
 

   22.5 7.4 46.5 
 

   23.5 12.55 78.9 
 

   24.5 20.2 126.9 
 

   25.5 23.0 144.5 
 

   26.5 49.0 307.9 
 

   27.5 13.8 86.7 
 

   28.5 25.2 158.3 

    29.5 9.1 57.2 

    30.5 8.9 55.9 

    31.5 9.75 61.3 

    32.5 12.15 76.3 

    33.5 9.85 61.9 

    34.5 7.4 46.5 

    35.5 9.4 59.1 

    36.5 9.3 58.4 

    37.5 10.75 67.5 
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South Transect: 1.5 m 

 

South Transect: 2.0 m 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

2.25 4.6 43.4 

 

3 3.0 37.7 

3.75 5.2 49.0 

 

5 2.9 36.4 

5.25 4.3 40.5 

 

7 2.65 33.3 

6.75 4.5 42.4 

 

9 3.4 42.7 

8.25 3.65 34.4 

 

11 2.9 36.4 

9.75 4.1 38.6 

 

13 2.9 36.4 

11.25 4.2 39.6 

 

15 2.8 35.2 

12.75 3.6 33.9 

 

17 3.4 42.7 

14.25 5.0 47.1 

 

19 3.0 37.7 

15.75 3.6 33.9 

 

21 3.75 47.1 

17.25 3.1 29.2 

 

23 4.1 51.5 

18.75 3.25 30.6 

 

25 5.7 71.6 

20.25 4.65 43.8 

 

27 6.9 86.7 

21.75 7.1 66.9 

 

29 7.1 89.2 

23.25 8.55 80.6 

 

31 5.8 72.9 

24.75 9.5 89.5 

 

33 5.85 73.5 

26.25 9.3 87.7 

 

35 5.1 64.1 

27.75 14.4 135.7 

 

37 3.8 47.8 

29.25 10.0 94.2 

 

39 3.9 49.0 

30.75 9.0 84.8 

    32.25 10.7 100.8 

    33.75 9.4 88.6 

    35.25 7.7 72.6 

    36.75 7.3 68.8 

    38.25 6.0 56.5 

    39.75 12.8 120.6 

    41.25 5.4 50.9 
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South Transect: 3.0 m 

    
Distance Resistance 

Apparent 

Resistivity 

    4.5 2.3 43.4 

    7.5 2.55 48.1 

    10.5 2.4 45.2 

    13.5 2.6 49.0 

    16.5 1.9 35.8 

    19.5 2.1 39.6 

    22.5 2.85 53.7 

    25.5 4.8 90.5 

    28.5 5.8 109.3 

    31.5 3.4 64.1 

    34.5 3.9 73.5 

    37.5 4.0 75.4 
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APPENDIX B 

RAW AREA A ELECTRICAL RESISTIVITY DATA 

Line 101 

 

Line 101 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 0.1 0.3 
 

17.75 2.2 6.9 

1.25 0.1 0.3 
 

18.25 2.4 7.5 

1.75 0.1 0.3 
 

18.75 5.55 17.4 

2.25 0.1 0.3 
 

19.25 0.1 0.3 

2.75 0.15 0.5 
 

19.75 0.1 0.3 

3.25 0.1 0.3 
 

20.25 0.1 0.3 

3.75 0.4 1.3 
 

20.75 0.1 0.3 

4.25 0.55 1.7 
 

21.25 0.1 0.3 

4.75 0.7 2.2 
 

21.75 0.1 0.3 

5.25 5.1 16.0 
 

22.25 0.1 0.3 

5.75 2.1 6.6 
 

22.75 0.1 0.3 

6.25 1.6 5.0 
 

23.25 0.1 0.3 

6.75 1.7 5.3 
 

23.75 1.5 4.7 

7.25 1.7 5.3 
 

24.25 2.75 8.6 

7.75 1.4 4.4 
 

24.75 0.1 0.3 

8.25 2.35 7.4 
 

25.25 6.4 20.1 

8.75 2.1 6.6 
 

25.75 5.05 15.9 

9.25 2.3 7.2 
 

26.25 4.25 13.4 

9.75 2.2 6.9 
 

26.75 10.4 32.7 

10.25 0.1 0.3 
 

27.25 6.2 19.5 

10.75 1.35 4.2 
 

27.75 21.5 67.5 

11.25 0.9 2.8 
 

28.25 14.1 44.3 

11.75 1.15 3.6 
 

28.75 14.3 44.9 

12.25 2.5 7.9 
 

29.25 17.3 54.3 

12.75 0.1 0.3 
 

29.75 4.1 12.9 

13.25 1.9 6.0 
 

30.25 3.4 10.7 

13.75 2.8 8.8 
 

30.75 2.9 9.1 

14.25 1.9 6.0 
 

31.25 4.8 15.1 

14.75 2.45 7.7 
 

31.75 6.7 21.0 

15.25 2.2 6.9 
 

32.25 1.65 5.2 

15.75 2.85 9.0 
 

32.75 5.6 17.6 

16.25 0.9 2.8 
 

33.25 5.0 15.7 

16.75 2.3 7.2 
 

33.75 0.3 0.9 

17.25 2.2 6.9 
 

34.25 4.05 12.7 
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Line 101 
 

Distance Resistance 
Apparent 

Resistivity  

34.75 2.35 7.4 
 

35.25 5.9 18.5 
 

35.75 4.0 12.6 
    

36.25 5.9 18.5 
    

36.75 0.65 2.0 
  

 
 

37.25 1.8 5.7 
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Line 102 

 

Line 102 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 0.1 0.3 
 

19.25 6.0 18.8 

1.25 0.9 2.8 
 

19.75 5.1 16.0 

1.75 2.0 6.3 
 

20.25 5.7 17.9 

2.25 0.1 0.3 
 

20.75 6.1 19.2 

2.75 2.8 8.8 
 

21.25 3.2 10.1 

3.25 0.7 2.2 
 

21.75 5.65 17.7 

3.75 0.1 0.3 
 

22.25 0.1 0.3 

4.25 0.1 0.3 
 

22.75 11.5 36.1 

4.75 1.0 3.1 
 

23.25 5.15 16.2 

5.25 2.9 9.1 
 

23.75 3.7 11.6 

5.75 3.7 11.6 
 

24.25 6.1 19.2 

6.25 2.85 9.0 
 

24.75 5.7 17.9 

6.75 3.1 9.7 
 

25.25 6.4 20.1 

7.25 2.9 9.1 
 

25.75 5.2 16.3 

7.75 3.35 10.5 
 

26.25 2.0 6.3 

8.25 1.0 3.1 
 

26.75 3.6 11.3 

8.75 2.45 7.7 
 

27.25 3.3 10.4 

9.25 1.8 5.7 
 

27.75 2.8 8.8 

9.75 3.1 9.7 
 

28.25 1.0 3.1 

10.25 1.4 4.4 
 

28.75 3.0 9.4 

10.75 3.5 11.0 
 

29.25 2.7 8.5 

11.25 1.45 4.6 
 

29.75 0.45 1.4 

11.75 2.9 9.1 
 

30.25 1.2 3.8 

12.25 3.4 10.7 
 

30.75 3.7 11.6 

12.75 2.55 8.0 
 

31.25 2.9 9.1 

13.25 1.5 4.7 
 

31.75 2.9 9.1 

13.75 4.1 12.9 
 

32.25 1.7 5.3 

14.25 3.2 10.1 
 

32.75 3.8 11.9 

14.75 2.2 6.9 
 

33.25 0.15 0.5 

15.25 1.7 5.3 
 

33.75 4.9 15.4 

15.75 6.9 21.7 
 

34.25 2.8 8.8 

16.25 3.7 11.6 
 

34.75 2.4 7.5 

16.75 2.3 7.2 
 

35.25 9.3 29.2 

17.25 5.7 17.9 
 

35.75 2.7 8.5 

17.75 4.0 12.6 
 

36.25 5.9 18.5 

18.25 6.2 19.5 

 

36.75 2.1 6.6 

18.75 3.9 12.3 

 

37.25 2.05 6.4 



 

74 

 

Line 103 

 

Line 103 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 1.4 4.4 
 

19.25 2.2 6.9 

1.25 0.9 2.8 
 

19.75 3.35 10.5 

1.75 0.6 1.9 
 

20.25 1.7 5.3 

2.25 0.2 0.6 
 

20.75 2.6 8.2 

2.75 0.1 0.3 
 

21.25 1.7 5.3 

3.25 1.2 3.8 
 

21.75 0.1 0.3 

3.75 6.2 19.5 
 

22.25 2.5 7.9 

4.25 0.3 0.9 
 

22.75 2.2 6.9 

4.75 1.5 4.7 
 

23.25 0.5 1.6 

5.25 1.3 4.1 
 

23.75 0.1 0.3 

5.75 6.9 21.7 
 

24.25 1.8 5.7 

6.25 1.1 3.5 
 

24.75 0.3 0.9 

6.75 3.5 11.0 
 

25.25 2.4 7.5 

7.25 2.0 6.3 
 

25.75 4.0 12.6 

7.75 3.15 9.9 
 

26.25 0.65 2.0 

8.25 2.1 6.6 
 

26.75 0.1 0.3 

8.75 1.4 4.4 
 

27.25 1.5 4.7 

9.25 2.4 7.5 
 

27.75 0.15 0.5 

9.75 2.9 9.1 
 

28.25 0.7 2.2 

10.25 0.7 2.2 
 

28.75 1.2 3.8 

10.75 2.1 6.6 
 

29.25 0.1 0.3 

11.25 1.1 3.5 
 

29.75 1.3 4.1 

11.75 2.0 6.3 
 

30.25 0.45 1.4 

12.25 2.1 6.6 
 

30.75 1.4 4.4 

12.75 0.9 2.8 
 

31.25 2.1 6.6 

13.25 1.25 3.9 
 

31.75 1.2 3.8 

13.75 2.3 7.2 
 

32.25 0.95 3.0 

14.25 2.8 8.8 
 

32.75 0.1 0.3 

14.75 2.3 7.2 
 

33.25 0.15 0.5 

15.25 1.1 3.5 
 

33.75 0.1 0.3 

15.75 2.5 7.9 
 

34.25 9.2 28.9 

16.25 4.1 12.9 
 

34.75 3.4 10.7 

16.75 0.5 1.6 
 

35.25 3.6 11.3 

17.25 2.8 8.8 
 

35.75 3.1 9.7 

17.75 1.7 5.3 
 

36.25 1.9 6.0 

18.25 3.3 10.4 

 

36.75 1.9 6.0 

18.75 2.3 7.2 

 

37.25 0.1 0.3 



 

75 

 

Line 104 

 

Line 104 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 0.1 0.3 
 

19.25 0.1 0.3 

1.25 2.0 6.3 
 

19.75 0.1 0.3 

1.75 0.1 0.3 
 

20.25 0.1 0.3 

2.25 0.2 0.6 
 

20.75 0.9 2.8 

2.75 0.5 1.6 
 

21.25 0.5 1.6 

3.25 1.0 3.1 
 

21.75 0.3 0.9 

3.75 0.4 1.3 
 

22.25 0.9 2.8 

4.25 0.2 0.6 
 

22.75 0.8 2.5 

4.75 0.1 0.3 
 

23.25 0.65 2.0 

5.25 1.0 3.1 
 

23.75 0.1 0.3 

5.75 0.5 1.6 
 

24.25 0.1 0.3 

6.25 0.6 1.9 
 

24.75 0.1 0.3 

6.75 1.25 3.9 
 

25.25 0.2 0.6 

7.25 1.1 3.5 
 

25.75 0.6 1.9 

7.75 2.65 8.3 
 

26.25 0.4 1.3 

8.25 0.8 2.5 
 

26.75 0.2 0.6 

8.75 0.8 2.5 
 

27.25 0.3 0.9 

9.25 0.4 1.3 
 

27.75 0.1 0.3 

9.75 2.1 6.6 
 

28.25 0.35 1.1 

10.25 1.2 3.8 
 

28.75 0.3 0.9 

10.75 3.2 10.1 
 

29.25 0.1 0.3 

11.25 2.9 9.1 
 

29.75 0.1 0.3 

11.75 1.3 4.1 
 

30.25 0.2 0.6 

12.25 0.4 1.3 
 

30.75 0.35 1.1 

12.75 1.7 5.3 
 

31.25 1.8 5.7 

13.25 2.8 8.8 
 

31.75 0.25 0.8 

13.75 2.7 8.5 
 

32.25 0.35 1.1 

14.25 2.0 6.3 
 

32.75 0.1 0.3 

14.75 0.2 0.6 
 

33.25 0.1 0.3 

15.25 1.1 3.5 
 

33.75 0.4 1.3 

15.75 0.3 0.9 
 

34.25 3.3 10.4 

16.25 4.1 12.9 
 

34.75 12.2 38.3 

16.75 0.5 1.6 
 

35.25 2.1 6.6 

17.25 0.9 2.8 
 

35.75 3.2 10.1 

17.75 0.1 0.3 
 

36.25 0.6 1.9 

18.25 1.5 4.7 

 

36.75 1.7 5.3 

18.75 0.1 0.3 

 

37.25 0.5 1.6 



 

76 

 

Line 105 

 

Line 105 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 0.1 0.3 
 

19.25 2.3 7.2 

1.25 0.3 0.9 
 

19.75 0.55 1.7 

1.75 0.1 0.3 
 

20.25 1.9 6.0 

2.25 2.0 6.3 
 

20.75 2.0 6.3 

2.75 0.4 1.3 
 

21.25 3.9 12.3 

3.25 0.3 0.9 
 

21.75 0.3 0.9 

3.75 0.25 0.8 
 

22.25 2.9 9.1 

4.25 0.2 0.6 
 

22.75 3.0 9.4 

4.75 1.7 5.3 
 

23.25 3.65 11.5 

5.25 0.1 0.3 
 

23.75 1.0 3.1 

5.75 4.5 14.1 
 

24.25 0.3 0.9 

6.25 0.8 2.5 
 

24.75 1.1 3.5 

6.75 0.2 0.6 
 

25.25 0.1 0.3 

7.25 1.0 3.1 
 

25.75 2.0 6.3 

7.75 0.1 0.3 
 

26.25 0.2 0.6 

8.25 4.75 14.9 
 

26.75 2.1 6.6 

8.75 2.1 6.6 
 

27.25 0.2 0.6 

9.25 0.9 2.8 
 

27.75 0.1 0.3 

9.75 1.8 5.7 
 

28.25 0.1 0.3 

10.25 1.4 4.4 
 

28.75 0.2 0.6 

10.75 4.7 14.8 
 

29.25 0.9 2.8 

11.25 0.1 0.3 
 

29.75 0.1 0.3 

11.75 3.0 9.4 
 

30.25 2.3 7.2 

12.25 0.2 0.6 
 

30.75 0.2 0.6 

12.75 1.8 5.7 
 

31.25 0.7 2.2 

13.25 1.9 6.0 
 

31.75 1.8 5.7 

13.75 1.3 4.1 
 

32.25 0.65 2.0 

14.25 2.6 8.2 
 

32.75 0.1 0.3 

14.75 0.4 1.3 
 

33.25 0.1 0.3 

15.25 0.1 0.3 
 

33.75 0.1 0.3 

15.75 1.65 5.2 
 

34.25 2.4 7.5 

16.25 1.85 5.8 
 

34.75 4.45 14.0 

16.75 2.35 7.4 
 

35.25 0.8 2.5 

17.25 2.8 8.8 
 

35.75 4.4 13.8 

17.75 2.1 6.6 
 

36.25 0.1 0.3 

18.25 1.4 4.4 

 

36.75 2.2 6.9 

18.75 0.1 0.3 

 

37.25 3.4 10.7 



 

77 

 

Line 106 

 

Line 106 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 0.1 0.3 
 

19.25 1.1 3.5 

1.25 0.1 0.3 
 

19.75 0.2 0.6 

1.75 0.1 0.3 
 

20.25 0.2 0.6 

2.25 0.15 0.5 
 

20.75 0.25 0.8 

2.75 0.4 1.3 
 

21.25 0.1 0.3 

3.25 0.1 0.3 
 

21.75 0.4 1.3 

3.75 0.1 0.3 
 

22.25 2.3 7.2 

4.25 0.1 0.3 
 

22.75 0.2 0.6 

4.75 0.1 0.3 
 

23.25 2.5 7.9 

5.25 0.1 0.3 
 

23.75 1.2 3.8 

5.75 0.2 0.6 
 

24.25 0.8 2.5 

6.25 0.1 0.3 
 

24.75 0.4 1.3 

6.75 1.0 3.1 
 

25.25 0.65 2.0 

7.25 0.1 0.3 
 

25.75 0.3 0.9 

7.75 0.1 0.3 
 

26.25 0.1 0.3 

8.25 0.1 0.3 
 

26.75 0.1 0.3 

8.75 0.9 2.8 
 

27.25 1.8 5.7 

9.25 0.1 0.3 
 

27.75 0.4 1.3 

9.75 0.55 1.7 
 

28.25 1.1 3.5 

10.25 0.1 0.3 
 

28.75 0.7 2.2 

10.75 0.1 0.3 
 

29.25 0.4 1.3 

11.25 0.6 1.9 
 

29.75 0.1 0.3 

11.75 0.1 0.3 
 

30.25 0.6 1.9 

12.25 0.4 1.3 
 

30.75 0.1 0.3 

12.75 0.1 0.3 
 

31.25 0.3 0.9 

13.25 0.1 0.3 
 

31.75 0.2 0.6 

13.75 0.4 1.3 
 

32.25 0.2 0.6 

14.25 1.1 3.5 
 

32.75 0.4 1.3 

14.75 0.15 0.5 
 

33.25 0.3 0.9 

15.25 0.1 0.3 
 

33.75 0.35 1.1 

15.75 1.2 3.8 
 

34.25 0.1 0.3 

16.25 0.2 0.6 
 

34.75 1.4 4.4 

16.75 0.1 0.3 
 

35.25 0.1 0.3 

17.25 0.5 1.6 
 

35.75 2.7 8.5 

17.75 0.1 0.3 
 

36.25 0.5 1.6 

18.25 0.7 2.2 

 

36.75 2.8 8.8 

18.75 0.3 0.9 

 

37.25 2.6 8.2 



 

78 

 

Line 107 

 

Line 107 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 0.1 0.3 
 

19.25 2.9 9.1 

1.25 0.5 1.6 
 

19.75 0.3 0.9 

1.75 0.5 1.6 
 

20.25 0.5 1.6 

2.25 0.6 1.9 
 

20.75 0.1 0.3 

2.75 1.6 5.0 
 

21.25 3.1 9.7 

3.25 1.4 4.4 
 

21.75 0.8 2.5 

3.75 0.1 0.3 
 

22.25 0.4 1.3 

4.25 0.5 1.6 
 

22.75 0.1 0.3 

4.75 0.3 0.9 
 

23.25 0.3 0.9 

5.25 0.4 1.3 
 

23.75 5.4 17.0 

5.75 0.3 0.9 
 

24.25 0.3 0.9 

6.25 0.4 1.3 
 

24.75 0.2 0.6 

6.75 0.4 1.3 
 

25.25 0.15 0.5 

7.25 0.5 1.6 
 

25.75 1.1 3.5 

7.75 0.8 2.5 
 

26.25 0.3 0.9 

8.25 0.1 0.3 
 

26.75 0.5 1.6 

8.75 0.5 1.6 
 

27.25 0.15 0.5 

9.25 0.5 1.6 
 

27.75 0.5 1.6 

9.75 0.4 1.3 
 

28.25 0.1 0.3 

10.25 0.5 1.6 
 

28.75 0.4 1.3 

10.75 0.3 0.9 
 

29.25 0.55 1.7 

11.25 0.1 0.3 
 

29.75 1.0 3.1 

11.75 0.1 0.3 
 

30.25 1.0 3.1 

12.25 0.6 1.9 
 

30.75 0.1 0.3 

12.75 0.7 2.2 
 

31.25 0.4 1.3 

13.25 0.2 0.6 
 

31.75 0.1 0.3 

13.75 0.5 1.6 
 

32.25 0.1 0.3 

14.25 0.8 2.5 
 

32.75 0.15 0.5 

14.75 2.1 6.6 
 

33.25 0.5 1.6 

15.25 0.4 1.3 
 

33.75 0.5 1.6 

15.75 0.2 0.6 
 

34.25 0.1 0.3 

16.25 0.2 0.6 
 

34.75 0.3 0.9 

16.75 0.1 0.3 
 

35.25 0.2 0.6 

17.25 0.4 1.3 
 

35.75 1.35 4.2 

17.75 2.5 7.9 
 

36.25 4.5 14.1 

18.25 1.8 5.7 

 

36.75 2.6 8.2 

18.75 0.4 1.3 

 

37.25 2.7 8.5 



 

79 

 

Line 108 

 

Line 108 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 0.6 1.9 
 

19.25 1.35 4.2 

1.25 0.4 1.3 
 

19.75 0.1 0.3 

1.75 0.6 1.9 
 

20.25 0.1 0.3 

2.25 0.1 0.3 
 

20.75 0.1 0.3 

2.75 0.4 1.3 
 

21.25 0.1 0.3 

3.25 0.5 1.6 
 

21.75 0.1 0.3 

3.75 0.7 2.2 
 

22.25 0.1 0.3 

4.25 0.3 0.9 
 

22.75 0.1 0.3 

4.75 0.8 2.5 
 

23.25 0.5 1.6 

5.25 0.3 0.9 
 

23.75 0.5 1.6 

5.75 1.2 3.8 
 

24.25 0.4 1.3 

6.25 1.1 3.5 
 

24.75 0.6 1.9 

6.75 1.1 3.5 
 

25.25 0.2 0.6 

7.25 0.5 1.6 
 

25.75 0.2 0.6 

7.75 0.9 2.8 
 

26.25 0.5 1.6 

8.25 0.1 0.3 
 

26.75 0.2 0.6 

8.75 0.5 1.6 
 

27.25 0.3 0.9 

9.25 2.4 7.5 
 

27.75 0.1 0.3 

9.75 0.55 1.7 
 

28.25 0.1 0.3 

10.25 1.9 6.0 
 

28.75 0.4 1.3 

10.75 0.15 0.5 
 

29.25 0.5 1.6 

11.25 0.3 0.9 
 

29.75 0.15 0.5 

11.75 0.7 2.2 
 

30.25 0.2 0.6 

12.25 0.3 0.9 
 

30.75 0.1 0.3 

12.75 0.4 1.3 
 

31.25 1.1 3.5 

13.25 0.85 2.7 
 

31.75 0.4 1.3 

13.75 0.8 2.5 
 

32.25 0.15 0.5 

14.25 0.35 1.1 
 

32.75 0.35 1.1 

14.75 0.5 1.6 
 

33.25 0.1 0.3 

15.25 0.2 0.6 
 

33.75 1.0 3.1 

15.75 2.0 6.3 
 

34.25 1.3 4.1 

16.25 5.9 18.5 
 

34.75 0.7 2.2 

16.75 0.1 0.3 
 

35.25 1.3 4.1 

17.25 0.1 0.3 
 

35.75 1.7 5.3 

17.75 2.7 8.5 
 

36.25 0.4 1.3 

18.25 0.1 0.3 

 

36.75 0.8 2.5 

18.75 0.1 0.3 

 

37.25 2.8 8.8 



 

80 

 

Line 109 

 

Line 109 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 0.1 0.3 
 

19.25 5.5 17.3 

1.25 5.15 16.2 
 

19.75 0.2 0.6 

1.75 0.8 2.5 
 

20.25 1.1 3.5 

2.25 1.5 4.7 
 

20.75 2.95 9.3 

2.75 0.7 2.2 
 

21.25 0.2 0.6 

3.25 0.1 0.3 
 

21.75 1.1 3.5 

3.75 0.35 1.1 
 

22.25 1.3 4.1 

4.25 1.2 3.8 
 

22.75 3.9 12.3 

4.75 0.75 2.4 
 

23.25 0.1 0.3 

5.25 1.35 4.2 
 

23.75 0.5 1.6 

5.75 0.9 2.8 
 

24.25 0.5 1.6 

6.25 0.8 2.5 
 

24.75 0.4 1.3 

6.75 0.3 0.9 
 

25.25 0.2 0.6 

7.25 0.6 1.9 
 

25.75 1.7 5.3 

7.75 2.6 8.2 
 

26.25 0.5 1.6 

8.25 6.0 18.8 
 

26.75 0.1 0.3 

8.75 0.35 1.1 
 

27.25 2.1 6.6 

9.25 3.5 11.0 
 

27.75 0.1 0.3 

9.75 0.7 2.2 
 

28.25 1.9 6.0 

10.25 4.4 13.8 
 

28.75 0.65 2.0 

10.75 0.1 0.3 
 

29.25 0.4 1.3 

11.25 4.65 14.6 
 

29.75 3.7 11.6 

11.75 1.8 5.7 
 

30.25 0.4 1.3 

12.25 0.5 1.6 
 

30.75 3.3 10.4 

12.75 1.65 5.2 
 

31.25 1.4 4.4 

13.25 0.6 1.9 
 

31.75 0.2 0.6 

13.75 4.3 13.5 
 

32.25 0.3 0.9 

14.25 0.3 0.9 
 

32.75 0.4 1.3 

14.75 2.6 8.2 
 

33.25 4.4 13.8 

15.25 2.2 6.9 
 

33.75 0.5 1.6 

15.75 2.1 6.6 
 

34.25 0.5 1.6 

16.25 3.2 10.1 
 

34.75 2.7 8.5 

16.75 8.7 27.3 
 

35.25 3.4 10.7 

17.25 0.2 0.6 
 

35.75 4.0 12.6 

17.75 0.8 2.5 
 

36.25 6.5 20.4 

18.25 3.2 10.1 

 

36.75 0.7 2.2 

18.75 0.5 1.6 

 

37.25 1.7 5.3 



 

81 

 

Line 110 

 

Line 110 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 0.7 2.2 
 

19.25 2.6 8.2 

1.25 0.2 0.6 
 

19.75 0.4 1.3 

1.75 0.5 1.6 
 

20.25 1.5 4.7 

2.25 0.8 2.5 
 

20.75 0.2 0.6 

2.75 0.2 0.6 
 

21.25 0.4 1.3 

3.25 0.1 0.3 
 

21.75 0.65 2.0 

3.75 0.5 1.6 
 

22.25 0.4 1.3 

4.25 0.1 0.3 
 

22.75 0.8 2.5 

4.75 0.7 2.2 
 

23.25 0.1 0.3 

5.25 1.0 3.1 
 

23.75 0.4 1.3 

5.75 0.2 0.6 
 

24.25 0.5 1.6 

6.25 2.0 6.3 
 

24.75 1 3.1 

6.75 0.5 1.6 
 

25.25 0.7 2.2 

7.25 0.5 1.6 
 

25.75 0.7 2.2 

7.75 0.55 1.7 
 

26.25 0.45 1.4 

8.25 0.2 0.6 
 

26.75 1.8 5.7 

8.75 0.5 1.6 
 

27.25 0.2 0.6 

9.25 0.1 0.3 
 

27.75 0.2 0.6 

9.75 1.65 5.2 
 

28.25 0.6 1.9 

10.25 0.2 0.6 
 

28.75 0.3 0.9 

10.75 3.2 10.1 
 

29.25 0.1 0.3 

11.25 0.7 2.2 
 

29.75 2.7 8.5 

11.75 1.0 3.1 
 

30.25 0.55 1.7 

12.25 1.1 3.5 
 

30.75 2.2 6.9 

12.75 0.2 0.6 
 

31.25 1.7 5.3 

13.25 0.1 0.3 
 

31.75 0.5 1.6 

13.75 2.5 7.9 
 

32.25 2 6.3 

14.25 0.6 1.9 
 

32.75 0.6 1.9 

14.75 0.4 1.3 
 

33.25 1 3.1 

15.25 1.0 3.1 
 

33.75 0.2 0.6 

15.75 0.1 0.3 
 

34.25 0.9 2.8 

16.25 1.8 5.7 
 

34.75 2.7 8.5 

16.75 0.3 0.9 
 

35.25 0.4 1.3 

17.25 0.6 1.9 
 

35.75 3.7 11.6 

17.75 0.8 2.5 
 

36.25 0.7 2.2 

18.25 0.1 0.3 

 

36.75 2.4 7.5 

18.75 6.2 19.5 

 

37.25 0.8 2.5 



 

82 

 

Line 111 

 

Line 111 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 0.8 2.5 
 

19.25 0.3 0.9 

1.25 2.0 6.3 
 

19.75 1.5 4.7 

1.75 0.7 2.2 
 

20.25 0.8 2.5 

2.25 0.8 2.5 
 

20.75 0.9 2.8 

2.75 0.4 1.3 
 

21.25 0.7 2.2 

3.25 0.2 0.6 
 

21.75 0.1 0.3 

3.75 0.6 1.9 
 

22.25 0.5 1.6 

4.25 0.8 2.5 
 

22.75 0.8 2.5 

4.75 0.7 2.2 
 

23.25 0.3 0.9 

5.25 0.8 2.5 
 

23.75 0.5 1.6 

5.75 0.5 1.6 
 

24.25 0.1 0.3 

6.25 0.7 2.2 
 

24.75 2.6 8.2 

6.75 1.1 3.5 
 

25.25 0.2 0.6 

7.25 0.85 2.7 
 

25.75 0.4 1.3 

7.75 1.4 4.4 
 

26.25 0.8 2.5 

8.25 0.6 1.9 
 

26.75 0.5 1.6 

8.75 1.15 3.6 
 

27.25 0.3 0.9 

9.25 1.1 3.5 
 

27.75 0.35 1.1 

9.75 1.55 4.9 
 

28.25 0.7 2.2 

10.25 0.4 1.3 
 

28.75 2.1 6.6 

10.75 0.1 0.3 
 

29.25 0.4 1.3 

11.25 0.2 0.6 
 

29.75 1.7 5.3 

11.75 0.9 2.8 
 

30.25 1.2 3.8 

12.25 0.9 2.8 
 

30.75 0.3 0.9 

12.75 1.0 3.1 
 

31.25 0.1 0.3 

13.25 0.9 2.8 
 

31.75 0.5 1.6 

13.75 0.4 1.3 
 

32.25 0.2 0.6 

14.25 0.8 2.5 
 

32.75 3.1 9.7 

14.75 0.2 0.6 
 

33.25 0.2 0.6 

15.25 0.3 0.9 
 

33.75 0.5 1.6 

15.75 0.5 1.6 
 

34.25 0.2 0.6 

16.25 0.5 1.6 
 

34.75 0.5 1.6 

16.75 0.1 0.3 
 

35.25 0.4 1.3 

17.25 0.15 0.5 
 

35.75 0.8 2.5 

17.75 2.0 6.3 
 

36.25 2.0 6.3 

18.25 1.0 3.1 

 

36.75 0.2 0.6 

18.75 0.8 2.5 

 

37.25 2.8 8.8 



 

83 

 

Line 112 

 

Line 112 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 0.15 0.5 
 

19.25 0.8 2.5 

1.25 0.8 2.5 
 

19.75 1.35 4.2 

1.75 0.1 0.3 
 

20.25 0.55 1.7 

2.25 0.4 1.3 
 

20.75 1.4 4.4 

2.75 0.65 2.0 
 

21.25 0.2 0.6 

3.25 0.1 0.3 
 

21.75 0.9 2.8 

3.75 0.3 0.9 
 

22.25 0.1 0.3 

4.25 0.3 0.9 
 

22.75 1 3.1 

4.75 0.5 1.6 
 

23.25 0.5 1.6 

5.25 0.3 0.9 
 

23.75 0.5 1.6 

5.75 0.7 2.2 
 

24.25 3.9 12.3 

6.25 0.3 0.9 
 

24.75 0.3 0.9 

6.75 0.3 0.9 
 

25.25 0.85 2.7 

7.25 0.3 0.9 
 

25.75 0.2 0.6 

7.75 0.6 1.9 
 

26.25 1.1 3.5 

8.25 1.1 3.5 
 

26.75 0.3 0.9 

8.75 1.4 4.4 
 

27.25 1.1 3.5 

9.25 0.1 0.3 
 

27.75 1.1 3.5 

9.75 0.2 0.6 
 

28.25 0.55 1.7 

10.25 0.7 2.2 
 

28.75 1.35 4.2 

10.75 0.55 1.7 
 

29.25 0.7 2.2 

11.25 0.4 1.3 
 

29.75 0.9 2.8 

11.75 0.1 0.3 
 

30.25 0.35 1.1 

12.25 0.8 2.5 
 

30.75 0.2 0.6 

12.75 0.9 2.8 
 

31.25 1.3 4.1 

13.25 0.1 0.3 
 

31.75 0.3 0.9 

13.75 0.7 2.2 
 

32.25 0.25 0.8 

14.25 0.5 1.6 
 

32.75 0.3 0.9 

14.75 0.1 0.3 
 

33.25 0.2 0.6 

15.25 0.8 2.5 
 

33.75 0.3 0.9 

15.75 5.4 17.0 
 

34.25 0.9 2.8 

16.25 2.6 8.2 
 

34.75 0.9 2.8 

16.75 0.7 2.2 
 

35.25 0.2 0.6 

17.25 0.6 1.9 
 

35.75 0.8 2.5 

17.75 1.5 4.7 
 

36.25 1.4 4.4 

18.25 0.4 1.3 

 

36.75 1.2 3.8 

18.75 0.8 2.5 

 

37.25 0.2 0.6 



 

84 

 

Line 113 

 

Line 113 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 0.4 1.3 
 

19.25 0.25 0.8 

1.25 3.5 11.0 
 

19.75 0.6 1.9 

1.75 0.9 2.8 
 

20.25 0.4 1.3 

2.25 6.2 19.5 
 

20.75 0.6 1.9 

2.75 0.55 1.7 
 

21.25 0.25 0.8 

3.25 0.3 0.9 
 

21.75 0.5 1.6 

3.75 0.4 1.3 
 

22.25 0.3 0.9 

4.25 0.65 2.0 
 

22.75 0.1 0.3 

4.75 0.55 1.7 
 

23.25 0.3 0.9 

5.25 0.1 0.3 
 

23.75 1.1 3.5 

5.75 0.1 0.3 
 

24.25 1.7 5.3 

6.25 1.9 6.0 
 

24.75 0.6 1.9 

6.75 0.4 1.3 
 

25.25 2.4 7.5 

7.25 0.5 1.6 
 

25.75 0.2 0.6 

7.75 0.1 0.3 
 

26.25 0.15 0.5 

8.25 2.1 6.6 
 

26.75 0.5 1.6 

8.75 0.3 0.9 
 

27.25 0.35 1.1 

9.25 0.5 1.6 
 

27.75 0.4 1.3 

9.75 0.3 0.9 
 

28.25 0.65 2.0 

10.25 1.3 4.1 
 

28.75 0.4 1.3 

10.75 0.1 0.3 
 

29.25 0.3 0.9 

11.25 0.5 1.6 
 

29.75 0.4 1.3 

11.75 0.2 0.6 
 

30.25 0.25 0.8 

12.25 0.5 1.6 
 

30.75 0.3 0.9 

12.75 2.1 6.6 
 

31.25 0.3 0.9 

13.25 0.25 0.8 
 

31.75 0.1 0.3 

13.75 5.1 16.0 
 

32.25 0.1 0.3 

14.25 0.6 1.9 
 

32.75 0.15 0.5 

14.75 5.5 17.3 
 

33.25 0.1 0.3 

15.25 0.2 0.6 
 

33.75 0.1 0.3 

15.75 0.8 2.5 
 

34.25 0.8 2.5 

16.25 0.1 0.3 
 

34.75 0.3 0.9 

16.75 0.3 0.9 
 

35.25 0.6 1.9 

17.25 0.5 1.6 
 

35.75 6.0 18.8 

17.75 0.4 1.3 
 

36.25 3.5 11.0 

18.25 0.9 2.8 

 

36.75 0.35 1.1 

18.75 0.4 1.3 

 

37.25 0.3 0.9 



 

85 

 

Line 114 

 

Line 114 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 0.2 0.6 
 

19.25 0.3 0.9 

1.25 0.1 0.3 
 

19.75 0.65 2.0 

1.75 0.1 0.3 
 

20.25 0.2 0.6 

2.25 0.2 0.6 
 

20.75 0.3 0.9 

2.75 0.9 2.8 
 

21.25 0.1 0.3 

3.25 0.1 0.3 
 

21.75 0.3 0.9 

3.75 0.6 1.9 
 

22.25 0.2 0.6 

4.25 0.65 2.0 
 

22.75 0.3 0.9 

4.75 0.5 1.6 
 

23.25 0.7 2.2 

5.25 0.7 2.2 
 

23.75 0.1 0.3 

5.75 0.7 2.2 
 

24.25 1.3 4.1 

6.25 0.35 1.1 
 

24.75 0.4 1.3 

6.75 1.1 3.5 
 

25.25 0.7 2.2 

7.25 0.5 1.6 
 

25.75 0.8 2.5 

7.75 1.25 3.9 
 

26.25 0.2 0.6 

8.25 0.4 1.3 
 

26.75 0.65 2.0 

8.75 0.1 0.3 
 

27.25 0.1 0.3 

9.25 0.2 0.6 
 

27.75 0.5 1.6 

9.75 0.2 0.6 
 

28.25 0.1 0.3 

10.25 0.5 1.6 
 

28.75 0.8 2.5 

10.75 0.5 1.6 
 

29.25 0.1 0.3 

11.25 0.5 1.6 
 

29.75 1.0 3.1 

11.75 0.6 1.9 
 

30.25 0.2 0.6 

12.25 0.2 0.6 
 

30.75 0.5 1.6 

12.75 0.4 1.3 
 

31.25 0.1 0.3 

13.25 0.1 0.3 
 

31.75 0.4 1.3 

13.75 0.4 1.3 
 

32.25 0.2 0.6 

14.25 0.3 0.9 
 

32.75 0.1 0.3 

14.75 0.2 0.6 
 

33.25 0.4 1.3 

15.25 0.1 0.3 
 

33.75 0.2 0.6 

15.75 0.6 1.9 
 

34.25 0.4 1.3 

16.25 0.1 0.3 
 

34.75 0.8 2.5 

16.75 0.7 2.2 
 

35.25 0.5 1.6 

17.25 0.4 1.3 
 

35.75 0.8 2.5 

17.75 0.5 1.6 
 

36.25 0.7 2.2 

18.25 0.2 0.6 

 

36.75 1.1 3.5 

18.75 0.5 1.6 

 

37.25 0.7 2.2 



 

86 

 

Line 115 

 

Line 115 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 0.5 1.6 
 

19.25 0.6 1.9 

1.25 0.8 2.5 
 

19.75 0.2 0.6 

1.75 0.4 1.3 
 

20.25 0.7 2.2 

2.25 0.5 1.6 
 

20.75 0.3 0.9 

2.75 2.7 8.5 
 

21.25 0.7 2.2 

3.25 0.4 1.3 
 

21.75 0.5 1.6 

3.75 2.9 9.1 
 

22.25 0.1 0.3 

4.25 0.4 1.3 
 

22.75 0.6 1.9 

4.75 2.0 6.3 
 

23.25 0.8 2.5 

5.25 0.6 1.9 
 

23.75 1.2 3.8 

5.75 0.1 0.3 
 

24.25 0.7 2.2 

6.25 0.1 0.3 
 

24.75 0.4 1.3 

6.75 0.1 0.3 
 

25.25 0.9 2.8 

7.25 0.9 2.8 
 

25.75 0.15 0.5 

7.75 0.8 2.5 
 

26.25 0.5 1.6 

8.25 2.8 8.8 
 

26.75 0.5 1.6 

8.75 0.3 0.9 
 

27.25 1.0 3.1 

9.25 0.55 1.7 
 

27.75 0.85 2.7 

9.75 3.1 9.7 
 

28.25 1.3 4.1 

10.25 0.4 1.3 
 

28.75 0.5 1.6 

10.75 0.1 0.3 
 

29.25 0.1 0.3 

11.25 0.5 1.6 
 

29.75 0.1 0.3 

11.75 0.45 1.4 
 

30.25 0.3 0.9 

12.25 0.4 1.3 
 

30.75 0.1 0.3 

12.75 0.45 1.4 
 

31.25 0.8 2.5 

13.25 0.9 2.8 
 

31.75 0.1 0.3 

13.75 0.3 0.9 
 

32.25 0.3 0.9 

14.25 0.7 2.2 
 

32.75 0.9 2.8 

14.75 1.8 5.7 
 

33.25 0.3 0.9 

15.25 0.4 1.3 
 

33.75 0.6 1.9 

15.75 0.5 1.6 
 

34.25 0.2 0.6 

16.25 0.4 1.3 
 

34.75 0.4 1.3 

16.75 0.4 1.3 
 

35.25 0.8 2.5 

17.25 0.3 0.9 
 

35.75 0.3 0.9 

17.75 0.1 0.3 
 

36.25 2.8 8.8 

18.25 0.65 2.0 

 

36.75 0.3 0.9 

18.75 0.5 1.6 

 

37.25 0.7 2.2 



 

87 

 

Line 116 

 

Line 116 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 7.2 22.6 
 

19.25 0.1 0.3 

1.25 0.3 0.9 
 

19.75 0.2 0.6 

1.75 1.9 6.0 
 

20.25 0.1 0.3 

2.25 1.7 5.3 
 

20.75 0.7 2.2 

2.75 0.2 0.6 
 

21.25 0.4 1.3 

3.25 0.8 2.5 
 

21.75 0.25 0.8 

3.75 0.4 1.3 
 

22.25 0.1 0.3 

4.25 0.3 0.9 
 

22.75 0.1 0.3 

4.75 0.3 0.8 
 

23.25 0.4 1.3 

5.25 0.8 2.5 
 

23.75 0.7 2.2 

5.75 0.5 1.6 
 

24.25 0.7 2.2 

6.25 0.4 1.3 
 

24.75 0.6 1.9 

6.75 0.25 0.8 
 

25.25 0.2 0.6 

7.25 0.3 0.9 
 

25.75 0.4 1.3 

7.75 0.25 0.8 
 

26.25 0.2 0.6 

8.25 0.1 0.3 
 

26.75 0.1 0.3 

8.75 0.35 1.1 
 

27.25 0.2 0.6 

9.25 3.2 10.1 
 

27.75 0.2 0.6 

9.75 0.5 1.6 
 

28.25 0.2 0.6 

10.25 0.2 0.6 
 

28.75 0.1 0.3 

10.75 0.1 0.3 
 

29.25 0.35 1.1 

11.25 0.3 0.9 
 

29.75 0.1 0.3 

11.75 1.0 3.1 
 

30.25 0.4 1.3 

12.25 0.4 1.3 
 

30.75 0.4 1.3 

12.75 0.25 0.8 
 

31.25 0.4 1.3 

13.25 0.1 0.3 
 

31.75 0.2 0.6 

13.75 0.4 1.3 
 

32.25 0.1 0.3 

14.25 0.1 0.3 
 

32.75 0.2 0.6 

14.75 0.25 0.8 
 

33.25 0.7 2.2 

15.25 2.1 6.6 
 

33.75 0.5 1.6 

15.75 0.3 0.9 
 

34.25 0.3 0.9 

16.25 0.1 0.3 
 

34.75 0.1 0.3 

16.75 0.2 0.6 
 

35.25 0.35 1.1 

17.25 0.3 0.9 
 

35.75 0.1 0.3 

17.75 0.1 0.3 
 

36.25 0.2 0.6 

18.25 1.7 5.3 

 

36.75 0.1 0.3 

18.75 0.2 0.6 

 

37.25 0.3 0.9 



 

88 

 

Line 117 

 

Line 117 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 0.8 2.5 
 

19.25 1.5 4.7 

1.25 0.8 2.5 
 

19.75 0.6 1.9 

1.75 1.8 5.7 
 

20.25 5.8 18.2 

2.25 2.6 8.2 
 

20.75 0.8 2.5 

2.75 1.0 3.1 
 

21.25 0.6 1.9 

3.25 0.1 0.3 
 

21.75 4.1 12.9 

3.75 5.2 16.3 
 

22.25 0.3 0.9 

4.25 0.8 2.5 
 

22.75 0.9 2.8 

4.75 1.9 6.0 
 

23.25 0.8 2.5 

5.25 0.2 0.6 
 

23.75 0.6 1.9 

5.75 2.4 7.5 
 

24.25 0.1 0.3 

6.25 0.1 0.3 
 

24.75 1.4 4.4 

6.75 0.3 0.9 
 

25.25 0.6 1.9 

7.25 0.1 0.3 
 

25.75 0.5 1.6 

7.75 0.4 1.3 
 

26.25 0.5 1.6 

8.25 1.3 4.1 
 

26.75 0.6 1.9 

8.75 0.8 2.5 
 

27.25 0.4 1.3 

9.25 1.8 5.7 
 

27.75 0.6 1.9 

9.75 0.2 0.6 
 

28.25 0.1 0.3 

10.25 2.2 6.9 
 

28.75 1.0 3.1 

10.75 0.1 0.3 
 

29.25 1.9 6.0 

11.25 3.1 9.7 
 

29.75 0.2 0.6 

11.75 0.2 0.6 
 

30.25 0.5 1.6 

12.25 1.5 4.7 
 

30.75 0.5 1.6 

12.75 0.8 2.5 
 

31.25 0.4 1.3 

13.25 16.1 50.6 
 

31.75 0.4 1.3 

13.75 0.1 0.3 
 

32.25 0.2 0.6 

14.25 2.0 6.3 
 

32.75 0.3 0.9 

14.75 7.2 22.6 
 

33.25 0.3 0.9 

15.25 0.6 1.9 
 

33.75 1.7 5.3 

15.75 0.4 1.3 
 

34.25 0.7 2.2 

16.25 1.0 3.1 
 

34.75 1.8 5.7 

16.75 0.6 1.9 
 

35.25 1.5 4.7 

17.25 0.8 2.5 
 

35.75 2.0 6.3 

17.75 2.3 7.2 
 

36.25 0.4 1.3 

18.25 0.7 2.2 

 

36.75 2.0 6.3 

18.75 0.8 2.5 

 

37.25 0.3 0.9 



 

89 

 

Line 118 

 

Line 118 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 2.2 6.9 
 

19.25 5.7 17.9 

1.25 0.3 0.9 
 

19.75 0.2 0.6 

1.75 2.1 6.6 
 

20.25 0.6 1.9 

2.25 8.2 25.8 
 

20.75 0.6 1.9 

2.75 1.2 3.8 
 

21.25 0.4 1.3 

3.25 7.3 22.9 
 

21.75 0.5 1.6 

3.75 0.5 1.6 
 

22.25 0.3 0.9 

4.25 1.9 6.0 
 

22.75 0.9 2.8 

4.75 10.6 33.3 
 

23.25 0.3 0.9 

5.25 0.3 0.9 
 

23.75 0.9 2.8 

5.75 2.0 6.3 
 

24.25 0.8 2.5 

6.25 4.2 13.2 
 

24.75 2.0 6.3 

6.75 0.2 0.6 
 

25.25 0.7 2.2 

7.25 5.8 18.2 
 

25.75 0.7 2.2 

7.75 1.0 3.1 
 

26.25 3.0 9.4 

8.25 1.2 3.8 
 

26.75 0.8 2.5 

8.75 1.4 4.4 
 

27.25 0.5 1.6 

9.25 0.6 1.9 
 

27.75 1.2 3.8 

9.75 2.3 7.2 
 

28.25 0.1 0.3 

10.25 0.6 1.9 
 

28.75 2.2 6.9 

10.75 8.6 27.0 
 

29.25 0.5 1.6 

11.25 1.3 4.1 
 

29.75 0.45 1.4 

11.75 15.9 50.0 
 

30.25 0.5 1.6 

12.25 0.6 1.9 
 

30.75 0.6 1.9 

12.75 0.8 2.5 
 

31.25 1.4 4.4 

13.25 0.2 0.6 
 

31.75 0.1 0.3 

13.75 0.6 1.9 
 

32.25 0.5 1.6 

14.25 0.8 2.5 
 

32.75 0.9 2.8 

14.75 0.9 2.8 
 

33.25 0.6 1.9 

15.25 1.5 4.7 
 

33.75 0.8 2.5 

15.75 1.0 3.1 
 

34.25 0.3 0.9 

16.25 3.1 9.7 
 

34.75 0.2 0.6 

16.75 1.3 4.1 
 

35.25 3.0 9.4 

17.25 2.4 7.5 
 

35.75 0.2 0.6 

17.75 0.1 0.3 
 

36.25 0.8 2.5 

18.25 2.8 8.8 

 

36.75 1.4 4.4 

18.75 0.2 0.6 

 

37.25 0.8 2.5 



 

90 

 

Line 119 

 

Line 119 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 0.7 2.2 
 

19.25 0.5 1.6 

1.25 1.1 3.5 
 

19.75 0.6 1.9 

1.75 1.4 4.4 
 

20.25 0.9 2.8 

2.25 2.5 7.9 
 

20.75 0.6 1.9 

2.75 7.2 22.6 
 

21.25 0.6 1.9 

3.25 0.1 0.3 
 

21.75 0.1 0.3 

3.75 0.8 2.5 
 

22.25 0.7 2.2 

4.25 1.4 4.4 
 

22.75 0.9 2.8 

4.75 0.7 2.2 
 

23.25 0.8 2.5 

5.25 0.4 1.3 
 

23.75 0.2 0.6 

5.75 0.4 1.3 
 

24.25 0.8 2.5 

6.25 0.8 2.5 
 

24.75 0.4 1.3 

6.75 0.7 2.2 
 

25.25 0.1 0.3 

7.25 1.9 6.0 
 

25.75 1.0 3.1 

7.75 0.9 2.8 
 

26.25 0.6 1.9 

8.25 0.7 2.2 
 

26.75 0.7 2.2 

8.75 1.0 3.1 
 

27.25 0.5 1.6 

9.25 0.3 0.9 
 

27.75 0.6 1.9 

9.75 1.0 3.1 
 

28.25 0.4 1.3 

10.25 1.0 3.1 
 

28.75 0.3 0.9 

10.75 0.6 1.9 
 

29.25 0.8 2.5 

11.25 1.4 4.4 
 

29.75 0.8 2.5 

11.75 0.3 0.9 
 

30.25 1.0 3.1 

12.25 0.8 2.5 
 

30.75 6.6 20.7 

12.75 0.8 2.5 
 

31.25 0.9 2.8 

13.25 0.4 1.3 
 

31.75 0.6 1.9 

13.75 0.4 1.3 
 

32.25 0.4 1.3 

14.25 0.3 0.9 
 

32.75 0.7 2.2 

14.75 0.3 0.9 
 

33.25 0.3 0.9 

15.25 0.5 1.6 
 

33.75 0.5 1.6 

15.75 0.4 1.3 
 

34.25 0.4 1.3 

16.25 0.2 0.6 
 

34.75 0.2 0.6 

16.75 1.2 3.8 
 

35.25 0.5 1.6 

17.25 0.4 1.3 
 

35.75 1.8 5.7 

17.75 0.3 0.9 
 

36.25 0.5 1.6 

18.25 0.1 0.3 

 

36.75 0.4 1.3 

18.75 0.3 0.9 

 

37.25 0.7 2.2 



 

91 

 

Line 120 

 

Line 120 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 0.8 2.5 
 

19.25 0.7 2.2 

1.25 0.8 2.5 
 

19.75 0.6 1.9 

1.75 0.5 1.6 
 

20.25 4.0 12.6 

2.25 0.3 0.9 
 

20.75 0.4 1.3 

2.75 0.7 2.2 
 

21.25 1.3 4.1 

3.25 2.8 8.8 
 

21.75 3.1 9.7 

3.75 1.0 3.1 
 

22.25 0.6 1.9 

4.25 0.5 1.6 
 

22.75 0.4 1.3 

4.75 0.7 2.2 
 

23.25 0.8 2.5 

5.25 2.2 6.9 
 

23.75 0.7 2.2 

5.75 0.6 1.9 
 

24.25 0.5 1.6 

6.25 0.2 0.6 
 

24.75 1.4 4.4 

6.75 0.6 1.9 
 

25.25 1.7 5.3 

7.25 0.7 2.2 
 

25.75 1.5 4.7 

7.75 0.7 2.2 
 

26.25 1.5 4.7 

8.25 2.2 6.9 
 

26.75 0.8 2.5 

8.75 0.6 1.9 
 

27.25 1.7 5.3 

9.25 0.6 1.9 
 

27.75 0.3 0.9 

9.75 0.6 1.9 
 

28.25 0.3 0.9 

10.25 0.9 2.8 
 

28.75 0.8 2.5 

10.75 1.0 3.1 
 

29.25 0.8 2.5 

11.25 1.3 4.1 
 

29.75 0.3 0.9 

11.75 0.6 1.9 
 

30.25 0.4 1.3 

12.25 0.8 2.5 
 

30.75 0.4 1.3 

12.75 0.3 0.9 
 

31.25 0.7 2.2 

13.25 0.4 1.3 
 

31.75 1.2 3.8 

13.75 0.5 1.6 
 

32.25 0.7 2.2 

14.25 0.8 2.5 
 

32.75 0.8 2.5 

14.75 1.6 5.0 
 

33.25 0.6 1.9 

15.25 3.8 11.9 
 

33.75 0.5 1.6 

15.75 0.3 0.9 
 

34.25 0.8 2.5 

16.25 0.5 1.6 
 

34.75 0.4 1.3 

16.75 4.6 14.5 
 

35.25 0.9 2.8 

17.25 0.4 1.3 
 

35.75 1.4 4.4 

17.75 0.8 2.5 
 

36.25 0.6 1.9 

18.25 1.4 4.4 

 

36.75 1.2 3.8 

18.75 0.5 1.6 

 

37.25 0.7 2.2 



 

92 

 

Line 121 

 

Line 121 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 6.8 21.4 
 

19.25 0.65 2.0 

1.25 1.3 4.1 
 

19.75 0.4 1.3 

1.75 2.8 8.8 
 

20.25 1.0 3.1 

2.25 0.2 0.6 
 

20.75 1.9 6.0 

2.75 0.7 2.2 
 

21.25 1.1 3.5 

3.25 2.8 8.8 
 

21.75 7.6 23.9 

3.75 0.8 2.5 
 

22.25 0.4 1.3 

4.25 0.65 2.0 
 

22.75 0.8 2.5 

4.75 0.3 0.9 
 

23.25 0.7 2.2 

5.25 0.5 1.6 
 

23.75 0.8 2.5 

5.75 0.8 2.5 
 

24.25 1.0 3.1 

6.25 1.7 5.3 
 

24.75 1.1 3.5 

6.75 0.6 1.9 
 

25.25 1.3 4.1 

7.25 0.4 1.3 
 

25.75 0.7 2.2 

7.75 0.2 0.6 
 

26.25 0.3 0.9 

8.25 0.6 1.9 
 

26.75 0.3 0.9 

8.75 0.6 1.9 
 

27.25 0.35 1.1 

9.25 1.0 3.1 
 

27.75 0.5 1.6 

9.75 0.5 1.6 
 

28.25 0.5 1.6 

10.25 1.1 3.5 
 

28.75 0.4 1.3 

10.75 0.5 1.6 
 

29.25 0.5 1.6 

11.25 1.7 5.3 
 

29.75 0.4 1.3 

11.75 0.6 1.9 
 

30.25 1.6 5.0 

12.25 3.6 11.3 
 

30.75 0.3 0.9 

12.75 0.2 0.6 
 

31.25 0.2 0.6 

13.25 0.2 0.6 
 

31.75 0.3 0.9 

13.75 0.5 1.6 
 

32.25 0.4 1.3 

14.25 5.0 15.7 
 

32.75 1.9 6.0 

14.75 0.5 1.6 
 

33.25 0.35 1.1 

15.25 0.5 1.6 
 

33.75 0.4 1.3 

15.75 0.3 0.9 
 

34.25 0.7 2.2 

16.25 0.7 2.2 
 

34.75 0.4 1.3 

16.75 0.6 1.9 
 

35.25 0.4 1.3 

17.25 0.5 1.6 
 

35.75 0.2 0.6 

17.75 0.7 2.2 
 

36.25 0.5 1.6 

18.25 0.5 1.6 

 

36.75 0.5 1.6 

18.75 2.2 6.9 

 

37.25 0.5 1.6 



 

93 

 

Line 122 

 

Line 122 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 0.7 2.2 
 

19.25 3.2 10.1 

1.25 0.7 2.2 
 

19.75 0.7 2.2 

1.75 1.4 4.4 
 

20.25 5.3 16.7 

2.25 0.2 0.6 
 

20.75 0.7 2.2 

2.75 1.4 4.4 
 

21.25 1.0 3.1 

3.25 0.7 2.2 
 

21.75 2.3 7.2 

3.75 0.7 2.2 
 

22.25 1.0 3.1 

4.25 0.5 1.6 
 

22.75 0.7 2.2 

4.75 1.1 3.5 
 

23.25 1.0 3.1 

5.25 0.6 1.9 
 

23.75 1.4 4.4 

5.75 2.7 8.5 
 

24.25 0.8 2.5 

6.25 0.8 2.5 
 

24.75 0.3 0.9 

6.75 0.4 1.3 
 

25.25 0.6 1.9 

7.25 0.5 1.6 
 

25.75 0.3 0.9 

7.75 0.5 1.6 
 

26.25 0.4 1.3 

8.25 0.5 1.6 
 

26.75 0.9 2.8 

8.75 0.1 0.3 
 

27.25 0.7 2.2 

9.25 0.7 2.2 
 

27.75 0.4 1.3 

9.75 0.4 1.3 
 

28.25 0.8 2.5 

10.25 0.8 2.5 
 

28.75 0.4 1.3 

10.75 0.65 2.0 
 

29.25 0.6 1.9 

11.25 0.4 1.3 
 

29.75 0.9 2.8 

11.75 0.80 2.5 
 

30.25 1.0 3.1 

12.25 0.9 2.8 
 

30.75 0.5 1.6 

12.75 0.8 2.5 
 

31.25 0.3 0.9 

13.25 2.1 6.6 
 

31.75 0.7 2.2 

13.75 1.6 5.0 
 

32.25 0.1 0.3 

14.25 0.7 2.2 
 

32.75 0.6 1.9 

14.75 0.5 1.6 
 

33.25 0.6 1.9 

15.25 0.4 1.3 
 

33.75 0.2 0.6 

15.75 3.0 9.4 
 

34.25 0.3 0.9 

16.25 0.6 1.9 
 

34.75 0.4 1.3 

16.75 2.6 8.2 
 

35.25 0.2 0.6 

17.25 0.7 2.2 
 

35.75 0.4 1.3 

17.75 4.5 14.1 
 

36.25 0.2 0.6 

18.25 0.7 2.2 

 

36.75 0.2 0.6 

18.75 0.4 1.3 

 

37.25 0.4 1.3 



 

94 

 

Line 123 

 

Line 123 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 0.1 0.3 
 

19.25 0.5 1.6 

1.25 0.7 2.2 
 

19.75 0.8 2.5 

1.75 1.1 3.5 
 

20.25 0.9 2.8 

2.25 0.5 1.6 
 

20.75 0.6 1.9 

2.75 4.5 14.1 
 

21.25 0.2 0.6 

3.25 0.3 0.9 
 

21.75 3.5 11.0 

3.75 0.4 1.3 
 

22.25 0.4 1.3 

4.25 0.1 0.3 
 

22.75 0.3 0.9 

4.75 0.5 1.6 
 

23.25 0.7 2.2 

5.25 0.3 0.9 
 

23.75 1 3.1 

5.75 0.6 1.9 
 

24.25 0.7 2.2 

6.25 0.7 2.2 
 

24.75 0.4 1.3 

6.75 0.1 0.3 
 

25.25 0.4 1.3 

7.25 0.6 1.9 
 

25.75 0.2 0.6 

7.75 0.7 2.2 
 

26.25 0.7 2.2 

8.25 0.4 1.3 
 

26.75 0.7 2.2 

8.75 0.3 0.9 
 

27.25 0.4 1.3 

9.25 0.4 1.3 
 

27.75 0.5 1.6 

9.75 0.8 2.5 
 

28.25 0.3 0.9 

10.25 0.6 1.9 
 

28.75 0.4 1.3 

10.75 1.1 3.5 
 

29.25 0.5 1.6 

11.25 0.7 2.2 
 

29.75 0.7 2.2 

11.75 0.2 0.6 
 

30.25 0.6 1.9 

12.25 0.4 1.3 
 

30.75 0.3 0.9 

12.75 0.6 1.9 
 

31.25 0.1 0.3 

13.25 0.8 2.5 
 

31.75 0.7 2.2 

13.75 1.1 3.5 
 

32.25 0.2 0.6 

14.25 0.9 2.8 
 

32.75 0.8 2.5 

14.75 0.1 0.3 
 

33.25 0.4 1.3 

15.25 0.4 1.3 
 

33.75 0.2 0.6 

15.75 0.6 1.9 
 

34.25 0.6 1.9 

16.25 0.4 1.3 
 

34.75 0.4 1.3 

16.75 0.1 0.3 
 

35.25 0.2 0.6 

17.25 1.0 3.1 
 

35.75 0.5 1.6 

17.75 0.4 1.3 
 

36.25 0.2 0.6 

18.25 0.2 0.6 

 

36.75 0.8 2.5 

18.75 0.4 1.3 

 

37.25 0.5 1.6 



 

95 

 

Line 124 

 

Line 124 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 0.7 2.2 
 

19.25 0.4 1.3 

1.25 0.9 2.8 
 

19.75 1 3.1 

1.75 1.9 6.0 
 

20.25 4.5 14.1 

2.25 2.6 8.2 
 

20.75 0.6 1.9 

2.75 0.1 0.3 
 

21.25 2.3 7.2 

3.25 1.6 5.0 
 

21.75 12.4 39.0 

3.75 0.8 2.5 
 

22.25 0.7 2.2 

4.25 0.5 1.6 
 

22.75 2.3 7.2 

4.75 0.5 1.6 
 

23.25 0.5 1.6 

5.25 0.3 0.9 
 

23.75 1.0 3.1 

5.75 0.7 2.2 
 

24.25 1.1 3.5 

6.25 1.8 5.7 
 

24.75 1.8 5.7 

6.75 0.7 2.2 
 

25.25 1.5 4.7 

7.25 0.3 0.9 
 

25.75 0.8 2.5 

7.75 0.3 0.9 
 

26.25 0.2 0.6 

8.25 0.4 1.3 
 

26.75 0.6 1.9 

8.75 0.2 0.6 
 

27.25 1.5 4.7 

9.25 0.1 0.3 
 

27.75 2.3 7.2 

9.75 0.7 2.2 
 

28.25 0.8 2.5 

10.25 0.3 0.9 
 

28.75 2.3 7.2 

10.75 0.5 1.6 
 

29.25 0.8 2.5 

11.25 1.1 3.5 
 

29.75 0.4 1.3 

11.75 1.5 4.7 
 

30.25 1.6 5.0 

12.25 0.5 1.6 
 

30.75 0.6 1.9 

12.75 1.5 4.7 
 

31.25 1.1 3.5 

13.25 8.5 26.7 
 

31.75 0.8 2.5 

13.75 0.3 0.9 
 

32.25 0.2 0.6 

14.25 1.0 3.1 
 

32.75 0.9 2.8 

14.75 2.8 8.8 
 

33.25 0.4 1.3 

15.25 0.4 1.3 
 

33.75 3.2 10.1 

15.75 3.4 10.7 
 

34.25 0.3 0.9 

16.25 1.3 4.1 
 

34.75 6.6 20.7 

16.75 3.5 11.0 
 

35.25 0.7 2.2 

17.25 0.7 2.2 
 

35.75 0.7 2.2 

17.75 7.1 22.3 
 

36.25 0.8 2.5 

18.25 0.8 2.5 

 

36.75 0.9 2.8 

18.75 1.9 6.0 

 

37.25 0.8 2.5 



 

96 

 

Line 125 

 

Line 125 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 1.2 3.8 
 

19.25 3.5 11.0 

1.25 0.9 2.8 
 

19.75 7.8 24.5 

1.75 4.0 12.6 
 

20.25 0.1 0.3 

2.25 0.7 2.2 
 

20.75 2.9 9.1 

2.75 3.8 11.9 
 

21.25 0.5 1.6 

3.25 2.5 7.9 
 

21.75 12.7 39.9 

3.75 1.5 4.7 
 

22.25 0.6 1.9 

4.25 1.5 4.7 
 

22.75 1.7 5.3 

4.75 0.5 1.6 
 

23.25 2.1 6.6 

5.25 0.7 2.2 
 

23.75 5.8 18.2 

5.75 0.3 0.9 
 

24.25 0.7 2.2 

6.25 0.9 2.8 
 

24.75 0.3 0.9 

6.75 0.6 1.9 
 

25.25 3.8 11.9 

7.25 3.9 12.3 
 

25.75 0.5 1.6 

7.75 0.1 0.3 
 

26.25 0.6 1.9 

8.25 1.0 3.1 
 

26.75 0.9 2.8 

8.75 0.8 2.5 
 

27.25 3.7 11.6 

9.25 0.4 1.3 
 

27.75 0.6 1.9 

9.75 3.4 10.7 
 

28.25 0.5 1.6 

10.25 0.7 2.2 
 

28.75 0.8 2.5 

10.75 0.5 1.6 
 

29.25 0.4 1.3 

11.25 1.0 3.1 
 

29.75 2.0 6.3 

11.75 1.4 4.4 
 

30.25 1.0 3.1 

12.25 1.1 3.5 
 

30.75 0.8 2.5 

12.75 1.1 3.5 
 

31.25 1.7 5.3 

13.25 2.4 7.5 
 

31.75 0.6 1.9 

13.75 0.3 0.9 
 

32.25 0.7 2.2 

14.25 3.4 10.7 
 

32.75 1.8 5.7 

14.75 5.2 16.3 
 

33.25 0.4 1.3 

15.25 0.4 1.3 
 

33.75 0.8 2.5 

15.75 5.0 15.7 
 

34.25 1.4 4.4 

16.25 2.3 7.2 
 

34.75 0.8 2.5 

16.75 1.1 3.5 
 

35.25 0.7 2.2 

17.25 0.4 1.3 
 

35.75 0.7 2.2 

17.75 1.0 3.1 
 

36.25 0.5 1.6 

18.25 3.8 11.9 

 

36.75 1.6 5.0 

18.75 0.3 0.9 

 

37.25 0.3 0.9 



 

97 

 

Line 126 

 

Line 126 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 0.8 2.5 
 

19.25 0.4 1.3 

1.25 0.1 0.3 
 

19.75 0.4 1.3 

1.75 0.1 0.3 
 

20.25 0.3 0.9 

2.25 0.1 0.3 
 

20.75 0.1 0.3 

2.75 0.1 0.3 
 

21.25 0.4 1.3 

3.25 0.1 0.3 
 

21.75 0.1 0.3 

3.75 0.1 0.3 
 

22.25 0.5 1.6 

4.25 0.4 1.3 
 

22.75 0.1 0.3 

4.75 0.1 0.3 
 

23.25 0.4 1.3 

5.25 0.1 0.3 
 

23.75 0.4 1.3 

5.75 0.1 0.3 
 

24.25 0.8 2.5 

6.25 0.2 0.6 
 

24.75 1.8 5.7 

6.75 0.5 1.6 
 

25.25 0.3 0.9 

7.25 0.4 1.3 
 

25.75 0.6 1.9 

7.75 0.4 1.3 
 

26.25 0.4 1.3 

8.25 0.2 0.6 
 

26.75 0.6 1.9 

8.75 0.1 0.3 
 

27.25 0.6 1.9 

9.25 0.2 0.6 
 

27.75 0.5 1.6 

9.75 0.1 0.3 
 

28.25 0.6 1.9 

10.25 0.3 0.9 
 

28.75 1.4 4.4 

10.75 0.1 0.3 
 

29.25 0.6 1.9 

11.25 0.6 1.9 
 

29.75 0.4 1.3 

11.75 0.5 1.6 
 

30.25 0.4 1.3 

12.25 0.2 0.6 
 

30.75 0.1 0.3 

12.75 0.1 0.3 
 

31.25 0.8 2.5 

13.25 0.3 0.9 
 

31.75 0.5 1.6 

13.75 0.4 1.3 
 

32.25 0.5 1.6 

14.25 0.1 0.3 
 

32.75 0.2 0.6 

14.75 0.1 0.3 
 

33.25 0.5 1.6 

15.25 0.1 0.3 
 

33.75 0.6 1.9 

15.75 0.1 0.3 
 

34.25 0.1 0.3 

16.25 0.8 2.5 
 

34.75 0.1 0.3 

16.75 0.1 0.3 
 

35.25 0.7 2.2 

17.25 0.5 1.6 
 

35.75 0.3 0.9 

17.75 0.2 0.6 
 

36.25 0.3 0.9 

18.25 0.6 1.9 

 

36.75 0.2 0.6 

18.75 0.1 0.3 

 

37.25 0.5 1.6 



 

98 

 

Line 127 

 

Line 127 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 0.2 0.6 
 

19.25 4.3 13.5 

1.25 0.2 0.6 
 

19.75 0.5 1.6 

1.75 0.9 2.8 
 

20.25 0.2 0.6 

2.25 0.5 1.6 
 

20.75 0.7 2.2 

2.75 0.1 0.3 
 

21.25 0.4 1.3 

3.25 0.5 1.6 
 

21.75 1.0 3.1 

3.75 1.6 5.0 
 

22.25 0.7 2.2 

4.25 0.5 1.6 
 

22.75 7.5 23.6 

4.75 0.3 0.9 
 

23.25 0.8 2.5 

5.25 0.2 0.6 
 

23.75 0.7 2.2 

5.75 1.6 5.0 
 

24.25 5.6 17.6 

6.25 2.9 9.1 
 

24.75 0.8 2.5 

6.75 0.8 2.5 
 

25.25 1.0 3.1 

7.25 0.5 1.6 
 

25.75 1.0 3.1 

7.75 0.4 1.3 
 

26.25 0.7 2.2 

8.25 0.4 1.3 
 

26.75 0.5 1.6 

8.75 0.3 0.9 
 

27.25 0.7 2.2 

9.25 0.1 0.3 
 

27.75 0.9 2.8 

9.75 0.4 1.3 
 

28.25 0.2 0.6 

10.25 0.1 0.3 
 

28.75 0.6 1.9 

10.75 0.2 0.6 
 

29.25 0.2 0.6 

11.25 0.7 2.2 
 

29.75 0.5 1.6 

11.75 0.6 1.9 
 

30.25 0.9 2.8 

12.25 0.2 0.6 
 

30.75 1.4 4.4 

12.75 1.0 3.1 
 

31.25 1.6 5.0 

13.25 0.2 0.6 
 

31.75 0.4 1.3 

13.75 1.2 3.8 
 

32.25 0.2 0.6 

14.25 0.7 2.2 
 

32.75 1.4 4.4 

14.75 0.8 2.5 
 

33.25 0.7 2.2 

15.25 0.7 2.2 
 

33.75 0.4 1.3 

15.75 0.9 2.8 
 

34.25 0.4 1.3 

16.25 0.5 1.6 
 

34.75 0.6 1.9 

16.75 5.0 15.7 
 

35.25 0.1 0.3 

17.25 0.6 1.9 
 

35.75 0.3 0.9 

17.75 0.7 2.2 
 

36.25 0.6 1.9 

18.25 0.9 2.8 

 

36.75 0.1 0.3 

18.75 0.4 1.3 

 

37.25 0.4 1.3 



 

99 

 

Line 128 

 

Line 128 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 0.5 1.6 
 

19.25 0.8 2.5 

1.25 8.0 25.1 
 

19.75 4.4 13.8 

1.75 0.2 0.6 
 

20.25 0.5 1.6 

2.25 2.2 6.9 
 

20.75 0.2 0.6 

2.75 0.5 1.6 
 

21.25 2.2 6.9 

3.25 3.8 11.9 
 

21.75 0.8 2.5 

3.75 0.5 1.6 
 

22.25 0.3 0.9 

4.25 1.6 5.0 
 

22.75 2.3 7.2 

4.75 0.7 2.2 
 

23.25 0.4 1.3 

5.25 0.3 0.9 
 

23.75 14.5 45.6 

5.75 0.6 1.9 
 

24.25 0.5 1.6 

6.25 0.8 2.5 
 

24.75 0.2 0.6 

6.75 0.4 1.3 
 

25.25 1.0 3.1 

7.25 1.0 3.1 
 

25.75 0.7 2.2 

7.75 0.3 0.9 
 

26.25 0.9 2.8 

8.25 1.8 5.7 
 

26.75 0.6 1.9 

8.75 0.4 1.3 
 

27.25 0.7 2.2 

9.25 1.1 3.5 
 

27.75 0.3 0.9 

9.75 0.6 1.9 
 

28.25 0.9 2.8 

10.25 0.1 0.3 
 

28.75 10.9 34.2 

10.75 0.1 0.3 
 

29.25 0.8 2.5 

11.25 0.8 2.5 
 

29.75 0.3 0.9 

11.75 0.6 1.9 
 

30.25 0.55 1.7 

12.25 0.6 1.9 
 

30.75 10.8 33.9 

12.75 0.8 2.5 
 

31.25 0.7 2.2 

13.25 0.6 1.9 
 

31.75 4.0 12.6 

13.75 0.8 2.5 
 

32.25 0.5 1.6 

14.25 7.2 22.6 
 

32.75 0.5 1.6 

14.75 0.5 1.6 
 

33.25 0.5 1.6 

15.25 0.4 1.3 
 

33.75 1.2 3.8 

15.75 3.3 10.4 
 

34.25 0.4 1.3 

16.25 0.4 1.3 
 

34.75 1.1 3.5 

16.75 0.6 1.9 
 

35.25 1.1 3.5 

17.25 1.1 3.5 
 

35.75 0.5 1.6 

17.75 0.9 2.8 
 

36.25 1.3 4.1 

18.25 0.2 0.6 

 

36.75 2.4 7.5 

18.75 0.7 2.2 

 

37.25 0.2 0.6 



 

100 

 

Line 129 

 

Line 129 

Distance Resistance 
Apparent 

Resistivity 

 

Distance Resistance 
Apparent 

Resistivity 

0.75 0.5 1.6 
 

19.25 0.9 2.8 

1.25 7.1 22.3 
 

19.75 0.6 1.9 

1.75 1.3 4.1 
 

20.25 0.7 2.2 

2.25 4.1 12.9 
 

20.75 3.5 11.0 

2.75 0.3 0.9 
 

21.25 1.2 3.8 

3.25 0.6 1.9 
 

21.75 1.8 5.7 

3.75 1.6 5.0 
 

22.25 1.8 5.7 

4.25 2.3 7.2 
 

22.75 2.9 9.1 

4.75 1.8 5.7 
 

23.25 0.5 1.6 

5.25 0.5 1.6 
 

23.75 4.3 13.5 

5.75 0.4 1.3 
 

24.25 0.6 1.9 

6.25 1.5 4.7 
 

24.75 0.9 2.8 

6.75 0.6 1.9 
 

25.25 0.8 2.5 

7.25 0.5 1.6 
 

25.75 0.7 2.2 

7.75 0.4 1.3 
 

26.25 0.9 2.8 

8.25 0.3 0.9 
 

26.75 1 3.1 

8.75 0.4 1.3 
 

27.25 0.3 0.9 

9.25 2.5 7.9 
 

27.75 0.3 0.9 

9.75 0.8 2.5 
 

28.25 1 3.1 

10.25 1.5 4.7 
 

28.75 1.2 3.8 

10.75 1.4 4.4 
 

29.25 7.8 24.5 

11.25 0.8 2.5 
 

29.75 1 3.1 

11.75 0.8 2.5 
 

30.25 1.5 4.7 

12.25 0.5 1.6 
 

30.75 4.5 14.1 

12.75 0.5 1.6 
 

31.25 0.3 0.9 

13.25 0.9 2.8 
 

31.75 2.2 6.9 

13.75 0.8 2.5 
 

32.25 0.9 2.8 

14.25 1.8 5.7 
 

32.75 1.3 4.1 

14.75 0.5 1.6 
 

33.25 1.1 3.5 

15.25 0.8 2.5 
 

33.75 0.8 2.5 

15.75 0.6 1.9 
 

34.25 1.1 3.5 

16.25 1.2 3.8 
 

34.75 0.8 2.5 

16.75 0.5 1.6 
 

35.25 0.7 2.2 

17.25 0.55 1.7 
 

35.75 0.4 1.3 

17.75 1.4 4.4 
 

36.25 1.5 4.7 

18.25 0.7 2.2 

 

36.75 8.3 26.1 

18.75 2 6.3 

 

37.25 0.9 2.8 
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APPENDIX C 

RAW MAGNETIC SUSCEPTIBILITY DATA 

Core 1 

Depth (m) Sample # Mass (g) Magnetic Susceptibility (m3/kg) 

0.0 1-1 7.346 3.86E-07 

0.05 1-2 8.967 4.13E-07 

0.10 1-3 5.7 4.57E-07 

0.15 1-4 5.419 4.66E-07 

0.20 1-5 7.801 3.76E-07 

0.25 1-6 3.675 3.55E-07 

0.30 1-7 10.37 2.99E-07 

0.35 1-8 11.078 3.40E-07 

0.40 1-9 11.705 2.99E-07 

0.45 1-10 10.409 2.55E-07 

0.50 1-11 12.78 2.31E-07 

0.55 1-12 13.104 2.66E-07 

0.60 1-13 9.927 2.43E-07 

0.65 1-14 4.702 3.35E-07 

0.70 1-15 10.344 2.82E-07 

0.75 1-16 2.842 3.35E-07 

0.80 1-17 10.723 2.13E-07 

0.85 1-18 4.411 2.29E-07 

0.90 1-19 7.243 3.44E-07 

0.95 1-20 5.32 3.56E-07 

1.00 1-21 8.181 3.28E-07 

1.05 1-22 8.344 2.78E-07 

1.10 1-23 3.996 3.61E-07 

1.15 1-24 8.103 3.01E-07 

1.20 1-25 9.016 2.86E-07 

1.25 2-1 4.595 3.14E-07 

1.30 2-2 9.46 2.70E-07 

1.35 2-3 9.221 2.74E-07 

1.40 2-4 7.899 3.05E-07 

1.45 2-5 6.053 3.16E-07 

1.50 2-6 12.469 2.29E-07 

1.55 2-7 7.137 2.80E-07 

1.60 2-8 13.544 2.77E-07 

1.65 2-9 6.98 9.44E-07 

1.70 2-10 13.768 2.35E-07 
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Core 1 continued 

Depth (m) Sample # Mass (g) Magnetic Susceptibility (m3/kg) 

1.75 2-11 7.585 3.35E-07 

1.80 2-12 5.382 2.17E-07 

1.85 2-13 7.812 2.55E-07 

1.90 2-14 6.159 3.05E-07 

1.95 2-15 6.862 1.84E-07 

2.00 2-16 5.955 2.29E-07 

2.05 2-17 8.812 4.05E-07 

2.10 2-18 9.637 2.08E-07 

2.15 2-19 10.141 2.07E-07 

2.20 2-20 11.885 1.90E-07 

2.25 2-21 11.412 1.76E-07 

2.30 2-22 13.247 1.99E-07 

2.35 2-23 7.614 2.58E-07 

2.40 3-1 9.059 2.29E-07 

2.45 3-2 9.073 2.67E-07 

2.50 3-3 6.631 2.77E-07 

2.55 3-4 8.016 2.75E-07 

2.60 3-5 4.071 2.96E-07 

2.65 3-6 11.007 1.93E-07 

2.70 3-7 3.993 2.72E-07 

2.75 3-8 3.343 3.20E-07 

2.80 3-9 12.535 3.03E-07 

2.85 3-10 8.4 4.57E-07 

2.90 3-11 4.7 2.52E-07 

2.95 3-12 4.923 2.63E-07 

3.00 3-13 5.445 2.91E-07 

3.05 3-14 8.325 2.14E-07 

3.10 3-15 7.276 3.07E-07 

3.15 3-16 6.1 2.33E-07 

3.20 3-17 8.01 2.73E-07 

3.25 3-18 7.618 2.34E-07 

3.30 3-19 11.238 2.45E-07 

3.35 3-20 10.505 2.36E-07 

3.40 3-21 7.911 2.60E-07 

3.45 3-22 4.573 2.96E-07 

3.50 3-23 5.74 2.57E-07 

3.55 4-1 9.119 2.23E-07 

3.60 4-2 6.893 2.66E-07 



 

103 

 

Core 1 continued 

Depth (m) Sample # Mass (g) Magnetic Susceptibility (m3/kg) 

3.65 4-3 8.839 2.30E-07 

3.70 4-4 5.508 2.72E-07 

3.75 4-5 8.743 2.49E-07 

3.80 4-6 6.567 3.11E-07 

3.85 4-7 14.1 2.38E-07 

3.90 4-8 11.252 2.39E-07 

3.95 4-9 9.793 2.02E-07 

4.00 4-10 8.218 1.96E-07 

4.05 4-11 5.883 4.22E-07 

4.10 4-12 10.931 2.78E-07 

4.15 4-13 13.25 2.72E-07 

4.20 4-14 4.641 2.47E-07 

4.25 4-15 9.112 2.59E-07 

4.30 4-16 6.76 2.73E-07 

4.35 4-17 11.32 2.62E-07 

4.40 4-18 6.249 3.01E-07 

4.45 4-19 8.193 3.74E-07 

4.50 4-20 6.141 3.37E-07 

4.55 4-21 5.599 2.98E-07 

4.60 4-22 7.363 2.90E-07 

4.65 4-23 9.522 1.89E-07 

4.70 4-24 4.427 3.17E-07 

4.75 4-25 12.749 2.33E-07 

4.80 5-1 6.033 2.86E-07 

4.85 5-2 9.637 2.23E-07 

4.90 5-3 9.991 2.61E-07 

4.95 5-4 8.818 2.46E-07 

5.00 5-5 8.05 2.21E-07 

5.05 5-6 13.044 2.38E-07 

5.10 5-7 6.513 2.15E-07 

5.15 5-8 11.867 2.50E-07 

5.20 5-9 9.648 2.05E-07 

5.25 5-10 5.347 1.84E-07 

5.30 5-11 5.8 2.12E-07 

5.35 5-12 6.09 2.34E-07 

5.40 5-13 5.141 2.42E-07 

5.45 5-14 9.556 2.32E-07 

5.50 5-15 12.004 2.14E-07 
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Core 1 continued 

Depth (m) Sample # Mass (g) Magnetic Susceptibility (m3/kg) 

5.55 5-16 5.406 2.64E-07 

5.60 5-17 8.479 2.55E-07 

5.65 5-18 8.956 2.41E-07 

5.70 5-19 7.031 2.61E-07 

5.75 5-20 9.537 2.84E-07 

5.80 5-21 7.188 2.91E-07 

5.85 5-22 8.934 2.64E-07 

5.90 5-23 8.848 1.96E-07 

5.95 5-24 5.658 2.29E-07 

6.00 6-1 4.739 2.88E-07 

6.05 6-2 3.071 2.70E-07 

6.10 6-3 9.808 2.11E-07 

6.15 6-4 3.643 2.93E-07 

6.20 6-5 2.771 3.31E-07 

6.25 6-6 4.936 2.19E-07 

6.30 6-7 9.2 2.82E-07 

6.35 6-8 9.119 2.73E-07 

6.40 6-9 4.805 1.88E-07 

6.45 6-10 7.31 2.57E-07 

6.50 6-11 6.844 2.21E-07 

6.55 6-12 4.957 2.33E-07 

6.60 6-13 6.42 2.73E-07 

6.65 6-14 9.049 2.20E-07 

6.70 6-15 11.37 1.31E-07 

6.75 6-16 4.309 2.73E-07 

6.80 6-17 10.119 2.05E-07 

6.85 6-18 5.621 2.67E-07 

6.90 6-19 8.291 2.26E-07 

6.95 6-20 9.515 1.95E-07 

7.00 7-1 3.952 2.66E-07 

7.05 7-2 3.769 2.31E-07 

7.10 7-3 8.927 1.30E-07 

7.15 7-4 3.45 2.30E-07 

7.20 7-5 8.563 3.49E-07 

7.25 7-6 6.08 2.79E-07 

7.30 7-7 3.342 3.20E-07 

7.35 7-8 6.726 2.29E-07 

7.40 7-9 14.234 1.48E-07 
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Core 1 continued 

Depth (m) Sample # Mass (g) Magnetic Susceptibility (m3/kg) 

7.45 7-10 11.46 1.94E-07 

7.50 7-11 11.73 2.98E-07 

7.55 7-12 6.376 2.78E-07 

7.60 7-13 4.254 2.74E-07 

7.65 7-14 3.925 3.01E-07 

7.70 7-15 5.332 2.23E-07 

7.75 7-16 9.918 2.05E-07 

7.80 7-17 5.876 2.34E-07 

7.85 7-18 4.229 2.92E-07 

7.90 7-19 3.827 2.65E-07 

7.95 7-20 12.29 2.43E-07 

8.00 7-21 4.794 3.03E-07 

8.05 7-22 7.249 3.07E-07 

8.10 7-23 7.964 3.36E-07 

8.15 7-24 5.799 2.32E-07 

8.20 8-1 6.749 2.25E-07 

8.25 8-2 5 2.54E-07 

8.30 8-3 7.547 2.77E-07 

8.35 8-4 6.459 2.39E-07 

8.40 8-5 8.676 2.33E-07 

8.45 8-6 9.667 2.52E-07 

8.50 8-7 8.961 2.28E-07 

8.55 8-8 4.633 2.83E-07 

8.60 8-9 7.488 2.83E-07 

8.65 8-10 5.731 2.99E-07 

8.70 8-11 4.251 3.45E-07 

8.75 8-12 11.116 2.72E-07 

8.80 8-13 3.671 3.93E-07 

8.85 8-14 3.591 3.15E-07 

8.90 8-15 3.945 3.24E-07 

8.95 8-16 4.935 2.98E-07 

9.00 8-17 3.709 3.49E-07 

9.05 8-18 2.741 3.10E-07 

9.10 8-19 8.557 2.67E-07 

9.15 8-20 4.376 2.66E-07 

9.20 8-21 6.908 2.29E-07 
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Core 1 continued 

Depth (m) Sample # Mass (g) Magnetic Susceptibility (m3/kg) 

9.25 8-22 5.185 2.66E-07 

9.30 8-23 4.723 2.76E-07 

9.35 8-24 5.721 1.70E-07 
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Core 2  

Depth (m) Sample # Mass (g) Magnetic Susceptibility (m3/kg) 

0.0 1-1 5.457 1.97E-07 

0.05 1-2 5.565 2.27E-07 

0.1 1-3 7.483 2.06E-07 

0.15 1-4 6.852 1.84E-07 

0.2 1-5 7.755 1.67E-07 

0.25 1-6 7.108 1.55E-07 

0.3 1-7 9.539 1.83E-07 

0.35 1-8 6.951 1.75E-07 

0.4 1-9 7.457 2.43E-07 

0.45 1-10 7.479 2.65E-07 

0.5 1-11 6.645 2.71E-07 

0.55 1-12 7.833 2.22E-07 

0.6 1-13 5.582 3.15E-07 

0.65 1-14 4.548 2.82E-07 

0.7 1-15 10.647 1.50E-07 

0.75 1-16 4.276 2.56E-07 

0.8 1-17 5.75 2.89E-07 

0.85 1-18 3.981 2.43E-07 

0.9 1-19 7.213 2.51E-07 

0.95 1-20 9.676 2.14E-07 

1.0 1-21 7.131 4.34E-07 

1.05 1-22 11.398 3.26E-07 

1.1 1-23 7.719 2.96E-07 

1.15 1-24 9.233 2.65E-07 

1.2 1-25 6.46 2.43E-07 

1.25 2-1 6.479 2.87E-07 

1.3 2-2 9.507 2.73E-07 

1.35 2-3 3.743 2.87E-07 

1.4 2-4 7.909 2.66E-07 

1.45 2-5 6.377 2.32E-07 

1.5 2-6 4.749 2.89E-07 

1.55 2-7 4.275 3.04E-07 

1.6 2-8 6.968 2.69E-07 

1.65 2-9 4.076 2.86E-07 

1.7 2-10 4.876 2.72E-07 

1.75 2-11 3.33 3.03E-07 
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Core 2 continued 

Depth (m) Sample # Mass (g) Magnetic Susceptibility (m3/kg) 

1.8 2-12 8.092 2.57E-07 

1.85 2-13 15.245 2.84E-07 

1.9 2-14 3.907 2.84E-07 

1.95 2-15 6.086 2.39E-07 

2.0 2-16 17.953 1.13E-07 

2.05 2-17 6.805 2.64E-07 

2.1 2-18 4.404 4.86E-07 

2.15 2-19 5.112 2.66E-07 

2.2 2-20 2.758 3.86E-07 

2.25 2-21 6.22 2.12E-07 

2.3 2-22 5.602 3.11E-07 

2.35 2-23 9.21 3.51E-07 

2.4 2-24 6.983 2.65E-07 

2.45 3-1 3.329 3.65E-07 

2.5 3-2 6.978 2.92E-07 

2.55 3-3 10.385 2.57E-07 

2.6 3-4 12.516 2.63E-07 

2.65 3-5 6.39 3.12E-07 

2.7 3-6 3.489 2.85E-07 

2.75 3-7 2.979 2.42E-07 

2.8 3-8 5.579 1.96E-07 

2.85 3-9 7.743 2.04E-07 

2.9 3-10 5.734 1.82E-07 

2.95 3-11 2.157 2.44E-07 

3.0 3-12 5.74 1.43E-07 

3.05 3-13 3.88 2.39E-07 

3.1 3-14 3.868 2.26E-07 

3.15 3-15 4.032 2.75E-07 

3.2 3-16 4.859 2.13E-07 

3.25 3-17 6.679 3.10E-07 

3.3 3-18 3.217 2.26E-07 

3.35 3-19 3.818 2.67E-07 

3.4 3-20 4.022 2.24E-07 

3.45 3-21 4.646 2.71E-07 

3.5 3-22 3.619 2.94E-07 

3.55 3-23 2.483 2.87E-07 

3.6 3-24 3.612 5.63E-07 
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APPENDIX D 

MAGNETIC SUSCEPTIBILITY ILLUSTRATIONS 

 

CORE 1 
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CORE 2 
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