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ABSTRACT 

 

        About three percent of all infants are born with a congenital defect each year ranging 

from minor variants to life threatening abnormalities. The investigation and treatment of 

these problems is both costly and emotionally trying for all involved. Finding their 

origins is a complex process.  Birth defects create the ultimate mystery in terms of trying 

to tease out the various influences created by the environment of both the infant and the 

mother.  Two genetically different individuals are simultaneously affected both by their 

individual makeup and by the outside world impacting the air they breathe, the food they 

eat, and the various stressors both big and small that are part of the world they live in.  

The availability of birth certificate data allows researchers to begin the process of sorting 

out the factors linked with birth defects.  This dissertation employs data from 2005 to 

2008 for live births occurring in the Baton Rouge Metropolitan Statistical Area (MSA). 

Geographic Information Systems (GIS) mapping, cluster analysis, spatial-temporal 

analysis, geographically weighted regression, and multilevel modeling were employed 

for the purpose of producing a baseline picture of the area in regard to the locations of 

mothers giving birth to infants with birth defects, the types and rates of those birth 

defects, and their correlates.  The Baton Rouge MSA proved to be typical in terms of 

rates of birth defects worldwide, however there were areas which exceeded expected 

overall rates and some clustering of certain types of defects.  Heart defects and 

hypospadias rates were slightly above anticipated percentages predicted by The U.S. 

Centers for Disease Control and Prevention.  Temporal analysis revealed increases in 

rates of several types of birth defects in 2006 and 2007 but there were not enough years 

to analyze these rates statistically.  Analysis of correlates did not reveal any models 
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which could be used to impact rates in the future.  However, this project provides 

baseline data on types and rates of birth defects and information on the best locations for 

services to affected families along with multiple opportunities for possible preventative 

efforts and future investigations of this area. 
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CHAPTER 1 OVERVIEW 

1.1 Introduction 

 

Birth defects are a leading cause of stillbirth and infant mortality in the U.S. Each 

year, approximately 3% of all infants in the U.S. are born with a congenital defect which 

is recognized by age 6 (Weinhold, 2009). Those birth defects may range from a minor 

variant to a life threatening medical problem (Mathews, Miniño, Osterman, Strobino, & 

Guyer, 2011). While infant mortality from disease and accidents has decreased in the 

U.S. over the last century, birth defects have become the leading cause of infant mortality 

(Petrini et al., 2002). There are poorly understood inequalities in infant health between 

white and minority groups in the U.S. which appear to contribute to these numbers 

(Cordero, Mulinare, Berry, & Boyle, 2010; Goldmuntz, Woyciechowski, Renstrom, 

Lupo, & Mitchell, 2008; Shin, Kucik, & Correa, 2007). In addition to the huge emotional 

toll on the individuals involved, the lifetime monetary costs for the family and the 

community are enormous. In the U.S., birth defects have accounted for over 139,000 

hospital stays a year, resulting in $2.6 billion in hospital charges (CDC, 2011a).  The 

problem of infant mortality and morbidity due to congenital defects can be attacked from 

both treatment and prevention angles.  Prevention is the best option, however researchers 

can identify a cause and effect connection for less than half of all known congenital 

anomalies (Schardein, 2000). Clues to avenues for prevention start with both alert 

clinicians and with sharing of information between locations.  Tracking where and when 

birth defects occur and who they affect provides important clues to preventing them. 

Geographic and ethnic disparities in birth defect incidence need to be recognized before 

they can be dealt with.  In addition, tracking allows for future comparison of outcomes so 
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that interventions can be assessed.  Analysis of birth defect data can help to identify 

factors that increase or decrease the risks for a particular community or pinpoint 

environmental concerns that need to be studied.   

A South Louisiana metropolitan area was chosen for this research due to both the 

lack of previous investigation of birth defects for this area and because the state has a 

poor track record for infant health.  As of 2009, the infant death rate in East Baton Rouge 

Parish was above the national average and above the state average at 10.1 per 1000 births 

(March of Dimes, 2013).  In addition or possibly in concert with this factor, Louisiana is 

ranked 49th in overall child health status and has high rates of smoking, obesity, and 

binge alcohol use, all risk factors for birth defects (United Health Foundation, 2011).  In 

Louisiana in 2008, the infant mortality rate due to birth defects was 150.7 per 100,000 

live births which accounted for 16.7 percent of infant deaths in the state (March of 

Dimes, 2013). East Baton Rouge Parish counted 156.4 per 100,000 for the same year, 

well above the average for the U.S. as a whole which had 135.3 per 100,000 (March of 

Dimes, 2013).  Parishes in the Metropolitan Statistical Area include Ascension, East 

Baton Rouge, East Feliciana, Iberville, Livingston, Pointe Coupee, St. Helena, West 

Baton Rouge, and West Feliciana Parishes. Data were gathered by the Louisiana Birth 

Defects Monitoring Network (LBDMN) from birth certificates in the nine parish area. 

Children were originally identified at birth by trained coders for the Louisiana Birth 

Defects Monitoring Network and later gathered through electronic birth certificate data.  

Data were available for live births occurring between the years 2005 and 2008 in all 

parishes except St. Helena, which had data available for only the years 2007 and 2008.   
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1.2 Research Questions   

  

Research Questions to be answered include the following: 1.What is the 

prevalence of birth defects individually and as a whole occurring in the Greater Baton 

Rouge Metropolitan Statistical Area?   No previous baseline can be found for the 

geographic distribution of birth defects for the state of Louisiana.  The metro area is a 

starting point for this mapping process.  A baseline will enable future comparisons.  2. 

Where are areas with higher (hot spots) or lower (cold spots) than expected numbers of 

birth defects overall and what are the possible reasons for these high risk or low risk 

areas?  There are at least two purposes for this question.  First, it is important to 

recognize areas of increased risk for the purposes of prevention and monitoring.  

Secondly, areas with larger numbers of children with birth defects should also have a 

greater number of health care professionals within that area.  Knowing where the need is 

greatest will allow for future facility planning which will best serve the community. 3. 

What are the spatial and temporal variations for the birth defects chosen for a more 

detailed analysis?  This exploration of temporal change provides two important pieces of 

information.  Initial patterns of peaks and troughs in birth defect rates may pinpoint 

possible connections between events occurring in a given year and particular birth defects 

if any exist.  These observations can serve as a starting point for future explorations.  

Secondly, the years after Hurricane Katrina are known to have caused a large amount of 

population movement back and forth between the Baton Rouge Metropolitan area and 

other cities and states (Kleinpeter, 2007). There is a possibility that a locational shift in 

the population of children with birth defects has occurred.  Knowledge of this shift is 

important both historically and for practical reasons. 
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It was not anticipated that there would be any unusual numbers of any particular 

birth defects in the data.  Generally, alterations in expected incidence are at least 

anecdotally noted by physicians in any particular geographic area.  This researcher could 

find no written indications of unusual numbers of any birth defect in the Baton Rouge 

MSA nor were any physicians verbally interviewed by the researcher aware of any such 

abnormalities.  The research literature related to birth defects correlates does indicate that 

there is frequently clustering around concentrations of poverty, low education levels, 

medically underserved areas, and high infant mortality rates in general.  Temporal 

changes in birth defect clusters were also expected due to the advent of Hurricane Katrina 

and the influx and the known resettling of the population during the study period (Sastry, 

2009).  While there were not enough years to statistically evaluate results, there is at least 

a baseline for the addition of future years. 

1.3 Justification And Significance Of The Study 

 

The methodology and study area are unique aspects of this dissertation.  The data 

for birth defect rates in Louisiana had not been explored in any detail previous to 2005 

when the Louisiana Department of Health and Hospitals (DHH) began to collect it by 

hand from hospital records through the newly formed LBDNM and in 2007, 

electronically from birth certificates.  This dissertation is an initial exploration of that 

data.  Another unique aspect of this dissertation is that along with the more common 

global methods of spatial epidemiology, a local method, geographically weighted 

regression (GWR) was also employed.  While this is a rarely used method in the area of 

birth defects investigations, it may be invaluable for the purposes of this dissertation 

because it is exploratory in nature.  GWR has the potential to reveal local variations and 
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relationships between birth defects and environment and also to bring to light previously 

unknown correlates.  These variations may be starting points for additional research to 

identify the individual and contextual factors that explain the local differences.  Chapter 2 

will expand on the reasons for choosing this method.  Finally, multilevel modeling was 

used to separate the effects of census tract variables on the outcome of individual risk for 

birth defects. 

1.4 Organization Of The Study 

 

This dissertation is organized into nine chapters.  Chapter one contains the 

introduction, research questions, and justification for the research.  Chapter two is a 

review of the literature including causes and correlates of birth defects and a discussion 

of geographically moderated aspects of maternal-infant health.  Next is a discussion of 

the development of birth defects surveillance systems and their structure, current status, 

and availability. Following that is a description of methods for maintaining privacy in 

geospatial displays and how these methods are applied.  Finally there is a review of the 

research on the categories of some specific birth defects, namely heart defects, trisomies, 

neural tube defects, cleft lip and palate, fetal alcohol syndrome, and hypospadias and also 

their known risk factors. Chapter three describes the data used in this dissertation and 

includes a justification for the use of both local and global methodologies which are 

employed to accomplish the research objectives. Chapter four presents the results of 

exploratory spatial analysis along with corresponding charts, tables, and illustrations for 

the purposes of communication and clarification.  Chapter five describes factors 

contributing to birth defects illustrated with charts and tables of bivariate correlations.  

Chapter 6 explores stepwise multiple regression analysis and the search for meaningful 
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models to explain variances in birth defect rates.  Chapter 7 is a discussion of the 

geographically weighted regression process and subsequent results and conclusions about 

this method as it is compared with stepwise regression results.  Maps and charts illustrate 

the results.  Chapter eight is the last step in the analyzing risk factors. Multilevel 

modeling with SAS software was used in an attempt to improve models and to separate 

group risk from individual risk.  Chapter nine is the final chapter and attempts to bring 

together the results into some sort of conclusive discussion and plan for future research 

into the area of environmental and individual risk factors for birth defects in the Baton 

Rouge MSA. 
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CHAPTER 2 REVIEW OF RELATED LITERATURE 

2.1 Contents Of The Chapter 

 

This chapter is a comprehensive review of topics relevant to birth defects and 

their spatial characteristics.  The history of birth defect surveillance systems, their current 

status, and the use of coding systems for the dissemination of information are discussed 

along with issues which may limit research in this area or make it more complex.  

Descriptions of the birth defects specifically selected for this research along with their 

rates, characteristics, and risk factors are provided.  Finally, there is a summary of risk 

factors related to birth defects as a whole and for individual categories of birth defects 

discussed in the dissertation. 

2.2 Birth Defects And Geography 

 

Birth defects, like many other medical issues or human activities, in general, are 

not randomly distributed across space and time.  The most obvious reasons for this are 

differences in birth rates.  Generally these rates are moderated by age structure of the 

population and the cultural conditions surrounding child bearing (Weinhold, 2009).  The 

likelihood of a particular congenital defect is related to a great number of individual, 

environmental, genetic, and cultural variables, thus as with any medical issue, we can 

find clues to etiology by using visual representations to locate areas where birth defects 

are overrepresented. Worldwide, there are differences in the prevalence of various birth 

defects related to specific genetic diseases common in a population, a variance in the 

frequency of births to older mothers, cultural norms related to consanguinity, and specific 

micronutrient deficiencies and infections related to availability of health care, food 

sources, and local customs (Durkin, 2002).  There are a number of possible explanations 



 

8 

 

for this discrepancy. For example, in the Middle East and in North Africa the birth defect 

rate is high compared to the rest of the world.  Some of this may be explained by the rate 

of consanguinity (as high as 70% in some areas) which leads to a higher than average rate 

of inherited metabolic disorders, and autosomal recessive traits (Saadallah & Rashed, 

2007). Worldwide, birth prevalence rates for congenital rubella syndrome in infants are 

estimated to be between 0.6 and 4.1 per 1000 live births with a wide variation depending 

on the vaccination policies of the country in question (CDC, 2010).  Another important 

correlate of birth defects is income, both that of a nation as a whole (gross national 

income) and that of an individual (socioeconomic status) and the surrounding community 

(American Public Health Association, 2006; Weinhold, 2009).  Low socioeconomic 

status (SES) as measured by education, household income, and unemployment is found to 

be linked to a number of different types of birth defects.  For example, Yang, Carmichael, 

Canfield, Song, & Shaw (2008)  explored multiple congenital defects in relationship to an 

index which included education levels, occupation, and SES and found that some specific 

heart defects were associated.  Wasserman, Shaw, Selvin, Gould, & Syme (1998) found 

connections between both individual SES and living in a low SES neighborhood with 

regard to neural tube defects. There do not appear to be any simple relationships between 

birth defects and SES, education, and employment status, but rather risk factors related to 

these influences are specific to certain birth defects. 

Some of the geographic variation in congenital defects may be highly individual, 

with the combination of global and local factors producing problems for one family but 

not another.  An example of this comes from the closely related field of infant mortality. 

Banerjee (2007) notes that initial research on geographic differences in infant mortality 
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rates showed strong relationships between socio-economic factors and infant deaths.  The 

availability of individual data in more recent research indicates that the relationship is 

quite complex.  Individual level factors interact with poverty rates and other aspects of 

socioeconomic status to present an even more varied outcome on a smaller scale. There is 

still much that is not known about the distribution and prevalence of birth defects because 

not all nations have registries. Even when registries are kept, there are differences in 

identification and coding.    

Mapping and analyzing the distribution of affected families is an important goal, 

not just for prevention but also for the provision of resources to these families.  Not all 

birth defects can be prevented; some are just statistical certainties that will happen in 

human reproduction.  For example, spontaneous mutations and aneuploidies such as 

trisomy 18 and trisomy 13 are not generally predictable (Archer, Langlois, Suarez, 

Brender, & Shanmugam, 2007).  For these children and their families interventions such 

as counseling, medical care, financial assistance, and genetic counseling can go a long 

way towards producing a healthy next pregnancy. Families need to have readily available 

resources that are affordable and approachable, not to mention culturally appropriate.  In 

addition, children with special needs may be more difficult to transport and require 

multiple visits with health care and intervention specialists.  Services should be placed 

strategically or be able to go to the family in need.  For those congenital defects which 

can be prevented or at least decreased through prenatal services, knowing where the need 

exists allows for careful targeting of cost-effective interventions such as preconceptional 

care, genetic counseling, family planning, immunizations, and drug and alcohol 

treatment. 
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2.3 Surveillance Systems 

 

Today, birth defects surveillance systems exist on both a national and on an 

international scale and are very active in collecting and disseminating information.  This 

process has allowed for breakthroughs in both prevention and treatment.  For example, 

surveillance programs have been able to document the effectiveness of folic acid 

supplementation for preventing neural tube defects (MMWR, 2004), and more recently to 

pinpoint differences in folic acid metabolism among genetic groups (Cordero et al., 

2010).  Widespread interest in birth defects surveillance was not generated until the 

Thalidomide tragedy in the early 1960’s. Between 1956 and 1962, over 10,000 babies 

were born with oddly foreshortened limbs, hands, and feet attached to the body like the 

flippers of seals, missing ears, and other birth defects, less visible but often deadly 

(Stevens & Brynner, 2001). The cause was the drug Thalidomide, a sedative often given 

to pregnant women with intractable morning sickness, especially in Europe.  Additional 

impetus for surveillance came in the form of an epidemic of German measles which 

caused more than 15,000 birth defects in the U.S. in 1965 and from the first infants born 

with genetic mutations from their parents’ exposure to radioactive fallout from the 

bombings of both Hiroshima and Nagasaki (Stevens & Brynner, 2001). The hope of 

preventing more tragedies resulted in the first monitoring and reporting systems.  One of 

the oldest is the Metropolitan Atlanta Congenital Defects Program (MACDP), created in 

1967 as a result of the Thalidomide epidemic.  Since its inception, MACDP has served as 

a resource for the development of new programs by providing training and procedures for 

birth defect surveillance across the U.S. and internationally (Correa-Villasenor et al., 

2003). 
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In the U.S., the Birth Defects Prevention Act of 1998 authorized the CDC to 

collect, analyze, and make available data on birth defects, operate regional centers to 

conduct applied epidemiologic research for the prevention of birth defects, and provide 

the public with information on birth defects.  This allowed states the support and funding 

needed to establish their own surveillance plans (Meaney, 2001). The actual planning and 

carrying out of surveillance systems in the U.S. has been a gradual process.  It has been 

sixteen years since the act was put into place but some states are still in the beginning 

stages of program development or have not started programs.  According to the National 

Birth Defects Prevention Network (National Center on Birth Defects and Developmental 

Disabilities, 2010), all states except Montana, Oregon, and Pennsylvania have tracking in 

place.  Louisiana first began a task force in 1999 and began collecting data in 2005 

(National Center on Birth Defects and Developmental Disabilities, 2010).  Funding for 

tracking birth defects has been limited, however by 2011, expansion had reached 80% of 

all births in the state (Hicks, J. personal communication, 2/18/2011). Internationally there 

are programs designed to collect birth defects surveillance information on a broader 

scale.  For example, the International Clearinghouse for Birth Defects Surveillance and 

Research, affiliated with the World Health Organization, brings together birth defect 

surveillance and research programs from around the world.  The Metropolitan Atlanta 

Congenital Defects Program participates in this effort (Byrne, 2011). European 

Surveillance of Congenital Anomalies (EUROCAT) is an organization of European 

countries which uses surveillance to identify and ameliorate birth defects (EUROCAT, 

2011). This organization covers about 29% of the European Union. Others include the 

Chinese Birth Defects Monitoring Program (CBDMS) and the Latin American 
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Collaborative Study of Congenital Malformations (LACSCM) (Bale, 2003). The sharing 

of data and discovery between these researchers has, and will continue to contribute to 

prevention and treatment of congenital defects.  The World Health Organization has 

published an atlas of birth defects in an attempt to bring together the knowledge of 

different registries(figure 1) for comparison and research (WHO, 2003).   

 
Figure 1: Nations With Active Birth Defect Registries In Place Represented in Red 

 

While there is still much to be discovered about human birth defects, the collected 

research of both national and international programs has provided enough information on 

the most common types of birth defects to provide an estimate for average risk for 

different diagnoses.  In addition, we have enough knowledge of etiology and variation 

among different age and ethnic groups to make some initial hypotheses. The interaction 

between baby, mother, and environmental and genetic factors provides an almost infinite 

number of possibilities for the exact etiology of anomalies in the fetus.  Past research has 

indicated that approximately 20% of birth defects are the result of genetic or 
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chromosomal factors, 10% may arise from environmental factors, and the other 70% are 

unknown, or a combination of the two (Boslaugh, 2008).  Even when the cause is known, 

sometimes the process by which the malformation occurs remains a mystery.  The same 

teratogens can cause harm to one baby and pose no threat at all to another.  For example, 

not all fetuses exposed to Thalidomide were injured, even when the exposure occurred 

during the same stage of pregnancy.  In addition, the babies were born with different birth 

defects from the same exposure agent (Stevens & Brynner, 2001) which is indicative of 

the true complexity of fetal/maternal/environmental factors in the development of the 

human fetus.   

2.4 Transient Parents And Other Research Issues 

 

Spatial analysis of congenital anomalies involves the consideration of two 

separate environments, the environment of the mother prior to and during pregnancy and 

the environment of the fetus that the mother is carrying.  The complex interaction of these 

two environments is also moderated by genetic susceptibility of the mother and the infant 

to teratogens, the amount of exposure to any influences in the environment, and the 

precise timing of exposure during fetal development (Holmes, 2011).  An additional 

difficulty is the possibility that the mother has moved between pregnancy and the time 

that the address is recorded for the database.  This is an important issue in determining 

exposure to teratogens. Several researchers have investigated this issue as a possible 

cause of misclassification (Fell, Dodds, & King, 2004; Miller, Siffel, & Correa, 2010; G. 

Shaw & Malcoe, 1992) Mothers who moved tended to do so in the second trimester (after 

primary organogenesis is complete) and to be most at risk for health and social issues 

(Fell et al., 2004).  The women were also most likely to remain in the same county 
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(Miller et al., 2010). For exploration of smaller residential areas, such as census tracts, 

this might be a confounding issue for exposure to teratogens.  In cases unrelated to a 

specific toxin, however, the issue of maternal mobility is not severe enough to discount 

the use of data as it appears that the majority of movement occurs in the same geographic 

area (Miller et al., 2010). Those who did move during pregnancy were likely to be 

younger, have an unplanned pregnancy, and more likely to be smokers, which are all risk 

factors for some birth defects (Miller et al., 2010). No data is currently available on 

address changes for the research population other than as a whole for the 2010 census. 

Caution regarding environmental risk assignment and a closer look at the mobility of a 

research population would be advisable. 

Birth defects occur according to the stage of pregnancy in which something goes 

awry in organ or tissue formation.  This is important because many processes are 

occurring at the same time in fetal development.  For example, a teratogen affecting eye 

formation is also likely to affect ear and heart development as all of these organs are 

forming at the same time.  A child exposed to German measles in the first trimester often 

has several anomalies including blindness, deafness, and heart defects (March of Dimes, 

2011).  For this reason, birth defects sometimes come in multiples in the same infant.  

Other reasons for multiple anomalies include the occurrence of syndromes.  The use of 

the term ‘syndrome’ implies that the anomalies have a common known cause and that 

they form a specific diagnosis.  Generally, syndromes are well researched and the 

outcomes for the infant or fetus and the risk of recurrence are generally known (NBDPN, 

2004b).  A sequence, on the other hand, is a series of anomalies which occur in a 

cascading fashion because of the first defect.  For example, Potter sequence occurs when 
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there is insufficient amniotic fluid due to kidney anomalies.  The lack of fluid leads to 

abnormal limb positioning and poor lung development so it is expected that all of these 

problems to occur together in a child with kidney malformation (NBDPN, 2004b).  This 

is an important research issue for GIS mapping and analysis. According to the National 

Birth Defects Monitoring Program (NBDPN, 2004a), the researcher should be careful to 

count each anomaly separately but count the infant only one time.  Which count is the 

focus, of course, depends on what is being investigated.  International birth defects 

registries vary substantially in how birth defects are classified and where the data are 

obtained.  They also vary considerably in the accuracy of the data presented.  For 

example, conditions which vary from very mild to very severe, such as hypospadias, may 

or may not be recognized in their milder forms, whereas very severe conditions such as 

Gastroschesis, are unlikely to be missed in the recording process (WHO, 2003). This 

should be taken into account when using birth data.  The registry used for this paper does 

not include miscarriages and stillborn babies, however many registries do use this data.  

Often the data is separated into categories to make comparisons more accurate. The 

difficulty with measuring anomalies in non-live births is the widely varying definition of 

a stillborn.  Stillbirth may be assigned at 16, 20, or 28 weeks of gestation or by birth 

weight limits of either 500 or 1,000 grams (WHO, 2003).  For the sake of choosing 

appropriate expected rates for birth defects, every effort was made to separate live from 

non-live births for comparison with data from the research area for this dissertation 

2.5 Privacy 

 

While it is best to obtain data with the most exact address possible for accuracy, it 

is also important to consider the privacy of a family with an affected child.  The Health 
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Insurance Portability and Accountability act (HIPPA) laws enacted in the U.S. in 1996 

made the security of health care data a legal issue under Public Law 104-191 (DHH, 

2011). Statistical data in text format may be protected either by limiting access in the first 

place to specifically approved users, or by the elimination of personal identifiers.  Under 

the HIPPA privacy rule, covered entities may determine that health information is not 

individually identifiable in either of two ways. Namely, by using statistical verification to 

establish de-identification or by removing certain pieces of information from each record 

as specified in the rule (HHS, 2011; NIH, 2011).  Identifiers may include names, birth 

dates, hospital discharge dates, phone, fax, and e-mail addresses, unique personal account 

and social security numbers, fingerprint, voice print, and photographs. Removal or 

masking of these types of identifiers is generally considered sufficient to protect 

individual privacy (NIH, 2011). 

The more difficult problem is how to maintain privacy in geospatial displays such 

as GIS maps which may not have personal identifiers but might possibly reveal the 

location of an individual with a medical issue.  Both statistical and locational 

confidentiality must somehow be maintained in an age of online access to nearly 

everything.  In addition, the researcher is obliged to balance both the privacy of the 

individual and the rights of the community to know about an issue directly affecting 

health and wellbeing.  Attention to maintaining privacy in the use of geospatial data is 

essential due to both the universal availability of internet technology and of GIS 

technology.  Geospatial data can be easily re-engineered to reveal the exact locations of 

individual data points (Curtis, Mills, Augustin, & Cockburn, 2011; Curtis, Mills, & 

Leitner, 2006). For example, a latitude-longitude coordinate can lead to re-identification 
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of an address through publicly available property records, property tax maps, etc. by 

simply linking the two data sets together (Curtis, Mills, & Leitner, 2006).    

As a result of these privacy risks restrictions may take a couple of forms.  Data  

may be provided to the researcher already stripped of identifiers and with requested 

analysis complete (Boulos, Qiang, Padget, & Rushton, 2005).  Alternately, publication 

may be limited to aggregation units which disguise individual information at an 

acceptable level. For example,  the U.S. National Center for Health Statistics requires that 

aggregation units have a population of 100,000 people (NCHS, 2004). In many cases, 

however, it is up to the researcher to demonstrate relationships between micro data 

visually while still maintaining an adequate level of confidentiality.  Common techniques 

include the use of some form of ‘masking’ such as transforming original records, 

aggregation of data, or removal of certain reference layers. (Armstrong, Rushton, & 

Zimmerman, 1999).  An alternate method of masking data is to use spatial manipulation 

of the location, which allows for a scale change or rotation of the point data on the two 

dimensional map surfaces, thereby preserving the appearance of clusters or other 

phenomena of interest while preventing the data from being re-identified (Curtis et al., 

2006; Leitner & Curtis, 2004, 2006; Rushton et al., 2008). All of these methods present a 

balancing act between accuracy and privacy.  Aggregation of data into previously defined 

administrative units such as census blocks, zip codes, or counties is convenient and 

generally prevents privacy violations, however artificial boundaries run the risk of hiding 

truly important phenomena better detected by point data (Meliker, Jacquez, Goovaerts, 

Copeland, & Yassine, 2009; Rengert & Lockwood, 2009).  In the case of this 

dissertation, data is stripped of individual identifiers and data about income level, 
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education, and mobility are aggregated to census tract level, zip code, or parish groups. 

Any release of this document and its information will be restricted and approved by the 

Louisiana Department of Health and Hospitals. 

2.6 Categorization 

 

A coding and categorization plan is necessary for the aforementioned surveillance 

systems to not only collect and use information about birth defects but also to share that 

information with other systems. Characteristics of coding systems vary according to 

which one of the many available alternatives is used and also by the characteristics of the 

cases included. This is important to note when comparing data between programs.  If one 

system includes stillborn, miscarried, and aborted infants and another only includes live 

born infants, the results will obviously vary considerably. In addition, a program may 

choose to maintain records only on structural defects or may include other health 

problems such as inborn errors of metabolism. All of this being equal, what system is 

used for coding, and who does that coding will seriously impact the results of any 

statistics gathered (Cunniff et al., 1994; Wang, Gabos, Sibbald, & Lowry, 2001). 

   Coding systems need to accommodate the objectives of the surveillance 

program, whether that is research, service provision, or possibly both.  Specific codes are 

assigned to medical information, based on a standardized classification scheme. Over 

time, medical communities, including the World Health Organization have developed the 

International Classification of Diseases (ICD) in order to coordinate classification efforts 

and promote a standardized classification system for organizing coded data (NBDPN, 

2004a). Unfortunately, this coding system is not the most useful for coding birth defects. 

The CDC instead adopted the system of the British Pediatric Association which had been 
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modified specifically for the coding of birth defects (NBDPN). This specialized 6-digit 

CDC code allows for more specific categorization with an extra level of detail provided 

by a 6th digit (Wyszynski, 2006b).  Whatever the coding system or level of care with 

which it is applied, errors are common and should be accounted for (Callif-Daley, 

Huether, & Edmonds, 1995). 

  The categories of birth defects tracked by the CDC and the LBDMN  include 

central nervous system disorders, eye, ear, and orofacial defects, musculoskeletal, 

genitourinary, and gastrointestinal disorders, chromosomal defects, and those caused by 

teratogens such as alcohol and drugs (NBDPN, 2004a).  Within these categories, some of 

the most common congenital anomalies include heart defects, neural tube defects, cleft 

lip and palate, trisomy 21, and hypospadias.  These birth defects were chosen for more 

specific spatial and temporal analysis due to the following factors 

 Generally apparent and diagnosable at birth 

 

 Coding well-agreed upon and unlikely to cause differences between physicians 

 

 Common enough to have measurable frequency and not so rare that a family is 

likely to be in danger of a privacy violation 

 

Descriptions and epidemiological information regarding these birth defects and other 

important congenital anomalies are discussed in the following sections. 

2.7 Heart Defects 

 

About 15% of infants with birth defects have a heart anomaly.  In the longest 

follow ups about  0.9 % of all infants are diagnosed with some type of heart defect 

(Zierler, 1985).  They are one of the most common birth defects in humans (Holmes, 

2010). The heart is one of the first organs to form, even before most women are aware of 
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a pregnancy. It is already beating and pumping blood by the 24th day of gestation 

(Blackburn, 2007). The valves, chambers, and pacemakers must be laid down and put to 

work before much of the baby is able to form. Any disturbance in the complicated 

process may cause a variety of problems ranging from minor differences in the 

development to life threatening defects or miscarriage (Blackburn, 2007). Heart defects 

may be caused by genetics, environment, or a combination of both and in fact there are 

unexplained differences in occurrence rates between ethnic groups.  One type of heart 

defect, teratology of fallot, is more common in African American babies and another type 

of heart defect, hypoplastic left heart syndrome, is significantly lower in Hispanic babies 

(Canfield et al., 2006).  It is not known whether this is caused specifically by genetic 

differences or by some complex combination of factors. 

Between 5% and 8% of congenital heart defects occur in concert with trisomy 21, 

trisomy 18, and trisomy 13.  Trisomy 21 is the most common of these.  There are a 

number of chromosomal abnormalities which cause defects in the vessels leading to the 

heart or in the way the blood flows between the chambers of the heart.  Genetic 

counseling is the only way to prevent these types of heart defects.  Sometimes the genetic 

mutations occur during fetal development and therefore cannot be prevented or predicted.  

In the past, a common cause of heart defects in the U.S. was rubella (German measles) in 

the first trimester of pregnancy. Since the advent of widespread rubella vaccination, this 

is now an extremely rare cause of birth defects in the U.S.  Only 68 cases of rubella and 5 

cases of congenital rubella syndrome were reported to the CDC for the entire U.S. 

between 2001 and 2005 (Averhoff et al., 2006).  The virus may cause miscarriage, 

stillbirth, blindness, and deafness in addition to heart anomalies.  Populations without 
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adequate vaccination programs or postnatal care which includes testing for rubella 

immunity may be susceptible. For this reason, women in the U.S. are routinely tested for 

immunity to the virus postpartally and vaccinated if they are not immune. The highest 

risk population in the United Stated for congenital rubella are Latin American immigrants 

(Averhoff et al., 2006). Continued careful attention to ongoing vaccination is necessary to 

prevent a new epidemic (Reef & Cochi, 2006).    

There are several other known risk factors for heart defects in infants, including 

viral infections, especially those causing fever (Czeizel, Puho, Acs, & Banhidy, 2007), 

fetal exposure to alcohol (Burd, Klug, Li, Kerbeshian, & Martsolf, 2010), and some 

medications such as Paroxetine, and Bupropion (Alwan et al., 2010).  Folic acid 

deficiency has been associated with a number of birth defects including heart anomalies. 

Recently, studies have shown that the risk of heart defects may be reduced with 

appropriate folic acid intake(Alwan et al., 2010).  Variations in the amount of folic acid 

needed for protection from neural tube defects and heart defects may be due to 

genetically moderated differences in metabolism (Goldmuntz et al., 2008; Lupo, 

Mitchell, & Goldmuntz, 2011).   

 A particularly difficult issue in pregnancy is the treatment of chronic diseases 

such as diabetes and seizure disorders.  Diabetes is difficult to manage during pregnancy 

and blood sugar may not be as well controlled as prior to pregnancy (Boinpally & 

Jovanovič, 2009).  Uncontrolled blood sugar is a specific risk for heart defects in infants.  

For women with pre gestational diabetes, early prenatal care is essential as diabetes 

appears to cause malformations as early as the 7th week of pregnancy (American Heart 

Association, 2007).  For women with seizure disorders, pregnancy can present a special 
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risk due to changes in levels of estrogen and progesterone.  Changes in the levels of these 

hormones can make seizures more or less likely. Most importantly for heart defects in the 

unborn infant, seizure medications can change the way the body uses folic acid (Adab, 

2006; Arpino et al., 2000).  

One of the more well-known environmental teratogens which may cause heart 

defects is cigarette smoke. There are probably a number of reasons for its harm to a 

developing baby. One of the chemicals in cigarettes, Cadmium, builds up in the placenta 

and may compromise fetal growth. Cigarette smoke is also associated with decreased 

birth weight which is a risk factor in and of itself (Schardein, 2000). In addition, exposure 

to cigarette smoking may increase the risk of miscarriage.  While the placenta may 

protect the fetus for a time, exposure to large amounts of tobacco smoke will eventually 

overwhelm the protective system (Miller, 2010).  For non-inherited risk factors, prenatal 

care is essential for prevention. With appropriate medical advice, women can increase 

vitamin and folic acid intake, avoid exposure to teratogens such as unnecessary 

medications and environmental hazards and plan for both prenatal influenza and rubella 

vaccinations. 

2.8 Trisomies 21, 13, And 18 

 

Single gene and chromosomal disorders may be the result of an inherited genetic 

defect, a mutation which has occurred spontaneously, or a particular insult to germ cells 

in a fetus which leads to birth defects in the next generation (Robaire, 2010). Often, the 

cause is not known.  One of the most common chromosomal birth defects in humans is 

trisomy 21, which affects about 1 in every 732 pregnancies (Sherman, Allen, Bean, & 

Freeman, 2007).  Trisomy 21 rates vary considerably with the age of the mother. The risk 
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for a 20 year old mother is about 1 in 2000 but by the age of 35, the risk rises to one in 

350 (NDSS, 2011).  Trisomy 21 is a major cause of mental retardation and congenital 

heart disease (Rondal & Perera, 2006). It is most recognizable by characteristic facial and 

physical features (Evans-Martin, 2009).  More important to the survival of the individual 

with trisomy 21, however, its association with congenital anomalies of the 

gastrointestinal tract and the heart.  In addition, there are immune system dysfunctions 

and an increased risk of Leukemia (Korenberg et al., 1994). Trisomy 21 is usually caused 

by an extra copy of chromosome 21.  However, in some individuals there may be 

mosaicism or translocation of chromosomes resulting in slightly different characteristics.  

In a translocation, a whole chromosome or part of a chromosome becomes attached to or 

interchanged with another whole chromosome. In mosaicism, an individual has more 

than one cell line which develops in the embryo. This may result in no obvious birth 

defects or in trisomy 21 with slightly different manifestations (Hall, 1988). Trisomy 21 

does not result from any inherited characteristics of the parents (Yashon, 2009).  

Whenever a translocation is found in a child, however, it is possible that one of the 

parents has a translocation. If one parent has the translocation chromosome, then the 

physician knows the baby inherited the translocation from that parent. The parent will 

actually have 45 total chromosomes in each cell of their body rather than the usual 46, 

but since they still have only two copies of each chromosome this will not result in 

Trisomy 21 in the parent (Blackburn, 2007). The prevalence of infants born with Trisomy 

21 does show some geographical variation, however this is generally explained by 

artifacts related to diagnostic coding, variation in surveillance practices, population 

mobility, and birth rates (Cocchi et al., 2010; Leoncini et al., 2010).  The age of the 
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mother, availability of prenatal testing and rates of spontaneous and induced abortion are 

geographically variable and should be considered when comparing prevalence rates of  

one population to the next (Cragan et al., 1995). 

 Trisomy 13 and trisomy 18 are the second and third most common causes of 

genetic birth defects in humans (Stenson et al., 1999).  These disorders result from the 

same process of genetic error as trisomy 21, however both of these variations are often 

fatal either prior to delivery or in infancy.  Many infants with this disorder are miscarried. 

However, those who are born alive often die in the first hours to months of life (Yashon, 

2009).  As with Trisomy 21, these disorders may affect all of the cells in the body or only 

some of the cells (mosaicism) (Stenson et al., 1999). Common findings in infants with 

these disorders are  brain, heart, and facial malformations as well as extra digits, 

gastrointestinal, and kidney dysfunction (Harold, 2009).  For both genetic disorders the 

risk rises with the age of the mother. The occurrence of trisomy 13 among newborns is 1 

in 5000.  For trisomy 18, the occurrence rate is about 1 in 1850 (Yashon, 2009). Trisomy 

18 is more common in African American babies than in Hispanic or white babies. The 

cause for this variation in incidence is not known (Canfield et al., 2006).   

2.9 Neural Tube Defects 

 

Neural tube defects are a group of anomalies caused by developmental problems 

along the central nervous system which include the brain and spinal cord, and their 

protective coverings (Sadler, 1998).  They are among the most common congenital 

defects in humans (Greene, 2006). Stating an actual prevalence rate is difficult due to a 

number of issues. This is a group of disorders with different etiological backgrounds. The 

occurrence rate varies considerably in different geographic and socioeconomic settings, 
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and finally, the recent increase in the use of folic acid as a preventative measure for 

childbearing women is changing the occurrence patterns (Saul, 2006).  A recent estimate 

is somewhere between .5 in 1000 and 1 in 1000 pregnancies (Tran et al., 2010).  Figure 2 

visually displays the rather dramatic effect of universal folic acid fortification in the U.S. 

between 1995 and 2000. 

 

Figure 2: Number Of Births Both Live And Stillborn With Neural Tube Defects 

Before And After The Folic Acid Fortification Mandate In The U.S. Source: CDC 

(2004b) 

 

The process of neural tube formation occurs in very early pregnancy, normally by 

the third and fourth weeks after conception often before the mother is even aware that she 

is expecting (Moore, 2006).  There is considerable variation in outcome for the child 

depending on where the lesion occurs. To make things more complicated and confusing, 

each type of neural tube defect has its own name and may vary in etiology.  Moore 

(2006) suggests a common classification scheme which includes anencephaly, spina 

bifida, and encephalocele. There are two rarer types mentioned by Moore (2006), 

craniorachiscisis and iniencephaly.  Anencephaly occurs at the top of the neural tube in 
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the cranium which causes the malformation of all or part of the brain.  Infants with this 

defect are either stillborn or die shortly after birth (NINDS, 2011). Neural tube defects 

are multifactorial in nature. Ethnic differences exist in rates, with Hispanic infants more 

likely to have a neural tube defect than either non-Hispanic whites or African Americans 

(Canfield et al., 2006).  Spina Bifida generally refers to the non-closure of the lower parts 

of the neural tube (Moore, 2006).  First year survival rates are about 90% in the U.S. 

(Bol, Collins, & Kirby, 2006).  The amount of disability resulting is variable according to 

the level of the lesion and also the care available at birth.  Surgery is generally required 

during the newborn period to place the neural tissue into the spinal canal where it will be 

protected from further injury (Miller & Cohen, 2006). Repair of the spinal canal is a  

delicate procedure with much potential morbidity, thus the availability of a skilled 

pediatric surgeon will have an impact on the final outcome for the child (Miller & Cohen, 

2006).  

 Surveillance has made it possible to detect important associations which might 

increase the risk of neural tube defects.   One of these associations is folic acid deficiency 

in the diet.  Mandatory supplementation of some food items was put into place in the U.S. 

in 1996 and a corresponding drop in neural tube defects resulted (Cordero et al., 2010).   

It is estimated that about 70% of neural tube defects are related to folic acid deficiency. 

However, there are other associations as well (Wyszynski, 2006a). Obesity is a risk factor 

for many birth defects including neural tube defects (Hampton, 2004; Oddy, De Klerk, 

Miller, Payne, & Bower, 2009; Watkins, Rasmussen, Honein, Botto, & Moore, 2003).  

Neural tube defects are also more common in women with diabetes (Zabihi & Loeken, 

2010) and in women requiring anti-seizure medications (Kelly, Edwards, Rein, Miller, & 
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Dreifuss, 1984).  In addition, there may be a genetic predisposition to neural tube defects 

as there is some evidence of a genetic pattern of inheritance in families (Rasmussen, 

2006), Children with neural tube defects who survive pregnancy and infancy are likely to 

require a large amount of expensive care due to the effect on mobility and organ systems.  

Education and early prenatal care are the best ways to decrease the risk. 

2.10 Cleft Lip And Palate 

 

Cleft lip and palate affect 6,800 infants annually in the U.S. (CDC, 2006).It is one 

of the most common birth defects worldwide with a rate of 1 to 2 per 1000 births (Bale, 

2003).Clefts occur more frequently among Asians, Hispanics, and some Native American 

Populations. The rate in those individuals of African American descent is lower than in 

other ethnic groups (Canfield et al., 2006; Yu, Serrano, San Miguel, Ruest, & Svoboda, 

2009). Cleft lip and palate may occur together or separately. In addition, they may be 

seen as an isolated birth defect or in concert with another syndrome.  About 70% of the 

time they are isolated defects (Zucchero et al., 2004). This birth defect develops during 

the first weeks of pregnancy when the structures of the mouth and lips should fuse at the 

midline. Severity of cleft lip can range from a tiny notch in the lip to a complete opening 

up into the nasal area (Kubon et al., 2007).  Cleft palate may affect only the soft palate or 

may include the hard palate.  Children with cleft lip and palate are at risk of feeding 

problems (Owens, 2008), dental issues (Borodkin, Feigal, Beiraghi, Moller, & Hodges, 

2008), ear infections (Flynn, Möller, Jönsson, & Lohmander, 2009), speech difficulties 

(Bedwinek, Kummer, Rice, & Grames, 2010), and self-esteem problems (De Sousa, 

Devare, & Ghanshani, 2009) due to speech problems and facial differences. 
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Both environmental and genetic factors play a role in cleft lip and palate. 

Sometimes the interaction of the two is complex.  For example, adequate folic acid plays 

a part in the prevention of cleft lip and palate. However, some individuals may have a 

genetic difference in folate metabolism which impairs the ability to process folic acid and 

thus decrease the risk of this birth defect (Munger et al., 2011).  Other risk factors include 

maternal alcohol use (Munger et al., 1996), maternal smoking (Honein et al., 2007), 

exposure to passive cigarette smoke (Li et al., 2010), and possibly maternal fever in early 

pregnancy (Shahrukh Hashmi, Gallaway, Waller, Langlois, & Hecht, 2010). 

Treatments for cleft lip and palate include early assistance with feeding using 

specialized bottle nipples and techniques, and surgery to correct openings in the palate 

and clefts in the lips.  Later interventions may be dental surgeries, speech therapy, and 

orthodontics.  Treatment of cleft lip and palate varies widely in cost, depending on the 

severity of the problem (Wehby & Cassell, 2010). 

2.11 Fetal Alcohol Syndrome 

 

 The effects of alcohol consumption on the fetus are now well known, however the 

association was not officially reported until the 1970s (Jones & Smith, 1975).  Symptoms 

are variable but may include small head, deformed facial features, skeletal 

malformations, heart and central nervous system problems, slow development both 

physically and cognitively, and organ malformations (Jones, 2011). Specific diagnostic 

criteria were established in 2004 by The National Task Force on Fetal Alcohol Syndrome 

(FAS) and Fetal Alcohol Effect (CDC, 2004a). Diagnosis of fetal alcohol syndrome 

requires all three of the following findings: specific facial deformities of the eyes, nose, 

and mouth, documented growth deficits, and documented central nervous system 
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abnormalities (CDC, 2004a).  Prevalence of this diagnosis has been shown to vary due to 

lack of awareness on the part of healthcare providers, differences in monitoring and 

reporting methods, and the population being examined (CDC, 2002).  Studies by the 

CDC have reported FAS prevalence rates from 0.2 to 2 cases per 1000 live births (May et 

al., 2009). The higher prevalence rates were found among minority and impoverished 

groups (CDC, 2004a) and women experiencing abuse, past substance abuse treatment, 

heavy smoking, and mental health problems (Project CHOICES Research Group, 2002).   

Some infants may have what is known as alcohol related birth defects (ARBD) or alcohol 

related nervous system disorder (ARND) (Warren & Foudin, 2011).  Babies born to 

mothers who use alcohol during pregnancy are more likely to be premature or sick 

enough to be in intensive care and the care required may be more intensive than in babies 

exposed to other drugs in utero (Toutain et al., 2010). The effects of alcohol on brain 

development may lead to substantial problems with neurobehavioral development which 

can cause lifelong challenges with learning and behavior (Jones, 2011).  In addition, 

mothers who continue the use of alcohol during pregnancy are also more likely to use 

other substances such as amphetamines and opiates (Shor, Nulman, Kulaga, & Koren, 

2010). The prevalence rate in the study area of this dissertation is unknown. However, 

alcohol use in the U.S. is common among the population of childbearing women (CDC, 

2009).  In addition, women using alcohol preconception are more likely to engage in 

drinking during pregnancy (Naimi, Lipscomb, Brewer, & Gilbert, 2003). 

2.12 Hypospadias 

 

Between 3 and 8 per 10,000 male babies will be born with hypospadias, a 

congenital defect of the penis, each year (Paulozzi, 1999).  In normal fetal development 
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the urethra extends from the bladder to the tip of the penis in males. In hypospadias, the 

urethra does not develop fully and may end along the shaft, so that the urinary opening is 

somewhere on the underside of the penis anywhere from the tip to the scrotum or rectum 

(Baskin, 2004). This birth defect develops between the 6th and 16th weeks of gestation 

when the urogenital system is forming (Baskin, 2004). It is sometimes associated with 

other congenital defects.  When it occurs alone, the problem is generally corrected with 

surgery to enable normal urination and sexual functioning in adulthood (Baskin, 

2004).   As with many other congenital defects, hypospadias appears to be multifactorial 

in nature.  There is a genetic tendency as evidenced by a clustering of the diagnosis 

among family members in about 10% of cases (Fredell et al., 2002).  Other risk factors 

sometimes found to be associated include maternal age greater than 35 (Carmichael, 

Shaw, Laurent, Olney, & Lammer, 2007), maternal obesity (Blomberg & Kallen, 2010; 

Carmichael et al., 2007; Porter, Faizan, Grady, & Mueller, 2005), maternal vegetarian 

diet (North & Golding, 2000), and maternal diabetes (Porter et al., 2005).  Sharp rises in 

the rates of hypospadias and other birth defects resulting from endocrine disruption 

aroused interest in the 1960’s, 70’s, and 80’s.  Geographic distribution of these increases 

pointed to industrialization and exposure to chemical pollutants as a possible cause 

(Paulozzi, Erickson, & Jackson, 1997).  Some studies have shown hypospadias to be 

more common in white infants (Porter et al., 2005) and less common in Hispanic infants 

(Carmichael et al., 2007). Hypospadias may also be more common in infants with 

intrauterine growth retardation, suggesting a common cause (Hussain et al., 2002). A 

temporal increase in rates in one geographic area would suggest external teratogens 

affecting the fetal endocrine system development or some sort of demographic change. 
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2.13 Summary Of Risk Factors 

 

There are a variety of risk factors related to birth defects as a whole and for each 

individual diagnosis.  A summary of these is useful both for clarity and for the 

development of an informative model. These can be divided into three categories, 

including the physical status of the mother, genetic traits in either the mother or the baby, 

and environmental influences.  The age of the mother is an important factor for infant 

health at either extreme of the spectrum of the childbearing years.  Mothers older than 35 

are much more likely to conceive an infant with trisomy 21, 18, and 13 or other genetic 

defects (NDSS, 2011) or an infant with hypospadias (Porter et al., 2005).  Older women 

are also more likely to have health conditions which rise with age including high blood 

pressure (Caton et al., 2009) and diabetes (Zabihi & Loeken, 2010) both of which can 

lead to increased risk of some birth defects.  On the other hand, younger mothers are 

more likely to deliver an infant with Gastroschesis (Benjamin, Ethen, Van Hook, Myers, 

& Canfield, 2010) or to abuse drugs or smoke during pregnancy (Caetano, Ramisetty-

Mikler, Floyd, & McGrath, 2006; van Gelder et al., 2010). Only In recent years have 

ethnic links to birth defect risk been explored. Increasingly available methods of studying 

genetic differences have opened up new territory for both causes and prevention.  One 

type of heart defect, tetralogy of fallot, is more common in African American babies 

(Canfield et al., 2006) and Hispanic infants are more likely to have a neural tube defect 

than either non-Hispanic whites or African Americans (Canfield et al., 2006), possibly 

due to genetic variations in folic acid metabolism (Esfahani, Cogger, & Caudill, 2003; 

Goldmuntz et al., 2008; Lupo et al., 2011). While poverty is not a risk factor for any 

specific birth defect, it may co-vary with birth defects as both an individual correlate and 
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as a more global, neighborhood-wide risk. The reasons for this are likely to be a complex 

mix of inadequate prenatal care and education regarding avoidance of risk factors such as 

dietary problems, use of teratogenic medications, drug and alcohol exposure, and 

untreated health problems (Shaw, Jensvold, Wasserman, & Lammer, 1994; Wasserman et 

al., 1998). In addition, poverty often leads to housing in areas near industrial plants, 

excessive carbon monoxide from major highways (Gilboa et al., 2005), deteriorating 

housing with peeling lead based paint (Hu et al., 2006; Vinceti et al., 2001), and 

sometimes locations in rural outlying areas with little access to needed resources or 

medical care.  Another closely related factor is the marital status of the mother.  There is 

some evidence that childbearing by single women brings about its own risks of infant 

mortality. Cohabitating single parents may be more likely to give birth to premature 

and/or low birth weight infants.   Non-cohabitating parents are at greater risk of poor 

birth outcomes including prematurity and low birth weight are often the result of birth 

defects and thus are related.  In fact infants with birth defects are two to three times more 

likely to be premature than infants without birth defects (Rasmussen, Moore, Paulozzi, 

&Rhodenhiser, 2001).  
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CHAPTER 3 DATA AND METHODS 

3.1 Contents Of The Chapter 

 

Chapter three describes the study area, including demographic particulars, the 

process of obtaining the data, the data quality, and the related challenges which arose 

over the four year period that the data were gathered. Independent and dependent 

variables, the geocoding process, and the various types of software employed are also 

discussed.  Following these descriptive aspects of the project, this chapter includes a 

discussion of exploratory data analysis and the various statistical methods used to analyze 

the data.  All maps are constructed using Jenks optimal classification method for both 

consistency and due to this method’s ability to reduce variance within classes and 

maximize variance between classes(Jenks, 1963). 

3.2 The Study Area 

 

      The study area comprises nine parishes including Ascension, East Baton Rouge, East 

Feliciana, St. Helena, Iberville, Livingston, Pt. Coupee, West Baton Rouge, and West 

Feliciana (Figure 3). There are 151 census tracts in this metropolitan statistical area 

(MSA).  The population is most concentrated in East Baton Rouge Parish with an 

estimated population of 434,000 people and least populated in West Feliciana and St. 

Helena Parishes with populations of 10,000 and 15,000 people, respectively.  The median 

age for the MSA is 33.4 years, somewhat below the national average of 36.5 years.  The 

typical education level is high school graduate and the most common occupations are 

education, service, healthcare, and retail.   The area under study is a mixture of urban and 

rural settings with variable access to health care resources and pockets of high poverty 

levels   The poverty rate in Louisiana during the study period was 17.6 percent, well 



 

34 

 

above the U.S. poverty rate of 14.3 percent (DeNavas-Walt, Procter, & Smith, 2010). 

Many of the rural parishes in Louisiana are considered persistent poverty areas by the 

U.S. Department of Agriculture (USDA).   The definition of a persistent poverty area is 

20 percent or more of the population below the poverty line in 1970, 1980, 1990 and 

2000 

 
Figure 3: Louisiana With Study Area In Blue 

 

(USDA, 2007).  Most (33 out of 35) of Louisiana’s rural parishes are considered high 

poverty areas (Figure 4).  The rural parishes in the study area which fall in this category 

are East Feliciana, Iberville, Pointe Coupee, and St. Helena.  The majority of individuals 

living in poverty in the nine parish area are either children under 18 or have children 

under 18 living with them (U.S. Census Bureau, 2011). This is important due to the fact 

that lower income levels increase both infant mortality and rates of specific birth defects 

(Weinhold, 2009).   
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Figure 4: Percent Of People In Each Census Tract With Income Below Poverty Level 

 

  The rural/urban designation carries with it some factors which may affect the 

health of individuals.  There is no absolute consensus on what “rural” and “urban” mean, 

however, the U.S. Census bureau defines these categories by population size.  In 2013, 

the U.S Census Bureau defined an urbanized area as having 50,000 or more people, an 

urban cluster as having between 2500 and 50,000 people and rural as any population less 

than that number(U.S. Census Bureau, 2013).  Health differences have been shown 

between rural and urban environments, possibly mediated by built environment (Wang, 

Wen, & Xu, 2013; Hankey, 2012) and possibly by the residential segregation which 

drives people to live in one or the other of these environments (Lobmayer & Wilkinson, 

2002).  Birth outcomes may be affected by urban environments for a complex mixture of 
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reasons, including poverty exposure (Britton & Shin, 2013). For these reason, the 

dichotomous variable “urban-rural” was added in the multilevel modeling analysis 

discussed in chapter 8 this research project.  Figure 5 displays the spatial arrangement of 

urban and rural census tracts. 

 
Figure 5: U.S. Census Bureau Defined Designations For Urban And Rural Census Tracts 

   

Demographically, the MSA is about 66% white and 32% black.  A small 

percentage are Asian and a small percentage are Hispanic or some combination of 

ethnicities (U.S. Census Bureau, 2011). The 2010 census included a “mixed racial 

category” for the first time (Saulny, 2011) and this category was included as a separate 

racial designation for census tract level variables.  The study area has high rates of 

obesity, diabetes, and smoking, all of which are often reflected in the rates of birth 
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defects (CDC, 2011b). Infant mortality rates in Louisiana for the period of 2005-2009 

were 9.4 per thousand births, which is higher than the national average of 6.6 per 1000 

(The Annie E. Casey Foundation, 2010).  Infant mortality rates also differ by ethnicity 

with non-Hispanic whites having the lowest rate at 7 per 1000 and the highest for non-

Hispanic blacks at 14.7 per 1000 (Kaiser Foundation, 2011).  For the period of 2005 to 

2008 specifically, the MSA averaged 10.1 infant deaths per thousand births with a wide 

variation among the included parishes (The Annie E. Casey Foundation, 2010). Table 1 

displays the parishes along with the number of infant deaths for the years 2005-2008. 

Parishes with fewer than 20 deaths over the 5 year period did not have rates reported and 

are indicated by low number event (LNE) in the rates column. Parishes with high infant 

death rates may also be expected to have higher birth defect rates due to the relationship 

between the two phenomena (March of Dimes, 2013; Petrini et al., 2004). 

Table 1: Infant Mortality Rates For Parishes In The Baton Rouge MSA 2005-2008 

Location Number Rate 

Louisiana 600.80 9.40 

Ascension 15.00 8.91 

East Baton Rouge 67.00 10.80 

East Feliciana 3.00 LNE 

Iberville 4.00 8.90 

Livingston 10.00 5.30 

Pointe Coupee 4.00 LNE 

St. Helena 2.00 LNE 

West Baton Rouge 6.00 16.60 

West Feliciana 2.00 LNE 

Averages 12.56 10.10 

*LNE is an indication that numbers were too low to calculate a meaningful rate. Data 

From Kids Count (2010a) 

 

 The base maps needed for the research were downloaded from the U.S. Census 

Bureau Tiger/line shape file library (U.S. Census Bureau, 2013). As of 2006 the nine 
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parish area was home to 670,000 people.  During the period of 2005 to 2008 there were a 

total of 44,604 births recorded over the entire metropolitan area. 

3.3 Case Ascertainment 

 

The original process of gathering information about the infants born with birth defects 

involved sending Louisiana Department of Health and Hospitals staff to every delivery 

site to collect information from each chart by hand.  In 2007, the state had the ability and 

permissions necessary to transfer this information to a computer database directly from 

birth certificates instead. Additionally, previously hand gathered data were entered into 

the database. What was eventually provided was data obtained between 2005 and 2008 

from both hand collected and downloaded sources. To be included in the database, 

children must be live born and registered with a birth certificate in a delivery hospital in 

the research area. The MSA contained no birthing centers or other alternate delivery 

facilities at the time the data were compiled and unintentional home births were generally 

transferred to a hospital after delivery where a birth certificate was filed (MacDorman, 

Menacker, & Declercq, 2010). Louisiana is one of the ten states with the smallest number 

of home births, with less than 1% occurring out of a hospital setting for any reason and 

infants with birth defects are nearly always transferred to a hospital setting (MacDorman 

et al., 2010).  We can be reasonably sure that our sample is close to 100% of all the births 

occurring in the MSA during the designated years with the exception of St. Helena 

Parish. St. Helena Parish data were only available for the years 2007 and 2008. Specific 

instructions were provided for coding birth defects into 45 meaningful categories used by 

the Centers for Disease Control using ICD-9 coding (CDC, 2011c).  General population 

demographic information was collected from the 2010 census. The 2010 census tract 
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designation was added to each record by using the mother’s residence address from the 

recorded information and “geocoding” this address field.  Census tract level data were 

used for most of the data analysis due to the availability of multiple variables at this level.  

Independent variables include: sex of infant, race/ethnicity of mother, alcohol use by 

mother, percent of the census tract having less than a high school education,  age of 

mother, smoking or non-smoking status of mother, population density of census tract 

where mother resides, percentage of the census tract reporting change of residence within 

the last 5 years, and birth density in census tract where mother resides. More detail about 

the independent variables is presented in section 3.3.  The dependent variables are 

discussed in section 3.4. The base maps needed for the research were downloaded from 

the U.S. Census Bureau Tiger/line shape file library (U.S. Census Bureau, 2013). Table 2 

below shows the breakdown per parish for the nine parish area for the period of 2005-

2008. 

  Table 2: Number Of Births In Each Parish And The Expected Number Of Birth Defects 

Parish 2005 2006 2007 2008 Total Expected # of 

Birth Defects 

Pointe Coupee 306 311 339 275 1231 37 

St. Helena NA NA 129 124 253 8 

East Feliciana 264 284 244 235 1027 31 

West Feliciana 102 112 113 115 442 13 

East Baton Rouge 5668 6306 6272 6381 24627 739 

West Baton Rouge 321 348 350 332 1351 40 

Livingston 1637 1871 1983 1827 7318 219 

Ascension 1470 1715 1660 1689 6534 196 

Iberville 443 463 428 487 1821 55 

Total Births 10308 10759 11566 11472 44604 1338 
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3.4 Independent Variables 

 

The independent variables used in this dissertation were gathered from the U.S. 

Census Bureau website (U.S. Census Bureau, 2013) and from the dataset provided by the 

Louisiana Birth Defects Monitoring Network (DHH, 2011).  Census bureau data are only 

available in aggregated form in order to maintain the confidentiality of the individuals 

polled (U.S. Census Bureau, 2013).  Table 3 displays the independent variables employed 

along with a description, data source, and spatial resolution. 

Table 3: Independent Variables, Descriptions And Spatial Resolution 

Independent Variable Description Data Source Spatial Resolution 

Percent Below High school Level Percent of population 
over 25 with less 
than high school 
education 

2010 Census Point 

Fertility Rate Ratio of births to 
total population of 
women ages 15-50 

2010 Census Census Tract 

Mobility Rate Different Parish Percent of population 
moving in or out of 
the parish in a 5 year 
period 

2010 Census Census Tract 

Mobility Rate Same Parish Percent of population 
moving within parish 
in a 5 year period 

2010 Census Census Tract 

Mobility Rate Abroad Percent of population 
moving into the 
parish from within a 
5 year period 

2010 Census Census Tract 

Mobility Rate Different State Percent of population 
moving into the 
parish from a 
different state within 
a 5 year period 

2010 Census Census Tract 
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(Table 3 Continued) 

 

Independent Variable Description Data Source Spatial Resolution 

Percent Black Mother's race as 
recorded on census  

2010 Census Census Tract 

Percent Hispanic Mother's race as 
recorded on census  

2010 Census Census Tract 

Percent Asian Mother's race as 
recorded on census  

2010 Census Census Tract 

Percent Native American Mother's race as 
recorded on census  

2010 Census Census Tract 

Percent Multiracial Mother's race as 
recorded on census  

2010 Census Census Tract 

Age of Mother with or without 
birth defect at time of infant's 
birth 

Age at Delivery Louisiana 
DHH 

Point 

Median Age Of Female Population Median age by 
census 
documentation 

2010 Census Census Tract 

Median Age Of Male Population Median age by 
census 
documentation 

2010 Census Census Tract 

Median Age Total Population Median age by 
census 
documentation 

2010 Census Census Tract 

Poverty Rate Percent of population 
below poverty rate 

2010 Census Census Tract 

Year of Birth 2005, 2006, 2007, 
2008 

Louisiana 
DHH 

Point 

Alcohol Use yes, no, unknown Louisiana 
DHH 

Point 

Tobacco Use yes, no, unknown Louisiana 
DHH 

Point 

Rural/Urban Tract Rural, Urban 2010 Census Census Tract 
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3.5 Dependent Variables 

 

The dependent variables include the total proportion of live born infants in the nine parish 

area with a birth defect diagnosis of any kind in 2005, 2006, 2007, and 2008 at the census 

tract level. Additional dependent variables aggregated to the census tract level and for the 

same four  years include the number of birth defects diagnosed (assuming multiple birth 

defects in some children), sex of infant, and the total number of children diagnosed with 

hypospadias, trisomy 21, cleft lip and/or palate, heart defects, or neural tube defects.  For 

spatial-temporal analysis, dependent variables were examined at both the census tract and 

the individual point data level (i.e., the address of the mother).  These variables included 

the total proportion of live born infants with recognized birth defects for each year, the 

total number of birth defects recognized each year, and the total proportion of children 

diagnosed with hypospadias, trisomy 21, cleft lip and/or palate, heart defects, or neural 

tube defects for each one year period, also at the census tract level. Table 4 provides 

additional information about the variables and their level of analysis. 

   Table 4: Dependent Variables, Data Source And Spatial Resolution 

Variable Description Data Source Spatial Resolution 

Infants born with any 
birth defect 

Total 
number/rate 

Louisiana 
DHH 

Geocoded address of 
mother 

Hypospadias 
Total 
number/rate 

Louisiana 
DHH 

Geocoded address of 
mother 

Trisomy 21 
Total 
number/rate 

Louisiana 
DHH 

Geocoded address of 
mother 

Cleft lip and/or palate 
Total 
number/rate 

Louisiana 
DHH 

Geocoded address of 
mother 

Heart defects 
Total 
number/rate 

Louisiana 
DHH 

Geocoded address of 
mother 

Neural Tube defects 
Total 
number/rate 

Louisiana 
DHH 

Geocoded address of 
mother 
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3.6 The Geocoding Process 

 

The initial database was created by the LBDMN and provided to the author of this 

dissertation.  ArcGIS version 10.2 (ESRI, 2012)software provided a method of 

visualizing and mapping the birth defect locations.  In order to make geographic locations 

visible, they were converted into map locations using geographic grid coordinates, in this 

case latitude and longitude.  A previously mapped street network was used to facilitate 

the process of placing the addresses visually on the map surface.  A list of street 

addresses was then converted to corresponding geographic coordinates.  

While the geocoding allows for information about people and places that might 

otherwise be unobtainable, the process is inexact and may either inaccurately locate an 

address or not locate it at all (Andresen & Malleson, 2013).This inaccuracy must be taken 

into account in interpreting results of the subsequent analysis. There is no consensus for 

an accepted match rate for geocoding of addresses (Zanderbergen, 2009).The “hit rate” 

(the percentage measure of success) may be affected by the software employed, or the 

accuracy of the initial data gathering process, both of which may contribute to the 

inability to match an address to a geographical point on a map (Andresen & Malleson, 

2013; Cayo & Talbot, 2003). Additionally, the threshold chosen for the minimum “match 

score” can change the match rate while not necessarily increasing accuracy (Hart & 

Zandbergen, 2013).  Despite this lack of a consensus on match and positional accuracy 

rate, there is certainly agreement that both are important and possibly a source of 

geographic bias.  For this project, the match threshold was set at 80 percent and every 

effort was made to check and recheck results as described below. The geocoding process 

was completed using ArcGIS online North American Geocode Service (ESRI, 2012) 
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striving for the highest possible match rate and accuracy that could be obtained with the 

availability of street level databases.  Once the automated batch geocoding process was 

completed, errors were corrected and addresses re-matched for better results using a 

manual interactive approach. This included the use of websites, phone books, and other 

references such as Google Earth™ software downloaded from www.earth.google.com.  

Success rates and problems related to geocoding the research data are presented in 

section 4.1. 

3.7 Software 

 

Initial exploration of statistical relationships were completed with SPSS18 

(PASW, 2009) and SAS software, Version 9.4, SAS (2014).  Following the calculation of 

non-spatial statistics, ArcGIS version10.2 (ESRI, 2012) was used to visualize and analyze 

spatial patterns of birth defects in the study area. The ArcGIS software fulfilled several 

purposes, including storing the data, geocoding the data, visualizing the data for point 

pattern analysis and for aggregating the data in order to display them in the form of 

choropleth maps.  Additionally, ArcGIS enabled the visualization of data analyzed with 

the three other software programs, SaTScanTM (v.9.0) and CrimeStat version 4.0 (Levine, 

2013), both of which have well documented methodology and functionality and will be 

discussed briefly below.  

3.8 SaTScan Software 

 

  SaTScan (v 9.0) (Kulldorff, 2006)was developed by Martin Kulldorff with 

funding from the National Cancer Institute, Centers for Disease Control and Prevention 

(CDC) and other agencies (Kulldorff, 2006).  SaTScan is an open source software 

program which allows for heterogeneous populations and both spatial and temporal 

file:///C:/Users/Aimee/Documents/Dissertation%20Maps/www.earth.google.com
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analysis. The program was originally developed to analyze health event data and to detect 

epidemics in early stages using periodic surveillance (Kulldorff, 2006). SaTScan allows 

for input of several types of data files including dBase, comma delimited, or space 

delimited files.  These are automatically converted to a format usable by the SaTScan 

program.  The researcher can choose from one of several probability models for count 

data, including Poisson, Bernoulli, and Space-time permutation.  A Poisson distribution 

refers to a discrete frequency distribution that gives the probability of an event occurring 

in a specific period of time.  This particular model can indicate, for example, whether a 

cluster of birth defects is statistically likely to have occurred or is truly an unusual event 

(Tijms, 2012). The Bernoulli model is a discrete distribution with only two outcomes 

labeled as either 0 or 1 rather than a continuous distribution as with the Poisson model 

(Everitt & Skrondal, 2010). Unlike the previous two models offered, the space-time 

permutation model does not employ any background population information, rather it 

compares the observed cases to the expected cases in a cluster to determine the likelihood 

that the cluster is statistically significant. In all three models areas can be scanned for 

high rates, low rates, or both high and low rates of cases within the area being observed 

(Kulldorff, 2006). The Bernoulli model uses two different populations in comparison, in 

this case the control population of all births in the study area, and compares this with the 

population of infants diagnosed with a birth defect during the testing period. The Poisson 

cluster analysis method takes into account the expected number of incidents, in this case 

birth defects, according to the population of a given census tract (Kulldorff, 1999). The 

information necessary for this calculation is taken from a join between the polygons and 

census data information rather than by employing two different population files.  
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SaTScan has no built-in visualization capability and must be interfaced with a GIS 

program for this task.  SaTScan has been used to evaluate clustering in multiple fields 

including forestry (Riitters & Coulston, 2005), crime control (Nakaya & Yano, 2010), 

environmental science (Tonini, Tuia, & Ratle, 2009),  and veterinary medicine (Ward, 

2001), but is especially prevalent in disease epidemiology (Hjalmars, Kulldorff, 

Gustafsson, & Nagarwalla, 1996; Zhan & Lin, 2003).   Examples of use for birth defects 

include Ozdenerol, Williams, Kang, and Magsumbol (2005), Viel, Floret, and Mauny 

(2005) and Forand, Talbot, Druschel, and Cross (2002). This software was chosen due to 

its ability to look for space-time clusters while accounting for overall birthrates. As a 

secondary use, the Bernoulli cluster analysis routine was used for comparison against 

CrimeStat and ArcGIS cluster analysis methods. A limitation of this software is that it 

uses a circular scanning radius and may not be as accurate with clusters that are not 

circular in shape (Forand, Talbot, Druschel, &  Cross, 2002).  SaTScan is downloadable 

at http://www.satscan.org/. 

3.9 CrimeStat Software 

 

CrimeStat (Levine, 2013) was developed by Ned Levine and originally funded by 

the National Institute of Justice for law enforcement and criminal justice agencies for the 

purpose of tracking and mapping crime patterns. CrimeStat provides a comprehensive 

tool box of methods for spatial analysis.  Additionally, the program works in tandem with 

ArcGIS and other graphical mapping programs for Windows in addition to ArcView 

Spatial Analyst (Smith & Bruce, 2008).  The program has three main components 

including  

http://www.satscan.org/
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1. The Spatial Description component which allows the user to analyze the 

spatial distribution of the data. 

2. The Spatial Modeling component which allows for analysis of the spatial 

behavior of the dataset. 

3.  The Crime Travel Demand Modeling component for analyzing the behavior 

of serial offenders. 

The spatial description component allows the user to locate the mean center and standard 

distance of the data and to produce a standard deviational ellipse. This module could be 

used to locate clusters that shift in a particular direction and/or within a time period.  

While useful for some purposes, this functionality was not used for this project due to the 

need to take into account the underlying population of births.   However, CrimeStat does 

allow for several types of global measures of spatial autocorrelation, including Moran’s I, 

Geary’s C, and the Moran correlogram (Levine, 2006). Moran’s I and Geary’s C were 

employed for cluster analysis which allowed comparison of results produced by ArcGIS.  

These statistics are discussed in sections 3.9 and 3.10.  The spatial modeling component 

provides three different types of tools to better describe and understand a dataset.  Kernel 

density analysis, either single-variable (which produces a surface using point density) or 

dual-variable (which produces the surface density taking into account the density of an 

underlying process such as population).  A third spatial modeling option is a space-time 

analysis routine.  The space-time analysis routine examines the interaction between 

spatial location of the data points and time.  This can be run using days, weeks, months, 

or years. Like SaTScan, this program has the ability to control for underlying risk (in this 

case, population or birth density) by using either rates of birth defects, or alternately, 
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using a second file with population and birth information encoded as background 

information. This aspect of the software is essential to answering research questions 

which are highly dependent on background populations. CrimeStat is downloadable at 

www.icpsr.umich.edu/CrimeStat/.  

3.10 SAS Software 

 

SAS (Statistical Analysis Software) was used for the statistical modeling of 

independent and dependent variables.  This software has the capability to do multilevel 

logistic modeling which was required for the binomial outcomes of individual birth 

defects (SAS Institute, Inc., 2014)  SAS is a software suite developed by SAS Institute 

for advanced analytics, business intelligence, data management, and predictive analyst. It 

can be downloaded at www.sas.com.  

3.11 Exploratory Spatial Data Analysis 

 

  Multiple methods were used to explore the geographic distribution of the data 

using exploratory spatial data analysis (ESDA). ESDA allows for examination of 

clustering, dispersal or autocorrelation in the data and is an initial step before attempting 

to make generalizations about complex spatial patterns and relationships (Fotheringham, 

Brundon, & Charlton, 2000). Descriptive statistics, thematic maps, graphs, and plots 

provide illustration and enable the researcher to locate spatial outliers and spatial clusters 

(Anselin, Sridharan, & Gholston, 2007). Additionally, ESDA can be used to determine 

whether the planned methods of analysis are appropriate for the collected data.  The 

process of ESDA includes simple graphical displays such as stem and leaf plots, box 

plots, and histograms, which give a general idea of the distribution of the data, including 

its center, spread, symmetry, and kurtosis (de Smith, 2007).Graphical displays may detect 

http://www.icpsr.umich.edu/CrimeStat/
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problems or features of the dataset such as outliers which may be the result of error rather 

than an actual feature of the dataset.  Thematic maps visually highlight the distribution 

and patterns in the data as a starting point for finding clusters and hotspots.  Both SPSS 

and Excel were used in this dissertation to complete these tasks. 

An important aspect of the data to examine in ESDA is the degree of spatial 

autocorrelation in the dataset. Autocorrelation indicates the presence of a spatial pattern 

in a mapped variable due to geographic proximity (Anselin et al., 2007).  A variable can 

be positively or negatively spatially autocorrelated.  Positive spatial autocorrelation 

describes patterns in which neighboring areas are more alike than areas which are farther 

apart. Negative spatial autocorrelation describes neighboring regions which are 

significantly dissimilar.  Random patterns exhibit no spatial autocorrelation 

(Fotheringham, Brunsdon, & Charlton, 2000). The measurement of spatial 

autocorrelation prior to attempting statistical analysis is essential in that most inferential 

statistics have the assumption that the values of the observations are independent of one 

another.  Positive spatial autocorrelation violates this assumption if the samples are taken 

from nearby areas (Rogerson, 2010).  The issue of spatial autocorrelation makes many 

statistical tools and inference inappropriate for spatial analysis. A consequence of spatial 

autocorrelation is that the sampling variance of the statistics are underestimated for 

positive spatial autocorrelation and overestimated for negative spatial autocorrelation.  

This in turn affects confidence intervals, making them too large in the case of positive 

spatial dependence and too small in the case of negative spatial dependence (Haining, 

2003).  Spatial autocorrelation, does not necessarily indicate error in a dataset.  It may 

also point to spatial relationships to be recognized and investigated (Anselin, 1995;   
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Fotheringham, 2009). Measures of spatial autocorrelation may be either global or local in 

nature, with the former indicating only that there may be clustering, spatial outliers, or 

neither somewhere in the study area, while the latter (local measure) can actually show 

where the clustering takes place (Anselin, 1995).   

3.12 Global Methods Of Measuring Spatial Autocorrelation  

 

 Traditionally, spatial analysis had been applied globally which provided a 

measure of relationships which are assumed to apply across an entire study region  

(Fotheringham, Brundon, & Charlton, 2000).  A widely used measure of global 

autocorrelation is Moran’s I, developed by Patrick Moran (Moran, 1950). This spatial 

statistic measures values in adjacent places related to their similarity to the overall mean 

value.  Moran’s I is defined as:  
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Where N is the number of spatial units indexed by  and ; X is the variable of 

interest;  is the mean of X; and Wij is an element of a matrix of spatial weights (Okabe 

& Sugihara, 2012). Spatial weights are a mathematical method of describing the 

integration of space and spatial relationships. There are multiple ways of doing this, 

including inverse distance, fixed distance, K nearest neighbors, and contiguity, among 

others (Rogerson & Kedron, 2012). The choice of spatial weighting methods should best 

suit the way that the features interact in the real world (Rogerson & Kedron, 2012).  

Moran’s I was calculated using ArcGIS which offers inverse distance, inverse distance 

squared, fixed distance band, and zone of indifference as options. Inverse distance was 

employed because it is expected that the farther away a woman is from a particular 
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neighborhood influence, the less likely that that influence will affect the pregnancy. 

Additionally, census tracts are of widely varying sizes and fixed distance bands would be 

inappropriate in this circumstance. 

An important aspect of global autocorrelation and therefore the use of Moran’s I 

is the scale on which it is calculated.  Spatial data is especially prone to issues related to 

the scale of the area under consideration.  This is commonly termed the modifiable areal 

unit problem (MAUP) which must be taken into consideration in spatial statistical 

analysis (Rogerson, 2010).  MAUP is a source of statistical bias which can radically 

affect the results of statistical hypothesis tests. This problem occurs when point-based 

measures of spatial phenomena are aggregated into regions. The resulting values are 

influenced by the choice of regional boundaries (Fotheringham, Brunsdon, & Charlton, 

2002). For example, census data may be combined into census tracts, zip codes, counties, 

or other bounded areas but when the same statistic is applied to different sized 

boundaries, the results may be radically different (Griffith, Wong, & Whitfield, 2003; 

Rogerson, 2010). The issue of aggregation bias has occurred in other studies of birth data 

and is at least partially addressed by using more than one cluster analysis method for 

comparison (Ozdenerol et al., 2005).  For this reason, Geary’s C (Geary, 1954) was used 

as another global measure of spatial autocorrelation using CrimeStat software.  Geary’s C 

measures the similarity between pairs of regions and the resulting measurement ranges 

between 0 and 2 with lower numbers indicating positive spatial auto correlation and 

higher numbers indicating perfect negative autocorrelation (Geary, 1954).                                       
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http://en.wikipedia.org/wiki/Statistical_bias
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where Ν is the number of polygons indexed by  and ; X is the variable of interest; X  is 

the mean of X; Wij  is a matrix of spatial weights; and W  is the sum of all Wij .  

Moran’s I is sensitive to extreme values of X  (the variable under investigation), whereas 

Geary’s C is more sensitive to differences in small neighborhoods (Cliff & Ord, 1981). 

Both statistics were applied with birth defect rates for individual polygons to control for 

population differences.  

While the Moran’s I and Geary’s C statistics can show whether the area of 

investigation has a pattern of values which is clustered or random, and may provide an 

illustration of overall clustering, they are of little use in describing relationships in any 

one part of the region under examination (Rogerson, 2010).  A considerable amount of 

information about spatial non-stationarity is at risk of being lost using only a global 

measure.  For this task, local measures of autocorrelation are necessary. 

3.13 Local Methods Of Measuring Spatial Autocorrelation  

 

Local methods as opposed to global methods are mappable, able to be represented 

using GIS, and inherently spatial in nature (Fotheringham & Brunsdon, 1999).  Anselin 

(1995) and others have extended global statistics such as the Moran’s I and Geary’s C to 

depict local variations. While the global statistic provides an overall measure of spatial 

autocorrelation, the local Moran's I (LMI) relates each observation to its neighbors and 

assigns them to classes with a value indicating the degree of spatial autocorrelation. Only 

local neighbors contiguous to the target area are considered in determining the value of 

the statistic.  LMI calculates a clustering value (here denoted as li) for each target area.  

There are four classes which may be displayed in maps and tables using Moran’s I: 

insignificant clustering ( p>0.01), significantly high values surrounded by other 
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significantly high values (HH; p< 0.01), areas with a significant lack of clustering (cold 

spots) surrounded by significant clusters (HL; p<0.01), and areas of significantly high 

levels of clustering (hot spots) surrounded by other areas of significant clustering (HH; 

p<0.01)(Bone, Wulder, White, Robertson, & Nelson, 2013).  The Local Moran’s I gives 

a score that ranges from –1 for negative spatial autocorrelation to +1 for positive spatial 

autocorrelation (Anselin, 1995). Local Geary’s C ranges in value from 0 to 2 with 0 

representing perfect positive spatial autocorrelation and 2 representing perfect negative 

spatial autocorrelation (Anselin, 1995). Local Moran’s I and local Geary’s C were carried 

out with the use of CrimeStat.  ArcGIS does not offer local Geary’s C however local 

Moran’s I was calculated in ArcGIS for comparison of results from CrimeStat. 

3.14 Chi-Square Tests Of Independence 

 

Some of the data for this dissertation was categorical rather than continuous.  

Relationships which involved categorical data were explored using the chi-square test for 

independence. Chi-square also called Pearson's chi-square test or the chi-square test of 

association, is used to discover whether there is a relationship between two or more 

categorical variables by comparing the observed number of cases falling into a category 

to the expected number of cases falling into that category and dividing it by the expected 

value (Meyers, 2013). The formula for this is below where 𝜒2 = Pearson’s chi-square 

statistic. 

)(

)(2

ValueExpected

ValueExpectedValueObserved 
      (Formula 3) 

 Assumptions that must be met include that each cell should contain at least 5 

observations. Conventionally, results are questionable when more than 20 percent of the 

cells contain fewer than 5 observations (Walker & Almond, 2010).  Variables must be 
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either nominal or ordinal and that there must be two or more independent groups. This 

may be a problematic assumption when considering geographic regions such as census 

tracts or Parishes. (Fingleton (1983) and Cerioli (1997) note that spatially dependent 

observations require an appropriately modified chi-square statistic to take spatially 

autocorrelated data into account. All variables were analyzed using the chi-square test for 

independence except for the Parish of residence (due to obvious locational aspects).  The 

age of the mother was divided into discrete categories to allow for large enough groups 

legitimize the results, as were racial categories.  The number of cases falling into racial 

categories other than black and white was too small to legitimize the use the chi-square 

statistic.  For this reason this variable was combined into “black”, “white”, and “other so 

that sufficient numbers of cases would fall into all three groups.  Chi-square tests were 

used to explore differences between mothers of children with birth defects and mothers of 

children without birth defects on categorical variables including tobacco use, alcohol use, 

mother’s ethnic group, sex of child, and age category. 

3.15 Regression Analysis 

 

Regression analysis is employed to estimate the quantitative functional 

relationships between a response variable and one or more predictor variables from the 

measured data. The formula for the univariate, linear, regression model is represented 

below where Y is the value of the dependent variable, α  is the value of Y when X = 0, β  

is the slope of the regression line, X  is the value of the independent variable, and   is the 

error predicting the value of Y given the value of X (Mitchell, 2009).  

iii      (Formula 4) 
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Linear regression is commonly used to build simple models for analyzing geographic 

processes.  By taking a pair of variables for each point, a plot can be made showing the 

change in Y for each change in X.  The idea behind this method of analysis is to find the 

line that best fits through the data points (Seber & Lee, 2012).  Ordinary least squares 

regression (OLS) is one method of finding this “best fit”. OLS minimizes the squared 

distance of the points from the regression line as they are measured parallel to the y-axis.  

The distances of the points from the line are squared and summed.  The line with the 

smallest sum of the squared distances is considered the best fit (Seber & Lee, 2012).  

While this is a starting point for determining relationships in geographic space, it fails to 

take into account some important issues.  Many geographic relationships are not linear 

and in fact may display a distance decay (the slope of the line begins to drop sharply as 

the data points get farther away from the y-axis)(Fotheringham et al., 2002).  

Additionally, regression analysis is a global procedure thus applied to the entire site 

under study and with spatial data it is desirable to determine locally moderated 

relationships. For example, if clustering of birth defects is occurring more at one location 

than at another location given an equivalent percentage of births, it is highly probable that 

there are different underlying processes in each place.  Finally, analysis of spatially 

distributed data presents a number of problems for classical statistics.  Regression 

analysis assumes that events and their attribute values are independent of each other, that 

is, not spatially autocorrelated (Rogerson, 2010).  Spatial data are inherently 

autocorrelated as their locational aspects as well as their attributes are influential. 

Ignoring this spatial autocorrelation results in either statistical problems related to the 

structure of the data, or difficulty with interpretation and bias which may lead to incorrect 
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results (Richardson, 1997).  Classical regression models are most valid when the 

residuals have no meaningful spatial pattern which is often not the case with spatial data 

(Anselin, 1990; Richardson, 1997). The residuals may be dealt with by examining the 

cause of the model’s misspecification to reveal missing variables or regional differences 

which need to be assessed (Haining, 2003).  

Other issues may occur if the data are not normally distributed.  Inferential tests 

may be invalid in this case leading to the need to transform the dependent variable into a 

more normal distribution or to use nonparametric statistics (Salkind, 2006). Non-

parametric statistics work around the problem of non-normal distributions by “ranking” 

the data prior to performing correlations. Neither the dependent not the independent 

variables are normally distributed for the census data used in this study.  For this reason, 

the significance of correlations are computed using a Spearman’s Rank Order 

Correlation.  This test is non-parametric and does not require normally distributed data. 

3.16 Geographically Weighted Regression 

 

Geographically weighted regression (GWR) is a method specifically designed to 

investigate non-stationary contextual relationships over space.  Birth defects are often 

related to the local environment and therefore can be considered spatially varying. 

Tobler’s observation that "Everything is related to everything else, but near things are 

more related than distant things" is applicable here (Tobler, 1970).  It was hoped that the 

use of this technique would improve the results of linear regression analysis. The GWR 

allows parameters be estimated anywhere in the study area for a dependent variable and a 

set of one or more independent variables. In GWR as opposed to linear regression, the 

model coefficients are allowed to vary regionally and each location has its own 
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regression model rather than a single global model for the whole study area 

(Fotheringham, Brunsdon, et al., 2000).  Additionally, data points closest to the point of 

interest are geographically weighted so that they have more influence than observations 

which are further away.  This is accomplished with the use of a spatial kernel 

corresponding to each data point (Fotheringham et al., 2002). ArcGIS provides options 

for the use of the GWR which allow variation in bandwidth around the spatial kernel.  

The bandwidth controls the amount of distance decay so that smaller bandwidths produce 

a rougher surface than larger bandwidths. The smaller bandwidth will cause the points 

closest to the point of interest to have more effect on parameter estimates (Fotheringham 

et al., 2002). However, the arbitrary nature of the process of selecting a bandwidth may 

result in misleading or inaccurate maps. A very small bandwidth may produce “noise” 

that is not particularly useful or important, while a very large bandwidth may smooth out 

important information so that it is missed altogether (Carlos, Xun, Sargent, Tanski, & 

Berke, 2010).  Fortunately, ArcGIS allows alternate methods of determining the kernel 

function, including the Akaike Information Criterion (AIC) and a fixed bandwidth 

method in which the number of neighbors or the bandwidth is predetermined.  AIC is an 

objective way to come up with a model fit.  It represents a tradeoff between the number 

of parameters added and the amount of error entering the equation (Brunsdon, 

Fotheringham, & Charlton, 1996). If the bandwidth can be estimated based on what is 

known about a phenomenon then a fixed bandwidth makes sense, however, if no 

theoretical basis exists, an adaptive bandwidth employing the AIC offers a method for 

choosing the most useful bandwidth (Brunsdon, Fotheringham, & Charlton, 1998). The 
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formula for the AIC is below where Lm is the maximized log-likelihood and M is the 

number of parameters in the model (Everitt & Skrondal, 2010). 

AIC = - 2Lm + 2M   (Formula 5) 

The bandwidth with the smallest AIC is considered to be the “optimal” choice(Everitt & 

Skrondal, 2010).  Additionally, mapping the resulting regression values allows the 

researcher to see where the model is performing well and where it is not a good fit 

(Mitchell, 2009). For this dissertation the process started with bivariate correlation then 

global regression analysis. Those results were examined and then compared to 

geographically weighted regression results. ArcGIS 10.2 software contains a tool for 

calculating the GWR which was employed for this project.  

3.17 Multilevel Modeling 

 

Bivariate regression and stepwise linear regression, may provide information 

about simple relationships between variables within census tracts and for individual 

mothers and infants, however this leaves the interpretation of these relationships open to 

what may be referred to as the “ecological fallacy”.   The ecological fallacy is the process 

of deducing individual behavior from aggregated data (Waller, 2004).  At the basic level, 

multilevel analysis is similar to ordinary regression. However, in standard regression 

analysis the regression intercept and the regression coefficients are both “fixed”.  Only 

the residuals are random.  In contrast, in multilevel modeling the outcome variable is 

modeled as with coefficients designated as either “random” or “fixed”.  The fixed 

variable has but one value which is applied to the level one variable (in this case, the 

individual mother) regardless of the level two variable.  A random effect is allowed to 

vary between the level two variables (Wang, Fisher, & Xie, 2011). It is informative to 
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have knowledge of variables affecting individuals and those affecting entire census tracts. 

However, without the ability to model the interaction between the two, the relationship 

between the individual’s neighborhood risk level and individual risk of birth defects is 

left unexamined. Multilevel models can account for the interaction between individual 

and environment.  As such, they are employed in this dissertation to further explain 

differences in birth defect rates which are not explicated by either individual or 

neighborhood variables alone. 
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CHAPTER 4 EXPLORATORY SPATIAL ANALYSIS 

4.1 Contents Of The Chapter 

 

Chapter 4 will describe the data analysis in detail, including the quality of the data 

collected, challenges which arose with the geocoding process, and the characteristics of 

the dataset. Descriptive statistics for the complete data set are provided, relationships 

between variables, spatial distributions, cluster analysis, and temporal patterns are 

described. Both charts and maps are used to illustrate the characteristics of the data and 

the results of analysis. The majority of the maps employed the Jenks classification 

method for consistency and also to produce the most accurate representation of the data 

(Jenks, 1963).  ArcGIS was allowed to calculate the ideal number of categories for the 

choropleth maps.  For Figure 6 and Figure 7 on page 69, there were only three categories 

and these were set manually by the author when designing the maps. 

4.2 Data Quality Of Collected Data 

 

The available variables were coded with the ICD-9-CM coding system (DHH, 

2011). The data included all of the infants born in the nine parish area between 2005 and 

2008, both those with and those without birth defects. Thus the total number of cases 

provided was 44,604.  Due to the effects of Hurricane Katrina on transiency and 

communication, tracking of birth defects may not have been as accurate in 2005 and 2006 

as for the years following that time. Additionally, no data were available for St. Helena 

Parish during those two years.  Since rates and clusters were of the most interest in this 

case and birth rates were low in that parish, this was not a significant issue.  The 

geocoding process was successful for 94% newborns with recorded birth defects and 92% 

of infants without recorded birth defects.  A total of 44,604 live births were recorded in 
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the nine parish area between January 2005 and December 2008.  Of those deliveries, 

1,118 (2.5 percent) were reported to have at least one birth defect at delivery.  Problems 

with geocoding were generally due to post office boxes being recorded rather than 

addresses. Geocoding results were better for urban areas than for rural areas.  This is a 

well-known issue (Cayo & Talbot, 2003;Zimmerman & Jie, 2010).  Hay, Kypri, 

Whigham, & Langley (2009) suggest a number of reasons for this difference in accuracy, 

including less specific rural addresses, with rural delivery routes and post office boxes 

often used instead of street addresses, more frequent use of colloquial place names, larger 

interpolation errors due to longer street segments (in the case of the U.S.), and less 

accurate roadway reference data. Choices for dealing with this issue may include hand 

geocoding addresses, excluding non-geocoded data, or using less accurate addresses 

(Goldberg, 2008;Zimmerman, 2008).  Excluding non-geocoded data can affect spatial 

analysis by reducing statistical power or possibly creating selection or geographic bias 

(Vach, 1997; Wey, Griesse, Kightlinger, & Wimberly, 2009).   The database used for this 

study contained eight cases with no address at all or a partial address, and 2,188 had only 

a post office box. Among these births not geocoded, thirty-five had heart defects, two had 

cleft lip and/or palate, one had trisomy 21, two had neural tube defects, nine were 

diagnosed with hypospadias, and twenty-six had other types of birth defects. The decision 

was made to omit these from spatial analysis since locations could not be obtained. 

However, addresses which could not be geocoded were still taken into account in 

statistical analysis which did not include mapping, such as descriptive statistics and non-

spatial regression analysis. The highest geocoding rates were in Ascension, East Baton 

Rouge, Livingston and West Baton Rouge Parishes.  These are the parishes considered 
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non-rural thus these superior geocoding rates are not surprising.  Table 5 shows the 

variation in successful geocoding rates and Table 6 displays the variation in geocoding of 

specific types of birth defects.  Differences in match rates will need to be taken into 

account in interpreting results of the analysis.   

Table 5: Absolute Number Of Deliveries And Percent Of Deliveries Successfully 

Geocoded By Parish With And Without Birth Defects 

Parish Number of 

Deliveries 

Match Rate All 

Deliveries 

Match Rate 

with Birth 

Defects 

Match Rate 

without Birth 

Defects 

Ascension 6,534 91.3 91.5 91.2 

East Baton Rouge 24,627 96.2 96.1 

 

96.4 

East Feliciana 1,027 70.8 71.4 70.3 

Iberville 1,821 91.2 93.7 88.7 

Livingston 7,318 93.4 87.3 99.6 

Pointe Coupee 1,231 77.9 86.2 69.6 

St. Helena 253 46.6 40.0 53.2 

West Baton Rouge 1,351 85.1 85.7 84.5 

West Feliciana 442 55.7 66.6 44.9 

All Parishes 44,604 92.6 93.0 92.2 

 

Table 6: Percent Of Birth Defects Successfully Geocoded By Parish And Type of Birth 

Defect 

Parish Hypospadias Trisomy 

21 

Cleft Lip/ 

Palate 

Heart 

Defects 

Neural 

Tube 

Defects 

Ascension 94.73 91.66 100.00 98.38 100.00 

East Baton 

Rouge 

99.84 96.77 100.00 98.28 100.00 
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(Table 6 Continued) 

 

Parish Hypospadias Trisomy 

21 

Cleft 

lip/Palate 

Heart 

Defects 

Neural Tube Defects 

East 

Feliciana 

66.66 100 100.00 86.66 50.00 

Iberville 75.00 100 100.00 100.00 No Cases 

Livingston 86.95 76.92 88.23 100.00 100.00 

Pointe 

Coupee 

66.66 No 

Cases 

No Cases 85.32 100.00 

St. Helena No Cases No 

Cases 

No Cases No 

Cases 

No Cases 

West 

Baton 

Rouge 

75.00 No 

Cases 

66.66 88.23 50.00 

West 

Feliciana 

100.00 No 

Cases 

No Cases 50.00 No Cases 

 

Tables 7 and 8 give descriptive statistics for independent and dependent variables across 

census tracts.  The minimum for all of the variables is zero due to both the infrequency of 

some of the dependent variables and also because the Baton Rouge Metropolitan Airport 

has its own census tract.  There are no homes actually located within that tract.  An 

additional aspect of the data is that no category of birth defects was normally distributed 

throughout the census tracts, this violates the assumptions of many of the statistical tests 

which were used for analyzing the data.  A Shapiro-Wilks test (p>.05) (Razali & Wah, 

2011; Shapiro & Wilk, 1964) and a visual inspection of histograms, Q-Q plots, and box 

plots were used to test this aspect of both the independent and dependent variables.  The 

Q-Q plots are not included here, however Tables 9 and 10 display the salient 

characteristics of the dataset.  Sex of infant, year of birth, alcohol use, and tobacco use 

are not included in these tables because they are employed as categorical variables. 
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Table 7: Descriptive Statistics Of Independent Variables 

Independent 

Variable  

Mean  SD Median Minimum Maximum 

Percent Below 

High School 

Level 

15.52 9.07 15.39 0 39.07 

Fertility Rate 14.7 4.16 7.34 0 27.4 

Population 

Density/Sq. 

Mile 

1166.89 1181.88 540.9 12.5 3233.7 

Mobility Rate 

Different 

Parish 

5.4 0.014 5.4 5.4 5.4 

Mobility Rate 

Same Parish 

1.34 4.22 0 0 29 

Mobility Rate 

Abroad 

0.337 0.95 0.013 0.011 8.5 

Mobility Rate 

Different State 

0.381 1.10 0 0 7 

Percent White 50.35 28.62 53.14 3.22 95.36 

Percent Black 44.61 28.81 43.8 2.389 95.56 

Percent 

Hispanic 

0.1 0.684 0 2.13 9 

Percent Asian 1.28 1.6 0.578 0.476 7.36 

Percent Native 

American  

0.25 0.12 0.27 0.386 0.53 

Multiracial 1.12 0.31 1.13 0.912 1.18 

Age of Mother 

(with or 

without birth 

defect at time 

of infant’s 

birth) 

26.30 5.82 26.00 12.00 57.00 

Median Age 

of Female 

Population 

35.36 5.12 34.60 0 46.10 

Median Age 

of Male 

Population 

32.40 4.85 32.80 0 42.4 

Poverty Rate 13.32 9.19 10.56 0 41.92 
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Independent 

Variables Total SD Median Minimum Maximum 

All Defects 1130 3.92 9 0 28 

Hypospadias 122 1.16 1 0 4 

Trisomy 21 60 0.71 0 0 3 

Cleft Lip and/or 

Palate 77 0.84 0 0 4 

Heart Defects 525 3 5 0 12 

Neural Tube Defects 25 0.52 1 0 3 

 

Table 9: Normality Tests Of Independent Variables 

Independent Variables Skewness SE Shapiro-Wilk 

Significance 

Percent Below High School Level 0.39 0.19 0.00 

Fertility Rate 12.28 0.19 0.00 

Mobility Rate Different Parish 3.69 0.19 0.00 

Mobility Rate Same Parish 1.51 0.19 0.00 

Mobility Rate Abroad 5.61 0.19 0.00 

Mobility Rate Different State 2.92 0.19 0.00 

Percent White -0.12 0.19 0.00 

Percent Black 0.16 0.19 0.00 

Percent Hispanic 0.98 0.19 0.00 

Percent Asian 2.1 0.19 0.00 

Percent Native American 0.12 0.19 0.00 

Percent Multiracial -0.5 0.19 0.00 

Age of Mother 0.436 0.12 0.00 

Median age of Female population -4.1 0.19 0.00 

Poverty Rate 0.91 0.19 0.00 

 

Table 10: Normality Tests Of Dependent Variables 

Dependent Variables Total Skewness SE Shapiro-Wilk Significance 

All Defects 1130 0.16 0.47 0.00 

Hypospadias 25 8.66 0.09 0.00 

Trisomy 21 525 0.58 0.06 0.00 

Cleft Lip and Palate 122 1.28 0.07 0.00 

Heart Defects 60 1.31 0.05 0.00 

Neural Tube Defects 77 1.25 0.02 0.00 

Table 8: Descriptive Statistics Of Dependent Variables 
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4.3 Sociodemographic Characteristics Of Mothers Individually And By Census 

Tract Population 

 

Sociodemographic variables are known to be related to birth outcomes and as 

such, birth defects. Taken as population variables, they are surrogates for what cannot be 

known about the individual mothers and as individual variables, might lead the way to 

preventative interventions.  This section encompasses what is known with regard to the 

Age ranges of mothers at time of delivery, education levels, birth rates, population 

densities, mobility rates, ethnic distributions, and poverty rates for census tracts are 

discussed in detail below.  These discussions are augmented with maps and charts for 

clarification and illustration. 

4.3.1 Age Ranges Of Mothers At Time Of Delivery 

 

The age structure of the population was expected to influence the birth rates in each 

census tract, and the number and types of birth defects that occurred there. For this 

reason, the age distribution of the female population was examined at the individual level 

when available, and at the census tract or parish level otherwise.  Mothers of all infants 

(with and without birth defects) ranged from 12 to 57 years of age with an average age of 

26. It was not known whether each mother had more than one child at a time (multiple 

births) or more than one during the time period studied, therefore some mothers may be 

counted more than once in the dataset.  Not surprisingly, the age range was not normally 

distributed, as younger women are more likely to become pregnant. For this reason, 

median age was used as an indicator rather than average age.  There was one extreme 

outlier at the higher end of the age range where a mother was recorded to be 57 years of 

age.  There is no way to assess whether this is truly the case, or an error in recording.  
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This mother had a healthy child and removal of this case did not change the mean age at 

birth of 26.3 years.  As such, it was left in the database.  Age varied somewhat according 

to ethnic group with black mothers being the youngest on average and Chinese mothers 

having the oldest average age at time of delivery.  Some ethnic groups contained a very 

small number of individuals including, Japanese (7), Hawaiians (3), and Islanders (1).  

These categories were regrouped as “other”. Table 11 illustrates this variation in age 

ranges from lowest median age to highest.  Figure 6 illustrates the median age 

distribution of the female population in the study area.  Younger women are more likely 

to bear children, thus it is expected that birth rates will be higher in those census tracts 

with a lower median age.  These numbers include females both under and over 

childbearing age, however it should still be an indication of the childbearing population.  

A younger population indicates the likelihood that more children live there and also that 

more women of childbearing age reside there.  Median age of the mothers in the study 

was extracted from the dataset at the parish level for the two largest racial groups of 

mothers (white and black) separately. White mothers in the northern parishes had a 

younger median age than those in the central and southern parishes (Figure 7).  Black 

mothers, as indicated in Table 10, were younger in median age than white women in all 9 

parishes but were especially young in West Feliciana Parish with a median age of only 22 

years (Figure 8). 

Table 11: Mean Age Of Mothers At Birth By Ethnicity 

Ethnicity Median 

Age 

Median Age All Groups 26 

Black 24 
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(Table 11 Continued) 

 

Ethnicity Median 

Age 

Multiracial 25 

Native American 26 

White 27 

Other 29 

Vietnamese 30 

Chinese 31 

 

 

 

 
Figure 6: Median Age Of Females By Census Tract 
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Figure 7: Median Age Of White Mothers At Time Of Delivery By Parish 

 

 
Figure 8: Median Age Of Black Mothers At Time Of Delivery By Parish 
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4.3.2 Education Levels By Census Tracts 

Education levels for the purposes of this research were measured by percent of 

individuals in a census tract over age 25 with no high school diploma.  The percent of 

adult individuals over 25 in the U.S. with at least a high school diploma is 85.2% as of 

2005 (U.S. Census Bureau, 2011). This means that on average, 14.8% of the adult 

population over the age of 25 do not have a high school diploma. In comparison, the 

average percentage of individuals over 25 with less than a high school education in the 

study area was 15.52%.  The census areas ranged from a minimum of 1.1% with less than 

a high school diploma to a maximum of 39.07% with less than a high school diploma. 

This discounts the census tract containing the Baton Rouge Airport where there is no 

population. The Census Bureau displayed no value for education level in that census tract 

and it was omitted from any rate calculations. Figure 9 displays a broad spatial variation 

in education levels among the census tracts with areas of higher education levels 

interspersed among areas with lower education levels. 

 
      Figure 9: Percentage Of Adult Population Over 25  

With Education Level Below High School 
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In general the southeastern parishes have the most census tracts with above average 

percentages of people having at least a high school diploma.  Figure 9 illustrates the 

spatial distribution of education levels. 

4.3.3 Birth Rates By Census Tracts 

Two ways of describing birth rates are used depending on the purpose of the 

information. Either crude birth rate or fertility rate may be used.  The fertility rate 

indicates the number of births per 1000 women per year, ages 15-49.  Crude birth rate is 

the number of births per 1000 people regardless of sex or age (CDC, 2012). The fertility 

rate(Figure 10) was explored in this dissertation due to its relationship to poverty and 

infant health, Reasons for this link are not fully understood (Merrick, 2002). Crude birth 

rates are also represented in the choropleth maps for the purposes of comparison (Figure 

11). Crude birth rates are skewed by the number of women of child bearing age who 

happen to be living in a particular area.  This is of some importance for planning services 

to meet the needs of the local population demographic.  Additionally, census data can 

only provide information for a large number of households, not for individual 

households, which would likely be more meaningful in the case of infant birth defects 

and mortality. Nevertheless, of interest was that the fertility rate was highest in the central 

parts of East Baton Rouge Parish (Figure 10).  However, there was no significant 

relationship between census tract poverty levels and fertility levels in this dataset.  The 

average fertility rate for the entire MSA was 60.71 per 1000 women ages 15 to 49.  This 

was lower than the U.S. fertility rate of 69 per 1000 women in 2009 (CDC, 2012).   
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Figure 10: Fertility Rates For Women Ages 15-49 

 

The crude birth rate for the MSA was 15.37 per 1000 people, higher than the 

nation as a whole at 13.90 per 1000 in 2009 (CDC, 2012). There was a very broad range 

for crude birth rates among the census tracts, ranging from 0 (northern Pointe Coupee 

Parish) to 27.41 in one census tract of urban East Baton Rouge Parish. Overall, crude 

birth rates were widely variable but display a definite pattern of higher rates in urbanized 

areas and lower rates in more rural parishes (Figure 11). 
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Figure 11: Crude Birth Rates Calculated As Total Births Per 1000 People 

 

4.3.4 Population By Census Tracts 

 

The population of the Baton Rouge Metropolitan Area as of 2010 numbered 

802,484 with Baton Rouge as the largest and most populous city in the MSA.  Overall 

population density was 184.5 persons per square mile. Racial and ethnic patterns are 

reviewed here due to associations between the ethnicity of a neighborhood or census tract 

and health disparities (Reichman, Hamilton, Hummer, & Padilla, 2008).  

The white population is concentrated in the southeast part of the metro area and 

makes up 60.9% of the total population (see Figure 12). The black population is focused 

more towards the northwestern part of the area and makes up 35% of the population (see 

Figure 13).  These are the two largest ethnic groups.  The Asian population 

(approximately 1%) and the Hispanic population (approximately 3%) make up most of 
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the rest of the residents of the MSA (U.S. Census Bureau, 2011). The Asian and Hispanic 

populations are represented in Figures 14 and 15.  The black and white populations are 

widely spread across the MSA, whereas the Asian and Hispanic residents are more tightly 

clustered in the southern part of the MSA. The multiracial population rate, new to the 

2010 census, is exhibited in Figure 16. While the proportions of the population who were 

listed as multiracial are very small, areas of concentration are still apparent. What is 

known about individuals who choose this designation is that they tend to be younger on 

average than the rest of the populace and that Native Americans, Hawaiians, and Pacific 

islanders are more likely to report that they are multiracial(Saulny, 2011).   

 
Figure 12: Percent White By Census Tract (2005-2008) 

               



 

75 

 

                                                            

 
Figure 13: Percent Black By Census Tract (2005-2008) 

 
Figure 14: Percent Asian By Census Tract (2005-2008) 

 

 
Figure 15: Percent Hispanic By Census Tract (2005-2008) 
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Figure 16: Percent Multiracial By Census Tract (2005-2008) 

 

4.3.5 Birth Defect Rates By Census Tract 

 

The breakdown of types of birth defects was very close to the expected rates. More 

specifically, there were 122 (.02% of male infants) diagnosed with hypospadias, 60 

(.01%) had Trisomy 21, 44 (.01%) had cleft lip and/or palate, 523 (.07%) had heart 

defects, and 25 (.005%) had a neural tube defect.  Table 12 demonstrates the different 

types of birth defects chosen for analysis and the expected and actual totals in the study 

area. Only heart defects and hypospadias exceeded the expected percentage. 

Table 12: Expected And Actual Birth Defect Rates 
  

Actual 
Percentage of 

Total Deliveries 

Expected 

Total 

Expected 

Percentage 

Birth Defects Total 1,123 2.5 1,323 3 

Hypospadias 122 
             0.003 

(male) 
67 0.001 

Trisomy 21 60 0.13 57 0.13 

Cleft Lip/Palate 76 0.17 88 0.20 

Heart Defect 525 1.20 396 0.90 

Neural Tube Defect 25 0.06 22 0.05 
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A set of choropleth maps provide a visual illustration of the pattern and 

distribution of birth defects. Figure 17 demonstrates the birth defect rates in total. While 

the expected average is 3% of all live births, some of these are not diagnosed until after 

the newborn period.  There is no absolute answer as to what percentage are recognized 

immediately after birth.  This was taken into consideration, however, in choosing birth 

defects easily diagnosed in the newborn period. The average birth defect rate for the 

research area was 2.5%.  There is wide variation with some areas having extremely low 

rates and some extremely high rates.   These outliers did not appear to be the result of 

error and were left in the dataset. Hypospadias rates (Figure 18) were higher than the 

expected .001 percent of male babies.  Rates ranged from 0 to 1.28 % of live births and 

rates were variable.  In contrast to hypospadias rates, trisomy 21 rates (Figure 19) show 

an obvious visual pattern of concentration in the southeastern portion of the region.  

Overall rates were as expected at 0.13% of live births.  

Heart defects were the most common birth defect. It was expected that 0.9% of 

the infants born between 2005 and 2008 would have a diagnosed heart defect at birth. 

The rate was actually higher than expected at 1.2% over the four year period.  Figure 20 

demonstrates the distribution in rates however, there are uniformly higher percentages in 

the eastern part of the MSA in Livingston Parish.  

Cleft lip and palate cases (Figure 21) and neural tube defect cases (Figure 22) are 

not as easily demonstrated visually due to low numbers of cases in each census tract.  

Cleft lip and palate rates for the four year period were slightly below the expected rate of 

0.20 percent of live births. There are a few census tracts, however with higher than 

expected rates and a general trend towards increasing rates in the southern edge of the 
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metropolitan statistical area.  Neural tube defects were found to be virtually as expected 

at 0.05 percent of live births (Figure 22).  There were only 25 over the entire four year 

period and no census tracts had rates above 0.06 percent of live births during that time.   

 
Figure 17 : Birth Defect Rates By Census Tract (2005-2008) 

 

 

 
Figure 18: Hypospadias Rates By Census Tract (2005-2008) 
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Figure 19 : Trisomy 21 Rates By Census Tract (2005-2008) 

 

 

 
Figure 20: Heart Defect Rates By Census Tract (2005-2008) 
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Figure 21: Cleft lip And Palate Rates By Census Tract (2005-2008) 

 

 
 

 
Figure 22 : Neural Tube Defects By Census Tract (2005-2008) 

 

4.3.6 Geographic Mobility By Census Tracts 

 

Geographic mobility was assessed using U.S. census data to determine movement 

within the same parish, movement between parishes within the same state, movement 

between states and into the study area from out of the U.S. from 2005-2008.  The 2010 

U.S. Census Bureau respondents were asked whether all individuals over the age of five 

years had lived in the same house or apartment for the preceding five years. This data 
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pertained to the years 2005 to 2010(U.S. Census Bureau, 2012).  This was an important 

issue since the location of a mother during a pregnancy may have developmental effects 

on the fetus. Additionally, mobility rates are often related to poverty, younger age, 

tobacco use, and single parent status(Fell et al., 2004) Overall geographic mobility rates 

in the MSA are represented in Table 13. The most mobile census tracts were surrounding 

Louisiana State University and Southern University possibly due to the student 

population of part time residents.  The highest level of mobility was within the same 

parish with an average rate of 9.84% of the population (Figure 23). This was followed by 

movement within the same state with an average rate of 3.53% (Figure 24), from a 

different state (1.96%) (Figure 25), and finally from abroad (0.34%) (Figure 26). This is a 

low geographic mobility rate compared to the national average.  Nationally, an average of 

35.4 percent of respondents reported that they had not been in the same location for the 

previous five years (U.S. Census Bureau, 2012). 

Table 13: Geographic Mobility Rates 

Distance Minimum Maximum Mean Standard Deviation 

Different 

Country 

0.00 8.50 0.34 0.94 

Within State 0.00 30.60 3.53 3.96 

Different State 0.00 16.20 1.96 2.01 

Same Parish 0.00 43.50 9.84 6.72 
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Figure 23 : Number of Individuals Per 100 Reporting Parish  

Change Of Residence In the Last 5 Years (2010 Census). 

          

 
Figure 24: Number Of Individuals Per 100 Reporting Between  

Parish Change Of Residence In The Last 5 Years (2010 Census). 

 

 
Figure 25: Number of Individuals Per 100 Reporting Movement Into  

MSA From Another State In The Last 5 Years (2010 Census). 
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Figure 26: Number Of Individuals Per 100 Reporting Movement Into  

MSA From Another Country In The Last 5 Years (2010 Census). 

 

4.4 Tobacco And Alcohol Use Per Parish 

 

 Alcohol and tobacco use were observed for patterns due to their relationship to 

birth defects and infant mortality (Paul, Mackley, Locke, Stefano, & Kroelinger, 2009; 

Suarez et al., 2011). Fetal alcohol syndrome was recorded in four infants of mothers 

using alcohol. Tobacco use was reported by 2,958 (6.6%) of the mothers while only 118 

(0.26%) reported alcohol use during pregnancy and only four of those had reported birth 

defects. Tobacco use was much more commonly reported and 74 of those infants had 

birth defects. The birth defect rate for mothers reporting tobacco use was 2.5%, which 

was the same as the MSA population as a whole. Of those infants with anomalies whose 

mother’s had reported tobacco use, 33 had heart defects, 7 had hypospadias, 3 had cleft 

lip and/or palate, and the rest had other defects. Tobacco use percentages varied 

somewhat between parishes with Livingston Parish reporting the highest rate at 11.2% of 

mothers and East Baton Rouge parish reporting the lowest use at 5.1%.  79 mothers 

reported both alcohol and tobacco use with four of those having birth defects. Figure 27 

demonstrates the variation in rates of use of both substances. It is apparent that tobacco 

use is much more common than alcohol use among the mothers in this database. 
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Figure 27: Alcohol And Tobacco Use Percentages Among Parishes 

 

4.5 Spatial Distribution Of Birth Defect Locations From 2005-2008 

 

 Figure 28 shows the individual residential locations of all births recorded during 

the years 2005-2008.  The spatial pattern can be visually compared with the distribution 

of all birth defects (Figure 29) recorded during the years of the study, including those 

categories of birth defects not examined individually. Figures 30-34 exhibit individual 

point locations of infants born with the five different types of birth defects chosen for 

closer examination. Heart defects are the most numerous and show some evidence of 

clustering on the eastern edge of Livingston parish and in one census tract in Pointe 

Coupee Parish (Figure 30). Hypospadias (Figure 31) is most apparent in East Baton   

Rouge and Ascension Parishes. The rarer birth defects, cleft lip and palate defects(Figure 

32) and neural tube defects(Figure 33), are sparse or absent altogether in the less 

populated areas and trisomy 21 cases are heavily clustered in the central part of Baton 

Rouge and into the Southeastern edge of the MSA(Figure 34).  
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Figure 28: Individual Birth Locations  

For All Four Years 2005-2008 

 

 
Figure 29: Individual Birth Defect Locations 

For All Four Years 2005-2008 
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Figure 30: Individual Heart Defect Locations  

For All Four Years 2005-2008 

 

 
Figure 31: Individual Hypospadias Defect Locations  

For All Four Years 2005-2008 

 

 
Figure 32: Individual Cleft Lip and Plate Defect Locations 

For All Four Years 2005-2008 
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     Figure 33 : Individual Neural Tube Defect Locations  

For All Four Years 2005-2008 

 

 
Figure 34: Individual Trisomy 21 Locations 

For All Four Years 2005-2008 

 

4.6 Temporal Variations Of Birth Defect Locations By Year From 2005-2008  

 

 Temporal variations for the four years of the study were compared for incidence 

of birth defects overall and for each specific birth defect. In general, locational patterns 

are similar from year to year.  This seems to indicate that precipitating factors did not 

change much over the four year period.  Table 14 displays the total amounts of all births 

by parish. The number of births grew by 2.7 percent from 2005 to 2006 as compared to 
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0.1 to 0.2 percent for each year after that. This change in total births is especially 

apparent in Figure 35.  This large jump in births may have been due to the population 

influx after Hurricane Katrina.  While the spatial locations of birth defects are visually 

similar from one year to the next, the total numbers of individual types of birth defects 

were not as stable from year to year. Heart Defects jumped dramatically in 2006 at a rate 

similar to the overall increase in deliveries.  This can be seen by comparing Figures 35 

and 36.  Hypospadias cases shown in Figure 37, on the other hand, stayed about the same 

in 2006 but climbed rather dramatically in 2007 and fell off only slightly in 2008.  Cleft 

lip and palate (Figure 38), neural tube defects (Figure 39), and trisomy 21 cases (Figure 

40) closely followed the increases and decreases in overall births between 2005 and 2008. 

 

Table 14: Total Number Of Births Per Parish Per Year From 2005-2008 
Birth 

Year 

1 2 3 4 5 6 7 8 9 Total 

2005 1470 5668 264 443 1637 306 *0 321 102 10211 

2006 1715 6306 284 463 1871 311 *0 348 112 11410 

2007 1660 6272 244 428 1983 339 129 350 113 11518 

2008 1689 6381 235 487 1827 275 124 332 115 11465 

                    

Total 

6534 24627 1027 1821 7318 1231 253 1351 442 44604 

*No data available 1= Ascension, 2= East Baton Rouge, 3= East Feliciana, 4= Iberville, 

5= Livingston, 6=Pt. Coupee, 7= St Helena, 8=West Baton Rouge, 9=West Feliciana 

 



 

89 

 

 
Figure 35: Total Live Births By Year 2005-2008 

 
Figure 36: Total Heart Defects By Year 2005-2008 

 

 
Figure 37: Total Hypospadias Defects By Year 2005-2008 
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Figure 38: Total Cleft Lip and Palate Defects By Year 2005-2005 

 

 
Figure 39: Total Neural Tube Defects By Year 2005-2008 

 

 
Figure 40: Total Trisomy 21 Defects By Year 2005-2008 

 

4.7 Relationships Between Tobacco Use, Alcohol Use And Birth Defects 

 

A goal of this research was to discover relationships between behavioral, and 

environmental variables and birth defects. Some of these variables are categorical in 

nature and do not meet the assumptions of regression analysis. In this section those 
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variables will be described in terms of the statistical analysis performed and the results of 

that analysis will be discussed. There were some expectations as to the relationships 

between these variables and various types of birth defects based on the review of the 

literature.  These expected relationships are clarified in Table 15. Categorical variables of 

interest included tobacco use, alcohol use, and racial/ ethnic group. All of these have 

been shown to be predictors of various types of birth defects and were important to 

explore.  

Table 15: Expected Relationships Between Categorical Variables And Birth Defects 

Variable Type of Birth Defect Expected Statistical Relationship 

Alcohol Use Reported Heart/Cleft Lip and Palate Positive 

Tobacco Use Reported Heart/Cleft Lip and Palate Positive 

White Hypospadias Positive 

Black Heart Positive 

Hispanic Heart/Cleft Lip and Palate Positive 

Asian Cleft Lip and Palate Positive 

Native American Cleft Lip and Palate Positive 

Multiracial None Known None Known 

Age Category Trisomy 21/All/Heart 
Defects 

Positive 

 

While these variables were examined as rates when comparing census tracts, the 

additional information related to individual mothers and babies was desired.  For tobacco 

use, a 3x2 matrix was constructed with “Tobacco use”, “No Tobacco use”, “Unknown” 

as independent variables and “Birth Defect” or “No Birth Defect” as dependent variables.  

The same matrix was constructed for each individual type of birth defect.  A Chi-Square 

test of independence was chosen as a method of analysis.  For the category of all birth 

defects, there was no significant difference between mothers of children with birth 
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defects and mothers of children without birth defects related to mother’s tobacco use.  

Tobacco use was significantly related to heart defects, χ2 (2, N= 44604) = 6.98, p = .03 

α= 0.05.  Tobacco use is a known risk factor for heart defects in newborns, therefore this 

result was not unexpected (Schardein, 2000).  As shown in Table 16, there were no other 

significant relationships between tobacco use and any other types of birth defects or birth 

defects as a whole.  The expected relationship between tobacco use and cleft lip and 

palate was not significant (Honein, 2007). 

Table 16: Results Of Chi-square Test Between 

Tobacco Use And Birth Defects 

Birth Defect 
Pearson chi-
square 

df p 

All 3.31 2 0.19 

Hypospadias 1.05 2 0.59 

Trisomy 21 1.21 2 0.52 

Cleft Lip and Palate 1.44 2 0.49 

Heart Defects 6.98 2     0.03* 

Neural Tube Defect 1.96 2 0.37 

* p<.05       
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Similar to tobacco use, alcohol use was explored using a 3x2 matrix constructed with 

“No alcohol use, “alcohol use” and “unknown”.  Alcohol use was very infrequently 

reported in this dataset.  In fact, only 118 out to the 44,604(0.26%) women reported any 

alcohol use. Use of alcohol was related to heart defects, χ2 (2, N= 44604) = 5.34, p = 

0.07 α= 0.10. As with tobacco use, this was not a surprising result due to the known 

relationship between heart defects in infants and prenatal alcohol use(Burd et al., 2010). 

No other significant relationships were found between alcohol and birth defects as a 

whole or any category of birth defects.  Table 17 describes these results. 

 

Table 17: Results Of Chi-square Test Between 

Alcohol Use And Birth Defects 

Birth Defect 
Pearson 
chi-
square 

df p 

All 2.1 2 0.36 

Hypospadias 1.1 2 0.59 

Trisomy 21 0.51 2 0.51 

Cleft Lip and Palate 1.44 2 0.89 

Heart Defects 5.34 2 0.07* 

Neural Tube Defect 0.21 2 0.89 

* p<.05    

 

Ethnicity was reported as one of nine different categories in the dataset, including 

multiracial, white, black, Native American, Chinese, Japanese, Hawaiian, Filipino, 

Vietnamese, Hispanic and islanders.  Many of these categories are uncommon in the 

Baton Rouge MSA and had none or very few individuals who fell into them.  

Additionally, the chi-square test of independence requires that a minimum number of 

cases fall into each group in order to validate the results.  A decision was made to divide 
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the groups into “white”, “black”, and “other” as those are the largest ethnic groups in the 

MSA.  This is with the exception of the “Hispanic” category.  “Hispanic” is a designation 

that indicates a rather large group of nationalities described by the U.S. Census Bureau as 

a  person of Cuban, Mexican, Puerto Rican, South, or Central American or other Spanish 

culture regardless of any other categories that person might choose (U.S. Census Bureau, 

2011).  This group was made into an individual category for two reasons.  First, 

individuals who choose this category on health care or census surveys are known to have 

distinct health disparities despite the broad inclusion of nationalities (CDC, 2004b).  

Additionally, this grouping falls at the intersection of genetics and cultural identification 

and as such, does not fit into any other collection of categories. To deal with this issue, 

“Hispanic” was tested with its own statistical analyses.   

For race/ethnicity, the resulting matrix was 3x2 for birth defects as a whole and 

for each category of birth defects. Race/ethnicity was significantly related to birth defects 

as a whole χ2 (2, N=44604) =5.96, p=.05 α= 0.05, hypospadias χ2 (2, N=44604) =4.70, 

p=.09 α= 0.10, trisomy 21 χ2 (2, N=44604) =5.40, p=.07 α= 0.10, and heart defects χ2 (2, 

N=44604) =5.20, p=.07 α= 0.10 (Table 18).   This was expected  for a number of reasons 

including the fact that race/ethnicity moderated many characteristics of pregnant women, 

including age at delivery, health habits, genetic makeup, location of home and access to 

healthcare.  There were no relationships found between any individual birth defects and 

racial category or for birth defects as a whole and Hispanic ethnicity (Table 19).  Some 

birth defects, including neural tube defects and heart defects, are more common in 

Hispanic infants (Nembhard, Salemi, Tao, Loscalzo, & Hauser, 2010; Prue, Hamner, & 

Flores, 2010) but these relationships were not statistically significant in this sample. 
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Table 18: Results Of Chi-Square Test Between Racial 

Category And Birth Defects 

Birth Defect Pearson chi-square df p 

All 5.9 2 0.05* 

Hypospadias 4.7 2 0.09* 

Trisomy 21 5.4 2 0.07* 

Cleft Lip and Palate 3.8 2 0.15 

Heart Defects 5.2 2 0.07* 

Neural Tube Defect 0.42 2 0.81 

 

Table 19: Results Of Chi-square Test Between Hispanic Ethnicity 

And Birth Defects 

Birth Defect 
Pearson Chi-
Square 

df p 

All 0.77 2 0.77 

Hypospadias 3.03 2 0.22 

Trisomy 21 0.19 2 0.91 

Cleft Lip and Palate 2.22 2 0.33 

Heart Defects 1.33 2 0.51 

Neural Tube Defect 1.32 2 0.51 

 

4.8 Age Category Of Mother In Relationship To Infant Birth Defects 

 

Age at delivery is an important factor in the incidence of birth defects and as such, 

was explored in as many ways as possible in this research, including as a geographical 
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variable (median age of women in mother’s census tract, as a continuous variable using 

multivariate regression analysis, and as a categorical/ordinal variable with a chi-square 

test of independence) For the sake of maintaining consistency with regard to level of 

measurement, age is discussed here as a categorical variable and then in Section 4.15 and 

4.16 as a continuous variable.  Age will be described in terms of its relationship to birth 

defects as a whole and in relationship to individual types of birth defects.  Results of chi-

square tests for all birth defect categories discussed are presented in Table 20. 

No specific guideline could be found in the literature with regard to dividing mothers’ 

ages into categories.   For simplification, the age ranges of mothers were categorized into 

seven categories of five year intervals.  These intervals were; “12-16”  “17-21” “22-26” 

“27-31” 32-36 “37-42” and “older than 42”.  A 7x2 matrix was formed and a chi-square 

test was employed to look for significant relationships.  As expected, some categories of 

birth defects as well as birth defects as a collective were related to age group.  The 

relationship between age and birth defects as a whole was significant, χ2 (6, N=44604) 

=20.84, p=0.00 α= 0.01.   Also expected was the apparent escalation in risk associated 

with increasing age. Table 21 illustrates the increasing percentages of mothers whose 

infants have birth defects climbing gradually with age.  Age was also significantly related 

to trisomy 21 diagnosis, χ2 (6, N=44604) = 62.17, p<.000, α= 0.001 as were heart defects 

χ2 (2, N= 44604) = 17.49, p = .01, α= 0.01.  Tables 22 and 23 display these relationships. 

It should be remembered that many infants with trisomy 21 have heart defects as well, so 

this relationship is also expected.  Some infants had more than one birth defect, especially 

if the diagnosis was trisomy 21.  Hypospadias, cleft lip and palate and neural tube defect 

were unrelated to maternal age.   
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Table 20: Results Of Chi-Square Test Between Age 

Category And Birth Defects 

Birth Defect 
Pearson chi-
square 

df p 

All 20.84 6 *0.00 

Hypospadias 7.28 6 0.29 

Trisomy 21 62.17 6 *0.00 

Cleft Lip and Palate 6.32 6 0.38 

Heart Defects 17.49 6 *0.01 

Neural Tube Defect 6.52 6 0.37 

* p< .05       

 

Table 21: Birth Defect Percentages By 

Age Group 

Age Group Birth Defect Present 

No yes 

12-16 97.8% 2.2% 

17-21 97.5% 2.5% 

22-26 97.7% 2.3% 

27-31 97.6% 2.4% 

32-36 97.1% 2.9% 

37-41 96.3% 3.7% 

42 and up 96.2% 3.8% 
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Table 22: Trisomy 21 Percentages By  

Age Group 

Age Group Trisomy 21 

No Yes 

12-16 99.9% 0.1% 

17-21 99.9% 0.1% 

22-26 99.9% 0.1% 

27-31 99.9% 0.1% 

32-36 99.7% 0.3% 

37-41 99.5% 0.5% 

42 and up 99.0% 1.0% 

 

Table 23: Heart Defect Percentages By 

Age Group 

 Age 

Group 

Heart Defect 

No Yes 

12-16 
98.9% 1.1% 

17-21 
98.9% 1.1% 

22-26 
98.9% 1.1% 

27-31 
98.9% 1.1% 

32-36 
98.7% 1.3% 

37-41 
98.2% 1.8% 

42 and up 
97.2%        2.8% 
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4.9 Global Spatial Clustering Of Birth Defects 

 

A key element of geography as a research orientation is the search for spatial 

patterns.  As such, the spatial locations were an important part of the investigation of 

birth defects and their underlying causative factors in this dissertation.  The goal was to 

first look for spatial clustering and then to explore any potential environmental risks. The 

process included first looking for global clustering and then local clustering in order to 

identify where the clusters were located and to look for the possible associations that 

might explain them. In this section, the processes used for investigating global clustering 

are described followed by the results of global clustering analyses.  

For the examination of spatial distribution, two indices of spatial autocorrelation were 

employed, Moran’s I and Geary’s C.   Both of these are global measures. The difference 

between them is that Geary’s C compares deviations in intensities of each observation 

location with one another rather than the cross-product of deviations from the mean 

(Levine, 2007).  For this reason, Geary’s C is more sensitive to differences in smaller 

areas than Moran’s I (Geary, 1954).  CrimeStat was the only program with the capability 

to employ Geary’s C.  Both of these tests were used to explore birth defects as a whole 

and each individual birth defect in terms of its spatial distribution across the MSA with a 

null hypothesis that the spatial autocorrelation of the birth defect in question was zero.   

It was expected that clustering would exist due to the spatial separation of different 

racial/ethnic groups, the possible exposure to unknown, environmental toxins, and to the 

effects of education and poverty which varies among census tracts.  Additionally, median 

age of both white and black mothers appears to be higher in some parts of the MSA than 

in others.  Areas of high poverty and low education levels are more dispersed, however, 
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and thus may not exert an effect on cluster analysis tests.  Finally, there is some evidence 

that residential mobility exerts an influence on birth outcomes due to the fact that 

geographically mobile families are more likely to be smokers and less likely to plan a 

pregnancy leading to poorer prenatal care opportunities(Miller et al., 2010). Moves 

among this population are most common within the same parish, thus the expected 

relationship would be between birth defects and geographic mobility within a parish-wide 

distance.  As indicated by the literature on this topic, movement within a small 

geographic area is the most common and this held true for this population as well. 

  To control for differing numbers of live births in each census tract, rates were calculated 

by dividing the number of live births in that census tract during the time period by the 

number of infants born with a birth defect over that same time period. ArcGIS software 

was used to calculate the global Moran’s I statistic.  Inverse distance was chosen for the 

conceptualization of spatial weights rather than fixed distance due to varying sizes of the 

census tracts. Moran’s I with ArcGIS found no global autocorrelation for rates of any 

individual birth defects nor for birth defects as a whole (Table 24). This was an 

unexpected result.  In contrast, Moran’s I with CrimeStat found clustering for birth 

defects as a whole as well as for heart defects. The results of analysis of global clustering 

using the Geary’s C statistic with CrimeStat were in line with the second set of Moran’s I 

statistics. Geary’s C was significant for birth defects as a whole, neural tube defects and 

also heart defects.  For Moran’s I a zero value indicates a random (non-significant) 

spatial pattern.  -1 is a strong dispersion and + 1 a strong positive autocorrelation. With 

this in mind, Table 24 displaying the results of ArcGIS software shows very little 

indication of global correlation of any of the birth defects examined.  Table 25 provides 
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the results of global Moran’s I done with CrimeStat software, and Table 26 contains the 

results of Geary’s C statistic performed with CrimeStat. 

Table 24: Results of Global Autocorrelation Tests 

Moran’s I Calculated With ArcGIS 

Variable 
Moran’s 

Index 

Z-

Score 

P-

value 
Result 

All 0 0.07 0.94 Random 

Hypospadias -0.01 -0.39 0.69 Random 

Trisomy 21 -0.01 -0.35 0.72 Random 

Cleft Palate -0.01 -0.2 0.84 Random 

Heart Defect -0.01 0.41 0.68 Random 

Neural Tube 

Defects 
0 0.78 0.43 Random 

 

Table 25: Results Of Global Autocorrelation Tests  

Moran’s I Calculated With CrimeStat 

Variable 
Moran's 

Index 

Z-

Score 
P-value Result 

All 0.02 2.35 0.01 Clustered 

Hypospadias 0 0.98 n.s. Random 

Trisomy 21 0 0.89 n.s. Random 

Cleft Palate 0 0.86       n.s. Random 

Heart Defect  0.02 2.19 0.5 Clustered 

Neural Tube 

Defects 
0 0.98 n.s. Random 

*n.s. indicates that the result was not statistically significant 
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Table 26: Results Of Global Autocorrelation Tests  

Geary’s C Calculated With CrimeStat 

Defect Z C P-value Result 

All -1.89 0.89 <0.05 Clustered 

Hypospadias 0.07 1 n.s. Random 

Trisomy 21 0.51 1.02 n.s. Random 

Cleft Lip and Palate 0.64 1.03 n.s. Random 

Heart Defect -1.83 0.89 <0.05 Clustered 

Neural Tube Defects -2.08 0.88 <0.05 Clustered 

*n.s. indicates that the result was not statistically significant                     

     

4.10  Local Clustering Of Birth Defects  

 

Following the global clustering tests, locations for the clusters detected by the 

Geary’s C statistic, and Moran’s I with CrimeStat were examined using both local 

Moran’s I with ArcGIS software and the spatial scan statistic using SaTScan. The 

expectation was that local clusters might be found for all birth defects, heart defects, and 

neural tube defects.  Most likely locations where local clustering might be discovered 
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were determined by the initial maps made with geocoded point data.  Both hot spots 

(census tracts with high birth defect rates next to other census tracts with high birth defect 

rates), and cold spots (an area of very low birth defect rates next to other areas of very 

low birth defect rates) are displayed if they were statistically significant. The weighting 

function was set for inverse distance. As stated previously, this was a way to take into 

account the drastically differing sizes of census tracts.   

Both Global Moran’s I and Geary’s C executed with CrimeStat found significant 

clustering for birth defects as a group.  It was expected that there would also be 

significant local clustering also. Figure 41 demonstrates the result of local Moran’s I 

performed with ArcGIS.  Hot spots were found in several small clusters in central East 

Baton Rouge Parish. These tracts are densely populated and both crude birth rates and 

fertility rates are high here, however since these are rates which take population into 

account, the clusters are unexplained.  Two cold spots are also apparent. One cluster 

encompasses St. Helena Parish and the other is on the northern edge of East Baton Rouge 

Parish. Since two years of data are missing from St. Helena Parish, the explanation for 

that cold spot could be missing data. As for the other cold spot, there are no immediately 

apparent explanations. The small hot spots in central East Baton Rouge Parish are in an 

area with both high fertility and high crude birth rates. The birth defect rates in these 

tracts are all close to 4 percent or over 4 percent of all births.  This is significantly higher 

than the 2.5 percent average for the rest of the MSA.   

Heart defect rates showed a similar pattern of clustering in central East Baton 

Rouge Parish.  There are two additional statistically significant clusters located in East 

Feliciana Parish and in Livingston Parish.  This pattern is shown in Figure 42.  
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Additionally a statistically significant cold spot again was shown in St. Helena Parish and 

also in the northeastern corner of East Baton Rouge Parish 

 
Figure 41: Local Moran’s I For All Birth Defects Using ArcGIS 

 

 
Figure 42: Local Moran’s I For Heart Defects Using ArcGIS 
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Local Moran’s I indicated two statistically significant clusters of neural tube 

defects in the central part of East Baton Rouge Parish similar in location to birth defects 

as a whole and heart defects (Figure 43).  This location emerged as an area of concern 

repeatedly. Neural tube defects were very rare in the dataset, therefore caution should be 

taken with interpreting rates. 

 
Figure 43: Local Moran’s I For Neural Tube Using ArcGIS 

 

As expected, no hot spots were found for hypospadias or trisomy 21, however 

despite the fact that Global Moran’s I did not find anything significant for cleft lip and 

palate cases, ArcGIS located a large statistically significant hotspot of cleft lip and palate 

cases in Iberville Parish and another on the divide between Livingston Parish and East 

Baton Rouge Parish (Figure 44). There were a small number of cleft lip and palate cases 

in the database also and in fact, only three between Pointe Coupee and Iberville Parish 
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where the cluster location appears on the western edge of the MSA.  As with neural tube 

defects, this result should be received with caution. 

 
Figure 44: Local Moran’s I For Cleft Lip And Palate Using ArcGIS 

 

 

In order to further validate any clusters found by Arc GIS and CrimeStat, 

SaTScan was also employed for local cluster analysis using the Bernoulli model due to 

the ability of this software to take the underlying population at risk into account and its 

use of an alternate method of finding hot spots. The analyses were carried out using 999 

Monte Carlo replications to test for significance, and allowing for overlapping clusters at 

different maximum spatial cluster sizes based on the percent of the population at risk.  

The spatial scan statistic is known to be sensitive to parameter choices.  A range of 

maximum spatial cluster sizes, as suggested by Chen, Naito, Lengerich, MacEachren 

(2008) were investigated including 1, 1.5, 2, 5, 7, 10, 20, and 30% of the population at 

risk. All six of the dependent variables were tested for clustering at all eight parameters 

for population at risk.  The expectation was that clusters would be found for the same 
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birth defects in similar locations, however since SaTScan uses a different method of 

finding clusters, it was also possible that the results might differ somewhat. There were 

significant heart defect clusters discovered at parameter sizes of 5 percent and 7 percent 

of the population at risk.  At 5 percent one significant cluster was found (p<.05) with a 

relative risk of 3.29 (Figure 45).  At 7 percent SaTScan found one cluster (p<.05) with a 

relative risk of 2.01(Figure 46).  These areas of increased risk for heart defects are 

persistent, if slightly different in size and orientation, across the different software types 

and cluster analysis methods. For the categories of all birth defects, hypospadias, cleft lip 

and palate, or neural tube defects, the spatial scan statistic found no significant clusters. 

Overall areas of concern across all cluster analysis modalities were located in central East 

Baton Rouge Parish with regard to all birth defects, and in Livingston Parish specifically 

for heart defects. 

 
Figure 45: Spatial Cluster of Heart Defects Using SaTScan  

 At A Parameter Size Of 5% Of Population At Risk 
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Figure 46: Spatial Cluster of Heart Defects Using SaTScan  

 At A Parameter Size Of 7% Of Population At Risk 
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CHAPTER 5 FACTORS CONTRIBUTING TO BIRTH DEFECTS 

 

 This chapter will describe expected relationships between variables along with the 

rationale for these expectations.  Bivariate correlations are described and tables provided 

to assist with visualization.  One aspect of this project was to try to determine some of the 

contributing factors that may have led to the clusters or temporal changes in birth defects 

between 2005 and 2008 in the Baton Rouge MSA. An initial step was to employ bivariate 

correlations for the purpose of assessing the linear relationships between each dependent 

variable and the multiple independent variables at the census tract level.  

 5.1 Expected Relationships  

 

By exploring previous literature on relationships between the available independent 

variables and their effects on the incidence of birth defect rates, some initial expectations 

could be gleaned.  Table 27 summarizes these anticipated relationships. 

 

Table 27: Expected Relationships Between Continuous Variables  

And Birth Defect Types 

Variable Type of Birth Defect Expected 

Statistical 

Relationship 

Percent Below High School Level All/Heart Positive 

Fertility Rate All Positive 

Mobility Rate Variables None None 

Race/Ethnicity Variables 

All/Heart/Cleft/Neural 

Tube 

Positive 

Age Variables All/Heart/Trisomy 21 Positive 

Poverty Rate 

All/Heart/Cleft/Neural 

Tube Positive 
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 Initially, bivariate correlation analysis was attempted using Spearman’s rho due 

to inability to meet the assumption of normally distributed data. Birth defect rates as a 

whole and individual birth defects were analyzed for significant relationships as an initial 

step in choosing model components for multivariate regression analysis.  While all of the 

independent variables were initially chosen from the previous research and were expected 

to be related to birth defects in some fashion, exploration of spatial relationships gave 

clues to which ones might have the most impact for the Baton Rouge MSA.  Birth defect 

rates as a whole were significantly correlated with percentage of Asian individuals 

residing in the census tract, r (150) = -.17, p< .05, two tailed. Asian census respondents 

are quite clustered in residential location as can be appreciated in Figure 14 on page 77.  

In other words, the areas populated by this group have significantly low rates of birth 

defects (Figure 47).   

For heart defects, significant correlations were found for geographic mobility 

rates within the same parish, r (150) = + .25, p<.01, two tailed, and also the percent of 

individuals in the census tract who were of Asian ancestry, r (150) = + .32, p < .01, two 

tailed, or of multiracial ancestry, r (150) = + .27, p<.01, two tailed. Additionally, heart 

defects were related to median age total r (150) = .18, p < .05, median age male r (150) = 

.19, p < .05, and median age female r (150) = .18, p < .01.  For heart defect then, 

significantly mobile, older populations and those with Asian or multiracial census 

respondents were significantly more likely to have high rates of heart defects (Figure 48).  

Asian mothers were seen to have the  oldest median age at delivery so this is not 

surprising.  Additionally, chi-square tests of independence shown on page 110 in table 

19, displayed a relationship between age and heart defects. As stated earlier, little is 
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known about the multiracial category and the possible explanation for this relationship is 

open to more investigation. More mobile populations, on the other hand, have 

characteristics which increase the risk of birth defects, including higher rates of poverty 

and tobacco use (Fell et al, 2004).   

Hypospadias rates evidenced only two significant relationships with the 

independent variables (Figure 49). As with heart defect rates, there was a significant 

relationship to geographic mobility within the same parish r (150) = + .32, p < .05. 

Additionally, hypospadias was the only birth defect correlated with fertility rates r (150) 

= .27, p < .01. High fertility rates are sometimes associated with poverty and poor birth 

outcomes, however in this dissertation that particular relationship was not significant. 

There were no other relationships apparent for hypospadias rates.  Hypospadias is 

sometimes genetic but  also related to maternal age over 35 (Carmichael, Shaw, Laurent, 

Olney, & Lammer, 2007), maternal obesity(Blomberg & Kallen, 2010; Carmichael et al., 

2007; Porter, Faizan, Grady, & Mueller, 2005)  and possibly local exposure to 

environmental toxins  (Paulozzi, Erickson, & Jackson, 1997). The data available for this 

dissertation did not include individual or census tract obesity rates or information on 

environmental exposure to toxins. 

Cleft lip and palate rates were significantly related only to percentage of Native 

Americans in the census tract, r (150) = + .34, p< .01, two tailed (Figure 50). This was 

the lone significant relationship for cleft lip and palate defects. Native American ancestry 

is known to increase the risk of cleft lip and palate defects and this result was not 

unexpected (Vieira, 2002). As noted previously, small numbers of cleft lip and palate 

cases may have artificially inflated census tract rates, however this relationship was also 
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significant in the categorical data analysis for individual cases which lends credibility to 

the result (Figure 51).  

Trisomy 21 was significantly negatively related to all age categories; median age 

total r (150) = -.21, p < .01, median age male r (150) = -.21, p < .05, and median age 

female r (150) = -.23, p < .01(Figure 51). This was not the expected direction of this 

relationship.  Categorical analysis revealed the expected risk in trisomy 21 diagnosis with 

the increasing age of the mother.  The focus does shift here, however from individual risk 

to risk related to mothers residential location. Even though trisomy 21 is more likely in 

infants of older mothers, more young mothers actually give birth, and thus numerically 

there are more trisomy 21 affected infants born to young mothers.   Also of interest, was 

a correlation between higher levels of education in a census tract and increased trisomy 

21 rates. Trisomy 21 rates were negatively related to percent of individuals over 25 in the 

census tract with education level below high school level, r (150) = -.19, p < .05. An 

initial possibility is that older, more educated individuals give birth later in life and have 

a greater likelihood of having a child with trisomy 21, but this contradicts the finding of 

lower median age in census tracts with higher rates of trisomy 21.  This finding may be 

worth exploring further.  Finally, percent of individuals reporting Native American 

ancestry, r (150) = .17, p < .05 was also correlated with trisomy 21. There is no 

connection found in the research literature to explain this on an individual risk level. In 

summary, trisomy 21 was found to be statistically more common among census tracts 
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with younger median age, higher education levels, and higher percentage of Native 

Americans. 

No significant relationships could be found for found for neural tube defects. 

Possibly the extremely small number of these limited the ability of the analysis to find 

any relationships. Figures 47-52 provide comprehensive tables of each dependent 

variable in relationship to all the independent variables.  While none of the relationships 

between the variables were particularly strong, some were significant. 
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Figure 47: Bivariate Correlations All Birth Defects  *p ≤.05.    **p≤ .01 
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Figure 48: Bivariate Correlations Heart Defect   *p ≤.05.    **p≤ .01 
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Figure 49:Bivariate Correlations Hypospadias  *p ≤.05.    **p≤ .01 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 Hypospadias 1.000

2 percent below poverty -.049 1.000

3 percent below high 

school

-.067 .770
** 1.000

4 same parish -.038 -.132 -.002 1.000

5 different parish -.200
* .075 .055 -.042 1.000

6 different state -.072 .048 .001 .258
**

.183
* 1.000

7 abroad .058 -.076 -.068 .266
** .051 .071 1.000

8 Fertility Rate .275
** -.048 .065 .385

**
-.326

** -.003 -.044 1.000

9 black percent .031 .057 .159 .262
**

-.214
** -.085 .061 .303

** 1.000

10 native american .140 -.175
*

-.173
* -.151 -.093 .049 -.163

* -.019 -.425
** 1.000

11 asian percent .019 -.120 -.059 .316
** -.015 .292

** .025 .219
**

-.236
**

.277
** 1.000

12 hawaiian percent .041 -.109 -.054 .341
** .014 .121 .181

*
.196

*
-.248

** .002 .385
** 1.000

13 hispanic percent -.049 -.038 -.025 .056 .095 .206
* .088 .020 -.570

**
.246

**
.597

**
.555

** 1.000

14 multiracial percent -.086 -.080 -.029 .173
* .139 .275

** -.070 .011 -.380
**

.293
**

.675
**

.440
**

.707
** 1.000

15 median age total -.175
* .118 .008 -.373

** .104 -.115 .039 -.394
**

-.247
** .056 -.435

** -.114 .004 -.101 1.000

16 median age male -.157 .113 -.026 -.356
** .110 -.087 .029 -.371

**
-.329

** .100 -.423
** -.070 .040 -.059 .937

** 1.000

17 median age female -.166
* .083 -.013 -.300

** .056 -.087 .059 -.353
**

-.209
* .061 -.402

** -.080 .015 -.062 .947
**

.932
** 1.000

18 white percent -.034 -.054 -.157 -.280
**

.233
** .066 -.067 -.332

**
-.992

**
.397

**
.178

*
.230

**
.510

**
.331

**
.256

**
.342

**
.215

** 1.000
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Figure 50: Bivariate Correlations Cleft Lip/Palate   *p ≤.05.  **p≤ .01 

 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 cleft palate rate 1.000

2 percent below poverty -.101 1.000

3 percent below high school -.155 .770
** 1.000

4 same parish -.148 -.132 -.002 1.000

5 different parish -.066 .075 .055 -.042 1.000

6 different state .032 .048 .001 .258
**

.183
* 1.000

7 abroad -.079 -.076 -.068 .266
** .051 .071 1.000

8 fertility Rate -.043 -.048 .065 .385
**

-.326
** -.003 -.044 1.000

9 black percent -.168
* .057 .159 .262

**
-.214

** -.085 .061 .303
** 1.000

10 native american .342
**

-.175
*

-.173
* -.151 -.093 .049 -.163

* -.019 -.425
** 1.000

11 asian percent .158 -.120 -.059 .316
** -.015 .292

** .025 .219
**

-.236
**

.277
** 1.000

12 hawaiian percent -.007 -.109 -.054 .341
** .014 .121 .181

*
.196

*
-.248

** .002 .385
** 1.000

13 hispanic percent .056 -.038 -.025 .056 .095 .206
* .088 .020 -.570

**
.246

**
.597

**
.555

** 1.000

14 multiracial percent .111 -.080 -.029 .173
* .139 .275

** -.070 .011 -.380
**

.293
**

.675
**

.440
**

.707
** 1.000

15 median age total -.030 .118 .008 -.373
** .104 -.115 .039 -.394

**
-.247

** .056 -.435
** -.114 .004 -.101 1.000

16 median age male -.007 .113 -.026 -.356
** .110 -.087 .029 -.371

**
-.329

** .100 -.423
** -.070 .040 -.059 .937

** 1.000

17 median age female -.039 .083 -.013 -.300
** .056 -.087 .059 -.353

**
-.209

* .061 -.402
** -.080 .015 -.062 .947

**
.932

** 1.000

18 white percent .158 -.054 -.157 -.280
**

.233
** .066 -.067 -.332

**
-.992

**
.397

**
.178

*
.230

**
.510

**
.331

**
.256

**
.342

**
.215

** 1.000



 

118 

 

 

 

 

 
Figure 51: Bivariate Correlations Trisomy 21 *p ≤.05.    **p≤ .01                       

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 Trisomy 21 1.000

2 Percent Below Poverty -.158 1.000

3 Percent Below High 

School

-.193
*

.770
** 1.000

4 same parish .064 -.132 -.002 1.000

5 different parish -.034 .075 .055 -.042 1.000

6 different state -.045 .048 .001 .258
**

.183
* 1.000

7 abroad -.077 -.076 -.068 .266
** .051 .071 1.000

8 Fertility Rate -.071 -.048 .065 .385
**

-.326
** -.003 -.044 1.000

9 black percent -.077 .057 .159 .262
**

-.214
** -.085 .061 .303

** 1.000

10 native american .173
*

-.175
*

-.173
* -.151 -.093 .049 -.163

* -.019 -.425
** 1.000

11 asian percent .078 -.120 -.059 .316
** -.015 .292

** .025 .219
**

-.236
**

.277
** 1.000

12 hawaiian percent .012 -.109 -.054 .341
** .014 .121 .181

*
.196

*
-.248

** .002 .385
** 1.000

13 hispanic percent .082 -.038 -.025 .056 .095 .206
* .088 .020 -.570

**
.246

**
.597

**
.555

** 1.000

14 multiracial percent .090 -.080 -.029 .173
* .139 .275

** -.070 .011 -.380
**

.293
**

.675
**

.440
**

.707
** 1.000

15 median age total -.201
* .118 .008 -.373

** .104 -.115 .039 -.394
**

-.247
** .056 -.435

** -.114 .004 -.101 1.000

16 median age male -.168
* .113 -.026 -.356

** .110 -.087 .029 -.371
**

-.329
** .100 -.423

** -.070 .040 -.059 .937
** 1.000

17 median age female -.187
* .083 -.013 -.300

** .056 -.087 .059 -.353
**

-.209
* .061 -.402

** -.080 .015 -.062 .947
**

.932
** 1.000

18 white percent .075 -.054 -.157 -.280
**

.233
** .066 -.067 -.332

**
-.992

**
.397

**
.178

*
.230

**
.510

**
.331

**
.256

**
.342

**
.215

** 1.000
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Figure 52: Bivariate Correlations Neural Tube Defects    *p ≤.05.    **p≤ .01 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 neural tube defect rate 1.000

2 percent below poverty -.127 1.000

3 percent below high school -.021 .770
** 1.000

4 same parish -.126 -.132 -.002 1.000

5 different parish -.031 .075 .055 -.042 1.000

6 different state .030 .048 .001 .258
**

.183
* 1.000

7 abroad -.029 -.076 -.068 .266
** .051 .071 1.000

8 fertility rate .158 -.048 .065 .385
**

-.326
** -.003 -.044 1.000

9 black percent .072 .057 .159 .262
**

-.214
** -.085 .061 .303

** 1.000

10 native american .025 -.175
*

-.173
* -.151 -.093 .049 -.163

* -.019 -.425
** 1.000

11 asian percent -.001 -.120 -.059 .316
** -.015 .292

** .025 .219
**

-.236
**

.277
** 1.000

12 hawaiian percent .024 -.109 -.054 .341
** .014 .121 .181

*
.196

*
-.248

** .002 .385
** 1.000

13 hispanic percent -.008 -.038 -.025 .056 .095 .206
* .088 .020 -.570

**
.246

**
.597

**
.555

** 1.000

14 multiracial percent -.100 -.080 -.029 .173
* .139 .275

** -.070 .011 -.380
**

.293
**

.675
**

.440
**

.707
** 1.000

15 median age total -.152 .118 .008 -.373
** .104 -.115 .039 -.394

**
-.247

** .056 -.435
** -.114 .004 -.101 1.000

16 median age male -.153 .113 -.026 -.356
** .110 -.087 .029 -.371

**
-.329

** .100 -.423
** -.070 .040 -.059 .937

** 1.000

17 median age female -.150 .083 -.013 -.300
** .056 -.087 .059 -.353

**
-.209

* .061 -.402
** -.080 .015 -.062 .947

**
.932

** 1.000

18 white percent -.082 -.054 -.157 -.280
**

.233
** .066 -.067 -.332

**
-.992

**
.397

**
.178

*
.230

**
.510

**
.331

**
.256

**
.342

**
.215

** 1.000
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CHAPTER 6 STEPWISE MULTIPLE REGRESSION RESULTS 

 

In this chapter, multicollinearity was explored with a resulting decrease in the 

variables employed for analysis.  This is followed by a stepwise multiple regression 

procedure and a discussion of the results of this attempt.  Charts of the resulting models 

are presented for clarification and illustration. 

A potential issue involving data in multiple linear regression is multicollinearity. 

It was anticipated that some or most of the variables in this research were not 

independent of one another. The goal was to avoid any excessive multicollinearity which 

might make it difficult to tell which independent variables were actually having an effect 

on the dependent variable in question (Webster, 2013). This issue was addressed by using 

SPSS software to test for this problem prior to proceeding with stepwise multiple 

regression analysis.  Variance inflation factors did reveal concerns about Collinearity 

with regard to percentage of white and black individuals within the census tract in 

question and median age male, median age female, and median age overall.  As a result, 

these variables were entered in individual trials on SPSS and resulting models compared.  

No resulting models were altered by replacing correlated variables, so only one of the 

variables, “percent black”, was used in the final analysis.  “Median age” was reduced to 

“median age female” only and the other two age variables were removed. Table 28 

displays variance inflation factors for all of the independent variables   

 The results of the stepwise linear regression analysis for birth defects as a whole 

indicated that two predictors explained 25% of the variance (R2=.25, F (2,148) =5.08, 

p<.05). Geographic mobility between parishes significantly predicted birth defects (β = 

.17, p<.05), as did percent of population residentially mobile within the same parish 
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 (β = .17, p<.05).  These were the only predictors for birth defects as a group (Figure 53).  

Stepwise regression analysis for heart defect rates did not produce a multivariate model.  

As shown in Figure 54, only the percentage of multiracial individuals in a census tract 

was predictive of heart defect rates (R2=.06, F (1,149) =8, p<.01). Comparing the spatial 

characteristics of the multiracial population and the spatial aspects of Heart defect rates 

does indicate some similarity in location but the actual mechanism for this correlation is 

not clear. 

Table 28: Variance Inflation Factors 

For Independent Variables 

 

Variable VIF

white percent 26.96

median age female
262.26

black percent
23.37

native american
1.73

asian percent
2.78

hawaiian percent
1.70

hispanic percent
3.93

multiracial percent
3.94

median age total
1016.79

median age male
314.21

same parish
1.88

different parish
1.48

different state
1.57

abroad
1.27

Poverty Rate
2.10

Percent Below High 

School
1.24
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 Table 29 provides an overview of the results of bivariate correlations between each type 

of birth defect and independent variables.  

Table 29: Significant Bivariate Correlations Between 

Independent and Dependent Variables 

All Birth Defects     

Variables  Coefficient p 

Percent Asian   -0.17 0.05 

Heart Defects     

Same Parish 0.25 0.01 

Percent Asian   0.32 0.01 

Percent Multiracial 0.27 0.01 

Median Age Total 0.18 0.05 

Median Age Male 0.19 0.05 

Median Age Female 0.18 0.05 

Hypospadias     

Same Parish 0.32 0.05 

Fertility Rate 0.27 0.01 

Cleft Lip/Palate     

Percent Native American 0.34 0.01 

Trisomy 21     

Median Age Total -0.21 0.01 

Median Age Male -0.21 0.05 

Median Age Female -0.23 0.01 

Percent Below High School -0.19 0.05 

Percent Native American 0.17 0.05 



 

123 

 

 

Figure 55 displays the results of the stepwise regression analysis for cleft lip and palate 

rates. This defect also failed to produce a multivariate model and had a single significant 

predictor, percent Native American, which explained 10% of the variance (R2=.10, F 

(1,149) =16.73, p<.01). Trisomy 21 rates were best predicted by higher percentage of 

people with education beyond high school and younger median age (Figure 56).  These 

two predictors in tandem explained 32 % of the variance (R2=.32, F (2,147) =8.14, 

p<.01).  The two predictive variables were median age female (β = -.23, p<.01) and 

Percent below high school (β = -.20, p<.01). Hypospadias was weakly predicted by a 

combination of three variables (R2=.13, F (3) =7.04, p<.00).  These were increased 

fertility rates (β = .27, p<.01), percent Native American (β = .20, p<.05) and percentage 

of Hispanics in the census tract (β = -.16, p<.05) as displayed in Figure 57.  The stepwise 

regression models for neural tube defect produced no models (Figure 58).  This was not 

unexpected since bivariate correlations did not result in any significant relationships.  

Overall the models were very weak though significant and some birth defects were 

unable to be modeled at all with the variables available. 
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Figure 53: Stepwise Regression Model Birth Defects Overall 

 

 

 

 

 

 

 

Variable Model 1 Model 2

Dependent Variable: Birth Defect Rates B SE B β t B SE β t

Percent Below Poverty

Percent Below High School

Same parish 0.02 .010 0.17 2.25

Different parish 0.04 0.02 0.18 2.25 0.04 .019 0.17 2.22

Different state

Abroad

Black percent

Native american

Asian percent

Hawaiian percent

Hispanic percent

Multiracial percent

Median age total

Median age female

R 2 0.18**a 0.25**b

F 5.08 4.46
a. Predictors: Different Parish

b. Predictors: Different parish, Same Parish

** p ≤ .01
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Figure 54: Stepwise Regression Model, Heart Defects 

 

 

 

 

 

 

 

 

 

Variable Model 1

Dependent Variable: Heart Defect Rates B SE B β t

Percent Below Poverty

Percent Below High School

Same parish

Different parish

Different state

Abroad

Black percent

Native american

Asian percent

Hawaiian percent

Hispanic percent

Multiracial percent 0.49 168.00 0.24 2.96

Median age total

Median age female

R2 .056*

F 8.76

a. Predictors: Multiracial

* p ≤ .05
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Figure 55: Stepwise Regression Model, Cleft Lip And Palate 
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Figure 56: Stepwise Regression Models, Trisomy 21 

Variable Model 2

Dependent Variable: Trisomy 21 B SE B β t

Percent Below Poverty

Percent Below High School -0.20 0.00 -0.20 -2.57

Same parish

Different parish

Different state

Abroad

Black percent

Native american

Asian percent

Hawaiian percent

Hispanic percent

Multiracial percent

Median age total

Median age female -0.20 0.00 -0.23 -2.93

R2 .32**

F 8.15

a. Predictors: Median Age Female, Percent Below High School

** p ≤ .01
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Figure 57: Stepwise Regression Models Hypospadias 

 

 

 

 

 

 

 

 

 

Variable Model 1 Variable Model 2 Variable Model 3

Dependent Variable: Hypospadias Rates B SE B β t Dependent Variable: Hypospadias Rates B SE B β t Dependent Variable: Hypospadias Rates B SE B β t

Percent Below Poverty Percent Below Poverty Percent Below Poverty

Percent Below High School Percent Below High School Percent Below High School

Same parish Same parish Same parish

Different parish Different parish Different parish

Different state Different state Different state

Fertility Rate 0.27 0.01 0.27 3.42 Fertility Rate 0.02 0.01 0.28 3.58 Fertility Rate 0.02 0.01 0.27 3.60

Abroad Abroad Abroad

Black percent Black percent Black percent

Native american Native american 1.52 0.72 0.16 2.11 Native american 1.88 0.73 0.21 2.57

Asian percent Asian percent Asian percent

Hawaiian percent Hawaiian percent Hawaiian percent

Hispanic percent Hispanic percent Hispanic percent -0.11 0.05 0.21 2.57

Multiracial percent Multiracial percent Multiracial percent

Median age female Median age female Median age female

R2 0.073*** R2 0.10*** R2 0.126***

F 11.71 F 5.70 Fertility Rate 7.04

a. Predictors: Fertility Rate a. Predictors: Fertility Rate, Native American a. Predictors: Fertility Rate, Native American, Hispanic Percent

*p<.05  ** p<.01 ***p<.00
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CHAPTER 7 GEOGRAPHICALLY WEIGHTED REGRESSION MODELS 

 

This chapter will describe the application of geographically weighted regression 

in an attempt to improve the regression models and explore the possibility of non-

stationary relationships between independent and dependent variables.  The 

geographically weighted regression procedure is described for each dependent variable.   

This is followed by an assessment of autocorrelation of the residuals for each resulting 

model along with maps for visual assessment.  Charts are used to compare the results of 

stepwise regression models and geographically weighted regression models and problems 

with this method are discussed. 

 The next step in the research process was to determine whether relationships 

between variables were non-stationary, one way to do this was to employ geographically 

weighted regression. The ArcGIS geographically weighted regression function was 

applied to the data using adaptive kernel type and the AICc bandwidth method.  

Following this procedure, residuals were checked for spatial autocorrelation using global 

Moran’s I.  Spatial autocorrelation in the residuals invalidates the use of GWR. This 

assumption is important as heteroscedasticity can lead to inefficient least-squares 

estimators and as a result, misleading statistical inference (Leung, Mei, & Zhang, 2000).  

The independent variables which were shown to be significant predictors for each 

dependent variable were entered into the GWR models and compared with the multiple 

regression results.  

For overall birth defect rate, geographically weighted regression did show some 

local variation, with R2 improving from 0.18 for traditional regression analysis to 0.35 

using GWR demonstrating that relationships were non-stationary. The model was most 
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valid in rural areas and least valid in south central areas of the MSA. Figure 58 illustrates 

the findings.  Heart defect rate predictions were also improved with GWR.  R2   increased 

from 0.06 for traditional regression analysis to 0.27 for GWR.  This was a rather dramatic 

jump even though the relationships still appear to be very weak.  Figure 59 demonstrates 

where the relationships are most valid.  The model held up well in the southeastern part 

of the MSA in Livingston and Ascension Parish and also in parts of West Feliciana 

Parish.  It performed especially poorly in central East Baton Rouge Parish. Notable is the 

fact that heart defects were most numerous in areas where the model was more 

successful.  For trisomy 21, GWR could not be employed due to significant 

autocorrelation of the residuals. Applying GWR  to hypospadias relationships also 

produced negligible change.  The model, shown in Figure 60, while weak, produced the 

best results in rural areas, especially St. Helena Parish. There were very few births or 

birth defects in that parish, however.  Figure 61 displays the results for cleft lip and 

palate.  As with the other categories of birth defects results were weak.  There were no 

informative patterns to the distribution of results.  Table 30 shows the comparison 

between the stepwise regression models and the geographically weighted regression 

models.  Maps are displayed for GWR results showing the local variations in R2.  While 

GWR did improve some models, showing the non-stationary aspects of these 

relationships, the models are far from successful in terms of explaining the relationships 

between birth defects and the independent variables employed. This lack of success may 

be due to the way that GWR conceptualizes the spatial aspects of the variables.  

Methodological problems may arise due to the straight-line measurement of distance.  In 

the Baton Rouge metropolitan area, the Mississippi river curves around the city and local 
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communities and forms a 2,300 foot gap between housing areas.  This may explain why 

the GWR models were more successful in rural and outlying areas not bisected by the 

Mississippi River. 

 

Table 30: Geographically Weighted Regression Results 

 
 

Original R2 GWR R2 Moran' s 
I 

P(Moran’s I) 

All Birth Defects 0.18 0.35 0.00 0.37 

Heart Defects 0.06 0.27 0.01 0.16 

Hypospadias 0.13 0.18 -.01 0.86 

Cleft Lift and Palate 0.10 0.28 0.00 0.75 

Trisomy 21 0.32 0.05 0.02 0.03* 

            *P<.05 

 

 
Figure 58: Geographically Weighted Regression All Birth Defects 
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Figure 59: Geographically Weighted Regression Heart Defects 

 

 

 

 
Figure 60: Geographically Weighted Regression Hypospadias 
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Figure 61: Geographically Weighted Regression Cleft Lip and Palate 

 

 

CHAPTER 8 MULTILEVEL MODELING 

 

Geographically weighted regression did a poor job of improving models which 

could explain the variation in birth defects.  In an attempt to improve the results and also 

to avoid the risk of confusing group risk with individual risk, multilevel modeling was 

performed.  SAS version 9.4 was used for this analysis. Census tract level variables and 

individual level variables were combined into one dataset.  Additionally, the geographic 

mobility variables were combined into one variable by calculating a percentage of each 

census tract population that had reported moving either within or into the census tract in 

the last five years.  The four mobility variables for each tract were averaged.  Another 

addition was a categorical variable for urban/rural.  Each census tract was given a binary 

code of 1=urban or 0=rural.  The urban designation is defined by the U.S. Census Bureau 

as a densely settled area of at least 2,500 people.  Rural encompasses any area not 
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considered urban (U.S. Census Bureau, 2013). While there are further gradations of this 

designation, for the purposes of this research, the definition was left as a dichotomy.  This 

topic was covered briefly in chapter 3.  A multilevel model was constructed to examine 

the effects of individual health risks and outcomes at both the individual and 

neighborhood levels.  The analysis employed binary variables for birth defects.  The 

individual mother either does not (0) or does (1) have an infant with a birth defect.  Each 

birth defect type was modeled individually.  Individual level categorical variables 

included Alcohol use, Tobacco, Black, Hispanic, Asian, or other, as binary variables with 

(1) representing presence of the risk factor, and (0) representing non-presence of the risk 

factor. Age remained a continuous variable.  At the census tract (neighborhood) level, 

five covariates were included; Percent of population below poverty level, percent of 

population over age 21 with education below high school level, fertility rate of 

population, median age of population, geographic mobility as a whole for population, and 

urban/rural designation.  

Age remained as an important variable in the models for trisomy 21, all birth 

defects, and heart defects.  Coefficients remained steady between the two models.  Of 

interest is the occurrence of a statistically significant negative relationship between black 

ethnicity and individual heart defects.  While this relationship was negative with bivariate 

correlation, it was not significant.  No other variables displayed a statistically significant 

relationship for either intercept only models or models with random variables added.  

Many of the bivariate correlations which were significant in prior analysis were no longer 

significant using a multilevel logistic modeling procedure.  Table 31 and Table 32 
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illustrate the multilevel models in comparison with the logistic models with level one 

variables only. 

 

Table 31: Multilevel Models for All Birth Defects, Heart Defects, And Cleft Lip And 

Palate 

 

All  Birth 
Defects 
Model 1 

All Birth 
Defects 
Model 2 

Heart 
Defects 
Model 1 

Heart 
Defects 
Model 2 

Cleft 
Lip/Palate 
Model 1 

Cleft 
Lip/Palate 
Model 2 

Individual 
level variables  

 

 

   

Mother's Age 0.01** 0.01** 0.01** 0.02** 0.01 0.00 

Alcohol 0.13 0.12 0.43 0.39 0 -0.51 

Tobacco 0.02 0.03 0.06 0.06 -0.39 -0.43 

Black -0.17 -0.19 -0.27** -0.31** 0.14 0.21 

Hispanic -0.08 -0.09 -0.09 -0.11 0.44 0.49 

Asian 0.11 -0.08 0.24 0.19 -0.27 -0.12 

Other 0.00 -0.255 0.00 -2.28 0.00 -0.59 

Census Tract 
Level 
Variables  

 

 

 

 

 

Percent 
Poverty  

0.00 
 

0.00 
 

-0.02 

Percent Below 
High School 

 

-0.02 

 

0.00 

 

-0.01 

Geographic 
Mobility  

0.00 
 

0.01 
 

-0.01 

Median Age 
All  

0.04 
 

-0.02 
 

0.01 

Urban/Rural 
 

0.41 
 

-0.35 
 

0.54 

**p<.01 ***p<.001  
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Table 32: Multilevel Models For Trisomy 21, Hypospadias, And Neural Tube Defects 

 

Trisomy 
21 
Model 1 

Trisomy 
21 
Model 2 

Hypospadias 
Model 1 

Hypospadias 
Model 2 

Neural 
Tube 
Defects 
Model 1 

Neural 
Tube 
Defects 
Model 2 

Individual 
level variables 

      

Mother's Age 0.11*** 0.11*** 0.01 0.01 -0.01 0.00 

Alcohol 0.00 -0.91 0.00 -0.9 0.00 -0.77 

Tobacco 0.34 0.36 -0.16 -0.23 -0.44 -0.49 

Black -0.02 0.02 0.09 0.13 -0.24 -0.03 

Hispanic 0.02 -0.08 -1.42 -1.49 0.00 -0.58 

Asian 0.61 0.92 -0.72 -0.68 0.00 -3.75 

Other 0.00 -0.61 0.00 -0.87 0.00 -0.48 

Percent 
Poverty  

0.04 
 

0.00 
 

0.01 

Percent 
Below High 
School  

-0.05 
 

-0.02 
 

0.04 

Geographic 
Mobility  

-0.01 
 

0.00 
 

-0.01 

Median Age 
All  

-0.65 
 

0.03 
 

0.06 

Urban/Rural 
 

0.45 
 

-0.04 
 

0.25 

**p<.01 ***p<.001 
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CHAPTER 9 DISCUSSION 

 

9.1 Overview And Contents Of The Chapter 

 

This was a very broad project with multiple areas of inquiry.  The goal was one of 

exploration, however there were some expectations based on what is already known 

about the factors which increase or decrease the incidence of birth defects. Overall 

prevalence was expected to fall within the nationally typical range. What follows is a 

discussion of the questions posed in the introduction, and how these answers fit into the 

existing knowledge.  As always, there were limitations for the interpretation of results 

and these are also discussed. Typically, any topic involving humans, raises even more 

questions than it answers and this research was no exception. This final section discusses 

findings and some possible directions for future exploration. 

 

9.2 Findings Regarding Prevalence Rates 

 

 The research area had very normal and possibly even lower than normal 

prevalence rates for birth defects.  The typically quoted U.S. average is 3% of all births 

(Weinhold, 2009) though this sometimes includes those birth defects discovered after the 

newborn period. This study revealed a rate of 2.5% of all recorded births over the four 

year time span. There were however, census tracts with higher than expected prevalence 

and census tracts with lower than expected prevalence rates.  Those types of birth defects 

singled out for closer inspection displayed no alarming numbers, though again, some 

areas exceeded expected rates.  Total birth defects, cleft lip and palate defects, and 

trisomy 21 rates were within normal range overall.  Heart defects were increased at 1.2 % 

of births, which was higher than the 0.9% anticipated.  Hypospadias cases were also 
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slightly increased at 0.13 percent of male infants (anticipated was .001 percent) Reasons 

for both numerical and spatial variations were explored with global and local cluster 

analysis, chi-square tests, bivariate correlations, regression analysis, geographically 

weighted regression analysis and multilevel modeling. 

9.3 Findings Regarding All Birth Defects As A Whole 

 

 Relationships between birth defects as a whole and independent variables were 

for the most part as expected.  For the category of all birth defects, age was the only 

consistent predictor both as an individual risk factor and as a census tract level factor. 

The rise in birth defect rates becomes gradually more apparent with age and by age 42, 

the rate has risen from 2.5% overall to 3.8% of live births with a defect.  As expected, the 

search for hot spots and cold spots did reveal some clustering and higher than expected 

rates. Both Global Moran’s I  and local Moran’s I showed clustering of birth defects. The 

search for risk factors also revealed that geographic mobility variables (movement within 

the census tract and into the census tract from other areas) were related to overall birth 

defect rates. This finding was not anticipated.  When these variables were combined into 

one mobility variable for multilevel logistic models however, the relationship 

disappeared.  This variable begs for more investigation in future research. 

9.4 Findings Regarding Heart Defects 

 

Heart defects were the most numerous of the individually explored birth defects 

and exceeded the expected percentage.  Not surprisingly, alcohol use, tobacco use and the 

age of the mother were related to heart defects in chi-square tests. Global clustering was 

significant for both Geary’s C and Moran’s I.  There were also significant local clusters 

defined by the spatial scan statistic with SaTScan.  Age was a predictor for heart defects 
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with rates rising along with the age of the mother.  For bivariate regression analysis, 

Asian ancestry was positively correlated with heart defect incidence for individual 

mothers.  Since Asian mothers were older as a group, this was not unexpected, however 

the relationship reversed at the census tract level.  Those census tracts with higher rates of 

Asian population had lower rates of heart defects.  Multilevel logistic models were 

invaluable for clarifying this issue.  The relationship between Asian mothers and heart 

defects was not evident in the multilevel models. The most likely explanation is that 

while Asian mothers may have a higher rate of heart defects, this is unlikely to be a result 

of census tract level variables. When multilevel logistic modeling was employed, black 

mothers had a significantly lower risk of heart defects.  This was also not unexpected as 

these mothers also had the youngest average age at time of delivery.  Multiracial ancestry 

for individual mothers and geographic mobility at the census tract level (within the same 

parish) were additional predictors of heart defects.  Multiracial ancestry is included for 

the first time in the 2010 census and as pointed out in earlier discussions, little is known 

about this group. As research emerges on this group it may be possible to tease out the 

risk factors for birth defects for these individuals. 

9.5 Findings Regarding Hypospadias 

 

Hypospadias rates exceeded expected numbers overall and there was a large 

apparent temporal jump in cases in 2007 and 2008 which is displayed visually in bar 

graphs (page 8, Figure 37).  Because of the minimal number of years available this was 

not evaluated statistically.  Age was significantly related to hypospadias with the largest 

jump occurring in mothers older than 38.  Geographic mobility rates between parishes 

were a significant predictor but when multilevel logistic models were employed, the 
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mobility variable was not significantly related to hypospadias rates.  Stepwise regression 

produced a model which included census tract level fertility rate, percent of Native 

Americans and percent of Hispanic individuals in the census tract.  This was a somewhat 

unexpected result especially with regard to fertility rates.  While fertility rates are 

sometimes related to poverty and so possibly poor infant health, the relationship between 

poverty and fertility rate was not significant in this dataset. There were no significant 

local clusters of hypospadias found.  The cause of the large jump in rates temporally 

remains an unknown, and cannot be tested statistically with the available data.  Multilevel 

logistic models did not produce any significant relationships.  Overall, age was the only 

significant individual predictor. 

9.6 Findings Regarding Trisomy 21 

 

As expected, Trisomy 21 rates were highly related to increasing age of the 

individual mother using chi-square tests.  Neither global nor local Moran’s I revealed any 

clustering. There was a visually apparent temporal jump in 2006 which would be worth 

exploring with a larger number of time stamps.  What was less easy to explain was a 

negative relationship between age and trisomy 21 at the census tract level.  All median 

age variables, total, male, and female, showed this negative relationship.  Additionally 

tracts with higher education levels were more at risk for higher rates of trisomy 21. One 

interpretation may be that because younger people are more likely to have children in the 

first place, there is more likelihood that a younger census tract will have a higher rate of 

trisomy 21 affected infants.  To sort this out, multilevel logistic models were constructed. 

Only the individual mother’s age was related to trisomy 21 with this analysis and the 

coefficient did not change when census tract level variables were added.   



 

141 

 

 

9.7 Findings Regarding Cleft Lip And Palate 

 

Cleft lip and palate rates were slightly lower than expected and small numbers 

within each census tract made it difficult to draw conclusions at the census tract level.  

This was one of only two birth defects unrelated to age of the mother.  Bivariate 

regression revealed a significant relationship to percentage of Native Americans in a 

census tract (r2= .34, p< .01).  However there were no individuals claiming Native 

American ancestry with an infant born with cleft lip and/or palate. The reasons for this 

relationship are unknown.  Multilevel logistic models found no significant relationships 

for cleft lip and palate rates among the available variables.  While there was no evidence 

of global clustering, there were two local clusters found with Moran’s I.  Investigation 

with the available correlates and processes did not reveal any reasons for these clusters.  

Much remained unexplained for this birth defect.   

9.8 Findings Regarding Neural Tube Defects 

 

Neural tube defect rates were as expected, however, the very low numbers made it 

difficult to discover any relationships by census tract groupings.  There were no 

significant bivariate or multivariate relationships observed.  Geary’s C did find global 

clustering and there were two hotspots in central Baton Rouge found with local Moran’s 

I.  Multilevel logistic models did not find any relationships to explain the clustering.   

9.9 Conclusions, Limitations and Future Research  

 

The Baton Rouge Metropolitan Statistical area did not have any extreme birth 

defect rates during the years of the study, at least not any revealed by this research 

project.  Future investigations could focus on several areas including heart defects, 

geographic mobility rates and birth defects, and temporal rates of birth defects.  Of 
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interest is the apparent increase in birth defects in several categories following Hurricane 

Katrina. Spatial temporal analysis was completed with SaTScan, however no statistically 

significant spatial-temporal clusters were found, likely due to having only four different 

time periods available. Secondary to the inability to test these findings statistically, the 

spatial temporal analyses were not discussed in any detail in this dissertation.  

Confidentiality issues at the time that the data was provided did not allow for births by 

month rather than year. Hopefully this data can be obtained for future research efforts so 

that this time period can be explored in more detail.  Heart defects should be investigated 

by individual types.  Even though they develop at the same time in fetal development, 

they are known to have different causal processes.  The rates were higher than expected 

and also clustered geographically.  Other than age of the mother, reasons for the 

clustering were not revealed.  More relationships should be apparent when they are 

studied individually.  The relationship between birth defects and geographic mobility 

rates are also worth investigating.  Even though this variable was not significant in 

multilevel logistic models, this predictor continued to appear throughout other types of 

statistical analyses and begs for an explanation.  

There was no information about the years 2005 and 2006 for St. Helena Parish, 

however the numbers of births reported for 2007 and 2008 in St. Helena Parish are small 

and thus is was assumed that 2005 and 2006 had low numbers of births also. One 

possibility would be to remove this parish and others with very small numbers of births 

from calculations in future investigations so that efforts can be concentrated on those 

with the highest fertility rates and also to prevent the extremely low fertility rates in those 

areas from diluting any processes which might be affecting birth defect rate calculations. 
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   Another consideration is that while geocoding rates were reasonable for urban 

areas, there was less success in rural areas.  This was not unexpected, but it limits the 

conclusions made about the spatial aspects of the research in rural areas. The multilevel 

logistic models did not reveal any effects of the rural/urban variable, however, since 

births that could not be geocoded and thus not included in multilevel analyses were more 

likely to be rural, the lower geocoding rates may have adversely affected the accuracy of 

those outcomes.  
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