## Louisiana State University LSU Digital Commons

LSU Master's Theses

Graduate School

2012

# The potential of the angle of the first rib, head to tubercle, in sexing adult individuals in forensic contexts

Paige Whitney Elrod Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool\_theses Part of the <u>Social and Behavioral Sciences Commons</u>

#### **Recommended** Citation

Elrod, Paige Whitney, "The potential of the angle of the first rib, head to tubercle, in sexing adult individuals in forensic contexts" (2012). *LSU Master's Theses*. 3714. https://digitalcommons.lsu.edu/gradschool\_theses/3714

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

# THE POTENTIAL OF THE ANGLE OF THE FIRST RIB, HEAD TO TUBERCLE, IN SEXING ADULT INDIVIDUALS IN FORENSIC CONTEXTS

A Thesis

Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College requirements for the degree of Master of Arts

in

The Department of Geography & Anthropology

by Paige Elrod B.A., University of Washington, 2009 May 2012

#### ACKNOWLEDGEMENTS

I would like to thank my family and friends for their encouragement and support. I could not have done this without the support, both emotional and financial, from my parents and their encouragement to get it done. Mom, thank you for telling me that I could do it, especially when I thought I could not. Dad, thank you for helping to keep me grounded and also for making sure I always got where I needed to go. Thank you both for allowing me to pursue my dreams without question or hesitation.

I am also grateful to my thesis committee members for their guidance and knowledge. My appreciation goes out to Ms. Mary Manhein for her direction, advice and clear passion for the field of forensic anthropology. I would like to thank Dr. Ginesse Listi for offering her own experiences, open door and suggestions during the process of writing my thesis. Also, thanks to Dr. Robert Tague. My gratitude also goes out to Dr. Jay Geaghan for his help with the statistical portion of my thesis. I could not have done it without him.

Thank you to the Research and Scholarship Committee of the Department of Geography and Anthropology, the Robert C. West Graduate Student Field Research Fund, and the R.J. Russell Fund, for the West/Russell Travel Grant that allowed me to carry out my research.

I would like to thank the University of Tennessee, Knoxville and Dr. Lee Jantz for allowing me to conduct my research using the William M. Bass Donated Collection. Thank you to the Cleveland Museum of Natural History and Dr. Yohannes Haile-Selassie and Lyman Jellema for the use of the Hamann-Todd collection. Special thanks to Lyman for his support and inquisitive nature during my research.

ii

I have to thank my fellow graduate students for the sanity they lent me when I needed advice. Thank you to Megan Dingle and Lucy Hochstein for reading various drafts of my thesis and offering their kind, honest and much needed suggestions.

Most importantly, I must thank those who chose to donate their bodies so that others may learn. Without the meaningful donation of their physical remains, the world would not have had the opportunity to learn what we have from them. Words cannot express how much their generosity means.

| ACKNOW       | WLEDGEMENTS                                              | . ii |
|--------------|----------------------------------------------------------|------|
| LIST OF      | TABLES                                                   | . v  |
| LIST OF      | FIGURES                                                  | vi   |
| ABSTRA       | СТ                                                       | vii  |
| CHAPTE<br>I. | R<br>INTRODUCTION                                        | . 1  |
| II.          | ANATOMY OF THE FIRST RIB                                 | . 2  |
| III.         | LITERATURE REVIEW                                        | . 5  |
| IV.          | MATERIALS AND METHODS                                    | 10   |
| V.           | RESULTS                                                  | 16   |
| VI.          | DISCUSSION AND CONCLUSION                                | 21   |
| REFEREN      | NCES CITED                                               | 24   |
| APPEND       | IX A: STATISTICAL SUMMARIES OF DATA                      | 28   |
| APPEND       | IX B: T-TESTS FOR ALL MEASUREMENTS BY SEX AND ANCESTRY   | 29   |
| APPEND       | IX C: RAW DATA                                           | 30   |
| APPEND       | IX D: CALCULATED PROBABILITES FOR ANGLE                  | 46   |
| APPEND       | IX E: CALCULATED PROBABILITES FOR ANGLE AND TOTAL LENGTH | 51   |
| VITA         |                                                          | 56   |

## TABLE OF CONTENTS

## LIST OF TABLES

| Table 1: Summary of Individuals from Each Collection                         | 11 |
|------------------------------------------------------------------------------|----|
| Table 2: Statistical Summary for Angle                                       | 16 |
| Table 3: Results of T-Test for Angle                                         | 17 |
| Table 4: Analysis of Maximum Likelihood Estimates for All Measurements       | 18 |
| Table 5: Analysis of Maximum Likelihood Estimates for Angle                  | 19 |
| Table 6: Analysis of Maximum Likelihood Estimates for Angle and Total Length | 20 |

## LIST OF FIGURES

| Figure 1: Diagram of First Rib                                                 | . 2 |
|--------------------------------------------------------------------------------|-----|
| Figure 2: Articulation Diagram for First Ribs in Comparison to Subsequent Ribs | . 3 |
| Figure 3: Measurements to Determine Angle                                      | 13  |
| Figure 4: PSMH and ASLH Measurements of First Rib                              | 14  |

#### ABSTRACT

Accurately assessing the sex of an adult human skeleton is fundamental in forming the biological profile used in forensic anthropology (Patil and Mody, 2005). The first rib was chosen due to its distinct shape, compact size and increased sustainability to the taphonomic processes encountered in forensic and bioarchaeological situations. The first rib has been examined in previous studies; however, these studies have focused mainly on the sternal end of the rib. This study looks at the angle created between the tubercle and head and its potential use as an indication of the sex of an individual.

This angle, created by the tubercle and head, is present when the rib is viewed in its nonanatomical orientation, or with the head pointing upward. When a rib is sided in anatomical position, the head will point downward and the subclavian grooves will be located on the superior surface.

This study was conducted using 137 males and 149 females, including black and white individuals, from the William M. Bass and Hamann-Todd Skeletal Collections. The left and right first ribs of 286 individuals were measured using sliding calipers; all measurements were recorded in millimeters. The four measurements included: total exterior length (ASHL), interior length from sternal end to head (PSMH), height of the head off of a surface and length from the tubercle to the head. The angle was determined by calculating the inverse sine.

The calculated angles were then compared using logistic regression analysis, to determine the odds that a given angle was male. Of the 572 measured samples, 555 were calculated; 266 angles were male and 289 female. Logistic regression showed that angle alone is 60.2 percent concordant, while angle and total length combine to yield a 70.5 percent concordance. The data suggest that the angle can be used to predict the sex of an individual.

vii

This research concludes that the angle of the first rib is able to determine the sex of an individual. These data could be combined with previously studied age methods to assess both age and sex of an unknown individual. Few skeletal elements are able to both sex and age individuals.

#### **CHAPTER 1**

#### **INTRODUCTION**

In forensic anthropology, determination of sex is among the most important aspects required in building the biological profile (Patil and Mody, 2005). A limited number of sexing methods are available in forensic contexts, and, given its compact size, the first rib offers a wealth of potential for sex estimation. The first rib is not only easily distinguishable from other ribs, it is also more likely to survive taphonomic processes than its longer, thinner counterparts (Kurki, 2005; Semine and Damon, 1975).

Previous research that has been conducted on the first rib as a sex determinant has focused on the sternal end (İşcan et al., 1984; İşcan, 1985; Koçak et al., 2003). Other research has shown that the determination of age, based on changes in the costal cartilage of the rib, is influenced by the sex of the individual (DiGangi et al., 2009; Kunos et al., 1999; Navani et al., 1970; Semine and Damon, 1975). Therefore, a possibility exists that the angle of attachment of the first rib to the vertebra may be impacted by the sex of the person and that angle may serve as an indicator of sex in a forensic context. This current research seeks to test whether or not a difference between the sexes is measurable in the angle of the head of the first rib relative to the tubercle.

#### **CHAPTER 2**

#### ANATOMY OF THE FIRST RIB

The first rib is the most curved, flattest, and usually the shortest of the ribs. It is located at the top most region of the rib cage and attaches to the first thoracic vertebra at its posterior aspect and to the sternum at its anterior aspect. Five distinct landmarks are found on the first rib: head, tubercle, sternal end, and two subclavian grooves –the anterior groove for the subclavian vein and the groove for the subclavian artery and inferior trunk of the brachial plexus (Figure 1). When siding a first rib, the rib's head will point downward when the rib is oriented in the proper anatomical position and the subclavian grooves will be on the superior surface (Bass, 1995). When the first rib is sided incorrectly, an angle is visible between the head and the tubercle at the inferior portion of the neck. The current research focuses on that angle and its potential as a sex indicator.



Figure 1: Diagram of First Rib

The articulation of the first rib to only the body of the first thoracic vertebra is unique to humans as the only extant hominoid with this articulation (Ohman, 1986). All other ribs have a bivertebral articulation, each articulating not only to the vertebral body with which it is associated but also to the inferior portion of the vertebra that precedes it. Fossil evidence suggests that this univertebral articulation is present as far back as 3.2 million years ago, as seen in AL-288-1, Lucy, who also presented with a univertebral first rib (Ohman, 1986). This univertebral first rib articulation and its uniqueness to the human lineage suggests that it is specialized to our upright posture, thoracic shape, and unique shoulder girdle (Figure 2).





The shoulder complex includes the clavicle, scapula, and humerus, as well as the sternoclavicular and the acromioclavicular joints. The sternoclavicular (SC) joint is the only point of attachment between the shoulder complex and the axial skeleton. The SC joint is a

synovial joint; the medial clavicle articulates with the sternum and with the cartilage of the first rib (Peat, 1986). The costoclavicular ligament connects the inferior-medial border of the clavicle to the first rib, anchoring the clavicle and limiting clavicular elevation (Bearn, 1967; Peat, 1986).

#### **CHAPTER 3**

#### LITERATURE REVIEW

The estimation of sex is vital to the completion of the biological profile that is required in medico-legal investigations. Most commonly, sex is determined from the cranium and pelvis. The goal of this study is to determine whether the angle of the first rib, the head relative to the tubercle, is a useful determinant of sex in an individual. The first rib was selected for its small stout size and resistance to the normal taphonomic processes that may render larger bones such as the pelvis and cranium too fragmented to use for determination of sex. While research has been conducted on sexing individuals using other ribs, prior to this study, no one had examined the possibility of using the head end of the first rib (DiGangi et al, 2009; İşcan et al., 1984; İşcan, 1985; İşcan and Loth, 1986; Kunos et al., 1999; Kurki, 2005; Ramadan et al., 2010). Because other skeletal elements have shown to be sexually dimorphic in characteristics other than size, there is a possibility the angle of the first rib may reflect some degree of sexual dimorphism.

Sexual dimorphism has been found in numerous skeletal elements including, but not limited to: the cranium, mandible, sternum, first rib, fourth rib, humerus, pelvis, and femur (Giles and Elliot, 1963; Giles, 1964; İşcan and Loth, 1986; İşcan et al., 1998; King et al., 1998). Also, the successful sexing of individual skeletal remains based on morphology has been proven to be reliable (Phenice, 1969).

Giles and Elliot (1963) examined the skulls of 408 individuals, both black and white ranging in age from 21 to 75 years of age. They took nine cranial measurements from each individual. After measurements were taken, they computed the data in a discriminant function. When this discriminant function is used, it yields an accuracy of 82-89%, in sex determination, for black and white specimens. Giles performed a similar study in 1964 to determine sex by a

discriminant function of the mandible. The results of his study allow for the sex of an individual using a mandible to be accurately determined in 85% of cases (Giles, 1964).

Ramadan et al. (2010) established that while the sternum of males tends to be larger as defined by "Hyrtl's Law," the most accurate way to establish the dimorphism in sternal measurements is by using the overall sternal area, rather than individual sternal measurements. In a study performed by Navani et al. (1970), x-rays of patients were taken to determine the potential for sexing individuals using costal cartilage calcification at the sternal end. Their research showed that females were more likely to display central calcification, while, in males, calcification occurred on the margins.

Koçak et al. (2003) examined the fourth ribs of 78 females and 173 males to determine if osteometric measurements of the sternal end could indicate sex. They determined the measurements were more accurate for females than males. Multiple studies performed by İşcan (1985, 1991), İşcan et al. (1984, 1986, 1998) and Koçak et al. (2003) noted that the fourth rib is useful in sexing individuals using discriminant function analysis and known age of individuals.

İşcan et al. (1998) did a comparative analysis of Chinese, Japanese, and Thai individuals to determine sexual dimorphism in the humerus. The study focused on the application of a standardized analysis versus a population specific analysis. Ultimately they concluded that accuracy was increased if each population was assessed using population specific calculations. That study showed that sexual dimorphism is present, but calculations using general metric assessments can mask this dimorphism if the calculations are not specific to that population. For example, using a standardized measurement placed the Chinese with the largest measurements in the least dimorphic category. With cross validation, İşcan et al. were able to sex the Chinese

individuals accurately 87% of the time in contrast to the Thais which were accurately sexed in 97% of cases.

Phenice (1969) determined that the pubic bone was a valuable skeletal element in the sexing process. To date, Phenice's technique is still considered one of the most accurate sexing methods in use because of the reliable sex differences associated with that region of the hip bone in the sub-pubic concavity, width of the ischio-pubic ramus, and presence or absence of a ventral arc.

Bruzek (2002) conducted a comprehensive study that combined several of the commonly used pelvic traits to create a method for visual determination of sex using points from the entire os coxae rather than a localized portion. The five main characteristics he examined were: preauricular surface, greater sciatic notch, form of the composite arch, morphology of the inferior pelvis (pubic area), and ischiopubic proportions (ratio of pubic length to ischial length). These five characteristics comprise the sacroiliac complex and the ischiopubic complex, two morphologically distinct areas that had previously been examined separately. Using the combination of the five characteristics, Bruzek was able to accurately determine sex in 93-98% of all cases.

The combination of multiple aspects that are used in sexing individuals is ideal in presenting a more accurate determination of sex. This is seen not only in Bruzek's study but also in the study performed by Đurić et al. (2005). Đurić et al. found that by using a combination of seven non-metric pelvic traits, as well as several cranial traits, including mandibular thickness, the sex of individuals can be determined with at least 95% accuracy.

The femur has also been studied for its sexually dimorphic properties. King et al. (1998) studied the sexual dimorphism of Thai femora. They recorded six of the common osteometric

measurements of the femur including: maximum length, maximum diameter of the head, bicondylar breadth, midshaft anterior-posterior diameter, midshaft transverse diameter and midshaft circumference. The study of 70 males and 34 females determined that maximum head diameter and bicondylar breadth are the most significant indicators of sex. Using a stepwise function, they correctly identified the sex of an individual with 94.2% accuracy.

While the first rib has been examined for its overall usefulness in physical anthropology, most, if not all of that research has focused on the sternal end, especially as an aging technique. The majority of the research examined the costal cartilage and its versatility in aging and sexing individuals. The previous research with the most relevant data to assist in this research study, including measurement information about internal length from head to sternal end, was the aging method established by Kunos et al. (1999). Specimens were measured and examined to determine age-related changes. The Kunos study focused on the head, tubercle, and sternal end of the first rib as aging variables over time and was performed on individuals from the Hamann-Todd Collection. However, Kurki (2005) determined that the method developed by Kunos et al. over-ages individuals younger than 60 and under-ages those over age 60, thus representing the young as older and the old as younger in their sample. While the 1999 study by Kunos et al. was useful in determining aspects of the first rib that change through time, the reliability of aging methods is still questionable in the first rib.

Still, other studies have looked at age assessment using the first rib. McCormick (1980) used x-ray data obtained from 210 cadavers to examine the mineralization of the costal cartilage. He determined that costal cartilage mineralization was not found before age 15 and was rarely marked in individuals under age 50. A similar study by Kampen et al. (1995) also examined the age related mineralization of the first rib at the sternal end. The study noted that the

mineralization was due to age not degeneration; however, the exact stratification of age was unclear. Additionally, the use of x-ray technology in fresh bone and soft tissue makes these methods difficult to translate to forensic usability.

If the current research shows that the angle of the first rib is able to reliably determine sex of an individual, it could be combined with the aforementioned aging methods of the first rib to assess both age and sex. Since few skeletal elements can both age and sex an individual, this research could have great potential for forensic applications. Expanding the list of aging methods to include smaller elements that are more likely to survive long postmortem intervals would be beneficial in a forensic context during which scavenging might disperse the larger bones used in sexing. "The first rib is less fragile than other skeletal elements, such as the pubic symphysis, and is, therefore, more likely to survive in archaeological and forensic contexts" (Kurki, 2005: 343-344).

#### **CHAPTER 4**

#### **MATERIALS AND METHODS**

For this research, two large collections were examined, the William M. Bass Donated Skeletal Collection at the University of Tennessee, Knoxville, and the Hamann-Todd Osteological Collection at the Cleveland Museum of Natural History.

The William M. Bass collection was started in 1981 by Dr. William Bass. The collection currently houses over 870 individuals, some from forensic contexts, with known sex identification. The age range of individuals in this collection varies from fetal to 101 years. The individuals used were chosen at random, with the sex of the individual being recorded at the same time the measurements were recorded. All choices were made randomly so that age would not be a biased factor in the sample. As this is a donated and forensic collection, individuals with trauma to the thoracic region, including autopsy trauma to both ribs, were removed from the list of potential samples so as to not impact the angle measurements.

The Hamann-Todd Human Osteological Collection at the Cleveland Museum of Natural History is a historic collection of individuals collected between 1912 and 1938. The collection contains over 3,000 skeletons, making it the largest documented modern collection in the world. As this collection has such a large number of both males and females, a sample of more than 100 individuals will still maintain the 50/50 male: female ratio as well as 50/50 black: white ratio – which is not as easily maintained in the William M. Bass Collection. This sample was used to collect more data on blacks than whites in comparison to the William M. Bass collection, as the Hamann-Todd collection has a much larger number of black individuals.

The proposed sample size was 100 individuals from each collection, a total of 200 specimens. All individuals are age 18 and above, as this was a study of the angle in the adult first

rib. Both the left and right first ribs of individuals of known sex, age, and ancestry were measured. At least 100 individuals per collection were recorded. Left and right ribs for each individual were examined, if present, to determine the significance of the angle differences in individuals. The samples from each collection met a minimum of 50 males and 50 females. Ancestry was also considered in measurement, and the males and females were divided into whites and blacks with 25 black males, 25 white males, 25 black females and 25 white females – this was the goal in measurement, but was not met in the Bass collection. Due to the limited number of females, both black and white, as well as black males in the Bass collection, some individuals were only recorded unilaterally if there was damage to one of the two ribs.

| Collection      | White Males | White Females | Black Males | <b>Black Females</b> |
|-----------------|-------------|---------------|-------------|----------------------|
| William M. Bass | 44          | 56            | 30          | 8                    |
| Hamann-Todd     | 30          | 31            | 33          | 54                   |
| Total           | 74          | 87            | 63          | 62                   |

 Table 1: Summary of Individuals from Each Collection

In this sample, the average age at death was 49 years old for males, and 50 years old for females. The sex of each individual was recorded at the time measurements were taken. Knowing the sex should not have biased the sample as sex did not affect angle calculation. Once measurements were recorded, the angle of each specimen was calculated using its given identification number, ie: UTK-WM1L (University of Tennessee Knoxville-White Male #1 Left Rib) and CMNH-WM1L (Cleveland Museum of Natural History – White Male # 1 Left Rib).

Figure 3 demonstrates the measurements that were taken. Each rib was measured, in millimeters, to determine the angle of the elevated head from a surface when laid flat on its

superior aspect. In this non-anatomical position, the subclavian grooves are inferior and the head is elevated off of the surface. The length measurement used to determine the angle was measured, using sliding calipers, from head to tubercle. In non-anatomical position, the height of the head off a surface is measured from the head's most inferior point to the surface. The height of the highest point, along the inferior margin, of the head relative to that surface was the landmark used.

The point of measurement at the tubercle was the same for the height and length measurements. The point of measurement for the tubercle was more variable than the measurement point at the base of the head, for the tubercle the measurements were taken from the point where it made contact with the surface. In cases where the tubercle did not follow the measurement standards, where it did not make contact with the surface at the base of the angle, the rib was excluded from the sample.

The angle was determined using an inverse sine function, with the measured height over the length. This sine function was calculated in Excel using the function:

=Degrees(Asin(Height/Length)). This formula calculates the angle of the head relative to the neck when assuming that the angle at which the head met the table was 90° (Figure 3).



**Figure 3: Measurements to Determine Angle** 

Two other measurements were taken as well: the total exterior length of the rib and the sternal end to head inner length (Figure 4). The total length was measured using a soft tape measure to record the distance from the posterior portion of the sternal end to the head, while the inner length was taken using sliding calipers. The exterior length was measured from the anterior sternal end to the lateral portion of the head (ASLH). The inner head length was measured from the posterior portion of the sternal end to the sternal end to the sternal end to the sternal end to the sternal end to the medial portion of the head (PSMH).

These length measurements were taken to see if there was any correlation between them and the angle in sexing individuals. ASHL, total exterior length, and PSMH, interior length, were measured in all specimens that had their sternal end – this measurement was not taken for some individuals in which autopsy cuts removed the sternal end.



Figure 4: PSMH and ASLH Measurements of First Rib

In a preliminary study of 25 individuals from the LSU Forensic Anthropology and Computer Enhancement Services (FACES) collection, the ASLH did not appear to correlate with the angle using scatter plots and linear regressions. Given this initial conclusion, I hypothesized that there may be a possibility that it is the PSMH, which was not recorded in the preliminary study, that correlates with the angle. PSMH and ASLH, in addition to angle, might aid in the sex determination using the angle. Any ossified cartilage present at the sternal end was recorded and noted. If it interfered with the angle measurement, the rib was not included in data analysis. If the rib was calcified in such a way that it was fused to the manubrium, it was not included in the sample. Any additional cartilage was not included in the total length measurement.

Once all data were collected, angles were calculated in Excel and data were examined. The overall data consisted of 572 ribs, 17 of which were excluded for missing data, resulting in a total of 555 ribs – 266 male and 289 female. The calculated angles were graphed on a scatter plot to determine the type of analysis that would be required. A regression analysis was performed to calculate if any correlation existed between the angles for males and females. Given the sporadic distribution of points on the scatter plot of the data, a linear regression would not be useable. The data were log transformed to an approximate normal distribution. The logistic regression, unlike the linear regression, calculates the probability of a variable that has only two outcomes— in this case, that the angle either was or was not a particular sex.

A linear regression of the data was run in Excel to determine any correlation. When the regression displayed sporadic distribution, the data were then examined in a logistic regression in SAS. An F-test determined that the data were equal rather than unequal, after which a Student's t-test was run assuming equal variance. All statistical calculations were run in SAS versions 9.2 and 9.3.

#### **CHAPTER 5**

#### RESULTS

Before any regression calculations were performed, a Student's t-test was run on all data to determine the statistical significance of the angle to sex. Summary statistics were run for all variables including: height of the head off a surface, length from head to tubercle, angle, total length (ASHL) and length from head to sternal end (PSMH). The three tables of summary data compare all males to all females, black males to white males and black females to white females, these tables can be found in Appendix A. T-tests were also run for all variables including: height of the head off a surface, length from head to tubercle, angle, total length (ASHL) and length from head to sternal end (PSMH), these can be found in Appendix B.

Table 2 shows a brief statistical summary of angle of the 572 data points, from 286 individuals, including the average angle measurement of 26.418 degrees for males and 22.508 degrees for females.

| Sex    | Observations | Mean | Maximum | Minimum | Std. Dev | Std. Error |
|--------|--------------|------|---------|---------|----------|------------|
| Female | 298          | 22.5 | 51.5    | 2.3     | 9.6      | 0.56       |
| Male   | 274          | 26.4 | 52.3    | 6.8     | 9.7      | 0.59       |

**Table 2: Statistical Summary for Angle** 

Both a pooled and unpooled T-test of the relationship between rib angle and sex yielded a T-value of -4.77 (Table 3). The associated p-value for the data was calculated at <0.0001 with a 0.05 alpha. The null hypothesis can be rejected, meaning that the angle of the first rib is significantly associated with the sex of an individual.

| Method | Variances | DF  | t Value | <b>Pr</b> >  t |
|--------|-----------|-----|---------|----------------|
| Pooled | Equal     | 553 | -4.77   | <.0001         |

 Table 3: Results of T-Test for Angle

Once statistical significance was established, data were calculated using a logistic regression to determine the probability that an angle was either male or female. In logistic regression, the data are binary, meaning they must lie between one and zero. Females were assigned the number one while males were zero. The logistic regression calculates the odds that a variable either is or is not close to the binary 1, in this case the odds that the variable either is or is not close to the binary 1.

The logistic regression gives the odds, for each angle, that the angle is or is not male. It yielded angle measurement ranges for sex estimation: 22.02 degrees and below is more likely female and larger than 31.45 degrees is more likely male. Measurements between 22.03 degrees and 31.44 degrees are not able to be classified as male or female with as much certainty because this is the point at which the odds drop below 55% to successfully determine angle. The cutoff of 55% was chosen because the lower limit is close to 50%, selecting a range above 55% allows probabilities to be significant. When the angle alone is observed, the odds are calculated to accurately sex a rib with a concordance of 60.2% (Appendix D). Concordance percentage calculates that for any pair, males and females, the odds of accurately sexing a male are higher than for the odds of the angle for the female 60.2% of the time. When the angle is observed in conjunction with total length, ASLH, the concordance increases to 70.5%, a 10% increase – meaning that angle and total length combined are a more statistically significant measure of sex than angle alone (Appendix E).

Since angle was significantly correlated to sex, all points of measured data were used in the regression. Again, removing data points with missing values, in most cases the sternal end, the data that were regressed decreased from 572 to 527 individual measurements. The results of significance per "parameter" or measurement are shown below (Table 4).

| Parameter         | DF | Estimate | Standard Error | Wald Chi-Square | Pr > ChiSq |
|-------------------|----|----------|----------------|-----------------|------------|
| Intercept*        | 1  | -9.0053  | 1.3105         | 47.2200         | <.0001     |
| Angle             | 1  | 0.0720   | 0.0120         | 35.8931         | <.0001     |
| TotalLength(ASHL) | 1  | 0.0456   | 0.00928        | 24.1530         | <.0001     |
| SternalHead(PSMH) | 1  | 0.0419   | 0.0187         | 5.0207          | 0.0250     |
| Age               | 1  | -0.0192  | 0.00620        | 9.5308          | 0.0020     |
| Ancestry          | 1  | -0.4508  | 0.2127         | 4.4941          | 0.0340     |

 Table 4: Analysis of Maximum Likelihood Estimates for All Measurements

\*Intercept is a calculated variable, not a measurement

Table 4 reflects that angle and total length, ASHL, were the most significant measurements, with an alpha of 0.05. The PSMH, age and ancestry were not as statistically significant as were angle and ASHL. When PSMH, age and ancestry were combined with angle and ASHL the concordance increased by 1%; this was not considered significant enough to continue use in further logistic analysis. The p-values for PSMH, age, and ancestry were 0.0250, 0.0020 and 0.0340 respectively, which while significant as well as present on the bone, without needing to know the age or ancestry prior to calculation. A contributing factor in excluding ancestry, age and sternal PSMH, was the ability to use angle and total length without having to know information that cannot be found using just the first rib – thus limiting the information available if just the first rib is present.

Using angle alone, with the 60.2% concordance, a formula was generated to find the probability of any angle using the intercepts from the logistic regression (Table 5). The coefficients for the formula are taken from the estimates for intercept and angle to get the formula: Log(odds)=-1.1073 + 0.0419 x angle. This formula is the log of the odds formula that is calculated in the logistic regression. The -1.1073 and 0.0419 are the estimates calculated from the logistic regression run on the data for 555 ribs. To find the probability that the angle is male, the original formula is used to find the odds, then the probability: odds=e^log(odds) and then P=1/1+odds.

| Parameter | DF | Estimate | Standard Error | Wald Chi-Square | Pr > ChiSq |
|-----------|----|----------|----------------|-----------------|------------|
| Intercept | 1  | -1.1073  | 0.2390         | 21.4677         | <.0001     |
| Angle     | 1  | 0.0419   | 0.00911        | 21.1728         | <.0001     |

Table 5: Analysis of Maximum Likelihood Estimates for Angle

A formula was also generated for the use of both angle and ASLH, which together had a 70.5% concordance. The estimates obtained from the odds calculated for the logistic regression are slightly different than those used for angle alone, and the addition of total length changes the formula slightly (Table 6). The new coefficients for the intercept and angle become -8.0905 and 0.0506, respectively, with a new coefficient for total length, 0.0513 being added. The formula for both angle and total length is: Log(odds) = -8.0905 + 0.0506 x Angle + 0.0513 x TotalLength. All calculations to determine the probability that an angle is male are the same as they are for angle alone.

| Parameter   | DF | Estimate | Standard<br>Error | Wald<br>Chi-Square | Pr > ChiSq |
|-------------|----|----------|-------------------|--------------------|------------|
| Intercept   | 1  | -8.0905  | 1.1745            | 47.4481            | <.0001     |
| Angle       | 1  | 0.0506   | 0.00997           | 25.7200            | <.0001     |
| TotalLength | 1  | 0.0513   | 0.00846           | 36.8128            | <.0001     |

 Table 6: Analysis of Maximum Likelihood Estimates for Angle and Total Length

#### **CHAPTER 6**

#### **DISCUSSION AND CONCLUSION**

The goal of this study was to determine whether or not the angle of the first rib could be used to determine the sex of an adult individual. Few studies have been conducted on the ribs, and none has focused on using the angle formed by the head and tubercles at the points where the rib attaches to the first thoracic vertebra. Many other skeletal elements have proven valuable in sexing individuals; yet, little focus has been placed on the ribs. The fourth rib is commonly used as an example of age determination (İşcan, 1991), but the fourth rib easily can be confused with the surrounding ribs if not all ribs are present. For this reason, the first rib has the potential to be valuable as both an aging and sexing method.

The data support that the angle of the first rib, head to tubercle, is indicative of sex of the individual. This study has shown with 60% probability that we can determine the sex of an individual using the angle of the first rib, head to tubercle. This 60% probability determination lies below 22.02 degrees for females and above 31.44 degrees for males. Adding the total length, ASHL, to the process of determining sex can increase the probability of correctly sexing individual unknown ribs to at least 70%. Using the data obtained from the logistic regression, several calculations for determination of sex were derived and can be used to identify the probability of an angle being male.

These derived probability calculations are very useful in terms of not needing a data set to which to compare an unknown rib's angle. All that is needed to determine the sex of an individual using the first rib is the angle of the rib in question and the formulae. The calculations that allow for the sex probability of any angle could have great implications by adding valuable information to the field of forensics, in which a biological profile is necessary for identification.

If the entire rib is present, a greater accuracy can be obtained using the combined angle and total length of the first rib, a more statistically significant prediction of sex than angle alone. If the sternal end is damaged, then the calculation for angle alone can be used to predict the sex of the individual.

With this knowledge, perhaps more research will be performed on the first rib – to allow for more accurate and thorough sex and age estimates. Further research would help to add more information to the first rib data bank in addition to the benefits of increasing ancestry diversity. It appears that the first rib has the potential to be an important bone when the methods of aging and sexing individuals are combined. Combining the current research with the aging methods determined by McCormick (1980) and Kunos et al. (1999) could prove to be beneficial in forming the biological profile.

The impact of stature and overall body size on the angle of the first rib should be studied to note whether idiosyncratic variation in larger or smaller individuals impacts angle. If so, this could help to explain the wide range of angles which do not offer statistically significant indications of male or female. Comparing stature to the angle would allow the researchers to know if the angle was indeed indicative of sex or if it is directly correlated to stature, with the range of error falling around shorter males and taller females.

Research could also be done to determine whether the same angle, formed in the articulation points of the vertebrae, produces similar results. The ability to use the vertebral articulation points to identify sex would be useful.

There is also the potential for research to be done looking at angle and secular change. This was not a factor studied in this research due to limited number of black individuals in the

William M. Bass collection. A secular study of the first rib would have to focus on the angles of white individuals, as the black collections are limited in regards to a modern sample.

This study shows that the percentage of identifying sex is 70% accurate using multiple measurements. This information is useful to the establishment of the overall biological profile. Research focused on elements that are more likely to survive taphonomic processes could prove valuable to the field of forensic anthropology. Use of smaller elements to estimate sex for individuals would lower the dependence on larger elements, such as the crania and pelvis. Further research that adds to the information the first rib can provide will only continue to improve the field's ability to identify the sex of an individual.

#### **REFERENCES CITED**

#### Bass, W.M.

1995. *Human Osteology: A Laboratory and Field Manual 4<sup>th</sup> Edition*. Columbia, Mo: Missouri Archaeological Society.

#### Bearn, J.G.

1967. "Direct Observations on the Function of the Capsule of the Sternoclavicular Joint in Clavicular Support." *Journal of Anatomy* 101(1): 159-170.

#### Bruzek, J.

2002. "A Method for Visual Determination of Sex, Using the Human Hip Bone." *American Journal of Physical Anthropology* 117:157-168

#### DiGangi, E.A., J.D. Bethard, E.H. Kimmerle, and L.W. Konigsberg. 2009. "A New Method for Estimating Age-At-Death from the First Rib." American Journal of Physical Anthropology 138:164-176.

#### Đurić, M., Z. Rakočević, and D. Đonic.

2005. "The Reliability of Sex Determination of Skeletons from Forensic Context in the Balkans." *Forensic Science International* 147:159-164.

#### Giles, E.

1964. "Sex Determination by Discriminant Function Analysis of the Mandible." *American Journal of Physical Anthropology* 22: 129-136.

#### Giles, E. and Elliot, O.

1963. "Sex Determination by Discriminant Function Analysis of Crania." *American Journal of Physical Anthropology* 21(1):53-68.

#### İşcan, M.Y.

1985. "Osteometric Analysis of Sexual Dimorphism in the Sternal End of the Rib." *Journal of Forensic Science* 30(4): 1090-9

#### İşcan, M.Y.

1991. "The Aging Process in the Rib: An Analysis of Sex and Race Related Morphological Variation." *American Journal of Human Biology* 3:617-623.

#### İşcan, M.Y.

2005. "Forensic Anthropology of Sex and Body Size." *Forensic Science International* 147:107-112.

#### İşcan, M.Y., S.R. Loth, and R. K. Wright.

1984. "Metamorphosis at the Sternal Rib End: A New Method to Estimate age at Death in White Males." *American Journal of Physical Anthropology* 65:147-156

İşcan, M.Y. and S.R. Loth

1986. "Estimation of Age and Determination of Sex from the Sternal Rib." In *Forensic Osteology: Advances in the Identification of Human Remains* ed. Kathy Reichs, Charles C. Thomas: Springfield, Il. Pp. 68-89.

İşcan, M.Y., S.R. Loth, C.A. King, D. Shihai and M. Yoshino. 1998. "Sexual Dimorphism in the Humerus: a Comparative Analysis of Chinese, Japanese and Thai." *Forensic Science International* 98: 17-29

Kampen, W.U., H. Claassen, and T. Kirsch.

1995. "Mineralization and Osteogenesis in the Human First Rib Cartilage." *Annals of Anatomy* 177:171-177.

King, C.A., M,Y, İşcan, and S.R. Loth. 1998. "Metric and Comparative Analysis of Sexual Dimorphism in the Thai Femur." *Journal of Forensic Science* 43(5):954-958.

 Koçak, A., E.O. Atkas, S. Ertük, S. Atkas, and A. Yemisçigil.
 2003. "Sex Determination from the Sternal End of the Rib by Osteometric Analysis." *Legal Medicine* 5:100-104.

Kunos, C.A., S.W. Simpson, K.F. Russell, and I. Hershkovitz.
1999. "First Rib Metamorphosis: Its Possible Utility for Human Age-at-Death Estimation." *American Journal of Physical Anthropology* 110:303-323.

#### Kurki, H.

2005. "Use of the First Rib for Adult Age Estimation: A Test of One Method." *International Journal of Osteoarchaeology* 15: 342-350

#### McCormick, W.F.

1980. "Mineralization of the Costal Cartilages as an Indicator of Age: Preliminary Observations." *Journal of Forensic Sciences* 25(4):736-741.

#### Navani, S., J.R. Shah, and P.S. Levy.

1970. "Determination of Sex by Costal Cartilage Calcification." *American Journal of Roentgenology* 108(4):771-774.

#### Ohman, James C.

1986. "The First Rib of Hominoids." *American Journal of Physical Anthropology* 70(2): 209-229.

#### Patil, K.R., and R.N. Mody.

2005. "Determination of Sex by Discriminant Function Analysis and Stature Regression Analysis: a Lateral Cephalometric Study." *Forensic Science International* 147:175-180.

#### Peat, Malcolm.

1986. "Functional Anatomy of the Shoulder Complex." *Journal of the American Physical Therapy Association* 66(12): 1855-1865.

#### Phenice, T.W.

1969. "A Newly Developed Visual Method of Sexing the Ox Pubis." *American Journal of Physical Anthropology* 30: 297-302.

Ramadan S.U., N. Türkmen, N.A. Dolgun, D. Gökhraman, R.G. Menezes, M. Kacar, and U. Koşar.

2010. "Sex Determination from Measurements of the Sternum and Fourth Rib Using Multislice Computed Tomography of the Chest." *Forensic Science International* 197:120.e1-120.e5

#### Semine, A., and Damon, A.

1975. "Costochondral Ossification and Aging in Five Populations." *Human Biology* 47(1):101-116

## **WEB SOURCES:**

"Hamann-Todd Osteological Collection". March 2011. <u>http://www.cmnh.org/site/ResearchandCollections/PhysicalAnthropology/Collections/Ha</u> <u>mann-ToddCollection.aspx</u>

"Collections and Research". March 2011. http://fac.utk.edu/facilities.html

## **APPENDIX A**

## STATISTICAL SUMMARIES OF DATA

| GENDER | N Obs | Variable    | Mean  | Minimum | Maximum | Range | <b>Std Error</b> | Variance |
|--------|-------|-------------|-------|---------|---------|-------|------------------|----------|
| Female | 298   | Height      | 8.8   | 1.0     | 19.0    | 18.0  | 0.23             | 14.82    |
|        |       | Length      | 23.3  | 13.0    | 33.0    | 20.0  | 0.21             | 12.89    |
|        |       | Angle       | 22.5  | 2.3     | 51.5    | 49.2  | 0.56             | 92.08    |
|        |       | TotalLength | 128.2 | 95.0    | 161.0   | 66.0  | 0.69             | 133.30   |
|        |       | SternalHead | 54.9  | 38.0    | 75.0    | 37.0  | 0.33             | 31.37    |
| Male   | 274   | Height      | 11.2  | 2.0     | 22.0    | 20.0  | 0.26             | 17.66    |
|        |       | Length      | 25.4  | 14.0    | 40.0    | 26.0  | 0.24             | 14.97    |
|        |       | Angle       | 26.4  | 6.8     | 52.3    | 45.6  | 0.59             | 93.98    |
|        |       | TotalLength | 134.5 | 105.0   | 169.0   | 64.0  | 0.71             | 128.16   |
|        |       | SternalHead | 57.1  | 41.0    | 72.0    | 31.0  | 0.36             | 32.79    |

## FOR FEMALES AND MALES:

# FOR BLACK MALES AND WHITE MALES:

| ANCESTRY    | N Obs | Variable    | Mean  | Minimum | Maximum | Range | Std Error | Variance |
|-------------|-------|-------------|-------|---------|---------|-------|-----------|----------|
| Black Males | 126   | Height      | 9.3   | 2.0     | 21.0    | 19.0  | 0.35      | 14.81    |
|             |       | Length      | 24.3  | 14.0    | 40.0    | 26.0  | 0.37      | 16.60    |
|             |       | Angle       | 22.6  | 6.8     | 49.5    | 42.7  | 0.79      | 74.45    |
|             |       | TotalLength | 136.4 | 105.0   | 169.0   | 64.0  | 1.17      | 155.81   |
|             |       | SternalHead | 56.7  | 41.0    | 72.0    | 31.0  | 0.57      | 37.07    |
| White Males | 148   | Height      | 12.7  | 3.0     | 22.0    | 19.0  | 0.32      | 14.95    |
|             |       | Length      | 26.2  | 19.0    | 35.0    | 16.0  | 0.29      | 12.08    |
|             |       | Angle       | 29.5  | 7.2     | 52.3    | 45.1  | 0.78      | 88.87    |
|             |       | TotalLength | 133.1 | 110.0   | 155.0   | 45.0  | 0.86      | 101.67   |
|             |       | SternalHead | 57.5  | 44.0    | 71.0    | 27.0  | 0.46      | 29.22    |

## FOR BLACK FEMALES AND WHITE FEMALES:

| ANCESTRY | N Obs | Variable    | Mean  | Minimum | Maximum | Range | Std Error | Variance |
|----------|-------|-------------|-------|---------|---------|-------|-----------|----------|
| Black    | 124   | Height      | 7.0   | 1.0     | 18.0    | 17.0  | 0.33      | 12.83    |
| Females  |       | Length      | 22.4  | 15.0    | 29.0    | 14.0  | 0.28      | 9.03     |
|          |       | Angle       | 18.4  | 2.3     | 51.5    | 49.2  | 0.85      | 83.02    |
|          |       | TotalLength | 127.7 | 101.0   | 161.0   | 60.0  | 1.07      | 132.86   |
|          |       | SternalHead | 53.8  | 41.0    | 75.0    | 34.0  | 0.54      | 33.94    |
| White    | 174   | Height      | 10.0  | 2.0     | 19.0    | 17.0  | 0.27      | 12.55    |
| Females  |       | Length      | 23.9  | 13.0    | 33.0    | 20.0  | 0.29      | 14.65    |
|          |       | Angle       | 25.2  | 6.2     | 50.6    | 44.4  | 0.68      | 79.88    |
|          |       | TotalLength | 128.5 | 95.0    | 157.0   | 62.0  | 0.90      | 134.17   |
|          |       | SternalHead | 55.7  | 38.0    | 70.0    | 32.0  | 0.41      | 28.33    |

## **APPENDIX B**

## T-TESTS FOR ALL MEASUREMENTS BY SEX AND ANCESTRY

## ANGLE:

|                             | Method | Variances | DF  | t Value | $\mathbf{Pr} >  \mathbf{t} $ |
|-----------------------------|--------|-----------|-----|---------|------------------------------|
| All Males/Females           | Pooled | Equal     | 553 | -4.77   | <.0001                       |
| Black Males/White Males     | Pooled | Equal     | 264 | -6.19   | <.0001                       |
| Black Females/White Females | Pooled | Equal     | 287 | -6.31   | <.0001                       |

### HEIGHT OF HEAD OFF SURFACE:

|                             | Method | Variances | DF  | t Value | $\mathbf{Pr} >  \mathbf{t} $ |
|-----------------------------|--------|-----------|-----|---------|------------------------------|
| All Males/Females           | Pooled | Equal     | 553 | -6.90   | <.0001                       |
| Black Males/White Males     | Pooled | Equal     | 264 | -7.09   | <.0001                       |
| Black Females/White Females | Pooled | Equal     | 287 | -7.08   | <.0001                       |

#### LENGTH FROM HEAD TO TUBERCLE:

|                             | Method        | Variances | DF     | t Value | $\mathbf{Pr} >  \mathbf{t} $ |
|-----------------------------|---------------|-----------|--------|---------|------------------------------|
| All Males/Females           | Pooled        | Equal     | 553    | -6.50   | <.0001                       |
| Black Males/White Males     | Pooled        | Equal     | 264    | -4.12   | <.0001                       |
| Black Females/White Females | Satterthwaite | Unequal   | 279.87 | -3.70   | 0.0003                       |

## TOTAL EXTERIOR LENGTH (ASHL):

|                             | Method        | Variances | DF     | t Value | $\mathbf{Pr} >  \mathbf{t} $ |
|-----------------------------|---------------|-----------|--------|---------|------------------------------|
| All Males/Females           | Pooled        | Equal     | 534    | -6.41   | <.0001                       |
| Black Males/White Males     | Satterthwaite | Unequal   | 213.57 | 2.29    | 0.0232                       |
| Black Females/White Females | Pooled        | Equal     | 282    | -0.54   | 0.5863                       |

# INTERIOR LENGTH (PSMH):

|                             | Method | Variances | DF  | t Value | $\mathbf{Pr} >  \mathbf{t} $ |
|-----------------------------|--------|-----------|-----|---------|------------------------------|
| All Males/Females           | Pooled | Equal     | 536 | -4.49   | <.0001                       |
| Black Males/White Males     | Pooled | Equal     | 252 | -1.08   | 0.2822                       |
| Black Females/White Females | Pooled | Equal     | 282 | -2.78   | 0.0058                       |

## **APPENDIX C**

## **RAW DATA**

|              |            |     |        | <b>D</b> 1 <b>1</b> 11 | *all measurements in millimeters |        |              |  |
|--------------|------------|-----|--------|------------------------|----------------------------------|--------|--------------|--|
| Project Name | Collection | Age | Height | Length                 | Angle                            | Total  | Sternal-Head |  |
| 5            | ID         | 0   | 0      | 0                      | 0                                | Length | Length       |  |
| UTK-WM1L     | 1-82       | 55  | 22     | 28                     | 51.7868                          | 149    | 63           |  |
| UTK-WM1R     | 1-82       | 55  | 19     | 26                     | 46.9509                          | 147    | 60           |  |
| UTK-WM2L     | 8-87       | 25  | 7      | 24                     | 16.9578                          | 125    | 50           |  |
| UTK-WM2R     | 8-87       | 25  | 4      | 24                     | 9.5941                           | -      | -            |  |
| UTK-WM3L     | 24-02      | 52  | 16     | 28                     | 34.8499                          | 142    | 63           |  |
| UTK-WM3R     | 24-02      | 52  | 19     | 24                     | 52.3415                          | 141    | 66           |  |
| UTK-WM4L     | 13-03      | 48  | 9      | 24                     | 22.0243                          | 142    | 61           |  |
| UTK-WM4R     | 13-03      | 48  | 11     | 23                     | 28.5719                          | 137    | 62           |  |
| UTK-WM5L     | 14-03      | 50  | 15     | 22                     | 42.9859                          | 144    | 66           |  |
| UTK-WM5R     | 14-03      | 50  | 13     | 27                     | 28.7822                          | 135    | 71           |  |
| UTK-WM6L     | 19-03      | 55  | 13     | 27                     | 28.7822                          | 155    | 62           |  |
| UTK-WM6R     | 19-03      | 55  | 11     | 26                     | 25.0290                          | 153    | 62           |  |
| UTK-WM7L     | 26-03      | 49  | 12     | 21                     | 34.8499                          | 143    | 56           |  |
| UTK-WM7R     | 26-03      | 49  | 10     | 26                     | 22.6199                          | 132    | 57           |  |
| UTK-WM8L     | 27-03      | 46  | 13     | 24                     | 32.7972                          | 143    | 61           |  |
| UTK-WM8R     | 27-03      | 46  | 15     | 29                     | 31.1474                          | 140    | 60           |  |
| UTK-WM9L     | 37-03      | 43  | 14     | 25                     | 34.0558                          | 127    | 56           |  |
| UTK-WM9R     | 37-03      | 43  | 11     | 25                     | 26.1039                          | 129    | 50           |  |
| UTK-WM10L    | 36-03      | 71  | 18     | 27                     | 41.8103                          | 131    | 61           |  |
| UTK-WM10R    | 36-03      | 71  | 15     | 29                     | 31.1474                          | 130    | 57           |  |
| UTK-WM11L    | 23-01      | 80  | 15     | 26                     | 35.2344                          | 119    | 56           |  |
| UTK-WM11R    | 23-01      | 80  | 21     | 30                     | 44.4270                          | 119    | 55           |  |
| UTK-WM12L    | 01-02      | 96  | 15     | 23                     | 40.7057                          | 113    | 50           |  |
| UTK-WM12R    | 01-02      | 96  | 9      | 25                     | 21.1002                          | 125    | 54           |  |
| UTK-WM13L    | 02-02      | 46  | 12     | 25                     | 28.6854                          | 128    | 51           |  |
| UTK-WM13R    | 02-02      | 46  | 11     | 22                     | 30.0000                          | 123    | 52           |  |
| UTK-WM14L    | 34-02      | 58  | 13     | 23                     | 34.4174                          | 128    | 57           |  |
| UTK-WM14R    | 34-02      | 58  | 18     | 29                     | 38.3665                          | 123    | 55           |  |
| UTK-WM15L    | 33-02      | 39  | 16     | 26                     | 37.9799                          | 135    | 50           |  |
| UTK-WM15R    | 33-02      | 39  | 13     | 24                     | 32.7972                          | 142    | 51           |  |
| UTK-WM16L    | 03-03      | 52  | 13     | 24                     | 32.7972                          | 126    | 55           |  |
| UTK-WM16R    | 03-03      | 52  | 11     | 26                     | 25.0290                          | 134    | 57           |  |
| UTK-WM17L    | 04-03      | 70  | 20     | 27                     | 47.7946                          | 130    | 60           |  |

| UTK-WM17R | 04-03 | 70 | 19 | 27 | 44.7249 | 131 | 61 |
|-----------|-------|----|----|----|---------|-----|----|
| UTK-WM18L | 05-03 | 62 | 14 | 25 | 34.0558 | 123 | 63 |
| UTK-WM18R | 05-03 | 62 | 14 | 25 | 34.0558 | 124 | 60 |
| UTK-WM19L | 07-86 | 67 | 12 | 29 | 24.4433 | 130 | 48 |
| UTK-WM19R | 07-86 | 67 | 13 | 21 | 38.2466 | 125 | 49 |
| UTK-WM20L | 01-87 | 39 | 10 | 30 | 19.4712 | 145 | 63 |
| UTK-WM20R | 01-87 | 39 | 13 | 31 | 24.7939 | 150 | 65 |
| UTK-WM21L | 20-90 | 29 | 9  | 24 | 22.0243 | 135 | 51 |
| UTK-WM21R | 20-90 | 29 | 8  | 32 | 14.4775 | 138 | 51 |
| UTK-WM22L | 21-90 | 69 | 10 | 24 | 24.6243 | 120 | 60 |
| UTK-WM22R | 21-90 | 69 | 14 | 23 | 37.4952 | 117 | 58 |
| UTK-WM23L | 22-90 | 78 | 21 | 34 | 38.1445 | 150 | 65 |
| UTK-WM23R | 22-90 | 78 | 21 | 32 | 41.0145 | 144 | 57 |
| UTK-WM24L | 17-91 | 26 | 8  | 22 | 21.3237 | 138 | 62 |
| UTK-WM24R | 17-91 | 26 | 9  | 29 | 18.0800 | 140 | 61 |
| UTK-WM25L | 14-93 | 32 | 13 | 27 | 28.7822 | 124 | 55 |
| UTK-WM25R | 14-93 | 32 | 17 | 27 | 39.0228 | 126 | 58 |
| UTK-WM26L | 02-96 | 87 | 18 | 29 | 38.3665 | 145 | 53 |
| UTK-WM26R | 02-96 | 87 | 15 | 29 | 31.1474 | 145 | 57 |
| UTK-WM27L | 24-01 | 60 | 12 | 23 | 31.4490 | -   | -  |
| UTK-WM27R | 24-01 | 60 | 12 | 23 | 31.4490 | -   | -  |
| UTK-WM28L | 19-92 | 27 | 9  | 26 | 20.2522 | -   | -  |
| UTK-WM28R | 19-92 | 27 | 6  | 25 | 13.8865 | -   | -  |
| UTK-WM29L | 21-06 | 46 | 17 | 27 | 39.0228 | 121 | 65 |
| UTK-WM29R | 21-06 | 46 | 17 | 27 | 39.0228 | 122 | 65 |
| UTK-WM30L | 12-08 | 89 | 19 | 29 | 40.9327 | 136 | 50 |
| UTK-WM30R | 12-08 | 89 | 15 | 25 | 36.8699 | 130 | 52 |
| UTK-WM31L | 38-03 | 65 | -  | -  | -       | -   | -  |
| UTK-WM31R | 38-03 | 65 | 10 | 25 | 23.5782 | 129 | 60 |
| UTK-WM32L | 50-03 | 62 | 15 | 28 | 32.3924 | 139 | 53 |
| UTK-WM32R | 50-03 | 62 | 15 | 29 | 31.1474 | 140 | 51 |
| UTK-WM33L | 49-03 | 86 | 11 | 25 | 26.1039 | 154 | 57 |
| UTK-WM33R | 49-03 | 86 | 12 | 25 | 28.6854 | 141 | 58 |
| UTK-WM34L | 55-03 | 67 | -  | -  | -       | -   | -  |
| UTK-WM34R | 55-03 | 67 | 16 | 28 | 34.8499 | 135 | 58 |
| UTK-WM35L | 54-03 | 54 | 15 | 28 | 32.3924 | 140 | 61 |
| UTK-WM35R | 54-03 | 54 | 16 | 26 | 37.9799 | 134 | 63 |
| UTK-WM36L | 02-04 | 68 | 14 | 22 | 39.5212 | 125 | 53 |

| UTK-WM36R | 02-04 | 68 | 17 | 24 | 45.0995 | 127 | 56 |
|-----------|-------|----|----|----|---------|-----|----|
| UTK-WM37L | 09-04 | 46 | 14 | 25 | 34.0558 | 137 | 55 |
| UTK-WM37R | 09-04 | 46 | 14 | 19 | 47.4631 | 138 | 57 |
| UTK-WM38L | 08-04 | 57 | 15 | 22 | 42.9859 | 125 | 60 |
| UTK-WM38R | 08-04 | 57 | 14 | 24 | 35.6853 | 131 | 58 |
| UTK-WM39L | 29-04 | 34 | 8  | 29 | 16.0134 | 153 | 64 |
| UTK-WM39R | 29-04 | 34 | 11 | 30 | 21.5102 | 149 | 64 |
| UTK-WM40L | 44-04 | 39 | 17 | 25 | 42.8436 | 140 | 53 |
| UTK-WM40R | 44-04 | 39 | 18 | 29 | 38.3665 | 142 | 55 |
| UTK-WM41L | 59-04 | 48 | 10 | 20 | 30.0000 | 121 | 53 |
| UTK-WM41R | 59-04 | 48 | 8  | 22 | 21.3237 | 119 | 48 |
| UTK-WM42L | 01-05 | 44 | 14 | 27 | 31.2329 | 122 | 59 |
| UTK-WM42R | 01-05 | 44 | 10 | 22 | 27.0357 | 125 | 63 |
| UTK-WM43L | 34-03 | 77 | 15 | 23 | 40.7057 | 121 | 58 |
| UTK-WM43R | 34-03 | 77 | 10 | 28 | 20.9248 | 121 | 60 |
| UTK-WM44L | 04-05 | 72 | 14 | 22 | 39.5212 | 123 | 54 |
| UTK-WM44R | 04-05 | 72 | 15 | 22 | 42.9859 | 122 | 51 |
| UTK-BM1L  | 6-87  | 69 | 15 | 23 | 40.7057 | 142 | 71 |
| UTK-BM1R  | 6-87  | 69 | 14 | 26 | 32.5790 | 144 | 71 |
| UTK-BM2L  | 9-89  | 43 | 9  | 28 | 18.7493 | 169 | 68 |
| UTK-BM2R  | 9-89  | 43 | 9  | 27 | 19.4712 | 161 | 61 |
| UTK-BM3L  | 18-90 | 27 | 6  | 18 | 19.4712 | 135 | 53 |
| UTK-BM3R  | 18-90 | 27 | 9  | 22 | 24.1477 | -   | -  |
| UTK-BM4L  | 15-91 | 51 | 7  | 24 | 16.9578 | 138 | 52 |
| UTK-BM4R  | 15-91 | 51 | 7  | 22 | 18.5530 | -   | -  |
| UTK-BM5L  | 1-92  | 55 | 10 | 22 | 27.0357 | 139 | 64 |
| UTK-BM5R  | 1-92  | 55 | 9  | 22 | 24.1477 | 139 | 65 |
| UTK-BM6L  | 21-92 | 25 | 10 | 23 | 25.7715 | 132 | 48 |
| UTK-BM6R  | 21-92 | 25 | 10 | 21 | 28.4369 | 119 | 47 |
| UTK-BM7L  | 15-93 | 84 | 13 | 27 | 28.7822 | 146 | 62 |
| UTK-BM7R  | 15-93 | 84 | 19 | 25 | 49.4642 | 147 | 62 |
| UTK-BM8L  | 5-94  | 46 | 13 | 25 | 31.3323 | 139 | 61 |
| UTK-BM8R  | 5-94  | 46 | 12 | 21 | 34.8499 | -   | -  |
| UTK-BM9L  | 8-99  | 43 | 13 | 27 | 28.7822 | 141 | 49 |
| UTK-BM9R  | 8-99  | 43 | 12 | 27 | 26.3878 | 145 | 54 |
| UTK-BM10L | 06-02 | 77 | 12 | 23 | 31.4490 | 151 | 61 |
| UTK-BM10R | 06-02 | 77 | 15 | 29 | 31.1474 | 145 | 56 |
| UTK-BM11L | 12-05 | 56 | 10 | 23 | 25.7715 | 139 | 57 |

| UTK-BM11R | 12-05  | 56 | 6  | 24 | 14.4775 | 140 | 63 |
|-----------|--------|----|----|----|---------|-----|----|
| UTK-BM12L | 48-04  | 46 | 12 | 27 | 26.3878 | 141 | 57 |
| UTK-BM12R | 48-04  | 46 | 10 | 20 | 30.0000 | 140 | 61 |
| UTK-BM13L | 40-04  | 49 | 9  | 24 | 22.0243 | 134 | 65 |
| UTK-BM13R | 40-04  | 49 | 10 | 23 | 25.7715 | 132 | 67 |
| UTK-BM14L | 53-05  | 43 | 10 | 21 | 28.4369 | 133 | 56 |
| UTK-BM14R | 53-05  | 43 | 8  | 19 | 24.9011 | 127 | 54 |
| UTK-BM15L | 41-06  | 71 | 11 | 24 | 27.2796 | 128 | 58 |
| UTK-BM15R | 41-06  | 71 | 6  | 20 | 17.4576 | 134 | 59 |
| UTK-BM16L | 98-06  | 47 | 17 | 29 | 35.8883 | 130 | 57 |
| UTK-BM16R | 98-06  | 47 | 10 | 26 | 22.6199 | 140 | 61 |
| UTK-BM17L | 54-06  | 43 | 6  | 25 | 13.8865 | 151 | 57 |
| UTK-BM17R | 54-06  | 43 | 13 | 27 | 28.7822 | 150 | 65 |
| UTK-BM18L | 75-06  | 47 | 21 | 29 | 46.3972 | 152 | 59 |
| UTK-BM18R | 75-06  | 47 | 17 | 25 | 42.8436 | 162 | 62 |
| UTK-BM19L | 19-07  | 53 | 21 | 32 | 41.0145 | 126 | 61 |
| UTK-BM19R | 19-07  | 53 | 19 | 28 | 42.7321 | 122 | 62 |
| UTK-BM20L | 74-07  | 55 | 14 | 26 | 32.5790 | 132 | 56 |
| UTK-BM20R | 74-07  | 55 | 16 | 26 | 37.9799 | 133 | 54 |
| UTK-BM21L | 81-07  | 49 | 15 | 25 | 36.8699 | 130 | 49 |
| UTK-BM21R | 81-07  | 49 | 13 | 24 | 32.7972 | 136 | 48 |
| UTK-BM22L | 100-07 | 59 | 6  | 21 | 16.6015 | 148 | 57 |
| UTK-BM22R | 100-07 | 59 | 9  | 22 | 24.1477 | 150 | 57 |
| UTK-BM23L | 31-93  | 68 | 11 | 26 | 25.0290 | 123 | 59 |
| UTK-BM23R | 31-93  | 68 | 8  | 19 | 24.9011 | 124 | 61 |
| UTK-BM24L | 17-00  | 35 | 7  | 25 | 16.2602 | 120 | 51 |
| UTK-BM24R | 17-00  | 35 | 6  | 25 | 13.8865 | 118 | 50 |
| UTK-BM25L | 30-01  | 64 | 13 | 31 | 24.7939 | 145 | 65 |
| UTK-BM25R | 30-01  | 64 | 11 | 29 | 22.2910 | 142 | 67 |
| UTK-BM26L | 35-93  | 61 | 12 | 27 | 26.3878 | -   | -  |
| UTK-BM26R | 35-93  | 61 | -  | -  | -       | -   | -  |
| UTK-BM27L | 15-90  | 54 | 9  | 21 | 25.3769 | -   | -  |
| UTK-BM27R | 15-90  | 54 | 8  | 23 | 20.3544 | -   | -  |
| UTK-BM28L | 23-03  | 68 | 16 | 26 | 37.9799 | 139 | 53 |
| UTK-BM28R | 23-03  | 68 | -  | -  | -       | -   | -  |
| UTK-BM29L | 25-04  | 40 | 10 | 31 | 18.8191 | 160 | 48 |
| UTK-BM29R | 25-04  | 40 | 10 | 32 | 18.2100 | -   | -  |
| UTK-BM30L | 23-06  | 70 | 5  | 23 | 12.5559 | 155 | 72 |

| UTK-BM30R  | 23-06    | 70 | 5  | 22 | 13.1366     | 153 | 69 |
|------------|----------|----|----|----|-------------|-----|----|
| CMNH-WM1L  | HTH-1125 | 40 | 11 | 30 | 21.51018827 | 144 | 51 |
| CMNH-WM1R  | HTH-1125 | 40 | 11 | 33 | 19.47122063 | 142 | 54 |
| CMNH-WM2L  | HTH-687  | 30 | 15 | 35 | 25.37693353 | 126 | 63 |
| CMNH-WM2R  | HTH-687  | 30 | 16 | 30 | 32.23095264 | 127 | 65 |
| CMNH-WM3L  | HTH-688  | 24 | 16 | 32 | 30          | 133 | 54 |
| CMNH-WM3R  | HTH-688  | 24 | 14 | 32 | 25.94447977 | 130 | 54 |
| CMNH-WM4L  | HTH-689  | 45 | 11 | 29 | 22.29097037 | 122 | 52 |
| CMNH-WM4R  | HTH-689  | 45 | 10 | 30 | 19.47122063 | 130 | 55 |
| CMNH-WM5L  | HTH-691  | 65 | 9  | 32 | 16.33482278 | 142 | 58 |
| CMNH-WM5R  | HTH-691  | 65 | 9  | 32 | 16.33482278 | 142 | 62 |
| CMNH-WM6L  | HTH-694  | 23 | 9  | 27 | 19.47122063 | 116 | 49 |
| CMNH-WM6R  | HTH-694  | 23 | 6  | 20 | 17.45760312 | 115 | 51 |
| CMNH-WM7L  | HTH-707  | 32 | 9  | 27 | 19.47122063 | 131 | 53 |
| CMNH-WM7R  | HTH-707  | 32 | 8  | 29 | 16.01339442 | 146 | 55 |
| CMNH-WM8L  | HTH-708  | 32 | 11 | 29 | 22.29097037 | 140 | 51 |
| CMNH-WM8R  | HTH-708  | 32 | 6  | 29 | 11.94054396 | 138 | 55 |
| CMNH-WM9L  | HTH-712  | 29 | 6  | 28 | 12.37362512 | 135 | 50 |
| CMNH-WM9R  | HTH-712  | 29 | 8  | 23 | 20.3544064  | 142 | 50 |
| CMNH-WM10L | HTH-714  | 35 | 17 | 33 | 31.00758301 | 132 | 59 |
| CMNH-WM10R | HTH-714  | 35 | 17 | 32 | 32.08995126 | 139 | 55 |
| CMNH-WM11L | HTH-1645 | 50 | 18 | 31 | 35.49593265 | 126 | 66 |
| CMNH-WM11R | HTH-1645 | 50 | 14 | 27 | 31.23292902 | 126 | 65 |
| CMNH-WM12L | HTH-1662 | 40 | 8  | 21 | 22.39268781 | 135 | 59 |
| CMNH-WM12R | HTH-1662 | 40 | 10 | 24 | 24.62431835 | 135 | 60 |
| CMNH-WM13L | HTH-1663 | 75 | 11 | 24 | 27.27961274 | 147 | 61 |
| CMNH-WM13R | HTH-1663 | 75 | 16 | 25 | 39.7918195  | 148 | 69 |
| CMNH-WM14L | HTH-1664 | 67 | 8  | 30 | 15.46600995 | 133 | 64 |
| CMNH-WM14R | HTH-1664 | 67 | 10 | 26 | 22.61986495 | 138 | 69 |
| CMNH-WM15L | HTH-1681 | 54 | 14 | 30 | 27.81813928 | 119 | 64 |
| CMNH-WM15R | HTH-1681 | 54 | 18 | 28 | 40.00520088 | 124 | 62 |
| CMNH-WM16L | HTH-1683 | 81 | 18 | 27 | 41.8103149  | 145 | 56 |
| CMNH-WM16R | HTH-1683 | 81 | 13 | 26 | 30          | 150 | 56 |
| CMNH-WM17L | HTH-1685 | 62 | 8  | 21 | 22.39268781 | 135 | 67 |
| CMNH-WM17R | HTH-1685 | 62 | 6  | 22 | 15.82662013 | -   | -  |
| CMNH-WM18L | HTH-1686 | 40 | 10 | 26 | 22.61986495 | 151 | 67 |
| CMNH-WM18R | HTH-1686 | 40 | 12 | 26 | 27.48642625 | 152 | 66 |
| CMNH-WM19L | HTH-1726 | 57 | 12 | 29 | 24.44333543 | 128 | 55 |

| CMNH-WM19R | HTH-1726 | 57 | 9  | 19 | 28.27371363 | 128 | 54 |
|------------|----------|----|----|----|-------------|-----|----|
| CMNH-WM20L | HTH-1728 | 70 | 12 | 24 | 30          | 131 | 54 |
| CMNH-WM20R | HTH-1728 | 70 | 18 | 29 | 38.36651426 | 146 | 59 |
| CMNH-WM21L | HTH-1732 | 84 | 14 | 26 | 32.57897039 | 133 | 55 |
| CMNH-WM21R | HTH-1732 | 84 | 10 | 19 | 31.75686386 | 115 | 49 |
| CMNH-WM22L | HTH-1745 | 63 | 18 | 35 | 30.94972308 | 122 | 44 |
| CMNH-WM22R | HTH-1745 | 63 | 12 | 24 | 30          | 121 | 45 |
| CMNH-WM23L | HTH-1764 | 55 | 3  | 24 | 7.180755781 | 137 | 58 |
| CMNH-WM23R | HTH-1764 | 55 | 9  | 24 | 22.02431284 | 137 | 58 |
| CMNH-WM24L | HTH-1769 | 24 | 5  | 21 | 13.774147   | 114 | 50 |
| CMNH-WM24R | HTH-1769 | 24 | 8  | 21 | 22.39268781 | 110 | 54 |
| CMNH-WM25L | HTH-1770 | 59 | 10 | 25 | 23.57817848 | 141 | 63 |
| CMNH-WM25R | HTH-1770 | 59 | 12 | 28 | 25.37693353 | 140 | 64 |
| CMNH-WM26L | HTH-1809 | 45 | 10 | 28 | 20.92483243 | 134 | 62 |
| CMNH-WM26R | HTH-1809 | 45 | 12 | 25 | 28.68540201 | 131 | 55 |
| CMNH-WM27L | HTH-2217 | 21 | 11 | 30 | 21.51018827 | 125 | 61 |
| CMNH-WM27R | HTH-2217 | 21 | 6  | 20 | 17.45760312 | 124 | 60 |
| CMNH-WM28L | HTH-2243 | 57 | 15 | 29 | 31.14738992 | 125 | 57 |
| CMNH-WM28R | HTH-2243 | 57 | 15 | 25 | 36.86989765 | 0   | 0  |
| CMNH-WM29L | HTH-2287 | 54 | 12 | 29 | 24.44333543 | 129 | 57 |
| CMNH-WM29R | HTH-2287 | 54 | 9  | 31 | 16.87726944 | 125 | 62 |
| CMNH-WM30L | HTH-2305 | 39 | 15 | 23 | 40.70570683 | 130 | 55 |
| CMNH-WM30R | HTH-2305 | 39 | 18 | 23 | 51.50004959 | 130 | 54 |
| CMNH-BBM1L | HTH-25   | 40 | 9  | 29 | 18.08001262 | 124 | 41 |
| CMNH-BM1R  | HTH-25   | 40 | 3  | 21 | 8.213210702 | 123 | 44 |
| CMNH-BM2L  | HTH-27   | 48 | 13 | 21 | 38.24661988 | -   | 57 |
| CMNH-BM2R  | HTH-27   | 48 | 11 | 25 | 26.10388114 | -   | 56 |
| CMNH-BM3L  | HTH-74   | 35 | 9  | 19 | 28.27371363 | 133 | 57 |
| CMNH-BM3R  | HTH-74   | 35 | 4  | 23 | 10.01541017 | 135 | 62 |
| CMNH-BM4L  | HTH-93   | 30 | 3  | 15 | 11.53695903 | -   | -  |
| CMNH-BM4R  | HTH-93   | 30 | 4  | 17 | 13.60896063 | 144 | 55 |
| CMNH-BM5L  | HTH-97   | 50 | 7  | 23 | 17.71893187 | 142 | 61 |
| CMNH-BM5R  | HTH-97   | 50 | 6  | 25 | 13.88654036 | 149 | 61 |
| CMNH-BM6L  | HTH-225  | 38 | 8  | 21 | 22.39268781 | 105 | 45 |
| CMNH-BM6R  | HTH-225  | 38 | 7  | 26 | 15.61849828 | 105 | 47 |
| CMNH-BM7L  | HTH-290  | 33 | 7  | 25 | 16.26020471 | 146 | 60 |
| CMNH-BM7R  | HTH-290  | 33 | 5  | 20 | 14.47751219 | 151 | 59 |
| CMNH-BM8L  | HTH-291  | 20 | 10 | 25 | 23.57817848 | 133 | 47 |

| CMNH-BM8R  | HTH-291 | 20 | 7  | 22 | 18.55300454 | 131 | 48 |
|------------|---------|----|----|----|-------------|-----|----|
| CMNH-BM9L  | HTH-327 | 35 | 3  | 19 | 9.084720287 | 149 | 58 |
| CMNH-BM9R  | HTH-327 | 35 | 5  | 19 | 15.25752329 | 139 | 56 |
| CMNH-BM10L | HTH-343 | 30 | 3  | 14 | 12.37362512 | 138 | 59 |
| CMNH-BM10R | HTH-343 | 30 | 2  | 17 | 6.756327031 | 135 | 63 |
| CMNH-BM11L | HTH-366 | 22 | 6  | 19 | 18.40848017 | 121 | 60 |
| CMNH-BM11R | HTH-366 | 22 | 4  | 17 | 13.60896063 | 129 | 62 |
| CMNH-BM12L | HTH-400 | 56 | 11 | 28 | 23.1323964  | 109 | 54 |
| CMNH-BM12R | HTH-400 | 56 | 15 | 27 | 33.7489886  | 109 | 50 |
| CMNH-BM13L | HTH-402 | 29 | 7  | 20 | 20.48731511 | 147 | 51 |
| CMNH-BM13R | HTH-402 | 29 | 4  | 20 | 11.53695903 | 152 | 55 |
| CMNH-BM14L | HTH-441 | 49 | 7  | 24 | 16.9577633  | 125 | 54 |
| CMNH-BM14R | HTH-441 | 49 | 5  | 28 | 10.28656061 | 124 | 53 |
| CMNH-BM15L | HTH-448 | 31 | 7  | 21 | 19.47122063 | 112 | 52 |
| CMNH-BM15R | HTH-448 | 31 | 7  | 21 | 19.47122063 | 116 | 49 |
| CMNH-BM16L | HTH-486 | 32 | 11 | 27 | 24.04207591 | 134 | 56 |
| CMNH-BM16R | HTH-486 | 32 | 11 | 26 | 25.02899949 | 140 | 59 |
| CMNH-BM17L | HTH-502 | 28 | 7  | 20 | 20.48731511 | 121 | 59 |
| CMNH-BM17R | HTH-502 | 28 | 6  | 21 | 16.6015496  | 127 | 57 |
| CMNH-BM18L | HTH-506 | 35 | 9  | 20 | 26.74368395 | 142 | 55 |
| CMNH-BM18R | HTH-506 | 35 | 8  | 25 | 18.66292488 | 139 | 60 |
| CMNH-BM19L | HTH-523 | 24 | 7  | 40 | 10.07865811 | 151 | 66 |
| CMNH-BM19R | HTH-523 | 24 | 5  | 30 | 9.594068227 | 152 | 59 |
| CMNH-BM20L | HTH-524 | 34 | 9  | 29 | 18.08001262 | 131 | 57 |
| CMNH-BM20R | HTH-524 | 34 | 8  | 26 | 17.92021314 | 129 | 57 |
| CMNH-BM21L | HTH-525 | 22 | 10 | 29 | 20.17127135 | 142 | 49 |
| CMNH-BM21R | HTH-525 | 22 | 6  | 27 | 12.83958841 | 139 | 51 |
| CMNH-BM22L | HTH-528 | 50 | 11 | 30 | 21.51018827 | 132 | 59 |
| CMNH-BM22R | HTH-528 | 50 | 9  | 29 | 18.08001262 | 125 | 60 |
| CMNH-BM23L | HTH-563 | 19 | 8  | 20 | 23.57817848 | 129 | 51 |
| CMNH-BM23R | HTH-563 | 19 | 4  | 21 | 10.98057543 | 127 | 48 |
| CMNH-BM24L | HTH-568 | 29 | -  | -  | -           | 135 | 57 |
| CMNH-BM24R | HTH-568 | 29 | -  | -  | -           | 137 | 58 |
| CMNH-BM25L | HTH-692 | 53 | -  | -  | -           | 155 | 56 |
| CMNH-BM25R | HTH-692 | 53 | -  | -  | -           | 149 | 55 |
| CMNH-BM26L | HTH-695 | 18 | 8  | 23 | 20.3544064  | 129 | 52 |
| CMNH-BM26R | HTH-695 | 18 | 6  | 24 | 14.47751219 | 134 | 52 |
| CMNH-BM27L | HTH-709 | 33 | 7  | 24 | 16.9577633  | 160 | 47 |

| CMNH-BM27R | HTH-709  | 33 | 9  | 23 | 23.03568411 | 164 | 48 |
|------------|----------|----|----|----|-------------|-----|----|
| CMNH-BM28L | HTH-735  | 40 | 8  | 22 | 21.32368626 | 134 | 52 |
| CMNH-BM28R | HTH-735  | 40 | 9  | 24 | 22.02431284 | 135 | 52 |
| CMNH-BM29L | HTH-736  | 40 | 15 | 30 | 30          | 138 | 53 |
| CMNH-BM29R | HTH-736  | 40 | 14 | 29 | 28.86572742 | 134 | 53 |
| CMNH-BM30L | HTH-738  | 25 | 10 | 28 | 20.92483243 | 123 | 56 |
| CMNH-BM30R | HTH-738  | 25 | 6  | 27 | 12.83958841 | 126 | 57 |
| CMNH-BM31L | HTH-2026 | 61 | 12 | 33 | 21.32368626 | 132 | 52 |
| CMNH-BM31R | HTH-2026 | 61 | 9  | 29 | 18.08001262 | 126 | 57 |
| CMNH-BM32L | HTH-2079 | 51 | 8  | 25 | 18.66292488 | 130 | 62 |
| CMNH-BM32R | HTH-2079 | 51 | 9  | 26 | 20.25224674 | 128 | 60 |
| CMNH-BM33L | HTH-2080 | 61 | 11 | 20 | 33.36701297 | 134 | 61 |
| CMNH-BM33R | HTH-2080 | 61 | 7  | 29 | 13.96796267 | -   | -  |
| UTK-WF1L   | 1-86a    | 39 | 11 | 20 | 33.36701297 | 115 | 53 |
| UTK-WF1R   | 1-86a    | 39 | 13 | 21 | 38.24661988 | 115 | 54 |
| UTK-WF2L   | 1-83     | 79 | 16 | 27 | 36.34120309 | 152 | 59 |
| UTK-WF2R   | 1-83     | 79 | 16 | 26 | 37.97987244 | 155 | 63 |
| UTK-WF3L   | 5-87     | 53 | 8  | 18 | 26.38779996 | 128 | 55 |
| UTK-WF3R   | 5-87     | 53 | 6  | 19 | 18.40848017 | 128 | 57 |
| UTK-WF4L   | 1-88     | 71 | 14 | 25 | 34.05579774 | 125 | 55 |
| UTK-WF4R   | 1-88     | 71 | 15 | 20 | 48.59037789 | 111 | 55 |
| UTK-WF5L   | 23-88    | 59 | 8  | 24 | 19.47122063 | 150 | 67 |
| UTK-WF5R   | 23-88    | 59 | 8  | 24 | 19.47122063 | 151 | 60 |
| UTK-WF6L   | 11-90    | 68 | 11 | 28 | 23.1323964  | 144 | 56 |
| UTK-WF6R   | 11-90    | 68 | 13 | 20 | 40.54160187 | 135 | 60 |
| UTK-WF7L   | 27-91    | 38 | 9  | 20 | 26.74368395 | 115 | 54 |
| UTK-WF7R   | 27-91    | 38 | 9  | 18 | 30          | 119 | 58 |
| UTK-WF8L   | 9-00     | 43 | 6  | 25 | 13.88654036 | 135 | 59 |
| UTK-WF8R   | 9-00     | 43 | 10 | 20 | 30          | 138 | 57 |
| UTK-WF9L   | 13-02    | 69 | 14 | 26 | 32.57897039 | 155 | 68 |
| UTK-WF9R   | 13-02    | 69 | 12 | 21 | 34.84990458 | 157 | 65 |
| UTK-WF10L  | 12-02    | 49 | 6  | 24 | 14.47751219 | 141 | 54 |
| UTK-WF10R  | 12-02    | 49 | 11 | 29 | 22.29097037 | 140 | 54 |
| UTK-WF11L  | 23-02    | 62 | 14 | 23 | 37.49524976 | 127 | 56 |
| UTK-WF11R  | 23-02    | 62 | 12 | 19 | 39.16671072 | 133 | 55 |
| UTK-WF12L  | 37-02    | 52 | 9  | 27 | 19.47122063 | 135 | 52 |
| UTK-WF12R  | 37-02    | 52 | 9  | 24 | 22.02431284 | 138 | 57 |
| UTK-WF13L  | 11-03    | 47 | 10 | 21 | 28.43689015 | 115 | 51 |

| UTK-WF13R | 11-03 | 47 | 10 | 16 | 38.68218745 | 116 | 52 |
|-----------|-------|----|----|----|-------------|-----|----|
| UTK-WF14L | 17-03 | 58 | 11 | 25 | 26.10388114 | 95  | 38 |
| UTK-WF14R | 17-03 | 58 | 10 | 23 | 25.77146174 | 110 | 45 |
| UTK-WF15L | 18-03 | 47 | 9  | 23 | 23.03568411 | 121 | 48 |
| UTK-WF15R | 18-03 | 47 | 10 | 23 | 25.77146174 | 115 | 49 |
| UTK-WF16L | 21-93 | 82 | 12 | 26 | 27.48642625 | 119 | 53 |
| UTK-WF16R | 21-93 | 82 | 9  | 21 | 25.37693353 | 112 | 54 |
| UTK-WF17L | 26-93 | 62 | 12 | 24 | 30          | 120 | 55 |
| UTK-WF17R | 26-93 | 62 | 10 | 25 | 23.57817848 | 113 | 54 |
| UTK-WF18L | 18-94 | 83 | 16 | 26 | 37.97987244 | 124 | 51 |
| UTK-WF18R | 18-94 | 83 | 9  | 22 | 24.14773992 | 124 | 49 |
| UTK-WF19L | 07-95 | 71 | 10 | 23 | 25.77146174 | 140 | 59 |
| UTK-WF19R | 07-95 | 71 | 12 | 24 | 30          | 134 | 59 |
| UTK-WF20L | 07-92 | 64 | 19 | 27 | 44.72491315 | 116 | 59 |
| UTK-WF20R | 07-92 | 64 | 16 | 26 | 37.97987244 | 115 | 54 |
| UTK-WF21L | 10-98 | 69 | 8  | 21 | 22.39268781 | 134 | 65 |
| UTK-WF21R | 10-98 | 69 | 8  | 27 | 17.23528526 | 133 | 65 |
| UTK-WF22L | 56-04 | 76 | 14 | 29 | 28.86572742 | 134 | 66 |
| UTK-WF22R | 56-04 | 76 | 13 | 29 | 26.63311875 | 132 | 67 |
| UTK-WF23L | 57-04 | 81 | 13 | 25 | 31.3322515  | 130 | 56 |
| UTK-WF23R | 57-04 | 81 | 15 | 27 | 33.7489886  | 124 | 59 |
| UTK-WF24L | 31-05 | 51 | -  | -  | -           | -   | -  |
| UTK-WF24R | 31-05 | 51 | 10 | 25 | 23.57817848 | 132 | 57 |
| UTK-WF25L | 30-05 | 69 | 17 | 32 | 32.08995126 | 115 | 50 |
| UTK-WF25R | 30-05 | 69 | 17 | 27 | 39.02280257 | 113 | 53 |
| UTK-WF26L | 27-05 | 59 | 10 | 21 | 28.43689015 | 122 | 51 |
| UTK-WF26R | 27-05 | 59 | 12 | 25 | 28.68540201 | 116 | 50 |
| UTK-WF27L | 25-05 | 51 | 14 | 24 | 35.68533471 | 116 | 57 |
| UTK-WF27R | 25-05 | 51 | 15 | 24 | 38.68218745 | 120 | 56 |
| UTK-WF28L | 61-05 | 55 | 8  | 25 | 18.66292488 | 134 | 48 |
| UTK-WF28R | 61-05 | 55 | 10 | 25 | 23.57817848 | 136 | 48 |
| UTK-WF29L | 88-05 | 84 | 10 | 26 | 22.61986495 | 130 | 58 |
| UTK-WF29R | 88-05 | 84 | 11 | 27 | 24.04207591 | 130 | 59 |
| UTK-WF30L | 92-05 | 47 | 9  | 22 | 24.14773992 | 138 | 67 |
| UTK-WF30R | 92-05 | 47 | 12 | 29 | 24.44333543 | 141 | 61 |
| UTK-WF31L | 15-06 | 59 | 10 | 22 | 27.03569179 | 136 | 52 |
| UTK-WF31R | 15-06 | 59 | 10 | 25 | 23.57817848 | 138 | 53 |
| UTK-WF32L | 17-06 | 50 | 11 | 24 | 27.27961274 | 125 | 57 |

| UTK-WF32R                                                                                                                                                                                                                                           | 17-06                                                                                                                                                          | 50                                                                                                                                                                                 | 12                                                                                                                                                                                      | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.02431284                                                                                                                                                                                                                                                                                                                                   | 140                                                                                                                                                                                                                                                                                                                   | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UTK-WF33L                                                                                                                                                                                                                                           | 25-06                                                                                                                                                          | 44                                                                                                                                                                                 | 8                                                                                                                                                                                       | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.6015496                                                                                                                                                                                                                                                                                                                                    | 156                                                                                                                                                                                                                                                                                                                   | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UTK-WF33R                                                                                                                                                                                                                                           | 25-06                                                                                                                                                          | 44                                                                                                                                                                                 | 6                                                                                                                                                                                       | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.80692287                                                                                                                                                                                                                                                                                                                                   | 155                                                                                                                                                                                                                                                                                                                   | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UTK-WF34L                                                                                                                                                                                                                                           | 32-06                                                                                                                                                          | 39                                                                                                                                                                                 | 10                                                                                                                                                                                      | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.73846079                                                                                                                                                                                                                                                                                                                                   | 128                                                                                                                                                                                                                                                                                                                   | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UTK-WF34R                                                                                                                                                                                                                                           | 32-06                                                                                                                                                          | 39                                                                                                                                                                                 | 13                                                                                                                                                                                      | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.78220468                                                                                                                                                                                                                                                                                                                                   | 123                                                                                                                                                                                                                                                                                                                   | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UTK-WF35L                                                                                                                                                                                                                                           | 39-06                                                                                                                                                          | 85                                                                                                                                                                                 | 15                                                                                                                                                                                      | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42.98588608                                                                                                                                                                                                                                                                                                                                   | 122                                                                                                                                                                                                                                                                                                                   | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UTK-WF35R                                                                                                                                                                                                                                           | 39-06                                                                                                                                                          | 85                                                                                                                                                                                 | 9                                                                                                                                                                                       | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.37693353                                                                                                                                                                                                                                                                                                                                   | 130                                                                                                                                                                                                                                                                                                                   | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UTK-WF36L                                                                                                                                                                                                                                           | 40-06                                                                                                                                                          | 51                                                                                                                                                                                 | 17                                                                                                                                                                                      | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35.88829755                                                                                                                                                                                                                                                                                                                                   | 134                                                                                                                                                                                                                                                                                                                   | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UTK-WF36R                                                                                                                                                                                                                                           | 40-06                                                                                                                                                          | 51                                                                                                                                                                                 | 16                                                                                                                                                                                      | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31.07295097                                                                                                                                                                                                                                                                                                                                   | 137                                                                                                                                                                                                                                                                                                                   | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UTK-WF37L                                                                                                                                                                                                                                           | 41-07                                                                                                                                                          | 37                                                                                                                                                                                 | 6                                                                                                                                                                                       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.02431284                                                                                                                                                                                                                                                                                                                                   | 112                                                                                                                                                                                                                                                                                                                   | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UTK-WF37R                                                                                                                                                                                                                                           | 41-07                                                                                                                                                          | 37                                                                                                                                                                                 | 4                                                                                                                                                                                       | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.60896063                                                                                                                                                                                                                                                                                                                                   | 118                                                                                                                                                                                                                                                                                                                   | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UTK-WF38L                                                                                                                                                                                                                                           | 82-07                                                                                                                                                          | 31                                                                                                                                                                                 | 7                                                                                                                                                                                       | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.47122063                                                                                                                                                                                                                                                                                                                                   | 115                                                                                                                                                                                                                                                                                                                   | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UTK-WF38R                                                                                                                                                                                                                                           | 82-07                                                                                                                                                          | 31                                                                                                                                                                                 | 8                                                                                                                                                                                       | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.32368626                                                                                                                                                                                                                                                                                                                                   | 120                                                                                                                                                                                                                                                                                                                   | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UTK-WF39L                                                                                                                                                                                                                                           | 13-08                                                                                                                                                          | 75                                                                                                                                                                                 | 11                                                                                                                                                                                      | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.27961274                                                                                                                                                                                                                                                                                                                                   | 134                                                                                                                                                                                                                                                                                                                   | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UTK-WF39R                                                                                                                                                                                                                                           | 13-08                                                                                                                                                          | 75                                                                                                                                                                                 | 8                                                                                                                                                                                       | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.32368626                                                                                                                                                                                                                                                                                                                                   | 140                                                                                                                                                                                                                                                                                                                   | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UTK-WF40L                                                                                                                                                                                                                                           | 32-07                                                                                                                                                          | 78                                                                                                                                                                                 | 13                                                                                                                                                                                      | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34.41738871                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| UTK-WF40R                                                                                                                                                                                                                                           | 32-07                                                                                                                                                          | 78                                                                                                                                                                                 | 14                                                                                                                                                                                      | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41.8103149                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| UTK-WF41L                                                                                                                                                                                                                                           | 30-07                                                                                                                                                          | 64                                                                                                                                                                                 | 9                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.74368395                                                                                                                                                                                                                                                                                                                                   | 130                                                                                                                                                                                                                                                                                                                   | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UTK-WF41R                                                                                                                                                                                                                                           | 30-07                                                                                                                                                          | 64                                                                                                                                                                                 | 8                                                                                                                                                                                       | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.23528526                                                                                                                                                                                                                                                                                                                                   | 125                                                                                                                                                                                                                                                                                                                   | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                     | 01.05                                                                                                                                                          |                                                                                                                                                                                    | 0                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                                                                                                                                                                                                                                                                                                                                            | 140                                                                                                                                                                                                                                                                                                                   | ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| UTK-WF42L                                                                                                                                                                                                                                           | 31-07                                                                                                                                                          | 67                                                                                                                                                                                 | 9                                                                                                                                                                                       | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30                                                                                                                                                                                                                                                                                                                                            | 140                                                                                                                                                                                                                                                                                                                   | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UTK-WF42L<br>UTK-WF42R                                                                                                                                                                                                                              | 31-07<br>31-07                                                                                                                                                 | 67<br>67                                                                                                                                                                           | 9                                                                                                                                                                                       | 18<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30<br>21.10019602                                                                                                                                                                                                                                                                                                                             | 140                                                                                                                                                                                                                                                                                                                   | 55<br>53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| UTK-WF42L<br>UTK-WF42R<br>UTK-WF43L                                                                                                                                                                                                                 | 31-07<br>31-07<br>51-07                                                                                                                                        | 67<br>67<br>44                                                                                                                                                                     | 9<br>9<br>16                                                                                                                                                                            | 18<br>25<br>29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30           21.10019602           33.48537662                                                                                                                                                                                                                                                                                                | 140<br>133<br>149                                                                                                                                                                                                                                                                                                     | 55<br>53<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| UTK-WF42L<br>UTK-WF42R<br>UTK-WF43L<br>UTK-WF43R                                                                                                                                                                                                    | 31-07<br>31-07<br>51-07<br>51-07                                                                                                                               | 67<br>67<br>44<br>44                                                                                                                                                               | 9<br>9<br>16<br>10                                                                                                                                                                      | 18<br>25<br>29<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30           21.10019602           33.48537662           19.47122063                                                                                                                                                                                                                                                                          | 140       133       149       143                                                                                                                                                                                                                                                                                     | 55<br>53<br>60<br>63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| UTK-WF42L<br>UTK-WF42R<br>UTK-WF43L<br>UTK-WF43R<br>UTK-WF44L                                                                                                                                                                                       | 31-07<br>31-07<br>51-07<br>51-07<br>52-07                                                                                                                      | 67<br>67<br>44<br>44<br>68                                                                                                                                                         | 9<br>9<br>16<br>10<br>5                                                                                                                                                                 | 18           25           29           30           20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30           21.10019602           33.48537662           19.47122063           14.47751219                                                                                                                                                                                                                                                    | 140           133           149           143           123                                                                                                                                                                                                                                                           | 55           53           60           63           55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| UTK-WF42L<br>UTK-WF42R<br>UTK-WF43L<br>UTK-WF43R<br>UTK-WF44L<br>UTK-WF44R                                                                                                                                                                          | 31-07<br>31-07<br>51-07<br>51-07<br>52-07<br>52-07                                                                                                             | 67         44         44         68         68                                                                                                                                     | 9<br>9<br>16<br>10<br>5<br>11                                                                                                                                                           | 18       25       29       30       20       21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30         21.10019602         33.48537662         19.47122063         14.47751219         31.58813551                                                                                                                                                                                                                                        | 140       133       149       143       123       120                                                                                                                                                                                                                                                                 | 55         53         60         63         55         54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| UTK-WF42L<br>UTK-WF42R<br>UTK-WF43L<br>UTK-WF43R<br>UTK-WF44L<br>UTK-WF44R<br>UTK-WF45L                                                                                                                                                             | 31-07<br>31-07<br>51-07<br>52-07<br>52-07<br>89-06                                                                                                             | 67         44         44         68         68         50                                                                                                                          | 9<br>9<br>16<br>10<br>5<br>11<br>14                                                                                                                                                     | 18         25         29         30         20         21         23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30         21.10019602         33.48537662         19.47122063         14.47751219         31.58813551         37.49524976                                                                                                                                                                                                                    | 140       133       149       143       123       120       115                                                                                                                                                                                                                                                       | 55         53         60         63         55         54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| UTK-WF42L<br>UTK-WF42R<br>UTK-WF43L<br>UTK-WF43R<br>UTK-WF44L<br>UTK-WF44R<br>UTK-WF45L<br>UTK-WF45R                                                                                                                                                | 31-07<br>31-07<br>51-07<br>52-07<br>52-07<br>89-06<br>89-06                                                                                                    | 67         67         44         44         68         68         50                                                                                                               | 9<br>9<br>16<br>10<br>5<br>11<br>14<br>15                                                                                                                                               | 18         25         29         30         20         21         23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30         21.10019602         33.48537662         19.47122063         14.47751219         31.58813551         37.49524976         40.70570683                                                                                                                                                                                                | 140       133       149       143       123       120       115       126                                                                                                                                                                                                                                             | 55         53         60         63         55         54         57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| UTK-WF42L<br>UTK-WF42R<br>UTK-WF43L<br>UTK-WF43R<br>UTK-WF44L<br>UTK-WF44R<br>UTK-WF45L<br>UTK-WF45R<br>UTK-WF46L                                                                                                                                   | 31-07<br>31-07<br>51-07<br>52-07<br>52-07<br>89-06<br>89-06<br>39-03                                                                                           | <ul> <li>67</li> <li>67</li> <li>44</li> <li>44</li> <li>68</li> <li>68</li> <li>50</li> <li>50</li> <li>52</li> </ul>                                                             | 9       9       16       10       5       11       14       15       11                                                                                                                 | 18         25         29         30         20         21         23         22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30         21.10019602         33.48537662         19.47122063         14.47751219         31.58813551         37.49524976         40.70570683         30                                                                                                                                                                                     | 140<br>133<br>149<br>143<br>123<br>120<br>115<br>126<br>-                                                                                                                                                                                                                                                             | 55         53         60         63         55         54         57         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| UTK-WF42L<br>UTK-WF42R<br>UTK-WF43L<br>UTK-WF43R<br>UTK-WF44L<br>UTK-WF44R<br>UTK-WF45L<br>UTK-WF45R<br>UTK-WF46L<br>UTK-WF46R                                                                                                                      | 31-07<br>31-07<br>51-07<br>52-07<br>52-07<br>89-06<br>89-06<br>39-03<br>39-03                                                                                  | 67         67         44         44         68         68         50         50         52         52                                                                              | 9       9       16       10       5       11       14       15       11       7                                                                                                         | 18         25         29         30         20         21         23         22         19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30         21.10019602         33.48537662         19.47122063         14.47751219         31.58813551         37.49524976         40.70570683         30         35.37654015                                                                                                                                                                 | 140<br>133<br>149<br>143<br>123<br>120<br>115<br>126<br>-<br>-                                                                                                                                                                                                                                                        | 55         53         60         63         55         54         57         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| UTK-WF42L<br>UTK-WF42R<br>UTK-WF43L<br>UTK-WF43R<br>UTK-WF44L<br>UTK-WF44R<br>UTK-WF45L<br>UTK-WF45R<br>UTK-WF46L<br>UTK-WF46L<br>UTK-WF46R                                                                                                         | 31-07<br>31-07<br>51-07<br>52-07<br>52-07<br>89-06<br>89-06<br>39-03<br>39-03<br>43-03                                                                         | 67         67         44         44         68         68         50         50         52         73                                                                              | 9       9       16       10       5       11       14       15       11       7       9                                                                                                 | 18         25         29         30         20         21         23         22         19         28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30         21.10019602         33.48537662         19.47122063         14.47751219         31.58813551         37.49524976         40.70570683         30         35.37654015         14.47751219                                                                                                                                             | 140<br>133<br>149<br>143<br>123<br>120<br>115<br>126<br>-<br>127                                                                                                                                                                                                                                                      | 55         53         60         63         55         54         57         -         64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| UTK-WF42L<br>UTK-WF42R<br>UTK-WF43L<br>UTK-WF43R<br>UTK-WF44R<br>UTK-WF44R<br>UTK-WF45L<br>UTK-WF45R<br>UTK-WF46L<br>UTK-WF46R<br>UTK-WF46R<br>UTK-WF47L                                                                                            | 31-07<br>31-07<br>51-07<br>52-07<br>52-07<br>89-06<br>89-06<br>39-03<br>39-03<br>43-03<br>43-03                                                                | 67         67         44         68         68         50         50         52         73                                                                                         | 9       9       16       10       5       11       14       15       11       7       9       9       9       9                                                                         | 18         25         29         30         20         21         23         22         19         28         27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30         21.10019602         33.48537662         19.47122063         14.47751219         31.58813551         37.49524976         40.70570683         30         35.37654015         14.47751219         19.47122063                                                                                                                         | 140<br>133<br>149<br>143<br>123<br>120<br>115<br>126<br>-<br>127<br>127                                                                                                                                                                                                                                               | 55         53         60         63         55         54         57         -         64         66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| UTK-WF42L<br>UTK-WF42R<br>UTK-WF43L<br>UTK-WF43R<br>UTK-WF43R<br>UTK-WF44L<br>UTK-WF44R<br>UTK-WF45L<br>UTK-WF45R<br>UTK-WF46L<br>UTK-WF46R<br>UTK-WF47L<br>UTK-WF47R<br>UTK-WF48L                                                                  | 31-07<br>31-07<br>51-07<br>52-07<br>52-07<br>89-06<br>89-06<br>39-03<br>39-03<br>43-03<br>43-03<br>53-03                                                       | 67         67         44         44         68         68         50         50         52         73         60                                                                   | 9         9         16         10         5         11         14         15         11         7         9         9         14                                                        | 18         25         29         30         20         21         23         23         22         19         28         27         28                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30         21.10019602         33.48537662         19.47122063         14.47751219         31.58813551         37.49524976         40.70570683         30         35.37654015         14.47751219         19.47122063         18.74934085                                                                                                     | 140<br>133<br>149<br>143<br>123<br>120<br>115<br>126<br>-<br>127<br>127<br>127<br>134                                                                                                                                                                                                                                 | 55         53         60         63         55         54         57         -         64         66         59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| UTK-WF42L<br>UTK-WF42R<br>UTK-WF43L<br>UTK-WF43R<br>UTK-WF44L<br>UTK-WF44R<br>UTK-WF45R<br>UTK-WF45R<br>UTK-WF45R<br>UTK-WF46L<br>UTK-WF46R<br>UTK-WF47L<br>UTK-WF47R<br>UTK-WF48L<br>UTK-WF48R                                                     | 31-07<br>31-07<br>51-07<br>51-07<br>52-07<br>89-06<br>89-06<br>39-03<br>39-03<br>43-03<br>43-03<br>53-03<br>53-03                                              | 67         67         44         68         68         50         50         52         73         60         60                                                                   | 9         16         10         5         11         14         15         11         7         9         9         14         13                                                       | 18         25         29         30         20         21         23         23         22         19         28         27         28         29                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30         21.10019602         33.48537662         19.47122063         14.47751219         31.58813551         37.49524976         40.70570683         30         35.37654015         14.47751219         19.47122063         18.74934085         28.86572742                                                                                 | 140<br>133<br>149<br>143<br>123<br>120<br>115<br>126<br>-<br>-<br>127<br>127<br>127<br>134<br>135                                                                                                                                                                                                                     | $     \begin{array}{r}       55 \\       53 \\       60 \\       63 \\       55 \\       54 \\       54 \\       57 \\       - \\       64 \\       66 \\       59 \\       55 \\     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| UTK-WF42L<br>UTK-WF42R<br>UTK-WF43L<br>UTK-WF43R<br>UTK-WF43R<br>UTK-WF44R<br>UTK-WF44R<br>UTK-WF45L<br>UTK-WF45R<br>UTK-WF46R<br>UTK-WF46R<br>UTK-WF47R<br>UTK-WF47R<br>UTK-WF48L<br>UTK-WF48R<br>UTK-WF49L                                        | 31-07<br>31-07<br>51-07<br>52-07<br>52-07<br>89-06<br>89-06<br>39-03<br>39-03<br>43-03<br>43-03<br>53-03<br>53-03<br>63-03                                     | 67         67         44         68         68         50         52         52         73         60         58                                                                   | 9         9         16         10         5         11         14         15         11         7         9         9         14         13         17                                  | 18         25         29         30         20         21         23         23         22         19         28         27         28         29         22                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30         21.10019602         33.48537662         19.47122063         14.47751219         31.58813551         37.49524976         40.70570683         30         35.37654015         14.47751219         19.47122063         18.74934085         28.86572742         36.22154662                                                             | $     \begin{array}{r}       140 \\       133 \\       149 \\       143 \\       123 \\       120 \\       115 \\       126 \\       - \\       - \\       127 \\       127 \\       127 \\       134 \\       135 \\       134 \\       135 \\       134       $                                                     | $ \begin{array}{r} 55\\ 53\\ 60\\ 63\\ 55\\ 54\\ 54\\ 57\\ -\\ -\\ 64\\ 66\\ 59\\ 55\\ 52\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| UTK-WF42L<br>UTK-WF42R<br>UTK-WF43L<br>UTK-WF43R<br>UTK-WF43R<br>UTK-WF44R<br>UTK-WF44R<br>UTK-WF45L<br>UTK-WF45R<br>UTK-WF45R<br>UTK-WF46R<br>UTK-WF46R<br>UTK-WF47L<br>UTK-WF47R<br>UTK-WF48L<br>UTK-WF48L<br>UTK-WF49L<br>UTK-WF49R              | 31-07<br>31-07<br>51-07<br>51-07<br>52-07<br>89-06<br>89-06<br>39-03<br>39-03<br>43-03<br>43-03<br>53-03<br>53-03<br>63-03<br>63-03                            | 67         67         44         68         68         50         50         52         73         60         60         58         58                                             | 9         16         10         5         11         14         15         11         7         9         9         14         13         17         12                                 | 18         25         29         30         20         21         23         23         22         19         28         27         28         29         22         23                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30         21.10019602         33.48537662         19.47122063         14.47751219         31.58813551         37.49524976         40.70570683         30         35.37654015         14.47751219         19.47122063         18.74934085         28.86572742         36.22154662         50.59943125                                         | $     \begin{array}{r}       140 \\       133 \\       149 \\       143 \\       123 \\       120 \\       115 \\       126 \\       - \\       - \\       127 \\       127 \\       127 \\       134 \\       135 \\       134 \\       134 \\       134   \end{array} $                                             | $     \begin{array}{r}       55 \\       53 \\       60 \\       63 \\       55 \\       54 \\       57 \\       - \\       64 \\       66 \\       59 \\       55 \\       52 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\       55 \\ $ |
| UTK-WF42L<br>UTK-WF42R<br>UTK-WF43L<br>UTK-WF43R<br>UTK-WF43R<br>UTK-WF44R<br>UTK-WF44R<br>UTK-WF45L<br>UTK-WF45R<br>UTK-WF46R<br>UTK-WF46R<br>UTK-WF46R<br>UTK-WF47R<br>UTK-WF47R<br>UTK-WF48L<br>UTK-WF48R<br>UTK-WF49P<br>UTK-WF49R              | 31-07<br>31-07<br>51-07<br>52-07<br>52-07<br>89-06<br>89-06<br>39-03<br>39-03<br>43-03<br>43-03<br>43-03<br>53-03<br>53-03<br>63-03<br>12-04                   | 67         67         44         68         68         50         50         52         73         73         60         58         58         60                                  | 9         9         16         10         5         11         14         15         11         7         9         9         14         13         17         12         13            | 18         25         29         30         20         21         23         23         22         19         28         27         28         29         22         28         29         22         28         29         22         28         29         22         28                                                                                                                                                                                                                                                                                                                                   | 30         21.10019602         33.48537662         19.47122063         14.47751219         31.58813551         37.49524976         40.70570683         30         35.37654015         14.47751219         19.47122063         18.74934085         28.86572742         36.22154662         50.59943125         25.37693353                     | 140         133         149         143         123         120         115         126         -         127         134         135         134         135         134         134         134         134         134                                                                                             | $ \begin{array}{r} 55\\ 53\\ 60\\ 63\\ 55\\ 54\\ 54\\ 57\\ -\\ -\\ 64\\ 66\\ 59\\ 55\\ 52\\ 55\\ 61\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| UTK-WF42L<br>UTK-WF42R<br>UTK-WF43L<br>UTK-WF43R<br>UTK-WF43R<br>UTK-WF44R<br>UTK-WF44R<br>UTK-WF45L<br>UTK-WF45R<br>UTK-WF45R<br>UTK-WF46R<br>UTK-WF46R<br>UTK-WF47R<br>UTK-WF47R<br>UTK-WF48L<br>UTK-WF48R<br>UTK-WF49P<br>UTK-WF49R<br>UTK-WF50R | 31-07<br>31-07<br>51-07<br>52-07<br>52-07<br>89-06<br>89-06<br>39-03<br>39-03<br>43-03<br>43-03<br>43-03<br>53-03<br>53-03<br>63-03<br>63-03<br>12-04<br>12-04 | 67         67         44         68         68         50         52         52         73         60         60         58         58         60         60         60         60 | 9         9         16         10         5         11         14         15         11         7         9         9         14         13         17         12         13         15 | 18         25         29         30         20         21         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         24         25         28         29         22         28         27         28         27         28         27         28         27         28         27         28         27         28         27          28         27          28          27 | 30         21.10019602         33.48537662         19.47122063         14.47751219         31.58813551         37.49524976         40.70570683         30         35.37654015         14.47751219         19.47122063         18.74934085         28.86572742         36.22154662         50.59943125         25.37693353         28.78220468 | $     \begin{array}{r}       140 \\       133 \\       149 \\       143 \\       123 \\       120 \\       115 \\       126 \\       - \\       - \\       127 \\       127 \\       127 \\       134 \\       135 \\       134 \\       134 \\       134 \\       134 \\       141 \\       138 \\     \end{array} $ | $     \begin{array}{r}       55 \\       53 \\       60 \\       63 \\       55 \\       54 \\       57 \\       - \\       - \\       64 \\       66 \\       59 \\       55 \\       52 \\       55 \\       61 \\       62 \\     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| UTK-WF51R | 11-04    | 54 | 16 | 26 | 37.97987244 | 116 | 56 |
|-----------|----------|----|----|----|-------------|-----|----|
| UTK-WF52L | 11-05    | 76 | 14 | 25 | 39.7918195  | 141 | 60 |
| UTK-WF52R | 11-05    | 76 | 14 | 28 | 30          | 148 | 61 |
| UTK-WF53L | 02-05    | 76 | 12 | 24 | 30          | 123 | 47 |
| UTK-WF53R | 02-05    | 76 | 12 | 24 | 30          | 122 | 47 |
| UTK-WF54L | 13-05    | 74 | 6  | 22 | 15.82662013 | 130 | 57 |
| UTK-WF54R | 13-05    | 74 | 6  | 22 | 15.82662013 | 127 | 50 |
| UTK-WF55L | 57-04    | 81 | 14 | 26 | 32.57897039 | 137 | 56 |
| UTK-WF55R | 57-04    | 81 | 14 | 28 | 30          | 138 | 58 |
| UTK-WF56L | 19-04    | 60 | 7  | 13 | 32.57897039 | 131 | 54 |
| UTK-WF56R | 19-04    | 60 | 8  | 17 | 28.07248694 | 121 | 53 |
| UTK-BF1L  | 2-86     | 39 | 11 | 21 | 31.58813551 | 143 | 53 |
| UTK-BF1R  | 2-86     | 39 | 18 | 23 | 51.50004959 | 132 | 52 |
| UTK-BF2L  | 6-89     | 40 | 10 | 20 | 30          | 115 | 50 |
| UTK-BF2R  | 6-89     | 40 | 12 | 24 | 30          | 120 | 53 |
| UTK-BF3L  | 1-96     | 66 | 4  | 20 | 11.53695903 | 136 | 58 |
| UTK-BF3R  | 1-96     | 66 | 3  | 21 | 8.213210702 | 134 | 60 |
| UTK-BF4L  | 05-01    | 59 | 16 | 26 | 37.97987244 | 125 | 60 |
| UTK-BF4R  | 05-01    | 59 | -  | -  | -           | -   | _  |
| UTK-BF5L  | 18-05    | 99 | -  | -  | -           | 125 | 58 |
| UTK-BF5R  | 18-05    | 99 | 7  | 21 | 19.47122063 | 132 | 59 |
| UTK-BF6L  | 36-06    | 73 | 17 | 29 | 35.88829755 | 138 | 60 |
| UTK-BF6R  | 36-06    | 73 | 12 | 20 | 36.86989765 | -   | _  |
| UTK-BF7L  | 78-07    | 24 | 6  | 21 | 16.6015496  | 118 | 49 |
| UTK-BF7R  | 78-07    | 24 | 6  | 20 | 17.45760312 | 120 | 46 |
| UTK-BF8L  | 62-06    | 54 | 7  | 22 | 18.55300454 | 120 | 60 |
| UTK-BF8R  | 62-06    | 54 | 10 | 22 | 27.03569179 | 122 | 56 |
| CMNH-WF1L | HTH-1747 | 34 | 5  | 22 | 13.13655879 | 128 | 55 |
| CMNH-WF1R | HTH-1747 | 34 | 4  | 23 | 10.01541017 | 123 | 58 |
| CMNH-WF2L | HTH-1750 | 75 | 11 | 22 | 30          | 115 | 53 |
| CMNH-WF2R | HTH-1750 | 75 | 9  | 20 | 26.74368395 | 117 | 53 |
| CMNH-WF3L | HTH-1771 | 54 | 5  | 19 | 15.25752329 | 138 | 63 |
| CMNH-WF3R | HTH-1771 | 54 | 9  | 22 | 24.14773992 | 130 | 58 |
| CMNH-WF4L | HTH-1811 | 73 | 6  | 19 | 18.40848017 | -   | -  |
| CMNH-WF4R | HTH-1811 | 73 | 10 | 25 | 23.57817848 | 121 | 57 |
| CMNH-WF5L | HTH-1825 | 56 | 15 | 24 | 38.68218745 | 113 | 65 |
| CMNH-WF5R | HTH-1825 | 56 | 11 | 18 | 37.66988696 | 111 | 62 |
| CMNH-WF6L | HTH-1900 | 27 | 6  | 24 | 14.47751219 | 114 | 45 |

| CMNH-WF6R  | HTH-1900 | 27 | 7  | 24 | 16.9577633  | 113 | 48 |
|------------|----------|----|----|----|-------------|-----|----|
| CMNH-WF7L  | HTH-1976 | 47 | 7  | 21 | 19.47122063 | 126 | 48 |
| CMNH-WF7R  | HTH-1976 | 47 | 4  | 23 | 10.01541017 | 131 | 49 |
| CMNH-WF8L  | HTH-2025 | 49 | 2  | 16 | 7.180755781 | 128 | 58 |
| CMNH-WF8R  | HTH-2025 | 49 | 5  | 20 | 14.47751219 | 120 | 57 |
| CMNH-WF9L  | HTH-2082 | 42 | 14 | 31 | 26.84721333 | 150 | 57 |
| CMNH-WF9R  | HTH-2082 | 42 | 12 | 28 | 25.37693353 | 146 | 56 |
| CMNH-WF10L | HTH-2125 | 36 | 9  | 25 | 21.10019602 | 129 | 53 |
| CMNH-WF10R | HTH-2125 | 36 | 7  | 27 | 15.02611376 | -   | -  |
| CMNH-WF11L | HTH-2244 | 41 | 5  | 29 | 9.928191842 | 138 | 57 |
| CMNH-WF11R | HTH-2244 | 41 | 7  | 27 | 15.02611376 | 132 | 61 |
| CMNH-WF12L | HTH-2282 | 62 | 9  | 19 | 28.27371363 | 133 | 59 |
| CMNH-WF12R | HTH-2282 | 62 | 11 | 24 | 27.27961274 | 137 | 57 |
| CMNH-WF13L | HTH-755  | 45 | 12 | 33 | 21.32368626 | 155 | 53 |
| CMNH-WF13R | HTH-755  | 45 | 14 | 33 | 25.10272076 | 156 | 59 |
| CMNH-WF14L | HTH-774  | 38 | 10 | 30 | 19.47122063 | 123 | 44 |
| CMNH-WF14R | HTH-774  | 38 | 5  | 32 | 8.989299345 | 120 | 49 |
| CMNH-WF15L | HTH-781  | 23 | 6  | 24 | 14.47751219 | 125 | 51 |
| CMNH-WF15R | HTH-781  | 23 | 3  | 27 | 6.379370208 | 130 | 50 |
| CMNH-WF16L | HTH-886  | 32 | 10 | 24 | 24.62431835 | 122 | 57 |
| CMNH-WF16R | HTH-886  | 32 | 13 | 25 | 31.3322515  | 120 | 56 |
| CMNH-WF17L | HTH-893  | 51 | 7  | 16 | 25.94447977 | 118 | 53 |
| CMNH-WF17R | HTH-893  | 51 | 12 | 25 | 28.68540201 | 115 | 54 |
| CMNH-WF18L | HTH-929  | 31 | 9  | 21 | 25.37693353 | 125 | 51 |
| CMNH-WF18R | HTH-929  | 31 | 5  | 21 | 13.774147   | 123 | 53 |
| CMNH-WF19L | HTH-1059 | 28 | 10 | 28 | 20.92483243 | 132 | 53 |
| CMNH-WF19R | HTH-1059 | 28 | 11 | 28 | 23.1323964  | 131 | 51 |
| CMNH-WF20L | HTH-1119 | 35 | 10 | 24 | 24.62431835 | 131 | 52 |
| CMNH-WF20R | HTH-1119 | 35 | 7  | 24 | 16.9577633  | 131 | 57 |
| CMNH-WF21L | HTH-1157 | 25 | 8  | 25 | 18.66292488 | 119 | 49 |
| CMNH-WF21R | HTH-1157 | 25 | 9  | 25 | 21.10019602 | 117 | 52 |
| CMNH-WF22L | HTH-1162 | 28 | 8  | 29 | 16.01339442 | 120 | 50 |
| CMNH-WF22R | HTH-1162 | 28 | 8  | 29 | 16.01339442 | 125 | 49 |
| CMNH-WF23L | HTH-1219 | 82 | 4  | 19 | 12.15319747 | 129 | 59 |
| CMNH-WF23R | HTH-1219 | 82 | 5  | 21 | 13.774147   | 130 | 55 |
| CMNH-WF24L | HTH-1279 | 39 | 11 | 21 | 31.58813551 | 138 | 63 |
| CMNH-WF24R | HTH-1279 | 39 | 6  | 19 | 18.40848017 | 136 | 70 |
| CMNH-WF25L | HTH-1302 | 47 | 5  | 21 | 13.774147   | 134 | 57 |

| CMNH-WF25R | HTH-1302 | 47 | 9  | 25 | 21.10019602 | 130 | 60 |
|------------|----------|----|----|----|-------------|-----|----|
| CMNH-WF26L | HTH-2857 | 31 | 3  | 22 | 7.837479763 | 125 | 57 |
| CMNH-WF26R | HTH-2857 | 31 | 7  | 24 | 16.9577633  | 129 | 58 |
| CMNH-WF27L | HTH-2920 | 42 | 5  | 23 | 12.5558578  | 141 | 59 |
| CMNH-WF27R | HTH-2920 | 42 | 5  | 17 | 17.10463518 | 145 | 58 |
| CMNH-WF28L | HTH-2939 | 25 | 3  | 25 | 6.892102579 | 119 | 53 |
| CMNH-WF28R | HTH-2939 | 25 | 3  | 28 | 6.150639828 | 120 | 57 |
| CMNH-WF29L | HTH-3032 | 89 | 6  | 17 | 20.66731649 | 105 | 43 |
| CMNH-WF29R | HTH-3032 | 89 | 11 | 20 | 33.36701297 | 110 | 46 |
| CMNH-WF30L | HTH-3118 | 54 | 12 | 23 | 31.44898139 | 115 | 51 |
| CMNH-WF30R | HTH-3118 | 54 | 10 | 23 | 25.77146174 | 119 | 55 |
| CMNH-WF31L | HTH-3164 | 61 | 10 | 20 | 30          | 127 | 50 |
| CMNH-WF31R | HTH-3164 | 61 | 11 | 27 | 24.04207591 | 126 | 55 |
| CMNH-BF1L  | HTH-128  | 35 | 6  | 20 | 17.4576     | 128 | 59 |
| CMNH-BF1R  | HTH-128  | 35 | 6  | 19 | 18.4085     | 124 | 64 |
| CMNH-BF2L  | HTH-152  | 70 | -  | -  | -           | -   | -  |
| CMNH-BF2R  | HTH-152  | 70 | 7  | 20 | 20.4873     | 122 | 59 |
| CMNH-BF3L  | HTH-226  | 29 | 12 | 26 | 27.4864     | 112 | 47 |
| CMNH-BF3R  | HTH-226  | 29 | 10 | 24 | 24.6243     | 119 | 51 |
| CMNH-BF4L  | HTH-439  | 35 | 3  | 23 | 7.4947      | 123 | 59 |
| CMNH-BF4R  | HTH-439  | 35 | 9  | 27 | 19.4712     | 132 | 58 |
| CMNH-BF5L  | HTH-442  | 40 | 6  | 23 | 15.1217     | 121 | 52 |
| CMNH-BF5R  | HTH-442  | 40 | 2  | 17 | 6.7563      | -   | -  |
| CMNH-BF6L  | HTH-461  | 30 | 8  | 24 | 19.4712     | 127 | 53 |
| CMNH-BF6R  | HTH-461  | 30 | 6  | 23 | 15.1217     | 127 | 50 |
| CMNH-BF7L  | HTH-530  | 45 | 12 | 25 | 28.6854     | 116 | 53 |
| CMNH-BF7R  | HTH-530  | 45 | 10 | 24 | 24.6243     | 109 | 52 |
| CMNH-BF8L  | HTH-545  | 25 | -  | -  | -           | 145 | 55 |
| CMNH-BF8R  | HTH-545  | 25 | -  | -  | -           | 145 | 54 |
| CMNH-BF9L  | HTH-589  | 30 | 4  | 19 | 12.1532     | 144 | 54 |
| CMNH-BF9R  | HTH-589  | 30 | 2  | 27 | 4.2480      | 139 | 51 |
| CMNH-BF10L | HTH-612  | 36 | 10 | 21 | 28.4369     | 125 | 44 |
| CMNH-BF10R | HTH-612  | 36 | 9  | 22 | 24.1477     | 122 | 48 |
| CMNH-BF11L | HTH-668  | 37 | 7  | 22 | 18.5530     | 143 | 56 |
| CMNH-BF11R | HTH-668  | 37 | 2  | 20 | 5.7392      | 151 | 57 |
| CMNH-BF12L | HTH-673  | 38 | 7  | 21 | 19.4712     | 133 | 46 |
| CMNH-BF12R | HTH-673  | 38 | 8  | 22 | 21.3237     | 124 | 47 |
| CMNH-BF13L | HTH-773  | 60 | 3  | 19 | 9.0847      | 111 | 49 |

| CMNH-BF13R | HTH-773  | 60 | 3  | 21 | 8.2132  | 112 | 54 |
|------------|----------|----|----|----|---------|-----|----|
| CMNH-BF14L | HTH-839  | 60 | 4  | 23 | 10.0154 | 134 | 55 |
| CMNH-BF14R | HTH-839  | 60 | 5  | 23 | 12.5559 | 136 | 59 |
| CMNH-BF15L | HTH-928  | 69 | 9  | 26 | 20.2522 | 133 | 58 |
| CMNH-BF15R | HTH-928  | 69 | 4  | 21 | 10.9806 | 0   | 0  |
| CMNH-BF16L | HTH-933  | 28 | 12 | 23 | 31.4490 | 134 | 56 |
| CMNH-BF16R | HTH-933  | 28 | 9  | 25 | 21.1002 | 140 | 56 |
| CMNH-BF17L | HTH-954  | 24 | 3  | 19 | 9.0847  | 120 | 53 |
| CMNH-BF17R | HTH-954  | 24 | 3  | 21 | 8.2132  | 119 | 53 |
| CMNH-BF18L | HTH-1012 | 18 | 3  | 17 | 10.1642 | 121 | 59 |
| CMNH-BF18R | HTH-1012 | 18 | 3  | 22 | 7.8375  | 120 | 56 |
| CMNH-BF19L | HTH-1040 | 20 | 8  | 22 | 21.3237 | 113 | 48 |
| CMNH-BF19R | HTH-1040 | 20 | 6  | 20 | 17.4576 | 115 | 52 |
| CMNH-BF20L | HTH-1122 | 70 | 14 | 24 | 35.6853 | 122 | 53 |
| CMNH-BF20R | HTH-1122 | 70 | 11 | 22 | 30.0000 | 133 | 54 |
| CMNH-BF21L | HTH-1124 | 40 | 4  | 15 | 15.4660 | 128 | 43 |
| CMNH-BF21R | HTH-1124 | 40 | 7  | 21 | 19.4712 | 125 | 43 |
| CMNH-BF22L | HTH-1161 | 24 | 1  | 21 | 2.7294  | 121 | 49 |
| CMNH-BF22R | HTH-1161 | 24 | 1  | 25 | 2.2924  | 123 | 51 |
| CMNH-BF23L | HTH-1208 | 23 | 7  | 24 | 16.9578 | 116 | 57 |
| CMNH-BF23R | HTH-1208 | 23 | -  | -  | -       | 113 | 58 |
| CMNH-BF24L | HTH-1243 | 24 | 5  | 17 | 17.1046 | 133 | 64 |
| CMNH-BF24R | HTH-1243 | 24 | 6  | 27 | 12.8396 | 135 | 62 |
| CMNH-BF25L | HTH-1301 | 87 | 3  | 22 | 7.8375  | 133 | 55 |
| CMNH-BF25R | HTH-1301 | 87 | 3  | 27 | 6.3794  | 131 | 54 |
| CMNH-BF26L | HTH-1328 | 19 | 3  | 23 | 7.4947  | 138 | 45 |
| CMNH-BF26R | HTH-1328 | 19 | 7  | 24 | 16.9578 | 129 | 51 |
| CMNH-BF27L | HTH-1345 | 39 | 8  | 20 | 23.5782 | 138 | 47 |
| CMNH-BF27R | HTH-1345 | 39 | 6  | 19 | 18.4085 | 139 | 48 |
| CMNH-BF28L | HTH-1367 | 72 | 5  | 25 | 11.5370 | 161 | 75 |
| CMNH-BF28R | HTH-1367 | 72 | 10 | 28 | 20.9248 | 155 | 67 |
| CMNH-BF29L | HTH-1427 | 28 | 4  | 20 | 11.5370 | 143 | 62 |
| CMNH-BF29R | HTH-1427 | 28 | 4  | 24 | 9.5941  | 145 | 60 |
| CMNH-BF30L | HTH-1515 | 26 | 5  | 19 | 15.2575 | 143 | 51 |
| CMNH-BF30R | HTH-1515 | 26 | 5  | 26 | 11.0875 | 131 | 56 |
| CMNH-BF31L | HTH-1516 | 37 | 5  | 16 | 18.2100 | 127 | 57 |
| CMNH-BF31R | HTH-1516 | 37 | 5  | 16 | 18.2100 | 120 | 56 |
| CMNH-BF32L | HTH-1536 | 29 | 9  | 20 | 26.7437 | 136 | 50 |

| CMNH-BF32R | HTH-1536 | 29 | 11 | 19 | 35.3765 | 143 | 54 |
|------------|----------|----|----|----|---------|-----|----|
| CMNH-BF33L | HTH-1539 | 26 | 13 | 27 | 28.7822 | 130 | 61 |
| CMNH-BF33R | HTH-1539 | 26 | 11 | 24 | 27.2796 | 125 | 59 |
| CMNH-BF34L | HTH-1558 | 24 | 8  | 22 | 21.3237 | 116 | 58 |
| CMNH-BF34R | HTH-1558 | 24 | 6  | 19 | 18.4085 | 123 | 58 |
| CMNH-BF35L | HTH-1600 | 28 | 4  | 27 | 8.5196  | 154 | 55 |
| CMNH-BF35R | HTH-1600 | 28 | -  | -  | -       | 130 | 55 |
| CMNH-BF36L | HTH-1622 | 27 | 10 | 22 | 27.0357 | 123 | 46 |
| CMNH-BF36R | HTH-1622 | 27 | 6  | 27 | 12.8396 | 120 | 45 |
| CMNH-BF37L | HTH-1705 | 85 | -  | -  | -       | -   | -  |
| CMNH-BF37R | HTH-1705 | 85 | 9  | 21 | 25.3769 | 126 | 53 |
| CMNH-BF38L | HTH-1709 | 25 | 6  | 24 | 14.4775 | 126 | 46 |
| CMNH-BF38R | HTH-1709 | 25 | 9  | 26 | 20.2522 | 123 | 44 |
| CMNH-BF39L | HTH-1744 | 49 | 1  | 24 | 2.3880  | 137 | 52 |
| CMNH-BF39R | HTH-1744 | 49 | 2  | 25 | 4.5886  | 130 | 53 |
| CMNH-BF40L | HTH-1748 | 44 | 10 | 20 | 30.0000 | 128 | 50 |
| CMNH-BF40R | HTH-1748 | 44 | 7  | 27 | 15.0261 | 126 | 51 |
| CMNH-BF41L | HTH-1749 | 42 | 9  | 21 | 25.3769 | 132 | 41 |
| CMNH-BF41R | HTH-1749 | 42 | 7  | 26 | 15.6185 | 136 | 45 |
| CMNH-BF42L | HTH-1785 | 32 | 6  | 22 | 15.8266 | 113 | 58 |
| CMNH-BF42R | HTH-1785 | 32 | 5  | 20 | 14.4775 | 117 | 57 |
| CMNH-BF43L | HTH-1856 | 45 | 2  | 21 | 5.4650  | 140 | 54 |
| CMNH-BF43R | HTH-1856 | 45 | 1  | 24 | 2.3880  | 152 | 52 |
| CMNH-BF44L | HTH-1871 | 36 | 12 | 26 | 27.4864 | 125 | 57 |
| CMNH-BF44R | HTH-1871 | 36 | 9  | 22 | 24.1477 | 146 | 57 |
| CMNH-BF45L | HTH-1899 | 30 | 7  | 25 | 16.2602 | -   | -  |
| CMNH-BF45R | HTH-1899 | 30 | 7  | 21 | 19.4712 | 142 | 51 |
| CMNH-BF46L | HTH-1924 | 38 | 9  | 29 | 18.0800 | 115 | 49 |
| CMNH-BF46R | HTH-1924 | 38 | 7  | 27 | 15.0261 | 116 | 49 |
| CMNH-BF47L | HTH-1949 | 19 | 6  | 20 | 17.4576 | 130 | 44 |
| CMNH-BF47R | HTH-1949 | 19 | 4  | 22 | 10.4757 | 135 | 45 |
| CMNH-BF48L | HTH-1978 | 23 | 5  | 24 | 12.0247 | 101 | 50 |
| CMNH-BF48R | HTH-1978 | 23 | 5  | 25 | 11.5370 | 109 | 47 |
| CMNH-BF49L | HTH-2039 | 65 | 7  | 25 | 16.2602 | 111 | 54 |
| CMNH-BF49R | HTH-2039 | 65 | 6  | 19 | 18.4085 | 112 | 52 |
| CMNH-BF50L | HTH-2099 | 45 | 16 | 26 | 37.9799 | 121 | 55 |
| CMNH-BF50R | HTH-2099 | 45 | 14 | 27 | 31.2329 | 114 | 50 |
| CMNH-BF51L | HTH-2127 | 51 | 4  | 19 | 12.1532 | 102 | 55 |

| CMNH-BF51R | HTH-2127 | 51 | 5  | 18 | 16.1276 | 106 | 54 |
|------------|----------|----|----|----|---------|-----|----|
| CMNH-BF52L | HTH-2147 | 65 | 10 | 24 | 24.6243 | 134 | 63 |
| CMNH-BF52R | HTH-2147 | 65 | 11 | 24 | 27.2796 | 126 | 59 |
| CMNH-BF53L | HTH-2329 | 75 | 5  | 23 | 12.5559 | 127 | 69 |
| CMNH-BF53R | HTH-2329 | 75 | 7  | 24 | 16.9578 | 123 | 65 |
| CMNH-BF54L | HTH-2404 | 60 | 9  | 20 | 26.7437 | 127 | 52 |
| CMNH-BF54R | HTH-2404 | 60 | 8  | 17 | 28.0725 | 137 | 57 |

## **APPENDIX D**

## CALCULATED PROBABILITIES FOR ANGLE

|     | *Listing of one kept value for each value of ang |         |                  |                  |  |  |  |  |
|-----|--------------------------------------------------|---------|------------------|------------------|--|--|--|--|
| Obs | Angle                                            | PROB    | Lower            | Upper            |  |  |  |  |
|     |                                                  | (Odds)  | Confidence Limit | Confidence Limit |  |  |  |  |
| 1   | •                                                | •       | · .              | · .              |  |  |  |  |
| 2   | 2.2924                                           | 0.26675 | 0.19129          | 0.35878          |  |  |  |  |
| 3   | 2.388                                            | 0.26754 | 0.19215          | 0.35934          |  |  |  |  |
| 4   | 2.7294                                           | 0.27035 | 0.19526          | 0.36135          |  |  |  |  |
| 5   | 4.248                                            | 0.2831  | 0.20953          | 0.3704           |  |  |  |  |
| 6   | 4.5886                                           | 0.28601 | 0.21282          | 0.37245          |  |  |  |  |
| 7   | 5.465                                            | 0.29357 | 0.22146          | 0.37777          |  |  |  |  |
| 8   | 5.7392                                           | 0.29596 | 0.22421          | 0.37945          |  |  |  |  |
| 9   | 6.1506                                           | 0.29957 | 0.22837          | 0.38198          |  |  |  |  |
| 10  | 6.3794                                           | 0.30159 | 0.23071          | 0.38339          |  |  |  |  |
| 11  | 6.7563                                           | 0.30493 | 0.23459          | 0.38572          |  |  |  |  |
| 12  | 6.8921                                           | 0.30613 | 0.236            | 0.38657          |  |  |  |  |
| 13  | 7.1808                                           | 0.30871 | 0.23901          | 0.38836          |  |  |  |  |
| 14  | 7.4947                                           | 0.31153 | 0.24231          | 0.39033          |  |  |  |  |
| 15  | 7.8375                                           | 0.31462 | 0.24595          | 0.39249          |  |  |  |  |
| 16  | 8.2132                                           | 0.31803 | 0.24997          | 0.39486          |  |  |  |  |
| 17  | 8.5196                                           | 0.32082 | 0.25328          | 0.39681          |  |  |  |  |
| 18  | 8.9893                                           | 0.32513 | 0.25839          | 0.39981          |  |  |  |  |
| 19  | 9.0847                                           | 0.32601 | 0.25944          | 0.40042          |  |  |  |  |
| 20  | 9.5941                                           | 0.33072 | 0.26506          | 0.40371          |  |  |  |  |
| 21  | 9.9282                                           | 0.33383 | 0.26878          | 0.40588          |  |  |  |  |
| 22  | 10.0154                                          | 0.33464 | 0.26976          | 0.40644          |  |  |  |  |
| 23  | 10.0787                                          | 0.33523 | 0.27046          | 0.40686          |  |  |  |  |
| 24  | 10.1643                                          | 0.33603 | 0.27143          | 0.40741          |  |  |  |  |
| 25  | 10.2866                                          | 0.33718 | 0.2728           | 0.40822          |  |  |  |  |
| 26  | 10.4757                                          | 0.33895 | 0.27493          | 0.40946          |  |  |  |  |
| 27  | 10.8069                                          | 0.34207 | 0.27869          | 0.41164          |  |  |  |  |
| 28  | 10.9806                                          | 0.34371 | 0.28067          | 0.41279          |  |  |  |  |
| 29  | 11.0875                                          | 0.34472 | 0.28189          | 0.4135           |  |  |  |  |
| 30  | 11.537                                           | 0.34899 | 0.28705          | 0.4165           |  |  |  |  |
| 31  | 11.9405                                          | 0.35285 | 0.29172          | 0.41921          |  |  |  |  |
| 32  | 12.0247                                          | 0.35366 | 0.29269          | 0.41978          |  |  |  |  |
| 33  | 12.1532                                          | 0.35489 | 0.29419          | 0.42065          |  |  |  |  |
| 34  | 12.3736                                          | 0.35701 | 0.29676          | 0.42215          |  |  |  |  |
| 35  | 12.5559                                          | 0.35876 | 0.29889          | 0.42339          |  |  |  |  |

| Obs | Angle   | PROB    | Lower                   | Upper                   |
|-----|---------|---------|-------------------------|-------------------------|
|     | _       | (Odds)  | <b>Confidence Limit</b> | <b>Confidence Limit</b> |
| 36  | 12.8396 | 0.36151 | 0.30222                 | 0.42533                 |
| 37  | 13.1366 | 0.36438 | 0.30572                 | 0.42738                 |
| 38  | 13.609  | 0.36899 | 0.31131                 | 0.43067                 |
| 39  | 13.7742 | 0.3706  | 0.31327                 | 0.43182                 |
| 40  | 13.8865 | 0.3717  | 0.31461                 | 0.43261                 |
| 41  | 13.968  | 0.3725  | 0.31558                 | 0.43319                 |
| 42  | 14.4775 | 0.37751 | 0.32166                 | 0.4368                  |
| 43  | 15.0261 | 0.38293 | 0.32824                 | 0.44075                 |
| 44  | 15.1217 | 0.38387 | 0.32939                 | 0.44144                 |
| 45  | 15.2575 | 0.38522 | 0.33102                 | 0.44243                 |
| 46  | 15.466  | 0.3873  | 0.33353                 | 0.44395                 |
| 47  | 15.6185 | 0.38881 | 0.33537                 | 0.44507                 |
| 48  | 15.8266 | 0.39089 | 0.33788                 | 0.44661                 |
| 49  | 16.0134 | 0.39276 | 0.34013                 | 0.44799                 |
| 50  | 16.1276 | 0.3939  | 0.34151                 | 0.44884                 |
| 51  | 16.2602 | 0.39523 | 0.34311                 | 0.44984                 |
| 52  | 16.3348 | 0.39598 | 0.34402                 | 0.4504                  |
| 53  | 16.6016 | 0.39865 | 0.34724                 | 0.45241                 |
| 54  | 16.8773 | 0.40143 | 0.35057                 | 0.45451                 |
| 55  | 16.9578 | 0.40224 | 0.35154                 | 0.45512                 |
| 56  | 17.1046 | 0.40372 | 0.35331                 | 0.45625                 |
| 57  | 17.2353 | 0.40504 | 0.35489                 | 0.45726                 |
| 58  | 17.4576 | 0.40729 | 0.35757                 | 0.45898                 |
| 59  | 17.7189 | 0.40994 | 0.36072                 | 0.46103                 |
| 60  | 17.9202 | 0.41198 | 0.36315                 | 0.46262                 |
| 61  | 18.08   | 0.41361 | 0.36507                 | 0.46389                 |
| 62  | 18.21   | 0.41493 | 0.36663                 | 0.46492                 |
| 63  | 18.4085 | 0.41695 | 0.36901                 | 0.46652                 |
| 64  | 18.553  | 0.41843 | 0.37074                 | 0.46768                 |
| 65  | 18.6629 | 0.41955 | 0.37206                 | 0.46858                 |
| 66  | 18.7493 | 0.42043 | 0.37309                 | 0.46928                 |
| 67  | 18.8191 | 0.42114 | 0.37393                 | 0.46985                 |
| 68  | 19.4712 | 0.42783 | 0.38168                 | 0.47526                 |
| 69  | 20.1713 | 0.43503 | 0.38993                 | 0.48122                 |
| 70  | 20.2523 | 0.43586 | 0.39088                 | 0.48192                 |
| 71  | 20.3544 | 0.43692 | 0.39208                 | 0.48281                 |
| 72  | 20.4873 | 0.43829 | 0.39362                 | 0.48397                 |
| 73  | 20.6673 | 0.44015 | 0.39572                 | 0.48556                 |
| 74  | 20.9248 | 0.44281 | 0.3987                  | 0.48784                 |

| Obs | Angle   | PROB    | Lower                   | Upper                   |
|-----|---------|---------|-------------------------|-------------------------|
|     | _       | (Odds)  | <b>Confidence Limit</b> | <b>Confidence Limit</b> |
| 75  | 21.1002 | 0.44462 | 0.40072                 | 0.48942                 |
| 76  | 21.3237 | 0.44694 | 0.40328                 | 0.49144                 |
| 77  | 21.5102 | 0.44887 | 0.4054                  | 0.49314                 |
| 78  | 21.7385 | 0.45124 | 0.40799                 | 0.49524                 |
| 79  | 22.0243 | 0.45421 | 0.41121                 | 0.49791                 |
| 80  | 22.291  | 0.45699 | 0.41419                 | 0.50043                 |
| 81  | 22.3927 | 0.45805 | 0.41532                 | 0.5014                  |
| 82  | 22.6199 | 0.46041 | 0.41783                 | 0.50358                 |
| 83  | 23.0357 | 0.46475 | 0.42238                 | 0.50763                 |
| 84  | 23.1324 | 0.46576 | 0.42343                 | 0.50858                 |
| 85  | 23.5782 | 0.47041 | 0.42822                 | 0.51303                 |
| 86  | 24.0421 | 0.47526 | 0.43312                 | 0.51775                 |
| 87  | 24.1477 | 0.47636 | 0.43423                 | 0.51884                 |
| 88  | 24.4433 | 0.47946 | 0.4373                  | 0.52191                 |
| 89  | 24.6243 | 0.48135 | 0.43916                 | 0.52382                 |
| 90  | 24.7939 | 0.48313 | 0.44089                 | 0.52561                 |
| 91  | 24.9011 | 0.48425 | 0.44197                 | 0.52675                 |
| 92  | 25.029  | 0.48559 | 0.44327                 | 0.52812                 |
| 93  | 25.1027 | 0.48636 | 0.44401                 | 0.52891                 |
| 94  | 25.3769 | 0.48924 | 0.44675                 | 0.53188                 |
| 95  | 25.7715 | 0.49337 | 0.45063                 | 0.53621                 |
| 96  | 25.9445 | 0.49518 | 0.45232                 | 0.53812                 |
| 97  | 26.1039 | 0.49686 | 0.45386                 | 0.5399                  |
| 98  | 26.3878 | 0.49983 | 0.45657                 | 0.54309                 |
| 99  | 26.6331 | 0.5024  | 0.4589                  | 0.54588                 |
| 100 | 26.7437 | 0.50356 | 0.45993                 | 0.54714                 |
| 101 | 26.8472 | 0.50465 | 0.4609                  | 0.54832                 |
| 102 | 27.0357 | 0.50662 | 0.46265                 | 0.55049                 |
| 103 | 27.2796 | 0.50918 | 0.4649                  | 0.55332                 |
| 104 | 27.4864 | 0.51135 | 0.46679                 | 0.55573                 |
| 105 | 27.8181 | 0.51482 | 0.46978                 | 0.55963                 |
| 106 | 28.0725 | 0.51749 | 0.47204                 | 0.56265                 |
| 107 | 28.2737 | 0.51959 | 0.47382                 | 0.56504                 |
| 108 | 28.4369 | 0.5213  | 0.47525                 | 0.567                   |
| 109 | 28.5719 | 0.52271 | 0.47642                 | 0.56862                 |
| 110 | 28.6854 | 0.5239  | 0.47741                 | 0.56999                 |
| 111 | 28.7822 | 0.52491 | 0.47824                 | 0.57116                 |
| 112 | 28.8657 | 0.52579 | 0.47896                 | 0.57217                 |
| 113 | 30      | 0.53763 | 0.48849                 | 0.58605                 |

| Obs | Angle   | PROB    | Lower Upper             |                         |
|-----|---------|---------|-------------------------|-------------------------|
|     | _       | (Odds)  | <b>Confidence Limit</b> | <b>Confidence Limit</b> |
| 114 | 30.9497 | 0.54752 | 0.49617                 | 0.59787                 |
| 115 | 31.0076 | 0.54812 | 0.49663                 | 0.59859                 |
| 116 | 31.073  | 0.5488  | 0.49715                 | 0.59941                 |
| 117 | 31.1474 | 0.54957 | 0.49774                 | 0.60034                 |
| 118 | 31.2329 | 0.55046 | 0.49842                 | 0.60142                 |
| 119 | 31.3323 | 0.55149 | 0.4992                  | 0.60266                 |
| 120 | 31.449  | 0.5527  | 0.50011                 | 0.60413                 |
| 121 | 31.5881 | 0.55414 | 0.5012                  | 0.60588                 |
| 122 | 31.7569 | 0.55589 | 0.50251                 | 0.608                   |
| 123 | 32.09   | 0.55933 | 0.50509                 | 0.6122                  |
| 124 | 32.231  | 0.56079 | 0.50617                 | 0.61398                 |
| 125 | 32.3924 | 0.56246 | 0.5074                  | 0.61602                 |
| 126 | 32.579  | 0.56438 | 0.50882                 | 0.61837                 |
| 127 | 32.7972 | 0.56663 | 0.51047                 | 0.62113                 |
| 128 | 33.367  | 0.57249 | 0.51473                 | 0.62834                 |
| 129 | 33.4854 | 0.5737  | 0.5156                  | 0.62984                 |
| 130 | 33.749  | 0.5764  | 0.51755                 | 0.63317                 |
| 131 | 34.0558 | 0.57954 | 0.51979                 | 0.63705                 |
| 132 | 34.4174 | 0.58323 | 0.52242                 | 0.64161                 |
| 133 | 34.8499 | 0.58764 | 0.52554                 | 0.64706                 |
| 134 | 35.2344 | 0.59154 | 0.52828                 | 0.6519                  |
| 135 | 35.3765 | 0.59298 | 0.52929                 | 0.65368                 |
| 136 | 35.4959 | 0.59418 | 0.53014                 | 0.65518                 |
| 137 | 35.6853 | 0.5961  | 0.53147                 | 0.65755                 |
| 138 | 35.8883 | 0.59815 | 0.5329                  | 0.66009                 |
| 139 | 36.2216 | 0.6015  | 0.53523                 | 0.66425                 |
| 140 | 36.3412 | 0.6027  | 0.53607                 | 0.66574                 |
| 141 | 36.8699 | 0.608   | 0.53973                 | 0.67229                 |
| 142 | 37.4953 | 0.61423 | 0.54402                 | 0.68                    |
| 143 | 37.6699 | 0.61597 | 0.54521                 | 0.68214                 |
| 144 | 37.9799 | 0.61904 | 0.54731                 | 0.68592                 |
| 145 | 38.1445 | 0.62066 | 0.54842                 | 0.68792                 |
| 146 | 38.2466 | 0.62167 | 0.54911                 | 0.68916                 |
| 147 | 38.3665 | 0.62285 | 0.54992                 | 0.69062                 |
| 148 | 38.6822 | 0.62596 | 0.55204                 | 0.69443                 |
| 149 | 39.0228 | 0.6293  | 0.55431                 | 0.69853                 |
| 150 | 39.1667 | 0.6307  | 0.55527                 | 0.70025                 |
| 151 | 39.5212 | 0.63416 | 0.55762                 | 0.70447                 |
| 152 | 39.7918 | 0.63679 | 0.55941                 | 0.70768                 |

| Obs | Angle   | PROB    | Lower            | Upper                   |
|-----|---------|---------|------------------|-------------------------|
|     | _       | (Odds)  | Confidence Limit | <b>Confidence Limit</b> |
| 153 | 40.0052 | 0.63885 | 0.56081          | 0.71019                 |
| 154 | 40.5416 | 0.64403 | 0.56433          | 0.71647                 |
| 155 | 40.7057 | 0.6456  | 0.5654           | 0.71838                 |
| 156 | 40.9327 | 0.64778 | 0.56688          | 0.72101                 |
| 157 | 41.0145 | 0.64856 | 0.56741          | 0.72195                 |
| 158 | 41.8103 | 0.65613 | 0.57255          | 0.73105                 |
| 159 | 42.7321 | 0.6648  | 0.57844          | 0.74137                 |
| 160 | 42.8436 | 0.66584 | 0.57915          | 0.74261                 |
| 161 | 42.9859 | 0.66717 | 0.58006          | 0.74418                 |
| 162 | 44.427  | 0.68045 | 0.58913          | 0.75975                 |
| 163 | 44.7249 | 0.68316 | 0.59098          | 0.76289                 |
| 164 | 45.0995 | 0.68655 | 0.59331          | 0.76681                 |
| 165 | 46.3972 | 0.69814 | 0.60131          | 0.78005                 |
| 166 | 46.9509 | 0.70301 | 0.60469          | 0.78555                 |
| 167 | 47.4631 | 0.70748 | 0.60781          | 0.79055                 |
| 168 | 47.7946 | 0.71034 | 0.60981          | 0.79374                 |
| 169 | 48.5904 | 0.71716 | 0.6146           | 0.80126                 |
| 170 | 49.4642 | 0.72454 | 0.61982          | 0.80928                 |
| 171 | 50.5994 | 0.73394 | 0.62654          | 0.81935                 |
| 172 | 51.5001 | 0.74125 | 0.63181          | 0.82706                 |
| 173 | 51.7868 | 0.74355 | 0.63348          | 0.82945                 |
| 174 | 52.3415 | 0.74796 | 0.6367           | 0.83402                 |

## **APPENDIX E**

## CALCULATED PROBABILITIES FOR ANGLE AND TOTAL LENGTH

| Obs | Angle   | Total  | PROB    | Lower      | Upper      |
|-----|---------|--------|---------|------------|------------|
|     | 8       | Length | (Odds)  | Confidence | Confidence |
|     |         | 8      |         | Limit      | Limit      |
| 1   |         |        |         |            |            |
| 2   | 2.2924  | 123    | 0.15939 | 0.10238    | 0.23966    |
| 3   | 2.388   | 137    | 0.28099 | 0.19682    | 0.38396    |
| 4   | 2.7294  | 121    | 0.14889 | 0.09466    | 0.22642    |
| 5   | 4.248   | 139    | 0.32239 | 0.23481    | 0.4245     |
| 6   | 4.5886  | 130    | 0.23372 | 0.16504    | 0.32002    |
| 7   | 5.465   | 140    | 0.34752 | 0.25897    | 0.44805    |
| 8   | 5.7392  | 151    | 0.4871  | 0.36772    | 0.60797    |
| 9   | 6.1506  | 120    | 0.16499 | 0.11035    | 0.23939    |
| 10  | 6.3794  | 130    | 0.25033 | 0.18256    | 0.33302    |
| 11  | 6.7563  | 135    | 0.30551 | 0.22959    | 0.3937     |
| 12  | 6.8921  | 119    | 0.1631  | 0.10931    | 0.23633    |
| 13  | 7.1808  | 137    | 0.33245 | 0.25315    | 0.42254    |
| 14  | 7.4947  | 123    | 0.19787 | 0.1395     | 0.27293    |
| 15  | 7.8375  | 125    | 0.21761 | 0.15707    | 0.29336    |
| 16  | 8.2132  | 123    | 0.20371 | 0.14537    | 0.27784    |
| 17  | 8.5196  | 154    | 0.56045 | 0.43882    | 0.67522    |
| 18  | 8.9893  | 120    | 0.18573 | 0.13026    | 0.25782    |
| 19  | 9.0847  | 149    | 0.50375 | 0.39765    | 0.60951    |
| 20  | 9.5941  |        |         |            |            |
| 21  | 9.9282  | 138    | 0.37594 | 0.29937    | 0.45926    |
| 22  | 10.0154 | 135    | 0.34156 | 0.27056    | 0.42046    |
| 23  | 10.0787 | 151    | 0.54188 | 0.43249    | 0.64737    |
| 24  | 10.1643 | 121    | 0.20307 | 0.14667    | 0.27419    |
| 25  | 10.2866 | 124    | 0.23022 | 0.17156    | 0.30163    |
| 26  | 10.4757 | 135    | 0.34682 | 0.27664    | 0.42435    |
| 27  | 10.8069 | 155    | 0.60109 | 0.48278    | 0.70866    |
| 28  | 10.9806 | 127    | 0.26541 | 0.20497    | 0.33614    |
| 29  | 11.0875 | 131    | 0.30845 | 0.24456    | 0.38063    |
| 30  | 11.537  |        |         |            |            |
| 31  | 11.9405 | 138    | 0.40011 | 0.32771    | 0.47715    |
| 32  | 12.0247 | 101    | 0.09117 | 0.05136    | 0.15676    |
| 33  | 12.1532 | 129    | 0.29816 | 0.23763    | 0.36669    |
| 34  | 12.3736 | 135    | 0.36888 | 0.30241    | 0.44073    |

\*Listing of one kept value for each value of angle

| Obs | Angle   | Total  | PROB    | Lower      | Upper      |
|-----|---------|--------|---------|------------|------------|
|     |         | Length | (Odds)  | Confidence | Confidence |
|     |         |        |         | Limit      | Limit      |
| 35  | 12.5559 | 155    | 0.6221  | 0.50843    | 0.72377    |
| 36  | 12.8396 | 139    | 0.42355 | 0.35119    | 0.49935    |
| 37  | 13.1366 | 153    | 0.60473 | 0.49755    | 0.70271    |
| 38  | 13.609  | 144    | 0.49682 | 0.41466    | 0.57916    |
| 39  | 13.7742 | 114    | 0.17598 | 0.12298    | 0.24543    |
| 40  | 13.8865 | •      | •       |            | •          |
| 41  | 13.968  | •      | •       | •          | •          |
| 42  | 14.4775 | 138    | 0.43127 | 0.36452    | 0.50062    |
| 43  | 15.0261 | •      | •       | •          | •          |
| 44  | 15.1217 | 121    | 0.24667 | 0.19142    | 0.31173    |
| 45  | 15.2575 | 139    | 0.45366 | 0.38673    | 0.52231    |
| 46  | 15.466  | 133    | 0.38149 | 0.32384    | 0.44268    |
| 47  | 15.6185 | 105    | 0.12872 | 0.08038    | 0.1998     |
| 48  | 15.8266 | •      | •       | •          | •          |
| 49  | 16.0134 | 153    | 0.63894 | 0.53859    | 0.72847    |
| 50  | 16.1276 | 106    | 0.13761 | 0.08778    | 0.20925    |
| 51  | 16.2602 | 120    | 0.24784 | 0.1929     | 0.31238    |
| 52  | 16.3348 | 142    | 0.50564 | 0.43435    | 0.5767     |
| 53  | 16.6016 | 148    | 0.58515 | 0.49882    | 0.66654    |
| 54  | 16.8773 | 125    | 0.30526 | 0.25184    | 0.36449    |
| 55  | 16.9578 | 125    | 0.30613 | 0.25279    | 0.36521    |
| 56  | 17.1046 | 145    | 0.55365 | 0.47626    | 0.62853    |
| 57  | 17.2353 | 133    | 0.40282 | 0.34879    | 0.45931    |
| 58  | 17.4576 | 134    | 0.41795 | 0.36345    | 0.47454    |
| 59  | 17.7189 | 142    | 0.52312 | 0.45452    | 0.59087    |
| 60  | 17.9202 | 129    | 0.36254 | 0.31129    | 0.41712    |
| 61  | 18.08   | 140    | 0.50205 | 0.43878    | 0.56526    |
| 62  | 18.21   | •      | •       | •          | •          |
| 63  | 18.4085 | 121    | 0.27885 | 0.22487    | 0.3401     |
| 64  | 18.553  | •      | •       | •          | •          |
| 65  | 18.6629 | 139    | 0.49659 | 0.4365     | 0.55679    |
| 66  | 18.7493 | 169    | 0.82203 | 0.70787    | 0.89801    |
| 67  | 18.8191 | 160    | 0.74496 | 0.63765    | 0.829      |
| 68  | 19.4712 | 145    | 0.58301 | 0.50958    | 0.65293    |
| 69  | 20.1713 | 142    | 0.55394 | 0.48917    | 0.61694    |
| 70  | 20.2523 | •      | •       | •          | •          |
| 71  | 20.3544 | •      | •       | •          | •          |
| 72  | 20.4873 | 147    | 0.61991 | 0.54264    | 0.69155    |
| 73  | 20.6673 | 105    | 0.16017 | 0.10478    | 0.2371     |

| Obs | Angle   | Total  | PROB    | Lower      | Upper      |
|-----|---------|--------|---------|------------|------------|
|     |         | Length | (Odds)  | Confidence | Confidence |
|     |         |        |         | Limit      | Limit      |
| 74  | 20.9248 | 121    | 0.30515 | 0.25182    | 0.36428    |
| 75  | 21.1002 | 125    | 0.35235 | 0.30286    | 0.40522    |
| 76  | 21.3237 | 138    | 0.51741 | 0.46302    | 0.57138    |
| 77  | 21.5102 | 149    | 0.65556 | 0.57454    | 0.72844    |
| 78  | 21.7385 | 128    | 0.39592 | 0.3492     | 0.44462    |
| 79  | 22.0243 | 142    | 0.57697 | 0.51408    | 0.63747    |
| 80  | 22.291  | 142    | 0.58026 | 0.51755    | 0.64048    |
| 81  | 22.3927 | 135    | 0.49245 | 0.44398    | 0.54106    |
| 82  | 22.6199 | 132    | 0.45694 | 0.41129    | 0.50333    |
| 83  | 23.0357 | 164    | 0.81615 | 0.71543    | 0.88685    |
| 84  | 23.1324 | 109    | 0.20966 | 0.14886    | 0.28691    |
| 85  | 23.5782 | 129    | 0.43091 | 0.38563    | 0.47738    |
| 86  | 24.0421 | 134    | 0.50048 | 0.45374    | 0.54721    |
| 87  | 24.1477 | •      | •       | •          | •          |
| 88  | 24.4433 | 130    | 0.45437 | 0.40938    | 0.50011    |
| 89  | 24.6243 | 120    | 0.33469 | 0.27925    | 0.39511    |
| 90  | 24.7939 | 150    | 0.70287 | 0.62266    | 0.77226    |
| 91  | 24.9011 | 127    | 0.42218 | 0.37537    | 0.47042    |
| 92  | 25.029  | 153    | 0.7363  | 0.65075    | 0.80711    |
| 93  | 25.1027 | 156    | 0.76576 | 0.67587    | 0.83674    |
| 94  | 25.3769 | •      | •       | •          | •          |
| 95  | 25.7715 | 132    | 0.49669 | 0.45077    | 0.54267    |
| 96  | 25.9445 | 130    | 0.47325 | 0.42748    | 0.51947    |
| 97  | 26.1039 | 129    | 0.46248 | 0.41627    | 0.50934    |
| 98  | 26.3878 | 145    | 0.66486 | 0.59574    | 0.72757    |
| 99  | 26.6331 | 132    | 0.50759 | 0.46081    | 0.55423    |
| 100 | 26.7437 | 142    | 0.63393 | 0.57127    | 0.69236    |
| 101 | 26.8472 | 150    | 0.72409 | 0.64498    | 0.79128    |
| 102 | 27.0357 | 125    | 0.42348 | 0.37269    | 0.47595    |
| 103 | 27.2796 | 128    | 0.46451 | 0.41637    | 0.51332    |
| 104 | 27.4864 | 152    | 0.75023 | 0.66818    | 0.81753    |
| 105 | 27.8181 | 119    | 0.35967 | 0.29924    | 0.42491    |
| 106 | 28.0725 | 121    | 0.38668 | 0.32876    | 0.44799    |
| 107 | 28.2737 | 128    | 0.47704 | 0.42731    | 0.52723    |
| 108 | 28.4369 | 119    | 0.36691 | 0.30546    | 0.43302    |
| 109 | 28.5719 | 137    | 0.59508 | 0.54001    | 0.64786    |
| 110 | 28.6854 | 128    | 0.48224 | 0.43173    | 0.5331     |
| 111 | 28.7822 | 135    | 0.57273 | 0.52004    | 0.62383    |
| 112 | 28.8657 | 134    | 0.56117 | 0.50938    | 0.61167    |

| Obs | Angle   | Total  | PROB    | Lower      | Upper      |
|-----|---------|--------|---------|------------|------------|
|     |         | Length | (Odds)  | Confidence | Confidence |
|     |         |        |         | Limit      | Limit      |
| 113 | 30      | 123    | 0.43508 | 0.37643    | 0.49561    |
| 114 | 30.9497 | 122    | 0.43427 | 0.37202    | 0.49868    |
| 115 | 31.0076 | 132    | 0.56258 | 0.50715    | 0.61649    |
| 116 | 31.073  | 137    | 0.62516 | 0.56531    | 0.68142    |
| 117 | 31.1474 | 140    | 0.66133 | 0.59714    | 0.7201     |
| 118 | 31.2329 | 122    | 0.4378  | 0.37484    | 0.50283    |
| 119 | 31.3323 | 139    | 0.65187 | 0.5888     | 0.71003    |
| 120 | 31.449  | •      | •       | •          | •          |
| 121 | 31.5881 | 120    | 0.41708 | 0.35036    | 0.48698    |
| 122 | 31.7569 | 115    | 0.35829 | 0.2845     | 0.43946    |
| 123 | 32.09   | 139    | 0.66052 | 0.59597    | 0.7196     |
| 124 | 32.231  | 127    | 0.51424 | 0.45424    | 0.57382    |
| 125 | 32.3924 | 139    | 0.66394 | 0.59879    | 0.7234     |
| 126 | 32.579  | 144    | 0.72049 | 0.64856    | 0.78264    |
| 127 | 32.7972 | 143    | 0.71231 | 0.64137    | 0.77416    |
| 128 | 33.367  | 134    | 0.61624 | 0.5534     | 0.67543    |
| 129 | 33.4854 | 149    | 0.77719 | 0.69925    | 0.83956    |
| 130 | 33.749  | 109    | 0.31219 | 0.22829    | 0.41052    |
| 131 | 34.0558 | 127    | 0.53725 | 0.47162    | 0.60161    |
| 132 | 34.4174 | 128    | 0.5545  | 0.48835    | 0.61878    |
| 133 | 34.8499 | 142    | 0.72296 | 0.65006    | 0.78567    |
| 134 | 35.2344 | 119    | 0.44976 | 0.37105    | 0.53107    |
| 135 | 35.3765 | •      | •       | •          | •          |
| 136 | 35.4959 | 126    | 0.5426  | 0.47139    | 0.61211    |
| 137 | 35.6853 | 131    | 0.60754 | 0.53827    | 0.67273    |
| 138 | 35.8883 | 130    | 0.59771 | 0.52756    | 0.66407    |
| 139 | 36.2216 | 134    | 0.64977 | 0.57872    | 0.71474    |
| 140 | 36.3412 | 152    | 0.82459 | 0.74488    | 0.8833     |
| 141 | 36.8699 | 130    | 0.60959 | 0.5362     | 0.67833    |
| 142 | 37.4953 | 117    | 0.45267 | 0.36373    | 0.54474    |
| 143 | 37.6699 | 111    | 0.38014 | 0.28452    | 0.48607    |
| 144 | 37.9799 | 135    | 0.68098 | 0.60484    | 0.74855    |
| 145 | 38.1445 | 150    | 0.82293 | 0.74335    | 0.88176    |
| 146 | 38.2466 | 125    | 0.5643  | 0.48253    | 0.64272    |
| 147 | 38.3665 | 123    | 0.54043 | 0.456      | 0.6226     |
| 148 | 38.6822 | 116    | 0.45483 | 0.36042    | 0.55261    |
| 149 | 39.0228 | 126    | 0.58643 | 0.50289    | 0.66527    |
| 150 | 39.1667 | 133    | 0.67166 | 0.59195    | 0.74257    |
| 151 | 39.5212 | 125    | 0.58008 | 0.49375    | 0.66178    |

| Obs | Angle   | Total  | PROB    | Lower      | Upper      |
|-----|---------|--------|---------|------------|------------|
|     |         | Length | (Odds)  | Confidence | Confidence |
|     |         |        |         | Limit      | Limit      |
| 152 | 39.7918 | 148    | 0.8201  | 0.73991    | 0.8796     |
| 153 | 40.0052 | 124    | 0.57353 | 0.48434    | 0.65819    |
| 154 | 40.5416 | 135    | 0.70845 | 0.62557    | 0.77946    |
| 155 | 40.7057 | 113    | 0.44208 | 0.33684    | 0.55279    |
| 156 | 40.9327 | 136    | 0.72292 | 0.6394     | 0.79334    |
| 157 | 41.0145 | 144    | 0.79797 | 0.7162     | 0.86076    |
| 158 | 41.8103 | 131    | 0.67848 | 0.58993    | 0.75583    |
| 159 | 42.7321 | 122    | 0.58215 | 0.48049    | 0.67727    |
| 160 | 42.8436 | 140    | 0.77918 | 0.69365    | 0.84613    |
| 161 | 42.9859 | 144    | 0.81357 | 0.72998    | 0.87569    |
| 162 | 44.427  | 119    | 0.56547 | 0.45326    | 0.67135    |
| 163 | 44.7249 | 131    | 0.70977 | 0.61305    | 0.79057    |
| 164 | 45.0995 | 127    | 0.66994 | 0.56712    | 0.75874    |
| 165 | 46.3972 | 152    | 0.8866  | 0.80902    | 0.93519    |
| 166 | 46.9509 | 147    | 0.86151 | 0.77856    | 0.91671    |
| 167 | 47.4631 | 138    | 0.80091 | 0.70711    | 0.87018    |
| 168 | 47.7946 | 130    | 0.73071 | 0.62498    | 0.81543    |
| 169 | 48.5904 | 111    | 0.51587 | 0.37654    | 0.65277    |
| 170 | 49.4642 | 147    | 0.87599 | 0.79297    | 0.92872    |
| 171 | 50.5994 | 134    | 0.79337 | 0.68921    | 0.86925    |
| 172 | 51.5001 | 130    | 0.76597 | 0.65258    | 0.8508     |
| 173 | 51.7868 | 149    | 0.898   | 0.81846    | 0.94503    |
| 174 | 52.3415 | 141    | 0.85726 | 0.76434    | 0.91749    |

#### VITA

Paige Whitney Elrod was born in November, 1987 in Fresno, California. She was graduated from the University of Washington in Seattle in August, 2009, with a Bachelor of Arts in anthropology. In August, 2010, Paige entered graduate school in the Geography and Anthropology Department at Louisiana State University. Paige presented a poster at the American Academy of Forensic Sciences annual meeting in 2012. She currently holds student memberships with the American Academy of Forensic Science and the American Association of Physical Anthropologists. Paige plans to begin a career in law enforcement with a focus on forensics.