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ABSTRACT 

Drift of pesticides can be a significant health hazard, particularly in areas where 

agricultural land is adjacent to a school, retirement home, or other populated area.  Off-target 

drift of pesticides depends on many atmospheric variables, both mechanical and thermal.  While 

non-atmospheric variables, such as applicator nozzle size, height of application, and particle size, 

can be controlled by the applicator to reduce drift potential, understanding how atmospheric 

conditions set a framework for drift potential enables applicators to choose to spray when the 

weather conditions would minimize drift. Specifically, atmospheric stability plays an important 

role in the near-ground concentration of sprays downwind of the spray site; stable conditions 

confine spray near the surface if the application occurs near the surface.  This project investigates 

the efficacy of using Pasquill stability classes as a simple way to estimate surface boundary layer 

stability conditions in the field.  Wind speed and a qualitative insolation estimate (strong, 

moderate, or slight) are used to determine the Pasquill stability class.  A series of case studies 

conducted under varying Pasquill stability classes near Winnsboro, Louisiana, provides data to 

test the efficacy of Pasquill stability classes as drift predictors.  Results suggest that the Pasquill 

stability estimates give applicators a useful method for estimating downwind dispersion and drift 

under a wide range of atmospheric conditions, thereby improving their ability to make informed 

decisions to reduce the risk of off-target drift.  
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CHAPTER 1:  INTRODUCTION 

Pesticide and herbicide treatment of crops often benefits agricultural yields, but drift of 

agricultural sprays to off-target areas raises concerns about the environmental impacts of this 

practice (Holterman et al. 1997).  The U.S. Environmental Protection Agency (EPA) cautions 

that spray drift not only leads to harmful direct exposures to farm workers, nearby population, 

and wildlife, but also contaminates nearby crops, domestic gardens, and wildlife habitats that 

might be vulnerable to treatment (EPA 1999).  Even if not harmful, the pesticide residues may 

reach crops advertised as grown organically.  The proximity of residents in rural agricultural 

communities to targeted spray areas increases their risk of exposure (Tsai et al. 2005).  The 2010 

U.S. census recorded that roughly 25 percent of Louisiana residents live in rural areas (USDA 

2011); thus, many people in Louisiana have an elevated risk of exposure to agricultural spray 

drift.   

Rachel Carson, the mother of the modern environmental movement who brought national 

attention to the problems of using extremely toxic pesticides, described drift in her testimony in a 

U.S. Senate hearing as, “The phenomenon that plagues every householder who receives 

contaminating spray from his neighbor across the street, or from his government’s spray planes 

several miles away (Testimony of Rachel Carson to the Senate Hearing on Interagency 

Coordination of Environmenal Hazards 1964).”  In her book Silent Spring, Carson gives an 

example of the worst case drift scenario where a boy, playing in his yard, died after spray drifted 

in from an adjoining field where his father was spraying an extremely toxic pesticide (Carson 

1962).  

In response to serious and sometimes deadly side effects of pesticide use, the EPA and 

many state agencies were tasked with pesticide regulation (EPA 1992).  While that regulation 
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has helped reduce the deadly consequences of pesticide use, drift still poses a risk to humans, 

animals, and plants in proximity to targeted spray areas.  To address those risks, the Louisiana 

State University (LSU) AgCenter began a project in April 2011 under the direction of Dr. 

Roberto Barbosa (Department of Biological and Agricultural Engineering) and Dr. B. Rogers 

Leonard (Professor, Macon Ridge Research Station, LSU AgCenter) to investigate current 

application and drift reduction techniques, and then propose new techniques with guidelines to 

increase efficacy of pesticide/herbicide treatments and reduce drift.  To attain those objectives, 

the project focuses on two drift related variables—equipment-related and weather-related—to 

find which conditions, equipment, and techniques minimize drift while maintaining spray 

efficacy.  A review of relevant literature revealed that droplet size is the primary factor 

influencing the efficacy and drift potential of a pesticide. This means that smaller spray droplets 

increase the efficiency of coverage of target area while simultaneously increasing the risk of off-

target drift by allowing the droplet to be more influenced by near-surface air motion (e.g., Bache 

and Johnstone 1992).  Research previously conducted by the LSU AgCenter focused mainly on 

the equipment/mechanical-related variables affecting drift.  This research focuses on the 

project’s second objective of identifying weather/environmental-related variables affecting drift, 

and producing simple rules of thumb regarding what weather conditions are or are not suitable 

for spray operations.   

There are two main drift reduction approaches: active and passive.  Active approaches to 

reducing drift include mechanical spraying equipment and techniques for reducing the amount of 

drift-prone droplets, including nozzle types, application pressure, and shields (Felsot et al. 2011). 

Passive methods act to reduce the effects of drift or amount of drift particles and include buffer 

zones and wind breaks (Felsot et al. 2011).  Another possible passive technique for reducing drift 
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involves application of sprays during atmospheric conditions that will reduce drift probability, or 

at least avoiding application during conditions known to cause large drift events.  Many models 

for the dispersion and drift of pesticides have been developed including: Forest Service, Cramer, 

Barry and Grim (FSCBG) model described by Teske et al. (1993), the Institute of Environmental 

and Agricultural Engineering’s Program for Drift Evaluation from Field Sprayers by Computer 

Simulation (IDEFICS) model by Holterman et al. (1997), a spray transport model by Raupach et 

al. (2001), the Gaussian diffusion sedimentation (GDS) model by Craig (2004), a computational 

fluid dynamics (CFD) model by Baetens et al. (2007), the Oklahoma Dispersion Model by 

Carlson and Arndt (2008), a diffusion-advection model by Baetens et al. (2009), and a real time 

drift model (RTDrift) by Lebeau et al. (2011).  Collectively, these models show that 

meteorological variables such as wind speed and direction, atmospheric stability, and relative 

humidity do affect drift; however, most of these models are computationally intense and require 

precise input data which would usually be unavailable for field applicators.  This project 

investigates the possibility of using simple weather observations to estimate the drift risk posed 

by atmospheric conditions, that would allow applicators to make more informed choices to 

protect nearby areas from drift.  

Pasquill (1961) derived relationships between simple observations on sun angle, cloud 

cover, and wind speed to estimate the general category of boundary layer atmospheric stability 

conditions. These categories (A-F) are known as Pasquill stability classes and allow certain 

reasonable assumptions to be made about drift risk under conditions within each category 

(Pasquill 1972).  For this project, several case studies were conducted in which spray deposition 

was measured at certain distances from a spray path under different stability classes to determine 

the amount of pesticides moving beyond the desired application site. 
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Understanding the combination of mechanical and environmental conditions that 

maximize the efficiency of pesticide application and minimize off-target drift is of great 

importance to the agricultural community of Louisiana.  In addition to providing environmental 

and health benefits reducing off-target drift reduces the volume of pesticides needed to be 

applied to an area, increasing efficiency of on-target deposition, which provides an economic 

incentive for responsible spraying practices (Stover et al. 2004).  Maximizing spray efficiency 

and minimizing drift provides economic gain by reducing the risk of crop damage due to pests 

and weeds as well as damage to nearby, non-target crops from drift of an unnecessary or even 

deleterious pesticide. 

While there is no perfect method of eliminating drift, a wide range of drift reduction 

equipment, techniques, and practices can be employed.  A major component of reducing drift in 

real-world situations is education (Felsot et al. 2011, Stover et al. 2004).  According to the U.S. 

EPA (1999), parties responsible for the application of pesticides and herbicides are responsible 

for using all available application practices for reducing spray drift, and must consider all factors, 

including meteorological conditions, before deciding to apply these products.  Relaying 

knowledge to applicators and those working in the agricultural industry so they can make 

informed decisions about pesticide application and drift reduction should be a top priority of 

government agencies and university extension programs.  The creation of a simple guide for 

minimizing drift, based solely on estimation of sun angle, wind velocity, and cloudiness, will 

give applicators a powerful new tool to reduce agricultural spray drift.   

After providing a more detailed background on the atmospheric dispersion literature, 

Chapter 2 will articulate the specific objectives and detailed hypotheses of this research. Chapter 

3 will describe the methods used in the field experiments to relate atmospheric conditions to 
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spray drift over an agricultural field in northern Louisiana, with Chapter 4 presenting the results 

of those experiments, and Chapter 5 offering discussion on those results. Finally, Chapter 6 will 

offer conclusions and suggestions for further research on this topic. 

  



6 

 

CHAPTER 2:  BACKGROUND 

2.1 Pesticide Use and Risks 

In developed nations 3-5 percent of the population produces the food consumed by the 

rest of the population with excess exported to other nations.  The level of agricultural production 

and the high standard of living in the United States and much of the developed world would not 

be possible without the use of pesticides.  Humans have been using natural compounds to fight 

pests—plants and animals that endanger crops or human health and/or comfort—since ancient 

Roman times.  Chemical pesticides were in widespread use among U.S. farmers to protect their 

field crops from pests by the end of the 19
th

 century (Delaplane 1996).  Several highly-toxic, 

synthetic pesticides were developed during a research boom spurred by World-War II, and were 

put into use in the United States and other countries without the due process of risk assessment.  

“For a country consumed with fears of Soviet aggression, the Korean War, McCarthyism, polio, 

civil rights, Sputnik, and rock’n’roll, pesticide dangers hardly registered—at least not until in 

1962 when Rachel Carson published Silent Spring” (Daniel 2005, p. 2).  These new pesticides, 

which were inexpensive and effective, were seen as a miracle of science and were advertised as 

such to the agricultural community and the public at large (Daniel 2005). In his book Toxic Drift, 

Pete Daniel (2005) discussed how many pesticide-related health effects have arisen from 

widespread use of synthetic pesticides on farms, in yards, in and around buildings, and within 

urban areas in the last half of the 20th century.  Much has been accomplished since the 1960’s to 

reduce the negative impacts of pesticide while maximizing their benefits, yet there is more work 

that needs to be done.  

To understand the risks that pesticide drift poses to humans, one must first understand the 

possible negative health effects of pesticide exposure, and the processes that disperse pesticides 
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causing drift.  Pesticides, being toxic by design, have a wide range of negative health impacts in 

humans, ranging from simple skin or eye irritation to death (Hallenbeck and Cunningham 1985).  

The World Health Organization (WHO) estimated that 20,000 deaths and 3 million cases of 

acute poisoning annually are the result of pesticide use, principally in the rural agricultural 

communities of developing countries (WHO 1990).  

Exposure to pesticides can occur in three forms—inhalation, dermal exposure, or oral 

ingestion, which can come from direct exposure, or through contaminated food or water (EPA 

2007).  Lee et al. (2011) collected data from 11 states for a period from 1998 to 2006 to identify 

acute illnesses thought to be caused by pesticide exposure.  The authors found that 44 percent of 

the cases involved exposure to toxic pesticides at a private residence and in 37 percent of cases 

the individuals were exposed on a farm or nursery.  They also found that incident reports of 

pesticide drift events cited applicator error or carelessness and unfavorable weather conditions as 

the main causes of drift exposure (Lee et al. 2011). 

In the wake of environmental and health disasters and the public outcry brought about 

largely by Silent Spring, the U.S. government established the EPA to establish and enforce 

environmental protection standards (EPA 1992) including pesticide regulation.  The EPA works 

with federal and state governments to regulate pesticides to ensure that their use does not pose 

unreasonable risks to human or environmental health (EPA 2007).  The EPA uses the National 

Research Council’s (NRC 1983) four-step process for human health risk assessment: hazard 

identification, dose-response assessment, exposure assessment, and risk characterization.  The 

first step, hazard identification, or toxicology, identifies potential health effects that may occur 

from exposure to a pesticide’s active ingredients.  Dose-response assessments serve to observe 

what exposure levels lead to adverse effects in test animals; those levels are then scaled to 
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determine ‘safe’ levels of exposure in humans.  Exposure assessments test how pesticides enter 

the body and the effects of differing exposure levels and duration.  Risk characterization 

combines the knowledge gained from the previous steps and describes the overall risk a pesticide 

poses to human health, with a general working equation stating that risk is equal to the toxicity of 

the compound multiplied by the possibility of exposure.  Based on this risk assessment, the EPA 

determines whether there is reasonable certainty that, if used according to label directions, a 

pesticide will not harm a person’s health; if not they may prescribe additional protective 

measures to limit harmful exposure (EPA 2007).  Once the EPA deems a pesticide safe, it can be 

sold and used.  Even with the regulations enacted by the EPA to reduce the human and 

environmental health risks of pesticide use, the off-target drift of pesticides still poses a threat to 

human, animal, and plant populations in proximity to spray areas.  The application of a pesticide 

to crops or other target areas cannot be completely contained within that target area due to the 

nature of droplet dispersion. It is inevitable that some droplets of that pesticide will drift in the 

air and settle outside the original target area (Felsot et al. 2011). 

2.2 Causes of Off-Target Drift 

The Glossary of Terms Relating to Pesticides (Stephenson et al. 2006) defines dispersion 

as the movement of particles or molecules from regions of higher concentration to areas of lower 

concentration, in accordance with the second law of thermodynamics, due to the random 

movement of particles or turbulent mixing over the gradient.  In addition, the glossary defines 

spray drift as the movement of spray droplets beyond the intended application area.  The 

dispersion of pesticides applied to agricultural fields depends on many factors, ranging from 

mechanical to meteorological, with droplet size being a key factor in how the spray moves in the 

environment.  Properties that affect the size of droplets produced during pesticide spraying 
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include physical properties of the spray and the mechanical properties of the sprayer such as, the 

type of sprayer nozzles, sprayer pressure, and speed of application vehicle (Felsot et al. 2011, 

Hilz and Vermeer 2013, Holterman et al. 1997, Matthews 2006).  The size of the droplets 

produced during a pesticide application is important because it determines the effective coverage 

of the targeted plant or pest, with smaller droplets providing better coverage; however, droplet 

size plays a major role in the potential for off-target drift with smaller droplets (100-200 

millionths of a meter or micrometers (μm), or smaller) creating a higher risk (Bache and 

Johnstone 1992, Matthews 2006). 

The dispersion distance of any aerosol spray released near the surface depends on local 

atmospheric processes (Bache and Johnstone 1992).  Many meteorological factors have been 

cited as influencing spray dispersion and drift: wind speeds, surface boundary layer (SBL) 

stability, turbulent flow, humidity characteristics, solar radiation, local lapse rates, and relative 

humidity (Bache and Johnstone 1992, Bird et al. 1996, Felsot et al. 2011, Fritz 2006, Miller et al. 

2000, Miller 1993, Pasquill 1961, Yates et al. 1967).  Unlike mechanical factors, meteorological 

factors cannot be controlled by the applicator to reduce off-target drift (Fritz 2006).  By 

understanding their effects on dispersion and drift it is possible to know which conditions lead to 

a minimization of off-target drift.  The three micrometeorological factors that influence pesticide 

dispersion the most are wind (speed, direction, and shear), SBL stability, and relative humidity 

(RH) (Miller et al. 2000).  

Winds, stability, and RH are closely related in the SBL with complex interactions 

between the three having a large impact on spray dispersion and drift.  Although RH does not 

directly influence the dispersion or drift of pesticides, along with temperature it is a surrogate for 

vapor pressure. Vapor pressure relates to the evaporation rate of liquids in the spray droplets, 
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with the rate of evaporation increasing as humidity decreases.  The RH and temperature can 

therefore be used to estimate how evaporation affects droplet size (Bache and Johnstone 1992, 

Holterman et al. 1997, Sundaram and Sundaram 1991).  Relationships between RH and droplet 

size are well understood with the studies of Bache and Johnstone (1992) and Miller (1993) 

providing analytical calculations for those relationships.  Droplet size in a spray cloud correlates 

to the residence time—the amount of time the droplet will remain suspended in the air before 

settling on a surface, thus the magnitude with which SBL stability affects drift (Bache and 

Johnstone 1992, Bird et al. 1996, Crabbe et al. 1994, Miller et al. 2000, Miller 1993).  Several 

papers determine that wind speeds are the dominant factor determining the amount of spray 

deposited on near field sites (< 1000 m from target site) due to the gravitational settling of larger 

particles (Crabbe et al. 1994, Maybank et al. 1978, Yates et al. 1967).  Winds and stability are 

closely related in the SBL; that relationship will be discussed in further detail later.   

SBL stability is the extent to which convection is suppressed (in a stable atmosphere) or 

enhanced in an unstable atmosphere by local atmospheric conditions at a given time and place 

thus affecting spray dispersion and drift in several ways.  Stability and the related concept of 

turbulent mixing directly influence the vertical spread of spray droplets; both are influenced by 

the strength of near-surface winds, resulting in the physical processes determining how spray 

droplets will move (Miller et al. 2000, Thistle 2000).  The complex nature of SBL stability 

means that the physical processes governing stability must be well-understood before the 

relationship between dispersion and drift can be known.  Atmospheric stability includes both 

thermal and mechanical turbulence.  Turbulence is the process by which energy is transferred 

through the atmosphere via eddies (Arya 2001).  Energy is transferred from larger eddies to 
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smaller eddies until the subsequent eddies become too small to overcome the air’s viscosity; then 

the energy is transformed into heat (Thistle 2000). 

 Thermal turbulence, also known as static stability, provides a measure of buoyant 

convection.  Temperature and therefore pressure differences between parcels of air and the 

surrounding atmosphere are responsible for thermal turbulence (Fritz 2006).  The temperature 

differences between parcels in the SBL are due to differential surface heating, which is a result 

of solar radiation interacting with different surface covers.  The rising and sinking of parcels 

caused by thermal turbulence control the vertical extent of motions within a spray cloud, and 

therefore the amount of material staying near the ground downwind of the release site (Miller et 

al. 2000). 

Mechanical turbulence, also known as dynamic stability, is turbulence caused by wind 

shear (Miller et al. 2000) and surface stresses, leading to disturbances in air flow (Bache and 

Johnstone 1992).  Mechanical turbulence mixes air in the SBL, allowing better dispersion of the 

spray cloud, reducing concentrations downwind (Thistle 2000).  However, the mixing caused by 

mechanical turbulence reduces the temperature differences responsible for thermal turbulence; in 

effect high mechanical turbulence decreases the effect of thermal turbulence (Miller et al. 2000).  

SBL stability is therefore closely related to wind speed and shear since those are the factors 

responsible for creating mechanical turbulence.  

The following discussion summarizes the work of Miller et al. (2000) on the different 

mechanisms controlling the drift of spray clouds in different stability profiles.  In an unstable 

atmosphere, the movement of the cloud is dependent on short-lived coherent turbulent events, 

which means that the cloud is dispersed in several directions with varying intensity, depending 

on turbulence patterns.  In a stable atmosphere, the spray cloud is restricted near the ground and 
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is more influenced by mechanical turbulence caused by surface stress.  That study concluded that 

during unstable conditions the spray droplets mix well in the vertical direction due to the larger 

and stronger eddies, so little drift is recorded near the ground.  In similar manner, the authors 

concluded that stable conditions, leading to small, weak eddies, which do not allow vertical 

mixing, causing the spray to migrate downwind with relatively little mixing (leading to high drift 

measurements). 

 In addition, the study of Thistle (2000) found that during stable atmospheric conditions 

eddies are suppressed and have a low amount of kinetic energy, which allows the spray cloud to 

remain intact, leading to a narrow concentrated plume near the surface far downwind.  By 

contrast, in unstable atmospheric conditions turbulent eddies have a large amount of kinetic 

energy and can grow large in size, leading to a spray cloud that is dispersed quickly and 

effectively.  That efficient dispersion leads to a broader downwind plume with much lower 

concentrations of spray droplets. 

After pesticides are applied, the large droplets settle on the crop or surrounding ground 

within the target area while the smaller droplets with a sedimentation velocity—the droplet’s 

velocity at which gravity can pull it to the ground — weaker than the turbulent motion of 

surrounding air will remain airborne and drift off the application site (Bache and Johnstone 1992, 

Davies 1966).  To reduce the risk of direct exposure to bystanders and nearby environments, 

spraying conditions should be such that large droplets are able to easily settle on target, while 

smaller droplets are able to mix with surrounding air, horizontally and vertically, to reduce the 

concentration of the drift cloud.  Having low to moderate wind speeds and moderate to high 

insolation rates provides such conditions that allow larger droplets to settle but smaller droplets 
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to be mixed by SBL turbulence driven mainly by thermal instability (Miller et al. 2000, Thistle 

2000). 

Different researchers measure stability in different ways for studying its effects on 

dispersion and drift.  Measurements of SBL stability should be based on the two types of 

turbulence, or stability; that is, they should take into account both winds and radiation. Many 

types of stability measurements including: the turbulent kinetic energy equation, the Richardson 

number, and other stability factors have been used to achieve this by examining temperature and 

wind speed.  

The turbulent kinetic energy (TKE) equation (Stull 1988, Thistle 2000) – an overall 

measure of turbulence intensity – can be used to understand the stability of the SBL.  The terms 

of the TKE describe the amount of turbulence created by mechanical forces (wind shear) or 

buoyant (thermal) forces: 
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Where   is the mean TKE, t is time, u is west-to-east component of motion, z is height, g 

represents the acceleration due to gravity, θ is potential temperature (the temperature that an air 

parcel would have if it were moved dry adiabatically to the 1000 hPa level), w is down-to-up 

component of motion, ρ is density, p is pressure, and ε is the viscous dissipation of TKE to heat 

at the molecular level.  The ∂ symbol refers to a partial derivative – the rate of change of the 

variable of interest (in the numerator) as the other variable (in the denominator) changes, while 

holding the effects of all other variables constant.  The first, third, and fourth terms of the right 

side of the TKE equation – advection, pressure correlation, and vertical transport — are always 

positive, meaning that they contribute to TKE. The fifth term of the right side of the equation 

represents the turbulent energy that is converted to heat, and always detracts from TKE.  Unlike 
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the rest of the terms the second term, (buoyant flux) can be either positive or negative and 

therefore can contribute or detract from TKE, depending on the thermal structure of the SBL.  If 

potential temperature is increasing with height, this term will be negative and buoyant flux will 

dampen turbulence; decreasing potential temperatures with height are associated with positive 

buoyant flux term and enhance turbulence (Stull 1988, Thistle 2000). 

The gradient Richardson number (Ri) – the dimensionless ratio of thermal to mechanical 

turbulence – is commonly used to quantify atmospheric stability in the SBL (Anderson et al. 

1992, Payne 1992).  Ri utilizes temperatures and wind speeds from two heights within the SBL 

to provide a measure of the overall stability or turbulent characteristics of the SBL.  The study of 

Stoughton and Miller (2002) found that Ri provides an adequate value for stability during 

turbulent conditions.  However, during near-neutral and stable conditions Ri values were 

projected as being overly stable compared to other stability measures, including the stability 

parameter ζ used by Miller et al. (1996), Miller et al. (2000), and Stoughton et al. (1997).  The ζ 

parameter is defined as   
   

 
, where z represents the measurement height (m), d is the height 

of zero plane displacement (m), and L represents the Obukov length (  
      

 

   
), where ρ 

represents density (kg m
-3

), cp is specific heat of air (J kg
-1

 K), T is virtual air temperature (K), u* 

is friction velocity (m s
-1

), k represents the dimensionless ratio of vertical turbulence of an eddy 

in statically-neutral conditions to the mixing length (or von Karman’s constant (0.4)), g is the 

acceleration due to gravity (m s
-2

), and H is the sensible heat flux (W m
-2

). 

The studies of Yeo and Thompson (1953) and Renne and Wolf (1979) used the stability 

factor denoted as “F” (  
            

 
 ), which was derived as an effective and measurable 
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replacement for Ri (Yeo and Thompson 1953)  where Γ is the dry adiabatic lapse rate (9.8 K km
-

1
) and   is the average wind speed (m s

-1
) measured at the two heights. 

In a series of experiments in 1963 and 1964 Yates et al. (1967) created a stability ratio 

(SR) using the equation      
     

      , where T2 and T1 are temperatures at two different 

heights (°C) and u is the mean horizontal wind speed in cm s
-1

 at the geometric mean height 

between the heights of the temperature measurements. The study of Yates et al. (1974) then 

created a classification system for the stability ratio that included classes for unstable, neutral, 

stable, and very stable with corresponding SR values of -1.7 to -0.1, -.1 to .1, 0.1 to 1.2, and 1.2 

to 4.9 respectively. 

A wide range of results has been reported in field trials studying the atmospheric effects 

on drift due to the near impossibility of duplicating atmospheric conditions between studies 

(Maccollom et al. 1986, Thistle 2000).  Results from most field trials and models show that SBL 

stability greatly contributes to dispersion patterns and drift of sprays.  Increasing stability has 

been shown to correlate with increasing drift (Anderson et al. 1992, Bird et al. 1996, Crabbe et 

al. 1994, Maccollom et al. 1986, Miller and Stoughton 2000, Stoughton and Miller 2002, Thistle 

2000).   

The study of Crabbe et al. (1994) studied early morning aerial application, which was the 

favored practice for spraying pesticides in orchards due to the ease and safety of flight in low 

turbulence conditions and low surface wind speeds.  They found that spray application early in 

the morning, often during temperature inversions, led to increased drift deposits on downwind 

surfaces, because the inversion hindered the vertical mixing of the spray cloud. 

All of the authors mentioned above succeeded in using their respective stability measures 

to assess dispersion; however, all of the measures require input data too specific for an in situ 
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field estimation of SBL stability.  Although these stability measures are good for theoretical 

application, or intensive field research, they are impractical for pesticide applicators to use, due 

to the lack of specialized equipment for measuring the required input parameters.  This chapter 

will therefore continue to investigate pesticide dispersion by representing SBL stability in terms 

of Pasquill stability classes which require only general measurements and inputs.  The study of 

Pasquill (1961) developed a stability classification scheme based on wind speed and insolation 

rates of strong, moderate, or slight, discussed further in section 2.3.  

2.3 Dispersion Modeling 

In recognition of the importance of stability, the report of Pasquill (1972, p. 5) surmised 

that, it would be possible to define ‘normal’ values of plume spreading for given combinations of 

wind speeds and the amount of solar radiation reaching the ground.  Using those categories 

would obviate the need for specialized meteorological data in the calculations of drift.  To that 

end, the study of Pasquill (1961) developed a classification method – Pasquill Stability Classes – 

to distinguish atmospheric stability features within the SBL.  Pasquill Stability Classes use wind 

speed and visually-based incoming solar radiation (insolation) estimates to categorize stability in 

the SBL, thereby circumventing the need for making more complicated measurements of vertical 

velocity and thermal gradients required by other stability indexes.  The Pasquill classes range 

from A to F, with the stability ranking of each category shown in Table 2.1, and the criteria for 

classifying conditions into a Pasquill class are presented in Table 2.2. It should be noted that for 

classification strong insolation corresponds to a sun elevation angle of greater than 60° above the 

horizon, moderate insolation occurs when the sun elevation is between 35-60°, and slight 

insolation corresponds to times when the sun elevation angle is less than 30°.  It should be noted 
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that middle clouds with broken or overcast coverage reduce insolation from strong to moderate 

and similar coverage with low clouds reduces insolation from strong to slight (Eagleman 1991). 

 

Table 2.1: Pasquill Classes and Associated Stability Conditions 

Pasquill Class Stability Conditions 

A Extremely Unstable 

B Moderately Unstable 

C Slightly Unstable 

D Neutral 

E Slightly Stable 

F Moderately Stable 

 

 

Table 2.2: Determination of Pasquill Class 

Wind 

Speed 

(m s
-1

) 

Strong 

Insolation 

Moderate 

Insolation 

Slight 

Insolation 

Nighttime, 

>1/2 Cloudiness 

Nighttime, 

<1/2 cloudiness 

<2 A A B E F 

2-2.99 A B C E F 

3-3.99 B B C E F 

4-4.99 B C D D E 

5-6 C C D D D 

>6 C D D D D 

 

The study of Pasquill (1961) plotted the horizontal angular spreading of a plume at two 

distances downwind from a point source under the different stability classes.  Using those plots 

he was able to determine corresponding equations which estimate the horizontal fluctuations of 
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the wind over the time required for the plume to travel a certain distance.  The study of Gifford 

(1960) converted the plume width and height into the parameters σy and σz , representing the 

standard deviation of the plume concentration, using a series of equations based on Pasquill’s 

stability classes, called the Pasquill-Gifford dispersion parameters.  The Pasquill-Gifford 

parameters simplified the use of Pasquill classes in Gaussian plume equations.  Briggs (1973) 

developed a series of empirical equations (Table 2.3), from dispersion experiments run near St. 

Louis, Missouri, which estimate the values of σy and σz to further simplify Gaussian dispersion 

equation calculations using Pasquill stability classes.  

Table 2.3: Briggs Equations for Pasquill-Gifford Parameters for Open Country Conditions 

Pasquill Class σy σz 

A 0.22x*(1+0.0001x)
-1/2 

0.20x 

B 0.16x*(1+0.0001x)
-1/2 

0.12x 

C 0.11x*(1+0.0001x)
-1/2

 0.08x*(1+0.0002x)
-1/2 

D 0.08x*(1+0.0001x)
-1/2

 0.006x*(1+0.0015x)
-1/2 

E 0.06x*(1+0.0001x)
-1/2

 0.03x*(1+0.0003x)
-1 

F 0.04x*(1+0.0001x)
-1/2

 0.016x*(1+0.0003x)
-1

 

 

2.4 Drift Reduction Measures and Integrated Pest Management  

Any spray-application of pesticides will result in some amount of drift due to the nature 

of the SBL, but equipment and spray practices exist that decrease the amount of drift observed 

(Felsot et al. 2011, Yarpuz-Bozdogan and Bozdogan 2009).  Several methods have been 

suggested for reducing drift and its negative health impacts.  Some groups argue that the negative 

effects on human health and the environment are too great to continue use of chemical pesticides, 

believing their use should be eliminated to ensure a more sustainable agriculture, putting food 



19 

 

security, health, and the environment above the increased production that they could provide 

(Dinham 1993).  That option may seem best from a purely environmental standpoint; however, 

entirely eliminating chemical pesticide use would come at a cost of decreased crop yield and 

seem like an unattainable goal.   

Barring the elimination of chemical pesticides, the use of materials and techniques which 

reduce the amount of, or even the need for, those chemical pesticides provides the best way to 

reduce the risk of exposure thus related health and environmental problems.  Integrated pest 

management (IPM) is a systematic approach wthat strives to provide a cost-effective and 

environmentally sound way of managing the health and productivity of crops (Damalas and 

Eleftherohorinos 2011).  IPM has been discussed and used for about 50 years, and is defined by 

the Food and Agriculture Organization of the United Nations (UN) as “a pest management 

system that in the context of the associated environmental and population dynamics of the pest 

species, utilizes all suitable techniques and methods in as compatible a manner as possible and 

maintains the pest population at a level below those causing economic injury (Food and 

Agriculture Organization 1968).”  If farmers are able to keep pest levels below damaging levels 

using IPM methods, which reduce the amount of pesticides needing to be applied, it will provide 

both environmental and economic benefits.   

The study of  Felsot et al. (2011) provides an in-depth review of current studies and 

methods focused on reducing drift from the technological or engineering viewpoint.  Droplet size 

is the major mechanical factor determining drift, because smaller droplets have a longer 

residence time and can be carried farther off-target than larger droplets that settle quickly 

(Davies 1966, Felsot et al. 2011, Holterman et al. 1997, May and Clifford 1967).  Several 

mechanical solutions for reducing drift are based on this principle.  One technique centers on 
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using nozzles designed to create fewer small droplets (Yarpuz-Bozdogan and Bozdogan 2009).  

Adding emulsifiers to the spray solution is another method used to create larger droplets that will 

have lower drift potential (Felsot et al. 2011, Stover et al. 2004).   

Windbreaks and buffer zones which serve to reduce drift or its negative impacts are 

employed in the design of agricultural sites (Burn 2003, Felsot et al. 2011, Stover et al. 2004).  

Buffer zones do not actually impede the drift of pesticides, but provide a space for droplets to 

settle before entering a risk area (e.g. residence, playground, or water body).  Buffer zones 

composed of bare ground, or sown in grass, or other short vegetation, which is better at 

absorbing the spray without negative effects, can protect sensitive areas or species from pesticide 

use in nearby areas (Burn 2003).  Typically, buffer zones are prescribed at 3,6, or 8 meters 

beyond the edge of the treated areas to allow space for most spray droplets to settle (Burn 2003, 

Felsot et al. 2011), but larger buffers can be implemented in areas where drift poses a higher risk 

(Burn 2003).  Windbreaks are rows of vegetation, cloth, webbing, mesh, or fences that reduce 

wind velocity, thus the drift of pesticides beyond the windbreak (Felsot et al. 2011).  Windbreaks 

are commonly used in orchards and vineyards, and have been found to reduce by 83-97 percent 

the measured amount of spray droplets downwind, which depends on the height and density of 

the windbreak (Lazzaro et al. 2008).   

One part of the IPM method is to determine when to apply a pesticide, if needed, to 

increase the efficiency of the application and to reduce the off-target drift.  As discussed 

previously applying pesticides in weather conditions that will not enhance drift plays a major 

role in reducing off-target drift.  This study, with the goal of finding a method for anticipating 

drift risk based on simple, in situ observations, fits well within the concept of IPM. This study 
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seeks to find a method for pesticide application, which will reduce the negative environmental 

impacts. 

2.5 Objectives 

 The objectives of this project are as follows: 

1) Determine if dispersion and deposition patterns of agricultural sprays are significantly 

different under the different Pasquill classes. It is hypothesized that conditions classified 

under different Pasquill classes will have significantly different dispersion and deposition 

characteristics, thus making them a viable way to predict drift. 

2) Determine the Pasquill classes under which agricultural sprays are most prone to drift.  It 

is hypothesized that the more stable Pasquill classes will allow more drift as the spray 

cloud is able to move beyond the application site without entrainment and reduced 

concentration.  

3) Produce a field guide to be used by pesticide applicators to determine drift risk based on 

simple SBL meteorological observations.  It is hypothesized that by using this guide and 

their observations applicators could reduce drift hazards for nearby crops, wildlife, and 

populations.  
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CHAPTER 3:  METHODS 

The materials and methods used in the field studies and their analysis were modified from 

those used in initial drift measurement tests (Roberto Barbosa, personal communication, 2011), 

and are outlined below.  Field trials were conducted at the Macon Ridge Research Station of the 

LSU AgCenter near Winnsboro, Louisiana, with the assistance of station staff.  The chemical 

makeup and the method of applying the spray remained constant, to isolate the effects of 

meteorological factors on drift.   

3.1 Case Studies 

Case studies were conducted to gather data used to test the real world feasibility of using 

the Pasquill stability classes as indicators for drift risk.  In each case study, the amount of 

agricultural spray that was deposited at various distances from an initial path of application under 

different stability classes was measured.  Case studies were conducted on a mown grass field, 

with a vegetation height of approximately 0.075 m (3 in), on 13 September and 18 October 2012, 

and 5 February and 13 March 2013.  The field was bounded on one side by a stand of trees but 

was open on other sides, with the spray applied so that the trees were not upwind of the path.  

Total fetch was about 200 meters.  

 To collect experimental (observed) data, a water-based spray containing 5 g l
-1

 of 

tartrazine – a food colorant, chemical formula: C16H9N4Na3O9S2 was used as a tracer dye 

released along a linear path.  Tartrazine was chosen for the tracer due to its stable, nonvolatile 

nature in the environment, and because it has little sensitivity to sunlight, with a photolysis half-

life of approximately 300 days (US National Library of Medicine 2012).  Tartrazine has been 

used effectively as a tracer dye in spray deposit and drift tests in the studies of  Richardson et al. 

(1989) and Pergher et al. (1997), and was found to be the best dye for colorimetric analysis by 
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the study of Pergher (2001) due to its low rate of photodegradation and lack of toxicity.  The 

spray mixture was applied using a John Deere 6000 series, 3 wheeled, high-cycle spray rig 

(Figure 3.1).  The rig was outfitted with Tee Jet TX-8 hollow cone brass nozzles at 0.508 m (20 

in) spacing, set to apply 93.5 l ha
-1

 (10 gal/acre), at a height of 1.06 m (42 in) (Figure 3.1).  Tee 

Jet TX-8 hollow cone brass nozzles were used, because they produce finer droplets that are more 

prone to drift (Nuyttens et al. 2007).  

Stands with various collection surfaces were placed at distances of 10, 25, and 50 meters 

downwind of the spray path.  To capture a full range of spray droplet sizes, three different 

collection surfaces were used.  The first type of collection surface consisted of solid plastic 

spheres—table tennis balls—with an average radius of 0.019 m, with 3 spheres suspended on a 

wire, with two wires extending from a wooden stand at 0.30 m (1 ft) intervals (Figure 3.2).  The 

second type of collection surface was composed of two 3.05 m (10 ft) monofilament strands—

fishing line—with a diameter of 0.59 mm stretched horizontally between wooden stands, with 

one monofilament at a height of 0.30 m (1 ft) above field surface and the other at a height of 1.22 

m (4 ft) above field surface (Figure 3.2).  The monofilament was run through a wash chamber 

made of PVC pipe with a rubber stopper at the lower end through which the line was pulled, to 

remove any spray deposited on the line.  The third type of collector was microscope slides 

positioned on ‘Leading Edge’ rotorods—rods extending off a central point which spins on 

battery power.  

During each study the meteorological elements observed included: ten-minute mean wind 

velocity (Hanna et al. 1982), fraction of sky covered by cloud, and estimated sun angle (Pasquill 

1961).   
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Figure 3.1: Spraying Equipment 

Left: John Deere 6000 Series, three-wheeled, high-cycle sprayer used to apply spray mixture 

during the case studies. Right: Tee Jet TX-8 hollow cone brass spray nozzles used in case 

studies.  

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Collector Stands 

LEFT: spherical collection surfaces, with a diameter of 0.019 m, were placed on wires extending 

from wooden stands at 0.30, 0.61, 0.91, and 1.22 m. RIGHT: 3.05 m monofilament strand was 

suspended between two wooden posts at 0.30 and 1.0 m  and running through PVC wash 

chamber.  
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The Pasquill class was determined by using the classification technique presented by 

Pasquill (1961), which used wind speed and insolation levels — slight, moderate, or strong —

determined by approximate sun angle and then modified by the cloud cover conditions. Sun 

angle and temperatures were reported to provide temporal estimates for when those conditions 

would be seen in a typical growing season.  The time and date were of each study were recorded 

to allow the calculation of the exact sun angle to ensure that the observer’s estimate was 

accurate.  Fifteen minutes after spraying, the spheres from each wire and microscope slides from 

each rotorod were collected in a labeled bag, and the monofilaments were washed in the PVC 

wash chamber using 60 ml of deionized water with the resulting wash being placed into a labeled 

mason jar to be taken back to a Louisiana State University Biological and Agricultural 

Engineering Department laboratory for analysis.   

3.2 Laboratory Procedures 

A visual analysis was performed on the microscope slides to determine the droplet size at 

distances from the spray path.  The analysis of the amount of spray on the spheres was performed 

by washing the spheres in 10 ml of deionized water for 30 seconds to transfer Tartrazine from 

the spheres to the 10 ml of water.  A 4 ml aliquot of the wash solution of each sphere and 

monofilament was then loaded into cuvettes to be analyzed in a Thermo-Genesys 20 

spectrophotometer using the wavelength of 425 nm—the peak absorbance wavelength for 

tartrazine (Jain et al. 2003, Pergher 2001).  The spectrophotometer sends a light beam at a 

specified wavelength through the sample, and then reports how much energy was absorbed by 

the sample (Lebeau et al. 2011).  Results from that analysis enabled the calculation of the 

concentration (g ml
-1

) of dye in the wash solution by comparing the absorbance reading from that 

sample to a standard dilution curve of the tartrazine dye.  The dilution curve was created in an 
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experiment where a known amount of dye was added to a known amount of water, and a set of 

serial dilution samples were created to analyze in the spectrophotometer.  For this 

standardization experiment eleven samples were created and a trend line representing the dilution 

curve was fit using ordinary least squares (OLS) regression (Figure 3.3).  The dilution curve is 

represented by the function                    in the format of       , where the 

dependent variable y is the concentration of tartrazine in the dye (g ml
-1

), the independent 

variable x is the absorbance reading of a sample, m is the slope, and b is the y-intercept.  This 

regression function had an R
2
 value (a goodness of fit measure) of 0.997, meaning the regression 

provides a good fit to the samples, and a standard error of 5.85E
-7

.  

The concentration of dye in the wash (g ml
-1

)
 
was then multiplied by the amount of water 

in the wash (10 ml for spheres and 70 ml for monofilament) to determine the total mass of dye in 

the wash (g), which was then divided by the collection surface area (m
2
).   

 
Figure 3.3: Tartrazine Dilution Standard 
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The collection area was assumed to be one-half of the total surface area of the collector as the top 

and front of the collector would be directly exposed to the spray droplets, while the bottom and 

back would not.  The calculated collection area of each sphere was equal to 0.00226 m
2
, and that 

of each monofilament was 0.00283 m
2
. 

3.3 Statistical Analysis of Case Study Samples 

 Once the deposition amount (mg m
-2

) was determined for each sample, the results were 

grouped based on different study parameters, including collector type, Pasquill Class, wind 

speed, insolation level, distance from spray path, and height above ground.  All data analyses 

were conducted separately for the spherical and monofilament collectors, as they have different 

collection efficiencies—a measure of their ability to capture spray droplets usually presented as a 

percentage of the amount of droplets collected to the total number of droplets that would have 

passed through the projected area of the collector had it not been present (May and Clifford 

1967).  The collection efficiency E can be determined for an object using a dimensionless 

impaction parameter P as defined by (Parkin and Merritt 1988) as   
   

  
 where vs is the droplet 

settling velocity, u is the horizontal wind speed, g is the acceleration due to gravity, and l is the 

characteristic length of the object, taken to be its diameter. Vs is determined by Stokes equation 

    
    

   
 where g is the acceleration of gravity, ρ is the density of the droplet (with water-based 

sprays ρ≈1 can be assumed (Quantick 1985)), d is the diameter of the droplet, and η is the 

viscosity of air.  The setting velocity for droplets with a range of sizes slightly larger than those 

as observed in the study of Barbosa (2011) using a similar nozzle were taken from Quantick 

(1985) to calculate P for the spherical and monofilament collectors.  From those values of P the 
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collector efficiencies were determined using the figures of experimentally derived E for spheres 

and cylinders found in the study of May and Clifford (1967).   

 To test the hypothesis that deposition differs significantly between the Pasquill classes, 

therefore allowing Pasquill class to be a valid way to estimate drift risk, a one-way analysis of 

variance (ANOVA) test was conducted.  The ANOVA statistical tool is used to test the null 

hypothesis that samples in multiple groups are drawn from populations with the same mean 

values; if group means are pulled from populations with the same mean values, the variance 

between the groups should be lower than the variance of the samples (von Storch and Zwiers 

1999).  In this case, a one-way ANOVA was run on the deposition data, with respect to PC, with 

the expectation that the null hypothesis would be rejected, and that samples from different PCs 

would be found to significantly differ.  The assumptions of ANOVA are that the response 

variable is normally distributed within each group, the samples are independent, and that there is 

homoscedasticity or homogeneity of variance across all values of the independent variable (Cox 

1987).  A Shapiro-Wilk’s test was conducted to test the assumption of sample normality (Shapiro 

and Wilk 1965); a chi-squared test was used to test sample independence; a nonparametric 

Levene’s test was used to test for homogeneity among variances (Levene 1960, Nordstokke and 

Zumbo 2010).  

If the results of the ANOVA reveal significant differences between treatments, a post hoc 

test known as Scheffé’s Simultaneous Confidence Interval test was used to determine which 

treatments differ significantly from the others.  The advantage of Scheffé's test over simply 

conducting multiple t-tests for difference of two means is that the repeated implementation of the 

t-tests increases the probability of introducing a Type I error, an erroneous conclusion of 

rejecting a true hypothesis (Cox 1987, Scheffé 1999).   
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To determine under which Pasquill class the spray was most prone to drift, the means, 

variance, and standard deviations of samples in different groups were calculated and plotted 

using IBM’s SPSS 21 for comparisons.  OLS correlation analysis was performed, where the 

correlation of several variables was tested in relation to the observed deposition on spherical 

collectors to determine which physical factors most influenced deposition.  The independent 

variables tested were those observed during the case studies and cited as being important factors 

that affect drift; these include wind speed (m s
-1

), sun elevation angle (degrees above horizon), 

sample distance from spray path (m), sample height above the ground surface (m), and relative 

humidity.  

The results of these experiments will be presented in Chapter 4.  

 

  



30 

 

CHAPTER 4:  RESULTS 

The purpose of this chapter is to describe the results of the experiments which took place 

from fall 2012 through spring 2013 in Winnsboro, Louisiana.  All explanations, implications, 

and suggestions for future research involving these results will be presented in Chapter 5.   

A series of eight case studies were analyzed throughout fall 2012 and spring 2013.  The 

results from these studies are presented here ordered by the context in which those conditions 

would typically be seen during a day in a growing season, or throughout the growing season such 

that lower sun angles and cooler conditions are typically observed early in a day or early in the 

growing season with higher sun angles and warmer temperatures observed later in a day or later 

in the season.  The meteorological conditions and the resulting Pasquill Class (PC) under which 

the case studies took place are shown in Table 4.1, which details the observed conditions from 

each of the case studies.  

Table 4.1: Atmospheric Conditions during Case Studies 

Case 

Study 

Date/Time 

(CST) 

Pasquill 

Class 

Average 

Wind (m/s) 

Sun 

Angle (˚) 

Cloud 

Cover 

Insolation Temperature 

(˚C) 

RH 

(%) 

1 2/5/13  10:50 D 0.09 37 1 slight 15.5 71.6 

2 2/5/13  10:00 D 0.49 32 1 slight 17.2 68.8 

3 3/13/13 09:00 B 1.39 32 0 slight 10.8 45.8 

4 9/13/12  09:50 B 1.23 57 0.7 slight 29.4 52 

5 3/13/13 09:50 B 2.19 41 0 moderate 14.4 37.6 

6 10/18/12  10:30 A 1.76 44 0 moderate 26.8 53.5 

7 9/13/12  09:30 A 0.88 44 0.4 moderate 27.2 68.5 

8 10/18/12  12:20 A 1.88 47 0.2 moderate 32.3 48.6 
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As stated in Chapter 3, the deposition on spherical and monofilament collectors were 

analyzed independently due to their differing collection efficiencies.  The results of collection 

efficiency estimates revealed that, both spherical and monofilament collection efficiencies 

increased with wind speed and droplet size.  However, the spherical collectors had much lower 

overall collection efficiencies, which were more dependent on droplet size than monofilament 

collectors.  It was found that the monofilament collectors had high collection efficiencies with E 

> 90 percent for most droplet sizes and wind speed combinations seen during the case studies, 

with the lowest E being 65 percent.  Values for the collection efficiencies of spherical collectors 

ranged from <10 percent for the slowest wind speed to 40-75 percent for larger droplets and 

higher wind speeds.  

The results of the deposition analysis for the spherical collectors from the eight case 

studies are presented in Table 4.2.  The samples are labeled such that the first number 

corresponds the case study number (1-8), the middle letter corresponds to the sampler distance 

from the spray path (A= 10 m, B= 25 m and C= 50 m from spray path), and the last number 

corresponds to the position of the sphere on the sampler stand (1 and 2 are 0.30 m above the 

ground surface, 3 and 4 are at 0.61 m, 5 and 6 are at 0.91 m, and 7 has a mean height of 1.22 m).   

The monofilament samplers were unavailable for the two case studies conducted on the 

first day of field work, reported as case studies four and seven.  Table 4.3 shows the overall 

results from the remaining case studies of the deposition analysis with the samples labeled such 

that the first number represents the case study number, the following letter represents the 

samples distance from the spray path (A = 10 m, B = 25 m, and C = 50 m), and the last letter 

represents the height of the line (L = 0.30 m, and U = 1.22 m).  
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Table 4.2: Deposition (mg m
-2

) on Spheres 

 
                      

Sample Deposition Sample Deposition Sample Deposition Sample Deposition Sample Deposition Sample Deposition Sample Deposition Sample Deposition 

1A1 0.84 2A1 0.77 3A1 0.99 4A1 1.10 5A1 0.91 6A1 1.50 7A1 1.28 8A1 2.38 

1A2 0.62 2A2 0.73 3A2 0.80 4A2 1.57 5A2 0.91 6A2 1.43 7A2 1.02 8A2 3.22 

1A3 0.95 2A3 0.80 3A3 0.99 4A3 1.02 5A3 1.13 6A3 1.32 7A3 0.95 8A3 0.98 

1A4 0.84 2A4 0.95 3A4 0.91 4A4 1.68 5A4 0.84 6A4 1.61 7A4 1.06 8A4 3.44 

1A5 0.69 2A5 1.02 3A5 1.06 4A5 1.54 5A5 0.88 6A5 1.79 7A5 1.21 8A5 3.78 

1A6 0.73 2A6 0.73 3A6 0.99 4A6 2.56 5A6 1.13 6A6 1.76 7A6 1.10 8A6 2.12 

1A7 0.62 2A7 0.80 3A7 0.91 4A7 1.39 5A7 1.17 6A7 1.13 7A7 1.21 8A7 3.63 

1B1 0.99 2B1 0.80 3B1 0.80 4B1 0.73 5B1 1.13 6B1 2.78 7B1 1.76 8B1 1.28 

1B2 1.17 2B2 0.73 3B2 0.91 4B2 1.39 5B2 0.84 6B2 1.43 7B2 1.68 8B2 1.79 

1B3 1.21 2B3 0.80 3B3 0.88 4B3 1.54 5B3 0.80 6B3 1.10 7B3 1.13 8B3 1.10 

1B4 1.06 2B4 0.84 3B4 0.88 4B4 1.13 5B4 0.95 6B4 1.17 7B4 1.17 8B4 1.13 

1B5 1.17 2B5 1.06 3B5 0.84 4B5 0.95 5B5 0.88 6B5 1.10 7B5 1.13 8B5 2.45 

1B6 1.06 2B6 0.84 3B6 0.77 4B6 0.66 5B6 0.95 6B6 1.35 7B6 1.10 8B6 1.76 

1B7 1.17 2B7 0.69 3B7 0.80 4B7 0.58 5B7 1.06 6B7 1.13 7B7 1.10 8B7 1.87 

1C1 0.62 2C1 1.10 3C1 0.55 4C1 2.09 5C1 0.80 6C1 0.99 7C1 0.99 8C1 1.98 

1C2 0.84 2C2 0.84 3C2 0.66 4C2 1.50 5C2 0.88 6C2 1.06 7C2 0.84 8C2 1.76 

1C3 0.69 2C3 0.80 3C3 0.62 4C3 1.13 5C3 0.80 6C3 1.06 7C3 0.84 8C3 1.21 

1C4 0.66 2C4 1.02 3C4 0.62 4C4 0.95 5C4 0.77 6C4 1.21 7C4 1.21 8C4 1.39 

1C5 0.73 2C5 1.02 3C5 0.62 4C5 1.61 5C5 0.99 6C5 1.13 7C5 0.88 8C5 1.68 

1C6 0.73 2C6 0.84 3C6 0.66 4C6 1.35 5C6 0.84 6C6 0.88 7C6 0.95 8C6 1.65 

1C7 0.80 2C7 0.88 3C7 0.69 4C7 1.28 5C7 0.91 6C7 0.91 7C7 0.58 8C7 1.65 
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Table 4.3: Deposition (mg m
-2

) on Monofilaments  

Sample Deposition Sample Deposition Sample Deposition Sample Deposition Sample Deposition Sample Deposition 

1AL 15.360 2AL N/A 3AL 12.281 5AL 15.976 6AL 33.222 8AL 28.910 

1AU 10.433 2AU 11.665 3AU 27.063 5AU 19.672 6AU 17.208 AU 19.672 

1BL 11.665 2BL 12.897 3BL 16.592 5BL 17.208 6BL 21.519 8BL 15.976 

1BU 14.129 2BU 11.049 3BU 12.281 5BU 15.360 6BU 28.910 8BU 31.990 

1CL 12.897 2CL 10.433 3CL 12.281 5CL 15.360 6CL 19.672 8CL 12.897 

1CU 11.665 2CU 11.049 3CU 12.281 5CU 15.976 6CU 19.672 8CU 15.360 

 

4.1:  Results of Analysis of Variance 

The results from testing the assumptions of the one-way ANOVA tests are presented 

here.  First, the assumption that the samples within each group have a normal distribution was 

tested. 

The Shapiro and Wilk (1965) test for normality is a powerful and frequently used test for 

normality that can be used for data with a large range of sample sizes (Thode 2002).  If the 

significance of the Shapiro-Wilk’s test is > 0.05, the data can be said to be normally distributed 

at the 95 percent confidence interval; if the significance is < 0.05 it can be said that the data 

significantly deviate from the normal distribution.  For the spherical and monofilament 

collectors, the Shapiro-Wilk’s tests revealed that only samples of deposition on monofilaments 

from PC A and D had normal distributions (Tables 4.4 and 4.5).  However, Kirk (1995) suggests 

that ANOVAs are robust and adequately powerful even if the normality assumption is not met, 

and are often still used.  
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Table 4.4: Shapiro-Wilk’s Test for Normality for Spherical Collectors 

 Pasquill Class Shapiro-Wilk 

 
Statistic Degrees of 

Freedom 

Sig. 

Deposition 

A 0.78 63 0.00 

B 0.84 63 0.00 

D 0.94 42 0.03 

 

Table 4.5: As in Table 4.4, but for Monofilament Collectors 

 Pasquill Class Shapiro-Wilk 

 
Statistic Degrees of 

Freedom 

Sig. 

Deposition 

A 0.90 12 0.16 

B 0.80 12 0.01 

D 0.89 11 0.15 

 

A chi-square test was used to examine whether the samples within each PC were 

independent (Cox 1987).  A one-sample chi-square test of both spherical and monofilament data 

suggests that the null hypothesis that categories of PC occur with equal probability is retained, 

thus the data are assumed to be independent.   

Levene's (1960) test and the Brown–Forsythe (1974) test are commonly used to test for 

homoscedasticity and use the same procedure as a one-way ANOVA, except with the absolute 

value of the difference between values and the mean or median for their group/treatment, 

respectively.  However, these tests operate on the assumption that the samples are normally 

distributed and are of equal size, but the data from these experiments are not all normally 

distributed and of unequal sizes.  Since the results for each PC are not normally distributed and 

have unequal sample sizes, a non-parametric Laverne’s test is conducted (Nordstokke and 

Zumbo 2010).  This is done by ranking the total population of deposition samples across all PCs, 
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then determining the mean rank for each PC. Then the difference between each sample and its 

group mean is calculated, and the absolute value is taken. It is with those data that a one-way 

ANOVA is run and the results indicate whether the variance differs significantly between PCs 

(Nordstokke and Zumbo 2010).  For the data from both spherical collectors and monofilament 

collectors the variances were found to be homogeneous (Tables 4.6 and 4.7).  

Table 4.6: Nonparametric Levene’s Test for Deposition on Spheres 

 Sum of Squares Degrees of 

Freedom 

Mean Square F Sig. 

Between Groups 1180 2 588 1.315 0.271 

Within Groups 73800 165 447   

Total 74500 167    

 

Table 4.7: As in Table 4.6, but for Monofilament Collectors 

 

 Sum of Squares Degrees of 

Freedom 

Mean Square F Sig. 

Between Groups 11.2 2 5.62 0.445 0.645 

Within Groups 404 32 12.6   

Total 415 34    

After testing the assumptions, it was determined that a one-way ANOVA could be run on 

the data to determine if they had different means. The one-way ANOVA for deposition on 

spheres (Table 4.8) produced an F-value of 31.52, which was above the .05 critical F-value 3.07 

determined from the F distribution table for an F with 2 and 165 degrees of freedom, so the null 

hypothesis was rejected. Since the null hypothesis of the one-way ANOVA was rejected, a 

Scheffé’s Simultaneous Confidence Interval test was conducted for those samples (Table 4.9), 

and the test revealed that the deposition on spheres from case studies within each PC 

significantly differed from samples in both other PCs.  The one-way ANOVA for deposition on 

monofilaments (Table 4.10) produced an F-value of 12.59, which was above the .05 critical F-
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value of 3.22 for an F with 2 and 32 degrees of freedom, so the null hypothesis of the one-way 

ANOVA was rejected. The Scheffé’s Simultaneous Confidence Interval test (Table 4.11) 

revealed that for deposition on monofilaments, samples from PC A differed significantly with the 

other two PCs, but PC B and PC D did not differ significantly from each other at the 95 percent 

confidence interval. 

Table 4.8: ANOVA of Deposition on Spheres  

 Sum of Squares Degrees of 

Freedom 

Mean Square F 

Between PC 14.9 2 7.46 31.524 

Within PC 39.0 165 0.237  

Total 53.9 167   

 

Table 4.9: Scheffé's Test on Spheres 

(I) Pasquill  Class (J) Pasquill Class Mean Difference 

(I-J) 

Std. Error Sig. 

A 
B 0.460* 0.087 0.000 

C 0.741* 0.097 0.000 

B 
A -0.460* 0.087 0.000 

C 0.282* 0.097 0.016 

C 
A -0.742* 0.097 0.000 

B -0.282* 0.097 0.016 

*. The mean difference is significant at the 0.05 level. 

Table 4.10: As in Table 4.8, but for Monofilament Collectors 

 Sum of Squares Degrees of 

Freedom 

Mean Square F 

Between PC 584 2 292 12.586 

Within PC 742 32 23.2  

Total 1326 34   
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Table 4.11: As in Table 4.9, but for Monofilament Collectors 

(I) Pasquill Class (J) Pasquill Class Mean Difference 

(I-J) 

Std. Error Sig. 

A 
B 6.06* 1.96 0.016 

D 9.97* 2.01 0.000 

B 
A -6.06* 1.96 0.016 

D 3.91 2.01 0.167 

D 
A -9.97* 2.01 0.000 

B -3.91 2.01 0.167 

*. The mean difference is significant at the 0.05 level. 

4.2 Results of Aggregated Spherical Collectors 

The mean deposition on all spherical collectors from case studies representing PC A, B, 

and D (Figure 4.1) decreases from 1.48 mg m
-2

 for samples in PC A to 1.02 mg m
-2

 for samples 

in PC B to 0.863 mg m
-2

 for samples in PC D, which are surrogates for surface boundary layer 

(SBL) static stabilities: highly unstable, moderately unstable, and neutral.  In addition, Figure 4.1 

shows that the variance around the mean decreases from 0.463 in PC A to 0.132 in PC B to 0.028 

in PC D— decreasing variance is shown in the figure by the error bars representing one standard 

deviation from the mean.   

As was presented in Chapter 2, PC is determined based on both insolation and wind 

speed.  To isolate the effects of insolation and wind speed, mean deposition was plotted against 

both individually (Figures 4.2 and 4.3).  The eight case studies were divided evenly in regard to 

insolation, with four studies conducted under both slight and moderate insolation. Each case 

study had a unique mean wind speed value.  Figure 4.2 shows that the mean deposition measured 

on all spherical collectors during case studies with moderate insolation exceeded the measured 

deposition during slight insolation.   
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Figure 4.1: Mean Deposition (mg m
-2

) on Spheres by Pasquill Class 

 

 
Figure 4.2: Mean Deposition (mg m

-2
) on Spheres by Insolation 
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Figure 4.3: Mean Deposition (mg m
-2

) on Spheres by Mean Wind Speed 

Figure 4.3 shows a general increase in mean deposition with wind speed, except for case 

studies 3 and 5, which had small measured deposition values despite having relatively higher 

wind speeds as well as small variance around the mean deposition.  As seen in Figure 4.1 the 

variance around the mean deposition decreased from PC A to B to D.   

 To better visualize that variance, Figure 4.4 shows each measured deposition value for all 

spherical collectors from case studies with PC A, B, or D conditions.  There were three case 

studies conducted under PC A and B, and two under PC D conditions.  The range of measured 

deposition values was greater in PC A studies, with a few notable high measures.  PC B had a 

slightly smaller range with a few outlying values.  PC D had the smallest range and no outlying 

values. 
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Figure 4.4:  Measured Sphere Deposition Values (mg m
-2

)  

 

4.3 Results from Specific Distances and Heights of Spherical Collectors 

Figures 4.1 to 4.4 show measured deposition values on spherical collectors aggregated 

from various locations within the dispersion field and across multiple case studies. More detailed 

information can be found by analyzing deposition at each collector distance (A = 10 m, B = 25 

m, and C = 50 m) and height (0.30 m, 0.61 m, 0.91 m, and 1.22 m) during the different PC 

conditions (Figures 4.5 and 4.6).   

Figure 4.5 shows the mean deposition on spheres from collectors as set distances, it 

should be noted that this value is the mean for collector across all heights, but the mean collector 

heights between distances and PC are equal.  Figure 4.5 reveals that samplers at 10 m from the 

spray path are responsible the most of the variance in PC A case studies, but that there is less 

variance in deposition rates at 10 m in PCs B and D.  A decreasing trend in deposition can be 

seen at 10 m as PC increases in stability.  During case studies with PC A conditions, there is a 

clear decrease in deposition with distance from the spray path.  During case studies with PC B 
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conditions, the deposition decreases beyond 10 m, but at 25 m and 50 m the mean of deposition 

measurements fall within one standard deviation of each other, meaning that they cannot be 

treated as different from a statistical perspective.  During case studies with PC D conditions, the 

deposition rates are less than with PC A or B, but as the cloud moves farther from the spray path 

the deposition increases at 25 m, and then decreases at 50 m back to levels similar to those at 10 

m.   

 

Figure 4.5: Mean Deposition (mg m
-2

) on Spheres at Distances from Spray Path 

Figure 4.6 shows the mean deposition on collectors grouped by collector height.  Samples 

from case studies with PC A conditions had the greatest mean deposition at the 0.30 m height 

followed by 0.91 and 1.22 m samples, with the samples at 0.61 m having the lowest mean 

deposition.  The means for the 0.30, 0.91, and 1.22 m samples were all within one standard 

deviation of each other, while the mean for samples at 0.61 m was just outside of the standard 

deviation for the 0.30 m samples, but not for the 0.91 or 1.22 m samples.  Figure 4.5 shows that 
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studies conducted under PC A conditions had the most variance around the mean, which agrees 

with the other assessments, suggesting that deposition is highly variable in PC A conditions.  The 

mean of measured deposition for samples at a given height in studies with PC B and D 

conditions were both lower than those with PC A conditions, and they fall within one standard 

deviation of the other heights of the same PC; with a decrease in deposition from PC B to D. 

 

 
Figure 4.6: Mean Deposition (mg m

-2
) on Spheres at Heights above Ground 

Next, the case study samples were divided into groups by PC conditions and the mean 

deposition on collectors at each sample height were plotted for each collector distance (10, 25, 

and 50 m).  Figure 4.7 shows the results of the deposition analysis for case studies with PC A 

conditions on the left, PC B conditions in the middle, and PC D conditions on the right.  The case 

studies in PC A had more overall variance than those from PC B or PC D and that by 50 m there 

is decreasing mean deposition with height. The samples in PC B have more variability  
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Figure 4.7 Mean deposition (mg m-2) on Spheres for Pasquill Classes A, B, and D 

between mean deposition at different collector heights at the same distance, and a slight decrease 

in mean deposition beyond 10 m.  As expected from previous analyses, this figure shows that 

case studies with PC D conditions had smaller mean deposition that were consistent at all 

collector heights and distances, with the means within one standard deviation of other group 

mean. 

4.4 Results of Aggregated Monofilament Samples 

Figure 4.8 shows the measured deposition values on monofilament collectors from the 

two case studies conducted in each PC.  A similar pattern to the deposition on spheres can be 

observed, with greater and more varied deposition in PC A conditions and less and more similar 

values in PC B and D respectively.  Similarly, Figure 4.9 shows the mean deposition values of 

samples from each PC, with the decreasing mean deposition and variance—signified by the 

standard deviation about the mean—from a mean of 22.01 mg m
-2

 with a standard deviation (σ) 

of 6.6 for samples in PC A to a mean of 16.03 mg m
-2

 with σ of 4.02 for samples in PC B to a 

mean of 12.11 and σ of 1.49 for samples in PC D.   
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Breaking down the component inputs for PC categorization, as discussed in Chapter 2, 

Figure 4.10 shows the mean deposition on samples grouped by insolation categories (moderate 

and slight) with a decrease from moderate to slight.  Figure 4.11 shows the mean deposition on 

samples grouped by the mean wind speed observed during the case studies.  This shows that as 

wind speed increases the deposition rates generally increase and become more varied; however, 

this is not a linear trend, with the peak in mean deposition occurring at a wind speed of 1.76      

m s
-1

. 

 

Figure 4.8: Measured Monofilament Deposition Values (mg m
-2

) 

  
Figure 4.9: Mean Deposition (mg m

-2
) on Monofilaments by Pasquill Class 
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Figure 4.10: As in Table 4.9, but by Insolation 

  
Figure 4.11: As in Table 4.9, but by Wind Speed 

4.5 Results from Specific Distances and Heights on Monofilaments 

Next, samples from each PC were separated into groups based on their distance from the 

spray application path (Figure 4.12).  The mean deposition for samples in PC A shows virtually 

no change from 10 to 25 m with the mean deposition decreasing by only 0.15 mg m
-2

.  There is a 
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drop in both mean and variance in samples from 25 m to 50 m, with a decrease in mean 

deposition from 24.60 to 16.9 mg m
-2

 and a decrease in σ from 6.27 to 2.91 mg m
-2

.  Samples 

from case studies during PC B show a decrease in mean deposition from 18.75 mg m
-2

 at 10 m to 

15.36 mg m
-2

 at 25 m, and 13.97 mg m
-2

 at 50 m, with decreasing standard deviations from 5.47 

to 1.90 mg m
-2

 and 1.17 mg m
-2

, for 10 m, 25 m, and 50 m respectively.  Samples from case 

studies with PC D show a small decrease in mean deposition (<1 mg m
-2

 difference from 10 m to 

50 m ) and variance with distances as well; however, the mean of samples at each distance is 

within one standard deviation of the other two distances.  

 
Figure 4.12: Mean Deposition (mg m

-2
) on Monofilaments by Distances from Spray Path 

 

Then the samples from each PC were grouped based on the height of the monofilaments, 

with the results presented in Figure 4.13.  The mean deposition for the samples from case studies 

with PC A show an increase of mean deposition of 0.11 mg m
-2

 from the lower strand to the 

upper, while the standard deviation decreased from 7.05 to 6.13. The samples from case studies 
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with PC B conditions show a larger increase in mean deposition from 14.95 to 17.11 mg m
-2

 and 

variance with standard deviation increasing from 1.97 to 5.11 from the lower strand to the upper.  

Samples from case studies with PC D show a small decrease in mean deposition with a 0.97 mg 

m
-2

 change and decreasing variance from a standard deviation of 1.63 to 1.18 from the lower to 

the upper strands.  

     
Figure 4.13: As in Figure 4.12, but by Heights above Ground     

 

 

Figure 4.14: Mean Deposition (mg m
-1

) on Monofilaments for Pasquill Classes A, B, and D 
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Figure 4.14 shows that deposition in case studies with PC B conditions (center panel) was 

lower than that in PC A conditions (left panel), but had a different pattern. During PC B 

conditions the 1.22 m strand showed a large decrease in mean deposition from 10 m to 25 m and 

then a slight increase from 25 m to 50 m.  The 0.30 m strand showed an increase in mean 

deposition from 10 m to 25 m, but then dropping back at 50 m to levels similar to 10 m.         

Figure 4.14 (right panel) shows that the deposition in case studies with PC D conditions 

was relatively stable between distances and heights, with samples from the 0.30 m strand 

showing a slight decrease with distance (a change of  ~5 mg m
-2

), and an even smaller increase in 

samples from the 1.22 m strand (with total change of approximately 2 mg m
-2

).        

4.6 Results of Rotorod Analysis   

 The microscope slides from the Rotorod collectors were examined with a microscope to 

determine droplet sizes captured during the case studies.  A lack of specialized equipment and 

improper transportation, the exact droplet sizes were not able to be measured; however, a 

qualitative measure of droplet size was recorded.  In case studies performed in PC A there was a 

mix of large and small droplets on samples from both 10 m and 25 m while samples from 50 m 

showed small droplets.  In case studies with PC B conditions larger droplets were seen mainly on 

samples from 10m whereas small droplets were observed at all locations. In case studies 

performed in PC D conditions no obviously larger droplets were seen on any slides. With this 

information, and with the results of the work of Barbosa (2011) who performed drift experiments 

with a similar nozzle and found droplet sizes in the range of 120-80 μm at distances from 

approximately 5-25 m, droplets in a slightly larger range of 140-60 μm were assumed to have 

been present in these case studies and were used to calculate the range of collection efficiencies 

presented in Chapter 3.  
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4.7 Results of Correlation Analysis 

The results of the OLS correlation analysis for spherical collectors presented in Table 

4.12 (monofilament collectors in Table 4.13), the correlation coefficient shows a significant 

correlation beyond a 95% confidence level for all variables except height.  Despite that 

correlation, the error of the slope for the trend line between the variables and deposition is 

greater than the slope for wind speed and height, meaning that changes in those 

Table 4.12: OLS Regression for Spherical Collectors 

Independent 

Variable 

Trend 

Line Slope 

Slope 

Error 

Intercept Intercept 

Error 

Correlation Goodness 

of Fit 

N 

Wind Speed 0.32 0.61 0.72 0.02 0.37 0.15 168 

Sun Angle 0.04 0.00 0.34 0.00 0.50 0.26 168 

Distance -0.01 0.00 1.33 0.00 -0.22 0.04 168 

Height 0.00 0.30 1.11 0.01 -0.01 0.00 168 

Relative 

Humidity 

-0.01 0.00 1.72 0.00 -0.33 0.06 168 

  

4.13: As in Table 4.12, but for Monofilament Collectors 

Independent 

Variable 

Regression 

Slope 

Slope 

Error 
Intercept 

Intercept 

Error 
Correlation 

Goodness 

of Fit 
N 

Wind Speed 4.59 56.35 10.91 6.19 0.50 0.27 35 

Sun Angle 0.71 0.96 -10.45 1.32 0.56 0.34 35 

Distance -0.05 0.16 18.33 0.02 -0.16 0.02 35 

Height 1.23 209.90 15.94 21.91 0.02 0.01 35 

Relative 

Humidity 
-0.22 0.24 28.65 0.13 -0.36 0.17 35 
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variables produce a range of changes in deposition that lies beyond the estimated relationship, so 

it cannot be said with confidence that the trend exists.  This leaves sun angle, relative humidity, 

and distance as variables with which deposition trends and has a significant correlation—ordered 

by the correlation value.  Relative humidity and distance have negative correlation values, so 

deposition decreases as these variables increase; so deposition on a collector decreases as the 

distance from the spray path increases or as the relative humidity increases. Deposition is 

positively correlated with sun angle, meaning that the closer the sun is to zenith the higher the 

measured deposit on collectors. The results of the OLS regression analysis for monofilament 

collectors revealed similar correlation and r
2
-values to those from the spherical collectors; 

however, none of the trend line slopes were greater than the error associated with their 

calculation.  

4.8 Summary of Results 

This chapter described the results of the spray drift and deposition case studies. The six 

most important results were:  

1.  Deposition differed significantly between all PCs on spherical collectors, and between PC A 

and PC B/PC D on monofilament collectors. 

2.  Deposition rates decreased from PC A to B to D. 

3.  Deposition decreased with distance in PC A. 

4.  Deposition was similar with distance in PC D. 

5.  Variance in deposition amount was greater in PC A and smaller in PC D. 

6.  Significant trends were observed between deposition and the physical factors of sun angle, 

distance and relative humidity for spherical collectors. 
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CHAPTER 5: DISCUSSION 

5.1 Significance of PC and Deposition Trends 

The F statistic of the ANOVA, calculated at the ratio between the mean squares within 

the treatments (Pasquill Classes (PCs)) to the mean squares between the treatments, provides a 

test of the null-hypothesis that there are no treatment effects.  If there were no treatment effects, 

the F statistic should be 1, and the greater the number above 1 the more unlikely it is that there 

are no treatment effects.  A critical F-value (based on the degrees of freedom of between and 

within groups) can be found using an F distribution table for a given level of significance, and 

represents the threshold for rejecting the null hypothesis that the groups represent the same 

population (Cox 1987). The critical F-statistic value at 95% confidence interval was 3.07 for the 

spherical collectors and 3.32 for the monofilament collectors.  The results of the ANOVA for 

both spherical and monofilament samples suggest that the null-hypothesis that the groups come 

from the same population, i.e. there are no treatment effects, must be rejected.  Both F statistics 

were well above the critical values, suggesting that it is extremely unlikely that there are no 

treatment effects.  This confirms that the samples collected in different PCs are not 

homogeneous. 

The results of Scheffé’s Simultaneous Confidence Interval test suggest that the means of 

the samples from each PC differ significantly from each other with respect to the spherical 

collectors, while on the monofilament collectors samples from PC A differed significantly from 

PC B and PC D, but PC B and PC D did not differ significantly from each other.  These results 

indicate that Pasquill classes represent valid groups into which conditions that lead to different 

spray deposition, and thus drift patterns, may be separated.  The rest of the discussion will 

proceed upon this notion. 
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5.2 Deposition and Pasquill Class  

As shown in Chapter 4, the deposition on both spherical and monofilament collection 

surfaces decreased from PC A to B to D (Figures 4.1 and 4.13).  Three possible explanations for 

the decrease in deposition are offered.  The first is that rate of spray deposition, driven by the 

concentration of spray droplets settling to the surface, is greater in PC D than in PC B which is in 

turn greater than the rate in PC A, meaning that the amount of spray airborne as the cloud moves 

with the wind away from the application site decreases from PC D to B to A.  The results 

indicate that during PC D conditions most of the spray droplets have settled to the surface before 

reaching the first collectors, whereas during PC B conditions more of the droplets remain 

airborne by the time they reach the collectors, and even more so during PC A conditions.  If this 

explanation were correct there should be an observed decrease in deposition with distance in 

each PC. This trend should be especially evident in PC A conditions where most of the spray 

would be deposited in the area between collectors meters but still clearly visible in both PC B 

and D as well.  There should also be a decreasing trend in deposition with height at each sample 

distance as more of the cloud droplets would be closer to the ground surface. 

As depicted in Figure 4.5, there is indeed a clear decrease in deposition on spherical 

collectors in PC A.  Samples from PC B show a decrease from 10m to 25 m, but an increase 

from 25 m to 50 m.  Samples from PC D show increases between 10 m and 25 m but a decrease 

from 25 to 50 m.  As seen in Figure 4.6 the spherical collection surfaces do not show a 

decreasing trend in deposition with height, but rather samples from PC A and PC B conditions 

show no discernible pattern while samples from PC D show an increase in deposition with 

height.  As depicted in Figure 4.16, samples from the monofilament collectors do show a general 

decreasing trend with distance from the spray path, but it is least discernible during PC A with 



53 

 

deposition at 10 m and 25 m virtually the same.  Deposition on monofilament samples in PC A 

had a slight increase with height, with an even greater increase with height during PC B while 

PC did show a slight decrease with height, as shown in Figure 4.17.  Therefore, these results do 

not match what would be expected if this explanation were adequate. 

 The second potential explanation of this observation is that less of the spray is depositing 

on the collection surfaces because more of the spray cloud remains aloft and drifts beyond the 

application site and the collectors in PC D than in PC B and PC A.  If this explanation were 

adequate, the results would indicate that more of the spray would be deposited with a higher 

concentration on surfaces near the application site in PC A and B conditions, while more of the 

spray would remain above the surface and be deposited farther from the application site with 

reduced concentration but increased coverage in more stable PC D conditions.  Thus, if this were 

the case there should be a decreasing trend in deposition with distance for PC A, less so for PC 

B, and even less so for PC D as the rate of deposition decreases, respectively, because more of 

the cloud is able to remain airborne.  There should also be an increasing trend in deposition with 

increasing sample heights at each distance, especially in PC D as more of the cloud is maintained 

above the surface.   

The first of those trends was depicted in Figure 4.5 with the samples from spherical 

collection surfaces, and there was a slight increase in mean deposition with height in PC D 

samples as seen in Figure 4.6, but not in the samples from the other PCs.  The mean deposition 

on monofilament collection surfaces, as presented in Figures 4.16 and 4.17, shows the greatest 

decreasing trend in PC B, and not PC A, with a slight decrease in PC D.  The monofilament data 

do show a slight increase in deposition with height during PC A and PC B conditions, but not in 
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PC D conditions.  Again, the data do not match what would be expected if this explanation were 

adequate.  

Neither of the previous hypotheses are completely supported by the data, that is because 

they assume that the spray cloud is made of droplets that will all react the same way to the 

surface boundary layer (SBL) conditions; however, in reality spray clouds consist of droplets 

with a range of diameters with larger droplets behaving one way and smaller droplets another 

(Bache and Johnstone 1992).  The third explanation considers this idea and combines the 

previous two explanations by suggesting that larger droplets are suspended better in 

progressively more turbulent conditions of PC B and PC A and then settle out just beyond the 

application site (in the range of the sample collectors); thus allowing for larger deposition 

amounts on surfaces near the application site.  Deposition from smaller droplets increases from 

PC A to B to D as conditions become more stable and the droplets are able to remain in a more 

defined cloud without entrainment and decreasing in concentration with distance from the 

application site, leading to more stable deposition rates with distance.  According to this 

explanation, there should be increases in measured deposition during the more turbulent PCs as 

the larger droplets are supported by stronger vertical winds and will travel farther downwind 

carrying larger amounts of dye than smaller droplets; therefore fewer droplets would be required 

to cause equal measured deposits from larger droplets as from smaller droplets.  There should 

also be an observed increase in the amount of large droplets from PC D to B to A at each 

collector distance, with large droplets observed more on lower collection surfaces than higher 

surfaces.   

Exact measures of the droplet sizes at the different sample distances and heights would 

serve as the best evidence for the validity of this explanation.  The rotorod samplers holding 
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microscope slides were used with this intention in mind; however, they would only provide 

droplet sizes at distances but not each sample height.  The researcher was not able to determine 

droplet size with a quantitative measure, as discussed in Chapter 4, as only qualitative measures 

of droplet size were recorded from these samples.  The observed decrease in large droplets with 

distance in PC A, and from PC A to PC B supports this notion.  In addition, data from case 

studies with PC D show fairly steady deposition rates on the monofilament strands—which have 

relatively high collection efficiencies for the whole range of expected droplet sizes—with 

distance from the spray path in PC D (Figure 4.16).  In addition, the data show an the increase in 

deposition from 10 m to 25 m and then back to 10 m levels at 50 m on spherical collectors 

(Figure 4.5), which had higher collection efficiencies for larger droplets.  These observations 

suggest that the smaller droplets are staying together without significantly mixing out, while 

most large droplets are deposited quickly, at short distances from the spray path.  These results 

support the suppositions about droplet behavior in different stability conditions made by Miller 

et al. (2000) and Thistle (2000).  

The decreasing spread of sample values, and variance around the mean from PC A to PC 

B to PC D as presented in Figures 4.1, 4.4, 4.12, and 4.13 suggest that Pasquill stability classes 

tend to represent different degrees of turbulence in the SBL.  As explained in Chapter 2, PC A is 

termed extremely unstable, PC B is moderately unstable, and D is neutral. These results indicate 

that the greater the SBL turbulence, the more likely it is for heavy or light deposition to occur on 

an individual collector depending on its location in relation to eddies and the moving spray cloud 

(Miller et al. 2000).  Furthermore, these results support the notion that more large droplets 

remain suspended during PC A than PC B and PC D, as larger droplets would be more likely to 

increase the deposition measure by adding large increases to the mass of dye deposited on a 
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collection surface.  As seen in Figure 4.10 there were five samples whose dye deposits were 

upper-end outliers—out of which one was significant—at 10 m, three upper-end outliers—two of 

which were significant—at 25 m, and only one upper-end outlier at 50 m.  In addition to these 

outlying values, the upper quartiles of PC A field trials were very large, being 1-2 mg m
-2

 higher 

than the median deposit amount.  These values could have been recorded because the sampler 

was positioned just so that a higher concentration section of the cloud was moved past the 

collectors within one of the eddies caused by the turbulent SBL conditions.  The decrease in 

outliers from PC A to B to D further supports the explanation that Pasquill stability classes 

provide a fair estimate for SBL turbulence conditions.   
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CHAPTER 6: CONCLUSIONS  

 In conclusion, testing of the hypotheses from Chapter 2 led to the following conclusions: 

1) The case studies revealed that deposition, and therefore the inferred dispersion pattern for 

agricultural sprays, differs significantly between Pasquill classes.  This difference is 

based on the way that spray droplets are moved in the SBL, with unstable conditions 

producing more turbulent flow, in turn producing larger eddies to mix SBL air.  This 

turbulent flow allows the larger droplets to remain suspended for a longer time, while 

allowing the smaller droplets, which usually are the main cause of drift (Bache and 

Johnstone 1992, Matthews 2006), to be mixed well in the horizontal and vertical 

directions, minimizing the concentration that a downwind location would receive. The 

observed differences between Pasquill classes suggest that the Pasquill classification 

system is a valid method for analyzing and possibly predicting drift dispersion features. 

 

2) The studies revealed that within the first 50 m from the application site, deposition was 

greatest in Pasquill class A (extremely unstable), and then decreased in Pasquill class B 

(moderately unstable) and D (neutral).  This suggests that for near-field drift concerns 

(<50 m) spraying is best done with neutral or slightly unstable conditions.  The review of 

literature revealed that for drift concerns at larger distances (i.e. beyond 50-100 m), stable 

or neutral conditions are likely to increase drift by allowing smaller droplets to travel 

farther downwind without significant entrainment (Bache and Johnstone 1992, Davies 

1966, Miller et al. 2000, Thistle 2000).  This conclusion was further supported by the 

observed lack of decreasing deposition with distance in Pasquill class D. 
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3) Based on the review of literature and case studies, this study concludes that simple 

observation of relative insolation strength and wind speeds is sufficient for estimating the 

general dispersion characteristics of an agricultural spray, and therefore the potential drift 

risk, using the Pasquill class method described herein.   

 

As in most scientific research, this project has raised more questions than it has answered. 

First, in future research more case studies should be conducted to validate the relationships 

identified here.  In addition, future research must be done to assess the role of droplet size and 

nozzle type in drift-stability class relationships.  The remoteness of the Macon Ridge station 

proved to be an obstacle to increasing the number case studies with varied atmospheric 

conditions.  The travel required planning case studies several days in advance,  and therefore 

hindered the collection of data in very different atmospheric conditions, and at different times of 

day.  For future research, it would be preferable that if possible, case studies could be conducted 

at the Central LSU AgCenter research station in East Baton Rouge Parish.  The proximity of the 

station to the LSU – Baton Rouge campus would facilitate increasing the number of case studies 

and capturing more varied atmospheric conditions.  In addition the Central station would provide 

a larger fetch, and facilitate sampling at distances farther from the spray path, which would 

provide data for a more definitive description of drift in locations far (> 50 m) from the 

application site. 

To produce a highly accurate and detailed guide for spray applicators to use in situ with 

confidence in a variety of conditions would require more case studies to verify the relationships 

observed in this project and case studies for all Pasquill classes. However, based on the results 

from this project, preliminary drift risk sheets or cards could be created that could be used by 

applicators to make more informed application decisions.  Charts of drift risk for areas within 
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approximately 150 ft (50 m) of field edge could be produced for spray applications under 

different meteorological conditions.  A preliminary example is provided in Table 6.1.  Table 6.1 

could be accompanied with a brief overview of what strong, moderate, and slight sun conditions 

would be.  “Strong sun” corresponds to high sun angles with few clouds; “moderate sun” 

corresponds to moderate sun angles (30-60° above horizon) with few clouds, or “strong sun” 

with mostly cloudy conditions; “slight sun” corresponds to low sun angles (15-30°) or “strong” 

or “moderate sun” with overcast conditions. “Nighttime conditions” are representative of all 

times when the sun is lower than 15° above the horizon.  While this study could be considered 

successful in achieving the research goals, it should be noted that this study only represents a 

first step toward understanding dispersion conditions for one set of droplet and nozzle sizes and 

spray application style. Future research should be undertaken to provide more detailed analysis 

under a wider variety of atmospheric conditions, to ensure greater protection of life and property. 

Table 6.1: Drift Risk Guide for Field Use 

Average 

Wind Speed 

(mph) 

Strong Sun Moderate Sun Slight Sun 
Nighttime, >1/2 

Cloudiness 

Nighttime, 

<1/2 

cloudiness 

< 4 Low Risk Low Risk 
Low-Moderate 

Risk 
Very High Risk Extreme Risk 

4-6 Low Risk 
Low-Moderate 

Risk 

Moderate-High 

Risk 
Very High Risk Extreme Risk 

6-9 
Low-Moderate 

Risk 

Low-Moderate 

Risk 

Moderate-High 

Risk 
Very High Risk Extreme Risk 

9-11 
Low-Moderate 

Risk 

Moderate-High 

Risk 
High Risk High Risk 

Very High 

Risk 

11-13 
Moderate-High 

Risk 

Moderate-High 

Risk 
High Risk High Risk High Risk 

> 13 
Moderate-High 

Risk 
High Risk High Risk High Risk High Risk 
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APPENDIX 1: ABSORPTION TO DEPOSITION 

Table A1.1 Calculation of Deposition from Absorption Readings for Spheres: 

Sample Absorbance Tartrazine Concentration 

(g ml
-1

) 

Tartrazine Mass in 

Sample (g) 

Deposition 

(g m
-2

) 

1A1 0.008 5.71E-07 5.71E-06 0.84 

1A2 0.002 4.22E-07 4.22E-06 0.62 

1A3 0.011 6.46E-07 6.46E-06 0.95 

1A4 0.008 5.71E-07 5.71E-06 0.84 

1A5 0.004 4.72E-07 4.72E-06 0.69 

1A6 0.005 4.97E-07 4.97E-06 0.73 

1A7 0.002 4.22E-07 4.22E-06 0.62 

1B1 0.012 6.71E-07 6.71E-06 0.99 

1B2 0.017 7.96E-07 7.96E-06 1.17 

1B3 0.018 8.21E-07 8.21E-06 1.21 

1B4 0.014 7.21E-07 7.21E-06 1.06 

1B5 0.017 7.96E-07 7.96E-06 1.17 

1B6 0.014 7.21E-07 7.21E-06 1.06 

1B7 0.017 7.96E-07 7.96E-06 1.17 

1C1 0.002 4.22E-07 4.22E-06 0.62 

1C2 0.008 5.71E-07 5.71E-06 0.84 

1C3 0.004 4.72E-07 4.72E-06 0.69 

1C4 0.003 4.47E-07 4.47E-06 0.66 

1C5 0.005 4.97E-07 4.97E-06 0.73 

1C6 0.005 4.97E-07 4.97E-06 0.73 

1C7 0.007 5.46E-07 5.46E-06 0.80 

2A1 0.006 5.22E-07 5.22E-06 0.77 

2A2 0.005 4.97E-07 4.97E-06 0.73 

2A3 0.007 5.46E-07 5.46E-06 0.80 

2A4 0.011 6.46E-07 6.46E-06 0.95 

2A5 0.013 6.96E-07 6.96E-06 1.02 

2A6 0.005 4.97E-07 4.97E-06 0.73 

2A7 0.007 5.46E-07 5.46E-06 0.80 

2B1 0.007 5.46E-07 5.46E-06 0.80 

2B2 0.005 4.97E-07 4.97E-06 0.73 

2B3 0.007 5.46E-07 5.46E-06 0.80 

2B4 0.008 5.71E-07 5.71E-06 0.84 

2B5 0.014 7.21E-07 7.21E-06 1.06 

2B6 0.008 5.71E-07 5.71E-06 0.84 

2B7 0.004 4.72E-07 4.72E-06 0.69 

2C1 0.015 7.46E-07 7.46E-06 1.10 
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(Table A1.1 Continued) 

Sample Absorbance Tartrazine Concentration 

(g ml
-1

) 

Tartrazine Mass in 

Sample (g) 

Deposition 

(g m
-2

) 

2C2 0.008 5.71E-07 5.71E-06 0.84 

2C3 0.007 5.46E-07 5.46E-06 0.80 

2C4 0.013 6.96E-07 6.96E-06 1.02 

2C5 0.013 6.96E-07 6.96E-06 1.02 

2C6 0.008 5.71E-07 5.71E-06 0.84 

2C7 0.009 5.96E-07 5.96E-06 0.88 

3A1 0.012 6.71E-07 6.71E-06 0.99 

3A2 0.007 5.46E-07 5.46E-06 0.80 

3A3 0.012 6.71E-07 6.71E-06 0.99 

3A4 0.010 6.21E-07 6.21E-06 0.91 

3A5 0.014 7.21E-07 7.21E-06 1.06 

3A6 0.012 6.71E-07 6.71E-06 0.99 

3A7 0.010 6.21E-07 6.21E-06 0.91 

3B1 0.007 5.46E-07 5.46E-06 0.80 

3B2 0.010 6.21E-07 6.21E-06 0.91 

3B3 0.009 5.96E-07 5.96E-06 0.88 

3B4 0.009 5.96E-07 5.96E-06 0.88 

3B5 0.008 5.71E-07 5.71E-06 0.84 

3B6 0.006 5.22E-07 5.22E-06 0.77 

3B7 0.007 5.46E-07 5.46E-06 0.80 

3C1 0.000 3.72E-07 3.72E-06 0.55 

3C2 0.003 4.47E-07 4.47E-06 0.66 

3C3 0.002 4.22E-07 4.22E-06 0.62 

3C4 0.002 4.22E-07 4.22E-06 0.62 

3C5 0.002 4.22E-07 4.22E-06 0.62 

3C6 0.003 4.47E-07 4.47E-06 0.66 

3C7 0.004 4.72E-07 4.72E-06 0.69 

4A1 0.015 7.46E-07 7.46E-06 1.10 

4A2 0.028 1.07E-06 1.07E-05 1.57 

4A3 0.013 6.96E-07 6.96E-06 1.02 

4A4 0.031 1.15E-06 1.15E-05 1.68 

4A5 0.027 1.05E-06 1.05E-05 1.54 

4A6 0.055 1.74E-06 1.74E-05 2.56 

4A7 0.023 9.46E-07 9.46E-06 1.39 

4B1 0.042 1.42E-06 1.42E-05 2.09 

4B2 0.026 1.02E-06 1.02E-05 1.50 

4B3 0.016 7.71E-07 7.71E-06 1.13 

4B4 0.011 6.46E-07 6.46E-06 0.95 

4B5 0.029 1.10E-06 1.10E-05 1.61 
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(Table A1.1 Continued) 

Sample Absorbance Tartrazine Concentration 

(g ml
-1

) 

Tartrazine Mass in 

Sample (g) 

Deposition 

(g m
-2

) 

4B6 0.022 9.21E-07 9.21E-06 1.35 

4B7 0.020 8.71E-07 8.71E-06 1.28 

4C1 0.005 4.97E-07 4.97E-06 0.73 

4C2 0.023 9.46E-07 9.46E-06 1.39 

4C3 0.027 1.05E-06 1.05E-05 1.54 

4C4 0.016 7.71E-07 7.71E-06 1.13 

4C5 0.011 6.46E-07 6.46E-06 0.95 

4C6 0.003 4.47E-07 4.47E-06 0.66 

4C7 0.001 3.97E-07 3.97E-06 0.58 

5A1 0.010 6.21E-07 6.21E-06 0.91 

5A2 0.010 6.21E-07 6.21E-06 0.91 

5A3 0.016 7.71E-07 7.71E-06 1.13 

5A4 0.008 5.71E-07 5.71E-06 0.84 

5A5 0.009 5.96E-07 5.96E-06 0.88 

5A6 0.016 7.71E-07 7.71E-06 1.13 

5A7 0.017 7.96E-07 7.96E-06 1.17 

5B1 0.016 7.71E-07 7.71E-06 1.13 

5B2 0.008 5.71E-07 5.71E-06 0.84 

5B3 0.007 5.46E-07 5.46E-06 0.80 

5B4 0.011 6.46E-07 6.46E-06 0.95 

5B5 0.009 5.96E-07 5.96E-06 0.88 

5B6 0.011 6.46E-07 6.46E-06 0.95 

5B7 0.014 7.21E-07 7.21E-06 1.06 

5C1 0.007 5.46E-07 5.46E-06 0.80 

5C2 0.009 5.96E-07 5.96E-06 0.88 

5C3 0.007 5.46E-07 5.46E-06 0.80 

5C4 0.006 5.22E-07 5.22E-06 0.77 

5C5 0.012 6.71E-07 6.71E-06 0.99 

5C6 0.008 5.71E-07 5.71E-06 0.84 

5C7 0.010 6.21E-07 6.21E-06 0.91 

6A1 0.026 1.02E-06 1.02E-05 1.50 

6A2 0.024 9.71E-07 9.71E-06 1.43 

6A3 0.021 8.96E-07 8.96E-06 1.32 

6A4 0.029 1.10E-06 1.10E-05 1.61 

6A5 0.034 1.22E-06 1.22E-05 1.79 

6A6 0.033 1.20E-06 1.20E-05 1.76 

6A7 0.016 7.71E-07 7.71E-06 1.13 

6B1 0.061 1.89E-06 1.89E-05 2.78 

6B2 0.024 9.71E-07 9.71E-06 1.43 
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(Table A1.1 Continued) 

Sample Absorbance Tartrazine Concentration 

(g ml
-1

) 

Tartrazine Mass in 

Sample (g) 

Deposition 

(g m
-2

) 

6B3 0.015 7.46E-07 7.46E-06 1.10 

6B4 0.017 7.96E-07 7.96E-06 1.17 

6B5 0.015 7.46E-07 7.46E-06 1.10 

6B6 0.022 9.21E-07 9.21E-06 1.35 

6B7 0.016 7.71E-07 7.71E-06 1.13 

6C1 0.012 6.71E-07 6.71E-06 0.99 

6C2 0.014 7.21E-07 7.21E-06 1.06 

6C3 0.014 7.21E-07 7.21E-06 1.06 

6C4 0.018 8.21E-07 8.21E-06 1.21 

6C5 0.016 7.71E-07 7.71E-06 1.13 

6C6 0.009 5.96E-07 5.96E-06 0.88 

6C7 0.010 6.21E-07 6.21E-06 0.91 

7A1 0.020 8.71E-07 8.71E-06 1.28 

7A2 0.013 6.96E-07 6.96E-06 1.02 

7A3 0.011 6.46E-07 6.46E-06 0.95 

7A4 0.014 7.21E-07 7.21E-06 1.06 

7A5 0.018 8.21E-07 8.21E-06 1.21 

7A6 0.015 7.46E-07 7.46E-06 1.10 

7A7 0.018 8.21E-07 8.21E-06 1.21 

7B1 0.012 6.71E-07 6.71E-06 0.99 

7B2 0.008 5.71E-07 5.71E-06 0.84 

7B3 0.008 5.71E-07 5.71E-06 0.84 

7B4 0.018 8.21E-07 8.21E-06 1.21 

7B5 0.009 5.96E-07 5.96E-06 0.88 

7B6 0.011 6.46E-07 6.46E-06 0.95 

7B7 0.001 3.97E-07 3.97E-06 0.58 

7C1 0.033 1.20E-06 1.20E-05 1.76 

7C2 0.031 1.15E-06 1.15E-05 1.68 

7C3 0.016 7.71E-07 7.71E-06 1.13 

7C4 0.017 7.96E-07 7.96E-06 1.17 

7C5 0.016 7.71E-07 7.71E-06 1.13 

7C6 0.015 7.46E-07 7.46E-06 1.10 

7C7 0.015 7.46E-07 7.46E-06 1.10 

8A1 0.050 1.62E-06 1.62E-05 2.38 

8A2 0.073 2.19E-06 2.19E-05 3.23 

8A3 0.012 6.71E-07 6.71E-06 0.99 

8A4 0.079 2.34E-06 2.34E-05 3.45 

8A5 0.088 2.57E-06 2.57E-05 3.78 

8A6 0.043 1.44E-06 1.44E-05 2.12 
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(Table A1.1 Continued) 

Sample Absorbance Tartrazine Concentration 

(g ml
-1

) 

Tartrazine Mass in 

Sample (g) 

Deposition 

(g m
-2

) 

8A7 0.084 2.47E-06 2.47E-05 3.63 

8B1 0.020 8.71E-07 8.71E-06 1.28 

8B2 0.034 1.22E-06 1.22E-05 1.79 

8B3 0.015 7.46E-07 7.46E-06 1.10 

8B4 0.016 7.71E-07 7.71E-06 1.13 

8B5 0.052 1.67E-06 1.67E-05 2.45 

8B6 0.033 1.20E-06 1.20E-05 1.76 

8B7 0.036 1.27E-06 1.27E-05 1.87 

8C1 0.039 1.34E-06 1.34E-05 1.98 

8C2 0.033 1.20E-06 1.20E-05 1.76 

8C3 0.018 8.21E-07 8.21E-06 1.21 

8C4 0.023 9.46E-07 9.46E-06 1.39 

8C5 0.031 1.15E-06 1.15E-05 1.68 

8C6 0.030 1.12E-06 1.12E-05 1.65 

8C7 0.023 9.46E-07 9.46E-06 1.39 

Table A1.2: As in Table A1.1, but for Monofilament Collectors  

Sample Absorbance 
Tartrazine concentration 

(g ml
-1

) 

Tartrazine Mass in 

Sample (g) 

Deposition 

(mg m
-2

) 

1AL 0.010 6.21E-07 4.35E-05 15.36 

1AU 0.002 4.22E-07 2.95E-05 10.43 

1BL 0.004 4.72E-07 3.30E-05 11.67 

1BU 0.008 5.71E-07 4.00E-05 14.13 

1CL 0.006 5.21E-07 3.65E-05 12.90 

1CU 0.004 4.72E-07 3.30E-05 11.67 

2AL -- -- -- -- 

2AU 0.004 4.72E-07 3.30E-05 11.67 

2BL 0.006 5.21E-07 3.65E-05 12.90 

2BU 0.003 4.47E-07 3.13E-05 11.05 

2CL 0.002 4.22E-07 2.95E-05 10.43 

2CU 0.003 4.47E-07 3.13E-05 11.05 

3AL 0.005 4.97E-07 3.48E-05 12.28 

3AU 0.029 1.09E-06 7.66E-05 27.06 

3BL 0.012 6.71E-07 4.70E-05 16.59 

3BU 0.005 4.97E-07 3.48E-05 12.28 

3CL 0.005 4.97E-07 3.48E-05 12.28 

3CU 0.005 4.97E-07 3.48E-05 12.28 

5AL 0.011 6.46E-07 4.52E-05 15.98 
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(Table A1.2 Continued) 

Sample Absorbance 
Tartrazine concentration 

(g ml
-1

) 

Tartrazine Mass in 

Sample (g) 

Deposition 

(mg m
-2

) 

5AU 0.017 7.95E-07 5.57E-05 19.67 

5BL 0.013 6.96E-07 4.87E-05 17.21 

5BU 0.010 6.21E-07 4.35E-05 15.36 

5CL 0.010 6.21E-07 4.35E-05 15.36 

5CU 0.011 6.46E-07 4.52E-05 15.98 

6AL 0.039 1.34E-06 9.40E-05 33.22 

6AU 0.013 6.96E-07 4.87E-05 17.21 

6BL 0.020 8.70E-07 6.09E-05 21.52 

6BU 0.032 1.17E-06 8.18E-05 28.91 

6CL 0.017 7.95E-07 5.57E-05 19.67 

6CU 0.017 7.95E-07 5.57E-05 19.67 

8AL 0.032 1.17E-06 8.18E-05 28.91 

8AU 0.017 7.95E-07 5.57E-05 19.67 

8BL 0.011 6.46E-07 4.52E-05 15.98 

8BU 0.037 1.29E-06 9.05E-05 31.99 

8CL 0.006 5.21E-07 3.65E-05 12.90 

8CU 0.010 6.21E-07 4.35E-05 15.36 
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APPENDIX 2: MEANS, STANDARD DEVIATIONS, AND 

SAMPLE SIZES 

Table A2.1 Means, Standard Deviations, and Sample Sizes for Deposition on Spherical 

Collectors 

Sample Set Mean 
Standard 

Deviation 

Sample 

Size 

Figure 

Number 

PC A Samples 1.48 0.68 63 4.1 

PC B Samples 1.02 0.36 63 4.1 

PC D Samples 0.86 0.17 42 4.1 

Slight Insolation 0.96 0.34 84 4.2 

Moderate Insolation 1.34 0.81 84 4.2 

Case Study 1 0.87 0.20 21 4.3 

Case Study 2 0.86 0.12 21 4.3 

Case Study 3 0.81 0.15 21 4.3 

Case Study 4 1.32 0.47 21 4.3 

Case Study 5 0.93 0.12 21 4.3 

Case Study 6 1.33 0.42 21 4.3 

Case Study 7 1.10 0.26 21 4.3 

Case Study 8 2.01 0.85 21 4.3 

PC A, 10 m 1.81 0.93 21 4.5 

PC A, 25 m 1.45 0.48 21 4.5 

PC A, 50 m 1.18 0.37 21 4.5 

PC B, 10 m 1.17 0.41 21 4.5 

PC B, 25 m 0.93 0.23 21 4.5 

PC B, 50 m 0.97 0.40 21 4.5 

PC D, 10 m 0.79 0.12 14 4.5 

PC D, 25 m 0.97 0.18 14 4.5 

PC D, 50 m 0.83 0.14 14 4.5 

PC A, 0.30 m 1.62 0.65 6 4.6 

PC A, 0.61 m 1.28 0.57 6 4.6 

PC A, 0.91 m 1.55 0.71 6 4.6 

PC A, 1.22 m 1.47 0.89 3 4.6 

PC B, 0.30 m 1.03 0.38 6 4.6 

PC B, 0.61 m 0.98 0.28 6 4.6 

PC B, 0.91 m 1.07 0.47 6 4.6 

PC B, 1.22 m 0.98 0.27 3 4.6 

PC D, 0.30 m 0.84 0.17 6 4.6 

PC D, 0.61 m 0.89 0.16 6 4.6 

PC D, 0.91 m 0.89 0.17 6 4.6 

PC D, 1.22 m 0.83 0.19 3 4.6 

PC A, 10, 0.30 1.81 0.83 6 4.9 
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(Table A2.1 Continued) 

Sample Set Mean 
Standard 

Deviation 

Sample 

Size 

Figure 

Number 

PC A, 10, 0.61 1.56 0.96 6 4.9 

PC A, 10, 0.91 1.96 0.97 6 4.9 

PC A, 10, 1.22 1.99 1.42 3 4.9 

PC A, 25, 0.30 1.79 0.53 6 4.9 

PC A, 25, 0.61 1.13 0.03 6 4.9 

PC A, 25, 0.91 1.48 0.54 6 4.9 

PC A, 25, 1.22 1.37 0.43 3 4.9 

PC A, 50, 0.30 1.27 0.47 6 4.9 

PC A, 50, 0.61 1.15 0.19 6 4.9 

PC A, 50, 0.91 1.19 0.38 6 4.9 

PC A, 50, 1.22 1.05 0.54 3 4.9 

PC B, 10, 0.30 1.05 0.28 6 4.8 

PC B, 10, 0.61 1.10 0.30 6 4.8 

PC B, 10, 0.91 1.36 0.63 6 4.8 

PC B, 10, 1.22 1.16 0.24 3 4.8 

PC B, 25, 0.30 0.97 0.25 6 4.8 

PC B, 25, 0.61 1.03 0.27 6 4.8 

PC B, 25, 0.91 0.84 0.11 6 4.8 

PC B, 25, 1.22 0.82 0.24 3 4.8 

PC B, 50, 0.30 1.08 0.60 6 4.8 

PC B, 50, 0.61 0.82 0.20 6 4.8 

PC B, 50, 0.91 1.01 0.40 6 4.8 

PC B, 50, 1.22 0.96 0.30 3 4.8 

PC D, 10, 0.30 0.74 0.09 4 4.7 

PC D, 10, 0.61 0.89 0.08 4 4.7 

PC D, 10, 0.91 0.79 0.15 4 4.7 

PC D, 10, 1.22 0.71 0.13 2 4.7 

PC D, 25, 0.30 0.92 0.20 4 4.7 

PC D, 25, 0.61 0.98 0.19 4 4.7 

PC D, 25, 0.91 1.03 0.14 4 4.7 

PC D, 25, 1.22 0.93 0.34 2 4.7 

PC D, 50, 0.30 0.85 0.20 4 4.7 

PC D, 50, 0.61 0.79 0.17 4 4.7 

PC D, 50, 0.91 0.83 0.14 4 4.7 

PC D, 50, 1.22 0.84 0.05 2 4.7 
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Table A2.2 As in Table A2.1, but for Monofilament Collectors 

Sample Set Mean 
Standard 

Deviation 

Sample 

Size 

Figure 

Number 

PC A 22.08 6.61 12 
 

PC B 16.03 4.02 12 
 

PC D 12.11 1.49 11 
 

Slight Insolation 13.30 3.91 17 
 

Moderate Insolation 20.25 6.22 18 
 

Case Study 1 12.69 1.66 6 
 

Case Study 2 11.42 0.84 5 
 

Case Study 3 15.46 5.42 6 
 

Case Study 5 16.59 1.51 6 
 

Case Study 6 23.37 5.72 6 
 

Case Study 8 20.80 7.16 6 
 

PC A, 10 m 24.75 7.57 4 
 

PC A, 25 m 24.60 7.24 4 
 

PC A, 50 m 16.90 3.35 4 
 

PC B, 10 m 18.75 6.31 4 
 

PC B, 25 m 15.36 2.19 4 
 

PC B, 50 m 13.97 1.97 4 
 

PC D, 10 m 12.49 2.56 3 
 

PC D, 25 m 12.43 1.37 4 
 

PC D, 50 m 11.51 1.05 4 
 

PC A, 0.30 m 22.03 7.73 6 
 

PC A, 1.22 m 22.14 6.71 6 
 

PC B, 0.30 m 14.95 1.97 6 
 

PC B, 1.22 m 17.11 5.11 6 
 

PC D, 0.30 m 12.65 1.63 5 
 

PC D, 1.22 m 11.67 1.18 6 
 

PC A, 10 m, 0.30 m 31.07 3.05 2 
 

PC A, 10 m, 1.22 m 18.44 1.74 2 
 

PC A, 25 m, 0.30 m 18.75 3.92 2 
 

PC A, 25 m, 1.22 m 30.45 2.18 2 
 

PC A, 50 m, 0.30 m 16.28 4.79 2 
 

PC A, 50 m, 1.22 m 17.52 3.05 2 
 

PC B, 10 m, 0.30 m 14.13 2.61 2 
 

PC B, 10 m, 1.22 m 23.37 5.23 2 
 

PC B, 25 m, 0.30 m 16.90 0.44 2 
 

PC B, 25 m, 1.22 m 13.82 2.18 2 
 

PC B, 50 m, 0.30 m 13.82 2.18 2 
 

PC B, 50 m, 1.22 m 14.13 2.61 2 
 

PC D, 10 m, 0.30 m 15.36 -- 1 
 



75 

 

(Table A2.2 Continued) 

Sample Set Mean 
Standard 

Deviation 

Sample 

Size 

Figure 

Number 

PC D, 10 m, 1.22 m 11.05 0.87 2 
 

PC D, 25 m, 0.30 m 12.28 0.87 2 
 

PC D, 25 m, 1.22 m 12.59 2.18 2 
 

PC D, 50 m, 0.30 m 11.67 1.74 2 
 

PC D, 50 m, 1.22 m 11.36 0.44 2 
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