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ABSTRACT 

Recent research techniques, such as genetic algorithm (GA), Petri net (PN), and cellular 

automata (CA) have been applied in a number of studies. However, their capability and 

performance in land-cover land-use (LCLU) classification, change detection, and predictive 

modeling have not been well understood. This study seeks to address the following questions: 1) 

How do genetic parameters impact the accuracy of GA-based LCLU classification; 2) How do 

image parameters impact the accuracy of GA-based LCLU classification; 3) Is GA-based LCLU 

classification more accurate than the maximum likelihood classifier (MLC), iterative self-

organizing data analysis technique (ISODATA), and the hybrid approach; 4) How do genetic 

parameters impact Petri Net-based LCLU change detection; and 5) How do cellular automata 

components impact the accuracy of LCLU predictive modeling.  

The study area, namely the Tickfaw River watershed (711mi²), is located in southeast 

Louisiana and southwest Mississippi. The major datasets include time-series Landsat TM / ETM 

images and Digital Orthophoto Quarter Quadrangles (DOQQ’s). LCLU classification was 

conducted by using the GA, MLC, ISODATA, and Hybrid approach. The LCLU change was 

modeled by using genetic PN-based process mining technique. The process models were 

interpreted and input to a CA for predicting future LCLU.  

The major findings include: 1) GA-based LCLU classification is more accurate than the 

traditional approaches; 2) When genetic parameters, image parameters, or CA components are 

configured improperly, the accuracy of LCLU classification, the coverage of LCLU change 

process model, and/or the accuracy of LCLU predictive modeling will be low; 3) For GA-based 

LCLU classification, the recommended configuration of genetic / image parameters is generation 

2000-5000, population 1000, crossover rate 69%-99%, mutation rate 0.1%-0.5%, generation gap 

25%-50%, data layers 16-20, training / testing data size 10000-20000 / 5000-10000, and spatial 



 xiii

resolution 30m-60m; 4) For genetic Petri nets-based LCLU change detection, the recommended 

configuration of genetic parameters is generation 500, population 300, crossover rate 59%, 

mutation rate 5%, and elitism rate 4%; and 5) For CA-based LCLU predictive modeling, the 

recommended configuration of CA components is space 6025 * 12993, state 2, von Neumann 

neighborhood 3 * 3, time step 2-3 years, and optimized transition rules.  

 
 



 1

CHAPTER 1  INTRODUCTION 

1.1. Background 
         
1.1.1. Remote Sensing and GIS 

Remote sensing is not only the technology and application of installing sensors on 

aircrafts or satellites for acquiring objects’ data without physical contact, but also the science and 

art of extracting, analyzing, and discovering information and knowledge from objects’ data 

(Campbell, 1996; Tso and Mather, 2001). The objects’ data are represented by electromagnetic 

energy reflected from or emitted by the Earth’s surface (Tso and Mather, 2001). The energy 

come from the and it is associated with a wide range wavelengths of electromagnetic spectrum 

(Lo and Yeung, 2007; Tso and Mather, 2001). The important characteristics of remote sensing 

are that it is the technique of data collection and processing, the science of data analysis and 

pattern recognition, and the art of information representation. Since the 1970s, remote sensing 

has increasingly become one of the greatest approaches that scientists use to collect data, 

recognize patterns, detect changes, and develop models throughout the entire world at different 

spatiotemporal scales. Both satellite images and aerial photographs have become one of major 

data sources for designing and building geodatabases (Campbell, 1996). 

 During the early stage in remote sensing development, GIS was conceptualized as a class 

of systems. Unfortunately, they did not become operational until 1971. From the early 1980s to 

the mid-1990s, GIS became mature in terms of theories, methodologies, and applications. Since 

the mid-1990s, the development of GIS has been greatly accelerated by the rapid growth of 

computer technology. Now, GIS commonly includes at least four aspects: science, system, study, 

and service (DiBiase et al., 2006). It is not only a set of applications and studies relating to the 

real world problems, or a special type of information systems supporting the collection, storing, 

management, processing, analysis, modeling, and display of geospatial data for solving the real 
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world problems (Lo and Yeung, 2007), but also a science including multidisciplinary research 

that address the fundamental theoretic, methodological, and practical problems (Goodchild, 

1992). 

 Despite both remote sensing and GIS having achieved obvious success, there are a 

variety of problems affecting their implementation, including data accessibility, user diversity, 

technology compatibility, and application variety. Integration of remote sensing and GIS has 

been recognized as one of the better ways to address those problems (Hinton, 1996; Lo and 

Yeung, 2007). An important area of integrating remote sensing and GIS lies in introducing 

vector information into the procedure of image classification (Ehlers et al., 1989). Essentially, it 

is a procedure to identify pixels falling on or in a particular vector feature (e.g., line or polygon) 

so that more geospatial information can be provided (Lo and Yeung, 2007).   

1.1.2. Land-Cover and Land-Use Study 
 
The interaction between human society and the natural environment is complex, and 

land-cover and land-use (LCLU) has played a critical role in the course of such interaction. Since 

early 20th century, human activities and natural forces have significantly affected 

biogeochemical processes at various scales substantially. Global warming, natural resource 

shortage, environmental hazard increase, and biodiversity decrease are not scientific hypotheses 

anymore. They have become the real urgent crises (Dolman and Verhagen, 2003). LCLU is 

recognized as a linkage between human activities and natural processes, and LCLU change is 

one of the major drivers of global environmental change (Read and Lam, 2002). LCLU study 

plays an important role in the process of improving the nature-society relationship. It includes 

three tasks: classification, change detection, and predictive modeling. The importance, 

complexity, and uncertainty of LCLU make it an ideal illustration of spatiotemporal study. 

LCLU classification is a procedure to identify a land feature in a particular area at a particular 
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time; LCLU changes are usually measured as the differences in the states of land features 

observed at different times (Singh, 1989); and LCLU predictive modeling is the procedure to 

model future LCLU change based on time series dataset. To detect and predict LCLU change, an 

accurate LCLU classification should be carried out.  

1.1.3. Traditional Land-Cover and Land-Use Study Approaches 

It is commonly believed that LCLU study includes classification, change detection, and 

predictive modeling. LCLU classification is a process of extracting land feature information 

using remotely-sensed multi-spectral images. Traditionally, there are three classification 

approaches including supervised, unsupervised, and hybrid (Campbell, 1996; Lo and Yeung, 

2007). These traditional approaches, fully or partially based on statistics, have been successfully 

used in many LCLU classification studies. Unfortunately, as human abilities of collecting and 

storing geospatial data increase, the availability of plentiful geospatial data sources greatly 

challenge human capabilities of extracting information and discovering knowledge about land 

features (Huang, 1996; Huang and Jenson, 1997). The maximum likelihood classifier (MLC), 

one of the supervised classification techniques, assumes that the data for each class are normally 

distributed (Huang, 1996; Huang and Jenson, 1997). The iterative self-organizing data analysis 

technique (ISODATA), one of the unsupervised classification approaches, requires subsequent 

identification of LCLU features. Although the hybrid approach, based on both MLC and 

ISODATA, can partially solve the problem in either supervised or unsupervised classification, 

essentially, the problem still exists.    

Another common application of remote sensing technology is LCLU change detection 

using time series LCLU maps (Singh, 1989). Since the 1980s, a number of change detection 

techniques have been developed, and due to the importance of LCLU change detection, many 

new techniques have been constantly proposed. Based on the studies done by several scholars 
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(Chan et al., 2001; Civco et al., 2002; Coppin et al., 2004; Lu et al., 2004a; Mas, 1999; and 

Singh, 1989), most LCLU change detection techniques could be categorized into the following 

groups: post-classification comparison, composite analysis, univariate image differencing, image 

ratioing, bi-temporal linear data transformation, change vector analysis, image regression, multi-

temporal spectral mixture analysis, and multidimensional temporal feature space analysis. 

Although most of them have been efficiently used to detect LCLU change, such as the type and 

location of land feature, and rate of land features change, they are not efficient in discovering 

change processes.  

Studies on LCLU classification and change detection are numerous. However, there are 

very few studies on LCLU predictive modeling (Li and Yeh, 2002 and 2004). LCLU predictive 

modeling is the procedure of forecasting future LCLU based on the existing observation data. 

The major traditional approaches include empirical-statistical models and stochastic models 

(Lambin, 2004). Empirical-statistical models (e.g., multiple linear regression, logistic regression 

model) are based on the unrealistic assumption of linear relationships between predictor 

variables and dependent variable (Brown et al., 2004; Lambin, 2004). Stochastic models (e.g., 

Markov chains) rely on the assumption of the stationary of the transition matrix, and the model 

has little explanatory power (Lambin, 2004).  

1.1.4. Non-Traditional Land-Cover and Land-Use Study Approaches 

Although the big debate about the role of systemic and quantitative methods in 

geographic study area has been over for half a century, the study of mathematic models and 

quantitative methods in geography has been enhanced tremendously (Johnston, 1997; Legates et 

al., 2003), our ability in geospatial information extraction and knowledge discovery had been 

limited until the mid-1990s. Since the mid-1990s, and because of the rapid development of 

computer technology and increasing need solving geographic problems, many new techniques 
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have been introduced in LCLU studies, such as the machine learning-based approach and 

geospatial knowledge discovery (or geospatial data mining).  

Since the early 1990s, the focus of LCLU classification has shifted from spectral analysis 

to contextual, spatial syntactic analysis, and to knowledge-based interpretation (Argialas and 

Harlow, 1990; Huang and Jenson, 1997). Among different knowledge-based LCLU 

classification techniques such as decision tree, fuzzy logic, association rule, support vector 

machine, and neural networks, genetic algorithm (GA) is one of the most promising techniques 

intensively applied to LCLU classification (Perkins et al., 2000; Stathakis and Vasilakos, 2006; 

Tso and Mather, 1999). These approaches have been proved effective in improving classification 

accuracy (Lu and Weng, 2007). A critical step is to develop the rules that can be used in an 

expert system or a knowledge-based classifier. This approach has now become increasingly 

attractive because of its capability of accommodating multiple sources of data (Lu and Weng, 

2007). Usually, there are three ways to build rules for image classification: 1) to elicit and refine 

explicit knowledge and rules from experts, 2) to extract implicit knowledge and rules using 

cognitive methods, and 3) to generate empirical knowledge and rules from observed data using 

automatic induction methods (Hodgson et al., 2003). Both GIS and remote sensing play an 

important role in developing knowledge-based classification approaches because of its capability 

of managing different sources of data and spatial modeling.  

The relationship between LCLU classification and change detection is very close, and 

some research even mix both together and regards classification as a portion of LCLU change 

detection (Coppin et al., 2004; Lu et al., 2004a; Lu and Weng, 2007); however, they are different 

in terms of purposes, tasks, and procedures. The task of classification is to identify the pattern of 

LCLU at a particular time, and the task of change detection is to identify the difference of LCLU 

during a particular time period. Unlike LCLU classification, the applications of artificial 
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intelligence in LCLU change detection have seldom been reported. It is commonly recognized 

that a systematic LCLU change detection should answer the following questions: 1) What types 

of land features change? 2) When do land features change? 3) Where do land features change? 4) 

How do land features change? and 5) Why do land features change (Coppin et al., 2004; Lu et 

al., 2004a; Miller et al., 1998; Petit et al., 2001)? 6) What is the accuracy of LCLU change 

detection? Most existing LCLU change detection studies have done a great job in terms of 

providing information about the LCLU differences between two or more end points. This 

information can be used to answer the first three questions, but it is not enough for answering the 

last two questions. To answer the last two questions, the processes of LCLU change should be 

discovered (Miller et al., 1998; Petit et al., 2001).  

The dynamics of LCLU change processes can be investigated through a temporal series 

of remote sensing data and by analyzing the relationship among various LCLU patterns derived 

from different years (Turner, 1987; Singh, 1989; Hall et al., 1991; Coppin and Bauer, 1996; 

Lambin, 1996; Mertens and Lambin, 2000; Petit et al., 2001). Multi-temporal analysis may be 

easy to understand but hard to implement, especially when the amount of land feature or 

observation year is large (Miller et al., 1998). Markov chains may be used efficiently for 

quantifying LCLU processes, but the resultant process information is implicitly hidden in the 

mathematical models (Petit et al., 2001). LCLU change may improve or damage the relationship 

between human and nature. To prevent harmful LCLU change or decrease its impact, it is 

necessary to know the future of LCLU change. From the day von Neumann and Ulam proposed 

the concept of cellular automata (CA) (Neumann, 1966), to Wolfram’s recent book A New Kind 

of Science (Wolfram, 2002), the simple structure of cellular automata has attracted researchers 

from various disciplines. Geographers have used cellular automata in LCLU predictive modeling 

for many years. So far, a number of CA-based LCLU predictive models have been developed 
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specially for LCLU change studies, such as the research institute for knowledge systems (RIKS) 

model (Engelen et al., 1997), slope, land-use, exclusion, urban extent, transportation, and hill 

shade (SLEUTH) model (Clarke et al., 1997), Fuzzy-CA (Wu, 1998b), ANN-CA (Li and Yeh, 

2002), multicriteria evaluation-cellular automata (MCE-CA) (Wu and Webster, 1998), statistic 

CA (Sui and Zeng, 2001), and stochastic CA (Wu, 2002).  

Cellular automata are decentralized computing models that are composed of five 

elements: 1) Space – the cell space is composed of individual cell, and most cellular automata 

adopt regular grids to represent such a space; 2) States – each cell may represent any variable, 

e.g., the various types of land features; 3) Time steps – a cellular automaton will evolve at a 

sequence of discrete time steps, and at each step the cells will be updated simultaneously based 

on transition rules; 4) Neighborhood – each cell has neighbors around it, and its state will be 

affected by its neighbors; and 5) Transition rules – they are key components of cellular automata, 

and a transition rule is normally specified to change the states of cell (Neumann, 1966; Wolfram, 

2002). Transition rule is the critical component of cellular automata. The difficulty of designing 

cellular automata’s transition rules to solve a particular problem has severely limited their 

applications (Kanoh and Wu, 2003). Although there are virtually unlimited amount of ways to 

define transition rules, the transition rules of traditional cellular automata are usually represented 

by mathematical equations (Li and Yeh, 2004). Defined by mathematical equations, the 

transition rules in many cases are not explicit, hard to understand, and difficult to implement (Li 

and Yeh, 2004). Data mining or machine learning may be a good approach to develop a set of 

explicit transition rules for a CA. 

1.2. Problems Statement 

During the last decade, genetic algorithms (GAs) have been introduced into numerous 

LCLU studies, and most of them refer to LCLU classification. Genetic algorithms were proposed 
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as a class of random search and global optimization techniques, but they do not automatically 

inherit the characteristics of global optimization from either Darwin’s evolutionary theory or 

modern genetics. In spite of great achievement, GAs-based approaches still suffer from a number 

of deficiencies. The most harmful one is that any improper setting of control parameters could 

cause the population to lose its diversity, be dominated by so-called elites, and prematurely 

converge to local optimization (Wu and Cao, 1997; Rocha and Neves, 1999). Theoretically, the 

improper configuration of genetic parameters can lead to Genetic algorithms performing poorly 

(e.g., premature convergence / local optimization) and impact the accuracy of LCLU 

classification, but the existing GA-based LCLU classifications have seldom investigated such 

GA’s limitation.  

Moreover, although it is commonly recognized that a systematic and accurate LCLU 

change detection should provide the information of change processes, only a few studies have 

done that. The existing process-oriented LCLU change detection studies still have some 

limitations: 1) only a few land features or classes were involved (Miller et al., 1998); 2) 

information on the resultant processes were not explicit and difficult to interoperate (Petit et al., 

2001); and 3) the resultant process models were not optimized in terms of representing more 

LCLU change process instances. There are many LCLU classifications using genetic algorithms, 

but process-oriented LCLU change detections using genetic algorithms have not been found so 

far. The major reason for using genetic algorithms in this procedure is to optimize the change 

process model, so that the resultant process models can best represent real LCLU change 

processes. As it has been pointed out in the previous section, the transition rule is a critical 

component of a cellular automaton (CA), and data mining or machine learning technique may be 

a better approach to discover transition rules for a cellular automaton. Decision trees have been 

used to discover transition rules for a geographical cellular automaton (Li and Yeh, 2004). A 
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decision tree can learn based on the given data set, but it cannot improve the learning by 

increasing search space and optimizing resultant knowledge. This dissertation seeks to address 

the following five groups of problems, and each group of problems includes several subgroup 

problems: 

• How do genetic parameters (such as number of generations, population size, 

crossover rate, mutation rate, and generation gap) impact the accuracy of GA-based 

LCLU classification? 

• How do image parameters (such as spatial resolution, training data size, different  

indexing data, and data combination) impact the accuracy of GA-based LCLU  

classification? 

• Is GA-based LCLU classification more accurate than maximum likelihood classifier 

(MLC) based supervised classification, iterative self-organizing data analysis 

technique (ISODATA) based unsupervised classification, or the hybrid of both MLC 

and ISODATA? 

• How do genetic parameters (such as number of generations, population size, 

crossover rate, mutation rate, and generation gap) impact the accuracy of process-

oriented change detection? 

• How do cellular automata components (such as space, states, neighborhood, time 

steps, and transition rules) impact the accuracy of LCLU predictive modeling? 

1.3. Research Objectives  

The major goal of the dissertation is to develop a systematic and better understanding on  

genetic algorithms, Petri nets (PNs), and cellular automata-based LCLU study. There are five 

objectives in this study. Each objective was related to a particular research problem. Specifically, 

the research objectives include:  
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• Examine the relationships between genetic parameters (such as number of  

generations, population size, crossover rate, mutation rate, and generations gap) and 

GA-based LCLU classification. 

• Examine the relationships between image parameters (such as spatial resolution, 

training / testing data size, different indexing data, and data combination) and GA-

based LCLU classification. 

• Compare GA-based LCLU classification, MLC-based supervised classification, 

ISODATA-based unsupervised classification, and the hybrid of both MLC and  

      ISODATA. 

• Examine the relationships between genetic parameters (such as number of  

generations, population size, crossover rate, mutation rate, and generations gap) and 

process-oriented LCLU change detection. 

• Examine the relationship between cellular automata components (such as space, 

states, time steps, neighborhood, and transition rules) and predictive modeling. The 

major concern is to test the performance of the transition rules that were derived by 

PN, optimized by GA, and implemented by CA.  

1.4. Research Hypotheses 

Based on the objectives of the research, the primary hypotheses of this study were 

divided into five sets also: 1) genetic parameters impact classification, 2) image parameters 

impact classification, 3) GA-based approaches are better than traditional approaches, 4) genetic 

parameters impact process-oriented change detection, and 5) CA components impact predictive 

modeling. Each group of hypotheses was related to a particular research problem and objective. 

Each hypothesis contains hull hypothesis and alternate hypothesis. In order to briefly and clearly 

describe the hypothesis, only alternate hypothesis is listed.  
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• For examining the impact of genetic parameters on the accuracy of GA-based LCLU  

      classification, hypothesis #1 is as follows: 

Ha: Different number of generations, population size, crossover rate, mutation rate, 

and generations gap can increase / decrease the accuracy of GA-based LCLU  

classification.  

• For examining the impact of image parameters on the accuracy of GA-based LCLU 

classification, hypothesis #2 is as follows:  

Ha: Different spatial resolution, training / testing data size, data layers, and data layer 

combinations can increase / decrease the accuracy of GA-based LCLU classification. 

• For examining whether GAs-based LCLU classification is more accurate than  

traditional LCLU classification approaches, hypothesis #3 is as follows:  

Ha: GAs-based LCLU classification is more accurate than MLC-based supervised  

classification, ISODATA-based unsupervised classification, and the hybrid of MLC 

and ISODATA. 

• For examining the impact of genetic parameters derived from Petri nets on process-

oriented LCLU change detection, hypothesis #4 is as follows: 

Ha: Different number of generations, population size, crossover rate, mutation rate, 

or generations gap can increase / decrease the accuracy of genetic PN-based LCLU 

change process detection. 

• For examining the impact of cellular automata components (such as space, states, 

time steps, neighborhood, and transition rules) increase / decrease the accuracy of 

LCLU predictive modeling, hypothesis #5 is as follows: 

Ha: Different space size, state size, time steps, neighborhood type and size, or  

transition rules can increase / decrease the accuracy of predictive modeling. 
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1.5. Expected Significance  

The research is among the first to: 1) examine the relationships among the genetic 

parameters, image parameters, and LCLU classification; 2) determine the processes of LCLU 

change using genetic Petri nets (PN); and 3) predict future LCLU using genetic PN-based 

transition rules in a geographic cellular automaton. The expected significance of the research 

includes the following three aspects: 

• Theoretical Significance 

Although LCLU study has a long-term history in the GIS and remote sensing community, 

due to the spatial, temporal, and phenomena complexity, the processes of LCLU change are still 

not well-understood. A set of explicit and systematic spatio-temporal knowledge will definitely 

improve human understanding of LCLU change. Also, the study will improve our understanding 

of genetic algorithms. GAs are inspired by the theory of genetics and natural selection; they do 

not automatically inherit the characteristics of global optimization from both. It is important to 

recognize that improper parameter configuration can make GAs perform poorly.   

• Methodological Significance 

One of the most important tasks in LCLU change detection is to identify the change  

processes. Previous research has indicated that there is no standard approach to perform process-

oriented LCLU change detection in terms of efficiency, capability, and explicit results. The 

integration of GA-based Petri nets and GIS provides a very good way to perform such study.  

Also, the dissertation research proposes a new approach to develop transition rules for 

geographic cellular automata. The transition rules developed from GA-based Petri nets are not 

only explicit but also optimized in terms of correctly representing approximating change 

processes. This approach can have applications in geography, environmental science, ecology,  

economics, and politics.  
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• Practical Significance 

The study area, namely Tickfaw watershed, has experienced tremendous urban growth 

and forest fragmentation during the last twenty years. The human-nature relationship has become 

one of most important problems that impact its regional development. This research provides 

both current and future LCLU maps that can be used by the local government for analyzing 

environmental quality, managing natural resources, and making the regional sustainable 

development planning.           

1.6. Rationale of Dissertation Research 

• Why Land-Cover and Land-Use Study? 

As mentioned earlier in this chapter, LCLU is one of most important representation of  

human-nature relationships. The importance, complexity, and uncertainty of LCLU change needs  

further research. Also, the processes of LCLU change are always impacted by human activity  

and natural processes. It is always of high theoretical and practical priority to get a better  

understanding of interaction between human and nature.   

• Why Genetic Algorithms, Petri Nets, and Cellular Automata?  

LCLU classification, change detection, and predictive modeling are different decision- 

making processes. Optimization is always important for making a decision. Genetic algorithms 

were proposed as a random search and global optimization technique (Goldberg, 1989; Holland, 

1975). A process-oriented LCLU change detection focus on the processes determination, and 

Petri nets is a mathematical and graphic language especially designed for modeling the structure 

and behavior of a system. LCLU change is a complexity issue, and traditional approaches (such 

as regression or Markov chain) have limitations in representing such complexity (Petit et al., 

2001; Lambin, 2004). Cellular automata are flexible modeling systems, and they have long term 

successful history in spatiotemporal modeling (Li and Yeh, 2004).        
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• Why the Particular Study Area and Data Sources?  

Tickfaw watershed, located in southeastern Louisiana, is one of the watersheds in the 

upper Lake Pontchartrain basin. It includes many different LCLU features. Since the middle 

1980s, it has experienced great change in terms of urban growth and forest segmentation. The 

major data sources include Landsat Thematic Mapper / Enhanced Thematic Mapper (TM / ETM) 

images, digital orthophoto quarter quadrangles (DOQQs), digital elevation model (DEM), and 

soil data. Those data have very high availability and accessibility.        

• Scope of Dissertation Research 

A LCLU study involves many theoretical, methodological, and practical problems. 

Although the generality, completeness, and significance of the research is recognized, due to 

resource limitation, time limitation, and capability limitation, this dissertation research only 

focuses: 1) spatially on the Tickfaw River watershed, 2) temporally on the period of 1986-2015, 

3) theoretically on LCLU classification, change detection, and predictive modeling, and 4) 

methodologically on genetic algorithms, Petri nets, and cellular automata.   

1.7. Chapter Organization  

The dissertation comprises nine chapters. The current chapter gives an overview of the 

research. The study background provides basic information about current content and progress in 

each research sub-area. It indicates the importance of LCLU study, the problems faced by 

traditional approaches, and the problems faced by non-traditional approaches. The study seeks to 

address five problems related to LCLU classification, change detection, and predictive modeling 

using GAs, PNs, and CA-based approaches. According to those problems, the study objectives 

and the corresponding research hypotheses are laid out. The study will examine the relationships 

among genetic parameters, image parameters, PNs, CA components, and performance of LCLU 

study. The expected significance includes theory, methodology, and practice aspects.      
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The second chapter reviews previous studies relating to this dissertation research. It 

includes the development of remote sensing and GIS, development of LCLU study, and 

development of GAs, PNs, and CA-based approaches. For each section in this chapter, the 

current research progress, advances, and limitations are discussed.  

 The third chapter illustrates the study area, data sources, algorithms, implementation, 

experimental design, and research procedures. Data preprocessing is a critical step for this study. 

After geometric and radiometric correction, the indexing data and transformed data were created. 

All algorithms were integrated with different GIS and remote sensing software.     

From Chapters 4 to 8, different experiments were conducted to test the hypotheses, and 

the results are presented in individual chapters. The impacts of both GA parameters and image 

parameters on the accuracy of LCLU classification, the impacts of GA parameters on the 

accuracy of process-oriented change detection, and the impacts of cellular automata components 

on the accuracy of LCLU predictive modeling based on GA-Petri nets derived transition rules are  

discussed respectively.  

The last chapter summarizes the major findings from different chapters, the contribution 

of the dissertation research, and provides some recommendations for future studies.   
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CHAPTER 2  LITERATURE REVIEW 

2.1. Land-Cover and Land-Use Classification 

2.1.1. Concept of Land-Cover and Land-Use and Classification 

Land cover refers to the natural materials existing on the earth’s surface, land use 

describes the way humans use the land surface, and both of them closely links human activities 

to natural process (Read and Lam, 2002).  The importance, complexity, and uncertainty of land 

cover and land use make it an ideal illustration of geographic research. LCLU study – including 

classification, change detection, and predictive modeling – plays a crucial role in the process of 

improving the social-natural relationship (Dolman and Verhagen, 2003). The goal of LCLU 

classification is to identify LCLU features within a particular space at a particular time or period. 

It is the foundation of change detection and predictive modeling. Based on the survey done by 

Lu and Weng (2007), a systematic LCLU classification should include at least the following 

seven steps: 1) acquire or collect a suitable remotely-sensed data set and ancillary data set, 2) 

select a suitable classification system, 3) perform necessary data preprocessing, 4) take good 

training samples, 4) develop classification knowledge, 5) extract LCLU features information and 

perform classification, 6) perform post-classification processing and estimate the accuracy.  

2.1.2. Approaches to Land-Cover and Land-Use Classification 

Various LCLU classification techniques have been developed, and many have been 

summarized and reviewed (Coppin et al., 2004; Lu et al., 2004a; Lu and Weng, 2007). Several 

criteria can be used for categorizing LCLU classification techniques: 1) pixels, 2) training 

samples, 3) information types, 4) output, 5) parameters, 6) artificial intelligence, 7) knowledge, 

and 8) combination (Table 2.1) (Lu and Weng, 2007). 

The traditional LCLU classification techniques are based on statistics (such as minimum 

distance to means classifier, maximum likelihood classifier, and K-mean clustering) have  
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Table 2.1 A taxonomy of land-cover and land-use classification techniques 
(Source: modified from Lu and Weng, 2007) 

 
Criteria Categories Examples References 

Subpixel classifiers Huguenin et al., 1997 Subpixel-based 
classification Linear regression Settle and Campbell, 1998 

Most of classifiers Lu and Weng, 2007 Pixel-based 
classification Multiple-forward-model Peddle et al., 2004 

eCognition Gao et al., 2006 Object-oriented 
classification Object-oriented approach Geneletti and Gorte, 2003 

Parcel-based approaches Dean and Smith, 2003 

Pixels 

Field-based 
classification Map-guided classification Chalifoux et al., 1998 

Maximum likelihood Jensen, 1996 
Supervised classification Parallepiped classifier Lo & Yeung, 2007 

ISODATA Jensen, 1996 Unsupervised 
classification K-mean clustering Stuckens et al., 2000 

Hybrid classifiers Lo and Yeung, 2007 

Training 
samples 

Hybrid classification Hybrid approach Stuckens et al., 2000 
Maximum likelihood, Jensen, 1996 

Parametric classification Discriminant analysis Lo and Yeung, 2007 
Neural network Chen, et al., 1995 
Neural network Foody et al., 1995 
Neural network Verbeke et al., 2004 

Parameters 
Non-parametric 
classification 

Decision tree classifier DeFries et al., 1998 
Maximum likelihood Jensen, 1996 

Spectral classification Hybrid classifier Lo and Yeung, 2007 
Freq-contextual classifier Kartikeyan et al., 1994 

Contextual classification Spatio-spectral classifier Schowengerdt, 1996 
ECHO Lu et al., 2004a and 2004b Spectral-spatial 

classification Hybrid approach Stuckens et al., 2000 
Multi-temporal approach Wolter et al., 1995 

Information 

Spectral-temporal 
classification Multi-temporal approach Tottrup, 2004 

Maximum likelihood Jensen, 1996 
Hard classification Decision tree DeFries et al., 1998 

Fuzzy logic classifiers Shalan et al., 2003 
Output 
definiteness 

Soft classification Visual fuzzy classifier Lucieer and Kraak, 2004 
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limitations when dealing with spatial data that have the properties of inaccuracy, multiple scale, 

and interdependency. Since the early 1990s, the focus of LCLU classification techniques has 

been shifted from purely spectral analysis to contextual, spatial syntactic analysis, and 

knowledge-based interpretation (Argialas and Harlow, 1990; Srinivasan and Richards, 1990; 

Kontoes et al., 1993; Huang and Jenson, 1997; Legates et al., 2003). For the knowledge-based 

approaches, the accuracy is largely affected by the quality of knowledge discovered through the 

data mining / machine learning system and implemented through an expert system. 

Earlier knowledge-based geographical applications were based on decision trees and 

done by Hansen et al. (1996), Huang and Jenson (1997), and Friedl et al., (1999). Their studies 

demonstrated the great potential of using decision tree in spatial knowledge discovery. After 

them, the decision tree has been used intensively by many geographers including DeFries et al. 

(1998), Friedl et al. (1999), DeFries and Chan (2000), Pal and Mather (2001), Simard et al. 

(2002), Joy et al. (2003), McCauley and Goetz (2004), and Song et al. (2005). Their research 

suggested that the decision tree performs better than traditional classification technique. 

However, the problem of over-fitting seriously hinders its applications. When over-fitting occurs, 

the model cannot capture most testing data. One of the major factors causing an over-fitting is 

noisy data. Even without noisy data, the problem of insufficient training data can still cause an 

over-fitting problem. Although the decision tree has the capability to improve learning by itself, 

its learning is based only on the training data. A decision tree cannot enlarge the search space 

that may contain the model / knowledge capturing most testing data (Mitchell, 1997). 

2.2. Land-Cover and Land-Use Change Detection 

2.2.1. Concept of Land-Cover and Land-Use Change and Change Detection 

LCLU change is a term linking both natural processes and human activities (Read and  

Lam, 2002). LCLU changes are usually measured as the differences in the states of LCLU   
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features observed in different times or periods (Singh, 1989). There are the differences between 

LCLU conversion and LCLU modification. Four types of LCLU changes have been proposed: 1) 

feature change, 2) shape change, 3) location change, and 4) pattern change (Coppin et al., 2004). 

Feature change refers to LCLU conversion that is the complete replacement of one feature by 

another. The change of shape, location, and pattern refers to LCLU modification that affect the 

characteristics of the LCLU feature without changing its overall classification (Coppin et al., 

2004; Khorram, 1999). Usually, LCLU modifications are more prevalent than LCLU 

conversions. LCLU usually changes continuously and catastrophically. Some changes are causes 

by human activities, such as urban growth and deforestation. Others change are caused by natural 

processes, such as wildfires and earthquakes. Many LCLU changes are triggered by both human 

activities and natural processes, such as wetland loss and range degradation (Coppin et al., 2004; 

Dolman and Verhagen, 2003; Lu et al., 2004b). These changes have substantially contributed to 

the increase in atmospheric CO2, the exacerbation of water shortages, the changes of 

biogeochemical cycles, and the decrease of biodiversity at both regional and global scales 

(Dolman and Verhagen, 2003). During the last century, significant LCLU changes have heavily 

impacted human society. People are not only agents but also victims of LCLU changes. 

2.2.2. Approaches to Land-Cover and Land-Use Change Detection 

Change detection is one of the important components of LCLU study. It is a procedure to  

identify the difference in LCLU features observed within a given time period (Singh, 1989). In 

order to understand the relationships between human and nature better, and manage and utilize 

natural resources better, spatiotemporally and accurate LCLU change detection is extremely 

important and necessary (Lu et al., 2004a). Although the procedure to identify LCLU features at 

a particular time point and the procedure to identify LCLU features differences between or 

among different time points are clearly different, both LCLU classification and change detection 
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are practically interwoven (Singh, 1989; Mas, 1999; Coppin et al., 2004; Lu et al., 2004a). A 

LCLU change detection includes at least three steps: 1) preprocess image (e.g., geometrical 

rectification, image registration, radiometric and atmospheric correction, and topographic 

correction), 2) apply suitable techniques to detect changes, and 3) assess accuracy. Logically, 

change detection is a procedure after data pre-processing, transformation, enhancement, 

segmentation, and classification.  

The ability of any GIS system to detect LCLU change is a function of the “from-to” 

classes, and it deals with the spatial aspect, temporal aspect, and context of the change (Khorram, 

1999). Not all interesting changes are easily detectable, and not all detectable changes are 

equally important (Coppin et al., 2004). A good understanding of the nature and the principles of 

LCLU change will enable the detection of the process rather than the detection of the change 

itself (Coppin et al., 2004). Although LCLU changes have been defined and measured as the 

differences between two or more end points within a given time period, more importantly, they 

are dynamic processes (Miller et al., 1998; Nagendra et al., 2004; Phillips et al., 2004; Petit et 

al., 2001; Turner, 1989). A systematic LCLU change detection should at least answer the 

following questions (Miller et al., 1998; Petit et al., 2001; Lu et al., 2004a): 

• What type of LCLU features change and at what rate? 

• Where and when do LCLU features change? 

• How and why do LCLU change? 

• What is the accuracy of LCLU change detection? and  

• How do different factors (e.g., spectral, spatial, and temporal resolution, data sources, 

and data types, data layer combinations, and change detection techniques) impact it? 

Since the 1980s, a number of change detection techniques have been developed (Table  
 
2.2), and due to the importance of LCLU change detection, many new techniques have been  
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Table 2.2 A taxonomy of land-cover and land-use change detection techniques 
(Source: modified from Lu et al., 2004a; Coppin et al., 2004) 

 
Categories Characteristics Examples References 

Image differencing Sohl, 1999 
Image regression Singh, 1986 
Image ratioing Prakash and Gupta, 1998 
Vegetation index differencing Lyon et al., 1998. 
Change vector analysis Johnson & Kasischke, 1998 

Algebra 

Using math operators 
(e.g., subtract, divide, 
regression) on image data. 
It is easy to use but hard 
to interpret. 

Background subtraction Singh, 1989 
Principal component analysis Parra et al., 1996 
Tasselled cap Seto et al., 2002 
Gramm-schmidt Collins & Woodcock, 1996 Transformation 

Reducing data 
redundancy, but no detail 
information about LCLU 
change. Chi-square Ridd and Liu, 1998 

Post-classification comparison Mas, 1999 
Spectral-temporal analysis Soares & Hoffer, 1994 
Em detection Serpico & Bruzzone, 1999 
Unsupervised change detection Hame et al., 1998 

Classification 

Providing detail 
information about LCLU 
change, but requiring 
large training data. 

Hybrid change detection Petit et al., 2001 
GIS/remote sensing integration Price et al., 1992 GIS Integrating methods & 

Incorporating data. GIS approach Taylor et al., 2000 
On-screen digitizing Sunar, 1998 Visual Using experience, but 

time consumed. Visually interpretation Slater and Brown, 2000 
Artificial neural network Liu and Lathrop, 2002 
Data mining Mennis and Liu, 2005 
Knowledge discovery Halid, 1997 
Expert system Chalmers Fabricius, 2007 

Artificial 
intelligence 

Incorporating data, and 
discovering models, but 
hard to implement. 

Decision tree Rogan et al., 2003 
Multi-temporal analysis Miller et al., 1998 
Logistic regression Braimoh and Vlek, 2005 Processes Generating process 

models, but not efficient 
Markov chain Petit et al., 2001 
Spatial statistics approach Read and Lam, 2002 
Change curves Lawrence and Ripple, 1999 
Area production method Hussin et al., 1994 
Indicators combination Lambin and Strahler, 1994 
Structure-based approach Zhang et al., 2002 
Li-Strahler reflectance model Macomber & Woodcock, 1994 
Spectral mixture model Adams et al., 1995 

Others 
They are efficient for 
particular case, but not 
popularly used. 

Biophysical parameter method Lu, 2001 
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proposed. Based on the studies done by Chan et al. (2001), Civco et al.(2002), Coppin et al. 

(2004), Lu et al. (2004a), Mas (1999), and Singh (1989), most existing LCLU change detection 

techniques could be categorized into the following groups: 

• Algebra-based approaches use algebra as a key algorithm for change detection. 

Algorithms, such as image differencing, image regression, image ratioing, change 

vector analysis, vegetation differencing, and background subtraction, are most 

commonly used change detection techniques. Algebra-based approaches, except 

change vector analysis, are easy to implement. Although their results are easy to 

interpret, these approaches do not provide detail information about LCLU change. 

• Transformation-based approaches include principal components analysis (PCA), 

tasseled cap transformation (TCT), Gram-Schmidt, and Chi-square transformations. 

These approaches are usually to perform data preprocessing. After transformation, the 

resultant data will be used for LCLU change detection. The common advantage of 

these methods is data redundancy reduction. However, the resultant information is not 

explicit. These approaches require the selection of thresholds, and the results are 

difficult to interpret. 

• Classification-based approaches include post-classification comparison, spectral-

temporal combined analysis, expectation-maximization algorithm, unsupervised 

change detection, and hybrid change detection. Although these approaches are able to 

provide some detailed information about LCLU change, they require high-quality and 

sufficient-quantity of training samples. 

• GIS-based approaches integrate GIS and remote sensing methods for the purpose of 

change detection, so that data from different sources or with different formats can be 

incorporated into the procedure of change detection. These approaches may improve 
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or hinder the performance of change detection based on data types and algorithms 

used (Huang and Jenson, 1997). The key idea is to introduce more information into 

the procedure of LCLU classification and change detection. 

• Visual analysis-based approach includes visual interpretation of multi-temporal image 
 

composite and on-screen digitizing of change areas. The advantage is that an 

analyst’s experience and knowledge can be fully used, but it consumes a lot of time 

and is hard to update. The quality of result will be heavily impacted by the quality of 

analyst’s knowledge.  

• Artificial intelligence (or machine learning, or data mining, or knowledge discovery) 

based approaches include artificial neural network, fuzzy logic, decision tree, learning 

vector quantization, association rule, genetic algorithms, and so on (Chan et al., 2001; 

Liu and Lathrop, 2002). These methods are not based on the statistical assumption. 

They can work with different data sources, and usually perform better than traditional 

methods. The drawback is that they need high quality and quantity of training data.   

• Process-based approaches include multi-temporal analysis, multiple linear regression, 

and Markov chain. These methods can provide some information about LCLU change 

processes, so that the causes of change could be inferred. However, the existing 

multi-temporal analysis approach is not efficient (Yang and Lo, 2002), both multiple 

regression and Markov chain-based approaches assume that the LCLU change 

processes are stochastic (Petit et al., 2001). Unfortunately, this is not always true. 

Although a large number of change detection techniques have been proposed and tested  

so far, it is improper to argue which approach is best suitable for a particular study area. There is 

no single suitable method for all cases. The method selected depends on the user’s experience of 

handling remote sensing data and ancillary data, their knowledge of LCLU change detection 
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methods and the study area, and their capability of accessing different resources (Lu et al., 

2004a). Integration of different approaches and incorporation of various data may improve the 

performance of change detection. Previous research has shown that most change detection 

research can partially or fully answer the questions, such as which land features change and 

where, when, and at what rate. However, most of them could not provide information on how 

and why LCLU changes. To answer these questions, the process-oriented change detection is 

necessary. 

2.2.3. Processes-Oriented Land-Cover and Land-Use Change Detection 

LCLU changes are dynamic processes. Process-oriented LCLU change detection not only 

provides information about the features, patterns, and rates but also provides information about 

the processes. It gives more detailed information about the changes. Although models based on 

stochastic assumption have been applied successfully in LCLU change process studies (Guerra et 

al., 1998; Lambin, 1996; Mertens and Lambin, 2000; Petit et al., 2001; Singh, 1989; Turner, 

1987 and 1989), those models may not be the best approaches for LCLU change processes 

modeling. An alternative approach is to discover the knowledge of change process through 

spectral-spatial-temporal data mining, and then use the resultant knowledge to model the LCLU 

changes. 

Process mining or workflow discovery is an approach to discover process knowledge. 

The last decade has experienced a tremendous development in process mining and workflow 

discovering in business and manufactory management area (Dustdar et al., 2005; Reddy et al., 

2001). Its major idea is to automatically extract knowledge and build a model that describes the 

behavior of system from event logs recorded by an information system or compiled by users (van 

der Aalst and Weijters, 2005; Alves De Medeiros et al., 2007). Among the major language-

dependent process mining / workflow discovery techniques (e.g., unified modeling language, 
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event-driving process chains, and Petri net), Petri net, a popular, powerful, and easily 

implemented technique, has been developed from the early work of Carl Adam Petri (Peterson, 

1981; Wu, 2006). Petri net, namely place / transition (P/T) net, is both a graphical language and a 

mathematical structure, and it has been widely used to build and simulate the discrete event 

systems (Desel, 2005; Wu, 2006). A popular Petri net-based process mining application is 

implemented through the α-Algorithm that transforms an event log file into a Petri net. 

Unfortunately, this algorithm has at least three limitations: 1) invisible tasks, 2) non-free-choice, 

and 3) duplicate tasks (van der Aalst and Weijters, 2005). Since the knowledge of processes is 

derived only based on the provided training data, the quality of training data will impact the 

quality of knowledge. Moreover, two drawbacks have seldom been pointed out by previous 

research: limited search space and non-global optimization. GAs provide random search and 

global optimization mechanism that could overcome these limitations existing in a pure Petri net 

approach. 

2.3. Land-Cover and Land-Use Predictive Modeling 

2.3.1. Concept of Land-Cover and Land-Use Predictive Modeling 

LCLU changes are driven by human activities, natural processes, or the combination of 

both. They can be abstracted or simplified by various models at different spatial and temporal 

scales, and with different accuracies. LCLU models can be defined as an abstraction or 

simplification of real-world LCLU dynamics. They can be used to explore the dynamics and 

drivers of LCLU change and inform policies affecting such change. The modeling procedure of 

LCLU includes 1) collecting and processing data with the consideration of spatial, temporal, 

spectral, and radiometric resolution, 2) selecting or constructing the suitable approaches with the 

consideration of uncertainty and feasibility, 3) calibrating and validating the models with the 

consideration of complexity and accuracy, and 4) implementing and evaluating the optimized 
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models with the consideration of LCLU prediction and reconstruction (Wu, 2002; Candau et al., 

2000; Candau, 2002; ). Since predictive modeling provides a foundation for regional or local 

sustainable development planning, and reconstruction modeling only provides information about 

the past LCLU, this research only focuses on LCLU predictive modeling. 

2.3.2. Approaches to Land-Cover and Land-Use Predictive Modeling 

LCLU predictive models not only offer the possibility to test the sensitivity of LCLU 

patterns to the changes of selected variables, but also allow testing of the stability of linked 

human and natural systems (Veldkamp and Lambin, 2001). Since the 1980s, a number of LCLU 

modeling techniques have been developed (Agarwal et al., 2002; Jones, 2005; Lambin, 2004; 

Loveland et al., 2000; Parker et al., 2001 and 2003; Singh, 2003; U.S. EPA, 2000; Waddell, 

2002; Zhao and Chung, 2006). Based on the classification schemes used by the above scholars, 

those LCLU modeling techniques can be categorized into eight groups (Table 2.3): 1) empirical / 

statistical model, 2) stochastic / discrete model, 3) spatial interaction / input-output model, 4) 

linear programming / multinomial logic model, 5) rule-based model, 6) process-based model, 7) 

cellular automata / agent-based model, and 8) hybrid / other model. Some models are developed 

based on different techniques. If a model employs various algorithms or approaches, it will be 

classified based on the approach that the model mostly emphasizes.      

• The empirical-statistic models are commonly used approaches in LCLU modeling. 

They are based on the multiple linear regression techniques and geospatial statistical 

methods (Ludeke et al., 1990). This type of models can be used to identify explicitly 

the associated relationships among different LCLU features using multi-variants 

analysis of possible exogenous contributions to empirical derived rates of changes 

(Lambin, 2004). However, this approach can be used only to model statistical 

association, and any causal relationship will not be found. 
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Table 2.3 A taxonomy of land-cover and land-use change predictive modeling techniques 
(Source: modified from Agarwal, 2002; U.S. EPA, 2000; and Zhao et al., 2006) 

 
Categories Characteristics Examples References 

CLUE Veldkamp and Fresco, 
1996a and 1996b 

CUBRA Landis & Zhang, 1998a 
and 1998b 

CUF, CUF II Landis, 1995 

Empirical and  
Statistic-based 

Using multiple linear 
regression, and explain 
changes in a statistical sense. 

LTM Pijanowski et al., 2002 
LUCAS Berry et al., 1996 
Markov Chain Muller & Middleton, 1994 Stochastic  

model-based 

Markov chains, stationary 
transition, short term 
prediction. METROSIM Anas, 1994 

DRAM / EMPAL  Putman, 1995 
LILT Mackett, 1990a and 1990b 
HLFM II+ Dowling et al., 2000. 
LUTRIM Mann, 1995 
MEPLAN Hunt, 1997 
TRANUS U.S. EPA, 2000 

Spatial interaction 
and input-output-
based 

Using gravity theory, 
population distribution is the 
function of places; 
attractiveness; also using 
input-output model in 
economics, too address 
spatial pattern of society. 

DELTA U.S. EPA, 2000 
HerbertStevensModel Herbert & Stevens, 1960  
TOPAZ / TOPMET Zhao and Chung, 2006 

Lnear programming 
and Multinominal 
logit based 

Using linear, nonlinear, 
dynamic, hierarchical, and 
goal programming.   POLIS Zhao and Chung., 2006 

CUF-1 / CUF-2 Landis, 1994 
SAM / SAM-IM U.S. EPA, 2000 
UPLAN Johnston et al., 2003 
What If Klosterman, 1999 
SLAM Zhao and Chung , 2006 

Rule-based 

Based on economic theories 
and market rules, use for 
long-term scenario at county 
level. 

ULAM Zhao and Chung , 2006 
PLM Voinov et al., 1999b 
GEM Fitz et al., 1996 
IMAGE Alcamo et al., 1998 Process-based 

Process-based, good for 
representing non-stationary 
processes. 

IMPEL Rounsevell et al., 1997 
SLEUTH Herold et al., 2003 
CA/LUCC Messina, 2001 
ABM/LUCC Parker et al., 2001 

Cellular Automata 
and Agent-based 

Cell/agent, flexible, bottom 
up, good for LCLU 
prediction, hard to define 
rules or behaviors. MAS/LUCC Parker et al., 2003 

DT-CA Li & Yeh, 2004 
ANN-CA Li & Yeh, 2002 
SmartGrowth INDEX U.S. EPA, 2007 

Integrate one model with 
another model or GIS. It uses 
both strength and overcomes 
drawback. SmartPlaces EPRI, 2002 

UrbanSim Waddell & Ulfarson, 2004 
IRPUD Wegener, 1998 
MASTER Mackett, 1990a, 1990b 

Hybrid and Other 
Use model to simulate the 
individual behaviors, apply 
conclusion to entire 
population. NBER/HUDS Kain, 1986 
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• The stochastic models are based mainly on transition probability models such as  

Markov chains. In this type of approaches, the LCLU change processes are  

stochastically described by a set of states and steps. The states of the system are 

defined as the pattern of LCLU features, and the transition probabilities are estimated 

statistically from a sample of transitions occurring during time intervals (Lambin, 

2004). Such models rely on the assumption of a stationary transition matrix. 

Unfortunately, this assumption is not valid in most cases. This type of models can be 

used only for predicting short-term LCLU change under a strict assumption of 

stationary of process. 

• Spatial interaction models and spatial input-output models are based on the gravity 

theory and the theory of input-output respectively. Spatial interaction models are 

designed to link the pattern of population distribution, the attractiveness of places, 

and the travel cost (Putman, 1995; Mackett, 1990a and 1990b; Dowling et al., 2000). 

Such models can represent only limited spatial detail (Waddell and Ulfarsson, 2004). 

Spatial input-output models are developed to address spatial patterns of economic 

activities within the various regions and the spatial pattern of the flow of money, 

goods, and the movement of people among the different places (Hunt, 1997; U.S. 

EPA, 2000). Such models are expressed by static equilibrium solution (Waddell and 

Ulfarsson, 2004). However, in most cases the processes and relationships among the 

different components of LCLU system are dynamitic.    

• Optimization models are based on linear programming, multinomial logic, or general 

equilibrium. They are developed and used in economics-related areas (Lambin, 

2004). In this type of models, LCLU change is a function of choices by landowner 

among various rents because a land parcel with the given attributes and location is 
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treated as being used in the way that generates the highest rent. In other words, the 

behavior of landowner is described with the models. The optimized models assume 

that the landowner can make an informed LCLU prediction. However, the 

applicability of such models for LCLU changes prediction is limited because of 

unpredictable economic factors (e.g., price fluctuations and demand market) and non-

economic factors (e.g., natural hazard). They also suffer from other limitations, such 

as the arbitrary definition of objective functions and non-optimal behavior of people 

(Lambin, 2004). 

• The process-based models are developed to simulate and analyze the interactions 

among different system components (Lambin, 2004). LCLU changes are a set of 

processes. Process models can be used to predict temporal changes in spatial patterns 

of LCLU when they are spatially and temporally explicit. The strength of a LCLU 

process model depends on whether the major features affecting LCLU change are 

integrated, whether the functional relationships among factors affecting change 

processes are represented appropriately, and whether the model is able to predict the 

most important LCLU changes (Lambin, 2004). Process models are well-suited to 

representing non-stationary process because they mimic the underlying processes in 

the system. 

• CA-based models and agent-based models are similar. Both of them are “bottom to 

top” approaches. A cellular automaton has at least five components: space, state, time 

step, neighborhood, and transition rules. Its basic unit is a cell. Cells change from one 

state to another state based on the configuration of those five components (Gaylord 

and Nishidate, 1996). An agent-based model consists of autonomous decision-making 

entities (agents), an environment through which agents interact, rules that define the 
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relationship among agents, and rules that determine sequencing of actions in the 

model (Parker et al., 2003). In LCLU modeling, the behavior of cell or agent will 

determine the resultant LCLU patterns. These approaches are very flexible. The 

major drawback is the difficult of developing the cells’ transition rules or defining an 

agent’s behaviors. 

• Hybrid models combine at least two different techniques together, such as the 

integration of a decision tree and CA (Li and Yeh, 2004). The purpose of hybrid 

models is to implement the strength from different approaches or to use one 

approach’s strength to overcome another approach’s drawback. In CA-based LCLU 

modeling, defining transition rules was a difficult work, but it can be performed 

easily by using a decision tree. Hybrid models provide more approaches for LCLU 

predictive modeling.     

Although a large number of predictive modeling techniques have been developed and  

tested, it is difficult to state which approach is most suitable for a specific study area. Currently,  

the most commonly used predictive modeling is CA-based approaches, and the major reason can 

be traced to its simplicity and modeling capability. However, developing a proper transition rule 

set remains a challenge (Li and Yeh, 2004).    

2.4. Genetic Algorithms 

2.4.1. Concept of Genetic Algorithms 

Genetic algorithms (GAs) were proposed as a type of efficient stochastic search and 

global optimization technique by both Holland (1975) and Goldberg (1989). GA-based 

approaches seem to have great promise because of its being inspired by the principle of genetics 

and Darwin’s evolutionary theory. Unlike other algorithms (such as neural network and fuzzy 

set), GAs can automatically enlarge search space and optimize results. The algorithms begin with 
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a randomly initialized population and evolve toward better solutions by using fitness evaluation 

and genetic operators. In the process of evolution, individuals with higher fitness value have 

greater opportunities to reproduce offspring. The fitness-based natural selection is balanced by 

randomly adding genetic operations through crossover and mutation (Wu and Cao, 1997). The 

whole course is controlled by a number of genetic parameters discussed below. 

2.4.2. Applications of Genetic Algorithms 

In GAs, the representation of individual is an important issue. For example, when using 

GAs to solve a problem, people are usually interested in a set of solutions, rather than a single 

solution. There are two approaches to encode a set of solutions in a GA population. In the 

conventional GA approach, each individual of GA population represents a set of solutions, or 

entire candidate solutions. This is called the Pittsburgh approach. Another approach, which 

departs from conventional GA, consists of having an individual represent a single solution, or a 

part of a candidate solution. This is called the Michigan approach (Freitas, 2002). In this 

dissertation, the Pittsburgh approach-based GA software was used because of availability.   

Since the late 1980s, genetic algorithms have been applied successfully to various 

geographical studies, such as 1) image processing, feature extraction, and classification; 2) 

integrating or comparing with different approaches for geospatial research purposes; 3) spatial 

optimization and regional planning; and 4) mapping and others (Table 2.4).  

2.4.3. Genetic Parameters 

GAs have five types of parameters including: number of generations, population size, 

crossover rate, mutation rate, and generation gap or elite rate. Generation is a procedure to 

generate a new population, population is a group of individuals with same or similar 

characteristics, crossover is a procedure to generate children from two parents, mutation is a 

procedure to change selected individual genome, and generation gap is the replacement rate of  
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Table 2.4 Summary of genetic algorithms-based geographical applications 
(Source: modified from Krzanowski and Raper, 2001) 

 
Categories Characteristics Applications References 

Feature extraction Brumby et al., 1999 

Image processing Harvey et al., 2000; Brumby 
et al., 1999 

Classify multi-sources data Tso & Mather, 1999 
Features classification  Perkins et al., 2000 
Pixels classification Bandyopadhyay & Pal, 2001 
Image classification Stathakis &Vasilakos, 2006 
Road detection Jeon et al., 2002 
Sharpen multi-spectral image Garzelli & Nencini, 2006 

Image 
processing, 
features 
extraction, and 
classification 

Genetic 
algorithms are 
used for 
processing image, 
extracting 
features, and 
classifying image 
data. 

Sub-pixel mapping Mertens et al., 2003 
GA-ANN / spectral identify Clark & Canas, 1995 
GA-ANN / decision making Zhou & Civco, 1996 
GA-ANN / feature extraction Zhou & Civco, 1997 

GA-Fuzzy / classification Maulik & Bandyopadhyay, 
2003 

GA-Fuzzy / classification Bandyopadhyay, 2005 
GA / standard methods Pal et al., 2001 
GA/ PCA  Garcia-Orellana et al., 2002 
GA / supervised classifiers Harvey et al., 2002 

GA / ANN / Fuzzy Demetris & Vasilakos, 2006; 
Kulkarni and Lulla, 1999 

Integration /  
comparison 

Genetic 
algorithms are 
used to integrate 
or compare with 
neural network, 
fuzzy logic, or 
GIS. 

Integrating with GIS  Stockman et al., 2006 
Location allocation Hosage & Goodchild, 1986 
Location optimization Li & Yeh, 2005 
Site-search problems Xiao et al., 2002 
Route planning Huang et al., 2004 
Route and road design Pereira, 2001 
Land use planning Stewart et al., 2004 
Land use planning Matthews et al., 2000 
Airspace sectoring Delahaye, 2001 
Policy’s  geo-consequence Bennett et al., 2004 
Solve various GIS problems Dijk et al., 2001 
Optimize patch configuration Brookes, 2001 
Photogrammetric network Olague, 2002 

Spatial 
optimization, 
and planning 

Genetic 
algorithms are 
used to optimize 
various geospatial 
solutions   

Optimize sensor model Samaadzadegan et al., 2005 
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Table 2.4 (Continued) 
 

Categories Characteristics Applications References 
Spatial modeling Openshaw, 1988, 1992,1995 
Spatial modeling Krzanowski & Raper, 2001 
Spatial modeling Dibble & Densham, 1993 
Spatial reference analysis Cooley et al., 1997 
Spatial analysis Dibble, 2001 
Species distribution model Stockwell & Peters, 1999  
Spider distribution analysis Bond et al., 2006 
Species distribution model Stockman et al., 2006 
Species biodiversity model Stockwell et al., 2006 

Spatial 
modeling,  
analysis, and 
prediction 

Genetic 
algorithms are 
used for 
modeling, 
analyzing, and 
predicting.  

Mammals distribution model Patricia et al., 2004 
Map generalization Dijk et al., 2002 Map 

Generalization 
Optimizing map 
display. Class intervals on maps Armstrong et al., 2003 

Land roughness information Jin & Wang, 2001 
Evaluate water quality Chen, 2003 Others 

Improve 
environmental 
monitoring. Assess ground water quality Armstrong & Bennett, 1990 
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each generation. Although the impact of genetic parameters on the performance of genetic 

algorithms has been studied in other areas (Grefenstette, 1986), it is seldom investigated in 

geospatial analysis area.  

In spite of great achievement, GA-based approaches still suffer from a number of 

problems. Although being proposed as a random search and optimization technique, GAs never  

guarantee global optimum because both inheritance and evolution are very complex processes 

and controlled by many different factors. The most harmful one is that any improper setting of 

genetic / image parameters could cause the population lose its diversity, be dominated by so-

called elites, or prematurely converge to local optimum (Wu and Cao, 1997; Rocha and Neves, 

1999). In this type of situation, the search and optimization procedure is trapped in the sub-

optimal state and most of the operators cannot produce offspring surpassing their parents (Liu et 

al., 2000). It has been proven that genetic parameters have much influence on the performance of 

genetic algorithms (Yang et al., 2000), and classical genetic algorithms cannot converge to the 

global optimal solution without properly configuration of genetic parameters (Rudolph, 1994).  

 The last decade has experienced extensive applications of genetic algorithms in 

geographical research. Based on the various research, a literature review is developed (Table 

2.4), and it suggests that: 

• Existing studies have been dominated by applications of GAs in satellite image 

analysis, location / route optimization, mapping optimization, comparison/integration 

of different approaches, and spatial modeling. Most studies have been done since the 

mid-1990s. 

• Systematic and scientific investigations on premature convergence / local optimum 

problem in GAs-based geographical studies, and the relationships among the 

performance of GA, genetic / image factors, and the accuracy of LCLU have been 
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scarce. It is a challenge to find a general and effective approach to improve the 

performance of GAs in geographical studies. 

2.5. Petri Nets 

2.5.1. Concept of Petri Nets 

 A LCLU system can be regarded as a discrete event system, the events are LCLU 

changes, and the states are a set of feature classes. State-to-state transitions are driven by human 

activities, natural process, or a combination of both. The behavior of discrete event systems can 

be captured and analyzed by using modeling techniques. Petri nets are the ideal techniques for 

such modeling because they provide both graphical representation and mathematical 

representation. The concept of the Petri nets was introduced by Petri, C. A. in his dissertation in 

1962 (Schneeweiss, 2004). Petri nets are a type of stream models (Liu and Hao, 2005), they are 

also a type of graphical representations and mathematical modeling techniques for describing 

analyzing, and modeling the systems’ temporal procedures (or dynamic processes) (Schneeweiss, 

2004), and the systems are characterized as being concurrent, asynchronous, distributed, parallel, 

discrete, nondeterministic, and / or stochastic (Murata, 1989). As a graphical technique, Petri 

nets can be used as a visual-communication aid similar to flow charts, block diagrams, and / or 

networks. As a mathematical approach, Petri net provides the possible to set up equations or 

mathematical models to manage, analyze, model a system’s behavior (Murata, 1989).  

2.5.2. Applications of Petri Nets 

A classical Petri net is composed of places, tokens held by places, transitions, and 

directed arcs between the places and transitions (David and Alla, 1992; Schneeweiss, 2004; Wu, 

2006). The number of tokens is called the marking, and the distribution of tokens among the 

places represents the state of the Petri net. The arcs determine how tokens move from one place 

to another place upon the firing of a transition. The state of Petri net can be represented as an 
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integer vector, and the architecture or layout of a Petri net can be represented with an integer 

matrix known as the incidence matrix (David and Alla, 1992; Schneeweiss, 2004; Wu, 2006).  

Based on a classical Petri net theory, at least three important types of Petri net can be developed. 

First, timed Petri nets include time in the net by associating a time delay with the firing of a 

transition. Second, colored Petri net has colored tokens. Last, generalized Petri net has weights 

associated with the arcs (David and Alla, 1992; Schneeweiss, 2004; Wu, 2006). Those types of 

Petri nets are commonly used in PN-based application. They are closely related to this 

dissertation study.  

Due to their generality and permissiveness, Petri nets have been proposed for various 

applications. Graphically, they can be used for any system having discrete, parallel, or 

concurrent behavior. However, mathematically, serious attention must be paid to the balance of 

modeling generality and analysis capability. The major users of Petri nets are computer and 

automatic control scientists (David and Alla, 1992). Petri nets have been used in other areas. 

Based on the purposes, the applications can be categorized into four groups: 1) industrial 

processes control, 2) business processes management, 3) computer networking or 

communication, and 4) scientific research (Table 2.5). 

2.5.3. Limitation of Pure Petri Nets 

A literature review indicates that manufacture processes control (Department of 

Computer Science, University of Aarhus, 2007), business processes management (Desel et al., 

1998), and computer science study (Murata, 1989) are major application fields. Although Petri 

nets have been introduced into many other scientific research, such as in biology and chemistry 

(Will and Heiner, 2002), there are very few Petri net applications in geographic research. 

Traditionally, the process models generated by Petri net are based on the input data only. If the 

space of the input data is not large enough, the resultant process model cannot fit the entire data  
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Table 2.5 Summary of Petri nets applications 
 

Categories Characteristics Applications References 
Discrete event system  Holloway et al., 1997 
Manage manufacture system  Lambin & Strahler,, 1994 
Industrial system control Suri, 1985 
Traffic control  Hsieh and Chen, 1999 
Industrial system modeling Rodrigo and Nicholls, 1998 
Industrial processes van der Aalst, 1994 
Manufacture management Wu et al., 2006 
Re-configurable system  Kumar et al., 2005 

Manufacture / 
industry 
processes 
control 

Use Petri nets to 
extract and model 
industrial process 

Production schedule Chien and Chen, 2007 
Manage business processes  van der Aalst et al., 1996 
Virtual enterprises Gou et al., 2000 
business processes van der Aalst, 2002, 2003 
Web service composition Hamadi & Benatallah, 2003 
Verification of Workflow van der Aalst, 1997, 1998 

Business 
processes 
management 

Use Petri nets to 
extract and model 
business process 

Process mining  van der Aalst et al. 2004, 2005 
Multi-processor system model Gourgand, 1993 
Communication protocol  Jaragh and Saleh, 1999 
Software development  Chang et al., 1989 
Distributed system modeling  Yi and Kochut, 2005 
Parallel programming  Ferscha, 1992; Yen, 2002 

Computer 
science and 
technology 

Use Petri nets to 
extract and model 
computer network 
structure 

Concurrent processes Bulitko and Wilkins, 2003 
Spatio-temporal modeling  Hsu et al., 2003 
Spatio-temporal modeling Wang & Nakayama, 2005 
Biological research  Doi et al.,1999; Hirata, 2001 
Ecological research Gronewold & Sonnenschein, 1998 
Chemistry research Kuroda and Ogawa, 1994 
Medicine research  Peimann, 1988 
GIScience research Yin & Li, 2004 

Scientific 
research 

Use Petri nets to 
extract and model 
natural process 

Geospatial Modeling Liu and Hao, 2005 
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set. Optimization may be an approach to solve this problem. One common limitation in pure 

Petri nets applications is the lack of efficient optimization. 

2.6. Cellular Automata 

2.6.1. Concept of Cellular Automata 

Faced with the problem of constructing a mathematical model of LCLU change pattern, 

the first modeling step is to clarify the level of CA structure in which one is primarily interested  

with regarding to space, time, state, and interactions (Deutsch and Dormann, 2005). One way to 

classify the approaches of spatio-temporal modeling is to distinguish the difference between 

continuous and discrete state, time, and space variables. A classification of different approaches 

is shown in Table 2.6.  

CA is a type of dynamic system that is discrete in terms of time, state, and space. CA 

plays an important role in spatio-temporal modeling. Originally, CA were developed by John 

von Neumann and Stanislaw Ulam in the 1940s for investigating the behavior of complex 

systems (White and Engelen, 1993). Both of them attempted to develop a theory of machine 

behaviors that can reproduce the structure by itself. The concept of a self-organizing system is 

the key of CA (Mortlock, 2004). A cellular automaton includes five components: space, state, 

time step, neighborhood, and transition rule. Space is composed of individual cells, and each cell 

may change from one state to another state based on the transition rules, their neighborhood, and 

time steps (Gaylord and Nishidate, 1996). The structure of CA tends to develop naturally ordered 

patterns on a large scale (Torrens, 2000; 2001). Since being developed, CA had not become 

popular until 1970, when The Game of Life, which combined all the components of CA in a 

model and simulated the key elements of reproduction in simple way, was invented by 

mathematician John Conway and published by Martin Gardner. However, much influence on 

later development of CA theories, techniques, and applications can be attributed by Wolfram’s  
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Table 2.6 Characteristics of cellular automata modeling approaches 
(Source: Deutsch and Dormann, 2005) 

 
Model Approaches Space Variable Time Variable State Variable 

PDEs, integro-differential eqs Continuous Continuous Continuous 
Spatial point process set or rules Continuous Continuous Discrete 
Integro-different eqn. Continuous Discrete Continuous 
Set of rules Continuous Discrete Discrete 
Coupled ODEs Discrete Continuous Continuous 
Interacting particle systems Discrete Continuous Discrete 
Coupled map lattices, system of 
diff. eqns, lattice-Boltzmann models Discrete Discrete Continuous 

Cellular automata, lattice-gas 
cellular automata Discrete Discrete Discrete 
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research in 1984. He demonstrated that the origins of the complexity of the natural system could 

be investigated through CA. Since then, the CA-based geographic research have dramatically 

increased.  

2.6.2. Applications of Cellular Automata 

The introduction of CA in geographic research can be traced back to the work done by 

Hagerstrand (1967; 1968). In his diffusion models, he highlighted the major components of the 

current CA structure: cell, lattice, state, neighborhood, time, and transition rules. Although his 

research was theoretically well-defined, it was practically limited by the simulation capability. 

Tobler (1979) may be the first one to clearly suggest the use of CA in geographic research. He 

developed a set of CA-based spatial models to study land use. The work done by Tobler laid the 

theoretical foundation for the current studies on geographic CA. However, the temporal 

dimension of his CA model was not strong (Wegener, 2000). Since the mid-1980s, the works 

done by both Hagerstrand and Tobler have been improved theoretically, methodologically, and 

practically by CA-based geographic research. The research done by Couclelis (1985, 1987, 

1988) may be most significant. She adopted CA as a simulation framework in which the local 

and global behaviors interact. She also explored a classical 2-D CA model with a detailed 

description of each of the CA components. Urban growth has been attracting most attention from 

the geospatial modeling community. A series of papers on urban growth, published by Batty 

(1991; 1998; 2000; 2002), Batty and Xie (1994; 1997), Batty et al. (1989; 1999), Clarke and 

Gaydos (1998), Clarke et al (1994, 1997), Landis (1994, 1995), Landis and Zhang (1998a, 

1998b), and White and Engelen (1993, 1994, 1997, 2000), have demonstrated very important 

insight into the nature and form of urban and regional land use dynamics. CA have also been 

used in other geographic research. Based on the issues studied, the CA-based geographic 

research can be categorized into the following groups: 1) urban growth, 2) regional LCLU 
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change, 3) population dynamics, 4) disease spread, 5) wildfire propagation, and 6) biological 

distribution (Table 2.7). One aspect should be mentioned is agent-based approaches in 

geographic research. Essentially, agent-based approaches are developed from CA, both of them 

are pretty much same.      

2.6.3. Transition Rules in Cellular Automata 

 Existing studies demonstrate that the most important component in geographic CA is the 

transition rule. The transition rule is the key component of CA. The real-world processes or 

behaviors are translated into a geographic CA model through transition rules only. Transition 

rules drive and guide CA dynamic evolution. The definitions of transition rules in geographic 

CA are strongly based on domain knowledge and individual experiences. For example, the 

transition rules in CA-based urban modeling are usually given according to the intuitive 

understanding of the process of urban growth. Transition rules can be defined using various 

mathematical expressions, such as nested neighborhood spaces and distance decay functions 

(Batty and Xie, 1994), predefined parameter matrices (White and Engelen, 1993), linear 

equations of multi-criteria evaluation (MCE) (Wu and Webster, 1998), logistic models (Wu, 

2002), grey-cell or fuzzy states (Li and Yeh, 2000), and neural networks (Li and Yeh, 2002). 

However, most transition rules are not easy to understand because they use mathematical 

equations instead of explicit human understandable language. Li and Yeh (2004) used the 

decision tree to discover a set of explicit transition rules for a geographical CA. But decision tree 

approach has over-fitting problem, and it has no capability of global optimization. Although the 

number of ways of defining transition rules seems to be virtually unlimited, how to discover and 

optimize transition rules in an objective way requires further study.  

In addition to defining transition rules, the calibration of geographical CA seems to be 

very difficult also, because a large number of rules have been used. Usually, transition rules 
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Table 2.7 Summary of cellular automata applications 
 

Categories Characteristics Applications References 
Urban modeling Batty,1998, 2000 
Urban modeling Clarke et al., 1997 

Urban modeling Landis & Zhang, 1998a, 
1998b 

Urban modeling White & Engelen, 1994, 
1997, 2000 

UrbanSim Waddell, 2002 
Urban modeling Xie, 1996 
Urban growth modeling Chen et al., 2002 
Urban planning Yeh & Li, 2000, 2001, 2003 

Urban  CA-based urban 
growth modeling 

Space-Time processes Wu, 1999 
Land use change White & Engelen, 1993 
Land use change Batty & Xie, 1994 
Land conversion simulation Wu, 1998a, 1998b 
Land-cover and land-use 
change Singh, 2003 

Land-cover and land-use 
change Parker et al., 2003 

Land use change Li & Yeh, 2002, 

Land 

CA-based land-
cover and land-
use change 
modeling 

Land use change Jenerette & Wu, 2004 
Population density Yeh and Li, 2002 
Population surface modeling Wu & Martin, 2002 Population  

CA-based 
population 
migration 
modeling Population spatial spread Sondgerath & Schroder, 

2004 
Epidemic dynamics Willox et al., 2003 
Influenza A viral infections Beauchemin et al., 2005 
Epidemic propagation Sirakoulis et al., 2000 

HIV infection dynamics Dos Santos & Coutinho, 
2001 

Disease  Ca-based disease 
spread modeling 

HIV infection Sloot et al., 2002  
Propagation and extinction Clarke et al., 1994. 
Predict wild bush fire spread  Mrax et al., 1999 
Simulate savanna wild fire  Berjak & Hearne, 2002 Wildfire  

CA-based 
wildfire 
propagation and 
extinction 
modeling Predit forest fire spread Karafyllids & Thanailakis, 

1997 
Species distribution Carey, 1996 
Vegetation dynamics Balzter et al., 1998 
Simulate forest pattern Green et al., 1985 
Invasive species spread BenDor & Metcalf, 2006 
Habitat pattern Syphard et al., 2005 
Deforestation Messina and Walsh, 2000 

Biology and 
Ecology 

CA-based 
vegetation, 
animal, and 
insect, and 
habitat 
distribution 
modeling 

Plants dispersal Harada & Iwasa, 2006 
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consist of many variables and parameters. There are many uncertainties in determining 

parameter values. Urban CA is very sensitive to transition rules and their parameter values (Wu 

and Webster, 1998; Li and Yeh, 2002; Wu, 2002). There are very limited studies on the 

calibration of geographical CA (Clarke et al., 1997; Clarke and Gaydos, 1998; White and 

Engelen, 1997; Wu, 2002), and most of them are the so-called “trial and error” approaches.  

Based on the above discussion, the CA-based urban growth modeling is very complex.  

When we attempt to develop a regional LCLU model, there are many land features involved 

simultaneously. The complexity of geographical CA will increase tremendously. The literature 

review indicates that CA-based LCLU predictive modeling still has at least following three 

problems: 1) how to develop a set of optimized objective transition rules, 2) how to calibrate and 

validate a geographical CA, and 3) how to identify the effects of CA’s components on their 

performance.  

2.7. Summary 

 This chapter discussed the major advances in LCLU classification, change detection,  

predictive modeling, genetic algorithms, Petri nets, and cellular automata, which can be 

summarized as follows:  

• During the last two decades, the LCLU classification techniques have been shifted 

from spectral analysis to contextual, spatial syntactic analysis, and to knowledge-

based interpretation. Several knowledge-based approaches, such as the decision tree, 

fuzzy logic, artificial neural network, genetic algorithm, have been used in the 

procedure of LCLU classification. Different approaches have different capabilities in 

terms of random search and global optimization.   

• During the last two decades, the LCLU change detection techniques have been shifted 

from algebra-based approaches to artificial intelligence-based approaches, from two 
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or several endpoint differences detection to process-oriented detection.  Since LCLU 

changes are dynamic processes, a systematic LCLU change detection should be 

process-oriented. However, currently, most LCLU change detections are not process-

oriented.   

• During the last two decades, the LCLU predictive modeling techniques have been 

shifted from statistic / stochastic approaches to dynamic / cellular approaches. Both 

process models and transition rules are crucial for the new approaches. However, 

developing a set of process models or transition rules for representing a LCLU system 

remains very challenging. 

• Genetic algorithms have been used in geographic research since the late 1980s, and 

most applications are about LCLU classification and spatial modeling. However, their 

intrinsic premature convergence problem and its impacts on the accuracy of LCLU 

classification or spatial modeling have seldom been investigated. 

• Petri nets have been used in the management of manufacturing process, business 

process, and computer network. They are relatively new in geographic research and 

application. Based on the existing studies in various scientific fields, most current 

applications use pure Petri net, and the resultant process models are not optimized. In 

the dissertation research, a genetic Petri net is involved, and the resultant process 

models are optimized.     

• Cellular automata have been used in geospatial modeling for over two decades. The 

development of transition rules remains a problem. Recently, a data mining based 

approach for transition rules development was proposed, but those transition rules 

were not optimized. Also, the impacts of space, state, time step, neighborhood, and 

transition rule on the performance of geographic cellular automata need further study.  
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CHAPTER 3  RESEARCH METHODOLOGY 

3.1. Study Area and Data Sources 

3.1.1. Natural and Social Environment  

Louisiana has twelve water management basins delineated by natural drainage patterns of 

the state’s major river basins. The study area, namely Tickfaw River watershed in the upper Lake 

Pontchartrain Basin, is especially challenged from rapid population growth, industrial activities, 

and agricultural use. This watershed is located in southeastern Louisiana and southwestern 

Mississippi, between 30˚19’14” - 31˚9’42” N latitude and 90˚31’58” - 90˚50’15” W longitude 

(Figure 3.1). The Tickfaw River flows from the Mississippi state line to Springville at Louisiana 

Highway 42 then to the Lake Maurepas. Its drainage area totally covers 711 mile² and includes a 

portion of Amite County, St. Helena Parish, Livingston Parish, and Tangipahoa Parish (U.S. 

EPA, 2005).  

Southeastern Louisiana is the wettest part of the state, and its climate is classified as 

humid subtropical. The Gulf of Mexico dominates the climate by providing a flow of warm and 

humid air into this area (Johnson and Yodis, 1998; Yodis et al., 2003). Based on a long-term 

research done by Wu (2005), the annual average air temperature during 1948-2000 is about 

19°C, with the lowest monthly average of 12°C in January and the highest monthly average of 

28°C in July. Although monthly average precipitation is well-distributed throughout the year, 

autumn tends to be the driest season with a distinct minimum in October. Much of the winter 

rainfall is associated with the mid-latitude wave cyclones. During the summer months, local 

heating produces summer thunderstorms, which can occur on a near-daily basis (Johnson and 

Yodis, 1998; Yodis et al., 2003). The annual average precipitation is about 1600 mm, with the 

lowest monthly average of 86 mm in October and the highest monthly average of 159 mm in 

July (Wu, 2005).  



 46

 
 

Figure 3.1. The location of study area – Tickfaw River watershed 
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The major part of Tickfaw watershed is covered by hills and terraces (Penland et al, 

2002). The soil types in the study area include Pleistocene Terrace soils, Flatwoods soils, and 

Loess soils (Johnson and Yodis, 1998; Yodis et al., 2003). The Pleistocene Terrace soils are 

dense, solid, and relatively impermeable layers. Flatwoods soils have high acidity and low 

fertility, and they are rarely exploited for crop agriculture. Loess soils have developed along the 

margins of the Mississippi River valley where loess deposits on the terrace complexes are of 

sufficient thickness for soil profile development (Johnson and Yodis, 1998; Yodis et al., 2003). 

In the study area, longleaf pine and hardwoods are most common. The forests in the northern 

Tickfaw watershed are dominated by longleaf pine, and the forests in the southern Tickfaw 

watershed are dominated by the mixed forests of longleaf pine and hardwoods.  

Tickfaw watershed is one of tributaries to Lake Pontchartrain. Based on a set of long-

term records analysis done by Wu (2005), its mean daily discharge is 10.9 m³/s. The major types 

of water bodies in Tickfaw watershed are rivers that include the Natalbany River, Pontchatoula 

River, Tickfaw River, and Yellow Water River. These rivers have been partially impaired by 

dissolved oxygen, fecal coliform, phosphorus, mercury, dissolved solid, lead, and nitrite/nitrate 

(Table 3.1). The major pollution sources are atmospheric deposition toxics, on-site treatment 

system, draining / filling /wetland loss, upstream source, drought-related impact, residential 

districts, and land development / redevelopment. Also a large portion of pollution source is 

unknown (U.S. EPA, 2002).  

According to the U.S. Census Bureau (2006), the Tangipahoa, St. Helena, and Livingston 

Parishes experienced a 12.5%, 2.2%, and 25% increase in its population respectively from 2000 

to 2006 (Table 3.2). Since the 1980s, this area has experienced a rapid urban growth and 

significant deforestation (Couvillion, 2005). Based on the census of three parishes and one 

county that are partially covered by Tickfaw watershed, the total population increased from  
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Table 3.1. Major pollutants and pollution sources in the Tickfaw River watershed 
(Source: U.S. EPA, 2002) 

 
Pollutants Rivers, Streams, 

Creeks (Miles) 
Pollution  
Sources  

Rivers, Streams, 
Creeks (Miles) 

Chloride 26 Atmospheric Deposition 
Toxics 173 

Lead 25 Drainage / Filling / 
Wetland Loss 94 

Mercury 173 Drought-Related  
Impacts 38 

Oxygen 
Dissolved 25 On-site Treatment 

System / Similar System 159 

Sulfates 26 Residential  
Districts 25 

Total Dissolved 
Solid 131 Site Clearance 12 

Total Fecal 
Coliform 159 Upstream Source 173 

  

 

Source  
Unknown 68 
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Table 3.2. The population change in the study area  
(Source: U.S. Census Bureau, 2006) 

 
Population Parishes  

or  
Counties 

Land 
Area 

(mile²) 2000 2006 
Population 

Change 

Population Density  
in 2000 

(Persons/ mile²) 

Households 
In 2000 

Tangipahoa 790.24 100,588 113,137 12.5% 137.3 36,558 
St. Helena 408.36 10,525 10,759 2.2% 25.8 3,873 
Livingston 648.02 91,814 114,805 25.0% 141.7 32,630 

Amite 729.60 13,599 13,366 -1.0% 18.6 5,271 
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179,237 to 239,566 during 1990-2005. The increasing rate is almost 34%. These increases are 

related to urbanization and economic development. The major economic activities in the study 

area are forestry and cattle / poultry production (Johnson and Yodis, 1998; Yodis et al., 2003). 

Both forestry and cattle production are major part of the gross income in Tangipahoa, Helena, 

and Livingston Parishes. Poultry production is most important in both Helena and Tickfaw 

Parishes. The secondary economic activities include wood production and gravel mining. There 

are, totally, about twenty sawmills and millwork / cabinetry sites in those three parishes. Also, a 

significant amount of historic and active sand /gravel mines are identified within the watershed. 

The watershed of Tickfaw River has been extensively mined with little or no reclamation (Lake 

Pontchartrain Basin Foundation, 2005). 

3.1.2. Data Sources 

 The primary data were a set of cloud-free time serial Landsat TM/ETM+ images. These  

images were acquired during 1986-2005. Six of them are Landsat 5 TM images acquired in 

1986, 1990, 1992, 1995, 1997, and 2005, while the remaining two are Landsat 7 ETM+  

images acquired in 2000 and 2002 (Figure 3.2, Figure 3.3). The characteristics of these images 

are displayed in Table 3.3. The preferred season for the Landsat images is in winter (January and 

February). When vegetation is in the stage of hibernation and clouds do not often occur, it is 

much easier to obtain time serial cloud-free image for the research. The major data sources 

include U.S. Geological Survey (USGS, 2005), Earth Resources Observation and Science 

(EROS) Data Center in Sioux Falls, SD (EROS, 2005), and Global Land Cover Facility (GLCF) 

in University of Maryland, College Park, MD (GLCF, 2005). The Landsat 5 TM and Landsat 7 

ETM+ images used in the study correspond to World Reference System 2 (WRS-2), Path 22 and 

Row 39. They have 28.5 m or 30 m of spatial resolution, 7 bands or 8 bands of spectral 

resolution, 8 bits of radiometric resolution, and 16 days of temporal resolution.  
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Landsat 7 ETM+ Image – February 6, 2000 

Path 22 / Row 39, Band 4, 3, 2  

 

 
Figure 3.2. One of the primary images – Landsat 7 ETM+ Image  

(Acquired on February 6, 2000, and Source: EROS, 2005) 
 

 

 

 

 

 

 

 

 



 52

 
1986 1990 1992 1995 

 
1997 2000 2002 2005 

 
Figure 3.3. Landsat TM/ETM+ images of Tickfaw watershed  

from 1986 to 2005 displayed in BGR for Band 4, 3, 2  
(Sources: USGS, 2005; EROS, 2005; and GLCF, 2005) 
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The secondary data for the study included Digital Elevation Models (DEMs), Soil Data, 

Digital Orthophoto Quarter Quadrangles (DOQQs), and LCLU Data. Both DEMs and Soil data 

come with Better Assessment Science Integrating Point & Nonpoint Sources (BASINS) version 

3.0, provided by United States Environmental Protection Agency (U.S. EPA, 2001). The scale of 

DEM data is 1:250,000 and data were converted into raster data with 30 meter resolution. Soil 

data contain soil category information, and data were converted into raster data based on the 

various soil type. DOQQs acquired in 1988 were purchased from EROS Data Center in Sioux 

Falls, SD. DOQQs acquired in 1998 and 2004 were free required from Computer Aided Design 

and Geographic Information System (CADGIS) Research Laboratory at Louisiana State 

University (CADGIS, 1984). These DOQQ images were used for accuracy assessment. U.S. 

National Land Cover Dataset 1992 and 2001 were obtained from Multi-Resolution Land 

Characteristics (MRLC) Consortium (MRLC, 1992; 2001). Coastal Louisiana land cover change 

data (1990-1996) were obtained from NOAA Coastal Services Center (NOAA, 2006). All 

DOQQ images and LCLU data were used for accuracy assessment only.  

3.2. Data Preprocessing  

When carrying out an absolute comparison between various dates or periods are to be 

carried out, the data preprocessing of multi-temporal remotely sensed imagery is very important 

and demanding (Coppin et al., 2004). A successful implementation of LCLU study using 

remotely-sensed images requires careful considerations of the remote sensing system, 

environmental characteristics, and image processing procedures. The spectral, spatial, temporal, 

and radiometric resolutions of remote sensing images have significant impact on the success of a 

LCLU study (Lu et al., 2004a). Of the different aspects of data pre-processing for time serial 

images-based spatial analysis and modeling, geometric rectification or images registration, 

radiometric correction, and atmospheric correction are the most important. Spatial information, 



 55

transformation and indexing information derived from the remote sensing image, and ancillary 

data can also improve LCLU study (Huang and Jenson, 1997; Lu et al., 2004a).  

3.2.1. Geometric Correction and Radiometric Correction 

Geometric correction is a procedure to correct the systematic and nonsystematic errors in 

the remote sensing system during the process of image acquisition. It involves a mathematical  

transformation of the coordinates. In this research, an image-to-image rectification-based 

geometric correction was carried out between the reference image and rest of the Landsat 

TM/ETM+ images respectively. A Landsat TM 5 image, acquired on January 13, 1995, was used 

as a reference for geometric correction purposes. The other Landsat TM/ETM+ images were 

registered to the reference data. During the geometric correction, 10 ground control points 

(GCPs), 20 check points, a third-order polynomial transformation, and nearest neighbor re-

sampling were selected. All Landsat TM/ETM+ images were re-sampled to 30m and re-

projected to UTM Zone 15 North with spheroid of GRS 1980, datum of NAD 83 North. The  

rectification with RMSE error of less than 1 pixel was required.  

During data acquisition, variations in solar illumination condition, such as the solar 

elevation, Julian day, and time of day (Table 3.3), will cause significant radiometric shift among 

images (Forster, 1984; Hall et al., 1991). Additionally, the variations in atmospheric scattering / 

absorption and in detector performance will also cause significant radiometric differences. 

Therefore, the time serial images should be corrected radiometrically. Radiometric correction is a 

procedure to correct the errors caused by those factors. In this research, a set of models 

accounting for many of such factors was provided by Mr. DeWitt Braud in the Coastal Studies 

Institute, LSU. The radiometric correction models took Julian date as input and output earth-sun 

distance. The earth-sun distance, sun elevation, and resultant images from geometric correction 

were taken as input data, and the output reflectance images were corrected radiometrically.   
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3.2.2. Transformation and Indexing 

The Tasselled Cap Transformation (TCT) was derived by Kauth and Thomas in 1976 

(Tso and Mather, 2001). TCT is a linear transformation of the six TM / ETM+ reflective bands 

that creates a six-band image with the following characteristics (Campbell, 1996):  

Band 1 => Soil brightness index 

Band 2 => Vegetation greenness index 

Band 3 => Canopy and soil moisture wetness index  

Band 4-6 => Atmospheric haze components 

Usually, the brightness, greenness, and wetness are related to urban / bare land, forest / 

range / crop, and wetland / water respectively. The top three bands in the resultant image have 

very high percentage of variance explained, and they are used often in further image analysis and 

modeling. 

Principal Components Analysis (PCA) is a multivariate analysis technique which can be 

used for compacting redundant spectral components into fewer principal components based on 

the most variance in the original image (Singh, 1989). It is usually used for compressing multi-

dimension image data. In this research, each Landsat TM/ETM+ image was transformed using 

PCA, and output was a six-band image with 8 bits of radiometric resolution. The eigenvalues of 

principal components were used to determine which component will be selected for the further 

analysis. The first principal component always has the largest percent of variance explained, and 

in this research, the top three principal components usually contained most information. 

Therefore these are used for the next study procedure.   

Texture is the frequency of tonal change within the image that arises when a number of  

small features are viewed together. It gives the visual impression of the roughness or smoothness 

of an object (Lo and Yeung, 2007). Shaban and Dikshit (2001) found that the combination of 
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texture and spectral features improved the overall classification accuracy. Compared to the 

obtained result based solely on spectral features, about 9% and 17% increases were achieved for 

an addition of one and two textures, respectively. In this research, texture analysis was 

performed on each Landsat TM/ETM+ image by using Mean Euclidean Distance (MED) 

algorithm, and the resultant images were used in further analysis.  

 Iterative Self-Organizing Data Analysis (ISODATA) is commonly  used clustering 

technique. It uses cluster analysis to produce natural clusters of pixels of similar brightness 

values from the multi-spectral image data (Lo and Yeung, 2007). It can be used as an 

information compacting technique also. In this research, ISODATA was performed on each  

Landsat TM/ETM+ image, and a set of ISODATA images with 50 classes were created.  

Vegetation is one of the important land features in the study area, and it is important to 

distinguish vegetated area and non-vegetated area. The Normalized Difference Vegetation Index 

(NDVI) can be used to extract vegetation information from Landsat TM/ETM+ images. It is the 

normalization of {(Band4-Band3) / (Band4+Band3)} (Mas, 1999; Lyon et al., 1998). Similar to 

NDVI, a Normalized Land Water Index (NLWI), proposed by Mr. DeWitt Braud in LSU, was 

used to create a land water interface. It is the normalized band ratio of {(Band1+Band2+Band3) / 

(Band4+Band5+Band7)}. In this research, both NDVI and NLWI derived from each Landsat 

TM/ETM+ image are created and used for the further analysis. 

3.2.3. Conversion and Layer Stack  

DEM is the measurement of height above a datum and it is related to the absolute 

altitudes or elevations of the points contained in the data (Lo and Yeung, 2007). A 1:250,000 

scale DEM was retrieved from the BASINS 3.0 package developed by the U.S. Environmental 

Protection Agency (U.S. EPA, 2001). It was a shape file, and the elevation ranges from 0 to 127 

meters. Soil data was also retrieved from BASINS 3.0, and it was originally a State Soil 
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Geographic Data Set (STATSGO). The soil data set was a shape file containing 22 classes. To 

develop a layer stack for classification purposes, both DEM and soil were converted from vector 

into raster data. They were also re-sampled to 30m and re-projected to UTM Zone 15 North with 

spheroid of GRS 1980, datum of NAD 83 North.  

3.3. Research Methods 

 The research involves three tasks: LCLU classification, change detection, and predictive 

modeling. The description for each task is given in the following sections.  

3.3.1. Classification 

 In this research, based on the consideration on the categories of interest, data 

characteristics, study objectives, time limitation, and capability to access particular resources, 

only first-level classification in Anderson’s classification system was used with minor 

modifications (Table 3.4).  

Four classification methods were involved in this study: unsupervised classification, 

supervised classification, hybrid classification, and knowledge-based classification. The first 

three types of classification were performed on ERDAS Imagine 9.1, and the GA-based 

classification was performed on ERDAS Imagine 9.1 and GATree 2.0 (Papagelis and Kalles, 

2000; 2001; Kalles and Papagelis, 2006). The comparison of different classification methods was 

carried out using 2000 Landsat 7 ETM+ images. The performance of these methods was 

compared based on the classification accuracy. With the consideration of temporal difference 

among DOQQs and the 2000 Landsat 7 ETM+ image, both the 1998 DOQQs and the 2004 

DOQQs were simultaneously used for accuracy assessment. Stratified random sampling was 

used to select reference points, and minimum sampling size (21 points) for each class was set up 

based on the smallest class. During accuracy assessment, if the same sampling pixel on both 

DOQQs suggested a different feature, it is discarded, and a new sample pixel was selected until 



 59

Table 3.4. The land-cover and land-use classification scheme  
(Source: modified from Anderson et al., 1976) 

 
Land Feature Classes Land Feature Description Classification Code Color 

Urban Residential, commercial, industrial, 
transportation, other urban land 1  

Agricultural Land Cropland, pasture, orchards, grove, 
feeding operations, other agricultural land 2  

Grass / Shrub Herbaceous rangeland, shrub and brush 
rangeland, mixed rangeland 3  

Forest Deciduous forest, evergreen forest,  
mixed forest land. 4  

Water Streams, canals, lakes, reservoirs, bays, 
and estuaries 5  

Wetland Forested wetland,  
non-forested wetland 6  

Other Sandy area, mining site, transitional area, 
mixed barren land, 7  
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1,000 pixels were defined. The accuracy assessment method was also used for other Landsat 

TM/ETM+ images classification in this research. 

3.3.2. Change Detection 

 After classifying a set of time serial images, a LCLU layer stack was created, then  

7992 pixels were randomly sampled for process-oriented change detection. The minimum 

training sample size (100 points) was set up based on the size of the smallest LCLU class that is 

OTHER in most cases. The training data was used to create a log file that records each pixel’s 

change process. The log file was input to the process mining software ProM 4.0 that contains the 

genetic Petri net function developed by Alves De Medeiros et al. (2007). The output was a set of 

Petri nets. Since the change detection is process oriented, it is necessary to ensure whether the 

process model can represent the “real world” well or not. One way to do so is to compare the 

projected image with the classified image. Therefore, in the phase of accuracy assessment, a 

classified image was used as reference data that was assumed correct, and the projected image 

derived from the process model was compared with the reference data. The same procedure was 

also used for the calibrating predictive model.        

3.3.3. Predictive Modeling 

 Predictive modeling provides future scenarios of the LCLU pattern based on the model of 

change process. In this research, a geographic cellular automata (CA) was designed and 

implemented for LCLU predictive modeling. The key component of geographic CA is transition 

rules to be developed using the process models derived from Petri nets. The other components of 

geographic CA are cell space, states, neighborhood, and time step. Based on the data 

characteristics and research objectives in this study, those components were configured as listed 

in Table 3.5. Different configurations of geographic CA will lead to different accuracies of 

LCLU predictive modeling, so it is important to calibrate the predictive model. The purpose of  
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Table 3.5. Configurations of the geographic cellular automata  

Spatial 
Resolution Dimension Cell Space Cell  

States 
Time  
Steps Neighborhood Transition  

Rules 
7.5 m 378 * 813 
30 m 1507 * 3249 

120 m 
3 D 

6025 * 12993 

2  
or  
7 

2 - 3 or  
4 - 5 
years 

von Neumann or 
Moore at size  

3x3 or 7x7 

Process models  
at different 

evolution levels 
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calibration is to develop a good model with high predictive modeling accuracy. During the phase 

of calibration, different sets of configuration were tested and evaluated.  

3.4. Algorithms  

3.4.1. Genetic Algorithms  

The genetic algorithm (GA) used in this study was proposed by Holland (1975) and 

Goldberg (1989), then implemented and extended by Wall (1996), and visualized by Papagelis 

and Kalles (2000; 2001). Combining their work, the major idea of the GA-based decision tree is 

given as follows (Figure 3.4). There are different data structures, such as binary string, array, list, 

and tree, for representing the solution of the problem in GAs. In GAs, a genome is a solution for 

the problem. Genomes in the search space are usually represented by binary strings. However, 

such string-based genome representations are not well suited for representing the space of 

concept descriptions that are generally symbolic in nature and with various length and 

complexity (Papagelis and Kalles, 2000; 2001). Thus, tree representation is used to build a 

population of minimal binary decision trees. In this study, the population, representing the search 

space of problem solutions, consists of trees. Each tree represents a problem solution and it refers 

to a genome. Genomes with high fitness have better chance to be reproduced (Papagelis and 

Kalles, 2000; 2001; Wall, 1996). 

For a given GENETIC ALGORITHM (Generation, Gsize, Psize, Rrate, Crate, Mrate), 

Generations is a function that updates the generations value during evolution, Gsize is the size of 

generations specifying the termination criterion, Psize is the size of population, Rrate is the  

REPLACE rate, Crate is the CROSSOVER rate, and Mrate is the MUTATION rate.  

 Based on the input data, the algorithm randomly INITIALIZEs a population iPopulation 

with size Psize. In this case, the population is a set of decision trees that are commonly derived 

from Quinlan’s ID3 algorithm (Mitchell, 1997). Since ID3 is a popular algorithm for generating 
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Figure 3.4. The workflow of genetic algorithms 
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adecision tree, the procedure of initializing a population or creating decision trees using ID3 

algorithm will not be demonstrated here.  

After initializing a population, the algorithm EVALUATEs the Fitness(treei) for each 

individual (or tree) in iPopulation. The Fitness(treei) is calculated by the following equation 

(Papagelis and Kalles, 2000; 2001; Wall, 2006):  

                                 2
2( ) *i i
i

xFitness tree CorrectClassified
size x

=
+

  

here, CorrectClassifiedi is the overall classification accuracy when treei is used to classify 

training data; sizei is the number of leaves on the decision tree i; x is an arbitrary large number. 

When the size of the tree is small, the size factor is near one. It decreases when the tree grows. In 

this way, the payoff is greater for smaller trees in terms of fitness value (Papagelis and Kalles, 

2000; 2001).  

After evaluating the initial population, the system goes into a WHILE DO loop, and each  

loop refers to a generation. First, based on Crate and Fitness(treei), Crate* iPopulation  

members are probabilistically selected from the iPopulation and added to the new population   

nPopulation. The probability of selecting individual (hi) is calculated by equation: 

  

1

( )Pr( )
( )

Psize

j

Fitness hihi
Fitness hj

=

=

∑
 

here, Pr(hi) is probability of selecting individual (hi) (Goldberg, 1989). 

 The major operators are crossover and mutation. CROSSOVER occurs between the 

selected (Crate* iPopulation)/2 pairs of individuals, each pair produces two offsprings, and 

those offsprings will be added to the nPopulation. MUTATION will occur among the 

Mrate*nPopulatio individuals, each individual produces one offsprings, and those offsprings  

will be added to nPopulation also.  
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Based on the generations gap Rrate, Rrate*iPopulation individuals of initial population 

are replaced by individuals in new population nPopulation. Then, Generations= Generations+1 

function update generations number. If Generationsis larger than Gsize, the WHILE DO loop 

will be terminated and return an evolved population. Otherwise, it goes to next loop (or 

generation).      

Figures 3.5 and 3.6 show a couple of examples on how genetic operators work. Crossover 

operator chooses two random nodes and swaps those nodes’ sub-trees. Mutation operator 

chooses a random node and replaces the node’s test-value with a new randomly chosen value. 

The mutation operator could also occur on leaves in which it replaces the installed class with a 

new random chosen class (Papagelis and Kalles, 2000; 2001). The examples in Figures 3.5 and 

3.6 were used just to demonstrate how genetic operators work, and the decision trees developed 

in this study are much more complex than them. In GATree 2.0, the size of population or the 

number of trees was defined by the user. Each tree is a solution for the entire LCLU 

classification problem. It has one root, a number of nodes, and a number of leaves. Each leaf 

represents a class instance, such as URBAN, FOREST, or WATER. The number of leaves also 

refers to the size of tree. The tree that has the highest fitness is the best solution. When a small 

size of decision tree is used to classify LCLU, the tree with high fitness generally has higher 

classification accuracy, and high fitness decision tree has a high probability of being selected.     

3.4.2. Petri Net 

Petri nets (PNs) have been commonly used to extract the knowledge of processes from  

event logs in business and manufacturing field. According to the research done by van der Aalst 

and Weijters (2005), the assumption of  PNs application is that it is possible to record events so 

that 1) each event refers to an activity, 2) each event refers to a case, 3) each event can have a 

performer, also referred to as originator, and 4) events have a time stamp and are totally ordered.   
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Figure 3.5. Crossover operation on sub-trees 

(the values are used for describing the crossover operation) 
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Figure 3.6. Mutation operation on sub-trees 
(the values are used for describing the mutation operation) 
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In LCLU study, after accurately classifying a set of time serial Landsat TM/ETM+ 

images and creating a LCLU stack, each pixel’s category is recorded. An event refers to a pixel 

holding a class value at a particular time. All ordered pixels (on different layers) with same 

coordinate and different time stamps consist of a process, each pixel holds a value that can be 

regarded as an event (Table 3.6). Because every event has a time stamp, a set of ordered pixels 

with same coordinate consists of a process instance. Therefore, a spatio-temporal process mining 

can be carried out. Process mining aims at extracting knowledge from a set of process instances.   

The classic PNs, namely Place / Transition (P/T) nets, were used to introduce the basic 

concept of PN (David and Alla, 1992; van der Aalst et al., 2004). A PN has two types of nodes, 

namely places and transitions (Figure 3.7). A place is represented by a circle, and a transition by 

a box. Places and transitions are connected by arcs. The number of places and transitions is finite 

and not zero. An arc is directed and connects either a place to a transition or a transition to a 

place. In other words, a PN can be defined as a tuple (P, T, F) (Desel, 2005), where: 

• P is a finite set of place represented by a circle, and it may hold token(s)  

represented by a black dot, 

• T is a finite set of transitions represented by a square, and it may contain different  

operators (e.g., AND-split, AND-join), 

• ( ) ( )F P T T P⊆ × ×U  is a set of directed arcs or flow relation, and it connects place and 

transition. 

A marked P/T net is a pair (N, s), where N = (P, T, F) is a P/T net and where s is a bag over P 

denoting the marked of the net, i.e. s P IN∈ → . The set of all marked P/T nets is denoted N.  

A P/T net consists of places, transitions, token. Place includes input place and output 

place, transition has AND-split and AND-join transition, and a black dot represents a token. The 

dynamic behavior of such a marked P/T-net is defined by a firing rule. A PN can be used to 
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Table 3.6. A land-cover and land-use change log  
(Source: developed based on van der Aalst and Weijters, 2005)  

 
Pixel ID Process ID Year1986 Year1990 Year1995 Year2000 
Pixel 1 Process 1 FOREST GRASS FARM URBAN 
Pixel 2 Process 2 FOREST FARM GRASS URBAN 
Pixel 3 Process 3 FOREST GRASS FARM URBAN 
Pixel 4 Process 4 FOREST FARM GRASS URBAN 
Pixel 5 Process 5 FOREST OTHER -- URBAN 
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Figure 3.7. A process model corresponding to the event log shown in Table 3.6  
(Source: developed based on van der Aalst and Weijters, 2005)  
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specify the routing of events. Events are modeled by transitions and causal dependencies are 

modeled by places and arcs. In fact, a place corresponds to a condition that can be used as pre-

condition and / or post-condition for events. The LCLU change log is a set of event traces. Each 

trace corresponds to an execution of a process. The same process may occur many times in a log. 

In this situation, a different process followed the same path (P, T, F) (Desel, 2005). 

Now, the question is how to extract those paths from an event log file? Many algorithms  

have been developed since 1998 (Cook and Wolf, 1998; Pinter and Golani, 2004; Herbst and 

Karagiannis, 2004; Schimm, 2004; and van der Aalst, 2003). Among them, α-Algorithm 

proposed by van der Aalst et al. (2005) is the most successful one for discovering processes from 

event log file. With the consideration of LCLU change study, the basic concept of α-Algorithm 

is introduced by using the simple example data in Table 3.6. Let L be a LCLU change log over 

T, the process mining algorithm (α (L)) builds a net ( , , )L L LP T F through following steps (van der 

Aalst et al., 2003, 2004, 2005;  van der Aalst and Weijters, 2005): 

1) { | }L LT t T tσ σ∈= ∈ ∃ ∈ , 
  2) { | ( )}I LT t T t firstσ σ∈= ∈ ∃ ∈ , 
  3) { | ( )}O LT L t T t lastσ σ∈= ∈ ∃ ∈ , 
  4) {( , ) |L L LX A B A T B T= ⊆ ∧ ⊆   

     1, 2

1, 2

1# 2
1# 2},

a A b B L a a A L

b b B L

a b a a
b b

∈ ∈ ∈

∈

∧∀ ∀ → ∧∀
∧∀

 

  5) ( ', '){( , ) | 'LL L A B XY A B X A A∈= ∈ ∀ ⊆ ' ( , ) ( ', ")B B A B A B∧ ⊆ ⇒ = , 
  6) ( , ){ | ( , ) } { , }L L L Lp A BP A B Y i o= ∈ U , 
  7) ( , ){( , ) | ( , ) ( }L A B LF a p A B Y a A= ∈ ∧ ∈  

     ( , )

,

{ , ) | ( , ) ( }
{( ) | ( ) {( , ) | ( ),L I L o

A B Lp b A B Y b B
i t t T t o t T and

∈ ∧ ∈
∈ ∈

U

U U
 

  8) ( ) ( , , )L L LL P T Fα = . 
  

Step 1 – the algorithm examines the LCLU change log (Table 3.6) and identifies all 

events appearing in the log. In other words, it creates a set of transition (TL), and TL = (FOREST, 

GRASS, FARM, OTHER, URBAN ). 
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Step 2 – the algorithm examines the LCLU change log and identifies the set of initial (or 

input) events by simply checking the earliest events in the LCLU change log. For example, in 

this case, the earliest year is 1986 (Table 3.6). It creates a set of initial (or input) transition (TI), 

and TI = ( FOREST ). 

Step 3 – the algorithm examines the LCLU change log and identifies the set of final (or 

output) events by simply checking the latest events in the LCLU change log. For example, in this 

case, the latest year is 2000 (Table 3.6). It creates a set of final (or output) transition (To), and  

To = ( URBAN ). 

Step 4 – the algorithm identifies all causally related transition or relationship (XL) among 

the events in the LCLU change log, and XL = {({ FOREST }, { GRASS }), ({ FOREST }, { FARM 

}), ({ FOREST }, { OTHER }), ({ GRASS }, { URBAN }), ({ FARM }, { URBAN }), ({ OTHER },  

{ URBAN }),({ FOREST }, { GRASS, OTHER }), ({ FOREST }, { FARM, OTHER }), ({ GRASS,  

OTHER }, { URBAN }), ({ FARM, OTHER }, { URBAN })}. 

 Step 5 – the algorithm constructs only the minimal causality relationship (YL) based on  
 
(XL) by taking only the largest elements with respect to set inclusion, and YL = {({ FOREST }, { 

GRASS, OTHER }), ({ FOREST }, { FARM, OTHER }), ({ GRASS, OTHER }, { URBAN }), ({ 

FARM, OTHER }, { URBAN })}. 

 Step 6 – the algorithm creates a set of places in the resultant Petri net. For example, 

P(FOREST, GRASS) is a place connecting transitions in FOREST with transition in GRASS, iL is 

the unique input place denoting the start of the process, and oL is the unique output place 

denoting the end of the process. PL = { iL, oL, P({ FOREST }, { GRASS, OTHER }), P({ FOREST  

}, { FARM, OTHER }), P({ GRASS, OTHER }, { URBAN }), P({ FARM, OTHER }, { URBAN })}. 

 Step 7 – the algorithm creates a set of connecting arcs in the resultant Petri net. For 

example, (FOREST, GRASS) is an arc connecting transitions in FOREST with transition in 
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GRASS. FL = {( iL, FOREST ), ( FOREST, P({ FOREST }, { GRASS, OTHER })), ( P({ FOREST  

}, { GRASS, OTHER }), GRASS ) …… ( URBAN, oL  )}. 

 Step 8 – finally, the algorithm returns the discovered process model represented by a 

Petri net with place PL, transition TL, and arcs FL, namely, ∂ (L) = ( PL, TL, FL ) (Figure 3.8). 

 The next question is how the algorithm constructs a Petri net. Based on the α-Algorithm 

proposed by van der Aalst and Weijters (2005) and the LCLU change log (Table 3.6), a simple 

description is provided as follows. The algorithm assumes that two events, for example FOREST 

and GRASS, are connected through places if and only if LFOREST GRASS→ (Figure 3.8a). 

After event FOREST, if two events (for example GRASS and OTHER) are concurrent, they can 

occur in any order. Therefore, the algorithm assumes event GRASS and OTHER concurrent if 

and only if || LGRASS OTHER (Figure 3.8b). This is the case of AND-split relation, and its 

counterpart AND-join is shown in Figure 3.8d. If those two events are not concurrent and they 

never follow each other directly, every time only one event happens. Therefore, the algorithm 

assumes event GRASS and OTHER are not concurrent and never follow each other if and only if 

# LGRASS OTHER (Figure 3.8c). This is the case of XOR-split relation, and its counterpart 

XOR-join is shown in Figure 3.8e. Those relationships are represented by the foundation of α-

Algorithm.   

Although α-Algorithm has been successfully used to mine processes from an event log 

file, it still has some limitation. When an event log file contains incomplete, noisy, or rare 

instances, the algorithm is not able to extract processes. In order to overcome those limitations, 

genetic algorithm was introduced into the procedure of α-Algorithm-based process mining 

(Alves de Medeiros et al., 2007; van der Aalst et al., 2005; Schwardy, 2003; Weijters and 

Paredis, 2002). The major idea is that genetic operation (e.g., crossover, mutation, and fitness- 

based selection) can enlarge the search space and optimize the results. Theoretically, the 
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Figure 3.8. Constructing a Petri net using the log-based relationships ,L>  ,L→  ,|| L  and # L  

(Source: developed based on van der Aalst and Weijters, 2005) 
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optimization is global because the search is based on an enlarged space. Figure 3.9 describes the 

main steps in GA-based PN for process mining. The major idea is the same as the one introduced 

in the previous section. But, the way in which genetic operators work and the way of calculating 

fitness are slightly different.  

In GA-based PN, the individual is not a string or a decision tree; it is a process model  

represented by Petri net. An individual Petri net has place node, transition node, and directed  

arcs. Many individual PNs consist of a population, and genetic operations occur among various 

individuals. The most important and complex genetic operation in the GAs is the crossover 

operation. It aims at recombining existing materials in the current population. The starting point 

of the crossover operation is the two parents PN (e.g., parent PN #1 and parent PN #2). The 

results of applying the crossover are two offsprings (offspring PN #1 and offspring PN #2) 

(Alves de Medeiros et al., 2007; van der Aalst et al., 2005). When a crossover occurs, two parent 

PNs exchange genetic material (place nodes, transition nodes, and arcs), and the swap points at 

the parent PNs are randomly selected (Alves de Medeiros et al., 2007; van der Aalst et al., 2005).  

Another important genetic operator is mutation. It aims at inserting new material in the 

current population, meaning that mutation operator may change the existing causality relations of 

a population. In GA-based PN, the mutation operator carries out one of following actions in an 

individual PN: 1) randomly select a PN and assign a task to it, or 2) randomly select a PN and 

remove a task from it.    

The goal of process mining is to discover a process model from an event log. This mined 

process model should give a good insight about the behavior in the log. In other words, if the 

mined process model is complete, and it can reproduce (or parse) most process instances in the 

log. A process model should also be precise because a process model may parse extra processes 

if the mined process model is complete, and it can reproduce (or parse) most process instances in 
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Figure 3.9. The workflow of genetic algorithms for optimizing process models 
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the log. A process model should also be precise because a process model may parse extra 

processes if instances do not belong to the log (Alves de Medeiros et al., 2007; van der Aalst et 

al., 2005). The fitness function guides the search process of the GA. The fitness of an individual 

PN is assessed by benefiting the individuals that can parse more event traces in the log and by 

punishing the individuals that allow for more extra behavior than the one expressed in the log. 

The fitness is strongly related to the number of correctly parsed traces from the event log. If an 

individual in the genetic population correctly describes the registered behavior in the event log, 

the fitness of that individual will be high. In this study, the fitness based evaluation of PN is 

similar to the approach that is described in the GA-based LCLU classification.  

3.4.3. Cellular Automata 

 Since John von Neumann and Stanislaw Ulam proposed the concept of cellular automata 

(CA) in the 1950s, the original restrictive definition of CA has been extended to many different 

applications. In general, a CA is specified by the following definition (Deutsch and Dormann, 

2005): 

• Space – a regular discrete lattice of cells and boundary conditions. 

• States – a finite and typically small set of values that characterize the cells.  

• Neighborhood – a finite set of cells that surround an interested cell. 

• Time steps – a finite set of time intervals that define the time to update all cells 

simultaneously, and  

• Transition rules – a set of rules that determine the dynamics of cells’ states. 

Cellular automata are non-linear mathematical dynamic systems based on discrete space,  

time, and state (Deutsch and Dormann, 2005). A cellular automaton evolves in discrete time  

steps by updating its state according to the universal rule applied to each cell synchronously at 

each time step (Wolfram, 1984). The state of each cell is determined by both transition rules and 
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neighborhood. Updated states of each cell are then the inputs for the next iteration. As iterations 

proceed, an initial cell configured with initial state of each cell evolved into a new and complex 

pattern. Usually, the behaviors of CA are complex. The idea of CA is that a simple transition rule 

can generate very complex evolving patterns and the evolving processes as a whole are very 

useful for aiding researchers in discovering underlying mechanisms of a real world system. As a 

type of no traditional mathematical models, the basic CA defined by Ulam, Von Neumann, and 

Conway is an abstract, simplified version of the real world and can be used to study the real 

world problems. However, it is not well suited for the applications in LCLU predictive modeling. 

Therefore, it is necessary to modify it from its formal characteristics as following: 

• Cell space: the cell space is composed of individual cell. It usually refers to the 

number of the cells, the size of the cells, the shape of the cells, and the dimension of 

the CA. Although the majority of research has been based on 1-D or 2-D CA, 3-D CA 

have attracted attention in the literature since the early 1990s (Bays, 1990; 1991). 

Those characteristics of cell space are closely related to the study problem and data 

property. Because of the direct analogy of raster GIS and LCLU stack, only 3-D CA 

are considered in this dissertation research. The cells’ number was same as the pixels’ 

number in the AOI, the cells’ shape was same as the square shape of the pixels, and 

the cells’ size was same as the image spatial resolution.  

• Cell states: the states of CA can be fixed or un-fixed. Some cells may never change 

their state, and other cells may change their states frequently. In a raster GIS based 

study the cell state can range from 0 to 255. In this dissertation research, the cell may 

hold any one of following states: urban, agricultural land, range, forest, water, 

wetland, and other land. Cells representing water or national forest park may never 

change its state, which means that its state is fixed. But cell representing other land  
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features may change their states more frequently, it means that its state is un-fixed. 

• Neighborhood: a neighborhood is defined as a set of cells surrounding an interested 

cell (Figure 3.10). Traditional CA has two types of neighborhood: von Neumann and 

Moore. Each type of neighborhood has different sizes, such as 3 x 3, 5 x 5, and 7 x 7. 

The assumption is that just adjacent neighborhood cells have an influence on the 

interested cell. But the reality is that this assumption is not always true in the real 

world. In this research, both von Neumann and Moore neighborhood with different 

sizes (e.g. 3 x 3 and 7 x 7) were applied.        

• Time steps: a geographic CA without a time step can only perform spatial modeling, 

but not spatio-temporal modeling. Time step is the cycle in which cells update their 

states simultaneously. In a LCLU predictive modeling study, the time steps of cells 

may be different and a group of cells may share a same time step. The time step in the 

process model is supposed to be relatively stable. In this research, each LCLU layer 

was temporally stamped, and the time step of the process model is 2-3 and 4–5 years.       

• Transition rules: CA’s transition rules define the behavior of cells. The rules should 

be explicit, and they can be developed based on the process models. In this research, a 

log file recording the behavior of sampling pixels, the α-Algorithm-based Petri nets 

were used to develop the process models, and genetic algorithms were used to 

optimize the process models. Finally, those process models were translated into 

explicit transition rules.  

The configuration of geographic CA in this research is listed in Table 3.5. The  

combinations of different configurations were tested and the optimized geographic CA were used 

for LCLU predictive modeling. More detailed information about LCLU predictive modeling will 

be provided in Chapter 8.  



 80

 
                  
                  
                  
                  
                  

Moore ( 3 x 3 ) Von Neumann ( 3 x 3 ) 
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  

Moore ( 7 x 7 ) Von Neumann ( 7 x 7 ) 
  

Figure 3.10. Two types of neighborhoods used in this research 
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3.5. Implementation 

The major data processing and analyses were performed using a DELL desktop B110  

(CPU2.2 GHZ, RAM 512 MB, HD 160), a DELL laptop B130 (CPU1.4, RAM 256, HD 40), and 

an External HD with 250 GB. Some works were done in different labs on the LSU campus.  

The data preprocessing includes geometric correction, radiometric correction, transformation, 

indexing, conversion, and layer stack. These procedures were performed in the environment of  

ArcGIS 9.0, ArcView 3.3, ERDAS Imagine 9.0, and Microsoft Excel.   

Two data mining software packages were used in this dissertation study for LCLU 

classification purposes. The first one is GATree 2.0, and the second one is Weka 3. 5. Both of 

them contain genetic algorithms. In 1996, Wall implemented and extended the basic genetic 

algorithm by developing an open source C++ library of genetic algorithms – GAlib 2.4.6 (Wall, 

1996). This library includes tools for using GAs to solve global search and optimization 

problems. By using GAlib, a visualized genetic algorithm based machine learning system, 

namely GATree 2.0, was developed by Papagelis and Kalles (2000; 2001). It was purchased and 

used to discover spatial / spectral knowledge in this study ( www.gatree.com ). Weka 3.5 is a 

different data mining software (Witten and Frank, 2005), which is developed using Java 

programming language ( http://www.cs.waikato.ac.nz ). Weka 3.5 supports many data mining 

algorithms including genetic algorithms, and it has to be run in the Java environment. It means 

that a Java JDK 1.5 should be installed first ( http://www.java.com ). Both of them were used in 

this research for spatio-spectral data mining and knowledge discovery. 

Three other software packages were used in this research for process-oriented LCLU 

change detection, specifically for discovering spatio-temporal spectral knowledge. The first is an 

XML parser that can be used for parsing XML data files. The second is ProMimport 2.3 which 

takes input data file, and the third is ProM 4.0 which processes data file and output workflow or 
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process models. All can be downloaded from http://is.tm.tue.nl. The resultant process models 

were optimized by adjusting the characteristics of data, the configuration of GAs, and the rate of 

pruning PNs. 

For remote sensing data analysis and spatio-temporal modeling, ERDAS Imagine was 

used. A built-in cellular automaton in ERDAS Imagine should be the best way to perform 

geographic spatio-temporal modeling. In this study, the CA-based LCLU predictive model was 

created using the knowledge engineer in ERDAS Imagine 9.0. Also, the major components, such 

as cell space, cell states, neighborhood, time steps, and transition rules were built and encoded 

using ERDAS Imagine 9.0.  

3.7. Summary 

This chapter discussed the major characteristics of the study area, data sources, data 

preprocessing, and major research approaches (e.g., genetic algorithms, Petri nets, and cellular 

automata). The following summarizes the major points in the chapter: 

• The study area, namely Tickfaw River watershed, is located in the southeastern 

Louisiana and the southwestern Mississippi, between 30˚19’14” - 31˚9’42” N latitude 

and 90˚31’58” - 90˚50’15” W longitude (Figure 3.1). It totally covers 771 mile² and 

includes a portion of Amite County, St. Helena Parish, Livingston Parish, and 

Tangipahoa Parish. The procedures of data preprocessing include geometric 

correction, radiometric correction, transformation, indexing, conversion, and layer 

stacking.  

• A knowledge-based expert classifier was developed in this dissertation. GAs were 

used as a major spatial-spectral data mining and knowledge discovery technique. 

They include six parameters: the number of generation, the size of population, 

crossover rate, mutation rate, and generation gap. Those parameters can affect the 
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performance of GAs. The implementation of GAs-based knowledge discovery was 

based on GATree 2.0 and Weka 3.5. Both of them support complete GAs. 

• A processes-oriented LCLU change detection approach was developed using both  

PNs and GAs. PNs were used as a major spatio-temporal spectral data mining and 

processes mining technique in this study. A PN includes state node, space node, arcs, 

and tokens. A traditional PN is not optimized. GAs were used to develop optimized 

PNs. The implementation of PNs and GAs-based PNs for LCLU change process 

mining was based on ProM  4.0 and ProMimport 2.3. They were used to take XML 

log data and output process models. 

• A CA-based LCLU simulation model was developed for predicting future and 

reconstructing past LCLU pattern. A geographic cellular automaton consists of five 

components: cell space, cell states, neighborhood, time steps, and transition rules. The 

transition rule is the most important component of CA. In this research, a set of 

transition rules were developed from the LCLU change process models derived from 

PN, and they were encoded into a geographic cellular automaton using ERDAS 

Imagine. Because the process models were optimized using GAs, those transition 

rules can drive the CA efficiently.  
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CHAPTER 4  IMPACT OF GENETIC PARAMETERS ON 
LAND-COVER AND LAND-USE CLASSIFICATION ACCURACY 

 
4.1. Experiment #1 Design 

Figure 4.1 shows the procedures of applying GAs and expert system in LCLU 

classification. The Landsat 7 ETM image acquired on February 6, 2000 was used in this 

experiment. Bands 1 – 5 and Band 7 were selected. In order to take training samples from each 

band at same location, an ISODATA having 50 classes was created through ERDAS Imagine 

9.0. The ISODATA was opened from the accuracy assessment window that was linked to the 

viewer containing the AOI of the Landsat 7 ETM image. A set of random samples (training / 

testing data) was created and classified. The category of each pixel was recorded. Both the 

coordinate and category of each pixel was copied to an Excel worksheet. An ASCII file that 

contains the coordinates for all random pixels was created based on the Excel worksheet. This 

coordinate file was then used to collect pixels’ value from Bands 1 – 5 and Band 7 (Figure 4.2a). 

The size of the training data is 10000, and the size of testing data is 5000. After finishing random 

sampling, the data are converted into an ARFF file for input (Figure 4.2b). This file format is 

supported by most data mining / machine learning software packages including GATree 2.0 and 

Weka 3.5. 

Based on the proposed questions related to research objectives, the following five genetic 

parameters were tested in this experiment: the number of generation, population size, crossover 

rate, mutation rate, and generation gap. For each test, one parameter’s value is changed and 

tested, and the rest of the parameters remain at default. Each test generated a set of genomes. The 

best genome was represented by a decision tree, and it was translated into a set of classification 

rules (Table 4.1). The classification rules were then implemented to encode into an expert system 

using ERDAS Imagine 9.0.  
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Figure 4.1. The workflow for optimizing genetic parameters configuration 
in genetic algorithm-based land-cover and land-use classification 
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Figure 4.2. (a) Randomly sampled training data and (b) Edited data file 
for optimizing genetic parameters configuration 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

@relation LCLU 
 
@attribute band1 
@attribute band2 
@attribute band3 
@attribute band4 
@attribute band5 
@attribute band7 
@attribute LCLUclass {urban, farm, grass, 
forest, water, wetland, other} 
 
@data 
69, 47, 94, 131, 94, 11, wetland 
…… 

Band1 

Band2 

Band3 

Band4 

Band5 

Band7 

69

131

47

94

94

11

Sampling 

    & Editing



 87

Table 4.1. Translating a portion of decision tree into classification rules  
(during optimizing genetic parameters configuration) 

 
Decision Tree Classification Rules 

if band4 <= 76 then 
| if band5 <= 94 then 
| | if band3 <= 94 then 
| | | if band1 <= 69 then  
| | | | if band2 <= 47 then  
| | | | | if band 6 <= 11 then  
| | | | | | if band4 <= 131 then  
| | | | | | | - wetland 
| | | | | | + - forest 
| | | | | + - grass 
| | | | + - urban 
| | | + - urban 
| | + - other 
| + - farm 
|…… 

Rule 1. if band4 <= 76, band5 <= 94, band3 <= 94, band1 <= 69, 
band2 <= 47, band6 <= 11, and band4 <= 131, then class = 
wetland;  
Rule 2. if band4 <= 76, band5 <= 94, band3 <= 94, band1 <= 69, 
band2 <= 47, band6 <= 11, and band4 > 131, then class = forest;  
Rule 3. if band4 <= 76, band5 <= 94, band3 <= 94, band1 <= 69, 
band2 <= 47, and band6 > 11, then class = grass;  
Rule 4. if band4 <= 76, band5 <= 94, band3 <= 94, band1 <= 69, 
and band2 > 47, then class = urban;  
Rule 5. if band4 <= 76, band5 <= 94, band3 <= 94, and band1 > 
69, then class = urban;  
Rule 6. if band4 <= 76, band5 <= 94, and band3 > 94, then class = 
other;  
Rule 7. if band4 <= 76, and band5 > 94, then class = farm. 
…… 
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If only one year’s DOQQs, for example 1998 DOQQs, were used for classification 

accuracy assessment, it may lead to error because of the temporal differences between the 

acquisition date of 2000 Landsat Thematic and 1998 DOQQs. In order to prevent this error, both 

1998 DOQQs and 2004 DOQQs were used simultaneously. The assumption is that any pixel that 

does not change on both DOQQs will remain the same on the Landsat TM image also. Such 

pixels will be used for accuracy assessment. During the procedure of accuracy assessment, if the 

comparison of the same pixel on two DOQQs suggests a LCLU change, the pixel will  

be abandoned and new points will be selected until 1000 pixels are defined.  

4.2. Results 

This study only focuses on a subclass of GAs characterized by the following five genetic 

factors. The default setting up for carrying out this experiment includes: train / testing data size 

(10000 / 5000), spatial resolution (30 meters), generation size (2000), population size (1000), 

replacement rate (50%), crossover rate (99%), and mutation rate (5%). When carrying out an 

experiment on a parameter, the rest of the parameters remain at default values (Table 4.2). 

A population will converge when most individuals in the population are identical, or in  

other words, the diversity of the population is minimized (Louis and Rawlins, 1993). In general, 

different populations converge to different levels of fitness values. A population with high 

diversity will eventually converge to a global optimum fitness. A population with low diversity 

will quickly converge to a local optimum fitness. Models based on global optimum can capture    

most data, but models based on local optimum cannot capture most data. The experiment finds 

the relationship among the different levels of convergence, genetic / environmental parameters, 

and classification accuracy. The genetic parameters include generation size, population size, 

generation gap, crossover rate, and mutation rate. The levels of these parameters that are too low, 

too high, or at middle will affect the performance of genetic algorithms differently.    
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Table 4.2. The measurement of the performance of genetic algorithms 
 

 Case 
 

Id 

Size  
or  

Rate 

Best 
Genome 
Fitness 

Average 
Genome 
Fitness 

Best 
Genome 

Size 

Training 
Data 

Classification 
Accuracy 

Testing Data 
Classification 

Accuracy 

G1 100 0.5463 0.5444 75 0.7393 0.7330 
G2 500 0.6134 0.6129 167 0.7843 0.7764 
G3 1000 0.6315 0.6309 171 0.7958 0.7875 
G4 2000 0.6412 0.6408 135 0.8015 0.7878 G

en
er

at
. 

Si
ze

 

G5 5000 0.6487 0.6485 135 0.8062 0.7882 
P1 250 0.6011 0.6010 109 0.7758 0.7686 
P2 500 0.6315 0.6309 159 0.7957 0.7858 
P3 750 0.6306 0.6301 173 0.7953 0.7833 Po

pu
l. 

Si
ze

 

P4 1000 0.6412 0.6408 135 0.8015 0.7878 
C1 19% 0.5820 0.5820 73 0.7631 0.7581 
C2 39% 0.5938 0.5938 63 0.7708 0.7635 
C3 59% 0.6160 0.6160 95 0.7852 0.7762 
C4 79% 0.6173 0.6173 105 0.7861 0.7786 C

ro
ss

ov
er

 
R

at
e 

C5 99% 0.6412 0.6408 135 0.8015 0.7878 
M1 0.01% 0.6329 0.6326 149 0.7965 0.7814 
M2 0.1% 0.6333 0.6326 173 0.7970 0.7867 
M3 0.5% 0.6412 0.6408 135 0.8015 0.7878 
M4 1% 0.6288 0.6283 141 7938 0.7874 
M5 10% 0.6008 0.6000 99 0.7755 0.7685 M

ut
at

io
n 

R
at

e 

M6 100% 0.3663 0.3663 39 0.6053 0.6040 
R1 10% 0.5990 0.5976 121 0.7745 0.7745 
R2 25% 0.6212 0.6202 141 0.7890 0.7781 
R3 50% 0.6412 0.6408 135 0.8015 0.7878 

G
en

er
at

. 
G

ap
 

R4 75% 0.6400 0.6398 155 0.8010 0.7873 
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4.2.1. Number of Generations  

 Generation is a procedure to produce a new population (Goldberg, 1989), and a 

generation is one evolution cycle (Freeman, 2002). When the evolution cycle is constant, 

sufficient time is a prerequisite for a population to achieve global optimum. As expected, the 

larger the number of generation, the more computational resources (e.g., CPU time and RAM 

space) are needed.  

Both Figures 4.3 and 4.4 demonstrate the convergence process of a population during the 

evolution of 5000 generations. The best genome fitness and average population fitness increase 

while the generation number increases, and a diminishing returns effect can be observed. During 

the early evolutionary stage (1-500 generations), the various convergence rates were observed, 

and the population quickly approaches a relatively fitness level. After the first 1000 generations, 

the low and similar convergence rates within a comparable scale from 1000 to 2000 generations 

and different final fitness value under different generation sizes were achieved, and the 

population showed a slow evolutionary progress. 

This result suggests that the convergence rate change during entire evolutionary process 

and implies that sufficient time is a prerequisite for evolution. It also indicates that a population 

could not converge to a global optimum when the amount of generation is too small. For 

example, when the amount of generation was 100, the best genome fitness and average genome 

fitness was only 0.5463 and 0.5444, respectively (Table 4.2). The classification accuracy of 

training data and testing data was only 73.93% and 73.30%, respectively (Table 4.2). Unlike the 

population with a small generation amount, a population with a large generation number has 

enough time for a successful evolution. A large numbers of generations usually leads to a 

population with high fitness and global optimum. However, it is going to cost large amount of 

computational resources. 
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4.2.2. Initial Population Size 

After inputting training / testing data derived from the Landsat image into GATree 2.0, a 

set of solutions was generated. A solution represents an individual, and a number of individuals 

(or solutions) consists of a population. Each solution is a classification model that can be used 

for classifying the Landsat image. The population is a group of individual solutions (or decision 

trees) with the same or similar characteristics. Although they are within same population, 

different individuals have different genomes and fitness. Population size is one of most important 

factors impacting the performance of GAs. It affects both the ultimate performance and the 

efficiency of GAs, and GAs usually perform poorly with small population (Grefenstette, 1986). 

Population size differs from training / testing data size. If the population size is too small, the 

population will not have a large gene pool for successful evolution. It means this population 

provides only insufficient samples for most hyperplanes. GAs can perform a more efficient 

search if population is large because this population has more chance to cover various 

individuals from a large number of hyperplanes (Grefenstette, 1986).   

In this research, relationships among population size, fitness, classification accuracy, and 

generation size are given in Figures 4.5 and 4.6. Generally, a large population size provides high 

diversity so that the population has more chance to develop global optimized gene pool during 

the evolution. Figure 4.5 shows that a smaller population converges to a lower level global 

optimum (e.g., best/average fitness 0.6011/0.6010), while a larger population converges to a 

higher level global optimum (e.g., best/average fitness 0.6412/0.6408). Also, a larger population 

has higher classification accuracy than a smaller population (Figure 4.6). However, a large 

population size may not always yield a greater benefits. In this study, the best /average genome 

fitness increases while population size increases from 250 to 500. But after the size of population 

becomes larger than 500, the best / average genome fitness only increases slightly (Table 4.2).  
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Figure  4.5. Relationship among accuracy / fitness, population size,  

and number of generation 
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The possible reason for such phenomena is resource limitation (e.g., small RAM) or population 

crowding. Although a large population can prevent premature convergence to local solutions, it 

requires more time to finish per generation so evolution will be slow. 

4.2.3. Crossover Rate 

 The crossover is the procedure to generate children from two parents. Crossover is also  

an important genetic operator because it introduces biodiversity into the population. The 

significance of crossover rate in controlling the performance of GAs has been recognized 

theoretically and empirically (Grefensette, 1986; Srinivas and Patnaik, 1994). The crossover rate 

controls the frequency with which the crossover operator is applied. Theoretically, when both 

crossover rate (C) and population size (N) are given, for each new population, there are C*N  

selected individuals for crossover. The higher the crossover rate, the quicker the new individuals 

are introduced into the population (Grefensette, 1986; Srinivas and Patnaik, 1994).    

 The results in both Figures 4.7 and 4.8 illustrate that higher crossover rate leads to 

faster/higher level convergence and vice versa. When crossover rate is 0.19 and 0.99, the best 

genome fitness is 0.5820 and 0.6412, respectively (Table 4.2). The reason for these results is that 

a smaller crossover rate cannot introduce enough new individuals into the population rapidly. 

Therefore, it cannot lead to the high level global optima within a given time. 

Some authors argue that if the crossover rate is too high, individuals with high fitness are 

discarded faster than selection can produce (Grefensette, 1986; Srinivas and Patnaik, 1994).  

In such situations, the population prematurely converges to the local optima, because a higher 

crossover rate tends to disrupt the individuals selected for reproduction at a high rate. This 

characteristic is important in a small population because high-fitness individuals are more likely 

to quickly dominate a small population (Grefensette, 1986). It may be different if the population 

is large.   
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 Figure  4.7. Relationship among accuracy / fitness, crossover rate, 

and number of generation  
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The results from this study indicate that the highest crossover rate 0.99 does not lead to  

premature convergence in a population with 1000 individuals (Table 4.7, Figure 4.8). When 

Grefensette (1986) suggested that crossover plays an important role in preventing premature 

convergence in smaller populations, he dealt only with population sizes from 10 to 160 

individuals. So, it can be argued that a very high crossover rate may not necessarily cause 

premature convergence in a large population. 

4.2.4. Mutation Rate 

Mutation is a procedure to change a selected individual genome thereby introducing 

biodiversity into the population. The role of mutation in GAs is to restore lost or unexplored 

genomes into the population and to prevent premature convergence or local optima. Similar to 

the study of crossover rate, the significance of mutation rate in controlling the performance of 

GAs has been recognized both theoretically and empirically (Grefensette, 1986; Srinivas and 

Patnaik, 1994). The mutation rate controls the frequency with which the mutation operator is 

applied. Figures 4.9 and 4.10 show the relationship between best genome fitness and generation 

size. When the mutation rate is large, such as 100%, the population quickly converges to a lower 

level optimum (both the final best and average fitness are 0.3663). A high-rate mutation destroys 

genomes that have either high or low fitness, and introduces many new but not necessary high 

fitness genomes into the population. Although the higher rate of mutation usually leads to an 

essentially random search (Grefensette, 1986), it usually drives a population into an unstable 

situation. The higher-rate mutation usually leads an essentially random search (Grefensette, 

1986). Of course, the result of such a search will not be desirable.    

With a smaller mutation rate, such as 0.01%, a population slowly converges to a higher-

level optimum (the final best / average fitness is 0.6329 and 0.6326 respectively). This is because 

a low mutation rate prevents any position on a genome from being changed and introduces few  
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Figure 4.9. Relationship between accuracy / fitness, mutation rate, 

and number of generation  
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Figure 4.10. Comparing the accuracy / fitness of population 

when mutation rate changes 
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new genomes into the population (in this case, only one new genome or decision tree introduced 

per generation). Although high-fitness genomes are more likely to be saved in this case, the 

biodiversity of the population will be affected. Also, populations with a low mutation rate 

usually require more time to converge to the global optimum. 

4.2.5. Generation Gap 

The concept of generation gap, or so-called replacement rate, was introduced into GAs-

based study by De Jong and Sarma (1993). They empirically evaluated the performance of GAs 

with overlapping populations and found that a population loses high-fitness genomes when the 

generation gap is small. Small generation gap can cause poor search performance (De Jong and 

Sarma, 1993). Cheng et al. (1996) believe that a very small generation gap may lead to 

premature convergence.     

Grefenstette (1986) stated that the generation gap controls the percentage of the 

population to be replaced during each generation. A value of 100% means that the entire 

population is replaced during each generation, and a value of 50% means that half of the 

individuals in each population survive into the next generation (Grefenstette, 1986). Grefenstette 

(1986) also argued that the large generation gap generally improves performance of GAs. 

However, the study done by Wang and Cao (2002) suggested that a very large generation gap 

may decrease population diversity and limit search space.       

Figure 4.11illustrates that a population with a higher generation gap (e.g. 75%) leads to a 

higher convergence rate during the early stage of evolution (about first 500 generations), then the  

evolutionary process of such a population is slowed down and surpassed by populations with a 

lower generation gap (e.g. 50%). This observation does not support Grefenstette’s (1986) 

argument. Grefenstette’s experiment was done based on a maximum population size 160 and a 

maximum generation number of 20, so the behavior of genetic algorithms after 20 generations  
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Figure 4.11. Relationship among accuracy / fitness, generation gap, 

and number of generation 
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was not observed. Figure 4.12 and Table 4.2 compare fitness and classification accuracy among 

populations with different generation gaps. During a 2000-generation evolution, a population 

with a 50% generation gap has the highest best/average genome fitness and  training/testing data 

classification accuracy. A population with 10% generation gap has lowest best/average genome 

fitness and training/testing data classification accuracy, and the difference between populations 

with 25% and 75% generation gap is small. These results indicate that the performance of GAs 

will be poor when the generation gap is too small or too large. If a population has a lower fitness 

and smaller generation gap, it has less chance to swap high fitness genomes into the next 

generation. The performance of GAs can be improved by a large generation gap during early 

stage of evolution (e.g. increase convergence speed), but it will not necessarily be improved 

during the entire evolution when the generation gap is large. Because with a large generation 

gap, for example 75%, most original individuals in the population will be replaced by new 

individuals. This will cause the population to be unstable and eventually leads to the negative 

effects of genetic drift (e.g., allele loss or gene loss) and a local optimum. Another drawback of 

large generation gap is that it requires much time (e.g. 6293 minutes per experiment). 

4.2.6. Land-Cover and Land-Use Classification 

The experiment designed in this chapter is used to determine the optimal configuration of  

genetic parameters. When the fitness of population is low, the classification accuracy of training  

data and testing data will be low. For example, both the best and average genome fitness of a 

population in case M6 are only 0.3663, and its training / testing data classification accuracy is 

low as 60.53% / 60.40% (Table 4.2). When the fitness of a population is high, the classification 

accuracy of training data and testing data will be high. For example, both the best and average 

genome fitness of a population in case G5 are 0.6487, and its training / testing data classification 

accuracy is also low at 80.62% / 78.82% (Table 4.2).  



 106

Usually, both the high fitness of genome and the high classification accuracy of training / 

testing data indicate a better performance of the GA. Based on the performance of GAs, the 

following cases were selected for carrying out a real image data classification: 1) Case G1 has a 

very small generation amount (100); 2) Case P1 has a very small population size (250); 3) Case 

C1 has a very low crossover rate (19%); 4) Case M6 has a very high mutation rate (100%); 5) 

Case R1 has a very small generation gap (10%); and 6) Case G5 has an optimal configuration 

(generation amount 5000, population size 1000, crossover rate 99%, mutation rate 0.5%, 

generation gap 50%).  

Both Table 4.3 and Figure 4.13 show the relationship between genetic algorithms 

performance and LCLU classification accuracy. When the classification rules were developed 

from an effective genetic algorithm, the classification accuracy of the image data was high. 

Otherwise, the classification accuracy of the image data was low. The comparison of Case M6 

and Case G5 provides a good example. When the population fitness and training / testing data 

classification accuracy is high, the classification accuracy of real data is also high (e.g., Case G5, 

84.70%), and likewise, when the population fitness and training / testing data classification 

accuracy is low, the accuracy of real data LCLU classification is low (e.g., 22.70% in Case M6) 

(Table 4.3). 

4.3. Discussion 

The impact of genetic algorithms performance on LCLU classification includes at least 

three aspects: 1) the impact of premature convergence / local optimization; 2) the impact of a 

very low convergence rate and an unstable population; and 3) the impact of a small number of 

generations and a small population size. All of these are closely related to the configuration of 

genetic parameters. In this section, these four issues were discussed, and a recommendation of 

GA parameters configuration was also provided.  
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Table 4.3. Classification accuracy assessment for genetic parameter configurations*  
 

Designed Experiments Generation 
Amount 

Population 
Size 

Crossover 
Rate 

Mutation 
Rate 

Generation 
Gap 

Optimum 
Setting 

Case ID** G1 P1 C1 M6 R1 G5 
Prod. Accu. 53.41% 86.36% 56.82% 17.61% 68.18% 80.68% Urban User Accu. 53.41% 63.07% 75.76% 63.27% 66.67% 88.20% 
Prod. Accu. 92.46% 92.96% 94.97% 93.47% 90.45% 92.46% Farm User Accu. 60.73% 76.45% 66.08% 45.81% 76.92% 78.30% 
Prod. Accu. 3.26% -- 28.26% -- 28.26% 38.04% Grass User Accu. 75.00% -- 57.78% -- 72.22% 54.69% 
Prod. Accu. 96.68% 93.36% 92.89% 6.52% 94.31% 92.89% Forest User Accu. 82.59% 89.55% 89.50% 2.31% 88.44% 85.96% 
Prod. Accu. 93.94% 96.97% 100.00% -- 96.97% 87.88% Water User Accu. 100.00% 100.00% 97.06% -- 100.00% 100.00% 
Prod. Accu. 85.53% 89.36% 92.77% 6.06% 92.34% 90.64% Wetland 
User Accu. 97.10% 97.67% 95.61% 1.40% 95.59% 94.25% 
Prod. Accu. 4.76% 85.71% 80.95% -- 85.71% 90.48% Other User Accu. 100.00% 100.00% 77.27% -- 52.94% 67.86% 

Overall Accuracy 74.90% /  82.60% 81.20% 22.70% 82.40% 84.70% 
Overall Kappa 0.6876 0.7846 0.7682 0.1093 0.7834 0.8119 

* 1000 reference points 
** The configurations of genetic parameter in different case are listed in Table 4.2  
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Figure 4.13. Genetic algorithms-based land-cover and land-use classification using  
different genetic parameter configurations listed in Table 4.2  
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4.3.1. Impact of Premature Convergence and Local Optimization 
 
 Convergence is assumed to be achieved when there is no increase in the maximum fitness 

of population with an increased number of generations (Chambers, 2000). It can also be regarded 

as the state when most of the population is identical and diversity is minimized (Louis and 

Rawline, 1993). There are three types of convergence: 1) rapid convergence, 2) moderate rate of 

convergence, and 3) slow convergence (Chambers, 2000). Each of these has different rates of 

convergence, and the best individual requires a different amount of time to reach best fitness.  

 Premature convergence / local optimization is a phenomenon that cannot be ignored in 

GAs. It has two aspects: 1) all individuals in a population become the same so that the evolution 

stops; and 2) the population cannot converge to any level of fitness because the better individuals 

are always eliminated (Cheng et al., 1996). The major reason may be that individuals with very 

high fitness are assigned during the early evolution stage. Fitness-based natural selection 

eliminates other individuals so that most individuals are the same. Crossover occurs between the 

same type of individuals cannot produce new offspring. Mutation may generate some high- 

fitness individuals, but they have high probability to be abandoned because of the small number 

of individuals. Eventually, most individuals become the same (Cheng et al., 1996). Although it 

has high fitness, this population (a set of solutions) cannot be used to solve real problems 

because it is a local optima.  

One of the cases shown in Table 4.2 is about premature convergence / local optimization. 

Case M6 has the highest mutation rate – 100%. This population becomes mature around 250 

generations and converges to a low fitness level of 0.3663 (Table 4.2). Its training / testing data 

classification accuracy is just 0.6053 / 0.6040. Its real data classification accuracy is only 

22.70%. This is a typical example of premature convergence. When the rate of mutation is very 

high, the population (models) cannot be stable, and its good characteristics cannot be efficiently 
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transmitted from one generation to the next. When using the model (best individual) to classify 

testing data, the accuracy was not high (60.40%), and when using the model to classify a satellite 

image the accuracy was even worse (22.70%) (Table 4.3). This result suggests that premature 

convergence / local optimization can impact the accuracy of LCLU classification negatively. In 

order to prevent premature convergence / local optimization, the genetic parameters must be set 

up properly.      

4.3.2. Impact of Low Convergence Rate and Unstable Population 

 Low convergence can be caused by introducing very few new individuals into population 

in each generation. The possible reason could be a low crossover rate, low mutation rate, and 

small generation gap. Table 4.2 shows that a low crossover rate leads to low fitness and low 

classification accuracy, as in Cases C1 and C2. It also shows that a small generation gap leads to 

low fitness and low classification accuracy, as in Case R1. Although a low mutation rate cannot 

introduce enough new individuals into the population, if given enough time, it will lead to global 

optimum (Grefensette, 1986). This may be the reason why Case M1 has high fitness and 

classification accuracy. 

 A higher mutation rate can introduce many new individuals to the population and prevent 

a population from premature convergence. But if it is too high (e.g. 0.1 and 1.0), the random  

search will dominate the behavior of GAs, and the optimization capability will be lost. 

Therefore, a very high mutation rate could lead to an unstable population that usually converges 

to a low fitness level. Similar to the situation with a high mutation rate, when the generation gap 

is large (e.g., 25% and 50%), it introduces new individuals into the next population and prevents 

population from the problem of premature convergence. But if generation gap is too large (e.g., 

75%), the random search will dominate the behavior of GAs, and the optimization capability will 

be lost. Therefore, a very large generation gap could lead to unstable population that usually 
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converges to a low fitness level. The results in Table 4.3 indicate that either premature 

convergence or an unstable population will lead to low classification accuracy on either testing 

data or the entire study area, as in Case M6.   

4.3.3. Impact of Small Number of Generations and Small Size of Population 

 A small number of generations, such as 100, cannot provide enough time for evolution. A 

population with small number of generations usually does not develop well. It has poor fitness 

and classification accuracy on both testing data and satellite imagery. Cases G1 and G2 belong to 

this scenario. When the generation size is 100, the best fitness is only 0.5463, testing data 

classification accuracy is only 0.7259, and satellite image classification accuracy is only 0.7330.  

 A small population size, such as 250, cannot provide enough diversity for better 

evolution. A population with a small diversity usually does not develop well. It has poor fitness 

and classification accuracy on both testing data and satellite imagery. Case P1 belongs to this 

scenario. When the population size is 250, the best fitness is only 0.6011, testing data 

classification accuracy is only 76.86%, and satellite image classification accuracy is only 

82.60%. These results suggest that small generation size and small population size can decrease 

the capability of GAs. The performance of GAs can be improved by increasing generation 

amount and population size.  

 Both Table 4.3 and Figure 4.13 show the relationship between GA performance and 

LCLU classification accuracy. Generally, when the fitness of a population is high, the 

classification accuracy of training data and testing data will be high. The high fitness of best / 

average genome and the high classification accuracy of training / testing data indicate the good 

performance of GAs. However, if premature convergence or local optimization occurs, the 

situation will be complex, any model based on premature convergence or local optimization  

will not perform well in terms of LCLU classification.   



 112

4.3.4. Recommendation of a Genetic Parameters Configuration 

 Based on the above results and discussion, the following recommendations can be made. 

To achieve better classification results, the genetic parameters range should be: generation 2000 

– 5000, population 1000 – 2000, crossover rate 69% – 99%, mutation rate 0.1% – 0.5%, and 

generation gap 25% – 50%. The best scenario from this study is: generation 5000, population 

1000, crossover rate 99%, mutation rate 0.5%,, and generation gap 50%. 

   Table 4.3 and Figure 4.13 show the results of satellite image classification accuracy for 

different cases. The recommended case has the highest classification accuracy for both testing 

data and satellite image (78.82% / 84.70%). These results suggest that the performance of GAs 

and LCLU classification can be improved by adjusting genetic parameters.  

4.4. Hypothesis # 1 Review 

The first research question as presented in Chapter 1 was How do genetic parameters  

(such as number of generations, population size, crossover rate, mutation rate, and generation 

gap) impact the accuracy of GA-based LCLU classification. The first research hypothesis 

presented in Chapter 1 was stated as follows: 

Ha: Different numbers of generations, population size, crossover rate, mutation rate, and  

generation gap can increase / decrease the accuracy of GA-based LCLU classification, 

respectively. 

The impacts of various genetic parameters on the performance of GA-based LCLU 

classification, as the above experimental results show, are complex and significant. For example, 

when generation gap is smaller than 50%, the performance of GA-based LCLU classification can 

be improved as the generation gap increases. However, it becomes bad as the generation gap 

increases from 50% to 75%. The results of the experiment indicate that the first hypothesis can 

be accepted. It means that different number of generation, population size, crossover rate, 
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mutation rate, or generation gap can impact GA-based LCLU classification, respectively. In 

general, the performance can be improved by increasing the number of generations, the size of 

population, and the rate of crossover. It can be improved by decreasing the rate of mutation also. 

4.5. Summary 

As it has been stated that the primary goal of this study is to investigate premature 

convergence / local optimization problem in GAs and to examine the relationships among 

performance of GAs, genetic parameters, and the accuracy of LCLU classification. The 

relationships among them are very complex. Based on the results of the experiment, some 

conclusions can be drawn: 

• When genetic parameters are set improperly (e.g., too small number of generations, 

small population size, and low crossover rate), the premature convergence / local 

optimization occurs, and premature convergence / local optimization will lead to poor 

LCLU classification accuracy. Similarly, the GA-based LCLU classification cannot 

perform well when the mutation rate and generation gap is too high.  

• In order to improve the use of GAs in LCLU classification, genetic parameters should 

be set using moderate values. The range of values should be as follows: generation 

2000 - 5000, population 1000, crossover rate 69% - 99%, mutation rate 0.1% - 0.5%, 

and generation gap 25% - 50%.  
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CHAPTER 5  IMPACT OF IMAGE PARAMETERS ON  
LAND-COVER AND LAND-USE CLASSIFICATION ACCURACY 

 
5.1. Experiment #2 Design 

The accuracy of any LCLU classification is affected by a number of image parameters. 

The experiment designed in this chapter is used to examine the impact of image parameters on 

LCLU classification in the Tickfaw watershed. Figure 5.1 shows the procedure of applying GAs, 

expert systems, and various layer combinations in the LCLU classification. A Landsat image 

acquired on Feburary 6, 2000 (Figure 3.2), the resultant image of principal components analysis 

(PCA), the resultant image of tasselled cap transformation (TCT), the resultant image of texture 

analysis (TA), the resultant image of iterative self-organizing data analysis (ISODATA), 

normalized difference vegetation index (NDVI), normalized land-water index (NLWI), digital 

elevation model (DEM), soil data, and their various combinations were used in this experiment.  

During the data preparation phase, an ISODATA containing 50 classes was created 

through ERDAS Imagine. A total of 50000 random samples was taken using the procedure 

described in Section 4.1 of Chapter 4. An ASCII file that contains the coordinates for all random 

samples was also created. This coordinate file was used to create both training data and testing 

data from each band (1 - 5, and 7) and other data layers (such as PCA components or DEM) 

(Figure 5.2a). After the random sampling, the data are converted into an attribute-relation file 

format (ARFF) file (Figure 5.2b).  

Based on the proposed questions related to the research objectives, six types of image 

parameters were tested in this experiment: spatial resolution, training data size, different 

transformed data, different index data, different GIS data, and different data combinations. In 

order to investigate the impact of different data on GA-based LCLU classification, only six 

bands of Landsat image and one type of ancillary data (e.g., DEM or first 6 PCA components)  
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Figure 5.1. The workflow for optimizing image parameters configuration 
in genetic algorithm-based land-cover and land-use classification 
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Figure 5.2. (a) Randomly sampled training data and (b) Edited data file 
(during optimizing image parameters) 
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were used at a time. After testing all ancillary data, various combinations of ancillary data were  

also examined. Each test generated a set of genomes. The best genome was represented by a 

decision tree, and it was translated into a set of classification rules (Table 5.1). The classification 

rules were then implemented to encode an expert system using ERDAS Imagine 9.0. During the 

experiment, the impacts of various training / testing data sizes, various spatial resolutions, and 

various data combinations were examined.  

In order to investigate the impacts of different data combinations on the performance of 

GA-based LCLU classification, four data combinations were created. The first data set includes 

5 layers: Landsat ETM image 2000, Bands 1 - 4, and Band 7. The second data set includes 12 

layers: all data layers in the first data set, four PCA components (1, 2, 3, and 4), and three TCT 

bands (1, 3, and 4). The third data set includes 16 layers: all data layer in the second data set, 

three TA bands (1, 2, and 4), and ISODATA. The fourth data set includes 20 layers: all data 

layers in the third data set, NDVI, NLWI, DEM, and soil data. Those data layers were selected 

by using the GA-based attributes selection function in Weka 3.5 (Witten and Frank, 2005).  

This study only focuses on the impacts of image parameters on GA-based LCLU 

classification. The default setting for carrying out this experiment was: training / testing data size 

20000 / 10000, spatial resolution 30 meters, number of generations 5000, population size 1000, 

crossover rate 99%, mutation rate 0.5%, and generation gap 50%. Again, when examining the 

impact of a data layer (e.g., DEM), the remaining parameters (e.g., spatial resolution and data  

size) remained at the default values (Table 5.2 and Table 5.3). The accuracy assessment of 

LCLU classification was performed using the approach described in the previous chapter. 

5.2. Results 

In general, a population will converge when most individuals in the population are 

identical; in other words, the diversity of population is minimized (Louis and Rawlins, 1993).  
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Table 5.1. Translating a portion of decision tree into classification rules  
(during optimizing image parameters configuration) 

 
Decision Tree Classification Rules 

if band4 <= 131 then 
| if band5 <= 94 then 
| | if band3 <= 94 then 
| | | if band1 <= 69 then  
| | | | if band2 <= 47 then  
| | | | | if band 6 <= 11 then  
| | | | | | if DEM <= 7 then  
| | | | | | | - wetland 
| | | | | | + - forest 
| | | | | + - grass 
| | | | + - urban 
| | | + - urban 
| | + - other 
| + - farm 
|…… 

Rule 1. if band4 <= 131, band5 <= 94, band3 <= 94, band1 <= 
69, band2 <= 47, band6 <= 11, and DEM <= 7, then class = 
wetland;  
Rule 2. if band4 <= 131, band5 <= 94, band3 <= 94, band1 <= 
69, band2 <= 47, band6 <= 11, and DEM > 7, then class = forest;  
Rule 3. if band4 <= 131, band5 <= 94, band3 <= 94, band1 <= 
69, band2 <= 47, and band6 > 11, then class = grass;  
Rule 4. if band4 <= 131, band5 <= 94, band3 <= 94, band1 <= 
69, and band2 > 47, then class = urban;  
Rule 5. if band4 <= 131, band5 <= 94, band3 <= 94, and band1 > 
69, then class = urban;  
Rule 6. if band4 <= 131, band5 <= 94, and band3 > 94, then class 
= other;  
Rule 7. if band4 <= 131, and band5 > 94, then class = farm. 
…… 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 119

Table 5.2. Relationship between individual image characteristics and classification accuracy 
 

Data 
Case 

 
ID* 

Size,  
Rate,  

or Layers 

Best 
Genome 
Fitness 

Average 
Genome 
Fitness 

Best 
Genome 

Size 

Training  
Data 

Classification 
Accuracy 

Testing  
Data 

Classification 
Accuracy 

Spectral Only   SO 0.6411 0.6408 135 80.15% 78.78% 
+ PCA K2 0.6404 0.6398 161 80.13% 79.12% 
+ TCT K3 0.6551 0.6547 131 81.01% 80.27% 
+ TA K4 0.6782 0.6777 181 82.49% 81.30% 
+ ISO K5 0.6579 0.6576 163 81.22% 79.99% 

+ NDVI K6 0.6370 0.6367 167 79.93% 78.44% 
+ Water Index K7 0.6722 0.6718 115 82.04% 80.98% 

+ DEM K8 0.7531 0.7531 161 86.92% 85.92% 
+ Soil data K9 

30m resolution,  
20000/10000 

Training/testing 
samples, 6 or 

6+1 layers, and 
optimum GA 

parameter 
configuration* 

0.7276 0.7273 157 85.41% 84.42% 
* Optimum GA parameter configuration: number of generations: 2000, population size: 1000, crossover rate: 99%, 
mutation rate: 0.5%, and generation gap: 50%. 
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Table 5.3. Relationship between image characteristics combination and classification accuracy 
 

Data 
Case 

 
ID** 

Size,  
Rate,  

or Layers 

Best 
Genome 
Fitness 

Average 
Genome 
Fitness 

Best 
Genome 

Size 

Run 
Time 
(min.) 

Training  
Data 

Classification 
Accuracy 

Testing  
Data 

Classification 
Accuracy 

A1 5 0.6182 0.6180 153 1934 78.72% 77.52% 
A2 12 0.6522 0.6511 213 1710 80.94% 79.97% 
A3 16 0.7085 0.7079 167 2005 84.29% 83.51% D

at
a 

C
om

b.
 

A4 20 0.7790 0.7783 165 1740 88.38% 87.47% 
D1 1000 / 500 0.8255 0.8243 231 125 91.10% 84.00% 
D2 3000 / 1500  0.7731 0.7725 175 360 88.06% 84.72% 
D3 5000 / 2500 0.7688 0.7671 201 611 87.86% 85.73% 
D4 10000 / 5000 0.7691 0.7676 167 1200 87.82% 87.06% 
D5 20000 / 10000 0.7790 0.7783 165 1740 88.38% 87.47% 
D6 30000 / 15000 0.7750 0.7745 191 3690 88.29% 88.20% 

T
ra

in
in

g 
/ e

st
in

g 
 

D
at

a 
Si

ze
 

D7 50000 / 25000 0.7734 0.7723 183 4080 88.09% 87.82% 
S1 7.5m 0.7599 0.7594 147 1739 87.27% 86.17% 
S2 15m 0.7653 0.7644 177 1656 87.62% 86.88% 
S3 30m 0.7790 0.7783 165 1740 88.38% 87.47% 
S4 60m 0.7934 0.7970 159 1893 89.41% 88.79% Sp

at
ia

l 
R

es
ol

ut
io

n 

S5 120m 0.7668 0.7656 179 1750 87.71% 86.92% 
 

Genetic 
Parameters 

5000 generations, 1000 individuals, 99% crossover, 0.5% mutation, 50% 
generation gap 

Data 
Characteristic 

20 layers data combination, 20000/10000 training / testing samples,  
30 m spatial resolution,  O

pt
im

um
 

Si
tt

in
g 

OS 

Results 0.8309 0.8300 203 -- 91.34% 90.67% 
** Condition: number of generation: 5000, population size: 1000, crossover rate: 99%, generation gap: 50%, 
mutation rate: 0.5%, training / testing data size: 20000 / 10000, spatial resolution: 30 m, data combination: 5-20 
layers. 
 

 

 

 

 

 

 

 

 

 



 121

Different populations converge to different fitness levels. A population with high diversity will 

eventually converge to a global optimum fitness. A population with low diversity will quickly 

converge to a local optimum fitness. Models based on a global optimum can be applicable to 

most data, whereas models based on local optimum cannot. The goal of this experiment is to 

determine the relationship among image parameters, GA performance, and LCLU classification. 

Four categories of image parameters examined in the experiment were: individual data 

characteristics, training / testing data size, spatial resolution, and data layer combinations.     

5.2.1. Individual Data Characteristics  

Figures 5.3 and 5.4 illustrate the relationship between the accuracy of GA-based LCLU 

classification and data layer. After combining six bands of spectral data with another ancillary 

data (e.g., DEM or PCA components), the performance of GA-based LCLU classification was 

improved, and different ancillary data improved GA-based classification differently. DEM, soil 

data, texture data, and land-water interface data can significantly improve GA’s performance. 

Before adding those data, the classification accuracy of training / testing data was 79.93% / 

78.44%. After adding those types of data, the classification accuracy of training / testing data 

became 86.92% / 85.92%, 85.41% / 84.42%, 82.49% / 81.30%, and 82.04% / 80.98% 

respectively. The rate of improvement for training / testing data classification is 2.64-8.75% / 

3.14-9.54%. The results also indicated that PCA only slightly improved the performance of GA-

based classification. These results only reflect the improvement in terms of model development 

or knowledge discovery, and they were based on the training / testing data only. Whether they 

improve the real data classification or not will be examined in the following sections.       

5.2.2. Training / Testing Data Size 

 In a knowledge-based LCLU study, the quality and quantity of sampling data are always 

an important issue. It could affect the quality of knowledge. Generally, a training data set with 
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Figure 5.3. Relationship between accuracy / fitness and data layers 
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Figure 5.4. Comparing accuracy / fitness of population  

when data layer changes 
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high sampling rate has small rate of unknown data, and it can better represent the original data. 

However, a large training data size usually leads to high complexity, more noise, and more time 

to process. Although GAs were proposed as a random search and global optimization technique, 

the search space is still based on the training data. The knowledge, if derived from the training 

dataset that poorly represent the original data, will not be useful for analyzing the pattern of 

original data.        

 Figures 5.5 and 5.6 show the relationships among training data size, fitness, and 

classification accuracy. During a 5000-generation evolution, the best/average fitness first 

increased dramatically, then increased slowly, and stabilized around 0.77 while the 

training/testing data size increased (Table 5.3). Population, derived from small training data sine 

(e.g. 1000 pixels), had the highest best/average fitness (0.8255 / 0.8243) and training data 

classification accuracy (91.10%), but it had the smallest testing data classification accuracy 

(84.00%) except the optimum case. This is a typical phenomenon of local optimum. Due to a low 

sampling rate, the diversity of population is small, which leads to premature convergence / local 

optimum. The knowledge better fitting the training data may not better fit the testing data or real 

world data. The results also indicate that large training data size may not always improve the 

performance of GAs in terms of fitness and classification accuracy (e.g., the comparison among 

training data with 30000 and 50000 pixels). One possible reason is that large training data may 

be more complex than small training data, and it needs more time to develop a high fitness 

population. Given the same number of generations (e.g., 500), it is difficult for a large training 

data-based population to develop a better fitness than small-size training data. However, 

population based on a large training data size (e.g., 20000), even with lower training data 

classification accuracy, still has higher testing data classification accuracy than that of small-size 

training data (e.g., 1000). 
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Figure 5.5. Relationship between accuracy / fitness and sampling size 
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Figure 5.6. Comparing the accuracy / fitness of population  

when sampling size changes 
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5.2.3. Spatial Resolution 

 Five different data sets were used in the experiment for examining the impact of spatial 

resolutions. As they have been described in the previous section, those spatial resolutions were: 

7.5 m, 15 m, 30 m, 60 m, and 120 m. They were created by re-sampling using the nearest 

neighbor algorithm. It is commonly recognized that there is a relationship between the spatial 

resolution of a satellite image and the classification accuracy of LCLU (Cushnie, 1987). The 

advantage of a high spatial resolution image is obvious when being visually compared with low 

spatial resolution image. Unfortunately, the refinement of spatial resolution from low resolution 

to high resolution may not always improve classification accuracy (Irons et al., 1985). Although 

increasing spatial resolution tends to improve classification accuracy through decreasing the 

proportion of mixed pixels, it also tends to depress classification accuracy through increasing 

spectral variability and decreasing separability (Irons et al., 1985). The dominant trends of 

improvement or mis-classification depends on the classification scheme and the average field 

size within a scene (Yang and Lo, 2002). The improved spatial resolution of the original Landsat 

TM image did not greatly improve the classification accuracy. Because improved spatial 

resolution can lead to an increase not only in the inter-class variability but also the intra-class 

variability, both types of variability can lead to poor classification accuracy (Yang and Lo, 

2002).  

Figure 5.7 shows the evolution process of a population derived from different training 

data sets. Unlike the refined or degraded data, the original data-based population seems to 

converge smoothly. A possible reason is that population based on the refined or degraded data 

may be dominated by high-fitness individuals during the early stage of evolution. Figure 5.8 

compares the best/average fitness and classification accuracy of different training/testing data 

set. It indicates that there are both improvements and hindrances on classification accuracy in 
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both cases of refined and degraded spatial resolution. This result confirms that the effect of 

spatial resolution on classification accuracy is very complex, and it cannot be simply described 

as improvement or hindrance (Irons et al., 1985; Cushnie, 1987).  

The training/testing data can be recognized as the environment of population. The 

complexity of the environment increases when spectral variability increases, and the complexity 

of environment decreases when the number of mixed pixels decreases. To fit a complex 

environment, the population requires a long time for evolution.  

Higher spatial resolution may provide a chance to glean more precise information. 

Therefore training/testing data developed from higher resolution data usually leads to high 

fitness. On the other hand, it may lead to poor fitness as well, because if the sampling size 

remains constant, un-sampled / unknown area will increase. For example, at the same sampling 

size level, 15 m resolution data has lower training/testing fitness, 30 m resolution data has higher 

training/testing fitness. It should be noted that higher training / testing fitness do not ensure 

higher classification accuracy. For example, when the sampling rate is low, the relative noise 

data rate is lower. It is easy to implement a model to capture most training data and testing data. 

However, since the relative un-sampled / unknown area is larger, the model cannot capture most 

data characteristics in a real case.  

5.2.4. Data Layers Combinations  

Four different data combinations were used in the experiment. As they have been 

described in a previous section, those data combinations included 5 layers, 12 layers, 16 layers, 

and 20 layers (Figure 5.9). Although the population in GAs is initialized randomly (Goldberg, 

1989), its development is still based on the training data. The training data can be recognized as 

the environment of the population. Generally, a population that lives in a complex environment 

will become complex. Otherwise, it will be eliminated through the natural selection. According  
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Figure 5.7. Relationship between accuracy / fitness and spatial resolution 
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Figure 5.8. Comparing the accuracy / fitness of population  

when spatial resolution changes 
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to the research done by Wang and Cao (2002), the more complex the genome is, the larger space 

it can search, and the higher fitness/classification accuracy it can reach. The research done by 

geographers has proved that GIS data (such as soil data) and other data (such as DEM) can 

benefit knowledge-based LCLU classification (Huang and Jenson, 1997). 

Figure 5.9 shows the evolutionary process of population derived from different training 

data sets. Figure 5.10 compares the best/average fitness and training/testing data classification  

accuracy derived from different training/testing data. The more layers the training data contains, 

the higher fitness/classification accuracy the population can achieve. Many scholars believe that 

there is a connection between the complexity of population and the convergence rate, and 

complex population usually converged slowly (Papagelis and Kalles, 2001; Wang and Cao, 

2002). But, a comparison of the performance of genetic algorithms with different training/testing 

data suggests differently (Table 5.3). Population – based on first, second, third, and fourth 

training data set – required 1934, 171, 2005, and 1740 minutes, respectively, to complete 5000-

generation evolution.  

5.2.5. Land-Cover and Land-Use Classification 

After discovering the spatial spectral knowledge, a set of classification experts were 

encoded and used for the LCLU classification. Table 5.4 and Figure 5.11 demonstrate the results 

of classification. On the overall level, the models with high fitness can achieve high LCLU 

classification accuracy. For example, Case K9 has high best / average genome fitness (0.7276 / 

0.7273), high training / testing data classification accuracy (85.41% / 84.42%), and high LCLU 

classification accuracy (88.30%). The models with low fitness may achieve low LCLU 

classification accuracy. For example, Case K5 has low best / average genome fitness (0.6579 / 

0.6576), low training / testing data classification accuracy (81.22% / 79.90%), and low LCLU 

classification accuracy (75.60%). However, some cases do not follow this pattern. Case K2 has  
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Figure 5.9. Relationship between accuracy / fitness and layer combination 
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low best / average genome fitness (0.6404 / 0.6398), low training / testing data classification 

accuracy (80.13% / 79.12%), and high LCLU classification accuracy (86.10%). Case D1 has 

high best / average genome fitness (0.8255 / 0.8243), high training / testing data classification 

accuracy (91.10% / 84.00%), and low LCLU classification accuracy (75.60%). 

On the class level, most models have good producer accuracy and user accuracy. For 

example, both Case K3 and Case K9 have high producer accuracy and user accuracy on all 

features except land feature GRASS. In this research, GRASS has the lowest producer accuracy 

and user accuracy in most cases (Table 5.4).  

5.3. Discussion 

In the real world, the individuals, from the same or a different population, have similar / 

different genome and different strategies to fit the different environment. In Chapter 4, the 

genomes were developed by using only the Landsat image (Bands 1-5, and 7). They can be 

considered as individuals from the same population. Different from the experiment in Chapter 4, 

this chapter developed the genomes by using different data layers and layer combinations (e.g., 

Landsat image + DEM, or Landsat image + soil data), and they can be considered as different 

individuals from different population. Therefore, the impact of image parameters on GA-based 

LCLU classification was categorized into at least five aspects: 1) the impact of an individual data 

layer; 2) the impact of a combination of data layers; 3) the impact of training/testing data size; 4) 

the impact of spatial resolution; and 5) the recommendation of configuration of image 

parameters.  

5.3.1. Impact of Individual Data Layer 

Most existing LCLU classification applications are spectrally-based. The combination of 

spectral and spatial classification is especially valuable for accurate LCLU classification in areas 

with complex landscapes (Lu and Weng, 2007). This research integrates GIS information  
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Table 5.4. Classification accuracy assessment for image parameter configurations 
 

Designed Experiments Spectral 
Only * +DEM* +Soil 

Data* 
+Texture 
Analy. * 

+Land-
Water * 

+ISO 
Data* +PCA* 

Case ID SO K8 K9 K4 K7 K5 K2 
Prod. Accu. 80.68% 88.07% 87.50% 86.36% 91.48% 88.64% 86.93% Urban User Accu. 88.20% 85.64% 88.00% 68.47% 68.80% 46.90% 77.66% 
Prod. Accu. 92.46% 93.47% 93.97% 90.95% 87.94% 89.95% 92.96% Farm User Accu. 78.30% 77.50% 82.74% 76.69% 82.55% 82.49% 76.65% 
Prod. Accu. 38.04% 39.13% 48.91% 20.65% 19.57% 35.87% 22.83% Grass User Accu. 54.69% 76.60% 61.64% 63.33% 62.07% 61.11% 77.78% 
Prod. Accu. 92.89% 92.42% 93.36% 91.00% 93.36% 41.23% 94.79% Forest User Accu. 85.96% 91.55% 92.06% 91.43% 91.20% 91.58% 88.89% 
Prod. Accu. 87.88% 89.39% 93.94% 93.94% 96.97% 96.48% 96.97% Water User Accu. 100.00% 98.33% 98.41% 98.41% 98.46% 97.01% 100.00% 
Prod. Accu. 90.64% 95.74% 92.77% 93.62% 92.34% 93.19% 93.62% Wetland User Accu. 94.25% 94.94% 97.32% 97.35% 96.44% 95.63% 97.78% 
Prod. Accu. 90.48% 90.48% 95.24% 61.90% 80.95% 80.95% 85.71% Other User Accu. 67.86% 86.36% 80.00% 100.00% 89.47% 89.47% 90.00% 

Overall Accuracy 84.70% 87.50% 88.30% 83.90% 84.90% 75.60% 86.10% 
Overall Kappa 0.8119 0.8459 0.8564 0.8011 0.8138 0.7014 0.8283 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 136

Table 5.4. (Continued)  
 

Designed Experiments +NDVI* +Tasseled 
Cap* 

Training 
Data** 

Spatial 
Resolut** 

Data 
Comb.** 

Optimum 
Sitting ** 

Case ID K6 K3 D1 S1 A1 OS 
Prod. Accu. 82.39% 85.80% 88.07% 94.32% 81.82% 93.18% Urban User Accu. 83.82% 69.27% 75.24% 74.44% 70.94% 87.70% 
Prod. Accu. 93.47% 91.96% 90.45% 92.46% 91.46% 90.45% Farm User Accu. 78.81% 78.21% 85.31% 85.19% 80.89% 84.51% 
Prod. Accu. 33.70% 10.87% 36.96% 52.17% 23.91% 56.52% Grass User Accu. 55.36% 100.00% 60.71% 64.86% 64.71% 73.24% 
Prod. Accu. 92.42% 93.36% 55.45% 76.30% 93.36% 92.89% Forest User Accu. 85.53% 89.14% 92.86% 93.06% 87.95% 91.59% 
Prod. Accu. 95.45% 96.97% 75.76% 98.48% 93.94% 89.39% Water User Accu. 100.00% 84.21% 100.00% 95.59% 100.00% 98.33% 
Prod. Accu. 90.64% 89.79% 92.77% 92.77% 93.62% 95.32% Wetland User Accu. 95.09% 96.35% 96.89% 96.04% 96.92% 96.97% 
Prod. Accu. 85.71% 95.24% 71.43% 90.48% 90.48% 95.24% Other User Accu. 90.00% 90.91% 68.18% 100.00% 79.17% 100.00% 

Overall Accuracy 85.10% 83.60% 76.90% 86.10% 84.60% 89.50% 
Overall Kappa 0.8165 0.7977 0.7228 0.8297 0.8101 0.8711 

* Condition: generation amount: 2000, population size: 1000, crossover rate: 99%, mutation rate: 0.5%, 
generation gap: 50%, training / testing data size: 20000 / 10000, spatial resolution: 30 m, data combination: 6 or 
6+1 layers. 
** Condition: generation amount: 5000, population size: 1000, crossover rate: 99%, mutation rate: 0.5%, 
generation gap: 50%, training / testing data size: 20000 / 10000 (except case D1), spatial resolution: 30 m, data 
layer combination: 5 or 20 layers. 
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contained in a DEM and soil data into Landsat image classification. The results indicated that 

both DEM and soil data helped to increase the classification accuracy by 2.8% and 3.7%, 

respectively. Usually a knowledge-based LCLU classification with Landsat image and GIS data 

yielded higher accuracy than a standard spectrally-based classification (Bolstad and Lillesand, 

1992). The spatial distribution of natural and man-made features is closely related to DEM and 

soil data. For example, hydrophytes usually live in the low DEM area, and high-population 

density areas normally have a higher DEM. Also different soil types usually support different 

vegetation or different agricultural activities. Therefore, DEM and soil data can improve LCLU 

classification.  

In addition to GIS data, the study used Mean Euclidean Distance (MED) based texture 

analysis to attain spatial information. Texture analysis measures the spatial distribution of ground 

radiance level variations, which is closely related to the structures of a satellite image, and it can 

be used to characterize the morphology of study area. The research attempted to integrate spatial 

information derived from texture analysis into the LCLU classification. However, the accuracy 

was only improved in the phase of model development (Table 5.2). In the phase of LCLU 

classification, the classification accuracy was not improved at all. Possible reasons are: 1) the 

large portion of Tickfaw watershed is covered by forest, agricultural land, and grass land; so its 

morphological characteristics are relatively simple, 2) texture analysis is usually best-suited for 

high-resolution imagery, and the data used in this study are only at 30 m resolution.  

 Two band-ratioing techniques, namely normalized difference vegetation index (NDVI) 

and normalized land water interface (NLWI), were used in the study. NDVI is a commonly-used 

vegetation index. Usually, heavily vegetated areas display high positive values, whereas high-

density residential areas have low NDVI values. The results demonstrate that after incorporating 

NDVI in the experiment, the classification accuracy of farm, grass, and forest was not improved, 
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but non-vegetated features, such as water and bare land was significantly improved. After using 

NDVI, there is still a mixed class situation among farm, grass, and forest. The results show that 

the fitness and the classification accuracy of training / testing data slightly decreases (Table 4.2), 

but the accuracy of Landsat image classification increases (Table 5.2). These results indicate 

that: 1) the NDVI can distinguish vegetated features and non-vegetated features, but it is not a 

good approach for separating farm, grass, and forest, 2) different individuals (model) from 

different population (a set of models) fit the same environment (Landsat image) differently. A 

model may not fit a data set, but it may fit another data set very well.  

In addition to NDVI, another band ratio, namely NLWI was used in the study. NLWI is 

the index used to separate water body or high-wetness feature from dry land features (Gao, 

1996). Although the integration of NLWI and Landsat imagery only slightly improved the 

overall accuracy of LCLU classification, the producer accuracy of water feature was 

significantly improved. This indicates that NLWI can extract water features from non-water 

features efficiently. However, water features only occupy a small portion of study area, so the 

improvement of overall accuracy was not significant.          

 Two transformation techniques, namely principal component analysis (PCA) and tasseled 

cap transformation (TCT), were used in the study. PCA is one of the most important linear 

transformation techniques (Coppin et al., 2004), and it is usually used to reduce data redundancy 

between bands and highlight different information in the derived components (Lu et al., 2004a). 

After incorporating principal components into the classification procedure, the classification 

accuracy of the testing data and Landsat image was improved. The reason for this improvement 

is that PCA not only eliminates noise and redundancy but also emphasizes different information. 

Another transformation technique in the study is the TCT. It can also be used to reduce data 

redundancy. One of its advantages over PCA is that its transform coefficients are independent of 
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the image scenes, while PCA is dependent on the image scenes (Lu et al., 2004a). It generates 

the coefficients of brightness, greenness, and wetness. The study shows that TCT bands can 

improve either producer accuracy or user accuracy. However, the overall accuracy was not 

improved. Possible reasons are the following: 1) the brightness coefficients cannot separate 

urban and bare land efficiently, 2) the greenness coefficients cannot separate agricultural land, 

range, and forest, and 3) the greenness coefficients cannot separate water and wetland efficiently.  

 Finally, a clustering techniques technique, namely iterative self-organizing data analysis 

(ISODATA), was also used in the study. This technique is implemented by recursively migrating 

a set of cluster means (centers) using a “closest distance to mean” approach until the locations of 

the cluster means are unchanged (Tso and Mather, 2001). In this study, the number of clusters to 

be produced was specified as 50. After integrating the ISODATA and Landsat image into the 

procedure of knowledge discovery, the model was improved in terms of fitness and training / 

testing data classification accuracy. But the accuracy of real data classification was not 

improved. There may be several reasons for this case: 1) although training / testing data was 

taken from the Landsat image data, the model (or individual) which well fits training / testing 

data (partial environment) may not fit the entire AOI of the image data (entire environment), 2)  

ISODATA generates clusters based on pixel value, and pixels with same value may represent 

different land features, and 3) the capability of ISODATA is very limited, and it can not separate 

mixed classes (Huang and Jensen, 1997).    

 5.3.2. Impact of Data Layer Combinations 

The accuracy of the LCLU classification can be improved by using: 1) different 

algorithms or techniques, 2) different remotely-sensed images, 3) different image features, and 4) 

different ancillary data (Lu and Weng, 2007). The results shown in Section 5.2.1 indicate that 

different image features and different ancillary data play various roles in the improvement of 
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LCLU classification accuracy. The combinations of those image features and ancillary data also 

display very significant results. The major understanding developed from the result is that more 

useful data can benefit the classification (Figures 5.9 and 5.10).    

Both Figures 5.9 and 5.10 show that the more layers the training data contains, the higher 

the fitness / classification accuracy the population can achieve. In addition, many scholars 

believe that there is a connection between the complexity and the convergence rate, and complex 

populations converged slower than simple ones (Papagelis and Kalles, 2001; Wang and Cao, 

2002). However, the comparison of the performance of GAs with different training / testing data 

size suggested otherwise (Table 5.3). Population based on A1, A2, A3, and A4 training data sets 

(from simple to complex) required 1934, 1710, 2005, and 1740 minutes to complete the 5000 

generation evolution, respectively. It suggests that population complexity is not directly 

associated with evolutionary time.     

 5.3.3. Impact of Training / Testing Data Size  

The relationship between training / testing data size and the performance of GA-based 

LCLU classification is complex. The training / testing data with the smallest size has the highest 

training data classification accuracy and the lowest testing data classification accuracy (e.g., case 

D1) (Table 5.3), and the knowledge derived from such data can lead to poor LCLU classification 

(Table 5.4). This is because data with a lower sampling rate has higher rate of unknown point, 

and population derived from such data has lower biodiversity. Therefore, the knowledge cannot 

be used to classify LCLU accurately.   

The training / testing data with the larger size has higher training data classification 

accuracy and higher testing data classification accuracy (e.g., Case D5) (Table 5.3), and the 

knowledge derived from such data set can lead to more accurate LCLU classification (e.g., case 

SO) (Table 5.4). This is because data with higher sampling rate has lower rate of unknown point, 
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and population derived from such data has higher biodiversity. Therefore, the knowledge can be 

used to classify LCLU accurately.  

5.3.4. Impact of Spatial Resolution 

 Spatial resolution determines the level of spatial detail that can be observed on the 

Earth’s surface (Lu and Weng, 2007). Spatial resolution is one of the most important image 

features that affects LCLU classification (Chen et al., 2004; Atkinson and Curran, 1997; 

Atkinson and Aplin, 2004). It determines the level of spatial detail that can be observed on the 

Earth’s surface (Lu and Weng, 2007). Although high spatial-resolution imagery can provide a 

wealth of detailed information about the ground, the classification results are not as promising as 

expected. Empirical studies have shown that increasing spatial resolution does not necessarily 

improve classification accuracy (Hsieh et al., 2001; Landgrebe et al., 1977; Latty et al., 1985; 

Williams et al., 1984; Toll, 1985). Therefore, it is necessary to select a proper spatial resolution 

for the particular application (Atkinson and Curran, 1997). In this study, five different spatial 

resolutions were designed and implemented in this experiment (Table 5.3). All of them were 

tested in the phase of knowledge discovery, and two of them were tested in the phase of LCLU 

classification. Based on the results from the phase of knowledge discovery (Table 5.3), when 

spatial resolution decreased from 7.5 m to 60 m, the fitness of best / average genome and the 

classification accuracy of training / testing data increased. When spatial resolution decreased 

from 60 m to 120 m, the fitness of best / average genome and the classification accuracy of 

training / testing data decreased. These results again showed that refining spatial resolution did 

not necessarily improve classification accuracy (Irons et al., 1985), as it can lead to an increase 

not only in the inter-class variability but also in the intra-class variability (Williams et al., 1984; 

Irons et al., 1985; Haack et al., 1987). The increased variability decreases the statistical 

separability of land features classes. This decreased separability tends to depress classification 
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accuracies when pixel-based classification approaches are used. The increased variability was 

attributed to the imaging of diverse class components by high resolution sensors. At coarser 

resolutions, sensors integrated the reflected spectral radiance of the various components, and 

classes appeared more homogeneous (Irons et al., 1985). Another consequence of refining spatial 

resolution is a decrease in the proportion of mixed pixels to pure pixels (Irons et al., 1985). The 

decreasing proportion of mixed pixels with increasing spatial resolution tends to improve 

classification accuracy, and therefore counteracts the consequences of increased spectral 

variability.  

The dominant trend depends on the classification scheme and the average field size 

within a scene (Irons et al., 1985). In this study, the number of mixed pixels decreases when the 

resolution of the image changes from 60 m to 7.5 m, but both inter- and intra-class variability 

increases. The balance between mixed pixels decreasing and inter- / intra-class variability 

increasing will impact the accuracy of LCLU classification. The number of mixed pixels 

increases when the resolution of the image changed from 60 m to 120 m, which will affect the 

accuracy of LCLU classification. Based on the results from the phase of LCLU classification 

(Table 5.4), it can be concluded that the classification accuracy of high spatial-resolution 

imagery (7.5 m) is not always better than the classification accuracy of low spatial-resolution 

image (30 m).    

5.3.5. Recommendation of Image Parameters Configuration 
 

Based on the above results and discussion, two recommendations were provided in this  

study. The first one was based on range, and the second one was based on a particular case. The 

recommendation of range include: data combinations: 16-20 layers, training / testing data size: 

10000/5000 – 30000/15000, spatial resolution: 30 m – 60 m, and genetic parameters will be the 

same optimum configuration provided in Chapter 4. The recommendation of particular case 
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include: data combinations: 20 layers, training / testing data size: 20000/10000, spatial 

resolution: 30 m, and the optimum genetic parameter configuration. Table 5.4 and Figure 5.11 

show the result of satellite image classification accuracy for different cases. The recommended 

case has highest classification accuracy for both testing data and satellite image (90.67% and 

89.50%). These results suggest that the performance of genetic algorithms and LCLU 

classification can be improved by adjusting genetic parameters.  

5.4. Hypothesis # 2 Review 

The second research question as presented in Chapter 1 was how do image parameters 

(such as spatial resolution, training data size, different indexing data, and data combination) 

impact the accuracy of GA-based LCLU classification. The second research hypothesis 

presented in Chapter 1 was stated as follows: 

Ha: Different spatial resolution, training / testing data size, data layers, and data layer 

combinations can increase / decrease the accuracy of GA-based LCLU classification, 

respectively. 

Based on the experiment designed and performed in this chapter, those image parameters 

can impact the performance of GAs-based LCLU classification significantly. Compared to a GA-

based LCLU classification using spectral data only, after adding additional data layers, the 

performance of GA-based LCLU classification was slightly improved. The overall classification 

accuracy was improved by 0.43% (PCA), 1.89% (TCT), 3.20% (TA), 1.54% (ISODATA), and 

2.79% (NLWI), respectively. After adding NDVI, the accuracy of GA-based LCLU 

classification slightly decreased 0.43%. In the case of DEM and soil data, compared to a GA-

based LCLU classification using spectral data only, after adding DEM or soil data, the 

performance of GA-based LCLU classification was improved significantly. The improvement 

rates were 9.06% (DEM) and 7.16% (soil) respectively.  
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In the case of training/testing data size, its impact on the performance of GA-based  

LCLU classification is significant. The accuracy of GA-based LCLU classification generally 

increases from 0.7690 to 0.8487 as the size of training/testing data increases from 1000/500 to 

20000/10000.  

The impacts of various image parameters on the performance of GA-based LCLU  

classification are different. In general, the performance can be improved by adding more 

ancillary data or enlarging the training data size. However, adding NDVI data or collecting too 

many training samples may not necessarily improve the performance of GA-based LCLU  

classification. The impact of spatial resolution is complex and it needs further study.   

5.5. Summary 

As it has been stated previously, the primary goal of this study is to examine the 

relationships between image parameters and the performance of GA-based LCLU classification. 

Based on the results of the experiment, some conclusions can be drawn: 

• When training / testing data size is too small (e.g., 1000 / 500), the models (or 

population) will be developed in a small space, so that premature convergence / local 

optimization occurs, which will lead to a poor classification accuracy (76.90%).  

• When spatial resolution is too small / too large (e.g., 7.5 m or 120 m), the variability 

of inter- / intra-classes and the proportion of mixed pixels will change. This means 

that complexity of environment changes. The performance of GA will depend on the 

environmental complexity. The testing data classification accuracy is 86.17% (7.5 m) 

and 86.92% (120 m). Both of them are smaller than 87.47% (30 m).  

• Different data layers play different roles in the improvement of LCLU classification. 

DEM and soil data can significantly improve the classification accuracy. Other data 

layers can improve the classification accuracy at different levels.  
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• Based on this experiment, the recommended configuration of image parameters is: 

16-20 layer data combination, 10000 / 5000 - 20000 / 10000 training / testing data 

size, 30 m - 60 m spatial resolution, and optimum genetic parameter setting as listed 

in Chapter 4.    



 147

CHAPTER 6  COMPARISON OF TRADITIONAL AND GA-BASED 
LAND-COVER AND LAND-USE CLASSIFICATION 

 
6.1. Experiment #3 Design 

 The goal of the experiment is to compare unsupervised, supervised, hybrid, and GA-

based approaches for LCLU classification (Figure 6.1). A special effort was made to identify the 

differences among them in terms of overall accuracy, kappa statistics, producer accuracy, user 

accuracy, omission error, and commission error. The comparison was carried out based on both 

overall level and class level. In order to eliminate the impact of data and focus on the algorithm 

itself, only the 2000 Landsat Image was used for classification in this experiment. During data 

preprocessing, an ISODATA image containing 160 clusters was created through the 

unsupervised classification in ERDAS Imagine. The procedure used 30 maximum iterations and 

0.95 convergence threshold, and it output a signature file with 160 classes. The resultant data of 

ISODATA were then used in the unsupervised, hybrid, and GA-based LCLU classification.  

For the unsupervised LCLU classification, these 160 clusters were assigned into different 

LCLU classes using the Raster Attribute Editor and Flicker utility of the Viewer. After assigning 

the clusters into different classes, they were recorded into seven classes using the Recode utility 

of the GIS analysis.  

For the supervised LCLU classification, 160 signatures were defined directly from the 

AOI of the Landsat image using the Signature Editor. A total of 25 signatures were created for 

each class except OTHER land, and only 10 signatures were created for OTHER land. After 

evaluating and merging the signatures, the supervised LCLU classification was performed using 

the maximum likelihood classifier (MLC) of the supervised classification. A classified image 

and a distance file were created. For the hybrid classification, there were four steps. The 

supervised classification was performed first. It generated a classified image and a distance file  

 



 148

 

 

 

 

 
  

Figure 6.1. The workflow for comparing classification accuracy of different approaches 
(including GA, ISODATA, MLC, and hybrid of MLC and ISODATA) 
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using MLC and probabilities. “Threshold” was then run to create the unclassified classes using a 

0.05 confidence level and process to file. These unclassified classes were selected, copied to 

raster AOI, and saved to an AOI file. Second, the signature file with 160 classes, output from the 

unsupervised classification, was checked to ensure that the standard deviation was less than 10% 

of the mean for Bands 3, 4, and 5, and that the data distributions were normal. Signatures failing 

these checks were eliminated from further analysis. The remaining signatures’ count was copied 

into “probability”. After normalization, the probability and above AOI were used for the 

supervised classification. The third step was to assign the signatures into different classes and 

recode them. The final step was to create a model to recode and combine the final supervised and 

unsupervised classification.  

For GA-based classification, a set of training / testing data (20000 / 10000) was created 

from the resultant image of ISODATA. Since the resultant image has 160 classes and the 

smallest class has 313 pixels, the minimum amount of pixels was set to 100, and a stratified 

random sampling technique was selected. The pixels’ coordinates file was saved and used for 

taking training / testing samples from the AOI of Landsat image. After the random sampling, the 

data are converted into ARFF file that is supported by most data mining/machine learning 

software packages. In order to discover the spectral knowledge hidden in this data set, the ARFF 

file was input into GATree 2.0, a GA-based data mining / machine learning software. The 

resultant chromosome was represented as a decision tree, which was interpreted into 

classification rules. Those rules then were used to code an expert classifier, and perform the 

LCLU classification. 

Finally, for each approach, an accuracy assessment was performed after finishing the 

LCLU classification. The way to assess classification accuracy has been described in the 

previous three chapters. The details of the procedure will not be repeated here.       
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6.2. Results 

An image AOI (4,257,000 pixels) covering the entire Tickfaw watershed was created. It 

was classified into seven classes according to the classification scheme (Table 3.4). The major 

results include the classified images, error matrices, and accuracy assessments. As it has been 

described above, the AOI of Landsat image was classified using various approaches, including 

unsupervised, supervised, hybrid, and GA-based LCLU classification techniques. The accuracy 

assessment was based on the error matrix or confusion matrix. Error matrix is a square array of 

values, which cross-tabulates the number of sample spatial data units assigned to a particular 

category relative to the actual category as verified by the reference data. Conventionally, the 

rows of the error matrix represent the categories of the classification of the database, while the 

columns indicate the classification of the reference data (Lo and Yeung, 2007). There are several 

terms describing the accuracy: 1) omission error defines the error of exclusion; 2) commission 

error defines the error of misclassification; 3) producer accuracy is the probability of a sample 

being correctly classified, and it measures the error of omission; 4) user accuracy is the 

probability that a sample actually represents the real world, and it measures the error of 

commission; 5) overall accuracy represents the percentage of correctly classified data; 6) kappa 

value controls the overestimation / underestimation of overall accuracy and it tests the statistical 

significance of differences in different error matrices (Congalton, 1991; Lo and Yeung, 2007). 

The detailed results from every approach are provided as follows.    

Figure 6.2 demonstrates the resultant images generated by different LCLU classification 

approaches. Based on visual estimation, URBAN and GRASS were overestimated, and FARM 

was underestimated using the ISODATA-based unsupervised LCLU classification. FOREST was 

overestimated, and URBAN was underestimated using MLC-based supervised LCLU 

classification. The resultant images derived from the hybrid and GA-based LCLU classification 
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approaches look similar.  Those major overestimation and underestimation problems seem to 

have solved by both the hybrid and GA-based LCLU classification approaches. The detailed 

results can be found in the following sections.  

6.2.1. ISODATA-based Unsupervised Land-Cover and Land-Use Classification 

 The first attempt made to classify LCLU was done using an ISODATA-based 

unsupervised classification. This approach does not require the user to specify any information 

about the land features contained in the images. The experiment was carried out in ERDAS 

Imagine. Compared to other approaches, this experiment provided the lowest overall accuracy 

(72.30%) and the lowest overall kappa value (0.6653) (Table 6.1). It also indicates that the 

classification of URBAN, GRASS, and OTHER did not perform well, because the agreement 

between the classified data and reference data is low. The kappa values of these three land 

features are only 0.4189, 0.3392, and 0.4893, respectively. The error matrix shows large errors of 

omission between URBAN and GRASS, FARM and URBAN, GRASS and URBAN, and 

OTHER and URBAN. The error matrix also shows large errors of commission between URBAN 

and FARM, GRASS and URBAN, GRASS and FARM, GRASS and FOREST, GRASS and 

WETLAND, and OTHER and URBAN. These results suggest that: 1) land feature URBAN and 

GRASS was overestimated considerably; 2) land feature FARM was underestimated 

considerably; and 3) land feature OTHER was considerably misclassified and omitted.   

6.2.2. MLC-based Supervised Land-Cover and Land-Use Classification 

The second attempt made to classify LCLU was done using MLC-based supervised 

classification. This approach requires the user to specify some information about the land 

features contained in the images. The experiment was carried out in ERDAS Imagine. Compared 

with other approaches, this experiment improved the overall accuracy (78.33%) and overall 

kappa value (0.7331) (Table 6.2), but the confusion among URBAN, GRASS, and FOREST still  



 153

Table 6.1. Error matrix and accuracy assessment of ISODATA-based approach 
 

Reference Data Sample Data Urban Farm Grass Forest Water Wetland Other  Row Total 

Urban 123 88 11 2 1 0 11 236 
Farm 9 91 9 1 0 1 0 111 
Grass 26 19 66 25 0 28 1 165 
Forest 4 0 6 174 0 2 0 186 
Water 0 0 0 1 63 6 0 70 

Wetland 4 1 0 8 0 197 0 210 
Other 9 0 0 0 0 0 9 18 

Column Total 176 199 92 211 66 235 21 -- 
 

Class 
Name 

Reference 
Total 

Classified 
Total 

Number 
Correct 

Producer 
Accuracy 

User 
Accuracy 

Kappa 
Value 

Urban 176 236 123 69.89% 52.12% 0.4189 
Farm 199 111 91 45.73% 81.98% 0.7751 
Grass 92 165 66 71.74% 40.00% 0.3392 
Forest 211 186 174 82.46% 93.55% 0.9182 
Water 66 70 63 95.45% 90.00% 0.8929 

Wetland 235 210 197 83.83% 93.81% 0.9191 
Other 21 18 9 42.86% 50.00% 0.4893 
Total 1000 1000 723 -- -- -- 

Overall -- -- -- 72.30% 0.6653 
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remains. Table 6.2 also shows that the classification of GRASS and FOREST does not perform 

well. The Kappa values of these two land features are only 0.3502 and 0.5946, respectively. The 

error matrix shows large omission errors between URBAN and GRASS, URBAN and FOREST, 

and GRASS and FOREST. The error matrix also shows the high errors of commission between 

GRASS and URBAN, FOREST and GRASS, and FOREST and URBAN. These results indicate: 

1) FOREST was considerably overestimated; 2) URBAN was considerably underestimated; and 

3) GRASS was considerably misclassified and omitted.   

6.2.3. Hybrid-Approach-based Land-Cover and Land-Use Classification 

The third attempt made to classify LCLU is done using the hybrid classification 

technique, particularly the integration of ISODATA and MLC. The experiment is carried out in 

ERDAS Imagine. Compared with the previous two approaches, because this approach seeks to 

combine advantages from both to overcome the disadvantages from each other, it significantly 

improves the overall accuracy (81.90%) and overall kappa value (0.7791) (Table 6.3). Although 

the errors are reduced, they still exist. For example, the error among URBAN, FARM, and 

GRASS is apparent. The results also show that the classification of GRASS does not perform 

well. Its kappa value is only 0.4146. The error matrix shows that there are large omission errors 

between GRASS and FARM. The error matrix also shows large commission errors between 

GRASS and URBAN, GRASS and FARM, GRASS and FOREST, and GRASS and 

WETLAND. These results indicate that GRASS was still considerably misclassified and omitted.   

6.2.4. GA-based Land-Cover and Land-Use Classification 

The last attempt made to classify LCLU was done using an artificial intelligence-based 

classification technique, particularly the GA. Based on the given training / testing data, the 

approach seeks to find a global optimized solution by enlarging and searching the solutions’ 

space. The experiment was carried out in ERDAS Imagine and GATree. Compared with other 
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Table 6.2. Error matrix and accuracy assessment of MLC-based approach 
 

Reference Data Sample Data Urban Farm Grass Forest Water Wetland Other  Row Total 

Urban 96 0 1 1 0 0 1 99 
Farm 14 177 13 0 0 0 4 208 
Grass 36 12 41 3 1 7 0 100 
Forest 26 10 36 185 0 15 0 272 
Water 0 0 0 0 58 2 0 60 

Wetland 4 0 1 22 7 210 0 244 
Other 0 0 0 0 0 0 16 16 

Column Total 176 199 92 211 66 235 21 -- 
 

Class 
Name 

Reference 
Total 

Classified 
Total 

Number 
Correct 

Producer 
Accuracy 

User 
Accuracy 

Kappa 
Value 

Urban 176 99 96 54.55% 96.97% 0.9632 
Farm 199 208 177 88.94% 85.10% 0.8139 
Grass 92 100 41 44.57% 41.00% 0.3502 
Forest 211 272 185 87.68% 68.01% 0.5946 
Water 66 60 58 87.88% 96.67% 0.9643 

Wetland 235 244 210 89.36% 86.07% 0.8179 
Other 21 16 16 76.19% 100.00% 1.0000 
Total 1000 1000 783 -- -- -- 

Overall -- -- -- 78.30% 0.7331 
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Table 6.3. Error matrix and accuracy assessment of hybrid-based approach 
 

Reference Data Sample Data Urban Farm Grass Forest Water Wetland Other  Row Total 

Urban 137 4 5 2 0 0 4 152 
Farm 11 179 22 1 0 2 0 215 
Grass 16 16 52 13 0 14 0 108 
Forest 6 0 11 162 0 1 0 180 
Water 0 0 0 1 64 9 0 74 

Wetland 4 0 2 32 0 208 0 246 
Other 1 0 0 0 0 0 17 18 

Column Total 176 199 92 211 66 235 21 -- 
 

Class 
Name 

Reference 
Total 

Classified 
Total 

Number 
Correct 

Producer 
Accuracy 

User 
Accuracy 

Kappa 
Value 

Urban 176 152 137 77.84% 90.13% 0.8802 
Farm 199 215 179 89.95% 83.26% 0.7910 
Grass 92 111 52 56.52% 46.85% 0.4146 
Forest 211 180 162 76.78% 90.00% 0.8733 
Water 66 74 64 96.97% 86.49% 0.8553 

Wetland 235 246 208 88.51% 84.55% 0.7981 
Other 21 18 17 80.95% 94.44% 0.9433 
Total 1000 1000 819 -- -- -- 

Overall -- -- -- 81.90% 0.7791 
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approaches, this experiment improved the overall accuracy significantly (84.70%) and the 

overall kappa value was 0.8119 (Table 6.4). Although the errors were reduced, they still exist. 

For example, the confusions among FARM, GRASS, and FOREST are apparent. The results also 

show that the classification of GRASS is still less significant. Its kappa value is improved, but it 

was only 0.5010. The error matrix shows large omission errors between GRASS and FARM. 

However, the error matrix shows no considerable errors of commission. These results indicate 

that GRASS was still considerably omitted.   

6.3. Discussion  

 The comparison study can be carried out differently depending on the objective of the 

study. They can be based on: 1) advantages and disadvantages (e.g., data preprocessing, training 

data sampling, and algorithms), 2) ease of operation, and 3) overall and individual level of 

classification accuracy. Because one of the objectives of this study is to compare the traditional 

and GA-based LCLU classification approaches, the results were discussed in terms of all these 

three aspects.  

6.3.1. Advantages and Disadvantages  

 The classification approaches used in this study can be categorized into statistical or non- 

statistical, and parametric and non-parametric (Table 6.5). ISODATA is a non-parametric 

statistical approach. MLC is a parametric statistical approach. Since the hybrid approach 

combines both ISODATA and MLC, it is also statistics. GA is a heuristic approach based on 

artificial intelligence. Different approaches have different assumptions, advantages, and 

disadvantages. When the data distribution is normal, MLC performs well in LCLU classification. 

When the data distribution is not normal, the GA-based approach performs better than the other 

approaches in terms of LCLU classification. ISODATA requires subsequent identification of 

land features. Although the hybrid approach seeks to integrate the advantages from both 
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Table 6.4. Error matrix and accuracy assessment of GA-based approach 
 

Reference Data Sample Data Urban Farm Grass Forest Water Wetland Other  Row Total 

Urban 142 3 10 3 0 1 2 161 
Farm 17 184 29 3 0 1 0 234 
Grass 3 7 35 8 0 11 0 64 
Forest 6 2 16 196 0 8 0 228 
Water 0 0 0 0 58 0 0 58 

Wetland 2 0 2 1 8 213 0 226 
Other 6 3 0 0 0 0 19 28 

Column Total 176 199 92 211 66 235 21 -- 
 

Class 
Name 

Reference 
Total 

Classified 
Total 

Number 
Correct 

Producer 
Accuracy 

User 
Accuracy 

Kappa 
Value 

Urban 176 161 142 80.68% 88.20% 0.8568 
Farm 199 234 184 92.46% 78.63% 0.7332 
Grass 92 64 35 38.04% 54.69% 0.5010 
Forest 211 228 196 92.89% 85.96% 0.8221 
Water 66 58 58 87.88% 100.00% 1.0000 

Wetland 235 226 213 90.64% 94.25% 0.9248 
Other 21 28 19 90.48% 67.86% 0.6717 
Total 1000 1000 847 -- -- -- 

Overall -- -- -- 84.70% 0.8119 
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Table 6.5. Characteristics of different land-cover and land-use classification approaches 
 

Algorithms Algorithms 
Types Assumptions Advantages Disadvantages 

ISODATA Statistical,  
non-parametric 

Data 
distribution is 
normal 

No training data 
required, 
automatically 
clustering 

Require subsequent 
identification of land features, 
no user control, low accuracy, 
assumption may not be valid 

MLC Statistical,  
parametric 

Data 
distribution is 
normal 

User has control 
on procedure, 
good accuracy 

Training data important, the 
assumption may not be valid 

HYBRID 
Statistical, both  
non-parametric  
and parametric 

Data 
distribution is 
normal 

Combine the 
advantage from 
both ISODATA 
and MLC, very 
good accuracy 

Training data important, the 
assumption may not be valid , 
and cost time 

GA 

Non-statistical, 
non-parametric, 
artificial 
intelligence, 

Data 
distribution is 
not important 

Random search 
and global 
optimization, 
very good 
accuracy 

Require good understanding 
of user, large training data, 
and large training time 
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ISODATA and MLC (Richards and Jia, 1993), the disadvantages from both may still affect the 

hybrid’s performance. If the data distributions are not normal, the recommended selection order 

from the first to the last is GA > Hybrid > MLC > ISODATA.      

6.3.2. Ease of Operation  

 The different classification approaches had different requirements on the training data, 

required different classification procedures, and consumed different amounts of time (Table 6.6). 

ISODATA did not need training and required less time. GA needed a large amount of training 

data, went through a complex classification procedure, and required a long time. When an 

application must be done within very limited amount of time, ISODATA is the most efficient 

approach to be selected. When time is not a problem, GA-based approach should be selected. For 

any application, if time is not a problem, the recommended selection order from the first to the 

last is GA > Hybrid > MLC > ISODATA.       

6.3.3. Overall Classification Accuracy  

 The comparison of the classification accuracy at the overall level was based on the 

overall accuracy and overall kappa statistics. The different classification approaches performed 

differently in LCLU classification (Figure 6.1). The order of their performance from high to low 

was GA > Hybrid > MLC > ISODATA, the GA-based approach had the best performance with 

the overall LCLU classification accuracy of 84.70% and the kappa value of 0.8119. The 

ISODATA approach had the worst performance with the overall LCLU classification accuracy 

of 72.30% and a kappa value of 0.6653. The other two approaches have moderate performance. 

This is not surprising, because GA is an approach specially designed for randomly searching and 

globally optimizing the solution. It has no assumption on data characteristics. The other 

approaches are statistics-based, and all of them assume that the distribution of data is normal. 

Unfortunately, this is not always valid.    
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Table 6.6. The operations of different land-cover and land-use classification approaches 
 

Algorithms Training Data Operation Time  

ISODATA No training data required, but 160 
clusters were created and labeled. 

Specify number of clusters, 
confidence level, label clusters 
into classes. 

Less than 4 
Hours 

MLC 160 signatures were taken and 
trained using AOI 

Create, evaluate, and merge 
signatures, use them for 
classification 

About 6 
Hours 

HYBRID 160 clusters and 160 signatures were 
taken using AOI tool 

Perform ISODATA and MLC 
based classification respectively, 
combine the results from both. 

About 8 
hours 

GA 

Create 20000 training samples / 
10000 testing samples using 
stratified random sample and the 160 
clusters image from ISODATA. 

Take training samples, discover 
knowledge, code expert 
classifier, classify image.  

At least 48 
hours 
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6.3.4. Individual Classification Accuracy 

 The comparison of classification accuracy at the class level was based on producer 

accuracy, user accuracy, and kappa value for each class. The different classification approaches 

performed differently for different LCLU features (Figures 6.3 through 6.10). Based on these 

figures, a performance evaluation is made, and the order of their performance on each land 

feature, from high to low, is illustrated (Table 6.10). The possible reasons for these results are 

argued as follows. 

For the land feature URBAN, the GA-based approach did not perform better than 

supervised and hybrid approaches because the complexity in urban areas is high, and it usually 

has various land features. The way to sample training data in MLC, hybrid, and GA-based 

approaches is different. In the GA-based approach, because training samples were taken from 

different bands respectively, a coordinate file was needed. Therefore, the pixel-by-pixel-based 

sampling approach was used. But in the MLC and hybrid approaches, there were at least two 

ways to take the training data: area-by-area and pixel-by-pixel. For this dissertation research, in 

order to save time, the training data of MLC and Hybrid were automatically taken area-by-area. 

Obviously, the training data in MLC and Hybrid approaches are more homogeneous.      

For the land feature FARM, the GA-based approach performed had the highest producer 

accuracy, but the user accuracy is the worst because FARM was usually mixed with URBAN 

and GRASS, so it was difficult to distinguish them visually. When a pixel-by-pixel approach was 

used to take training data for GA-based LCLU classification, it is hard to ensure 90% accuracy. 

On the other hand, an area-by-area approach was automatically performed to take training data 

for MLC-based and hybrid-based classification, and these training data are more homogeneous.       

For the land feature GRASS, although the GA-based approach performed better than 

other approaches used in this study, the accuracy was low: producer accuracy of 38.04%, user 
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Figure 6.3. Comparison of the overall accuracy and kappa value  

of different classification approaches 
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accuracy of 54.69%, and kappa value of 0.5010 because GRASS was mixed with most features, 

such as URBAN, FARM, FOREST, and WETLAND. All approaches used in this research had a 

difficult time classifying it correctly. Although the GA-based approach is promising, it requires 

much time. In this experiment, the GA-based model involved 2000 generations with 1000 

individuals, and it required about three days to finish.  

For the land feature FOREST, the GA-based approach did perform better than ISODATA 

and hybrid, with producer accuracy of 92.89%, user accuracy of 85.06%, and kappa value of 

0.8221. FOREST was the largest feature in the study area. When various land features are mixed 

together, to distinguish FOREST is usually easier than to distinguish GRASS.  

Although the area-based sampling approach still had an advantage over the pixel-based 

sampling approach, the difference was reduced because the FOREST feature was easy to 

identify. In this case, the training data from both sampling approaches were highly 

homogeneous. For the land feature WATER and WETLAND, the reason will be similar.  

For the land feature OTHER, the GA-based approach did not perform better than MLC 

and hybrid. This may be due to the fact that OTHER was small and usually mixed with URBAN, 

so it was difficult to distinguish them visually. When a pixel-by-pixel approach was used to 

collect training data for GA-based LCLU classification, it was difficult to ensure 90% accuracy 

rate. On the other hand, an area-by-area approach was performed automatically to collect 

training data for the MLC-based and hybrid-based classification, and these training data are 

obviously highly homogeneous.    

In general, knowledge about the study area is very important for all of approaches. For 

ISODATA, and without being familiar with study area, it will be difficult to label the clusters 

into the classes. For the other three approaches, without enough knowledge about the study area, 

the quality of training data will be low. In addition to the knowledge about the study area, 
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Figure 6.4. Comparison of the URBAN accuracy and kappa value 

of different classification approaches  
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Figure 6.5. Comparison of the FARM accuracy and kappa value 

of different classification approaches  
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Figure 6.6. Comparison of the GRASS accuracy and kappa value 

of different classification approaches  
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Figure 6.7. Comparison of the FOREST accuracy and kappa value 

of different classification approaches  
 
 
 
 
 
 



 169

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

1.1000

1.2000

GA-based Hybrid Supervised Unsupervised

Classification Approaches

A
cc

ur
ac

y 
/ K

ap
pa

 V
al

ue
Producer Accuracy User Accuracy Kappa Value

 
Figure 6.8. Comparison of the WATER accuracy and kappa value 

of different classification approaches  
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Figure 6.9. Comparison of the WETLAND accuracy and kappa value 

of different classification approaches  
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Figure 6.10. Comparison of the OTHER accuracy and kappa value 

of different classification approaches  
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Table 6.7 The performance order of different approaches  
on each class (from high to low)* 

 
Class Name Producer Accuracy User Accuracy Kappa Value 

URBAN G, H, U, S S, H, G, U S, H, G, U 
FARM G, H, S, U S, H, U, G S, H, U, G 
GRASS U, H, S, G G, H, S, U G, H, S, U 

FOREST G, S, U, H U, H, G, S U, H, G, S 
WATER H, U, G, S G, S, U, H G, S, U, H 

WETLAND G, S, H, U G, U, S, H G, U, S, H 
OTHER G, H, S, U S, H, G, U S, H, G, U 

*G – GA-based Classification; H – hybrid classification; S – supervised classification; 
and U – unsupervised classification. 
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another reason that the performance of ISODATA, MLC, and hybrid approach with spectral data 

approach was not effective may be due to the distribution of data. These three approaches 

assume that the data distribution for each class is Gaussian (normally distributed). However, this 

assumption may not be always valid (Hutchinson, 1982). Sometimes the image data have bi- or 

multi-modal distribution (Huang and Jensen, 1997). Moreover, the reason that the performance 

of the GA-based approach with spectral data approach was not always effective for each class 

may be that GA is a random search and global optimization technique. It does not look for local 

optimization (e.g., good for particular land feature classification for a particular area); rather, it 

seeks global optimization (e.g., good for all land features classification for entire study area).  

6.4. Hypothesis # 3 Review 

The third research question as presented in Chapter 1 was whether GA-based LCLU 

classification is more accurate than maximum likelihood classifier (MLC) based supervised 

classification, iterative self-organizing data analysis technique (ISODATA) based unsupervised 

classification, or the hybrid of both MLC and ISODATA. The third research hypothesis 

presented in Chapter 1 was stated as follows: 

Ha: GAs-based LCLU classification is more accurate than MLC-based supervised  

classification, ISODATA-based unsupervised classification, and the hybrid of MLC and 

ISODATA, respectively. 

Based on the experiment performed in this chapter, the results show that there were some 

differences among the unsupervised, supervised, hybrid, and the GA-based LCLU classification.  

With the consideration of the characteristics of those approaches, GA-based approach is an 

artificial intelligence and non-parametric approach, and it has no assumption on the distribution 

of data. Those traditional approaches are statistics-based approaches, and they have assumption 

on the distribution of data (normal distribution). This assumption will limit the application of 
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traditional approaches. With the consideration of the operation of those approaches, ISODATA 

needs no training data and less time. Other approaches require training data, and the GA-based 

approach requires more time. With the consideration of the accuracy of those approaches, at the 

overall level, the GA-based approach has the highest overall accuracy and kappa value; at the 

individual level, the GA-based approach has the highest producer accuracy, user accuracy, and 

Kappa value in most land features classification. Therefore, it can be concluded that the GA–

based is more accurate than traditional approaches.  

6.5. Summary 

As it has been stated, the primary goal of this study is to compare the traditional and GA-

based LCLU classification approaches in terms of advantages and disadvantages, ease of 

operation, overall and individual levels of classification accuracy. The characteristics of different 

approaches were stated in terms of algorithm types, assumptions, advantages, and disadvantages. 

The operation of those approaches was compared in terms of training data, classification 

procedure, and time consumption. Finally, the performance of those approaches was evaluated in 

terms of the overall and individual-level accuracy. In summary,   

• The characteristic of those algorithms – the GA-based approach is an artificial 

intelligence and non-parametric approach, and it has no assumption on the 

distribution of data. Those traditional approaches are statistics-based approaches, and 

they have assumption on the distribution of data (normal distribution). This 

assumption will limit the application of traditional approaches. 

• The operation of those algorithms – ISODATA is an approach which needs no 

training data and less time. Other approaches require training data, and the GA-based 

approach requires a lot of time.     

• The performance of those algorithms – At the overall level, GA-based approach has  
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      the highest overall accuracy and kappa value; At the individual level, the GA-based    

      approach has the highest producer accuracy, user accuracy, and kappa value in most    

      land feature classifications.  

• Finally, it can be concluded that the GA-based is more accurate than the traditional 

approaches.  
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CHAPTER 7  PROCESS-ORIENTED LAND-COVER AND LAND-USE  
CHANGE DETECTION USING GENETIC PETRI NET 

 
7.1. Experiment #4 Design 
 
 If LCLU classification can be recognized as the procedure of turning pixels into patterns, 

change detection can be recognized as the procedure of turning patterns into processes. In the 

previous three chapters, the major issue examined was about GA-based LCLU classification, and 

the goal was to find the spatial patterns of LCLU. The major issue in this chapter is about genetic 

Petri net (PN) based change detection, and the goal is to discover the process models of LCLU 

change. The purposes of discovering process model are to explain how and why LCLU change, 

and to provide transition rules for cellular automata (CA) based spatial modeling.  

The experiment was designed to examine the relationships between genetic parameters 

and process-oriented LCLU change detection, especially to discover a better GA-parameter 

configuration for identifying change process models (Figure 7.1). Six images were acquired 

during 1990-2002 (Figure 3.1). These images were classified using GA-based LCLU 

classification techniques described in Chapter 4 and 5. The optimized configuration of genetic 

parameters and image parameters is: number of generation 5000, population size 1000, crossover 

rate 99.00%, mutation rate 0.50%, generation gap 50.00%, spatial resolution 30 m, training / 

testing data size 20000 / 10000, and the data included Landsat TM/ETM image (Bands 1-5, and 

Band 7) and DEM. Table 7.1 demonstrates the LCLU and accuracy assessment, and Figure 7.2 

shows each layer of LCLU.  

After classification, a LCLU stack was created. In order to mine the processes of LCLU 

change, an event log file should be compiled first. An event represents a pixel holding a value at 

a particular time and a particular location. The value held by a particular pixel may change over 

time. A new event occurs when the pixel’s value changes. A set of time serial events constitutes 

a process instance, and a set of process instances constitutes a log. In this experiment, 7992  
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Figure 7.1. The workflow for optimizing genetic parameters  
in genetic Petri nets-based process mining 
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Table 7.1. Land-cover and land-use change in the Tickfaw River watershed 
 

Class Name 1990 1992 1995 1997 2000 2002 
URBAN 49262 57816 63629 83887 106371 134114 
FARM 212224 260249 291328 274723 261460 261405 
GRASS 305354 377267 446783 477951 492553 473060 

FOREST 843921 717630 627559 594992 573805 566731 
WATER 4818 4750 4676 4830 4801 4725 

WETLAND 688170 688106 674603 671708 668382 667511 
OTHER 6875 4806 2046 2530 3246 3072 

Unit: pixel  
Spatial resolution: 30 meters 
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Figure 7.2. Land-cover and land-use classified images of  
Tickfaw watershed from 1990 to 2002 
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pixels were randomly taken from each layer of the stack, and each pixel had the same coordinate 

on different layers. Based on these samples, an XML database was created and was used as an 

input file for the process mining. In this study, the process mining was carried out on the 

environment of ProM 3.5 and ERDAS Imagine 9.1. 

There were 39 tests designed for this experiment. The same XML database was used in 

every test. Those tests were categorized into 6 groups. There were 6 tests for each of the first 5 

groups (Table 7.2), and the last group has 9 tests. Different group tests were used for different 

purposes. The first group was used to test the impact of the number of generations; The second 

group was used to test the impact of population size; The third group was used to test the impact 

of crossover rate; The fourth group was used to test the impact of mutation rate; The fifth group 

was used to test the impact of elitism rate; and the last group was used to discover urban growth 

process models. The default configuration is: generation 200, population 100, crossover 0.79, 

mutation 0.2, and elitism 0.02. When testing one parameter, the rest of them remained at default 

values. The optimized configuration was developed after finishing the first 5 groups of tests.  

Since process mining is a very new research area, there is no standard method to examine 

the accuracy of the discovered processes. In this study, the accuracy was assessed by using 

average fitness, best fitness, and process instances coverage. If a process model was developed 

from a population with a high average fitness, its fittest was high, and it covered most process 

instances, then this process model was recognized as a good one.  

The assumption was that the process model with the high average fitness, the high fittest, 

and the high instances coverage can correctly represent more process instances than a process 

model with low average fitness, low fittest, and low instances coverage. Since the study dealt 

with 6 years time series images and 7 LCLU features, theoretically, there were 67 (or 117649) 

process models that can be defined. Those models were categorized into 7² (or 49) groups based 
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on the start state and end state (Figure 7.3). For example, the first group of processes 

theoretically includes 1 to 1, 1 to 2, 1 to 3, 1 to 4, 1 to 5, 1 to 6, and 1 to 7. As it has been 

described in Table 3.4, these digital numbers represent the particular LCLU features, for 

example, 1 represents URBAN, and 7 represents OTHER. Although some of them, for example, 

1 to 2, and 1 to 5, can be eliminated based on the reality, most of them cannot be defined easily 

when considering the intermediate states.  

The many-to-many relationships among the LCLU features during 1990-2002 were 

discovered using the log file in XML format (Figure 7.4). This process model was based on only 

1000 samples and it was not pruned yet. Usually, the pruning procedure is used to simplify the 

process model. Although the model was derived from only 1000 samples, the great complexity 

of LCLU change process can be demonstrated. The digital number in each box represents the 

number of pixels held by a LCLU feature, and the digital number near to each arc represents the 

number of pixels changed from one LCLU feature to another LCLU feature. Due to the problem 

complexity and the resource limitation, the accuracy assessment was performed on the 1000 

pixel samples for all LCLU features.   

After figuring out the optimized configuration of genetic parameters, 7 of the 49 groups 

process models were created, pruned, and interpreted for analyzing urban growth. Theoretically, 

the LCLU changes related to urban growth include URBAN to URBAN, FARM to URBAN, 

GRASS to URBAN, FOREST to URBAN, WATER to URBAN, WETLAND to URBAN and 

OTHER to URBAN. An urbanized area may be forested or grassed after many years. Therefore, 

the URBAN to FOREST and URBAN to GRASS will be two additional LCLU change process 

related to the urban growth. These nine groups of LCLU change process models were evaluated 

in terms of average fitness, best fitness, and the coverage of process instances. Finally, these nine 

groups of LCLU change process models were implemented for representing urban growth. 
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Figure 7.3. Theoretical group structure of change processes  
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7.2. Results 
 
This experiment focuses only on a number of problems in the GA-PN-based process 

mining. The problems include premature convergence, crowding, local optimization, and  

instability. These problems are usually caused by improper setting of GA parameters, such as the 

number of generations, population size, crossover rate, mutation rate, and elitism rate. When 

these problems occur, the performance of GA-PN-based process mining will not be good, and 

the resultant process models cannot discover the model which correctly represents most process 

instances.  

Three measures were used to assess the accuracy of process mining: 1) the AVERAGE 

FITNESS of population is the sum of individuals’ fitness divided by the total number of process 

models; 2) the FITTEST (or BEST FITNESS) defines an individual with the highest fitness, and 

it is the number of properly parsed process instances divided by the total number of process 

instances in a given event log; and 3) INSTANCES COVERAGE refers to the amount of process 

instancees that can be represented by the process model. The major results are given in Table 

7.2. The goal of the first 5 groups of tests is to examine the impact of GA-parameters on process 

mining and to find the effective configuration of GA parameters for the process mining. After 

generating a set of process models, the best process model was selected and pruned at the rate of 

1% - 10%. Pruning is a procedure to generalize the process model (or Petri net) and to eliminate 

the possible unreasonable processes. There is no standard method to determine the pruning rate. 

In this study, two criteria of setting up pruning rate were: 1) minimizing the number of 

unreasonable processes in the final models, 2) keeping the reasonable processes as many as 

possible. The process models discovered under different configurations were evaluated using 

average fitness, best fitness, and process instance coverage. Process models with high fitness and 

high coverage are expected to perform well.  
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Table 7.2. Relationships between genetic parameters and process mining 

 Case ID Parameters 
Setting* 

Average  
Fitness 

Best  
Fitness 

Instances 
Coverage*** 

G1 50 0.3195 0.8355 46 
G2 100 0.4696 0.8720 96 
G3 200 0.3537 0.9016 97 
G4 300 0.3279 0.9036 132 
G5 400 0.3426 0.9048 116 G

en
er

at
io

n 
Si

ze
 

G6 500 0.3491 0.9118 133 
P1 50 0.4358 0.8952 70 
P2 100 0.3537 0.9016 97 
P3 150 0.3566 0.9015 71 
P4 200 0.4539 0.9113 67 
P5 250 0.5937 0.9281 83 Po

pu
la

tio
n 

Si
ze

 

P6 300 0.6649 0.9337 101 
C1 0.09 0.3920 0.8768 57 
C2 0.19 0.4544 0.8768 65 
C3 0.39 0.3224 0.9052 52 
C4 0.59 0.5840 0.9321 108 
C5 0.79 0.3537 0.9016 97 C

ro
ss

ov
er

 
R

at
e 

C6 0.99 0.6110 0.9270 85 
M1 0.005 0.9642 0.9666 221 
M2 0.01 0.9547 0.9723 204 
M3 0.05 0.9551 0.9727 208 
M4 0.10 0.8793 0.9542 194 
M5 0.20 0.3537 0.9016 97 M

ut
at

io
n 

 
R

at
e 

M6 0.30 0.1664 0.8552 1 
E1 0.01 0.5043 0.9054 70 
E2 0.02 0.3537 0.9016 97 
E3 0.04 0.6460 0.9251 135 
E4 0.10 0.5866 0.9127 98 
E5 0.20 0.6913 0.9148 71 

E
lit

is
m

 
 R

at
e 

E6 0.40 0.6910 0.9267 78 
Recommendation** Optimization 0.9511 0.9810 207 
*Default configuration included: generation 200, population 100, crossover 0.79, mutation 0.2, 
elitism rate 0.02, and pruning rate 2%.  
**Recommendation configuration included: generation 500, population 300, crossover 0.59, 
mutation 0.05, elitism rate 0.04, and pruning rate 2%.  
***There were totally 218 process instances. 
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7.2.1. Genetic Parameters 

The first group of tests in this experiment was designed for examining the impact of the 

number of generations on process mining. The results indicate that the value of best fitness and  

process instance model coverage increases as the number of generations increases (Table 7.2). 

Generally, the process model with the highest fitness value can cover more process instances. 

For example, in Case G6, the process model derived from the population of 500 generations has 

the good fitness value of 0.9118. It represented 133 process instances. But, Case G1 only 

represented 46 processes, because it comes from the population of 50 generations and has a 

lower fitness value of 0.8355 that Case G6. The process model with higher fittest value generally 

represents more process instances. However, the relationship between the amount of generations 

and the coverage value does not fully follow this pattern. It means that the coverage value does 

not necessarily increase with an increasing number of generations.      

The second group of tests was designed to examine the impact of population size on 

process mining. The results illustrate that both average fitness and best fitness increased as 

population size increased (Table 7.2). However, Case P1 was an exception. Compared with Case 

P2 and P3, P1 had a higher average fitness. Although the highest process coverage was held by 

the process model with the highest fitness, the relationships among the size of population, the 

value of average fitness, and the coverage of process instances were not strong enough. For 

example, the process model in Case P2 was derived from a population with a lower average 

fitness and lower fittest, but it represented more process instances than other process model 

except the one in Case P6. The model is an abstraction of a dynamic system, and the purpose of 

process miming is to discover a process model that can represent the behavior of a system well. 

Therefore, the best process model is expected to parse as many instances as possible process in 

the event log.           
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The third group of tests was designed to examine the impact of crossover rate on process 

mining. The results illustrate that the relationships among the average fitness of population, the 

best fitness of individuals, the coverage of process instances, and the rate of crossover were very 

complex (Table 7.2). When the rate of crossover increased from 0.19 to 0.59, both the best 

fitness and process instances coverage increased. When crossover rate increased from 0.59 to 

0.79, both the best fitness and process instances coverage decreased. The average fitness 

generally increased as the crossover rate increased, but there was an exception (e.g., when 

crossover rate equaled 0.79).  

The fourth group of tests was designed to examine the impact of mutation rate on process  

mining. The results show that the relationships among the average fitness of a population, the 

best fitness of individuals, the coverage of process instances, and the rate of mutation were very 

complex also (Table 7.2). When the mutation rate increased from 0.005 to 0.05, the average 

fitness, the best fitness, and the process instances coverage increased except Case M1. Although 

Case M1 had the highest average fitness (0.9642) and the highest process instances coverage 

(221), the population was not introduced any new individuals through the operation of mutation, 

because with the mutation of 0.005, only a half individual can be introduced into the population 

with 100 individuals. M1 could be a typical example of local optimization. In general, the 

mutation rate increased from 0.05 to 0.30, the average fitness, the best fitness, and the process 

instances coverage decreased.  

The fifth group of tests was designed to examine the impact of elitism rate on process 

mining. The results suggest that the relationships among the average fitness of population, the 

best fitness of individuals, the coverage of process instances, and the elitism rate were not strong 

enough (Table 7.2). The average fitness and best fitness generally increased when the rate of 

elitism increased except when elitism rate was 0.02. The process instance coverage increased 
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when the elitism rate increased from 0.01 to 0.04, and it decreased when the elitism rate 

continued to increase from 0.04 to 0.40.  

7.2.2. Urban Growth Process  

Based on the tests above, the optimized GA parameters configuration was developed as  

follows: the number of generations 500, population size 300, crossover rate 0.59, mutation rate 

0.05, elitism rate 0.04, and pruning rate 0.02. The last group tests in this experiment were about 

LCLU change processes. Urban growth was treated as an example. The study dealt with a set of 

6 time series data with 7 LCLU features. Therefore, theoretically, a total of 67 (or 117649) 

possible process models can be defined. Those process models can be categorized into 7² (or 49) 

groups based on the start states and end states of LCLU features. For each group, there were 

47 (2401) possible process models. The results of the sixth group tests were given as follows.   

Figure 7.5a shows the URBAN to URBAN process models during 1990-2002. 

Obviously, URBAN => URBAN => URBAN => URBAN => URBAN => URBAN should be 

the major process of URBAN to URBAN process models group. Urban areas that follow this 

process model did not change. Due to the complexity of urban feature and noise data, the pruning 

rate was set at 10%. Several unlikely processes were deleted, such as, URBAN => FARM => 

FARM => FARM => URBAN => URBAN, and URBAN => WETLAND => WETLAND => 

FARM => URBAN => URBAN. Those process models were unlikely in the real world. A total 

of 411 process instances were taken and used in the event log file, and 325 were represented by 

this process model. It has been mentioned that 2401 possible process models can be defined in 

this group. Therefore, 79.08% process instances were represented by 0.0416% model.   

Figure 7.5b shows the FARM to URBAN process models during 1990-2002. After  

performing 5% pruning , only three process models remained in this group. They are FARM => 

GRASS => GRASS => URBAN => URBAN => URBAN, FARM => FARM => FARM => 
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(a) (b) (c) 

 
Figure 7.5. Process models representing land-cover and land-use change ( from   
(a) URBAN to URBAN, (b) FARM to URBAN, and (c) GRASS to URBAN ) 
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(d) (e) 

 
Figure 7.5. (Continued) ( from (d) FOREST to URBAN and (e) WATER to URBAN )  
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(f) (g) 
 

Figure 7.5. (Continued) ( from (f) WETLAND to URBAN and (g) OTHER to URBAN ) 
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(h) (i) 
 

Figure 7.5. (Continued) (from (h) URBAN to GRASS and (i) URBAN to FOREST ) 
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URBAN => URBAN => URBAN, and FARM => URBAN => URBAN => URBAN => 

URBAN => URBAN. These three are only 0.1249% of total process models, but they can parse 

78.98% process instances.  

Figure 7.5c shows the GRASS to URBAN process models during 1990-2002. After 

performing 6% pruning, only seven process models remained in this group (Table 7.4). Again, 

theoretically, there are 2401 possible process models in this group. The remaining process 

models are only 0.3332% of them, but these process models can parse 78.48% process instances.  

 One of the most important process groups is FOREST to URBAN (Figure 7.5d). 

Obviously, according to the results, the amount of process models was not as many as the 

theoretical amount of 2401. The unlikely process models, such as, FOREST => URBAN => 

URBAN => GRASS => FARM => URBAN, and FOREST => FARM => BARE => WATER 

=> FARM => URBAN, should be eliminated. After performing 4% pruning, the most unlikely 

process models had been eliminated, but the process models with low possibility, such as, 

FOREST => URBAN => URBAN => FOREST => FOREST => URBAN, and FOREST => 

URBAN => URBAN => GRASS => URBAN => URBAN, were still remained (Figure 7.4). All 

remained process models were interpreted and illustrated as in Table 7.3. To discover the process 

models of the LCLU change from FOREST to URBAN during 1990 to 2002, 218 process 

instances were sampled and listed in the event log file. After pruning, the final process models on 

the diagram were interpreted into 13 individual process models on the table. Although those 13 

process models were only 0.0054% of 2401 theoretical possible process models, they can parse 

194 process instances, which is 88.99% of total 218 process instances.  

Figure 7.5e shows the WATER to URBAN process models during 1990-2002. This 

group of change processes occur when man-made structures were located near or over water  

bodies, such as, bridges and docks. After pruning 10%, only two final process models remained:  
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WATER => WATER => WATER => WATER => WATER => URBAN, and WATER =>  

WATER => WATER => WATER => URBAN => URBAN. They represented 78.95% of  

WATER to URBAN process instances. 

Figure 7.5f shows the WETLAND to URBAN process models during 1990-2002.  

After performing 7% pruning, only six process models remained in this group (Table 7.4). They 

are only 0.2499% of theoretical possible process models. They represented 85 process instances 

that is 77.98% of total sampling process instances.  

Figure 7.5g shows the OTHER to URBAN process models during 1990-2002. This group 

of change processes occurs when OTHER features were used for urban development, such as 

factory or any construction. After pruning 2%, there were only two final process models 

remained: OTHER => URBAN => URBAN => URBAN => URBAN => URBAN, and OTHER 

=> URBAN => URBAN => GRASS => URBAN => URBAN. Because it was a small feature, 

two process models represented 100% of OTHER to URBAN process instances. 

Figure 7.5h shows the URBAN to GRASS and Figure 7.5i shows URBAN to FOREST 

process models during 1990-2002. Both groups of change processes likely occur in the 

residential area and require a long time. For example, after developing a residential area, grass, 

shrub, and trees are usually planted soon. Though trees require a long time to grow, grass and 

shrub grow fast. After pruning respectively, the final process model represented 37.50 % of 

URBAN to GRASS process instances and 82.35% of URBAN to FOREST process instances, 

respectively. In this study, the areas following the process models of URBAN to GRASS and 

URBAN to FOREST will be recognized as the planted URBAN areas.    

7.2.3. Process Models Accuracy Assessment 

 Process mining is a new technique. Although it has been used in business and  

manufacturing management, this dissertation research is the first attempt in GIS and remote  
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sensing area. There is no standard method to examine the accuracy of the discovered LCLU  

change processes. Here, the accuracies of LCLU change processes were assessed by using 

average fitness, best fitness, and process instances coverage first (Table 7.3). After evaluating the 

discovered process, models used the average fitness, the best fitness, and the coverage of process 

instances. A total of 38 process models for urban growth were selected. These process models 

were translated from Petri net (PN) into individual process models (Table 7.4). These process 

models can be used as cellular automata (CA) transition rules in spatio-temporal modeling in the 

next chapter.  

The second part of accuracy assessment was done by evaluating the agreement between 

the end year LCLU and the re-projected end year LCLU. The average fitness, the best fitness, 

and the coverage of process instances were used to assess the accuracy of the process model 

directly. The agreement between the end year LCLU and the re-projected end year LCLU can be 

used as an indirect accuracy assessment for the process models. The assumptions were: 1) if a 

process model was developed from a population with high average fitness, high fittest, and high 

instances coverage, then this process model could be regarded as a potentially good one; 2) the 

process models with good accuracy can be used to create a re-projected LCLU image with a 

good accuracy.  

Due to the complexity of the study, only the urban area was re-projected by coding those 

process models into the expert system in ERDAS Imagine 9.0. The resultant image was used to  

compare with the LCLU in 2002 (Figure 7.6). The study area was covered by 4,257,000 pixels, 

and among them, 134,114 pixels were classified as urban in 2002. The re-projected urban area 

for the same year had 124,726 pixels. The agreement between the two images was 90.01%. 

There is still some room to improve. The process models with high accuracy level were selected 

for cellular automata based study in the next chapter.  
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Table 7.3. Urban growth process mining* 
 

Start 
States 

End 
States 

Average  
Fitness 

Best  
Fitness 

Sampling 
Instances 

Covering 
Instances 

Coverage 
Percentage 

Number 
of Models 

Percentage 
of Models 

Urban Urban 0.9539 0.9848 411 325 79.08% 1 0.0416% 
Farm Urban 0.9551 0.9788 157 124 78.98% 3 0.1249% 
Grass Urban 0.9535 0.9842 79 62 78.48% 7 0.3332% 
Forest Urban 0.9511 0.9810 218 194 88.99% 13 0.0054% 
Water Urban 0.9584 0.9822 19 15 78.95% 2 0.0833% 

Wetland Urban 0.9657 0.9854 109 85 77.98% 6 0.2499% 
Other Urban 0.9518 0.9846 3 3 100.00% 2 0.8330% 
Urban Grass 0.9520 0.9834 8 3 37.50% 1 0.0416% 
Urban Forest 0.9527 0.9841 17 14 82.35% 3 0.1249% 

Total -- -- 1021 825 80.80% 38 0.1759% 
* The average fitness and the best fitness were based on the un-pruned Petri nets. The instances coverage, 
coverage percentage, and percentage of models were based on the pruned Petri nets. 
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Table 7.4. Top 38 models of urban growth processes after pruning* 
 

Processes 1990 1992 1995 1997 2000 2002 
1 Urban Urban Urban Urban Urban Urban 
2 Farm Grass Grass Urban Urban Urban 
3 Farm Urban Urban Urban Urban Urban 
4 Farm Farm Farm Urban Urban Urban 
5 Grass Urban Urban Urban Urban Urban 
6 Grass Urban Urban Grass Urban Urban 
7 Grass Urban Urban Grass Grass Urban 
8 Grass Grass Grass Grass Grass Urban 
9 Grass Grass Urban Urban Urban Urban 
10 Grass Grass Urban Grass Grass Urban 
11 Grass Grass Urban Grass Urban Urban 
12 Forest Urban Urban Forest Forest Urban 
13 Forest Urban Urban Forest Urban Urban 
14 Forest Urban Urban Urban Urban Urban 
15 Forest Urban Urban Grass Urban Urban 
16 Forest Grass Forest Forest Forest Urban 
17 Forest Grass Forest Forest Urban Urban 
18 Forest Grass Forest Urban Urban Urban 
19 Forest Grass Forest Grass Urban Urban 
20 Forest Forest Forest Forest Forest Urban 
21 Forest Forest Forest Forest Urban Urban 
22 Forest Forest Forest Urban Urban Urban 
23 Forest Forest Forest Grass Urban Urban 
24 Forest Other Other Other Urban Urban 
25 Water Water Water Water Water Urban 
26 Water Water Water Water Urban Urban 
27 Wetland Wetland Wetland Urban Urban Urban 
28 Wetland Wetland Wetland Wetland Urban Urban 
29 Wetland Wetland Wetland Wetland Wetland Urban 
30 Wetland Other Other Wetland Urban Urban 
31 Wetland Other Other Wetland Wetland Urban 
32 Wetland Other Other Other Urban Urban 
33 Other Urban Urban Urban Urban Urban 
34 Other Urban Urban Grass Urban Urban 
35 Urban Grass Grass Grass Grass Grass 
36 Urban Forest Forest Forest Forest Forest 
37 Urban Urban Urban Urban Urban Forest 
38 Urban Urban Urban Grass Forest Forest 

*Areas following URBAN to GRASS or to FOREST will be still regarded 
as the planted URBAN areas. 

 



 198

 
(a) (b) 

 
Figure 7.6. Urban area in 2002: (a) classified image and (b) modeled image 
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7.3. Discussion 

7.3.1. Impact of Genetic Parameters on Land-Cover and Land-Use Change Process Mining 

The impacts of genetic parameters on the performance of GA-based Petri net includes at 

least four aspects: 1) premature convergences, 2) local optimization, 3) not enough evolution, 

and 4) unstable population. The improper use of GAs may result in low-quality process models. 

It is very important to examine the relationships among genetic parameters, the performance of 

GAs, and the quality of the resultant process models.     

Convergence can be regarded as the state when most of the population is identical or  

diversity is minimal (Louis and Rawline, 1993). Premature convergence is a phenomenon in 

which population cannot converge to a better level of fitness because the better individuals are 

eliminated (Cheng et al., 1996). One of the cases shown in Table 7.2 is premature convergence. 

Case C1 had the lowest crossover rate at 0.09. Crossover occurs between different individuals. 

When the crossover rate was set at a low level, the diversity of population will be limited. The 

crossover between similar types of individuals will generate offsprings that have similar fitness 

and capability, so that the evolution of a population will converge to a low level, and the best 

individual’s capability will be limited. In Case C1, the average fitness and the best fitness of the 

population were 0.3920 and 0.8768, respectively. The best process models group can only 

represent 57 process instances, which is only 26.15% of total samples. 

Optimization is the process to find the best solution. It usually has two levels: local and  

global. The local optimization solution can be good only at a particular space or time. The global  

optimization solution should be good anywhere and anytime. Local optimization in GAs is 

usually achieved by improper configuration of genetic parameters (e.g., high elitism rate 0.40). 

Case E6 in this experiment is an example of local optimization. The high elitism rate swaps 

many high fitness individuals into the population. After a number of generations, the population 
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was dominated by elites. In this case, both average fitness and best fitness were usually high 

(e.g., 0.6910 and 0.9267, respectively), but the performance of process mining was very poor in 

terms of instance coverage. The problem is that the diversity of the population is low, and the 

process models developed in this situation cannot parse most process instances. In Case E6, the 

process instances coverage was 78, which is only 35.78% of the total samples.              

Unstable population is a phenomenon in which a population cannot hold a structure for  

Long-term evolution. The high fitness genome cannot be kept and transferred to the next 

generation because they were destroyed. One of the cases shown in Table 7.2 has an unstable 

population problem. Case M6 had the highest mutation rate of 0.30. When the mutation rate is 

high, the random search will dominate the behavior of GA, and the optimization capability will 

be lost. Hence, the average fitness and best fitness values were lower than the rest of the cases 

(Table 7.2). When the performance of GAs is poor, the quality of the process model will be poor 

also.  

7.3.2. Complexity of Process Models  

Spatio-temporal process mining is a very complex task that is impacted by many factors. 

LCLU classification is the first factor that may impact process mining significantly. If the quality 

of LCLU classification is not good enough, the quality of the event log file will be affected. 

Obviously, the quality of resultant process models will be a problem also. Therefore, both LCLU 

classification and change detection play a very important role in developing the process models. 

Even though no major problem appears during the phase of LCLU classification, event 

log file editing, and process models generation, the resultant processes were complex. In this 

research, we dealt with 7 LCLU features for 6 time periods. Theoretically, a total of 67 (or 

117649) possible process models can be defined. Those process models can be categorized into 

7² (or 49) groups based on the start states and end states of LCLU features. Each group, 



 201

theoretically, had 47  (or 2401) possible process models. After pruning, there were still many 

process models remained in the system. For example, the group of FOREST to URBAN process 

had 13 process models, and the group of GRASS to URBAN process had 7 process models 

(Table 7.4).  

Each process model depicts changes both spatially and temporally. Although different  

pixels may share same process model, many different pixels have different process models. 

Based on the observation of the process models, such as, Figure 7.4b, the process of FARM to 

FARM was the same during 1990-1992 and 1992-1995, but the transition rate was different. 

Process models provide the insight into the LCLU change processes. They also reveal the 

complexity of spatio-temporal process mining.  

7.3.3. Accuracy Assessment of Process Models 

Because there are no standard techniques for process model accuracy assessment, two 

approaches were used to assess the accuracy of process models. The first approach was based on 

the average fitness, the best fitness, and the coverage of process instances. The second approach 

was based on the agreement between the end year LCLU and re-projected end year LCLU. In 

particular, only the urban feature was re-projected and assessed in this chapter. These two 

approaches are complementary to each. When the process models have high value of average 

fitness of population and best fitness of individual, their coverage of process instances will likely 

be high also. The process models will likely perform well in terms of representing the processes 

in the real data, and the agreement between the end year LCLU and the re-projected year LCLU 

will be high.  

7.4. Hypothesis #4 Review 
 

The fourth research question as presented in Chapter 1 was how do genetic parameters (such 

as number of generations, population size, crossover rate, mutation rate, and generation gap) 



 202

impact the accuracy of process-oriented change detection. The fourth research hypothesis 

presented in Chapter 1 was stated as follows: 

Ha: Different number of generations, population size, crossover rate, mutation rate, or 

generations gap can increase / decrease the accuracy of genetic PN-based LCLU change process  

detection, respectively. 

Based on the experiment designed and performed in this chapter, genetic parameters can 

affect the performance of genetic PN-based LCLU change detection significantly. In the case of 

the number of generations, when the number of generations is small (e.g., less than 50 

generations), the fitness of genetic PN-based LCLU change process models was low. The fitness 

significantly increased as the number of generations increased from 50 to 500.  

In the case of population size, although a larger population theoretically leads to good 

fitness, the relationships among the size of population, the value of average fitness, and the 

coverage of process instances were not strong enough. For example, the process model in Case 

P2 was derived from a population with a lower average fitness and lower best fitness, but it 

represented more process instances than many other process models.         

In the case of crossover rate, the results illustrate that the relationships among the average 

fitness of population, the best fitness of individual, the coverage of process instances, and the 

rate of crossover were very complex. When the rate of crossover was small (e.g., less than 59%), 

the accuracy of GA-based LCLU classification increased. Whereas it was larger than 0.59, the 

best fitness and process instances coverage decreased.  

In the case of mutation rate, the results show that the relationships among the average 

fitness of population, the best fitness of individual, the coverage of process instances, and the 

rate of mutation were very complex also. When the mutation rate increased from 0.005 to 0.05, 

both the best fitness and the process instances coverage increased except Case M1. When the 
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mutation rate increased from 0.05 to 0.30, both the best fitness and the process instances 

coverage decreased.  

Finally, in the case of elitism rate, the results suggest that the relationships among the 

average fitness of population, the best fitness of individual, the coverage of process instances, 

and the elitism rate were not strong. The average fitness and best fitness generally increased 

when the rate of elitism increased except when the elitism rate was 0.02. The process instance 

coverage increased when the elitism rate increased from 0.01 to 0.04, and it decreased when the 

elitism rate continued to increase from 0.04 to 0.40.  

The impacts of various genetic parameters on the performance of GA-Petri net-based 

LCLU change detection, as described above, are various. In general, the performance can be 

improved by increasing the number of generations and population size. In order to improve the 

performance, crossover rate, mutation rate, and elitism rate should be kept at middle level.  

7.5. Summary 

Although the primary goal of this study is to investigate the relationship between genetic 

parameters and genetic PN-based LCLU change detection, the LCLU change process mining and 

accuracy was also examined. The relationships among the factors affecting the performance of 

genetic PN-based LCLU change detection are very complex, and the accuracy assessment of the 

LCLU process models is still a great challenge. The major conclusions can be made as follows: 

• GA parameters can significantly impact the performance of genetic PN-based LCLU 

change detection, especially the LCLU change process mining. When genetic 

parameters are set improperly, the average fitness of population, the best fitness of 

individual, and the coverage of process instances will be low.  

• In order to improve the performance of genetic PN-based LCLU change detection, 

the number of generations and population size should be increased, and the crossover 
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rate, mutation rate, and elitism rate should be kept at a middle level. A recommended 

configuration includes: generation 500, population 300, crossover 59%, mutation 5%, 

and elitism rate 4%.  

• The study has demonstrated the usefulness of genetic PN-based LCLU change 

detection. It can provide information about what, when, why, how, and how much 

LCLU change. The process models can be used as transition rules in CA-based 

spatio-temporal modeling.  

 

 

 

 

 

 

 

 



 205

CHAPTER 8  IMPACT OF CELLULAR AUTOMATA COMPONENTS  
ON LAND-COVER AND LAND-USE PREDICTIVE MODELING 

 
8.1. Experiment #5 Design 

 If process-oriented LCLU change detection is regarded as the procedure of turning 

patterns into processes, predictive modeling is regarded as a procedure of turning the current 

processes into future patterns. In Chapter 7, the major issue examined was about genetic PN-

based LCLU change processes detection, and the goal was to find the LCLU change processes. 

The major issue in this chapter is about cellular automata (CA)-based LCLU predictive 

modeling, and the goal was to predict future LCLU patterns and reconstruct past LCLU patterns. 

The importance of LCLU modeling is to predict future LCLU and reconstruct past LCLU. The 

future LCLU information can be used for regional development planning, and the past LCLU 

information can be used for historical LCLU research. Both of them can be used to improve the 

understanding of human-nature relationship. 

This experiment was designed to examine the relationships between CA components and 

the performance of predictive modeling, especially to find out better CA-component 

configurations for predicting the future LCLU and reconstructing the past LCLU. Six images 

were acquired during 1990-2002 (Figure 3.1). The AOIs of these images were classified (Table 

7.1 and Figure 7.1), and the change process models were discovered based on the classified 

images. The experiments done in the previous chapters have become the foundation of the 

experiment in this chapter. Experiment #5 had six groups of tests. Among them, five groups of 

tests were used to find the optimized CA components, and one group of tests was used to predict 

the future LCLU or reconstruct the past LCLU (Figure 8.1). The model calibration was 

performed by: 1) evaluating the agreement between predicted 2005 LCLU and classified 2005 

LCLU, and 2) adjusting the configuration of CA components.   
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Figure 8.1. The workflow of CA-based land-cover and land-use predictive modeling 
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The first group of tests was designed to examine the impact of space size on the 

performance of CA-based modeling. Three space sizes tested were 6025 x 12993, 1507 x 3249, 

and 378 x 813 pixels. These space sizes correspond to spatial resolutions of 7.5m x 7.5m, 30m x 

30m, and 120m x 120m, respectively. 

The second group of tests was designed to examine the impact of number of states on the 

performance of CA-based modeling. Only two sets of states were tested: 1) urban and non-urban, 

and 2) urban, farm, grass, forest, water, wetland, and other.  

The third group of tests was designed to examine the impact of neighborhood type and 

size on the performance of CA-based modeling. Two types and two sizes of neighborhood were 

tested: 1) Moore neighborhood 3 x 3, 2) extended Moore neighborhood 7 x 7, 3) von Neumann 

neighborhood 3 x 3, and 4) extended von Neumann neighborhood 7 x 7.  

The fourth group of tests was designed to examine the impact of time steps on the 

performance of CA-based modeling. Based on the availability of data sources, only two time 

steps were examined: 2 - 3 years, and 4 - 5 years.  

The fifth group of tests was designed to examine the impact of transition rules on the 

performance of CA-based modeling. The transition rules of CA are the most important 

components. They control the status of each cell. In this experiment, the transition rules were 

developed based on the process models. According to the experiment in Chapter 7, the process 

models discovered under different genetic configurations have different qualities. In this group 

of tests, only two sets of transition rules were tested. They were developed by different genetic 

configurations. The first genetic configuration was: generation 500, population 300, crossover 

0.59, mutation 0.05, and elitism 0.04. The second genetic configuration is generation 50, 

population 50, crossover 0.09, mutation 0.01, and elitism 0.01. The pruning rate was 1% - 10% 

for both of them. 
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The last group of tests was designed to perform future LCLU prediction. The 

configuration of CA components was set up based on previous five groups of tests. In fact, the 

goal of those tests is to calibrate the CA models. The modeling-based 2002 LCLU maps were 

compared with the classification-based 2002 LCLU map. Based on the agreement between them, 

the configuration of CA components was adjusted. The procedure was repeated until good 

agreement was achieved. After calibration, the CA model was validated by comparing 

prediction-based 2005 LCLU and classification-based 2005 LCLU, and the agreement between 

them was evaluated.           

8.2. Results 
 
This research focuses only on the major issues in the CA-based LCLU predictive 

modeling. These issues include the configuration of CA components, the calibration of CA-based 

LCLU models, and future LCLU prediction. The default settings of CA components were: 1) 

space – 1507 x 3249 pixels, 2) states – 7 classes, 3) time step – 2.5 years, 4) neighborhood – 3 x 

3 Moore neighborhood, 5) transition rules – developed under the condition of optimized GA 

configuration. When a component was changed and tested, other components remained at their 

default values. Theoretically, all LCLU features should be involved in the procedure of 

calibration. Because calibration is a time-consuming procedure and URBAN is the most complex 

LCLU feature, only URBAN was used for the calibration purpose in this dissertation research. 

After identifying the optimized configuration of CA components, future LCLU prediction was 

performed. Currently, there is no standard method for calibrating CA-based spatio-temporal 

models, the traditional LCLU classification accuracy assessment was used for calibrating CA-

based modeling. The idea is to compare the modeling resultant images derived from different CA 

configurations with the classified image. The classified image was used as a reference. The best 

model should have the highest agreement between the classified image and the modeled image.     
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Table 8.1. Calibration of CA-based land-cover and land-use predictive modeling* 
 

Components of 
Cellular Automata 

Case 
ID** Setting Tested 

Total 
Number 
Correct 

Producer 
Accuracy 

User 
Accuracy 

Overall 
Accuracy 

Kappa 
Value 

B 378 x 813 500 155 
298 

77.50% 
99.33% 

98.73% 
92.26% 90.60% 0.8069 

F 1507 x 
3249 500 133 

300 
66.50% 
100.00% 

100.00% 
90.91% 86.60% 0.7307 Space (cells) 

E 6025 x 
12993 500 165 

300 
82.50% 
100.00% 

100.00% 
100.00% 93.00% 0.8622 

G 2 500 179 
300 

85.00% 
100.00% 

100.00% 
91.19% 94.00% 0.8721 

States (classes) 
F 7 500 133 

300 
66.50% 
100.00% 

100.00% 
90.91% 86.60% 0.7307 

F 2 - 3 500 133 
300 

66.50% 
100.00% 

100.00% 
90.91% 86.60% 0.7307 

Time Steps (years) 
H 4 - 5 500 116 

300 
58.00% 
100.00% 

100.00% 
90.91% 83.20% 0.6714 

F  3 x 3 500 133 
300 

66.50% 
100.00% 

100.00% 
90.91% 86.60% 0.7307 

Moore 
D 7 x 7 500 98 

300 
49.00% 
100.00% 

100.00% 
77.12% 79.60% 0.5515 

I  3 x 3 500 144 
300 

72.00% 
100.00% 

100.00% 
92.88% 88.80% 0.7747 

N
ei

gh
bo

rh
oo

d 

von 
Neumann J 7 x 7 500 116 

300 
58.00% 
100.00% 

100.00% 
82.64% 83.20% 0.6438 

C Un-
optimized 500 67 

300 
33.50% 

100.00% 
100.00% 
90.91% 73.40% 0.5167 Transition  

Rules F Optimized 500 133 
300 

66.50% 
100.00% 

100.00% 
90.91% 86.60% 0.7307 

* For Number Correct, Producer Accuracy, and User Accuracy, the first number is about URBAN, and the second 
number is NON-URBAN. The calibration was done by comparing classified result and modeling result, and it was 
based on URBAN and NON-URBAN.  
** F is the case with default CA configuration: space - 1507x3249, state - 7, time step – 2 to 3 years, neighborhood -  
Moore (3x3), and transition rule - optimized.   
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8.2.1. Space 

The space of CA is composed of individual cells. The cell is the basic spatial unit, and it 

has two characteristics: shape and size. The square shape of cell is similar to the shape of satellite 

image pixel. In order to predict URBAN growth in the study area, the square shape of cell was 

adopted. Three space sizes were used in the tests: 378 x 813, 1507 x 3249, and 6025 x 12993. 

The results indicate that the overall accuracy changed from 90.60% to 86.60% and then to 

93.00%, and the overall kappa value changed from 0.8069 to 0.7307 and then to 0.8622 when the 

space size increased from 378 x 813 to 1507 x 3249, and then to 6025 x 12993 (Table 8.1). 

Figure 8.2 demonstrates the comparison among 2002 classified image and modeling images 

derived from various CA space configurations. Images B, D, and E represent the results 

corresponding to space sizes 378 x 813, 1507 x 3249, and 6025 x 12993 respectively.  

8.2.2. States  

The state of cell in a cellular automaton may represent any spatial variable, for example, 

the various types of LCLU. The LCLU in the study area was classified into seven classes, and 

each of them represented a cell state. The state of a cell may be dynamic or static. For example, 

the state of cell changes from grass land to farm land, or remains water. However, even for the 

water body, the change can still happen. When building a bridge over a water body, the state of 

cell changes from water to urban. In this dissertation study, the state of all cells was assumed as 

dynamic, and the impact of different number of state on the performance of CA-based LCLU 

modeling was tested. In order to examine the impact of number of state on the performance of 

CA-based LCLU modeling, two sets of data were used. The first set of data has two states: urban 

and non-urban. The second set of data has seven states: urban, farm, grass, forest, water, wetland, 

and other. The results indicate that the overall accuracy decreases from 94.00% to 86.60% and 

the overall kappa value changes from 0.8721 to 0.7307 when the number of state changes from 2 
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to 7 (Table 8.1). Figure 8.2 compares the 2002 classified image and modeled LCLUs derived 

from various CA state configurations. Images E and F represent the results corresponding to 

states number 7 and 2 respectively.  

8.2.3. Neighborhood 

The neighborhood of a cell is defined as a set of neighboring cells surrounding the 

interested cell. The classical CA has two types of neighborhood: von Neumann and Moore. 

Usually, four neighboring cells will be considered as neighbor in von Neumann neighborhood, 

and eight neighboring cells will be considered as neighbor in Moore neighborhood. In addition to 

these two types of neighborhood, four more neighborhoods were also tested. They were created 

by extending the radius of von Neumann or Moore from 3 x 3 to 7 x 7. The results indicate that 

the overall accuracy changed from 86.60% to 79.60% and overall kappa value decreased from 

0.7307 to 0.5515 when the size of Moore neighborhood increased from 3 x 3 to 7 x 7 (Table 8.1). 

The results also indicate that the overall accuracy changed from 88.80% to 83.20% and overall 

kappa value decreased from 0.7747 to 0.6438 when the size of the von Neumann neighborhood 

increased from 3 x 3 to 7 x 7 (Table 8.1). Overall, the von Neumann neighborhood yielded more 

accurate results than the Moore neighborhood. Figure 8.2 compares the 2002 classified image 

and modeled LCLUs derived from various CA neighborhood configurations. Images F, D, I, and 

J represent the results corresponding to neighborhoods Moore 3 x 3, Moore 7 x 7, von Neumann 

3 x 3, and von Neumann 7 x 7, respectively.  

8.2.4. Time Steps 

CA evolves at a sequential discrete time intervals or time steps. At each step, the state of  

cells will be updated simultaneously based on the transition rules. The classical CA assumes that 

the time steps are the same for all cells and transition rules are applied simultaneously at every 

cell. However, this assumption is not always valid in the real world. Different cells or even the 
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same cell may have different time steps. Although the problem has been recognized, most studies 

still use static time steps. In this experiment, two sets of time step were selected based on the 

data availability: 2 - 3 years and 4 - 5 years. In order to examine the impact of time steps on the 

performance of CA-based LCLU modeling, two sets of data were used. The first set of data has 2 

- 3 years time steps, and the second set of data has 4 - 5 years time steps. The results indicate that 

the overall accuracy decreased from 86.60% to 83.20% and the overall kappa value decreased 

from 0.7307 to 0.6714 when the time steps increased from 2 - 3 to 4 - 5 (Table 8.1). Figure 8.2 

compares 2002 classified image and modeled images derived from various CA time step 

configurations. Images F and  H represent the results corresponding to time step 2 - 3 years and 4 

- 5 years respectively.  

8.2.5. Transition Rules 

The key component of CA is transition rules. The transition rules are a set of conditions 

or functions that specify how the state of cell changes according to its historical and current state. 

The future state of a cell is controlled by the transition rules, state, neighborhood, and time step. 

In general, there are two types of transition rules: implicit transition rules and explicit transition 

rules. Usually, the implicit transition rules are represented by mathematical expressions (Li and 

Yeh, 2004), such as linear equations (Wu and Webster, 1998), logistic models (Wu, 2002), fuzzy 

sets (Li and Yeh, 2000), and neural networks (Li and Yeh, 2002). The explicit transition rules are 

expressed by natural language that can be easily understood by decision makers (Li and Yeh, 

2004). In order to examine the impact of transition rules on the performance of CA-based LCLU 

modeling, two sets of transition rules were developed under different conditions. The optimized 

transition rules were created by using the configuration: generation 500, population 300, 

crossover 0.59, mutation 0.05, and elitism 0.04. The un-optimized transition rules were created 

by using the configuration: generation 50, population 50, crossover 0.09, mutation 0.01, and 
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elitism 0.01. The pruning rate 2% is for both of them. The results indicate that the overall 

accuracy changes from 86.60% to 73.40% and overall kappa value changes from 0.7307 to 

0.5167 when transition rules were changed from optimized to un-optimized (Table 8.1). Figure 

8.2 compares the 2002 classified image and a model derived from various CA configurations. 

Images C and F represent the results corresponding to un-optimized transition rules and 

optimized transition rules respectively.     

8.2.6. Validation 

Both calibration and validation are very important for spatio-temporal modeling. 

Calibration is the iterative process in which the output of model and the real world is compared, 

and the parameters of model are adjusted in order to improve the agreement between the output 

of the model and the real world. Its goal is to estimate the value of parameters of a model and to 

find a set of best-fit parameter values so that the model can efficiently simulate the real world. In 

fact, the above five tests on individual CA components have consisted of the process of 

calibration. Through the phase of calibration, the optimized CA components configuration can be 

determined. Validation of the optimized CA-based LCLU predictive model was then conducted 

(Table 8.2, and Figure 8.3). Validation is the process of examining how well the model’s output 

characterizes the target system. Usually, it is done by comparing the output of the optimized 

predictive model and the classified image in the study area. The data used in the phase of 

calibration included Landsat TM / ETM images in 1990, 1992, 1995, 1997, 2000, and 2002. The 

data used in the phase of validation should be different from the data used in the phase of 

calibration. Since the data resource was limited in this research, the data used in the phase of 

validation was only slightly different. It included classified Landsat TM / ETM images in 1990, 

1992, 1995, 1997, 2000, 2002, and 2005. Based on the calibration tests, the optimized CA 

components configuration was: space – 6025 x 12993 cells, state – 2 classes, neighborhood – 
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Figure 8.3.  Validating the optimized CA-based land-cover and land-use predictive model 
by comparing 2005 classified urban map and modeling urban map 
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Table 8.2. Validation results of cellular automata-based  
land-cover and land-use predictive modeling* 

 
Class Name Tested 

Total 
Number 
Correct 

Producer 
Accuracy 

User 
Accuracy 

Overall 
Accuracy 

Kappa 
Value 

Urban 200 145 72.59% 100.00% 
Non-urban 300 355 100.00% 84.51% 

89.00% 0.7598 

* Validation using the following calibrated parameters:  
   Space -- 6225 x 12993 cells 
   States -- 2 classes 
   Time steps -- 2-3 years 
   Neighborhood -- von Neumann 3 x 3 
   Transition rules -- optimized under condition of generation 500, population 300, crossover  

                          0.59, mutation 0.05, elitism rate 0.04, and pruning rate 2%. 
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von Neumann 3 x 3, time step – 2 to 3 years, and transition rules – optimized. After predicting 

the LCLU in 2005 using the data obtained during 1990 – 2002, the predicted 2005 LCLU was 

compared with the classified 2005 image (Figure 8.3). The accuracy of predictive modeling was 

performed using classification accuracy assessment techniques and the 2005 classified image 

was used as the reference data. The accuracy of modeling was 89.00% (Table 8.2). After 

validating the model, it was used to predict future LCLU in 2007-2008, 2010, 2012-2013, and 

2015 (Figure 8.4). In Figure 8.4, the small-circled areas show some differences between the 

predicted year and its previous time period, and the large-circled areas show major differences 

during 2005-2015.  

8.3. Discussion 

8.3.1. Impact of Space on Land-Cover Land-Use Predictive Modeling 

The space of CA usually depends on the data. The study area can be represented by a 

different number of cells or pixels. When the number of cells is large or the spatial resolution of 

the classified image is high, the CA has a large space. In the test, the following sets of space 

were examined: 378 x 813, 1507 x 3249, and 6025 x 12993. After performing the spatio-

temporal modeling as described in previous chapters, the resultant predicted LCLU images were 

created. In this case, only one LCLU feature, namely URBAN in 2002, was predicted for 

calibration purposes. The prediction accuracy assessment was done by comparing the predicted 

image and classified image in 2002. The results indicate that both large and small space can 

improve CA-based model in terms of prediction accuracy. Small space may be less complex and 

provide less information, whereas large space may be more complex and provide more 

information. The accuracy of spatio-temporal modeling depends on many factors. The balance 

between complexity and information is just one of them. It may play an important role in this 

test. For example, when space is in the mid-sized range, the complexity is higher than small  
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space, and the information is less than large space, so the accuracy of spatio-temporal modeling 

is lower.     

8.3.2. Impact of States on Land-Cover Land-Use Predictive Modeling 

The number of states of a cell is determined based on the purpose of the modeling  

application. A basic CA model only requires a Boolean cell state, 0 or 1. Other models may have 

more than two states. As it has been mentioned in previous sections, two sets of states were 

selected for this test. The predicted URBAN in 2002 based on the two states of CA was different 

from the predicted URBAN in 2002 based on the seven states of CA. The CA with 2 states has a 

higher accuracy than the CA with 7 states (Table 8.1). A possible reason may be that the 

different features have a different influence on URBAN features. Furthermore, after converting 

the seven states into two states, the data were simplified, and the complexity of the data set 

decreases. When the process mining system has less information, it may make mistakes. On the 

other hand, the simplified data may make the development of the process model less prone to 

error. Therefore, there is a balance between simplicity and complexity. The impact of number of 

states on the accuracy of CA-based LCLU modeling is determined by the balance. In this case, 

simplicity played a crucial role. This may be the reason that a CA-based model with two states 

had higher accuracy.   

8.3.3. Impact of Neighborhood on Land-Cover Land-Use Predictive Modeling 

The type and size of neighborhood are important factors that affect the performance of  

any CA-based model. Although various neighborhoods have been used in geographic automata 

systems (Batty, 1998; Wu, 1998; White and Engelen, 1993, 1997; Li and Yeh, 2000; Yeh and Li, 

2000, 2001, and 2002), no particular validation on what is the appropriate neighborhood type and 

size has been made in these applications. The two types of neighborhood tested were Moore and 

von Neumann. There were two sizes for each of them: 3 x 3 and 7 x 7. The modeling results 
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indicate that the von Neumann neighborhood is better than Moore neighborhood, and a 3 x 3 

neighborhood is better than a 7 x 7 neighborhood in terms of the accuracy of modeling (Table 

8.1). Different shapes and sizes of neighborhoods have different capabilities to capture spatio-

temporal information with different quality and quantity. Moore neighborhood is a square shape 

and von Neumann neighborhood is a rhombus shape. The large neighborhoods usually capture 

more information. With the same size, for example 3 x 3, a Moore neighborhood may capture 

more information than a von Neumann neighborhood because of the shape. However, the quality 

of information is a different and complex issue. According to Kocabas and Dragicevic (2006), a 

large neighborhood size can significantly reduce the predicted urban area compared to a small 

neighborhood size. The dissertation research results confirm that both large neighborhood size 

and Moore neighborhood reduce the predicted urban area more significantly than that of a small 

von Neumann neighborhood. The essential reason can be the shape and the size of neighborhood. 

With the same size, the rhombus shape has less coverage than the square shape. Another reason 

is that the shape of rhombus may fit the LCLU pattern better than the shape of square.              

8.3.4. Impact of Time Steps on Land-Cover Land-Use Predictive Modeling 

Time step is an important factor in spatio-temporal modeling. It includes at least two  

aspects: the number of steps and the length of each step. Based on the literature review, a fine 

time step can be days and months, and a coarse time step can be a year or years. Models with a 

fine time step, such as general ecosystem model (GEM) (Fitz et al., 1996), patuxent landscape 

model (PLM) (Voinov et al., 1999a, 1999b), and conversion of land use and its effects (CLUE) 

(Veldkamp and Fresco, 1996a and 1996b), can represent LCLU accurately (Agarwal et al., 

2002). Models with coarse time step, such as land use change analysis system (LUCAS) (Berry 

et al., 1996), forest and agriculture sector optimization model (FASOM) (Adams et al., 1996), 

and land transformation model (LTM) (Pijanowski et al., 1997), may represent long-term LCLU 



 222

changes better. Models with both fine and coarse time steps represent the temporal complexity 

better, but it is difficult to define them. The classic CA used the same time step for all cells and 

applies transition rules to every cell simultaneously (Singh, 2003). Despite having some 

limitations, time step-based CA, such as SLEUTH (slope, land use, exclusion, urban, transition, 

hill shading) are commonly used in LCLU modeling (US EPA, 2000). In order to determine the 

best time step for the CA used in this research, two sets of time steps were compared. The first 

one has 2-3 years time step length and a total of 4 steps, and the second one has 4-5 years time 

length and a total of 3 steps. The results indicate that CA with a small time step performs better 

than CA with a large time step. The possible reason is that high temporal resolution data can 

provide more detailed information about LCLU change. When predicting LCLU change, the CA 

with small time step usually leads to higher accuracy.   

8.3.5. Impact of Transition Rules on Land-Cover Land-Use Predictive Modeling 

The transition rules used in this research were developed based on the result of process- 

oriented LCLU change detection. The genetic PN-based process mining software takes LCLU  

event log data as input, builds process models using a PN algorithm, and optimizes the process 

models using GA. When process models were discovered under the optimized configuration of 

genetic parameters, the process models will represent the processes of LCLU change better. 

Therefore, the transition rules, based on those process models, will specify the states of cells at 

each time step better. If a set of transition rules were developed based un-optimized process 

models, they will not represent all LCLU change processes very well. The CA based on such 

poorly-defined transition rules cannot be used to predict LCLU accurately.   

8.3.6. Calibration and Validation of Land-Cover Land-Use Predictive Model 

The goal of calibration is to identify the best configuration of parameters, and the goal of  

validation is to examine how well the model’s output characterizes the target system. If the  
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parameters of the model support its performance very well, the output of the model will represent 

the target system very well. In this dissertation, the validation procedure was carried out by using 

an optimized CA to generate 2005 urban maps, then comparing the modeling 2005 urban map 

with the classified 2005 urban map. Although the configuration of CA components was 

optimized, the output was not sufficient. The overall modeling accuracy was only 89.00% (Table 

8.2). This result may suggest that the CA components optimization is a complex process. 

Although “trial and error” is an approach to optimize the CA components, its search space is 

limited, and the combination of the best individuals may not be the best solution.                 

8.4. Hypothesis #5 Review 

The third research question as presented in Chapter 1 was how do cellular automata 

components (such as space, states, neighborhood, time steps, and transition rules) impact the 

accuracy of LCLU predictive modeling. The third research hypothesis presented in Chapter 1 

was stated as follows: 

Ha: Different space size, state size, time step, neighborhood type and size, or transition 

rules can increase / decrease the accuracy of predictive modeling, respectively. 

Based on the experiment designed and performed in this chapter, these CA components 

can impact the performance of CA-based LCLU predictive modeling significantly. In the case of 

space size, the relationship between space size and modeling accuracy is complex. When space 

sizes increased from 378 x 813 to 1507 x 3249, and then to 6025 x 12993, the overall urban 

growth modeling accuracies decreased from 90.60% to 86.60% and then increased to 93.00%.   

In the case of number of states, although a larger number of states theoretically provides 

more detail information about different LCLU features, it may not benefit LCLU modeling. 

There is a balance between simplicity and complexity. The impact of the number of states on the 

accuracy of CA-based LCLU modeling is determined by the balance. In this case, the CA-based 
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LCLU model performs better when the state is the simple. When the number of states increased 

from 2 to 7, the accuracies of LCLU modeling decreased from 94.00% to 86.60%.  

In the case of time step, the results indicate that CA with a small time step performed 

better than CA with large time step. The possible reason is that high temporal resolution data can 

provide more detailed information about LCLU change.  

In the case of neighborhood type and size, the results illustrate the complex relationships 

among the accuracy of modeling, neighborhood type, and neighborhood size. Both large 

neighborhood size and Moore neighborhood reduced the prediction accuracy of the urban area 

more significantly than a small neighborhood and von Neumann neighborhood did. One reason 

is that the rhombus shape has less coverage than the square shape. Another reason is that the 

shape of rhombus may fit the LCLU pattern better than the shape of square.              

In the case of transition rules, the results suggest that the transition rules based on 

optimized process models will better specify the states of cells at each time step. If a set of 

transition rules was developed based on un-optimized process models, they will not represent all  

LCLU change processes very well. The CA that are based on such poorly-defined transition  

rules will not predict LCLU accurately.   

Finally, the results of calibration and validation suggest that the CA component 

optimization is a complex process. After calibration, the recommended CA component 

configuration includes: space - 6225x12993 cells, state - 2 classes, time step - 2 to 3 years, 

neighborhood - von Neumann 3x3, and transition rules - optimized. The overall accuracy of 

prediction is 89.00% with a kappa value of 0.7598.  

8.5. Summary 

This chapter analyzed the impacts of CA components on the performance of CA-based 

LCLU predictive modeling. The CA-based models were calibrated using classified 1990-2002 
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Landsat TM/ETM images and validated using 1992-2005 Landsat TM/ETM images. The 

following points summarize the major results and conclusions in this chapter: 

• The configuration of CA components can impact the performance of CA-based 

LCLU predictive modeling significantly. When CA components were set up 

improperly (e.g., small space size and un-optimized transition rules), the accuracy of 

LCLU modeling will be low.  

• The recommended CA components configuration is: space - 6025 x 12993 cells, state 

– 2 classes, neighborhood – von Neumann 3 x 3, time step – 2 to 3 years, and 

transition rules – optimized.  

• The urban area in 2005 is 153718 pixels. Based on the prediction, it will increase 

about 40% after ten years. The predicted urban area in 2015 is 215844 pixels.  

• The process of calibration and validation of CA-based LCLU model is complex. 

Although “trial and error” is an approach to optimize the CA components, the  

calibration and validation of CA-based model is still a challenge.  
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CHAPTER 9  SUMMARY AND CONCLUSION 
 

9.1. Research Findings 

 LCLU is an important manifestation of human-nature interaction. LCLU study plays a 

crucial role in the process of improving social-natural relationship. It includes at least three tasks: 

classification, change detection, and predictive modeling. The goal of this research is to 

systematically examine the human-nature relationship in the Tickfaw watershed, the impact of 

genetic parameters on classification and change detection, and the impact of CA components on 

predictive modeling. In the previous chapters, five experiments have been performed. This 

section provides a summary of the findings. 

9.1.1. Impact of Genetic Parameters on Land-Cover and Land-Use Classification 
 

 Genetic parameters include the number of generations, population size, crossover rate, 

mutation rate, and generation gap or elitism rate. The relationship between the configuration of 

genetic parameters and the performance of GA-based LCLU classification is very complex. 

When genetic parameters are set improperly, for example, the number of generations or the size 

of population is too small, or the crossover rate, mutation rate, or elitism rate is too low or too 

high, premature convergence, local optimization, or unstable population occurs. These problems 

will lead to poor LCLU classification. In order to improve GA-based LCLU classification, the 

configuration of genetic parameters should be set at a moderate level. The recommended 

configuration is: generation 2000-5000, population 1000, crossover rate 69% - 99%, mutation 

rate 0.1% - 0.5%, and generation gap 25% - 50%. 

9.1.2. Impact of Image Parameters on Land-Cover and Land-Use Classification 

 Image parameters include spatial resolution, training / testing data size, and data 

combinations. The relationship between the configuration of image parameters and the 

performance of GA-based LCLU classification is very complex. When the training / testing size 
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is too small, the spatial and spectral knowledge will be developed in a small space. This will lead 

to premature convergence or local optimization. Both premature convergence and local 

optimization will lead to poor LCLU classification. When spatial resolution is too small or too 

large, the variability of inter- / intra classes and the proportion of mixed pixel will change, which 

will affect the performance of GA. The recommended configuration of image features and 

ancillary data is: 16 - 20 layers data combination, 10000 / 5000 – 20000 / 10000 training / testing 

data size, 30 m – 60 m spatial resolution, and optimum genetic parameter setting.    

9.1.3. Comparison of GA-based and Traditional Land-Cover and Land-Use Classification 

In this research, three traditional approaches were examined: ISODATA, MLC, and the 

hybrid of ISODATA and MLC. They were compared with GA-based approach in terms of the 

characteristics of algorithms, the performance of algorithms, and the operation of the algorithms. 

The characteristics of different approaches were stated in terms of algorithm type, assumptions, 

advantages, and disadvantages. The GA-based approach is a non-parametric approach, and it has 

no assumption on the distribution of data. The traditional approaches are statistics-based 

approaches, and they have assumption about the distribution of data (normal distribution). This 

assumption will limit the application of traditional approaches. The operations of all approaches 

were compared in terms of training data, the classification procedure, and time consumption. 

ISODATA is an approach that needs no training data and little time. Other approaches require 

training data, and GA-based approach requires much time. Finally, the performance of all 

approaches was evaluated in terms of classification accuracies of the overall level and individual 

level. At the overall level, the GA-based approach had the highest overall accuracy and kappa 

value; at the individual level, the GA-based approach had the highest producer accuracy, user 

accuracy, and kappa value in most land features classification. Based on the above information, 

it can be concluded that the GA–based approach is better than traditional approaches.  
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9.1.4. Impact of Genetic Parameters on Land-Cover and Land-Use Change Detection 

The primary goal of this study was to investigate the relationship between genetic 

parameters and genetic PN-based LCLU change detection. The LCLU change process mining 

and accuracy was also examined. It was found that the relationships between genetic parameters 

and the performance of genetic PN-based LCLU change detection were very complex, and 

accuracy assessment of the LCLU process models is still a great challenge. GA parameters can 

impact the performance of GA-Petri net-based LCLU change detection significantly, especially 

the LCLU change process mining. When genetic parameters are set improperly, the average 

fitness of population, the best fitness of individual, and the coverage of process instances will be 

low. In order to improve the performance of genetic PN-based LCLU change detection, the 

number of generations and the size of population should be increased; crossover rate, mutation 

rate, and elitism rate should be kept at a middle level. The study has demonstrated the great 

advantage of genetic PN-based LCLU change detection. It can provide information about what, 

when, why, how, and how much LCLU changes. The process models can be used as transition 

rules in CA-based spatio-temporal modeling.  

9.1.5. Impact of CA Components on Land-Cover and Land-Use Predictive Modeling 

 The components of CA include space, state, neighborhood type and size, time step length 

and step number, and transition rules. The configuration of CA components can impact the 

performance of CA-based LCLU predictive modeling significantly. When CA components are 

set up improperly (e.g., small space size, large time steps, and un-optimized transition rules), the 

accuracy of CA-based LCLU modeling will be low. In order to improve the performance of CA-

based LCLU modeling, the recommended CA component configuration is: space -- 6025 x 

12993 cells, state -- 2 classes, neighborhood – von Neumann 3 x 3, time step – 2 to 3 years, and 

transition rules – optimized.  
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9.2. Research Contributions 

9.2.1. Theoretical Contribution 

The research seeks to make the connections among LCLU classification, change 

detection, and predictive modeling by using the Tickfaw watershed LCLU changes as an 

example. The explicit and systematic spatio-temporal knowledge developed in the processes-

oriented LCLU change detection will definitely improve our understanding of LCLU change. 

The study also improves our understanding on GA and CA. Although GA was inspired by the 

theory of genetics and natural selection, they do not automatically inherit the characteristics of 

global optimization from both. It is important to recognize that improper genetic parameters 

configuration can cause premature convergence and local optimization, hence inaccurate 

classification and change detection. Although CA were not necessarily inspired by the theory of 

cytology, they have been broadly used to simulate cell-based phenomena. Although CA have 

been used in geographic research for at least two decades, study on the impact of CA 

components on the performance of CA-based spatio-temporal modeling have seldom been 

reported. This dissertation research provides a systematical investigation on this issue. The 

results indicate that the component of CA heavily impact its performance, and that improper CA 

components configuration can cause poor LCLU predictive modeling.  

9.2.2. Methodological Contribution 

LCLU change detection is one of the most important tasks in LCLU study. The literature  

review has indicated that there is no proper approach to perform a process-oriented LCLU 

change detection in terms of efficiency, capability, and explicit spatio-temporal knowledge. The 

genetic PN not only provides a very promising way to perform such study, but also provides an 

efficient approach to developing transition rules for CA-based spatio-temporal modeling. The 

transition rule is the most critical component in CA. Its definition heavily depends on the domain 
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knowledge and individual preferences. The challenge in CA-based modeling is how to obtain 

domain knowledge. The processes derived from genetic PN not only demonstrate detailed 

domain knowledge, but also can be directly translated into transition rules. Spatio-temporal 

modeling is an important aspect of geographic research that can be used to solve real world 

problems. CA is a major approach in spatiotemporal modeling. After introducing PN into the 

procedure of transition rules development, CA applications will be performed more easily in 

various research areas.                

9.2.3. Practical Contribution 

The Tickfaw watershed lies in the fastest developing area of Louisiana. It has 

experienced significant urban growth and forest segmentation during the last twenty years. The 

human-nature relationship has become one of the most important problem that impact the 

regional sustainable development. Although there have been several studies about this watershed 

(Wu, 2005; Couvillion, 2005; Lake Pontchartrain Basin Foundation, 2005; Demcheck et al., 

2004), the study on LCLU change processes and future LCLU has not been reported yet. This 

dissertation research provides historic, current, and future LCLU maps that can be used by local 

government for assessing the regional environment and developing sustainable development 

plan.    

9.3. Future Research 

Several further research can be recommended:   

• The evaluation of PN-based LCLU change process modeling – theoretically the 

process models with high fitness value can represent real LCLU change processes 

well, but practically this is not always true. More studies are needed to explore why 

this situation occurs and what factors are.   

• The present study was carried out based on the limited resources. In order to  
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generalize the results and conclusion, more LCLU features, multiple scale study area, 

and various resolution of spatio-temporal data should be involved.  

• Calibration, validation, and sensitivity analysis are very important for CA-based 

LCLU predictive modeling. Only calibration and validation were performed in this 

research. Sensitivity analysis should be included in the future work.    

• The comparison of various LCLU classification approaches was based on ISODATA, 

MLC, hybrid of ISODATA and MLC, and optimized GA-based approach. In the 

future study, all classification approaches should be optimized before the comparison.    

• Currently, most popular spatial analysis software cannot support spatio-temporal 

analysis and modeling. Integrating both spatial and temporal aspects into the same 

software will make geo-computation more efficient and more significant.  
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