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ABSTRACT 

 A criminal geographic profile is a tool used by law enforcement professionals for 

estimating the probable location of a serial offender’s anchor point, or domicile.  This estimate is 

constructed according to the distribution of linked crime scenes.  While this approach can utilize 

a number of different modeling techniques, most fail to account for the inherent irregularities of 

the physical and cultural landscape.  Contemporary methodologies have consistently adopted the 

a priori assumption that an offender’s crime scenes and anchor point are located across an 

isotropic surface on which the opportunity to offend is equally distributed around the offender’s 

residence.  Simple introspection clearly reveals that this assumption is unrealistic.  Landscapes 

are comprised of heterogeneous collections of physical and cultural features that, by their very 

nature, bias the location of human activities and the occurrence of phenomena.  Accordingly, this 

research examines four alternative techniques for geographically profiling offender behavior in 

space using models that are capable of accounting for the intrinsic irregularities present within 

the surrounding landscapes.  The first technique examines the efficacy of functional distance 

metrics for interpreting an offender's perceptions of travel cost.   The second method estimates 

the serial offender's anchor point by modeling the spatial variability observed for the linked 

crime scenes using a dynamic standard deviational ellipse.  The next method extends the premise 

of a non-uniform landscape by introducing land cover characteristics within a probability 

distribution strategy.  Finally, a land cover enhanced profiling technique is proposed using an 

empirical Bayesian formulation.   Comparative analyses of the four enhanced techniques validate 

the premise that landscapes impart a deterministic impact on a serial offender's behavior in 

space.  Consequently, these factors can be incorporated within various analytical frameworks to 

produce an accurate and precise estimate of an offender's anchor point.   
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“Environmental criminologists set out to use the geographic imagination in concert with the 
sociological imagination to describe, understand, and control criminal events.” 

- Brantingham and Brantingham (1981, p. 21). 

CHAPTER 1:   INTRODUCTION  

 The geographical analysis of crime has been used by law enforcement professionals and 

researchers since the 1830s (Phillips, 1972).   Criminologists have long understood that 

geography is a fundamental component for understanding, responding to, and mitigating criminal 

activity.  With records dating as far back as the early 1900s, law enforcement agencies across the 

United States used pin-maps to better understand the nature of crime within their jurisdictions 

(Harries, 1999).  And for decades, the pin-map remained the dominant spatial analytical tool 

used by law enforcement.  This analytical playing field changed in the 1990s as the information 

age brought forth new techniques for mapping crime; thus transforming the simple  analog pin-

maps of the past into effective decision-making tools.  The combination of geographic 

information systems (GIS) and statistical analysis allowed investigators to visualize and analyze 

the occurrence of crime in a variety of social and environmental contexts.  In this way, the digital 

map provided a form of geospatial intelligence that extended the investigatory process (e.g., 

Getis et al., 2000; Harries, 1999).  Furthermore, advanced modeling techniques allowed the 

criminologists to design custom scenarios which could be used to extract new information that 

was otherwise hidden to the investigation.  In short, crime mapping permits investigators to 

identify change, reveal patterns and trends, and model possible mitigation strategies in 

meaningful and coherent ways.  In no other application are these capabilities more invaluable 

than during the investigation of a serial crime. 
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1.1  Principles of Environmental Criminology 

 Crime represents the manifestation of a complex relationship between an offender, target, 

and criminal opportunity (Brantingham & Brantingham, 1981).  By examining this relationship 

in the context of the immediate surroundings, the criminologist is able to identify how the 

environment influences an offender's legal and illegal activities. This notion represented a 

departure from traditional criminological research by widening the focus beyond a strictly 

behavioral context to that of ecological determinism.  Such an approach is commonly referred to 

as environmental criminology, a field of study developed in the 1980s that is attributed to Paul 

and Patricia Brantingham.   As a derivative of the Positivist School, environmental criminology 

explores crime and victimization according to theories and principles that characterize offender 

perceptions of target attractiveness and criminal opportunity within a geographical context 

(Brantingham & Brantingham, 1981; 1984).   

 Three fundamental concepts dominate research efforts in environmental criminology.  

The first is known as the routine activity theory, which posits that criminal acts are opportunistic 

events that can occur at any point in time and space (Cohen & Felson, 1979).  The approach is 

conditioned on the willingness of an offender, the presence of a suitable target, and the absence 

of a capable guardian.  This theory emphasizes the importance of opportunity, and how it is 

perceived by the offender during his/her daily activities.  Rational choice theory complements 

the routine activities approach by examining how perception and rational decision making 

influence the initiation of an illegal act (Cornish & Clarke, 1986).  It defines the patterns and 

processes in which an offender weighs the costs, risks, and rewards associated with perpetrating 

a crime.  Whereas the routine activities approach deals with the perception of opportunities, 

rational choice deals with the perceptions of consequences.  Finally, crime pattern theory 
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provides an operational framework from which investigators are able to characterize an offender' 

behavior in space according to the tenets of environmental criminology (Brantingham & 

Brantingham, 1981).   

 The crime pattern approach represents a synergy of various behavioral patterns and 

ecological characteristics, which provides a foundation for understanding how the environment 

impacts criminal phenomenon.  In fact, crime pattern theory has proven to be an invaluable 

resource for the investigation of serial crimes.  It is comprised of models that classify an 

offender's spatial behavior according to the interplay between offender opportunity and 

motivation and offender mobility and perception (Brantingham & Brantingham, 1981).  Key 

concepts of crime pattern theory can be summarized into four general paradigms.  The first 

pattern finds that criminals will often concentrate their activities within relative proximity to 

their residence, also known as an anchor point (Rengert, 1989) or haven (Newton & Swoope, 

1987).  The implication for this concept is that there is an observable decrease in criminal 

activity as the distance from the offender's residence increases; commonly referred to as distance 

decay (Brantingham & Brantingham, 1981; Canter, Coffey, Huntley, & Missen, 2000; Capone & 

Nichols, 1975; 1976; Rhodes & Conly, 1981; Turner, 1969).   In many ways, the concept of 

distance decay can be related to the principle of least effort, which posits that behavior is 

effectively constrained to actions that encounter the least resistance (Zipf, 1949).  However, 

researchers Turner (1969) and Brantingham & Brantingham (1981; 1984) note that the decay is 

not universal, and that an offender may exhibit a buffer zone of inactivity surrounding his/her 

home.  The next pattern theory examines how criminals will typically reside within the same 

geographic area, a characteristic referred to as offender clustering.  The initial implication 

suggests that clustering is an artifact of social determinism.  From a geographical context, 
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clustering suggests that it is a combination of opportunity and convenience factors.   The last 

pattern finds that the distribution of targets/victims is not dispersed evenly across the offender's 

activity space.  That is, the non-uniform spatial distribution of targets is dependent upon the 

offender's perception of target attractiveness and criminal opportunity.  Such dependencies were 

found to be linked to the surrounding landscapes (Capone & Nichols, 1976; Rengert, Piquero, & 

Jones, 1999; Rhodes & Conly, 1981).  Irregular distributions are further revealed as one 

examines the offender's environmental range:  the spatial extents of a criminal's activity area 

defined by the locations of linked crime scenes (Canter & Larkin, 1993).  Overall, these models 

establish that criminal behavior in space is ultimately the product of opportunity structures and 

offender perceptions that are inextricably linked to a fixed environment (Brantingham & 

Brantingham, 1981; Rengert et al., 1999).   

1.2  Brief Overview of Geographic Profiling 

 Clearly, crime represents a number of complex conditions and behaviors that confound 

its investigation (Brantingham & Brantingham, 1981; Canter et al., 2000; Getis et al., 2000; 

Harries, 1999).  Serial crime, in particular, incorporates more complex sets of psychological and 

ecological circumstances than any other criminal act (Canter et al., 2000; Kocsis & Palermo, 

2008; Rossmo, 2000).  Studies have consistently found that an offender's behavior in space will 

vary according to his/her taxonomy (Capone & Nichols, 1976; LeBeau, 1987a; Holmes & De 

Burger, 1985) and perceptions of opportunity and target attractiveness (Rhodes & Conly, 1981).   

As noted by Rossmo (2000), crimes are typically solved by exploring the unique relationships 

between offender and target.  However, serial offenses often lack such obvious associations.  

Consequently, linked serial crime requires specialized strategies that extend beyond traditional 

investigative methodologies.  One such strategy is commonly referred to as criminal profiling. 
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 As noted by Canter (2004), the basic concept of a criminal profile is to identify and 

develop a consistent set of traits for an unknown offender based on evidence obtained from the 

crime scenes.  The most commonly referenced criminal profile, especially within popular 

entertainment, is the psychological or behavioral profile (Kocsis & Palermo, 2008; Snook, 

Eastwood, Gendreau, Goggin, & Cullen, 2007).  However, the ability to successfully and 

consistently apprehend serial offenders using profiles alone has not been demonstrated 

empirically (Kocsis & Palermo, 2008; Rossmo, 2000; Snook et al., 2007).  As such, 

developments in criminology have led to more sophisticated investigative and analytical 

techniques that have demonstrated relative degrees of success (Snook et al., 2007).  Of particular 

value to contemporary criminology is the application of geoforensic analysis.  Coined by 

researcher Milton B. Newton Jr. (Newton & Swoope, 1987), geoforensics aims to identify and 

characterize a serial offender’s behavior in space according to the distribution of known linked 

crime scenes.  This field of research is now commonly known as criminal geographic profiling 

(Rossmo, 2000). 

 Fundamentally, geographic profiling is a decision support tool consisting of various 

investigative and analytical methodologies, both quantitative and qualitative, from which the 

criminologist estimates the likely location of a serial offender’s anchor point based (Canter & 

Gregory, 1994; Rossmo, 2000).  Geographic profiling complements environmental criminology 

in that it operationalized many of the concepts and models that characterize a criminal's spatial 

behavior.  Analyzing the distribution of serial crime scenes can reveal specific characteristics 

about the offender that may lead to his or her apprehension.  That is, a spatial relationship exists 

between the criminal, the environment, the target, and the offender (Brantingham & 

Brantingham, 1981).  Consequently, a serial offender's crime scenes will exhibit characteristics 
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that follow particular spatial patterns that expose the offender's spatial behavior.   These patterns 

are manifested through nodes, pathways, and edges that define how the offender perceives and 

operates within his/her environment (i.e., awareness and activity spaces) (Brantingham & 

Brantingham, 1981).  Similar to the offender's environmental range (Canter & Larkin, 1993), the 

activity space is typically defined as the area immediately surrounding the offender's domicile in 

which the activity nodes and pathways are perceived intimately.  Conversely, the awareness 

space represents an area beyond the activity space in which the offender’s knowledge is not as 

precise.  To exploit these patterns and thus reveal the offender, the investigator can apply 

appropriately calibrated models for analyzing the crime scene distribution, and (ultimately) 

identify the location from which the offender initiated the crimes.  This location, (commonly 

referred to as the anchor point or haven), can include the offender's residence, work place, or 

other significant location that is positioned relative to the offender's activity space.  

1.3  Common Profiling Techniques 

 Despite the theoretical and technological advances of recent years, the process of 

developing a meaningful and accurate geographic profile has been challenging.  As noted by 

Rossmo (2000), a serial offender’s anchor point would be expected to lie at the center of a 

distribution of crime scenes if it were observed within idealized conditions.  But as research 

demonstrates, serial crimes do not occur within an ideal landscape, and the circumstances that 

favor such analysis are rarely simplistic.  The reality is that crime scenes are often found to be 

distributed according to complex spatial patterns that are difficult to interpret (Canter & Gregory, 

1994; Canter & Larkin, 1993; Harries, 1999; Rossmo, 2000).  In fact, research by Canter & 

Larkin (1993), and later by Kocsis & Irwin (1997) demonstrated that crime scenes are seldom 

distributed concentrically around an anchor point.  Rather, and obviously, criminal behavior is 
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composed of psychological and environmental characteristics that effectively distort an already 

complex distribution of crime scenes (Brantingham & Brantingham, 1981; Canter et al., 2000; 

Capone & Nichols, 1976; Felson & Clarke, 1998; Kocsis & Palermo, 2008).  For a geographic 

profile to provide a meaningful output, specialized geo-analytical and ecological investigative 

techniques must be combined if these patterns are to be interpreted effectively. 

 The majority of contemporary geographic profiling techniques employ quantitative 

methods that emphasize specific geo-analytical modeling strategies (Rich & Shively, 2004).  For 

the purposes of this research, these methods can be organized into two broad categories: spatial 

distribution and spatial interaction (Levine, 2007).  Spatial distribution strategies include 

centrographic and circle-based profiling techniques that allow analysts to interpret location, 

scale, and diffusion of crime scenes.  Spatial interaction strategies include distance decay, or 

gravity models that predict the location of an offender’s anchor point according to empirically 

and theoretically derived travel-demand algorithms (e.g., Journey-to-Crime estimations).  Some 

of these techniques will be discussed briefly in the following text. 

1.3.1   Centrography 

 Centrographic analysis is perhaps the most basic of contemporary geographic profiling 

technique available to criminologists.  This approach employs methods that examine the spatial 

distribution of discrete events (Ebdon, 1988; Levine, 2007).  The most common of these 

measures includes the geographic mean, median, and center of minimum distance.  When 

applied within geographic profiling models, these measures summarize a distribution of crime 

scenes as a single location where the sum of differences between the mean and all other locations 

within the distribution is minimized (Ebdon, 1988).  This modeling approach is premised on the 

assumption that the serial offender will commit crimes within a finite area that is relatively close 
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to his or her home (e.g., Brantingham & Brantingham, 1981).  Centrography has been applied in 

numerous research applications including a study of serial rapists by LeBeau (1987a), and by 

British criminologist Stewart Kind (1987a) for the investigation of homicides perpetrated by the 

“Yorkshire Ripper” during the mid 1970s.    

 Furthermore, centrographic analysis has been shown to be incredibly cost effective.  In a 

series of studies carried out by Snook et al. (2002; 2004), the researchers were able to 

demonstrate empirically that centrographic techniques could achieve a level of accuracy 

comparable (if not better) than those achieved using more sophisticated methodologies.  These 

results were further corroborated in a study coordinated by the National Institute of Justice (Rich 

& Shively, 2004). While their effectiveness has been demonstrated in research (Paulsen, 2006b), 

their practical application as an investigative technique remains relatively weak.  Centrographic 

profiles are only able to provide a single estimate of the offender's anchor.   Consequently, the 

technique is incapable of providing a robust investigative strategy from which law enforcement 

agencies can detect and apprehend a serial offender.  Such strategies need to model not just the 

location of crimes, but also account for the patterns observed within the distribution.   

1.3.2   Circle Theory 

 As a spatial distribution strategy, circle-based models are used to characterize the 

diffusion of some phenomena in space.  Circular models extend the capabilities of centrographic 

techniques by measuring the location and dispersion of crime scenes simultaneously over a finite 

area.  In doing so, criminologists are able to systematically construct a search area defined by the 

distribution patterns observed from the linked crime scenes. 

 The first practical implementation of a circle based geographic profile was developed by 

Milton B. Newton, Jr. (1988).  Newton derived geoforensic analysis after examining the spatial 
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characteristics associated with the “Hillside Strangler” homicides of the late 1970s.  Newton’s 

approach was based on the independent hypothesis that an area surrounding the geographic 

center of a crime distribution may contain the offender’s residence.  By sequentially measuring 

the spatial mean from a series of crime scenes, Newton proposed that the center of the 

distribution will move toward the offender’s anchor, or haven.   With the center of a distribution 

was defined, Newton introduced a circular search area with a radius defined by the distance 

between the farthest crime scenes.  As each new crime scene was added to the measure, the area 

of the circle was gradually reduced by dividing the value by N-1 crime scenes, where N is the 

number of crimes in the series (Newton & Swoope, 1987; Leitner, Kent, Oldfield, & Swoope, 

2007).   The assumption for this approach established that the accumulation of offenses would 

effectively shift and shrink the search area to reveal the offender's haven. 

 In later research, Canter and Larkin (1993) demonstrated the utility of circle based 

profiling when examining the environmental range of serial rapists.   The researchers were able 

to use circles to demonstrate that offenders operate within a distinct offense region defined by a 

circle’s radius equal to the distance between the farthest crime scenes.   Like the approach 

developed by Newton, the two farthest offenses from each other were used to define the diameter 

of the circle.  When the analysis was completed, it was found that the residence of 87% of their 

sample was located within the predicted area (Canter & Larkin, 1993).   Furthermore, their 

analysis revealed two distinct patterns to offender mobility:  those that offend close to their 

residence, and those that offend far from their residence.  This observation became a means of 

discriminating offender mobility according to marauders and commuters, respectively.  These 

classifications would prove to have a profound impact on the development of future geographic 

profiles.   
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 Yet, the practical value of circle-based techniques is unclear.  Numerous studies 

examining the efficacy of circle theory have been applied for various criminal offenses (Canter 

& Gregory, 1994; Kocsis & Irwin, 1997; Kocsis et al., 2002; Snook, Taylor, & Bennell, 2004; 

Paulsen, 2006b).  For each study, the usefulness of circle theory is uneven.  As Canter and 

Larkin (1993) demonstrated, the environmental range of an offender is not homogeneous.  That 

is, an offender’s specific travel behavior, or mobility pattern, can effectively disrupt the 

predictability of circle-based profiling techniques.  For these situations, crimes committed by 

commuter offender types define a circle that does not encompass the anchor point.  Such 

scenarios illustrate that linked crime scenes do not necessarily reveal an offender’s distinct 

activity space.  The root of is failure lies in the presumption of an isotropic surface in which the 

likelihood of offending is distributed randomly around the offender’s residence.  These 

techniques can be enhanced, however, if the modeling framework were able to calibrate the 

circle according to the spatial variations observed for solved and unsolved crime scenes.  By 

doing so, the model could effectively account for the anisotropic landscape, and therefore better 

predict the offender's anchor point. 

1.3.3   Distance Decay 

 Of the analytical methods available to the contemporary criminologist, nearly all 

geographic profiling software packages include techniques that account for spatial interaction.  

Studies demonstrate (e.g., Brantingham & Brantingham, 1981; Capone & Nichols, 1995; 1976; 

Canter & Larkin, 1993; Rossmo, 2000; etc.) that serial crimes are committed in those locations 

within relative proximity to the offender's anchor.  As an offender initiates a crime, there are 

rational processes in which the cost-benefits of the crime are assessed and used to determine the 

criminal's course of action.  More often than not, the criminal commute is used as a proxy for 
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this cost.  Because the frequency of offenses decreases as the distance from the anchor increases 

(e.g., Brantingham & Brantingham, 1981), this distance decay characteristic has become a 

ubiquitous modeling approach.   Of the various modeling techniques available, Journey-to-Crime 

(JTC) probability estimation is perhaps the most frequently employed.  The appeal for JTC rests 

in its ability to generate offender profiles using customizable distance decay algorithms that can 

accommodate the unique characteristics of the offender's activity space.   

 Canter et al. (2000) and Rossmo (2000) were among the first researchers to incorporate 

distance decay functions within a functional geographic profiling software package; though the 

concept has been recognized since the late 1960s  (Brantingham & Brantingham, 1981; Canter et 

al., 2000; Capone & Nichols, 1975; 1976; Turner, 1969).  These findings led to the development 

of profiling models that are based extensively on the precepts of environmental criminology and 

classical distance decay models.   The most well-known of these implementations include the 

applications known as Dragnet (see Canter et al., 2000), Rigel™ CGT (see Rossmo, 2000), and 

the JTC routine provided in CrimeStat® (see Levine, 2009).  Each of these software solutions 

analyze and model serial crime scene distributions using derivatives of empirical calibrated 

and/or theoretically defined distance decay algorithms.  These algorithms assign probability 

values that indicate the likelihood of identifying an offender’s anchor point for the area 

immediately surrounding the locations of linked crime sites.  An estimate for each location 

within the study area, typically represented as a collection of grid cells, is calculated according to 

its distance from each crime scene.  Collectively, these modeled output values represent a density 

map, or risk surface, of the offender's anchor point.  It is this output on which investigative 

strategies are derived.  
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 While distance decay models are widely utilized, they are subject to various criticisms.  

Most significant is the faulty assumption of isotropic surfaces on which the physical and 

perceived distribution of targets and opportunities are randomly arranged across the criminal's 

activity space. There are two fundamental implications of this assumption.   First, when the 

decay model is calculated, it is often done so using Euclidean distance metrics.   As a 

consequence of only measuring the “as the crow flies” distance, the decay model fails to account 

for the offender's perception of temporal and distance based travel costs.  Second, because all 

decay models presume that targets are distributed across a monotonous plane, they therefore 

assume that criminal opportunity is equally available in all directions and at all distances.  If that 

were the case, then the offender's anchor point would be easily identified within the center of a 

crime scene distribution.  More realistically, the offender's activity space will consist of 

irregularly distributed physical structures and cultural boundaries that confines criminal 

opportunities to certain landscapes.  The same would be true when searching for the anchor 

point.   

1.4  Impact of Landscape on the Occurrence of Crime 

 The utility of a geographic profile as an investigative tool is obvious.  Nevertheless, 

research consistently demonstrates that the ability to geographically profile a serial offender's 

anchor point remains relatively inconsistent.  As revealed above, the distribution of crime scenes, 

targets, and anchor points are inherently distorted by “real-world” factors that can include street 

layout, traffic congestion, land cover features, psychological bias, and more.  Despite this 

knowledge, geographic profiling and serial offender analysis continues to be applied without 

explicitly accounting for the irregularities inherent within the surrounding physical and cultural 
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landscapes (Block & Bernasco, 2009).  Accordingly, there is very little literature that sufficiently 

addresses this issue within an existing analytical framework. 

1.5  A New Paradigm 

 The physical and cultural structures that define an offender’s activity space directly 

influence the offender's perceptions of criminal opportunity and target attractiveness.  These 

influences determine criminal mobility and target distribution (Brantingham & Brantingham, 

1981).  Contemporary geographic profiling models are generally incapable of accounting for 

these ecological structures.  As revealed earlier, most traditional techniques use methodologies 

that assume travel and opportunity are isotropic.  Models derived from these traditional metrics 

fail to approximate the actual conditions in which crime patterns occur.  The premise for this 

study posits that the distribution of linked crime scenes should exhibit characteristics that are 

consistent with the underlying landscape.  If these characteristics can be parameterized 

successfully within a geographic profiling model, it should produce more accurate results than 

those methodologies that do not.  The research presented here will examine the effectiveness of 

spatial models that are capable of accommodating the criminal activity space within a realistic, 

irregular landscape. 

 The practical significance of this research is demonstrated by means of a multi-faceted 

research approach. Through a series of peer-reviewed journal publications and a soon-to-be 

published manuscript, the author demonstrates the validity of this thesis by examining and 

assessing the efficacy of four ecologically enhanced geographic profiling techniques that have 

been modified to account for anisotropic surfaces:  (1) functional distance metrics applied to 

distance decay algorithm; (2) enhancing spatial distribution and circle theory techniques using a 

standard deviational ellipse; (3) land cover enhanced JTC estimation; and (4) incorporating land 
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cover within JTC estimates according to an empirical Bayesian formulation.  Accordingly, four 

individual hypotheses are formulated that test the assumptions and efficacy of this research: 

1.5.1   Evaluating the Usefulness of Functional Distance Measures When Calibrating 
Journey-to-Crime Distance Decay Functions 

 Capone and Nichols (1976) demonstrate that an offender's behavior in space is directly 

related to the urban structures that exist within the criminal's activity space.  The authors posit 

that this behavior, when analyzed in context to the spatial characteristics of the criminal 

commute, can yield insight into the offender's perceptions of opportunity.   Similarly, the 

perception of travel cost is inherently influenced by the offender's interpretation of the 

environment in which he/she operates.  In most cases, the de facto metric for modeling travel 

behavior is Euclidean in nature, which is often contrary to the general perception of travel cost 

(e.g., optimized for distance and/or time).  Therefore, the first essay of this research proposes to 

challenge contemporary JTC models by introducing two functional distance metrics: travel path 

and travel time functional distances.  Mathematically calibrated distance decay models based on 

functional distance metrics were used to generate criminal geographic profiles for a confessed 

serial killer operating in Baton Rouge, Louisiana.  Both the travel path (i.e., shortest road 

distance) and temporally optimized (i.e., quickest travel time) functional distance measures were 

calculated based on the impedance attributes stored within a linearly referenced transportation 

data layer of several parishes in Louisiana. Two separate JTC distance decay functions (i.e., 

negative exponential and truncated negative exponential) were mathematically calibrated for 

“best fit,” based on the distances between historic homicide crime scenes and offender anchor 

points (i.e., the residence).  A probability score was calculated for every point within the study 

area to indicate the likelihood that it contained the offender’s residence.  A profiles efficiency 

was assessed using a hit score value, which quantifies the area that must be searched in order to 
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locate the offender's residence.  Comparisons between the predicted and the actual residence 

revealed the procedural validity of functional distance metrics, but failed to find them 

significantly more efficient than existing methodologies when applied to the serial offender 

within the Baton Rouge study area (Kent, Leitner, & Curtis, 2006). 

1.5.2   Efficacy of Standard Deviational Ellipses in the Application of Criminal 
Geographic Profiling 

 The second essay uses simple spatial modeling techniques to determine whether it is 

possible to expose the offender's anchor point while accommodate the impact of the physical and 

cultural landscapes.  The premise for the study is that the distribution of linked crime scenes 

should exhibit a shape and orientation that is consistent with the underlying landscape.  Basic 

geographic principles of central tendency and spatial diffusion are used to analyze the output of 

circular and elliptical profile models generated for 30 serial burglaries and 67 serial robberies 

occurring in Baltimore, Maryland, between 1993 and 1997.  Two hypotheses were examined.  

First, a comparative analysis of the modeled output reveals that the standard deviational ellipse 

was significantly better able to predict the anchor point of a serial offender than profiles 

generated from circles.  But, the accuracy of the profiles came about at the expense of precision.  

Next, the position and orientation of each ellipse was examined in relation to the immediate 

landscape.  Findings revealed a weak, but significant, correlation between a profile's orientation 

and the mean linear orientation of the underlying road network.  Together, these findings 

demonstrated that landscape is a measureable parameter that can improve the accuracy of 

geographic profiling models (Kent & Leitner, 2008). 
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1.5.3   Utilizing Land Cover Characteristics to Enhance Journey-to-Crime 
Estimation Models  

 The third research topic proposes that JTC probability estimates filtered according to land 

cover classifications will improve the predictive capabilities of geographic profiles.  After 

establishing that the irregularities inherent in the underlying physical and cultural landscape can 

be modeled effectively using simple spatial distribution strategies, this study proposed to 

integrate the landscape according to a probability distance approach.  To assess the theory, 

empirically calibrated JTC probability estimates were constructed for a combined test sample of 

70 serial burglaries and robberies (353 offenses) that occurred in Baltimore between 1993 and 

1997.  Each JTC model was filtered according to land cover classification probability value 

associated with a dataset of previous offenders (i.e., the calibration sample) that resided within 

the Baltimore study area.  The product of the JTC estimate and the marginal probability of land 

cover effectively reduced a profile's search area.  Filtered and unfiltered geographic profiling 

models were compared according to three accuracy and two precision measures. Profiles were 

ranked according to prediction efficiency.  Results for four of the five comparisons indicate that 

filtered models are significantly more accurate and precise than non-filtered profiles for the 

Baltimore test sample (Kent & Leitner, 2009). 

1.5.4    Incorporating Land Cover within Bayesian Journey-to-Crime Estimation 
Models 

 The findings provided in the three previous investigations have led to the development of 

a new methodological approach for generating geographical profiles.  The fourth essay 

incorporates land cover classes within an empirical Bayesian probability framework. Unlike the 

previous two studies, the goal for this essay is to implicitly account for the offender's perceptions 

of opportunity and target attractiveness by explicitly accounting for the environment defined by 
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the criminal's activity space.  The efficacy of this approach was measured by comparing the 

output of seven traditional and land cover enhanced geographic profiles.  Profiles were generated 

for 52 burglary, robbery, and larceny serial offenses from the Baltimore offender dataset.  The 

seven models included the traditional JTC estimate, land cover filtered JTC, center of minimum 

distance, and various Bayesian formulated JTC estimates.   Results were assessed according to 

the predicted anchor point probability estimate, error distance measured between the predicted 

and actual anchor point, and hit score that quantifies the anchor point search cost.  Overall, land 

cover enhanced models performed significantly better than non-enhanced techniques for 

measures of hit score and probability estimation.   Results for tests measuring a profile's error 

distance were mixed, and failed to confirm significance between paired comparisons. 

1.6  Organization 

 As a journal style dissertation, each chapter in this document will explore a landscape 

enhanced geographic profiling strategy that has been, or will be published in a peer-reviewed 

scholarly journal.  Profiling techniques are introduced and assessed according to their ability to 

accommodate the physical and cultural landscape, and their ability to predict a serial offender’s 

anchor point accurately and precisely.  Each chapter represents a publication or manuscript.  

Each chapter includes the research question, hypothesis, appropriate assessment techniques, 

discussions, and conclusions. The concluding chapter will summarize and discuss the findings of 

this research, focusing on the consequences and implications of the research in context to its 

applicability to the criminal investigative process. The works cited for each manuscript have 

been combined and are accessible in the bibliography located at the end of this document.  

Reprint permissions are included in the dissertation's appendix. 
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“Criminal mobility is related to urban structure and that the analysis of movement behavior will 
yield insight into offender decision-making and spatial preferences and contribute significantly 
to our understanding of the urban system as a crime opportunity structure.” 

- Capone and Nichols (1976, p. 200). 

 

CHAPTER 2:   EVALUATING THE USEFULNESS OF FUNCTIONAL 
DISTANCE MEASURES WHEN CALIBRATING  

JOURNEY-TO-CRIME DISTANCE DECAY FUNCTIONS*

  

 

2.1  Introduction 

 Spatial analysis has long been a valuable tool used within the criminal investigative 

process. This is especially true for serial offense cases where criminologists apply geographic 

profiling to model offender mobility and crime distribution patterns in order to estimate a 

criminal's likely residence. Yet, traditional analytical methodologies have avoided the utilization 

of functional distance measures when modeling an offender's journey-to-crime within a diverse 

and varied landscape. By substituting straight-line Euclidean distances with travel-path 

functional distance measures, the predictive utility and technological costs associated with 

geographically profiling a localized serial killer was assessed using mathematically calibrated 

distance decay models. 

2.2  Background 

 The theory and conceptual framework of this research is built upon environmental 

criminology (Brantingham & Brantingham, 1981).  Environmental criminology consists of a 

number of theoretical concepts, including routine activity, crime pattern, rational choice, and the 

buffer zone postulate that provide an ecological heuristic for understanding the relationship crime 

                                                 
* Reprinted by permission of Elsevier, Ltd. for Computers, Environment, and Urban Systems, (2006), vol. 30, pp. 
181-200. 
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has with place. These concepts establish a quantitative and qualitative approach for analyzing the 

operational, behavioral, perceptual, social, legal, cultural, and geographic factors of a crime 

(Rossmo, 2000).  

 According to the routine activity theory, the investigator explores the characteristics of a 

predatory crime by dissecting it into its constituent elements: a willing offender, a suitable target, 

and an environment that is perceived to be absent of a capable guardian (Felson & Clarke, 1998; 

Rossmo, 2000). The intersection between the offender and victim activity space implicates a 

location where the offender is comfortable enough to commit the offense (Canter & Gregory, 

1994).  As such, routine activity theory supports the concept that the opportunity for crime can 

manifest itself in the normal activities of everyday life. 

 While routine activity theory does support observations that criminal opportunity can 

exist anywhere within the offender's awareness space, an offender does not necessarily choose 

crime sites randomly. Instead, research finds that criminal activity is spatially dependent upon 

proximity to the offender's activity nodes, which can include the offender's residence, place of 

work, and/or favorite recreation spot (Canter & Gregory, 1994). These activity nodes define an 

offender's awareness space. When examined geographically, the processes that an offender uses 

for target selection can reveal patterned structures that describe how an offender operates within 

his/her awareness space, a concept known as crime pattern theory (Brantingham & Brantingham, 

1981; 1984; Rossmo, 2000). 

 The rational choice theory postulates that criminal behavior is an outcome of decisions 

that are influenced by rational consideration of the efforts, costs, and rewards associated with a 

crime (Brantingham & Brantingham, 1984). When examining the geographic characteristics of 

certain types of crime, rational choice theory can describe another environmental criminology 
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concept: the offender's buffer zone (Brantingham & Brantingham, 1984). The buffer zone 

represents an area surrounding an offender's particular activity node, most notably the residence, 

from which little to no criminal activity will be observed. This buffer zone is seldom observed 

for spontaneous and/or crimes of passion. Conversely, research suggests that such a zone will 

most likely occur for predatory offenses, which can be characterized as pre-meditated (Canter & 

Larkin, 1993). 

2.3  Journey-to-Crime Modeling 

 As a precursor to geographic profiling, Journey-to-Crime techniques are based on 

research that shares much of its core analytical functionality with traditional transportation travel 

demand models (Beimborne, 1995). These techniques were originally founded on macro level 

sociological research developed from the Chicago School of the 1920s (Ratcliffe, 2001), with 

particular connection to the Burgess zonal model (Harris & Lewis, 1998). However, the 

predictive capability of this approach is suspect due to the high-levels of data aggregation and 

ease of misinterpretation (Gore & Tofiluk, 2002). 

 This research applies the Journey-to-Crime routine implemented in CrimeStat® II to 

model offender travel characteristics within an urban environment. Some of the more traditional 

models implemented for journey-to-crime include—but are not limited to—mean center and 

median center, center of minimum distance, medial circles, mobility triangles, and distance 

decay functions (Rossmo, 2000). Selecting the most appropriate modeling application depends 

entirely on the characteristics of the environment in which a crime occurs, usually requiring a 

trial-and-error approach (Levine, 2002). Understanding the characteristics of the various journey-

to-crime models can aid in the decision making process.  
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 The mean and median center, as well as the center of minimum distance use different 

approaches to measure the center of a distribution of crime sites. The medial circles technique 

utilizes circle theory to define an area around the occurrences of each offense to identify and 

develop a list of likely suspects. Each circle's radius is defined by Journey-to-Crime measures of 

similar crime types. The mobility triangles approach examines the relationship between offender 

residence, target location, and crime scene in order to solve a crime (Godwin, 2003). Finally, the 

most effective technique for journey-to-crime analysis is the distance decay function.   

Distance decay functions are quantitatively rooted in the family of gravity models based 

on Isaac Newton's fundamental law of attraction. The term, “distance decay,” characterizes how 

the attraction between two bodies decreases as the distance between them increases. When 

placed in the context of modeling travel behavior, the concept characterizes how individuals 

typically prefer to produce short commutes rather than long trips for the normal travel activities 

of their everyday lives (Harries, 1999). Crime, like pedestrian traffic, shopping, telephone 

conversations, migration, and a host of other behavioral interactions, is subject to the general 

class of inverse distance variations formulated as gravity laws (Smith, 1976). Transportation 

planners typically use distance decay functions within their mathematical models to help 

simulate human travel characteristics (Beimborne, 1995; Levine, 2002). In terms of its 

usefulness for modeling criminal mobility, distance decay can be used to represent how a 

criminal offender travels within his or her awareness space. Capone and Nichols (1976) 

investigate the relationship between urban structure and criminal mobility by describing and 

explaining the distance biases of robbery offenders in metropolitan Miami. Lu (2003) goes 

beyond the analysis of a criminal's travel behavior to include journey-after-crime characteristics 

and finds that journey-after-autotheft involves both distance and direction biases. 
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 As noted by Capone and Nichols (1975), the average distance an offender is willing to 

travel will vary according to the type of crime, method of offense, time of day, and value of the 

target (Felson & Clarke, 1998). A number of functions are available that can effectively measure 

the observable distance decay characteristics of a criminal's Journey-to-Crime.  Brantingham and 

Brantingham (1981) suggested that a buffered normal function could be used to describe a 

criminal's distance decay following the hypothetical buffer zone. However, Rhodes and Conly 

(1981) observed that a negative exponential distance decay curve exhibited the best fit when 

used to characterize the distribution of events relating to serial burglars, robbers, and rapists. 

 Levine (2002) provides a detailed list of various theoretical and mathematical modeling 

functions used by transportation researchers that include linear, negative exponential, normal, 

lognormal, and truncated negative exponential distance decay curves, among others. Each 

function possesses various characteristics that can be utilized by journey-to-crime models. For 

example, the normal, lognormal, and truncated negative exponential are functions that 

characterize how the spatial distribution of criminal activities reaches a peak at a certain distance 

away from the haven (i.e., the offender's  residence) before exhibiting a decay as the distance 

from the origin increases. This type of function, most notably truncated negative exponential, is 

often used to describe the presence of the Brantinghams’ proposed buffer zone effect 

(Brantingham & Brantingham, 1981). However, research in spatial interaction modeling points 

out that parameter estimates used in exponential functions are scale-dependent.  In practical 

terms this means that exponential distance decay functions cannot be transferred from one study 

area to another, but have to be calibrated anew in order to account for differences between study 

environments travel distances (Fotheringham & O'Kelly, 1989). Only recently have researchers 

investigated the effectiveness of the various different distance decay formulae for estimating the 
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offender's haven (Canter et al., 2000; Levine, 2002; Snook et al., 2004). This research tests the 

effectiveness of the negative exponential and truncated negative exponential distance decay 

formulae for estimating the offender's haven. 

2.4  Criminal Geographic Profiling 

 The geographic distribution and associated patterns of linked crime sites are clues left by 

an offender that describes the geographic behavior associated with a criminal. This approach 

provides a good example of a contemporary environmental criminology analysis: the process of 

exploring the relationship between crime, the target, and space/place. More specifically, these 

clues represent the elements of how an offender perceives his or her immediate awareness space 

and the distribution of potential targets (Brantingham & Brantingham, 1984). For each 

successive offense, these clues can be examined and combined, refining the investigator's 

understanding of the offender's travel behavior. Accordingly, exploring the geographic hunting 

strategies of an unknown serial offender, defined by the distribution of linked crime sites, can 

provide valuable resources for the successful apprehension of the perpetrator (Levine, 2002; 

Rossmo, 2000). When combined with the geo-statistical modeling capabilities of a GIS, these 

techniques form the basic analytical methodologies associated with modern geographic profiling 

(Harries, 1999).    

 Criminal geographic profiling is a decision support tool used by law enforcement to make 

estimates about the likely location of a serial offender's haven (Godwin, 2003; Rossmo, 2000). 

Law enforcement can use geographic profiling models to maximize limited resources and create 

investigative strategies that focus on those locations that possess significant likelihood of being a 

part of an offender's hunting area (Canter, 2003). Rossmo (2000) notes that Journey-to-Crime 

estimates, mental map interpretations, Thiessen polygons, and other analytical approaches can 
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be, and have been, successfully applied for the geographic analysis of crime. In certain 

circumstances, geographic profiling can also be used as a forensic tool capable of verifying the 

existence of a serial offender (Newton & Swoope, 1987).  

 There are many techniques available that can generate geographic profiles. The 

application of spatial analysis and mapping to develop a geographic profile was first done by 

Holt in 1979 (Gates & Shah, 1992; Rossmo, 2000), followed by Kind in 1980s (1987a; 1987b), 

LeBeau (1986; 1987a) and Newton and Swoope (1987). Among the modern and contemporary 

geographic profiling models are Dragnet (Canter, 2003), Rigel™ Criminal Geographic Targeting 

(Rossmo, 2000), Predator® (Godwin, 2003) and the CrimeStat® II journey-to-crime routine 

(Levine, 2002). Dragnet was developed by Canter's Center for Investigative Psychology in 

Liverpool, UK, and applies the distance decay and buffer zone concepts identified by research in 

environmental criminology (Canter, 2003; Canter et al., 2000). Criminal Geographic Targeting 

(CGT) is another approach to the profiling construct, which was developed by Rossmo (2000). 

CGT follows a process in which geographic models are used to develop probability surfaces 

indicating the likelihood of an offender living at a particular location. The CGT algorithm 

utilizes distance decay functions that incorporate the theoretical buffer zone to describe the 

criminal hunting process expressed by a serial offender as he or she travels between haven and 

crime scene. Building upon the conceptual framework of Canter's Dragnet, Godwin (2003) 

developed a geographic profiling application, called Predator®. This geographic profiling 

application predicts offender residences, presumably, using smallest space analysis (SSA) to 

represent where an offender resides. According to Godwin (2003) the advantage of Predator® is 

that it can measure the angular position of a crime, which can significantly support how a 
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criminologist can direct its investigative strategies. However, very little published information 

has been identified regarding how Predator® implements the models. 

 One major limitation of all contemporary geographic profiling applications is that the 

offender's travel behavior to and from the crime scenes is conventionally measured with a 

straight-line (Euclidean) distance. This means that current profiling models assume an isotropic 

surface, where impedance is uniform in every direction.   As a consequence, these models do not 

accommodate the inherent variations exhibited by a particular transportation network, such as 

path, direction, speed, landscape features, land-use policies, boundaries, congestion, etc. A more 

realistic way of traveling in downtown areas of larger US cities is along the rectilinear street 

pattern, a travel behavior that can be measured by the Manhattan distance. This distance metric 

results in approximately 1.4 times longer trips when compared to the Euclidean metric. The 

modeling process used to develop a geographic profile for this research is founded on the 

conceptual application of the CrimeStat® II journey-to-crime routine (Levine, 2002). This routine 

is the “platform” on which the usefulness of applying functional distance measures (shortest 

travel path and quickest travel time) is evaluated. 

2.5  Characteristics of a Serial Offender 

 Criminal geographic profiling is primarily constructed for serial crimes, which include 

serial murder, serial rape and sexual assault, serial exposures, serial arson, serial robbery, 

kidnapping, and other crimes that possess unusual spatial characteristics (Rossmo, 2000). This is 

because the distribution of multiple, linked crime scenes provide the necessary elements for 

determining the patterns attributable to a single personality (Canter, 2003; Canter et al., 2000). 

As such, Rossmo (2000) provides a series of basic conditions that are used to determine the 

utility of a geographic profile: 
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• A series of linked crimes must have occurred. 

• There must be a minimum of five crime sites within that series. 

• The investigation warrants the effort and associated expense needed to produce a profile. 

 

 Assessing the suitability for a geographic profile begins when an investigation is 

reasonably certain that a serial offender is present.  In a process commonly referred to as linkage 

analysis, investigators attempt to connect various crime scene elements to a single offender 

through the forensic exploration of evidence (Canter et al., 2000; Canter & Larkin, 1993).  DNA 

testing, fiber analysis, and ballistics represent a small fraction of the numerous techniques 

available to the criminologist.  Once linked, the investigation must attribute each individual 

crime to a series.  Most experts agree that a serial offender can be defined as an individual (or a 

collective group of individuals) who (Hinch & Hepburn, 1998; Holmes & Holmes, 1998): 

• Commits an offense on two or more occasions over a period of time, characterized by 
cooling-off intervals between each event. 

• Commits offenses that lack a perceptible relationship with his/her target. 

• Chooses targets that lack a perceptible relationship with each other. 

• Commits offenses with similar Modus Operandi (MO) and patterns. 

• Commits offenses that occur in different geographic locations. 

• Commits offenses that appear to possess a psychological component. 

• Commits offenses that appear to only have symbolic value. 

Arguably, various elements of the list could be added or removed with relative justification.  

 Newton and Swoope (1987) propose that serial offenders be divided into broad 

categories: “mobile” (geographically transient) and “static” (geographically stable).  Mobile 

offenders commit crimes over large areas that cross cultural and psychological boundaries. These 

offenses predominantly occur outside the offender's awareness space and involve complex 

hunting strategies. A specific characteristic of a mobile offender is that his or her hunting area 
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lacks a definable anchor point from which the offender operates (Rossmo, 2000). Conversely, 

static offenders commit crimes within a confined area, usually bounded by psychological barriers 

and landscape features. Furthermore, static offenders typically operate within their awareness 

space as they travel between activity nodes. As such, the offender will likely have an anchor 

point (the haven) from which to operate. These characteristics have been observed and are 

supported by numerous published findings (Canter & Larkin, 1993; Hickey, 1997; Holmes & 

Holmes, 1998).  

 As noted by Rossmo (2000), the primary assumption of a geographic profile is that the 

offender's haven lies within the distribution of crime sites. Accordingly, mobility characteristics 

represent a critical element for providing effective geographic profiles. For every crime site that 

can be attributed to a serial offender, the geographic profile's accuracy increases. Accordingly, 

both Rossmo (2000) and Newton & Swoope (1987) propose that a minimum of five distinct 

locations be identified for analysis. 

 When a localized (static) serial offender (marauder) hunts within his or her activity space, 

he/she does so within a culturally, psychologically, and geographically homogeneous landscape. 

As such, that landscape upon which the offender basis his or her movement is contextually the 

same. Therefore, the ability to model that offender's movement between his or her activity nodes 

is more easily achieved because there are little variations in the limiting factors that control 

movement. Conversely, the dispersed (mobile) serial offender (commuter) hunts across various 

cultural and psychological environments that result in a collection of continuously complex, 

heterogeneous landscapes. The activity space in which the commuting offender travels is not 

contextually consistent, and will often lack definable activity nodes. It possesses dissimilar land-

use policies, geographic features, cultural constructs, and so on. As a consequence, the ability to 
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model offender behavior across heterogeneous ecologies is severely handicapped.   Any 

geographic profile created for a non-localized offender will be founded on a diluted collection of 

crime sites that will most likely lack meaningful patterns due to the variability associated with 

the mobility of the offender.  Consequently, modern and contemporary geographic profiling 

models yield best results when applied to a geographic stable serial offender, who operates from 

a definable anchor point (mostly the offender’s residence).  These models should not be applied 

to mobile offenders, who commit crimes over large areas and do not possess a definable anchor 

point.  Canter (2003) discusses the complexities and issues involved in geographically profiling a 

mobile serial offender. It should be noted, though, that even the “homogenous” landscape of the 

localized serial offender is still a spatially complex environment where all information cannot be 

processed simultaneously, requiring a degree of hierarchical processing where “like” places are 

nested together (Fotheringham & O'Kelly, 1989).  

2.6  Study Area and Data 

 The study area used by this research is defined by the maximum spatial extent of crime 

locations associated with the confessed Baton Rouge serial killer, Sean Vincent Gillis. The 

2094.75 mile2 study area consists of 4,175 grid cells and covers the following Louisiana parishes 

(counties) partially or completely:  Ascension, East Baton Rouge, East Feliciana, Iberville, 

Livingston, Point Coupee, St. Helena, St. Martin, West Baton Rouge, and West Feliciana.  

 The sample data typically utilized for an investigation of this nature incorporates crime 

data specific to both the study area and the type of serial offense investigated. As Levine (2002) 

notes, geographic profiling models should be calibrated for the unique parameters that 

characterize specific criminal offenses for specific jurisdictions. Following these 

recommendations, two data sets were collected for this research. The first data set was gathered 
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from police reports made available by the Homicide / Armed Robbery Division, Baton Rouge 

Police Department (BRPD). It includes a total of 497 homicide cases reported over a 7-year 

period from 1991 to 1997 (Leitner & Binselam, 1998). Of these, 325 had known offender 

residence locations, of which 301 were successfully associated with a crime location and geo-

coded to the road network of the study area. The second data set includes a total of nine crime 

sites that have been associated with the serial killer. Eight of the nine crime sites are body 

dumpsites and one is a point of fatal encounter. Gillis' hunting style can be described as that of a 

typical localized marauder. The locations for all nine crime sites have been reported in detail in 

the local news media, as was his residence following his apprehension on April 29, 2004. Four of 

the nine crime sites and the residence of the serial killer are located in Baton Rouge (Figure 2.5). 

This information reflects the status of the ongoing investigation at the beginning of August 2004, 

when this manuscript was revised and resubmitted.  

ESRI® ArcView™ GIS 3.3 (ESRI, 2002) and the Geographic Data Technology's 

Dynamap® Transportation road network (GDT-Dynamap®) were used for both geocoding 

addresses and network path analysis. Published in 2002, the GDT-Dynamap® data provides a full 

range of addresses which are appropriately segmented for geocoding, as well as including the 

impedance values (speed limit, direction, and time) necessary for the network path analysis used 

to calculate functional distances. 

2.7  The Criminal Geographic Profile Procedure 

 The modeling process used to develop a criminal geographic profile is founded on the 

conceptual application of the CrimeStat® II journey-to-crime routine (Levine, 2002). In order to 

establish a sufficient representation for the travel patterns of like criminals, the calibration group 

must be large enough to ensure reliable calibration parameters.  Accordingly, the 1991–1997 
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homicide data represent a suitable calibration group from which to empirically derive the most 

appropriate distance decay models. The crime locations of the serial killer represent the test 

group. Gillis's first known victim was an 82-year-old woman, who was killed more than ten 

years ago in March 1994. His last known murder was a 45-year-old woman, found in January 

2004. This means there is a sufficient temporal overlap between the calibration and test group. In 

addition, the major arteries of the road network in and around Baton Rouge have not changed 

since the beginning of the 1990s.  

 The entire criminal geographic profiling procedure is composed of two parts:  First, a 

calibration routine identifies an optimal distance decay function based on the travel 

characteristics exhibited by the calibration group of homicide offenders.  The process for 

calibrating a distance decay function uses the traveled distances measured between each origin 

and destination stored within the calibration group data set.  The origin represents the offender's 

residence while the destination represents the point of fatal encounter or body dumpsite 

associated with that offender. The second part integrates the calibrated distance decay functions 

within journey-to-crime routines in order to estimate the residence of the serial killer.  The 

resulting geographic profile is mapped for the study area and used to illustrate the probability of 

each cell being the serial killer's residence. 

 Using the crime locations stored within the test group data set (eight body dumpsites and 

one point of fatal encounter), the serial killer's residence is estimated based on the 

mathematically calibrated distance decay function defined for the observed travel patterns of the 

calibration group (the 301 homicide cases). The calibrated function mathematically assigns a 

value for each grid cell centroid within the study area. Called a “probability score,ˮ the values 
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are used to indicate the likelihood that any location within the study area is the serial killer's 

likely residence.  

 The probability surface estimating the likely serial killer's residence is represented by a 

density map, termed a geoprofile (Rossmo, 2000). The highest scored grid cell represents the 

estimated residence (peak likelihood).  Because two different modeling functions will be 

examined, it is necessary to measure each technique's effectiveness based on its ability to 

prioritize a cost-effective search area from which to identify the individual's residence (Canter et 

al., 2000).  Effectiveness is assessed in two distinct ways: the error-distance and search-cost. 

Contemporary journey-to-crime models assess error by measuring the distance between the 

predicted and the actual residence (of the serial killer).  The second method estimates accuracy 

by identifying the proportion of the area that must be searched in order to successfully identify 

the serial killer's residence. 

2.8  Analysis and Results 

 Using direct-path Euclidean, indirect-path Manhattan and two different functional 

distance measures (shortest travel-path and quickest temporal-path), eight geographic profiles 

were created using two unique distance decay models. The results of all eight geographic profiles 

are summarized in Table 2.2 [page 40] and only the best and most accurate geographic profile is 

mapped (Figure 2.2). 

2.8.1   Frequency Distributions of Homicides by Distance Metric 

 Figure 2.1 illustrates the frequency distributions for each distance measure calculated 

from the calibration group data set (the 301 homicide cases). The frequency distribution for the 

indirect-path Manhattan metric is not shown here, as it is a computed metric based on the values 

measured for the direct-path Euclidean distance. Results show that independent of the distance  
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A)  

B)  

C)  

Figure 2.1:  Frequency distributions of homicides by distance metric: (A) direct-path Euclidean 
distances, (B) shortest travel-path, and (C) quickest temporal-path. 
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metric used, the frequency distributions look markedly similar. The significant spike (very high 

frequency) near the offender's residences corresponds with environmental criminology research 

results, which indicate that the majority of human activities are performed within close proximity 

to the home. More than half of all homicides are committed at a location that is within one mile 

of the offender's residence. In contrast to environmental criminology research, a buffer zone 

effect is not observed with any of the distance metrics used. As the distances increase, there is a 

general decrease in activities for each distance metric. The maximum distance an offender is 

willing to travel to commit a homicide is almost 12 miles straight-line, approximately 15 miles 

using the shortest path in the road network and just over 25 minutes in travel time using the 

quickest route. 

2.8.2   Journey-to-Crime Calibration Models 

 Two distance decay functions were selected to model the frequency distributions 

observed in Figure 2.1. These functions included negative exponential (Equation 2.1) and 

truncated negative exponential. The latter is a joined function consisting of a linear (Equation 

2.2a) and a negative exponential (Equation 2.2b) part. Both functions are implemented in the 

CrimeStat® II journey-to-crime routine (Levine, 2002) and their applicability to geographic 

profiling has been widely supported in the literature (Section 2.3). The truncated negative 

exponential function simulates the buffer zone around the offender's haven where little to no 

criminal activity can be observed (Section 2.2). The negative exponential function does not.  The 

relationship is exposed as: 

𝑦𝑦 = 𝐴𝐴𝑒𝑒−𝐵𝐵𝐵𝐵  (2.1) 
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where y is the likelihood that an offender will commit a crime at a particular location, x is the 

distance between that particular location and the offender's haven, A and B are parameters to be 

estimated, and e is the base of the natural logarithm.  

𝑦𝑦 = 𝐶𝐶𝐶𝐶  for x > 0 and ≤ 0.5 miles (0.858 min) 

𝑦𝑦 = 𝐷𝐷𝑒𝑒−𝐸𝐸𝐸𝐸   for x > 0.5 miles (0.858 min) 

(2.2a) 
 

(2.2b) 

where y is the likelihood that an offender will commit a crime at a particular location, x is the 

distance between that particular location and the offender's haven, C, D, and E are parameters to 

be estimated, and e is the base of the natural logarithm.  

 

 
 
Figure 2.2: Calibrated distance decay functions by direct-path Euclidean metric. 
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Figure 2.3: Calibrated distance decay functions by travel-path functional distance metric. 
 
 

 Figure 2.4: Calibrated distance decay functions by temporal-path functional distance metric. 
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 Using SPSS® 11.0 for Windows (SPSS, 2001), both functions were individually 

regressed for each distribution, thus mathematically calibrated to produce a “best fit” model of 

the provided distributions. Models were organized according to the four distance metrics used for 

this investigation: direct-path Euclidean, indirect-path Manhattan, shortest travel-path, and 

shortest temporal-path. The results of all models are visually presented in Figures 2.2 – 2.4. 

Calibrations were not specifically required for the Manhattan metric as it measures distances as a 

function of Euclidean distances between two points. As such, the Manhattan metric uses the 

same calibration decay model as the straight-line Euclidean.  Estimated parameters, standard 

errors, and coefficients of determination (R2) for all calibrated distance decay functions, with the 

exception of the Manhattan distance, are summarized in Table 2.1. 

 The negative exponential model clearly under-estimates the significant spike at the 

beginning (the first one mile) of the frequency distribution for each distance metric, but provides 

a relatively good fit for the remainder of the distribution. In contrast, the truncated negative 

exponential model fits the spike in all distributions very well, but mostly over-estimates the 

distributions beyond a one-mile distance (Figs. 2.2 – 2.4). The truncated negative exponential 

model with distances measured as direct-path Euclidean provides the overall best statistical fit 

(R2 = 0.851). The truncated negative exponential model combined with shortest travel-path 

distances performs the worst, but still captures 72% of the variations in the original frequency 

distribution.   Independent of the calibration model, Euclidean distances provide the best 

statistical fit, followed by temporal-path and travel-path distances (Table 2.1). 

2.8.3   Best Performing Geographic Profile 

 All geographic profiles consist of a density surface map measuring 75 columns x 57 rows 

completely enclosing all crime locations used in this research. Each individual cell covers an  
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area of 0.49 miles2 (0.7 x 0.7 miles) and is assigned a probability score indicating the likelihood 

that it is the residence of the serial killer, Gillis (Figure 2.5). The chosen cell size provides a 

balance between a large enough study area while ensuring consistent computer performance 

when estimating geographic profiles. 

 Assessing the predictive utility of a geographic profile is ultimately measured by an 

investigator's ability to prioritize an efficient search area from which to identify an individual's 

residence (Canter et al., 2000). As noted earlier, such a strategy can be developed by evaluating 

accuracy in two distinct ways: the error-distance and search-cost. Error-distance measures the 

straight-line distance between the centroid of the grid cell representing the predicted residence 

(peak likelihood) and the actual residence of the serial killer. Search cost is determined by 

Table 2.1: Parameter Estimates and Coefficient of Determination for Calibrated Distance 
Decay Models 

Distance Metric Calibration Model 
Parameter Estimates (standard errors) 

R2 A B C D E 
Direct-Path 

Euclidean 
Negative 

Exponential 
11.628 
(2.624) 

-0.327 
(0.035) - - - 0.819 

Direct-Path 
Euclidean 

Truncated Negative 
Exponential - - 183.388 15.975 

(2.977) 
-0.288 
(0.028) 0.851 

Travel-Path Negative 
Exponential 

9.244 
(2.419) 

-0.271 
(0.034) - - - 0.728 

Travel-Path Truncated Negative 
Exponential - - 165.563 12.217 

(3.043) 
-0.243 
(0.032) 0.720 

Temporal-Path Negative 
Exponential 

10.562 
(2.297) 

-0.163 
(0.018) - - - 0.797 

Temporal-Path Truncated Negative 
Exponential - - 85.961 14.905 

(3.140) 
-0.139 
(0.016) 0.785 

The parameter notations (A–E) refer to the same parameter notations used in Eqs. 2.1, 2.2a, and 
2.2b.  No standard error for the parameter of the linear part of the truncated negative exponential 
model was estimated, but directly calculated from the original frequency distribution of 
homicides. All R2 values are highly significant at p < 0.01. 
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calculating each geoprofile's hit score percentage: the ratio of the total number of grid cells with 

a probability score equal to or higher than the hit score (the probability score assigned to the 

actual residence), to the total number of grid cells (Rossmo, 2000). A low hit score percentage 

indicates a more accurate geoprofile. Between the two methods, the hit score percentage is a 

better measure of a geoprofiles predictive utility because it identifies the amount of effort a 

criminal investigation would require to successfully identify the offender (i.e., the number of grid 

cells to search before apprehending the suspect).  

 Eight geographic profiles combining each distance metric with each distance decay 

model are shown in Table 2.2. Overall, geoprofiles created with the negative exponential 

distance decay function predict the residence of the serial killer more accurately. Of all distance 

metrics, indirect-path Manhattan distances performed slightly better than direct-path Euclidean. 

In contrast, geographic profiles created from the two functional distance metrics estimate the 

residence of the serial killer rather poorly. This is good news, because geographic profiles based 

on functional distance metrics, and especially shortest travel-path are time-consuming, 

computationally intensive, and costly to create. In contrast, geoprofiles created from Euclidean 

and Manhattan distance metrics are readily available in existing software packages. 

 The straight-line distance between the predicted and the actual residence (error distance) 

measured a very low distance of 0.49 miles for all eight geoprofiles. Of those, three geoprofiles 

are able to identify the actual residence of the serial killer with an averaged hit score of 0.05%, 

approximately 0.98 miles2, of the 2,094.75 miles2 study area. Relative to the size of this large 

study area, this is an extremely low hit score and a very small area to be searched (Table 2.2).  

 Figure 2.5 illustrates a density map for one of the three best performing geoprofiles, 

combining the Euclidean distance metric with the negative exponential distance decay function.  
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Figure 2.5: Best performing geographic profile overall. 
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The main map shows a portion of the study area with six of the nine crime sites. The inset map in 

the lower right corner shows the entire study area including all nine crime sites. The actual 

residence of the serial killer clearly falls within the two grid cells with the highest probability 

scores. These two cells cover a mostly residential neighborhood in the southern part of the city of 

Baton Rouge with single-family houses, apartment complexes, retail stores, and some gas 

stations. 

2.9  Discussion of Results 

 The geographic profiles created in this research predicted the actual residence of a Baton 

Rouge serial killer extremely accurately. The error distance for all geoprofiles was within 0.49 

miles of the actual residence and the three best profiles estimated an averaged hit score of 0.05%, 

Table 2.2: Geographic Profile Model Results 

Distance Metric Calibration Model 
Hit 

Score 
(%) 

Accuracy 
(%) 

Grid 
Cell 

Count 

Search 
Cost 

(miles2) 

Error 
Distance 
(miles) 

Direct-Path 
Euclidean 

Negative 
Exponential 0.05 99.95 2 0.98 0.49 

Direct-Path 
Euclidean 

Truncated Negative 
Exponential 0.07 99.93 3 1.47 0.49 

Indirect-path 
(Manhattan) 

Negative 
Exponential 0.05 99.95 2 0.98 0.49 

Indirect-path 
(Manhattan) 

Truncated Negative 
Exponential 0.05 99.95 2 0.98 0.49 

Travel-Path Negative 
Exponential 0.19 99.81 8 9.32 0.49 

Travel-Path Truncated Negative 
Exponential 0.22 99.78 9 3.92 0.49 

Temporal-Path Negative 
Exponential 0.24 99.76 10 4.9 0.49 

Temporal-Path Truncated Negative 
Exponential 0.26 99.74 11 5.39 0.49 
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defining a search area of 0.98 miles2. These results strongly support the notion that geographic 

profiles should be created and used as often as possible when a criminal investigation involves a 

serial offender. The results also indicate that a geographic profile cannot identify the exact 

location of the residence of the serial offender. However, from a practical point of view, law 

enforcement can focus their limited resources and investigative strategies to the search area 

identified by a geographic profile.  

 In this research two different distance decay functions and four different distance metrics 

were evaluated for their usefulness to geographic profiling. The results reveal that the negative 

exponential function performs slightly better than the truncated negative exponential function. 

This might be explained by the lack of a buffer zone of little to no criminal activities around the 

offender's residences in the calibration data set. The selection of an appropriate distance decay 

function to model the spatial distribution of crime scenes from the calibration data is an 

important step in the creation of a geographic profile. Another important step is how the travel of 

the serial offender to and from the crime scene is measured. The results in this research clearly 

suggest that the best and most accurate geoprofiles are created when distances are measured as 

direct-path Euclidean or indirect-path Manhattan. When distances are measured using the 

shortest or the quickest route through a street network, the size of the search area becomes four 

to five times larger, when compared to distances measured with Euclidean or Manhattan metrics. 

All modern and contemporary geographic profiling models measure travel distances as straight-

line (and some with Manhattan distances, as well) and the results in this research find it 

unnecessary to add functional distance measures into existing models. These findings support 

research by Canter (2003), which suggests that the actual travel path does not define the 

offender's awareness space.  Rather, the offender's behavior is predicated on the individual's 
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mental map - the selective perception of physical features within the actual landscape. As such, 

the offender perceives the path between two points as a straight line.  

 Why shortest travel-path and quickest temporal-path performed so poorly is not clear. 

The results may be unique to the specific crime data and study area used or may reveal a general 

pattern in geographic profiling. To answer this question, the same research should be repeated 

with similar crime data in different study areas. There are many more research questions related 

to geographic profiling that are worthwhile to be pursued further. One example would be the 

development of a geographic profiling model for mobile serial offenders (Canter & Larkin, 

1993). A second example would be to find out if the travel behavior of non-criminals differs 

significantly from the travel behavior of criminals (Kent, 2003). If there is no difference, then 

non-criminal travel behavior could be used to calibrate distance decay functions in geographic 

profiling models. Non-criminal travel behavior could be easily obtained from travel-diary and 

commuter surveys. A third example relates to the spatial choice decision making and the concept 

of competing destinations (Curtis, 1998; Curtis & Fotheringham, 1995; Fotheringham, 1986a; 

1986b; 1988; Fotheringham & Curtis, 1999; Fotheringham & Trew, 1993) and how this concept 

could be implemented and evaluated for its usefulness in geographic profiling models.  

 Spatial choices are not made involving all potential geographic locations due to the 

overwhelming number of spatial alternatives; rather these locations are stored as hierarchical 

clusters with similarly defined elements (Fotheringham, 1981). The structure of this hierarchy 

will vary according to the amount of available spatial information, with individuals originating in 

more densely-packed environments having more evolved spatial surfaces (Gould, 1975), which 

in turn can result in a more strongly defined hierarchical decision tree containing larger clusters.  
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 It is reasonable to believe that the serial killer is likely to process location according to 

accessibility and a range of attributes, and that due to the number of these spatial options a form 

of hierarchical processing is employed. If this is so, then it is important to include this 

hierarchical processing of choice in the model formulation as it has been shown that distance 

decay based models, in other words aspatial choice models, can be misspecified, producing 

spurious associations regarding the impediments of distance (Fotheringham, 1986c).  
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“Landscapes ‘work,’ that is, things flow rationally through them. The streams flow in accordance 
with laws. Routes connect such as to form a hierarchically organized network.  Any occupant of 
the landscape moves in terms of this network; and the pattern that his movements create focuses 
on the places that are most important to him, usually home or work.” 

 -Milton B. Newton, Jr. (1988, p. 9) 

 

CHAPTER 3:   EFFICACY OF STANDARD DEVIATIONAL ELLIPSES IN THE 
APPLICATION OF CRIMINAL GEOGRAPHIC PROFILING*

  

 

3.1  Introduction 

The primary objective of a criminal geographic profile is to analyze the distribution and 

pattern of linked crime scenes in order to estimate the likely residence of a serial offender. 

However, developing a meaningful profile is seldom achieved easily.  Crime scenes are typically 

distributed in seemingly random patterns, making it difficult to identify trends and characteristics 

that implicate a single perpetrator (Brantingham & Brantingham, 1981; Canter & Larkin, 1993; 

Canter & Gregory, 1994; Rossmo, 2000).  Yet, research consistently demonstrates that crime 

scenes are not located randomly (Brantingham & Brantingham, 1981; Canter & Gregory, 1994; 

Rossmo, 2000; Rengert et al., 1999; Kocsis & Irwin, 1997; Kocsis et al., 2002; Harries, 2006).  

Rather, they occur at the confluence of offender, target, and opportunity (Brantingham & 

Brantingham, 1981; Cohen & Felson, 1979).  As a result, these locations represent a partial 

record of the offender’s spatial preferences that are, to some extent, determined by the immediate 

landscape, or target backcloth (Brantingham & Brantingham, 1981; Rossmo, 2000; Capone & 

Nichols, 1976).  And whilst many contemporary techniques recognize the importance of the 

landscape, very few models are able to accommodate its effect (Snook, Canter, & Bennell, 2002;  

                                                 
* Reprinted by permission of John Wiley & Sons, Ltd. for the "Journal of Investigative Psychology and Offender 
Profiling," (2007), vol. 4, pp. 147-165. 
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Snook et al., 2004; Canter, 2005).  Therefore, this study proposes that geographic profiling 

models that are capable of parameterizing the effects of the landscape will more accurately 

predict the location of a serial offender’s residence. 

3.2  Principles of Environmental Criminology 

Much of the theoretical bases for geographic profiling can be traced back to fundamental 

tenets of environmental criminology, including: Least Effort Principle (Cornish & Clarke, 1986; 

Zipf, 1949), offender activity space (Brantingham & Brantingham, 1981), routine activity theory 

(Cohen & Felson, 1979), crime pattern theory (Brantingham & Brantingham, 1981), rational 

choice theory (Cornish & Clarke, 1986), distance decay (Capone & Nichols, 1976), 

environmental range (Canter & Larkin, 1993), and buffer zone effect (Brantingham & 

Brantingham, 1981).  In general, these theories can be summarized into three basic concepts.  

First, most crimes occur relatively near the offender’s residence.  Second, the frequency of crime 

decreases as the distance from the offender’s home increases.  Finally, different crimes will 

exhibit different spatial patterns. 

 As a whole, these concepts establish a qualitative framework for examining the complex 

relationship between the offender, the crime, the victim, and the environment.  But as 

Brantingham & Brantingham (1981) cautioned, it is impractical to examine this relationship 

outside the context of place.  Accordingly, nearly all contemporary profiling methodologies 

apply quantitative models that utilize, at their core, fundamental geographical principles.  Two of 

the most prominent principles are centrography and spatial diffusion (Canter & Larkin, 1993; 

Rossmo, 2000; Snook et al., 2004; Snook, et al., 2005; LeBeau, 1987a; Rich & Shively, 2004; 

Paulsen, 2006b).  A summary of these techniques and their application to geographic profiling 

are provided in Table 3.1. 
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Table 3.1: Predominant Spatial Measure used in Criminal Geographic Profiling 

Measure Model Strategy Model Input Model Output 

Central Tendency 
Spatial Mean, Median, 

and Center of  
Minimum Distance 

Spatial Distribution 
Strategy Points Point 

Spatial Dispersion Circular Search Area 
Elliptical Search Area 

Spatial Distribution 
Strategy  Points Points and Polygons 

Spatial Diffusion Distance Decay 
Algorithms 

Probability Distance 
Strategy  Points Probability Surfaces 

 

3.3  Applications of Centrography 

Centrographic techniques characterize phenomena by providing a single measure of 

central tendency (i.e., an average location) (LeBeau, 1987a).  This approach constitutes a spatial 

distribution strategy (Levine, 2007).  When applied to geographic profiles, these measures 

summarize a distribution of crime scenes to a single location where the sum of differences 

between the mean and all other points within the distribution is minimized (Ebdon, 1988).  The 

strategy is premised on the assumption that the serial offender will commit crimes within a finite 

area that is relatively close to their home.  This area defines the offender’s activity space 

(Brantingham & Brantingham, 1981).  Thus, by defining the center of a crime’s distribution, one 

effectively reveals some portion of the offender’s activity space. 

 The most common measures of central tendency include the geographic mean, median, 

and center of minimum distance.  But analyzing distributions using this approach can be limited, 

as they are only capable of characterizing complex processes with a single descriptive measure 

(Rossmo, 2000; Levine, 2007).  As such, centrographic analysis is often augmented by measures 

of dispersion, including circles, ellipses, and convex hulls.  One such example has been 

documented in the application of the circle hypothesis, which demonstrates that a circle large 
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enough to encompass the two farthest crimes of a distribution will most likely encompass the 

serial offender’s residence (Canter & Larkin, 1993).  Another example includes Newton’s 

geoforensic analysis, which iteratively analyzes the sequence of crime scenes in order to define 

the likely activity space of a serial offender based on the dispersion of the crimes around a 

central point (Newton, 1988).  The combination of central tendency and spatial dispersion has 

proven to be simple but effective profiling strategies (Snook et al., 2002; Snook, et al., 2005; 

Paulsen, 2006b; Levine, 2007; Leitner, et al., 2007).  Because of their relative simplicity and 

intuitive workflow, these techniques have provided valuable insight for criminal investigations.  

However, centrographic techniques are often susceptible to outliers that potentially distort their 

effectiveness.  And on their own, these simple measures are seldom able to reflect the inherent 

complexities of either the landscape or an offender’s perception of place (Canter & Hodge, 

2000). 

3.4  Applications of Spatial Diffusion 

 Geographical profiling will also utilize models that apply concepts typically utilized in 

spatial interaction models.  The most common approach is to profile a distribution of crime 

scenes using empirically calibrated distance decay algorithms.  These center-of-gravity 

techniques constitute probability distance strategies which measure the likelihood of finding an 

offender’s residence in the areas immediately surrounding linked crime scenes (Levine, 2007).  

The strength of this approach lies in its ability to model the condition in which the frequency of 

crime decreases as the distance from the offender’s residence increases (Capone & Nichols, 

1976).  Not surprisingly, distance decay models have found popular support in nearly all 

geographic profiling applications (Rich & Shively, 2004). The most well-known of these 

applications include Dragnet (Canter, et al., 2000), Rigel™  CGT (Rossmo, 2000), and the 
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Journey-to-Crime routine provided in CrimeStat® III (Levine, 2007).  But in spite of their 

popularity, distance decay methodologies have been criticized for their reliance on homogeneous 

spatial structures that can distort nuanced, but significant, characteristics associated with the 

criminal commute (Rengert et al., 1999; van Koppen & De Keijser, 1997).  And like 

centrographic techniques, these techniques presume an ideal framework in which the patterns of 

crime scenes are normally distributed. 

3.5  Landscape’s Impact on the Occurrence of Crime 

With few exceptions (Capone & Nichols, 1976; Kent et al., 2006; LeBeau, 1987a; 

Rengert et al., 1999), the majority of contemporary geographic profiling techniques have failed 

to account for the landscape’s impact on the occurrence of crime.  Instead, contemporary 

methods consistently adopt an a priori assumption that both crime scenes and the offender 

residence are located on an isotropic surface where the opportunity to offend is uniformly 

distributed around the offender’s residence.  But as established by Brantingham and 

Brantingham (1981), and later by Rengert et al. (1999), the location of a crime involves complex 

factors that make it unlikely to occur randomly.  In a study on the environmental range of serial 

rapists, Canter & Larkin (1993), and later Kocsis et al. (2002) empirically demonstrated that the 

location of a serial offender’s residence is not generally positioned within the center of a 

distribution.  Rather, the relationship between the crime scenes and the offender’s residence 

suggest an irregularly distributed activity space that is, in some measure, influenced by the 

landscape and offender perceptions (Brantingham & Brantingham, 1981; Canter & Hodge, 

2000).  In effect, these findings validate the premise that crime scenes and offender residences 

are actually located on anisotropic surfaces.  And just as a crime’s location is a partial record of 

the offender’s spatial preferences, so too is it a reflection of the irregularities consistent within 
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the underlying physical and cultural landscapes.   Such irregularities are typically characterized 

according to three geographic analysis measures:  location, dispersion, and orientation (Yuill, 

1971). 

Newton’s (1988) circle-based geoforensic analysis technique is a practical method for 

measuring these characteristics.  First, the model output predicts a location of an offender’s 

residence (what Newton called the ‘haven’) according to the geographic center of the crime 

distribution.  Second, a circle with a diameter defined according to the number and spatial extent 

of known crime scenes is generated.  This output represents a search area in which the offender’s 

residence is expected.  Finally, the technique iteratively refines the output as each new crime 

scene is added to the model, thus accounting for changes to the distribution’s location and size 

over time.  However, there are limits to the technique’s ability to model a serial distribution.  

Because the technique utilizes a circle-based strategy by default, the circular output presumes an 

isotropic surface.  As such, it is ill-suited to measure variations in the shape and orientation of 

the distribution in relation to the anisotropic landscape. 

As an alternative to the circle, the standard deviational ellipse model is better able to 

account for irregularities in the landscape.  Like the circle, the ellipse is capable of identifying 

the center of a distribution (i.e., location), as well as its spatial extents (i.e., dispersion).  But 

unlike the circle, an ellipse measures the shape and orientation of the distribution by 

summarizing the maximum and minimum variance along the x- and y- axes (Ebdon, 1988).  As a 

result, the ellipse is able to account for a non-uniform arrangement of events (Lefever, 1926; 

Levine, 2007).  These differences are illustrated in Figure 3.1, which depicts circular and 

elliptical profiles generated for a theoretical distribution of crime events.  With both profiles 

positioned over the geographic center of a distribution, the elliptical model is better able to match 
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both the orientation and variation in the dispersion.  While overly simplistic, the graphic in 

Figure 3.1 effectively demonstrates that an ellipse is better able to account for the irregular 

distribution of events than the circular model. 

3.6  Hypothesis 

This research proposes that the spatial relationship between the locations of an offender’s 

residence and linked crime sites will exhibit spatial patterns and characteristics that are 

consistent with the underlying landscape.  Accordingly, a geographic profiling model that is 

capable of measuring the location, dispersion, and orientation of crime scenes should predict the 

residential location of a serial offender more accurately than circle models that only emphasize 

the location and width of the action space.  Furthermore, because the landscape has a 

deterministic effect on the distribution of serial crime, the orientation of elliptical profiles should 

correlate with the orientation of landscape features that are coincident with the spatial extents of 

the crime scenes.  These measures can be achieved using a standard deviational ellipse model 

 

Figure 3.1: Example of circular (a) and elliptical (b) model output generated by Newton’s 
geoforensic analysis. Each model is positioned over the geographic center (triangle) of a 
theoretical distribution of crimes.  The offender’s residence (square) is captured by the elliptical 
model, but not the circle. 

 

a.  Circular Model Output  b.  Elliptical Model Output 
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similar to that proposed by Lefever (1926), and later modified by Yuill (1971), Ebdon (1988), 

and Levine (2007).  As such, the hypotheses for this research can be summarized accordingly: 

1. Geoforensic profiling models using the standard deviational ellipse will produce more 

accurate profiles than those created using circles. 

2. The orientation of an elliptical profile will correlate with the orientation of the 

corresponding physical landscape. 

 

In order to test these hypotheses, Newton’s geoforensic analysis was used to calculate 

both circular and elliptical profiles for 30 burglary and 67 robbery serial offenses occurring in 

Baltimore, Maryland, between 1993 and 1997.  The output from both profile models were 

assessed according to their profile accuracy, proximity to the offender’s residence, and size of 

the search area.  Next, the angular direction of each ellipse was calculated and compared to the 

linear directional mean of the underlying road network in order to determine if the orientation of 

the ellipses matches the orientation of the coincident physical landscape. 

These hypotheses are established on a number of assumptions.  First, each crime series 

consists of offenses that have been perpetrated by a single individual.  Second, a profile’s 

effectiveness assumes that the offenders initiate and conclude all criminal activities from a fixed 

location (i.e., their residence).  The third assumption posits that an offender’s spatial behavior 

can be organized according to one of two offense characteristics: offend inside a defined activity 

space (i.e., marauder model), or outside a defined activity space (i.e., commuter model) (Canter 

& Larkin, 1993).  The fourth assumption posits that pattern and distribution of the crime types 

(i.e., burglary and robbery) do not differ significantly, and thus their profile results can be 

compared equally. Finally, in order to support the hypothesis that the orientation of the crime 
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scenes correlates with the underlying landscape, it is assumed that both crime sites and 

offender’s residence are positioned in locations accessible by existing transportation networks. 

3.7  Methodology and Data 

3.7.1   Evaluation Criteria 

Contemporary literature details a number of different evaluation methodologies that can 

gauge profile accuracy (Canter et al., 2000; Canter Canter & Gregory, 1994; & Larkin, 1993; 

Rossmo, 2000; Snook et al., 2005; Paulsen, 2006b).  However, there is currently no one standard 

for measuring performance (Rich & Shively, 2004).  As a consequence, many of these measures 

have been at the center of contention within existing literature (Canter, 2005; Rossmo, 2005a; 

Snook, Taylor, & Bennell, 2004).  In a report issued to the National Institute of Justice (NIJ), 

authors Rich and Shively (2004) detailed a collection of geographic profiling evaluation criteria 

recommended by an expert-panel of criminologists and researchers. Based on their applicability 

to this study, three of the performance measures listed in the NIJ report were chosen to compare 

the efficacy of circular and elliptical model output: 

• Profile accuracy: Binary value (true/false) that indicates whether or not the offender’s 

residence was located within the predicted search area. 

• Profile error distance: The Euclidean distance measured from the actual residence to the 

nearest point on the profile’s final predicted search area (i.e., top profile). 

• Profile search area score: The ratio of the predicted profile search area to the required 

profile search area (i.e., search cost). 

 

3.7.2   Data 

The data used in this analysis were selected from a database of 267 solved serial crimes 

that occurred in Baltimore County, MD, between 1994 and 1997.  The sample chosen for this 
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research consisted of 30 burglary (n=164) and 67 robbery (n=370) crime series.  An average of 

5.51 (min=4, max=12, SD=2.07) crimes per series was identified for all 97 offenders.  Table 3.2 

provides additional statistics regarding the sample data.  In order to accommodate a fair and 

comparative evaluation, the data selected for this analysis followed the recommendations 

provided in the 2004 NIJ geographic profiling report (Rich & Shively, 2004): 

• Crime series should be comprised of at least 3 offenses. 

• Data should include both marauder and commuter offender types. 

• Crime series should include a variety of offender traits (i.e., sex, age, race, etc.). 

• Data should resemble information actually available to law enforcement agencies. 

 

Additionally, those crime series exhibiting a residential location that was spatially coincident 

with 50% or more of the crime scenes were removed from the sample.  The occurrence of 

multiple, coincident events resulted in mathematical singularities that made it difficult to analyze 

a model’s output. 

3.7.3   Assumptions 

In order to meet the assumptions and evaluation criteria adopted by this research, each 

crime series was categorized according to its corresponding offender model.  This process was 

carried out in two steps.  First, the offender model was determined according to parameters 

defined by Canter & Larkin (1993).  Because the sample data consists of more robberies (67) 

than burglaries (30), the spatial patterns (i.e., measured distances between points) observed for 

burglary and robbery crime types were assessed statistically to determine if their distributions 

could be analyzed together or separately. 

Research indicates that spatial patterns observed within a crime series will exhibit distinct 

characteristics which can be organized according to offender type (Canter & Larkin, 1993; 
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Table 3.2: Crime Series Descriptions - Totals 

Crime Type  
& Offender 

Model 

Number 
of Crimes 

Number 
of  

Series 

Average 
Crimes 

per Series 

Average Distance 
Between Crimes 

Average Max. 
Distance Between 

Crimes 

Average Max. 
Distance From 

Residence 

Average 
Criminal  

Offense Area 

Burglary 164 30 5.47 
(SD=2.13) 

7.056 km 
(SD=11.047) 

10.246 km 
(SD=9.634) 

11.365 km 
(SD=12.993) 

27.723 km2 
(SD=45.285) 

Robbery 370 67 5.52 
(SD=2.06) 

7.522 km 
(SD=6.162) 

10.198 km 
(SD=7.852) 

10.893 km 
(SD=7.429) 

30.789 km2 
(SD=52.544) 

Commuters 229 45 5.09 
(SD=1.53) 

9.213 km 
(SD=10.442) 

7.782 km 
(SD=7.547) 

12.415 km 
(SD=11.767) 

19.459 km2 
(SD=34.633) 

Marauders 305 52 5.87 
(SD=2.40) 

5.791 km 
(SD=4.360) 

12.317 km 
(SD=8.584) 

9.847 km 
(SD=6.699) 

38.825 km2 
(SD=59.418) 

Totals 534 97 5.51 
(SD=2.07) 

7.378 km 
(SD=7.938) 

10.213 km 
(SD=8.392) 

11.039 km 
(SD=9.433) 

29.841 km2 
(SD=50.196) 

 



55 
  

Kocsis & Irwin, 1997; Kocsis et al., 2002; Meaney, 2004).  These types are traditionally 

categorized as either commuter or marauder offender models.  These categories were coined by 

Canter & Larkin (1993) to describe competing spatial characteristics observed for serial rapists.  

By definition, the marauder model describes an offender who typically commits crimes within a 

defined range from a home base of operations (i.e., offends inside a defined activity space). 

Conversely, the commuter model is characterized as an offender who travels away from a home 

base to commit crimes in another area (i.e., offends outside a defined activity space). 

Traditionally, the method for distinguishing an offender’s spatial preference is accomplished 

according to the “Circle Hypothesis” procedure detailed by Canter & Larkin (1993).  For the 

purposes of this research, their approach was mathematically automated by calculating the ratio 

of the maximum distance between crime scenes and offender residence to the maximum distance 

between the two farthest crime scenes (Canter & Larkin, 1993): 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑑𝑑𝑐𝑐𝑐𝑐
𝑑𝑑𝑐𝑐𝑐𝑐

 (3.1) 

where dcr is the distance from the farthest crime to the offender’s residence, and dcc is the 

maximum distance between crimes.  The offender was categorized as a marauder if the ratio was 

less than 1.0, or a commuter if the ratio was equal or greater than 1.0. 

Next, the spatial patterns of serial burglary and robbery were analyzed in order to assess 

the relationships between crime type (i.e., burglary and robbery).  Because the distributions were 

right-skewed, the Mann-Whitney U-test, a non-parametric equivalent to Student’s two 

independent sample t-test, was used to determine if burglary and robbery serial crimes could be 

analyzed equally.  In support for the fourth assumption of this research, the Mann-Whitney U-
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test failed to demonstrate a difference between the burglary and robbery distributions [U=863, 

Z=-1.668, p = 0.095 (2-tailed)], concluding that average distance between these crime types is 

not significantly different.  As such, burglary and robbery distributions were combined and 

analyzed according to the offender model. 

3.7.4   Profiling Models 

Geoforensic analysis is arguably one of the first geographical profiling techniques 

operationalized for use in a serial crime investigation (Leitner, et al., 2007).  Developed in the 

late 1980s by Milton B. Newton, Jr., the model calculates both the location and dispersion of 

linked crime scenes committed by a localized (i.e., marauding) serial offender (Newton, 1988).  

The approach was developed on the premise that an area surrounding the geographic center of a 

crime distribution (i.e., the offender’s activity space) may contain a marauding offender’s 

residence, or haven.  Furthermore, Newton proposed that the predicted location of the offender’s 

haven will move closer to the actual haven after each successive crime event (Leitner, et al., 

2007; Newton, 1988; Newton & Swoope, 1987).  To provide a search parameter for this effect, 

the algorithm generates a circular search area with a radius defined by the extent of the two 

farthest crime scenes in the sequence.  As each new crime scene is added, the size of the search 

area is reduced (equation 3.3). 

Accordingly, Newton’s geoforensic analysis is implemented in three steps (Newton, 

1988): 

1. A quadrilateral study area is defined by the distance between the farthest east-west and 

north-south extents of the known, linked crime sites. 

2. Coordinates for the geographic center of the crime distribution is calculated iteratively in 

sequential order.  Each spatial mean represents the predicted location of the haven for the 

number of crimes observed in the given sequence: 
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𝑋𝑋� = �
𝑥𝑥𝑖𝑖
𝑛𝑛

𝑛𝑛
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  𝑎𝑎𝑎𝑎𝑎𝑎  𝑌𝑌� = �

𝑦𝑦𝑖𝑖
𝑛𝑛   

𝑛𝑛

𝑖𝑖=1
 (3.2) 

where n is the number of incidents for the ith crime, and the spatial mean ( X ,Y ) is 

calculated for all xi and yi values in the sequence. 

3. A circular search area of varying size, centered on the predicted haven, is calculated 

using the radius, R, defined by: 

𝑅𝑅 =
�𝑟𝑟𝑟𝑟 ∙ 𝑟𝑟𝑟𝑟𝜋𝜋   

𝑛𝑛 − 1  
(3.3) 

where rx is the range along the x-axis and ry is the range along the y-axis; and n is the 

number of incidents in the sequence. 

After the second offense, a map is created to illustrate an area in which a serial offender’s 

residence is likely located.  This search area is centered over the calculated geographic center of 

the offender’s likely activity space.  As each new crime scene is added to the routine, the 

geographic center is recalculated, and the search area is adjusted (i.e., repositioned and resized). 

Accordingly, each crime series will have multiple search areas that are successively refined as 

each crime scene is processed.  The final search area is typically referred to as the top profile. 

 Geoforensic profiles based on the standard deviational ellipse can be generated in a 

similar fashion.  An elliptical search area of varying size centered over a distribution’s 

geographic center is sequentially determined according to the variance calculated along major 

and minor axes.  The ellipse’s major and minor axes are determined by measuring the 

distribution’s standard deviations along the x- and y-axis such that they are orthogonal to each 

other (Ebdon, 1988; Levine, 2007; Yuill, 1971). 
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The standard deviational ellipse model for Newton’s geoforensic analysis is generated in 

four steps (Ebdon, 1988; Levine, 2007): 

1. Transpose the coordinate system by moving the origin of the ellipse to the geographic 

center of the distribution: 

𝑥́𝑥 = (𝑥𝑥 − 𝑥𝑥�)   𝑎𝑎𝑎𝑎𝑎𝑎    𝑦́𝑦 = (𝑦𝑦 − 𝑦𝑦�) (3.4) 

where the mean, 𝑥̅𝑥 and 𝑦𝑦�, is subtracted from each of the original 𝑥𝑥 and 𝑦𝑦 coordinates to 

give the transposed coordinates denoted by  𝑥́𝑥 and 𝑦́𝑦. 

2. Determine the angle of rotation along the x- and y- axis so that the sum of squared 

differences is minimized: 

𝜃𝜃 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

⎩
⎨

⎧
 
�∑ 𝑥́𝑥2 −∑ 𝑦́𝑦2�+ �(∑ 𝑥́𝑥2 −∑ 𝑦́𝑦2 )

2
+  4(∑ 𝑥́𝑥 𝑦́𝑦)2

2(∑ 𝑥́𝑥 𝑦́𝑦)  

⎭
⎬

⎫
 (3.5) 

where 𝜃𝜃 is the angle of rotation observed in the distribution, and 𝑥́𝑥 and 𝑦́𝑦 are the 

transposed x and y coordinates. 

3. Calculate the standard deviations along the transposed axes (Ebdon, 1988; Levine, 2007): 

𝑆𝑆𝑥𝑥 = �2 ∙
𝐶𝐶𝐶𝐶𝐶𝐶2𝜃𝜃∑ 𝑥́𝑥2 − 2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆∑ 𝑥́𝑥𝑦́𝑦) + 𝑆𝑆𝑆𝑆𝑆𝑆2𝜃𝜃∑ 𝑦́𝑦2

𝑛𝑛 − 2  (3.6) 

𝑆𝑆𝑦𝑦 = �2 ∙
𝑆𝑆𝑆𝑆𝑆𝑆2𝜃𝜃∑ 𝑥́𝑥2 + 2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆∑ 𝑥́𝑥𝑦́𝑦) + 𝐶𝐶𝐶𝐶𝐶𝐶2𝜃𝜃∑ 𝑦́𝑦2

𝑛𝑛 − 2  (3.7) 

where 𝑆𝑆𝑥𝑥  and 𝑆𝑆𝑦𝑦  are the standard deviations parallel to the x- and y- axis of the ellipse, 𝜃𝜃 

is the angle of rotation, 𝑥́𝑥 and 𝑦́𝑦  are the transposed x and y coordinates, and n is the 

number points in the given sequence. 
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Levine (2007) notes that the standard deviations on both axes should be estimated 

using two (2) degrees of freedom in order to produce an unbiased estimator of the two 

parameters (𝑥̅𝑥 and 𝑦𝑦�).  Additionally, Levine (2007) proposes that the variance should be 

multiplied by 2 in order to compensate for the under-estimations in X and Y (see 

equations 3.6 and 3.7).  These notes are explained more fully in the CrimeStat® III 

documentation (Levine, 2007). 

4. Finally, the elliptical search area is reduced in accordance with Newton’s hypothesis: 

𝑆́𝑆𝑥𝑥 =
𝑆𝑆𝑥𝑥

𝑛𝑛 − 1  𝑎𝑎𝑎𝑎𝑎𝑎  𝑆́𝑆𝑦𝑦 =
𝑆𝑆𝑦𝑦

𝑛𝑛 − 1 (3.8) 

where 𝑆́𝑆𝑥𝑥  and 𝑆́𝑆𝑦𝑦  represent the final standard deviations on the major and minor axes, 

respectively, and where n is the number of incidents in the sequence.  Finally, the area of 

an ellipse is measured as 𝑆́𝑆𝑥𝑥 𝑆́𝑆𝑦𝑦𝜋𝜋. 

Similar to the output generated using circular models, elliptical profiles will contain multiple  

(n-2) search areas defining the space in which the serial offender’s residence is predicted. 

Both the circular and elliptical models were developed separately as Python 

geoprocessing scripts used in ESRI® ArcGIS™ 9.2 environment, and imported as custom tools 

within the ArcGIS™ Desktop toolbox (ESRI, 2006).  The dialog box for the circle-based 

Geoforensic algorithm prompts the user for three values: (1) input feature class (points), (2) 

output search area (polygon), and (3) optional output for the profile’s geographic centers 

(points).  The elliptical Geoforensic algorithm provides a dialog box that prompts the user for the 

following three fields: (1) input feature class (points), (2) output search area (polygon), and (3) 

drop-down menu for selecting the optional standard deviations. 
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3.7.5   Evaluation Procedure 

 The comparative evaluation of the circular and elliptical profiles was executed in three 

stages.  First, crime scenes and offender residences were organized according to offender model 

(i.e., commuter and marauder) and mapped using ESRI’s ArcGIS™ geographic information 

systems (GIS) software.  All measurements were calculated in meters according to the Universal 

Transverse Mercator (UTM) coordinate system, Zone 18 North, 1983 North American Datum 

(NAD83).  Next, Newton’s geoforensic analysis tool was applied to each crime series in order to 

generate profiles using circular and elliptical models.  Finally, profile effectiveness was 

calculated according to the measured differences between the profile output and the offender’s 

actual residence.  Because these differences were not normally distributed, results were tested for 

significance using the Wilcoxon signed-rank Z-test; a non-parametric alternative to the Student’s 

paired t-test. 

The relationship between the orientations of the elliptical profile and the corresponding 

landscape was calculated using the Linear Directional Mean tool found in the ArcGIS™ software 

package.  The tool calculated the mean direction of all road features that were coincident with 

the area defined by the spatial extents of a crime series.  The directional angle was measured 

clockwise from 0° north.  Angles greater than 180° were normalized by subtracting 180 from the 

observed value, resulting in a simple orientation.  Finally, the correlation between the orientation 

of elliptical profiles and orientation of the corresponding road network was calculated using 

Pearson’s product-moment correlation routine. 
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3.8  Results and Discussion 

3.8.1   Geoforensic Analysis Results 

Summarized profiled results for each of the test criteria are presented in Table 3.3.  There 

is an important distinction to be made between geoforensic analysis and other circle-based 

techniques in that the generated profiles are iteratively refined over the sequence of analyzed 

crime scenes.  That is, the size and location of the search area varies according to the spatial 

extent and number of the crimes analyzed.  As such, Newton’s method generates three distinct 

output characteristics (Newton, 1988; Leitner et al., 2007): first, the predicted residence will 

move closer to the actual residence; second, the search area will vary (e.g., shrink) with the 

inclusion of each additional crime scene; and finally, the actual residence will fall within the 

predicted search area (i.e., profile accuracy). 

The results obtained for this research closely matched those detailed by Leitner et al. 

(2007).  That is, the assumed movements and varying size of the profiled search area were 

observed for both circular and elliptical models.  And consistent with their previous findings 

(Leitner et al., 2007), the third assumption regarding profile accuracy was marginally successful 

for circular search areas.  However, profile accuracy increased substantially for elliptical models.  

In fact, elliptical models exhibited a quantifiable improvement over circular outputs for each of 

the three evaluation criteria:  profile accuracy, error distance, and search area score (Table 3.3).  

 Profile accuracy:  A profile was considered accurate when the location of the offender’s 

actual residence was topologically coincident with a profile’s predicted search area.  

As detailed in Table 3.3, circular geoforensic profiles were accurate for 3 of 97 (3.09%) 

crime series.  Not surprisingly, these three successes were captured for marauding offenders, 

whose patterns of criminal activity occur within a distinct area surrounding a fixed base of 



62 
 

 

 

 

Table 3.3: Geoforensic Profiling Summary Results 

Profile Model 
Commuter 

Profile 
Accuracy  

Marauder 
Profile 

Accuracy  

Mean Commuter 
Profile Error 

Distance  

Mean Marauder 
Profile Error 

Distance  

Mean 
Commuter 

Search  
Area Score  

Mean 
Marauder 

Search Area 
Score  

Circle 0 
(0.00%) 

3 
(3.09%) 

7.773 km 
(SD=9.401) 

2.854 km 
(SD=3.180) 0.055 0.222 

Ellipse 1 SD 1 
(1.03%) 

2 
(2.06%) 

7.341 km 
(SD=9.544) 

2.399 km 
(SD=2.717) 0.131 0.229 

Ellipse 2 SD 7 
(7.23%) 

16 
(16.49%) 

6.229 km 
(SD=8.792) 

1.522 km 
(SD=2.322) 0.278 0.522 

Ellipse 3 SD 10 
(10.31%) 

27 
(23.84%) 

5.354 km 
(SD=8.011) 

1.075 km 
(SD=1.929) 0.397 0.681 
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operation (Canter & Larkin, 1993).  Elliptical models at 1 standard deviation (SD) performed 

equally well, accurately predicting one commuter and two marauders.  As the number of 

standard deviations increased, so too did the performance.  Overall, elliptical profiles were more 

accurate than circles when constructed with 2 SD and 3 SD, accurately profiling 23 (23.7%) and 

37 (38.1%) residences, respectively. 

 The performance observed for elliptical models is noteworthy.  In their study of serial 

crimes occurring in London, UK, Leitner et al. (2007) were able to predict 19.3% (n=57) of 

serial offender residences in any of the multiple search areas derived by Newton’s method.  Of 

those predictions, only one model (1.75%) predicted the offender’s residence in the final search 

area. With a maximum of 37 residences predicted accurately, the elliptical model shows a clear 

improvement in the technique’s ability to predict an offender’s haven.  Moreover, approximately 

one-third of the successful elliptical profiles were commuter offenders.  A likely explanation for 

this observation is that both the elongation and orientation of the elliptical models match the 

shape and direction of the commuter’s crime scene patterns more accurately. 

 Profile error distance:  Profile error distances were measured according to the 

Euclidean distance from the offender’s residence to the nearest edge of a profile’s final predicted 

search area (i.e., top profile).  Shorter distances indicate better results. 

The combined measures for commuter and marauder offender models revealed that error 

distances were generally shorter for elliptical profiles than for the circular profiles (Table 3.3).  

And as expected, marauding offenders demonstrated shortest profile error distances across all 

profiles.  Ellipses constructed using 1 SD exhibited modest improvement over circular profiles. 

However, the shorter error distances were more significant for profiles constructed using 2 and 3 
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SD (Table 3.4).  This is primarily attributed to the fact that the increased number of standard 

deviations made the ellipses larger than the default (1 SD) elliptical model. 

Table 3.4: Profile Error Distance - Wilcoxon Signed-Ranks Test Statistics 

 Circle and Ellipse  
(1 SD) 

Circle and Ellipse  
(2 SD) 

Circle and 
Ellipse (3 SD) 

Combined Results:  Z -3.950 -7.559 -8.124 
Asymp. Sig. (2-tailed) 0.000 0.000 0.000 
Commuter Results:  Z -3.414 -5.841 -5.841 
Asymp. Sig. (2-tailed) 0.001 0.000 0.000 
Marauder Results:    Z -2.287 -4.859 -5.645 
Asymp. Sig. (2-tailed) 0.022 0.000 0.000 

 

 Profile search area score:  The profile search area score indicates how much of the 

required search area was predicted by the model.  The score was measured as the ratio of the 

predicted search area (i.e., modeled output) to the required search area (i.e., theoretical search 

area needed to encompass the offender’s residence).  To calculate the required search area, the 

top profile output was scaled until its outer-edge intersected the offender’s residence.  The 

resulting ratio provided a relative measure of search cost where higher scores values indicate 

more accurate profile output. 

Elliptical models once again outperformed the circle model (see Table 3.3).  However, 

the difference between the circular and elliptical profile generated at 1 SD was not found to be 

significantly different according to the Wilcoxon signed rank test [Z= -1.813, p < 0.07 (2-tailed)] 

(Table 3.5).  The reason becomes clear when examined according to offender model: At 1 SD, 

circular and elliptical marauding profiles results are nearly identical [Z = -0.230, p = 0.822 (2- 

tailed)].  Conversely, elliptical profiles constructed using 2 SD and 3 SD were significantly 

different from circles [2SD: Z = -7.442, p < 0.00 (2-tailed); 3SD: Z = -8.117, p < 0.00 (2-tailed)].  
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Table 3.5: Profile Search Area Score - Wilcoxon Signed-Ranks Test Statistics 

  
Circle and Ellipse  

(1 SD) 
Circle and Ellipse  

(2 SD) 
Circle and Ellipse 

(3 SD) 

Combined Results:  Z -1.813 -7.442 -8.117 
Asymp. Sig. (2-tailed) 0.07 0.000 0.000 
Commuter Results:  Z -2.69 -5.488 -5.712 
Asymp. Sig. (2-tailed) 0.007 0.000 0.000 
Marauder Results:    Z -0.230 -5.342 -5.874 
Asymp. Sig. (2-tailed) 0.822 0.000 0.000 

 

The success of elliptical models can be attributed to the large search areas defined by the 

2- and 3- standard deviations.  While these search areas are considerably larger than the circular 

and 1 SD ellipse, they are successful at locating offender residences for both commuter and 

marauder offender types. 

3.8.2   Directional Correlation  

According to the criminal's environmental range hypothesis (Canter & Larkin, 1993), the 

spatial pattern observed for marauding serial offender can be expressed as a linear relationship 

between the maximum distances between crimes, and the distance between the offender’s 

residence and the farthest crime.  The researcher’s posit that this relationship, represented by the 

regression coefficient, serves as a comprehensive indicator of the location of the offender’s 

residence within a distribution (Canter & Larkin, 1993).  Accordingly, a coefficient value of 0.5 

indicates that the residence is located within the center of the distribution; alternatively, a value 

greater than 0.5 and less than 1.0 indicates eccentricity within the distribution. 

The scatter plot in Figure 3.2 depicts this relationship for the marauding crime series used 

in this study.  Accordingly, the regression coefficient was calculated as 0.745, which is supported 

by a strong coefficient of determination (R2) of 0.912 [F(1, 50) = 520.4, p = 0.000].  As the 
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coefficient value reveals, there is reason to conclude that, on average, a marauding offender’s 

residence is unlikely to be located near the center of a distribution (Canter & Larkin, 1993; 

Kocsis, et al., 2002).  

Of course, an eccentric finding is not unexpected as it demonstrates that a marauding 

offender commits crimes within an anisotropic activity space where opportunity to offend is not 

equally distributed.  This effect can be measured by comparing the angle of rotation of each 

ellipse to the angle of rotation of the directional mean of the underlying road features that are 

coincident with the spatial extents of the crime scenes.  The findings reveal a moderate but 

significant correlation (r = 0.511, p < 0.001) between the two angles, which differed on average 

 

Figure 3.2: Maximum Criminal Range: the relationship between the maximum distance between 
offenses and the maximum distance between crimes and the marauding offender’s residence. 

y = 0.745x + 665.3
n=52, R² = 0.912, p < 0.001
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by 31.77° (min = 0.00°; max = 125.25°; SD = 29.07).  When examined according to offender 

model, the relationship between ellipse and road network exhibited a slightly weaker correlation 

(r = 0.489, p < 0.001) for the commuter offender type.  Conversely, the marauder offender 

exhibited a slightly stronger relationship (r = 0.525, p < 0.000).  Whilst not very large, these 

moderate correlations support the premise that the general orientation of the crime scenes is 

partially related to the orientation of the underlying landscape.  In other words, the existing 

transportation network governs the offender’s Journey-to-Crime behavior. 

3.9  Conclusion 

The primary objective for this research was to parameterize the effects of an irregular 

landscape in the application of geographic profiling.  Newton’s geoforensic analysis 

demonstrated how a simple and intuitive geographic profiling technique could be utilized for the 

investigation of a serial crime.  The application systematically analyzed a distribution of crime 

scenes in order to predict the geographic center and estimate the areal extents of a serial 

offender’s activity space.  However, the circular search areas defined by this profiling technique, 

as with other circle-based methodologies, assume an isotropic surface whereby any location 

within the profile’s extents has an equal opportunity at being the offender’s residence.  Yet, 

research demonstrates that serial crime events are distributed as phenomena which are 

influenced, in part, by the physical and cultural landscape (Brantingham & Brantingham, 1981; 

Capone & Nichols, 1976; Canter et al., 2000; Harries, 2006; Kocsis et al., 2002; LeBeau, 1987a; 

Rengert et al., 1999; Rossmo, 2000).  In effect, the spatial patterns observed in the distribution 

are actually a reflection of the irregularities consistent within the underlying landscape.  As such, 

they exhibit spatial characteristics that can be analyzed geographically according to their 

location, dispersion, and orientation. 
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In order to address this premise, this study proposed that geographic profiling models 

capable of parameterizing the effect of the landscape will predict the location of a serial 

offender’s residence more accurately.  Circular and elliptical models were used to generate 

profiles for 97 serial offenses that occurred in Baltimore, during the late 1990s.  Each profile was 

assessed according to profile accuracy, error distance, and search cost in order to identify which 

model predicted the serial offender’s residence more effectively.  To further demonstrate the 

validity of this approach, this study proposed that the orientation of the underlying road network 

would correlate to the elliptical profile’s angle of rotation, thus revealing the mechanics behind 

the anisotropic distribution of incidents.  The strength of this relationship was determined by 

comparing the angle of rotation of each elliptical profile to the linear directional mean of the road 

features coincidently located within each of the crime’s study area. 

Before the analysis could proceed, four assumptions regarding offender characteristics 

needed to be satisfied.  The first two assumptions were validated by filtering the dataset for those 

offenders that had his/her residence located within the study area, and that all criminal activity 

initiated and concluded from this fixed location.  These two assumptions were used to classify 

offenders as either a commuter or marauder, the third assumption.  Next, the non-parametric 

Mann-Whitney U-test was used to confirm the assumption that each serial event could be 

analyzed comprehensively and according to offense style (i.e., commuter or marauder), 

regardless of type (i.e., burglary or robbery).  The final assumption established that both crime 

sites and the offender’s journey-to-crime are governed by the existing transportation network, 

which was confirmed by examining the orientations of crime events along the Baltimore road 

network. 
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As the findings revealed, geoforensic analysis models based on the standard deviational 

ellipse will generally perform better than circular models.  It does so because the standard 

deviational ellipse is summarizing the minimum and maximum variance within the distribution 

(i.e., variance measured along a rotated x- and y-axes).  Furthermore, because the model is based 

on the standard deviations measured along the distribution’s x- and y-axes, it is possible to 

modify the size of the ellipse according to the empirical rule of statistics.  In effect, this 

functionality allows the standard deviational ellipse to perform like a two-dimensional 

confidence interval; as the interval increases, so too does the size of the ellipse and the likelihood 

of capturing the offender’s residence (see Table 3.3). 

In addition to demonstrating the efficacy of elliptical profile models, this study also 

confirmed the second hypothesis that the orientation of elliptical profiles should correlate with 

the orientation of the underlying landscape.  As the findings revealed, a moderate but significant 

correlation was observed when comparing the ellipse’s angle or rotation with the directional 

mean of the underling road network.  While a few extreme values were measured, the results 

further validate the premise that the landscape impacts the location of crime scenes.  Further 

research should be applied to identify the extent to which the road network, and other factors, 

demonstrates a deterministic effect on the direction and dispersion of crime scenes. 

The standard deviational ellipse model works because crime does not occur randomly in 

space.  Rather, the fundamental tenants of environmental criminology propose that crime 

represents a remarkably complex framework of social, economic, and environmental factors that 

are characterized by physical and social conditions.  In this context, place not only represents 

that discrete location in which a crime occurs; it has a deterministic impact on the other 

dimensions of crime (i.e., offender, target, and law) (Brantingham & Brantingham, 1981).  That 
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is, place serves as the independent variable in which offender, target, and law are dependent.  By 

parameterizing the effects of an anisotropic landscape, the theoretical constructs of 

environmental criminology are applied more meaningfully to the profiling process.  In this way, 

Canter and Larkin’s (1993) observation of eccentrically located offender residences represent 

both psychological and environmental factors. 

However, the techniques presented here are not beyond reproach.  An initial challenge for 

this study was to generate profiles from a sample that consisted disproportionately of more 

robberies (67) than burglaries (30).  In order to eliminate the possibility of differing spatial 

characteristics, it was necessary to determine whether the observed distributions for the two 

crime types could be analyzed comprehensively, as if they originated from the same population.  

While tests suggested that this was appropriate for the sample, future research would benefit 

from a larger sample with even number of crime types and offender characteristics.  

Furthermore, this assessment was limited to one major metropolitan area.  Future evaluations 

should assess these hypotheses in different geographic locations, especially those that consist of 

urban, rural, and/or a combination of both land use characteristics. 

Additional criticisms can be applied to the modeling techniques employed.  First, 

research by Snook, et al. (2005), Paulsen (2006b), and Levine (2007) demonstrate that the center 

of minimum distance (CMD) is often a better measure of a distribution’s central tendency.  CMD 

calculates the location where the travel distance to each event is the smallest.  Further research 

should examine geoforensic analysis models that calculate the CMD and similar measures, such 

as median center. Furthermore, future studies should consider comparing the performance of 

standard deviational ellipses against circles of similar areas.  In doing so, one can more 

accurately judge the effectiveness of the elliptical model.  Finally, larger ellipses result in 
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prohibitive search costs. And while these search areas may not be as large as those derived from 

the circle hypothesis (Canter & Larkin, 1993), such search areas remain quite daunting for those 

investigations operating with limited budgets and man-power. 

An unexpected finding from this study suggests that Newton’s geoforensic analysis 

technique may offer a new strategy for apprehending an active serial offender.  As one of the 

assumptions set forth by Newton, the central location of the profile’s search areas was 

successively refined as each new crime was added to the model.  Because of its operational 

nature, the standard deviational ellipse was able to reveal the positional and dispersal trends of 

the crime events as they were modeled sequentially.  For example, if an offender’s spatial 

behavior caused the number of crimes to cluster in a fixed geographic space, then the elliptical 

output consistently revealed a stable geographic location characterized by generally symmetrical 

major and minor axes (i.e., more spherical than elliptical).  Conversely, if the offender’s spatial 

preferences caused the crimes to move outward in specific directions, the resulting elliptical 

profiles began to mimic the outward movement, characterized by a generally un-equal major and 

minor axes (i.e., more elliptical than spherical).  As indicated in Table 3.2, the size of the 

commuter’s offense area is notably smaller than the area defined by marauders.  While 

seemingly counterintuitive, this is likely the result of elongated convex hulls defined by offenses 

that occur along the transportation network.  And like the results noted by LeBeau (1987a) and 

later by Kocsis et al. (2002), commuter style offenders generally exhibit narrow dispersion 

patterns with orientations that correlate with the transportation corridors.  With further research, 

this roving profile effect may be exploited for use in predicting future serial crime events. 
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“...individuals do not operate on an isotropic plane, and thus, they search for social, 
environmental, and physiological constraints that confound the isotropic plane at the individual 
level.” 

- Rengert et al. (1999, p. 440) 

 

CHAPTER 4:   UTILIZING LAND COVER CHARACTERISTICS TO 
ENHANCE JOURNEY-TO-CRIME ESTIMATION MODELS*

  

 

4.1  Introduction 

 Criminal geographic profiling is an investigative technique that utilizes information 

collected from solved serial crimes to estimate the likely residence of an unknown serial 

offender.  This approach is frequently employed within law enforcement communities as a 

decision support tool from which offender apprehension strategies can be derived. The 

methodological premise for geographic profiling is based on research demonstrating how the 

geographic arrangement of crime scenes can reveal unique details about a serial offender’s 

spatial preferences and underlying opportunity structures (Brantingham & Brantingham, 1981; 

Capone & Nichols, 1976; Rhodes & Conly, 1981; Rossmo, 2000). Geographic profiling relies on 

the fundamental assumption that offenders commit crimes within a finite space surrounding an 

anchor point (i.e., residence). This area is commonly referred to as the offender’s activity space, 

which is partially defined by activity nodes and network paths an offender utilizes for legal and 

illegal activities (Brantingham & Brantingham, 1981). In order to successfully locate the 

residence, or anchor point, the geographic profile must provide a reasonable characterization of 

the offender’s behavior within the activity space.  

                                                 
* Reprinted by permission of Timothy C. Hart, editor of "Crime Mapping: A Journal of Research and Practice," 
(2009), vol. 1, pp. 33-54. 



73 
  

 
  Most geographic profiling methodologies utilize quantitative techniques founded on 

spatial distribution and spatial interaction models (Levine, 2007; Rossmo, 2000).  Spatial 

distribution techniques characterize criminal activity according to the geographic arrangement of 

crime scenes. Spatial interaction models are typically used to describe an offender’s geographic 

behavior according to mobility characteristics (Canter & Larkin, 1993; Canter et al., 2000; 

Capone & Nichols, 1975; 1976; Rengert, 1989; Rossmo, 2000). And while these techniques are 

proven resources for characterizing an offender’s behavior in space, they are generally unable to 

account for the impact of the surrounding environment.  Despite consistent acknowledgement of 

the importance that the physical and cultural landscape has on the occurrence of crime (e.g., 

Brantingham & Brantingham, 1981; Canter et al., 2000; Capone & Nichols, 1975; 1976; Kocsis 

& Irwin, 1997; Levine, 2007; Ratcliffe, 2001; Rengert, 1981; Rhodes & Conly, 1981; Rossmo, 

2000; Snook et al., 2004), very few studies have integrated environmental structures within an 

operational framework (Kent et al., 2006; Kent & Leitner, 2008; Levine & Block, 2009; Rengert, 

1981; Rhodes & Conly, 1981). Accordingly, this study proposes to augment existing geographic 

profiling techniques by incorporating land cover characteristics within spatial interaction models. 

To validate the efficacy of this approach, traditional and land cover-enhanced geographic 

profiles are compared to assess accuracy and precision. 

4.1.1   Land Cover and Crime 

 The theoretical basis for geographic profiling is rooted within environmental 

criminology, a derivative of the Positivist School, which proposed that crime occurs at the 

confluence of offender, target, and law (Brantingham & Brantingham, 1981). Within this 

context, a criminal’s geographical offense pattern becomes a function of the distribution of 

potential targets, the offender’s perceptions of target attractiveness and criminal opportunity, and 
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the inherent spatial biases inherently defined by the offender’s activity space (Brantingham & 

Brantingham, 1981; Canter et al., 2000; Rhodes & Conly, 1981; Rossmo, 2000).   The 

Brantinghams (1981) synthesized these relationships into a comprehensive series of crime 

pattern models which illustrated how environmental structures (e.g., cultural and physical 

landscapes) influence criminal opportunity and impacts an offender’s decision making. Crime 

pattern theory has a number of implications for profiling a serial offender’s spatial behavior 

(Brantingham & Brantingham, 1981; Felson & Clarke, 1998; Rhodes & Conly, 1981). First, the 

models reveal how criminals typically express spatial biases that result in higher concentrations 

of crime within the offender’s immediate activity space. Next, an offender’s criminal commute 

exhibits a general decrease in crime frequency as the distance from the residence increases (i.e., 

distance decay) (Capone & Nichols, 1975). However, the distance an offender is willing to travel 

(i.e., cost) is directly related to the type of crime and magnitude of the perceived reward (i.e., 

gain). Third, certain portions of the urban landscape will exhibit disproportionately higher 

concentrations of offenders than others (i.e., offender clustering). And finally, the distribution of 

potential targets varies according to target attractiveness and the offender’s perceptions of 

opportunity (Rhodes & Conly, 1981). Overall, these models depict how an offender’s criminal 

behavior in space is ultimately the product of rational decision making in which the evaluation of 

an objective opportunity structure is inextricably linked to a fixed environment (Brantingham & 

Brantingham, 1981; Rengert, 1981). 

4.1.2   Journey-to-Crime Estimation 

 As referenced earlier, spatial distribution and spatial interaction models constitute the 

predominant methodological approaches for contemporary geographic profiling.  Spatial 

distribution techniques typically characterize criminal phenomena according to univariate 
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measures of central tendency and/or dispersion. Previous studies established that a successful 

geographic profile is premised on the assumptions that (a) an offender’s anchor point is located 

in relative proximity to the crime scenes, and (b) the crime scenes partially define the criminal’s 

activity space (e.g., Canter & Larkin, 1993; Levine, 2000; Rossmo, 2000).  Thus, by defining the 

center of a distribution of linked crime scenes, one effectively reveals some portion of that 

offender’s activity space associated with the anchor point (e.g., Leitner et al., 2007).  Measures 

of central tendency commonly include the geographic mean, median, and center of minimum 

distance.  While simplistic, these techniques have proven to be remarkably effective as a fast and 

intuitive profiling approach (Levine, 2000; Snook et al., 2002; 2004; 2005; Paulsen, 2006b; 

Taylor, Bennell, & Snook, 2009).  But, analyzing distributions with this technique can be 

limited.  Critics argue that single descriptive measures are sensitive to outliers, and are seldom 

able to provide a systematic strategy for locating an offender’s residence (Levine, 2005; Rossmo, 

2005; Snook, Zito, Bennell, & Taylor, 2005). Despite these concerns, centrographic techniques 

are frequently used by researchers as a benchmark when comparing output from multiple 

profiling techniques (e.g., Paulsen, 2006a; Levine, 2007; Levine & Block, 2009).   

 Geographic profiles also employ principles of spatial interaction that attempt to 

characterize an offender’s geographic behavior according to probability distance functions 

(Levine, 2007). Similar to analysis that measure a phenomena’s “center of gravity,” this 

approach is typically utilized to describe the movement of ideas, material, and resources across 

space. In fact, spatial interaction models have long been an effective measure for interpreting an 

offender’s spatial behavior (e.g., Capone & Nichols, 1975; Lottier, 1938; Turner, 1969).  As 

environmental criminology research demonstrated, a principal characteristic of crime pattern 

theory is the distance decay effect: the condition in which the frequency of criminal activity 
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decreases as the distance from the offender’s residence increases (Brantingham & Brantingham, 

1981).  Not surprisingly, many contemporary profiling techniques adopted distance decay as the 

primary method for representing an offender’s behavior in space.  

 JTC estimation techniques are perhaps the most established and widely utilized approach 

for analyzing offender mobility (Brantingham & Brantingham, 1981; Capone & Nichols, 1976; 

Lottier, 1938; Rhodes & Conly, 1981; Rich & Shively, 2004; Turner, 1969).  Though several 

methods exist, JTC routines typically model a criminal’s spatial offense patterns either by fitting 

a mathematical trend function through a calibration sample of solved crimes (e.g., Canter et al., 

2000), or by using an interpolation kernel to fit a non-linear function through individual crime 

scenes (e.g., Levine, 2007).  Once a decay model has been selected, the equation is applied to the 

distribution of linked crime scenes, and used to estimate the likelihood of identifying the 

unknown offender’s anchor point within the study area. 

 While JTC estimation techniques provide an effective means for modeling spatial 

behavior, distance decay methodologies have been criticized for their reliance on aggregated trip 

distributions that distort nuanced, but significant, variations of individual criminal commutes 

(van Koppen & de Keijser, 1997; Rengert et al., 1999; Snook et al., 2005; Smith et al., 2009). 

Indeed, Levine (2005; 2007) notes that individual travel behavior varies by offender.   As a 

consequence, cost assumptions derived from aggregated decay models can lead to false 

estimates.  Furthermore, the traditional utilization of decay models assumes that both the 

opportunity to offend and distribution of attractions are uniformly distributed across the 

environment (Canter et al., 2000; Rossmo, 2000).  Research demonstrates (e.g., Capone & 

Nichols, 1976; Kent & Leitner, 2008; Kocsis et al., 2002; Rengert et al., 1999) that decay 

functions alone are incapable of accommodating the asymmetrical impedances inherent within 
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the built environment.  Consequently, empirically calibrated algorithms often exhibit estimation 

errors within the modeled framework.  Canter and Hammond (2006) found that the choice of 

decay model may have little influence on the efficacy of profiling results.  Consequently, 

numerous studies on the effectiveness of ‘simple’ spatial methods have consistently 

demonstrated that centrographic measures are effective strategies (Levine, 2000; 2005; Paulsen, 

2006b; Snook et al., 2004; 2005; Taylor et al., 2009). In all, geographic profiling research has 

confirmed what Brantingham & Brantingham illustrated decades earlier (1981):  The factors that 

influence offender’s spatial behavior are not random elements.  Rather, the relationship between 

crime scenes and the offender’s residence suggest an asymmetrical activity space that is, by 

some measure, influenced by offender’s perceptions and of the physical and cultural landscape 

(Brantingham & Brantingham, 1981; Capone & Nichols, 1976; Rengert et al., 1999; Rhodes & 

Conly, 1981; Rossmo, 2000). 

4.1.3   Research Proposal 

 To summarize, the structures that define an offender’s perceptions of criminal 

opportunity and target attractiveness exist within a geographic context in which criminal 

mobility and target distribution shape the offender’s activity space (Brantingham & 

Brantingham, 1981; Capone & Nichols, 1976; Canter & Gregory, 1994; Rhodes & Conly, 1981; 

Rossmo, 2000). Contemporary geographic profiling techniques model these relationships 

according to spatial distribution and probability distance strategies. However, such methods are 

often incapable of characterizing the complex relationship between crime scenes, offender 

perceptions, and the surrounding environment. The implication for geographic profiling is that an 

offender’s anchor point must therefore exist within an asymmetrical landscape differentiated by 

physical and cultural constructs. Accordingly, the location of an anchor point is constrained to 
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those physical and cultural landscapes that are relevant to the offender’s activity space.  If land 

cover classifications are used as a proxy for those constructs, it may be possible to refine existing 

profiling techniques to generate improved profile estimates.  To that end, this research proposes 

that a geographic profiling model capable of parameterizing both probability distance functions 

and land cover characteristics will better estimate a serial offender’s anchor point than traditional 

techniques alone.  To test this hypothesis, traditional and land cover-enhanced JTC estimates are 

used to generate geographic profiles for a random sample of solved serial crimes that occurred in 

Baltimore, Maryland, between 1993 and 1997.  Land cover characteristics collected for the 

Baltimore study area will be used to filter JTC estimates. Results derived from each technique 

will be compared for accuracy and precision.  

 The hypothesis presented in this study is conditioned on a number of assumptions.  First, 

each crime series consists of offenses perpetrated by a single individual.  Next, the offender is 

assumed to have initiated and concluded all criminal activities from a single, fixed location (i.e., 

their residence) within their activity space. Third, the offender’s activity space and residence 

must exist within the study area. Furthermore, the land cover classifications used in this study 

reflect the actual environmental structures that influenced an offender’s spatial behavior and 

target opportunity structures (i.e., target backcloth). And finally, land cover data used for this 

research approximates the actual land cover characteristics observed for the study area. 

4.2  Data and Methodology 

 This study proposes to enhance existing JTC techniques by introducing land cover 

characteristics as a filtering mechanism to constrain estimations to those land cover types most 

likely inhabited by the serial offender. To that end, the methodology employed for this 

investigation is organized into three distinct parts. First, the crime and land cover datasets 
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utilized for this analysis are described.  This is followed by a brief overview of five JTC 

techniques used in this study.   Finally, the methods for assessing each of the JTC techniques are 

presented. 

4.2.1   Data Used 

 Crime dataset:  The crime data used for this study were comprised of 732 solved serial 

burglary and robbery offenses that occurred in Baltimore, Maryland, between 1993 and 1997 

(Table 4.1). The dataset included only those records where the coordinates for each crime scene 

were paired with coordinates for the offender’s known residence, presumed to be the anchor 

point for all criminal activities. The dataset included 162 criminal series (burglary = 61, robbery 

= 101), averaging 4.52 crimes per series (burglary = 4.26, robbery = 4.67).  Burglary and robbery 

offenses were combined to create a comprehensive dataset from which adequately sized test and 

calibration samples would be drawn.   Figure 4.1 illustrates the average JTC distance for the 

combined dataset, which is characterized by a mean distance of 7.21 km (SD=7.93) and a median 

distance measured at 5.11 km.  

 The dataset was assessed to ensure that it met the criteria published in a 2004 National 

Institute of Justice (NIJ) guidelines for evaluating geographic profiling techniques (Rich & 

Shively, 2004).  First, the dataset included crime series that consisted of three or more offenses. 

While less than the five-crime minimum proposed by Rossmo (2000; 2005b), the three case 

minimum was adopted due to the limited number of records available in the dataset. 

Furthermore, the data were not segregated according to a particular mobility characteristic [e.g., 

commuter or marauder mobility types (Canter & Larkin, 1993)].  While studies have recognized 

a performance distinction between the profiles generated for marauders and commuters (Paulsen, 

2007; Rossmo, 2000; Santtila, Laukkanen, & Zappala, 2007), this study did not examine the  



80 
  

Table 4.1: Serial Crime Dataset - Baltimore, MD, 1993-1997 

Crime 
Type 

Number 
of Series 

Number 
of 

Offenses 

Series 
Statistics 

Distances 

Min Max Mean Median 

Burglaries 61 260 

Min:3, Max:12 
Mean: 4.26 
(SD=1.89) 
Median: 3 

0.00 m 56.28 
km 

6.63 km 
(SD=10.59) 1.71 km 

Robberies 101 472 

Min:3, Max:14 
Mean: 4.67  
(SD= 2.04) 
Median: 4 

165.6 m 36.95 
km 

7.52 km 
(SD= 5.94) 6.48 km 

Combined 162 732 

Min:3, Max:14 
Mean: 4.52 
(SD=2.00) 
Median: 4 

0.00 m 56.28 
km 

7.21 km 
(SD=7.93) 5.11 km 

 

 

Figure 4.1: Journey-to-Crime distribution of Baltimore, MD, serial offenders. 
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impact of these offense patterns on the profiled output.  Finally, the dataset was divided into two 

groups:  A calibration sample and a profile sample. As depicted in Table 4.2, the calibration 

sample consisted of 92 randomly selected crime series with a median count of four crimes per 

offender (min=3, max =11, n=379), an average travel distance of 8.47 km (SD=8.76) per trip, 

and median distance of 6.47 km.  The profile sample (i.e., testing sample) included 70 crime 

series with a median travel distance of 3.55 km, an average distance of 5.85 km (SD=6.67), and a 

median count of five crimes per series (min=3, max=14, n=353). 

Table 4.2: Serial Crime Profile & Calibration Sample Datasets-Baltimore, MD, 1993-1997 

Sample Set Number 
of Series 

Number 
of 

Offenses 
Series Statistics 

Distances 
Min Max Mean Median 

Profile 70  353 
Min:3, Max:14 

Mean: 5.04 
(SD=2.29) 
Median: 5 

0.00m 43.05 
km 

5.85 km 
(SD=6.67) 

3.55 
km 

Calibration 92 379 
Min:3, Max:11 

Mean: 4.12 
(SD=1.64) 
Median: 4 

0.00 m 56.28 
km 

8.47 km 
(SD=8.76) 

6.74 
km 

Combined 162 732 
Min:3, Max:14 

Mean: 4.52 
(SD=2.00) 
Median: 4 

0.00 m 56.28 
km 

7.21 km 
(SD=7.93) 

5.11 
km 

 

 Land cover dataset: Land cover data for the Baltimore study area were extracted from 

the 1996 Land Cover Analysis dataset distributed by the U.S. National Oceanic and Atmospheric 

Administration (NOAA) for the Coastal Change Analysis Program (C-CAP).  The source dataset 

included twenty-three land cover classifications derived from 30-meter resolution Landsat 

Thematic Mapper and Landsat Enhanced Thematic Mapper satellite imagery (NOAA, 1996).  

Each classification was represented by a unique integer value.   In order to increase the 
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operational efficiency of profile generation, the land cover data were aggregated from 30 meter 

to 480 meter cell sizes.   Cells were assigned the statistical mode of the land cover integer value 

calculated from the 256 (16x16) contiguous 30 meter cells.  Following the aggregation process, 

the data set was reduced from twenty-three to eighteen land cover classifications (see Figure 

4.2).  The resulting coverage, which comprised 12,932 grid cells, was trimmed to fit the 

geographic extents of the Baltimore, MD, study area. Figure 4.3 illustrates the proportion of land 

cover that comprises the aggregated coverage. 

4.2.2   Geographic Profile Techniques 

 Five modeling techniques were chosen to compare the effectiveness of land cover-

enhanced geographic profiles:  

• Journey-to-Crime Estimation, JTC 

• Bayesian JTC Product, Bayesian-JTC 

• Filtered Journey-to-Crime Estimation, Filtered-JTC 

• Filtered Bayesian JTC Product, Filtered-Bayesian-JTC 

• Center of Minimum Distance, CMD   

 

 Journey-to-Crime Estimation, JTC:  This profiling technique produces a probability 

surface representing the likelihood of locating an offender's anchor point within the study area.   

Values are calculated according to an empirically calibrated probability distance function (i.e., 

decay curve) derived from the calibration sample of 92 solved cases (see Table 4.2).  A JTC 

frequency distribution consisting of 480-meter distance intervals (i.e., bins) is constructed for all 

incidents in the sample.   While effects of various distance decay algorithms have been studied 

(e.g., Canter & Hammond, 2006; Levine, 2007), this investigation selected the exponential 

(negative) algorithm due to its robust utilization by transportation modelers and other JTC   
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Figure 4.2: Aggregated land cover map of Baltimore, MD, study area. 
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modeling applications [e.g., Canter et al., 2000; Federal Highway Administration (FHWA), 

1977; and Levine, 2005; 2007].   Accordingly, a negative exponential curve was regressed and fit 

onto the JTC frequency distribution (Figure 4.4).  While the coefficient of determination was 

low, it proved to be a significant fit:  R2 = 0.506 (F = 119.69, p < 0.000).   

 Next, a 480 meter study grid consisting of 12,932 cells was placed over the Maryland 

study area.  The grid was designed to match the coverage and resolution of the aggregated land 

cover dataset.  For each crime in a given series, the Euclidean distance was measured between a 

cell’s centroid and crime scene.  Next, the exponential decay model was applied to each cell-to-

crime distance, and summed over the series to produce a density estimate (Equation 4.1).   

 

Figure 4.3: Distribution of aggregated land cover classes in the Baltimore, MD, study area. 
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Finally, a cell’s modeled output was converted into a probability by scaling the estimates such 

that the sum of all cell values equaled 1.  Once normalized, the cell’s output represents the 

discrete probability of identifying an offender’s anchor point according to the distance decay 

model (Levine, 2007): 

𝑃𝑃(JTC)= �𝑓𝑓�𝑑𝑑𝑥𝑥𝑖𝑖𝑦𝑦�
𝑛𝑛

𝑖𝑖=1

= 1 (4.1) 

where dxy is the distance measured between each crime scene, xi (i = 1,2,3,…,n), and each grid 

cell, y, which is applied to the corresponding decay function, f(d).    

 

Figure 4.4: Calibrated Journey-to-Crime distance decay model for Baltimore serial offenders. 
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 Bayesian JTC Product, Bayesian-JTC: Version 3.1 of the CrimeStat® software package 

introduced the Empirical Bayes Journey-to-Crime model for predicting the anchor point of a 

serial offender (Levine, 2007).   This Bayesian formulation follows an intuitive process in which 

the prior JTC estimate of the unknown serial offender is updated using a likelihood function.   

The likelihood represents the conditional probability of anchor points for known offenders that 

committed crimes the same grid cells as the unknown offender [see the CrimeStat® 3.1 

documentation for more details (Levine, 2007)].  When the likelihood is combined with the 

empirically derived prior JTC probability, it produces what the CrimeStat® manual refers to as 

the Empirical Bayesian JTC Product (Levine, 2007).  As noted (Levine, 2007), the Bayesian 

formulation will often represent this conditional probability in a proportional form of the 

posterior probability (Bolstad, 1997), taking the form: 

𝑃𝑃(JTC|O) ∝ P(O|JTC) ∙ P(JTC) (4.2) 

where the posterior, P(JTC|O), represents the relative weight of a JTC estimate after the 

conditional likelihood, P(O|JTC), has been observed.   

 For this study, the conditional likelihood estimate was estimated by first identifying those 

grid cells where the incident locations from the profile and calibration sample were coincident.  

Of the 70 cases in the profile sample, 53 had an incident that was spatially coincident with the 

calibration sample.  For each coincident pair, the anchor points from the calibration sample were 

summed and interpolated onto the study grid as a probability surface using a normal kernel 

density estimate.  Each of the resulting density surfaces were combined and scaled such that the 

sum of all cell values equaled 1.  Finally, the product of the conditional and the prior JTC 
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probability values were calculated for each cell and scaled to produce the proportional Bayesian-

JTC probability surface. 

 Filtered Journey-to-Crime Estimation, Filtered-JTC:  This study asserts that the 

location of an offender's residence is spatially dependent upon the physical and cultural 

landscape.  Thus, an offender's anchor point should be constrained to certain environmental 

characteristics that are common among other offenders.  Using land cover classifications as a 

proxy for these characteristics, traditional JTC models can be modified to effectively filter out 

those locations that are unlikely to contain an offender's anchor point.    To illustrate this effect, 

Figure 4.5 depicts the output of a theoretical geographic profile using a simplified study area 

comprised of three grid cells.  Each grid cell has been assigned a JTC probability estimate, 

P(JTCn).   Additionally, each grid cell has a corresponding probability for land cover, P(LCn), 

which represents the marginal probability of observing a  particular land cover class that is 

spatially coincident with the anchor point of previous (i.e., solved) serial offenders.  Based solely 

on the JTC estimation, cell A3 was assigned the highest prior probability of containing the anchor 

point [P(JTC) = 0.40].  However, cell A3 had also been assigned the lowest marginal land cover 

probability for an offender’s residence [P(LC)=0.15], indicating that few offenders reside in that 

land cover class.  When the product of the two marginal probabilities was calculated, the JTC 

estimation for cell A3 was updated to reflect the influence of the land cover probabilities, 

revising the profile estimate from 0.40 to 0.33.  Simultaneously, the profile estimated for cell A2 

(the cell containing the offender's anchor point) increased from 0.35 to 0.39.   In short, the 

marginal land cover probability was able to filter the prior JTC probability, resulting in a more 

precise estimate of the offender's anchor point.  
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 To incorporate land cover probabilities within the JTC framework, the observed 

frequency of a given land cover category was calculated for those grid cells that were spatially 

coincident with offender anchor points maintained within the calibration sample.  These values 

represent the marginal probability of identifying an offender’s residence according to a 

particular land cover type.  The product of the marginal and JTC probabilities was calculated and 

scaled for each grid cell to produce the proportional Filtered-JTC estimate:  

𝑃𝑃(Filtered-JTC) ∝ P(JTC) ∙ P(LC) (4.3) 

where P(LC) is the marginal probability of land cover, and P(JTC) is the prior JTC estimation 

for a grid cell. 

 As illustrated in Figure 4.6, only four of the eighteen aggregated land cover types 

corresponded to the residences in the calibration sample.  These few categories include all 

developed land cover classes in which impervious surfaces comprise a significant portion of the  

P(JTC1)=0.25 
A1 

P(LC1)=0.20 

(Location of Anchor Point) 
P(JTC2)=0.35 

A2 
P(LC2)=0.20 

P(JTC3) =0.40 
A3 

P(LC3)=0.15 

 

Grid 
Cell 

Prior 
Probability 

P(JTC) 

Marginal Land 
Cover Probability 

P(LC) 

Product 
P(LC)·P(JTC) 

Filtered-JTC 
P(Filtered-JTC) 

A1 0.25 0.20 0.25 x 0.20 = 0.05 0.05/0.18 = 0.28 
A2 0.35 0.20 0.35 x 0.20 = 0.07 0.07/0.18 = 0.39 
A3 0.40 0.15 0.40 x 0.15 = 0.06 0.06/0.18 = 0.33 

Totals: Σ = 0.18 Σ = 1.00 

Figure 4.5: A simplified geographic profile illustrating how land cover probability values can 
update Journey to Crime estimations.  Marginal land cover probabilities update the JTC estimate 
to correctly identify cell A2 as the offender's anchor point. 
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total cover (NOAA, 1996).  The most frequently observed categories are the low and high-

intensity land use classes, which correspond to a mix of residential and commercial structures, 

transportations routes, and various outbuildings (NOAA, 1996).  The remaining developed land 

cover types are represented by medium intensity and open spaces, which correspond to a mixture 

of both impervious and exposed surfaces.  Note that these probabilities are based on the 

assumptions that (a) an offender’s residence corresponds to a land cover type consistent with 

those observed in the study area, and (b) the land cover type assigned to a grid cell approximates 

the actual characteristics for anchor points within that grid cell. 

 

Figure 4.6: Frequency of land cover type for serial burglars and robbers from the Baltimore 
calibration sample. 
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 Filtered Bayesian JTC Product, Filtered-Bayesian-JTC:  A noteworthy advantage of 

the Bayesian formulation is that it follows an intuitive process similar to that of a criminal 

investigation:  As new evidence is observed, prior knowledge is updated to reflect a revised 

degree of belief in the criminal suspect(s).  Accordingly, it is reasonable to introduce the 

marginal probability of land cover as another independent variable within the Bayesian-JTC 

estimate: 

𝑃𝑃(Filtered-JTC|O) ∝ P(O|JTC) ∙ P(JTC) ∙ P(LC) (4.4) 

where P(Filtered-JTC|O) is proportional to the product of the conditional Bayesian JTC 

likelihood, P(O|JTC), the prior JTC estimate, P(JTC), and the marginal probability of land cover, 

P(LC).   The procedure for assigning Filtered-Bayesian-JTC estimates onto the study grid 

follows the same steps detailed for the earlier estimates.  Similarly, the final grid values were 

mathematically scaled such that the sum of all cell values equaled 1.     

 Center of Minimum Distance, CMD:  Spatial distributions strategies are often used by 

researchers as a baseline for comparing output from different geographic profile techniques (e.g., 

Levine, 2000; Paulsen, 2006b).  Accordingly, the center of minimum distance (CMD) has 

become a seemingly ubiquitous technique for profiling an offender’s anchor point relative to 

distribution of crime scenes.  The CMD is iteratively defined as a point within the study area 

where the sum of the distance to all other crime locations is smallest (Levine, 2007): 

𝐶𝐶𝐶𝐶𝐶𝐶 = �𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 (𝑥𝑥𝑖𝑖 ,𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥̅)
𝑛𝑛

𝑖𝑖=1

 (4.5) 

where xi represents a crime at location i, 𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥̅  represents the current center of minimum 

distance within the distribution, and the function dmin represents the minimum distance between 
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the crime scene x and the 𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥̅ .  Because CMD estimations are represented as a single point, 

the technique provides a good indicator for the spatial accuracy of a geographic profile (though, 

it is vulnerable to outliers).  However, it is not compatible with many evaluation criteria that 

gauge a profile’s efficacy using probability measures (e.g., traditional or the Bayesian JTC 

estimates).  Furthermore, some studies caution that the interpretation of precision for CMD 

profile should be limited to symmetrical output (Rossmo, 2005b).    As such, comparisons to the 

CMD output must accommodate these limitations. 

4.2.3   Evaluation Criteria 

 The profiling methods proposed for this investigation (e.g., JTC, Bayesian-JTC, Filtered-

JTC, Filtered-Bayesian-JTC, and CMD) were assessed using evaluation criteria that measure 

both accuracy and precision (Levine & Block, 2009; Paulsen, 2006b).   Though controversial 

(Levine, 2005; Rossmo, 2005a), this study elected to evaluate the profiling output according to 

methods detailed in a report issued by the National Institute of Justice (Rich & Shively, 2004).   

The methods used, and their descriptions are provided:  

• Profiled probability value:  The probability value assigned to the grid cell where the 

offender’s anchor point is predicted.  The higher the probability, the more accurate the 

model.  

• Error distance:  A diagnostic accuracy estimate that measures the Euclidean distance 

between the offender’s true anchor point and the cell with the highest probability 

estimate.   Shorter distances indicate a more accurate model. 

• Search cost/hit score:  The proportion of the study area that must be searched in order to 

identify the cell containing the offender’s residence.  This method accommodates the 

search cost value published by Canter et al. (2000), and the hit score defined by Rossmo 

(2000).  It is essentially a percentage of cells that must be searched before finding the 

offender’s residence.  Smaller percentages reveal a higher model precision.  
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 The first technique, the profile probability value, indicates the strength of the profile’s 

ability to model the offender’s spatial mobility characteristic.  Accordingly, this measure is 

applicable to the four JTC-based profiling routines.  As a point estimate, the CMD strategy does 

not produce a probability value, thus it was not evaluated with this method.  The second 

evaluation procedure examines the Euclidean distances measured between the grid cell with the 

highest profile value and the offender’s anchor point (i.e., error distance).  The final measure, 

search cost/hit score, provides insight into the variability associated with predicting an offender’s 

anchor point.   The value is calculated by first sorting grid cell values in descending order, and 

then counting the number of cells that must be searched before encountering the offender’s 

anchor point (Canter et al., 2000; Rossmo, 2000).  Because the CMD measure is a point estimate, 

it is incapable of independently generating a search cost.  However, a comparable estimate can 

derived by counting the number of grid cells that fall inside a circle defined by a radius equal to 

the error distance.    

 Because each method compares different treatments on the same profiled sample, two 

non-parametric tests are proposed to validate the diagnostic results.  First, the Friedman test is 

used to determine if the output generated by each of the profiling techniques is different, thus 

supporting their individual comparisons (SPSS, 2004).  Next, the individual differences between 

techniques are assessed using the Wilcoxon signed ranks test for related samples.    

4.3  Results  

 This section presents the output generated from the geographic profiling models and their 

subsequent evaluation measures.  The overall performance of each model is summarized in Table 

4.3.   Additionally, the matrix provided in Table 4.4 details how well the individual routines 

performed relative to the traditional JTC estimation.  The number of times an estimate was 
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observed to be more accurate or precise is indicated by positive ranks.  Conversely, negative 

ranks indicate the number of worse performing estimations.   Because the Bayesian-JTC routine 

could only generate estimates for 53 of the 70 crime series in the profile sample, the comparisons 

presented below will be limited to those results.     

4.3.1   Profiled Probability Value 

 This diagnostic gauges profiling efficacy along a finite-continuum.  Higher probability 

values indicate a greater likelihood that the offender’s residence can be located within a grid cell.   

Because the study area consisted of a total of 12,932 grid cells, probability estimates were small 

(Table 3).  Of the four profiling techniques, the Filtered-Bayesian-JTC produced the highest 

mean and median probability values of all 53 profiles (0.003484 and 0.002523 respectively).  In 

fact, the average Filtered-Bayesian-JTC probability value was almost triple that of the average 

JTC estimate.  The Filtered-JTC estimate measured the second highest average and median 

probability.  Finally, the Bayesian-JTC and standalone JTC estimates rounded out the 

performance results.  The Friedman test indicates significant differences between the four 

profiling results, thus supporting these findings.    

  When the estimations were compared individually, the Bayesian-JTC technique 

produced 40 profiles that had a probability value greater than those produced using the standard 

JTC method (see Figure 4.4).   However, the Filtered-JTC technique performed better:  

generating 50 of 53 profiles (94.34%) that had probability values higher than the traditional JTC 

technique.  Similarly, though not as high, the Filtered-Bayesian-JTC method produced 46 

estimates that were more accurate than the JTC output.  This finding also demonstrates that the 

filtered approach was able to improve upon the Bayesian-JTC estimate for six crime series. The
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Table 4.3: Profile Comparisons - Accuracy & Precision Measures.  

Profiling Strategy 
Profile Probability Values a larger 

is better 
Error Distances b  

shorter is better 
Search Cost / Hit  Score c  

smaller is better 
Mean Median Mean Median  Mean Median  

Journey to Crime 
Estimate 

(JTC) 

0.001211 
(SD=0.000913) 

0.001012 
%25th = 0.00041 
%75th = 0.00205 

4.671 km 
(SD =4.562) 

3.398 km 
%25th = 0.441 
%75th = 7.679 

0.041053 
(SD=0.070428) 

0.010284 
%25th = 0.00023 
%75th = 0.04961 

Bayesian JTC Product  
(Bayesian-JTC) 

0.001787 
(SD =0.001437) 

0.001352 
%25th = 0.00072 
%75th = 0.00248 

4.891 km 
(SD =5.210) 

3.347 km 
%25th = 1.108 
 %75th = 7.242 

0.041707 
(SD =0.095084) 

0.011599 
%25th = 0.00197 
%75th = 0.03542 

Land Cover Filtered 
JTC  

(Filtered-JTC) 

0.002647 
(SD =0.002226) 

0.002188 
%25th = 0.00084 
%75th = 0.00404 

 4.617 km 
(SD =4.515) 

3.541 km 
%25th = 0.497 
 %75th = 7.962 

0.026679 
(SD =0.040507) 

0.006418 
%25th = 0.00035 
%75th = 0.02842 

Land Cover Filtered 
Bayesian JTC Product 

(Filtered-Bayesian-JTC) 

0.003484 
(SD = 0.003573) 

0.002523 
%25th = 0.00101 
%75th = 0.00561 

 4.843 km  
(SD=4.980) 

3.429 km 
%25th = 1.153 
%75th = 7.236 

0.025992 
(SD = 0.047411) 

0.007423 
%25th = 0.00143 
%75th = 0.02536 

Center of Minimum 
Distance (CMD) -- -- 4.408 km 

(SD =4.132) 
3.912 km 

%25th = 0.689 
%75th = 6.736 

0.039374 
(SD=0.063002) 

0.015698 
%25th = 0.00101 
%75th = 0.04605 

Friedman Test for group differences between profile values 
a N = 53; χ2 = 72.357; d f= 3; p ≤ 0.000 (Asymp. Sig.) 
b N = 53; χ2 = 0.735; df = 4; p ≤ 0.947 (Asymp. Sig.) 
c N =5 3; χ2 = 46.5; df = 4; p ≤ 0.000 (Asymp. Sig.) 
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Table 4.4: Profile Evaluation Results for 53 Profiled Crime Series 

Evaluation Method 
Bayesian JTC 

Product  
(Bayesian-JTC) 

Land Cover 
Filtered-JTC  
(Filtered-JTC) 

Land Cover Filtered 
Bayesian JTC Product 
(Filtered-Bayesian-JTC) 

Center of 
Minimum 

Distance (CMD) 
Rank 

Profile Probability 
Value1 

13 3 7  Negative 
40 50 46 -- Positive 
0 0 0  Tie 

Error Distance2 
19 13 20 27 Negative 
16 13 22 25 Positive 
18 27 11 1 Tie 

Search Cost / Hit 
Score3 

21 7 16 35 Negative 
25 35 31 14 Positive 
7 11 6 4 Tie 

1 Wilcoxon Signed Ranks for pairwise 
differences of profile values 

JTC < B-JTC:  Z = -4.245, p ≤ 0.000 
 (2-tailed) 

JTC < F-JTC:  Z = -6.069, p ≤ 0.000  
(2-tailed) 

JTC < F-B-JTC:  Z = -5.719, p ≤ 0.000  
(2-tailed) 

2 Wilcoxon Signed Ranks for pairwise 
differences of profile values 

JTC > B-JTC:  Z = -0.524, p ≤ 0.600  
(2-tailed) 

JTC = F-JTC:  Z = -0.470, p ≤ 0.638  
(2-tailed) 

JTC < F-B-JTC:  Z = -0.619, p ≤ 0.536  
(2-tailed) 

JTC > CMD:  Z = -0.373, p ≤ 0.709  
(2-tailed) 

3 Wilcoxon Signed Ranks for pairwise 
differences of profile values  

JTC < B-JTC:  Z = -0.737, p ≤ 0.461  
(2-tailed) 

JTC < F-JTC:  Z = -4.233, p ≤ 0.000  
(2-tailed) 

JTC < F-B-JTC:  Z = -3.080, p ≤ 0.002  
(2-tailed) 

JTC < CMD:  Z = -1.611, p ≤ 0.107  
(2-tailed) 
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Wilcoxon signed ranks test found the pair-wise comparisons between each of these results 

significant. 

4.3.2   Error Distance 

 This evaluation technique measures the Euclidean distance (kilometers) between the 

predicted residence and the offender’s actual residence (e.g., Levine, 2000; 2007; Snook et al., 

2002; Rich & Shively, 2004; Paulsen, 2006b).  Accordingly, shorter distances are better.   As 

presented in Table 4.3, the CMD estimate produced the shortest average error distances of all 

five techniques (4.408 km), whereas the Bayesian-JTC produced the shortest median distance 

(3.35 km).  Interestingly, the average error distance of the two Bayesian formulations did not 

perform as well as either the traditional JTC or the Filtered-JTC averages.  The relatively large 

variances observed for this diagnostic technique makes it difficult to identify any subtle 

differences between routines.  Consequently, the Friedman chi-square analysis failed to identify 

significant differences for the error distance.   

 Despite producing the shortest average error distance, the CMD technique was only equal 

or better than the JTC method for 26 of 53 cases (49.06%).  This was followed by the Filtered-

Bayesian-JTC, which produced 33 equal or better estimates (62.26%).   The next best results 

came from the Bayesian-JTC estimates (34), and finally the Filtered-JTC technique which 

peaked with 40 (75.5%) estimates that were equal or better than those of the JTC routines.   

However, the Filtered-JTC model produced far more ties (27) than positive ranks (13).   In fact, 

the Filtered-JTC method had the fewest positive ranks of the other methods.  Conversely, the 

CMD technique produced the greatest number of positive ranks (25) and the fewest ties, (1).  

While these results are noteworthy, statistical significance remained elusive according to the 

Wilcoxon tests.    
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4.3.3   Search Cost/Hit Score 

 Arguably the best measure for evaluating a profile; the search cost/hit score represents 

the proportion of the study area that must be searched in order to locate the offender’s anchor 

point.  Because it is an indicator of cost, profiles that produce smaller proportions signify higher 

precision.   Overall, profiles that incorporated land cover within the JTC framework required, on 

average, fewer grid cells to identify offender anchor points when compared to other methods (see 

Table 4.3).   Accordingly, the smallest average search cost was produced by the Filtered-

Bayesian-JTC routine (~0.026), and the smallest median result produced by the Filtered-JTC 

routine (~0.064).   Results from the Friedman tests support these findings, confirming significant 

differences among output values and within these individual techniques.  Once again, the filtered 

approach improved the output derived by the Bayesian routines.  Not surprisingly, the average 

hit score produced by the CMD routine (~0.0394) performed better than those of the traditional 

and Bayesian-JTC techniques.  However, the large amount of variability in the CMD output 

made it difficult to recreate this performance for the median value (~0.0157). 

 As illustrated in Table 4, pair-wise comparisons between the Bayesian-JTC and standard 

JTC strategies show a large improvement between hit score results (60.4%).  However, the 

Wilcoxon tests failed to identify significance for this result.  Comparatively, the Filtered-JTC 

profiles exhibit a significant gain, producing 46 (86.8%) precise estimates when compared to 

JTC estimates.  Again, land cover filters were able to improve upon the Bayesian estimations, 

increasing the number of positive ranks to 31, while dropping the ties from 7 to 6.  Finally, the 

CMD routine produced 18 estimates that were more accurate than the JTC technique.  Yet, these 

results were not significant. 
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4.4  Discussion 

 The results presented above confirm that that land cover characteristics can be used to 

enhance existing JTC estimation routines.  By combining the marginal probability of land cover 

with a distance probability function, the likelihood of identifying an offender's anchor point was 

effectively constrained to those land cover types inhabited by previous offenders.  This filtering 

methodology was able to refine and improve the JTC estimates for both the traditional and 

Bayesian-enhanced methodologies (see Tables 4.3 and 4.4).  For instance, the cumulative output 

of the Filtered-JTC routine equaled or outperformed the standard JTC results for all three 

evaluation measures: probability value (+50), error distance (+40), and Search cost/hit score 

(+46).  Similarly, cumulative results generated for the Filtered-Bayesian-JTC routine 

demonstrated an improvement of the Bayesian-JTC estimates for two out of three evaluation 

methods:  probability value (+6), error distance (-1), and search cost/hit score (+5).   Indeed, the 

land cover-enhanced methods produced the smallest average and smallest median search cost/hit 

score of all profiles (Table 4.3).   The effects of the filtering approach are best observed when 

comparing JTC surface maps.   For example, Figure 4.7 illustrates the probability (risk) surface 

of a traditional JTC estimate produced for a particular serial robbery offense.  The ubiquitous 

configuration of concentric probability rings surrounding the crime scenes illustrates the classic 

effects of a distance decay function.  The probability of identifying the offender's anchor point is 

0.00045, with a hit score of 5.0115%.  In contrast, Figure 4.8 illustrates the effectiveness of the 

land cover-enhanced Bayesian strategy.   Here, the probability of the offender's anchor point is 

0.00193, with a hit score of 0.495%.   While both techniques predicted the same grid cell, the 

search cost is significantly reduced, more than ten times.   
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Figure 4.7: Journey-to-Crime probability map. 
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Figure 4.8: Filtered Bayesian Journey-to-Crime estimate probability map. 
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 Still further, the land cover-enhanced approach more effectively accounts for the 

Baltimore landscape: locations that were otherwise unsuitable as a potential residence were 

effectively devalued or excluded from the analysis.   Accordingly, both physical and cultural 

structures become prominent elements within the modeled output.  And by virtue of their land 

cover classifications; these locations were assigned values that reflect the marginal probability of 

containing the offender's residence.   Thus, non-residential land cover categories are devalued 

while residentially-favorable categories are amplified.  This approach, however, may distort 

profile estimates when the assumptions about an anchor point cannot be met (i.e., if the 

offender's anchor point is not his/her residence). 

 Despite the obvious enhancements to a profile's efficiency, these findings were not 

consistent over all estimation techniques.  Table 4.3 reveals that the mean and median error 

distances estimates were notably shorter (i.e., better) for the CMD and Bayesian-JTC techniques 

when compared to the other routines.  The Filtered-JTC produced 27 tied estimates, more than 

any other technique. The CMD also had the fewest number of ties.  These findings match those 

produced by Levine (2000) and Paulsen (2006b), and further support the efforts by Snook et al. 

(2002; 2004; 2005) and Taylor et al. (2009) for the application of alternate heuristics for 

profiling offender anchor points. But as is evident in the tables, the CMD method exhibits 

considerable variance, which likely explains the lack of significance in the outcomes.   Similar 

inconsistency is observed for the search cost/hit score evaluation: the Filtered-JTC produced 

lower hit scores for 35 of the 53 cases.  However, this number drops to 31 for the Filtered-

Bayesian-JTC estimates.  The likely source for the inconsistent outcomes relates to an 

overestimation of anchor points introduced by the Bayesian likelihood function.  
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 Recall that the Bayesian-JTC formulation uses the conditional probability of anchor 

points for known offenders as a means of updating the prior JTC probability.  In order to derive 

that likelihood function, at least one crime scene from both the calibration and test samples must 

fall inside a coincident grid cell.  To ensure that this occurs, either the grid cells and/or 

calibration sample must be sufficiently large.  The consequence of either, or both, is non-trivial.  

When the study grid becomes too large, the precision of the estimate decreases.  Likewise, when 

the calibration sample is increased, so too is the possibility of introducing anchor point outliers.   

The implications for this scenario increase with the introduction of heterogeneous offense types.   

Research has established that different crime types will exhibit different spatial patterns (e.g., 

Rhodes & Conly, 1981; LeBeau, 1987; Canter & Larkin, 1993; Rossmo, 2000; and Snook, 

2004).  And referencing Table 4.1, the median and average distances traveled for burglary and 

robbery cases are noticeably different, though not significant.  As such, combining the travel 

characteristics of these two offense types could have biased the conditional probability of 

locating an anchor point away from its actual location.    

 Model bias is not limited to the conditional probability function.   A plausible source of 

bias relates to both the marginal probability of land cover and the JTC distance decay model.  As 

illustrated in Figure 4.6, the majority of the offenders within the calibration dataset have anchor 

points located within developed land cover zones (e.g., high, medium, and low - intensity).  Not 

surprisingly, developed land cover zones were also the most frequently observed category for 

crime scenes in the Baltimore study area (mode = developed-low intensity).  Because the shape 

of the distance decay curve emphasized the grid cells immediately surrounding the crime scenes 

(Figure 4.2), and because the majority of cells surrounding crime sites were classified as 

developed land cover zones, the highest profile probability estimates were calculated for these 
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developed zones.  As a consequence, the product of the JTC estimation and the marginal land 

cover probability is behaving as a pseudo maximum likelihood estimator (similar to the Bayesian 

likelihood function).  For that reason, the product of the independently estimated marginal land 

cover and JTC probabilities results in a profile that over-emphasizes developed land cover zones 

at the exclusion of all others.  In short, when the estimator is correct, it works well; when it is 

wrong, it works poorly.   

 Concerning the JTC decay models, the implications of over-fitting a probability distance 

function was recently examined within the context of a model's goodness of fit (Canter & 

Hammond, 2006).   As Brantingham & Brantingham (1981) postulated, the distance decay effect 

is a ubiquitous characteristic for nearly all serial crime cases.  While it is important to optimize a 

model’s fit for the JTC distribution, the choice and significance of that regression algorithm may 

ultimately be arbitrary constructs that distract from the offender's unique spatial behavior (Canter 

& Hammond, 2006; Smith, Bond, & Townsley, 2009).   In a study published by Smith et al. 

(2009), the authors caution that the distance decay pattern observed for aggregate JTC 

distributions cannot be considered statistically independent, thus may result in biased estimations 

(Taylor, Bennell, & Snook, 2009).   Such concerns are not new (e.g., van Koppen & de Keijser, 

1997; Rengert et al., 1999).   Journey-to-crime distributions are, by their very nature, 

idiosyncratic to the offender.  Thus, the unique characteristics of an offender's spatial behavior 

are lost when the data are aggregated.  For that reason, the resulting decay functions may only be 

applicable for inferring criminal mobility characteristics from the calibration sample (Smith et 

al., 2009).  So, while aggregate models may over-emphasize (if not misinterpret) the mobility 

characteristics of the unknown serial offender, the distance decay model remains the only 
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systematic mechanism for calculating the maximum likelihood of an offender's journey to crime 

(Levine, 2005; O'Leary, 2009).  

4.5  Conclusions 

 The primary objective for this research was to determine the efficacy of incorporating 

land cover characteristics within a geographic profiles framework.  To that end, this study 

proposed that an offender's anchor point is spatially constrained to certain land cover 

characteristics that are common to other offenders.  The premise for this assertion is based on 

research that has demonstrated how the location of linked serial crime scenes will exhibit spatial 

patterns and distribution characteristics that are influenced by structures within physical and 

cultural landscapes (Brantingham & Brantingham, 1981).   Accordingly, a geographic profiling 

model capable of parameterizing the deterministic impact of these underlying structures should 

predict the residential location of a serial offender more accurately.  This study proposed to 

measure this efficacy of this approach by comparing five profiling models generated using 

traditional and land cover-enhanced techniques.   Geographic profile estimates were created for 

53 serial crimes occurring in Baltimore County, MD, over a four year period.  The first profiling 

technique estimated an offender’s JTC using an empirically calibrated, exponential distance 

decay model.  Next, a Bayesian-JTC estimate was calculated using methods published by Levine 

(2007).   The third profile technique, Filtered-JTC, was constructed according to the marginal 

probability of identifying an offender's anchor point within a particular land cover type.   Fourth, 

the Bayesian-JTC technique was updated using the marginal land cover probability estimate as a 

filtering mechanism.   Finally, the simple and ubiquitous CMD technique completed the 

collection of profiling strategies.  A comparative analysis was performed on each profiling 

strategy.   
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 The first of the three accuracy assessments compared the different profile probability 

values of the estimates.  The data revealed that the two land cover-enhanced methods (Filtered-

JTC and Filtered-Bayesian) had the highest significant probability averages of all profile 

measures.  The introduction of the marginal probability of land cover effectively constrained the 

profiled output to those land cover types that most likely supported offender anchor points.  

While the filtering technique cannot be used to prioritize criminal suspects, it can eliminate areas 

such as woodlands, water bodies, and other unlikely areas from investigatory consideration.  The 

next measure, the average profiled error distance, was not able to demonstrate a significant 

improvement.  However, the CMD strategy out-performed the probability distance strategies.   

This was not a surprise, as the CMD represents the physical location of the maximum likelihood 

estimate of the offender's anchor point (Levine, 2005; O'Leary, 2009).  Finally, the search 

cost/hit score was employed to assess a profile's precision.  For the sample used in this study, the 

results further support the use of land cover characteristics within a modeling framework.  Both 

the Filtered-JTC and Filtered-Bayesian-JTC methods showed improvement over the non-filtered 

JTC and CMD methods.  The marginal probability of land cover was able to further enhance the 

performance of the Bayesian-JTC method.    

 While this study has demonstrated the efficacy of land cover-enhanced geographic 

profiles, there are some aspects that deserve further research.  Specifically, attention must be 

paid toward the method of assigning land cover probabilities.  All offenders in the calibration 

sample resided in the developed land cover zones.  As the dominant category, profiles generated 

for offenders living in this zone performed better than profiles generated for offenders living in 

other zones.   That is, land cover-enhanced profiles favored a particular land cover type.   The 

implication for this finding is that there is a dependent relationship between the JTC probability 
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function and land cover.  While these probabilities are independent (i.e., the land cover is the 

marginal probability defined by offender anchor points; and the JTC is a probability distance 

function defined by crime scenes), both the marginal land cover and JTC probabilities follow 

distributions which are inherently geographically dependent.   Accordingly, future studies should 

examine the impact this may have on the efficacy of land cover-enhanced estimates. 

 Additional studies should investigate profiling strategies that operate at finer resolutions, 

thus permitting improved search strategies and suspect prioritization.  Similarly, the Bayesian 

likelihood function used in this study could be refined.  The Bayesian-JTC conditional 

probability (i.e., likelihood) estimate depends on the spatial coincidence of crimes from the 

calibration and test sample.  To ensure that this would happen, the grid cells used in this 

investigation were increased in size from 30m to 480m resolutions.  Additionally, the calibration 

sample included mixed offense types (i.e., burglary and robbery), which may have adversely 

altered the modeled output.   Once the scale issues have been addressed, it may be feasible to 

incorporate higher-resolution land use information within the filtering framework.   For instance, 

this study chose the NOAA C-CAP data due to its age and accessibility.  Alternatively, some law 

enforcement jurisdictions may have access to higher resolutions of data, including parcel-scale 

land use data. 

Finally, future studies should attempt to incorporate the probability of land cover within a 

true Bayesian framework.  Indeed, the authors of this study have begun to investigate methods 

by which land cover likelihood estimates can be derived according to the distribution of anchor 

points from a calibration sample.  And, while such a method remains susceptible to the caveats 

identified above, the successful implementation of this approach could further enhance the 

capabilities of law enforcement to mitigate serial crime.  
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"Crime is a dependent phenomenon modified by urban form and general patterns of perception 
or cognition." 

- Brantingham & Brantingham (1981, p. 48) 

 

CHAPTER 5:   INCORPORATING LAND COVER WITHIN BAYESIAN 
JOURNEY-TO-CRIME ESTIMATION MODELS 

  

5.1  Introduction 

 The unknown serial offender initiates criminal activity from an anchor point, or points, 

located within an anisotropic plane.  That is, the relationship between offender, target, and 

criminal opportunity does not exist as random events distributed across space (Brantingham & 

Brantingham, 1981; Capone & Nichols, 1975; 1976).   Rather, these dimensions of crime are 

governed by physical and cultural structures that are unique to the environment in which they 

occur (Brantingham & Brantingham, 1981).   Yet, contemporary techniques for modeling a 

criminal's spatial behavior will typically adopt the a priori assumption that opportunity and 

target access reside on an isotropic surface surrounding the offender's anchor point.  Because 

these techniques are incapable of accounting for inherently asymmetrical landscapes, modeled 

output becomes susceptible to errors that can result in the over and under-estimation of the 

offender's actual point of origin (Kent & Leitner, 2009; Rengert et al., 1999).   By focusing on 

those factors that reflect the restrictions imposed by the environment, it may be possible to 

identify the criminal anchor point and apprehend the offender more consistently. 

 Previous research by Kent & Leitner (2009) demonstrated that the social and 

environmental constraints influencing the criminal activity space (i.e., the finite area defined by 

the event nodes and paths utilized by the offender) can be parameterized using land cover 
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characteristics.  When applied as a filtering mechanism, the marginal land cover probability 

associated with the residences of known serial offenders proved to be an effective approach for 

generating accurate and precise predictions of the unknown criminal's anchor point.  But, to what 

extent could land cover enhance the predictive accuracy of a geographic profile if it were directly 

integrated within contemporary modeling techniques?   This research will examine this question, 

and expand on previous findings to assess the efficacy of incorporating land cover probabilities 

within a discrete Bayesian framework.  To test this hypothesis, traditional and land cover-

enhanced models will be used to create geographic profiles for a random sample of solved serial 

crimes that occurred in Baltimore, Maryland.    Results derived from each profile will be 

compared and assessed for accuracy and precision.  This study will conclude with a discussion of 

findings and recommendations for continued research. 

5.1.1   The Ecology of Crime 

 The utility of a geographic profile is realized through its ability to formulate inferences 

and reveal characteristics about an offender’s spatial behavior (Brantingham & Brantingham, 

1981; Rossmo, 2000).   This approach originates from concepts derived from environmental 

criminology.   Four theories that best characterize the ecological relationships between criminal 

behavior and place are routine activity theory (e.g., Cohen & Felson, 1979; Felson & Clarke, 

1998), rational choice theory (e.g., Cornish & Clarke, 1986), crime pattern theory (e.g., 

Brantingham & Brantingham, 1981), and environmental range (e.g., Canter & Larkin, 1993).  

Comprehensively, these concepts establish that an offender's behavior in space is the product of 

rational decision making from which the perception of criminal opportunity and target 

attractiveness is constrained by the physical and cultural environment  located in relative 
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proximity around an offender's residence (Brantingham & Brantingham, 1981; Canter & Larkin, 

1993; Cohen & Felson, 1979; Rengert et al., 1999; Rhodes & Conly, 1981).   

5.1.2   Contemporary Geographic Profiling Models 

 As demonstrated in numerous studies (e.g., Brantingham & Brantingham, 1981; Canter & 

Larkin, 1993; Capone & Nichols, 1975; 1976; LeBeau, 1987b; Leitner et al., 2007; Kocsis & 

Irwin, 1997), an offender's geographic behavior will exhibit deliberate biases that coincide with 

the tenets of environmental criminology.  Consequently, these patterns of spatial behavior can be 

modeled with varying degrees of success.   Nearly all contemporary criminal investigations 

apply some method for geographically profiling an offender's behavior in space.   Most of these 

techniques apply quantitative models that are based on fundamental geographical principles.   

Spatial distribution and spatial interaction models dominate contemporary geographic profiling 

methods.   The spatial distribution approach includes measures of central tendency (e.g., 

geographic mean, median, and center of minimum distance) and diffusion (e.g., areal circle, 

standard deviational ellipse, and convex hull).  These simple techniques have demonstrated 

notable effectiveness as fast and intuitive investigative tools (Levine, 2005; Paulsen, 2006a; 

2006b; Snook et al, 2004; 2005; Leitner et al.,2007).  Furthermore, centrographic methods are 

often found within contemporary research as diagnostic routines that provide benchmarks for 

assessing the performance of multiple profile models (e.g., Paulsen, 2006a; Levine, 2009; Levine 

& Block, 2009).  However, single descriptive measures such as these are susceptible to outliers.  

As a consequence, these techniques are often criticized for their inability to provide an efficient 

search strategy for locating an offender’s anchor point (Levine, 2005; Rossmo, 2005; Snook et 

al., 2005; Taylor et al., 2009).   
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 The second approach typically involves sophisticated spatial interaction models to assess 

the criminal commute.   Specifically, these models characterize the observed distance decay 

effect in context to the costs and benefits of committing a criminal offense (Brantingham & 

Brantingham, 1981; Capone & Nichols, 1975; 1976; Lottier, 1938; Turner, 1969).   Perhaps the 

most common approach for modeling distance decay is the Journey-to-Crime (JTC) estimation.  

JTC estimations consist of density surfaces calculated using the travel patterns observed for 

solved serial crimes.  The techniques for this approach are well documented and will not be 

discussed here (see Levine, 2007 and Rossmo, 2000).  Despite the popularity, JTC estimation 

models are often criticized for theoretical and empirical limitations (van Koppen & de Keijser, 

1997; Rengert et al., 1999; Snook et al., 2005; Smith et al., 2009).   To overcome these caveats, 

many researchers have pursued, with notable success, alternative heuristics for profiling offender 

behavior in space (e.g., Paulsen, 2006b; Snook et al., 2002; 2004; 2005; Taylor et al., 2009).   

However, these techniques continue to omit the factors associated with criminal opportunity and 

target attractiveness.   Another approach, based on Bayesian probability theory, appears well-

suited to account for the fundamental tenets of environmental criminology. 

5.1.3   The Empirical Bayesian Paradigm 

Bayesian probability represents an intuitive process for quantifying the degree of belief in 

a hypothesis before and after evidence has been observed.   In many respects, the Bayesian 

approach follows the same process as the scientific method:   when new evidence has been 

observed, our prior state of knowledge is updated to reflect a revised measure of confidence in 

the hypothesis.   As evidence is accumulated, the hypothesis adjusts according to how likely that 

new evidence would be observed under all conditions.   Thus, Bayesian theory quantifies the 

degree to which new evidence alters the confidence in one’s hypothesis (Bolstad, 1997). 



111 
  

A Bayesian formulation for modeling an offender's spatial behavior was first 

operationalized for the CrimeStat® III software package (Levine, 2007).  Since then, numerous 

studies have utilized the Bayesian approach for modeling criminal behavior in space and 

predicting future crimes (e.g., Block & Bernasco, 2009; Levine & Block, 2009; O'Leary, 2009).    

The methodological advantage of the Bayesian formulation is that it is capable of incorporating 

the principles of environmental criminology as conditional factors associated with the distance 

decay models used in JTC estimates.   It does so by relating the crimes committed by an 

unknown offender with the crimes committed by a calibration sample of known offenders (i.e., 

solved cases).   Levine (2007) applied this approach by combining two new Bayesian derived 

probability estimates with traditional JTC estimates.  The first value represents the conditional 

probability of locating an offender's anchor given the location of anchor points from solved 

cases.  The second estimate is known as the marginal probability of anchor points, which 

represents the probability assigned to the locations of all anchor points observed for solved 

criminal cases.   When combined with the JTC estimate (i.e., the empirical prior probability of an 

anchor point), these values produce a refined prediction of the unknown offender's residence.   

By combining the elements from solved cases with those of the unsolved, criminal opportunity 

and target attractiveness become implicit factors that are manifest through (a) the likelihood of 

an anchor point derived from for known offenders that committed crimes the same location as 

the unknown offender, and (b) the marginal probability of all known anchor points located in the 

study area.   

 The ability to account for offender perception and mobility characteristics 

notwithstanding, the Bayesian framework is incapable of excluding those locations (e.g., rivers, 

lakes, parks, forests, bridges, malls, etc.) that are a priori unlikely to contain an anchor point.  As 
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a consequence, the inherent environmental structures distributed across the study area are only 

implicitly accounted for when using the Bayesian JTC model.   Furthermore, the product of the 

JTC prior and conditional likelihood functions is vulnerable to over- and under- estimation errors 

that can mislead an investigation.   For instance, the conditional probability estimate can only 

emphasize, at the exclusion of all others, those locations immediately surrounding the anchor 

points of previous offenders.  This is especially problematic if the unknown offender initiated 

crimes from locations that are not consistent with those observed for solved cases.  To overcome 

such limitations, environmental characteristics of the offender's activity space should be 

incorporated within this modeling framework.  Doing so would ensure that the JTC estimates are 

constrained to those places that are most likely to contain the offender's anchor point. 

5.1.4   Incorporating Land Cover 

 Kent & Leitner (2009) demonstrated that land cover characteristics can be used as a 

proxy for the physical and cultural features that constrain the offender's activity space.   The 

authors compared the performance of traditional and Bayesian JTC models with land cover 

enhanced models.   Their results revealed significant, but sometimes mixed, performance gains 

when predicting and locating the offender's anchor point (see Kent & Leitner, 2009 for details).  

Despite the mixed outcomes, their findings effectively validated the premise that a deterministic 

relationship exists between land cover characteristics and location of an offender's anchor points.   

Indeed, the product of the two marginal probabilities, the JTC and the land cover, improved a 

model’s ability to estimate the offender's anchor point.   However, these estimates also suffered 

from biases similar to those cautioned in the preceding discussion on the Bayesian JTC 

paradigm. 
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 For instance, Kent & Leitner (2009) found that the land cover filtered JTC estimates 

performed best for those anchor points that were located in the dominant land cover categories.   

That is, the product of the two marginal probabilities was improved whenever those values 

represented the maximum likelihood estimate for their respective parameters.   While the 

performance of the filtered approach showed improvement in accuracy and precision, this 

approach becomes vulnerable to a “rotten apple” effect.  That is, if land cover parameter 

estimates were wrong or otherwise failed to adequately represent the value for the true anchor 

point, then the resulting product would bias the estimate of the true location of the anchor point.  

And just as before, this scenario becomes problematic for those unknown offenders who initiate 

crimes from land cover types that are inconsistent with those observed in the calibration sample.  

To compensate for this effect, the product of the JTC and marginal land cover must be 

reformulated as a joint probability between the conditional land cover likelihood and the prior 

anchor point estimate.  In other words, it must take on the Bayesian formulation. 

5.2  Research Proposal 

 This research proposes that a geographic profiling model that can formally parameterize 

both spatial interaction and landscape characteristics will produce more accurate estimates of the 

serial offender's anchor point than existing techniques.  To test this hypothesis, traditional and 

land cover enhanced geographic profiling models will be generated for a random sample of 

solved serial burglary, larceny, and robbery offenses that occurred in Baltimore, Maryland, 

between 1993 and 1997.   Profiles will be used to estimate the location of an offender's known 

residence.   Spatial interaction models will be calculated according to distance decay algorithms, 

derived from a calibration sample, and applied within traditional JTC estimation routines.  

Landscape characteristics used for this research will be approximated by land cover 
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classifications collected for the Baltimore study area.  Land cover will be integrated within a JTC 

modeling framework according to an empirical Bayesian formulation similar to that issued by 

Levine (2007).  The efficacy of this approach will be assessed by comparing the accuracy and 

precision of the estimates produced by each technique.    

This hypothesis is conditioned on three assumptions.  First, each crime series consists of 

offenses perpetrated by a single individual.  Second, the offender is assumed to have initiated 

and concluded all criminal activities from a fixed anchor point (i.e., the residence) located within 

the study area.  Third, the land cover classifications used in this study reflect the actual physical 

and cultural structures that influenced the offender's spatial behavior (e.g., perceptions of 

opportunity and target attractiveness) and the distribution of available targets (i.e., target 

backcloth). 

5.3  Data and Methodology  

 The methodology employed for this study is organized into three sections.  The first part 

describes the crime and land cover datasets utilized in this investigation.   Next, descriptions of 

the seven geographic profiling models are provided.   The final section presents the tests used to 

assess the modeled estimates. 

5.3.1   Data Used 

 Crime dataset: The crime data used for this study were comprised of 781 solved serial 

burglary, larceny, and robbery offenses that occurred in Baltimore, MD, between 1993 and 1997.   

The 781 crimes comprised 167 crime series (burglary=47, larceny=43, robbery=77), averaging 

4.68 crimes per series (burglary=4.40, larceny=4.32, robbery=5.04).   Figure 5.1 illustrates the 

journey to crime frequency distribution for the entire Baltimore dataset.   The average criminal 

commute measured 6.79 km (SD=6.88 km) with a median value of 4.94 km.  The shortest 
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measured distance was 0.00 km and the longest measured 52.76 km.   The Baltimore dataset was 

split into two randomly assigned groups.  The profile sample consisted of 263 offenses 

associated with 52 series.  The number of crimes per series averaged of 5.06 (SD=2.22) with a 

median of 4 (Table 5.1).  The calibration sample was comprised of 518 offenses for 115 crime 

series.  Each case had an average of 4.50 (SD=1.90) and median of 4 crimes per series (Table 

5.2).    A larger calibration sample was chosen to ensure modeling efficiency. 

 Land cover dataset:  As in their earlier study, Kent and Leitner (2009) used land cover 

data obtained from the 1996 Coastal Change and Analysis Program (C-CAP) dataset developed

 

Figure 5.1: Journey-to-Crime frequency distribution of the serial crime dataset for Baltimore, 
MD. 
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Table 5.1: Profile Sample of Baltimore, MD, Serial Crimes 
 
 Count 

Offenses Journey-to-Crime (km) 
sum mean stdev median mean stdev min median max 

Burglary: 11 60 5.45 2.98 4 5.01 6.65 0.00 1.43 22.95 

Larceny: 14 60 4.29 1.20 4 7.687 7.00 0.00 5.44 26.60 

Robbery: 27 143 5.30 2.25 4 7.732 5.202 0.33 6.71 23.56 

Totals: 52 263 5.06 2.22 4 7.101 6.08 0.00 5.47 26.60 

           
 
 
 
 

Table 5.2: Calibration Sample of Baltimore, MD, Serial Crimes 
 
 Count 

Offenses Journey-to-Crime (km) 
sum mean stdev median mean stdev min median max 

Burglary: 36 147 4.08 1.56 4 5.99 9.36 0.00 1.61 52.76 

Larceny: 29 126 4.34 1.72 4 7.472 7.36 0.00 5.87 38.23 

Robbery: 50 245 4.90 2.17 4 6.613 5.539 0.00 5.64 23.94 

Totals: 115 518 4.50 1.90 4 6.646 7.25 0.00 4.53 52.76 
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by the U.S. National Oceanic and Atmospheric Administration (NOAA).   The source data 

consisted of twenty-three land cover classifications derived from 30-meter resolution Landsat 

Thematic Mapper and Enhanced Thematic Mapper satellite imagery (NOAA, 1996).   

Performance requirements necessitated aggregation of the land cover data from 30 meter to 480 

meter cell sizes.  Each cell was assigned the statistical mode of the land cover classification 

calculated from the 256 (16x16) contiguous 30 meter cells.  As a consequence of the aggregation 

process, the number of usable land cover classes shrunk to eighteen (Figure 5.2).  The resulting 

coverage contained 12,932 grid cells.  The coverage fit the geographic extents of the Baltimore 

study area, measuring approximately 2,956 km2.  The chart provided in Figure 5.3 illustrates the 

proportion of land cover classes available within the aggregated dataset. 

5.3.2   Geographic Profiling Models 

 Seven models were chosen to compare the effectiveness of land cover-enhanced 

geographic profiles.  Techniques consisted of traditional and landscape enhanced spatial 

interaction models.   A centrographic technique was also utilized for diagnostic comparisons.  

The models are presented below:  

• JTC Estimation 

• Bayesian JTC Product 

• Bayesian JTC Posterior  

• Filtered JTC Estimation 

• Land Cover Bayesian Product 

• Land Cover Bayesian Posterior 

• Center of Minimum Distance 
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Figure 5.2: Land cover dataset for the Baltimore, MD, study area. 
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Figure 5.3: Distribution of aggregated land cover classes in the Baltimore, MD, study area. 
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 Journey-to-Crime Estimation:  The JTC profiling technique estimates the probability of 

locating an offender's anchor point by applying an empirically calibrated distance decay function 

to the distribution of linked crime scenes.  The decay function is used to assign likelihood values 

to a density surface representing the criminal study area.  There are two methods for calculating 

the decay algorithm.  The first method fits a mathematical trend function through a sample 

distribution of solved serial crimes (i.e., the calibration sample).   More often than not, this 

equation belongs to an exponential family of functions (Canter et al., 2000, Rossmo 2000).  

However, alternate techniques have been used (e.g., Canter & Hammond, 2006 and Levine, 

2007).  The second approach uses an interpolation kernel routine to regress a non-linear function 

directly through the calibration distribution (Levine, 2007).   Once a distance decay function has 
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been determined, it is applied to the distribution of crimes committed by the unknown offender.   

The result is a discrete probability surface that represents the likelihood of locating an offender’s 

anchor point within the study area.   

 The calibration sample used to derive the distance decay curve contained 120 solved 

serial cases (see Table 5.2).  A JTC frequency distribution consisting of 500-meter distance 

intervals (i.e., bins) was constructed for all incidents in the sample.  An exponential function, 

chosen due to its simplicity and popularity within the geographic profiling literature (e.g., Canter 

et al., 2000; Canter & Hammond, 2006; Levine, 2005; 2007), was regressed, and fit onto the 

frequency distribution (Figure 5.4).  Although the coefficient of determination was weak, R2 = 

0.4306, the equation proved to be a significant fit (F = 96.81, p < 0.000).    

 With the decay function defined, the JTC estimate proceeded in four general steps.  First, 

a 480 meter regularly spaced grid consisting of 12,932 cells was placed over the study area.  

Second, the Euclidean distance between a cell’s centroid and crime scene was measured for each 

crime in a given series.  Next, the exponential distance decay function defined by the calibration 

sample (see Figure 5.4) was applied to each cell-to-crime distance, and summed over the series 

to produce a density estimate (Equation 5.1).  Finally, a cell’s modeled output was converted into 

a probability value by scaling the estimates such that the sum of all cell values equaled 1.0.   The 

resulting surface represents the probability of identifying an offender’s anchor point according to 

the distance decay model (see Levine, 2009): 

 𝑃𝑃(JTC)= �𝑓𝑓�𝑑𝑑𝑥𝑥𝑖𝑖𝑧𝑧�
𝑛𝑛

𝑖𝑖=1

 
(5.1) 

where d is the Euclidean distance measured between each crime scene xi and grid cell z, and the 

function, f, represents the negative exponential decay along the distances.  
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 Bayesian JTC Estimates:  Bayesian probability relates the product of the prior and 

conditional probabilities of two events, A and B (Bolstad, 1997; Koch, 2007).    The prior 

probability denotes the unconditional probability of some unknown phenomena before additional 

information has been obtained.  That is, the probability of some event, A, is independent of any 

other condition.  This information may be determined a priori, or can be derived empirically 

from a sample dataset.  The conditional probability corresponds to the likelihood of some event, 

B, given a statement about the unknown phenomena, A.   When normalized for all possible 

conditions, the product of this statement represents the posterior probability of A given B 

(Equation 5.2), and is combined according to Bayes’ theorem:  

 

Figure 5.4: Journey-to-Crime frequency distribution and model of the Baltimore, MD, calibration 
sample. 
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𝑃𝑃(A|B)= 
P(B|A)P(A)

𝑃𝑃(𝐵𝐵)  (5.2) 

where P(A|B) is the posterior probability of A given the observed event B.  P(B|A) is the 

conditional probability that B occurs given that A is true, which is also known as the likelihood.  

The prior probability is represented by P(A), and P(B) is the marginal probability of B under all 

circumstances, and serves as a normalizing factor. 

 The Empirical Bayesian JTC model for predicting the anchor point of a serial offender 

was first introduced in CrimeStat® version 3.1 (Levine, 2007).  This formulation updates the 

empirically calculated JTC estimate of the unknown serial offender, the prior, using a likelihood 

function derived from solved serial crimes.  The likelihood, P(O|JTC), is the conditional 

probability of origin anchor points, O, given the anchor point for known offenders that 

committed crimes in the same locations as the unknown offender.  The CrimeStat® manual refers 

to this as the Conditional JTC estimate [see the CrimeStat® v.3.1 manual for details (Levine, 

2007)].  Two Bayesian probability estimates are generated according to this approach.  The first 

is the product of the likelihood and prior, what is referred to as the Bayesian JTC Product 

(Equation 5.3).   The Bayesian JTC Product represents the proportion of the posterior 

probability, taking the form: 

𝑃𝑃(JTC|O) ∝ 𝑃𝑃(O|JTC)𝑃𝑃(JTC) (5.3) 

where the posterior, P(JTC|O), represents the relative weight of a JTC estimate that has been 

updated according to the conditional likelihood of previous offender anchor points, P(O|JTC).   

The second probability estimate (Equation 5.4) is the full Bayesian JTC Posterior probability: 
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𝑃𝑃(JTC|O)= 
P(O|JTC)P(JTC)

𝑃𝑃(O)
 

(5.4) 

where P(O|JTC) is the likelihood estimate given the anchor point locations for known offenders 

that share spatially coincident crime scenes as the unknown offender, P(JTC) is the empirically 

calibrated JTC estimate, and P(O) is the marginal probability of all previously solved anchor 

points within the study area.   Both the Bayesian JTC Product and Posterior probabilities were 

used to estimate offender anchor points in this study. 

 Following the methodological approach established by CrimeStat® III, the conditional 

probability, P(O|JTC), was estimated by first identifying those grid cells where the crime scene 

locations from the profile and calibration sample were coincident.   For each coincidence, the 

anchor points from the calibration sample were summed and interpolated onto the study grid as a 

probability surface using a kernel function.  An adaptive normal kernel was chosen for this 

study, but other functions can be used.  Probability surfaces were combined and scaled such that 

the sum of all cell values equaled 1.0.  Finally, the product of the conditional and the prior JTC 

probability values were calculated for each cell and scaled; producing both the Bayesian JTC 

Product and numerator for the Bayesian JTC Posterior probability estimates. 

 Filtered JTC Estimate:  Kent and Leitner (2009) demonstrated that land cover classes 

can enhance a JTC estimate when used as a proxy for the physical and cultural landscape.   

Specifically, the marginal probability of land cover was used to filter those locations that were  

a posteriori unlikely to contain an offender's anchor point.   The frequency of a given land cover 

category was calculated for all grid cells that were spatially coincident with anchor points of the 

calibration sample.   Of the eighteen land cover categories, only four classes could be associated 
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with the residences within the calibration sample.   These values represent the marginal 

probability of identifying an offender’s residence according to a particular land cover type.    

The Filtered JTC Estimate (Equation 5.5) represents the product of the marginal and JTC 

probabilities: 

𝑃𝑃(Filtered− JTC) =  𝑃𝑃(JTC)𝑃𝑃(LC) 
(5.5) 

where the Filtered JTC Estimate, P(Filtered-JTC), is equal to the product of marginal probability 

of land cover, P(LC), and the prior JTC estimation for a grid cell, P(JTC).  The estimate is then 

scaled for each grid cell such that the sum is equal to 1. 

 Land Cover Bayesian JTC Estimates:  This study proposes a new formulation of the 

Empirical Bayesian approach.  It is intended to conditionally update an empirically derived prior 

probability, the JTC estimation, given the observance of a particular land cover type.   As 

established earlier, the premise for this approach asserts that the location of an offender’s anchor 

point is spatially dependent on the surrounding physical and cultural environment.  Thus, an 

offender’s residence must be confined to certain land cover characteristics inherent within the 

study area.   Accordingly, the posterior probability of a JTC estimate can be conditionally related 

to the probability of observing a given land cover type (Equation 5.6), and takes on the form:  

𝑃𝑃(Z|LC)= 
P(LC|Z)P(JTC)

∑ P(LC|Zi)P(𝑍𝑍i)n
i=1

 (5.6) 

where each term of the Bayesian equation has a conventional name within the context of a 

geographic profile: 
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• P(Z|LC) is the posterior probability of the offender's anchor point estimate, Z,  given a 

particular land cover type, LC.   

• P(LC|Z) is the conditional probability of land cover given an offender's anchor point.  

This value is represents the likelihood of the conditional estimate, and is interpreted to be 

the probability that a particular land cover class would be observed in the presence of the 

offender’s actual residence.   

• P(JTC) represents the empirically estimated JTC prior probability of an offender's anchor 

point.  It is prior in the sense that it was assessed independently from the observance of 

land cover.  

• The denominator is the marginal probability of land cover for each grid cell in the study 

area, and is derived using the anchor points maintained in the calibration sample.  As 

such, the denominator acts as a normalizing constant to the Bayesian function, which is 

 ∑ P(LC|JTCi)P(JTCi)n
i=1 .   This marginal value may also be represented as P(LC). 

Two land cover enhanced Bayesian estimations are calculated.  The first estimate is the 

enhanced Bayesian JTC Product (Equation 5.7), which represents the product of the conditional 

and prior probability (i.e., the numerator in Equation 5.6).  This estimate is calculated 

independently of the marginal distribution (i.e., the denominator).   The product takes on the 

form: 

𝑃𝑃(Z|LC) ∝ P(LC|Z)P(JTC) (5.7) 

where the Land Cover Bayesian Product, P(Z|LC), is proportional to the joint probability of the 

likelihood, P(LC|Z), and the empirical prior, P(JTC), probability values.  This formulation 

provides the relative weights of a JTC estimate updated using land cover values observed for 
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previous offenders.   The second estimate is the full Land Cover Bayesian Posterior, which is 

equivalent to the Land Cover Bayesian Product divided by the marginal probability of all land 

cover types used by the calibration sample offenders.  The formula matches the form presented 

in Equation 5.6. 

 To calculate both the Land Cover Bayesian Product and Posterior, the conditional 

probability of land cover given the anchor point of known offenders had to be estimated.  The 

routine first identified those grid cells in which crime scenes for the unknown offender were 

spatially coincided with crime scenes of the calibration sample.  For each coincident pair, the 

anchor points from the calibration sample were selected.  Next, the land cover classes for each of 

the selected calibration anchor points were summed and interpolated onto the study grid as a 

probability surface using a kernel function.   The kernel was from the exponential (negative) 

family, though other functions can be applied.  Anchor point probability surfaces were combined 

and scaled such that the sum of all cell values equaled 1.0.    The rationale for using a negative 

exponential function is similar to the formulation detailed in the CrimeStat® manual.  First, the 

kernel ensures that the area immediately surrounding the coincident anchor points will 

adequately represent the actual land cover.  Such an approach was necessary given that the land 

cover data was aggregated from 30 meter to 480 meter grid cells.   Second, the rapid decay and 

skew of the exponential kernel guaranteed that the land cover corresponding to the anchor points 

are not overly exclusive or inclusive.   Only four land cover classes were associated with the 

calibration sample.  As such, the model was at risk of excluding potential grid cells for locations 

that exhibited highly variable land cover types (e.g., suburban, recreational, and urban forested 

landscapes).   
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 Center of Minimum Distance (CMD):   Spatial distributions strategies are often utilized 

in geographic profiling studies as a diagnostic routine for comparing the efficacy of various 

models and profiling techniques (e.g., Levine, 2005; Paulsen, 2006a; Snook et al., 2005).  

Because of its simplicity and intuitive implementation, the center of minimum distance (CMD) 

has become a popular measure for predicting the anchor point location relative to the distribution 

of crime scenes (Equation 5.8).  The CMD is iteratively defined as a point within the study area 

where the sum of the distance to all other crime locations is smallest (Levine, 2007): 

𝐶𝐶𝐶𝐶𝐶𝐶 =  �𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 (𝑥𝑥𝑖𝑖 ,𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥̅)
𝑛𝑛

𝑖𝑖=1

 (5.8) 

where the function dmin represents the minimum distance between the crime scene, x, at location 

i, and the current center of minimum distance, CMDx ̄for the distribution.   In contrast to the six 

JTC routines described above, the CMD estimate represents a single point to indicate the 

predicted anchor point.   Accordingly, this routine is vulnerable to outliers, which can distort the 

results.  Furthermore, the CMD is often incompatible with investigative techniques that require 

search strategies for apprehending an offender.   

5.3.3   Evaluation Techniques 

 The seven profiling models evaluated for this study were compared using techniques that 

measure accuracy and precision (Levine & Block, 2009; Paulsen, 2006b).   The statistical 

significance for the groupwise and pairwise comparisons of each model was calculated using two 

non-parametric tests for dependent samples.   The following text details the evaluation 

techniques and statistical tests used to assess these models. 
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 A review of the contemporary literature reveals that there are many evaluation techniques 

for assessing the efficacy of a criminal geographic profiling model (e.g., Canter et al., 2000; 

Levine, 2009, Paulsen, 2006a, Rich & Shively, 2004; Rossmo, 2000).  Though some of these 

measures are controversial (see Levine, 2005; Rossmo, 2005), three of the most common 

measures were chosen for this study: 

• Profile probability value:  The probability value assigned to the grid cell in which the 

true anchor point (i.e., offender residence) is located.  Higher probability values indicate 

higher accuracy.  Because the CMD technique does not produce a probability estimate, 

this evaluation technique was only applicable to the other six profiling models. 

• Error distance:   Measures accuracy according to the Euclidean distance between the 

predicted and the true the anchor point. Shorter distances indicate a more accurate model.  

This evaluation technique was applied to all seven profiling models. 

• Search cost:  Calculates the proportion of the study area that must be searched in order to 

identify the offender’s residence (Canter et al., 2000; Levine, 2009; Rossmo, 2000).   The 

profile probability values assigned to each grid cell are sorted in descending order.   

Starting with the highest value, search cost is equal to the number of grid cells that must 

be searched before identifying the offender's residence.   Accordingly, fewer cells 

indicate higher precision.  Because the CMD model returns a point estimate, it is 

incapable of generating a search cost without modification.    A comparable estimate was 

derived by counting the number of grid cells that fall inside a circle defined by a radius 

equal to the error distance.  Such a measure is only an enumeration, and cannot be 

interpreted as a density surface. 
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 The evaluation methods presented above compare different treatments on the same 

profiled sample.   Accordingly, two non-parametric tests are proposed to validate the results.   

First, the Friedman test was applied to the entire group and used to determine if the modeled 

output was different across each measure.   The second test compared the pairwise differences 

between each model using the Wilcoxon signed ranks test for related samples.  Comparisons 

between modeled output should not be interpreted universally, regardless of the number of tests 

performed.  That is, the acceptance or rejection of the null hypothesis for each comparison is of 

more interest when examined individually, not collectively.  Accordingly, the Bonferroni 

adjustment, often applied for multiple comparisons, was deemed inappropriate for this study 

(Rothman, 1990; Feise, 2002).   

5.4  Results 

 This section examines the results generated for the seven geographic profiling models 

and their subsequent evaluation.    Table 5.3 summarizes the overall performance of each model, 

and organizes the results by evaluation criteria.  Individual comparisons for each evaluation 

technique are provided in Tables 5.4, 5.5, and 5.6.   These tables detail how often a model 

performed as well or better than other techniques. 

5.4.1   Profile Probability Value 

 The profile probability value denotes the predicted probability value assigned to the grid 

cell containing the offender's actual residence.  Because the CMD routine does not produce a 

probability estimate, it was excluded from this evaluation.   Large probability estimates indicate 

a greater likelihood of the grid cell possessing the anchor point.  Grid cell probability values 

were small because the study area consisted of 12,932 cells.  As indicated in Table 5.3, the 

Filtered JTC Estimate produced the highest mean (0.002259) and median (0.001561) probability 
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estimates of all 52 profiles.   Model estimates were ranked and compared using the Friedman 

test.  Higher ranks equates to better model performance.  The Filtered JTC Estimate had the 

highest mean and median ranks of all the estimates calculated for the profile sample.  The 

Bayesian JTC Product was assigned the second highest average probability, while the Land 

Cover Bayesian Product had the second highest median value.  With the exception of the 

traditional JTC Estimate, all models were found to have relatively large variances.  The 

Friedman chi-square statistics for the modeled output indicates significant differences between 

the six estimates. 

 Results from the pairwise comparisons between all modeled output are provided in Table 

5.4.  This matrix enumerates the number of times a particular model had a lower, equal, or higher 

probability estimate when compared to the other models.  A model's success, failure, and tie 

correspond with the Wilcoxon Singed Ranks output of positive, negative, and tied ranked 

comparisons.   Success and failure relate to the sign of a rank, which is assessed according to the 

arithmetic difference between estimates.  Higher ranks equate to better performance.  Lastly, a 

tie occurred whenever two models estimated the same probability value for an offender's 

residence.   The pairwise significance for each test is provided.  Similar to the results observed 

from the Friedman test, the Filtered JTC Estimate was the most accurate for 180 of the 260 

comparisons (69.2%).  The poorest comparative performance was observed for the JTC 

Estimate, which had a success rate of 75 of 260 (28.8%).  Overall, the three land cover enhanced 

techniques were ranked in the top four most successful estimates, along with the Bayesian JTC 

Product estimate.   In some instances, significance between modeled output was elusive.  For 

example, the Filtered JTC and Bayesian JTC Product estimates produced the same number of 

profiles (26 each), resulting in no significant difference in performance.   Similarly, the Land
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 Table 5.3: Geographic Profile Model Evaluation Results 

Model 
Profile Probability Value 

Larger is better 
Error Distance (meters) 

Smaller is better 
Search Cost / Hit Score 

Smaller is better 
Mean (sd) Median Freidman 

Rank a Mean (sd) Median Freidman 
Rank b Mean (sd) Median Freidman 

Rank c 
JTC  

Estimate 
0.000914 
(0.00072) 0.000645 2.44 6,137.25 

(5,086.48) 5,275.94 3.80 708.06 
( 1,177.9) 301.00 4.13 

Filtered JTC  
Estimate 

0.002259 
(0.00275) 0.001561 4.46 6,101.85 

(5,103.89) 5,556.52 3.82 597.25 
(1,354.4) 149.50 3.03 

Bayesian JTC  
Product 

0.002249 
(0.00284) 0.000849 3.86 6,957.30 

(6,093.01) 6,076.35 3.66 1,215.56 
(2,173.4) 350.50 3.84 

Bayesian JTC 
Posterior 

0.001352 
(0.00171) 0.000530 2.65 7,144.67 

(5,971.78) 6,278.36 4.38 1, 323.17 
(2,141.2) 490.00 5.11 

Land Cover Bayesian 
Product 

0.001918 
(0.00203) 0.001202 4.11 6,673.18 

(5,783.85) 5,058.01 4.39 451.19 
(753.1) 188.00 3.28 

Land Cover Bayesian 
Posterior 

0.001524 
(0.00171) 0.000968 3.48 6,243.71 

(5,408.78) 4,836.40 4.01 537.33 
(808.3) 229.00 3.60 

Center of Minimum 
Distance - - - 6,104.70 

(5,048.72) 5,543.07 3.94 867.54 
(1,252.8) 472.00 5.03 

Friedman Test Statistics, N=52 

a) χ2=48.573, df=5, p≤0.000 (Asymp. Sig.) 

b) χ2 = 5.626, df=6, p≤0.466 (Asymp. Sig.) 

c) χ2=44.518, df=6, p≤0.000 (Asymp. Sig.) 

Friedman Mean Ranks: 

a)  Filtered JTC > Land Cover Bayesian Product > Bayesian JTC Product > Land 
Cover Bayesian Posterior > Bayesian JTC Posterior > JTC Estimate 

b) Bayesian JTC Product < JTC Estimate < Filtered JTC Estimate < CMD < Land 
Cover Bayesian Posterior < Bayesian JTC Posterior < Land Cover Bayesian 
Posterior 

c)  Filtered JTC Estimate < Land Cover Bayesian Product < Land Cover Bayesian 
Posterior < Bayesian JTC Product < JTC Estimate < CMD< Bayesian JTC 
Posterior 
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Table 5.4: Wilcoxon Signed Ranks Test for Pairwise Comparisons of Model Probability 

  
JTC  

Estimate 
Filtered JTC 

Estimate 
Bayesian JTC 

Product 
Bayesian JTC 

Posterior 
Land Cover 

Bayesian 
Product 

Land Cover 
Bayesian 
Posterior 

Sum 
(n=260) 

JTC Estimate 

Success  7 22 25 11 10 75 
Failure -- 45 30 27 41 42 185 

Tie  0 0 0 0 0 0 
P-Value  0.000 0.000 0.001 0.055 0.000  

Filtered JTC 
Estimate 

Success 45  26 39 32 38 180 
Failure 7 -- 26 13 20 14 80 

Tie 0  0 0 0 0 0 
P-Value 0.000  0.953 0.003 0.061 0.000  

Bayesian JTC 
Product 

Success 30 26  36 24 28 144 
Failure 22 26 -- 8 27 24 107 

Tie 0 0  8 1 0 9 
P-Value 0.001 0.953  0.000 0.459 0.061  

Bayesian JTC 
Posterior 

Success 27 13 8  14 20 82 
Failure 25 39 36 -- 38 32 170 

Tie 0 0 8  0 0 8 
P-Value 0.055 0.003 0.000  0.006 0.236  

Land Cover 
Bayesian 
Product 

Success 41 20 27 38  35 161 
Failure 11 32 24 14 -- 17 98 

Tie 0 0 1 0  0 1 
P-Value 0.000 0.061 0.459 0.006  0.000  

Land Cover 
Bayesian 
Posterior 

Success 42 14 24 32 35  147 
Failure 10 38 28 20 17 -- 113 

Tie 0 0 0 0 0  0 
P-Value 0.000 0.000 0.061 0.236 0.000   
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Table 5.5: Wilcoxon Signed Ranks Test for Pairwise Comparisons of Modeled Error Distance 

  
JTC  

Estimate 
Filtered 

JTC 
Estimate 

Bayesian 
JTC 

Product 

Bayesian 
JTC 

Posterior 

Land Cover 
Bayesian 
Product 

Land Cover 
Bayesian 
Posterior 

CMD Sum 
(n=312) 

JTC Estimate 

Success  19 18 25 28 25 31 146 
Failure  21 23 18 21 21 21 125 

Tie -- 12 11 9 3 6 0 41 
P-Value  0.925 0.591 0.108 0.227 0.731 0.089   

Filtered JTC 
Estimate 

Success 21  22 27 28 25 29 152 
Failure 19  27 23 21 20 23 133 

Tie 12 -- 3 2 3 7 0 27 
P-Value 0.925  0.622 0.126 0.313 0.433 0.591   

Bayesian JTC 
Product 

Success 23 27  26 26 28 29 159 
Failure 18 22  17 22 22 23 124 

Tie 11 3 -- 9 4 2 0 29 
P-Value 0.591 0.622  0.391 0.854 0.703 0.597  

Bayesian JTC 
Posterior 

Success 18 23 17  23 22 22 125 
Failure 25 27 26  28 28 30 164 

Tie 9 2 9 -- 1 2 0 23 
P-Value 0.108 0.126 0.397  0.303 0.138 0.099   

Land Cover 
Bayesian 
Product 

Success 21 21 22 28  14 19 125 
Failure 28 28 26 23  28 33 166 

Tie 3 3 4 1 -- 10 0 21 
P-Value 0.227 0.313 0.854 0.303  0.242 0.111   

Land Cover 
Bayesian 
Posterior 

Success 21 20 22 28 28  23 142 
Failure 25 25 28 22 14  29 143 

Tie 6 7 2 2 10 -- 0 27 
P-Value 0.731 0.433 0.703 0.138 0.242  0.402   

CMD 

Success 21 23 23 30 33 29  159 
Failure 31 29 29 22 19 23  153 

Tie 0 0 0 0 0 0 -- 0 
P-Value 0.089 0.591 0.597 0.099 0.111 0.402    
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Table 5.6: Wilcoxon Signed Ranks Test for Pairwise Comparisons of Modeled Search Cost 

  
JTC  

Estimate 
Filtered 

JTC 
Estimate 

Bayesian 
JTC 

Product 

Bayesian 
JTC 

Posterior 

Land Cover 
Bayesian 
Product 

Land Cover 
Bayesian 
Posterior 

CMD Sum 
(n=312) 

JTC Estimate 

Success  14 25 32 18 20 36 145 
Failure  36 24 20 34 30 14 158 

Tie -- 2 3 0 0 2 2 9 
P-Value  0.001 0.474 0.033 0.002 0.020 0.004  

Filtered JTC 
Estimate 

Success 36  28 38 29 31 42 204 
Failure 14  23 14 23 20 9 103 

Tie 2 -- 1 0 0 1 1 5 
P-Value 0.001  0.124 0.000 0.407 0.043 0.000  

Bayesian JTC 
Product 

Success 24 23  38 22 21 30 158 
Failure 25 28  8 30 29 21 141 

Tie 3 1 -- 6 0 2 1 13 
P-Value 0.474 0.124  0.000 0.061 0.111 0.899  

Bayesian JTC 
Posterior 

Success 20 14 8  15 14 24 95 
Failure 32 38 38  37 37 28 210 

Tie 0 0 6 -- 0 1 0 7 
P-Value 0.000 0.000 0.000  0.000 0.000 0.196  

Land Cover 
Bayesian 
Product 

Success 34 23 30 37  32 37 193 
Failure 18 29 22 15  19 15 118 

Tie 0 0 0 0 -- 1 0 1 
P-Value 0.002 0.407 0.061 0.000  0.008 0.000  

Land Cover 
Bayesian 
Posterior 

Success 30 20 29 37 19  38 173 
Failure 20 31 21 14 32  13 131 

Tie 2 1 2 1 1 -- 1 8 
P-Value 0.020 0.043 0.111 0.001 0.008  0.000  

CMD 

Success 14 9 21 28 15 13  100 
Failure 36 42 30 24 37 38  207 

Tie 2 1 1 0 0 1 -- 5 
P-Value 0.004 0.000 0.899 0.196 0.000 0.000   
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Cover Bayesian Product estimates were not significantly different from the Filtered JTC or the 

Bayesian JTC Product.    Finally, the output from the Land Cover Bayesian Posterior was not 

significantly different than the output from either the Bayesian JTC Product or Posterior. 

5.4.2   Error Distance 

 The profiled Error Distance represents the Euclidean distance measured between the 

predicted and true location of an offender's residence.  Small error distances equate to more 

accurate profiles.  As indicated in Table 5.3, the Filtered JTC Estimate produced the smallest 

average error distance of all techniques, while the Land Cover Bayesian Posterior produced the 

smallest median distance (6.10 km and 4.84 km, respectfully).   The CMD and JTC Estimate  

also had low mean error distances, while the median distance for the Land Cover Bayesian 

Product was the second shortest in this sample.  For this evaluation technique, the Friedman test 

compares and ranks the error distances measured for each model.   Recalling that shorter 

distances measures are better, ranks are assigned in ascending order (i.e., lower values are 

better).  The lowest mean rank difference of 3.66 was assigned to the Bayesian JTC Product 

model.  Despite being highly variable, the error distances for this model were frequently more 

accurate than other techniques.  Conversely, the lowest performing model was the Land Cover 

Bayesian JTC Product (rank = 4.39), which indicates that this technique, on average, produced 

error distances that were frequently inaccurate when compared to the other estimates.  The rank 

order from shortest to longest is available in the bottom margin of Table 5.3.   Significant 

differences between the Friedman ranks proved inconclusive according to the chi-square test.   

Indeed, the variances observed between these measures were large, making it difficult to 

interpret these results.  
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 The pairwise comparisons in Table 5.5 represents number of times a particular model 

produced the shortest (success), farthest (failure), or equal (tie) error distance when compared to 

all other estimates.   As revealed in the matrix, the Bayesian JTC Product and JTC Estimation 

models produced more estimates with error distances equal to or shorter than those produced by 

the other techniques, 188 (60.26%) and 187 (59.94%), respectively.   The Filtered JTC Estimate 

was third best, producing shorter error distances for 179 of 312 (57.37%) estimates.   And like 

the results from the Friedman ranks, the two worst performing models included the Bayesian 

JTC Posterior (148 of 312) and Land Cover Bayesian Product (146 of 312).   The Wilcoxon Z-

tests were unable to confirm significance for any of the pairwise comparisons. 

5.4.3   Search Cost  

 A profile's Search Cost quantifies the proportion of the study area that must be searched 

in order to locate the offender’s anchor point.   Accordingly, profile estimates that require fewer 

grid cells signify higher precision.   Table 5.3 illustrates that land cover enhanced models 

performed better than the other techniques.    Estimates generated from the Land Cover Bayesian 

JTC Product models required the smallest average search cost, 451.19 grid cells (median = 188), 

while the Filtered JTC Estimate models required the fewest median of grid cell count, 149.5 

(mean=597.25).   The Land Cover Bayesian JTC Posterior followed, with an average and median 

search cost of 537.33 and 229 grid cells, respectively.  Results from the Friedman test, which 

ranks success in ascending order, found the Filtered JTC Estimate to be the best performing 

model, followed by the Land Cover Bayesian JTC Product and Posterior, Bayesian JTC Product, 

JTC Estimate, CMD, and Bayesian JTC Posterior (see Table 5.3).  Despite having a relatively 

short median error distance, the CMD routine produced the second-worst performing estimates, 
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ranked sixth (mean rank = 5.03) of the seven models.   In all, the Friedman chi-squared test 

confirmed significant differences between the modeled outputs, validating these findings.   

 As with the previous two evaluation measures, the Wilcoxon signed ranks test provides 

pairwise comparisons between modeled output.  Like the error distance measure, successful 

models are ranked from smallest to largest.   Table 5.6 depicts the results of these tests.   The top 

three performing models incorporate land cover within its framework: Filtered JTC Estimate, 

Land Cover Bayesian Product, and Land Cover Bayesian Posterior (66.9%, 62.2%, and 58%, 

respectively).  Indeed, each of these three techniques showed significant performance gains over 

the traditional JTC Estimates and Bayesian JTC Posterior.   The highest performing model was 

assigned to the Filtered JTC Estimate, which had a pairwise ranking of 209 equal or better 

outcomes.  In terms of the lowest performance, the Bayesian JTC Posterior was consistently 

surpassed by the other seven models, having produced only 102 (32.7%) estimates that were 

equal or better than the other techniques.  This model was slightly outperformed by the CMD 

estimate, which had 105 successful estimates (33.7%).  However, the Wilcoxon Z-test was 

unable to assign significance for various combinations of modeled comparisons (see Table 5.6 

for details).   

5.5  Discussion  

 The efficacy of incorporating land cover within Bayesian a formulated JTC estimation 

model has been confirmed.  Land cover characteristics associated with the anchor points of 

known serial offenders residing in the Baltimore, MD, were successfully parameterized as 

marginal and conditional probability values.   When applied in accordance with Bayesian theory, 

these estimates were combined to update the prior knowledge of an offender's anchor point (i.e., 

the empirically calibrated JTC estimate) using information about the conditional land cover 
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characteristics of known offender activity spaces.  As more information about this conditional 

relationship accumulated, the anchor point estimation changed according to how probable that 

land cover was observed under all conditions.  Based on these findings, this new approach to 

modeling a criminal's spatial behavior has improved the probability estimates and lowered the 

search costs associated with predicting the location an offender's anchor point. 

 The output generated by the four traditional and three land cover enhanced models were 

assessed for accuracy and precision.  Model performances were measured according to three 

evaluation criteria:  profile probability, error distance, and search cost.  Overall, the Friedman 

chi-square test found statistically significant results for two of the three evaluation techniques 

used in this study:  profile probability and search costs.  The first evaluation routine, the profile 

probability estimate, assessed the strength of a model’s ability to predict the anchor point.   Of 

the six models that were compared, the three land cover enhanced techniques ranked in the top 

four best performing techniques (see Table 5.3).   The Filtered JTC estimate ranked first among 

the comparisons, followed closely by Bayesian JTC Product, and then the two Land Cover 

Bayesian techniques.   As depicted in the pairwise comparisons of Table 5.4, the land cover 

Filtered JTC Estimate produced the best probability estimate more frequently than all other 

models (180 or 69.2%).   The two Land Cover Bayesian estimates followed, producing 162 

(62.3%), and 147 (56.5%) better performing estimates.  Figure 5.5 illustrates the success rate for 

pairwise model comparisons, depicting the values provided in Table 5.4.    

 The second evaluation criteria, error distance, assessed a model's performance according 

to the Euclidean distances measured between the offender’s known residence and the grid cell 

with the highest likelihood value.   Although statistically inconclusive, the Bayesian JTC Product 

ranked highest for overall performance, while the Filtered JTC and Land Cover Bayesian 
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Posterior techniques produced the best mean and median estimates (see Table 5.3).   The land 

cover filtered technique was ranked third, while the remaining two land cover estimates ranked 

very low according to the Friedman test for groupwise rankings.   When compared individually, 

the Bayesian JTC Product was more efficient at a 60.3% success rate, which was followed 

closely by the JTC Probability estimate at a 59.9% (see Figure 5.6).  Again, the individual 

comparisons proved statistically inconclusive.  Perhaps it is no coincidence that the error 

distance assessment is often criticized as being incapable of accurately assessing the inherently 

non-linear mechanics of a geographic profile (Rossmo, 2005a).   This criticism is somewhat 

justified as a criminal investigation has no a priori knowledge of the distance an anchor point is 

from the predicted location.   However, the error distance does provide a diagnostic measure for 

assessing a model's accuracy (Levine, 2005; Paulsen, 2006a; 2006b; Rich & Shively, 2004).   

One such technique is to use a profile's error distance to calibrate a model's study grid.  That is, 

this measure can be used to customize the resolution (i.e., cell size), shape, and position of a 

model's study grid for a given activity space.  Consider the scenario in which the true anchor 

point of a calibration dataset has been assigned a low probability value.  As a consequence, the 

search costs were very large, thus requiring the search of numerous grid cells before identifying 

the true anchor.  If, however, the error distance between the true and predicted anchor point was 

short, the researcher may conclude that the poor probability estimation and search costs were 

associated with a poorly calibrated study grid.  Such was observed for approximately ten of 

models evaluated in this study.    While this finding is only anecdotal, future research should 

consider the contribution of this routine for calibrating a model's study grid. 

 The last procedure used to assess modeled output was the search cost evaluation.   This 

technique is arguably the best indicator for assessing a model's precision because it establishes a 
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Figure 5.5: Pairwise model performance for profile probability estimation values. 
 
 

 

Figure 5.6: Pairwise model performance for error distances. 
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priority-based strategy for locating the anchor point (Canter et al., 2000; Levine, 2007; Rossmo, 

2000).   According to the Friedman test, all three land cover techniques ranked at the top in the 

groupwise comparison (see Table 5.3).  In fact, all three models produced estimates that had the 

lowest average and lowest median search costs of the techniques evaluated.  Pairwise 

comparisons produced similar results, though differences between some of the models were not 

found to be significant (see Table 5.6).  As illustrated in Figure 5.7, the land cover Filtered JTC 

model had a pairwise success rate of 66.9% (209), followed by the Land Cover Bayesian Product 

and Posterior at 62.2% (194) and 58.0% (181), respectively. 

 While the land cover enhanced Bayesian approach provides an effective improvement 

over contemporary models, the success of this technique is tempered by the better performing 

Filtered JTC Estimate.   So it begs the question:  what makes the Filtered JTC Estimate different 

 

Figure 5.7: Pairwise model performance for search costs. 
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from the Land Cover Bayesian approach?   The difference lies in how the models are 

constructed.   Recall that the Filtered JTC model is the product of the JTC Estimate and the 

marginal probability of land cover observed for all offenders within the calibration sample (see 

Equation 5.5).  In essence, the JTC distribution represents a maximum likelihood estimate of the 

unknown offender's anchor point (Levine, 2005).  Similarly, the distribution for the marginal 

land cover can be interpreted as the most likely land cover types for the same anchor.   Whenever 

the modes of these two frequency distributions spatially intersect, one effectively generates an 

increasingly more precise maximum likelihood of the unknown anchor point.  Due in part to the 

resolution of this study, this product frequently resulted in more accurate and precise anchor 

point estimates than any other model.  Consequently, this approach exposes the fact that these 

optimal distributions are geographically dependent.   Thus, the leveraging of this implicit bias 

improved performance, which was observed in more than twenty models.  However, this 

approach comes with a caveat.  As stated earlier, this bias is susceptible to a “rotten apple” effect 

that can negatively impact a profile's efficiency.  Specifically, if the JTC or the marginal land 

cover estimates do not represent an optimized estimation, the resulting model will produce a 

dramatically inaccurate estimate. 

 This scenario is best illustrated by comparing Figures 5.8 and 5.9, in which the 

probability surfaces for the anchor point of a serial larceny is presented using traditional, and 

filtered  JTC estimation techniques.   Figure 5.8 depicts the surface generated for the traditional 

JTC estimate.   The JTC Estimation produces a search cost of 879 grid cells.   But as illustrated 

in Figure 5.9, the search cost for the Filtered JTC estimate was 4,611 grid cells.  In this case, the 

JTC Estimate for the true anchor point was high, but it was very low for the land cover Filtered 

JTC estimate.  The product of these two values resulted in an increased search cost.   To 
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compensate for this effect, a Bayesian formulation similar to that used by CrimeStat® was 

chosen.  As noted for Equation 5.7, the conditional probability of land cover for the anchor point 

parameter was calculated using an exponential kernel function.  This approach represents a 

functionally pragmatic method for optimizing the conditional land cover probability for the area 

surrounding a known offender's anchor point.   Accordingly, Figures 5.10 and 5.11 illustrate the 

Bayesian product (Equation 5.7) and posterior (Equation 5.6) probabilities for the same criminal.   

For the Bayesian product, the effect of a poorly assigned land cover estimate remains evident. 

Nevertheless, a search cost of 719 is lower than 4,611, thus producing a six-times smaller search 

cost.  However, when normalized for all possible anchor point scenarios, the Bayesian posterior 

produced an enhanced estimate of 506 grid cells.  In short, by reformulating the joint probability 

of the JTC prior and land cover likelihood according to Bayes' estimation, this new model was 

able to uniquely compensate for errors that can over and under estimate an offender's anchor 

point.  Simply put, the probability of land cover for a given anchor point became an optimized 

likelihood distribution derived from an exponential kernel function.   When combined, the 

product of the likelihood and the prior resulted in an estimate that was more tolerant to the 

“rotten appleˮ effect.  Thus, it produced a more reliable estimate of the anchor point.  So while 

the overall performance was not as strong (see Tables 5.3- 5.6), the Bayesian formulation 

represents a more suitable technique for accommodating the intrinsic geographical biases that 

define the unknown offender's activity space. 

 Still, problems remain.  Many of the concerns initially identified in the previous study 

remain unaddressed.   For instance, a recent study has expressed caution on the over reliance on 

calibrated distance decay functions when modeling a criminal's overriding spatial behavior 

(Smith et al., 2009).  The issue is that that of ecological fallacy: warning that the aggregated  
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Figure 5.8: Geographic profile generated using the JTC estimation model.  
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Figure 5.9: Geographic profile generated using the Filtered JTC estimation model. 
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Figure 5.10: Geographic profile generated using the Land Cover Bayesian Product model. 
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Figure 5.11: Geographic profile generated using the Land Cover Bayesian Posterior model. 
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decay pattern cannot be considered statistically independent, and thus are not suitable for 

inferring behavior characteristics on any crime series other than the calibration sample.  An 

approach for addressing this issue would be to disaggregate the JTC characteristics of the 

calibration sample, and identify a common set of commuting trends based on the individual 

crime series.   While compelling, the implementation of a tactic such as this would require an 

extensive re-working of existing software subroutines.  Another unaddressed issue relates to the 

spatial resolution of the Baltimore study grid.   In order to accommodate both computational and 

operational limitations, the study grid size was enlarged to 480m squared.  The large cell size 

made the model estimations proceed faster than cells maintained at smaller sizes.  The larger 

areas also made it easier to identify coincident profile and calibration crime scenes.  Coincident 

events are an essential operational element of the current Bayesian formulation, without which 

conditional probability values would almost certainly be non-existent.   The CrimeStat® manual 

proposes the use of a separate and coarser grid that can accommodate the coincident events.  

This grid would then be spatially interpolated onto the more refined study grid for analysis.   

However, conditional probability estimates derived from large grids will reduce profile 

precision.  A finer resolution grid can narrow the focus, thus enhance the estimate.  Additionally, 

a tight grid would permit the integration of other landscape proxy data, including municipal land 

use data (e.g., residential, commercial, light industrial, etc.).  Such a grid would have to balance 

precision while ensuring that the known and unknown crime scenes find coincident paring.   This 

balance could be aided with the inclusion of additional crime scenes.  As detailed in the 2004 NIJ 

report on geographic profiling (Rich & Shively, 2004), the prediction efficiency of profiling 

models is best when more crime scenes are included in the analysis.  Many of the series used 

within this study were comprised of as few as three crimes.  As Leitner & Kent (2009) revealed, 
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modeling performance can only benefit from larger calibration samples and the inclusion of 

multi-offence crime series. Ideally, each one of these issues should be accommodated in future 

research. 

5.6  Conclusion  

 This study set out to measure the efficacy of incorporating land cover within a Bayesian 

formulated JTC estimation model.  It represents an extension of previous research in which Kent 

and Leitner (2009) examined the efficacy of filtering a JTC estimate using the marginal 

probability of land cover.   The authors demonstrated that the likelihood of identifying an 

offender's anchor point was constrained to the particular land cover characteristics inherent to the 

offender's activity space.   By incorporating these land cover probabilities within a Bayesian 

framework, this study confirmed that landscape characteristics can be used to exploit the 

relationship between an offender's anchor point and his/her perceptions of criminal opportunity 

and target attractiveness.  Particular emphasis was placed on the formal inclusion of land cover 

within a profiling model, not just the product of two independent marginal probabilities.  

Accordingly, the Bayesian JTC model originally derived for CrimeStat® was modified to 

incorporate the marginal and conditional probability of land cover.   

 The rationale for this approach was established on biases identified in the previous study, 

in which the Filtered JTC Estimate suffered from an implicit geographic dependency that made it 

susceptible to estimation errors.  Two Bayesian formulations were chosen to compensate for this 

effect.  The first represents the Bayesian product, which is based on prior estimate of an 

offender's anchor point and the conditional probability for observing land cover for anchor points 

of previous offenders who committed crimes in similar locations.   The conditional land cover 

probability estimate was calculated using a negative exponential kernel, primarily because of its 
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abilities to account for land cover variability inherent with the size of the study grid.  The 

exponential kernel was also chosen due to the rapid decrease in intensity as the function decays.  

Together, they provided a relative estimate of the offender's anchor point according to the 

likelihood of land cover.  The second formulation was the full Bayesian posterior probability 

estimate.  This is a normalized estimate of the Bayesian Product that has been divided by the 

marginal probability of all land cover classes associated with previous offender anchor points.  In 

effect, these two estimations represent a pragmatic solution to overcoming the over- and under- 

estimation biases inherent to the model.   However, this paradigm comes at the expense of 

precision and accuracy that is otherwise observed for the filtered approach.   Future studies, 

using larger calibration and profile samples, must be initiated in order to develop a set of 

expectations for modeled performance.  Clearly, the inclusion of auxiliary datasets that are 

inherent to the criminal activity space will enhance a profile's output.   Future research, capable 

of addressing the issues presented here, can result in the development of more refined 

methodologies that will ensure its beneficial contribution to law enforcement. 
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“There is a need for constant improvement and innovation in methods of analysis, no matter 
what questions are being asked or what levels of resolution are being studied.” 

- Brantingham & Brantingham (1998, p. 265) 

 

CHAPTER 6:   CONCLUSION 

 This research has successfully demonstrated how contemporary geographic profiling 

models can be modified to account for the anisotropic characteristics of the underlying physical 

and cultural landscape.  Four enhanced profiling techniques were studied:  modeling the criminal 

commute using functional distance measures (Kent et al., 2006); accounting for landscape 

variability observed in the spatial distribution of crime scenes using standard deviational ellipses 

(Kent & Leitner, 2008); filtering JTC estimates using  land cover characteristics (Kent & Leitner, 

2009); and incorporating land cover within empirical Bayesian JTC estimation models.   Each 

approach was able to relatively improve the efficacy of a geographic profiling model when 

predicting the location of a serial offender's residence.  Such techniques can be invaluable 

resources for the investigation and successful apprehension of a serial offender.   

 The basis for this research was founded on the theories and principles established in 

environmental criminology, which posit that crime is the result of the juxtaposition of an 

offender, target, opportunity, and place.   These “dimensions of crime” constitute an 

investigatory framework from which a criminal's psychological and geographical behavior in 

space can be modeled (Brantingham & Brantingham, 1984).  However, such techniques rarely 

produce accurate estimates of the offender's anchor point.   Instead, traditional models are 

generally limited to exposing an abstraction of the offender's true activity and awareness spaces.  

As noted by Rengert (1989), the landscape is composed of anisotropic distributions of social, 

environmental, and psychological structures that effectively confound the traditional approach of 
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characterizing the prevailing precepts that govern human behavior in space.  Only by accounting 

for these constructs can a model effectively represent an offender's spatial patterns (Bratingham 

& Brantingham, 1981; 1984; Felson & Clarke, 1998; Rengert et al., 1999).    

6.1  Functional Distance Measures   

 Those methodological strategies that can effectively accommodate both the 

characteristics of the landscape as well as the principles of environmental criminology are best 

suited for constructing offender profiles.  By taking into account the offender's perceptions of 

cost, criminal commute models that optimized travel path metrics (e.g. Manhattan distances) 

produced a more accurate estimate of a serial killer's residence.  This approach, presented in 

Chapter 2, was inspired by research published by Capone and Nichols (1976) and Rhodes and 

Conly (1981), who demonstrated that the physical characteristics of the offender's activity space 

(e.g., streets, parks, buildings, etc.) influence the perceptions of criminal opportunity and 

success.  The advantage of this technique was that it was able to explicitly account for the impact 

of the road network on which the offender traveled.  Accordingly, this method served as a proxy 

for criminal opportunity structures as it relates to the resolve of an offender to commit a crime 

given the cost of the commute.   However, this modeling approach is based on an a priori 

assumption that the offender perceived criminal opportunities relative to the road network.  

However, the model was unable to account for the psychological motivations of the offender 

beyond the cost of the commute.  Nor was it able to account for the offender's perception of 

target attractiveness.  Furthermore, the approach was incapable of discriminating the various land 

use characteristics inherent within the study area.  Consequently, even the most unlikely 

locations within the criminal's activity space (e.g., river, industrial land use areas, agricultural 

lands, etc.) were assigned a probability estimate for the offender's anchor point.  Lastly, the 
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approach proved to be programmatically and operationally prohibitive when compared to 

existing methods that utilize the Manhattan (e.g., grid based) travel distance metrics.  And as the 

study revealed, the Manhattan metric provided a better estimate of the offender’s true residence. 

 Questions remain, however.  For instance, how well might the Manhattan metric perform 

for serial offences that occur within rural environments, where the uniform and grid-shaped road 

networks common in urban settings are not the dominate characteristic?  Furthermore, how does 

one distinguish an activity space or awareness space within a rural setting?   Still further, how 

does one differentiate the offender typologies of commuter and marauder for serial crimes that 

occur within an environment that exhibits large distances between activity nodes?   Clearly, the 

ecological contexts in which crimes occur are important factors that influence the efficacy of a 

geographic profile. However, the practical implications for these scenarios have yet to be 

addressed adequately. 

6.2  Standard Deviational Ellipses 

 The impact of the physical and cultural landscape was addressed in Chapter 3, which 

used simple spatial distribution models to accommodate the variations observed for the 

distribution of linked crime scenes.  The premise for this approach asserts that crime scenes are 

not distributed randomly around an offender's anchor point; therefore making it unlikely that the 

offender’s residence would be identified within the center of that distribution.  Instead, the 

distribution of crime is partially determined by the physical and cultural environment, and the 

offender's perceptions thereof.  Utilizing basic geographic principles of central tendency and 

spatial diffusion, the essay presented in Chapter 3 measured the efficacy of an elliptical search 

area applied within a geographic profiling technique originally proposed by Newton and Swoope 

(1987), known as geoforensic analysis.  Geographic profiles were generated for 97 serial 



154 
  

offenses that occurred in Baltimore County, Maryland.  Comparative analysis revealed that 

profiles based on the standard deviational ellipse model, which accounted for the non-uniform 

distribution of linked crime scenes, produced significantly better estimates of the offender's 

anchor point (or haven) than circle-based models, which presume a uniform distribution of 

linked targets.  Furthermore, the relationship between the orientation of the elliptical profiles and 

the mean linear orientation of the underlying landscape (as measured by the road network), 

revealed a weak, but significant, correlation.  These findings demonstrated how the physical 

characteristics of the landscape impact phenomena within a criminal's activity space.    

 Despite the ability to accommodate the anisotropic plane, the accuracy exhibited by this 

technique was achieved at the expense of precision.  Specifically, the investigatory costs 

associated with the large elliptical search areas were fundamentally prohibitive.   Indeed, scale is 

an important factor for the practical significance of any spatial analytical technique.  

Accordingly, the impact of scale on a geographic profile must be examined in future research.  

Moreover, this modeling approach failed to account for the offender's perceptions of criminal 

opportunity and target attractiveness.  As the study in Chapter 2 demonstrated, the offender's 

perception of the landscape is an important factor on the commission of crime.   The extent to 

which this factor can be integrated within a geographic profile would be examined in Chapter 4. 

6.3  Land Cover Filtered JTC Estimations 

 Having established that the landscape does exhibit a deterministic influence on the nature 

of criminal behavior, the essay presented in Chapter 4 explored a new technique for 

incorporating the characteristics of the physical and cultural landscapes within a geographic 

profiling framework.  Comprised of two parts, the first approach utilized the JTC distance decay 

modeling technique to account for the offender's perception of cost.  Next, the JTC approach was 
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enhanced using land cover characteristics, which served as a proxy for the underlying physical 

and cultural structures that influence the offender's behavior in space.  Traditional and land cover 

enhanced geographic profiles, generated for 35 serial burglaries and 35 serial robberies, were 

compared using tests that measured a profile's accuracy and precision.  Results found that 

offender anchor point estimates derived using the land cover filtering strategies were, on 

average, significantly more accurate than traditional techniques.  Furthermore, the land cover 

enhancements produced smaller search costs, reflecting the technique's improved precision.  

While the results for the third evaluation procedure, error distances, were statistically 

inconclusive, the center of minimum distance and empirical Bayesian JTC modeling approaches 

exhibited the shortest error measurements of all of the models studied.    

 Despite the impressive results, concerns remain.  For example, the technique's approach 

for aggregating the land cover dataset could be refined.  Many land cover sub-classes were 

preserved after the dataset was aggregated to 480m cells.   These sub-classes may have 

unintentionally biased the final land cover assignments for the aggregated cell values.  If land 

cover sub-classes were merged into their respective master categories (e.g., aggregate each sub-

classes into “forest,” “agricultural,” “developed,” and “wetland” master classes), the estimate of 

the true anchor point might improve.  Still further, the land cover filtering technique revealed 

how the landscape introduces an implicit bias within the model's framework.  The implication of 

this bias supports the premise that landscapes, both physical and cultural, exhibit a dependent 

relationship with the crime scenes.  As such, this dependency is inherently geographic in nature.    

This bias also reveals potential flaws, including a paradox scenario in which the product of the 

marginal land cover and JTC probability values can result in a poorly predicted anchor point 

estimate that significantly distorts the modeled output (see Figure 5.9).  Specifically, the land 



156 
  

cover estimate for the true anchor point could be miss-classified, and thus assigned a probability 

value that is not representative of its true land cover classification.   Strategies for addressing 

these issues would be explored in the final essay. 

6.4  Land Cover Enhanced Bayesian JTC Estimates 

 The research presented in Chapter 5 expanded on the previous essays to construct more 

accurate and precise anchor point estimations using a modeling strategy that combined land 

cover characteristics directly within a Bayesian framework.    The Bayesian JTC approach 

originally derived for CrimeStat® III was modified to incorporate the marginal and conditional 

probability of land cover observed from previous offenders.  Like the study presented in Chapter 

4, traditional and land cover-enhanced models were used to generate geographic profiles for 52 

serial crimes observed in Baltimore, MD.  Overall, the study demonstrated that land cover 

enhanced models performed significantly better than non-enhanced techniques when measuring a 

profile’s search cost and probability estimation.  And just as in the earlier study, results 

comparing a profile's error distances were inconclusive due to a lack of statistical significance 

between the compared output.  Nevertheless, land cover enhanced Bayesian techniques improved 

the likelihood of identifying an anchor point by effectively constraining the estimate to those 

locations attributable to the activity spaces of known offenders.  This approach differed from the 

previous study in that the emphasis was placed on the formal inclusion of land cover within a 

Bayesian JTC model, not just the product of two probabilities.   This Bayesian approach ensured 

that offender perceptions would be implicitly accounted for, while explicitly accommodating the 

physical and cultural landscapes (Kent & Leitner, 2008; 2009).   

 Furthermore, the approach effectively restrained the “rotten apple” effect revealed in the 

previous study, by adjusting the method for calculating the product of the JTC and land cover 
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probability estimates.   That is, the conditional probability of land cover based on solved cases 

was calculated using a kernel density routine.  As a result, the probability estimates for the 

environment immediately surrounding these historic anchor points were incorporated within the 

model, thus reducing the vulnerabilities associated with aggregation errors, which had been 

observed for the land cover filtering technique.   However, this fix for ecological fallacy remains 

vulnerable to decreased precision and accuracy (see Tables 5.3 - 5.6).   Moreover, the land cover 

assignment for an offender's anchor point was found to be susceptible to biases similar to those 

associated from the modifiable areal unit problem (MAUP).  The implications for this are 

threefold.   First, the scale and position of the study grid can negatively impact the predictive 

ability of the model.  For instance, a grid positioned a few meters in any direction surrounding a 

water body can have a significant impact on the land cover classification assigned to a grid cell.  

The consequence for this scenario is to reject the true anchor point that had been erroneously 

assigned the wrong land cover class.  Second, too many land cover classes were preserved prior 

to the cell aggregation, potentially distorting profiled output.  Aggregated values most likely 

overwhelmed smaller, but significant, land cover classifications for the study area.  The practical 

consequence for such errors could results in the misappropriation of resources by the criminal 

investigators.  Finally, the precision associated with the modeling technique is compromised by 

the scale of the grid.  The catchment area (i.e., grid cell), used to determine coincident offense, 

was too large.  As stated earlier, the Bayesian JTC routine constructs a likelihood estimate of an 

anchor point using historic crime data that were spatially coincident with the unknown offender.  

In order to ensure spatial coincidence, the grid cell must be large.  An alternative method for 

assessing spatially coincidence needs to be developed such that it can operate at a finer 

resolution (e.g., municipal land use codes).   
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6.5  Closing 

 In all, the efficacy of incorporating land cover characteristics within a variety of 

geographic profiling models has been demonstrated.  These findings further reveal that the 

inclusion of auxiliary data can enhance the predictive capabilities of locating an offender's 

anchor point.  Such methodologies are reasonably accessible, reproducible, and defendable by 

researchers and analysts within law enforcement communities.   Ideally, a combination of each 

of the presented methodologies can be achieved using a Bayesian formulation.  Indeed, Bayesian 

theory represents an exciting new approach for profiling criminal behavior in space.  Techniques 

such as these promise to enhance the traditional spatial distribution and spatial interaction 

models of the past with concepts traditionally associated with decision theory and optimal search 

theory.   One particular example includes the work by O'Leary (2009), who used Bayesian 

methods to explicitly formulate connections between offender behavior and the surrounding 

environment.  An additional example includes the work by Mohler & Short (2009), who used 

Bayesian theory and kinetic models of criminal behavior to account for anisotropic landscapes 

associated with serial offenses.   Combining the quantitative benefits of Bayesian theory with the 

theoretical precepts of environmental criminology has very practical implications.  That is, the 

adoption of newer and more efficient analytical methodologies will ensure that geographic 

profiling techniques will be able to accommodate a broad range of modeling possibilities that are 

only limited to the imagination of the investigator. 
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