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PREFACE 

As a fourth-grader, I used to spend my spare class time reading a set of National 

Geographic magazines that someone donated to my elementary school.  What fascinated me was 

the depth and scope of knowledge presented to me in these magazines: on one page I could read 

about the demise of the white rhino on the Serengeti of East Africa; on the next page read about 

Sir Edmund Hilary’s 1953 trek across the Himalayas and Mount Everest; and yet on the next 

page read about the thousand year old art of sheep farming in Wales.  The fact of the matter was 

that I could pick up any issue, open it to nearly any page, and be completely entranced by 

whatever article would appear.  Though not the end-all or be-all of geographic literature, it was 

from National Geographic that I not only gathered my definition of geography, but also was 

introduced to all the facets of knowledge that exist around the world. 

 My interest in human health, however, did not come from a magazine.  Rather, they came 

from childhood stories of notable imperial physicians.  My favorite stories were about the 

English Bush doctors of Kenya and South Africa during colonial times, who traveled from 

village to village in their khaki shorts with brown leather medicine kits strapped over their 

shoulders. Working as philanthropists as much as physicians, these doctors would refuse the 

natives’ offerings of chickens and goats as payment for medical services.  These people practiced 

the art of medicine, gained knowledge of the world and its cultures, and served humanity.  In my 

mind, these people (though sometimes fictionally embellished I’m sure) were the epitome of 

nobleness. 

 It thus seems highly appropriate that the topic of my dissertation, tropical medicine and 

medical geography, encompass both of these childhood experiences.  In the last decade, I have 

expanded my curiosity for geography by traveling the world and seeing for myself what I used to 
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read in magazines, and have pursued my aspiration to augment human health and humanity by 

studying and choosing a profession in the health sciences.  It seems that when I was collecting 

my data for this dissertation in Brazil, amongst the poorest of the poor diseased children of the 

Brazilian slums, I had become the person that I used to so admire as a child.  I hope that through 

my fortune of accomplishing these feats that I can somewhat give back to those around me 

through the fruits of this dissertation, and continue to aspire to be that notable “bush” 

philanthropist of my childhood dreams.
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ABSTRACT 
 

Within the last few decades, the multitude of infrastructural and environmental changes 

associated with population growth, human migration, and economic development have catalyzed 

the emergence and re-emergence of many infectious diseases worldwide.  The morbidity and 

mortality associated with these diseases have in turn led to an increased and renewed impetus to 

gain a better understanding of the etiology, epidemiology, prevention, and control of these 

diseases in order to achieve better health and well-being, especially for underprivileged 

populations. Two traditionally separate fields, medical geography and tropical medicine, have 

recently seen complex and radical paradigm shifts in response to this global situation: medical 

geography has been developing many new and sophisticated methods of data collection, data 

manipulation, and spatial analysis that make it more suited for the study of health-related 

problems; and tropical medicine has been revisiting the fundamental notion that disease is 

intimately linked to the physical and cultural geographic environments in which humans live. As 

a result, concepts of medical geography are being more readily employed within tropical disease 

research, and tropical medicine is embracing geographic methods as a central mainstay in the 

control, management, and prevention of tropical diseases. As the associations between these two 

fields continue to grow, a clearer understanding of how they compliment each other will be 

needed in order to better define their interrelated roles in augmenting human health.  

 This dissertation examines the multifarious relationships that have developed between the 

fields of medical geography and tropical medicine in recent years by presenting the reader with a 

brief history of their common origins and a comprehensive review of the techniques and 

methodologies in medical geography that are frequently employed in tropical disease research. 

Following this background information, several case studies are investigated that provide 
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examples of how geographic methods can be easily and effectively employed in the analysis of 

several tropical diseases, including tungiasis, intestinal helminthes, leprosy, and tuberculosis.  

These case studies demonstrate some of the advantages and disadvantages of current geographic 

methods employed in health research, and offer a framework for readers who are interested in 

applying basic geographic concepts to analyze questions of health.    
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CHAPTER 1. INTRODUCTION 

In the two decades preceding the start of the new millennium, geography as a discipline 

witnessed an innovative revolution that completely reorganized the traditional boundaries of this 

field. Building upon its established strengths and embracing the novel ideas and perspectives 

brought about by the technological boom of the late 1980s, geography has expanded into a more 

robust, recognized, marketable, unified, and diversified scientific discipline (Gaile & Willmott, 

2003). Increasingly, geographers are applying new concepts and research methods to approach 

more complex spatial questions in a growing number of sister fields (NRC, 1997). 

 One of the fastest growing fields in geography is medical geography, or the study and 

application of geographic concepts and techniques to health-related problems (Barrett, 2000a). 

Like its mother field, medical geography has seen major shifts in its ideology, approach, 

methodology, and scope in the last few decades. The traditional perspective of medical 

geography, the implementation of geographical concepts and techniques to study health and 

disease, has remained the same to this day (Meade & Earickson, 2000). However, the field has 

recently grown to integrate novel principles of the social, physical, and biological sciences as 

well as to embrace recent technological developments in computing power.  Increasingly, 

medical scholars are seeking the assistance of geographers while geographers are venturing into 

the realms of health research (Johnston & Williams, 2003).  

The application of geographic concepts in medicine—and indeed many other 

disciplines—has led to many meaningful clues about the world in which we live: finding out 

where events happens often leads to some indication of why these events happen (Waller & 

Gotway, 2004). In medicine, the identification of many diseases’ distribution patterns has led to 

a better understanding of their epidemiology and ultimately their control with direct implications 
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for health outcomes (Meade & Earickson, 2000). For instance, the distribution of onchocerciasis, 

a parasitic disease found in West Africa that causes blindness, depends on an area’s proximity to 

turbulence in a river, which in turn is influenced by regional variation in rainfall and climate 

(Aron & Patz, 2001). This epidemiological information, which has been vital to the control and 

reduction of onchocerciasis in recent years, would not have been discovered had it not been for 

geographic methods that correlate patterns of meteorological and hydrologic data with patterns 

of case incidence data. As such, the application of geographic methods in medical research has—

and continues to have—a significant impact on both local and global health (Gatrell & Loytonen, 

1998).   

 This dissertation focuses on the applications of medical geography within the realm of 

tropical medicine, specifically providing case studies that examine several tropical diseases 

present in the country of Brazil.  It is hypothesized that through the use of concepts in spatial 

analysis and medical geography that disease patterns specific to Brazil can be underpinned.  It is 

the goal of this research to identify spatial patterns of disease that may contribute to the risk of 

disease. 

 This dissertation is structured so that a general background of medical geography and 

tropical medicine precede several case studies.  Chapter 2 begins as an introduction to the fields 

of geography and tropical medicine, reviewing how the fields originated, how they are related, 

and what future directions they are taking.  Chapter 3 is an introduction and review of the 

methods used in medical geography—namely the technologies and techniques that are applied to 

questions of health and space.  Chapter 3 is meant to give some background to the reader in 

preparation for the techniques and methods used in subsequent case studies.   Chapter 4 is 

designed both as a literature review and an examination into the interrelated fields of tropical 
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medicine and medical geography.  Specifically, Chapter 4 investigates the role of geographic 

information systems in tropical disease research by quantifying the number of articles published 

in several leading tropical medicine journals.  Chapter 5 is the first case study presented in this 

dissertation and employs some of the basic concepts used in spatial analysis to determine the 

spatial structure of the ectoparasitic disease tungiasis in a small fishing community of northwest 

Brazil.  Chapter 6 is a continuation of Chapter 5, and examines the spatial structure of 

endoparastic helminth infections using a common routine known as kernel density estimation. 

Chapter 7 gives readers a thorough introduction to Hansen’s disease, or leprosy, and the 

challenging road to leprosy elimination—including a brief history of leprosy elimination, the 

current global situation of leprosy, and future expectations for leprosy elimination.  Chapters 8 

and 9 are continuations of the case studies, and investigate the clustering of leprosy within two 

ecologically and demographically distinct regions of Brazil—Ceará, a dry, arid state in the 

northwest of Brazil, and Rondonia, a wet, tropical state in the western Brazilian Amazon.  

Chapter 10, though dealing with leprosy in Rondonia State, introduces the potential of a new 

methodology into public health spatial analysis—the use of adjusted disease rates in the 

calculation of disease clusters.  Chapter 11 is the last case study presented in this dissertation, 

and is a spatial examination of tuberculosis in Ceará State. Chapter 11 was designed to show 

how the spatial structure of tuberculosis differs from that of leprosy over a similar region and 

time period.  Chapter 12 begins with a light-hearted photo journey through Fortaleza that 

describes some of the experiences of the author while collecting data in Brazil. Chapter 13 is the 

conclusion of this dissertation, reviews the results and conclusions herein, and gives insight into 

the potential future of medical geography, public health, and tropical medicine.   
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CHAPTER 2. THE FORMAL BEGINNINGS AND PROGRESS OF MEDICAL 
GEOGRAPHY AND TROPICAL MEDICINE 

 
 The unification of health and geography dates as far back as when humans first realized 

that their health was linked to the environment in which they lived.  Though there is no concrete 

date for this realization, it seems likely that as long as there has been a consciousness for health 

there has been a consciousness for health geographics—after all, nearly every source of disease 

is attributable to some aspect of the cultural or physical environment in which we live.  In fact, it 

has been the identification and modifications of these environments that have allowed modern 

medicine to progress from simple theories of miasmatic disease origin to such complex 

discoveries as the identification of specific host cell ligands and receptors that allow entry of 

Human Immunodeficiency Virus (HIV) into lymphocytes (Kumar et al., 2004).   

 Though we may take for granted the position of modern medicine and health today, the 

path to improving human health through scientific investigation has not been easy or brief. It was 

the ancient Greek physician Hippocrates who first formally described and documented in 400 

B.C. what he thought was a distinct relationship between human culture, disease, and 

environment (Hippocrates, 1886).  Occurring almost two and a half millennia ago, this 

realization laid what was to become the beginnings of modern medicine.  However, it would take 

nearly 1900 more years for medical investigators to push through the quagmire of theories and 

public perception of miasmas, spontaneous generation of infectious particles, and divine 

resolution of disease to determine that germs were the origin of most disease and that these 

germs came from the environment surrounding us.     

 The discovery of the “germ theory” in the early nineteenth century was so profound that 

it enabled physicians and scientists of the time to enter into a new world of medical investigation 
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that was to fatefully change and alter the course of human health (Haynes, 2001). This discovery 

was accompanied by two interrelated events that precipitated a renewed vigor of thought and 

discovery that subsequently led to the development of what we know today as the fields of 

medical geography and tropical medicine. The first event was the outward expansion and 

increase of European powers through colonization and migration, which sent ship after ship of 

steadfast imperialists into never-before ‘discovered’ corners of the globe. The second event, 

which in some ways is a result of the first, was the sharing, mixing, and introduction of new 

forms of disease into both the ‘new’ and ‘old’ worlds.  The result of these two events was a 

marked challenge to human health: the diseases brought back to Europe were ravaging the 

‘home’ population in massive epidemic waves (not to mention the indigenous populations of the 

‘conquered’ lands), and the diseases encountered in the newly claimed lands were inhibiting 

colonization and hence the growth of European power and might.  The reaction to this problem 

in the minds of Europeans was to launch an all-out attack on these strange diseases to determine 

the who, what, when, and why of how they existed, laying the preliminary and rudimentary 

foundation of what was contemporarily coined “imperial medicine” (Farley, 1991).  Because of 

the importance of maintaining health in the face of colonization (health meant wealth for 

colonizers), imperial medicine was considered the “queen of medical sciences” during the 

nineteenth century, and it formed the epicenter of applied science of the time (Haynes, 2001; 

Rupke, 2000).  

 It was through the enthusiasm for imperial medicine that the fields of medical geography 

and tropical medicine developed (Speare & Leggat, 2006). Unlike today, in its formal 

materialization near the turn of the nineteenth century medical geography was pioneered by the 

endeavors of physicians rather than geographers.  These physicians, prompted by the emergence 
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and re-emergence of epidemic diseases like cholera (which during the start of the nineteenth 

century had spread from India to Europe in a series of pandemics), began a whole series of 

medical inquiry that was fundamentally based on the geography of these diseases. One of the 

earliest accounts of this era was a map of global disease distribution produced by the Prussian 

Physician L.L. Finke in 1792 (Barrett, 2000b). Following Dr. Finke’s work was the American 

physician Daniel Drake’s publication The Principal Diseases of the Interior of North America in 

1850, the first description of disease occurrence in North America as it relates to geography 

(Barrett, 1996). In 1859, the German physician August Hirsch published his two-volume 

Handbuch der Historischen-Geographischen Pathologie, a monumental attempt to describe the 

world distribution of disease (Johnston & Williams, 2003). However, the pivotal point in the 

course of medical geography came in 1854 when the renowned English physician John Snow 

pioneered the idea that ecological phenomena can be cartographically matched to health events, 

correlating cases of cholera to water supply structures within London using maps (Newsom, 

2006).  Snow was simply applying the concepts of medical geography to control a disease based 

directly on the results of a spatial analysis. Because his work showed for the first time that 

geography can play a primary rather than supportive role in the explanation of many diseases, he 

is considered the father of modern medical geography (Barrett, 1996).     

 Tropical medicine, like medical geography, also arose out of the confines of early 

nineteenth century imperial medicine (Speare & Leggat, 2006).  As mentioned above, tropical 

medicine began when colonists and soldiers of European origin were expanding into tropical 

regions of the planet and encountered unique diseases not found in temperate zones. Most of 

these diseases, but not all, were communicable in origin, and to control them colonial physicians 

had to develop a greater understanding of infectious disease epidemiology.  In 1851 the German 
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chief of surgery at the Kasr-el-Aini Medical School of Cairo, Egypt, Theodor Bilharz, was the 

first to discover and describe Schistosoma haematobium, the cause of schistosomiasis (Speare & 

Leggat, 2006).  In 1900 the Cuban scientist Carlos Finlay confirmed American physician Walter 

Reed’s hypothesis that mosquitoes were the vector of the viral disease yellow fever.  In 1901, 

while examining bodies in the Indian Medical Service, the British medical officer Lieutenant-

General Sir William Leishman discovered that the protozoan Leishmania donovani was the cause 

of kala azar (visceral leishmaniasis) (Murray et al., 2000). These discoveries were only the 

beginning of the foundation of what was to become tropical medicine. 

 It is from their common root of origin in nineteenth century imperial medicine that 

tropical medicine and medical geography formally developed as distinct yet parallel fields of 

study (Brown & Moon, 2004).  Today, medical geography has progressed more in the realm of 

academic research, lying mostly in the social sciences but occasionally venturing into the realm 

of medical practice.  Tropical medicine, on the other hand, has progressed mainly in clinical 

practice but because of its use of medical investigation frequently ventures into the realm of 

academic research (Murray et al., 2000). 

 Medical geography was first recognized as a formalized academic sub-discipline of 

geography in 1952, when the Commission on Medical Geography (Ecology) of Health and 

Disease gave its first report to the International Geographic Union (Meade & Earickson, 2000).  

This report came just a few years before Jaques May, the father of disease ecology, published 

The Ecology of Human Disease (1958), a book whose concepts were to turn disease ecology into 

the fundamental core of medical geography.  It was also during the 1950s that the field began to 

see a paradigm shift from the traditional notion that medical geography was focused on the 

understanding of the spatial distribution of disease to the wider notion that it should incorporate a 
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range of approaches to understand the relationship between space and the broader idea of health 

and well-being (Cummins & Milligan, 2000; Rosenberg, 1998). This shift came nearly a decade 

after the World Health Organization (WHO) redefined the concept of health to include not only 

the absence of disease but also the state of complete physical, mental, and social well-being 

(WHO, 1946).  This ideological shift fundamentally changed the focus of medical geography to 

include both disease ecology and healthcare delivery, using disease mapping and spatial analysis 

as its technique (Gaile & Willmott, 2003).  Today, medical geography is one of the fastest 

growing sub-disciplines of geography, and refinements in technology promise to continue to 

impact the field (Glass, 2000; Kamel Boulos et al., 2001).   

 Tropical medicine, like medical geography, has witnessed some paradigm shifts in 

response to current global health definitions and demands.  It is no longer considered the 

medicine of colonizers, but rather has grown to encompass the medicine of indigenous residents 

of the tropics (Speare & Leggat, 2006). In essence, this transition has made tropical medicine not 

only the medicine practiced in the tropics, but, more specifically, the medicine of developing 

countries and populations in transition. A contemporary working definition of tropical medicine 

is given by Speare & Leggat (2006) as “a branch of medicine that deals with the health problems 

that occur either uniquely in tropical and subtropical regions of the planet or are either more 

widespread or are more difficult to control in the tropics.” The dilemma of defining tropical 

medicine in a contemporary context is the fact that ‘tropical’ diseases are not static in location. In 

fact, many diseases that are considered ‘tropical’ today were once endemic to countries located 

in temperate and even arctic zones—these include leprosy, cholera, malaria, hookworm, and 

many others.  In other regards, tropical diseases are not confined exclusively between the Tropic 

of Capricorn and the Tropic of Cancer, and are often times found outside of these latitudes (this 
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phenomenon has led to the development of a relatively new branch of tropical medicine, travel 

medicine, that deals exclusively with the management and prevention of tropical diseases such as 

malaria or schistosomiasis in travelers and migrants).  Because many of the diseases studied in 

tropical medicine are confined to certain areas or populations, this field is sometimes called 

“geographic” medicine (Eddleston et al., 2008).    

 Tropical medicine is also intimately linked with public health, which is the study of 

managing the health of populations (Speare & Leggat, 2006).  Public health and tropical 

medicine share a unique relationship because many of the approaches used to control tropical 

diseases are population-based. Whether this is due to the infectious nature of the disease or 

because of the status of the population can be debated.   

The purpose of grouping medical geography and tropical medicine together in this 

chapter is not only to express their common origins, but also to express the fact that they share 

much of their content and objectives and what they have to learn from each other. Today, the 

fields of tropical medicine and medical geography operate under different spheres of influence: 

one being run under the confines of the medical sciences and the other being run under the 

confines of the social sciences and geography.  However, both disciplines with a few exceptions 

concentrate on the relationship between human disease and human environments. 

 One of the great milestones in the development of the association between medical 

geography and tropical medicine came during the 1980’s, when several new technologies 

including geographic information systems (GIS), global positioning systems (GPS), and remote 

sensing (RS) were introduced into the fields (Kitron et al., 2006).  These technologies, combined 

with the increased availability and power of computing systems and software that deal with 

spatially explicit data, led to an explosion of research and a renewed interest in the capabilities of 
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these two fields (Glass, 2000).  Compared to the rudimentary procedures used by early 

investigators like Snow and Leishman, these technologies are the ‘new’ arsenal of medical 

geography and tropical medicine.  This topic is further explored in the following chapter.  
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CHAPTER 3. THE ARSENAL OF MEDICAL GEOGRAPHY: GIS, REMOTE SENSING, 
GPS, AND METHODS OF SPATIAL ANALYSIS 

 
3.1 Introduction 

Some of the main advances in the study of spatial phenomena in recent years have been 

the developments and improvements seen with geographic information systems (GIS), remote 

sensing (RS), global positioning systems (GPS), and spatial statistics (Cano et al., 2007). 

However, compared to traditional applications of spatial analysis, the application of these 

technologies to the study of health-related problems is relatively new and in its early stages 

(Kitron, 2000; Leibhold et al., 1993). Nonetheless, the number of studies employing these 

technologies within medical geography over the last few years has increased staggeringly, 

making it one of the fastest growing areas in geographic research (Oppong, 2006).  This chapter 

is designed as a general introduction and overview of these technologies and methods with a few 

brief examples of their applications in health research, and is meant to provide some background 

for the subsequent studies examined by this dissertation. 

3.2 Geographic Information Systems 

Geographic information systems (GIS) are computer-based sets of procedures that 

capture, store, manipulate, edit, retrieve, analyze, model, and display data with spatial 

characteristics (Aronoff, 1989). GIS enable users to interactively query datasets, analyze spatial 

information, and present the results of these operations in maps, tables, and organized datasets. 

The uses of GIS extend into academic research, resource management, environmental impact 

assessment, urban planning, cartography, criminology, geographic history, logistics, and 

marketing—just to name a few (Wikipedia, 2008a).  GIS have become a mainstay in many of 

these applications because they incorporate so many techniques and data types into a single 
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analysis, making the handling of complex data sets faster, cheaper, and more effective (Aron & 

Patz, 2001). In addition to its practical applications, GIS have also brought geography into many 

academic fields of research where it did not exist before, thus increasing the appreciation of 

geography and its tools in solving spatial problems (Gatrell, 2002). 

  In all the applications that use GIS, perhaps one of the most valuable has been its use in 

medical research. Specifically, medical geography has embraced GIS as a remarkable tool for 

understanding how health is related to space, in forms such as uncovering disease distribution to 

the allocation of health resources across communities.  As mentioned before, one of the biggest 

advantages to using GIS is its capability to analyze both temporally and spatially complex data 

sets—and in geospatial health research these have grown to include demographic, political, 

environmental, ecological, topographical, hydrological, climactic, land-use, public infrastructure, 

transportation, health infrastructure, and epidemiological data—to name a few (Kamel Boulos et 

al., 2001; Kistemann et al., 2002). Indeed, GIS has been used to capture, map, transform, and 

analyze data for use in disease atlases; to model disease in relation to environmental variables; to 

predict the effects of density-related factors in disease distribution; and to focus and drive 

infection control programs by identifying areas of endemic disease or populations at risk 

(Brooker et al., 2000). 

The importance of GIS in health research is exemplified by the amount of literature 

published within medical geography in the last few years—especially in infectious disease 

research of viruses, bacteria, and parasites. For example, recent research in virology has grown to 

include using GIS to document the emergence and geographic spread of Barmah Forest virus in 

Queensland, Australia (Tong et al., 2005); to assist in real-time surveillance of dead birds killed 

by West Nile Virus in Canada (Shuai et al., 2006); and to model the temporal-spatial distribution 
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of a dengue outbreak in Puerto Rico (Morrison et al., 1998).  Within bacteriology, GIS has been 

used to identify wells and homesteads associated with enteric disease in Mexico City (Cifuentes 

et al., 2002); to analyze the health impact of water sources on diarrhea in Nigeria (Njemanze et 

al., 1999); to identify risk factors for Lyme disease in Baltimore (Glass et al., 1995);  and to 

document access to community-based treatment for tuberculosis in Hlabisa, South Africa 

(Wilkinson & Tanser, 1999).  

The use of GIS in medical geography has witnessed its greatest growth in research 

involving parasitology—as mentioned earlier especially in the realms of tropical medicine and 

the developing world. Within these two areas, GIS has been used to map the national distribution 

of lymphatic filariasis in Nepal (Sherchand et al., 2003); to formulate risk maps of lymphatic 

filariasis in Africa based on climactic variation (Lindsay & Thomas, 2000); to unmask the 

profound heterogeneity of malaria risk in magisterial districts of South Africa (Booman et al., 

2000); to predict the spatial distribution of schistosomiasis in Tanzania for use in a national mass 

drug treatment control program (Clements et al., 2006); to model patterns of African 

trypanosomiasis in southern Cameroon (Muller et al., 2004); to develop models incorporating 

tsetse flies, livestock biomass, clinical disease, farming systems, and land use for the control of 

African trypanosomiasis (Hendricks et al., 2001); to determine the spatial pattern of African 

trypanosomiasis in Cote D’Ivoire using GPS and ground-collected information on households, 

agriculture, and vegetation (Courtin et al., 2005); to predict community prevalence of 

onchocerciasis in the Amazon (Carabin et al., 2003); to map the global distribution of trachoma  

and trichiasis (Polack, Brooker et al., 2005); to identify areas of high risk for giardiasis in 

Canada (Odoi et al., 2003); and to construct a disease atlas of helminth infection in sub-Saharan 
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Africa (Brooker, Rowlands et al., 2000).  There is no doubt that the use of GIS in virology, 

bacteriology, and parasitology will continue to increase in the next few years. 

3.3 Remote Sensing 

Remote sensing (RS), in a general sense, is the small or large-scale acquisition of data on 

an object or phenomenon by the use of recording or real-time sensing devices that are not in 

physical or direct contact with the object or phenomenon being studied (Campbell, 2002). Using 

this definition of remote sensing, observation satellites, oceanographic and atmospheric weather 

buoys, magnetic resonance imaging (MRI), positron emission tomography (PET), and even 

ultrasound used to monitor pregnancy are all examples of remote sensing. Within the context of 

geography, however, remote sensing generally refers to the use of imaging sensor technologies 

such as electromagnetic radiation to obtain and record environmental attributes (Patterson, 

1998). This sub-category of remote sensing is often divided into two kinds of remote sensing—

those that use sensors to detect passive, natural ration that is emitted or reflected by the object 

being observed, and those that actively emit radiation in order to scan objects and then record the 

radiation that is reflected or bounces off of the target (Campbell, 2002).   

The use of remote sensing in geography presents several advantages over classical 

techniques of data collection. For example, remote sensing makes it possible to obtain data from 

inaccessible locations or those that present too much danger for humans to collect the data in 

person, such as in the Amazon Basin or during the flooding of New Orleans after hurricane 

Katrina (Wikipedia, 2008b).  Remote sensing can also be used to record environment change 

over time, such as the monitoring of El Niño in the Pacific or on a larger scale the measuring of 

global climate change by NASA’s Earth Observing System (Williams, 2008). These advantages 
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make remote sensing a highly valuable tool in comprehensive research and enable the study of 

locations and spatial phenomenon that would otherwise be impossible.  

In medical geography, when such problems as the identification of endemic areas of 

disease, the estimation of populations at risk, and the assessment of environmental information in 

areas that lack baseline data or cannot be accessed arise, the use of remote sensing, especially in 

conjunction with other technologies such as GIS, provides an efficient and effective method of 

data capture (Guo-Jing et al., 2005).  For example, satellites such as Landsat’s Multispectral 

Scanner (MSS) and Thematic Mapper (TM), the National Oceanic and Atmospheric 

Administration (NOAA)’s Advanced Very High Resolution Radiometer (AVHRR), and France’s 

Système Pour l’Observation de la Terre (SPOT), can provide information about vegetation cover, 

landscape, structure, and water bodies in almost any region of the globe—information that can be 

extremely valuable in health research that examines environmental factors in disease 

dissemination (Beck et al., 2000).  

The importance of remote sensing in medical geography is evident through the amount of 

literature published each year that exemplifies its applications. For example, remote sensing has 

been used to predict cholera outbreaks in Bangladesh that are based on large-scale oceanic algal 

blooms (Ali et al., 2002); to identify snail habitat for schistosomiasis control in China (Guo-Jing 

et al., 2002; Zhou et al., 2001); to predict the distribution of urinary schistosomiasis in Tanzania 

using land surface temperature (LST) and the normalized difference vegetation index (NDVI) 

(Brooker, 2002; Brooker et al., 2001);  to map the distribution of intestinal schistosomiasis in 

Uganda using AVHRR (Kabatereine et al., 2004); to construct a household-GIS database for 

health studies in Karachi, Pakistan, using high resolution IKONOS imagery where GPS receivers 

failed because of structural barriers such as tall buildings (Ali et al., 2004); to quantify areas of 
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reduced risk of hantavirus pulmonary syndrome in the United States using Landsat Thematic 

Mapper imagery (Glass et al., 2000);  to predict intestinal schistosomiasis infection in school 

children in the Côte d’Ivoire (Raso et al., 2005); to risk map visceral leishmaniasis in Sudan 

using NDVI and climate data (Elnaiem et al., 2003); to forecast malaria outbreaks in sub-Saharan 

Africa using climactic variables to predict vector habitat (Rogers et al., 2002); to determine 

small-area clustering of malaria in Nandi District, Kenya, based on landcover types retrieved 

from the Digital Landsat Enhanced Thematic Mapper (ETM+) (Brooker et al., 2004); and to 

identify environmental factors that could predict Ascaris infections in South Africa (Saathoff et 

al., 2005).   

3.4 Global Positioning Systems 

 Hand-held global positioning systems (GPS) are a technology developed by the United 

States Department of Defense that use a constellation of 24 to 32 medium earth orbiting satellites 

to pinpoint a user’s location, speed, direction, and time (King, 1997; Strom, 2002).  Re-

developed for civilian use under the issue of Ronald Reagan in 1983, GPS today is utilized in a 

variety of geospatial applications, from advanced computer cartography to on-board consumer 

automobile navigation systems (Pellerin, 2006).  

 GPS technology works through the synchronized timing of signals sent through a known 

array of satellites continually in orbit above the earth’s atmosphere (Pellerin, 2006).  These 

satellites transmit data that include the time the transmission was sent, the orbital path position, 

or ephemeris, and the rough orbital position of all GPS satellites, or the almanac. The GPS 

receiver, on the other hand, uses the arrival time of each data signal to measure the distance to its 

respective satellite source.  By using signals and calculating the distance from several satellites, 

each receiver can determine its own position in space and time using geometric and 
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trigonometric algorithms in a process known as trilateration (Daly, 1993). The results of 

trilateration are converted to into user-friendly formats such as latitude and longitude or the 

location on a map.   

 The accuracy of a GPS is dependent on both natural and intentional errors (USCGNC, 

2008).  Natural errors that disrupt the exact calculation of position include atmospheric effects 

that distort signals as they travel through the atmosphere, multipath effects caused by the 

reflection of signals off surrounding terrain, ephemeris errors that include noise and clock drift 

phenomena, and sources of signal interference that can include solar flares, geomagnetic storms, 

and even metallic sources such as car window tinting films (USCGNC, 2008).  GPS models used 

in military applications can be accurate to several centimeters and even millimeters; however, for 

civilian use the accuracy of a GPS receiver can be altered using a feature called Selective 

Availability (SA) that introduces intentional random errors into publicly available navigation 

systems for purposes of national security (USCGNC, 2008). Despite these errors, civilian GPS 

receivers are still considered to be accurate in most instances up to 100 meters for inexpensive 

models, within a few meters for more complex receivers, and within centimeters and millimeters 

for units with differential correction (King, 1997).     

 The applications of GPS have grown from military uses, such as target tracking, missile 

guidance, search and rescue, and reconnaissance, to an array of civilian uses that require absolute 

location, relative movement, or time transfer (Pellerin, 2006). One of the practical civilian uses 

of GPS that has gained considerable attention within the last few years has been the use of GPS 

in health research (Dwolatzky et al., 2006). Although the value of GPS in health research has 

only been relatively recently identified, its use and application continues to grow (Cano et al., 

2007). Some examples of recent research that utilized GPS include Wiehe et al. (2008)’s 
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examination of the travel patterns of adolescents by giving them GPS-enabled cell phones that 

allowed them to track and to better understand adolescent environments and how they are related 

to high-risk health behaviors, such as smoking; Allpress et al. (2008)’s use of GPS to determine 

exact positions of households within GIS and remote-sensing derived maps in order to 

prospectively examine pesticide exposure in Illinois; Tran et al. (2008)’s use of GPS to identify 

and map larval and adult populations of Anopheles hyrcanus to examine the potential of re-

emergence of malaria in Southern France; Zeilhofer et al. (2007)’s identification of habitat 

suitability of Anopheles darlingi, a vector of malaria, with GPS around hydroelectric plants in 

Mato Grosso State, Brasil; and Dwolatzky et al. (2006)’s implementation of GPS into a personal 

digital assistant (PDA) in order for health care workers to locate remote home sites of 

tuberculosis cases in support of a tuberculosis control program in South Africa .      

3.5 Basic Theory of Spatial Analysis  

When dealing with problems of space, the step beyond simple cartography and mapping 

is spatial analysis, which in geographic research is the tool used to compare the spatial 

distribution of a set of features to a hypothetically-based random spatial distribution (Mitchell, 

2005). These spatial distributions, or patterns, are of interest to many areas of geographic 

research because they can help identify and quantify patterns of features in space so that the 

underlying cause of the distribution can be determined (Fotheringham et al., 2002).  The process 

of identifying unique spatial distributions, or statistical pattern recognition, can range from 

simply “eye-balling” features on a map to complex computer-based spatial algorithms that can 

detect very minute differences on a surface (Mitchell, 2005).  

There are many approaches to the analysis of spatial data. However, as Wilson & 

Fotheringham (2007) suggest, the typical method to approaching spatial analysis is: 1) create 
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adjusted rate maps of disease events; 2) use spatial statistics to determine whether or not the rates 

are spatially autocorrelated; 3) detect and identify the locations of clusters, hot-spots, cold-spots, 

and outliers; and 4) to assess why clusters, hot-spots, cold-spots, and outliers exist where they 

do.   

In health research, spatial analysis is used to detect and quantify patterns of disease 

distribution that may offer insight into a disease’s epidemiology (Srividya et al., 2002; Waller & 

Gotway, 2004).  Spatial analysis is designed to detect ‘clusters’ of health events that demonstrate 

significant areas of either high or low disease risk. Although spatial analytical techniques rarely 

give reasons why spatial patterns occur, they do identify where spatial patterns occur.  Within the 

realms of health research, this provides a useful means by which to hypothesize about health 

outcomes or to identify spatial issues that need to be investigated in further detail (Wen et al., 

2006).  However, spatial analysis is only part of the approach to answering geographic questions 

in health research, as it takes spatial analysis in addition to a strong understanding of biological 

processes before underlying clues about health problems can be inferred (Malone, 2005). 

The fundamental concept behind the use of spatial analysis in health research is the idea 

of spatial autocorrelation.  This concept is based on the idea that observations that are located 

near each other are influenced by each other and not distributed in space or time by random 

chance alone (Meade & Earickson, 2000).  Positive spatial autocorrelation occurs when events of 

similar value are adjacent to each other, while negative spatial autocorrelation occurs when high 

values are located adjacent to low values (Gatrell, 2002).  General examples of spatial 

autocorrelation would include the diffusion of a communicable disease where the presence of an 

infected individual would lead to increased susceptibility for surrounding individuals, or 

distance-decay risk associated with a toxic point-source exposure. In both these examples, 
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observations located adjacent to either the infected individual or the point source would have an 

abnormal relative risk for disease manifestation.  

Most health research using spatial analysis begins with a study region that is partitioned 

into a number of small areas (Glass, 2000).  Each small area, or unit, is correlated to a disease 

rate that is indicative of a disease outcome compared to the population at risk in that unit 

(Rothman & Greenland, 1998).  Under the null hypothesis, the disease rate in each area has a 

nominal Poisson distribution with the expected number of cases equal to the mean of the Poisson 

process (Glass, 2000; Waller & Jacquez, 1995). The reference distribution is the distribution of 

the spatial test statistic under the conditions of a true null hypothesis (Fotheringham et al., 2002).  

The reference distribution is generated using a null spatial model that can be based on 

randomization techniques, such as the Monte Carlo, or on simple distribution theory.  The 

alternative hypothesis, on the other hand, is a prediction of the spatial pattern that is to be 

detected based on an expected distribution of the spatial test statistic (Fotheringham et al., 2002). 

A spatial test statistic, such as an autocorrelation statistic or spatial cluster statistic, is used to 

quantify each unit’s spatial pattern and compare that value to the one predicted by the null 

hypothesis (Goovaerts & Jacquez, 2004). Areas of positive or negative clustering are identified 

when their values deviate from the null hypothesis by showing increased variability in disease 

rates (Elliott et al., 1996).  The end result, therefore, is the identification of how unlikely an 

observed spatial pattern is under the null hypothesis (Gustafson, 1998).   

 Complete Spatial Randomness (CSR) is the null hypothesis used by most spatial analyses 

in health research (Goovaerts & Jacquez, 2004).  Using CSR can be problematic, however, when 

dealing with ecological or biological systems because complete spatial randomness rarely occurs 

in the natural world and “background” patterns can exist even under conditions described by the 
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null hypothesis. These patterns increase the probability for false positives (e.g., Type I error) and 

can lead to an over-identification of clusters (Goovaerts & Jacquez, 2004).  However, there are a 

number of statistical tests used in health research that can reduce the problem of background 

noise when identifying significant disease clusters (Song & Kulldorff, 2003). Many of these tests 

use alternative null hypotheses, such as the “neutral model” suggested by Fotheringham et al.  

(2002), that provide more plausible null patterns that account for background variation.    

One of the most prevalent methods of spatial analysis is called exploratory spatial data 

analysis (ESDA) (Mitchell, 2005).  ESDA consists of a variety of spatial-statistical techniques 

designed to describe and visualize spatial distributions, identify unusual locations or outliers, 

discover clusters, and suggest hypotheses without pre-conceived notions about disease 

transmission (Munch et al., 2003).  The key to ESDA, as opposed to spatial data or process 

models, is that it attempts to assess non-random spatial patterns rather than trying to prove or 

disprove an explicit hypothesis about a health outcome (Gatrell, 2002). As such, ESDA is 

considered the primary step in the spatial analysis of disease.  Though they will not be discussed 

here, logistical regression analysis and spatial data process models are used as secondary 

approaches to health research, after particular hypotheses can be inferred from ESDA (Jacquez, 

2004).   

3.5.1 Spatial Statistics and Cluster Detection  

Spatial autocorrelation is quantified in spatial analysis through the use of spatial statistics. 

Spatial statistics are used to detect patterns of spatial autocorrelation that represent areas of either 

high or low disease risk (Waller & Gotway, 2004).  These patterns, which often represent areas 

of significant excess or deficit of disease activity, are referred to as clusters. Many spatial 

statistics that detect clusters also describe cluster morphology, which can be the geographic size 
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and shape of the cluster, the locations of spatial outliers, the descriptions of boundary shapes, and 

the magnitude of the excess or deficit (Fotheringham et al., 2002).  The advantage to detecting 

clusters is to identify spatial patterns that are unique and different than what could be expected in 

the absence of the phenomenon being studied—in this sense, clustering is a measure of an area’s 

abnormality relative to a null expectation (Fotheringham et al., 2002).  

 The primary purpose of cluster detection and other descriptors of spatial patterns (i.e., 

outliers, hotspots, cold spots, trends, and boundaries) is first to identify the locations, 

magnitudes, and shapes of statistically significant pattern events (Fotheringham et al., 2002).  

The secondary purpose, and the more useful, is the generation of significant and testable 

explanations and hypotheses about the processes that produced the pattern events.  Within 

disease research, the detection of clusters through spatial analysis can offer insight into a 

disease’s causation and can lead to the identification of potential risk factors (Khan & Ehreth, 

2003; Srividya et al., 2002).   

3.5.2 Types of Spatial Statistics Employed in Health Research 

Cluster detection within a spatial analysis can be undertaken using a variety of spatial 

statistical tests, many of them characterized as global, local, or focused (Glass, 2000).  As a 

general rule, global and local statistics are used to identify areas of clustering in studies that do 

not have a pre-determined hypothesis about where clusters may be located, while focal statistics 

are used to test whether or not events are clustered around a suspected location (Lawson, 2001).   

Global cluster statistics detect patterns that depart from the null hypothesis and occur 

anywhere in the study area (Fotheringham et al., 2002). One of the first measures of global 

spatial autocorrelation to be developed was Moran’s I, a statistic used to measure the strength of 

correlation between events as a function of the distance separating them (Oliveau & Guilmoto, 
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2005). Moran’s I is similar to Pearson’s coefficient in that its numerator is a covariance while its 

denominator is a sample variance. The value of Moran’s I can range from -1, indicating a strong 

negative spatial autocorrelation, to +1, indicating a strong positive spatial autocorrelation. A 

value  near 0 would indicate a spatially random pattern.  Moran’s I can be calculated at various 

levels of distance, using contiguity and other distance matrixes to define the concept of 

‘neighboring observations’. Because of this user-defined variation, Moran’s I test can lead to 

results that identify some variables as significant over short distances and others that are 

significant over long distances. Moran’s I is a useful statistic to use because of its simplicity, but 

its downfall is that it tends to average local variations in the strength of spatial autocorrelation, 

sometimes ignoring spatial outliers or areas of local clustering (Oliveau & Guilmoto, 2005). 

 Geary’s C, like Moran’s I, is a measure of global autocorrelation.  The value of Geary’s 

C is based on paired comparisons between juxtaposed events (Sawada, 2004).  Ranging from 0 

to 2, this value can represent positive spatial autocorrelation (0 to 1), negative spatial 

autocorrelation (1 to 2) or no spatial autocorrelation (1).  Both Geary’s C and Moran’s I require 

further tests such as randomization or normal approximation to determine significance.       

Perhaps the most well-understood and employed statistic for identifying areas of global 

spatial autocorrelation is the K-function (Wilson & Fotheringham, 2007). Unlike intensity 

functions, which use first-order properties of events (i.e., using the mean), the K-function is a 

measure of interrelationship between events, or second-order properties (Waller & Gotway, 

2004). Simply stated, the K-function assesses a location based on the values of events within a 

specified distance (Vazquez-Prokopec et al., 2005). To determine whether or not clustering is 

occurring, the value of the K-function is compared to that expected by CSR.  By definition, 
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therefore, the traditional K-function detects clustering across all events in the study region rather 

than identifying a particular set of events as a cluster (Waller & Gotway, 2004).   

Indicators of global spatial autocorrelation, including Moran’s I, Geary’s C, and the K-

Function, though they can identify whether or not clustering is occurring, cannot specify the 

location of clusters or how spatial dependency can vary from one place to another (Fotheringham 

et al., 2002). 

Local spatial statistics are used to quantify clustering within smaller areas of a larger 

study area, and in many instances can be seen as smaller partitions of the global spatial statistical 

analysis (Fotheringham et al., 2002). For example, Anselin (1995)’s local indicator of spatial 

autocorrelation (LISA), is a type of spatial statistic that when summed and scaled across all the 

smaller areas of a larger study area, produces Moran’s I.  In essence, LISA is a test for “hot 

spots” in the presence of global autocorrelation (Ord & Getis, 2001). LISA works by calculating 

the similarity of a location’s value to that of its neighbors and testing this association for 

significance. The values that emerge from LISA indicate pockets of high values (“hot spots”), 

low values (“cold spots”), spatial outliers, or no significant local autocorrelation (Oliveau & 

Guilmoto, 2005). LISA values, however, must be interpreted correctly, taking into account the 

degree of global autocorrelation to reduce Type I error (Ord & Getis, 2001).   The limitation of 

using LISA is that it does not correct for multiple comparisons when testing for spatial 

autocorrelation, a problem that can lead to up to 5% of areas being identified by random chance 

variation (Odoi et al., 2003). 

Getis and Ord’s (1992) local spatial autocorrelation statistics, Gi[d] and Gi*[d], like 

LISA, were developed in response to the impracticality of global statistics to search for regional 

patterns. Like LISA, these two statistical procedures are used to detect ‘hot spots’ amid global 
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spatial autocorrelation.  Both statistics are a measure of the weighted sum of the values in a 

neighborhood as a proportion of the sum of values for the whole study region (Wilson et al., 

2003). Gi*[d] includes the value of the study location while Gi[d] does not.  Both of these 

statistics only identify positive spatial autocorrelation, and, like LISA, need to be interpreted 

with care in the presence of global spatial autocorrelation.  There are several variations of this 

procedure, including the one proposed by Zhang et al. (2000) that implements k-order neighbors 

into the Gi computation.  

The spatial scan statistic, a method developed by Kulldorf (1997), uses a circular window 

with a user-defined maximum radius that is systematically moved throughout the study area to 

identify areas of significant case clustering (Tiwari et al., 2006). For each location and size of the 

scanning window, a likelihood ratio is computed to test whether or not there is an elevated 

disease rate within the window when compared to outside the window (Brooker et al., 2004).  

The location and window size with the maximum likelihood is then defined as a cluster.  The 

smallest likelihood of this clustering by chance and the associated p-value are determined 

through Monte Carlo hypothesis testing. The limitation to this method, and indeed most spatial 

statistics, is its inability to detect space-time clustering (i.e., time-dependent spatial clusters).  

However, this problem has been overcome with a space-time statistic that uses the same 

approach as described above in a cylindrical form, with a three-dimensional window whose base 

represents space and whose height represents time (Odoi et al., 2004). Tango & Takahashi 

(2005) have adapted the spatial scan statistic so that it can detect noncircular hot-spot clusters. 

Both the spatial scan statistic and the space-time statistic are integrated into the SaTScan 

software developed by Kulldorf (2006), and are discussed in further detail in subsequent 

chapters.   
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Local spatial statistics, such as LISA, and Gi[d], Gi*[d], and the spatial scan statistic, can 

thus reveal the nature of spatial dependency in small localities (Fotheringham et al., 2002).  They 

can determine whether or not patterns are statistically different from that predicted by the null 

hypothesis, whether these patterns represent clusters of low or high values, or whether the 

patterns are simply spatial outliers (Wilson & Fotheringham, 2007).   

Focal spatial statistics are unique from global and local spatial statistics in that they 

quantify clustering around a specific feature or location called a focus (Mitchell, 2005).  An 

example of a focal spatial statistic is the k-function, which, although a global spatial statistic, can 

be altered to detect focal clustering so that it measures the distance from the tested location to 

where cases begin to appear (nearest neighbor distance), the distance to which clustering is 

maximized, and the distance at which clustering is statistically significant (Getis & Franklin, 

1987).  In health research, focal statistics such as the K-function, Diggle’s method (Diggle, 

1990), Gi[d] and Li[d], can be useful for detecting whether vectors or disease cluster around a 

suspected source (Cromley & McLafferty, 2002). 

With the choice of global, local, and focused statistics, many researchers often wonder 

which is the most suitable for their research—though in many instances the spatial resolution of 

data and the nature of the alternative hypothesis will give some indication of which spatial 

statistic to use.  As can be imagined, however, the choice of spatial statistic can dramatically 

influence the results of a study—for example, studies that rely on only a single spatial statistic 

will result in clusters that only that statistic is designed to identify (i.e., global or local) (Jacquez, 

2004). As Fotheringham et al. (2002) explain, however, researchers should not look for a 

specific, single suitable cluster statistic because in order to do so would require researchers to 

have a prior knowledge of cluster morphology (which would not be known until after a cluster 
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statistic and spatial filtering techniques.  As is evident by the literature, spatial statistics play a 

analysis was performed). Thus, in order to overcome these problems, many studies employ a 

variety of spatial statistical methods to identify different types of spatial distributions that would 

not be possible using a single statistical method (Jacquez, 2004).   

 Today, spatial statistics, despite their variety and specificities, are widely used in a 

number of geospatial applications.  Within health research, for instance, are innumerous studies 

that use spatial statistics for a number of applications and from a number of different 

perspectives. For example, Ruiz et al. (2004) used  a local variation of Moran’s I to identify areas 

of focal clustering of West Nile Virus transmission in Chicago during an outbreak in 2002; 

Jeffery et al. (2002) used local G statistics to investigate spatial autocorrelation of mosquito 

vectors for Ross River and Barmah Forest Viruses in Queensland; Wen et al. (2006) used LISA 

to identify spatial clustering within a 2002 dengue fever epidemic in Taiwan; Dangendorf et al. 

(2002) used Moran’s I to determine global spatial autocorrelation of enteritis and water supply 

structures in the Rhine-Berg District of northwest Germany; Hinman et al. (2006) used the 

Gi*[d] statistic to identify local clustering of typhoid fever in Washington, D.C., during 1906-

1909; Cecere et al. (2006) used both global (weighted K-function) and local (LISA) spatial 

statistics to detect clustering of Triatoma infestans, the vector for Chagas disease, within two 

communities of north-central Argentina; Vazquez et al. (2005) and Kitron et al. (2006) used a K-

function and Gi[d] statistic to link focal clustering of Triatoma to sylvatic environments and 

wood piles within a rural village of Argentina; Clennon et al. (2004) used a focal derivative of 

Gi[d] to identify clustering of schistosomiasis cases in Kenyan children; Polack et al. (2005) 

used the spatial scan statistic to detect household clustering of trachoma in Tanzania; and 

Ozenderol et al. (2005) compared clustering of low birth weight resulting from the spatial scan 
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key role in the investigation of disease, and are a vital part of the armamentarium of medical 

geography. 

3.6 Conclusions 

 This chapter has been designed as both an introduction and review of the technologies 

and methods often employed in medical geography.  As can be guessed, it is the combination of 

both technologies and methods in medical geography that make it such a strong and useful tool 

in the evaluation of spatial health problems (Anselin et al., 2006). As technologies improve and 

new methods of spatial analysis are developed, no doubt medical geography will grow in its 

applications.  Already, with improved methods of health surveillance, routine remote sensing and 

environmental modeling, and increased access to computer-based geographic methods, medical 

geography has seen unpronounced growth as a field.  However, as these technologies and 

methods continue to evolve, so will medical geography and its place in both the health sciences 

and geography. 
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CHAPTER 4. DEFINING TROPICAL MEDICINE THROUGH GEOGRAPHY: A 
SURVEY OF LEADING TROPICAL MEDICINE JOURNALS AND PUBLICATIONS 

EMPLOYING GEOGRAPHIC INFORMATION SYSTEMS  
 
4.1 Introduction  

The geographic distribution of publications as an indication of the direction of current 

research within academic and clinical fields has recently become a topic of growing interest 

(Tutarel, 2002). Historically, this topic has included the research outputs of individuals (Powner 

& Kellum, 2001), countries (Sorrentino et al., 2000; Weisinger & Bellorin-Font, 1999), and 

single specialties (Maleck et al., 2001). This type of literature meta-analysis can be useful in 

determining which countries are the most influential within the chosen field, who are the 

important opinion formers within academic discussions, and where current research trends within 

a given field lie (Tutarel, 2002). 

  As mentioned in the previous chapter, both medical geography and tropical medicine are 

relatively new disciplines. New advances in spatial technology and methodology, namely the 

development of geographic information systems (GIS), have blurred the boundaries of traditional 

geography as their applications are increasingly applied in many unrelated disciplines. Few 

studies to date have attempted to define these trends based on the geographic distribution of 

publications, but doing so will no doubt lead to valuable insight about how these two disciplines 

interact.     

4.1.1 GIS in Tropical Medicine 

 A growing interest in tropical medicine, especially from the developed world, has led to a 

surge in three key areas of tropical disease research (TDR): 1) a better understanding of the basic 

microbiology, pathogenesis, and host defenses associated with tropical diseases; 2) expanded 

knowledge of their epidemiology; and 3) newer approaches to their clinical management, 
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control, and surveillance (H.W. Murray et al., 2000).  With this new interest has come a better 

appreciation of the role that GIS can play in tropical disease research. Indeed, recently GIS has 

been included in all three areas of TDR. For example, Moonan et al. (2004) used GIS to examine 

the strain distribution of tuberculosis within a population; Brooker et al. (2004) identified risk 

factors for malaria in Kenya by comparing case clustering with data on household construction, 

exposure factors, and socio-economic status; and Andrade et al. (2004) have implemented a GIS-

based surveillance system for monitoring pediatric pneumonia in Brazil. These are only a few 

examples of the wide range of GIS applications that exist in tropical medicine.   

 Despite the widespread use of GIS in tropical medicine, the nature in which GIS and 

tropical medicine interact and the direction in which they are conjointly heading are still unclear.  

Several key questions can be asked regarding this dilemma.  For instance, are researchers in 

TDR maximizing the capabilities of GIS in their research?  Are the results of their research 

ending up in the right places (i.e., in journals read by clinicians in the field rather than 

geographers and in international journals available to developing countries)?  Does technological 

impairment inhibit researchers in the developing world from using computer-based GIS? Or is 

the use of GIS in TDR being imperialized by developed-world researchers and research 

interests? 

 In an attempt to gain a better understanding of these questions and identify current trends 

regarding GIS and tropical medicine, this study reviewed articles published by the ten leading 

tropical medicine journals that utilized GIS in their methodologies. The objectives of this study 

were to: 1) quantify the number of published studies in these journals that utilize GIS; 2) 

determine the geographic distribution of study locations; 3) examine the ratio of articles whose 

first authors are affiliated with developing versus developed countries; 4) identify the nature of 
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diseases that tend to be analyzed using GIS; and 5) review the temporal trend of articles being 

published that utilize GIS.   

4.2 Materials and Methods 

4.2.1 Tropical Medicine Journals and Their Impact Factor 

In the 2006 Journal Citation Reports-Science Edition (ISI, 2006), ten journals are listed in 

the subject category “tropical medicine.”  These journals include Malaria Journal, Tropical 

Medicine and International Health, the American Journal of Tropical Medicine and Hygiene, 

Acta Tropica, the Transactions of the Royal Society of Tropical Medicine and Hygiene, 

Memorias do Instituto Oswaldo Cruz, the Annals of Tropical Medicine and Parasitology, the 

Annals of Tropical Pediatrics, Leprosy Review, and the Journal of Tropical Pediatrics. These ten 

international journals are the top journals in the field of tropical medicine in terms of impact 

factor. The impact factor of a journal is calculated by taking the number of times an article from 

the journal was cited in the two preceding years and dividing that amount by the total number of 

citable items published in indexed journals in the two preceding years; in short, the impact factor 

is a measure of the intensity of publication or citation of a particular journal (JCR, 2007). The 

immediacy index is the number of citations the articles in a journal receive in a given year 

divided by the number of published articles (ISI, 2006).  Though the impact factor is not a 

measure of the quality of a journal, it can be used as an indication of the most trafficked journals 

in a given field. Thus, these ten journals were chosen as the top ten tropical medicine journals for 

use in this study. Table 4.1 is a summary of the journals chosen by this study and their associated 

citation reports as reported by the 2006 Journal Citation Report (JCR, 2007). 

 
 
 



32 

 

 
 
 

Table 4.1: Leading international tropical medicine journals and their impact factors 
 

Journal Title 
Total 

Cites 

Impact 

Factor 

Immediacy 

Index 

Total 

Articles, 

2000-2006 

Malaria Journal 566 2.748 0.366 421 

Tropical Medicine & International 

Health 
3,275 2.595 0.502 1,338 

American Journal of Tropical 

Medicine and Hygiene 
11,532 2.546 0.448 2,392 

Acta Tropica 2,851 2.211 0.248 1,068 

Transactions of the Royal Society 

of Tropical Medicine and Hygiene 
6,319 2.03 0.593 

1,360 

 

Memorias do Instituto Oswaldo 

Cruz 
2,858 1.208 0.115 1,592 

Annals of Tropical Medicine and 

Parasitology 
2,450 1.191 0.308 751 

Annals of Tropical Pediatrics 566 0.934 0.0037 412 

Leprosy Review 472 0.847 0.13 447 

Journal of Tropical Pediatrics 802 0.592 0.126 767 

 



33 

 

4.2.2 Search Methodology 

 The search engine PubMed (http://www.ncbi.nlm.nih.gov) was used to search the U.S. 

National Library of Medicine’s publication database, MEDLINE.  Each of the ten selected 

journal titles was entered into the “Journal” field, and advanced search options including date 

(2000 to 2006) were used to limit the search.  The search was further refined by including only 

articles that included the boolean “geographic” in their titles, abstracts, or keywords.  Because 

GIS is almost always referred to as “geographic” information systems (or science), it was 

expected that this search boolean would lead to a high sensitivity in detecting articles that 

contained GIS.  Results of the boolean search were displayed in MEDLINE format.  In order to 

improve specificity, each article was further retrieved as a .pdf file and scanned to determine 

whether or not it employed GIS in its methodology. The journal name, the country of affiliation 

of the first and corresponding authors, the disease(s) under investigation, and the study location 

of articles positively identified as employing GIS were recorded into a spreadsheet.  Data was 

compiled and analyzed using ArcView GIS Version 3.2 (ESRI, 1999). 

4.3 Results 

From 2000 to 2006, a total of 10,548 articles were published in the ten searched journals. 

Of these articles, 108 (1.024%) were positively identified as having employed GIS in their 

methodology (Figure 4.1). These 108 articles included first authors from 29 countries (Figure 

4.2) and were conducted in a total of 51 countries (Figure 4.3). Studies on malaria, 

schistosomiasis, dengue, chagas, leishmaniasis, Ross River virus, Lyme disease, African 

trypanosomiasis, West Nile virus, tuberculosis, plague, hantavirus, and diarrhea were the most 

common and comprised 95 of the 108 total articles, or 85% (Figure 4.4). The total number of 

articles published each year that employed GIS is shown in Figure 4.5.  

http://www.ncbi.nlm.nih.gov/
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Figure 4.1: Number of articles published utilizing GIS by journal 

  

 
Figure 4.2: Locations and number of articles published by country of affiliation of first 

author 
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First authors from the United States and Europe (defined as members of the European 

Union) represented 54% of articles, whereas 65% of articles included first authors from 

developed countries (defined as “high income countries” by the World Bank (WB, 2008)).  First 

authors from developing tropical countries (those countries located between the Tropics of 

Cancer and Capricorn and not included in the developed countries list) were found in 37% of 

examined articles. Seventy-three articles, or 68%, included authors from English-speaking 

countries. Fifty-seven articles, or 53%, had first authors affiliated with the country in which the 

investigated disease occurred.  The research of eighty-six articles, or 80%, was conducted in 

developing tropical countries.   

 

 
Figure 4.3: Locations and number of articles by study location 
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Figure 4.4: Most common diseases under investigation 
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Figure 4.5: Number of articles in the top 10 tropical medicine journals utilizing GIS by 

year 
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4.4 Discussion 

 This study investigated the trends of GIS use in tropical medicine by examining the 

geographic distribution of publications that employ GIS in the ten leading tropical medicine 

journals. Specifically, the study locations, the diseases under investigation, and the contribution 

of individual countries to these journals were quantified. 

When compared to the major diseases of the developed world (i.e., heart disease, 

diabetes, obesity, cancer, etc.), the major diseases of the tropics are almost entirely 

communicable.  This is due to the fact that the major burden of ill health in tropical nations is 

attributable to communicable diseases.  The World Health Report of 1995, for instance, iterates 

this point: malaria kills about 1 million children in the tropics each year; diarrheal disease kills 

about 3 million children; 7,000 adults die each day from tuberculosis; hepatitis B kills about 1 

million; over 5 million children in the tropics are infected with HIV; and more than 4 million 

children in developing nations under 5 die each year of acute respiratory infections, especially 

pneumonia (WHO, 1995). To further this point, the World Bank estimates that communicable 

diseases cause nearly 71% of death and disability in developing countries and about 10% in 

developed countries, while non-communicable diseases cause 19-58% of death and disability in 

developing countries and 78% in developed countries (WB, 2002).  The major diseases of 

developing countries, as a general rule, tend to cause more disability and death than the major 

diseases of developed countries, and a much greater percentage of these diseases are infectious 

(Speare & Leggat, 2006).  It is appropriate, therefore, that this study found that the majority GIS-

tropical medicine articles concerned these diseases.   
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Despite the growing value of GIS in health research, it seems surprising that such a small 

number (1.024%) of total articles published in the ten leading tropical medicine journals 

employed GIS.  This phenomenon could be explained by the fact that many articles involving 

GIS are not selected for publication by health journals but rather geographic journals. In this 

case, a follow-up study would be required to investigate the ratio of articles using GIS in tropical 

medicine journals versus geographic journals such as Annals of the Association of American 

Geographers, Transactions of the Institute of British Geographers, Social Science and Medicine, 

the International Journal of Health Geographics, etc. (An important point to make here is that 

health practitioners, who implement the findings of many of these studies, are more likely to read 

or be exposed to articles in health journals than geographic journals.) The problem with such a 

study, however, would be defining articles that are tropical-medicine related rather than GIS-

related.  In addition, a future study may wish to expand to include other geographic methods 

such as spatial analysis its query for articles. Another interesting standpoint for analysis would 

be the professional affiliation of the authors—whether they are geographers, physicians, or 

public health workers.    

Another explanation to scant amount of GIS-related tropical medicine publications could 

be that the application of geographic methods in health research has not developed to the point to 

be confidently accepted as routine publication in health journals.  Indeed, geographic methods 

still have a way to go before being standardized to the point where their implementation is 

efficient and practical in health research (Ward & Carpenter, 2000).  However, as is indicated by 

this study and Figure 3.5, the implementation of GIS into tropical medicine journals shows a 

promising increase. 
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Ironically, the study locations for the articles examined in this study include a fair amount 

of countries that are located more in temperate zones than the tropics.  The United States, for 

instance, was the second most frequent study location after Kenya.  This fact elucidates the 

impact of the United States on international tropical medicine journals. Nonetheless, it would be 

expected that more articles would have their study locations in tropical countries, especially in 

Africa.  This may be an indication that international collaboration is not as strong as it could be, 

or that research groups in tropical countries have a harder time publishing in international 

journals and are more likely to publish in journals affiliated with their own countries and 

language  (Tutarel, 2002).   

Another surprising finding is that over half of all articles were published by a first author 

in either the United States or Europe.  Like study location, first author affiliation once again 

points to the fact that international tropical medicine journals are dominated by the developed 

world.  This trend has been found in studies of other international health journals, including 

medical education (Tutarel, 2002) and reproductive medicine (Kremer et al., 2000). 

Finally, there appears to be more articles that use GIS with certain tropical diseases than 

others.  Nearly a third of all examined articles, for instance, examined malaria.  This is not too 

surprising considering that GIS can be applied more readily to diseases with certain 

epidemiological features (i.e., those that are dependent on environmental or demographic 

factors). However, this does not mean that GIS is not applicable to other diseases; it is only an 

indication that researchers prefer to use current methodologies in GIS with some diseases more 

than others.      
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4.5 Conclusions  

This study examined the basic trends of recent articles published in tropical medicine 

journals that employ GIS.  Though the field of GIS has only recently entered the world of health 

research, it would be preferable to see more articles that utilize this technology published in 

tropical medicine journals. Although this study was able to identify some basic trends in GIS use 

in tropical medicine, it was unable to explain the reasons for these trends.  Future studies may 

wish to examine the distribution of articles in more detail using expanded search criteria.     
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CHAPTER 5. USING SPATIAL DESCRIPTOR, K-FUNCTION, AND HOT SPOT 
ANALYSES TO DETERMINE CLUSTERING OF TUNGA PENETRANS IN THE 

SMALL FISHING VILLAGE OF BALBINO, BRAZIL 
 

5.1 Introduction 

 Tungiasis is a zoonotic skin disease caused by the female sand flea Tunga pentrans. 

Embedding under the skin, this parasite causes substantial morbidity in its host.  Most cases of 

tungiasis occur throughout economically disadvantaged communities of South America, sub-

Saharan Africa, and the Caribbean (J. Heukelbach, S. Franck et al., 2004).  Prevalence rates reign 

high in these areas, sometimes reaching as much as 80% (J. Heukelbach, S. Franck et al., 2004).  

Tungiasis is a disease of the poor.  As such, it receives little attention from investigators 

and medical personnel.  In Ceará State, Brazil, it was thought that tungiasis was unknown until a 

2001-2003 epidemiological study proved otherwise (Wilcke et al., 2002).  In actual fact, 

tungiasis is hyperendemic in favelas (shantytowns) of Ceará State, with prevalence rates ranging 

from 16% to 55% (J. Heukelbach, S. Franck et al., 2004). Because resource-poor favelas like 

these are so common throughout northeast Brazil, it is now assumed that tungiasis is a frequent 

problem in these underprivileged communities (Wilcke et al., 2002).   

 The impact of tungiasis is centered on its severely debilitating pathogenesis. The disease 

is associated with substantial morbidity, including chronic inflammation, lymphoedema, 

ulcerations, fissures, nail loss, difficulty walking, and difficulty grasping or using the hands 

(Feldmeier, Heukelbach et al., 2003). In addition, superinfections with pathogenic bacteria 

almost always occur concomitantly with tungiasis lesions. In many instances, tungiasis lesions 

serve as entry points for Clostridium tetani, rendering un-immunized individuals susceptible to 

tetanus infections (Muehlen et al., 2006). In Sao Paulo State, tungiasis was found to be 

responsible for 10% of tetanus cases (Feldmeier, Eisele et al., 2003).   
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Besides the physical strain inflicted by tungiasis morbidity, the disease also causes 

considerable social strain.  In some favela communities, it is estimated that on average 15 new 

flea penetrations occur per individual per week; with families that average three or four children 

who cannot remove the fleas themselves, parents would have to remove between six and nine 

fleas per night in order to avoid infection accrual (Feldmeier, Eisele et al., 2003). Removal is 

extremely painful, and takes about three minutes.  It requires great precision, skills, and patience 

along with adequate light and a sharp instrument—items that normal families cannot afford.  

Even motivated caregivers can be daunted by such a task.  Lack of motivation and the conditions 

of the favela explain why parasite burden and morbidity in these communities is so high.   

Because tungiasis is so common in these resource-poor communities, inhabitants often 

assume that the disease is linked to everyday life and that it is ‘normal’—there is absolutely no 

social stigma in these communities associated with tungiasis infection (Heukelbach et al., 2003).  

This, in turn, makes individuals unaware or unconcerned about the infections that they carry. As 

a result, infestations continue because the life cycle of Tunga penetrans progresses without 

interruption, increasing morbidity in the host.  

In addition, it is a well-known fact that inhabitants of poorer communities are less likely 

to actively seek medical services than individuals of higher socio-economic groups (J. 

Heukelbach, S. Franck et al., 2004). This matter is made worse by health care services in 

northeast Brazil that are not particularly oriented to poverty-associated public health issues, like 

ectoparasites.  Though serving a population that is hyperendemic for tungiasis, many health care 

workers usually neglect this disease—it is rarely diagnosed by the Primary Health Care Center 

(PHCC), and usually only if pointed out by the patient (Heukelbach et al., 2003). In addition, 

patient attitudes towards health care services may also be a barrier to health care provisions.  
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Because the PHCC does not provide medical treatment or surgical removal of tungiasis lesions, 

many people do not bother presenting (only 3 out of 55 patients with tungiasis sought medical 

assistance in a health-care seeking study (Heukelbach et al., 2003)). 

To determine the attack rates of tungiasis in these communities, one study transported 

infected residents to a tungiasis-free resort 40 km away from Fortaleza for a period of two weeks 

(J. Heukelbach, S. Franck et al., 2004).  When they were allowed to return, all the subjects were 

all clear of parasites.  This allowed an accurate measure of the attack rate of tungiasis in their 

homes. Re-infestation occurred at an alarming rate: after the first 3 days, about one-fifth of the 

group showed imbedded fleas; after 9 days 55%; and after 21 days of returning home 100% were 

re-infected.  This data shows that tungiasis infection follows site-specific risk factors, 

presumably that stem from the home.   

  Animal reservoirs play a vital role in tungiasis transmission.  Dogs, cats, pigs, and rats, 

common animals found in these communities, act as amplifying hosts for Tunga penetrans.  In 

Fortaleza, 67% of dogs, 59% of captured rats, and 50% of cats showed parasite infestation 

(Heukelbach, 2005). In Morro de Sandras,  a favela of Fortaleza, 49.6% of cats and 67.1% of 

total animals were infected (J. Heukelbach, A.M.L. Costa et al., 2004). In Balbino, 30.9% of 

dogs and 32.4% of cats were infected.  The infection rates of tungiasis in animals presumably 

play a significant role in the attack rate of humans, especially considering that 95% of the 

families in Balbino have domestic animals (Muehlen et al., 2003).   

Muehlen et al. (2003) examined a range of potential demographic, behavioral, and 

environmental characteristics in northeast Brazil to determine risk factors related to heavy 

tungiasis infestation. Their study found that tungiasis is a disease strongly correlated to poor 

housing conditions, poor hygiene/health education, and association with other zoonotic hosts of 
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Tunga penetrans. The specific risk factors investigated included housing construction, house 

location, family size, use of traditional remedies on wounds, spraying insecticides, waste 

disposal, sewage disposal, and animals on the compound (Muehlen et al., 2003). 

Though many of the studies mentioned above attempt to determine epidemiological risk 

factors for tungiasis based on environmental and behavioral factors, none examine tungiasis 

prevalence based on a purely geographic, or spatial, perspective.  In an effort to add to the 

knowledge of the epidemiology of tungiasis, this study examined the prevalence of this disease 

in Balbino using geographic rather than epidemiological methods.  A geographic information 

system (GIS) was implemented for Balbino, and a spatial analysis was conducted.  The purpose 

of investigating tungiasis prevalence in Balbino using geographic methods was: 1) to determine 

the community structure of disease; 2) to determine whether or not tungiasis was spatially 

autocorrelated; 3) to determine whether or not the disease was clustered; and 4) to show the 

value of using geographic methods in disease research and how it could be used in public health 

prevention and control of tungiasis.   

5.2 Materials and Methods 

5.2.1 Study Area  

Data for this study was collected in Balbino, a rural community located near Cascavél 

municipality, about 60 km south of Fortaleza, Ceará State, northeast Brazil, on the Atlantic coast.  

At the time of data collection, Balbino was inhabited by 154 family units comprised of a total 

population of 620 people. The majority of the villagers live through traditional fishing (Muehlen 

et al., 2003).  Most inhabitants are born in the village and there is little influx of new people from 

outside the village, keeping the population stable.  Balbino was chosen as a study area because of 
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the pre-existing health infrastructure located there and the familiarity of the community with 

research collaborators in this project.  

Homes are located close to the ocean, with some built directly on the beach and others 

built on sand dunes adjacent to the beach. A mangrove swamp (dark green region at centre right, 

Figure 1) acts as a geographical divide between the population living on the beach and the 

population living on sand dunes.   

The population of Balbino is mostly poor: the village has no paved streets, and most of 

the houses are built with sand floors (J. Heukelbach, A.M.L. Costa et al., 2004).  Inhabitants live 

in compounds, typically larger than those found in urban slums.  The village has no sheep or 

goats, but does have a number of cats and dogs and a few pigs.  Only 75% and 84.1% of homes 

have electricity and latrines, respectively, and a little more than 84% have private bore water 

wells (J. Heukelbach, B. Winter et al., 2004).   

Many ectoparasitic diseases are hyperendemic in Balbino, including scabies, pediculosis, 

and cutaneous larval migrans. Tungiasis is also considered hyperendimc in Balbino, with an 

estimated prevalence of 51% (Muehlen et al., 2006; Wilcke et al., 2002).  Prevalence of tungiasis 

versus age follows an s-shaped curve in Balbino, being high in younger age groups, decreasing 

significantly in ages above 15, and then sharply increasing again in ages over 60 (Wilcke et al., 

2002). In addition, parasite load varies unevenly across individuals—only 8% of individuals 

carry 55% of parasite burden. This trend seems to indicate that risk is associated with the home, 

as these age groups frequent these premises more than their working parents or siblings.  The 

high prevalence in infants (15.8%) seems to back up this argument, as infants generally do not 

spend much time away from the home. However, children also tend to walk barefoot more 

frequently than adults, increasing their risk (they have less keratinization of their feet, too).  



 
Figure 5.1: Satellite imagery of Balbino (Study Sites Marked as Yellow Dots) [Image obtained from Google Earth™]
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In addition, children are not trained to remove fleas and depend on adults for this task.  Girls 

were also found to have both a lower prevalence rate and a lower number of manipulated 

(excised) lesions. Because girls do not demonstrate a higher number of manipulated lesions, it 

can be assumed that their lower prevalence is due to less exposure rather than different health 

behavior, such as excising fleas (Wilcke et al., 2002).     

 In Balbino, people seek medical care through a medical caregiver provided by the Family 

Health Program (Programa de Saude de Familia) (Muehlen et al., 2006). Balbino employs these 

health workers to actively, rather than passively, seek health issues in these communities.  In 

Balbino, two health agents are employed, one for children and the other for the general 

population, who are responsible for health education and patient referrals to the major health 

clinic in the nearby town of Cascavel (Muehlen et al., 2006).  However, as mentioned previously, 

these health programs often ignore tungiasis and are more concerned with more immediate life-

threatening conditions.   

5.2.2 Epidemiological Data 

Baseline epidemiological data for tungiasis prevalence used in this investigation (and 

helminth prevalence used in the following chapter—both are described here) was initially 

collected throughout the summer of 2001 by a team of scientists comprised of Jorg Heukelbach, 

Benedikt Winter, Thomas Wilcke, Marion Muehlen, Stephan Albrecht, Fabiola Araujo Sales de 

Oliveira, Ligia Regina Sansigolo Kerr-Pontes, Oliver Liesenfeld, and Hermann Feldmeier.  This 

data has been used in several published reports, including some on tungiasis (Jorg Heukelbach et 

al., 2004; J. Heukelbach, A.M.L. Costa et al., 2004; J. Heukelbach, S. Franck et al., 2004; 

Muehlen et al., 2006; Muehlen et al., 2003; Wilcke et al., 2002) and some on the use of 
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ivermectin in mass treatment campaigns (J. Heukelbach, B. Winter et al., 2004).  The author 

would thus like to acknowledge these people for the use of this data in this report.  The following 

description is a summary of data collection protocol derived from the above mentioned sources. 

In preparation for this study, the investigators contacted community leaders and held 

meetings with local organizations to explain the objectives of the study (Muehlen et al., 2006).  

They were informed that participation in the study was completely voluntary and that those who 

did not participate would be at no disadvantage.  Those eligible for the study must have spent on 

average at least four days per week in the village in the prior three months.  Data was collected 

using a door to door survey.  If members of a family were absent during the visit, the family was 

revisited two further times.  If individuals were missing on all three visits, then they were invited 

to present at the health center.  Those who did not present at the center and were missing from 

the home visits were not included in the survey.   

Data were collected between June 20th and July 30th, 2001 (Muehlen et al., 2006).  Each 

individual was examined for tungiasis and each lesion, if appropriate, was staged using a method 

developed by Muehlen et al. (2003).  So that no lesions could be overlooked, the whole body 

except the genital region was examined. Diagnosis of tungiasis was made using the criterion 

defined by Heukelbach et al. (2004).   

In addition to examination for ectoparasites, each participant was given a plastic vial for 

stool specimen collection for fecal examination of endoparasites (J. Heukelbach, B. Winter et al., 

2004).  To account for the variability of egg secretion, three stool samples were collected from 

each person at three to four day intervals.  Samples were examined for intestinal helminthes on 

the same day as collection in a field laboratory without the use of preservatives using the method 

outlined in Heukelbach et al. (2004).   
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The study design and objectives were reviewed by the Ethical Committee of the Cascavél 

Municipality Board (Muehlen et al., 2006).  This committee comprised health professionals, 

administrative authorities, and community representatives.  Individuals who participated in the 

study or their legal guardian in the case of children must have given informed oral consent to be 

enrolled.  All participants were informed that all data would be handled confidentially.  At the 

end of the study, because more than 50% of the inhabitants were thought to have an intestinal 

helminth and/or ectoparasitic infection, all villagers were offered free antihelminthic treatment.   

5.2.3 Geographic Data 

 During the epidemiological survey, each individual was given not only an ‘individual’ 

number but also was assigned a family number.  The family number corresponded to the family 

and household in which the individual belonged and lived.  During the month of December, 

2006, W.B. Arden visited Balbino along with the help of two family health care workers 

assigned to the area. The purpose of this visit was 1) to record GPS locations of each residence 

(matched to each family number); 2) to photograph and get a general view of the social and 

environmental layout of the village; and 3) to see cases of tungiasis first-hand.  GPS data was 

collected using a Magellan eXplorist 500 TM receiver. Latitude and longitude were both 

recorded for each location manually on paper and within the physical memory of the receiver. 

The accuracy of each recording was checked by importing the coordinates into Google Earth™ 

to see if they cartographically matched the satellite image. 

5.2.4 Implementing a GIS and Spatial Analysis 

 Epidemiological data included each patient’s individual number, family number, and 

whether tungiasis was present or absent during examination.  This data were imported into 



 

 
Figure 5.2: Prevalence of tungiasis per household, Balbino, Brazil 
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ArcView GIS Version 3.2 (ESRI, 1999) in database format.  Geographic data, which included 

the geographic coordinates for each household, was also imported into ArcView.   

Epidemiological data was merged with the geographic data so that each individual was 

assigned geographic coordinates according to his or her respective family number.  Counts were 

made so that each family was assigned both a population—the total number of people living at 

that site—and a count of the number of members with tungiasis infection (infection was not 

quantified per individual in this study).  This data were kept in ArcView and disease maps were 

produced of tungiasis prevalence per household (Figure 5.2).  The spatial-epidemiological data 

were also exported in database format from ArcView for use in the spatial analysis.   

Spatial analysis of tungiasis prevalence in Balbino was completed using Crimestat III, a 

free spatial analysis program offered through the National Institute of Justice by Ned Levine and 

Associates (2007). Though originally designed to examine crime incident locations, this software 

allows the user to reference and analyze any data with X and Y coordinates, intensity, weight, 

and time as variables.  CrimeStat allows the computation of spatial descriptions (mean center, 

standard deviation, median center, and convex hulls), distance analyses (nearest neighbor 

indices, Ripley’s K statistics, and distance matrices), hot spot analyses (Hot Spot Analysis I and 

II), and spatial models (kernel density interpolation and space-time analysis). In this study, 

CrimeStat was used to calculate all spatial descriptions of tungiasis prevalence in Balbino, 

including spatial distribution, distance analysis, and hot spot statistics.  

5.2.4.1 Spatial Distribution 

For the spatial distribution, two indices of spatial autocorrelation were calculated, 

Moran’s I and Geary’s C statistics. Both of these indices are considered ‘global’ or first-order 
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(Levine, 2007).  As mentioned in Chapter 3, Moran’s I is determined by calculating a mean for 

observations and then comparing the value of each incident with the value at all other locations 

(Levine, 2007). CrimeStat uses an inverse distance weight to calculate Moran’s I. Because 

distances in Balbino are small, adjustments for small distances were made through CrimeStat. 

Values of Moran’s I above the theoretical mean, or E(I), indicate that there is spatial 

autocorrelation of the data, whereas values of Moran’s I below E(I) indicate negative spatial 

autocorrelation.  Geary’s C is similar to Moran’s I except that Geary’s C compares deviations in 

intensities of each observation location with one another rather than the cross-product of 

deviations from the mean—as such, Geary’s C is more sensitive to differences in smaller areas 

than Moran’s I (Geary, 1954). Values of Geary’s C can fall between 0 and 2, where values less 

than 1 indicate positive spatial autocorrelation, 1 indicates the ‘expected’ value, and values 

greater than 1 indicate negative spatial autocorrelation (Levine, 2007).  Testing of the 

significance of Moran’s I and Geary’s C was also calculated by CrimeStat, which outputs Z-

values and p-values for normality and randomization assumptions.  For this study, the total 

sample size included 144 sites (prevalence was aggregated per site and was defined as the 

intensity variable), and no spatial weights were used.  In addition to calculating Moran’s I for 

tungiasis prevalence, these indices were also calculated in the same manner for overall 

population as a comparison.    

5.2.4.2 Distance Analysis 

 The distance analysis calculates statistics that are based not only on the location of points, 

but on the distances between points.  Because this is used to identify the degree of clustering of 

points, it is sometimes called a local, or ‘second-order,’ analysis (Levine, 2007). The two local 

statistics used in this study were the nearest neighbor index (NNI) and Ripley’s K.     
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 Like the global spatial descriptors, the nearest neighbor analysis calculates a NNI that 

approximates whether points are more clustered or dispersed than would be expected by chance 

alone (Levine, 2007).  The index is computed by dividing the average distance of the nearest 

other event case with a spatially random expected difference.  Values less than 1 indicate that 

observed values are closer than expected, suggesting clustering.  Values close to 1 indicate that 

the observed average distances are about the same as the mean random distance.  Values greater 

than 1 indicate that observed values are farther apart than expected, suggesting dispersion.  

Testing of significance of the NNI is done by a Z-test proposed by Clark and Evans (1954). The 

number of nearest neighbors to be computed was one. Because the nearest neighbor analysis 

does not normally adjust for underestimation of tungiasis near the boundaries of Balbino (edge 

effects), a circular border adjustment was used that assigned events that were closer to the border 

than their nearest neighbor with an index that uses the distance to the border rather than the 

empirical nearest neighbor distance as the numerator.   

 Ripley’s K statistic, or L(t), is a measure of spatial autocorrelation at different scale 

values—it is a modification of the nearest neighbor statistic providing a test of autocorrelation 

for every distance from each observed event (Ripley, 1981).  Unlike the NNI, Ripley’s K 

examines not just first order spatial autocorrelation but all orders cumulatively. In addition, 

because it uses circles of increasing radii to examine the number of observed versus expected 

events, it applies to all distances up to the limit of the study area. As such, the results of Ripley’s 

K statistic are usually graphed against distance and transformed by a square root function to 

make it more linear (Levine, 2007).  Values of L(t) farther away from zero (CSR) on the graph 

represent distances where spatial autocorrelation is occurring.  Because tungiasis incidence is 
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most likely not random but perhaps dependent on some baseline population, the K statistic was 

calculated using population as a weighting variable.     

5.2.4.3 Hot Spot Analysis 

 Hot spots are concentrations of incidents within a limited geographic area that appear 

over time (Levine, 2007).  Detecting hot spots is a valuable method of identifying areas with 

larger or smaller than expected concentrations of events.  When dealing with health events, hot 

spots are indicative of a particular area or environment that is particularly prone to disease.  

Health prevention, therefore, can target efforts to these areas knowing that they will achieve a 

positive result in reducing disease with limited resources.  Hot spots are, however, arbitrary 

boundaries and do not exist in reality—they are mere spatial representations of a perceptual 

construct (Levine, 2007).   

 CrimeStat allows several different methods of hot spot analysis including point-location, 

hierarchical, partitioning, density, clumping, and risk-based clustering techniques (Levine, 

2007).  Point-location techniques identify areas with the most number of incidents as hot spots 

and include the Mode and Fuzzy Mode detection techniques.  Hierarchical cluster detection 

involves grouping incidents by nearest neighbor according to certain user-defined criteria and 

includes the Nearest Neighbor Hierarchical Clustering (NNHC) routine and the Spatial and 

Temporal Analysis. Partitioning techniques assign points into groups for cluster detection and 

include the K-means technique.  Density techniques identify clusters based on concentrations of 

incidents.  Clumping techniques are similar to the partitioning techniques but allow overlap of 

cluster membership. Risk-based techniques detect clusters based on an underlying risk variable 

such as population, socioeconomics, property value, etc.  This study used a hybrid-based method 
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available in CrimeStat known as the Risk-adjusted Nearest Neighbor Hierarchical Clustering 

routine (RaNNHC). 

 The RaNNHC routine is a modification of the NNHC routine that includes adjustment of 

clusters based on an identified variable (in this case population) and kernel density interpolation 

techniques (Levine, 2007).  The RaNNHC routine detects clusters by identifying points that are 

closer together than a user-defined threshold distance. However, because the concentrations of 

events could be due to higher population densities, this technique dynamically adjusts the 

threshold distance based on the underlying population of that area, therefore making it a risk 

measure rather than a volume measure. Statistical significance is simulated for the RaNNHC 

routine through Monte Carlo-approximated confidence intervals (Levine, 2007).       

 For this routine, epidemiological data that included geographic coordinates and the 

number of cases per site were used as the primary file.  Demographic data that included the 

population for each site was used as the secondary file.  A normal distribution was used as the 

method of interpolation, and an adaptive bandwidth with a minimal sample size of six was used 

because this number represents the average number of members per family. Output units were 

set to meters, and population was used as the intensity variable. More information about these 

parameters and their effects on interpretation can be found in Levine (2007). Results were saved 

as convex hull shapefiles that were imported into ArcView for visualization.   

5.3 Results 

5.3.1 Spatial Descriptions 

Moran’s I, the classic indicator of spatial autocorrelation, was calculated for tungiasis 

prevalence at -0.006639. The spatially random, or E(I), I was -0.007143, and the standard 

deviation was 0.007265. The significance test of I under the assumption of normality (Z-test) 
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was 0.069331 and was not significant.  The significance test of I under the assumption of 

randomization was 0.069332 and was also not significant.  Because the value of Moran’s I was 

greater than the expected I, this test indicates that the prevalence of tungiasis is clustered and not 

dispersed; however, the significance tests indicate that the difference between these two values is 

not significantly greater than what would be expected by chance alone. Moran’s I for total 

population was calculated at -0.004939, with E(I) being the same as that calculated for tungiasis 

prevalence.    

 Geary’s C was calculated to be 0.992319.  The spatial random, or expected, C was 1.0 

with an associated standard deviation of 0.009155.  The significance test of C under the 

assumption of normality (Z-value) was -0.838930 and was not significant. Geary’s C for total 

population was calculated at 0.99672 with a Z-value of -0.035806 (p < 0.001).  These results are 

further reviewed in the discussion.  

5.3.2 Distance Analysis 

 Results of the nearest neighbor analysis for tungiasis are shown in Table 5.1. The NNI, 

which is less than one, indicates a significant amount of local clustering in Balbino.  Ripley’s K 

statistics for tungiasis are shown in Figure 5.3.  It can be noted from this figure that the 

maximum value of L(t) occurred at 300 meters, and that the K statistic for population is nearly 

identical to that for tungiasis.   

5.3.3 Hot Spots 

 Two first-order risk-adjusted nearest neighbor hierarchical clustering hot spots were 

detected in this analysis. These hot spots are depicted in Figure 5.4.  As can be seen in this 

figure, the two hotspots were located near the center of Balbino.  The hot spot located in the 

north-central portion of Balbino contained 15 cases of tungiasis out of a population of 46, or 



approximately 33% prevalence.  The hot spot located in the south-central portion of Balbino 

contained 27 cases out of a population of 46, or approximately 59% prevalence. 

  Table 5.1 Nearest Neighbor Statistics for Tungiasis in Balbino  

  Mean nearest neighbor distance   40.35 meters 

  Standard deviation of NN distance:   52.08 meters 

  Nearest neighbor index:    0.54287 

Standard error:     3.27 meters 

Test statistic (Z):     -10.3843 

p-value (one tail):     0.0001 

p-value (two tail):     0.0001 

 
5.4 Discussion  

 Using two global indicators of spatial autocorrelation, Moran’s I and Geary’s C, it was 

found that tungiasis was weakly positively spatially autocorrelated. However, finding positive 

spatial autocorrelation with Moran’s I and Geary’s C for tungiasis prevalence is not surprising 

considering that the population of Balbino is concentrated both in location and within families. 

Comparing Moran’s I for tungiasis prevalence (-0.006639) to that of the population (-0.004939) 

suggests that tungiasis infections are slightly less concentrated than what could be expected on 

the basis of population distribution.  This hypothesis can be tested using an approximate test 

suggested by Levine (2007) : 

Z(I) = (It – Ip)/SE(I) 

where It and Ip are Moran’s I for tungiasis and prevalence, respectively, and SE(I) is the standard 

deviation of I under the assumption of normality.  The low Z-value produced through this 
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Figure 5.3: “K” Statistic for Tungiasis Compared to Population and CSR Distributions 
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Figure 5.4: Tungiasis Cases and Risk-adjusted nearest neighbor hierarchical clusters in Balbino 
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test (-0.233998) thus suggests that tungiasis prevalence is no more clustered than the clustering 

of the population.  When Geary’s C for tungiasis (0.992319) is compared to Geary’s C for 

population (0.99672), it appears that both tungiasis and population are weakly positively 

spatially  

autocorrelated—backing up the hypothesis proposed by Moran’s I.  What Moran’s I and Geary’s 

C could thus be suggesting for tungiasis is that concentration of infection is perhaps most related 

to population concentration, and not necessarily related to local environmental factors or specific 

individual behaviors.  Because Geary’s C is more sensitive to local clustering than Moran’s I, 

and because both Geary’s C and Moran’s I indicate that tungiasis is only weakly positively 

correlated, this may suggest that there is little difference between global (first-order) and local 

(second-order) spatial autocorrelations.  The major limitation to using these two indices in this 

study is that they only give indication that spatial autocorrelation exits, not where it exists.   

Unlike global indicators of spatial autocorrelation that represent the dominant pattern of 

overall distribution, local indicators represent ‘neighborhood’ patterns in the overall distribution 

(Levine, 2007).  The two local indicators used in this analysis were the nearest neighbor and 

Ripley K’s indices.  Both of these indices confirmed the findings of the global statistics that 

spatial autocorrelation was occurring, but they also gave further information about the nature of 

spatial autocorrelation: 1) that significant spatial autocorrelation occurs at an average distance of 

40.35 meters, and 2) spatial autocorrelation of tungiasis is strongest around 300 meters. Though 

both of these indices are powerful tools for testing spatial autocorrelation, they are subject to 

edge biases and sample size issues. Edge bias was controlled for in this study by using circular 

correction (which in its own rights can produce skewed results if the study area is not circular). 

Levine (2007) also cautions that the precision of the K function is inaccurate for small sample 
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sizes, indicating that this study’s sample size of 141 may produce some unavoidable inaccuracy 

in the K function statistic. In addition to this caution, there is also a caution of scale.  Data sets 

with dominant first-order properties, such as those that are correlated with population 

concentrations, are likely to have ‘shadowed’ second-order effects, making it unclear whether 

clustering is due to primary or secondary clustering.  As determined by this study, the NNI and K 

statistic detected spatial autocorrelation, but these indices provide little other information about 

the nature of first and second order clustering.    

Cluster analysis offers a reliable means of detecting abnormally high concentrations of 

tungiasis.  However, when deciphering detected clusters several factors must be considered 

(Levine, 2007):  how the cluster was defined—whether it is a discrete grouping of events or a 

continuous variable; how distance is measured and geometry is used; the number of clusters to 

be detected as defined by the user; the scale of cluster detection; whether clusters are initially 

identified by mathematical or user-defined means; the algorithms used to adjust cluster locations; 

and the way in which clusters are displayed.      

The two clusters detected in this study are no doubt subject to the criteria listed above.  

Altering the bandwidths, the minimum number of cases to be included in a cluster, and the 

search radius are all variables that could manipulate the size, shape, and even number of clusters 

detected.  However, these variables are user-determined and must be chosen based on the  

objectives of the study.  For this analysis, the parameters based on household size and the nearest 

neighbor indices identified in the spatial description analysis were adequate enough to produce 

clusters.  

Using the Risk-adjusted NNHC technique provides a useful method of detecting clusters 

of disease.  Compared to a NNHC analysis, this technique provides the user to integrate a 
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dependency variable (population) into the computations of clusters.  In disease research, where 

such variables as population or socioeconomics play such a great role, this type of method seems 

the most appropriate.   

The methods used in this study were only able to detect clusters, not give reasons on why 

they are located where they are.  However, it can be guessed that these clusters are located in 

areas of Balbino that are at particularly high risk for tungiasis infection.  With further ecological 

or demographic study, the reason for these clusters could be identified.  However, at this point, it 

would be safe to hypothesize that concentrating preventative and clinical measures in the 

households that lie within the clusters would probably lead to more focused resource 

management and higher efficacy of tungiasis control. 

5.5 Conclusions 

 This study has provided a framework for a routine spatial examination of epidemiological 

data using geographic methods. Starting with spatial descriptors and finishing with hot spot 

analyses, this study showed that tungiasis prevalence in Balbino is spatially autocorrelated both 

locally and globally, and that hot spots of disease do occur. Though the reasons for spatial 

autocorrelation and clustering are not discussed here, future geographic studies of tungiasis may 

wish to examine how such variables as demographics, socioeconomics, soil types, animal  

reservoirs, and other spatially explicit data play a role in the spatial distribution of case 

prevalence.  The results of these studies could no doubt aid in the control and prevention of 

tungiasis in Balbino and other resource-deprived communities throughout Brazil and the 

developing tropical world. 
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CHAPTER 6. USING KERNEL DENSITY INTERPOLATION TO VISUALIZE THE 
EFFECTS OF MASS TREATMENT WITH IVERMECTIN ON HELMINTH 

PREVALENCE IN BALBINO, BRAZIL 
 

6.1 Introduction 

Within the realm of human parasitology and public health, geographical information 

systems (GIS) has the potential to become a valuable tool used 1) to capture, map, and analyze 

disease data for use in parasite atlases; 2) to model the spatial structure of infection relative to 

environmental variables (like those obtained through remote sensing (RS) technologies); 3) to 

predict the effects of density-related factors in disease distribution; and 4) to focus and drive 

parasite control programs by improving the identification of endemic areas and populations at 

risk (Brooker, Michael et al., 2000).  With such implementation, disease mapping and spatial 

analysis can play a vital part in disease epidemiology (Wen et al., 2006).    

In the previous chapter, spatial distribution, distance analysis, and hot spot detection were 

used to describe the spatial structure of tungiasis in Balbino. This chapter takes a different spatial 

methods approach by employing kernel density interpolation to view the changes in helminth 

infection associated with mass treatment with ivermectin.  Whereas the techniques used in the 

previous chapter provide statistical summaries for specific disease incidents, the kernel density 

interpolation generalizes incident locations over an entire area (Levine, 2007).  This approach to 

spatial modeling thus proves more useful than spatial descriptors when trying to visualize the 

effects of ivermectin pharmacotherapy over the entire community. In addition, most other 

interpolation techniques such as kriging, trend surfaces, and local regression models are not 

suitable for individual point-level data, making kernel density estimation the only suitable 

interpolation technique for this data (Bailey & Gatrell, 1995).     
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The objectives of this study were to use kernel density to visualize four parasitic helminth 

infections during three distinct time periods: 1) pre-treatment with ivermectin; 2) 1 month post-

treatment; and 3) 9 months post-treatment.  Because this study analyzes data over time, it is able 

to demonstrate the geographic variability of infection as a measure of treatment efficacy by 

providing visual displays of ‘hot spot’ densities that not only show where infections disappear 

after treatment, but also where they reappear—a direct indicator of the importance of certain 

geographic areas of Balbino that are particularly prone to infection.  These helminth foci can 

then in turn be ecologically analyzed to determine the specific variables that make them more 

susceptible areas for infection.  Such information is extremely useful in both the control and 

prevention of helminth infections.   

6.1.1 Background to Helminth Infections 

Parasitic diseases are a major concern in both tropical and temperate biomes around the 

world.  Endoparasites, namely the intestinal geohelminths, infect more than a billion people 

worldwide, while skin parasites (ectoparasites) infect hundreds of millions (J. Heukelbach, B. 

Winter et al., 2004).  Global parasitic disease burden is especially high in developing nations and 

among children.  Though rarely acknowledged as a public health problem, human parasitism can 

lead to significant morbidity, growth inhibition, mental deficiencies, and impaired physical 

performance in people who are already resource-deprived (Heukelbach et al., 2006).  In the 

developing nations, this leads to decreased productivity for individuals who are already 

struggling to subsist.  The four human parasitic geohelminth infections considered in this study 

are Ascaris lumbricoides, Strongyloides stercoralis, Trichuris trichuria, and hookworm.   

Ascaris lubricoides is the causative agent of ascariasis, one of the most common worm 

infections of humans estimated to infect 644 million to 1 billion people worldwide (PAHO, 
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2003).  Ascaris is a nematode intestinal parasite that grows to 20 to 35 centimeters and usually 

spends most of its life in the intestine of its host.  Transmission of the disease occurs through 

ingestion of infective eggs located in contaminated soil, water, and edible plants.  The ingested 

eggs contain infective larvae that hatch within the intestine.  Larvae invade the mucosa of the 

cecum and colon, then migrate to the liver via the portal circulation.  Larvae are carried through 

the bloodstream to the heart and lungs.  In the lungs, larvae break through the pulmonary 

capillaries, enter the alveoli, and migrate through the bronchial tubes and trachea into the 

pharynx, where they are swallowed and carried to the lumen of the small intestine.  Larvae 

develop into male and female adults within the intestine.  Females can lay up to 200,000 single-

cell eggs a day which pass through the digestive tract into the feces. Once in the environment, 

infective third-stage larvae develop within the eggs after around three weeks and can survive in 

the soil for up to 20 years.    

The disease ascariasis is due to: 1) large numbers of worms competing for nutrients; 2) 

worms penetrating the gut wall; 3) aberrant or ‘wandering’ worms lodging in the wrong places 

(i.e., brain); and 4) larvae migrating through the lungs (PAHO, 2003).  High parasite burdens 

may cause vague abdominal discomfort, colic, diarrhea, and vomiting. Respiratory symptoms 

can include fever, irregular/asthmatic breathing, spasmodic coughing, and pulmonary infiltration. 

The disease may cause stunted growth and slow weight gain in children.  The most serious 

complication in children is intestinal obstruction by large masses of parasites. Each year, around 

20,000 people die from Ascaris infection usually due to intestinal complications (PAHO, 2003). 

Ascaris is most prevalent in rural areas where contamination of the soil is common and in hot, 

humid areas that favor egg maturation.  Children have the highest rates of infection because of 
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lower hygiene levels and naïve immunity. In the U.S., infection is rare but most common in rural 

areas of the southeast.  

Diagnosis of ascariasis is made by demonstration of eggs in the feces, coughing, or 

passing of worms.  Treatment is pharmacotheraputic and includes the anti-nematode drugs 

pyrantel, mebendazole, and albendazole.  Because Ascaris infection is related to standard of 

living and hygiene, control and prevention of the disease involves massive and periodic 

treatment of the human population to stop environmental contamination, proper or improved 

sanitary waste disposal, provisioning of potable water, and health education that instills personal 

hygiene habits (PAHO, 2003).  

Strongyloides stercoralis is an enteric helminthic parasite that infects an estimated 100 to 

200 million people in 70 countries worldwide (Rose, 2008).  The disease is endemic in many 

tropical and subtropical countries of sub-Saharan Africa, South and Southeast Asia, Central 

America, South America, and parts of Eastern Europe, where prevalence ranges from 2 to 20%.  

The transmission of Strongyloides is similar to that of Ascaris, with several exceptions: 1) 

filariform larvae matured in the soil can directly enter the skin upon contact; 2) Strongyloides 

eggs can hatch and mature into rhabditiform larvae within the intestine; and 3) it has the ability 

to avoid the environmental cycle and can directly re-infect its host via filariform larvae. The 

autoinfectious cycle can be accelerated in immunocompromised patients or drug or disease-

related defects in cellular immunity, leading to a hyperfection that carries a mortality rate of 60 

to 85%.  In addition, autoinfection allows the parasite to persist within its host for decades. 

Strongyloidiasis is diagnosed by examination of feces for larva, which usually can be seen 

around one month after initial skin penetration, or, in more advanced settings, can be diagnosed 

with ELISA serology.  Ivermectin and Thiabendazole are the preferred methods of treatment.  
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Prevention includes normal hygiene precautions, such as wearing shoes and defecating in 

appropriate locations (Rose, 2008). 

    Trichuris trichiuria, or whipworm, is another common intestinal helminth infection 

that is estimated to infect over a quarter of the world population (Donkor, 2006). Whipworms get 

their name from their whip-like shape.  Male worms are around 30 to 45 millimeters in length, 

while females are 35 to 50 millimeters.  Usually, these worms burry themselves into the 

intestinal mucosa of the cecum and colon and feed on tissue secretions.  Infection by whipworm 

is characterized by a lack of a tissue migration phase, unlike Strongyloides and Ascaris, and a 

relative lack of symptoms.  Transmission is through the fecal-oral route, associated with poor 

hygiene, and usually greatest in children.  Eggs mature in the soil after around 10 to 14 days, are 

ingested, hatch in the small intestine, and mature into adults in approximately three months.  

Female worms can live in the intestines and produce eggs for up to five years.  Diagnosis of 

whipworm is made by fecal examination, which shows ‘tea-tray’ shaped eggs.  Serology usually 

reveals eosinophilia, but rarely anemia.  The drug of choice for whipworm infection is 

Mebendazole or Albendazole.  Prevention involves strict maintenance of hygiene and avoiding 

the fecal-oral route of contamination (Donkor, 2006). 

Hookworm disease is commonly caused by two species of intestinal helminth worms, 

Ancyclostoma duodenale and Necator americanus (Tam, 2008).  Hookwork disease is found in 

over 740 million people around the world, and, like many of the other intestinal helminths, is 

usually asymptomatic.  Male worms are 8 to 11 millimeters long, and females are around 10 to 

13 millimeters.  Larvae hatch in soil from eggs after 24 hours of being laid in stool.  

Approximately 24 hours later, the worms molt into infective filariform larvae that are capable of 

penetrating intact skin.  Transmission to humans usually occurs through bare feet on 
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contaminated soil, and once penetrated the worms migrate and develop in human tissues in a 

method similar to Ascaris and Strongyloides.  Adult worms reside in the intestine and feed on the 

blood of the host. Adult worms can consume around 0.3 to 0.5 ml of blood each day, which can 

lead to anemia and impaired nutrition in the host.  Worms can live in the human intestine for one 

to five years.  Suspicion of infection is taken from patient history and clinical signs like 

eosinophilia, and diagnosis is made through visualization of eggs and parasites in the feces. The 

drugs of choice for hookworm are mebendazole, albendazole, and pyrantel pamoate. Like the 

other helminth infections, hookworm infection can be prevented through appropriate hygiene 

control (Tam, 2008).      

6.2 Materials and Methods 

6.2.1 Study Area and Population 

 This study examines the prevalence of helminth infection in Balbino, Brazil.  The 

location and population of this community is described in the previous chapter on tungiasis. In 

addition to what is included in that chapter, it would also be useful to reiterate some information 

about Balbino that is related to helminth infection.  Balbino is divided into at least two different 

ecological environments: 1) an area with homes built on sand dunes adjacent to the beach; and 2) 

an area built on sand dunes located next to a mangrove swamp. The population of Balbino is 

mostly poor: the village has no paved streets, and most of the houses are built with sand floors (J. 

Heukelbach, A.M.L. Costa et al., 2004).  Inhabitants live in compounds, typically larger than 

those found in urban slums.  The village has no sheep or goats, but does have a number of cats 

and dogs and a few pigs.  Only 75% and 84.1% of homes have electricity and latrines, 

respectively, and a little more than 84% have private bore water wells (J. Heukelbach, B. Winter 

et al., 2004).  During field data collection, it was observed that many of the households raised 
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pigs that were fed garbage and were allowed to roam free around the house sites. There is no 

doubt that ecological, socioeconomic, and hygienic conditions in Balbino Village contribute to 

the high helminth prevalence. 

6.2.2 Data Collection 

 The baseline epidemiological and geographic data used in this study were also described 

in the previous chapter on tungiasis.  However, as the previous study only considered pre-

treatment prevalence of tungiasis, this study considered pre-treatment prevalence as well as two 

post-treatment prevalence periods for helminth infection.  These two periods include a one and 

nine month post-treatment follow-up of epidemiological data collection using methods similar to 

the pre-treatment data collection phase. The treatment used was ivermectin, an antiparasitic drug 

developed in the 1980’s whose efficacy was shown to reduce parasite burden in Balbino by 94% 

(Speare & Durrheim, 2004).  All members of households with at least one person with parasite 

infection were treated except those with contraindications for administration (younger than 5 

years old, weighing less than 15 kilograms, being pregnant or breastfeeding, or having 

renal/hepatic disease) (J. Heukelbach, B. Winter et al., 2004). Those with contraindications were 

treated with mebendazole or albendazole antiparasitic drugs.  Prevalence of helminth infection 

one and nine months after treatment was subsequently determined.  Advanced statistical analysis 

on crude, non-spatial prevalence has already been calculated in previous studies (J. Heukelbach, 

B. Winter et al., 2004).  

6.2.3 Exploratory Data Analysis 

 Geographic coordinates of household locations were imported into ArcView GIS Version 

3.2 (ESRI, 1999).  Epidemiological data on individual prevalence was imported into the GIS in 

database format and merged with household coordinates using family number as the merge 
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variable.  Prevalence was then displayed in disease maps as event themes systematically divided 

by the type of helminth infection and time of data collection (pre-treatment, one month post-

treatment, and nine months post-treatment).    

 In order to get an idea of the type of approximate bandwidth (i.e., search radius) to use in 

preparation for kernel density calculation, Moran correlograms were produced for each helminth 

at each time interval and for total population.  Selecting bandwidths at which the Moran 

correlograms level off, or approach the global I value, leads to an estimation that minimizes 

spatial autocorrelation and maximizes the capture of major trends in the dataset. (Bailey & 

Gatrell, 1995).  Figure 6.1 is a sample Moran correlogram for pre-treatment hookworm incidence 

used in bandwidth estimation.  As can be seen in this figure, I values begin to level off around a 

bin distance of 125 meters.  Therefore, in calculation of kernel densities for pre-treatment 

hookworm incidence, a bandwidth of 125 meters was chosen. 

6.2.4 Spatial Analysis 

ArcView GIS Version 3.2 was used to develop density maps of helminth infection and 

population.  The single kernel density routine offered through the spatial analyst extension was 

used to estimate density values for each household.  Resultant bandwidth estimation taken from 

the Moran Correlograms produced in CrimeStat were used to select an optimal bandwidth and a 

‘uniform distribution’ for the type of kernel used in the single kernel interpolation. Visual 

presentation of the single kernels was obtained by scaling density values in a choropleth map 

such that higher densities are shown in darker tones and lower densities in lighter tones.  

6.3 Results  

Statistical analysis of the data indicate that at pre-treatment the incidence of helminth infections 

in Balbino was 60.1% (N = 548). Only 9.7% (N = 154) of households were completely 



 

 

 
Figure 6.1: Moran’s Correlogram for Pretreatment Hookworm Incidence 
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free of helminth infection.  Figure 6.2 shows the results of the kernel density estimations.   

Ascaris infection occurred with a 17.1% incidence (N = 88).  The geographical 

distribution of Ascaris was mostly confined to the northwest corner of Balbino and appeared to 

be limited by proximity to both the beach and the mangrove swamp.  Of the four most prevalent 

helminths, Ascaris has the smallest geographical range in Balbino village. Ascariasis in the short 

term appeared to be affected by ivermectin treatment the most of all the parasitic infections 

investigated in this study.  As shown in Figure 6.2, prevalence was limited mostly to the center 

but occurred throughout the southern two-thirds of Balbino village at baseline.  Four weeks after 

treatment, prevalence was drastically diminished to include only two focal points of infection 

located in the south and east of the village.  After nine months, infection returns to the center of 

the village, but disappears from the foci found at the four week interval. 

Of the 516 people tested for Strongyloides, 57 (11%) tested positive for the disease.  

Spatially, the incidence of Strongyloides correlates with population density (see Figure 6.2) 

rather than geographical location, as cases were generally located in a northwest-southeast band 

on and off the beach and around the mangrove swamp. Strongyloidiasis showed the strongest 

long-term effect to ivermectin treatment out of all of the helminths in this study.  At baseline, 

this disease was prevalent throughout Balbino, with most cases occurring in the center along a 

diagonal axis to the northwest.  Unlike ascariasis, strongyloidiasis occupied the northern two-

thirds of Balbino during this time.  Four weeks after treatment, a dramatic reduction in  

prevalence can be seen, with two foci of infection occurring near the center-east of Balbino.  

After nine months, only one focal point of infection remains, located in the southeast-center 

portion of the village. 



 
 

 
Figure 6.2: Kernel density interpolation of helminth infection in Balbino, Brazil 
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Infection with Trichuris trichiura (whipworm) occurred in 16.5% (N = 85) of the tested 

population.  Kernel densities calculated from this incidence indicate that whipworm infection 

was generally centered around the northwest area of Balbino, away from the mangrove swamp 

and not on the beach.  As viewed in Figure 6.2, the effects of ivermectin treatment on trichuriasis 

in Balbino are less apparent than with the other endoparasitic infections.  At baseline, the 

majority of infection is present along the southeastern portion of Balbino. Ironically, prevalence 

increases during the first follow up, spatially moving more northward in the village.  At nine 

months, however, infection disappears from the new areas seen at the first follow-up, and 

resumes a distribution similar to that at baseline. 

Ancyclostoma (hookworm) infections were found in 28.5% (N = 147) of the population. 

The geographic range of this disease appeared to be more spread out than that of whipworm, 

with a northwest-southeast distribution that even borders the mangrove swamp.  Like whipworm, 

however, this infection seems to have been limited by proximity to the beach. The disappearance 

of hookworm disease, like strongyloidiasis, occurred more in the long-term after drug treatment 

than in the short-term.  This trend is evident in Figure 6.2.  In this figure, it can be seen that the 

baseline and first follow-up periods have nearly identical spatial distributions of hookworm 

prevalence throughout Balbino, whereas during the second follow-up most of this prevalence 

disappears from the western portion of the village.  One strong foci of infection is evident during 

this period in the center-east of Balbino, which is surrounded by smaller points of infection.  

6.4 Discussion 

Kernel density estimation is an effective tool to identify high-risk areas within point 

patterns of disease incidence by producing a smooth, continuous surface that defines the level of 

risk for that area (Bithell, 1990).  In addition, kernel density estimation represents a powerful 
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way to conduct hot spot analysis and easily visualize trends over large areas (Levine, 2007). It 

can be used in public health research to target areas of high concentrations of disease for control 

and to target areas at higher risk for prevention.   

The spatial ‘evolution’ of parasitic infections in a community over time is a rarely studied 

topic.  However, studies such as the one by Heukelbach et al. (2004) provide a unique 

opportunity to visualize the spatial dynamics of infection over time as they reappear in a 

population.  Using techniques of disease mapping, this study identified several key points about 

the spatial variability of parasitic infections during mass treatment of a community with an 

antiparasitic drug: 1) helminth burdens are localized to specific ‘niches’ in the community, and 

are not evenly distributed; 2) treatment with ivermectin does not produce the same spatial 

‘effect’ with all of the helminth diseases; and 3) the way that infections ‘reappear’ can be a clear 

indication that the areas of reappearance represent either significant points of transmission or 

environmental ‘foci’ of infection. 

Because many of the parasites examined in this study appear in some areas of Balbino 

and not others, there is already evidence that there are underlying geographical factors in their 

distribution and abundance.  With the geohelminths, it is evident that particular areas of the 

village are more suited for their environmental life cycles than others.  For instance, Trichuris 

and Ascaris are both prevalent in greater numbers as distance from the beach and the mangroves 

decreases.  This could be because the soil type near the beach and mangroves is not conducive to 

these parasites’ growth and development. Strongyloides, on the other hand, seems to have 

village-wide distribution, indicating that it is perhaps a hardier organism whose environmental 

life cycle can tolerate more soil types.  
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The spatial effects seen in this study reflect the fact that the effectiveness of ivermectin to 

certain parasites is variable. Though this fact has already been addressed through non-spatial 

techniques (J. Heukelbach, B. Winter et al., 2004), the use of disease mapping and kernel density 

interpolation provides a novel way at visualizing this process.  In addition, disease mapping may 

also provide a way to visually associate effectiveness with different environmental and/or 

demographic characteristics of the community—a point that may wish to be addressed in future 

studies.   

6.5 Conclusions 

Using the kernel density interpolation routine in this study was useful for visualizing the 

community-wide effects of helminthic treatment, but would have been inappropriate for a micro 

analysis.  Determining the effects of treatment on the disappearance and re-appearance of 

infections within households, for instance, would require different geospatial techniques such as 

spatial description or cluster analysis.  

It is evident from this study that a full understanding of the exact mechanisms of parasite 

distribution in Balbino will not come until further investigations using subsequent geographical 

data are initiated. With the current advances in remote sensing, it is possible to integrate satellite-

derived data on vegetation (normalized difference vegetative index), soil type, altitude, distance 

from ocean and roads, topography, wetness indices, temperature, and average rainfall with health  

data (Albert et al., 2000).  These environmental variables can be analyzed to better our 

understanding of the environmental life cycles of these parasites, with implications on their 

control and/or eradication.         
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CHAPTER 7. THE GEOGRAPHY OF LEPROSY ELIMINATION 
 
7.1 Introduction 

The course to leprosy elimination in endemic countries has continued to endure despite 

nearly two decades of intense elimination efforts and failure to reach set national elimination 

targets. Leprosy thus still remains a legitimate global health concern and continues to be an 

important topic in tropical disease research. The objectives of the next three chapters are as 

follows: 1) to give the reader an introduction and review of leprosy; 2) to examine the role of 

geography in leprosy elimination in Brazil; 2) to determine what geographic level is most useful 

in examining leprosy distribution in Brazil; and 3) to pinpoint how GIS and other geographic 

technologies could be used to help reach leprosy elimination targets in Brazil and other countries 

where the disease still persists. 

7.2 Leprosy: An Ongoing Struggle 

When most people today think of leprosy they are reminded of the pitiful disease thrown 

upon Judah’s mother and sister in the movie Ben Hur—the disease that turns them both into 

disfigured beggars who are ridiculed and shunned from biblical society—or of the infliction 

depicted through Robert the Bruce’s crippled and deranged father in Braveheart. Although most 

people’s experience with leprosy is limited to Hollywood’s depiction of this disease, the fact still 

remains that leprosy is a real disease that affects real people. In addition, and also contrary to 

popular notion, especially in Western countries, leprosy is a disease that continues to infect 

people mainly in developing countries but also in places like the United States.  Indeed, although 

leper colonies such as the ones in Carville, Louisiana, or in Kalaupapa, Hawaii, are closed and 

have been turned into tourist attractions, they still do remain as reminders of not only the intense 
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suffering of the colonies’ inmates and missionaries, but also of the need to continue to fight for 

elimination of leprosy across the globe.        

Leprosy, or Hansen’s disease, is a complex chronic infectious disease caused by the acid-

fast bacillus Mycobacterium leprae (Yawalker, 2002).  Leprosy is one of the oldest diseases of 

humankind—in fact, this disease is so ancient that the earliest records of its existence can be 

traced back to around 600 B.C. Indeed, leprosy was a well recognized and documented disease in 

almost all of the great ancient civilizations, including Egyptian, Chinese, and Indian (F. S. Lewis, 

2007).  By 300 A.D., leprosy had spread along trade routes to nearly every corner of the Old 

World, including the European subcontinent, where incidence of the disease peaked along with 

the Black Plague in the 13th century. During this time, leprosaria, or leper colonies,  begin to 

appear across Europe, numbering near an estimated 19,000 by the end of the 14th century (TCE, 

1913).  These colonies served as quarantine ‘prisons’ for lepers who were seen to exist in a place 

somewhere between life and death: cursed with what was considered by many medieval sources 

as going through Purgatory on earth (Brody, 1974).  Unfortunately, there is historical argument 

over whether or not many of the people placed in leper colonies who were presumed to have 

leprosy had, in fact, syphilis (Wills, 1996).  Leprosy was introduced to the New World not long 

after Columbus’s discovery of the Americas in 1492, and the disease spread rapidly among the 

indigenous people.  In 1873, the Norwegian physician Armauer Hansen discovered that the 

causative agent for leprosy was Mycobacterium leprae, making it the first bacillus to be 

associated with a human disease (F. S. Lewis, 2007).    However, it was not until 1946 that a real 

promise to control the disease emerged, when the creation of the first sulfa drugs designed to 

treat leprosy, Promin, Diasone, and Promizole, were successfully trialed at the U.S.’s only 

leprosarium in Carville, Louisiana (Matcham, 1946).   
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Although leprosy has been intimately associated with humans throughout history, even 

today little is known about its pathogenesis, course, treatment, and prevention relative to other 

infectious diseases (F. S. Lewis, 2007).  It is not considered a highly infectious disease, contrary 

to popular belief, and it is thought to be transmitted from human to human by aerosol spread 

through an infected individual’s nasal secretions that come in contact with a susceptible 

individual’s exposed nasal and oral mucosa (van Beers et al., 1999).  Because of the way leprosy 

is transmitted, all of an infected individual’s household, neighbors, and social contacts are at 

increased risk of contracting leprosy—with an inverse relationship between physical distance 

from the patient and the risk of infection (Moet et al., 2006; van Beers et al., 1999).  Leprosy is 

generally not spread by means of direct skin contact, although there is suspicion that foci may 

exist in infected soil and that the disease can be spread through insect vectors (F. S. Lewis, 

2007).  Though humans are the primary reservoir of M. leprae, animal reservoirs exist in three 

other animal species: 9-banded armadillos, chimpanzees, and mangabey monkeys. Though there 

is a common notion that leprosy can be contracted from armadillos, the risk of acquiring the 

disease through this zoonotic reservoir is unknown (Truman, 1992).  

Leprosy, which is derived from the Greek lepros and lepein, meaning “scales on a fish” 

and “to peel” respectively, is probably best known for the intense morbidity suffered by its 

victims—one that is so stigmatizing that it has made leprosy without a doubt one of the most 

notorious diseases in the human repertoire (Kane et al., 1997).  In fact, leprosy is known as a 

granulomatous disease, caused by bacteria that can incubate for six months to 40 years in 

patients before producing symptoms (F.S. Lewis, 2007).  The bacillus tends to lodge in cooler 

parts of the body such as superficial peripheral nerves, skin, mucous membranes of the upper 

respiratory tract, the anterior chambers of the eyes, and the testes.  Tissue damage results from 
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the reaction caused by cell-mediated immunity to the bacillus (i.e., lepra reactions) which leads 

to a chronic inflammatory reaction in affected areas. Cutaneous lesions in the skin usually 

manifest as hypopigmented macules with raised borders. Because of the bacillus’s affinity for 

macrophages and Schwann cells (whose perineurium undergoes ischemia, fibrosis, and axonal 

death), tissue damage almost always involves the peripheral nervous system. Morbidity results 

from skin necrosis and loss of sensory/nervous stimulation that can lead to secondary trauma and 

further bacterial superinfection. Generally, temperature is the first sensation to be lost followed 

by light touch, pain, and finally deep pressure. These losses are usually localized to the hands 

and feet, and the chief complaint when patients present to a clinic is usually a burn or ulcer 

localized on an anesthetic extremity (caused by burning of hands when cooking, for instance). It 

is the skin lesions and deformities associated with sensory and motor damage of peripheral 

nerves that historically have been responsible for the traditional stigma associated with the 

disease (F.S. Lewis, 2007).    

Clinical disease manifests and is classified along a spectrum that has tuberculoid leprosy 

(TL) at one end and lepromatous leprosy (LL) at the opposite end (Bakker et al., 2004; F.S. 

Lewis, 2007).  The strength of the host’s immune system usually dictates the clinical form of the 

disease and where along the spectrum the individual lies: strong cell-mediated immunity and a 

weak humoral response generally lead to milder forms of leprosy, whereas a relatively void cell-

mediated immunity and strong humoral response leads to widespread lesions, extensive skin and 

nerve involvement, and high bacterial loads indicative of LL. Infection with the human 

immunodeficiency virus (HIV), which alters immune status, has not been identified as a risk 

factor for acquiring leprosy,  increasing virulence of Mycobacterium leprae, or worsening 

clinical symptoms (Bakker et al., 2004).  Diagnosis of leprosy is a fairly straightforward process 



81 

 

that usually begins with a general physical evaluation of the patient’s cutaneous neuropathies and 

the eyes (F.S. Lewis, 2007).  Confirmation of clinical suspicion is made in the lab with tissue 

smears or slit-skin smears, histamine testing, and methacholine sweat testing. These methods of 

diagnosis lead to high sensitivity (97%) and specificity (98%) for leprosy (F.S. Lewis, 2007).   

Once diagnosed, leprosy patients are managed medically through pharmacotherapy and 

physical therapy, and mentally with social and psychological rehabilitation (F.S. Lewis, 2007).  

The most important element of leprosy treatment is drug therapy, which is designed to stop the 

infection, arrest transmission, reduce morbidity, and prevent complication. Since 1981, 

pharmacotherapy has involved multi-drug therapy (MDT) including dapsone, rifampin, ofloaxin, 

and clofazimine. In patients with profound inflammation or extensive nerve damage, surgery can 

be performed to improve function, drain abscesses, or cosmetically restore damaged areas.  Early 

diagnosis and effective antimicrobial treatment can arrest transmission, reduce pathogenesis, and 

even cure the disease.  However, one of the challenges presented by treatment is its long and 

arduous duration, which can last from six months to two years and often is not completed by 

patients (F.S. Lewis, 2007). 

Leprosy can occur in any race, in any age group, and in any gender (F.S. Lewis, 2007).  

Demographically, however, TL tends to occur more predominantly in Africans and LL occurs 

more predominantly in light-skinned races and Chinese individuals.  LL is more common in 

adult men than women in a ratio of 2:1, while in children TL predominates with no preference 

for sex. Leprosy incidence generally peaks between the ages of 10-14 and 35-44. However, 

children are the most susceptible to infection. Women usually show increased morbidity because 

they tend to be delayed in their presentation and thus are diagnosed at more advanced stages 

(F.S. Lewis, 2007).   



Currently, leprosy affects between two and three million people worldwide and continues 

to be one of the world’s leading causes of physical disability (Yawalker, 2002).  Most infected 

individuals live in the tropics and subtropics, making leprosy rank at the top of important tropical 

diseases.  However, leprosy still presents in developed, non-tropical countries. The United 

States, for instance, has approximately 6,000 patients and 200-300 new cases each year usually 

within small endemic foci in Texas, Louisiana, and Hawaii—though ninety-five percent of these 

cases are thought to have been contracted in developing countries (F.S. Lewis, 2007).  The 

greatest number of cases worldwide occurs in India, followed by Brazil, Burma, Madagascar, 

Mozambique, Tanzania, and Nepal (WHO, 2005a).  At the start of 2008, the Democratic 

Republic of the Congo and Mozambique reached the leprosy elimination goal, while Brazil, 

Nepal, and Timor-Leste had yet to reach the elimination goal (WHO, 2008).  As can be seen in 

Figure 7.1, the majority of new case detection continues to be in the tropical developing 

countries of Asia, Africa, and South America. 
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Figure 7.1: Countries reporting >1,000 new cases of leprosy during 2007 [Data source: 
WHO Weekly Epidemiological Record 2008] 
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7.3 Leprosy Elimination: Is It Possible? 

In 1991, the Forty-fourth World Health Assembly (WHA) adopted a resolution to 

eliminate leprosy as a global health problem by the year 2000 (WHA, 1991).  “Elimination” was 

defined as attaining prevalence below one case per 10,000 population.  Because this target 

reflected a dynamic global average and did not consider disease rates in specific countries, areas, 

or populations, the target was reached by the end of 2000.  However, attaining this goal did not 

mean that leprosy had been eliminated or that it was under suitable control where it was most 

severe.  Despite reaching the global elimination target and a resulting decrease in global 

prevalence by more than 90%, leprosy continued to persist beyond acceptable levels in five 

endemic countries: India, Brazil, Madagascar, Mozambique, and Nepal (WHO, 2003).  As a 

result, the WHO set another target to eliminate leprosy at the national level by 2005—a move 

that was proposed by the “Final Push” in 1999 and backed by the creation of the Global Alliance 

for Elimination of Leprosy (GAEL).  Unlike the goal set in 2000, the push to eliminate leprosy 

by 2005 at the national level was not achieved.  As a result, leprosy continues to exist as a 

significant health problem in endemic countries like India, Brazil, Madagascar, Mozambique, 

and Nepal.  Today, the leprosy burden in these five countries alone accounts for 83% of 

prevalence and 88% of detection worldwide—indicating that the disease has taken on national 

foci that reflect either endemic clusters or failures in specific national programs designed to 

eliminate leprosy (WHO, 2007).   

When assessing a disease’s candidacy for elimination, many factors must be considered 

in order to determine the practicalities of elimination, as not all diseases are suitable for 

elimination (Speare & Leggat, 2006).  Small pox, for instance, was a disease that was only found 

in humans, had a suitable vaccine, and precipitated such a substantial global effort that it was, in 
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effect, ‘eliminated’ and then eradicated from the planet (except in the few laboratories around the 

globe that claim to still have the virus in storage). On the other hand, diseases such as yellow 

fever and encephalitis, though vaccines exist, are not ‘eligible’ for elimination because of the 

complications that arise with sylvatic vectors and viral transgenicity.  Therefore, in order to make 

the assessment of disease elimination more organized, the WHO (2003) has proposed certain 

criteria for diseases that help to determine whether or not elimination should be sought for a 

specific disease:  

1) Only one source of infection.  
2) Simple and practical ways to diagnose the disease.  
3) An effective intervention to interrupt transmission.  
4) Incidence is kept low such that prevalence declines to non-sustainable levels.  
5) No other diseases exist that can adversely affect the disease marked for elimination. 

 
Because of the specificity of these criteria, it is rare to find a disease that meets all the 

requirements for elimination.  However, leprosy, like small pox, is nearly an ideal disease to 

target for elimination: transmission is believed to occur only from human to human, with 

zoonotic or environmental transmission negligible (if at all possible); leprosy can be diagnosed 

based on clinical signs alone; it can be treated with multi drug therapy (MDT), which renders 

infected individuals non-infectious; widespread applications of MDT for several years has led to 

significant decline in the annual new case detection rates; and leprosy (unlike tuberculosis) does 

not appear to be adversely affected by other diseases such as HIV. The possibility of achieving 

global elimination of leprosy, therefore, is a very real practicality.   

It is important to remember, however, that elimination of a disease does not mean 

eradication.  Whereas eradication is complete removal of the disease from a population so that no 

new cases develop, elimination is merely reaching a certain set target of prevalence and 

incidence.  In the case of leprosy, the strategy behind setting the global target at a prevalence of 
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less than one case per 10,000 population is based on the assumption that detecting and treating 

all active cases will reduce transmission to such an extent that the number of new cases gradually 

decreases (WHO, 2003).  In this way, a negative feedback loop is created that hopefully would 

eventually lead to such low prevalence that incidence approaches zero, until finally the disease is 

‘eradicated.’   

In most instances, setting elimination targets has proven much easier than actually 

reaching them. To reach elimination for leprosy, for instance, all active and new cases of leprosy 

would have to be rapidly and aggressively detected, diagnosed, and treated with MDT.  This fact 

only begins to hint at the complications that arise in developing countries like India and Brazil 

and in some ways explains why leprosy still persists at such levels in these countries to this day.  

For instance, the major complication that has been encountered in leprosy elimination has been 

the availability of MDT to leprosy patients. Although the WHO has offered MDT to any leprosy 

patient around the world since 1995, the obstacle has been getting the drugs to patients, 

especially to those located in areas with weak health care infrastructures or those that are 

difficult to access geographically, socially, economically, and culturally (WHO, 2003).  In 

addition, leprosy diagnosis and treatment are highly centralized activities dependent on specially 

trained staff that is not always accessible or available—and in some instances patients will not 

present because of the intense fear and stigmatization that still exist.  These complications in 

leprosy elimination reveal that the major setbacks are operational (i.e., organizational) in nature 

rather than technical (i.e., pharmaceutical) (F.S. Lewis, 2007). In fact, the biggest challenges to 

face leprosy control programs are maintaining services—especially in peripheral areas—and 

sustaining political support for leprosy control—two operations that were setback further when 

the global elimination target was reached (WHO, 2008). 
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Despite these critical downfalls, organizations continue to strive for leprosy elimination 

in endemic countries.  Setting targets, such as the 2005 WHO target, have been important in 

showing leprosy endemic countries that the disease need not be regarded as a permanent and 

unsolvable problem, that the disease can be effectively treated with MDT, and that leprosy can 

be controlled through its definitive acceptance as a real yet solvable public health problem 

(WHO, 2007).  In order to make elimination possible, however, countries like India and Brazil 

will have to continue to deliver sustainable diagnosis and treatment regimens, improve the 

quality control of case management, recording, and reporting of cases in endemic areas, develop 

procedures and tools in aggressive home/community based public health campaigns, and finally 

strengthen collaboration efforts between international groups advocating leprosy eradication  

(WHO, 2005b).    

7.4 The Geography of Leprosy Elimination 

At this point, it is important to consider the role that geography can play in leprosy 

elimination.  Obviously, geography has strongly influenced the epidemiology of leprosy through 

physical and cultural space, and in part can be used to explain the statistical distributions and risk 

factors that are included in the disease’s etiology.  However, as mentioned above, the major 

setbacks to achieving leprosy elimination in endemic countries have not been technical in nature 

but operational—reflecting the possibility of a different role for geography in leprosy 

elimination. Specifically, geography can be used to augment operational procedures as a 

“valuable management tool in the elimination program, strengthening national, regional and sub-

regional capacities in surveillance and monitoring” (WHO, 2007).  Specifically, geography has 

the potential to be used in leprosy elimination in the following ways: 1) to view, analyze, and 

display geographic variation in leprosy distribution; 2) to integrate remotely sensed data with 
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case data to examine environmental causality; 3) to detect spatial clustering of leprosy to 

determine areas of unusual case occurrence; 4) to utilize demographic and socioeconomic data to 

model leprosy dynamics both spatially and temporally; and 5) to focus elimination efforts and 

resources on areas of unusually high transmission (Argaw et al., 2006; Fine, 2007; Lapa et al., 

2006).   

Despite the great potential for the use of geography in leprosy elimination, little has been 

done to integrate geographic methods into both the research and clinical sides of leprosy 

elimination (Lapa et al., 2006).  In many respects, the potential of geography as a tool to better 

understand this disease has only begun to be realized by researchers, clinicians, and government 

programs.  However, in endemic countries, the use of geography in leprosy elimination has been 

limited by technological development, funding, and lack of training (Durrheim, 2003).  What is 

needed, therefore, are ways in which to strengthen geography’s role in leprosy elimination. 

These may include defining new parameters in spatial analyses and statistics for leprosy 

epidemiology, developing geography-based leprosy surveillance, integrating environmental and 

demographic data into geographic models of leprosy distribution, and, most importantly, 

increasing collaborative efforts between countries with ‘developed’ methods of geographic 

investigation, like the United States, and countries with less sophisticated geographic-

technological development, like India and Brazil.    

7.5 Brazil as a Model 

 As mentioned previously, the country of Brazil has the world’s second largest case load 

of leprosy, accounting for nearly 16.3 % and 21.5% of worldwide incidence and prevalence,  

respectively, at the beginning of 2008 (WHO, 2008). The fifth largest country in the world by 

land area, Brazil has been struggling for the last two decades to reach national WHO leprosy 
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elimination targets. Though prevalence of leprosy in Brazil has declined dramatically in the last 

decade, detection rates have remained relatively stable, indicating that ongoing transmission of 

Mycobacterium leprae is still occurring (Penna & Penna, 2007).   However, in early 2006, the 

Brazilian Ministry of Health announced that it had achieved a reduction of 24.3% in the number 

of newly diagnosed leprosy cases over the previous two years.  In order to keep this trend 

moving in the same direction, Brazil will undoubtedly have to aggressively increase its efforts to 

detect and treat leprosy patients (Durrheim, 2003). Reaching the elimination target too quickly, 

however, may not be Brazil’s prime objective.  Some critics would argue that once leprosy is 

‘eliminated’ in Brazil, leprosy programs and their inclusion in health policy would suddenly 

come to end (Penna & Penna, 2007). Critics on the opposite side say that if Brazil wants to meet 

leprosy elimination targets, it could through “artful manipulation of the definition of leprosy and 

by avoiding active case detection” (Mudur, 2005).  Luckily for the patients who suffer with the 

disease, the Brazilian Ministry of Health has chosen a middle path that slows down the race to 

elimination but also increases the thoroughness and quality with which patients are treated.  

Because of its highly irregular geographic distributions of leprosy, Brazil is an ideal 

setting for the application of geographic methods to leprosy research and surveillance 

(Montenegro et al., 2004). However, because of the sheer size of Brazil, determining the 

geographic level of analysis for this research is more difficult than it seems.  For instance, a 

geographic analysis can detect spatial patterns at the state level (Figure 7.2), municipality level 

(Figure 7.3), or even at the barrios (suburb) level (Figure 7.4).1  At all of these levels, 

heterogeneity of leprosy distribution can be seen.

 
1 Datasource for figures: DataSUS (2007) 



 

 
 

 
 

     Figure 7.2: Leprosy detection rates (new cases per 
10,000 population per year) across Brazilian states, 2006  

 

 

 

 

 
 

Figure 7.3: Leprosy detection rates (new cases per 10,000 
population per year) across municipalities of Ceará State, 

Brazil, 2005 
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Figure 7.4: Leprosy detection rates (new cases per 10,000 population per year) across barrios of Fortaleza, Ceará State, Brazil 
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  Without a doubt, significant spatial clusters could be detected at the state, municipality, 

and barrios levels.  However, detecting clusters at the state-level may provide too variable of a 

region for a proper ecological analysis, while detection of clusters at the barrios level is made 

difficult because of the obstacle of obtaining data at this spatial resolution. For now, it seems 

appropriate to use the municipality as the level of geographic analysis because of the quality and 

availability of data at this spatial resolution.  

In order to gain a better understanding of both the applicability of geographic techniques 

in leprosy research and to provide publishable accounts of the leprosy situation in Brazil, 

Chapters 8 and 9 examine the distribution of leprosy in Ceará and Rondonia States at the 

municipality level. In these chapters, the methodology was chosen so that the results of the 

spatial analyses could be compared across Ceará and Rondonia States.  Chapter 10 continues 

with a spatial analysis of Rondonia State; however, this chapter employs the use of rate- 

adjustment in order to compare the results to those obtained in Chapter 9.  Chapter 11 follows 

Chapter 8 in that it is a spatial analysis of Ceará State, this time dealing with the distribution of 

tuberculosis rather than leprosy.   
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CHAPTER 8. SPATIAL AUTOCORRELATION OF LEPROSY IN CEARA STATE, 
BRAZIL, FROM 1995-2005 

 
8.1 Introduction 

Prior to the 1980s, data on the prevalence of leprosy in Brazil were not sufficient enough 

to represent the real situation of case occurrence, distribution, and transmission within this 

endemic country (Opromolla et al., 2006).  However, after the introduction of multidrug therapy 

in 1981 and the promise that an effective treatment could cure current patients and arrest the 

transmission to new patients, a renewed interest in the epidemiology of this disease and methods 

for its control were developed (WHO, 1982).  In 1991, the World Health Organization set out a 

proposal to eliminate leprosy as a global health problem by the year 2000 (WHO, 1998).  

Reaching their goal of achieving less than 1 per 10,000 case-population ratio at the global scale, 

WHO then decided to target leprosy at the national level with a “Final Push” to eliminate this 

dreaded disease from all corners of the planet (Durrheim, 2003).  Several countries, however, 

have not been able to reach this target, among which is Brazil.  In 2005, in an effort to reach 

international standards on leprosy elimination, Brazil forged a new commitment to rearrange its 

control tactics for leprosy, delaying elimination in this country until the newly proposed date of 

2010 (WHO, 2005b). 

Despite the organizational difficulties of reaching elimination targets in Brazil, leprosy 

prevalence in the country has been declining dramatically since the 1980s.  In 1985, prevalence 

levels were around 16.4 cases/10,000 population, whereas in 2003 this number dropped to 4.52 

per 10,000 (Opromolla et al., 2006). In some areas of Brazil, however, detection rates have 

actually increased.  Andrade (1996) proposes that these increases in detection rates across Brazil 

are not only due to epidemiological factors, but could also be due to operational factors that lead 
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to increased identification and notification of leprosy, such as increased coverage of control 

programs, training of personnel for treatment and detection, decentralization of health agencies, 

and increased public awareness. In actuality, therefore, these increased rates would more closely 

represent the true situation of leprosy across Brazil, and would be a strong indication that control 

programs are doing what they are supposed to do. 

Despite the optimistic forecast of leprosy in Brazil, the fact remains that this disease is 

still a significant public health problem in many parts of the country.  Ceará State appears to be 

approaching a pre-elimination phase, even though the pattern of leprosy occurrence still 

represents a heterogeneous distribution with some areas of high endemicity (Montenegro et al., 

2004).  The complex nature of the factors involved in reaching the elimination target in Ceará 

State are reflected through the inequalities and spatial distributions in case incidence across 

municipalities (refer back to Figure 7.2). For the year 2005, some municipalities had incidence 

rates of less than 0.16, while others had rates as high as 20.4.  It also appears that municipalities 

with high incidence rates tend to be surrounded by others with high or intermediate incidence—a 

fact that is also seen with prevalence (Tavares, 1997). The apparent existence of these ‘clusters’ 

of similar incidence allude to the fact that the spatial distribution of leprosy within Ceará State 

may be influenced by geographic and/or environmental variables. 

 As mentioned in the previous chapter, many factors influence the risk of leprosy from 

physiological conditions such as immunological status to demographic and socioeconomic 

factors such as race, age, poverty and overcrowding.  These factors vary in their spatial 

distributions relative to the geographic area being studied. Because public health and disease are 

extensively influenced by the spatial patterns of these factors, the incorporation of spatial 

analysis into health research and surveillance is justified (Barcellos et al., 2002).  With this in 
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mind, combined with the need to implement and structure new strategies for leprosy control and 

surveillance, spatial analysis could play a useful tool in assessing the situation of leprosy in 

Ceará State. 

Tiwari et al. (2006) set the foundation for how a spatial analysis could be developed for a 

region such as Ceará State. According to these authors, a spatial analysis of disease distribution 

should include the identification of areas of exceptionally high or low (abnormal) disease rates, 

test the statistical significance of these areas, and lead into an investigation of why abnormal 

disease rates are occurring (Tiwari et al., 2006).  In order to meet these criteria, the spatial scan 

statistic developed by Martin Kulldorf (1997) can both detect and provide inference into spatial 

and space-time disease clusters.  Integrated into the freeware SaTScan (Kulldorf, 2006), the 

spatial scan statistic offers many advantages over other cluster detection techniques, namely the 

implementation of a temporal element into cluster analysis.  It has been used to detect and 

evaluate clusters of cancer (Hsu et al., 2004; Pollack et al., 2006),dengue (Nisha et al., 2005), 

trachoma (Polack, Solomon et al., 2005), filariasis (Washington et al., 2004), and many other 

diseases. 

The scan statistics were designed to test for geographic clusters and to identify their 

approximate locations (Kulldorf, 1997).  These statistics can be used with either point level data 

with precise geographic coordinates or with data aggregated to larger areas, such as census 

blocks, municipalities, or states.  This method of cluster detection uses a mobile circular window 

that includes different sets of neighboring areas at different positions.  The radius of the circular 

window varies from zero to a maximum radius at each position such that the window never 

includes more than 50% of the total population at risk. This method allows detection that is 

flexible in both location and size (Onozuka & Hagihara, 2007). 
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 The scan statistic tests the null hypothesis that cases are distributed through complete 

spatial randomness against the alternative hypothesis that the probability of a case inside the 

window is greater than it being outside the window (Kulldorf, 1997). Each zone that rejects the 

null hypothesis is further likelihood tested for statistical significance. Large datasets are adjusted 

for multiple testing using the Monte Carlo method such that each case time and location are 

shuffled randomly within the dataset and the most likely cluster is calculated for each simulated 

set in the same way it is for the real data. Only a small number of possible clusters are tested to 

minimize false positives.  For each identified cluster, the output includes a list of geographic 

subdivisions, numbers of observed and expected cases, population, relative risk (RR), and p-

value.  (Relative risk is a measure of the risk of developing a disease and reflects the ratio of the 

probability of the disease occurring in the exposed individuals versus non-exposed individuals.)  

 In purely spatial analyses that examine data over long time periods, it is less likely that 

the scan statistic will detect recently emerging clusters (Onozuka & Hagihara, 2007). In analyses 

of data with short time periods, low to moderate excess risk that is present over a long period of 

time could be missed.  These problems are solved using a combined space-time scan statistic that 

uses a three-dimensional cylindrical window whose base represents space and whose height 

represents time.  As with the purely spatial scan statistic mentioned above, the space-time scan 

statistic uses a likelihood ratio constructed through a computational algorithm to test each 

window, this time in three dimensions rather than two (Kulldorf, 1997).  

 The detection of spatial clustering of leprosy incidence for the years 1991 to 1999 in 

Ceará State was initially undertaken by Montenegro et al. (2004). Their study examined the large 

and small scale variations of incidence rates using Moran’s I as an indicator of significant spatial 

autocorrelation.  Their results identified three regions of high incidence during this period and 



96 

 

showed that high incidence rates of leprosy tend to cluster on a north-south axis in the middle of 

the state (Montenegro et al., 2004).   

 The objective of this study was to analyze the spatial patterns of leprosy case occurrence 

in Ceará State through the identification of clusters that represent either high or low risk for 

leprosy and to map probable transmission risk as calculated through spatial statistical methods. 

This study was designed as a partial continuation of the Montenegro (2004) study, with several 

key differences: 1) a new study period, from 1995 to 2005, was examined, which in theory 

should show how cluster distribution has changed over the last decade and give an indication of 

elimination progress; 2) a different spatial statistical methodology is employed that uses the scan 

statistic, allowing purely spatial clusters of the entire 10 year period to be detected as one unit; 3) 

a temporal element is added to the statistical analysis in order to see how time influences 

clusters; and 4) a control for the confounding of age and gender in case detection was included in 

a separate analysis for comparison.   

8.2 Materials and Methods 

 The study area for this analysis is Ceará State, located in the semi-arid, drought-prone 

region of northeast Brazil (Figure 8.1). Covering an area of about 148,000 km2,Ceará State is one 

of the least developed and poorest regions of Brazil (Montenegro et al., 2004). Ceará State’s 

population has grown considerably in the last decade, from 6.7 million in 1995 to over 8.3 

million in 2007(IBGE, 2008).In recent years, poor environmental and socioeconomic conditions 

have led to a massive migration of the rural poor into urban areas in search of work, creating new 

disease dynamics in many of Ceará State’s urban favelas. 

Case data on patients diagnosed with leprosy in Ceará State for the period of 1 January 1995 to 

31 March 2006, was obtained from the ongoing national population-based surveillance system



 

 

 
 

Figure 8.1: Location of Ceará State (yellow), in the northeastern region of Brazil
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for leprosy, the Brazilian Ministry of Health’s Sistema de Informação de Agravos de 

Notificação, or SINAN. This database contains an active registry for diagnosed cases of leprosy, 

and includes demographic, geographic, and clinical information for each patient. Access to this 

database was made available through collaboration with the Ceará coordinator for leprosy 

control at the Department of Community Health in the Faculty of Medicine at the Federal 

University of Ceará. 

 Population data for each municipality of Ceará State for use in the calculation of 

incidence rates was obtained from the Sistema IBGE de Recuperação Automatica (SIDRA, 

2007).   Spatial data for each municipality (n=184), including associated shapefiles, were 

obtained from the Instituto Brasileiro de Geografia e Estatística (IBGE, 2008).   

 Detection of clusters was carried out using the scan statistic in the SaTScan suite of 

software (Kulldorf, 2006).  As mentioned earlier, this method of cluster detection uses a mobile 

circular window that includes different sets of neighboring areas at different positions.  The 

radius of the circular window varies from zero to a maximum radius at each position such that 

the window never includes more than 50% of the total population at risk. This method allows 

detection that is flexible in both location and size (Onozuka & Hagihara, 2007). For this study, a 

retrospective spatial analysis was performed using the Poisson probability model, scanning for 

areas of either high or low rates.  To test for statistical significance, the number of Monte Carlo 

replications was set to 9999, and only clusters with a statistical significance of p < 0.05 were 

reported.  Two separate cluster detection analyses were run through SaTScan to produce two sets 

of clusters and relative risks: 1) a purely spatial analysis using the spatial scan statistic; and 2) a 

temporal-spatial analysis using the space-time scan statistic.    
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 Results from each of the cluster detection analyses were imported into a GIS using the 

ArcView suite of software (ESRI, 1999).  Clusters and relative risks were cartographically 

depicted and displayed using choropleth maps.  

8.3 Results  

 Table 8.1 is a summary of clusters detected by the purely spatial analysis. Figure 8.2 is a 

cartographic depiction of these clusters. In total, the purely spatial analysis detected three 

clusters. The most likely cluster included 11 municipalities and contained 6,782 observed cases 

and 2,399 expected cases (RR = 2.827, p = 0.0001).  Two secondary clusters were detected: the 

first including 120 municipalities containing 9,157 observed cases and 14,598 expected cases 

(RR = 0.473, p = 0.0001), and the second containing one municipality with 11,633 observed 

cases and 9,031 expected cases (RR = 1.288, p = 0.0001).  Figure 8.3 is a choropleth map of the 

relative risks for each municipality as calculated by the spatial scan statistic.   

Table 8.1: Significant high and low rate purely spatial clusters for leprosy in Ceará State, 
1995-2006  

 

Cluster 

No. of 

Municipalities 

in Cluster 

Observed 

Cases in 

Cluster 

Expected 

No. of 

Cases 

Cluster 

Relative 

Risk 

High or 

Low 

Risk 

P-value 

1 11 6,782 2,399 2.827 High 0.0001 

2 120 9.157 14,598 0.473 Low 0.0001 

3 1 11,633 9,031 1.288 High 0.0001 



Purely Spatial Clusters
No Cluster
1 (High)
2 (Low)
3 (High)

0 200 400 Kilometers

N

 
Figure 8.2: Purely spatial clusters of leprosy, Ceará State, Brazil, 1995-2006 
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Figure 8.3: Relative Risk of Leprosy by municipality of Ceará State, Brazil, as calculated by the purely spatial scan statistic 
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Table 8.2 is a summary of clusters detected by the temporal-spatial analysis. Figure 8.4 is 

a cartographic depiction of these clusters. In total the temporal-spatial analysis detected four 

clusters. The most likely cluster included 3 municipalities from April 1995 to March 2000 and 

contained 2,546 observed cases and 579 expected cases (RR = 4.702, p = 0.0001).  Three 

secondary clusters were detected: the first including one municipality from April 1995 to March 

2004 and containing 1,349 observed cases and 300 expected cases (RR = 4.660, p = 0.0001); the 

second containing 71 municipalities from April 1995 to April 2000 with 1,794 observed cases 

and 3,863 expected cases (RR = 0.432, p = 0.0001); and the third containing a single 

municipality from April 2000 to March 2005 with 5,603 observed cases and 4,187 expected 

cases (RR = 1.412, p = 0.0001).  Figure 8.5 is a choropleth map of the relative risks for each 

municipality as calculated by the spatial scan statistic.   

Table 8.2: Significant high and low rate temporal spatial clusters for leprosy in Ceará 
State, 1995-2006 

 

Cluster 

No. of 

Municipalities 

in Cluster 

Observed 

Cases in 

Cluster 

Expected 

No. of 

Cases 

Cluster 

Relative 

Risk 

High or 

Low 

Risk 

P-value 

1 3 2,546 579 4.702 High 0.0001 

2 1 1,349 300 4.660 High 0.0001 

3 71 1,794 3,863 0.432 Low 0.0001 

4 1 5,603 4.187 1.412 High 0.0001 



Space-Time Clusters
No Cluster
1 (High)
2 (High)
3 (Low)
4 (High)

0 200 400 Kilometers

N

 
Figure 8.4: Spatial-temporal clusters of leprosy within Ceará State, Brazil, 1995-2006 
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Figure 8.5: Relative risk for leprosy within municipalities of Ceará State, Brazil, as calculated by the space-time scan statistic
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8.4 Discussion 

 This study has confirmed the findings by Montenegro et al. (2004) that the spatial 

distribution of leprosy in the state of Ceará is extremely heterogenous.  Through the use of the 

spatial scan statistic, this study was able to identify clusters of high incidence rates in the 

northeastern municipality of Fortaleza and in the south-central municipalities of Nova Olinda, 

Crato, and Juazeiro do Norte.  With the inclusion of a space-time analysis, additional clusters of 

high incidence in the north-central municipalities of Sobral and Paramoti and in the south-central 

municipality of Iguatu were found.   

 In comparison to the study by Montenegro et al. (2004), which examined clustering of 

leprosy incidence in Ceará State for cases diagnosed between 1991 and 1999, this study found 

nearly identical clustering around the south-central and north-central portions of the state.  This 

study, however, has also identified Fortaleza as a hot spot. The fact that this study overlapped 

Montenegro’s by five years, also included the following five years, and found similar results 

could be evident that the progress to leprosy elimination in Ceará State is proceeding at a slow 

rate or that strategies of control programs have not changed drastically in the last decade to illicit 

geographic variation in incidence.      

For the highly populated municipalities of Fortaleza and Juazeiro do Norte, spatial 

clustering of cases may be occurring because of the link between leprosy and crowding, social 

inequality, or the urban environment—or could be due to better access to health services in urban 

areas (Kerr-Pontes, 2004).  Another explanation for the clustering of cases around population 

centers is the massive urban migration that has been occurring in Ceará within the last two 

decades (Montenegro et al., 2004).  These population movements contribute to suburban 

shantytowns, or favelas, that tend to maintain some characteristics of rural areas such as poor 
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housing, lack of sanitation, growing gardens, and keeping animals.  These environments are 

thought to provide a setting suitable for Mycobacterium leprae and hold an increased number of 

individuals susceptible to infection.  In order to better understand this phenomenon, it may be 

necessary to employ spatial analysis at smaller scales (i.e., within barrios or favelas) to determine 

whether or not clustering is occurring within certain urbanized areas (Lapa et al., 2006).  

The heterogeneous distribution of cases and subsequent clustering may also be due to 

differences in municipal surveillance systems of varying quality (Montenegro et al., 2004).  

Municipalities that are at economic advantages over others tend to have better health services 

and consequently detect new cases of leprosy more efficiently.   

The inclusion of a temporal component to this study allowed the identification of an 

additional ‘hot spot’ that was not identified in the purely spatial analysis. Relative risks, 

however, remained the same in both the temporal-spatial and purely spatial analysis. Most 

leprosy studies that use a temporal component in their analysis do so with caution because of the 

difficulty with operational issues that makes the temporal component of leprosy reporting 

somewhat skewed.  Nonetheless, geospatial analyses and surveillance should try to make the best 

use of temporal data, as it has the potential to provide valuable clues about the changes in 

incidence over time as a result of the alteration of control program strategies over time. 

 The use of spatial analysis and GIS in the detection of disease clusters warrants more 

attention from public health control programs. No doubt as these technologies develop, they will 

become more suited for application in the field (i.e., by healthcare workers), their interpretation 

will become more user-friendly, and access to them will become more readily available.   
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CHAPTER 9. SPATIAL AUTOCORRELATION OF LEPROSY IN RONDONIA STATE, 
1996-2005 

 
9.1 Introduction 

Located in the far southwestern region of the Brazilian Amazon (Figure 9.1), Rondonia 

State has been the repeated subject of many recent studies because of its quickly changing 

environmental and demographic landscapes (De Barris Ferraz et al., 2006).  Rondonia has been 

targeted by researchers who are interested in determining the effects of deforestation, increased 

carbon flux, degrading water quality, and deteriorating socioeconomic conditions (De Barris 

Ferraz et al., 2006).  There is little doubt that increased development and human migration into 

this state is having a detrimental effect on the land, its flora and fauna, and its human inhabitants.  

One area of particularly burgeoning research in Rondonia focuses on the effects of 

anthropogenic change on human health (Camargo et al., 1996; Camargo et al., 1999; Oliveira et 

al., 2003).  In Rondonia, environmental change due to anthropogenic activities within the last 40 

years have caused unprecedented increases in disease incidence in both rural and urban areas of 

the state (Takken et al., 2003).  In particular, incidence of vector-borne diseases such as malaria, 

leishmaniasis, and Chagas has risen dramatically—a phenomenon most likely due to both 

increased migration and environmental changes such deforestation and urban development.  

Leprosy is hyperendemic in Rondonia State, with detection rates for 2006 well above the 

national average at 8.08 cases per 10,000 population (DATASUS, 2007).  Like many other 

diseases in Rondonia, leprosy has witnessed a dramatic rise in incidence in the last three decades, 

despite aggressive control programs.  Seemingly far away from achieving elimination targets, 

Rondonia is in desperate need of new applications and strategies for the detection, treatment, and 

sustained surveillance of leprosy. 



 
 

Figure 9.1: Rondonia State (yellow), located in the tropical southwestern Amazon region of Brazil
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Similar to what is seen in Ceará State, Rondonia’s pattern of leprosy incidence represents 

a heterogeneous distribution with areas of high and low endemicity (Figure 9.2). However, the 

heterogeneous nature of this distribution is more apparent in Rondonia than Ceará; low-incidence 

municipalities have rates around 0.54 cases/10,000 population and high-incidence municipalities 

have rates around 53 cases/10,000 population.2  There is no doubt that these variations in rates 

are attributable to various heterogeneously distributed geographic and demographic factors. 

 In a method similar to the previous chapter’s, this study’s objectives were to detect and 

quantify spatial patterns of leprosy incidence in Rondonia State through the identification of 

clusters that represent either high or low risk for leprosy and to map probable transmission risk 

as calculated through spatial statistical methods. Two methods were used to identify clusters in 

this study: 1) a purely spatial analysis that does not take time into consideration; and 2) a space-

time analysis that considers the effects of space as well as time on leprosy incidence. 

9.2 Materials and Methods 

As mentioned previously, Rondonia is one of the nine states of the Amazonian region of 

Brazil, located in the southwestern part of the region near the Bolivian border and covering an 

area of 237,576, 167 km2 (CIA, 2006).  The state is divided into 52 municipalities, and has a 

total population of about 1,534,594 people, a number that has grown substantially in recent years 

because of migration into the state (IBGE, 2008; Ichii et al., 2005). 

Case data on patients diagnosed with leprosy in Rondonia State for the period of 1 

January 1996 to 31 December 2005, was obtained from the ongoing national population-based 

 
2 It should be noted that incidence rates calculated by this study, which used private case-specific notifications for 
leprosy, are about 3-10% higher than those given to the public through DataSUS.  



 
Figure 9.2: Leprosy incidence rates for Rondonia State, 2005.  Grey municipalities represent those below the leprosy 

elimination target.
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surveillance system for leprosy, the Brazilian Ministry of Health’s Sistema de Informação de 

Agravos de Notificação, or SINAN. This database contains an active registry for diagnosed cases 

of leprosy, and includes demographic, geographic, and clinical information for each patient. 

Access to this database was made available through collaboration with the coordinator for 

leprosy control for Rondonia State at the Department of Community Health in the Faculty of 

Medicine at the Federal University of Ceará. 

 Population data for each municipality of Rondonia for use in the calculation of incidence 

rates was obtained from the DataSUS (DATASUS, 2007). Spatial data for each municipality 

(n=52), including associated shapefiles, were obtained from the Instituto Brasileiro de Geografia 

e Estatística (IBGE, 2008).  Detection of clusters was carried out using the scan statistic and the 

SaTScan suite of software (Kulldorf, 2006) in a similar method to that defined in the previous 

chapter.   

9.3 Results  

 In total the purely spatial analysis detected four clusters within Rondonia State. The most 

likely cluster included a single municipality and contained 2,155 observed cases and 795 

expected cases (RR = 3.015, p = 0.0001).  The second cluster included six municipalities and 

contained 2,303 observed cases and 3,899 expected cases (RR = 0.512, p = 0.0001). The third 

cluster included 13 municipalities and contained 5,366 observed cases and 3,858 expected cases 

(RR = 1.626, p = 0.0001).  The fourth cluster included four municipalities with 377 observed 

cases and 820 expected cases (RR = 0.445, p = 0.0001).  Table 9.1 is a summary of clusters 

detected by the purely spatial analysis. Figure 9.3 is a cartographic depiction of these clusters. 

Figure 9.4 is a choropleth map of the relative risks for each municipality as calculated by the 

spatial scan statistic.   
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The space-time analysis detected four clusters within Rondonia State. The most likely 

cluster included a single municipality from 1 January 1999 to 31 December 2003, and contained 

1,152 observed cases and 394 expected cases (RR = 3.070, p = 0.0001).  The second cluster 

included six municipalities from 1 January 2001 to 31 December 2005, and contained 1,069 

observed cases and 2,117 expected cases (RR = 0.512, p = 0.0001). The third cluster included six 

municipalities from 1 January 1996 to 31 December 2000, and contained 1,055 observed cases 

and 524 expected cases (RR = 2.094, p = 0.0001).  The fourth cluster included 20 municipalities 

from 1 January 2000 to 31 December 2004, with 1,083 observed cases and 1,777 expected cases 

(RR = 0.577, p = 0.0001).  Table 9.2 is a summary of clusters detected by the space-time 

analysis. Figure 9.5 is a cartographic depiction of these clusters. Figure 9.6 is a choropleth map 

of the relative risks for each municipality as calculated by the spatial scan statistic.   

9.4 Discussion 

This analysis was able to confirm and quantify the heterogeneous spatial structure of leprosy 

incidence in Rondonia State, Brazil, through spatial analysis and the detection of significant 

clusters. Two analyses were performed: one that used the spatial scan statistic to detect purely 

spatial clusters, and the other that used the space-time scan statistic to detect temporal-spatial 

clusters. Both methods detected two hot spots and two cold spots of leprosy incidence.  

However, the spatial locations of these hot spots differed between the two analyses.  The purely 

spatial analysis identified hot spots in the northern center and eastern regions of the state and 

cold spots in the western and northern regions of the state.  The space-time analysis identified 

hot spots in the south-center and northeast regions of the state and cold spots in the north-center 

and southeast regions of the state.  Compared to the purely spatial analysis, relative risk for 

leprosy was seen to slightly increase in all regions when calculated by the space-time analysis. 
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Table 9.1: Significant high and low rate purely spatial clusters for leprosy in Rondonia 
State, 1996-2005 

 

Cluster 

No. of 

Municipalities 

in Cluster 

Observed 

Cases in 

Cluster 

Expected 

No. of 

Cases 

Cluster 

Relative 

Risk 

High or 

Low 

Risk 

P-value 

1 1 2,155 795 3.015 High 0.0001 

2 6 2,303 3,899 0.512 Low 0.0001 

3 13 5,366 3,858 1.626 High 0.0001 

4 4 377 820 0.445 Low 0.0001 

 
 
 

Table 9.2: Significant high and low rate purely spatial clusters for leprosy in Rondonia 
State, 1996-2005 

 

Cluster 

No. of 

Municipalities 

in Cluster 

Observed 

Cases in 

Cluster 

Expected 

No. of 

Cases 

Cluster 

Relative 

Risk 

High or 

Low 

Risk 

P-value 

1 1 1,152 394 3.070 High 0.0001 

2 6 1,069 2,117 0.512 Low 0.0001 

3 6 1,055 524 2.094 High 0.0001 

4 20 1,083 1,777 0.577 Low 0.0001 
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Figure 9.3: Purely spatial clusters of leprosy, Rondonia State, Brazil, 1996-2005 
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Figure 9.4: Relative risk for leprosy within municipalities of Rondonia State, Brazil, as calculated by the purely spatial scan 

statistic 
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Figure 9.5: Space-time clusters of leprosy, Rondonia State, Brazil, 1996-2005 
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Figure 9.6: Relative risk for leprosy within municipalities of Rondonia State, Brazil, as calculated by the space-time spatial 
scan statistic 
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Because of the differences between these two analyses, it can be inferred that time plays a key 

role in the spatial distribution of leprosy incidence in Rondonia State, a fact that has also been 

eluded to in studies of leprosy incidence in other Brazilian states (Matos, 2004; Moet et al., 

2006; Montenegro et al., 2004).   

9.5 Conclusions 

This chapter has detected spatially significant clustering of leprosy in Rondonia State 

using the scan statistics offered through SatScan (Kulldorf, 2006). Comparing the results to those 

found in Chapter 8, the distribution of leprosy incidence in Rondonia appears to be less 

heterogeneous than that in Ceará State, and leprosy clusters in Rondonia appear to be larger with 

more regular, non-dispersed shapes. The reasons for these differences can be:  1) demographic—

the population of Ceará State is much larger and therefore reflects different densities, age 

structures, and socioeconomic variation; and 2) environmental—the geography of Rondonia is 

nearly opposite from Ceará State ecologically.  Both states, however, have witnessed large 

changes in both environment and demographics in recent years through human migration and 

climate change.     

One of the limitations of this study is that it did not employ covariate analysis to associate 

risk factors with the spatial distributions. Because of this, no ecological assumptions about the 

epidemiology of leprosy except for basic space and time inferences can be made by this study.  

Future studies may wish to utilize the vast quantities of remotely sensed data or demographic 

data obtained by other studies to integrate into a GIS and spatial analysis for the purpose of 

ecological-epidemiological investigation (De Barris Ferraz et al., 2006). 
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There is no doubt that more research is needed to determine factors that influence the 

transmission of leprosy and the impact that interventions play in its epidemiology (Visschedijk et 

al., 2000).  Rondonia State, with its dynamic environmental and demographic landscape, 

provides a unique opportunity to examine the effects of massive anthropogenic change on 

leprosy incidence.  Future studies should build on the methods and results of this study in order 

to better understand the factors associated with the heterogeneous spatial structures of leprosy in 

Rondonia State.  No doubt that such information, combined with geospatial techniques like the 

ones used in this study, would aid in the surveillance and control of leprosy in Rondonia State.  
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CHAPTER 10. USE OF OBSERVED VERSUS STATE AND NATIONAL-LEVEL 
ADJUSTED INCIDENCE RATES TO DETECT SPATIAL CLUSTERS OF LEPROSY IN 

RONDONIA STATE, BRAZIL, FROM 1996-2005 
 

10.1 Introduction 

 As previously mentioned, since the attainment of global elimination of leprosy to a level 

below one case per 10,000 population worldwide in 2000, the World Health Assembly has 

proposed a “Final Push” to achieve the same prevalence at the national level (WHA, 1991).  This 

is particularly relevant for the five endemic countries that now contain over 90% of leprosy 

prevalence worldwide—Brazil, India, Madagascar, Mozambique, and Nepal (WHO, 2003).  

However, at the end of 2006, Brazil still had not come close to the WHA’s elimination target for 

leprosy, with a national incidence rate of 2.11 cases per 10,000 population. This number sounds 

near to the elimination target, but it must be remembered that it is an average—and therefore 

does not reflect geographic variation in incidence rates.  When considering that the country of 

Brazil covers a land area of around 8,511,965 km2 (only slightly smaller than the United States) 

and has a population of over 190 million, this number becomes more meaningless when trying to 

determine how close Brazil is to meeting elimination targets.      

At a smaller scale than national, rates vary dramatically from the north region (5.77) to 

the central-west (4.57) to the northeast (2.95) to the southeast (0.96) to the south (0.65) 

(DATASUS, 2007).  When viewed within regional subdivisions, the southern temperate regions 

of Brazil have met elimination targets, while the northern tropical regions are well above.  As 

expected, when continuing to compare rates at smaller and smaller subdivisions, such as state, 

municipality, or even barrios-levels, incidence rates become even more variable, with clear cut 

spatial variation in areas that are below and above the elimination target.  For instance, in Ceará  
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State, Brazil, some municipalities have incidence rates less than 0.1/10,000, while others have 

rates as high as 25/10,000 (Montenegro et al., 2004).   

No matter what the spatial subdivision, the demographic and geographic structures of any 

population will vary considerably from one area to another. These structures can include age, 

gender, race, education, and socio-economics. When investigating health outcomes, these 

elements of a population structure can influence the relative risk of a population for developing a 

disease.  For instance, as discussed earlier, age, race, and poverty can be important indicators of 

leprosy incidence (Kerr-Pontes, 2004).  As can be concluded, a portion of observed leprosy 

incidence may then be contributed to demographic and geographic variation across areas.  How, 

therefore, can differences in rates be compared across different geographic areas? 

One method frequently used in public health research when reporting data is to 

standardize or ‘adjust’ rates for demographic variation (Liu et al., 2006).  For instance, in the 

United States cancer mortality rates are often age-adjusted so that rates of cancer can be 

compared across communities with different age structures (NYSDH, 2007). This process makes 

sense considering that a community with a higher number of older individuals will have higher 

rates of cancer than one with a higher number of younger individuals. If a comparison between 

these two communities only involved observed rates, then the association between exposure and 

disease would be confounded by age. Adjusting rates is one way to statistically remove this type 

of confounding.   

Rates are usually adjusted to a standard population, which for the United States usually 

involves the Standard Million Distribution of the total population, figures that are based on the 

1940, 1970, or 2000 U.S. censuses (PDH, 2007).  Other standard populations include the WHO-

issued World Standard Population, the Canadian Standard Population for 1991 and 1996, and the 
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European Standard Population (NCI, 2007). Within these population datasets, each demographic 

or geographic category is listed with its respective population.  Age-adjustments are calculated 

by first multiplying the category-specific observed rate by the standard population for that 

category (PDH, 2007).  The resultant number is the number of cases that are ‘expected’ to occur 

in each category if the specific death rates had prevailed within the standard population per unit 

time. Adjusted rates are then found by summing the number of expected deaths and dividing by 

the total standard population.  

 This study investigated the variation in leprosy clustering at the municipality level of 

Rondonia State, Brazil, when observed and adjusted rates were used in the calculation of 

clusters. Rates in this study were adjusted for age, gender, education, and zone (urban/rural) 

using both a national (Brazilian) standard population and a state-level (Rondonian) standard 

population. The purpose was to determine whether or not rate adjustment plays a role in cluster 

detection, and whether or not such a process should be used in routine spatial comparisons of 

rates across various geographic subdivisions in the public health surveillance of leprosy. 

10.2 Materials and Methods 

The study area of Rondonia is described in the previous chapter. Data on incidence of 

leprosy for each municipality of Rondonia (n=54) were derived from an ongoing national 

population-based surveillance system for leprosy, the Brazilian Ministry of Health’s Sistema de 

Informação de Agravos de Notificação, or SINAN. This database contains an active registry for 

diagnosed cases of leprosy, and includes demographic, geographic, and clinical information for 

each patient (n=13,841). Though non-specific aggregated data is available through the world 

wide web, specific data with the respective desired variables (municipality of residence, age, 

gender, education, and zone) for each case was made available through collaboration with the 
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leprosy coordinator for Rondonia State at the Department of Community Health in the Faculty of 

Medicine at the Federal University of Ceará.   

Observed incidence for each municipality was calculated by counting the number of 

cases that occurred per municipality per year and dividing by the respective municipality’s 

population for that year.  Municipality population data for incidence calculation was obtained 

from DATASUS (2007). 

Two standard populations were used to calculate two adjusted rates for each 

municipality. The first was a Brazilian Standard Population, based on the 2000 Brazilian census, 

and the second was a Rondonian Standard Population, also based on the 2000 Brazilian census.  

This information can be accessed by the public via the web through the Sistema IBGE de 

Recuperação Automática (SIDRA, 2007). 

Spatial data for use in GIS relating to the 54 municipalities of Rondonia were obtained 

from the Instituto Brasileiro de Geografia e Estatística (IBGE, Brazilian Institute of Geography 

and Statistics database). 

Categories for adjustment included age, gender, education, and zone.  To limit the size of 

datasets for this study, each municipality’s population was divided into four age groups (<20, 20-

39, 40-59, and 60<), two genders (M/F), six education levels according to years of instruction 

(<1, 1-3, 4-7, 8-11, >11, and unknown) and two zones (U/R).  This requires that datasets for the 

Brazilian and Rondonian Standard Populations have 96 (=4 X 2 X 6 X 2) categories, while the 

dataset containing incidence information for each municipality be divided into 5,184 (=54 X 4 X 

2 X 6 X 2) categories.  Both Excel and ArcView GIS were used to calculate adjusted rates. 

Calculation of adjusted rates proceeded as shown in Table 10.1.  
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Table 10.1: Example of Method of Rate Adjustment for Ariquemes Municipality 

Municipality 
(n=54) Category

Category-
Specific 

Incidence 
Rate (per 
10,000) 

 
Standard 

Population
(Brazil) 

 

Expected 
Cases in 
Standard 

Population 

Ariquemes MUAA3
 10.78 X 2,815,620 = 3,035 

Ariquemes MUAB 8.56 X 4,176,905 = 3,575 

. . .  .  . 

. . . . .  . 

Total:     ∑ 1,500,176 

Adjusted Rate = 1,500,176 / 169,799,170 = 0.0884 * 10,000 = 8.84 

    
 Spatial clusters for observed, state-adjusted, and national-adjusted rates were calculated 

using the SaTScan software (Kulldorf, 2006). Results from SaTScan were imported into 

ArcView and merged with the associated shapefile in order to create cartographic depictions of 

clusters.  In addition to mapping the detected clusters, choropleth maps showing relative risks for 

each municipality were created. 

10.3 Results 

 When using observed leprosy rates, the SaTScan software detected four clusters.4 The 

most likely cluster contained one municipality with 2,037 observed cases and 789 expected cases 

(RR = 2.855, p = 0.0001).  The second cluster contained six municipalities with 2,215 observed 

                                                 
3 MUAA = Male, Urban, Age group A (<19), Education level A (<1 year)  
4 These clusters will vary from those detected in the previous chapter because this study was dependent on a more 
complete dataset that had to include age, gender, education, and zone for each case. 
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cases and 3,724 expected cases (RR = 0.518, p = 0.0001).  The third cluster contained 13 

municipalities with 5,221 observed cases and 3,765 expected cases (RR = 1.621, p = 0.0001).  

The final cluster contained three municipalities with 298 observed and 712 expected cases (RR = 

0.406, p = 0.0001). These clusters are summarized in Table 10.2 and depicted in Figure 10.1.  

Relative risks per municipality as calculated by observed incidence rates are shown in Figure 

10.2    

When using incidence rates adjusted to the Rondonia State Standard Population, the 

SaTScan software detected five clusters. The most likely cluster contained seven municipalities 

with 4,252 observed cases and 1,032 expected cases (RR = 4.121, p = 0.0001).  The second 

cluster contained 20 municipalities with 2,582 observed cases and 5,463 expected cases (RR = 

0.352, p = 0.0001).  The third cluster contained one municipality with 1,522 observed cases and 

414 expected cases (RR = 4.005, p = 0.0001).  The fourth cluster contained seven municipalities 

with 558 observed cases and 1,699 expected cases (RR = 0.328, p = 0.0001). The fifth cluster 

contained three municipalities with 1,957 observed cases and 1,260 expected cases (RR = 1.645, 

p = 0.0001). These clusters are summarized in Table 10.3 and depicted in Figure 10.3.  Relative 

risks per municipality as calculated by state-adjusted incidence rates are shown in Figure 10.4. 

When using incidence rates adjusted to the Brazilian (National) Standard Population, the 

SaTScan software detected five clusters. The most likely cluster contained seven municipalities 

with 469,849 observed cases and 117,724 expected cases (RR = 5.355, p = 0.0001).  The second 

cluster contained 20 municipalities with 263,232 observed cases and 580,028 expected cases (RR 

= 0.338, p = 0.0001).  The third cluster contained one municipality with 168,889 observed cases 

and 47,664 expected cases (RR = 3,866, p = 0.0001).  The fourth cluster contained seven 

municipalities with 60,936 observed cases and 181,816 expected cases (RR = 0.307, p = 0.0001).    
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Table 10.2: Significant purely spatial clusters for leprosy in Rondonia State using observed 
incidence rates, 1995-2006 

 

Cluster 

No. of 

Municipalities 

in Cluster 

Observed 

Cases in 

Cluster 

Expected 

No. of 

Cases 

Cluster 

Relative 

Risk 

High or 

Low 

Risk 

P-value 

1 1 2,037 789 2.855 High 0.0001 

2 6 2,215 3,724 0.518 Low 0.0001 

3 13 5,221 3,765 1.621 High 0.0001 

4 3 298 712 0.406 Low 0.0001 

 
 
 

Table 10.3: Significant purely spatial clusters for leprosy in Rondonia State using state-
adjusted incidence rates, 1995-2006 

 

Cluster 

No. of 

Municipalities 

in Cluster 

Observed 

Cases in 

Cluster 

Expected 

No. of 

Cases 

Cluster 

Relative 

Risk 

High or 

Low 

Risk 

P-value 

1 7 4,252 1,032 4.121 High 0.0001 

2 20 2,582 5,463 0.352 Low 0.0001 

3 1 1,522 414 4.005 High 0.0001 

4 7 558 1,699 0.328 Low 0.0001 

5 3 1,957 1,260 1.645 High 0.0001 
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No Cluster
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4 (Low)
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Figure 10.1: Clusters detected using the purely spatial scan statistic and observed incidence rates for leprosy, Rondonia State, 

Brazil, 1996-2005 
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Figure 10.2: Relative risk for leprosy in Rondonia State as calculated using observed incidence rates, 1996-2005 
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Figure 10.3: Clusters detected using the purely spatial scan statistic and state-adjusted incidence rates for leprosy, Rondonia 

State, Brazil, 1996-2005 

129 

 



130 

 

 

 
 

Figure 10.4: Relative risk for leprosy in Rondonia State as calculated using state-adjusted incidence rates, 1996-2005 
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The fifth cluster contained one municipality with 104,079 observed cases and 49,120 expected 

cases (RR = 2.202, p = 0.0001). These clusters are summarized in Table 10.4 and depicted in 

Figure 10.5.  Relative risks per municipality as calculated by state-adjusted incidence rates are 

shown in Figure 10.6.    

10.4 Discussion 

 Though rate adjustment is a common practice in public health to compare incidence 

across different geographic regions, its utility in spatial analysis is still not well understood (Liu 

et al., 2006).  Through the implementation of spatial analysis to three variations of the same 

dataset, this study was able to quantify the resulting geospatial distributions of leprosy in 

Rondonia State in order to compare the effects of adjusted rates on cluster detection.  This 

analysis used two different populations for rate adjustment, one based on a Rondonian standard 

population and the other based on a Brazilian standard population.  Though clusters detected 

Table 10.4: Significant purely spatial clusters for leprosy in Rondonia State using 
nationally-adjusted incidence rates, 1995-2006 

 

Cluster 

No. of 

Municipalities 

in Cluster 

Observed 

Cases in 

Cluster 

Expected 

No. of 

Cases 

Cluster 

Relative 

Risk 

High or 

Low 

Risk 

P-value 

1 7 4,252 1,032 4.121 High 0.0001 

2 20 2,582 5,463 0.352 Low 0.0001 

3 1 1,522 414 4.005 High 0.0001 

4 7 558 1,699 0.328 Low 0.0001 

5 3 1,957 1,260 1.645 High 0.0001 
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Figure 10.5: Clusters detected using the purely spatial scan statistic and nationally-adjusted incidence rates for leprosy, 
Rondonia State, Brazil, 1996-2005 
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Figure 10.6: Relative risk for leprosy in Rondonia State as calculated using nationally-adjusted incidence rates, 1996-2005
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using both sets of adjusted rates were relatively similar, they differed considerably from those 

detected by using actual observed rates.   

 When reviewing the changes between observed, state, and national cluster maps, several 

changes can be noted.  The capital municipality and the most populated, Sao Miguel do Guaporé, 

remains a high cluster throughout all maps.  Two peripheral municipalities, Porto Velho and 

Vihena, change from low clusters using the observed rates to high clusters using the adjusted 

rates.  Municipalities to the northeast of Rondonia change from being high clusters to no cluster.  

Municipalities away from the periphery towards the center portion of the state on a north-south 

axis change from being no cluster to cold clusters. Comparing the state-adjusted clusters to the 

national-adjusted clusters, it can be noted that the large municipality of Guajará-Mirim changes 

from a high cluster to no cluster.  When comparing the maps produced of relative risk, it 

becomes apparent that when going from observed to state to national rates the relative risks 

become more evident in contrast—a useful result when trying to emphasize the variations in risk 

across municipalities. 

 The trends observed during rate adjustment indicate that the clusters change substantially 

between observed rates for leprosy and adjusted rates.  Trends between state-adjusted and 

national-adjusted rates vary much less.  This fact brings to light a key point: that adjusting rates 

will lead to different results in spatial analysis of leprosy incidence.  However, the question 

remains: which set of clusters are a more accurate representation of the leprosy situation in 

Rondonia?  To answer this question would require a detailed statistical analysis of the 

demographic and clinical data that is beyond the scope of this dissertation. However, it can be  

hypothesized from looking at the demographic data that the cluster changes noted from 
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adjustment are more likely to account for population bias than those found through observed 

rates alone. 

10.5 Conclusions 

  This study has examined the effects of using adjusted rather than observed rates on the 

detection of clusters in leprosy incidence in Rondonia State.  It was found that adjusting 

incidence for demographic variables substantially altered the clusters detected through spatial 

analysis.  It can be concluded that rate adjustment may offer superior results when trying to 

compare or model clusters across larger geographic areas (Bailey et al., 2005), such as between 

municipalities or states, but that these clusters may not offer suitable results when quantifying 

leprosy incidence in specific or localized areas.   

Rate adjustment, though commonly used in reporting epidemiological data, has a long 

way to go before being routinely used in spatial analysis. No doubt there is a greater role for rate 

adjustment in the geospatial aspects of leprosy surveillance, especially in large, demographically 

diverse countries such as Brazil and India. However, more research is needed to determine 

exactly how rate adjustment affects spatial analysis and how these effects can be interpreted by 

health care practitioners and geographers.  
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CHAPTER 11. INVESTIGATING SPATIAL AND TEMPORAL-SPATIAL CLUSTERS 
OF TUBERCULOSIS IN CEARA STATE, BRAZIL, USING GIS AND THE SCAN 

STATISTIC 
 

11.1 Introduction 

Within the last few decades, tuberculosis (TB) has reemerged as a major global public 

health problem.  Ranked as the world’s seventh worst morbidity-causing disease, TB is present 

in an estimated 2 billion people globally, or approximately one-third of the earth’s population 

(WHO, 2006).  Every year, nearly 8.9 million new people contract the disease, and almost 3 

million people die from TB-related illness (Li & Brainard, 2006). When the global impact of the 

disease is measured using disability-adjusted life-years (DALYs), TB ranks second globally 

(Murray & Lopez, 1997).  Approximately 99.8% of the world’s TB burden falls on developing 

countries (Daniel, 2004). 

Despite the work of aggressive public health control programs, global TB incidence 

continues to rise each year (Munch et al., 2003).  Lack of knowledge of the disease, acute 

subjective responses to TB treatment, travel barriers, stigma, adverse effects of medication, and 

overburdened TB control programs have all hampered control efforts to contain the disease 

(Dwolatzky et al., 2006). The worst barrier to controlling TB within the last couple of decades, 

however, has been the relationship that has emerged between HIV and TB, especially with the 

presence of a new multi-drug resistant strain of TB in southern Africa (Vendramini et al., 2005).   

 TB is an airborne-spread infectious disease caused by the acid-fast bacillus 

Mycobacterium tuberculosis. TB transmission dynamics are complex, with many interrelated 

factors contributing to risk including unemployment, overcrowding, poverty, unequal 

distributions of wealth, and accelerated urbanization (Munch et al., 2003; Vendramini et al., 

2005). TB tends to affect adults more than children, and adults play a greater role in the disease’s 
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transmission (Lienhardt et al., 2003). In most instances, however, it has been impossible to 

model the exact nature of TB epidemiology because of the inability to determine exactly when 

and where transmission occurs (Munch et al., 2003).  

Brazil ranks sixteenth in the world in TB prevalence and accounts for over half of all TB 

cases in Latin America (Souza et al., 2005; USAID). In 1998, in response to a national TB crisis 

in Brazil, the Ministry of Health established the National Tuberculosis Control Plan (NTCP) with 

the goal of involving 100% of municipalities in the program, identifying 92% of the existing 

cases by 2001, curing 85% of cases, and reducing incidence by 50% and mortality by 66% by 

2007 (Ruffino-Neto & Souza, 2001). Not only has this plan set to standardize the identification, 

diagnosis, treatment, and control of tuberculosis across municipalities, but it has also set out to 

improve the country’s TB surveillance system through the collection of higher quality data.  

However, major setbacks have included the lack of political commitment, lack of 

epidemiological data representative of the TB situation in Brazil, and lack of understanding of 

local (territory) levels of disease dynamics. As a result, the NTCP has not achieved its 2007 goal 

for TB control, and the number of TB cases in Brazil continues to rise (Vendramini et al., 2005). 

 Ceará State, located in the northeast corner of Brazil, is not only one of the poorest and 

least-developed states within Brazil, but is also the state with the highest level of income 

inequality (Montenegro et al., 2004).  These demographic traits no doubt contribute to the 

relatively high prevalence and transmission rates of TB seen within Ceará State (Facanha, 2006).   

Recent applications of geographic methods (namely GIS) in TB research has led not only 

to a better understanding of TB transmission dynamics and epidemiology, but also to a wider 

understanding of the important role that these methods can play in disease surveillance and 

cluster detection.  Moonan et al. (2004) related clustering of TB cases with genotyped isolates of 
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TB in Dallas, Texas, to determine that TB transmission was occurring at focal points of 

transmission rather than wider, more randomized points of transmission.  Munch et al. (2003) 

integrated census block data with clinical TB data in Capetown, South Africa, to investigate the 

possibility of TB transmission within and around various shebeens (pubs).  Tiwari et al. (2006) 

used geographic analyses to detect clusters of TB within Almora district, India, in order to clarify 

and quantify the health burden of  TB in this area.  Onozuka & Hagihara (2007) and Nunes 

(2007) used a geographic temporal-spatial analysis to identify space-time clusters of TB within 

Japan and Portugal, respectively. Vendramini et al. (2005) analyzed the variance in standardized 

incidence of TB in São José do Rio Preto, São Paulo State, Brazil, using demographic and 

socioeconomic data to show that TB incidence was directly correlated to socioeconomic level. In 

Olinda, Pernambuco, Brazil, Souza et al. (2005) also analyzed the spatial distribution of TB in 

relation to several demographic and socioeconomic variables, finding a relationship between the 

number of household inhabitants and TB incidence. (It should be noted that all of these studies 

involved intense collaboration between clinicians with epidemiological data and geographers 

with the capability of using advanced spatial analyses.)   

 To date, there have been no studies that detect statistically significant clusters of TB in 

Ceará State, Brazil.  Using the spatial scan statistic (Kulldorf, 2006) and GIS, this study 

investigated the spatial clustering of registered cases of TB and identified the areas of abnormal 

risk of TB within Ceará State, Brazil, from January 1995 to August 2006.  The results of this 

study can be used to help clarify and quantify the burden of TB in Ceará State in an effort to 

improve its control.       
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11.2 Materials and Methods 

This study analyzes data from Ceará State, Brazil, a location that is described in detail in 

Chapter 8.  Data relevant to TB incidence for Ceará State, was obtained from both demographic 

and clinical databases.  Clinical data on each TB case diagnosed between 1 January 1995, and 31 

August 2006, including date of diagnosis, municipality of residence, gender, and birth date, were 

obtained from the Brazilian Ministry of Health’s national registry of TB cases (Sistema de 

Informação de Agravos de Notificação, or SINAN) through collaboration with clinicians in the 

Department of Community Health in the Faculty of Medicine at the Federal University of Ceará. 

Demographic data were obtained from the Sistema IBGE de Recuperação Automatica 

(SIDRA, 2007).  This database, derived from the 2000 Brazilian Census, allows users to 

aggregate data at various spatial scales (i.e., state, municipality, or barrios level) within certain 

parameters (i.e., gender, urban/rural, age group, education, etc.).  This functionality allows the 

calculation of different strata of the population—for  instance the number of males living in rural 

areas between the ages of 20 and 25 who have 5-8 years of total education.  Population data for 

each of the 184 municipalities were extracted from this database, including total population for 

each year between 1995 and 2006 and gender/age group data for the year 2000.  For the purpose 

of this study, the population was divided into four age groups: 0-19, 20-39, 40-59, and >60.  The 

number of males and females for each of the four age groups and for each of the 184 

municipalities was aggregated into a population file.   

 Geographic data, which included shapefiles containing spatial information for each of the 

184 municipalities of Ceará, were obtained online from the Brazilian Institute of Geography and 

Statistics (IBGE, 2008).   
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11.3 Exploratory Spatial Data Analysis   

Before deciding on the type of spatial analysis to perform for this study, an initial basic 

exploratory spatial data analysis was used to examine case trends of TB data within Ceará State.  

Incidence rates aggregated to the municipality level were visualized using a choropleth map 

(Figure 11.1). As can be seen from this figure, there appears to be clustering of high rates in 

three epicenters of Ceará State: the central-north, the center-east (Fortaleza), and the southeast. 

However, spatial analysis was required to determine whether or not these epicenters were true 

clusters and whether or not they were significant.  

By plotting the number of cases detected per month, it can be seen in Figure 11.2 that 

incidence rates have remained relatively stable from 1995-2006, with only a minor decline in 

incidence.  Also evident from this figure are temporal detection ‘spikes’ that hint at a possible 

seasonality for TB detection (whether physiological or bureaucratic).  With this information, it 

seemed appropriate to thus apply a temporal component to the spatial analysis.    

In addition to temporary trends observed with exploratory data analysis, demographic 

trends within Ceará State also became evident through the exploratory data analysis.  Figure 11.3 

depicts the number of cases detected by age between January 1995 and August 2006.  From this 

figure it can be seen that the majority of cases of TB are detected between the ages of 20 and 39.  

Gender is also a factor in TB detection, with more males being detected than females (Figure 

11.4).  With this information, it was decided to add a covariate temporal-spatial analysis to this 

study that took into consideration the underlying age and gender structure of the Ceará 

population.
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Figure 11.1: Average yearly incidence rates of tuberculosis for Ceará State, Brazil, between January 1995 and August 2006
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Figure 11.2: Monthly incidence of TB cases in Ceará State, Brazil, from January 2005 to August 2006 
 

  

142 

 



 

 

 
 

Figure 11.3: Age at time of detection for tuberculosis cases, Ceará State, from January 1995-August 2006 
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Figure 11.4: Gender of tuberculosis cases reported between January 1995 and August 2006, Ceará State, Brazil 
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11.4 Data Analysis 

Based on the results of the exploratory data analysis, it was decided that three separate 

analyses should be performed: 1) a purely spatial analysis of total population and cases without 

covariates to detect simple clustering of high and low rates; 2) a space-time analysis of cases and 

total population with no covariates to assess the role temporal clusters associated with spatial 

clustering; and 3) a space-time analysis of aggregated cases and population with the covariates 

gender and age to assess the role of these demographic factors in cluster detection.  The purpose 

of using three separate analyses was to compare the nature of the clusters detected by each. 

 Clusters of TB were identified in Ceará State at the municipality level using the scan 

statistic in the software SaTScan (Kulldorf, 2006).  A retrospective space-time analysis was 

performed using the Poisson probability model, scanning for areas of unusually high or low 

rates.  Maximum cluster size was set to 50% of the total population at risk and 50% of the study 

period.  To ensure sufficient statistical power, the number of Monte Carlo replications was set to 

9999, and only clusters with a statistical significance of p < 0.05 were reported.  Each 

municipality’s cluster data was merged with its associated shapefile in ArcView GIS (ESRI, 

1999) to produce cartographic maps of TB clusters. In addition to depicting clusters, each 

municipality’s relative risk was displayed on a choropleth map in order to visualize areas of high 

and low risk.   

11.5 Results 

The results of the purely spatial analysis of TB data from January 1995 to August 2006 

with no covariates are shown in Table 11.1 and Figures 11.5 and 11.6.  The most likely cluster 

for this analysis included three municipalities with 28,202 observed cases and 17,349 expected 

cases (RR = 2.294, p = 0.0001).  Four secondary clusters were detected: the first containing 134 
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municipalities with 15,278 observed cases and 25,464 expected cases (RR = 0.445, p = 0.0001); 

the second containing one municipality with 2,505 observed cases and 1136 expected cases (RR 

= 2.263, p = 0.001); the third containing 21 municipalities with 2481 observed cases and 3969 

expected cases (RR = 0.607, p = 0.0001); and the fourth cluster containing 2 municipalities with 

720 observed cases and 424 expected cases (RR = 1.709, p = 0.0001).  

The results of the space-time analysis of TB data from January 1995 to August 2006 with 

no covariates are shown in Table 11.2 and Figures 11.7 and 11.8.  The most likely cluster for this 

analysis included three municipalities with 11,789 cases from 1 January 1995, to 31 August 

1999.  The expected number of cases within this cluster was 6,516 (RR = 2.032, p = 0.0001).  

Four secondary clusters were detected: the first containing 134 municipalities, 6244 observed 

cases, and 11,311 expected cases (RR = 0.494, p = 0.0001) from 1 September  2001 to 31 August 

2006; the second containing one municipality, 1259 observed cases, and 421 expected cases (RR 

= 3.041, p = 0.001) from 1 January 1995 to 31 August 1999; and the third containing 20 

municipalities, 969 observed cases, and 1738.98 expected cases (RR = 0.549, p = 0.0001) from 1 

September  2001 to 31 August 2006. 

The results of the space-time analysis with gender and age as covariates are summarized 

in Table 11.3 and Figures 11.9 and 11.10.  The most likely cluster for this analysis contained two 

municipalities with 11,059 observed cases and 6,611 expected cases (RR = 1.861, p = 0.0001) 

and occurred from 1 January1995 to 31 August 1999.  This analysis identified four secondary 

clusters: the first containing 134 municipalities with 4490 observed cases and 8199 expected 

cases (RR = 0.504, p = 0.0001) occurring from 1 September  2001 to 31 August 2006; the second 

containing a single municipality with 995 observed cases and 412 expected cases (RR = 2.443, p 

= 0.0001) occurring from 1 January 1995 to 31 August 1999; the third containing fifteen 
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Table 11.1: Significant high and low rate tuberculosis spatial clusters in Ceará State, 1995-
2006 

Cluster 
No. of 

Municipalities 
in Cluster 

Observed 
Cases in 
Cluster 

Expected 
No. of 
Cases 

Cluster 
Relative 

Risk 

High or 
Low 
Risk 

P-value 

1 3 28,202 17,349 2.294 High 0.0001 
2 134 15,278 25,464 0.445 Low 0.0001 
3 1 2,505 1,136 2.263 High 0.0001 
4 21 2,481 3,969 0.607 Low 0.0001 
5 2 720 424 1.709 High 0.0001 

 
Table 11.2: Significant high and low rate tuberculosis temporal-spatial clusters in Ceará 

State, 1995-2006  

Cluster 
No. of 

Municipalities 
in Cluster 

Time 
Period 

Observed 
Cases in 
Cluster 

Expected 
No. of 
Cases 

Cluster 
Relative 

Risk 

High 
or Low 

Risk 
P-value 

1 3 1/1/1995-
31/8/1999 11,789 6,516 2.032 High 0.0001 

2 134 1/9/2001-
31/9/2006 6,244 11,311 0.494 Low 0.0001 

3 1 1/1/1995-
31/8/1999 1,259 421 3.041 High 0.0001 

4 20 1/9/2001-
31/8/206 969 1,738 0.549 Low 0.0001 

 
Table 11.3: Significant high and low rate temporal-spatial clusters of tuberculosis using 

covariate analysis, Ceará State, 1995-2006 

Cluster 
No. of 

Municipalities 
in Cluster 

Time 
Period 

Observed 
Cases in 
Cluster 

Expected 
No. of 
Cases 

Cluster 
Relative 

Risk 

High 
or Low 

Risk 
P-value 

1 2 1/1/1995-
31/8/1999 11,059 6,611 1.861 High 0.0001 

2 134 1/9/2001-
31/9/2006 4490 8199 0.504 Low 0.0001 

3 1 1/1/1995-
31/8/1999 995 412 2.443 High 0.0001 

4 15 1/1/1995-
31/8/2000 491 870 0.560 Low 0.0001 

5 2 1/9/2002-
31/8/2006 314 129 2.436 Low 0.0001 
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Figure 11.5: Purely spatial clusters of TB within Ceará State, Brazil 
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Figure 11.6: Relative risk of TB in Ceará State, Brazil, as predicted by the purely spatial scan statistic
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Figure 11.7: Space-time clusters of TB within Ceará State, Brazil 
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Figure 11.8: Relative risk of TB in Ceará State, Brazil, as predicted by the space-time scan statistic 
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Figure 11.9: Space-time clusters of TB in Ceará State, Brazil, detected with age and gender as covariates 
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Figure 11.10: Relative risk of TB in Ceará State, Brazil, as detected by the space-time scan statistic with age and gender as 

covariates 
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municipalities with 491 observed cases and 870 expected cases (RR = 0.560, p = 0.0001) 

occurring from 1 January 1995 to 31 August  2000; and the fourth containing two municipalities 

with 314 observed cases and 129 expected cases (RR = 2.436, p = 0.0001) occurring from 1 

September  2002 to 31 August 2006.   

11.6 Discussion 

The purely spatial analysis identified three hot spots in Fortaleza, Sobral, and Itapage 

municipalities.  These three cluster groups lie on an east-west linear axis in the north of Ceará 

State. The entire southern region of Ceará was identified through this analysis as a cold spot, 

which is in contrast to what was seen with leprosy in the previous chapters.  In the temporal-

spatial analysis, only two hot spots were detected, in Fortaleza and Sobral municipalities. 

Itapage, located between Fortaleza and Sobral, was not identified as a hot spot when the 

temporal component was added to the analysis.  In addition, the temporal-spatial analysis also 

resulted in the disappearance of two municipalities from cold spots when compared to the purely 

spatial analysis. In the space-time analysis with age and gender as covariates, there was no 

change in hot spot detection compared to the purely spatial analysis. However, like with the 

temporal-spatial analysis, many municipalities disappeared from cold spots in the northern 

region of the state.   

 No change in relative risks for TB was seen between the purely spatial and temporal-

spatial analyses.  However, in the temporal-spatial analysis with covariates, there was a slight 

increase in relative risk in several municipalities in the north of Ceará. 

11.7 Conclusions 

 In this study, three different methods were used to analyze clusters of TB incidence in 

Ceará State, Brazil. All three methods identified ‘hot spots’ along an east-west line in the north 
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central portion of the state, while ‘cold spots’ existed in the southern and far-north regions of the 

state.  This analysis provides empirical evidence that TB is heterogeneously dispersed and that 

risk of TB is clustered in Ceará State.  Compared to the distributions of leprosy determined in 

Chapter 8, however, TB seems to show less state-wide heterogeneity.  This trend may be 

attributable to TB’s predilection for urban areas and leprosy’s predilection for rural areas.      

 The major limitation of this analysis is that it used minimal assumptions about underlying 

factors associated with TB transmission to calculate clusters.  Age and gender, which are both 

heavily associated with TB risk, appeared to play a minimal role in cluster detection, indicating 

that perhaps other geo-demographic factors are involved in the spatial heterogeneity of TB risk. 

The results, however, do not contradict the importance of demographics in TB transmission 

(Vendramini et al., 2005). Because no other covariates were examined, no other ecological 

assumptions about TB transmission were made.     

 The SaTScan software used in this analysis proved to be an efficient method for TB 

cluster detection.  Results files of the analysis are easily integrated into GIS software, and 

clusters are readily mapped using this information.  In addition, this software integrates statistical 

significance testing into the cluster detection such that only statistically significant clusters are 

reported.  One limitation to using this software with covariate analysis, however, is that it gives 

no quantifiable or statistical information about the relationship between independent variables 

(covariates) and dependent variables (risk).  Nonetheless, the user-friendly functionality and cost 

effectiveness of SaTScan make it an ideal software for use in public health surveillance and 

disease control programs both in the developed and developing worlds.    

 From the point of cluster detection, several paths could be taken in follow-up studies to 

further examine the spatial distributions of TB in Ceará State. In this study, the municipality was 
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used as the unit of analysis.  However, future studies may wish to look at different spatial scales 

to determine whether or not differences in clustering exist (i.e., to examine the effects of the 

Modifiable Areal Unit Problem) (Odoi et al., 2003).  In addition, future studies may also wish to 

examine ‘hot spots’ using smaller area units in order to identify potential risk factors.  This type 

of study would be complemented by the use of remotely sensed data (Lienhardt et al., 2003).  

Because the relation of TB to urban settings, future studies may also wish to consult urban 

geographers in order to assess the specific risks associated with TB transmission in urban 

landscapes (Facanha, 2006; Munch et al., 2003).  Finally, to address the need of more 

standardized geographic methods in public health research, future studies may wish to 

investigate the variation produced by different spatial statistics and software. This analysis, for 

instance, showed that variation in clustering results with different types of analyses even within a 

single family of spatial statistics. Studies that examine differences in geographic techniques will 

in the long run assist epidemiologists and statisticians in improving current methodological 

issues (Ward & Carpenter, 2000). 

The use of geographic techniques in health research no doubt provides a vital part of 

epidemiological research and disease control. Disease mapping and cluster detection like the 

ones examined in this study can be used to target high-risk areas or plan for future control 

programs for TB.  In addition, the results of this study and similar ones can be used to assess the 

effectiveness of past and current TB control programs in Ceará State. Despite the limitations of 

this study, the detection of clusters of TB in Ceará State has demonstrated that risk of TB is not 

homogenously distributed throughout the state and that there are underlying geographic and 

demographic factors involved in TB transmission that deserve further attention.  
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CHAPTER 12. A PHOTOJOURNEY THROUGH THE FIELD 
 

The research presented in this dissertation in the preceding chapters is the product of a 

two-month data-collecting field trip into the poorest and driest region of Brazil, Ceará State.  My 

path to Brazil actually started in Australia, where I was studying Public Health and Tropical 

Medicine at the Anton Brienl Centre (ABC) at James Cook University in Townsville, 

Queensland.  It was here that I met a guest lecturer who was giving a presentation on a little 

known human flea parasite in poor tropical regions of Brazil and Mozambique called tunga.  I 

was so intrigued by the description of this little bug that after class I immediately went to 

introduce myself to the lecturer, Dr. Jorg Heukelbach.  While chatting with Jorg, Dr. Richard 

Speare, the director of the ABC, came up and mentioned to Jorg that I was a graduate student at 

LSU interested in medical geography.  Upon hearing this, Jorg practically jumped in the air, as 

he had been looking for someone who could begin to spatially analyze the oodles of 

epidemiological data that he had been collecting over the past few years! Jorg had read of the 

advances of geographic methods in the health sciences, but did not have the time or experience 

to implement them into his own research.  Jorg therefore mentioned that he would be more than 

happy for me to come over to Brazil to meet with his research associates and collect data for use 

in my dissertation.   

The following section presents some of the photos that I took while in Brazil that have 

special descriptive meaning or that illustrate some key points during my data collection in 

Fortaleza.  In breaking with the serious format of the preceding chapters, this photo journey is 

offered as a light-hearted trip through an eye-opening and amazingly intriguing part of Brazil. 

Each photo is accompanied by a short narrative that describes its significance during my field 

research phase in Ceará State. 



 
Figure 12.1: Aerial view of Fortaleza, Brazil 

 After twenty-six hours of airplanes and airports, I arrived in Fortaleza, Brazil, just at the 

start of their hot, dry, and windy November summer. The first thing that I noticed from the plane 

was the amount of housing per city block, defined by the rustic clay shingle roofs.  From the 

plane, I could see stray dogs chasing a group of flip-flop wearing teenagers down the street, 

school children playing soccer in a dirt field, and men fishing in what looked like an extremely 

tepid city drainage pond.  This was not the United States or Europe.  In fact, what I was seeing 

was just an early indication of what I was to experience nearly the whole time while I was in 

Fortaleza, and ironically what I had come to Brazil to study.  These were communities of ultra-

poor, ultra-displaced, and ultra-diseased Brazilians trying to scratch a living in an unbelievably 

harsh and degraded environment.  This was the actuality behind the etiological and 

epidemiological disease theory that I had learned over prior several years.  I was finally seeing it 

first-hand.
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Figure 12.2: Teacher removing Tunga lesions from child in Foundation Kindergarten 

 My research collaborator, Jorg, as a physician and researcher in public health, took it 

upon himself to assist the poor in Fortaleza as much as he could. Having raised thousands of 

Euros in his home country of Germany, Jorg established a Foundation Kindergarten for 

underprivileged kids in one of Fortaleza’s poorest favelas, Morro do Sandros.  This foundation is 

the only place where these kids have the opportunity for a clean shower, a decent meal, and a 

basic education.  In addition, the foundation removes the kids from the drug and sex trafficked 

corners of the favela and gives them a safe haven in which to grown and learn. 

 This picture shows the kindergarten teacher removing tungiasis lesions from a child (one 

whom I found out later was very boisterous and loved to have her picture taken).  Unfortunately, 

these children are so overburdened with these parasites that the teacher must spend the majority 

of her time removing the lesions—a task that parents generally do not consider because they are 

too busy scraping a living or dealing with more ‘important’ matters—basic survival. 
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Figure 12.3: Jorg demonstrating tungiasis and pediculosis (head lice) 

 The reality of the setting of these favelas is that they are incubators for the development 

of so many diseases simply because of the socioeconomic-associated hygiene practices of the 

people that live in them.  Tungiasis, which Jorg is pointing out here on the left, can be simply 

managed by wearing shoes, applying bug repellant, and clearing established lesions.  However, 

these ‘simple’ public health measures prove too great even for these people—they cannot afford 

shoes or repellant (though they use home remedies like coconut oil and battery acid), and the 

parasite burdens are too large for them to keep up with.  The one child in the left picture had 

several visible lesions at different stages on the bottom of his foot.  To further illustrate the poor 

conditions of the favela, Jorg pulled a random girl from the kindergarten class and passed a 

single comb stroke through her hair.  We counted 12 head lice from that one pass (in the right 

picture)! Control of pediculosis is relatively impossible here because treating a single child will 

just lead to re-infection from her classmates.  These parasites lead to an array of spiraling 

conditions including superinfections, anemia, and impaired learning—just to name a small few.  
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Figure 12.4: Kindergarten children loved their pictures taken 

 One of the quirks of being in Fortaleza that I had to get use to was being the odd person 

out.  As a tall blond Caucasian, I rarely matched the darker skinned and haired people around 

me.  As such, I stuck out to such a degree that I was like a celebrity—at least among the children.  

They particularly loved my camera, not only because it was an electronic device (which they 

have few of) but it was also a way that they could pose and see themselves on screen (the LCD 

was equivalent to a big screen TV in their minds). Something I never came to understood was 

their use of finger ‘signs’ as they posed.  Walking around the favela was actually very dangerous 

for a foreigner, especially one toting a laptop, GPS, and a camera.  However, I used the fact that 

all eyes-were-on me as a tactic to deter potential thieves—which must have worked as I returned 

home with all the equipment that I brought.  As a general rule, I found people to be extremely 

helpful and kind, especially in situation where I obviously had no idea what I was doing! 

Riding the city bus was the main means by which I traveled around the city.  It amazed 

me that there were New York-level traffic jams in Fortaleza, but that the jams were caused by 

city buses rather than taxis.  I was disheartened at the amount of diesel fumes emitted by the 

buses and even acquired an air-quality-induced respiratory irritation while in Fortaleza. 
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Figure 12.5: Touring the favela 

 The realities of life are harsh in the favela.  During my first day in Morro do Sandros, as 

Jorg was showing a German medical student and me around, we walked a young kindergarten 

boy whose father had been killed in an accident with a city bus a few hours earlier to his 

makeshift home (left picture).  This was disastrous for his family, as his mother (who was a 

prostitute with several kids) now had the added burden of only having a single income to support 

her family.     

 One of the ‘homes’ we visited was occupied by a rather worn looking woman in her late 

40’s (right picture).  Jorg explained to me that this woman has had a total of 20 kids during her 

life, many of different fathers, and that half of them had already died.  Indeed, the reason we 

were visiting this family was because her newest 6-month old had severe fever.  Their home 

absolutely astounded me with its sand floors, makeshift furniture, and lack of electricity.  

However, there was a wonderful amateur painting of the Virgin Mary on the wall.   
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Figure 12.6: Morro do Sandros 

 Morro do Sandros is one of the poorest favelas in Fortaleza.  However, it is located next 

to one of the most famous and wealthy beach-suburbs of the city.  As can be seen in this 

photograph, the tall skyscrapers of the beach upper-class are just a stone’s throw from the urban 

slum of Morro do Sandros.  The contrast between rich and poor is such an evident feature in 

Ceará State and across Brazil. 

 Trash collection is not a feature of the favelas.  As evidenced here, many of the residents 

just throw their trash right outside of their homes.  This rubbish acts as suitable homes for stray 

dogs, cats, rats, fleas, and other harbingers of disease.  Plastic, with its ability to withstand 

decomposition for years, is found scattered around every corner of Fortaleza.  To a Westerner, 

this seems untidy—but to the resident, this trash rolling in the wind is a natural part of the 

landscape. I have often times wondered that if I were in this situation, sitting around all day in 

the shade unemployed, if I might be induced to try to clean up all the rubbish around me, or if I 

simply would be so overwhelmed by it that I would casually ignore it.   
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Figure 12.7: Diseased stray dog in Morro do Sandros 

 While touring the favela, we came across many stray animals that were extremely shy 

and diseased. This dog had immediately noticeable scabies, an ectoparasitic disease that is often 

transmitted to humans.  Scabies is highly contagious and from a public health standpoint is one 

of the most difficult ectoparasitic infections to treat.  Though I did not directly see many people 

with scabies in the favelas, there is little doubt in my mind that the disease is endemic in human 

populations here as well as in animal populations.   

 Stray animals are a sad sight in Fortaleza and provide a reflection of the conditions 

suffered by humans as well.  Just as these animals struggle to survive, so do their human 

counterparts.  Many of the diseases that I encountered while in Brazil are shared between 

humans and animals that both live a co-existence in deprived conditions. 
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Figure  12.8: Stray dogs collected by the Fortaleza Department of Zoonotic Diseases 

 
 One of the places I visited while in Fortaleza was the city’s Department of Zoonotic 

Diseases, which not only tracks communicable disease conditions in animals but also in humans.  

This department is responsible for controlling diseases by controlling their animal reservoirs and 

vectors.  The department had a very large dog containment facility that catches around 50 stray 

dogs a day (right picture).  Many of the dogs are tested for zoonotic infections, and all unclaimed 

dogs are put to sleep several days later. Extensive paper data records are kept recording the 

locations of collected animals and the presence of disease. 

 I met some veterinary students at the department that were dissecting some of the dogs to 

examine them for parasites. They showed me examples of active disease in several animals, 

including a dog (left picture) with a serious case of visceral leishmaniasis (an ulcerating disease 

transmitted to humans from animal reservoirs by sandflies).  
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Figure 12.9 Jorg pointing out cases of rabies in Fortaleza on a pin map 

 Coming from a computerized world of GPS and GIS, it was a shock to me to find out that 

the city of Fortaleza still used physical maps and pins to determine the structure of disease in the 

city.  Jorg had taken me to meet the head of the Department of Zoonotic Diseases so that I could 

obtain some of the city’s disease data for a spatial analysis.  The head of the department 

explained to me that he had all the data on his computer, but the hard drive failed and he lost it 

all.  The only data remaining for the past 4 years was a room full of blown-up street maps filled 

with pins representing the various diseases.  Settling with this, I took high-quality photographs of 

the maps hoping I could extract what I needed from the photographs.  I was able to crudely 

digitize the leptospirosis, leishmaniasis, and rabies cases onto a map in GIS, but was unable to go 

further because I could not match the case data with the spatial data simply because of the 

incompleteness of the publically available street shapefiles for Fortaleza.  This was a 

disappointment, because data for leprospirosis and rabies rarely exists in such magnitude suitable 

for spatial analysis. 
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Figure 12.10: Research collaborators including Germans, Brazilians, and an American 

 The acquisition of data in Brazil comes in two ways: 1) the direct collection of data from 

the field; and 2) through collaboration with those who have already collected the data.  What is 

unique about geography is that it can use data from other sources that were collected for 

purposes other than spatial analysis.  In my case, I was on the hunt for spatial data and 

epidemiological data. Depending on the scale, I could obtain spatial data from the internet or 

collect it in the field with a GPS. Without qualifications, I could not collect epidemiological data 

directly, however, and had to rely on collaboration with healthcare workers to get this 

information.  In most instances, this involved Jorg introducing me to his colleagues who worked 

in various capacities such as the Director of Leprosy Elimination in Rondonia or simply as a 

general physician at the local health clinic.  In most instances, these people were enthralled that I 

was interested in their data and happily agreed to let me use it in my research.  One of the 

disturbing factors about this process, however, was how easy it was to obtain confidential disease 

data!  In countries like the United States, obtaining epidemiological data is a drawn out process 

that requires approval from a variety of third-party sources.  However, in Brazil, the need for 

people to analyze such data has made its acquisition much easier to the researcher.    
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Figure 12.11: Breakfast with German medical students 

 In one of my more relaxing field trips, a group of German medical students and I took a 

bus to the famous coastal town of Lagoania, northwest of Fortaleza for the weekend.  These 

students came to Fortaleza via Jorg to do observing and participate in research. One of them, 

Daniel, was explaining to me that he came to Fortaleza to do research in the Obstetrics ward, 

where he was learning to deliver babies with HIV+ mothers.  Liana (to my right) was the only 

Brazilian among us, and she was assigned to be my ‘assistant’ while I was in Brazil.  She was 

one of Jorg’s graduate students who had recently been awarded a scholarship to research 

tungiasis in Mozambique. Originally, Liana and I were going to work on a project that was to 

involve a mini-GIS spatial analysis of the predilection sites for tungiasis on the human body.    

Liana proved to be a great asset during my time in Fortaleza, showing me around and 

translating for me in most of the instances where I could not.    We had a very relaxing weekend 

in Lagoania eating local seafood and doing a bit of swimming and surfing in the Atlantic.   

168 

 



 
Figure 12.12: Cutaneous larval migrans on a German medical student’s arm 

 When studying tropical diseases in the field, there is always the chance of contracting the 

diseases you are studying. While eating breakfast in Lagoania, I happened to notice a red 

macular lesion on one of the German medical student’s arms.  Asking her about it, I found out 

that it was cutaneous larval migrans (CLM).  CLM can be caused by several zoonotic parasitic 

helminthes of animals that accidently invade the human body and crawl around inside a bit 

before dying.  I was told in Australia that many aboriginal people present with large cuts in their 

arms because they were trying to “cut out the worm.” In reality, these worms burrow through to 

the subcutaneous layer and usually hours to days later an immune reaction occurs causing these 

red macular lesions.  However, by the time the lesions appear the worm has moved on.  Simple 

hygiene is a control for these, as they are transmitted through animals’ fecal material left as an 

environmental contaminant.  The number one rule for tropical disease field research, therefore, is 

do not put anything in your mouth that is not clean and do not walk barefooted! 
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Figure 12.13: Views of typical home sites in Balbino 

 One of my primary objectives while in Brazil was to collect GPS coordinates of 

households in Balbino, a small village on the southeast outskirts of Fortaleza.  The reason I chose 

Balbino as a study area was because Jorg had done several very thorough epidemiological 

studies that included disease data for nearly the entire village’s population.  Balbino was 

shocking to me because it was a community practically carved out of sand dunes and swamps—a 

seemingly unlikely choice to set up a community.  The houses were very basic, usually made out 

of wood sticks and palm fronds, and had rudimentary kitchens set apart out the back so that fire 

was not an issue with the main dwelling.  Most of these people drank from bore water, which 

when I had visited had recently been contaminated causing Balbino to import truckloads of 

potable water from Fortaleza.  A jean factory had recently moved into Balbino, creating a mini-

economy in the village and giving hope to the people who were traditionally working in the 

failing fishing industry (on Google Earth images of shrimp farms can be seen around Balbino—

which have led to an enormous amount of salt water invasion and coastal destruction). Despite 

the factory, the socioeconomic future of Balbino remains uncertain.   
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Figure 12.14: Some of the causes of zoonotic disease spread in Balbino 

 While walking through Balbino, several lessons that I had learned in public health 

training about the lack of hygiene practices that lead to disease became apparent.  As discussed 

earlier, many zoonotic diseases are transmitted to humans via fecal contaminants that contain 

either eggs or infective worms.  It was common while walking around Balbino to find animal 

dung on the walking paths—and equally common to find villagers walking around barefooted. In 

one house we visited, the residents were disposing of their baby diapers in an enclave behind 

their house that double d as a pig pen.  Obviously the pigs were eating the diapers, which may or 

may not have been contaminated with helminthes that in turn were infecting the pigs. One lady 

gladly showed us her pet dog, which reluctantly allowed us to look at its tungiasis lesions. 
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Figure 12.15: Lady offering cashew apples to research passers-by 

 I had always eaten cashews at parties and at home, but never really comprehended where 

they came from.  In Brazil I found the answer: they grew on large shady trees and hung off the 

bottoms of these fruits that tasted like apples. It was an odd arrangement of a kidney-bean- 

looking nut handing off of a bell-pepper-looking fruit. 

 I was instantly flabbergasted and ecstatic the first time I saw a cashew hanging on the 

tree, as I tried to imagine how many fruits it would take to fill a box of nuts.  I was told by many 

of the Brazilians that I came across that the fruit was nice to eat and its juice sweet, but that I 

should not eat the cashew nut raw.  Come to find out, the raw nut contains cyanide that must be 

roasted out before it can be eaten—a process that added to the complexity of processing these 

nuts.  Every time I see or eat a cashew now, I am reminded of where they came. 
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Figure 12.16 The curse of plastic in the developing world 

 Even in rural communities like Balbino one can find rubbish strewn about over the 

landscape.  Plastic seems to be a curse for the developing world, with a strong penchant for 

shopping bags and water bottles to resist decomposition and remain as permanent fixtures.  I saw 

a similar problem in North Africa, where people find ways of recycling just about everything 

except for plastic shopping bags. Balbino was not an exception and in just about any part of the 

village was littered with residual plastic items.  Fortunately, plastic rubbish tends not to be 

directly associated with being a fomite for disease, but is an indication that a community is not 

practicing effective garbage collection.  It is saddening to see such beautiful areas littered so 

badly, especially considering what little effort it takes to keep things tidy. 
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Figure 12.17: Relaxing during data collection in Balbino 

 Balbino in mid-December is hot, windy, dry, and dusty.  Fortunately for me, I was use to 

the heat and walking around the village for a few days did not prove to be overwhelming. My 

two companions, Liana and Maria, were equally use to the heat.  Most of the people in Balbino 

did not have electricity or air conditioning, so they sat out in the shade during the heat of the day 

making it easy to chat with them.  Although the heat can be a deterrent to most people, I did not 

mind it, especially considering that most of the mosquitoes and sand flies were not active during 

the hottest parts of the day.  

 Liana was able to find us local food to eat during our fieldwork and often times we were 

invited in to eat with families—this gave me ample opportunity to see not only the inside of the 

homes but also to learn a few new culinary techniques.  The most memorable item that I ate 

while in Balbino was a stew made of manna ray that was eaten with rice.  It was a bit stringy, but 

very tasty.  I have to say that the food in Brazil is very unique, being a blend of local products 

and western presentation.  I did have to adjust to the eating schedule of Brazilians, which 

includes a light breakfast, a very heavy lunch, and a light supper late at night.  The large lunches 

nearly incapacitated me for a couple of hours, but gave me a good understanding of the necessity 

of siesta.       
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Figure 12.18: Christmas time in the favela 

 I was fortunate enough to be in Fortaleza around Christmas time so that I could share in 

the special activities that Jorg had planned for the children in Morro do Sandros.  As a fundraiser 

for the activities, the children made Christmas cards from their own recycled paper, and Jorg sent 

the cards to Germany to be sold to raise money.  With the funds, Jorg bought the children 

Christmas presents which happened to be delivered by Santa himself!  The children had also 

prepared several Christmas songs, which they very eagerly sung to the group of German medical 

students and me.  Afterwards was a feast for the kids that included hot dogs—something that I 

would normally consider ‘junk’ food but was actually quite a positive augmentation of these 

kids’ diets.  In addition to the presents given to the children, the German medical students and I 

donated money to buy baskets of rice and beans for each child’s family.   
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Figure 12.19: Learning to speak the language 

 I have learned through experience that learning a language is a lot easier if thrown into it 

rather than having to study it independently.   Before going to Brazil, I bought several 

Portuguese language books to learn the basics in grammar and syntax and a few useful 

vocabulary words.  While there, however, I was amazed to find that people would speak to me in 

English by preference.  This was especially true for all of the academics and students that I 

met—come to find out learning English is a big priority for them because English is considered 

critical in getting publications.    

 In a somewhat comical event, one of Jorg’s friends in the Kindergarten Foundation came 

up to me and started rattling off in Portuguese at me, to which I simply continued to nod and 

smile. I believe he talked to me for about five minutes and in that time I think that I understood 

maybe five or six words that he said.  However, I do not think he ever realized that I did not 

speak Portuguese. 
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Figure 12.20: Future opportunities in Fortaleza 

 During my two-month field research campaign in Brazil, I was able to meet many 

wonderful people who showed me both the best and worst aspects of their country.  I left Brazil 

not only with valuable research data, but also with experiences that I will never forget.  Before I 

left Fortaleza, I took a picture of a dental chair located in the Kindergarten Foundation to serve 

as a reminder that someday I may be able to return to Brazil with an increased capacity to 

directly help the people that I once researched.   
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CHAPTER 13. CONCLUSION 
 
 The health landscape of most of the world today is an amalgamation of disparities, 

contrasts, complexities, and opportunities.  These challenges are intricate outcomes of the 

extraordinary interplay between human physical and cultural environments that reflect the vast 

multitude of spatial ‘uniqueness’ that exists around the globe.  In essence, these differences are 

all products of geography—and since the dawn of time one key principle has dominated and 

guided the pursuit of medical inquiry: that health is fundamentally and intimately linked to 

geography.   

 There is perhaps no greater place on earth where geography—both physical and 

cultural—plays such a prominent role in health outcomes as in the tropical developing world.  It 

is here that literally billions of people suffer and die from easily curable or preventable diseases 

that exist because of a range of factors that scale from issues of hygiene that cause diseases like 

dracunculiaisis to complex host-vector-agent interactions that result in deadly infestations with 

diseases like falciparum malaria.  It is also in the tropical developing world where the greatest 

social and economic inequalities exist.  In terms of health, this means diverging from the 

standard medical practices of the developed world to create new and innovative ways to find, 

detect, and treat disease as well as sustaining adequate health in populations and communities—

not just individuals.  The challenge in developing these new approaches over the last three 

hundred years, since the dawn of ‘tropical’ medicine, has been to identify those geographic 

factors unique to the tropics that result in such disproportionate amounts of disease in these 

populations.  It has thus been necessary to develop an array of tools, technologies, and 

methodologies within geography that can be used to gain a better understanding of the etiology, 

epidemiology, and control of tropical diseases. 
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 Despite the complementary natures of medical geography and tropical medicine, these 

two disciplines have only recently begun to realize the potential of each other. Indeed, since they 

both diverged from imperial medicine around the middle of the nineteenth century, medical 

geography and tropical medicine have both developed as separate and independent entities 

within the social and health sciences, respectively. It has only been recently, since the 

development of several key technologies and methodologies in medical geography and the 

emergence and re-emergence of several key tropical diseases, that we have seen the reunification 

and increased communication between these two fields. 

 The unprecedented growth in medical geography over the last two decades is partially 

attributable to an increase in demand for health-related research, but the main push forward for 

medical geography has been the advances seen in geographic technologies and methods.   

Geographic information systems, developed in the 1980’s, have proven to be by far the greatest 

impetus and asset to the growing field of medical geography.  This technology, which enables 

the capturing, storage, analysis, and display of complex sets of many different data types, has 

revolutionized not only the field of geography but also the multitude of sister fields that use GIS 

as a tool for spatial research. To complement the applications of GIS in geographic research, 

several other key technologies have also emerged in the last few decades including remote 

sensing and global positioning systems.  Remote sensing has enabled the acquisition of data in 

areas of the globe that was previously impossible and has enabled the continuous recording of 

large amounts of environmental data over time—with direct implications for research dealing 

with global trends over long periods, such as the study of climate change on human health.  

Global positioning systems, which use trilateration to determine a user’s position in space and 

time, have also transformed geographic research.  This technology over the past decade has 
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become increasing user-friendly, affordable, and widespread such that its applications have 

extended far beyond academic research to be included in many parts of everyday life, such as in 

vehicle navigation. GIS, remote sensing, and GPS have thus enabled a degree of geographic 

analysis and application that is larger than anything seen in geography’s history, and promise to 

continue to revolutionize the field as more sister fields recognize its great potential.    

 One of the features of medical geography that has made it so useful in health research is 

statistical spatial analysis, which enables the quantification and qualification of health events in 

comparison to a hypothetical distribution.  There are a variety of spatial statistics, including 

global, local, and focal statistics that can be used in spatial analysis.  In health research, spatial 

statistics are usually taken a step further to include cluster detection.  Cluster detection has 

increased the capacity of spatial analysis in health research because it enables the rapid 

identification of areas that represent either high or low disease risk.  Once these areas are 

identified and determined to be statistically significant, hypotheses can be made about the 

underlying processes that produce the patterned events—hypotheses that can lead to insight into 

a disease’s causation or to the discovery of potential risk factors. As such, the spatial statistical 

methods offered in medical geography are extremely valuable tools in health research. 

 Medical geography, with its powerful armamentarium of technologies and methods, has 

expanded into a variety of niches across a variety of disciplines.  One field that has embraced 

medical geography in recent years is tropical medicine, or the study of health problems that 

occur more frequently or are more difficult to control in the tropics.  The relationship between 

medical geography and tropical medicine is evident in the literature, especially in social science 

and geographic literature, but is less evident in tropical medicine literature.  Because many of the 

people who would implement the results of spatial analysis into the field are more likely to read 
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or come across articles in tropical medicine journals rather than geography journals, it becomes 

vital to understand the trends of use and publishing of geographic articles within tropical 

medicine journals.  

In an examination of tropical medicine journals, it was found that only a little more than 

one percent of published articles actually contained geographic analyses that utilized GIS.  Fifty-

four percent had first authors from the United States and Europe, while thirty-seven percent had 

authors from tropical developing countries. A little more than half of the articles, or fifty-three 

percent, had authors affiliated with the country in which the investigation was undertaken.  Most 

of the articles examined three key tropical diseases: malaria, schistosomiasis, and dengue.  What 

these trends indicate is that mainstream tropical disease research is still dominated by non-

tropical developed countries and that the applications of GIS are still only applied to specific 

tropical diseases with propensity for spatial analysis.  One apparent trend discovered by this 

research is that the number of articles with GIS published over time in tropical disease journals 

has substantially increased over the past seven years. With increased awareness of the 

capabilities of medical geography within tropical disease research, there is no doubt that this 

trend will continue.  What is needed, however, is increased cooperation between developing and 

developed world research groups so that the results of such studies can be more effectively 

applied in the field—namely in tropical developing countries. This means engaging more 

scientists from the tropical developing world, encouraging more publications from this part of 

the world, and undertaking more studies that utilize geographic methods in tropical developing 

countries.  With these goals in mind, geographers and clinicians will be more equipped to 

develop the relationship between medical geography and tropical medicine, with direct 

consequences for the improvement of health in these parts of the world. 
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With a clearer understanding of the role that medical geography can play within the fields 

of tropical medicine and public health, this dissertation further examined six case studies that 

implemented the methods of geographic analysis into several sets of health data.  These case 

studies were all based on data collected in the field in Brazil, a country that has proven to be an 

ideal setting for this research because of the prevalence of tropical diseases, the quantity and 

quality of health data collected by the Brazilian Ministry of Health, the vigor of Brazilians to 

want to use up-to-date geographic technologies and methods, and their urgent need to focus 

resources on several diseases and underprivileged communities across the country.  

The first case study presented herein utilized several basic and fundamental concepts in 

spatial analysis to determine the spatial structure of the human flea disease tungiasis in a rural 

fishing village of northeast Brazil.  Using spatial descriptors, the K-function, and hot spot 

analysis, it was determined that tungiasis is weakly spatially autocorrelated in Balbino, though 

no more than population itself.  These results indicate that the disease tungiasis, though 

dependent on an environmental cycle, is more likely to be correlated with population rather than 

environmental risk factors. This conclusion is in agreement with several qualitative clinical 

hypotheses for tungiasis such as variable in-home attack rates dependent on individual family 

member parasite burden.  Tungiasis, a disease that is rarely investigated in medical literature 

despite its high prevalence in underprivileged communities, deserves further attention from both 

medical geographers and clinicians in order to more effectively illicit its control and prevention. 

The second case study presented in this dissertation examined the spatial structure of four 

intestinal helminths over time in Balbino. The unique feature of this study was that it utilized 

epidemiological data collected during three periods before and after mass treatment with the anti-

helminthic drug Ivermectin. This enabled the visualization of parasite re-appearance after 
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treatment that potentially could correspond to areas where these parasites are most prone to 

infect. The geographic method used to determine this visualization was kernel density 

interpolation, a relatively quick and easy technique that produces choropleth maps of parasite 

density.  Results of this case study indicated that each of the four parasites is likely to show 

environmental niche-partitioning and that Ivermectin is likely to induce varied effects on the 

spatial structure of each parasite.  Two of the parasites, Strongyloides  and Ascaris, showed 

definite propensities of infection in certain areas of the village that correspond to sandy and 

swampy regions despite the fact that they are transmitted through larva and egg stages, 

respectively.  This case study, though easily analyzed using GIS, shows how methods of 

geographic analysis can complement the results of an epidemiological study and enable quick 

visualization of parasite trends over time. 

The third and fourth case studies, in an effort to augment the leprosy elimination effort in 

Brazil, examined spatial autocorrelation of leprosy incidence in two ecologically and 

demographically distinct regions of Brazil, Ceará and Rondonia states.  The methods used in 

both of these case studies were identical, allowing direct comparison of the results across the two 

states. A freeware software program, SatScan, and the Kulldorf space-time scan statistic were 

implemented in order to quantify the spatial autocorrelation of leprosy.  Results indicated that 

leprosy was both positively and negatively spatially autocorrelated in both states. In Ceará, 

positive autocorrelation tended to be within the most populated municipalities—a fact that 

reflects the recent mass migration of rural communities into the urban areas of Ceará because of 

drought and lack of employment.  In Rondonia, positive autocorrelation tended to be more 

generalized and included larger areas of the state—reflecting the rural nature of Rondonia and 

perhaps a less developed health infrastructure system for leprosy detection.  Methods of spatial 
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autocorrelation like the ones demonstrated in these two studies have the potential to be utilized in 

leprosy surveillance programs across Brazil in order to effectively assess detection trends, treat 

and control cases, and manage health resources.  

The fifth case study in this dissertation presented a novel method of data adjustment in 

order to more effectively analyze epidemiological trends across demographically variable 

regions.  Rate adjustment, though frequently employed to report epidemiological trends in tables, 

is rarely employed in geographic analyses and to the author’s knowledge has never been 

employed in order to examine its effects on spatial autocorrelation. Using the same data 

examined in the fourth case study in Rondonia state, this case study adjusted leprosy incidence 

rates to both state and national population estimates according to four demographic variables. 

Results show that adjusting rates dramatically alters the results of spatial analysis, but that the 

results of rate adjustment are more likely to reflect the true underlying situation of leprosy 

incidence across regions with complex demographic variation. This topic deserves more 

attention from statisticians and researchers, as it could be used to more accurately portray the 

leprosy situation across Brazil and other hyper-endemic countries when spatial analysis is 

employed. 

The sixth and final case study presented in this dissertation is comparable to the third 

case study on leprosy autocorrelation in Ceará State, except that this case study considered the 

spatial autocorrelation of tuberculosis.  Though these diseases lie within the same bacterial 

family, their niches within communities is known to be almost polar opposites.  The results of 

the spatial analysis confirm this idea, with cold spots and hot spots appearing in different areas 

than what were seen with leprosy.  However, Fortaleza, the most populated municipality of 

Ceará, was a hot spot for both leprosy and tuberculosis in both analyses.  Fortaleza, which has 
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witnessed unprecedented growth and migration in recent years even for Brazilian standards, is 

deserving of closer analyses that examine smaller scales of autocorrelation.  Though the location 

of transmission of leprosy and tuberculosis is almost impossible to identify, spatial analyses on 

city-level scales would be able to give clues as to the dynamics of detection, treatment, and 

management of these two diseases.          

This dissertation thus presented several case studies that demonstrate how geographic 

methods common to medical geography can be applied to epidemiologic data sets that deal with 

tropical medicine.  Though not all geographic analyses of health problems are identical, the basic 

framework for approaching these problems is consistent and the case studies presented here can 

be used to get an idea of how to organize such an analysis. For many health professionals, the 

idea of approaching geographic methods and analyses on their own is daunting; however, many 

health professionals do not realize the abundance of free geographic software designed 

specifically to analyze epidemiological data from geographic perspectives—the results of which 

are easily interpretable by non-geographers. The ideal situation, however, is for health 

professionals and geographers to work together in their research so that both analysis and 

interpretation can be taken to higher academic levels. This cooperation will no doubt continue to 

solidify the role that geography plays in health research, and lead to more effective and efficient 

disease control and prevention strategies with direct consequences for global human health.    
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