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Abstract 

Structure and morphology of bone are variable by species.  The influence of different 

factors on structure and morphology is still debated.  Qualifying and quantifying these 

differences are necessary in the evaluation of fragmentary bones in order to identify specific 

species.  To understand the influence of species of origin on the microscopic structure of bone 

tissue, the developmental and biomechanical forces specific to a skeletal element must also be 

assessed. 

This research is a preliminary analysis of the histological bone structures in terms of their 

area, density and spatial organization.  To achieve this research goal, the cross-section of three 

major skeletal structures of three common quadrupeds ubiquitous across North America and 

commonly found in association with human remains were compared.  The study analyzed the 

mid-shaft cross-section of six femora, five humeri, and six mid-thoracic ribs of the white-tailed 

deer (Odocoileus virginianus); six femora, six humeri, and six mid-thoracic ribs of the domestic 

dog (Canis familiaris); and five femora, four humeri, and six mid-thoracic ribs of the domestic 

pig (Sus scrofa domesticus).   The cross-section of each skeletal element was divided into eight 

sections along anatomically recognized body planes.  All histomorphometric measurements and 

observations were taken within these sections to explore the spatial organization of the 

microscopic structures across the mid-shaft cross-section. 

Plexiform bone observations suggest not only species-specific presence and absence of 

this bone structure but a relation to the skeletal element.  There was an almost complete absence 

of plexiform bone in the mid-thoracic rib and reduced presence in the humerus of all three 

species.   

Secondary osteon area is larger for the pig samples compared to the other species, in all 

three skeletal elements, suggesting a species-specific difference in osteon development.  On the 
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other hand, though similar in area, deer and dog showed interspecies, parallel patterns between 

like elements (humerus and humerus, femur and femur).  Secondary osteon density followed an 

expected trend of increasing density associated with older animals.   

The implications for this study are two-fold.  First, the results suggest future avenues of 

research for histologically differentiating species in both forensic and archaeological contexts.   

Second, the results support the hypothesis that it is important to incorporate a spatial analysis of 

microscopic structure distribution as an additional source of information about species and bone 

element differences in microscopic arrangements of the bone tissue. 
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Chapter 1: Introduction 

Fragmentary bones have complicated issues of identification for physical anthropologists 

and archaeologists alike.  Gross morphological analysis may not be sufficient in differentiating 

bone specimens of mammals with similar sized skeletal elements.   

 Bone histology, through a microscopic comparison of bone cross-section, offers a 

potentially valuable tool in evaluating species when only fragments or portions of bones remain.  

Qualifying and quantifying differences among the femur, humerus and mid-thoracic rib cross-

sections of deer (Odocoileus virginianus), dog (Canis familiaris), and pig (Sus scrofa 

domesticus) are the first steps in understanding differences in organization and structural patterns 

as a method of bone fragment identification and human versus non-human differentiation. 

 Examining the spatial organization of the bone cross-section is a major element of this 

study.  Each bone cross-section is divided into eight sections along known body planes.  All 

qualitative observations and quantitative measurements are reported and analyzed by section for 

each species and element.  The methodology allows any spatially related organizational patterns 

to be revealed. 

1.1 Research Goals 

 There are three major goals of this thesis project.  The first goal of the research is to 

explore interspecies variation among mammalian quadrupeds that are common across North 

America in both forensic and archaeological settings.  Variables including the area, densities and 

presence/absence of histological structures are compared among the three sample species.   

The second goal of the thesis is to examine differences in microscopic bone organization 

between different bones of the same species.  By including both of these goals in one research 

project, trends and patterns that are the result of phenotypic species variation may be 
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differentiated from biomechanical and developmental influences related to the function and 

growth of a particular skeletal element. 

Finally, this research is an exploration of possible variables that may be used to 

differentiate human and non-human bone fragments. There are no human samples included in 

this study.  However, the results of this study may be used with the work of other researchers or 

as part of a future project that does include human samples.   

1.2 Significance of Species Differentiation 

 Species differentiation at a microscopic level has implications for forensic and 

archaeological research.  Both disciplines commonly are confronted with fragmentary remains of 

unknown origin.  Gross morphological examination and/or DNA analysis may not be possible or 

practical in all situations.  Histomorphometrics and histological examination offer an alternative 

method for analyzing fragmentary remains.   

  “The first question in any [forensic] case is ‘are the remains human?’” (Fairgrieve 

1999:10).   In situations where no other method can be used, such as gross morphological or 

DNA analysis, because of skeletal degradation or the cost is prohibitive respectively, bone 

histology offers a valuable resource.  For the investigation of house fires, mass disasters, and 

partial skeletal recovery, the forensic anthropologist will benefit from a greater understanding of 

histological techniques for identifying bone fragments past the level of mammal.   

For archaeologists and physical anthropologists, benefits exist for a greater understanding 

of bone micro-structure and species level differences in bone histology.  The sub-disciplines of 

bio-archaeology, zooarchaelogy and paleoanthropology are challenged by fragmentary skeletal 

remains.  According to Schultz (1997b:201), archaeologists are interested in data recovered from 

a site whether the material is human or faunal: “it is basically of no consequence at all whether 

the findings are from animals or from human beings.”  Faunal data provide information about a 



3 
 

wide range of topics of archaeological interest, including; diet, environment, domestication, 

seasonality, and other cultural practices. Assessing whether there are verifiable differences in the 

bone histology of human and non-human mammals is a primary step for histological applications 

of bone histology for forensic anthropologists and bio-archaeologists.  Before human versus non-

human differences are assessed, non-human microscopic structure and organization should be 

well understood.  This study examines the structure and spatial layout of the bone cross-section 

of three non-human mammals.  By examining the contribution of various influences on the 

architecture of bone, it may be possible to differentiate which variations are species-related, 

instead of being due to biomechanical or developmental influences.  Understanding these 

influences will greatly enhance future research that attempts to differentiate human and non-

human bones histologically.  
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Chapter 2: Literature Review 

Historically, only limited research has been published with regard to the use of bone 

histology for species identification.  This is changing as more researchers are discovering a 

powerful tool in the microscope.  Traditionally, human bone microscopic analysis and research 

have focused on age-at-death estimation.  In terms of species differentiation, published work has 

been limited in scope, analyzing the differences between humans and a single non-human 

species.  Today, a growing number of researchers are systematically evaluating multiple species, 

serial bone sections, various bones, and a variety of bone structures.  Researchers in several 

disciplines are strong advocates for the use and study of human and animal bone histology.  

Forensic anthropology, bio-archaeology, forensic medicine, pathology, veterinary medicine, and 

anatomy have made contributions to this body of knowledge.  A review of the literature on bone 

histology provides the background for the current research. 

2.1 Bone Microstructure 

Microstructure of bone is well documented in histology textbooks and atlases.  An and 

Martin (2003) and Malluche and Faugere (1986) provide two detailed guides to bone 

microanatomy, metabolic bone diseases, and methodology for bone histology.  They include 

succinct sections on structural organization of the bone and bone cells, providing a basis for 

identifying microscopic structures. The examination of bone histology requires an ability to 

understand the basic microscopic building blocks of bone.   

Bone is a specialized connective tissue, which functionally responds to biochemical 

demands and biomechanical load (Walsh et al. 2003:35). The cellular components of bone 

include several specialized cells.   

Subtypes of bone include immature and mature bone.  Immature, or woven, bone 

develops in utero (White 2000:26).  According to Malluche and Faugere (1986:10), woven bone 
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is characterized by “loosely and randomly arranged collagen bundles.”  Relative to mature bone, 

immature bone has a higher proportion of osteocytes in its matrix (White 2000:26).  While 

immature bone is found primarily in embryonic and unremodeled bone, it may be present at 

pathological and fracture sites in the adult skeleton (Schultz 1997a). 

As the skeleton matures, the woven bone is replaced by lamellar, or mature, bone through 

the process of bone formation and remodeling (Figure 2.1).  Lamellar bone is the primary bone 

in mature skeletons and is characterized by an orderly arrangement of collagen bundles 

(Malluche and Faugere 1986). Throughout life the lamellar bone continues to remodel until the 

bone cross-section is almost completely canalized, and is covered by overlapping Haversian 

systems (Figure 2.2).   

Both compact and trabecular bone are lamellar bone (White 2000:26).  Figure 2.3 is a 

human rib cross-section with both the dense, compact bone and spindly, trabecular bone evident.  

For this thesis, only compact bone was examined histologically.  Compact bone, unlike 

trabecular bone, is dense and heavily mineralized.  Therefore, compact bone is unable to receive 

nutrients or excrete waste via diffusion.  To compensate, compact bone is vascularized by a 

Haversian system that allows an exchange of oxygen, nutrition, and waste.  The vascularization 

of compact bone is achieved through the remodeling process, altering the primary lamellar bone 

composition into secondary osteons as the body ages (White 2000).   

According to Robling and Stout (2000:190), the “circumferential and endosteal lamellae 

deposited during the remodeling provide the canvas upon which discrete units of cortical 

remodeling leave their mark.”  The theory of histological age estimation is based on the process 

of remodeling and assumes the formation rate of secondary osteons is predictable, therefore 

allowing age-at-death estimations in humans.  
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Figure 2.1: Unremodelled Lamellar Bone.  (Pig humerus 2, anterior-lateral view). 

 

 
Figure 2.2: Canalized Lamellar Bone. (Dog rib 4, caudal-interior view). 
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Figure 2.3: Compact and Trabecular Bone. (Human rib cross-section). 

The bone formation process is similar in animals and humans, though some different 

tissue arrangements and structures are noted.  One such structure is plexiform bone.  Plexiform 

bone is an orderly arrangement of the bone tissue into ‘rows of bricks.’  Plexiform bone is not 

discussed in texts primarily dealing with human histology because it is infrequently present in 

primates.  Plexiform bone is the principal bone tissue of Bovidae (including cattle, goat and 

sheep), Suidae (including pig) and Cervidae (including deer) (Owsley et al. 1985). 

 Osteon banding is another type of bone patterning recognized by some comparative 

histology authors.  Mulhern and Ubelaker (2001) present evidence for the potential use of osteon 

banding as a means to distinguish human and non-human bone.  In their study, over sixty human 

femoral cross-sections were compared to those of pig and sheep samples.  By dividing the cross-

section into quadrants and envelopes, Mulhern and Ubelaker (2001:221) were able to run a 

contingency table to determine if significant differences existed among the species.  Their results 

were promising because osteon banding presence would preclude an unknown sample as human.  

Osteon banding, like plexiform bone, is a non-human trait.  However, the absence of either 

plexiform or osteon banding does not conclusively indicate a species is human.   

Compact bone 

Trabecular bone 
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The cellular composition of compact lamellar bone is related to the modeling and re-

modeling process in a collective arrangement of microscopic cells. Robling and Stout (2000:190) 

coined this cellular arrangement the “basic multi-cellular unit.” White (2000:27) differentiates 

modeling as “bone sculpting during growth” from remodeling as the “process of continuous 

removal and replacement of bone during life.”   

Figure 2.4 illustrates the progression of bone modeling/remodeling.  Bone 

modeling/remodeling process creates secondary osteons.  Histological bone analysis quantifies 

the results of this process. 

Figure 2.4: The process of Bone Modeling and Remodeling.  
Adapted from Robling and Stout (2000:190) 

 
Osteoclasts are multinucleated cells that resorb the mineralized bone matrix (Walsh et al. 

2003:36).  In the human skeleton, they excavate bone sections in approximately 250-300µm 

(Robling and Stout 2000:1980).  The osteoclastically removed area of bone sets the stage for the 

invasion of osteoblastic, or bone forming, cells.  According to Gartner and Hiatt (1994), 

osteoblasts are rarely captured in histological slide images of mature lamellar bone.   

1. The osteoblast 
cells excavate a 
resorbtion path 
longitudinally 
through the bone. 

2. Osteoblasts 
concentrically 
line the 
resorptive bay, 
laying down 
osteoid. 
Osteocytes are 
visible within 
their lacunae in 
the calcified 
matrix. 

3. A complete 
secondary osteon 
also known as a 
Haversian 
system. 

Haversian canal
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Osteoblasts are the principal cells involved in bone formation through synthesis and 

secretion (Malluche and Faugere 1986).  They are often concentrated just beneath the periosteum 

and operate to form bone in a two-step process (White 2000).  First, osteoblasts secrete matrix, 

or osteoid, which surrounds the osteoblast (Malluche and Faugere 1986).  Then the osteoblast 

becomes embedded in the osteoid lacunae as the matrix is mineralized through the deposition of 

hydroxyapatite crystals (White 2000).  Once the matrix mineralizes, the embedded osteoblast 

becomes an osteocyte (Walsh et al. 2003). 

From each oval-sized cavity of the lacunae radiate fluid filled canals (White 2000).  

These canals, or canaliculi, enclose cytoplastic processes that connect isolated osteocyte cell 

bodies housed in the lacunae, allowing communication and exchange among the cells (Schultz 

1997a).  The system of canaliculi eventually opens into a Haversian canal containing blood 

vessels (Gartner and Hiatt 1994).  The osteoncytes of an Haversian system communicate via this 

specialized architecture allowing “living cells to survive in a heavily mineralized environment” 

(White 2000:27).  

The basic unit of mature, compact bone is the secondary osteon or Haversian system 

(White 2000).   The composition of each Haversian system includes a: “Haversian canal with its 

surrounding lamellae of bone containing canaliculi radiating to and from the osteocytes trapped 

in the lacunae” (Gartner and Hiatt 1994:61).  Figure 2.5 illustrates a single secondary osteon.   

The lamellae surrounding a Haversian canal containing blood vessels, with lacunae 

interconnected through their canaliculi, are apparent.  The Haversian system allows the 

architecture of the compact bone to remain dense while maintaining the living cells of the bone.   

Figure 2.6 is a microscopic image of mature dog mid-thoracic rib cross-section with 

several Haversian systems evident.  The lacunae with radiating canaliculi are in the microscopic 
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image.  The concentric organization of the osteocytes around a central Haversian canal are also 

apparent. 

The number of secondary osteons increases with advancing age as bone is continuously 

remodeled; “As age increases the cortex becomes crowded with secondary osteons” (Robling 

and Stout 2000:192).  An asymptote is eventually reached as the bony cortex is completely 

remodeled.  What is preserved in the compact bone at the time of death is architecture of the 

bone, including the influence of age, health, and biomechanics for that individual within the 

limitations of phenotypic expressions of that species.  

2.2 Comparative Histology 

Enlow and Brown (1958), Foote (1916), Jowsley (1966), and Leake (1975) examine 

histological characteristics of various taxa in relation to one another. What has come out of their 

research are studies in the application of histological techniques beyond medical research.   

Enlow (1966) provides clear descriptions of bone types and typical arrangements of bone 

from different taxa.  While an invaluable source of comparative information, Enlow also 

addresses the limitations of histological species identification research: “Human bone, for 

example, cannot be recognized with any reasonable degree of certainty since some other 

mammalian forms have combinations and an organization of bone tissue types that more or less 

parallel that of human bone” (Enlow 1966:101).  Enlow (1966) warns that some animals, such as 

bear, cat and monkey, may be difficult to differentiate from humans at a histological level. 

Jowsley (1966) measured the Haversian system in humans and several faunal species, 

including dog.  Results of the study indicated there were species-related differences in Haversian 

system size, intraspecies similarity in osteons of the rib and femur, and age-related changes in 

Haversian canal size. 

 



11 
 

 
Figure 2.5: Haversian (Secondary Osteon) System.   
Adapted from White and Folkens (2005: Figure 4.3) 

 

 
Figure 2.6: Secondary Osteons.  Highlighted are complete Haversian systems (blue) with 
Haversian canals (red) and lacunae (yellow), which in life housed osteocytes. (Dog rib 4). 



12 
 

More recently, Whitman’s (2004) research distinguishes between human and non-human 

secondary osteons in the ribs.  Whitman emphasized the use of non-weight bearing bones, in 

particular the rib, because of the well-documented presence of secondary osteons in several 

species.  She noted that much of the previous research focused primarily on the femora and 

urged further histomorphometric studies with other bones. Whitman examined ten samples from 

human, dog, cattle, and one bear, comparing their Haversian canal size and osteon diameters.  

She found cow and bear did not offer distinguishable differences in osteon size, but dog did 

exhibit significantly smaller osteons than humans. 

Benedix (2004) examined the differentiation of fragmented bone.  Benedix examined 

long bones from South Asian mammals including cow, deer, dog, goat, monkey, pig, and water 

buffalo in order to analyze both plexiform and Haversian structures.  One of the significant 

findings by Benedix (2004:80) was a difference in Haversian cell size of humans from that of 

dog, monkey, and buffalo.   

2.3 Histology and Forensics 

Histology has an important application for forensic anthropology.  In forensic situations 

where gross morphological differentiation is not possible and DNA analysis is difficult or cost 

prohibitive, bone histology offers a valuable alternative to species identification.  In the case of 

fragmentary bone, one of the most important initial determinations is whether or not the material 

represented is human (White 2000).  This question must be answered whether the material 

represented is a complete skeleton or the fragments of a single bone.  

A forensic example of histological analysis of bone fragments was presented by Owsley 

et al. (1985) in a case involving the differentiation of deer and human bone fragments.  Owsley 

et al. (1985) were able to demonstrate sufficient similarity between the unknown fragments and 

the human specimens.  Fragments of bone were collected from various locations of the crime 
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scene and were compared with autopsied human and sampled deer bone fragments.  Diagnostic 

characteristics, such as Haversian canal diameter and secondary osteon counts per area of 

cortical bone, were comparable between the unknown fragments and human autopsy specimens 

(Owsley et al. 1985).  Owsley et al. caution that human bone may be hard to differentiate from 

other mammals such as primates and bears because of similar structural features.  Distinguishing 

cow, deer, and dog is possible histologically (Owsley et al. 1985).  Owsley et al. drew much of 

their research from Enlow and Brown’s (1958) studies of comparative histology.  

Evidence contributed by the histological analysis of bone fragments by a forensic 

anthropologist also aided in the conviction of a man who allegedly murdered his wife in 1985.  

The woman’s vehicle was found three years after her disappearance containing cranial and post-

cranial bone fragments, blood, and shotgun pellets (Dix et al. 1991; Stout and Ross 1991).  The 

case was difficult to prosecute because the woman’s body was not recovered, nor were there 

witnesses to the event.   The analysis of skull fragments aided in the confirmation of a human 

victim and the conclusion that the severity of the injuries sustained to the skull was fatal (Dix et 

al. 1991:952).   

Ubelaker (1998) is a proponent of introducing additional techniques and technologies 

into forensic anthropology, including microscopy.  Most conventional histological methods are 

utilized in age-at-death approximations: “The significant involvement of microscopy in forensic 

anthropology traditionally has been in the area of age-at-death estimation” (Ubelaker 1998:514). 

Ubelaker suggests that microscopic analysis and histomorphometry have potential contributions 

beyond age estimation in forensic anthropology, including differentiating bone from non-bone 

material.   

Several researchers have demonstrated that histological analysis of the skeleton is a 

useful and reliable methodology the age-at-death estimation.  Histomorphometric analysis is 
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used to substantiate identity and enhance biological profiles by providing an estimate of an 

individual’s age-at-death (Cho et al. 2002; Crowder 2005; Pratte and Pfeiffer 1999; Stout 1986, 

1998; and Stout and Paine 1992)  

  Cattaneo et al. (1999) conducted a comparative analysis of the use of histological, 

immunological, and DNA techniques in the identification of burned bone fragments.  The 

researchers’ conclusions suggested that quantitative microscopy may be more reliable than some 

other techniques, in particular, when Haversian canal size was used as a discriminating factor.  

2.4 Histology and Biomechanics 

 Sex, pathologies, and age are factors that affect the remodeling of bone (Lynnerup et al. 

1998; Robling and Stout 2000; and Stout 1998).  The influence of physical activity and 

biomechanics is only briefly addressed in articles regarding bone remodeling. 

 According to Nordin and Frankel (1989:6), biomechanically, bone is a “biphasic 

composite material.”  For bone, this means that it is a strong, stiff material embedded within a 

more flexible substance.  Nordin and Frankel (1989) describe hypothetical bone-loading and 

deformation, and the various responses of bone.  If failure point, the point at which bone breaks, 

is not reached, the bone has the ability to respond to strong, sustained and/or frequent stresses.   

However, to meet mechanical demands, bone has only two physiological responses: to gain or 

lose bone.  The mechanism of bone resorption and formation is the process of microscopic 

architecture.  “This phenomenon, in which [a] bone gains or loses cancellous and/or cortical 

bone in response to the level of stress sustained, is summarized as Wolff’s Law, which states that 

bone is laid down where needed and resorbed where not needed” (Nordin and Frankel 1989:23).  

Laying down and resorbing of bone takes place at a cellular level, suggesting that different 

mechanical demands may influence bone microstructure.  Robling and Stout (2000:200) 

conclude, “biomechanical factors affecting bone remodeling appear to be local, usually affecting 
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those bones being strained.”   Research indicates that increased activity in pigs promoted 

modeling, not remodeling (Robling and Stout 2000).  Whitman (2004) advised researchers to 

study non-weight bearing bones when conducting inter-species histological studies.  Whitman 

(2004) suggests species-level microscopic differences can be assessed more accurately from 

skeletal elements not affected by bone loading.  Understanding the biomechanics and bone-

loading forces is an important aspect of this research. 

 The humerus and femur are both considered weight-bearing bones for all three fauna 

species examined for this research.  This does not suggest that the humerus and femur are 

considered functionally synonymous.  The humerus and femur have different functional roles in 

locomotion and other physical activities.  An example of one physiological difference is the 

orientation of the knee and elbow joints.  In most mammals, including carnivores and ungulates, 

the elbow joint is oriented posteriorly and slightly lateral to the shoulder, whereas, the knee joint 

points anteriorly and slightly laterally.  During propulsion, the humerus and femur are both 

involved but move differently.  Further, though all three species analyzed in this study are 

quadrupeds, the type of locomotion used by deer, dog, and pig varies considerably among the 

species (Liem et al. 2001).    

Hamrick’s (1999) research with the opossum (Didelphis virginia) found differences in 

the humerus and femur with regard to histological development.  In his research, the hind limbs 

of the opossum developed at a different rate histologically than the forelimbs because of different 

functional and behavioral influences. 

2.5 Histology and Archaeology 

Fragmentary bones recovered from ossuaries and middens cannot always be identified 

with respect to species through gross examination.  Archaeologically, establishing the species 

represented is not just a matter of human versus non-human, as may be the goal of forensic 
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anthropology.  Taxa identification is an imperative part of zoo-archaeological research.  “The 

systematic attribution of specimens to taxa is essential” (O’Conner 1996:10). Histological 

techniques may be able to establish the species of the material.  Not only would these techniques 

be more accurate in assessing human burials, but species identification may be extended to assist 

with more specific faunal analysis of a site.   

Paleoanthropology is another area that would benefit from a greater understanding of the 

microscopic structures of bone. Human remains have always provided an important source of 

information about many aspects of the past (Bahn 2003:6).  Enlow (1966) noted that the calcified 

tissues, including bone, are the only part of the body that permit histological examination of 

fossil tissues and therefore are of potential diagnostic use.  Human bone histology may even have 

applications in the study of human evolution.  “Comparative studies of bone tissue, including 

both fossil and modern forms and considering a wide variety of groups, indicate that bone 

histology can be of value in studies of evolution” (Enlow 1966: 105).   

Bio-archaeology, an interdisciplinary field within physical anthropology, is the most 

obvious benefactor of histological knowledge.  Bahn (2003:139) states: “The vast majority of 

human remains from the past take the form of purposeful burials.”  This phenomenon has 

spanned the last 250, 000 years according to some researchers.   Taylor (2000:45) argues; “For at 

least a quarter of a million years, humans have taken great care to perform burials for their 

dead.”  It is imperative that archaeological researchers be able to recognize a purposeful burial 

even if only fragments remain.  Burial analysis in an archaeological setting may be confirmed 

with our ability to identify bone fragments. 

Zoo-archaeology is another area that would be enhanced with the identification of species 

from fragments.  Zoo-archaeologists “serve to build up for archaeologists a more complete 

picture of our ancestors’ way of life” (Davis 1987:20).   In order to analyze an archaeological site 
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more thoroughly, “faunal remains have to be identified” (Davis 1987:32).  Faunal analysis in an 

archaeological setting is derived almost exclusively from the bones and teeth (Davis 1987:19).  

Associated remains are typically fragmented due to purposeful butchery and pounding 

techniques, unintentional trampling, and excavation damage (Davis 1987:26).   

 Currently, a research team from the University of Montana at Missoula is conducting 

histological analysis of the fragmentary remains from the Donner party campsite.  The 

researchers described the entire bone surface and measured a sample of the Haversian canals’ 

diameters perpendicular to the long bones axis.  The research team was able to discern several 

species types including deer, cow, horse, and dog (www.anthro.umt.edu/donner/default.htm, 

accessed April 2007). 

2.6 Histology and Non-Human Species 

Veterinary publications and journals were an informative resource regarding the skeletal 

structure of deer, dog and pig.  An example of an inter-species veterinary study is Martiniakova 

et al. (2006).  The researchers measured area, perimeter, minimal and maximum diameter of 

Haversian canals, Haversian systems, and the vascular canals of primary osteons of adult cows 

and pigs.   

Anatomy and physiology texts that were consulted for the present research on pig 

anatomy included Currie (1988), Pond and Mersmann (2001), and Sack (1982).  Dog anatomy 

texts included Adams (1986), Liem et al. (2001), and Olsen (1985).  Olsen (1985) included 

information about the archaeological remains of dogs in North America.  The white-tailed deer 

texts included Bauer (1983) and Fulbright and Ortega (2006). 

The three species selected for this histological investigation were chosen because of their 

ubiquity in North American forensic and archaeological settings (Olsen 1964).  According to 

Bauer (1983), the White-tailed deer (Odocoileus virginianus) is found in all areas of the United 
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States and southern Canada with the exception of dry terrain in the Southwest and California.   

Bauer also reported on the use of White-tailed deer in both the pre-contact and contact 

archaeological records by Native Americans and settlers alike.    

The first pre-contact, domesticated dog (Canis familiaris) remains are reported by Olsen 

(1985) to date to between 9500 and 8400 BC in Idaho.  Derr (2004:5) quotes George Catlin, the 

artist who depicted over 500 Native American scenes during his visits in the 1830s: “The dog, 

amongst all Indian tribes, is more esteemed, and more valued than amongst any part of the 

civilized world.”  Today, according to the Humane Society (www.hsus.org/pets, accessed April 

2007), there are over 73 million dogs owned as pets in the United States.   

The domesticated pig (Sus scrofa domesticus) is first recorded 7000 years ago in Persia 

and China (Pond and Mersmann 2001).   The domesticated pig was introduced into North 

America by Columbus by way of the West Indies in 1492.  In 1539 De Soto brought pigs to the 

mainland.  Today, both domesticated and wild pig descendants live across North America.  Pigs 

are an important food source in the United States, historically and currently.  Pigs are also 

employed as animal models in biomedical research (Pond and Mersmann 2001). 

2.7 Forensic and Archaeology Journal Search 

Table 2.1 is a summary of the Boolean search results of three professional academic 

journals.  The American Journal of Archaeology and American Antiquity were searched as 

representations of archaeological inquiry, and Journal of Forensic Sciences was searched for 

forensic references.  The journals were surveyed online by entering a faunal species and the word 

“bone” as search parameters.  The exercise was meant to determine, if according to the published 

literature, there is a relation between archaeological sites and/or forensic crime scenes and the 

selected animals for this study.  The survey included several other faunal species besides deer, 



19 
 

dog, and pig.  The three species selected for this project are among the most published animal 

subjects in both the archaeological and forensic journals.   

The horse was another species frequently mentioned in the archaeological journals.  

Horses were not used for this study because relative to deer, dog, and pig, horse bones are 

considerably larger.  Future research may consider including sheep as a possible subject of 

histological investigation. 

Table 2.1:  Search “hits” for various species in archaeological and forensic journals to 
suggest a possible relation between the species and the contexts. 

 

American Journal of 
Archaeology 1897-2001 and 
American Antiquity 1935-

2003 

Journal of Forensic Sciences 
1972-2005 

White-Tailed Deer 
+ Bones 

42 (deer + bones 546) 4 (deer + bones 32) 

Dog + Bones 380 51 

Pig + Bones 170 42 

Cow + Bones 145 13 

 Horse + Bones 553 11 

Sheep + Bones 348 13 

Cat + Bones 177 26 

Chicken + Bones 28 11 

Turtle + Bones 112 3 

Weasel + Bones 20 3 

Black Bear + 
Bones 

23 (bear + bones 693) 31 (bear + bones 39) 

 

 The published literature describing bone microstructure, current research and role of 

microscopy in forensics and archaeology is invaluable to the researchers’ understanding of the 

process and importance of bone histology.  
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Chapter 3: Materials and Methods 

In preparation for my thesis work, I consulted several texts regarding proper sampling 

techniques and methodology including Bauer and Mahovlic (2003), Malluche and Faugere 

(1986), Martin (1988), and Ries (2003).   

I had previous exposure to histological investigation because of my work with Dr. 

Crowder at the University of Toronto (Crowder and Morris 2005).  Crowder’s (2005:301) 

research examined “how the selection of variables can affect the precision and, in turn, the 

accuracy of histological age estimation.”  The University of Toronto laboratory provided training 

in histological slide preparation as well as exposure to histological analysis and microscopic 

bone structure recognition.   

 I had personal communications with several researchers with extensive histology 

experience including Drs. Crowder, Paine, and Stout.  The literature, the expert advice, and my 

previous experience volunteering with Dr. Crowder provided a guide and foundation for my 

methodology.  However, the final techniques discussed below were developed through trial-and-

error.  The methodology used in this thesis was adapted to the available resources, my skills, and 

an on-going assessment of what techniques produced the best results.  Only the final 

methodology is described for each section.  Table 3.1 outlines the various strategies proposed 

and tried for each step in the process.   

The skeletal material used for this study was obtained from the faunal comparative 

collection housed in the Forensic Anthropology and Computer Enhancement Services (FACES) 

Laboratory, Louisiana State University (LSU), Baton Rouge, Louisiana.   

3.1 Sample Background 

The FACES laboratory comparative collection is housed in Howe-Russell Geosciences 

Complex, LSU, and is under the direction of Ms. Mary H. Manhein.  More than thirty faunal. 
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Table 3.1: Methodology Trial and Error Summary. 
 Attempt Result Used  

80ml resin: 20ml hardener Tap 
Plastics® Super Hard Epoxy Effective Yes – used for all slides Embedding 

the Bone 
placing in the fridge Prevent over-heating and bubbles 

Yes – used for all slides 
over 22x30x20mm 

Ground down on steel wheel 
 
 

Even surface, but grit glued to slide 
reducing visibility 
 

Not used, all slides 
redone 
 

Ground down on the glass 
plate 
 

Grit reduced, but some still 
remained visible 
 

Not used, all slides 
redone 
 

Grinding to 
Prepare 

Histoblocks 
for Mounting   

Ground down on Hillquist ® 
diamond plated grind wheel 

Effective - no grit, very even 
surface Yes – used for all slides 

Extreme Power 5-Minute 
Epoxy®  

Effective 
 

Yes – used for all slides 
 Mounting 

Hillquist Thin Section Epoxy ® Not as clear under the microscope Not used 

2"x1" petrographic slides 
 

Effective  
 

Yes – all ribs and 
smaller humeri/femora 

3"x2" Corning 2947 slides 
 

Slightly thinner slide resulting in 
breakage during mounting 

All slides needed to be 
redone 

Slide 

3"x2" geology slides (brand 
unknown) Slightly thicker, no breakage  

Yes - larger 
humeri/femora 

No weights used 
 
 

Uneven adherence to surface, 
resulting in uneven image 
 

Used for some initial 
slides 

Free weights 
 

Some sliding but overall effective 
 

Used for majority of 
slides 

Weighting 
Slides while 

Gluing 

Spring-loaded weighting 
Effective, though limited number  
can be made at a time Used for all later slides 

Cutting Block Re-sectioning Saw 
 

Effective 
 

Yes – used for all slides 
 

Grinder to .5mm Effective but some parts to thick Used for all slides 
Grinding  

Grinder to .45mm 
More effective, though possible 
over grinding 

Used for all slides when 
.5mm was too thick 

Glass plate with 600 grit silicon 
carbide powder and 1000 grit 
silicon carbide powder 

Most effective - some grit, but 
sonicator removes grit 

Yes – used for all slides 
 

Tooth paste mixed with 1000 
grit silicon carbide powder on 
slide 

Somewhat effective, but time 
consuming- good for removing 
scratches 

Used for some slides 
 
 

Micro-
grinding 

1000 grit polishing cloth Effective Used for some slides 

10x objective 
Too many images per slide, unable 
to merge or too large once merged 

 Not used 
 

5x objective  Effective 
Used for most ribs and 
humeri Microscope 

2.0x objective 
 

Due to swiveling some cross-
sections could not be photo-merged 
completely 

Jsed for all later slides 
with 5x selections  

Calibration 
slide 

Graticules Pyser-SGI® 1mm 
calibrating slide 

Photographed everyday 
 

Yes – used for all slides 
 

JPEG (joints photographic 
experts group) 

Limitations due to the type of file Used for all later slides 

Image Type 
TIFF (tagged image file format) Created file sizes that were too 

large 
Used only for initial 
slides 

Photoshop 
CS® 

Photo-merge 
 

Effective for all but initial 10x 
images (too many slides, file size to 
large) 

Yes – used for all slides 
 

Image J® Calibration & measurements Effective Yes – used for all slides 
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species are represented in the collection.  The collection was started in the early 1980s and 

continues to grow in terms of absolute number of elements as well as number of faunal species. 

The collection is composed of primarily modern samples but does include some historic animal 

remains. The comparative skeletal material represents almost exclusively samples collected 

within the state of Louisiana.    

3.2 Species Selection 

All deer, dog, and pig elements were selected from the FACES Laboratory comparative 

collection. Sample selection took place in the LSU Forensic Anthropology Laboratory.  Partially 

complete (shaft intact) and complete samples were selected.  A minimum of five of each element 

was selected for each species.   

White-tailed deer (Odocoileus virginianus), the domesticated dog (Canis familiaris), and 

the domesticated pig (Sus scrofa domesticus) were the three species selected to be sampled from 

the collection.  All three species are ubiquitous as both living species and archaeological remains 

across North America (Olsen 1964). Figures 3.1a, 3.1b and 3.1c represent the adult skeletons of 

each of the three species used in the study with the elements of interest highlighted.  Several of 

the mid-thoracic ribs are highlighted to demonstrate the possible location range from which the 

element may have been selected. 

3.3 Sample Selection Criteria 
 

The sample selection considered several criteria. First, the species and bone element must 

be identifiable.  The bones in the comparative collection had been previously categorized by 

species and element.  However, I conducted an independent species, skeletal element, and siding 

(left/right) assessment for each bone.  If species origin, skeletal element, or side were unclear, 

the bone was not used.  Figure 3.4a and 3.4b represents the various morphological variations of 

the femur and humerus, respectively, for the three species used in this study. 



23 
 

 
Figure 3.1a: Adult White-Tailed Deer (Odocoileus virginianus) Skeleton. Sampled 
Elements Highlighted.  Adapted from Pavao-Zuckermann (2007: Figure 4). 

 

 
Figure 3.1b: Adult Domesticated Dog (Canis lupus familiaris) Skeleton. Sampled 

Elements Highlighted.    Adapted from Olsen (1964: Figure 45). 
 

 
Figure 3.1c: Adult Domesticated Pig (Sus scrofa domesticus) Skeleton. Sampled Elements 

Highlighted.    Adapted from Novakofski and McCusker (2001: Figure 9-1). 
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Figure 3.2a: Dog, Deer, and Pig Femora.  

Adapted from Olsen (1964 Figures 20 & 92). 
 

  
Figure 3.2b: Dog, Deer, and Pig Humeri.  

Adapted from Olsen (1964: Figures 112, 114, & 115). 
 

Second, only unpaired bones were selected for the study to prevent double representation 

by the same animal.  This step was important because of the small number of specimens.  To 

prevent pairing, forensic case numbers were noted and the same element was not used from any 

one case.  Because not all elements were associated with case numbers, bones were sided and 

when possible only left elements were selected.  Right elements were selected only in cases 

where the left element was not available or when the left element was damaged.   

The third criteria included an assessment of damage to the bone.  Damage to proximal 

and distal ends of the bone was considered an acceptable level of damage and was noted in the 

sample file.  In fact, a damaged bone was selected over an undamaged bone whenever possible to 
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maintain the integrity of the comparative collection.   Damage to the shaft was acceptable only if 

the middle third of the shaft was intact and species and side identification were still possible.  

Further, there had to be no periosteal surface damage to the mid-shaft.   

The final criteria concerns observable skeletal pathology.  There should be no pathology 

or osteological trauma associated with the bone that may affect the histology of the bone.  Sex 

was not assessed for the species. 

Each specimen was described and assigned a simple label. The labeling system described 

the species (De, Do or Pi), the element (Fe, Hu or Ri) and bone number (1-6).  A brief 

assessment and description were made for each specimen, including; condition, observable 

taphonomy, side of origin (right or left) and general age estimation (fused or unfused epiphysis).  

Unlike the femur and humerus, which were readily identifiable elements, the rib number 

could not always be easily assessed.  Instead, any mid-thoracic rib could be selected for 

sampling.  Siding and other observable characteristics were still noted for each specimen.  The 

reason the ‘mid-thoracic’ description was used instead of a specific rib number was because of 

the differing number of ribs between species as well as the difficulty assigning exact rib numbers 

without the ability to seriate all ribs.  For example, pigs have fourteen to fifteen ribs, seven 

sternal (true) and seven to eight asternal or false (Novakofski and McCusker 2001:455).   Mid-

thoracic ribs were defined as true ribs between rib numbers four through seven in any species.  

3.4 The Study Sample 

 In total, fifty elements were selected for the study.  Seventeen deer, eighteen dog, and 

fifteen pig bones were sampled from the FACES Comparative Collection (Table 3.2).   Factors 

that may have affected the histological assessment include the age of the various specimen and 

differential preservation.   
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Table 3.2: Total Number of Selected and Sampled Elements by Species. 
  Rib Humerus Femur Total 

Deer 6 5 6 17 
Dog 6 6 6 18 
Pig 5 4 6 15 

Total 17 15 18 50 
  

All pig elements were categorized as sub-adult because of their lack of complete 

epiphyseal fusion. The young age may be because the domesticated pig specimens represent 

slaughtered pigs.  On the other hand, the majority of the dog elements (sixteen of eighteen) were 

completely fused.  Only the deer elements represent various stages of fusion (Table 3.3).  

However, these different age-at-death estimations were considered an acceptable difference 

because in archaeological and forensic contexts these elements might have similar age-at-death 

ratios.  Domesticated dogs, as pets and labor, would not die as young as domesticated pigs, as 

food and research subjects.  Deer, as a wild animal, may be hunted or die naturally at various 

ages. 

The second factor, different taphonomic processes, is more difficult to assess.  For 

example, the majority of the deer samples were stained and sun bleached, having been exposed 

to the elements and collected from the wild.  Some deer bones had associated tissue still 

attached.   

On the other hand, the pig specimens all had a similar, slightly granular surface 

appearance with no staining.  In some cases, the pig elements showed cut marks and burning.   

The pig bones may have been obtained from a slaughterhouse or butcher.   

The dog bones were clean and unstained and did not have the bleached, flaky surface of 

the pig bones.  The variability in preservation and taphonomy did affect the microscopic 

appearance of the specimens and was recorded for each sample. 
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Table 3.3: Age-at-Death Assessment of the Samples According to Epicondylar Fusion. 
DEER Fused Partially 

Unfused Unfused 

Rib 2 3 2 
Humerus 3 2 -  

Femur 4 2 2 
 

DOG Fused Partially 
Unfused Unfused 

Rib 6 - - 
Humerus 5 1 - 

Femur 5 1 - 
 

PIG Fused Partially 
Unfused Unfused 

Rib - - 5 
Humerus - 1 3 

Femur - 1 5 
 

3.5 Sampling the Specimens 

All sampling was conducted in the FACES laboratory.  Sampling of the specimens was 

done in a sterile environment using DNA collection protocols established by the FACES 

laboratory (Appendix A).  

The section to be sampled was marked in pencil prior to cutting the bone.  The anterior 

and medial aspects of the femur and humerus were labeled directly on the bone, and the superior 

and external aspects of the ribs were marked on rib specimens.  This step ensured that once cut 

the bone sample’s position could be determined. The mid-shaft was defined as the approximate 

center of the middle one third of the bone shaft.  When incomplete bones were present, the 

length of the bone was estimated and mid-shaft approximated.   

Removing the bone cross-section was achieved with a Stryker® saw (Figure 3.3a).  The 

entire cross-section was sampled because the spatial organization of the bone was a key element 

of the quantitative and qualitative analysis. All cuts were made perpendicular to the bone shaft. 

The 10mm bone samples were removed from the mid-shaft of each element (Figure 3.3b). 
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Figure 3.3a (left): Removal of the Mid-Shaft Deer Femur Cross-Section with the Stryker Saw. 

Figure 3.3b (right): Pig Femur Specimen, Sample Removed. 
 

3.6 Embedding, Mounting and Grinding the Specimens 

Embedding of the bone samples was done in the Geology and Geophysics Rock 

Preparations Laboratory, Howe Russell Geosciences Complex, LSU, under the direction of Mr. 

Rick Young.  The samples were not decalcified prior to embedding.   

All samples were embedded in Tap® Plastics 4:1 Super Hard Epoxy in various sized 

Polysciences, Inc. histoblock trays.  All samples were allowed to set for a minimum of 24 hours 

in a cool environment.  Due to the exothermic reaction of the resin, it was necessary to place 

larger histoblocks trays, with dimensions of 22mm x 30mm x 20mm and greater, in the 

refrigerator while setting.   

Once set, resin-embedded bone samples, or histoblocks, were removed from the trays.  

Each specimen was engraved with its designated label and the positional indicators.  The 

designated label indicated the species, bone type and bone number as well as the anterior and 

medial aspects of the femur and humerus, and the cranial and exterior aspect of the ribs. Labeling 

was done with a Dremel® Electric Engraver Model #290.  

Once the samples were properly labeled, the resin block-face was ground using the 

Hillquist® diamond plated grind wheel perpendicular to the shaft of the bone specimen (Figure 
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3.4). The exposed face of the block and bone was carefully smoothed on a glass pane with 1000 

grit silicon carbide powder to remove surface scratches.  The smoothed face of the histoblock 

could then be glued directly to the specimen slide.  Two sizes of slides were necessary to 

accommodate the range of specimen sizes: 2”x1” petrographic slides were used for all ribs as 

well as smaller humeri and femora, and 3”x2” corning microscope slides were used for all other 

humeri and femora. 

 Resin blocks were glued to the slides using Extreme Power® 5-Minute Epoxy.  In order 

to ensure a close seal, weights were placed on top of the specimens while the epoxy was setting.  

Two weighting systems were used.  The first system utilized loose weights placed on the slides 

(Figure 3.5a). This method was convenient and allowed a large number of slides to be dried 

concurrently.  The disadvantage to this method was that some histoblocks slid on the glass or 

dried slightly unevenly.   

The second, more accurate method used a spring-loaded machine (Figure 3.5b). Though 

cumbersome and limited in the number of slides that could be set at a time, this method created 

more evenly and tightly glued resin blocks to the glass surface.  In turn, this produced a more 

even specimen when ground down.   The spring-loaded machine only became available part way 

through the gluing process; therefore, not all specimens were mounted using this technique.  

Specimen slides were engraved using a glasscutter with the same specimen label and 

positional information as on the histoblocks.  All labeling was done prior to slicing and grinding 

to ensure that all samples were properly tracked (Figure 3.6).    

The resin blocks, glued to the slide, were sliced using the Hillquist® Re-Sectioning Saw 

rotating diamond rock-saw blade (Figure 3.7). This produced an approximately 1mm thick 

sample attached to the slide.   Using the same grinding method used to expose the bone face, the 

sample, still attached to the slide, was carefully ground down to approximately 0.30-0.40mm.  
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All further grinding was done by hand on a sheet of glass.  First, the slides were polished with 

600 grit silicon carbide powder.  The slides were then polished with 1000 grit silicon carbide 

powder (Figure 3.8).  The polishing process ground the sample to approximately 0.10-0.30mm.  

This method also reduced the depth of surface scratches and appearance of surface unevenness.   

Further polishing was necessary for slides that had dried unevenly or had an uneven 

surface due to taphonomic and/or preparational processes.  For example, one area of the surface 

may be darker because of staining.  Therefore, only that area of the slide would need to be 

ground slightly thinner than the other areas of the slide.  Polishing paper (1000 grit) from 

RioGrande® 337308 was used to carefully polish down isolated areas.   

The finished slide was slip covered with emersion oil, increasing visibility and helping to 

further eliminate scratches.  At this point, the slides were prepared and ready for microscopic 

observation and photography (Figure 3.9). 

3.7 Microscopy and Photography 

 All microscopic work was done in the Comparative Biomedical Sciences Microscopy 

Center, Louisiana State University School of Veterinary Medicine.   

The Zeiss Axioplan® Transmitted Light Microscope with 10x and 5x objective and Zeiss 

Photoscope2® Transmitted Light Microscope with 2x objective were both used.  The condenser 

was removed from both microscopes because of the low magnification.  All images were 

captured using the Microfire Model #S99 808 Optical Camera by Optronics®. 

All ribs were photographed with the 5x objective on the Zeiss Axioplan Transmitted 

Light Microscope.   Humeri and femora were photographed with the 2x objective on the Zeiss 

Photoscope2 Transmitted Light Microscope.   Sample sections from the anterior, anterior-medial, 

medial, anterior-lateral, lateral, posterior, posterior-medial and posterior-lateral of the humeral 

and femoral cross-sections were photographed on the Zeiss Axioplan with the 5x objective.   
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Figure 3.4: Grinding of Histoblock Face in Preparation for Mounting. 

 

    
Figure 3.5a (left): Loose Weighting System. 

Figure 3.5b (right): Spring-Loaded Weighting System. 
. 

   
Figure 3.6: Mounted and Labeled Histoblocks Ready for Resectioning. 
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Figure 3.7: Slicing of 1mm Sample from the Histoblock on the Resectiong Saw. 

 

 
Figure 3.8: Glass pane with Polishing 1000 grit Silicon Carbide Powder. 

 

 
Figure 3.9: Processed and Labeled Slides Ready for Examination and Photography. 
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While not all slides were photographed at the same magnification, all magnifications 

were calibrated using a Graticules Pyser-SGI Ltd® 1mm/0.01 divisions calibrating slide (Figure 

3.10a and 3.10b).  To ensure that there was a consistency of results, despite the different 

magnifications, slides were cross checked; some slides were photographed at both 

magnifications, calibrated, and compared. 

   
Figure 3.10a (left): Graticules Pyser-SGI Ltd ® Calibrating Slide 1mm/0.01 Divisions. 

Figure 3.10b (right): 1mm/0.01 Calibration Image. 
 

Images were captured using the program Picture Frame 2.1®.   Initial settings for Auto 

White Balance were saved and loaded for all pictures.  However, exposure was altered for each 

image individually to ensure optimal visualization.   Figure 3.11 shows the photo-merged image 

of pig humerus #4 and displays an uneven cross-sectional surface due to processing challenges 

and surface differences in preservation.  Lightening and darkening of the each slide were 

necessary. 

3.8 Photo-merging 

 Photoshop CS® was used to photo-merge the images for each slide sample.  All slide 

images were imported as jpegs into PhotoShop CS® along with a calibration slide image. While 

some slides had only twenty images, larger cross-sections from samples such as the femur may 

have well over sixty photo images to be merged.  Photo-merging was only partially automated 

and many sections had to be merged by hand.   
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Figure 3.11: Bone Surface Differences in Processing, Preservation, and Organization.   

(Pig humerus 4). 
 

3.9 Program and Quantitative Data Collection 

 All measurements were made on the imaging program Image J®.  Images were 

individually calibrated within the program.  Table 3.4 provides pixel and field diameter measures 

for each objective.   

Table 3.4: Pixel and Field Diameter Measures for Objectives. 
Objective Pixels = 1µ Field Diameter (mm) 

10x 0.2740 1.1821 
5x 0.6960 2.3236 

2x 0.2705 3.1689 
 
The Measurements function in Image J® allowed the user to set the program to measure 

several variables simultaneously. The Measurement tool was set to measure area and perimeter, 

as well as record X-Y coordinates.  All measurements were summarized and exported to an 

Excel file.   



35 
 

Haversian canal measurements were made using the Elliptical tool.  Secondary osteon 

measurements were made using the Freeform selection tool because of their variability in shape. 

Secondary osteons and Haversian canals were outlined along their reversal line or distinct outer 

edge (Jowsey 1966) (Figures 3.12a and 3.12b).   

  
Figure 3.12a (left): Elliptical Tool Used to Measure Haversian Canals. 

Figure 3.12b (right): Freeform Tool Used to Measure Secondary Osteons. 
 

Only complete, secondary osteons were observed because of the inaccuracy of estimating 

the area of the partial secondary osteons.   

Eight sample sections were established using the 1mm calibration slide.  When the slide 

images were photo-merged, the calibration slide was set at the center of the completed slide 

image.  The calibration slide was placed at the anterior-posterior-medial-lateral intersection of 

the femora and humeri and the intersection of the cranial-caudal-exterior-interior in the ribs.  

Using the 1mm calibration image as a guide, 1mm slide sample slices were established, moving 

clock-wise around the cross-section, in the anterior, anterior-lateral, lateral, posterior-lateral, 

posterior, posterior-medial, medial and anterior-medial planes for all femora and humeri and in 

the cranial, cranial-exterior, exterior, caudal-exterior, caudal, caudal-interior, interior, and cranial 

interior planes for all ribs (Figures 3.13a and 3.13b).  
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Only secondary osteons and Haversian canals within the sample sections of each slide 

were measured and recorded.  For example, for one slide, there would be eight numeric files of 

osteon size and coordinates and eight numeric files of Haversian canal size and coordinates for 

each designated area: anterior, anterior-lateral, lateral, posterior-lateral, posterior, posterior-

medial, medial and anterior-medial.   A precedent for examining the slides by sections was set by 

authors such as Martiniakova et al. (2006) and Mulhern and Ubelaker (2001), who also analyzed 

their slides by dividing the cross-section into anterior, posterior, medial and lateral segments.   

For each 1mm wide sample slice, the cortical area and cortical thickness were measured 

using the Polygon and Line tools, respectively.  These measurements are reported in the results.  

Cortical thickness provides a sense of size and evenness of the cortical wall around the mid-shaft 

cross-section.  Slice area and number of measured secondary osteons present an approximate 

(not absolute) gauge of secondary osteon density. 

3.10 Qualitative Observations  

 Qualitative analysis of the sample cross-section included observations of presence or 

absence of defined structures and overall characteristics and patterns.   The processing and 

preservation quality were also noted for each slide. Qualitative analysis was completed in the 

imaging program Picasa2®.  Picasa2® permitted easy manipulation and magnification of the 

slide images.  Observations were recorded on the Sample Record Sheet (see Appendix B and C) 

and included: 

1) Presence or absence of banding; 
2) Presence or absence of plexiform bone; 
3) Processing quality; 
4) Preservation quality, and; 
5) Overall impressions. 

 
Plexiform bone is characterized by its stacked, brick-like appearance.  According to 

Benedix (2004:42), the plexiform structure is the result of a “conglomeration of woven and 
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Figure 3.13a:  Division of Slide into 1mm Wide Sample Sections for the Rib (Deer Rib 1). 

 
Figure 3.13b: Division of Slide into 1mm Wide Sample Sections for the long bones (Pig Femur 4). 
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lamellar bone at right angles to each other.”   As mentioned previously, plexiform bone is a 

defining feature on non-human bone.  Figure 3.14 demonstrates the characteristic brick-like 

structure of plexiform bone.  

Osteon banding is another histological feature associated with non-human bone. Mulhern 

and Ubelaker (2001:220) define osteon banding as the “arrangement of primary osteons into 

distinct rows or layers.” Figure 3.15 illustrates an example of osteon banding. 

Unlike the quantitative analysis that measured structures within the 1mm sample sections, 

qualitative observations were made across the entire cross-sectional surface.   The cross-sectional 

surface was divided along the eight planes as described above.  

  Figure 3.14: Brick-like Plexiform Bone (Posterior Section of Deer Femur 5). 
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Figure 3.15: Example of Osteon Banding (Medial Section of Deer Femur 6). 
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Chapter 4: Results 
4.1 Plexiform Bone  
 

Plexiform bone has been used as a primary distinguishing histological feature of human 

and non-human bone (Benedix 2004).   The results of this study indicate that 64% of all the long 

bones and 16.7% of the mid-thoracic ribs have plexiform bone present.  Absence of plexiform 

bone does not indicate the bone is human, as 36% of long bones and 94% of the mid-thoracic 

ribs in this study did not have plexiform bone (Figure 4.1).  

  
Figure 4.1: Percentage of Plexiform Bone Presence. 

 
By species, deer and pig have the highest occurrence of plexiform bone (83% deer and 

88% pig).  All deer and pig femora observed have plexiform bone.  On the other hand, only 33% 

of the dog long bones have plexiform bone.  None of the dog humeri has plexiform bone.  Only a 

single deer rib has an area of plexiform bone.  The plexiform bone in the deer rib is not clearly 

defined structurally.  No other mid-thoracic ribs have any area of plexiform bone. 

There is a relatively even distribution of plexiform structures across the long bone cross-

sections, but there are some fluctuations.  The highest percentage of plexiform bone, 50% of total 

observed plexiform in long bone, is observed in the medial section of the femur and humerus.  
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The anterior-lateral and anterior-medial sections also have a high percentage of plexiform bone 

occurrences.  The posterior aspect of the bone showed the lowest plexiform bone presence of 

only 23%.  Of the one deer rib with plexiform type bone, the bone structure is present only in the 

interior section and cranial-interior section of the rib cross-section (Table 4.1).   

Table 4.1 Percentage of Plexiform Bone Presence by Section. 

 
4.2 Osteon Banding 
  

 The presence of osteon banding follows a different pattern in comparison to 

plexiform bone.  Overall, only 23% of all the long bones exhibit osteon banding. Of the femur, 

40% have osteon banding, while only 8% of the humeri have osteon banding.  No rib samples 

had osteon banding (Figure 4.2).  Results for the individual species indicate that deer long bones 

have osteon banding present in 50% of the samples.  The pigs have osteon banding in 25% of the 

samples.  No dog bones have any area of osteon banding. 

The distribution of the osteon banding is distinct, with the majority of the bone sections 

absent of osteon banding.  Osteon banding is present in 18% of the medial, long bone sections.  

The only other areas, with a single occurrence of osteon banding each, were the anterior section 

and posterior-medial section of the long bone cross-sections (Table 4.2).  

  Anterior 
Anterior 
Lateral 

Anterior 
Medial  Lateral  Medial  Posterior 

Posterior 
Lateral 

Posterior 
Medial 

% Samples 
with Plexiform 

Bone 

% Samples 
with Plexiform 

Bone  

DeerFEM  66.7%  100%  66.7%  100%  100%  66.7%  100%  100%  100% 

DeerHUM  66.7%  66.7%  66.7%  66.7%  33.3%  0  33.3%  0  66.7% 
83.0% 

                     

DogFEM  0  33.3%  33.3%  0  33.3%  0  0  33.3%  66.7% 

DogHUM  0  0  0  0  0  0  0  0  0 
33.0% 

                     

PigFEM  100%  50.0%  100%  25.0%  100%  0  0  75.0%  100% 

PigHUM  0  50.0%  25.0%  75.0%  50.0%  75.0%  75.0%  25.0%  75.0% 
88.0% 

                     

  Cranial 
Cranial 
Exterior 

Cranial 
Interior  Exterior  Interior  Caudal 

Caudal 
Exterior 

Caudal 
Interior 

% Samples 
with Plexiform 

Bone 

DeerRIB  0  0  16.7%  0  16.7%  0  0  0  16.7% 

DogRIB  0  0  0  0  0  0  0  0  0 

PigRIB  0  0  0  0  0  0  0  0  0 
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Figure 4.2: Percentage of Osteon Banding Presence. 

 
Table 4.2 Percentage of Osteon Banding Presence by Section. 

  

4.3 Mid-Thoracic Rib: Secondary Osteon Area 
  

The quantitative analysis of the Haversian system included the measurement of complete 

secondary osteon area and complete Haversian canal area within the 1mm wide sample of each 

section.  Perimeter and X-Y coordinates were recorded but are not reported.  The number of 

whole secondary osteons per measured sample area is reported and offers a general gauge of 

secondary osteon density.  This measurement is not the true secondary osteon density, as 

incomplete osteons were not counted.  

   Anterior 
Anterior 
Lateral 

Anterior 
Medial  Lateral  Medial  Posterior 

Posterior 
Lateral 

Posterior 
Medial 

% Samples with 
Osteon 
Banding 

% Samples 
with Osteon 
Banding  

DeerFEM  0  0  0  0  66.7%  0  0  33.3%  66.7% 

DeerHUM  0  0  0  0  33.3%  0  0  0  33.3% 
50.0% 

                      

DogFEM  0  0  0  0  0  0  0  0  0 

DogHUM  0  0  0  0  0  0  0  0  0 
0.0 

                      

PigFEM  25  0  0  0  25.0%  0  0  0  50 

PigHUM  0  0  0  0  0  0  0  0  0 
25.0% 

                       

   Cranial 
Cranial 
Exterior 

Cranial 
Interior  Exterior  Interior  Caudal 

Caudal 
Exterior 

Caudal 
Interior 

% Samples with 
Osteon 
Banding 

DeerRIB  0  0  0  0  0  0  0  0  0 

DogRIB  0  0  0  0  0  0  0  0  0 

PigRIB 0 0 0 0 0 0 0 0 0 
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  The mean secondary osteon area for all sections of the pig ribs is 1.13 ± 0.57 µm² x 104.  

Deer has a mean osteon area of 1.13 ± 0.59 µm² x 104.  Dog has the smallest overall mean osteon 

area with an average of 1.03 ± 0.54 µm² x 104.  The secondary osteon area of deer and pig ribs is 

comparable, though no spatial parallel is noted between the two species (Table 4.3).    

Table 4.3: Mean Area (µm² x 104) of Secondary Osteons by Rib Section. 

*Overall mean: the mean of all measurements for the skeletal element of that species. 
 

Examination of Figure 4.3 indicates secondary osteon means for all three species 

decreases in the caudal rib section, in particular dog.   The results also reveal a parallel in 

secondary osteon area changes of deer and dog.  Moving clock-wise around the rib cross-section, 

osteon area decreases in size from the cranial section to the cranial-exterior section, followed by 

increase in osteon size.  From the caudal through caudal-interior section, both deer and dog 

osteon area increase in size, followed by a sharp decrease. Even though the pig ribs’ overall 

secondary osteon area is similar to deer, inspection of the data indicates the pig’s secondary 

osteon area, for most sections, follows a different pattern relative to the other species.   

 
Figure 4.3: Mean Area (µm²) of Secondary Osteons by Rib Section. 

*Overall mean: the mean of all measurements for the skeletal element of that species. 

  Cranial 
Cranial 
Exterior  Exterior 

Caudal 
Exterior  Caudal  Interior 

Caudal 
Interior 

Cranial 
Interior 

Overall 
Mean* 

Overall 
Standard 
Deviation 

Coefficient 
of 

Variation 

Deer  1.22  1.04  1.21  1.02  1.02  1.27  1.13  0.98  1.13  0.59  0.53 

Dog  1.02  0.87  0.99  1.11  0.85  1.28  1.09  1.01  1.03  0.54  0.53 

Pig  1.22  1.22  1.28  1.22  1.06  1.03  0.94  1.14  1.13  0.57  0.51 
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4.4 Mid-Thoracic Rib: Haversian Canal Area 

An observation made regarding the preservation quality for some pig samples should be 

noted at this time.  Histologically, the surface of some pig sections appeared ‘scraped out’.  The 

surface degradation may be related to processing of the bone.  The surface appearance made it 

difficult to measure some structures.   It was necessary to be more selective of measurements 

within the pig cross-section compared to the other species because it was difficult to assess 

whether a Haversian canal area was the true histological structure or degraded hole in the bone 

(Figure 4.8). 

 
Figure 4.4: Degraded Appearance of Some Pig Bone Cross-Sections. Arrows indicate Haversian 

canals that appear to be larger due to processing than they may have been in life. 
 

The Haversian canal area of the ribs did not demonstrate a similar pattern to the 

secondary osteon area.  Deer has a relatively small overall mean canal area compared to the other 

species with an average of 2.45 ± 1.64 µm² x 102.  Dog Haversian overall canal area is 3.92 ± 

2.59 µm² x 102.  Pig had a distinctly higher overall Haversian canal area than the other two 

species, with a mean of 6.02 ± 4.69 µm² x 102 (Table 4.4).   
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Table 4.4: Mean Area (µm² x 102) of Haversian Canals by Rib Section. 

*Overall mean: the mean of all measurements for the skeletal element of that species. 
 

Deer and dog samples’ mean section areas remain relatively constant when examining the 

area changes moving clock-wise around the cross-section.  Both dog and pig canal area 

decreases at the interior rib section, followed by an increase in osteon area along the caudal-

interior aspect of the rib (Figure 4.5).   

 
Figure 4.5: Mean Area (µm²) of Haversian Canals by Rib Section. 

*Overall mean: the mean of all measurements for the skeletal element of that species. 
 

Pig Haversian canal area is larger than deer and dog canal area for most of the rib 

sections.  Pig canal area is more than double that of deer canal area.  The pig Haversian canal 

area fluctuates in a similar ratio to the pig osteon area.  Canals on the exterior of the rib cross-

section are larger than canals on the pig samples’ interior rib cross-section. This may indicate 

that the entire Haversian system size is changing around the rib cross-sections. 

   Cranial 
Cranial 
Exterior  Exterior 

Caudal 
Exterior  Caudal  Interior 

Caudal 
Interior 

Cranial 
Interior 

Overall 
Mean* 

Overall 
Standard 
Deviation 

Coefficient 
of 

Variation 

Deer  2.47  2.41  2.19  2.23  2.25  2.53  2.52  3.37  2.45  1.64  0.67 

Dog  4.45  3.27  4.54  3.74  3.83  3.51  3.92  4.04  3.92  2.59  0.66 

Pig  5.84  7.96  6.85  7.49  7.99  4.12  4.00  5.23  6.02  4.69  0.78 
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4.5 Mid-Thoracic Rib: Osteon Density 

Dog has a mean density (osteons measured/area mm) of 28.326 ±5.035.  Deer and pig 

have very similar densities of 15.538 ±4.107 and 19.425 ±4.033, respectively.  The number of 

whole secondary osteons per area suggests that dog ribs have relatively higher density secondary 

osteons per area relative to deer or pig (Figure 4.6).   During analysis, I noted that the dog bones 

were visually distinct from the deer and pig bones because of the high density of similar sized 

osteons across the dog’s cross-sectional surface.  No inter-species spatial relation is visible by 

mid-thoracic rib section. 

 
Figure 4.6: Mean number of Whole Secondary Osteons Measured per Rib Section. 

*Overall mean: the mean of all measurements for the skeletal element of that species. 
 

4.6 Mid-Thoracic Rib: Cortical Thickness 

A pattern emerges across all three species in terms of cortical thickness.  An increase in 

cortical thickness is evident along the cranial section through to the exterior section of the rib 

cross-section.  There is a distinct decrease in cortical thickness along the caudal margin for all 
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three species.  For all three species, the thinnest bone section is the caudal margin.  The decrease 

along the caudal margin is followed by an increase in cortical thickness along the interior of the 

rib.  For all three species, their thickest section is along the interior or caudal-interior of the rib.  

The cortical thinning along the caudal border may correspond with the costal groove on the ribs.  

Overall, pig cortical bone is the thinnest compared to the other two species.  Deer has thicker 

cortical bone, overall and for every section, relative to pig and dog (Figure 4.7). 

 
Figure 4.7: Mean Cortical Thickness (mm) Measured per Rib Section. 

*Overall mean: the mean of all measurements for the skeletal element of that species. 
 
4.7 Femur and Humerus: Secondary Osteon Area 
 
 Instead of individually analyzing the femur and humerus, the results for both long bones 

are reported together.  Patterns that emerge within the same species are simultaneously examined 

with patterns that occur between like skeletal elements of different species. 

Overall, pig humeri and femora have larger mean secondary osteon area compared to 

deer and dog.  Pig humeri demonstrated the greatest variability in osteon area according to the 

coefficient of variation.  For the femur, the pig’s mean secondary osteon area is 1.97 ± 0.87 µm² 



48 
 

x 104.   The mean secondary osteon area for the pig humerus is 2.51 ± 1.66 µm² x 104.  These 

osteon area measurements are in sharp contrast to the smaller osteon area for both dog and deer.  

Deer have a mean secondary osteon area of 1.39 ± 0.65 µm² x 104 for the femur and 1.47 ± 0.60 

µm² x 104 for the humerus.  Dogs have a femur mean of 1.56 ± 0.67 µm² x 104 and humerus 

mean of 1.49 ± 0.74 µm² x 104.  Secondary osteon area is most similar between the humerus and 

femur within each species.  However, the relationship between intraspecies humeri and femora is 

not identical for all three species.  For deer and pig, the osteon area of the humerus is larger than 

that of the femur, while for dogs, the osteon area is overall larger for the femur than the humerus 

(Table 4.5). 

Table 4.5: Mean Area (µm² x 104) of Secondary Osteons by Femur and Humerus Section. 

*Overall mean: the mean of all measurements for the skeletal element of that species. 
 

Despite the observation that osteon area appears to be species related, examining the 

cross-sectional change in osteon size across the bone surface reveals another pattern.  Parallels 

between the spatial changes in mean osteon size of deer and dog long bone cross-sections appear 

to follow skeletal element (dog femur and deer femur, dog humerus and deer humerus), as 

opposed to species.  Pig humerus follows a separate trend relative to pig femur and the bones of 

the other species, with no obvious relation to any other bone (Figure 4.8). 

On closer examination of the deer and dog osteon area, a spatial trend emerges.  

Following the deer femur and dog femur osteon area clock-wise around the long bone cross- 

section, we see an increase in osteon areas along the anterior through anterior-lateral sections.   

  Anterior 
Anterior 
Lateral  Lateral 

Posterior 
Lateral  Posterior 

Posterior 
Medial  Medial 

Anterior 
Medial 

Overall 
Mean* 

Overall 
Standard 
Deviation 

Coefficent 
of  

Variation 

DeerFEM  1.12  1.34  1.70  1.56  1.51  1.48  1.09  1.25  1.39  0.65  0.47 

DeerHUM  1.59  1.58  1.54  1.66  1.46  1.46  1.41  1.22  1.47  0.60  0.41 

DogFEM  1.60  1.73  1.57  1.59  1.59  1.60  1.40  1.42  1.56  0.67  0.43 

DogHUM  1.39  1.37  1.76  1.73  1.45  1.47  1.41  1.46  1.49  0.74  0.49 

PigFEM  1.99  1.54  1.76  2.35  2.37  1.58  1.79  1.78  1.97  0.87  0.44 

PigHUM  2.30  2.42  2.82  1.99  2.76  2.25  2.75  2.82  2.51  1.66  0.66 
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Figure 4.8: Mean Area (µm²) of Secondary Osteons by Femur and Humerus Section. 
*Overall mean: the mean of all measurements for the skeletal element of that species. 

 
Mean osteon area remains relatively stable along the posterior-lateral through posterior-medial 

sections of the bone.  A sharp decrease in osteon area, followed by a slight increase, is noted 

along the anterior-medial aspect of both the deer and dog femora’s cross-sections (Figure 4.9a).   

On the other hand, deer and dog humerus follow a different path.   Figure 4.9b indicates 

humeral osteon area is relatively stable along the anterior and anterior-lateral sections.  Osteon 

area increases along the lateral margin, followed by a decrease in mean osteon area along the 

posterior section and again, along the medial section.   Not only do the deer and dogs’ secondary 

osteon areas of the humerus parallel one another, the absolute areas are similar for all sections 

from the posterior-lateral to medial aspect of the bone.  The lateral and anterior-medial sections 

are the exceptions to this trend.  At these sections the two species diverge from one another in 

terms of their osteon area. 
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Figure 4.9a (left): Mean Area (µm²) of Deer and Dog Secondary Osteons by Femur section.  

Figure 4.9b (right): Mean Area (µm²) of Deer and Dog Secondary Osteons by Humerus 
Section.  

*Overall mean: the mean of all measurements the skeletal element of that species. 
 

4.8 Femur and Humerus: Haversian Canal Area 

In a similar pattern to the secondary osteon area, pig Haversian canal area is larger and 

fluctuates more than both deer and dog.  All pig sections, except the medial section of the pig 

femur, have larger mean canal sizes than deer and dog.  Pig overall mean femoral Haversian 

canal area is 6.45 ± 3.41 µm² x 102.  The mean humeral Haversian canal area for pig is 7.75 ± 

5.60 µm² x 102.  Deer femora have a mean canal area of 3.87 ± 2.05 µm² x 102.  The mean deer 

humerus canal area is 4.01 ± 1.86 µm² x 102.  Dog femora have a mean of 4.32 ± 3.14 µm² x 102 

and for the dog humerus the mean is 3.14 ± 2.27 µm² x 102.  Overall, the entire pig Haversian 

system, both osteons and canals, is larger than the other two species.   More specifically, the 

pig’s humeri samples have larger Haversian systems than the pig’s femora samples.  Larger 

humeral Haversian systems are also noted in the results for the dog; however, the difference in 

overall means is not as distinct (Table 4.6).  

There are not the same patterned spatial trends between like skeletal elements evident in 

the Haversian canal data as there are for the secondary osteon area, although there are some 

similarities between deer and dog humeri, and deer and dog femora (Figure 4.10).   
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Table 4.6: Mean Area (µm² x 102) of Haversian canals by Femur and Humerus Section 

*Overall mean: the mean of all measurements for the skeletal element of that species. 
 

 
Figure 4.10: Mean Area (µm²) of Haversian Canals by Femur and Humerus Section. 
*Overall mean: the mean of all measurements for the skeletal element of that species. 

 
Haversian canal areas are most similar between like species.  The humerus and femur of 

each species canal area changes around the cross-section in a similar pattern within species.  The 

parallel changes in the femur and humerus within each species is strongest along the medial side 

of the long bones’ cross-section (Figure 4.11a and Figure 4.11b).   Pig Haversian canal means 

  Anterior 
Anterior 
Lateral  Lateral 

Posterior 
Lateral  Posterior 

Posterior 
Medial  Medial 

Anterior 
Medial 

Overall 
Mean* 

Overall 
Standard 
Deviation

Coefficent  
of    

Variation 

DeerFEM  3.52  3.90  3.80  3.97  4.78  3.92  3.01  3.34  3.87  2.05  0.53 

DeerHUM  3.56  4.72  4.75  4.04  3.78  4.13  3.51  3.92  4.01  1.86  0.46 

DogFEM  4.38  3.78  4.44  4.09  4.59  4.06  4.23  4.35  4.32  1.82  0.42 

DogHUM  3.69  3.62  3.05  3.34  2.84  2.58  2.85  3.02  3.14  2.27  0.72 

PigFEM  7.73  5.90  6.30  7.86  5.60  5.42  5.48  6.97  6.45  3.41  1.20 

PigHUM  6.74  8.04  5.90  8.63  8.56  6.09  8.58  9.87  7.75  5.60  0.72 
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follow a similar trend for the humerus and femur around the entire cross-section, even though the 

means are distinctly different for the two elements (Figure 4.11c). 

   
Figure 4.11a (left): Mean Area (µm²) of Deer Haversian Canals by Long Bone Section.  

Figure 4.11b (center): Mean Area (µm²) of Dog Haversian Canals by Long Bone Section. 
Figure 4.11c (right): Mean Area (µm²) of Pig Haversian Canals by Long Bone Section. 

*Overall mean: the mean of all measurements for the skeletal element of that species. 
 

Examining the osteon and Haversian canal areas for all skeletal elements, several patterns 

emerge.  First, pig Haversian canal areas are all distinctly larger than the corresponding areas of 

deer and dog (Table 4.7 and Table 4.8).  For many of the mid-thoracic rib cross-sections, pigs’ 

Haversian systems are larger than that of deer and dog.   

Second, pig long bone Haversian canal area fluctuates more for each element compared 

to both deer and dog, according to its co-efficient of variation.  Pigs’ humeri also demonstrate 

greater variability than the humeri of deer and dog.  Deer and dog are not distinctly different in 

terms of the area of their long bone osteon or Haversian canal. On the other hand, dog mid-

thoracic ribs have distinctly smaller areas relative to the other species. For a more detailed 

examination of the overall statistics of the species, see Appendix D.   

Secondary osteon and Haversian canal areas of deer and dog remain relatively similar for 

all elements.  For secondary osteon area there is a parallel increase in osteon area from rib to 

humerus for the three species. The humerus has the greatest overall area for pig and deer.   Pig 

samples have relatively large humeral Haversian canals compared to their femoral Haversian 

Deer: Haversian Canal Area Dog: Haversian Canal Area Pig: Haversian Canal Area 
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canal areas.  This oberservation may be associated with lower plexiform bone presence in the 

humerus versus the femur of both deer and pig  (Figure 4.12 and Figure 4.13). 

Table 4.7: Overall Secondary Osteon Mean Area* (µm² x 104) by Species and Element 
   Rib  Humerus  Femur 

Deer  1.13  1.47  1.39 

Dog  1.03  1.49  1.56 

Pig  1.13  2.51  1.97 

*Overall mean: the mean of all measurements for the skeletal element of that species. 
 

Table 4.8: Overall Haverisan Canal Mean Area* (µm² x 102) by Species and Element 
 
 

 

 
 

*Overall mean: the mean of all measurements for the skeletal element of that species. 
 

   
Figure 4.12 (left): Overall Secondary Osteon Area* (µm²) by Species and Element 
Figure 4.13 (right): Overall Haversian Canal Area* (µm²) by Species and Element 

*Overall mean: the mean of all measurements for the skeletal element of that species. 
 

4.9 Femur and Humerus: Osteon Density 
 

The dog long bone samples have the densest secondary osteon per cortical area for every 

section.  All the humerus dog samples, within every section, showed greater secondary osteon 

density than the dog femur samples.  This trend is not seen in the other species.  Overall, pigs 

have the lowest secondary osteon density by area (Figure 4.14).   

   Rib  Humerus  Femur 

Deer  2.45  4.01  3.87 

Dog  4.00  3.14  4.32 

Pig  6.02  7.75  6.45 
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Figure 4.14: Whole Secondary Osteons Measured per Long Bone Area (mm²) 

*Overall mean: the mean of all measurements for the skeletal element of that species. 
 

4.10 Femur and Humerus: Cortical Thickness  

Cortical thickness follows an expected trend: thicker cortical bone in the femur (generally 

the larger of the two bones) versus the humerus.  One exception to this observation is the thicker 

cortical area in the posterior of the pig humerus relative to the pig femur (Figure 4.15). 

.  
Figure 4.15: Mean Cortical Thickness (mm) Measured per Long Bone Section.  

*Overall mean: the mean of all measurements for the skeletal element of that species. 
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Chapter 5: Discussion  

 At the onset of the research, three goals were set forth.   I collected a wide range of data 

including measurements, presence/absence observations, and spatial relationships to fulfill the 

three objectives.  The results of this study address all three of the following goals:  

1) The quantitative and qualitative comparison of three different species’ microscopic 
skeletal structures and the histological spatial organization of these structures; 
 

2) The quantitative and qualitative comparison of different skeletal elements in terms of 
their microscopic structures and the histological spatial organization of these structures, 
and; 

 
3) The contribution that quantitative, structural, and organizational information provides for 

species differentiation, including human versus non-human comparisons.   
 
5.1 Interspecies Comparison 

 Deer, dog, and pig were quantitatively and qualitatively compared.  Overall, structural 

differences are noted among the three species in this project.  The quantitative comparison 

suggests there may be histomorphometric variations in the area of Haversian canals and 

secondary osteons for the species tested in this study.  Further studies are needed to confirm 

these results.   

The presence/absence results for plexiform bone and osteon banding show a higher 

percentage of these structures in deer and pig relative to dog.  These results indicate differences 

in the microscopic structure and organization of bone between different species.  The 

presence/absence of plexiform bone corroborates other researchers’ observations that plexiform 

bone is typical among Suidae and Cervidae (Owsely et al. 1985).   The relatively low frequency 

of plexiform bone among the dog samples suggests a different structural pattern for this species.  

These results reinforce the importance of quantitative analysis when looking for a methodology 

to differentiate between species because presence/absence observations are not enough to 

differentiate among species or human versus non-human skeletal remains.   
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Mulhern and Ubelaker (2001) noted other researchers had found osteon banding in dog 

fragments.  In this study, there is a complete absence of osteon banding in the dog specimens.  

This inconsistency is unclear, but may be related to the small sample size.  

The results for secondary osteon and Haversian canal area reveal some important 

patterns.  First, pigs have a larger mean Haversian canal area compared to deer and dog samples.  

One possible explanation is the preservation quality of the bone.  As noted in the results, the pig 

microscopic surface did not appear consistent, possibly as a result of bleaching or boiling the 

bone.  The quality of the bone morphology made it difficult to assess certain microscopic 

structures.  Larger Haversian canals may be over-represented from these slides.   

 Another factor that may have affected the pigs’ osteon and Haversian canal area results 

was the relatively young age of the sample.  Differences in maturation rates of the skeletal 

elements may result in areas of variable osteon and Haversian canal size.  This assumption is 

supported by research such as Hamrick’s (1999) study that reports histological differences that 

are dependent on developmental stage of the species. 

The incomplete secondary osteon density analysis was presented as an estimate of  the 

true secondary osteon density.  The patterns seen in the results suggest a more focused density 

analysis should be conducted.  The low, overall secondary osteon density for the pigs is likely 

due to the fact that all pigs were sub-adults, as evidenced by their unfused long bones.  On the 

other hand, the dog sample was older overall, with complete long bone fusion; this may have 

resulted in the higher secondary osteon density noted in dog samples for this study.   

5.2 Inter-elemental Comparison 

The results for the comparison of the mid-thoracic rib, humerus, and femur were 

unexpected.  Parallels were seen between like elements of different species, supporting the idea 

that microstructure of bone may be influenced by biomechanical or functional variables. 
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For all faunal species, the femur had a higher percentage of plexiform bone compared to 

the humerus. This observation, despite the fact that both bones are weight-bearing, may indicate 

intraspecies differences in the histological organization of bone within the body.  Benedix (2004) 

suggested that growth rate may be a factor in plexiform bone formation.  Differences in 

plexiform bone distribution in the same individual may be interpreted as a result of different 

growth rates or growth patterns.  The differences in the dog humerus and femur may be the result 

of functional difference in the bones, as all the dogs in the study were mature at their time of 

death.  As Liem et al. (2001) note, there are locomotor differences in the role of the humerus and 

femur during a stride. 

Plexiform bone may also have an influence on density analysis.  Areas of bone with 

plexiform bone present had relatively low secondary osteon densities.  This phenomenon may 

explain why dog humeri have a higher secondary osteon density than dog femora.  No dog 

humeri had any plexiform bone, while 33% of dog femora had plexiform bone. 

The medial section of the femur had a higher percentage of plexiform bone than the 

corresponding sections of the humerus of all the species examined.  There is a higher percentage 

of osteon banding in the femur compared to the humerus of pig and deer.  This phenomenon is 

another indication of spatial differences in long bone organization.  Again, these differences may 

relate to developmental or functional differences in the bone.  Benedix (2004) took plexiform 

observation a step further, measuring the plexiform band width.  Combining his quantitative 

approach with the spatial analysis of plexiform bone may help to extrapolate structural 

differences in bone.   

A final point regarding the structural organization of the bones is the almost complete 

lack of plexiform bone and osteon banding in the ribs for all three species.  The single observed 

incident of plexiform bone in the deer rib is a small area of indistinct plexiform organization 
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relative to the compact, distinct, brick-like pattern observed in the long bones.  One possible 

explanation is the difference in bone function.  The nature of the long bones as weight bearing 

could necessitate a different developmental pattern from the relatively stable pressures exerted 

on the ribs.   

The interspecies spatial similarities for the deer and dog long bone secondary osteon area 

could indicate that microscopic structural development may be a response to biomechanical or 

functional influences and not soley determined by species. The similar trend for secondary 

osteon area change is evident for both the femur and the humerus between the deer and dog.  

This is excellent evidence to suggest that biomechanical and/or developmental influences may be 

a factor in bone formation.  This information is important as it ultimately will aid in the 

understanding of species differences and the histological differences between bones of the same 

species.  

Non-human species appear to demonstrate a similar increasing secondary osteon density 

with age, as in humans.  At this time, I know of no study that has quantified the age-related 

changes in non-human species to create a predictive age-at-death equation.  While this may not 

prove to be a functional and applicable exercise, understanding different development rates may 

assist further in species differentiation.  The differing secondary osteon density between the 

femur and humerus of the same species is more evidence for differences in development or 

biomechanics between bones.  

One trend I had expected to see but did not was differences in the bone structure related 

to muscle attachment sites.  There is no conclusive evidence from my study that there are any 

structural changes in size or density of microscopic bone features.   
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Chapter 6: Conclusions 

 Three objectives were presented at the onset of this thesis.  The first goal of the research 

was to compare presence/absence of structures, osteon and Haversian canal area, density and 

cortical thickness of three species: deer (Odocoileus virginianus), dog (Canis familiaris), and pig 

(Sus scrofa domesticus).  The three species represented mammals that are ubiquitous across 

North America and frequently associated with forensic settings and archaeological sites.  

Information discovered in the research will be useful for species differentiation and may also be 

used in future human versus non-human comparisons.  

 Evident from the results and discussion, certain trends appear to be species specific.  The 

pig is histomorphometrically isolated from both the deer and dog in terms of the Haversian 

system size, thought further exploration of the data is necessary.  In particular, examination of 

the intraspecies variance and spatial distribution of cellular structures is warranted.  Deer, for 

example, have considerable variability in its osteon area, while dog has relatively stable osteon 

area for all three skeletal elements. I would like to explore the variation in osteon and Haversian 

canal size within each species. 

 The second goal of the project was to compare the different skeletal elements: the mid-

thoracic rib, the humerus, and the femur.  The ribs are considered non weight-bearing bones 

while both the humerus and femur are weight-bearing in the quadrupeds selected for this study.  

The hypothesis is that non weight-bearing bones would exhibit differences related to species, not 

functional or biomechanical influences.   Attributes including presence/absence of structures, 

osteons and Haversian canal area, density, and cortical thickness were compared quantitatively 

and spatially.  There appear to be distinct differences between skeletal elements.  In particular, 

the presence of plexifom bone and osteon banding is different between skeletal elements.  

Haversian system areas are also variable between the different elements within a species. 
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Future interspecies histoical research must be conducted in order to support any of the 

hypotheses discussed with regard to biomechanical and functional influence on the spatial 

organization of bones.  The parallel changes in osteon area of the deer and dog humerus and 

femur are good evidence for this hypothesis though more research is necessary.  The research 

should include serial sections from the same bone and a larger sample population.  Serial 

sections would allow greater exploration in the differences between bones and the factors 

influencing microscopic bone structure development. 

The final goal investigated how these variables may contribute to human versus non-

human microscopic skeletal differentiation.  No human samples were used; however, the results 

suggest that some organizational and histomorphometric differences may be species specific.  

The spatial analysis of the bones’ mid-shaft cross-sections revealed some important trends that 

would not have been evident had the surface been measured as a single unit.  I believe the 

division of the cross-section into eight distinct slices was a valuable tool in understanding the 

structure and organization of the bone.   

 The current investigation, comparing the femora, humeri, and mid-thoracic ribs of deer, 

dog, and pig requires further study.  Identification of species from fragmentary remains has 

implications for both archaeology and forensic anthropology.  For archaeology, there are many 

advantages to a technique that would allow detailed information to be collected regarding diet, 

past environments, and cultural practices.  For forensics, histology may aid in more accurate 

differentiation of human and non-human fragments when gross morphological examination 

and/or DNA analysis are neither possible nor practical.  Cataloging the differences in structural 

and spatial organization of bones also adds to the understanding of bone and its response to the 

influences of biomechanical, functional, and genetic influences.  The study serves as an 

important basis for future research differentiating North American fragmentary faunal remains.  
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Appendix A: FACES Laboratory Protocol for DNA Sampling 

When taking a DNA sample this protocol will be followed by FACES Lab personnel to protect 
personnel and to minimize contaminations. 
 
Apparel 

Protective clothing, including a mask, face shield, sleeves, booties, smock or apron, 
double gloves, and a hair cap or hat shall be worn by all personnel involved in taking the 
DNA sample. 
 

Equipment 
Equipment used in taking the samples shall include a Stryker Saw and/or pliers. 
 

Sampling Protocol 
1) Samples will be taken underneath the fume hood in Howe-Russell Building, room 

E129AA 
2) The case from which the sample is taken shall be the only one in E129AA during 

sampling 
3) The area in which the sample is taken shall be thoroughly cleaned with a 50/50 

bleach/water solution prior to taking each sample. 
4) All equipment used to take the sample shall be thoroughly cleaned with a 50/50 

bleach/water solution prior to taking each sample. 
5) FACES personnel shall put on a clean pair of gloves prior to handling each sample. 
6) Two samples shall be taken from each case. 
7) Depending on the availability, samples shall consist of two of the following: 

a. A plug of bone (approximately, one to two inch squared) from the anterior distal 
thir of the left femur or tibea (the right side shall be used if the left is not 
available) 

b. A virgin molar or premolar 
c. A section of rib 
d. A plug of bone from the cranium (preferably parietal) 

8) The element from twhich the sample is taken shall be photographed prior to sampling. 
9) The sample itself shall be photographed prior to being placed in the bag. 

 
Sample Storage 

1) Every sample shall be placed in its own paper bag.  Every bag shall be labeled with the 
date, case number, element sampled, and who took the sample. 

2) Bagged Samples from the same case shall be stored together in one large paper bag that is 
labeled with the case number. 
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Appendix B: Record Sheet for Mid-Thoracic Rib Samples 
 
SAMPLE NAME HERE 

Bone Description:  

 

Age-at-Death Estimation:  

 

Source:  

 

 

 QUANTITATIVE 

# of 
whole 
2ndary 
Osteons 

Osteon Area 
mm2 

Osteon 
Perimeter 

mm 

# of Haversian 
Canals  

Haversian 
Canal Area 

mm2  

Haversian 
Canal 

Perimeter mm 

Area 
Measured 

mm2 

Cortical 
Thickness

mm 

Total Cross 
Section 

Cranial    ±  ±    ±  ±     
 

Cranial‐Exterior   
±  ± 

 
±  ± 

     

Cranial‐Interior   
±  ± 

 
±  ± 

   
Average Osteon 

Area 

Exterior   
±  ± 

 
±  ± 

    ± 

Interior   
±  ± 

 
±  ± 

     

Caudal   
±  ± 

 
±  ± 

   
Average Canal 

Area 

Caudal‐Exterior   
±  ± 

 
±  ± 

    ± 

Caudal‐Interior   
±  ± 

 
±  ± 

     

QUALITATIVE 
Processing 
Quality 

Preservation 
Quality 

Osteon 
Banding 

Distribution 
Pattern 

Plexiform 
Bone 

Distribution 
Pattern 

Osteon 
Shape 

Distribution 
Pattern 

Cranial                         

Cranial‐Exterior                         

Cranial‐Interior                         

Exterior                         

Interior                         

Caudal                         

Caudal‐Exterior                         

Caudal‐Interior                         

 
 
 
 
 

Add slide photo here 
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Appendix C: Record Sheet for Long Bone Samples  
SAMPLE NAME HERE 

Bone Description:  

 

Age-at-Death Estimation:  

 

Source:  

 

 

 

 

 QUANTITATIVE 

# of 
whole 
2ndary 
Osteons 

Osteon Area 
mm2 

Osteon Area 
mm2 

# of Haversian 
Canals  

Haversian 
Canal Area 

mm2  

Haversian 
Canal Area 

mm2  

Area 
Measured 

mm2 

Cortical 
Thickness

mm 

Total Cross 
Section 

Anterior      ±      ±     
 

Anterior‐Lateral      ± 
    ± 

     

Anterior‐Medial   
  ± 

 
  ± 

   
Average Osteon 

Area 

Lateral   
  ± 

 
  ± 

    ± 

Medial      ± 
    ± 

     

Posterior   
  ± 

 
  ± 

   
Average Canal 

Area 

Posterior‐Lateral      ± 
    ± 

    ± 

Posterior‐Medial   
  ± 

 
  ± 

     

QUALITATIVE 
Processing 
Quality 

Preservation 
Quality 

Osteon 
Banding

Distribution 
Pattern 

Plexiform 
Bone 

Distribution 
Pattern 

Osteon 
Shape 

Distribution 
Pattern 

Anterior                         

Anterior‐Lateral                         

Anterior‐Medial                         

Lateral                         

Medial                         

Posterior                         

Posterior‐Lateral                         

Posterior‐Medial                         

 
 
 
 
 

Add slide photo here 
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Appendix D: Summary of Secondary Osteon and Haversian Canal Data  
 

Summary of Secondary Osteon Data by Species and Skeletal Element 

 
Summary of Haversian Canal Data by Species and Skeletal Element 

 

 
 

 
DeerFEM 
Osteons 

DeerHUM 
Osteons 

DeerRIB 
Osteons 

DogFEM 
Osteons 

DogHUM 
Osteons 

DogRIB 
Osteons 

PigFEM 
Osteons 

PigHUM 
Osteons 

PigRIB 
OSTEONS 

 

Mean  
(µm² x 104)  1.39  1.47  1.13  1.56  1.49  1.03  1.97  2.51  1.13   

StDev       
( x 104) 

0.65  0.60  0.59  0.67  0.74  0.54  0.87  1.66  0.57   

Maximum   
(µm² x 104)  3.91  4.64  8.10  5.41  5.70  4.80  5.06  7.80  4.08   

Minimum 
(µm² x 104)  0.38  0.32  0.022  0.29  0.40  0.017  0.53  0.40  0.19   

Count  271  287  795  630  311  1134  252  205  562   

 
DeerFEM 
Canals 

DeerHUM 
Canals 

DeerRib 
Canals 

Dog FEM 
Canals 

DogHUM 
Canals 

Dog RIB 
Canals 

PigFEM 
Canals 

PigHUM 
Canals 

PigRib Canals 

Mean 
(µm² x 10²)  3.87   4.01  2.45  4.32  3.14  3.92  6.45  7.75  6.06  
StDev       
( x 10²)  2.05  1.86  1.64  1.82  2.27  2.59  3.41  5.60  4.81 

Maximum   
(µm² x 102)  12.31  12.21  18.80  17.51  30.00  20.00  20.58  34.98  33.20 

Minimum 
(µm² x 102)  0.80  0.97  0.68  0.76  0.47  0.38  1.43  0.63  0.80 

Count  302  331  988  815  389  1102  254  208  655 

Deer Canal Area 
Deer Osteon Area  
Pig Canal Area 
Pig Osteon Area  
Dog Canal Area 
Dog Osteon Area  
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