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Abstract 

To present the spatio/temporal data from oceanographic modeling in GIS has been a 

challenging task due to the highly dynamic characteristic and complex pattern of variables, in 

relation to time and space. This dissertation focuses the research on spatio-temporal GIS data 

model applied to oceanographic model data, especially to homogeneous iso-surface data.  

The available spatio-temporal data models are carefully reviewed and characteristics 

in spatial and temporal issues from oceanographic model data are discussed in detail. As an 

important tool for data modeling, ontology is introduced to categorize oceanographic model 

data and further set up fundamental software components in the new data model.  

The proposed data model is based on the concept of contour tree. By adding temporal 

information to each node and arc of the contour tree, and using multiple contour trees to 

represent different time steps in the temporal domain, the changes can be stored and tracked 

by the data model. In order to reduce the data volume and increase the data quality, the new 

data model integrates spatial and temporal interpolation methods within it. The spatial 

interpolation calculates the data that fall between neighboring contours at a single time step. 

The Inverse Distance Weighting (IDW) is applied as the main algorithm and the Minimum 

Bounding Rectangle (MBR) is used to enhance the spatial interpolation performance.  

The temporal interpolation calculates the data that are not recorded, which fall 

between neighboring contour trees for adjacent time steps. The ―linear interpolation‖ 

algorithm is preferred to the ―nearest neighbor’s value‖ and ―spline‖ interpolation methods, 

for its modest accuracy and the simple implementation scheme.  



 ix 

 

In order to evaluate the support functions of the new data model, a case study is 

presented with the motivation to show how this data model supports complicated spatio-

temporal queries in forecasting applications.  

This dissertation also showcases some work in contour tree simplification. A new 

simplification algorithm is introduced to reduce the data complexity. This algorithm is based 

on the branch decomposition method and supports temporal information integrated into 

contour trees. Three types of criteria parameters are introduced to run different simplification 

methods for various applications. 
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Chapter 1 Introduction 

In modern day oceanographic research, numerical models play an important role in 

understanding and predicting the behavior of the complex oceanic and atmospheric systems. 

Using time series of wind vectors (magnitude and direction) as input, the wave models (MIKE 

21, SWAN, WAVE WATCH III, etc.) provide the sea state in terms of bulk wave parameters; 

such as, significant and maximum wave height, mean and peak wave period, wave direction, 

etc; while the hydrodynamic models provide current speed and direction in a 3D framework 

(e.g., FVCOM, ADCIRC, ROMS). Oceanographic models are being implemented in 

forecast/hindcast mode to generate time-dependent parameters for prognostic requirements.  

The 3
rd

 generation oceanographic models can use fine spatial resolution for the 

computational mesh, especially for the coastal zone, to resolve highly complex modification 

of wave and current fields in the region. The implementation of the unstructured mesh 

significantly enhances model efficiency by eliminating altogether the time consuming process 

of nesting regional models with global models. Figure 1.1 provides an unstructured mesh  

 

Figure 1.1 An unstructured mesh grid for the Galveston coast, Texas. 
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implemented for Sabine Bank, northern Gulf of Mexico, to study the wave transformation 

over the shoal. These 2D unstructured and regular meshes represent fully distributed sea state 

variables in the model domain, and also by organizing multiple independent frames, represent 

temporal changes during the computational temporal period. 

Figure 1.2 provides a snapshot of the Significant Wave Height (SWH) and Mean 

Wave Direction (MWD) distribution for the Gulf of Mexico, simulated using MIKE21 

spectral wave model. Zones of high wave energy and wave heights are concentrated off 

Yucatan Peninsula and off the Texas coast, while the north-eastern Gulf of Mexico is  

 

Figure 1.2 A snapshot of MIKE21 wave model output for the Gulf of Mexico: While the color 

fillings represent significant wave height distribution the yellow arrows provide the mean 

wave direction (see http://wavcis.csi.lsu.edu for an 84 hour wave forecast). 
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subjected to low energy waves. From this snapshot, the state of the Gulf of Mexico can be 

described as having two high wave zones and another low wave zone pervading the north 

eastern section. From a geographic perspective, oceanographic model output is one 

representation of dynamic geographic phenomena which relates to both space and time. 

All wave and current computations yield high data volumes and increase the 

processing time. When it comes to model data visualization or spatial analysis, there is a need 

to strike a balance between descriptive details and computational load for particular model 

applications.  

Geographic Information System (GIS) has been emerged as a critical tool in 

oceanographic modeling study. Traditionally, most GIS processes and oceanographic model 

implementations have to run separately. On the one hand, GIS software has been used in 

visualization and analysis of many oceanographic model outputs. On the other hand, a host of 

marine data application software tries to couple GIS with oceanographic models, in order to 

either speed-up model development time or to improve a model’s representation or 

visualization. However, coupling GIS with oceanographic modeling software is still a 

challenging and demanding research.  

The biggest challenge in coupling these two entities stems from the issue of the 

temporal consideration of the data. Conventional GIS emphasizes geospatial information at a 

single reference time, but oceanographic models usually deal with data having an additional 

temporal dimension, in which time is a fundamental element related to change.  Consequently, 

the first issue to resolve, when coupling GIS with oceanographic modeling software, is to 

support the data with temporal information. 
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A spatio-temporal data model is the fundamental step to solve this issue. This 

dissertation focuses on developing a spatio-temporal GIS data model in supporting 

oceanographic model data, because current available data models have limited capability in 

supporting it.  

Following this chapter, Chapter 2 is a literature review on the spatio-temporal GIS 

data model. Chapter 3 introduces ontological analysis of oceanographic data. Chapter 4 

discusses the design of the new data model, namely a contour tree-based, interpolation 

algorithm integrated spatio-temporal data model. Chapter 5 covers the proposed model’s 

implementation in detail and shows evaluations of the new model. Chapter 6 extends the 

research of data model on contour tree simplification and the last chapter concludes the major 

contributions and proposes future research.  
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Chapter 2 Literature Review 

2.1 Spatio-Temporal GIS (ST GIS) Overview 

Geographic realm consists of three domains: semantics (themes), time, and space. In 

GIS application, the basic consideration is to track information about ―where,‖ ―what,‖ and 

―when‖ of geographic phenomena (Peuquet 1994). Traditional GIS focuses on geographic 

objects or geographic phenomena at a specific time point or period. The time domain (―when‖) 

usually is stored or represented as an attribute attached to the other two domains (―what‖ and 

―where‖). For this reason, such a GIS has limited capabilities in supporting, represent, or 

record the temporal change or other dynamic information of the objects
1
. 

Spatio-temporal GIS (ST GIS) extends ordinary GIS with temporal information. A 

spatio-temporal GIS aims to represent, process, manage, and analyze spatio-temporal data 

(Yuan 1996).  The efficient integration of time with spatial information in GIS is the 

challenge that a spatio-temporal GIS has to address. Since spatio-temporal GIS considers time 

as its main domain, it focuses more on the dynamic phenomena that it has to represent. 

 During the past two decades, spatio-temporal GIS has been a focused research area, 

with a lot of potential in met-ocean (meteorological and oceanographic) model applications. 

Research efforts and advancements in spatial-temporal GIS emphasize on the following 

aspects: Abstract system architectures, conceptual models, temporal operations, database 

query grammar/algorithm, data structure, graphical user interfaces, etc. 

 

 

                                                           
1
 In this dissertation, an object is called ―dynamic‖ when it’s spatial information or attributes 

change with time. 



 6 
 

2.2 Spatio-Temporal GIS Data Model 

Among all aspects in spatio-temporal GIS research, the spatio-temporal data model 

plays a fundamental role. Spatio-temporal data models are abstract structures used to describe 

how geographic objects with temporal dimension would integrate and are represented in real 

world. It is ―the core of a Spatio-Temporal Information System. Spatial-temporal data models 

define object data types, relationships, operations, and rules to maintain database integrity‖ 

(Pelekis et al. 2005). So when trying to support oceanographic model data in a GIS, the first 

task is to find an appropriate data model that can represent such model data.  

Until recently, various spatio-temporal data models have been proposed. Among those 

models, although most of them claimed to be general (application-independent) models and 

have wider application fields, the majority of them are conceptual models and hence the 

application domains are very much restricted. For example, one of the commonly studied and 

applied spatio-temporal GISs could be the Land Information Systems (LIS) (Tryfona and 

Jensen 1999; Claramunt et al. 1998). The Cadastral Information System is one example of 

LIS, which tracks the change in land parcels with time and related information, such as 

individual ownership. Many proposed data models (Borges et al. 2001, J. Chen and J. Jiang, 

Pelekis et al. 2005, Tryfona and Jensen 1999) used LIS as an example to show their strong 

support in this kind of application. However, LIS could not represent all dynamic geographic 

phenomena in nature. There are even more complicated geospatial changes. The capability of 

applying these data models to other applications, such as for oceanographic model data, is 

very much limited. For example, the geospatial changes in LIS are discrete and easy to track. 

A direct adaptation of these data models to oceanographic model applications is almost 

impractical, given the rapid variability of the sea state conditions at the spatio-temporal scale. 
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So the limitations of the existing GIS models when it comes to marine data visualization and 

analysis is obvious. Actually, there is no widely accepted and generally applicable, 

sophisticated commercial spatio-temporal GIS product available thus far. 

In effect, there is a need for a new spatio-temporal data model suitable for 

oceanographic model data. This dissertation focuses the research on developing this kind of 

spatio-temporal GIS data model, with a scope for managing met-ocean forecast model data. 

The new data model does not necessary to be generic, but can be customized to this specific 

application area. In this research, the specific application refers to the output data of 

numerical oceanographic models for waves and water levels.  

2.3 Spatio-Temporal GIS Considerations for Oceanographic Model Data 

In spatio-temporal GIS data model research, several fundamental issues need to be 

considered (Abraham and Roddick 1999).  Among them, the most pertinent ones related to 

oceanographic model data are discussed below.  

1) How to define the morphology (metrics) of the geographic phenomena:  

Generally, GIS categorizes geographic phenomena into two concepts, namely fields 

and objects. ―Fields usually first identify the spatial and temporal component (the element of 

the domain) and then associate the (non-spatial) field value‖, while ―Objects are primarily 

identified by their non-spatial and temporal characteristics and are then attributed with their 

spatial (and temporal) extension‖ (Kemp and Vckovsky 1998). The main difference between 

the two is that fields are continuous (or homogeneous), while the objects are discrete entities. 

In GIS, vector and raster are implemented as the two fundamental data models to 

support both objects and fields concepts. Though it is possible to convert between fields and 

objects (raster and vector), the relative merits of vector and raster data for various spatial 
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analyses is distinct and depends heavily on the analysis purpose. May Yuan (2001a) also 

pointed out that many geographic phenomena have both object and field characteristics, and 

typical spatio-temporal data models have difficulty in properly representing them. 

Oceanographic model data, such as surface wave condition, extensively cover the 

specific geographic space (model domain), hence representing a continuous space 

(homogeneous). But in oceanographic research, a lot of the time the data are monitored from 

an object perspective, for example, the zones with high wave activity or the track of a 

hurricane across the domain. Therefore, oceanographic model data have such both object and 

field characteristics. More studies need to be conducted to carefully select between fields and 

objects to effectively represent oceanographic model data. 

The selection of an object or a field data model fundamentally affects the temporal 

data model design. 

Widely used data models in oceanographic research, such as NetCDF (Network 

Common Data Form), implement the snapshot model as the temporal data model. The 

snapshot model is field based and supports high resolution, but cannot represent the discrete 

objects or track their spatial changes. Another disadvantage is that those field based data 

models usually have to handle big data volumes which result in data redundancy and 

extensive computation.  

2) Temporal change pattern: 

For dynamic geographic phenomena, spatio-temporal changes can be categorized into 

several types based on temporal change interval patterns, including discrete, periodic, and 

constant.  
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 Discrete change interval patterns: Changes (most of the time these changes are 

significant) occur on irregular triggers (events) without consistent connection between 

these events (Figure 2.1). The change procedure is ephemeral and also can be 

considered as instant. The status between the occurrences of change is stable. That 

means that there are periods of static status for the dynamic objects. Discrete changes 

can be furthermore divided into two types, including stepwise constant and erupted 

discrete. In stepwise constant change, the dynamic objects hold the static status for a 

certain period after the change. Examples of this type of change are, for instance, land 

parcels change position or size in the cadastral system. In erupted discrete change, the 

dynamic objects appear during a very short time period, or geographic phenomena 

happen instantly.  Dynamic objects do not exist between the change incidents. 

Examples of this change could be wild fire, earth quake events, or similar. 

 

Figure 2.1 Two types of discrete changes: Stepwise constant (top) and erupted discrete 

(bottom). 
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 Periodic change: Changes are tracked by even time intervals (Figure 2.2). For example, 

many census data reflect the population change over a constant (usually 10 years) time 

interval.  

The main difference between discrete and periodic change is that discrete changes can 

be defined by events, such as wild fire incidents, while periodic changes are defined 

and measured by even time intervals (periods). The changes that happen in a specific 

time period are accumulated, and treated as a single event with grouped attributes. 

Furthermore, in discrete change, events or changes usually are independent, but in 

periodic change the adjacent changes are related with strong spatio-temporal 

relationships. For example, the population changes between successive censuses are 

highly inter-linked. In both type of changes, the interval between two points in time is 

treated as stable, that means the change that happens in between these two points in 

time usually is not studied.  

 

Figure 2.2 Periodic change: The time intervals between time steps (t1, t2 … t8) are equal. 

 Constant change: Unlike the two aforementioned changes, some geographic 

phenomena are highly dynamic. The change is constant and no discrete separation 

between events exists. It is also difficult to define the boundary changes based on time 

intervals. This kind of change is very typical in nature for moving vehicles, wind 

blowing across a lake, a hurricane advancing along its track, etc. The constant change 
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can be further divided into two types, namely smooth change and irregular change.  

The smooth change is progressive without radical changes, while the irregular change 

has radical changes. Figure 2.3 demonstrates these two types of changes.  

 

Figure 2.3 Constant changes: Smooth change (top) and irregular change (bottom). 

The oceanographic model data evolution pattern can be categorized into the third type, 

namely constant change. Outputs from an oceanographic model record the met-ocean change 

for the whole simulation period for a specific study area (domain). The oceanographic 

changes are constant and it is barely impossible to define any discrete change or periodic 

change boundaries. Anytime during the modeling period and anywhere in the domain, the 

geographic phenomena data representation is dynamic.  

Generally speaking, the oceanographic data change is smooth in appropriate spatial 

and temporal resolution.  During low time granularity, changes can be irregular. For example, 

while tracking the high wave zones in the Gulf of Mexico when a hurricane is approaching 

the continental USA from the Caribbean, and with an observation interval of 6 to 12 hours, 

the changes are not smooth and regular. If time granularity is selected at a certain fine level, 
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the irregular changes can be smooth. For the same data change as discussed above for the 

hurricane, if change is represented every hour, the sea surface water zones of high wave 

tracking can be treated as smooth.  

3) Spatio-temporal change types: 

The change with dynamic spatio-temporal data (dynamic objects) involves geometry 

(position and/or shape), topology, and attributes.  These changes can happen separately or 

simultaneously. As Roshannejad and Kainz (1995) summarized, the change of geographic 

objects in relation to time can be categorized into eight different scenarios as shown in Figure 

2.4. The less complicated change involves only one of three elements, whereas the 

complicated changes involve two or more.  

 

Figure 2.4 The eight possible types of spatio-temporal object changes (Roshannejad and 

Kainz 1995). 

In reality, spatio-temporal changes in oceanographic model data involve geometry, 

topology, and attribute. And all three changes can occur at the same time. For the geometry 

change, no fixed/static shapes for a defined oceanographic data object (e.g. high wave zone) 

exist.  The spatial variability of these data, representing geospatial objects, is stochastic in 
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nature. Since the oceanographic geospatial data movement is highly dynamic, the topology 

relations between the geospatial objects are also transient. As the wave/current propagates 

across the domain, the attribute (e.g., wave height) at a fixed position is also constantly 

changing.  

4) Inexactness (uncertainty): 

As Peuquet (2001) pointed out, there is inherent inexactness built into all spatial, 

temporal, and spatio-temporal GIS data models. The inexactness or uncertainty is from the 

artificial discretization of continuous phenomena in computer representation, both spatially 

and temporally.  

From the spatial side, the inexactness is from the fuzziness of the boundaries or classes. 

For example, the spatial boundary between areas of different wave height zones is not so crisp.  

Boundaries can also be fuzzy in the temporal dimension. In the earlier example of high wave 

zone movement, there is no sharply-defined instant in time under usual circumstances when a 

high wave changes to a low wave. This change tends to be gradual. Besides fuzziness, there is 

temporal uncertainty usually derived from the lack of information (Peuquet 2001). For 

example, the oceanographic model data usually use even intervals in time to represent 

changes. The changes that happen in between the intervals are not represented and related 

information is missing. 

Previous research (Goodchild et al. 1992, Huang and Lee 2009, Mark and Csillag 

1989, Pebesma and Jong 2007, Wilson and Burrough 1999) on data models has tried to 

control or estimate the inexactness in the spatial and temporal domain. However, with all of 

the various approaches proposed, there are still no truly workable solutions that have been 

developed so-far (Hunter 1999). There have been very few researchers, who have addressed 
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the problem of handling uncertainty in spatio-temporal systems (Peuquet 2001). On a level of 

practical implementation, linear interpolation has been the predominant approach used for 

dealing with inexactness in existing space-time databases. 

5) Identity persistence: 

In the temporal data model research, another important issue is how to handle the 

persistence of dynamic objects in time, in other words, the data model’s ability to manipulate 

dynamic object identities in time. In particular question that we need to answer is, how we 

define and track the dynamic object within its lifespan? One challenge in answering this 

question is, when does a ―change‖ affect an object so as not to be called the same object 

anymore? The identity persistence plays an important role in data model design, and can 

heavily affect data storage, processes, and queries. Most of the time, identity persistence is 

application dependant. In oceanographic data, such questions could relate to the definition of 

the lifespan (start time and end time) of a high wave zone in a hurricane event. Or, if there is a 

spatial gap for a wave zone in successive time steps, do they need to be treated as the same 

instance? 

Another critical issue related to identity persistence is that of splitting or merging 

(unifying) objects. For example, if a high wave zone splits into two or more zones, is it 

necessary to keep the original identity also for these new instances or entities? What about 

merging? 

All of these fundamental issues or challenges discussed above need to be carefully 

studied and resolved, when designing new data model for oceanographic model applications.  
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2.4 Review on Spatio-Temporal GIS Data Models  

The critical issues concluded in last section set the standards that require new data 

model to meet. First of all, with these main issues in the backdrop, currently available spatio-

temporal GIS data models will be reviewed and evaluated in detail in the following sections. 

2.4.1 Spatio-Temporal GIS Data Model Survey 

Spatio-temporal GIS (or Temporal GIS) is a relatively young research area. The 

groundbreaking research in spatio-temporal GIS data model can be traced back to 1988 

(Armstrong 1988, Langran and Chrisman, 1988). After that, especially in the last two decades, 

various spatio-temporal GIS data models have been proposed including the Snapshot Model 

(Armstrong 1988), Space-Time Composite (STC) Data Model (Langran and Chrisman 1988), 

Event-Oriented Spatio-Temporal Data Model (ESTDM) (Peuquet and Duan 1995), and the 

Three-Domain Model (Yuan 1994, 2001b). With the development of Object Oriented (OO) 

modeling technique in information science, more and more spatio-temporal GIS data models 

adopted the OO design concept. These models include: Spatio-Temporal Object (ST-object) 

(Worboys 1990, 1994), Spatio-Temporal Entity-Relationship (STER) (Tryfona and Jensen 

1999), Object-Relationship (O-R) (Claramunt et al. 1998), Spatio-Temporal Object Model 

(STOM) (Renolen 1997), Geo-OM (Tryfona et al. 1998), and the Spatio-Temporal UML 

(STUML) (Price et al. 2000), etc. Meanwhile, a number of surveys or reviews about the 

spatio-temporal GIS data models, either in abstract or in a comprehensive form, have been 

published.  

In the following section of this chapter, several typical spatio-temporal GIS data 

models are reviewed. The advantages, disadvantages, and main application fields are 

discussed. 
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2.4.2 Review on Selected Spatio-Temporal GIS Data Models 

1) Snapshot Model (Time Stamp)  

The Snapshot Model (Time Stamp) was the first one to be introduced and the most 

widely applied spatio-temporal GIS data model.  It was proposed by Armstrong in 1988. The 

concept is simple and straightforward. In this model, temporal information is incorporated 

into the spatial data model by a sequence of time-stamped individual layers (slices). Each 

layer stores the spatial distribution of all available geographic objects. The layer index and 

order reflect the time values. Figure 2.5 demonstrates this model. 

 

Figure 2.5 Examples of the Snapshot Model (Armstrong 1988). The top graph has constant 

time intervals between layers; the bottom graph has variable time intervals. 

Basically this model simply extends the spatially based GIS data model from a 2-D to 

3-D plane by adding time as the third dimension. Each cell within a separate snapshot 

contains the value for the corresponding location at that time, so the time related information 

can be easily accessed and retrieved. One big advantage of this model is that it can be 

conveniently transferred from traditional GIS data (e.g. satellite images).  
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 The disadvantages of this data model are also obvious. First, it introduces a large 

degree of data redundancy, if the represented geographic phenomenon is not constantly 

changing everywhere. Second, there are no internal spatial relation logics upon the temporal 

structure in this model. Therefore, it is hard to track spatial changes in dynamic objects over 

time. 

2) Space-Time Composite (STC) Data Model  

This model represents the space as a set of spatially homogenous and temporally 

uniform objects in a single 2D space (a layer). It casts all objects, in all time slices in the 

Snapshot Model, on one layer and re-assigns attributes (including the temporal information) 

to each intersected polygonal mesh (Figure 2.6 shows an example).  

 

Figure 2.6 An example of the Space-Time Composite Data Model of urban/rural evolvement. 

Each polygon has a distinct attribute related to its time. 

The model uses polygon vector data as the basic data type. Compared with the 

Snapshot Model, data redundancy in the STC model is sharply decreased in most cases. But 

the data model may have difficulty in supporting the data set with multiple attributes or 
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objects having high frequent changes. It is impossible for this model to support constant 

changes. Since the object is divided into new objects each time change happens, there is no 

constant object identity. Also, the track of the geometry (shape, movement) or topology 

changes of the dynamic object is very difficult.  Another disadvantage is that any updating of 

this model requires reconstruction of the whole data set. 

3) Event-Oriented Spatio-Temporal Data Model (ESTDM) 

Unlike the location/objects based models, the Event-Oriented Spatio-Temporal Data 

Model (ESTDM) stores changes trigged by events in relation to a previous state. A header file 

contains information about its initial spatial information, the pointer to a base map, as well as, 

to the first and the last event lists. The base map shows an initial snapshot of the thematic 

domain in a geographic area. Every event is time-stamped and associated with a list of event 

components to indicate where changes have occurred. The changes can be tracked by links 

between event lists. Figure 2.7 shows the main elements and the pointer structure in the 

ESTDM.  

 
Figure 2.7 Primary elements and the pointer structure in the Event-Oriented Spatio-Temporal 

Data Model (ESTDM). 
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This model supports both spatial and temporal queries about attributes with a low data 

redundancy.  The main disadvantage is that this model is based on a raster data model, and 

hence it is hard to maintain spatial objects’ identities and track transitional information of an 

entity over time. It is possible to transform ESTDM to a vector data model based system, but 

this requires a substantial redesign of event components. And additional mechanisms are 

needed to allow event components to keep track of their predefined entities and locations 

(Pelekis 2005). 

4) The Three-Domain Model 

Yuan (1994) proposed the three-domain model to track wildfire events. In this model, 

the dynamic geographic processes and phenomena are represented by three separate domains:  

Semantic domain, spatial domain, and temporal domain, and the links between these domains 

(Figure 2.8). Unlike other domains, the separate semantic domain holds objects identities that 

correspond to human concepts independent of their spatial and temporal location.  When 

implemented, this data model usually uses spatial trees to trace spatial changes. 

 The major advantage of the three domain model is that there are no pre-defined data 

schemata. Rather the model will dynamically link relevant objects from the three domains to 

represent a geographic entity or concept. Compared to other models, the Three-Domain 

Model is more efficient in tracking movement and attribute changes (semantic), which is an 

improvement over many of the pre-proposed models. Moreover, it supports more functional 

queries, such as both spatially and temporally involved queries.  

Although this model claims to support spatial topology, there is no related 

implementation methods defined to deal with the spatial objects relationships. Also, the three 

domain model is good at supporting discrete changes, but cannot support constant changes.  
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Figure 2.8 The conceptual framework of the three-domain model (Yuan 1996). 

5) Objects Oriented Models 

With the development of Objects Oriented (OO) modeling technique in information 

science, more and more spatio-temporal GIS research adopted OO concepts in model 

development. With the better representation and closer connection between object-oriented 

technology and geographic objects, the OO based GIS data models have shown strong 

advantages.  The majority of recently developed spatio-temporal data models are based on the 

OO modeling technique. 

Some typical OO based spatio-temporal data models include, the Spatio-Temporal 

Object (ST-Object), the Spatio-Temporal Entity-Relationship (STER), the Object-
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Relationship (O-R), the Spatio-Temporal Object-Oriented (STOO), the Spatio-Temporal 

Object Model (STOM), the Geo-OM, the Spatio-Temporal UML (STUML), etc.  

The typical features of the object-oriented technology include, classes and instances, 

attributes, interfaces, methods, abstraction and encapsulation, inheritance, polymorphism, 

dynamic binding, decoupling, etc. OO based spatio-temporal GIS data models incorporate 

these features during the development and inherit the advantages from OO modeling 

techniques. For example, the STER model uses three types of entities (spatial entity, temporal 

entity, and spatio-temporal entity), their related attributes, and relationships between entities 

as the basic elements. Figure 2.9 is an example. These elements can be cast into feature 

concepts in OO modeling, such as classes, attributes, and methods, etc. 

 

Figure 2.9 Example of the STER model for a cadastral application (Tryfona and Jensen 1999). 

Montgomery (1995) concluded that there are four advantages of using the object-

oriented approach in spatio-temporal data modeling: 

 A single object can represent the whole history of an entity 
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 Queries can be simple and easy to implement, because they deal with each single 

object of an entity 

 Efficient temporal data handling 

 Uniform treatment of spatial and temporal data handling 

 In addition, most OO based spatio-temporal GIS data models also support all eight 

types of dynamic object changes.  

Meanwhile, there are also some common disadvantages for these OO based models. 

First, these models usually support vector data very well. When representing raster 

(homogeneous) data with frequent change, the increased data volume and complexity make 

OO based models impracticable. Second, most of these models lack the spatial topology 

support and cannot handle the spatially related queries. Finally, most of these models only 

support discrete change or periodic change. It is still challenge to track the evolution of 

dynamic objects in space and time, which is important when representing constant changes.  

 Although there are many other more data models, the spatio-temporal GIS data models 

that were reviewed above represent most of the basic and typical models that are available 

today. Most of others are similar or related to the ones discussed here.  

Since this dissertation focuses on oceanographic model data, the evaluation of those 

models that support all five fundamental issues, mentioned earlier, is most important. Table 

2.1 provides a general, comparative view of the criteria.  

As can be seen from the Table 2.1, the existing models cannot ideally support all 

requirements for oceanographic model applications. A new data model modified from the 

available models and that is dedicated to the oceanographic model data is thus necessary.   
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Table 2.1 List of capabilities and deficiencies of models in supporting oceanographic spatio-

temporal considerations 

 
Homogeneous 

data 

Constant 

change 

Spatio-

temporal 

change 

Inexactness 

(uncertainty) 

Identity 

persistence 

Snapshot support not support 
attribute 

change 
good at spatial not support 

STC not support not support 
attribute 

change 

hard to 

support 
not support 

ESTDM support not support 
attribute 

change 
good at spatial not support 

Three-Domain not support not support 

attribute, 

geometry, 

topology
1
 

hard to 

support 
support 

Objects 

Oriented 

Models
2
 

not support not support 

attribute, 

geometry, 

topology 

hard to 

support 
support 

 (1: Three-domain model needs to implement a mechanism in topology support; 2: Different 

objects oriented models vary in support of all features, the best performing models are 

included in this table.) 

The objectives of this research are as follows: 

 To study the oceanographic model output data (e.g., wave, water level) that 

possess a homogeneous characteristic and to acquire related knowledge about this 

characteristic, which can be utilized to develop a new data model. 

 To design and develop a tentative/conceptual spatio-temporal data model 

dedicated to efficiently represent oceanographic model output data and similar 

geospatial phenomena as restricted application domains.  

 Evaluate the new data model in an application and research the potential 

optimization methods. 
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2.5 Conclusion 

In this chapter, the oceanographic model is introduced as a spatio-temporal application 

in the field of GIS. Some special characteristics of the oceanographic data, such as field-

object characteristics, highly dynamic change pattern, are challenging features to be 

implemented into data models. After a careful analysis of the challenges and a comparative 

review of current spatio-temporal GIS data models, it has been determined that it is necessary 

to create a new spatio-temporal GIS data model to efficiently represent this special geospatial 

phenomenon. 
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Chapter 3 Ontological Analysis of Oceanographic Data 

In order to model the world, we need to be able to represent it.  

--Kemp and Vckovski (1998b)   

 In order to develop a suitable data model to represent a geographic phenomenon, the 

fundamental characteristical information of nature needs to be abstracted. Most recently, 

ontology has been brought into the discussion on modeling, as an important concept and tool 

to effectively address this issue. 

  Within a matter of a few years, ontology has become a hot buzzword in information 

science and GIS research and it has been mentioned in more and more research areas. 

Although the concepts and understanding of ontology is still in an ambiguous stage, riddled 

with a lot of controversy, diverse research and applications have been tentatively attempted. 

―Understanding of ontology in terms of its scope, details, and purpose varies significantly‖ 

(Green and Rosemann 2004). In this dissertation research, ontology is applied as a tool to help 

abstract oceanographic model data and then assist with data model components design.  

This chapter starts out with a literature review on ontology. Then, an analysis of 

ontology for oceanographic data is discussed, and later ontologies for oceanographic data are 

documented. 

3.1 Why Ontology? 

Originally, ontology is a term from the philosophical realm and the initial concept of 

ontology is related to epistemology research: What is the essence of the physical world and 

what are the human conceptualizations of reality (Winter 2001)? 

In information science (computer science), the ontology concept was first borrowed by 

Artificial Intelligence (AI) research by McCarthy (1980), and then gradually expanded to 
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other fields. As Fonseca (2007) concluded, the ontology research in information science can 

be categorized into two types, including ontology of information systems and ontology for 

information systems. The first type supports the validation of tools which are used to create 

conceptual models. The latter type is mainly concerned with the use of ontology to generate 

and validate information system components. This is how ontology has been integrated into 

this research.  

Ontology is implemented to describe and explain a specific domain (e.g. sea state, 

physical geography) using concepts and relationship between concepts. These domains are 

converted to components in an information system.  In this kind of application, ontology is a 

tool that helps describing a specific world (a domain that the conceptual model intends to 

represent). In GIS, the geo-ontology (ontology built for geography) should be the essential 

components of the logical universe for geographic data modeling. 

Fonseca (2007) pointed out that ―if we are able to build the theories (ontology for 

information systems) before starting the activity of conceptual modeling, we will build better 

models,‖ and  ―these are the first steps towards building ontology-driven information systems.‖  

This statement clearly explains why ontology is so important in conceptual model 

development.   

3.2 Ontology Applications in GIS 

The three main application areas of ontology in GI Science that are apparent from a 

review of the related literature are: 

 Ontology as a standardization procedure for easier translation/access between 

heterogeneous data.  
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 Ontology as a systematic approach to capture the universal concepts and meanings that 

defines the geo-spatial domain to prescribe suitable theories for the discipline.  

 Ontology used for the design of data models and information systems to make them better 

equipped for handling geographic concepts. 

In this research, ontology is applied to the data model design. The new data model is 

based on the concept of ontology and it also belongs to the type of ontology-driven 

geographic information systems.  

Ontology-Driven Information Systems (Guarino 1998) are based on the explicit use of 

ontology at the development time and/or at run time, which translates ontologies into active 

information system components. In the specific case of GIS, and its adaption to Ontology-

Driven Geographic Information Systems (ODGIS) (Fonseca and Egenhofer 1999), the system 

is built upon using software components derived from ontologies.  

Conventional GIS deals with spatial objects and their relationships. Ontology can help 

the establishment of correspondences and interrelations among the different domains of 

spatial entities and their mutual relations (Smith and Mark 1998). Traditional approaches for 

data model development start from the implementation and representation point of view. 

Ontology affords the integration of information based on its semantic content instead of 

dealing primarily with data formats and geometric representations. ODGIS are built using 

software components derived from various ontologies. Usually these software components are 

classes that can be used to develop new applications. Being ontology driven, these classes 

embed the knowledge extracted from ontologies.  

In previous ODGIS research, ontology is often employed as a method for identifying 

categories, concepts, relations, and rules. Ontology has also been employed to define and 
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conceptualize the knowledge in a domain to make it easier to model and to provide 

standardized vocabulary and rules for the application of this vocabulary (Agarwal 2005). In 

this research, proper ontology related to oceanographic data (significant wave height, water 

level, etc.) and their associated spatial and temporal information, which are required to define 

these dynamic data, are identified together with their relationships. 

Ontology has a close relationship to object-oriented techniques being used in 

Information Science. ODGIS combines the use of object-oriented techniques and ontologies 

and delivers an enriched model to appropriately represent geographic entities.  

In an ODGIS application, based on different criteria, ontologies can be classified into 

different types. Below, two classifications are introduced as they are more related to the new 

data model that will be developed in this research. 

Guarino (1997) classified ontologies into four levels according to their dependence on 

a specific task or point of view:  

 Top-level ontologies describe high abstract concepts. In ODGIS a top-level ontology 

describes top-level categories of general geographic objects and phenomena from 

philosophy. For instance, mereotopology is a theory describing parts and wholes, and 

their relationships to topology.  

 Domain ontologies describe the vocabulary/terms related to a generic domain. These 

ontologies are more specific than the top-level ontology, but still are sufficiently 

generic to apply to the domain, such as ODGIS for remote sensing or the coastal 

environment. 

 Task ontologies describe a specific task or activity, such as a cadastral system in 

ODGIS. 
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 Application ontologies describe concepts depending on both a particular domain and a 

task, and are usually a specialization of domain ontologies or task ontologies. In 

ODGIS these ontologies are created from a combination of higher level ontologies. 

These ontologies represent the user needs regarding a specific application.  

 

Uschold and Gruninger (1996) distinguished another four types of ontologies 

depending on the kind of language used to implement them, namely: 

 Highly informal ontologies are written in a human natural language. 

 Semi-formal ontologies are expressed in a restricted and structured form of natural 

language (i.e. using patterns) 

 Formal ontologies are defined in an artificial and formally defined language. 

 Rigorously formal ontologies are defined in a language with formal semantics, 

theories, and proofs of properties such as soundness and completeness. 

In this study, application ontologies and highly informal ontologies are applied to the 

marine environment to better analyze oceanographic data. These ontologies focus on 

explicating the actions, terms, and relations for the particular application, including 

oceanographic model data. In order to simplify the definition of ontologies, only the natural 

language is used.  

3.3 Fundamental Concepts in Ontology 

For ontology driven systems, several fundamental concepts or relations need to be 

studied first. In the following section, these relations are introduced and discussed specifically 

as they relate to oceanographic model data. 

First, the ontology distinction for real world entities are identified as follows: 
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 Universals-Particulars 

Universals correspond to the material concepts or patterns in the real world. They are 

related to types, species, or kinds.  Correspondingly, the particulars are related to 

individuals, instances, etc. As to geographic phenomena, the earth surface with different 

land covers is universal. The specific area with a certain plant type is particular. 

 Independent-Dependent 

Independent means that entities can exist without the other entities’ ontological support. 

On the contrary, dependent means that the entities’ existence requires other entities’ 

existence, like a pre-condition. For example, rivers are independent entities, while 

flooding is dependent on rivers. The dependent relationship can be spatial, logical, or any 

other predefined condition.  

 Endurant-Perdurant 

Endurant entities and perdurant entities define entities or processes relative to time. For 

spatio-temporal reality, an endurant entity exists through a certain period of time.  In other 

words, the entity identity does not change for the whole time period. The building, 

mountain, or people are the examples of endurant entities. On the other hand, the 

perdurant entities or processes are recognized by the process in a certain period of time, 

but not by the status at any particular point in time. So, they have to be defined by the 

continuous time period, such as hurricane tracks or the temperature change during a day.  

3.4 Ontological Considerations of Oceanographic Model Data 

In this section, the relations mentioned above, based on the domain of oceanographic 

model data, will now be discussed in more detail. Since time is a major consideration in this 
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research, another important issue of time related ontology is the spatial and temporal 

granularity.  This will be discussed first.  

3.4.1 Spatial and Temporal Granularity 

Scale is an important issue in GISs. Geographic categorization and classification is 

scale dependent.  Geographic objects are tied not only to their spatial but also to their 

temporal context. The ontology consideration in the geographic domain relates to spatial and 

temporal granularity.  

 Spatial granularity 

Similar to geographic scale, different levels of ontologies can be defined based on 

spatial granularity.  Accordingly, different levels of ontologies represent different information. 

Low level ontologies correspond to fine granularity related information, and high level 

ontologies correspond to more general (coarse granularity) information.  In practice, 

granularity often reflects the specific ways of carving up domains of reality associated with 

different scientific theories (Grenona and Smitha 2004). In this research, levels of granularity 

are roughly equivalent to levels of details. The spatial granularity is related to scale, but not 

the same as the scale. The granularity is not just based on spatial scales. For example, the pattern of 

high wave zones with a big area indicates the dominant sea surface situation for the Gulf of Mexico. It 

is a continuous field of wave values with a specific range. The high level ontologies can correspond to 

such information.  On the other hand, the specific wave value for a specific spatial point is a discrete 

independent value. It is not the same as the resolution concept of field data. A new low level ontology 

is needed to represent this kind of spatial point based undividable entity).  

 Spatio-temporal granularity 

When the temporal dimension is added, the spatial granularity is more complicated 

and turns into a spatio-temporal granularity.  High level ontologies with coarse spatio-
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temporal granularity could represent the main processes or the big entity changes.  Low level 

ontologies with fine spatio-temporal granularity could represent small processes or small 

entity changes. For example, the track of the highest wave zone movement when a hurricane 

passes across the Gulf Mexico can be represented as a high-level ontology which reflects the 

hurricane impacts on large spatial extent and big temporal scale in human cognition. A 

different ontology (low level) is needed when representing met-ocean data change at a point 

in time or during a short time period at a specific location. The former one is related to a 

process while the later one is related to a static status or a short period.  

In the following section, the relationships mentioned above based on the domain of 

oceanographic model data are discussed. 

3.4.2 Universals-Particulars 

For oceanographic model data, the universals are the met-ocean data (wave height, 

water level, etc.) distribution for the whole study area or a specific region, e.g., the whole 

Gulf of Mexico. It is a continuous field. The particulars are the met-ocean data values for 

selected spatial points, e.g., wave heights at a buoy location off the Louisiana coast. If time is 

considered, the universals are the change in met-ocean data patterns during a time period for 

the study area.  The change in oceanographic data is a continuous dynamic process.  The 

particulars could be the wave height change for a spatial point during a time period, or the 

wave height value for a spatial point with a certain time stamp. 

Bona fide and fiat 

From the ontology perspective, the field can be described as bona fide and fiat based 

on boundary conditions. Bona fide represents the genuine discontinuities of the geographic 

entities in the world, such as rivers, roads, buildings, etc. They generally have crisp 
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boundaries. Fiat represents the geographic objects which can only be indentified in our 

individual and social conceptualizations, such as state borders, postal districts, soil types, etc. 

So, Fiat could have either crisp boundaries or transitional (also vague, fuzzy) boundaries. 

 Oceanographic data are viewed as fiat with a homogeneous distribution.  There are no 

distinct changes and the boundaries are not clear or crisp, rather they are transitional. It is very 

hard to define a high wave zone with strict and clear physical borders.  In contrast, coast lines 

can be treated as bona fide.  

3.4.3 Independent-Dependent 

 Since the oceanographic data distribution is spatially continuous, they are dependent 

on ontological relationships.  For example, high zones and low zones are inter-dependent and 

defined by each other.  High wave zones (peaks) are generally surrounded by low waves 

(holes).  Similarly, low waves are surrounded by high waves. Apparently, the high-low (peak-

hole) relationship exists in a relative sense. Also, it has to be pointed out that in some 

instances, peaks and holes are formed near to the coast and in that case they are partially 

enclosed and influenced by land features also. 

From a temporal perspective, the process of oceanographic data variability is 

independent from any other dynamic objects movement. For example, each high wave zone 

change/evolution is independent of other high wave zones. As mentioned in Chapter 2, the 

oceanographic data change is constant and continuous, so the dynamic object status at a point 

in time is inter-related to the data at prior/later points in time. In that case the relationship of 

the data with prior/later points in time is closely dependent.  
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3.4.4 Endurant-Perdurant 

Based on the spatial and temporal granularity, the endurant and perdurant for 

oceanographic data can vary. When considering wave data from a high level spatial view, 

wave entities are endurants, representing specific wave heights, whereas the existence of 

wave entities are persistent. From the high level temporal view, the track of the wave entity 

movement represents the high/low wave changes for a certain time period, and this can be 

defined as a process that is perdurant.  When the granularity becomes fine, the wave field for 

a geospatial region is composed of points/grids of wave points. The evolving wave parameters 

at each point of the field and during a certain time period are a perdurant. 

3.5 Ontologies of Oceanographic Data 

Since the ontology in this research is an application level ontology, they are usually 

created from high-level ontologies. SNAP-SPAN (Grenon and Smith 2004) has been selected 

in this research as the high-level spatio-temporal ontology to be extended to the 

oceanographic ontology. In the spatio-temporal ontology research, SNAP-SPAN ontology 

proposes a top-level conceptual framework for endurant and perdurant. SNAP includes 

enduring entities (endurants), such as substance, qualities, roles, functions. SPAN includes 

perduring entities (perdurants), such as processes and their parts and aggregates. SNAP-SPAN 

has been used as a basic framework to define sub-ontologies for geographic phenomena 

before. In general, the spatio-temporal ontology must combine these two distinct types of 

ontological models in order to support complex domains of the real world.  

Figures 3.1 and 3.2 show the formal categories of SNAP and SPAN entities. Each SNAP 

ontology corresponds to a single point in time, while each SPAN ontology corresponds to a 



 35 
 

single time interval. In other words, the SNAP is spatially-based, while the SPAN is 

temporally-based. 

 

Figure 3.1 The main formal categories of SNAP entities. 

 

Figure 3.2 The main formal categories of SPAN entities. 

In this research, the taxonomies of SNAP and SPAN are used and extended to support 

defining oceanographic data ontologies. The SNAP entities cover oceanographic data regions 

at specific points in time. SNAP supports both object and field perspectives of geographic 

phenomena. The SPAN entities cover dynamic oceanographic processes.  

Figures 3.3 and 3.4 show the ontologies for oceanographic data, extended from SNAP 

and SPAN ontologies. 

From a GIS perspective, fields are defined relative to their attributes. In SNAP, afield 

ontology recognizes one geospatial region with its associated distributions of attributes. These 
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attributes are recognized as SNAP dependent entities. Attributes in a field are necessarily 

attached to a specific part of the field and thus to a specific spatial location (Grenon and Smith 

2004).  When applied to oceanographic data, each ontology recognizes the water body in a 

geospatial region with a certain range of met-ocean parameter (e.g., wave height) values. 

These water bodies are substantial entities with fiat boundaries. There are three sub-type 

ontologies below water body, namely peak, hole, and transition area. They represent the high 

value, low value, and middle value of the parameters, respectively. Meanwhile, the three sub-

type ontologies are dependent on each other. The water body at a spatial point possesses a fine 

granularity ontology, which represents the undividable, basic element of the SNAP entity. The 

aggregated ontology represents the water body with a large range of parameter values inside 

an expanded spatial region. One example could be a big peak water body with multiple small 

peaks and holes.  

 

Figure 3.3 Ontologies for oceanographic data extended from SNAP. 
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Figure 3.4 Ontologies for oceanographic data extended from SPAN. 

In SPAN, either spatial or non-spatial changes can be represented. The processes are 

decomposed into different categories of substantial changes. Although these changes are 

associated with extended processes, which precede or follow them, substantial changes are 

always instantaneous (Grenon and Smith 2004).  In other words, geographical changes of 

oceanographic data can be considered as a series of seamlessly connected instants, if looked at 

from a fine level of granularity. The ―interval‖ and ―instance‖ ontologies represent two 

statuses of change in the temporal domain. As discussed in the previous ―Endurant-Perdurant‖ 

section, the model data changes can be defined in two directions, including spatial changes for 

a met-ocean parameter value and met-ocean parameter value changes for a fixed location. 

These two types of processes are represented by two ontologies, namely spatial change and 

value change. Each of these two ontologies is further subdivided into two types of different 

parameters including, wave height change and water level change.  In case of the spatio-
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temporal region, ontology of the ―connected‖ is used to represent the constant change and the 

continuous field.  

Defining ontologies may take a variety of forms. Obviously, an ontology needs a 

vocabulary of terms and some specifications of their meaning (Uschold et al. 1998). Another 

component of an ontology is ―relations‖, which represent the types of interactions between 

ontologies. Tables 3.1 and 3.2 list the ontologies for oceanographic data and their relations.  

Table 3.1 SNAP ontologies for oceanographic data and their relations 

Ontology Specification of meaning 
Relation to other 

ontology 

Water body 
Object concept of water with spatial 

extent at a static view 

One of the substantial 

entities in oceanographic 

data 

Peak 
The high value zone from human 

perception 
Part-whole of water body 

Hole 
The low value zone from human 

perception 
Part-whole  of water body 

Transition area Water zones between peaks and holes Part-whole of water body 

Aggregation of 

water body 

The spatially aggregated water zone 

(peaks, holes, transition area, etc.) 

Part-whole of water body 

and water body at a spatial 

point 

Water body at a 

spatial point 

The smallest spatial divide of water 

body entity with a spatial point 

dimension 

Part-whole  of water body 

(peak, hole, and transition 

area) 

Coastline 
Coastline represents the boundary of 

water body 

One of the substantial 

entities 

Wave height One attribute of water body 
Dependent from water 

body 

Water level One attribute of water body 
Dependent  from water 

body 

Surface area Spatial extent of water body 
Dependent  from water 

body 

Surface point Spatial point of water body 
Dependent from water 

body 

Surface line Spatial line of water body and coastline 
Dependent from water 

body 
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Table 3.2 SPAN ontologies for oceanographic data and their relations 

Ontology Specification of meaning Relation 

Spatial change 

Spatial change  of a water body with 

specific met-ocean data value or value 

range 

Belongs to processual 

entity 

Value change 
Value change for a water body with 

fixed spatial point or spatial extent 

Belongs to processual 

entity 

Wave height 

(spatial change) 

Spatial change for a water body with 

specific wave height value or value 

range 

Belongs to spatial change 

 Water level 

(spatial change) 

Spatial change for a water body with 

specific water level value or value 

range 

Belongs to spatial change 

Wave height 

(value change) 

Wave height value change for a water 

body with fixed spatial point or spatial 

extent 

Belongs to value change 

 Water level 

(value change) 

Water level value change for a water 

body with fixed spatial point or spatial 

extent 

Belongs to value change 

Connected 

(temporal region) 

Connected temporal region 

(continuous, not scattered) 

Belongs to temporal 

region 

Connected 

(spatiotemporal 

region) 

Connected spatiotemporal region 

(continuous, not scattered) 

Belongs to spatio-

temporal region 

Interval 
 Temporal region with duration 

between two points in time 

Belongs to connected 

temporal region 

Instant Temporal region at  one point in time  
Belongs to connected 

temporal region 

 

As mentioned in the first part of this chapter, ODGIS uses software components 

(classes) derived from ontologies to develop new applications. Sometimes, these components 

can be cast or transferred from ontologies directly. However, the defined ontologies in this 

chapter, particularly concerning oceanographic data, are not sufficiently clear enough to 

support all classes needed for the new data model development.  
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The main benefit of these ontologies is to come up with a logical tool to de-structure 

the spatial and temporal domains of oceanographic data. From the spatial point of view, the 

dependent relationships of peaks and holes are extracted from the homogeneous field data. 

From the temporal point of view, the changes are divided into two types of processes, 

including an ontology with spatial change and an ontology with value change. This spatio-

temporal data classification and the ensuing improved data understanding would build the 

backbone for the new data model and can help substantially in the development of a new data 

model. 

3.6 Conclusion 

 To improve the understanding of oceanographic model data and its spatio-temporal 

characteristics, ontology is employed as a method for identifying categories, attributes, and 

relationships. 

As a first step, current ontology applications in GIS have been reviewed. Then, after 

the fundamental concepts in ontology as related to GIS have been introduced, the key 

ontological considerations are applied to oceanographic model data. Finally, ontologies for 

oceanographic data expanding on the SNAP and SPAN taxonomies are created for 

implementation. 

The newly defined ontologies have provided further guidance in the design and 

development of a new data model for oceanographic data.  
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Chapter 4 Contour Tree-Based Spatio-Temporal Data Model 

GIS generally uses two most fundamental data models in representing geographic 

phenomena, including field-based and object-based data models. The field-based model deals 

with evenly distributed grids with related attributes over a geographic region, while the 

object-base model deals with discrete, identifiable entities in the geographic region.  Both 

models have led to two separate areas of GIS research, namely the definition of spatial 

operations on discrete objects, and the definition of operations on fields (Coppock and Rhind 

1991). 

Based on the ontology analysis of the oceanographic model data, provided in Chapter 

3, the classified entities (ontologies) can be utilized to design software components to 

represent marine physical processes. Due to the complicated spatial and temporal change 

patterns of marine processes, the direct implementation by casting these ontologies to 

software components (classes) is still not capable enough to fully represent this special 

geospatial phenomenon. Rather it leads to the development of feasible new data structures and 

algorithms. 

4.1 Main Algorithm for the New Data Model 

With the ontology analysis of the oceanographic model data, some basic entities that 

may help build up data model are also retrieved. From the spatial perspective, an 

oceanographic model data can be represented by peaks, holes, and transitional zones (refer 

Chapter 3, Section 3.5, for these entities). These entities can be aggregated with topology 

relationships to preserve the distribution and variability of a parameter in the spatial domain.  

From the temporal perspective, a dynamic process can be represented by a series of instants 

correlated by incremental time steps, and the intervals between these instants.  
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The main algorithm will be based on contour tree and the OO modeling technique. 

The dynamic process is represented by a series of contour trees. Each contour tree stores the 

spatial and temporal information for a snapshot at a given time step. The spatio-temporal 

topology changes between contour trees are also stored in contour trees. Interpolation 

techniques are used to estimate the values not represented between contours on the same 

contour tree and between consecutive neighboring contour trees. The OO modeling technique 

is used to build contour trees as a data model. 

4.2 Contour Tree Overview 

An efficient way to represent continuous surfaces is by using isolines (contours). In 

oceanography, contours have been commonly used in representing bulk wave parameters in a 

map, including significant wave height, peak wave period, and other parameters like still 

water level.  There are other set of vector data, such as current direction, wave speed, which 

are not suitable to be represented by contours, due to their directional properties. As 

mentioned in Chapter 2, in order to simplify the scope and challenge, this research focuses on 

the data model application to the scalar oceanographic data, which can be effectively 

represented by contours.  

The contour tree is a fundamental and powerful data structure that represents the 

topological relations of contours on a map. It was first proposed by Boyell and Ruston (1963), 

in order to model and represent the relationships between contour lines. Another pioneer in 

contour tree research was Morse (1968, 1969).  He used contour trees to find terrain profiles 

in a contour map.  

The contour tree has been widely used in GIS, computer graphics, and scientific 

visualization research, such as, to index contours (Kreveld et al. 1997, Carr and Snoeyink 
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2003), to describe terrain (Sircar and Cebrian 1986, Takahashi et al. 1995), to detect features 

(Takahashi et al. 2004), to extract isosurfaces (Carr and Snoeyink 2003), to simplify data 

( Chiang and Lu 2003, Carr et al. 2004), to design transfer functions (Takahashi et al. 2004), 

and to extract contour properties (Kettner 2001).  

Figure 4.1 is an example of a simple contour map and its corresponding contour tree.  

As the figure illustrates, the contour tree uses vertical levels to represent the value range 

(elevation ranges from 10-70m). The branch (leaf) ends show the local extreme values, with 

upward leafs representing local maximum values (A, B, and D), a.k.a. peaks and downward  

 

Figure 4.1 A contour map and its corresponding contour tree. 

leafs representing local minimum values (F, H, I, and J), a.k.a. holes. These extreme values 

are connected at connection points (C, E, and G). It is called a ―join‖, if the points are 

connected at a lower point. Otherwise, if the points are connected at a higher point, it is called 
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a ―split‖. Both joins and splits indicate saddle areas on contour maps. All of these points are 

called critical points, since they capture the maps main topological changes. These points are 

connected by arcs, which span all interval values between each pair of critical points. Some 

contour trees also use regular points (circles in Figure 4.1) to store non-critical points to 

represent selected contour values between critical points. 
2
 

From a contour tree, much knowledge or information about the represented geospatial 

data can be obtained. First, the number of nodes on a contour tree represents the total number 

of isolines on a contour map. For the same area on the contour map, more contours represent 

more detailed information. Secondly, the number of leaf nodes represents the number of local 

peaks or holes. Third, the level of the tree represents the range of elevation. When the contour 

interval is given, more levels mean more range of elevation. The values of these items can be 

used to discover new patterns, trends, and relationships that might be hidden deep within large 

topographic datasets. Basically, this information directly relates to the data volume and 

structure complexity of the final data model. 

Various methods/algorithms have been introduced in computing contour trees for 2D 

or 3D surfaces (Bajaj et al. 1998; Carr et al. 2000; Pascucci and Cole-McLaughlin 2002; 

Takahashi et al. 1995; Pascucci et al. 2004; Takahashi et al. 2004). In general, it is not at all a 

problem to generate contour trees from the contour maps of oceanographic data. 

4.3 Evolvement Analysis of Contour Trees 

In highly dynamic oceanographic processes, the continuous spatial and temporal 

changes may involve topology changes. Allen (1983) and Claramunt et al. (1997, 2000) have 

                                                           
2
 Some research papers also use nodes for points on contour tree. Points are used here for 

better explanation. In order to discriminate the points used in this paper as spatial conception, 

nodes are used in the remainder of this paper for those points on a contour tree.  
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suggested several topology changes with temporal relationships. For oceanographic model 

data, it may not be necessary to make all of those topology changes as highlighted in those 

studies. However, the topology changes put forward by these authors can be categorized into 

five types and these changes can be tracked with the contour tree evolution over the modeling 

period. Figure 4.2 gives examples of the five changes with the left side showing the contour 

map changes and the right side showing the corresponding contour tree changes. Each change 

in this figure is explained below:  

1) A new component emerges as a local maximum (peak) or local minimum (hole). 

Example 1 in Figure 4.2 shows a new small high wave contour (F) emerging besides a 

pre-existing high wave contour (D). F and D are separated by a saddle G. F and D are 

further separated from the bigger contours (A and B) by a saddle (E). For the contour 

trees, a new branch (an arc connects node F) is added to arc ED at joint node G, which 

results in arc ED changing into an arc EG with two branches DG and FG.  

2) An existing component (a local maximum/minimum) disappears. 

Example 2 in Figure 4.2 shows a small high wave contour (B) disappearing besides 

high wave contour (A). The saddle node (C) also disappears accordingly. On the 

contour tree side, the branch (arc BC) is removed, then arc AC and CE transforms into 

arc AE.  

3) Two or more existing components merge into a single one component. 

Example 3 in Figure 4.2 shows two small high wave contours (A and B) merge into a 

new one (AB). The saddle node (C) also disappears. On the contour tree, the branch 

(arc BC) is removed, then arc AC and CE turn into arc A(B)E. 

4) An existing component splits into two or more new components. 
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Example 4 in Figure 4.2 shows a small high wave contour (D) being split into two 

separate contours (D1 and D2) with a saddle (G).  With respect to the contour trees, arc 

 

Figure 4.2  Five types of contour map transformation  and their corresponding contour tree 

evolution. 
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ED turns into a tree with root EG and two branches D1G and D2G.  

5) Topological changes without changing the number of components. 

Example 5 in Figure 4.2 shows a local high wave contour (D) transforming into a local 

low wave contour (D’), which is similar to a peak turning into a hole. On the contour 

tree side, an upward arc ED changes into a downward arc ED’. 

 Despite the contour map transformations, if one only focuses on the contour tree 

changes, examples 1 and 4 reflect the identical results.  The same is also true for examples 2 

and 3. So, based on the above analysis and observation, the contour tree evolvements can be 

categorized and simplified into three basic spatio-temporal topological changes, including 

branch arc removal, branch arc addition, and branch arc direction shift. 

1) Branch arc removal 

The branch arc removal involves an arc with an end node and possible a joint node 

being removed. If there is more than one arc remaining after the arc has been removed, then 

the joint node is kept. Otherwise, the joint node is also removed. Figure 4.3 shows examples 

of these two situations. 

 

Figure 4.3 Contour tree branch arc removal. 

2) Branch arc addition 

Similar to the removal of arcs, adding a branch arc may or may not involve adding the 

joint node. The new arc can be added to a pre-existing joint node, or the new arc can be 
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connected to the middle of an arc with a newly created joint node. As Figure 4.4 shows, the 

two situations of adding branch arcs are the reverse processes of removing branch arcs. 

 

Figure 4.4 Contour tree branch arc addition. 

3) Branch arc direction shift 

The branch arc direction shift represents a branch end node’s value change relative to 

its joint node. It may occur because the joint node’s value changes or branch end node’s value 

changes, or both.  

The simplified contour tree topological changes help with the contour map evolution 

tracking.  

According to the analysis above, the spatio-temporal changes of the contour map can 

be represented by tracking the contour tree changes. Another prominent issue is how to 

integrate the temporal information into the contour tree. Since the topology changes happen 

on the arcs with critical nodes, it is feasible to attach temporal information to critical nodes 

and share this information with other regular nodes on the same arc.  

4.4 Temporal Information Integration 

In the ontology analysis, the oceanographic data change processes composed of instant 

ontologies and interval ontologies.  In this research, based on the information presented in the 

ontology analysis, a new spatio-temporal model is designed as a hybrid of the snapshot model 

and the event driven model.  
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From a temporal perspective, the time is represented by a series of snapshots of 

contour trees. Unlike the static view of each time slice, contour trees integrate the topology 

changes of contours. In the snapshot model, spatial relationships of objects between snaps 

(time step) are not recorded. Therefore, interpolation between consecutive snaps is needed. In 

the model developed in this research, similar to the event driven model, the temporal 

information for each process is integrated into the contour tree nodes and arcs. Each bulk 

wave entity’s (the significant wave height is chosen as an example) variability is defined as a 

process. The starting time step is the first appearance of the corresponding nodes in the 

contour tree. The end time step is the last appearance of the corresponding nodes in the 

contour tree. The time period between the start time step and end time step is the lifespan of 

that parameter (here the significant wave height), which undergoes consistent transformation 

in space and time. If each node stores its start time step and end time step, the processes can 

be tracked. Figure 4.5 illustrates an example of the contour tree evolvement.  

 The dynamic process is divided into time slices with even time intervals. Each time 

snapshot slice records corresponding dynamic information at that time step. A contour 

tree is created based on the corresponding snapshot geo-spatial information.  At time t0 

there is only one peak (A) in the time snapshot map, which is shown as a leaf with end 

node A in the contour tree. 

 At time t1, a local peak B appears besides peak A with a saddle C. On the contour tree, 

a new leaf B-C is added to the leaf with end node A.  The time value t1 is stored within 

nodes B and C as the starting point of their lifespan.   

 As the time progresses from t1 to t3, the contour map evolves. Since the topology 

relationships do not change, the corresponding contour tree’s structure also does not 
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change. At time step t4, the peak B on the contour map disappears. So, the lifespan for 

leaf B-C is from t1 to t3. The time value t3 is stored within nodes B and C as the end 

point of their lifespan. 

 All contour trees have leaf B-C during time steps t1 to t3 stored with their lifespan 

values therefore it is possible to retrieve the temporal evolvement for leaf B-C from 

any contour tree. 

 

Figure 4.5 An illustration of how nodes store time information in contour tree evolution. 

Except for the basic evolvement case illustrated above, there are several special cases 

that need to be taken care of in this data model:  

 Node/Arc only appears in one contour tree. 

If a branch arc or a critical node just appears in one contour tree, its stored start time 

and end time are identical and which may denote this as a constant event. However, its 

lifespan may last from very short (an instance) up to two interval steps of consecutive contour 
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trees. Considering the continuous nature of oceanographic data, an average value is selected 

in this data model, which is one time step interval long. 

 Arcs merge/Arcs split 

As discussed in the previous section, topology changes may affect the identification of 

objects. But how can we define the merged new arc or the split arcs in relation to the original 

arcs? This is one of the identity persistence challenges for dynamic objects that are discussed 

in Chapter 2. In this research, new IDs are assigned to all arcs after merging or splitting events. 

So the lifespan values are updated and assigned to these new entities. However, how can we 

define the ―new‖ objects at the application level, which is still independent of this algorithm. 

Based on the spatial and temporal information (model domain & start and end times), it is 

easy to identify the same objects at different time steps. For example, a high wave zone splits 

into two zones (one big, one small). If the big zone’s spatial area is more than a certain value 

(say 70% of the original one), then that zone is treated as having the same ID as the original 

zone. However, the small zone is assigned a new ID. So, the issue of identity persistence can 

be decided by the user at the application level. 

4.5 Spatial Information Integration 

In addition to the spatial topographic relationships stored in the contour tree, the 

spatial information of each object (critical and regular nodes in the contour tree) is also stored 

with each node in the contour tree. Due to the dynamic nature of the oceanographic data, the 

spatial information (spatial distribution or geometry) for each time slice for a certain attribute 

value (e.g., wave height) usually is not same. It is necessary to store the non-topology (spatial 

and attribute) information in each node (both critical and regular) on each contour tree. Then 
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the non-topology changes can be tracked by comparing this information on adjacent time 

slices.  

For example, in Figure 4.5, node A included in the contour trees stores the spatial 

information for the local peak contour independently. The marked area for that contour differs 

and changes with each time slice (from time t0 to time t4), which represents the spatial change 

for the peak contour in time periods t0 to t4. By connecting the node A on each contour tree as 

a time series, the continuous change in the spatial distribution can be approximately 

represented. 

The basic idea of spatial information integration in this research is similar to the 

snapshot model, but using object view (vector data) rather than the raster data model.  

4.6 Spatio-Temporal Interpolation 

Data completeness, as one of the key components of data quality, is a very important 

issue in GIS. This concept is used to measure how many of the spatial objects and their 

attributes in the real world are represented in the data model. Brassel et al. (1995) gave a 

formal definition of completeness as ―whether the entity objects within a data set represent all 

entity instances of the abstract universe.‖ Here, entity instances mean real world geographic 

phenomena and entity objects are their digital representation in the data model. In spatio-

temporal GIS, data completeness includes both spatial and temporal considerations.   

In spatio-temporal GIS studies, the effective representation of time is a fundamental 

challenge. In most temporal models, time is the fourth element on the 3D view of space. 

When the time is added to the GIS, one of the major problems in representing dynamic 

geospatial changes is the information completeness. The ideal model should store or represent 

all spatial and temporal information of changes linked to dynamic processes.  
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Even though the object view based model is good at representing discrete data, 

oceanographic model output data cover continuous space and hence, in order to represent the 

data not stored by the object model, spatial interpolation is needed. When the GIS data model 

represents dynamic processes, only data observed at a certain time are recorded. To represent 

the data falling outside of the stored time points, temporal interpolation is needed. The new 

spatio-temporal data model integrates both spatial interpolation and temporal interpolation. 

4.6.1 Spatial Interpolation 

From the definition mentioned above, spatial completeness measures the dynamic 

objects representation at a certain time step.  In conventional GIS, spatial data completeness 

has been widely studied. To improve the data completeness of the continuous geospatial field, 

spatial interpolation has been widely applied.  Spatial interpolation generally produces 

estimated values for unobserved positions based on the locations and attributes of pre-selected 

points in space. This type of spatial interpolation is termed ―point-oriented interpolation‖. The 

specific methods of point-oriented interpolation include linear, spline, stochastic, and 

proximal interpolation methods (Laurini and Thompson, 1992).   

As to the contour map based interpolation, one of the most commonly used methods is 

Inverse Distance Weighting (IDW) developed by D. Shepard (1968). IDW methods are based 

on the assumption that the interpolating surface should be influenced most by nearby points 

and less by distant points. The interpolated surface is a weighted average of the scattered 

points and the weight assigned to each scattered point diminishes as the distance from the 

interpolated point to the scattered point increases. The value of each estimated point is 

calculated with the following formula: 

                                                                            (1) 
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Where Zj is the interpolated value, n is the number of scattered points in the set, Zi is 

the observed value at the selected point in the data set, dij is the distance from the selected 

point i to the interpolation point j,  and kj  is an adjustment parameter to ensure that the 

weights add up to 1. The parameter α is an arbitrary positive real number called the power 

parameter, which indicates that the rate of value diminishes with the distance. In a simple 

linear distance decay, α=1 and Kj is: 

                                                          (2)  

The main spatial interpolation algorithm used in this model is based on IDW. When 

interpolating a value at a point between contours, the points on enclosing contours are 

selected as the scatter points. The enclosing contours are the neighboring contours on either 

side of the point to be interpolated. Figure 4.6 shows two examples of the spatial interpolation 

method implemented in the model. In order to interpolate the value at point x, two closest 

points a and b are selected from the contours enclosing point x. Then, the value of x is 

calculated using the IDW formula mentioned above (left image in Figure 4.6). The right 

image in Figure 4.6 is another example with three contours enclosing point x. Similar to the 

 

Figure 4.6 Examples of the spatial interpolation applied in the data model. 
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first example, the three closest points a, b, and c are selected from the contours enclosing 

point x, in order to interpolate the value at point x. 

In this data model, the selection of IDW is based on the following considerations: 

1) Unlike the general applications of IDW to get interpolation data for the area 

interpolation, the application in this model is for a single spatial point when a data 

query is requested.  In other words, it is a partial area based interpolation. The 

resolution or spatial information richness in the wave map is based on the contour 

numbers and intervals. Accordingly, the enclosing contours involved in data 

interpolation have the major impact to the precision of the interpolated data quality. 

More contours with small contour intervals in the area to be interpolated can improve 

the interpolation precision. Based on the assumption that the interpolated point should 

be influenced mostly by nearby points and less by distant points, points on the 

contours closest to the interpolating point should be selected.   

2) Fewer interpolated points will help the model performance for interpolation and hence 

the whole data process. Interpolation is a computationally intensive algorithm, 

especially for high data volumes. Reducing points with acceptable precisions is the 

first choice to improve the overall performance.   

3) The data model represents the real world objects in an abstract way. One import rule is 

to keep the data model as simple as possible. A simple data model has more to do with 

the data manipulation and is expendable for more sophisticated algorithms.  

4.6.1.1 Support Methods for Spatial Interpolation 

 When applying the algorithm for the point based interpolation, the first step is to 

determine the contours that enclose the points to be interpolated. This challenge is similar to 
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the point-in-polygon (PIP) issue in GIS. The two widely applied algorithms in solving the 

point-in-polygon issue are the ray casting algorithm (Sutherland et al. 1974) and the winding 

number algorithm (Leland 1975, Worboys and Duckham 2004).   

 The ray casting algorithm counts the number of times a ray starting from the 

point P crosses the polygon boundary edges.  The point is outside when this "crossing 

number" is even, otherwise, when it is odd, the point is inside.  The winding 

number algorithm counts the number of times the polygon winds around the point P.  The 

point is outside only when this "winding number" is equal to 0, otherwise, the point is inside. 

Compared with the ray casting algorithm, the winding number algorithm is more 

computationally intensive, especially because there are more points along contours than there 

are along general polygon boundaries. The general winding number algorithm needs to iterate 

all boundaries of the polygon and may involve costly inverse trigonometric functions, but ray 

casting algorithm may filter out unnecessary boundaries first). Hence, in this data model the 

ray casting algorithm is selected. Figure 4.7 demonstrates how the ray casting algorithm 

works. The ray starting from point x intersects the contours C1, C2, and C3. The crossing  

 

Figure 4.7 Ray casting algorithm. 
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number for C1 is two, consequently, point x is outside of C1. For C2 and C3, the crossing 

number is one, so point x is inside of both contours.  

In order to accelerate the whole interpolation process, an initial screening approach is 

employed before the ray casting algorithm, to check whether a point lies in the contour’s 

minimum bounding rectangle (MBR). In this way, the contours involved in the ray casting 

algorithm calculation can be reduced to a minimum applying this much simpler and faster 

method.   Most of the time, there is only one contour that needs to activate the ray casting 

algorithm to determine the spatial enclosing relationship to the interpolating point. Figure 4.8 

shows examples for the MBR application in this data model. In the left panel, in order to find 

the enclosing contours of point x, the smallest MBR that encloses x is assigned as contour 

C1’s MBR Rx.  Then, by applying the ray casting algorithm on C1 and x, it is found that x is 

located outside of C1, so the enclosing contours of x are determined as C1 and C2.  In a second 

example (right panel of Figure 4.8), the point is inside of the contour and inside its MBR. 

After the ray casting algorithm is applied to C2 and y, y is found inside of C2. So y’s enclosing 

contours are same as x, namely C1 and C2.  

 

Figure 4.8 MBR algorithm used to speed-up processing time for the ray casting. 

In summary, the main suite of algorithms implemented for spatial interpolation is: 

1. Scan contour tree to find the contour with smallest MBR containing the point to be 

interpolated. 



 58 
 

2. Apply the ray casting algorithm on the selected contour and point to be interpolated to 

determine if that point is inside the contour. Then, find the enclosing contours for the 

selected point.  

3. Get the closest points for each selected contour. Apply the IDW algorithm to calculate 

the interpolated value for the selected spatial point.  

4.6.2 Temporal Interpolation 

Similar to the spatial completeness, the temporal completeness can be defined as 

whether dynamic objects within a temporal data set represent all changes of the entity, similar 

to the progression of time in the real world.  

In general, when a GIS data model represents dynamic processes, only data observed 

at a certain time (snapshot) are recorded. In order to represent the data falling outside of a 

stored time step, temporal interpolation needs to be considered.  

Like the spatial interpolation, the underlying idea behind temporal interpolation is 

estimating values for unobserved spatial data at time steps, not stored, based during a portion 

of or the entire modeling period.  For two arbitrary time steps t1 and t2, whenever t1<t2, there 

is another time step v such that t1<v<t2. Because of the temporal continuity of the data in a 

continuous world, two data values close to each other are more likely to have similar values 

than two data values that are farther apart. To improve results, it is suggested that temporal 

interpolation should be implemented based on the dense time model rather than the discrete 

time model. Most interpolation techniques are based on this assumption, and therefore only 

the closest data are used in the computational process or else, the closer data are assigned with 

higher weights. 
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The spatial interpolation techniques can be extended to the temporal domain by 

estimating a new value or set of values between two adjacent time steps. In recent years, 

many efforts have been put into the development of the temporal interpolation of geographic 

phenomena. Zhang and Hunter (2000) have discussed and summarized some techniques 

available for handling the temporal interpolation of spatially dynamic objects. 

 Most of the spatial interpolation techniques can be applied to the temporal 

interpolation realm also and time values are considered to be the equivalent of z values in the 

3-D space. However, the significant difference between spatial and temporal interpolation is 

that, with the spatial case, the input parameters are the spatial location (x, y) and the outcome 

is a z-value. In contrast, for the temporal case, the input parameter is the time (t) itself and the 

outcome is the value v, or perhaps the spatial location (x, y) of the parameter which changes 

in time.  

As discussed in Chapter 2, there are three types of temporal changes, including 

discrete, periodic, and constant. Discrete changes occur at particular instants and statuses 

remain fixed until the next changes. It is possible to explicitly record all changes with spatial 

and temporal information. Such as in cadastral systems, the land type or land ownership 

changes are based on human knowledge and can be changed instantly. Each change can be 

stored when it happens or it can be defined as having happened. In this situation, the temporal 

data completeness is easy to accomplish. As to periodic changes, since most of the time only 

the changes at the period boundaries are studied, the status between time boundaries (in 

period intervals) are considered as stable. In other words, the data completeness does not 

include changes that happened between boundaries. Therefore, the above two types of 

changes (discrete, periodic) are not a big concern for data completeness. In the case of 
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constant changes, it is hard to define boundaries, where at the exact instant time changes 

happen. In contrast the complete collection of data during the entire temporal period needs to 

be studied.  Moreover, achieving data completeness is a much more challenging task, when 

comparing to other type of changes.  

  Although there are different ways to represent geospatial changes, spatio-temporal 

models can only store data at certain discrete time steps. For discrete and periodic changes, 

these models have the abilities to support the complete information or close to the complete 

information. If these models were to store the data at every time step when changes happen, 

the entire changes could be recorded with complete information. For example, changes in a 

cadastral system are discrete, if all changes at discrete time steps have been stored, and the 

cadastral status for other time steps are easy to be interpreted. As Figure 4.9 shows, changes 

happened at time steps t1, t2, … t5.  The value at time step tx can be interpreted as the value at 

any time step recorded in the database at the nearest and earlier time step than tx. In this figure,  

 

 

Figure 4.9  An Example of value assigned to previously recorded value in a discrete change 

process. 
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the value at tx is the same as v2. This method has been discussed in Laurini and Thompson 

(1992) and Zhang and Hunter (2000). Using population change as an example for periodic 

changes, the population values between stored time steps usually are not studied. If necessary, 

the nearest neighbor values are usually used instead. In Figure 4.10, when the tx is between t2 

and t3 but closer to t3, then the value at tx is set to v3.   

 

Figure 4.10  An Example of value assigned to the nearest value in a periodic change process. 

 When representing constant geographic changes, the problem of incomplete 

information is obvious. Fundamentally, the conflict exists between the linear character of 

constant change and the discrete records at disconnected time steps. A lot of research efforts 

have been expended trying to solve this conflict. For example, some researchers suggest 

blurring or ignoring the changes between recorded time steps. For example, Peuquet and 

Duan (1995) suggested that the data can be recorded at the time when a significant amount of 

accumulated changes have been reached since the last recorded change. But most of these 

approaches still cannot help GIS users to retrieve data, which are not recorded directly. For 

this reason and in order to redress this problem, suitable temporal interpolation techniques are 

required. 
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Similar to data models, current temporal interpolation research is either raster based or 

vector based. The raster data model based interpolations rely on grid-cell attributes, and 

therefore the interpolation is more attribute value based, rather than spatial object value based. 

For this type of data, the interpolation methods mentioned above can be employed directly 

and relatively simply. For example, we can apply these techniques to temporal interpolation 

of the thematic values of spatial objects, such as in determining the change in water 

temperature or in sea level at a specific location.  

The vector data model based interpolations are more challenging, since most of the 

interpolation techniques are attribute based, such as the point based spatial interpolation 

method  mentioned above. Generally, the vector data model is more suitable to represent 

isolate and independent spatial objects. The field data with constant changes are not suitable 

for vector data models.  

Due to the object-field characteristics of oceanographic data, the interpolation could 

include both of these two characteristics.  

As cited in Chapter 2, the spatio-temporal changes of spatial objects may involve 

geometry, topology, and attributes. Temporal interpolations can also include any of these 

three types.  Object data models are more suitable to deal with geometry and topology 

temporal changes, while the field data models are more suitable to do attribute related 

interpolation.  

 In this dissertation spatial interpolation algorithms have been successfully integrated 

with the contour tree as the basic data structure.  A similar strategy will be pursued for 

integrating temporal interpolation.  
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The fundamental purpose of the temporal interpolation in this data model is to 

calculate the oceanographic data values between time intervals not recorded by contour trees. 

Figure 4.11 illustrates the basic concept of a temporal interpolation. The contours’ changes 

are stored in the contour tree at discrete time steps t2 and t3, while a value at point P is needed 

at time step t2.5. First, the values at time steps t2 and t3 are interpolated using the spatial 

interpolation technique mentioned above. If the values from point P are already stored in the 

contour trees, the interpolation is not necessary. The next step is to use temporal interpolation 

techniques to calculate the point P values at time step t2.5.   

 

Figure 4.11 The temporal interpolation for a point at a time step not stored during the original 

model run. 

Based on the review of possible interpolation algorithms, three of them are identified 

as potential solutions, including the nearest neighbor’s value, the linear interpolation, and the 

spline interpolation.  

1. Nearest neighbor’s value 

This method is similar to the nearest neighbor’s value mentioned above. Figure 4.12 

shows an example. In a continuous spatio-temporal change, statuses at time steps t1, t2, and t3 
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are recorded. In order to interpolate a value Vx between t1 and t2, the time intervals between t1 

to tx and t2 to tx are compared. Then Vx is set to the closer value in time, which, in this 

example, is V1.  

 

 

Figure 4.12 An example of the nearest neighbor’s value algorithm (tx is closer to t1 and so Vx 

is assigned V1). 

This method actually is trying to treat continuous changes as discrete changes. The 

value changes between observed time steps are ignored. The advantages for this method are 

obvious.  Since this method only calculates values based on time and not on the actual values, 

the algorithm is simple, hence it is easy to implement. This can be a disadvantage from the 

values’ accuracy, because in continues changes the values in the time interval are usually in 

between the boundary values. But in this method, the interval values are biased and assigned 

to either value on the time boundaries.  

2. Linear interpolation 

In this method the interpolated values are calculated as linear polynomials between 

values on time boundaries. As in Figure 4.13, the two known values are V1 and V2 at time 

steps t1 and t2.  In the orthogonal coordinate system the values are two points with 
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coordinates (t1, V1) and (t2, V2).  The linear interpolation is the straight line between these 

points.  The value Vx at time tx in the interval (t1, t2) is calculated with the equation: 

                          (3) 

Compared to the nearest neighbor’s value interpolation, the linear interpolation gives 

more accurate values with a simple algorithm.  

 

Figure 4.13 An example of linear interpolation (Vx  is related to tx’s distance to t1 and t2). 

3. Spline interpolation 

Spline interpolation takes a set of points and fits multiple piece-wise continuous 

functions (known as splines) to these points. The most common functions to fit are 

polynomials. Most of the time, spline interpolation is preferred over general polynomial 

interpolation, because the interpolation error can be kept small even when using lower degree 

polynomials for the spline. Thus, spline interpolation avoids the problem of Runge's 

phenomenon (1901) which occurs, when using higher order polynomials. The most common 

spline interpolations are linear, quadratic, and cubic splines.  
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 In general, higher precision requires higher order polynomials. But higher order 

polynomials cause computations to increase significantly, thereby getting worse performance. 

In most circumstances, cubic function is the minimum number of polynomials to get a smooth 

curve over all data.  

 

Figure 4.14 An example of quadratic spline interpolation. 

 Figure 4.14 is an example of the quadratic spline interpolation. The dashed line is the 

interpolated curve calculated based on five values: V1, V2, V3, V4, and V5. Except for the 

linear spline, spline interpolation results in a smooth interpolation among a series of data sets, 

and should have a better interpolation performance than the other two methods mentioned 

above.  

In this data model, linear interpolation is selected as the interpolation method. The 

linear interpolation gives more accurate values than the nearest neighbor algorithm. It is a 

simple algorithm, which requires only a little bit more computing expenses. Spline 

interpolation may result in more accurate and smooth interpolated values than linear 

interpolation, but it needs much more complex computations, especially when using higher 

order polynomials.  
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The linear interpolation just needs two observed values in two consecutively known 

time steps, which are usually from before and after the interpolated time step. Spline 

interpolation usually involves more than two points to compute a reasonable result. That 

means data from more than two time steps need to be employed. In addition, the spatial 

interpolation for each point and at each time step, the computation expenses are significantly 

increased and the performance is heavily and negatively impacted. Based on these 

considerations, linear interpolation is implemented in this data model as the temporal 

interpolation method.   

In summary, this data model integrates both spatial and temporal interpolation 

methods. The Inverse Distance Weighting (IDW) is applied as the main algorithm for the 

spatial interpolation.  In addition, the minimum bounding rectangle (MBR) is also used to 

help the spatial interpolation performance. The linear interpolation algorithm is applied as the 

main algorithm for multi-time step data interpolation.  

4.7 Conclusion 

Driven by the ontology analysis of oceanographic model data, a new data model based 

on contour tree and OO modeling technique is proposed in this chapter. The dynamic process 

is represented by a series of contour trees. Each contour tree stores the spatial and temporal 

information for a snapshot at a time step. The spatio-temporal topology changes between 

contour trees are also stored in contour trees. Interpolation techniques are used to represent 

the values, which are not represented between contours on the same contour tree and between 

consecutive neighboring contour trees.   
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Chapter 5 Data Model Design Implementation and Evaluation 

Chapter 4 introduced the main algorithm of the new spatio-temporal data model 

designed to represent oceanographic data. This chapter explores the proposed model’s 

implementation in detail.  In addition, an analysis of this data model in supporting special 

challenges from oceanographic data is evaluated.  A case study will be provided as part of the 

evaluation of this model in support of spatial and temporal related query applications.  

5.1 Evaluation of the Data Model for Special Challenges 

In Chapter 2, some special spatio-temporal considerations for oceanographic model 

data have been discussed: (1) Field-object characteristics of oceanographic model data; (2) 

constant change pattern; (3) complicated spatio-temporal change types; (4) inexactness 

(uncertainty); and (5) identity persistence. These considerations are also unique challenges in 

designing new data models. 

Some of these challenges, such as field-object characteristics, have already been 

discussed in previous chapters. However, other challenges still have not been addressed in 

details. After the main algorithm has been proposed, it is necessary to evaluate the new data 

model, especially if it can be shown that the challenges have been met by the new data model. 

The following discussion covers a detailed analysis of these issues. 

1) Support of field-object characteristics in oceanographic model data 

As mentioned in the previous chapter, this data model is based on the contour tree — 

an object view data model, which can be generated from the raw data. All contour tree nodes 

correspond to isolines, represented as objects. The topological changes and spatial movements 

can be retrieved in a practical way. But when representing the values not stored as nodes on 

the contour tree, this data model applies interpolation methods to calculate them. From a GIS 
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data view model perspective, these values are treated as field. Basically, they are point-based 

and attribute changes are more easily to be tracked than spatial geometry and topology. In this 

sense, this data model can reduce data redundancy and simplify the data process. 

2) Support constant change pattern 

Since it is an object-view based data model, a single object (node) can represent the 

whole history of an entity (isoline). By using snapshots to record changes in a lifespan with 

short time intervals, it can represent and track spatio-temporary topological changes. Adding 

spatial and temporal interpolation for missed values, the spatial and temporal attribute 

changes can be represented constantly. 

3) Support complicated spatio-temporal change types (geometry, topology, and 

attribute) 

Since the contour tree stores topological relationships, the topological change is easily 

supported. Each node on the contour tree stores spatial information and attributes, and 

changes in these two parameters are also tractable. Furthermore, the values of these three 

parameters are stored independently. If more than two types of changes happen 

simultaneously, then they still can be represented. Apparently, the previous statements only 

work for entities represented as nodes on contour trees. For the entities which cannot be 

represented by nodes, these change types cannot be represented. The only exception is that the 

attribute change for a fixed spatial point position can be represented by the integrated spatial 

and temporal interpolation. 
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4)  Inexactness (uncertainty) 

To solve the inexactness challenge in the spatial and temporal domain, this data model 

has integrated interpolation algorithms. The interpolated values are not the same as real values, 

but should be very similar, and eventually will increase the data quality.  

5) Identity persistence 

The review of spatio-temporal data models in Chapter 2 has shown the advantages of 

OO based models. One advantage is that one object can represent an entity and manipulate it 

during its whole lifespan. Since usually other entities or variables are dependent on this object, 

it is an important improvement in the data model design. 

Another critical issue in identity persistence that has been discussed in the previous 

chapter is the splitting and merging of objects in contour tree evolvement. In oceanographic 

data, these issues are related to attributes and spatial values. The better solution is to let the 

application to deal with identity persistence in splitting and merging processes. 

In brief, the new spatio-temporal data model can handle the special challenges from 

representing the complicated geospatial changes as related to oceanographic model data.  

5.2 Spatio-Temporal Data Model Design 

The main idea and key algorithms of the new data model have been discussed in the 

previous chapter.  More detailed information about the model design will be discussed here.  

From the perspective of software engineering, the design is illustrated by class models with 

related functions and attributes. The UML (Unified Modeling Language) class diagram will 

be utilized in the introduction of the design implementation.  

UML is a graphical modeling language and consists of different types of diagrams 

specifying the structure or behavior of a system. The most commonly used type of diagram in 
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modeling geographic data is the static class diagram. It describes the structure and static 

relations of a system (the data model in this research) by using classes, attributes, and 

methods.   

The classes are the basic elements of the class diagram. Each class is represented with 

a box (rectangle) containing three parts: The name of the class, attributes of the class, and 

methods or operations that the class can take. The three parts are separated by lines and 

ordered from top to bottom. Among them, only class names are necessary. Sometimes in 

order to simplify a class diagram and show the most import parts of the structure, only class 

names and selected attributes and methods are shown in the diagram.  

The UML class diagram in Figure 5.1 shows the conceptual design of the main class 

modules of the new data model. In order to keep the diagram concise and focused on the most 

important parts, only class names and important attributes are listed. The main methods and 

other related information are provided in each class’s explanation.  

When a user designs detailed modeling in a practical application, the class modules in 

the conceptual design are often split into a number of subclasses. 

The following part is a brief explanation of the major modules in the new data model 

for oceanographic data. 

 STobj  

STobj class is the main entrance of the data model. It stores the whole time series of 

the contour trees in a list of ContourTree objects, and it stores all time spots with data in a list 

of TimeStep objects.   
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Figure 5.1 UML class diagram of the main class modules. 

 ContourTree 

The ContourTree class represents a contour tree at a time spot. It has a collection of 

Arc objects in a contour tree. In these Arc objects, the top and bottom objects in a contour tree 

are marked separately.  
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 Arc 

An Arc class represents an arc on the contour tree. It includes a list of Node objects 

and functions to traverse these Nodes. Each Arc class also stores a TopNode object and a 

BottomNode object, which represent two critical nodes on the arc. 

 Node 

The node class represents a node on the contour tree. It stores node related information, 

like contour values and their spatial information (geometry, MBR, etc). The node class has 

two subclasses, including TopNode and BottomNode. These two subclasses represent the two 

critical points at the end of each arc. The two subclasses have some attributes and functions to 

store and visit their connected arcs. These are the upArc for arcs in the direction going upward 

and downArc for arcs in the direction going downward.  In the example in Figure 5.2, Node C 

has two upArcs(AC and BC) and one downArc(CD) . Based on the analysis of upArc and 

downArc, the local extreme values (peaks or holes) and saddles can be retrieved.    

 

 

 

 

 

 

 

Figure 5.2 Critical nodes and related UpArc and DownArc in arc CE. 

 

TopNode          C 

UpArc AC, BC Peaks A, B 

DownArc CD Hole D 

 

BottomNode       C 

UpArc EG Peak G 

DownArc EF Hole F 
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 TimeStep 

The TimeStep class stores all temporal information related to Nodes and Arcs. The 

two subclasses, including StartTime and EndTime represent the start time spot and end time 

spot, respectively.  

 SpatialInterpolation & TemporalInterpolation 

These two modules include the main spatial interpolation and the temporal 

interpolation algorithms. These modules invoke related Arcs and Nodes in ContourTree with 

TimeStep to do the interpolation.  

 Contour, Geometry, MBR 

The Contour class stores a contour’s attributes (e.g., wave height, water level, etc.). It 

also includes a class representing its spatial information, namely Geometry.  The Geometry 

class stores a contour’s spatial extent and related attributes, including area and length. It refers 

to the MBR class as the minimum bounding rectangle (MBR). 

5.3 A Case Study for the Spatio-Temporal Queries 

As Pelekis et al. (2005) pointed out, ―a rigorous data model must anticipate spatio-

temporal queries and analytical methods to be performed in the spatio-temporal Information 

System.‖ As part of the evaluation, a case study involving spatio-temporal queries in the 

application of the data model will be conducted in this subchapter. 

Yuan (1997) argued that there are six major types of spatial and/or temporal changes 

in geographic information. A spatio-temporal data model should support some, if not all, of 

the queries for these types of changes.  The queries of such changes can be categorized into 

three types, including spatially-based queries, temporally-based queries, and 

attributes/objects-based queries.  
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Spatially-based queries refer to queries for a fixed space, including queries of 

attributes at a specific point in time, or attribute variations during a specific time period. In 

oceanography research, a typical spatially-based query could be to find changes in the wave 

height during a certain period at a specific position.   

Temporally-based queries refer to queries for a fixed point in time, including queries 

of spatial locations for certain attributes/objects at a point in time. In oceanography research, a 

typical temporally-based query could be to find the highest wave in an area at a specific point 

in time. 

Attributes/objects based queries refer to queries of the spatial change and the temporal 

information of selected attributes/objects. In oceanography research, this type of query could 

be applied to find the wave height area, the movement track, and the spatial change, such as 

tracking the wave heights in the hurricane season. This type of query is the most challenging 

of all three types.  

Most of the previously proposed spatio-temporal GIS data models only support part of 

the query functions. In particular, these model have difficulty in supporting complex spatio-

temporal queries, especially the type of queries exemplified above as the third type (Yuan 

1999). 

The proposed data model in this research has the ability to support all three types of 

queries mentioned above.  In this subsection, a case study will show how the new data model 

supports these queries. Figure 5.3 includes four images selected from the oceanography model 

MIKE21 output for the wave height and wave direction forecasting in the Gulf of Mexico. 

The model output includes a series of images representing the dynamic change during a 

specific period (from 03/26/2010 0:00 AM to 03/29/2010 12:00 PM in this example). These 
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four images capture the major changes in wave height conditions. High wave areas in these 

images are labeled by ―A‖, ―B‖, ―C‖, through ―J‖.  

Figure 5.3  Four images selected from the output of MIKE21 wave forecasting model (the 

forecasting time period is from 03/26/2010 0:00 AM to 03/29/2010 12:00 PM). 

The first query is a spatially-based query, namely find the wave height change at a 

specific position (e.g., at point ―J‖ close to the Louisiana Coast) during the whole model 

forecast period. The main steps are listed below: 

1. Get the contour tree for the first point in time and then find the contours enclosing the 

spatial point.  

  

1 2 

  

3 4 
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2.  Perform the spatial interpolation to get the wave height value for the queried point, 

based on the enclosing contour values. The wave height for the initial point in time is 

acquired. 

3. Apply step 1and step 2 to the contour trees of the subsequent  points in time, iterate 

these contour trees and get wave height values of the queried spatial point for the 

whole time period.  

4. If the time interval between the points in time are bigger than required, the temporal 

interpolation for wave height values between adjacent points in times are necessary. 

5. Traversing all selected values in time (from first to last) will show the wave height 

change at that position. 

The second query is a temporally-based query, namely find the highest wave value in 

the Gulf of Mexico at a point in time as depicted in image 2 in Figure 5.3. The main steps are 

listed below: 

1. Get the contour tree at the queried point in time.  

2. Iterate peak nodes from this contour tree and then select the nodes from the region of 

interest in the study area (Gulf of Mexico). Location ―H‖ is removed as it is outside 

the Gulf of Mexico. 

3. Compare the peak nodes on the remaining branches of the contour tree and select the 

highest peak node. 

4. Retrieve the spatial information (position, extent, etc.) for that node. 

The last query is an attributes/objects-based query, namely finding the high wave area 

(e.g., wave height greater than 4 feet) and track their movement and spatial changes. This 

query includes the geometry and topology changes. In this case, there are two peaks wave 
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heights greater than 4 feet, including the  areas labeled ―A‖ and ―B‖ in Figure 5.3.  Both areas 

subsequently merge into one area, namely ―Y‖. The main steps are listed below:  

1. Select the first point in time in the time series as the starting point for the query. 

2.  Select the contour tree at the selected point in time. Iterate peak nodes and check if 

there are contour values >= 4 feet. If there are no such peak nodes, retrieve the next 

contour tree for the next point in time and repeat the contour value search. Keep 

retrieving contour trees one at a time until peak nodes are found with a contour 

value >= 4 feet. 

3. For the arcs that include peak nodes (step 2), select regular nodes with contour values 

equal to 4 feet. Iterate these nodes and discard nodes falling outside of the study area 

(Gulf of Mexico). In this example, ―H‖ is removed as it is outside of the Gulf of 

Mexico. 

4. If there are no available nodes left, search for the peak nodes with contour values >= 4 

feet from the next contour tree for the point in time following (the point in time from) 

step 1, and continue with step 2 until available peak nodes are found.  

5. Search regular nodes on the arcs with identified peak nodes (―A‖ and ―B‖) and select 

those nodes with contour values equal to 4 feet.  

6. Get the temporal information (start and end times) of the selected nodes. Retrieve the 

same nodes on all contour trees between current point in time and end time. In this 

example, the end time is when peaks ―A‖ and ―B‖ merge into ―Y‖.  

7. Continue from step 2 with the contour tree at the point in time when ―A‖ and ―B‖ 

merge into ―Y‖.  
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8. If the end time is reached or the required peak nodes cannot be found in the contour 

trees during remain time, then quit the search.  

9. Compound the selected nodes for the entire time series and retrieve the spatial 

(position and extent) and temporal information.  

From the above analysis, this data model shows strong support for spatio-temporal 

queries related to oceanographic model data. This data model can easily accomplish both 

simple queries related to static attributes and spatial positions and complicated queries related 

to changes (processes). The work flow chart in Figure 5.4 shows the main steps in processing 

the queries. The algorithms about contour tree simplification will be discussed in the next 

chapter. 

 The contour map in the case study includes relatively few contours and a simple 

contour tree structures. In oceanography applications, the contour maps may use numerous 

contours to represent detailed isosurface parameters, which incur far more complicated 

contour trees. Adding the topology tracking in time, the structure and relationships in the data 

model may grow extraordinary complex. In order to use the data model efficiently, one 

practical solution is selecting a modest contour interval value that can represent sufficient 

isosurface information with acceptable contour tree complexity. Another one is to perform the 

contour tree simplification which will be discussed in the next chapter. 



 80 
 

 
 

Figure 5.4 Data model query application work flow chart
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5.4 Conclusion 

This chapter first evaluates specific challenges related to the data model for 

oceanographic data and then introduces the main class modules of the data model using UML 

class diagram. Subsequently, the main attributes and functions in implementations are 

explored, and finally a case study is applied that illustrates how this data model supports 

complicated spatio-temporal queries in a real-world application.  
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Chapter 6 Contour Tree Simplification 

Due to the existence of complicated geospatial phenomena in oceanography, the data 

model representing static isosurfaces can produce unmanageable large contour trees. When 

highly dynamic changes are involved, the temporal information to be integrated into contour 

trees will be even more complex. Small details increase the size of a contour tree dramatically. 

However, these details are not always necessary for automatic processing or visualization 

purposes. It is thus advantageous to simplify contour trees for practical applications in order 

to reduce its complexity, while keeping the fundamental structures of interest intact. 

6.1 Review on Contour Tree Simplification 

For different applications, several algorithms of contour tree simplification have been 

proposed. Carr et al. (2004) explained two basic operations in the contour tree simplification, 

such as leaf pruning and node reduction. Leaf pruning removes a leaf and the arc incident to 

the leaf from the contour tree. Removing an arc from the contour tree discards the 

corresponding contours from further consideration in the rendering process. Node reduction 

removes regular nodes without changing the essential structure of the contour tree.  This does 

not affect the contours or values in the data set. Pruning and reduction are performed in an 

order that minimizes the error based on a local geometric measure, with node reduction to be 

carried out prior to leaf pruning. The geometric measures used in the contour tree 

simplification include persistence, volume, and hypervolume.  

Pascucci et al. (2004) presented a multi-resolution data structure for representing 

contour trees and an algorithm for its construction. The multi-resolution data structure uses 

branch decomposition, an efficient way for storing a hierarchy of contour tree simplifications. 

Pruning a branch from the branch decomposition is equivalent to performing a node pruning 
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operation in the scheme of Carr et al. (2004). Takahashi et al. (2004) simplified the contour 

tree by pruning leaves to determine the ―most important‖ isovalues for a volume rendering 

transfer function. The priority in leaves pruning is based on a new weight value. The new 

weight value is the product of the volume swept by the isosurface component in the subtree 

that is discarded and the difference in the scalar field between end critical nodes of the subtree.  

The new weight value is used as an important measure to simplify the contour tree. Saddles 

are processed until only a few of them remain, then a transfer function is constructed based on 

the simplified contour tree.  

 Zhou and Takatsuka (2008) presented an importance-driven method which combines 

different measures of importance into a single contour tree simplification pipeline through an 

importance triangle (ITri). The ITri is set up based on an importance measure vector, whose 

components include different measures of importance. In addition, the Extended Gaussian 

Image (EGI) and a map projection method are used to map the importance measure vector to 

a point onto a 2D plane, in order to differentiate branches of interest from other branches. The 

contour tree simplification depends not only on the priority value (e.g., the size of the ITri), 

but on every component of the importance measure vector. So the proposed approach of 

contour tree simplification is an importance-driven and user-directed process.  

6.2 Temporal Information in Contour Tree Simplification 

The methods/algorithms of contour tree simplification explored in the above examples 

only focus on the single static independent contour tree. These methods did not consider 

contour trees with inter connections, such as the temporal information integrated into contour 

trees as proposed in this research. These contour trees are connected and organized in a group 

to represent a series of time-varying data from complex geospatial phenomena. The need for 
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simplification (contour tree pruning) is rather challenging. In this research, the simplification 

methods are considered from two sides, namely from the spatially-and the temporally-based 

sides.  

6.3 Basic Simplification Operations 

The basic simplification operations define the most direct and fundamental operations 

on contour trees. The two operations proposed by Carr et al. (2004), leaf pruning and node 

reduction, are used in this research. Leaf pruning removes a leaf of the tree, changing the tree 

structure and reducing the complexity of the tree. Node reduction deletes a node (critical node) 

from the contour tree without changing the essential structure of the contour tree
3
. 

 

Figure 6.1 Leaf pruning and node reduction (Source: Carr et al., 2004) 

Figure 6.1 shows the example of leaf pruning and node reduction. As indicated in this figure, 

a leaf (branch arc) #80 is pruned from the tree on the left to produce the tree in the middle 

graphic. The node #50 is removed from the tree in the middle graphic to produce the tree on 

the right side. After the leaf and node are removed, the left two arcs merge into one new arc. 

Through these basic operations contour trees can be simplified to any desired size.  

  

                                                           
3What is taken off here is not the regular node but the critical node. The node reduction only 

applies to the critical node, not the regular node.  This usually happens after the leaf pruning, 

without directly changing the structure of the contour tree.  However, it changes the contour 

tree structure along with leaf pruning. 
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6.4 Rules of Simplification 

In Carr et al. (2004), and Zhou and Takatsuka’s (2008) methods of contour tree 

simplification, the rules of pruning leafs/arcs and nodes are based on different measures of 

importance. Carr et al. (2004) used local geometric measures (perimeter, cross-sectional area, 

volume, and surface area) separately to define the importance values. Zhou and Takatsuka 

(2008) combined different importance measures together into a single value.  

The importance of each contour or region is measured depending on the application 

(Zhou and Takatsuka 2008). For example, in 3D visualization, the importance is related to the 

visibility of an object within the volume data.   

In this research, the simplification method is also based on the importance values. The 

importance values are measured based on each leaf (branch arc) of the contour tree.   In 

addition, the simplification method introduces the temporal dimension into the importance 

value. The importance values used in this research are ―contour value difference‖, ―base 

contour area‖, and ―contour profile‖. The contour value difference is the difference between 

the absolute parameter values in end nodes in the branch arc of contour trees. It is defined as:  

f =  (Vmax) – (Vjs)                                                                         (1) 

with f: the contour value difference; Vmax: the local extreme value; and Vjs: the value at 

joined or split nodes. This simplification method describes the 1-D value change. When 

applied to oceanography, these contour values are wave height, water level, etc. The base 

contour area is the region enclosed by the contour at the joined or split nodes of the contour 

tree. It describes the 2-D area (spatial extent) of the selected value. The contour profile is 

defined by the ratio of the two importance values mentioned above. Formula 2 defines a 3-D 

property, depicting the trend in contour changes to see whether the enclosed volume (hump or 
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pit) contours are flat or steep. To distinguish the upward arcs (peaks) from the downward arcs 

(holes), the importance values of the downward arcs are given negative values.  

                                           (2) 

Formula 2. The profile value is based on the difference between local values (two end nodes 

of the arc) and the base contour area (joined or split node)  

Figure 6.2 illustrates how these importance values are measured. The extreme local 

values (v1 and v2) and the joined or split nodes (v0) are selected to calculate the value 

difference between contours. Regular nodes are not considered. The importance value of the 

base contour area is calculated from the connecting nodes (joined or split nodes) of each leaf 

on the contour tree (s1, s2, and s3). The contour profile describes the shape property of the 

 

Figure 6.2 Examples of importance values in contour tree simplification. The importance values for 

three examples are shown, including humps (left and middle) and one pit (right).  

1)  The contour value difference: The left and middle humps have the same value v1-v0, 

whereas the right hump has v2-v0.  

2) The base contour area:  While the left hump has a base contour with an area value S1, the 

base contour of the middle hump and the right pit have the same area (|S2|= |S3|), with S3 

being negative.  

3) The contour profile: The left hump has a smaller profile value than the middle hump, 

which indicates a flatter hump.  Since the middle hump and the right pit have the same 

area, the profile value is determined by the contour value v1 and v2. 
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volume of the enclosed branch contours, including both critical nodes and regular nodes. The 

large contour profile values (absolute values) indicate a steep and slim hump (S2) or a pit (S3), 

and small contour profile values indicate a flat hump (S1) or a pit. In oceanography research, 

the application of the profile can help to define hurricane affected sea surface area and time 

period. 

6.5 Simplification Algorithm 

The simplification operation in this research also uses the branch decomposition 

method to hierarchically represent the contour tree introduced by Pascucci et al. (2004). This 

method decomposes contour trees into sets of branches with hierarchical relationships (child-

parent).  As illustrated by Figure 6.3, the contour tree is decomposed into four sets of 

branches.  Branch A1 is the root branch. All other branches (A2, A3, and A4) are connected 

by a saddle node or joint node.  Branches can be removed by a parent-child priority. A1 is the 

parent of A2 and A4 and since both A2 and A4 have one end node, they are dependent on A1. 

Similarly, A2 is the parent of A3. A branch can be simplified only when there is no connected 

child branch. Therefore, branches A3 and A4 can be removed independently. But the branch 

A2 cannot be removed before A3 has been removed.  

 

Figure 6.3 Hierarchical decomposition of a contour tree (Pascucci et al. 2004). 
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The simplification algorithm and the data structure are based on branches. The 

importance values are stored on the critical nodes of each branch and can be extracted from 

the branches. The previous simplification methods focus on a single contour tree, but in this 

data model multiple contour trees are connected by temporal information. The simplification 

algorithms thus need to take this into consideration. In a dynamic process, the importance 

values integrated with each branch on contour trees are also changing.  For example, an 

upward branch on a contour tree may represent a high wave zone. The end node value may 

vary in a series of contour trees related to different time periods. The shape and size of 

contours represented at the joined node may also change, and this leads to a change in the area. 

Subsequently, the profile values related to these two values are also changing.  

To store the importance value related to the change, a new variable is added to the data 

model. This new variable is referred to as the global importance value (GIV). As mentioned 

in Chapter 4, the data model presented in this research assigns the same ID to each branch arc 

identified as the same object in different contour trees. The ID helps tracking the branch arc at 

different time steps and if the GIV is related to the ID, the importance values change can also 

be tracked. In this data model, each arc’s ID has a corresponding GIV. The GIV stores the 

highest importance values (lowest if value is negative) of the corresponding arc during the 

whole lifespan. Based on different applications, the GIVs are selected and calculated from the 

three importance parameters mentioned above.  

For example, if the contour value difference is used as importance value, and the 

importance values of a branch arc on contour trees for its entire lifespan are c1,c2,c3, …cn  in 

time series, then the GIV can be defined as: 

GIV= max (|c1|, |c2|, |c3|… |cn|)                                                 (3) 
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This formula can also be applied to other importance parameters, including the base 

contour area and the contour profile. 

By comparing the GIV with a preset threshold value, the unnecessary branches are 

removed from the contour trees. This simplification algorithm can thus be distinguished from 

other methods in that it does not only focus on the single contour tree, but extends its 

applicability by considering the links of branches on multiple contour trees. If a branch is 

selected to be removed from a contour tree at one point in time, all branches with the same ID 

on all contour trees in this branch’s lifespan are removed.  

As suggested in Pascucci et al. (2004) and Carr et al. (2004), a priority queue is used 

as a standard data-structure to store all branch arcs and it always pops out the branch arc with 

the smallest GIV.  The priority queue is used in one of the most important processes to 

retrieve a valid branch to be simplified. The main steps of this process are described below: 

1) Iterate all contour trees and calculate the GIV for each branch arc. Store the branch 

arcs and their GIVs into a priority queue.  

2) Pop the top element of the queue, which is the branch with the smallest GIV value 

from the contour trees during their entire lifespans.  

3) Compare the GIV value with the threshold value and define whether that branch needs 

to be simplified. If not, discard this element and go back to step 2. 

4) Fetch the temporal information (starting and end points of time) from that branch. 

Retrieve the branches from the contour trees between start and end points of time. 

5) Check if each of these branches can be simplified. The three pre-required criteria to 

simplify a branch include (a) leaf arcs without any child; (b) the branch only has one 

end node connected to other arcs at the joined or split node; and (c) not the root branch 
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arc. If any of these three criteria is not met, discard all of these elements and go back 

to step 2. 

6) If branches can be removed, remove these branches from their contour trees. Then 

update the importance values of the merged branches connected to the removed 

branches. 

The above process ensures that the first branch that represents a valid cancellation 

from the queue can be found. Unlike the  method used by Pascucci et al. (2004), in which 

nodes are updated only when they are pop out of the queue, in this method the update of  

importance value related to the merged branches is processed right after the branch is 

removed.  

 Applying this process to build contour trees by using ―join tree‖ and ―split tree‖, a 

contour tree can be created in which each branch represents a valid topological simplification.  

Then a simplified contour tree can be extracted from the previously created contour tree.  

 6.6 Application of Contour Tree Simplification 

As Zhou and Takatsuka (2008) concluded, the application of the contour tree 

simplification is ―a graph simplification algorithm applied to the contour tree. Then this 

simplification is carried back to simplify the input data.‖  

As mentioned above, three types of importance values are used in the simplification of 

the oceanographic model data. In the following part, an example is used to show how the 

application of these importance values works. 

Figure 6.4 is a wave height and direction map from the output of the MIKE21 model 

for the Gulf of Mexico. The contours represent the wave height distribution.  The local 

peak/hole and saddle areas are labeled (A, B … K, L).  Figure 6.5 illustrates the 
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corresponding contour tree and simplified contour trees with different importance parameters 

(the contour trees only represent wave height, not wave direction).  

 

Figure 6.4 A wave height and direction map from the output of the MIKE21 model for the 

Gulf of Mexico 

As shown in the first graphic in Figure 6.5, the original contour tree includes the local 

peaks A, B, D, E, J, K, and L and local holes H and I.  

The second graphic in Figure 6.5 shows the result of the contour value difference 

based simplification. In this graphic the branches with a wave height difference (end node to 

joined/split node) of less than 1.5 feet are removed from the contour tree. Compared with the 

original contour tree, branches with local peaks A, D, L, and K are trimmed. As a result from 

the contour tree decomposition, branches BC and CG as well as EF and FG are merged. But 
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Figure 6.5 Contour tree simplifications: 1. Original contour tree     2. Contour value 

difference-based simplification     3. Base contour area-based simplification     4.  Contour 

profile-based simplification.  

the joined nodes C and F remain for the further construction of the contour tree. Because the 

temporal information for each independent branch arc on multiple contour trees has to be 

tracked, it is easier to keep the temporal information with the branch arcs from the original 

branch structure. The left joined nodes will help track these changes. As discussed above, 

node reduction is one of the basic simplification operations. In this method, it is applied to 

help with the simplification process, but it does not physically remove that node’s information 

from the contour tree. In this example, the C and F nodes still hold the information as there 
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are joined nodes and related arcs (BC and CG, as well as EF and FG). This information is 

necessary for the rebuild of final contour trees. From an application point of view, this method 

removes lower wave height peaks and shallower wave height holes and keeps the wave height 

zones more distinguished.  This method does not take into consideration the zone sizes of 

wave heights. 

The third graphic in Figure 6.5 shows the result of the contour tree after contour area 

based simplification.  All branches whose zone size of wave height is less than 300 square 

feet are removed from the contour tree. So, branches with local peaks L and K are trimmed 

from the contour tree. From an application point of view, this method removes small size 

wave height zones and keeps big size wave height zones. It does not consider the wave height 

change values.  

 The fourth graphic in Figure 6.5 shows the result of contour profile-based 

simplification.  Branches with small profile values are removed from the contour tree. In this 

graphic, all original branches are removed from the contour tree except branch JG. From an 

application point of view, this method considers both wave height values and the spatial 

extent of the wave height zone.  This method removes the flat wave height zones and keeps 

slim (steep) wave height zones.  

 Taking it all together, the three simplification methods result in different outputs and 

are for different applications.  

6.7 Conclusion 

Due to the complicated spatial distribution and highly dynamic changes in 

oceanographic data, contour trees representing oceanographic isosurfaces can produce very 

big size contour trees.  A simplification of original contour trees is thus necessary. In this 
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chapter, a new simplification algorithm is introduced to reduce the complexity of contour 

trees. This algorithm is based on the branch decomposition method and supports temporal 

information integrated into contour trees. In order to meet the requirement from various 

applications, three types of importance values are introduced to be applied to different 

simplification methods. The practical example illustrates how these importance values affect 

the output of the contour tree simplifications.  
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Chapter 7 Conclusion 

7.1 Major Findings 

In oceanographic research, the output data of wave and hydrodynamic numerical 

models represent highly dynamic geospatial phenomena. A data model is the fundamental 

issue in supporting this special application in spatio-temporal GIS. This dissertation focuses 

the research on a spatial-temporal GIS data model applied to oceanographic model data, 

especially to homogeneous isosurface data.  

Due to the special challenges from this kind of application, such as field-object 

characteristics, constant temporal change, and complex spatio-temporal change pattern, 

current spatial-temporal data models show deficiencies in supporting such challenges. A 

tentative new data model is proposed in this research.  

As an emerging method, ontological analysis is applied to the study of oceanographic 

data. In this research, ontology has been utilized to extract abstract oceanographic data entities 

to create components for the new data model.  When transferring these components to data 

model design, the contour tree is introduced as the basic data structure for the data model. The 

contour tree can represent the spatial topological relationships of the isosurface data by using 

element components of nodes and arcs. By adding temporal information to each node and 

branch arc of the contour tree, and by using multiple contour trees to represent different time 

steps in the temporal dimension, changes can be stored and tracked by the data model.  

In order to support the field characteristic and reduce the data volume, the new data 

model integrates spatial and temporal interpolation methods. The spatial interpolation 

calculates the data falling between neighboring contours at a single point in time. The inverse 

distance weighting (IDW) is applied as the main algorithm, and the minimum bounding 
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rectangle (MBR) is used to help the spatial interpolation performance. The temporal 

interpolation calculates the data which are not recorded by contour trees and falling between 

consecutive contour trees for subsequent points in time. The linear interpolation algorithm is 

applied because of its modest accuracy and simple implementation.  

The OO (Object-Oriented) design technology has been applied to the model design 

and implementation. The UML class diagram demonstrates the main objects with the main 

attributes and functions. 

To evaluate the supported functions of the new data model, a case study has been 

designed to show how this data model supports complicated spatio-temporal queries in every 

day forecasting applications.  

As an attempt to optimize the data model, this dissertation also shows some attempts 

in contour tree simplification. A new simplification algorithm is introduced to reduce the data 

complexity. This algorithm is based on the branch decomposition method and supports 

temporal information integrated with contour trees. Three types of importance values are 

introduced to run different simplification methods for various applications. 

7.2 Contributions 

The main contribution of this research is a new data model for spatio-temporal GIS 

which is superior to current data models and thus can be applied to isosurface data with highly 

dynamic change patterns. The advantages of this data model are as follows: 

1) The data model supports the unusual field-object characteristics of oceanographic 

model data; 

2) It supports constant temporal change type; 
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3) It supports complex spatio-temporal change patterns (geometry, topology, and 

attributes) ; 

4) It supports strong spatio-temporally related queries; 

5) Overall, it is a balanced data model in data size and complexity. To represent 

similar geospatial phenomena, this data model has a smaller data volume than 

raster data and it can represent more entities than traditional vector data with 

integrated interpolation algorithms. 

 Additional research about the contour tree simplification explores simplification 

algorithms for the temporal information integrated into multiple contour trees. The proposed 

simplification algorithms reduce the data volume and complexity by filtering out less 

significant data.  

Obviously, this new data model can be applied not only to oceanographic data, but 

other dynamic isosurface data or 3-D data values.  

7.3 Future Research 

Although this data model supports oceanographic data very well, there are still some 

worthwhile challenges to pursue. One main problem is that this data model is still incapable 

of fully supporting object-field representations of the complicated oceanographic data. The 

data model developed in this research uses nodes in the contour tree to represent objects 

(contours), but it can hardly represent objects (contours) between these nodes. For example, in 

a wave height contour map if only contours  from 0 to 10 feet with 1 foot interval are stored in 

the contour tree, this data model will have a difficulty in defining  an area to be queried  that 

represents a wave height zone with values in between two contours (e.g., 3.5 feet). It is 
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possible to accomplish this at the application level, but it is better to support this at the data 

model level.  

Another concern of this data model is that the integrated interpolation algorithms 

reduce the quality (e.g., accuracy) of the data model and also make the data model more 

complicated.  Optimization attempts are needed to make the data model more practical. 

Moreover, although this data model does not aim to support vector data, many met-

ocean data used in oceanography research are vector based, such as wave directions. If this 

data model can integrate or partially support vector data, it will be more applicable. 

These three issues are the major shortcomings of this data model and future research 

should focus on solving these shortcomings.  
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