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ABSTRACT 

The basic goals of this study are to document, represent and model beach surface moisture 

dynamics. Achieving these goals requires that the dynamics be understood within the context of 

the key associated processes including evaporation and groundwater table fluctuations. 

Atmospheric parameters including wind speed, air temperature and relative humidity, 

evaporation, beach surface moisture content, groundwater table fluctuations and tidal oscillations 

were directly monitored in an eight-day field experiment. 

Field measurements demonstrated that beach surface moisture content has a relatively high 

degree of variability in the cross-shore direction and a relatively low variability in the alongshore 

direction. The highest levels of variability were found in the middle beach, where daily 

fluctuations of up to 30% (volume) were common. Long-term variations in surface moisture 

content are controlled by water table fluctuations, while short-term variations are dominated by 

either evaporation or groundwater table fluctuations depending on the local water table depth.  

Two traditional methods to estimate potential evaporation rates were tested, the mass-

transfer method and the combined (energy-budget and mass-transfer together) approach. Results 

showed that the mass-transfer method produces consistent large errors in simulations, even with 

recalibration of the constants. Simulations utilizing the Penman equation provide much better 

agreement with field data. It was found that groundwater table fluctuations at the studied beach 

are mainly forced by tidal oscillations. The numerical solution of the linealized Boussinesq 

equation provides an accurate approach to simulate tide-forced beach groundwater table 

fluctuations. These simulations were found to be significantly improved by modeling the system 

as a sloping beach rather than using the traditional vertical beach approach. 

 x



 xi

Spatial and temporal variations in beach surface moisture were modeled using the 

numerically solved Richard’s equation and the Force-Restore method. The Force-Restore 

method underestimates surface moisture contents when the water table is relatively shallow 

owing to an inherent defect in the model itself. The simulations employing the numerically 

solved Richard’s equation agree closely surface moisture content from the field.  

This study represent perhaps the first, certainly the most comprehensive, attempt that has 

been made to date, to explain intermediate-scale variability in beach surface moisture content in 

light of the microscale process that drive these dynamics. The findings of this study should be 

applicable to longer time periods, and larger spatial areas with similar environmental settings. 

However, more investigations regarding hydraulic properties of local sediment are needed to 

enhance the model applicability. 



CHAPTER 1    INTRODUCTION 

The major purposes of this chapter are to introduce and outline what this project is focused 

on and why it is important. Given that beach surficial moisture is generally controlled by a 

complex combination of hydrological and meteorological components, and that it usually exerts 

a significant influence on a variety of coastal processes (particularly aeolian sediment transport), 

a better understanding of the high degree of spatial and temporal variability in this environmental 

conditions represent the ultimate goal of this study. 

1.1   Introduction 

It is widely recognized that the moisture content of beach sediment is important to 

interstitial biological activity, coastal water resource budgets, beach stability, and to wind-blown 

sediment transport (McLachlan, 1989; Famiglietti et al., 1998; Horn, 2002; Chen and Hu, 2004; 

Yang and Davidson-Arnott, 2005). Surface moisture content in particular is often cited as having 

an important influence on the entrainment of sand by wind, and several models of this influence 

have been proposed (Namikas and Sherman, 1995; Cornelis and Gabriels, 2003). However, 

application of such models to real world beaches is hampered by a lack of understanding of the 

nature and dynamics of spatial and temporal variability in surface moisture content. Although a 

small number of field investigations have provided limited data sets documenting surface 

moisture content at various beaches (e.g. Chepil, 1956; Svasek and Terwindt, 1974; Sarre, 1988; 

Nickling, 1989; Atherton et al., 2001; Yang and Davidson-Arnott, 2005), there is no available 

guidance regarding how to represent or model the high degree of temporal and spatial variability 

in the surface moisture content of real beaches. This problem must be resolved before it will be 

 1



possible to realistically incorporate the role of surface moisture into the modeling and simulation 

of wind blown transport on real beaches. 

1.2   Research Needs 

Surface moisture content, as other investigators have noted (e.g., York et al., 2002), is 

affected by many factors including rainfall, groundwater, evaporation, percolation and 

condensation. Most previous studies related to the variations of surficial soil moisture have 

generally focused on the water exchange between the unsaturated zone and the atmosphere (i.e. 

evaporation and precipitation), and neglected the effects of groundwater (Chen and Hu, 2004). 

Even in sophisticated models of land surface and soil hydrology, the input of groundwater has 

often been not considered. This omission is likely due to the fact that for most ecological systems 

the rainfall is typically the most significant input to surface moisture content. For beaches, 

however, frequent fluctuations in groundwater level may provide the major input to surface 

moisture. Unfortunately, the few reports available to date provide only a rough empirical relation 

between cycles of tide and surface moisture content (e.g., Atherton et al., 2001). Further, these 

studies are generally limited into the swash or intertidal zones, and far from sufficient to 

establish a quantitative relation between these two parameters. Current knowledge about the 

relation between surface moisture content and water table fluctuations is simply too limited to 

provide a reliable picture of surface moisture content variations for beach systems, particularly 

for the backbeach areas that represent the most significant zone for aeolian sediment transport 

(e.g., Sherman et al., 1998).  

Beach groundwater oscillation forced by tides and waves has also been studied extensively 

by coastal engineers in recent decades (e.g., Nielson, 1990; Gourlay, 1992; Turner et al., 1993; 

Li et al., 1997; Jeng et al., 2005). Although the phase of beach groundwater fluctuations has 
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been successfully modeled (Horn, 2002), predictions of depths and amplitudes of beach 

groundwater table usually have significant errors even in the best studies (see Raubenheimer et 

al., 1999). Therefore, there is a need to further improve the accuracy in modeling groundwater 

table fluctuations and hence ground-surface moisture relations in real beach systems. 

Most field studies of the effect of surface moisture content on sediment transport have 

employed traditional surface-scrape sampling strategies (e.g., Cornelis and Gabriels, 2003). Such 

methods are time consuming and always considerably disturb the original experimental surface, 

making detailed time-series data a practical impossibility (Atherton et al., 2001). Furthermore, 

such traditional point measurement techniques do not represent the spatial distribution well since 

only a limited area can be satisfactorily monitored within an acceptable temporal framework 

(Walker et al., 2001). Atherton et al. (2001) introduced a new effective approach for monitoring 

near-surface moisture content using the Delta-T moisture sensor. This kind of moisture sensor 

sends a microwave signal and analyzes the reflection to measure the dielectric constant of the 

soil and then records it as voltage that can be converted into volumetric moisture content by 

calibration. Yang and Davidson-Arnott (2005) further testified and modified this method to 

obtain reliable measurements in the upper 2 centimeters of sediment. This method will be used in 

this study to allow rapid and repeated measurements at a same location in the field with little 

disturbance of the surface, providing high enough spatial and temporal resolution over long 

enough time periods and large enough areas. The field measurements will provide a solid basis 

for model evaluation and for a better understanding of the moisture influence on aeolian 

sediment transport process on coastal beaches.  

The mathematical description of the water transport dynamics on a real beach contains 

several main challenges. First, the governing equations for saturated water flow in the phreatic 
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zone and unsaturated water flow in the vadose zone are highly nonlinear, and the nonlinearity 

has both time dependent and averaged effects that have never been perfectly modeled at our 

current level of knowledge (Nielson, 1990). The second problem is that the local soil moisture 

profiles above a fluctuating water table might be extremely difficult to be predicted with any 

existing models due to the hysteresis (which leads to various soil water content at same hydraulic 

pressure) introduced by the highly frequent fluctuations of the water table. The Darcy law 

without consideration of hysteresis is widely used in previous studies, and provides the 

fundamental basis for almost all current studies of soil moisture modeling (e.g., York et al., 2002; 

Chen and Hu, 2004). The third difficulty is that of the moving boundary position for 

groundwater fluctuations induced by tidal variations on a sloping beach face. This has previously 

been tackled analytically by Nielson (1990) and further investigated theoretically by Li et al. 

(2000), but most previous studies assumed a vertical beach face (e.g, Dominick et al., 1971; 

Philip, 1973; Fang et al., 1973) or treated it as a black box while acknowledging its strong 

nonlinear filtering effects on tidal waves (Nielson, 1990). In addition, the assumptions 

underlying studies of the two key aspects of this system are essentially distinct: vertical 

unsaturated water flow is assumed to be predominant in studies of soil moisture dynamics while 

horizontal saturated water flow is assumed to control the process of tide-induced water table 

fluctuation. Both of these approaches arbitrarily neglect flows in other directions for simplicity 

and convenience. Although two-dimensional or three-dimensional flow models have been 

introduced by some authors (e.g., Li et al., 1996b; Jeng et al., 2005a), they are not promising to 

date for practical use due to their complexity and concerns regarding their accuracy. As water 

transport is the essential part of surface moisture dynamics, the approaches to deal with these 
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challenges fundamentally determine the model performance in simulating the spatial and 

temporal variability in beach surface moisture content.  

1.3   Research Objectives 

To achieve the major goal–to develop of a realistic model of dynamic change in the surface 

moisture content of a real-world beach–five fundamental objectives have been set in this study as 

follows:  

1) To document spatial and temporal variability in surface moisture content and then 

develop a high-resolution database for a real-world beach. High resolution measurements over 

time and space are essential to understand trends and amplitudes of surface moisture content 

changes, and potentially to be utilized to test existing models or develop new ones. However, as 

mentioned above, most previous studies of beach surface moisture usually employed a traditional 

drying-weighing approach and these records of surface moisture content have large gaps in time 

and often low spatial resolution. Therefore, a high-resolution database of surface moisture 

content is necessary and will provide the basis for further analysis in this project. 

2) To obtain concurrent measurements of key processes and parameters influencing surface 

moisture content. Beach surface moisture dynamics are directly affected by water flows as 

capillary rise from groundwater, infiltration from precipitation and swash, and water molecular 

dispersion and movement as evaporation and condensation. Further, sediment characteristics 

determine rates and velocity of saturated and unsaturated water flows in a beach body, beach 

groundwater table fluctuates in response to tides and waves and inland hydraulic water pressure, 

and atmospheric parameters including solar radiation, air temperature, relative humidity and 

wind speed control the rates of and phase shift between evaporation and condensation (see 

Figure 1.1). Therefore, the variability in surface moisture content cannot be understood and 
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accurately modeled until these processes and parameters have been accurately measured or 

modeled. 

Beach surface 
moisture dynamics

Evaporation
Condensation

Precipitation

Water flows
Saturated

Unsaturated

Groundwater 
table dynamics

Sea level oscillations
Tides
Waves

Soil properties
Grain size

Hydaulic conductivity
Aquifer depth

Atmospheric parameters
Solar radiation

Wind speed
Air temperature

Relative humidity

 
 

Figure 1.1 Key processes and parameters associated with beach surface moisture dynamics 
 

3) To examine and test previous evaporation models and develop a feasible approach for 

evaporation estimation in coastal areas. A large number of evaporation models have been 

proposed and extended through structural modifications and constant recalibrations in many 

previous studies. However, atmospheric circulation patterns of coastal areas are quite unique in 

contrast to those of inland area, due to the combined influences at both water and land surfaces. 

Since existed evaporation models have usually been developed based on data obtained from 

inland areas, they need to be carefully tested and verified using field data from coastal areas. 

4) To quantitatively model water table fluctuations forced by tides in a real, sloping beach. 

Groundwater level in a beach often fluctuates quickly responding to inland and oceanic hydraulic 

pressures and consequently plays a crucial role in regulating the status of beach surface moisture 

in that beach groundwater table is fairly shallow in general. Since measurements of groundwater 

table are usually not available or costly to obtain, it is necessary to develop an effective approach 
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to model and predict its elevation from tidal records (which can be easily obtained from other 

sources). Most previous studies have assumed that the beach face is vertical for simplicity (e.g, 

Dominick et al., 1971; Philip, 1973; Fang et al., 1973) or treated it as a black box (albeit 

acknowledging its strong nonlinear filtering effects on tidal waves). The nonlinearity introduced 

by a sloping beach was first tackled analytically by Nielson (1990), and then theoretically 

investigated by Li et al. (2000). However, very few of the theoretical works published in recent 

years have been tested using field data, an advance which this study will provide. 

5) To develop a realistic model to predict spatial and temporal variations in beach surface 

moisture content using a coupled groundwater model and evaporation model with consideration 

of condensation and precipitation. Apparently, surface moisture dynamics involve a mutual 

interaction with all of these processes (as well as marine inputs, for a beach environment). Any 

process can become the controlling factor for moisture dynamics at a given time and location, 

under different environmental conditions. Although the effects of single factors have been 

studied intensively, the interactions between them remain unclear. 

1.4   Outline of Project 

This project mainly focuses on ways to enhance understanding of the spatial and temporal 

variability in beach surface moisture content, through quantitative simulations of these 

variations. The primary motivation is to establish a basis for subsequent modeling of moisture 

influence on coastal aeolian sediment transport. Major associated input and output processes, i.e., 

groundwater table fluctuations, precipitation, condensation and evaporation, are carefully 

considered and modeled. Several models are implemented and compared with each other to 

simulate the groundwater table dynamics and potential evaporation based on field-observed 
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atmospheric parameters, soil properties and tidal fluctuations. Eventually, beach surface moisture 

dynamics are simulated with coupled groundwater and evaporation models. 

This research will provide valuable contributions to our understanding of beach 

hydrodynamics in several ways. First, the degree of variability in surface moisture content over 

various time (hours to weeks) and space (meters to dozens of meters) scales are assessed and 

analyzed based on field-obtained high-resolution measurements. Second, the most precise 

evaporation model is found for coastal areas that often has unique atmospheric conditions rather 

than inland areas. Third, tide-induced groundwater table fluctuations are documented and 

modeled for coasts of the Gulf of Mexico, particularly fine-grained beaches with micro tidal 

ranges. Fourth, the factors controlling beach surface moisture content variations are identified 

and the degrees of their dominance were analyzed. Finally, a realistic model combining a 

groundwater model, evaporation model and soil water retention curve is developed, requiring 

only a few inputs that can be obtained from routine data or easily measured in the field.  

This dissertation is composed of eight chapters. The next chapter provides a review of 

selected literature. In Chapter 3, the environmental setting of the study site and methodology of 

this study will be introduced. In Chapter 4, spatial variability and temporal trends of beach 

surface moisture are evaluated based on high-resolution measurements obtained in the field. In 

Chapter 5, selected evaporation models are tested against field data to identify the most precise 

model for evaporation prediction at high temporal resolution. In Chapter 6, tide-induced beach 

groundwater table fluctuations are modeled numerically and analytically, and tested against field 

measured data. In Chapter 7, measured temporal and spatial variations of surface moisture 

content are simulated by combining the findings of the previous chapters, and the results are 

assessed. Chapter 8 provides a summary of and major conclusions for the whole project. 
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CHAPTER 2    REVIEW OF LITERATURE 

This chapter reviews recent literature on the key topics associated with beach hydrology. 

Some general information and major research advances are included to provide a comprehensive 

understanding of the behaviors, controlling factors, and practical implications of relevant 

hydrological processes. Additional detail on specific topics is also incorporated in subsequent 

chapters as appropriate. 

2.1   Introduction 

As the interface of atmosphere and pedosphere, the soil surface has a unique role in 

conditioning hydrological and biological processes. Motions and disturbances in the atmospheric 

fluid at a variety of temporal and spatial scales are principally forced by the differential heating, 

and by friction at the surface (Entekhabi et al., 1996). Further, soil surface acting as the upper 

boundary of vadose zone indirectly limits unsaturated water flow within soil body. Surface 

moisture is widely believed to be a crucial parameter in partitioning energy and affecting 

ecosystem structure and function (Wythers et al., 1999). Thus, it is important to enhance the 

currently weak knowledge of surface moisture dynamics. 

For a relatively simple beach system, surface moisture dynamics influences the presence of 

vegetation, the occurrence of aeolian sediment transport, and eventually the stability and 

evolution of beach dune topography. Beach surface moisture distribution usually exhibits an 

extremely high variability in both of time and space (Yang and Davidson-Arnott, 2005), which 

necessitates intensive and accurate measurements to make this complex phenomena fully 

understood. Until recently a method that is capable of making high-frequency or continuous 

measurements over time at the same spot has not been available (Atherton et al., 2001). The 
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method to measure moisture content directly using newly-developed moisture sensor potentially 

allows the enhancement of beach surface moisture study.  

In traditional groundwater and unsaturated water flow models that are based on the 

combination of Richard’s equation and Darcy’s law, evaporation (the major component of upper 

boundary conditions) is usually set to a constant value, or totally neglected. As a result, predicted 

water content at the soil surface could not sufficiently represent the cyclic variations induced by 

diurnal changes of evaporation (Maxwell and Miller, 2005). Conversely, most conventional 

“land surface” models to date use a parmeterization of the bottom layer either specified as a 

constant moisture content or a uniform potential gradient, ignoring the fluctuations of 

groundwater table (Chen and Hu, 2004). Thus, a satisfactory scheme to estimate surface moisture 

variations under conditions of high evaporative potential and a fluctuating water table is 

potentially of great utility.  

2.2   Surface Moisture Content and Aeolian Sediment Transport 

Investigations of the effects of soil moisture on aeolian sediment transport dates back to the 

early 1930s (e.g., Akiba, 1933). A number of subsequent field observation and wind tunnel 

studies thereafter have shown that surface moisture can exert very important impacts on both 

entrainment and transport of sediment by wind (Chepil, 1956; Belly, 1964; Azizov, 1977; Logie, 

1982; Cornelis and Gabriels, 2003; Wiggs et al., 2004; McKenna Neuman and Langston, 2006). 

Comprehensive and critical reviews of this topic have been made by Horikawa et al. (1982), 

Hotta et al. (1984), Namikas and Sherman (1995), and Cornelis and Gabriels (2003). Most 

laboratory wind tunnel studies (e.g. Sue, 1963; Horikawa et al., 1982; Nickling and McKenna 

Neuman, 1997; McKenna Neuman and Maljaas, 1997) are based on simulating the entrainment 

process at a variety of wind speeds and moisture contents for a particular sediment. However, the 
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results seldom can be extrapolated directly and adequately in terms of the texture of used 

materials and the high variability of some factors such as wind velocity and soil moisture content 

in natural systems. Field studies (e.g., Chepil, 1956; Belly, 1964; Cornelis and Gabriels, 2003; 

Sarre, 1988; Wiggs et al., 2004) have suffered from the capability of instruments and 

technological limitation to obtain high resolution data over space and continuous measurements 

at the same spot, due to the utilization of traditional sampling approach. Few studies have 

addressed the time-dependent or space-dependent behavior of surface moisture, in terms of 

influences on aeolian sediment transport in either laboratory or field.  

Relationships between moisture content and critical threshold velocity have received 

substantial attention from many researchers (e.g., Sarre et al., 1989; Sherman et al., 1998; Bauer 

and Davidson-Arnott, 2002; Wiggs et al., 2004), although the exact nature of this phenomena is 

still not full understood or specified for natural systems (Namikas and Sherman, 1995). It is 

accepted that the existence of soil moisture increases the threshold velocity of wind required to 

initialize sediment motion because the capillary force induced by soil moisture increases the 

bonding force between soil particles and the resistance of soil grains against motion forced by 

wind (Nickling and McKenna Neuman, 1997). The findings of wind-tunnel (e.g., Chepil, 1956; 

McKenna Neuman and Nickling, 1989) and field (e.g., Jackson and Nordstrom, 1997) studies 

confirmed the general conceptual idea that threshold velocity increase with soil moisture content. 

Some studies also indicated that given a certain type of soil or sand and a certain velocity of 

wind, the aeolian sediment process would stop completely when the moisture content of that soil 

reached a critical value (Chepil, 1956; Sarre, 1988; Nickling, 1989). However, the “critical” 

moisture content has varied from 5% in the wind tunnel study of Belly (1964) to 14% in the field 

study of Sarre (1988). More surprisingly, the critical moisture content even assumed as a low 
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value of 1% (gravimetric) in the wind tunnel study of Chepil (1956), although this finding was 

never confirmed by other studies. Apparently, although moisture content has been cited as a 

particularly regulator of aeolian sediment transport, contradictory outcomes have also often been 

uncovered due to the differences in experimental approach adopted and material used, and more 

importantly, the high variability in surface moisture content in natural system. 

Along with relating threshold velocity empirically to surface moisture content through field 

observation or laboratory work, some researchers also made efforts to establish models that 

simulate the relationship between aeolian transport rates and surface moisture content, 

empirically or theoretically (see reviews by Namikas and Sherman, 1995; Cornelis and Gabriels, 

2003). Although almost all models are based on the idea that the presence of surface moisture 

increases the threshold velocity and decreases excess shear velocity for sediment transport, the 

predicted results of these models can differ from each other by orders of magnitude (Namikas 

and Sherman, 1995). These disparities can be attributed to differences in experimental 

procedures and equipment (e.g. measurement of sediment moisture content), the representation 

of the characteristics of the sediment, and the methodology used to determine the transport rate 

(Cornelis and Gabriels, 2003). Namikas and Sherman (1995) and Wiggs et al. (2004) also 

emphasized that measured soil moisture content employed in previous studies are static rather 

than dynamic representations of the moisture field. With evaporation and condensation, the 

surface moisture content may vary radically in space and through time and subsequently 

contribute dramatically to variability in sediment transport processes. This problem cannot be 

resolved until the spatial and temporal variability of surface moisture content can be both 

documented and modeled.  
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2.3   Budget of Beach Surface Moisture 

Moisture storage in a natural soil body is due to molecular attraction, surface tension, 

and/or capillary force. Beach sediment is composed of granular particles of varying shape and 

size, although beach sediment is often well sorted. Between these particles are interconnected 

pore spaces that vary considerably in size and shape. Theoretically all of the pore spaces are 

filled with air in a completely dry soil and with water in a saturated one, but in most field 

situations the material is in an intermediate state, with some pore spaces filled with water and 

rest with air (Hanks, 1987). Water can be stored in soil owing to capillary force. Capillarity 

results from an attraction between water molecules (surface tension of water) and a larger 

attraction between water molecule and solid (sand or soil particles here) molecule to which water 

molecule is attached (Namikas and Sherman, 1995; Horn, 2005). The attraction between water 

molecules, as surface tension, keeps water molecules packed close to each other to maintain the 

water surface area as small as possible, while attraction between water molecule and solid 

molecule tries to hold as much water on solid surface as possible. Therefore, soil moisture 

content refers to the amount of water held by soil pore spaces when the adhesive forces and the 

cohesive forces are in an equilibrium state with gravity force (Namikas and Sherman, 1995). At 

low moisture content, small amount of water form bridges at the contact points of solid particles 

where the attraction from solid particles is strongest (Kim and Sture, 2004). Because of the 

presence of water bridges between the particles, surface tension force (which acts along the 

water-particle contact line) combined with the force due to pressure difference in outside and 

inside the bridge (which acts on the cross-sectional area) act as a bonding force (Kim and Sture, 

2004). The bonding forces, thickness and curvatures of water bridges between solid (soil or sand) 
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particles change with moisture content, and the capacity of moisture content of a certain type of 

soil or sand depends on properties of the material (grain-size, porosity and packing rate). 

Beach surface moisture dynamics actually is an essential part of beach hydrologic cycle. 

Like all the hydrologic cycles, beach surface moisture dynamics can be theoretically illustrated 

using a simple budget equation, ∆Storage=Input-Output, where ∆Storage is the net change of 

water content of the soil matrix, Input includes infiltration and percolation from precipitation, 

condensation and capillary uplift from groundwater etc., and Output may include evaporation, 

transpiration, runoff, drainage, etc.  

For a simple system like a beach, the content of surface moisture can increase through a 

number of input processes, including capillary rise from the subsurface, conditional 

condensation, and infiltration through occasional precipitation. Capillary water flow occurs when 

the hydraulic pressure between surface and subsurface changes, and maintains the status of 

surface moisture content that is determined by hydraulic pressure (negative to water table depth) 

within the sand column (Child, 1969). Condensation is a phase change of water molecules from 

vapor to liquid, and it occurs only when the air inside or outside of the soil surface is 

oversaturated, which is usually due to decreases of air temperature. Condensation is believed to 

be an important process influencing the diurnal variations in beach surface moisture content and 

hence the cease of aeolian sediment transports (Sherman, 1998), but the importance has not been 

quantified by any previous studies. Precipitation adds water directly to soil surface but the rate of 

subsequent infiltration and the increasing extent of moisture content is also affected by the 

original moisture content and surface properties. For a beach environment with shallow water 

table, the contribution of capillary rise from groundwater or subsurface layers to surface moisture 

variability seems to be underestimated in most previous work (e.g., Deardorff, 1977, 1978).  
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For a beach system with no vegetation, evaporation is the only output process for surface 

moisture (if the subsequent percolation after occasional precipitation events is not considered). 

Water molecules within the soil surface are not free but the capillary and absorption forces that 

bind the water molecules over the surface of soil grains can be overcome when certain conditions 

are reached (Hanks, 1987). As a result, water vapor can be released into the atmosphere. The 

process is commonly further divided into two stages, Stage One or the constant rate stage, and 

Stage Two, know as the falling rate stage. The evaporation rate is theoretically determined by the 

atmospheric conditions and the rate of soil-water transport. In Stage One, the evaporation rate is 

controlled by atmospheric factors such as relative humidity, air temperature and wind speed 

because the soil is moist enough. In Stage Two, the soil is too dry to maintain the 

atmospherically-determined potential evaporation rate, and hence the rate of soil-water transport 

rate becomes the predominant control on evaporation rates (Stewart and Broadbrige, 1999). 

Philip (1957) suggested a sharp transition of surface moisture content between these two stages 

of an evaporation cycle, while Wiegand and Taylor (1961) demonstrated a smooth change. 

Previous authors have related the rate of evaporation to the absolute humidity, or more 

commonly relative humidity in the context of vapor flux driven by vapor gradients. No doubt 

that evaporation constantly decreases the content of surface moisture, but the rate of evaporation 

depends on surface moisture content itself and the atmospheric conditions.  

Clearly, variations in beach surface moisture are determined by the balance between water 

inputs and outputs. However, the inputs and outputs themselves are further affected by a variety 

of environmental factors. 
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2.4   Factors Controlling Soil Moisture Variability 

Famileitti et al. (1998) summarized a number of factors that influence soil moisture 

variability, including topography, soil properties (i.e., grain size, porosity, and content of organic 

matter), vegetation type and density, mean moisture content of soil column, water table depth, 

rainfall, solar radiation and other meteorological parameters. Although this summarization was 

primarily based on field studies of near-surface moisture variability in soil at small spatial scales, 

it is still helpful in understanding moisture variability in beach system where specific 

observations are not available.  

Topographical features including slope, aspect and relative elevation all have substantial 

impacts on the distribution of soil moisture within the surface layer. Topographical features not 

only influence moisture inputs through infiltration, drainage and runoff, they also modify near-

bed airflow patterns and finally influence the rates of evaporation and transpiration. It is worth 

noting that some investigations showed contradictory results for the same topographic features in 

different environments. For example, Moore et al. (1988) found a significant correlation between 

topographical profile curvature and moisture content, while Niemann and Edgell (1993) found 

no relationship between curvature and surface moisture content. It is also worth noting that 

almost all relationships found between topographical features and surface moisture content are 

very weak although they may be statistically significant. Soil heterogeneity affects the 

distribution of soil moisture through variations in texture, packing rate, organic matter content, 

structure and the presence of macroporosity, all of which affect hydraulic conductivity and 

retention properties of soil column. Natural soils or sand often exhibit a spatial heterogeneity that 

is highly irregular, which prohibit the use of effective or average parameters for representing 

hydraulic processes (Russo et al., 2001). Vegetation, on the one hand, has positive effects on 
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surface moisture content by decreasing evaporation through solar radiation absorption and 

reflection, but on the other hand has negative effects by increasing evapotranspiration through 

root uptake from subsurface layer and affecting hydraulic conductivity of soil by the presence of 

root system. In most cases, multiple environmental factors may combine with each other in 

affecting surface moisture content. Essentially, roughly flat, bare, and relatively well-sorted 

beaches provide ideal systems to study temporal and spatial variability in soil moisture content 

because influence of some factors (i.e., topography, vegetation and surface heterogeneity) is 

negligible. 

Theoretically, the spatial distribution and temporal variations of surface moisture content 

on beaches are relatively easy to understand because of the simple environment: first, native sand 

on coastal beaches is often well-sorted, which means spatially homogeneous texture, porosity 

and then hydraulic conductivity (relative to the complex textures of natural soils); second, 

beaches usually have little vegetation due to high salinity,; and finally, the beach surface is 

commonly relative flat with low gradients. However, previous field investigation (Yang and 

Davidson-Arnott, 2005) and our preliminary studies (Namikas et al., 2007) also indicated that 

the moisture content of beach surface can vary over a wide range (<1% to 30%, gravimetric) 

even over a very small distance (0.25 meter to meters). Their results indicated that even for 

simple systems like beaches, surface moisture content usually exhibits high variability and 

apparently need to be further investigated to understand and model its dynamics. 

2.5   Beach Groundwater System 

The configuration of beach water table has a pronounced effect on the direction and rate of 

groundwater flow (Gillham, 1984). Further, beach groundwater flow significantly affects swash 

sediment transport and hence beach stability (e.g., Grant, 1948; Emory and Foster, 1948; Turner 
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and Nielson, 1997; Li et al., 1997). Erosion tends to occur with exfiltration due to higher beach 

water table relative to sea level, while accretion often takes place during infiltration because of 

low water table conditions (Chappell et al., 1979; Weisman et al., 1995; Li et al., 1996a). Beach 

groundwater through capillary rise can contribute the major input to the beach surface moisture 

budget. Beach groundwater system is usually highly dynamic and affected by many factors 

including tides, waves and swash, and to a lesser extent by atmospheric exchanges (evaporation 

and rainfall) and exchanges with deeper aquifers (Horn, 2005). In a common sense, tidal 

oscillations are the major cause of beach groundwater fluctuations. 

Like all groundwater systems, the beach can be divided into three zones: the vadose zone 

(also referred to as zone of aeration), the phreatic zone, and the capillary fringe (also referred to 

as the tension-saturated zone). The vadose zone is an unsaturated zone above the capillary fringe 

(Horn, 2002). The capillary fringe is a thin, saturated layer above the water table. The phreatic 

zone is a saturated zone located below the water table. The beach water table is defined as a 

dynamic surface where pore-water pressure equal to atmospheric pressure (Horn, 2002), 

therefore hydraulic pressure is positive in phreatic zone but negative in capillary fringe although 

they are both saturated. By definition, the height of capillary fringe above water table should be 

equal to that of the water surface in the largest pore of the beach sediment matrix (Gillham, 1984; 

Silliman et al., 2002). In the studies of Nielson and Perrochet (2000) and Nachabe et al. (2002), 

however, the capillary fringe is defined as the layer where water in soil is held by capillary forces 

and whose soil moisture content is between the residual moisture content (also refers to the field 

capacity) and saturated moisture content. The height of capillary fringe by this definition, 

therefore, is much greater than that by Horn’s definition, which may considerably affect the 

performance of groundwater models when capillary effect is considered. In this study, we will 
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follow Horn’s definition because Horn’s definition is more physically specified and can be 

calculated from grain-size composition of the material, while the definition in the studies of 

Nielson and Perrochet (2000) and Nachabe et al. (2002) involves the concept of field capacity, 

which is controversial and has low repeatability in field measurements.  

A number of studies deal with the role of the capillary fringes as an interface between the 

vadose zone and the saturated zone below water table (e.g., Gillham, 1984; Li et al., 1997). The 

results of laboratory experiments in the study of Silliman et al. (2002) show that fluid flow 

occurs regularly in the capillary fringe, both vertically and horizontally, and that active exchange 

of water exists between capillary fringe and water body below water table. Their results suggest 

that the capillary fringe may play a more significant role than usually assumed on fluid flow in 

the transition region from saturated to unsaturated zone. 

Field evidences indicate that the elevation of the beach groundwater table is always 

somewhat higher than mean sea level, which is often refereed to as overheight, superelevation or 

outcrop. Horn (2005) attributes this phenomenon to the lag in the response of the beach ground 

water table to the higher falling rate of seawater surface. However, in some field observations, 

even when the still water level reached its highest position (e.g., high tide), the beach 

groundwater level is still higher. Therefore, sea water level oscillations may not be the only 

reason for the supperelevation. Gourlay (1992) and Turner et al. (1997) suggested that the 

combined effects of prevailing hydrodynamic conditions such as tidal elevation, wave run-up 

and rainfall, and characteristics of beach sediment, such as sediment porosity, size, shape and 

sorting, control the superelevation of beach groundwater table. Thus, all factors must be 

considered in the investigation of beach groundwater table fluctuations. 
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Field observations have also showed that the beach ground water table is not flat and acts as 

a damped free wave landward. Emery and Gale (1952) characterized the beach as a filter that 

allows larger or longer waves to pass. Both the magnitude and frequency of water table 

oscillations decrease as the waves propagate landward from the shoreline (Raubenheimer et al., 

1999). The landward distance to which the effects of sea water level fluctuations are discernible 

depends on its frequency (Braid et al., 1998). The elevation of groundwater table in the beach is 

usually asymmetric and skewed in time (Raubenheimer et al., 1999).When the tide level either in 

rising or falling is lower than the beach groundwater table, a slope of beach water table occurs in 

the zone near the shoreline, and potentially some amount of water will drain out from the beach 

water body though the part of beach face under the exit point (Horn, 2005). The gradient of this 

slope varies with the state of tidal fluctuation. Water table oscillations also have been shown to 

lag behind tidal oscillations by various time periods. The length of time lag is mainly controlled 

by, and increases with the hydraulic conductivity of beach sediments, which is controlled by the 

characteristics of sediment (Nielson, 1990; Jackson et al., 1999). The asymmetry and time lag of 

beach groundwater table during the landward propagation of waves are the major challenges in 

modeling and need to be further investigated. 

Beach water table fluctuations forced by tides or waves in beach systems have been studied 

extensively (e.g., Nielson, 1990; Turner, 1993; Li et al., 1997), and have been comprehensively 

and critically reviewed by Nielsen et al. (1988), Gourlay (1992), Baird and Horn (1996), Turner 

et al. (1997) and Horn (2002 & 2005). A number of studies have been done involving simulation 

and prediction of the tide-induced fluctuations of the beach water table (e.g., Teo et al., 2003; 

Jeng et al., 2005 ab). The basic relationship in most of beach groundwater models is the 
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Boussinesq equation (Dominick, 1970 & 1971; Dominick et al., 1973; Turner et al., 1997; Horn, 

2002 & 2005), which is originally derived from the Darcy’s Law:  
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and the continuity equation:  
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where K is the hydraulic conductivity and Sx is specific yield, vx is Darcy velocity and h the 

elevation of the free water surface (water table) above some lower-bounding aquitard, 

Substituting Equation (2.1) into Equation (2.2), it becomes the Boussinesq equation (Liu and 

Wen, 1997): 
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which is defined to describe transient horizontal flow. Under the assumption of prevailing 

hydrostatic conditions, this one-dimensional equation is sufficient to describe shore-normal 

groundwater flow (Nielsen, 1990). When the magnitude of water fluctuations is small compared 

with the depth h0 of the aquifer, Equation (2.3) may be linearized to give 
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The assumptions of the Boussinesq equation includes: 1) horizontal flow dominates in the 

beach groundwater oscillation and vertical flow can be neglected, 2) density gradients are 

negligible, and 3) sand drains instantaneously (Raubenheimer et al., 1999), 4) the ground water 

flow in a shallow aquifer can be described using the Dupuit-Forchheimer approximation (Braid 

et al., 1998). The assumptions (1) and (2) supported by field studies from Baird et al. (1998) and 

Baubenheimer et al. (1999) respectively. However, the results of Robinson et al. (2005, cited in 
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Horn, 2005) indicated the magnitude of vertical groundwater flows might have be at same order 

as horizontal flows in the intertidal zone.  

Almost all of studies of the Dominick et al. (1971), Nielson (1990), Hanslow and Nielson 

(1993), Turner (1993, 1995, 1997), Li et al. (1996, 2000, 2002), Baird et al. (1998), Cartwright 

and Nielson (2001) have shown that only with a small range of errors, the predicted results 

match reasonably well with observed beach water table oscillations forced by tide fluctuations, 

on any frequencies of semi-diurnal, diurnal or spring-neap tidal cycles. It is worth noting that 

predicted results are not applicable so far for fluctuation of higher frequency than semi-diurnal 

tidal cycle (e.g. wave run-up and swash). Although the effect of capillary fringe on water table 

fluctuation is often arbitrarily neglected in the studies directly using the Boussinesq equation 

(e.g., Turner, 1993; Li et al., 1996 & 2000), evidences from field investigations testified the 

capillary force might impose a significant effect on the nonlinearity of water table fluctuations 

(Li et al., 1997; Nielson and Perrochet, 2000). In cases the detailed dynamics of the capillary 

fringe itself are not of primary interest, the approach is to incorporate a simplified description of 

the capillary fringe in the water table equations. For example, Parlange and Brusaert (1987) 

combined the Green-Ampt model into the Boussinesq equation to describe the water table 

fluctuations in a shallow unconfined aquifer under the influence of capillarity. Nielson and 

Perrochet (2000), in another way, modified the Boussinesq equation using a complex term, 

dynamic porosity, to put the effect of capillarity into consideration. 

2.6   Soil Moisture Profile with a Moving Water Table 

As the beach groundwater table is always fluctuating, the soil moisture profile above may 

also change with it. In theory, the shape of the moisture profile above a moving water table is 

influenced by both the rate of infiltration at the soil surface and the rate of rise or fall of water 
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table (Childs and Poulovassilis, 1962). Assuming the soil matrix is uniform and isotropic, it must 

have a constant soil moisture characteristic curve under hydrostatic conditions. The curve, as 

shown in Figure 2.1, will shift up or down in response to the water table shifting. Thus, if the 

shape of the curve is known, the change in soil moisture in a profile can be easily calculated with 

knowledge of a single variable, the rate of rise or fall of the water table. In results, however, the 

shape of the moisture profile with a moving water table below is not necessarily the same as the 

static moisture profile. Rather, it tends to stretch out above a falling water table and be 

compressed above a rising one (Childs and Poulovassilis, 1962). The extension or compression 

depends on both the velocity of the water table shifting and the shape of the curve itself. Childs 

and Poulovassilis (1962) presented probably the first report that theoretically studied the relation 

between the moisture profile and moving water table. However, their study does not give a 

complete physical basis for this complex process since they assumed a constant difference of 

water head dh between the two moisture profiles (Figure 2.1). Based on that assumption, the 

moisture profile remains the same shape during the water table change. Their results therefore do 

not provide useful information about the extension or compression of the moisture profiles 

during water table falling or rising. In this study, moisture contents within the profile will be 

measured constantly along with groundwater table fluctuation, which may provide detail 

information to study the possible extension or compression of the moisture profile. 

Soil moisture profile in a hydrostatic state is usually termed as soil water retention curve or 

soil moisture characteristic curve, describing the relation between matric potential and 

volumetric water content in a soil. The shape of the soil moisture characteristic curve is primarily 

controlled by the pore size distribution among soil, which is determined by grain size 

composition of soil. The relation between the soil moisture characteristic curve and phase  
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Figure 2.1 Two stages of a hypothetical moisture profile of constant shape over water table 
change (z is the position of the surface, dh is the height of water table (W) change between 
time t1 and t2, θr and θs are the residual and saturated moisture content respectively, θz is 

the moisture content at the position z, following Child and Poulovassilis, 1962) 
 
configuration of soil water is illustrated in Figure 2.2. Air entry suction ha is defined as the 

minimum value of suction that allows free air to enter soil pores during the drying process. When 

suction is less than ha, the gas phase can exist only as entrapped air. When suction is greater than 

ha, the occupation of the soil pores by free air gradually increases with the suction. When the 

volume of entrapped air is negligibly small, the soil in which the suction is less than ha is 

considered saturated. Similarly, water entry suction hw is defined as the maximum value of 

suction that allows water to enter soil pores when no free air remains in the soil pores during the 

wetting process. Air entry suction is close to but normally higher than water entry suction. The 

height of capillary fringe hc in definition is equal to ha (Miyazaki, 1993). If the soil water is in 

hydrostatic equilibrium, one probably can estimate moisture content from the depth above water 

table based on the characteristic of soil water profile, i.e., the soil retention curve (Child, 1969). 

Thus, the curve provides the basis to model the change of moisture profile as well as surface 

moisture content.  
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Various equations have been proposed for describing the characteristic curve (e.g., Brooks 

and Corey, 1964; van Genuchten, 1980; Miyazaki, 1993; Olyphant, 2003). Among these 

equations, the van Genuchten function, which is more widely accepted (e.g. Vogel et al., 2001), 

is given by: 
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Figure 2.2 Soil moisture characteristic curve and sketch of soil water phase (see text for 

explanation, after Miyazaki, 1993) 
 
in which α , m, and n are estimated parameter values, h is the suction, and Θ is the dimensionless 

water, transformed from the volumetric water content θ  as: 
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where θ  is water content at the position h, rθ  and sθ  are the residual and saturated water content 

respectively. The equation (2.5) may be rewritten in terms local volumetric water content θ  as: 

Θr ΘΘ  (z) s
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The model presented by Brooks and Corey (1964) is another widely used model in power 

function (see Nachabe, 2002; Nachabe et al., 2004), given by: 
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where λ  is the pore-size distribution index, which can be easily estimated from soil texture data 

(Rawls et al., 1993). The van Genuchten model will be employed in this study because it has a 

better representation of the field obtained moisture profile, particularly the part close to 

saturation. 

The parameters required for these relationships are usually estimated by measuring the 

saturated hydraulic conductivity and assuming that coefficients and exponents of moisture 

retention and hydraulic conductivity are equal. Associated parameters traditionally are 

determined on laboratory measurements using permeameters, moisture extractors and pressure 

plate or membrane. Although laboratory techniques have been sophistically improved in recent 

years and more accurate results may be obtained, any laboratory-based analysis still has a major 

disadvantage:  laboratory-determined hydraulic properties are often non-representative of field 

conditions since the samples are usually small and the collection of samples invariably 

introduces some disturbance of the in situ soil matrix (Child, 1969; Kool et al., 1987; Olyphant, 

2003).  In recent years, several authors (e.g., Abbspour et al., 2000; Jhorar et al., 2002) have 

attempted to determine parameters of the characteristic curves by combining field measurements 

of system variables such as moisture content, pressure head, and water flux with an inverse 

method that couples a numerical flow model with a parameter optimization algorithm. Chen et al. 
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(1999) and Hwang and Powers (2003) validated the power of the approach of parameter 

optimization using inverse modeling and extended the inverse parameter estimation method to 

the modified multi-step outflow method for two-fluid (i.e., air-water, air-oil and oil-water) flow 

systems. In this study, the inverse method will be employed to determine the soil water retention 

curve of local sediment because it is more reliable to represent natural conditions. 

The only previous study that attempted to associate moisture dynamics of the beach surface 

with water table fluctuations was provided by Atherton et al. (2001). That field investigation was 

restricted to the inter-tidal zone of a fine sand beach, and only considered relative short periods 

(8 hrs). It was found that surface moisture content decreased much more slowly than previously 

thought during falling tide, and it was suggested that capillary water may exist even in upper 6 

cm of the beach sediment, implying that the capillary fringe might be underestimated in previous 

studies. This is clearly a need for additional research on this topic. 

2.7   Water Flow in a Soil Column 

Soil water retention curve describes the relationship between hydraulic pressure and 

moisture content of a given sand column under a hydrostatic state. It is water flow caused by 

pressure difference that leads to variations in moisture content. The rate of water flow in soil is 

determined by two factors: the force acting on each element of soil water volume and the 

resistance to flow offered by the soil pore space. As the configuration of pore space in a porous 

material, such as soil, is far too complex and unspecifiable in quantitative terms to permit the rate 

of fluid flow to be calculated by the Navier-Stokes equations (Child, 1969). The Darcy equation, 

which integrates individual water flow in each pore of various size and shape, is more explicitly 

developed and easier to use for both saturated and unsaturated flow (Miyazaki, 1993). It can be 

written as: 
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where q, Q t  is the flux of water, and K is hydraulic conductivity of a porous medium, such as 

soil, and dH dz  is the gradient of hydraulic head in z direction.  

Given any small parcel of soil, the continuity equation of water for three dimensions is 

given by: 

( )yx z
qq qd dxdydz dxdydzdt

x y z
θ

∂∂ ∂
= − + +

∂ ∂ ∂
                                                                   (2.10) 

which can be rewritten as: 

( yx z
qq q

t x y
θ ∂∂ ∂∂
= − + +

∂ ∂ ∂ ∂
)

z
                                                                                                  (2.11) 

Applying with Darcy law, (2.11) results in (Iwata et al., 1988): 

( ) ( ) (x y
H HK K K

t x x y y z z
)z

Hθ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
                                                          (2.12) 

In saturated soils, assuming hydraulic conductivity is constant and isotropic, and the soil 

matrix is incompressible, then x y zK K K K= = = s (the saturated hydraulic conductivity), and the 

equation (2.15) can be transformed into the Laplace equation: 

2 2 2

2 2 2 0H H H
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
                                                                                                      (2.13) 

Theoretically, the channels for water moving in an unsaturated material are those pores 

which are filled by water at the particular suction. The air-filled pores are ineffective since water 

can not pass through a pore without occupying it. The unsaturated material, therefore, can be 

treated as a new saturated material considering those air-filled pores as solid (Child, 1969). This 

is the basic assumption under which the Darcy law could be applied to unsaturated water flow. In 
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unsaturated soils, replacing hydraulic pressure H by matric head mΨ , the equation (2.12) 

becomes: 

( ) ( ) (m m
x y zK K K

t x x y y z z
)mθ ∂Ψ ∂Ψ ∂Ψ∂ ∂ ∂ ∂

= + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

                                                  (2.14) 

which is Richard’s equation. Introducing a term specific water capacity C, defined by:  

m

dC
d
θ

=
Ψ

                                                                                                                             (2.15) 

the substitution of C into the equation of (2.14) gives the equation of flow with respect to θ  as 

( ) ( ) (yx z
KK K

t x C x y C y z C z
)θ θ θ∂ ∂ ∂ ∂ ∂ ∂ ∂

= + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

θ
                                                          (2.16) 

Klute and Philip (see Iwata et al., 1988) transformed the equation (2.16) of one dimension 

into an equation of the diffusion type which permitted a numerical solution, 

(D
t x x

)θ θ∂ ∂ ∂
=

∂ ∂ ∂
                                                                                                                  (2.17) 

where D is the liquid diffusivity defined by K θ∂Ψ ∂  and θ∂Ψ ∂  is called the differential water 

capacity, equal to the inverse of specific water capacity C (Miyazaki, 1993).  

Given 
1
2xtζ = , equation (2.17) can be rewritten as  

(
2

d d dD
d d d

)ζ θ θ
ζ ζ ζ

− =                                                                                                          (2.18) 

Therefore, the partial differential equation (2.17) becomes the ordinary differential equation 

(2.21), which can be solved numerically, subject to given boundary and initial conditions (Iwata 

et al., 1988).  

For the case of isotropic, one-dimensional transient vertical flow, however, a gravitational 

term which involves Kz should be included one-dimensional form of equation 2.14 (Hanks and 

Ashcroft, 1980):  
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( )( m z
zK

t z z
)θ ∂ Ψ +Ψ∂ ∂

=
∂ ∂ ∂

                                                                                               (2.19) 

which can be written as a diffusion type equation (Iwata et al., 1988):  

( ) KD
t z z z
θ θ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂
                                                                                                        (2.20) 

The hydraulic conductivity of soil, K, decreases rapidly as the water contentθ  decreases 

from saturation. The unsaturated hydraulic conductivity is usually a highly nonlinear function of 

the dimensionless water content , given as Θ

, ,
n

x y z sK K= Θ                                                                                                                         (2.21) 

where Θ  is defined by the equation (2.6), and the estimated parameter n can be set equal to 

(2 3 )λ λ+  if the Burdine model is adopted (Brooks and Corey, 1964; Nachabe, 2002). 

Fluid flow in variably saturated porous media is often modeled using Richard’s equation 

with a set of constitutive relations describing the relation among fluid pressures, saturations, and 

relative permeabilities (Farthing et al., 2003). For a beach environment, one-dimensional, 

diffusion type equation (2.20) derived from Richard’s equation (2.14) can be used to model the 

unsaturated flow in the sand column, because horizontal unsaturated flow can be neglected (no 

surface water flow or surface water head).  

2.8   Summary and Conclusions 

Beach surface moisture usually exhibits a high degree of spatial and temporal variability 

and plays an important role in coastal processes, particularly aeolian sediment transport. This 

variability is not well understood. Nor has it been thoroughly investigated, due to both the 

complexity introduced by the involved processes and limitations of instrumentation and 

approaches used in previous studies. 

 30



The spatial and temporal variability in beach surface moisture are affected to various 

degrees by all components of beach hydrological cycle, including capillary rise from 

groundwater, condensation, evaporation and precipitation, as well as hydraulic properties of 

beach materials. Although some of these associated processes have been quite well documented 

and modeled (at least for other environments), the dynamics of beach surface moisture itself is 

far from fully understood. On the other hand, advances achieved and models proposed by 

previous hydrological studies provide a solid basis from which this study can develop a realistic 

and quantitative approach to represent the variability of surface moisture content in a natural 

beach system. 
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CHAPTER 3    METHODOLOGY AND DATA 
 

A brief introduction to the study area in regard to environmental setting, prevailing climatic 

conditions, and tide and wave conditions is given in this chapter to provide a broader context in 

which the present study is set. This is followed by a detailed description of the approaches, 

instruments, and methods employed in this study to measure and monitor key conditions 

including meteorological parameters, soil moisture content, and tide and groundwater elevations. 

3.1   Description of Study Area 

The study site was located within Padre Island National Seashore, Texas, on the northwest 

shore of the Gulf of Mexico, approximately 27.44oN and 97.29oW (Fig. 3.1). The Padre Island is 

the longest barrier island in the world, with a length of approximately 180 km and a width 

varying between 1 to 4 km. Most of the island is less than 6 m above sea level, although a few 

dunes stand up to 15 m high (Weise and White, 1991). Particularly, the beach at the study site is 

approximately 70 meters wide with almost no vegetation, and backed by a well established 1-2 m 

high foredune (Figure 3.2). Landward of the foredune, a well-vegetated system of hummocky 

dunes grades into a mix of tidal flats and marshes on the lagoon coast of the Laguna Madre (NPS, 

2005). The native sediment is predominately very-well sorted, fine and very-fine quartz, with a 

mean size of approximately 0.14 mm (2.15 phi, Figure 3.3). Size distributions typically exhibit a 

coarse skew, with about 15-25% of samples falling into the very-fine size range, and less than 

1% in the medium range. 

The climate of Padre Island is classified as humid subtropical, but the rainfall averages ~85 

cm a year. Snow and other forms of frozen precipitation are rare, with only trace amounts every 

2 years on average (Bomar, 1983). The mean annual temperature is about 21.5 oC, with a typical  
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Figure 3.1 Map of the study site 

 

 
Figure 3.2 Photo of the studied beach 
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          Figure 3.3 Grain-size parameters of local sediment 

 
summer temperature range of 24-35 oC, and a winter range of 8-20 oC (NOAA, 2005). Prevailing 

winds have an average annual velocity of 5.4 m/s. Frequent and strong southeasterly winds 

usually dominate in spring through mid-summer and north northwesterly winds associated with 

cold front in fall and winter (Corpus Christi website, 2005). For the majority of the study period, 

winds were almost directly onshore from the southeast. 

Incoming waves are generally 1-2 m high offshore and 10-30 cm high at the landward edge 

of the surf zone with period of 5-7 second. This coast experiences a micro tidal range (typically 

0.3-0.8 m), with mixed but predominately diurnal tidal cycles (Weise and White, 1991).  

3.2   Methodology 

To model the spatial and temporal variability in surface moisture content, it is necessary to 

measure all related meteorological and hydrological processes including evaporation, 

condensation, precipitation and groundwater table fluctuations, as well as the hydraulic 

properties of the native sediment. Topographical conditions of the whole beach are also needed 

as reference for the calculation of water table depths.  
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3.2.1 Environmental Parameters  

Wind speed was measured with two RM Young® Model 12102 cup anemometers installed 

at elevations 1 high and 2 m above the beach surface. A Qualimetrics® Model 2020 Micro 

Response Vane at the top of the weather tower (about 3 m) was used to monitor wind direction. 

Air temperature and relative humidity were measured using an Omega® HX303V 

Temperature/Humidity transmitter. A continuously recording rain gage was installed to monitor 

precipitation, however, no rainfall was recorded during the experiment. Topography and 

instrument locations were surveyed using a Sokkia® Set230 R3 total station. Sand samples were 

collected for laboratory analysis at the end of the experiment.  

3.2.2 Tide and Water Table Fluctuations 

The tide elevation was monitored using a KPSI® Series 730 pressure transducer (PT). The 

PT was attached to an iron stake that was inserted deep into sand in the surf zone about 70 

meters seaward of the berm crest. Six-minute averaged tide records were also obtained from a 

Texas Coastal Ocean Observation Network (TCOON) gauge at Bobhall Pier, located 

approximately 1 km north of the study site. 

Eight groundwater wells were installed along a shore-perpendicular transect that are parallel to 

the surface moisture sampling grid and extending from the upper foreshore to the back slope of 

the foredune. The wells were located at distances of 8, 15, 25, 35, 45, 55, 65 and75 meters from 

the time-averaged shoreline position, and designated as W1 to W8. Another three wells were 

deployed in the other side of the moisture grid at the location of 25, 45 and 65 meters, named W9 

to W11 (Figure 3.4 and 3.5). The two cross-shore lines are spaced about 20 meters. The wells 

were constructed from 1.5 meter lengths of 10 cm diameter PVC pipes. The pipes were 

perforated for sake of free water flow and screened with fine nylon mesh to prevent the entrance 
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of sand. A KPSI Series 730 pressure transducer was installed at the bottom of each well to 

monitor water elevation.  
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Figure 3.4 Three-dimensional overview of instrumental deployment 
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Figure 3.5 Plan-view map of instrument deployment 
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3.2.3 Soil Moisture 

To document spatial variability in surface moisture, a grid of measurement stations was 

established on the back beach extending from the dune toe to the upper foreshore (Figure 3.4 and 

3.5). The grid was comprised of 13 alongshore transects, spaced at intervals of 5 m in the cross-

shore direction, extended approximately from the seaward toe of the foredune to the shoreline. 

Each transect included 5 stations spaced at 5 m intervals. The lines are designated as L1 to L13 

(Figure 3.5).  

To map surface moisture contents, moisture levels were measured at each grid station using 

two Delta-T moisture probes spaced 20cm apart on a wooden platform (Figure 3.6). Two probes 

were employed to allow assessment of the measurement repeatability and to help identify 

possible errors of the devices. As recommended by Yang and Davison-Arnott (2005), Styrofoam 

blocks were used to encapsulate the upper 1.4 cm of the probe sensing rods, so that the probes 

only penetrated 1.4 cm into the surface. Surface moisture was mapped seven times per day (3-

hour intervals between 6am and 6pm, and 4-hour interval between 6pm and 10am). At high tide, 

the seaward most two lines of the grid were submersed by swash. It was presumed that the 

sediment was saturated and measurements were not collected.  

To isolate the effect of groundwater on variations in surface moisture water content, five 

sand “cores” of about 6 cm depth by 25 cm diameter were collected adjacent to Wells W2, 3, 4, 

5, and 6. They were transferred to plastic trays of same size, and replaced in the same spot where 

samples were initially collected, and leveled to the adjacent area. These “surface” samples ware 

thus isolated from any groundwater inputs. Moisture readings were collected in the trays and in 

adjacent areas following each grid sampling run. 

To investigate the connection between groundwater fluctuations and surface moisture  
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Figure 3.6 Photo of moisture probes and the wooden platform used to measure surface 

moisture content 
 

content, a vertical profile (VP-A), composed of four Delta-T probes was installed at depths of 3, 

8, 15 and 30 cm below the surface, closely adjacent to the well W3. Another vertical profile (VP-

B), was installed at depths of 3, 5, 10 and 20 cm below surface adjacent to Well 5 (approximate 

20 meters landward from the beach face). The vertical profile A was measured from 7:00pm July 

29th to 1:30pm August 3rd, and the water table at this location fluctuated between 72 and 83 cm 

below surface during the experiment. The vertical profile B was measured from 2:00pm August 

3rd to 10:00am August 6th, and the water table at this location fluctuated between 34 and 64 cm 

below surface. 

3.2.4 Evaporation and Condensation 

Evaporation rate of free water surface was measured using a self-designed instrument, 

which is composed of a plastic pan of diameter of 63.8 cm as the container to hold water for 
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evaporation, and a Mitutoyo® digimatic caliper was water-surface-perpendicular installed to 

measure the elevation of water surface in the pan, with time intervals same as surface moisture 

measurement. 

Naturally dried sand was collected on the surface of dune crest and put into three plastic 

pans (6 cm depth by 25 cm diameter) in 4:00pm August 3rd. The pans were deployed adjacent to 

wells W2, W4 and W6. Moisture readings were taken as same time as other moisture measuring 

runs to estimate the contribution of condensation to the variation of surface moisture content. 

The experiment was conducted during 7:00pm July 29th to 10:00am August 6th, 2005, for 

about eight tidal cycles (approximately 181 hours).  All groundwater wells, subsurface moisture 

probes, and weather instruments were logged with a Campbell® R-23X data logger combined 

with a Campbell® Multiplexer at 0.5 hertz for 60-second blocks, spaced at 6-minute intervals, 

while tidal elevation was measured at 5 hertz for 180 second blocks with 6-minute intervals.  

3.2.5 Moisture Probe Calibration 

The Delta-T probes come with generic calibration functions, but improved accuracy is 

attained with soil-specific calibrations (Dynamax, 2005). The probes used for subsurface 

measurements were not modified, so the manufacturer-recommended procedure was used to 

generate one-point calibrations (Dynamax, 2005). However, the probes used for “surface” 

moisture measurements were modified by partial encapsulation of the sensing rods, so a more 

detailed calibration was deemed appropriate. Locations on the beach with moisture contents 

encompassed the full probe output range (roughly 30mV to 800mV) were identified for each of 

the two probes, and once the voltage output was recorded a shallow coring ring (of identical 

diameter and depth to the probe array) was used to collect the actual sediment that generated the 

reading. These samples were sealed and returned to the laboratory for subsequent drying and 
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determination of the gravimetric moisture content. Calibration of surface moisture probe A was 

plotted in Figure 3.7 as an example. Although the relationship between field readings and 

laboratory-determined gravimetric moisture contents are far from linear, the coefficient of 

determination (R2) was significantly high as 0.973 (n=50) and the standard error is less than 2%, 

implying high reliability and repeatability of the probe. 
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Figure 3.7  Calibration of surface moisture Probe A  

(Fit with six-order polynomial equation, see appendix 3.1 for detail) 
 

3.2.6 Pressure Transducer (PT) Calibration 

Calibration of the PTs was carried out in the field. A capped length of PVC pipe was filled 

with water, stood upright, and leveled. Voltage outputs from each of PT were then recorded at 

depths of 0, 10, 20, 30, 40, 50 and 60 centimeters in both ascending and descending order. A 

linear regression was then fit to each set of measurements. All had R2 values higher than 0.999, 

and the standard error was in all cases smaller than the rated level of error (± 1cm). Calibration 

of the PT install in the well W2 is shown in Figure 3.8 as an example. 
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CHAPTER 4    SPATIAL AND TEMPORAL DISTRIBUTION OF 
BEACH SURFACE MOISTURE  
 

This chapter provides a description of surface moisture dynamics in the beach. Based on 

field measurements, time series and maps of surface moisture content were obtained. Variations 

in surface moisture content were examined and analyzed regarding to the variability exhibited in 

the cross-shore and alongshore directions and over time. Key processes regulating this variability 

were identified, and the relationships among these processes were further clarified. 

4.1   Introduction 

The spatial and temporal patterns of beach surface moisture distribution are controlled by 

factors including topography, precipitation, evaporation, condensation and groundwater table 

depth, sometimes wind speed and direction. Beaches generally slope to varying degrees, hence 

surface elevation and the water table depth increase in the landward direction. The landward 

increasing water table depth is the key factor influencing the spatial distribution of beach surface 

moisture, particularly for well-sorted and non-vegetated beaches. The groundwater table 

fluctuations and the daily evaporation-condensation transition, on the other hand, act as 

regulators affecting the temporal variations in surface moisture content at a certain spot in the 

beach. Since the evaporation-condensation cycle often shifts diurnally with a period different 

than the groundwater table fluctuations, the two processes together may further increase the 

spatially-varying temporal variability in beach surface moisture content. 

The major purposes of this study are 1) to measure, analyze and represent the spatial 

distribution and the temporal patterns of beach surface moisture, 2) to uncover the factors 
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controlling the variability, such as evaporation, condensation, and groundwater input, and 3) to 

determine and differentiate the importance of these factors. 

4.2   Methodology 

During the eight-day study period from July 29th to August 6th, 50 runs in total have been 

conducted to measure surface moisture contents using Delta-T moisture probes. Figure 4.1 shows 

the tidal oscillations during the study period and the time of each moisture runs. The 

measurements from the probes were calibrated using field collected samples. The average of 

calibrated moisture measurements from two probes was used to represent each point of the 

moisture grid. The moisture contents in the grid are mapped using the kriging-gridding method 

in Sufer 8, distributed by the Golden Software Company. The elevations of groundwater table 

were collected from wells with pressure transducers installed, and referred to the average sea 

level of the study period. Evaporation was measured directly using a digital caliper and records 

were transformed into evaporation rates in millimeter per day. Detail of the approaches used and 

the deployment of instruments can be found in section 3.2 of Chapter 3.  

29
-Ju

l

30
-Ju

l

31
-Ju

l

1-A
ug

2-A
ug

3-A
ug

4-A
ug

5-A
ug

6-A
ug

7-A
ug

Date

-60

-40

-20

0

20

40

El
ev

at
io

n 
(c

m
)

2005

  
Figure 4.1 Time of moisture runs and tidal level  

(The line shows sea level, and Symbols indicate the time of each moisture run) 
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4.3   Results and Analysis 

The spatial variability in beach surface moisture content is evaluated by comparing the 

moisture maps and the averages and ranges of the moisture contents of each alongshore line in 

the moisture grid. The temporal variability is assessed using time series of moisture contents of 

each line, along with the fluctuations of evaporation rates and groundwater table. All moisture 

contents mentioned in the following sections are in percentage by volume. 

4.3.1 Moisture Content Variations among Alongshore Lines 

Figure 4.2 plots the minimum, maximum, median, lower quartile, and upper quartile for 

all records of moisture contents in each alongshore line, and each line has 250 records. The 

whiskers bounding each box indicate the extreme records (minimum and maximum), the box is 

defined by the lower and upper quartiles of all records, and the line in the box indicates the 

median of all measurements. Ignoring of extreme values (which represent 1 of 250 

measurements), the lengths of boxes in Figure 4.2 provide a good visual indication of the relative 

variability in moisture content observed at each line. It shows that Lines 1-5 and 10-13 have 

relatively low variability (<6%), while other lines have relatively high variability (8-20%). In 

particular, Lines 7-9 have the highest variability at more than 15%. It also shows that Lines 1-7 

have medians (<10%) substantially smaller than Lines 8-13 (35-45%). This large jump is 

associated with the highest spatial and temporal variability in surface moisture content, which 

occurs around Line 7. 

Based on the variability showed in the lines, the beach can be divided into three parts by 

the distances from the averaged shoreline, the back beach (45-65 m), the middle beach (25-40 m) 

and the fore beach (0-20 m). Moisture contents of the back beach have low averages (>5%) with 

low variability (>3%), the middle beach has intermediate averages (10-30%) but with highest 
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variability (8-20%), while the fore beach has high averages close to saturation with low 

variability (>6%). This division provides a simple basis for us to understand the spatial 

distribution of beach surface moisture and is convenient for further analysis in the following 

sections. 
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Figure 4.2 Box-Whisker plot for averages of each line from all runs 

 

4.3.2 Moisture Content Variations over Space 

Figure 4.3 shows of maps of moisture runs using spatial coordinates of the moisture grid. 

Only records from Day 4 to Day 5 (Aug 1st 6pm to Aug 3rd 6pm, Run22 to Run36) are shown 

here for demonstration. The moisture maps indicate that the moisture contents vary not only in 

the cross-shore direction but also in the along-shore direction (which is implied by curvatures in 

moisture contours), but the alongshore variability (less than 10% in a line) is substantially 

smaller than the cross-shore (~0-45%). Over time, the moisture contours move landward and 

seaward responding to tide rising and falling (which is indicated by the surface areas occupied by  
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Figure 4.3 Moisture maps of the grid from Run22 to Run36 

(Numbers in the maps are moisture content in percentage by volume) 
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water in the maps), since tidal oscillations directly leads to groundwater table fluctuations and 

hydraulic pressure changes of beach water profiles, and hence variations in surface moisture 

content. 

The beach surface here is categorized into three zones based on surface moisture 

contents: dry (<7%), variable (7-35%), and wet (>35%), which are differentiated by the thick 

lines in the maps in Figure 4.3. Seven percent was selected as the boundary between dry and 

variable zones because it is often cited as the “critical” moisture content in aeolian transport 

(e.g., Sherman, 1989). 35 % was selected according to the shape of water retention curve of 

native sediment (Figure 7.1). The maps indicate that the back beach (45-65 m) remained dry 

during the study period, except that the corner at the left-hand side (south) and the seaward edge 

was occasionally occupied by the variable zone when tide was high (Runs 24-28, and Runs 31-

35). The dry zone extended to the middle part of the middle beach (35m in Aug 1st and 2nd and 

30m in Aug 3rd) when tidal level was low. It is interesting that the seaward boundary of the dry 

zone (the 7% contour) changed position and shape in the study period, but it was keeping a 

relatively similar shape during high tide. This stability is likely maintained by beach surface 

topography (see the same shape showed by the topographical contour in Figure 3.6 and 4.10).  

As expected, the middle beach (25-40 m) has variable moisture contents with the widest 

range. The variable area occupies a relative narrow space (less than 10m) when the tide is 

relative high (Runs 24-28, Runs 31-35), while it expands to about 20m wide during low tide 

(Runs 22-23, Runs 29-30, and Run36). The position of the variable area shifts landward or 

seaward as tide rises or falls. Not surprisingly, the wet zone shifts its landward boundary with the 

tide. During low tide, the width of the saturated zone was compressed from about 30m to less 

than 10m, while during high tide it expands once again. This behavior is exactly reverse of the 
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variable zone. The alternation of viable and wet zone (changes of surface moisture content) 

occurred in the area between 15 and 30 m is likely caused by groundwater table fluctuations. 

When the groundwater table falls, the hydraulic pressure decreases, as a result water drainage 

occurs within the sand column as well as beach surface. Conversely, hydraulic pressure and 

subsequently surface moisture content increases by recharge through capillary rise as 

groundwater table elevates. 

There are several points worth noting in regard to the spatial patterns of beach surface 

moisture. First, the boundaries of all three zones shifted landward and seaward in great 

agreement with tidal level fluctuations, although exceptions existed (e.g. Run33 and dry zone of 

Run35). Secondly, the rates of zone boundary movement differed between zones because the 

time lag between tidal level oscillations and surface moisture content response increases with 

distance from shoreline. The wet-variable boundary thus moves more quickly than the variable-

dry zone boundary. Third, large portions of the “dry and wet” zones were spatially stable. The 

back beach almost always occupied by dry zone, while the foreshore and near the berm crest was 

wet during most time period, except during low tide. The landward part of middle beach was 

occupied alternatively by the dry or variable zone while the seaward part was occupied by the 

variable or wet zone. Although only two days of observations are shown here, these basic trends 

characterize the entire data set.  

4.3.3 Temporal Variability in Beach Surface Moisture Content 

Figure 4.4 shows a time series of average moisture contents for the lines adjacent to each 

well, along with observed evaporation and groundwater table elevations. Moisture contents of all 

lines demonstrated clearly cyclic changes through the study period. The amplitudes of the 

moisture fluctuations varied slightly but the averages seemed fairly stable in each cycle. In the  
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Figure 4.4 Comparisons of measured moisture content, groundwater level and potential 
evaporation rate over the study period (Dashed line with diamond is evaporation rate 

(mm/d), dashed lines with crosses are measured volumetric surface moisture content (%), 
and solid lines are ground water table elevations (cm); each cross symbol represents the 

averaged value of records from five stations in that line) 

 49



back beach from Line1 to Line5, the daily peak values of surface moisture content were usually 

recorded at 9:00am each day, and the lowest records were usually obtained at 6:00pm except for 

a few at 3:00pm. In the middle beach, the timing is somewhat more variable. Taking Line7 as 

example, highest moisture content recorded varied between 6:00am and 9:00am, and the lowest 

records varied between 6:00pm and 10:00pm. On the fore beach from Line10 to Line12, surface 

moisture content usually remained saturated or close to saturation but the lowest records were 

obtained in 3:00pm (Jul 30th), 6:00pm (Jul 31st), and 10:00pm (all other), which correspond to 

low tides. Although beach surface moisture demonstrated cyclic changes over time in all lines, 

the variations in the times of the daily peaks and lows may imply different processes involved 

like cyclic changes of groundwater table, condensation and evaporation. The underlying reasons 

for these variations will be further analyzed in the following section. 

Beach surface moisture content experienced cyclic changes but the shapes of the cycles 

differed between lines. In the back beach from Line1 to Line5, the fluctuation curves of surface 

moisture content are skewed forward considerably, spending more time in climbing from daily 

lows (in the late afternoon at 3pm) to peaks (the morning of next day at about 9am). The 

skewness indicates a lower rate of moisture recharging than the rate of depletion. The moisture 

losses in these lines were apparently caused by evaporation because the highest moisture content 

was less than 10%, implying no direct drainage could occur. The sources of moisture recharging 

can be both capillary rise and condensation. However, the capillary rise is very likely to play a 

much more important role in replenishing moisture loss than the condensation, as the moisture 

contents remained almost same increasing rates after 6:00am each day, when condensation 

cannot occur (the temperatures of air and land surface increase after sun rise). In the fore beach 

from Line7 to Line12, no skewness can be clearly identified in those moisture cycles. This 

 50



behavior can be attributed to the process of wetting and drainage responding to the position 

changes of local water table. 

4.3.4 Comparison of Surface Moisture Content, Groundwater Level and Evaporation  

Examination of the moisture content of Line 1 and water table elevation at Well 1 (the 

second plot in Figure 4.4) demonstrated that at this location (65 m away from shoreline), surface 

moisture content varied within the range from 0% to 4% as groundwater level fluctuated around 

95 cm below ground surface with a cycle amplitude of about 2 cm. The average water table 

depth at W1 decreased slightly during the study period. A time lag clearly existed between the 

cyclic changes of moisture content and groundwater level. More importantly, peaks of moisture 

content in each cycle always occurred earlier than those of groundwater level. This implies that 

at Line1 groundwater table fluctuation is not the major factor that is controlling the variations of 

surface moisture content. Figure 4.5 plots moisture contents of Line1 against evaporation rates. It 

is worth noting that the evaporation rates are plotted in descending order here. Clearly, surface 

moisture contents in Line 1 responded much more closely to evaporation than to groundwater 

table fluctuations: measured moisture contents in each cycle reached its peaks with the lowest 

evaporation rates between 6:00am and 9:00am, and decreased quickly to lower values when 

evaporation rates increased. 
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Figure 4.5 Comparison of observed volumetric surface moisture content of Line 1 (solid 

line with diamonds) and evaporation rates (dashed lines with crosses) 
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In comparing Line3 and adjacent Well3 (located 50m from shoreline), it is obvious that 

beach surface moisture content showed a long-term decreasing trend corresponded with the 

averagely falling groundwater level during the study period (the third plot in Figure 4.4). This 

indicated that oscillations of groundwater level played a significant role in affecting contents of 

surface moisture, which was not showed at Line 1 because the water table was considerably 

shallower at Well 3 (~80 cm in average) than at Well 1 (~95 cm in average). However, the 

cyclical fluctuations in moisture content again were out of phase with the water table (like Line 

1) and corresponded more closely to evaporation rates (Figure 4.6), which means beach surface 

moisture content started to increase from its lowest value even though the groundwater level was 

still falling. This implies that at Line 3, daily variations in surface moisture content were 

dominated by evaporation, while groundwater levels influenced the longer-term average surface 

moisture content.  
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Figure 4.6 Same as Figure 4.5 except for Line3 and evaporation  

 
At Lines 5, 7, 9 and 11, surface moisture content responded closely to groundwater 

fluctuations (Figure 4.4). Note that the water table is progressively closer to the surface at these 

lines. Line 9 and 11 in Figure 4.4 indicate that the beach surface was almost saturated when the 

water table fluctuated to within about 40 cm of the surface. This behavior is likely caused by the 

existence of the near-saturated capillary fringe. When the water table fluctuates in the capillary 
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fringe, capillary force is high enough to keep water in soil pores from drainage and the moisture 

content thus remains saturated. However, the extent to which the beach surface dried during low 

water table did not exactly correspond with the water table falling depth. Taking Line 11 as an 

example, moisture content decreased about 3% from saturation in Jul 30th with the water table 

dropped from about 8 cm to 53 cm below the surface, while in Aug 3rd it decreased about 8% 

from saturation with water table fell from about 10 cm to 50 cm below surface. This can be 

attributed to the hysterisis effect in the long-term drying and wetting process the surface 

experienced, which leads to various moisture contents with same hydraulic pressures. During the 

spring tide (the study period), the surface moisture actually experienced a number of drying and 

wetting loops responding to water table fluctuations in each tidal cycle, which provided a perfect 

situation for hysterisis to play a role. In this case the hysterisis may need to be considered in 

order to fully understand and accurately model the spatial and temporal variability in surface 

moisture. 

4.3.5 Relationship between Surface Moisture Content and Elevation 

Elevation of the beach surface may determine the long-term status of near-surface 

moisture content. All of the moisture data have shown that relatively high back beach locations 

usually are drier, while relative low fore beach locations are wetter. Note that it is not the 

elevation itself that directly determines the moisture status of the beach surface. The depth of the 

groundwater table (or hydraulic pressure), along with soil properties (e.g., pore-size distribution 

and hydraulic conductivity) are the controlling factors that affect moisture distribution in the 

sand body. Generally, the groundwater table has a much smaller slope angle than the beach 

surface. The depth of water table below surface therefore increases landward closely responding 

to surface elevations. The elevation of the beach surface thus can be used to calculate water table 
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depths with known hydraulic properties of native sediment, and in turn as an indicator for surface 

moisture content if groundwater table data are not available. 

Figure 4.7 indicates that the beach surface is almost saturated when the surface elevation 

is less than ~70 cm (above the mean water level datum) and the water table depth is less than ~40 

cm, which means the capillary fringe is about 40cm for this study site. Surface moisture content 

decreases rapidly from ~40% to ~5% as the surface elevation increases from ~70 to 140cm, and 

the water table depth increases from ~40 to ~80 cm. Further, the beach is dry (content <2%) 

when the surface elevation is above 160 cm and the water table depth is below 90 cm. It is worth 

noting that the relationship between the water table depth and surface moisture content shown in 

Figure 4.5 might be very close to the soil moisture retention curve, but these measured values 

also include the effect of evaporation. Nevertheless, these results confirm that the beach surface 

elevation has a strong, nonlinear relationship with averaged surface moisture content. This 

relationship provides a basis to assess, quickly and easily, the variability in surface moisture 

content. 
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4.4   Discussion 

Tide-induced groundwater fluctuations appear to exert a strong influence on surface 

moisture content of the beach, particularly the fore beach and middle zones, in determining 

short-term variations in moisture content where the groundwater table is relatively shallow. 

Water table depth also appears to control the long-term averaged surface moisture content on the 

back beach, although daily fluctuations associated with evaporation and condensation strongly 

modify that signal. 

Since the beach material at the study site is well-sorted sand, the beach can be treated as 

an isotropic sand body, and because the rates of groundwater table rising/falling are relatively 

low, the hysterisis effect of sand drying and wetting should be negligible (Child, 1969) although 

it can be possibly identified in the areas close to the shoreline. Moisture content within the sand 

body, and beach surface as well, can therefore be illustrated and predicted by the soil moisture 

characteristic curve (or soil water retention curve) (Miyazaki, 1993). The characteristic curves of 

sand materials are usually steeper in the two ends and much flatter in the middle part than those 

of clay or loam (van Genuchten, 1980).  

Relationships between water retention curves, water table fluctuations and surface 

moisture dynamics for different parts of the beach (i.e., the back beach, middle beach and fore 

beach) are schematically illustrated in Figure 4.8. Surface moisture content at a certain location 

can be considered as the intersection of the surface and the moisture profile above the water table 

(which is described by the water retention curve). The intersection changes its position along the 

profile curve as the curve shifts up and down and the water table fluctuates. As also shown in the 

Figure 4.4(a), water tables in the back beach are relatively deep below surface and vertical 

fluctuations are of small amplitudes. As a result, surface moisture contents are very low and only  
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b. 

a. 
c. 

Figure 4.8 Schematic illustrations of the relationship between surface moisture dynamics, 
water table fluctuations and soil water retention curve in the beach (a. the back beach, b. 
the middle beach, and c. the fore beach. The effect of hysterisis is not considered here.) 

 
vary within a narrow range because the intersection of the surface and the curve is located in the 

upper steep end of the profile. At the fore beach, water tables are very shallow and generally 

close to the surface, so surface moisture contents are extremely high and close to saturation. 

With the existence of the capillary fringe (extending about 40 cm above the water table at this 

site), the range of moisture content variations is also very narrow. At the middle beach, surface 

moisture contents vary within the largest range although the averages are lower than those of the 

fore beach. This occurs because the elevation of the beach surface above the water table level is 

located in the flat middle part of the water retention curve, where the moisture content changes 

most rapidly with depth (a small change in the position of water table will lead to large changes 

in surface moisture content). At high tide the capillary fringe approaches the surface providing 

near-saturation contents, but the pores rapidly drain as the tide and water table fall, and the 

capillary fringe drops away from the surface. As mentioned above, the moisture content in this 
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zone varies from 10-40 % during a typical tidal cycle (see Line 7 of Figure 4.4). In contrast, 

variations in surface moisture content during a tidal cycle on the back beach and fore beach are 

generally less than 5% (see Line 1 and Line 12 of Figure 4.4 respectively).  

The diurnal changes in rates of evaporation and condensation, which are produced by the 

combination of wind speed, humidity, temperature, and solar radiation, can also impose cyclic 

effects on beach surface moisture content. It is straightforward that beach surface will dry more 

rapidly (and to a greater degree) if the potential evaporation rate is larger, and will wet if the 

condensation occurs without consideration of other inputs such as capillary rise or precipitation. 

The evaporation and condensation in general alternate in a period of a day (24 hours), while the 

period of tidal cycle usually differs with locations, so that their effects on surface moisture 

content could therefore be strengthened or diminished by each other in regarding to the period 

difference between the two cycles. For this study site, the dominant tidal cycles, and 

groundwater table fluctuations as well, have a period of ~25.6 hr, very close to the evaporation-

condensation cycle. Further, all high tides and high water table were recorded during the night 

when the evaporation rate is small and condensation may occur, on the other hand, high 

evaporation rates in general were recorded during low tides. Therefore, the effect of evaporation 

and condensation in controlling surface moisture variations were overlapped with, and cannot be 

easily isolated from that of groundwater table fluctuations.  

The evaporation- and condensation- induced diurnal variations can be explained by the 

Dry-Soil-Layer (DSL) conceptual model proposed by Yamanaka and Yonetani (1999, see Figure 

4.9). The DSL is a layer formed at the surface of a bare, sandy soil. Liquid water transport from 

deeper soil layers stops at the bottom boundary of the DSL and vapor water transport is 

dominant. This model was experimentally confirmed by stable isotopic analysis (Yamanaka and 
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Yonetani, 1999). They argued that with daily variations in solar radiation input, vaporization of 

soil water and condensation of vapor occur alternatively throughout the entire DSL, not only 

limited within the bottom boundary of DSL as previous investigators have suggested (e.g. Hillel, 

1971; Campbell, 1985). They hypothesized that the DSL primarily acts as an evaporation zone 

during day time as the temperature increases, and acts as a condensation zone in late afternoon 

and at night as the temperature drops. This conceptual model is useful to understand the moisture 

dynamics of a dry sand surface. It implies that the processes of evaporation and condensation 

alternatively control surface moisture content: moisture content will decrease during the late 

morning and the afternoon as evaporation occurs due to increasing leads of solar radiation, and 

will increase in late afternoon and early evening when condensation occurs as solar radiation 

close to zero.  

 
Figure 4.9 Schematic illustration of the conceptual model of sandy surface hydrodynamics 

(modified from Yamanaka and Yonetani, 1999) 
 

As previously mentioned, the field data show that surface moisture content drops to daily 

low values around 6:00pm and reaches daily peaks in the early morning around 9:00am (Lines 1 

and 3 in Figure 4.4). The evaporation clearly is the dominant process that reduces surface 

moisture content. However, it is somewhat contradictory that, if the condensation is assumed as 

the only reason that leads to the moisture content increase in the “dry surface”, the increases 

between 6:00am and 9:00am in turn imply that the condensation still occurs after sunrise. 
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However, the air temperature increases almost right after sunrise (around 6:00 am), indicating no 

condensation during this time period. Reasons for this contradiction may be a) that some other 

processes (e.g., capillary rise) besides of condensation were involved in the moisture content 

increasing; b) that the “surface” measured was out of the range of the DSL. The thickness of the 

DSL can vary from millimeters to centimeters or more depending on the intensity of the drying 

process (Campbell, 1985). In this study, the measured moisture content would have represented 

the combined layer of the DSL and the sub-layer when the DSL was less than 14 mm thick (the 

exposed length of moisture probe pins). Such measured moisture contents would be affected by 

both evaporation process and the movement of the moisture profile. Therefore, more 

investigations on the definition, identification and determination of the DSL and associated 

processes must be conducted to enhance the understanding of surface moisture dynamics. 

In the cross-shore direction, surface moisture content varies from totally dry (<1%) to 

saturation (~45%). This cross-shore variability in surface moisture can be linked to the 

increasing groundwater table depth landward moving from shoreline to dune toe. The 

relationship between surface moisture content and water table depth determined that the back 

beach remained dry and the fore beach wet, while the middle beach exhibited highly varying 

moisture content as the groundwater table fluctuated. In alongshore direction, surface moisture 

content generally has a smaller variability, less than 10% (Figure 4.3). Almost identical 

fluctuations of the water table were observed in paired wells at either ends of the sample grid, 

which were located almost exactly equal distance from the shoreline (e.g., Wells 2 and 9, Figure 

3.6). This implies that the fluctuations in groundwater level did not drive alongshore variability 

of the moisture content. The elevation of beach surface varied substantially in the alongshore 

direction, up to 25 cm in the back beach and less than 5 cm in the middle and fore beach (see 
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Figure 4.10a), which means the water table depth varied. Moisture contours were roughly 

parallel to topographical contours for the back beach and part of the middle during high tides 

(e.g., Runs 25-27, and Runs 32-34), but stronger curvatures, other than smooth lines in the 

topographical map, can often be found in contours of those moisture maps (Figure 4.3 and 4.10). 

Although some other factors associated with spatial heterogeneity in the surface conditions, such 

as variations of wind speed, temperature, sand texture and packing rate, are commonly 

recognized as major regulators for the spatial variability, the variations of surface elevation in the 

alongshore direction do exert significant influence on the alongshore variability in surface 

moisture content at this study site.  
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Figure 4.10 Comparison of a. topographical map (numbers are relative elevation in meter), 

and b. moisture map (numbers are volumetric moisture content in percent of Run 27) 

4.5   Conclusions 

Results showed that beach surface moisture content generally decreases landward with 

distance increase from shoreline. Both groundwater table fluctuation and evaporation play a role 
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in controlling surface moisture content variations. The influence of groundwater decreases 

landward, both because the groundwater table depth usually increases and because the amplitude 

of groundwater table fluctuations decreases, moving landward. As surface moisture content 

decreased, the importance of evaporation increased, finally became the dominant control at Line 

1, near the dune toe.  

Primarily, beach surface moisture demonstrated a pattern of continuously wet fore beach 

and dry back beach. The middle beach, however, experienced significant alternations between 

wet and dry conditions in response to rising and falling of tides and water table levels. In the 

back beach, where water table depth was usually below 80cm, surface moisture content was 

usually less than 5% (except for extreme highs) and below 3% on average. Evaporation process 

played a dominant role in controlling surface moisture content in this zone and content variations 

of range of ~4% each day. In the middle beach, where groundwater table fluctuated between 

80cm and 40cm below surface, surface moisture contents vary in a wide range from less than 5% 

to higher than 40%. The effect of evaporation was not significant in comparison to the influence 

of liquid capillary transport. In the fore beach, where both the highest average water table 

elevations and the largest fluctuation amplitudes are found, relatively high and almost steady 

moisture contents occur (from ~35% to saturation). The effect of groundwater (along with 

swash) clearly controlled variations in surface moisture content.  

In the alongshore direction, surface moisture content demonstrates a smaller variability 

than in the cross-shore direction. Overall, surface moisture content varies in a range less than 

10% in alongshore lines, which can be attributed to, at least partly, the alongshore variations in 

beach surface elevation. However, the strong curvatures, in contrast to smooth topographical 

contours, can be found in moisture maps. This suggests that some other parameters associated 
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with spatial heterogeneity in beach surface conditions, including texture and packing rate, may 

also exert significance influences on the alongshore variability.  

Temporally, beach surface in general became wetter during flood tide and drier during 

ebb tide, although a time lag existed between the changes of surface moisture content and tidal 

level oscillations. In the back beach, surface moisture content usually increased from late 

afternoon each day to the early morning of the next day and then decreased, along with 

evaporation process, but its increasing rate was slower than decreasing rate. In the middle beach 

and fore beach, temporal changes of surface moisture content keep same time pace with 

groundwater table oscillations instead of evaporation.  

These findings may be common for other beach settings. However, for beaches composed 

of coarser sand (which implies higher hydraulic conductivity and flatter water retention curve), 

surface moisture content may decreased more rapidly with distance from shoreline and the 

variable zone therefore will be significant narrower than in this study site. In addition, for 

beaches of higher energy and larger tidal range, the back beach area (where soil moisture 

dynamics are dominated by evaporation) can be much larger. 

 



CHAPTER 5    MODELING POTENTIAL EVAPORATION 

This chapter focuses on simulating potential evaporation based on field obtained 

meteorological data. The present study attempts to model evaporation in small time scales 

(minutes and hours), utilizing the mass-transfer method, represented by the superior equation 

proposed by Singh and Xu (1997b), and the combination approach, represented by the Penman 

equation.  

5.1   Introduction 

Evaporation is a major component of the terrestrial hydrological cycle and its accurate 

estimation is essential to an array of problems including water balance calculations, irrigation 

management and ecological modeling in studies of climatology, hydrology, agriculture and 

ecology (Brutsaert, 1982; Wallace, 1995; Saunders et al., 1997). However, evaporation is usually 

difficult to estimate owing to interactions between its controlling factors and the complexity of 

the land-atmosphere system. 

Atmospheric parameters including solar radiation, relative humidity, vapor pressure 

deficit, air temperature and wind speed have long been recognized as major regulating factors for 

the process of evaporation. However, the relative importance of these parameters varies with 

specific local conditions and time scales. Based on four-year continuous measurements, Xu and 

Singh (1998) found that the vapor pressure deficit is most and wind speed is least closely 

correlated with pan evaporation in all time scales of hours, day, 10-day and month. They also 

found that solar radiation, air temperature and relative humidity have fairly close relationships 

with evaporation but systematic differences can be clearly seen for larger time scales. The 

relevance of these variables to evaporation possibly also changes with environmental settings, 
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thus giving rise to the large number of evaporation equations available in the literature that have 

similar or identical structures but different coefficients (Singh and Xu, 1997a).  

Besides being directly measured using precise and carefully designed instruments, 

evaporation can be calculated theoretically by several approaches including: (1) water budget, (2) 

empirical determination, (3) mass transfer, (4) energy budget, and (5) combination of energy 

budget and mass transfer (Brutsaert, 1982; Wallace, 1995; Sanders et al., 1997; Singh and Xu, 

1997a). The water balance method expresses the conservation of mass, with consideration of 

evaporation, precipitation, surface and groundwater flow, and water storage, in a lumped or 

averaged hydrological system. However, water budget method in general is not feasible for 

evaporation estimation because relatively small but unavoidable errors in measuring 

precipitation, runoff and water storage can often result in large absolute errors in the ultimately 

calculated evaporation (Brutsaert, 1982). The empirical methods usually relate evaporation to 

meteorological factors based on regression analysis, and therefore may have limited applicability 

due to its lack of process representation and to the specific requirements on model variables 

(Singh and Xu, 1997b). Although the mass-transfer method is broadly based on Darton’s law, the 

constants of the equations are normally empirically determined and need to be calibrated for site-

specific conditions. The approach of pure energy budget does not exist strictly in that the three 

variables (i.e., the net radiation at surface , is the soil heat flux G, and the sensible heat flux 

H) used for calculation can usually not be monitored directly or calculated based on 

measurements in the form of energy. The final option, the combination of energy budget and 

mass-transfer has been employed widely to simulate or predict evaporation with routine climatic 

data and generally produce acceptable estimates (e.g. Penman, 1948, 1963; Monteith, 1965; 

Tanner and Fuchs, 1968; Ben-Asher et al., 1983; Monteith and Unsworth, 1990; Qiu et al., 1998; 

nR
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Valiantzas, 2006). From a practical standpoint, the method of mass-transfer can be used with the 

absence of solar radiation records, and the implementation of the combination approach depends 

on its availability. 

Evaporation is most commonly estimated on a weekly, monthly or annual basis, although 

a few studies have presented applications of daily simulations (Rowntree, 1991). However, 

modeling at higher temporal resolution of hours or even minutes is necessary for the micro-scale 

environmental studies due to the high variability of evaporation, particularly in coastal areas. The 

major purposes of this study are 1) to identify and further examine correlations between 

evaporation and its five aforementioned controlling factors for coastal areas where usually have 

unique climatic patterns; and 2) to evaluate accuracy and efficiency of the two widely used 

approaches (i.e., the mass-transfer method and the combination method) in evaporation 

estimation at high temporal resolution. 

5.2   Evaporation Models 

A large number of evaporation models have been developed for specific conditions with 

concerns of data availability. The mass-transfer method and the combined approach are selected 

here because they are commonly believed reliable and require only a few inputs that can be 

routinely obtained.  

5.2.1 The Mass-transfer Method 

 The mass-transfer method, also referred to as aerodynamic method, employs Dalton’s 

law that describes eddy motion transfer of water vapor from an evaporation surface to the 

atmosphere (Singh and Xu, 1997a, b). Equations based on this method normally have simpler 

forms and require fewer inputs than the energy-budget based equations. They may be reliable in 
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the areas and over the periods in which they were developed, however, large errors can be 

generated when these equations are extrapolated to other climatic areas without recalibration of 

the various constants. Although a large number of equations have been proposed with different 

combinations of required input parameters, Singh and Xu (1997b) generalized most of the 

available mass-transfer equations, and based on a comparative study found a superior form to be: 

 [ )(1))(1( 321 daas TTaeeuaaE ]−−−+=                                                                           (5.1) 

in where E is the evaporation rate (mm/d), ,  and  are constants need to be recalibrated, u 

is wind speed (m/s),  is the air temperature (℃),  is the dew point temperature (℃), and  

is actual vapor pressure (kPa) given as: 

1a 2a 3a

aT dT ae

sa eRHe
100

=                                                                                                                                 (5.2) 

in which RH (%) is relative humidity and  is saturation vapor pressure (kPa), which is a 

function of air temperature (See appendix 2 for calculation) 

se

5.2.2 The Combination Approach 

The combination approach is generally believed to be reliable and accurate for practical 

calculations (Singh and Xu, 1997a). Broadly, it utilizes the structure of the energy budget 

approach but calculates the sensible heat term using the mass-transfer method. The energy 

budget can be expressed as:  

HGRE n −−=λ                                                                                                                      (5.3) 

in which λ  is latent heat of vaporization (MJ/kg), the combination Eλ  is the latent heat flux 

(MJ/m2/d=11.57 Watts/m2),  is net radiation at surface (MJ/mnR 2/d), G is the soil heat flux 
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(MJ/m2/d), and H is the sensible heat flux (MJ/m2/d) between the atmosphere and water/soil 

surface.  

Although the three parameters in the right-hand side of equation 5.3 are difficult to 

measure directly, a number of previous studies have provided reliable ways to estimate them 

from routine meteorological data. The net radiation RRn can be calculated with input of solar 

radiation and air temperature (e.g., Valiantzas, 2006). The soil heat flux G is usually presumed 

equal to 5% of RnR  when RRn >0 (e.g., Nilsson and Karlsson, 2005). A large number of equations 

and concepts have been developed to calculate the sensible heat term H (e.g., Monteith, 1965; 

Priestley and Taylor, 1972; Stagnitti et al., 1989). However, when the radiation term dominates 

and the sensible heat term approaches zero, the equations based on the combination approach 

usually produce estimates with small differences. For example, Shuttleworth and Calder (1979) 

found that in areas of low moisture stress, estimates of the Priestley-Taylor model and the 

Penman’s equation were within about 5% of each other.  

The Penman (1963) equation, which is widely used as the standard method in 

hydrological applications to estimate potential evaporation and evapotranspiration, is used in this 

study to represent the combination method. It can be expressed as:  

)(43.6 uDfRE n γ
γ

γ
λ

+Δ
+

+Δ
Δ

=                                                                                       (5.4) 

where the first term in the right-hand side is the radiation term and the second is the aerodynamic 

term,  is the slope of the saturation vapor pressure curve (kPa/Δ oC), γ  is psychrometric 

coefficient (kPa/oC), is vapor pressure deficit (kPa) between actual vapor pressure  and 

saturation vapor press , and  is wind function, which is given by: 

D
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where  and  are the wind function coefficients; and  is wind speed at 2m height (m/s) (See 

appendix 2 for details of parameter calculation). In the original Penman equation,  and  

were empirically determined as 1 and 0.536 respectively. It should be noted that the aerodynamic 

term is essentially similar to equation (5.1) except for the exclusion of the air temperature part. 

ua ub u

ua ub

5.3   Methodology and Data 

The evaporation modeling approaches used in this chapter require data that include solar 

radiation, wind speed, air temperature and relative humidity. The latter four variables were 

directly monitored (see section 3.2 for more information). Measured pan evaporation rates from 

the field are also presented for comparison. Hourly solar radiation records were obtained from 

National Park Service (NPS) Gaseous Pollutant and Meteorological Database (ARS, 2005), and 

were subsequently interpolated linearly at 6-min interval. These data were measured at the 

Malaquite Visitor Center, Padre Island National Seashore, which is located about 900m south of 

the study site.  

5.4   Experimental Results 

Figure 5.1 shows measured solar radiation, wind speed and direction, air temperature and 

relative humidity. All parameters clearly show diurnal cycles. As expected, air temperature, 

relative humidity on-shore wind speed have readily identifiable, but highly non-linear 

relationships with solar radiation intensity.  

Solar radiation followed a simple and expected pattern: increasing from sunrise (about 

5:45am) to a daily peak value at noon (about 12pm) and then decreasing until sunset (about 

6:15pm). The influence of cloud cover is occasionally detectable, for example from 9:00am to 

3:00pm in Jul 30th and from 10:00am to 1:00pm in Aug 4th.  
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Figure 5.1 Measured 6-minute meteorological parameters. Solar radiation was originally of 
one hour intervals and subsequently interpolated into 6-minute data. Wind speed, relative 
humidity and air temperature were measured at two heights of 1m (grey thick dashed line) 

and 2m (dark thin solid line) above beach surface respectively. 
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Wind speed varied also exhibited clear, cyclic diurnal patterns. It usually picked and 

consistently increased from the late morning through the early afternoon, decreased abruptly 

after about 3:00am, and then stabilized (to a degree) from the midnight through the early 

morning. In general, on-shore winds had higher speeds than off-shore winds.  The difference in 

wind speed at1 m and 2 m elevation was less than 0.2 m/s throughout the study period. 

Wind direction followed a classic day sea-breeze and night land-breeze pattern. Typically 

the wind shifted onshore between 9:00 and 11:00am and offshore between midnight and 3:00am 

in the following day. These shifts are driven by atmospheric pressure difference between the air 

over the land and water surface, which is in turn caused by differences in heat capacities and 

hence temperature changing rates of the land and water surface.  

Air temperature increased rapidly each day from around 5:45 am (dawn), reached its 

daily peak value around 11:00am, and then decreased gradually until around 4:00 am, and then 

dropped quickly to its daily lows. It is clear that the variations in air temperature are driven by 

the solar radiation input. Variations in air temperature can also be related to wind direction shifts. 

Air temperature essentially represents land surface conditions during prevailing offshore wind 

and reflects sea surface conditions during onshore wind. Although the solar radiation intensity 

usually has very low spatial variability (particularly in small space scales), the temperature of the 

land surface responds more to energy fluxes than that of the sea surface due to the substantially 

lower average heat capacity of the land surface. This influence is apparent in the timing of daily 

high air temperatures, which occurred before solar radiation reached its peak at 12:00pm on most 

days (Figure 5.1). Cooler marine air drawn onshore during the afternoon provided gradually 

cooling temperatures. The influence of wind direction shifts can also be seen at night, in the 

rapid temperature drop associated with the shift to offshore winds. Air temperature records at 1 
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m elevation are closely correlated with and usually higher than that at 2 m. This is because that 

air at higher elevation is often to a lager degree mixed with cooler air brought by the onshore 

winds during the afternoon and the evening. 

Relative humidity also clearly shows diurnal cycles, which are negatively correlated with 

variations of air temperature as expected. During on-shore wind, relative humidity measured at 2 

m is appreciably higher than that at 1 m. This is very likely owing to the cooler temperature at 

higher elevation as aforementioned. 

In general, solar radiation as the major energy source manipulates the temperature 

changes of the air and the earth surface below. As the temperature of the land surface responds to 

energy input more rapidly than that of the sea surface, the atmospheric pressures subsequently 

differs to various degrees between them. The pressure difference determines the occurrence and 

the speeds of the winds, and the pattern shifts between land-breeze and sea-breeze. The wind 

speed and direction controls the rates of air and moisture transfer between the two surfaces and 

in turn affects variations in air temperature and the correlated relative humidity.  

5.5   Comparisons of Observed and Simulated Evaporations 

The evaporation measurements reported here actually represent the cumulative 

evaporation that occurred during each measurement interval. Water levels in the evaporation pan 

were recorded every three hours during the day and every four hours at night. It is reasonable to 

assume that the time-averaged measurements represent the real evaporation rate at the center 

time point for each interval.  

5.5.1 Simulations Using the Mass-transfer Method 

In the study of Singh and Xu (1997b), the constants ,  and  of equation 5.1 varies 1a 2a 3a
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climatic stations. The best fits of these constants varied slightly over time for a given station but 

considerably more between different stations. Clearly, they need to be calibrated for site-specific 

environmental conditions. To accomplish this, wind speed, air temperature and relative humidity 

measured at 2m above ground surface averaged for each period of evaporation measurments, and 

used as input data. The constants ,  and  were initially set as 2.25 , 0.15 and 0.034 

respectively (the averages obtained in the study of Singh and Xu, 1997b), and iteratively adjusted 

to achieve the best agreement between observed and simulated evaporations. The best fit was 

defined by the criterion of minimum sum of squares (Xu and Singh, 1998), which can be 

described as an objective function: 

1a 2a 3a

→−=∑ 2

1
)(

N

simobs EEER minimum                                                                                   (5.6) 

in which ER is the determining function, N is the number of measurements,  is observed and 

 is simulated evaporation rate. The best-fitted set of ,  and  were eventually found as 

7.90, 0.23 and 0.015 respectively.  

obsE

simE 1a 2a 3a

Figure 5.2 shows observed evaporation rates and simulations from the mass-transfer 

method (equation 5.1) with recalibrated constants shown above. Although the timing of low 

evaporation rates is well captured, substantial underestimations during about 11:00am-6:00pm 

each day and overestimations from 6:00pm to 8:00am are apparent. This discrepancy between 

observed and simulated pan evaporation rates is owing to the unique atmospheric conditions in 

coastal areas. During onshore winds, the measured parameters including vapor pressure deficits 

and air temperature in a large part represented the conditions of the air from the sea surface 

instead of the land surface, while the observed pan evaporation was controlled by the conditions 
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near land surface. Therefore, the evaporation rates can not be accurately simulated from these 

parameters. 
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Figure 5.2 Observed (dashed line with cross symbols) vs. simulated (solid line) pan 

evaporation rates using the mass-transfer method (Eq 5.1) 

5.5.2 Simulations Using the Combination Approach 

 The Penman equation (equation 5.4), representing the combination approach here, 

requires solar radiation as an input in addition to vapor pressure deficit, wind speed and air 

temperature. Results calculated directly by the Penman equation are shown in Figure 5.3. It 

shows the simulated evaporation rates agree with the observed quite well in terms of magnitude. 

However, the predicted values are clearly offset slightly in the temporal dimension. A second 

departure from the measured values occurs in the early evening. Predicted values drop to a 

minimum but measured values remain relative high. This might result from the underestimations 

by the wind function in the original Penman equation. 

5.5.3 Comparison 

As recommended by Willmott (1982) and Jacovides and Kontoyiannis (1995), the 

differences between observed and predicted evaporation can be quantitatively evaluated by mean 
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Figure 5.3 Same as Figure 5.2 but using the combination approach (Eq. 5.3) 

 
absolute error (MAE) and root mean square error (RMSE), which are defined by 
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where S and M are paired simulated and measured values respectively, and N is the number of 

records. The MAE and RMSE (N=50) are 5.11 and 0.64 mm/d respectively for mass-transfer 

method (Equation 5.1), and 4.72 and 0.62 mm/d respectively for the combination approach 

(Equation 5.3).  

Statistically, the combination approach is slightly better, but almost equivalent to the 

mass-transfer method in terms of errors. However, it should be noted that the simulations shown 

in Figure 5.2 are already based on optimizations of constants involved, while those in Figure 5.3 

are calculated on the original Penman equation. Therefore, the statistical comparison might be 

misleading. Visually, the fit of the Penman approach appears much more reasonable, and it can 

be improved further with shifts in time and slight adjustment in its aerodynamic term. 
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5.6   Modifications of the Penman Equation 

The mass-transfer method is not suitable for this study and will not be addressed further. 

The combination approach is theoretically reliable, and more importantly, its simulations 

demonstrate promising agreement with observed values upon examination except for a temporal 

offset and some underestimation. These can be attributed to the radiation term and aerodynamic 

term, respectively, of the Penman equation (equation 5.4). 

Peak evaporation rates calculated by the combination approach consistently occur about 

two hours earlier than observed values (Figure 5.3). The Penman equation employed here 

actually involves two distinct energy sources (radiation and aerodynamics), which may affect the 

evaporation process in different ways. Energy absorbed by water from radiation is theoretically 

partitioned into two parts, the first part that is consumed by the evaporation process and the 

second part is a residual stored as heat to increase water temperature and outgoing long-wave 

radiation. Water temperature will increase only after incoming radiation energy exceeds the sum 

of outgoing radiation and the energy demand of evaporation, and will decrease if sufficient 

incoming radiation is not available. Therefore, a time lag can usually be expected between 

temporal variations of radiation and water temperature. Because water temperature continues to 

increase even after solar radiation peaks, the rate of evaporation continues to increase even 

though solar radiation levels begin to decrease. Strictly, parameters involved in the aerodynamic 

term do not directly recharge any energy into water body. Rather, they change the diffusivity of 

water vapor above water surface. A time lag may also exist between the processes of water 

molecules being removed from the saturated vapor layer above water surface by wind and 

replenished into it by evaporation. At an hourly time scale Xu and Singh (1998) found that, 

evaporation lags behind solar radiation about 2-3 hours, but evaporation was closely correlated 
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with vapor pressure deficit and air temperature and almost no time lag existed between them. 

This demonstrates that, the time lag between solar radiation and evaporation is detectable, and 

therefore must be incorporated in the Penman equation for simulations or predictions at high 

temporal resolution, while the time lag between evaporation and involved parameters, such as 

vapor pressure deficit and air temperature, may be ignored, at least on an hourly basis. In the 

present study, the radiation term calculated by the original Penman equation is clearly peaks ~2 

hours earlier than observed values (Figure 5.4), but time lags with the aerodynamic term seem 

negligible, which can be seen in the simulations from the mass-transfer method (Figure 5.2). 
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Figure 5.4 Radiation term (grey thick line) and aerodynamic term (dark thin line) of the 

original Penman equation and observed evaporation (dashed line with cross symbols) 
 

It is worth noting here that the underestimation of the Penman equation can be attributed, 

at least partly, to the aerodynamic term. These underestimations can be clearly seen from about 

8:00 pm to sunrise of the next day (Figure 5.3 and 5.4), and during this period solar radiation was 

close to zero and supposedly has no direct effect on evaporation. It therefore may not be 

appropriate to solve the temporal offset problem by shifting predicted values two hours behind, 

or deal with the problem of underestimation by recalibrating the constants involved in the 

aerodynamic term. Both problems should be treated together to obtain the best agreement with 
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observed value. The Penman equation may be modified to estimate instantaneous evaporation 

rates as follows 

⎥
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γ

γλ
                                                                           (5.9) 

where E ′  is the real-time potential evaporation rate (mm/d); nR′  is net radiation (MJ/m2/d) 

calculated from dt-time-offset solar radiation (dt is 2 hours in this study); and  is the 

modified wind function, in which b

)(uf ′

u is equal to 0.86, following the recommendation of 

Doorenbos and Pruitt (1975), instead of 0.54 as in the original Penman equation. Since the solar 

radiation values in this study were interpolated from hourly records, the two-hour offset is used 

here to provide the best fit from the measured records. Note that the time offset from measured 

solar radiation could be more precisely determined if high-frequency solar radiation records were 

available. 

 Figure 5.5 compares the observed evaporation with simulated values using the modified 

Penman equation (Equation 5.10). Clearly, the modified version performs much better than the 

original in terms of both timing and magnitude of predicted evaporation rates. The MAE and 

RMSE (N=50) are 2.85 and 0.32 mm/d respectively for the modified Penman equation, clearly 

indicative of an improved model performance. 

5.7   Summary and Conclusions 

The climate in this study site exhibits a classic day sea-breeze and night land-breeze 

pattern that is common in coastal areas (Figure 5.1). Field measurements demonstrated that the 

winds shifted directions responding to the atmospheric pressure gradient that is related to the 

temperature difference between the land and sea surfaces. Onshore winds in general had higher 
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Figure 5.5 Same as Figure 5.2 but using the modified Penman equation (Eq. 5.9) 

  
speeds than offshore winds. During offshore winds (representing land surface conditions), air 

temperature and relative humidity responded rapidly to the intensities of solar radiation, while 

they are quite stable during onshore winds (representing sea surface conditions). 

Owing, at least in part, to the dominant climatic pattern, the mass-transfer method (which 

is partly empirically-based), was found unsuitable for evaporation modeling at this study site. 

Even with optimizations of the constants, it cyclically under- and overestimated the rates of 

evaporation (Figure 5.2).  

The original Penman Equation was found to provide better results except for a time lag 

error (about two hours in this study) in predictions of instant evaporation rates and some 

underestimation during the night. This was accounted for by lagging the solar radiation input. It 

is worth noting that the lag magnitude is specific to this site and may vary for other sites and 

over different time scales. A simple modification, following Doorenbos and Pruitt (1975), of the 

aerodynamic component (the second term) of the Penman Equation was found to significantly 

improves its prediction accuracy, particularly during the time period without solar radiation 

(Figure 5.5).   
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Clearly, these conclusions are specifically drawn for coastal areas where atmospheric 

circulation patterns are rather unique than inland areas. Solar radiation data is a necessary input. 

Even if field measurements are not available, predictions from existed models must be obtained 

to estimate evaporation rates for coastal areas. 



CHAPTER 6 MODELING GROUNDWATER TABLE FLUCTUATIONS 
 

This chapter deals primarily with simulating beach groundwater table fluctuations forced 

by tidal signals. Beach groundwater levels were monitored directly in the field and interpreted 

using spectral analysis. The groundwater-table fluctuations were modeled using the numerical 

solution of the linearized Boussinesq equation. Separate simulations are conducted for the cases 

for a vertical beach and a sloping beach. The purpose of the present study is to improve the 

understanding of groundwater table dynamics in a fine-grained beach dominated by diurnal tides. 

6.1   Introduction 

The fluctuation of water table as forced by tidal waves in beach systems has been studied 

extensively (e.g., Nielson, 1990; Gourlay, 1992; Turner et al., 1997; Baird et al., 1998; Horn, 

2002, 2006; Chuang and Yeh, 2006). Field observations have demonstrated a number of 

important characteristics. The beach groundwater table is usually not flat and acts as a damped 

free wave propagating in the landward direction (Nielson, 1990). Elevation of the groundwater 

table in a beach is generally higher than tide elevation due to the relatively higher rate of 

recharging than drainage (Turner, 1993). The beach water table is also asymmetric and skewed 

in time (Raubenheimer et al., 1999). Emery and Foster (1948) conceptualized the beach as a 

filter that allows larger or longer waves (e.g., diurnal tides and spring-neap tides) to pass. The 

magnitude of water table oscillations decreases in the course of propagation in the landward 

direction from the shoreline (Raubenheimer et al., 1999; Chuang and Yeh, 2006). The landward 

distance to which the effects of sea water level fluctuation are discernible depends on its 

frequency (Jackson et al., 1999). Water table oscillations usually lag behind tidal oscillations by 

a varying length of time. The length of this time lag is mainly controlled by, and negatively 
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correlated with, the hydraulic conductivity of beach sediments (which is in turn affected by the 

characteristics of sediment) (Nielson, 1990; Jackson et al., 1999).  

A large number of theoretical studies have focused on simulating and predicting the tide-

induced fluctuation of the beach water table (e.g., Dominick, 1970, 1971 and 1973; Nielson, 

1990; Turner et al., 1993; Li et al., 1997; Teo et al., 2003; Jeng et al., 2005a, b). However, only 

a very small number of previous studies have been supported by field or laboratory data (e.g. 

Braid et al., 1998; Raubenheimer et al., 1999). The most widely used beach groundwater models 

is the linearized or nonlinear Boussinesq equation, which is originally derived from Darcy’s Law 

and the continuity equation (e.g., Dominick et al., 1971; Turner et al., 1997; Horn, 2002 & 

2006). The use the Boussinesq equation requires a number of assumptions. First, it is assumed 

that horizontal flow dominates in the beach groundwater oscillations and that vertical flow can 

be neglected. This is supported by field studies from Baird et al. (1998) and Raubenheimer et al. 

(1999). Second, density gradients are assumed negligible, which is comfirmed by the study of 

Raubenheimer et al. (1999). Third, it is assumed that sand drains instantaneously, which has 

been shown to be a reasonable approximation (Raubenheimer et al., 1999). Finally, it is assumed 

that the ground water flow in a shallow aquifer can be described using the Dupuit-Forchheimer 

approximation (Braid et al., 1998). Theoretical studies based on the numerically or analytically 

solved Boussinesq equation reasonably provide a reasonable approach to represent and interpret 

the behavior of real beach groundwater table. Numerical simulations always require specifically 

measured or defined initial and boundary conditions to achieve higher accuracy. However, 

analytical solutions in most cases have not satisfactorily matched field observed groundwater-

table oscillations due to, at least partly, the inaccurate representation of complex oscillations of 

sea water level, and the presence of a mixture of tidal and wave cycles of a variety of amplitudes 
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and periods. The relative error of simulation or prediction in general increases with distances 

landward from shoreline and time length of the simulation (see Baird et al., 1998; Raubenheimer 

et al., 1999).  

Most previous investigations have been conducted on gravel or coarse-grained beaches 

dominated by semidiurnal tidal cycles. Few if any studies provide substantial information about 

groundwater dynamics for fine- or very-fine-grained beaches. The purpose of this study is to 

improve the understanding of groundwater table dynamics in a fine-grained beach dominated by 

diurnal tides. The Boussinesq equation is solved numerically and tested against field obtained 

data. The effect of wave setup, that is, expanding the extent of the moving shoreline and 

elevating the averaged groundwater level, is also incorporated into the solution to enhance model 

performance. 

6.2   Theoretical Background 

The Boussinesq equation is most widely used and is commonly believed to be the most 

efficient approach in describing groundwater table dynamics. Numerical solutions of the 

equation generally match field data more accurately but require more information in respect to 

time-dependent boundary conditions and therefore are usually computationally expensive. 

Conversely, although fairly easier to calculate, analytical solutions usually generate substantial 

errors due to simplifications and approximations of initial and boundary conditions.  

6.2.1 Boussinesq Equation 

One-dimensional saturated groundwater flow in an unconfined, homogeneous, isotropic, 

and incompressible aquifer can be described by the Boussinesq equation (Liu and Wen, 1997) as: 
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where h the elevation of the free water surface (water table) above some lower-bounding 

aquitard (m), t is time (s), K is hydraulic conductivity (m s-1), ne is specific yield (dimensionless) , 

x is horizontal distance (m). Equation (6.1) describes transient horizontal saturated water flow. 

Under the assumption of prevailing hydrostatic conditions, this one-dimensional equation is 

sufficient to describe shore-normal groundwater flow (Nielsen, 1990). When the magnitude of 

water fluctuations is small compared with the depth of the aquifer (H0, see Figure 6.1a), Equation 

(6.1) may be linearized to give: 
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which can be solved analytically with the boundary conditions: 
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where )(ttideη  is the elevation change of tide (Figure 6.1a), Equation (6.3a) indicates that the 

seaward boundary is fixed at x=0 and bouncing up and down with tidal level. Equation (6.3b) 

indicates that tidal force has no effect on groundwater table at the landward boundary. 

When the landward boundary has a prescribed pressure head (H2 in Figure 6.1a) and it 

changes over time, Equation (6.2) cannot be solved analytically. Liu and Wen (1997) provided a 

discretization scheme of centered finite difference space and a fourth order Runga-Kutta 

integration technique in time to solve the equation (6.2) numerically, which will be used in the 

present study.  
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Figure 6.1 Schematic of the effect of sloping beach and wave setup (in (a), )(ttideη  is the 

elevation change of tide over time, setupη  is the maximum setup height, SEη  is the height of 
superelevation, H0 is the depth of the aquifer, H1= H1+ setupη , H2 is the water table depth of 
the inland head, α is the setup angle, and β is the slope angle; and in (b), A is the amplitude 
of tidal oscillations, B, C and D are intersections of beach surface with low, mean and high 

sea water level (no setup) respectively, B′ , C ′and D′  are intersections of beach surface 
with low, mean and high water level with wave setup.) 

6.2.2 The Moving Shoreline and Wave Setup 

Equation (6.2) is only valid for the assumption of a vertical beach face, in which x is 

constant relative to a fixed shoreline. To include the effect of moving shoreline, Li et al. (2000) 

introduced a new variable z as 

β
η
tan

)(t
xz tide−=                                                                                                       (6.4) 

in which β is the slope angle (Figure 6.1a).  
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Wave setup increases not only the mean water surface in foreshore but also the horizontal 

range of shoreline (i.e. the seaward boundary of beach groundwater). Figure 6.1b shows that the 

effect of setup increases the shoreline elevation from B to B’ during low tides, and from D to D’ 

during high tides respectively. In total, it increases the mean elevation of shoreline from C to C’ 

and expands the horizontal range of the shoreline from DB −  to DB ′−′ . It should be noted that 

we assume here that tidal level was measured inside of the landward most set-down point (as it 

was in this study and some previous investigations). Under this assumption, the moving 

boundary condition of shoreline proposed by Li et al. (2000) needs to be further considered 

because they assumed the moving boundary to be equal to the range of tide oscillation. 

Assuming the setup height remains constant during the rising and falling of tide, the variable z 

can be further defined as: 

αβ
η

tantan
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−
−=

t
xz tide                                                                                            (6.5) 

in which α  is the setup angle, and can be approximated by (see the derivation in Appendix III): 

βα tan232.0tan =                                                                                              (6.6) 

and the boundary conditions (Equation 3) can therefore be rewritten as: 
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Obviously, equation (6.2) is still valid for boundary conditions (equation 6.5 and 6.7) after 

replacing x with z. With inclusion of equations (6.5) and (6.7), the numerical solution of 

Equation (6.2) incorporates the effects of a moving shoreline and wave setup.  
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6.3   Modeling the Field Data 

Figure 6.2 shows the positions of wells, beach profile, average, low and high water level 

in a cross section of the study site. Beach groundwater systems are usually not only forced by 

various waves, they are also possibly affected by the fluctuations of inland water head (see 

Figure 6.1a). In this study, the influence of inland water head is not considered. In the following 

sections, the spatial characteristics and temporal behaviors of beach groundwater table are 

documented and modeled numerically.  
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Figure 6.2 Cross-sectional beach profile and instrument deployment 

6.3.1 Measured Beach Groundwater Table Fluctuations 

The daily average tidal level gently increased during the study period (Figures 6.3 and 

6.4). In contrast, the beach ground water experienced substantial drainage, which has been 

shown in the approximately linear decreasing trend of averaged levels in W1 to W4 (Figure 6.4). 

This drainage possibly reflects a preceding high water table level associated with a ~1 m high 

storm surge due to Tropical Storm Emily (see Figure 6.3). 
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Figure 6.3 Tidal fluctuations in the study site 
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Figure 6.4  Measured groundwater table fluctuations during the study period 
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Figure 6.4 shows that the measured groundwater table fluctuations corresponded closely 

with tidal oscillations, as previous authors have reported (e.g., Nielson, 1990; Raubenheimer et 

al., 1999; Horn et al., 2003). The groundwater table fluctuations forced by tide apparently 

demonstrated diurnal cyclic changes and those are readily discernable as far as 72 m landward 

from averaged shoreline (W2). In the landward-most well (W1), which is located approximately 

82 m away from shoreline, the tidal signal was almost totally overwhelmed.  

6.3.2 Numerical Modeling 

Clearly, although the diurnal and higher-frequency signals of tidal oscillations were 

negligible landward of W1, lower-frequency signals (i.e., the aftermath of the storm surge) still 

impose substantial influence on groundwater table fluctuations at this distance from the shoreline. 

In order to include all frequency components in the numerical model, we choose the finite 

difference scheme suggested by Liu and Wen (1997) to solve the Equation (6.2) in the beach 

domain, from Tide PT to W2. The iteration procedure in the scheme is limited by a finite 

difference of 0.01 cm. Time step  and cell size tΔ xΔ used here are set at 6 minutes and one 

meter respectively to avoid the interference of numerical discretization errors with the dissipation 

and nonlinearity in the original equation. The observed water table at W2 is selected as the 

landward boundary, and the seaward boundary (i.e., the shoreline) is determined by Equation 

(6.7a) alone for the vertical beach domain and equations (6.5) and (6.7a) together for the sloping 

beach domain. The initial values of each cell are obtained from linear interpolation from 

observed values in all wells at the beginning of the study period.  

Grain-size analyses of samples of surface and subsurface layers indicated that the local 

sand is well-sorted and its composition does not vary significantly from shoreline to dune toe 

(Figure 3.3) or from the surface to a depth of 0.5m. Thus, homogeneity of the beach materials 
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reasonably can be assumed. Since no directly measurement of saturated hydraulic conductivity 

was obtained, it is estimated using the equation proposed by Alyamani and Sen (1993) as 

[ ]210500 )(025.01300 ddIK −+=                                                                          (6.8) 

where K is in m/day, I0 is the smallest grain size (0.074 mm for local sand of this study area), d10 

is Hazen's effective grain size in mm, relative to which 10% of the sample is finer, and d50  is the 

median of grain size. The value of K for this site was found to be is 0.0084 cm s-1 by equation 

(6.8). The effective porosity is 0.28, determined by continuous measurements of surface moisture 

content on the inter-tidal zone. Since the study site located at a barrier island composed mostly of 

sand, the depth of aquifer H0 is arbitrarily set at 3 meters (Simulation results vary slightly with 

different aquifer depths).  

Numerically simulated groundwater table fluctuations have been plotted in Figure 6.5 and 

Figure 6.6 with assumptions of vertical beach and slope beach respectively. Both simulation 

approaches agree with observed data quite well in terms of amplitude damping with distance 

landwards and phase lag. In detail, both approaches underestimated groundwater table 

fluctuations and generated large discrepancies during high tides as high as ~20 cm (W7), 

particularly for the first five tidal cycles. The discrepancy can possibly be attributed to swash 

over topping the berm crest during high tide and hence extra infiltration from the transitional 

ponded surface between the berm crest and W6, which has not been incorporated in the model 

used in this study. Although the linear Boussinesq equation can easily be expanded for additional 

water sources (Li et al., 1997), this phenomenon is neither easily described mathematically nor 

readily monitored because of the complex relationship between hydrodynamics and the 

morphologic evolution of inter-tidal zone. 
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In comparison, the simulations with a sloping beach perform better than those with a 

vertical beach as expected. This is very apparent in comparing simulations as of lower tidal 

elevations, which provide a good fit for the sloping beach approach but consistently underpredict 

for the vertical sloping beach. The sloping beach introduced extra nonlinearity in groundwater 

table fluctuations by changing the distance from the shoreline (x), resulting in higher damping 

rate during low tides and lower damping rate during high tides. However, this effect decreases in 

the course of wave propagation.  
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Figure 6.5  Observed vs. numerically simulated groundwater fluctuations with the 
assumption of vertical beach (thick dark line- simulated, thin grey line-observed) 
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Figure 6.6 Same as Figure 6.5 except with the assumption of sloping beach 
 
 

Statistically, mean absolute error (MAE) and root mean square error (RMSE) (see 

definitions and calculations in Chapter 5) are 10.5 and 0.77 cm for the vertical beach approach, 

and are 5.3 and 0.39 cm for the sloping beach approach, respectively. This indicates that the 

simulations adopting the sloping beach assumption are significantly better than those adopting 

the vertical beach assumption in terms of overall accuracy, as showed by visual examination. 

Again, substantial errors exist in both approaches imply some other processes must be counted. 
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6.4   Discussion 

Tidal oscillations can be described by a range of waves of various periods and amplitudes 

as: 

)cos()(
1

ii

N

itide tAt δωη −= ∑                                                                                  (6.9) 

where Ai is the tidal amplitude, iω  (equals to 2π divided by tide period) is the angular velocity of 

the tide, and iδ  is the phase difference of the ith frequency component of tidal oscillations. 

Although various tidal cycles together tend to generate additional harmonics in the course of 

propagation in a sloping beach system (Li et al., 2000), all frequency components act as free 

waves in the course of propagation, particular for flat beach with relatively large , which was 

supported by the field work of Raubenheimer et al. (1999). The standard solution of equation 

(6.2) expanding for mixed tide is given by  

0H

∑ −−++= −
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0 )cos(),( δωη                                            (6.10) 

where  and  are the real and imaginary parts of the wave number k, which represent 

damping rate and phase lag respectively, are defined by 
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kkk e
IR

ω
===                                                                                        (6.11) 

The wave number k (equation 6.11), which is mainly determined by effective porosity ne, 

hydraulic conductivity (K), and the depth of the effective layer below the MSL and above the 

impermeable bed (H0), is generally assumed by most modelers to be a constant thus allowing 

analytical solutions of the linearized Boussinesq equation (Nielson, 1990; Li et al., 2000 and 

2006). The constant wave number leads to landward exponentially increasing damping rates and 

linearly increasing phase lags of groundwater table oscillations in the landward direction (e.g., 
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Jeng et al., 2005a, b). Although  and  are usually treated as constant and equal to k in most 

analytical solutions, field evidence indicate that  is considerably larger than , possibly due 

to variable aquifer depth (e.g., Raubenehimer et al., 1999), as well as the effect of capillary 

fringe (e.g., Barry et al., 1996). Further, Baird et al. (1998), Raubenheimer et al. (1999) and 

Horn et al. (2003) have reported that the damping rate and phase lags between tide and 

groundwater table fluctuations are not linearly proportional to the distance from shoreline. The 

field study of Li et al. (2006) also indicated that the simulated groundwater tables are very 

sensitive to K/n

Rk Ik

Rk Ik

e and a constant K/ne usually causes overestimation or underestimation. It is clear 

that a constant k is not sufficient to accurately predict phase change and damping rate of 

amplitude.  

In this study, although beach materials are highly uniform and the depth of aquifer is at 

least one order of magnitude larger than the amplitude of tide oscillations (sufficiently to meet 

the requirement for linearization of the Bounessiq equation), the real damping rates seems not 

able to be described accurately by any exponential equations. Figure 6.7a shows amplitudes of 

three major constituent periodicities in measured tidal and groundwater table oscillations. It 

should be noted that the y axis in Figure 6.7a is logarithmic, which means linear trends in the 

figure imply exponential trends in regular units. Clearly, the dominant harmonic ( 039.0=f , 

T=25.6 hrs and ω =0.245 rad hr-1) damped landward more linearly than exponentially, at least 

from W7 (x=22 m) to W3 (x=60 m), which indicates that the real part of wave number  is not 

a constant for the dominant harmonic

Rk

039.0=f . However, the amplitudes rate of the other two 

constituents (T=12.0, 8.2 hr and ω ＝0.524, 0.766 rad hr-1 respectively) approximately follow the 
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exponentially decreasing trend in landward direction. This implies that special attention should 

be taken in simulating the lower frequency tidal signals.  

Figure 6.7b shows the phase lag of the major tidal signal. Apparently, the phase lag 

increase nonlinearly landward, which implies that the imaginary part of wave number k  is not 

constant but nonlinearly increases in landward direction. This confirms the landward increasing 

trend of the real part of k as discussed above.  
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Figure 6.7 Amplitudes (a.) and phase lag (b.) of three major harmonics in observed tide 

and groundwater table oscillations  
 

Many previous studies have found that  is usually larger than , and attributed this to 

the effect capillary fringe or intermediate-depth aquifer (e.g., Raubenehimer et al., 1999). The 

gravimetric means of  and  for the dominant tidal component ( ) is 0.023 and 

0.019 respectively. However, no study to date has reported a landward increasing wave number 

as found in this study (Figure 6.7b). Since the three controlling factors effective porosity and 

saturated hydraulic are indirectly determined and the aquifer depth is set arbitrarily, no safe 

conclusion can be drawn to explain the unusual landward increasing trend of and phase lag. 

Rk Ik

=fRk Ik 039.0
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However, speculating in the processes involved in the course of landward wave propagating, this 

unusual trend is possibly related to the sloped beach groundwater table (the average groundwater 

table at this beach has a slope roughly equal to the setup angle). 

6.5   Conclusions 

The beach groundwater table is one of important parameters controlling beach 

morphological development. The behavior of beach groundwater table can be affected by wave 

set-up and tidal oscillations, as well as dynamic swash.  

The experimental study presented here shows that, beach water table elevations 

corresponded with tidal fluctuations closely as expected. The amplitudes of beach water table 

oscillations decreased, and the time lag between water table and tide fluctuations increased, with 

landward distance from the shoreline. Diurnal and higher frequency tidal signals are 

indiscernible at ~80 m landward from the averaged shoreline at this study site, but lower 

frequency sea level oscillations (storm surge) propagate further inland (Figure 6.3).  

Beach slope introduces a nonlinear effect to beach groundwater table fluctuations as many 

researchers have presumed. Wave setup considerably increases the lower boundary of beach 

water table and introduces additional non-linear effects. The elevation average of the beach 

groundwater table was significantly affected by prior conditions of sea water level and was found 

to increase proportionally with landward distance. 

Both numerical solutions of the linearized Boussinesq equation based on concepts of 

vertical beach and sloping beach matched field observed data reasonably well. The sloping-

beach solution performs substantially better, particularly during low tides. 

Spectral analysis of the field-obtained data indicated that the wave number k, the key 

parameter in analytical solutions of the Boussinesq equation, is not a constant as many 
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researchers have presumed. Further investigations are necessary to explain the landward 

increasing trend in the wave number, particularly for the lower frequency periodicities. 

It should be noted these findings may valid only for relative fine-grained beach with low 

energy input. For coarser-grained beach, the damping rate and phase change of tidal signals can 

be simulated using analytical solutions as reported by previous investigators. For higher-energy 

beaches, swash-induced additional infiltration may dominate the groundwater table fluctuations. 

The accuracy of model simulations may therefore decrease dramatically.  

 
 



CHAPTER 7    MODELING SPATIAL AND TEMPORAL 
VARIABILITY IN SURFACE MOISTURE CONTENT 
 

This chapter primarily focuses on simulating diurnal variations in the surface moisture 

content across the beach. As presented in the previous chapters, beach surface moisture content 

exhibits high spatial and temporal variability at shore time (hours) and small space (meters) 

scales. Groundwater table fluctuations through capillary rise and the evaporation-condensation 

alternation are the two key processes controlling this high variability. In the present study, 

models that describes evaporation, tide-induced groundwater table fluctuations, and soil water 

retention characteristics are therefore combined and coupled together to develop a realistic 

approach to represent this high variability. 

7.1   Introduction 

Spatial and temporal variations in surface moisture content are of scientific interest as 

well as of practical importance, and is receiving increasing attention recently from workers in a 

variety of research areas including hydrology, meteorology, ecology, biology and 

geomorphology (e.g., Beljaars et al., 1996; Bosilovich and Sun, 1998; Oliveira, 2001; Olyphant, 

2003; Chen and Hu, 2004). Of particular concern for the present study, surface moisture has long 

been cited as an important regulator of aeolian sediment transport (e.g., Chepil, 1956; Belly, 

1969; Namikas and Sherman, 1995; Wiggs et al., 2004). Recent studies on instantaneous aeolian 

sediment transport have shown that a better understanding of the effect of soil moisture content 

on transport thresholds requires new approaches to comprehensively evaluate and document the 

spatial and temporal variability in surface moisture in natural environments (Cornelis and 

Gabriels, 2003). Although a small number of field investigations have provided limited data sets 
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regarding surface moisture content at various beaches (e.g., Sarre, 1988; McKenna Neuman and 

Nickling, 1989; Jackson and Nordstrom, 1998; Sherman et al., 1998; Wiggs et al., 2004; 

Davidson-Arnott and Yang, 2005), no study to date has reported a practical way to represent or 

simulate the high degree of spatial and temporal variability that characterizes the surface 

moisture content of real beaches. The inability to represent this variability in a realistic manner is 

one of the most challenging problems faced in the development of aeolian sediment transport 

models. 

Variations in beach moisture content are the net result of water inputs and outputs 

including precipitation, evapotranspiration, condensation, wave swash, and groundwater uplift 

by capillary forces (Namikas and Sherman, 1995; Chen and Hu, 2004; Maxwell and Miller, 

2005). Sophisticated computational models are available to predict the movement of water 

through the unsaturated zone (Ruan and Illangasekare, 1999). Numerous studies based on the 

combination of unsaturated Richards equation and water retention curve have found that it 

provides a reasonable basis to numerically or analytically determine the moisture content within 

a soil body under various conditions. Results of such studies are quite good if water inputs and 

outputs listed above are either constant or can be described by simple functions (e.g., Suleiman 

and Ritchie, 2003; Yuan and Lu, 2005). For example, traditional groundwater models often have 

simplified upper boundary conditions and water fluxes related to infiltration and 

evapotranspiration (e.g., Charbeneau, 2000; Nachabe, 2002). These fluxes are often uncoupled 

and may be averaged over time and space, however, very likely missing key dynamics of 

important land surface processes (Maxwell and Miller, 2005). The problem becomes more 

difficult for a natural environment like a beach as such fluxes are rarely constant. Rather, they 

can exhibit large variability over short temporal scales (minutes to hours) and small spatial scales 

 98



(meters), which is usually not amenable to simple descriptions or representations (Yang and 

Davidson-Arnott, 2005). To incorporate the dynamics of the lower boundary, sufficient 

groundwater models have been developed separately in the previous chapter and further coupled 

with the evaporation model in this study. 

Surface moisture and meteorological phenomena mutually influence one another at 

various scales of time and space. Evaporation, for example, decreases soil surface moisture 

content which in turn reduces the rate of real evaporation from the soil surface (Entekhabi et al., 

1996). A large number of land surface models have been developed that include consideration of 

vegetation, surface resistance and snow schemes to calculate spatial and temporal variations in 

momentum, heat and moisture fluxes with the lower atmosphere (e.g., Sellers et al., 1986; 

Dickinson, 1988; Maxwell and Miller, 2005). However, most previous studies of evaporation 

have treated surface moisture as constant in time and space for the sake of simplification (e.g., 

Davies and Allen, 1973; Barton, 1979; Ăcs et al., 1991). Most land surface models to date have a 

parmeterization at the bottom layer that is user-specified as either a constant or a uniform 

moisture gradient, and with no attempt to incorporate the influence of groundwater (Chen and 

Hu, 2004). This study represents a significant advance in the treatment of surface moisture in 

that it consider dynamics of evaporation and groundwater table oscillations together. 

For beaches composed of well-sorted fine sand, groundwater table fluctuations correspond 

closely to oscillations in sea level such as the tides (e.g., Neilson, 1990; Turner et al., 1997; 

Raubenheimer and Guza, 1999). Thus, moisture content within the sand matrix and at the surface 

should vary in accordance with changes in water table elevation (Atherton et al., 2001). 

Assuming strong enough capillary rise, no hysterisis, horizontal water flow, and no evaporation, 

surface moisture content can be predicted easily and accurately based on knowledge of i) the 
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hydraulic characteristics of the sand, ii) the elevation of beach surface, and iii) the water table 

elevation. However, evaporation rates can be high on a real beach and may exert a significant 

influence on surface moisture content.  

The beach “surface” (i.e., 1-2 cm) represents the interface between the atmosphere and 

soil system. Changes in surface moisture content resulted from the dynamic interaction between 

evaporation and unsaturated flow from subsurface layers. However, these dynamics are complex 

and not well understood, and a satisfactory scheme to model variations in surface moisture 

content is not yet available. In light of this lack, the objectives of the present study are to: 1) 

investigate the interrelationship among evaporation, groundwater fluctuations and soil moisture 

content, and 2) establish mathematical models to simulate and predict the spatial and temporal 

variations of surface moisture content in a fine-grained beach. 

7.2   Model Derivation 

Studies of water table fluctuations in relation to the tide, and of evaporation rates from the 

beach surface, have been developed and presented in the preceding chapters. In this chapter, the 

problem of moisture transport in the unsaturated zone, from the groundwater table to the surface 

layer, will be addressed. 

7.2.1 The Richard’s Equation (RE)  

In a homogeneous soil, one-dimensional, isothermal and unsaturated water flow with 

sources can be described by the Richard’s equation (e.g., Yuan and Lu, 2005):  
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with initial and boundary conditions:  
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where ψ  is the pressure head (L), ψθψ ddC =)(  is the differential water capacity (T-1), )(ψK  

is the unsaturated hydraulic conductivity function, θ  is the volumetric moisture content of the 

surface layer (L3L-3), z is the vertical coordinate upward from water table (L), t is the time (T), S 

is water sources and sinks(LT-1), sψ  is the prescribed pressure head (L), and  is the water 

flux at z. 
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For a surface layer of depth d1, for z a flux-conservative equation can be obtained by 

integrating Equation (7.1): 
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where  is the depth of the surface layer (L); P is the precipitation (LT1d -1);  is the water flux 

between the surface layer and subsurface layer (LT

Q

-1);  is the rate of soil surface evaporation 

(LT

gE

-1); and wρ  is the density of water. Equation (7.5), also called the bucket model (Kondo et 
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al., 1992), implies simply that soil water content at any point in time results from the difference 

between inputs and outputs of water (Wythers et al., 1999).  

Assuming that the moisture content of the lower boundary of the surface layer is affected 

only by capillary rise, we obtain: 
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Eq. (7.7) can therefore be approximated by: 
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7.2.2 Force-restore Method (FRM) 

It is worthwhile to investigate use of more simplified soil parameterizations, in the interest 

of computational efficiency. The force-restore method (Deardorff, 1977, 1978), which was 

originally developed for a simple prediction of surface temperature, has been widely used as a 

model for predicting soil moisture (e.g., Yee, 1988; Noilhan and Planton, 1989; Dickinson, 1988; 

Savijarvi, 1992; Kondo and Saigusa, 1992; Bosilovich and Sun, 1995, 1998; Pellenq et al., 

2003). Although the movement of water is strongly affected by soil hydraulic properties and 

some uncertainty may be introduced as the moisture content approaches zero (which are not 

considered in FRM), the force-restore method is still promising as a simple method for 

prediction of surface moisture content, as Bosilovich and Sun (1998) recommended. The basic 

relationships of the force-restore method are: 
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in which the last two terms on the right-hand side of the first expression in Equation (7.12) are 

the force term (net fluxes of water between the soil and atmosphere) and restore term (net fluxes 

of water between surface soil layer and the subsurface soil layer) respectively; iθ  is volumetric 

moisture content (L3L-3) of the surface layer at time t (T); 101dD =  is an arbitrary 

normalization depth of 10 centimeters (L); bθ  is mean volumetric moisture content (L3L-3) of the 

layer 0-50cm;  is the depth of the bulk layer (L);  is a function of 2d 1C iθ  and  is a constant 

set at 0.9 (dimensionless); and 

2C

τ  is diurnal period (T). The linear function derived by Deardorff 

(1978) for  is 1C
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in which fcθ  is the field capacity (L3L-3), in which sθ  is the saturated water content (L3L-3).  

7.2.3 Evaporation from Soil 

The process of evaporation from soil is a function of soil and atmospheric parameters 

such as surface moisture, vapor pressure, temperature gradients, radiation flux and air turbulence 

at the soil-atmosphere interface (van de Griend and Owe, 1994). Evaporation from bare soil can 

be estimated by a simple linear equation (Mahfouf and Noilhan, 1991, citation therein) as 

pvg EE βσ )1( −=                                                                                                (7.14) 
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in which vσ  is the fraction of vegetation cover (dimensionless, equal to 0 for bare soil),  is 

the potential evaporation (LT

pE

-1), and β  the moisture availability (dimensionless), given as  
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Details of the calculation of potential evaporation can be found in Chapter 5. 

7.3   Methodology and Data 

Solar radiation, wind speed, air temperature and relative humidity measurements are 

utilized in this chapter for evaporation estimation (see Chapter 5). Although groundwater table 

fluctuations can be predicted based on tidal oscillations (Chapter 6), field data of groundwater 

table are used directly here. It is worth noting that the direct usage of the field measurements of 

the groundwater table fluctuation in this study simplifies the computations (much fewer models 

involved) but not affects the simulation accuracy. Results of grain size analyses are employed to 

estimate hydraulic conductivity of local sand. See Section 3.2 for details of measurement 

procedures for all parameters involved. 

7.4   Forward Simulation of Surface Moisture Variations 

7.4.1 Water Retention Curve and Hydraulic Conductivity 

The soil water retention curve, which describes the relation between matric potential and 

moisture content within a vertical soil profile, provides a simple but efficient way to estimate the 

soil moisture distribution under steady state. Although a number of models have been developed, 

the analytical form of the soil hydraulic function proposed by Van Genuchten (1980) is generally 
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thought to match experimental data more satisfactorily than others (Stankovich and Lockington, 

1995; Cornelis et al., 2001). It is expressed as: 
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r
−

+=
−
−

=Θ αψ
θθ
θθ

1 ]                                                                                  (7.16) 

[ 21 )1(1)( mm
sKK Θ−−Θ=Θ λ ]                                                                           (7.17) 

in which the volumetric water content θ (L3 L-3) is normalized into the dimensionless water 

content , that is, the effective saturation (Ruan and Illangasekare, 1999); Θ rθ  is the residual 

value of volumetric water content (L3 L-3), α , n are estimated parameter values (dimensionless); 

nm 11−= (dimensionless); and 5.0=λ  is curve shape parameter(dimensionless). Figure 7.1 

shows the fitted water retention curve and predicted hydraulic conductivity Padre Island beach 

sand, in which 443.0=sθ cm3cm-3, 018.0=rθ  cm3cm-3, 0218.0=α , and . 701=n .5
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Figure 7.1 Fitted soil water retention curve and predicted hydraulic conductivity 

 using the Van Genuchten (1980) model 
 

Saturated hydraulic conductivity was estimated from the expression proposed by 

Alyamani and Sen (1993): 

[ 2
10500 )(025.01300 ddIK s −+= ]                                                                       (7.18) 
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where Ks is saturated hydraulic conductivity (L T-1),  is smallest grain size (L, 0.074 mm for 

local sand of this study area),  and  are 10

0I

10d 50d th and 50th percentile grain sizes respectively (all 

determined by graphical method). According to grain-size analyses of local sand samples,  

has a value of 0.0084 cm s

sK

-1. Unsaturated hydraulic conductivities calculated from Equation 

(7.17) are shown in the right-hand side of Figure 7.1. 

7.4.2 Modeling Variations in Surface Moisture Content 

7.4.2.1  Comparison of the RE and FRM 

Ignoring the effect of hysterisis, and assuming steady-state at each time point, we can 

calculate the volumetric moisture content and hydraulic conductivity of the lower boundary of 

the “surface” layer using Equation (7.10), (7.16) and (7.17), given the water table depth ( ). We 

designate the depth of the surface layer  as 1.4 cm (in accordance with the depth of “surface” 

moisture content measurements collected in this study). Equation (7.5), derived from the RE, can 

then be numerically solved using finite-difference approximation within the explicit scheme of 

Forward Time Centered Space representation (Press et al., 1988) with boundary conditions given 

in Equations (7.6)-(7.10) and input of simulated soil evaporation rates.  

0z

1d

For comparison with the RE approach, we also simulate the variation of surface moisture 

content by the FRM method, using Equations (7.12) along with (7.13)-(7.16). For a soil matrix 

with a slowly fluctuating shallow water table, it is reasonable to assume that the mean bulk 

moisture content bθ  is affected only by capillary rise, so that bθ  can be approximated and 

calculated by: 

∫
−

=
0

20

)(1

2

z

dz
b dzz

d
θθ                                                                                               (7.19) 
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in which the depth of the bulk layer  is set as 50 cm following previous studies (e.g. 

Deardorff, 1977, 1978; Noilhan and Planton, 1989; Kondo and Saigusa, 1992; Bosilovich and 

Sun, 1995, 1998; Pellenq et al., 2003).  

2d

Figure 7.2 plots simulated equilibrium surface moisture contents predicted by the RE and 

FRM approaches with various constant evaporation and steady water table. It is clear that 

evaporation process exert an influence only when moisture content is in the low range. For the 

RE, the critical surface moisture contents (below which evaporation begins to impose influences) 

are about 0.04 and 0.07 for potential evaporation rates of 8 cm/d and 21 cm/d, respectively, 

which occurs when the water table is at the depth of about 70 cm and 90 cm from the surface. 

When surface moisture content exceeds these thresholds, it is affected only by groundwater 

fluctuations. For reference, typical daily maximum and average evaporation rates were around 21 

and 8.5 cm/d. For the FRM, similar, the thresholds also exist for the effectiveness of evaporation. 

They are about at 0.05 and 0.11 respectively. However, FRM simulations exhibit poor behavior 

near in the saturation end: a dramatic increase in the influence of evaporation (Figure 7.2). This 

is essentially an artifact of the model and does not reflect the result. With surface moisture 

contents close to saturation, the restore term of the FRM actually decreases with surface moisture 

content. This occurs due to the decrease in the difference between surface moisture content and 

mean bulk moisture content (equation 7.12), while the force term remains constantly equal to 

potential evaporation as atmospheric demand for vaporization is fully reached. This implies that 

the FRM is very likely to underestimate surface moisture content and is not be appropriate for 

use in regions with a shallow water table and high water content. 

When compared to the field measurements of surface moisture content, the FRM 

simulations is nearly as strong as the numerically solved RE from a statistical standpoint. The 
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Figure 7.2 Simulated equilibrium surface moisture content by the RE and FRM with 

steady water table and various steady potential evaporation rates 
 
coefficients of determination (R2) for simulations by the RE and FRM are 0.92 and 0.90, and the 

Residual Mean Squares (RMS) are 0.0021 and 0.0022 respectively (Figure 7.3). However, as 

previously mentioned, the FRM substantially underestimates surface moisture contents close to 

saturation. Because of this weakness, it was not considered worthwhile to pursue the use of FRM 

any further. 
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Figure 7.3 Measured vs. simulated surface moisture content by the RE and FRM 
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7.4.2.2 Simulations of Moisture Content Time Series by the RE 

To assess the details of model simulation, simulated time series of the averaged surface 

moisture content at Lines 1-12 are plotted in Figure 7.4. The numerically solved RE successfully 

captured the diurnal signals of surface moisture variation in terms of cyclic phase change. Some 

obvious discrepancies can be identified between measured and simulated moisture content, 

particularly in the first three days of the study period.  

The simulations indicate that the evaporation dominates surface moisture variations in 

lines close to the dune toe (Line1-Line3), where the beach surface is relatively dry. In this zone, 

the evaporation induced daily changes of up to 0.04 cm3cm-3, close to field measurements of 

Kim (2002), Yang and Davidson-Arnott (2005), and this study. In contrast, groundwater table 

oscillations only generated content change of ~0.01 cm3cm-3 (see the simulations with and 

without consideration of evaporation). Water-table-induced fluctuations are dominant for all 

other lines (the simulations with and without evaporation are overlapped), approximately 

generating surface moisture variations as much as an order of magnitude up to 0.3 cm3cm-3 each 

day. Maximum daily changes in surface moisture content were found in midbeach (Line 6 and 7) 

as Yang and Davidson-Arnott (2005) observed.  

The reasonable match between observed and simulated surface moisture content indicates 

that the numerically solved Richard’s equation combined with groundwater and evaporation 

models can be used as a sufficient approach to model the variability of surface moisture content, 

and more importantly, it confirms that evaporation and groundwater table are indeed the two key 

processes controlling the surface moisture content variability in a beach. Overall the surface 

moisture variations caused by evaporation were very small compared with those caused by water 

table oscillations. Water table oscillations contribute a large part of the high degree of spatial and 
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temporal variability in beach surface moisture content. However, evaporation process more 

important for the back beach, where the water table is relatively low and aeolian sediment 

transport usually occurs.  
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Figure 7.4 Measured vs. simulated time series of averaged surface moisture content for 

Line 1-12 
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Figure 7.4 Continued 

7.4.2.3 Simulations of Spatial Variations in Surface Moisture Content by the RE 

Measured and simulated surface moisture maps in Aug 2nd, 2005, were plotted in Fig 10 

as an example. The maps were generated using Surfer®, distributed by the Golden Software, Inc. 

From a visual examination, the simulated maps reasonably match the measured ones in terms of 

moisture zone shifting and the position of moisture contours. Clearly, some spatial features of the 

measured moisture maps were not reproduced by the simulation, possibly due to the assumption 

of homogeneous beach composition (spatial heterogeneity of hydraulic properties of beach 

surface is not account for). Another problem worth noting is that the width of the moisture 

“region” 0.14-0.35 is substantially narrower on measured maps than on simulated maps. This 

implies that in reality moisture content decreases landward more rapidly within this range than 
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predicted, and that the best-fit water retention curve still does not represent exactly the real 

relationship between moisture content and pressure head. 
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Figure 7.5 Measured vs. simulated surface moisture content maps on Aug. 2nd 2005 
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7.5   Conclusions 

In this study, as no precipitation was recorded throughout the study period, only two 

temporal parameters (i.e., groundwater table fluctuations and evaporation) that control the 

variations in surface moisture content are considered. The latter variable is actually a function of 

four other time-dependent parameters: net radiation, wind speed, air temperature and 

atmospheric humidity.  

The simulations using the numerically solved RE successfully captured the diurnal signals 

of surface moisture variations in terms of magnitude and timing. This indicates that groundwater 

table fluctuations and diurnal changes of evaporation are indeed the two dominant processes that 

determine surface moisture distribution and redistribution for the beach system. The simulations 

based on the numerically solved RE definitely provides a quite good representation of the 

evolution of beach surface moisture. The FRM, requiring fewer inputs, was also found as a 

simple approach to understand and to estimate the variations in beach surface moisture. 

However, it in general causes underpredictions in the region where the water table is very 

shallow and the surface moisture content is close to saturation. 

Some error generated by the RE simulations were readily identified in the predicted time 

series and spatial maps of surface moisture content in comparison with measured data. These 

discrepancies were clearly resulted from the simplification of the beach system, which includes a 

number of assumptions, such as spatially homogeneous sediment, dominant vertical water flow, 

hydrostatic state and no hysterisis. These assumptions together provide a reasonable basis to 

model the spatial and temporal variability of beach surface moisture content with computational 

convenience. At the same time, they inevitably introduce systematic errors to the simulated 

results. Note that in general proposed model can never exactly repeat complex behaviors 
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involved in real, natural systems, but provide approaches to represent those processes for better 

understanding and practical usages. From this standpoint, the ultimate goal of this study, to 

achieve a better understanding of beach surface moisture dynamics, is finally achieved by the 

utilization of the numerically solved RE, along with groundwater, evaporation and soil 

characteristic models presented in this chapter and preceding chapters.  

These combined models can be extrapolated for various environmental settings with 

specified hydraulic properties. The results are highly useful for relatively wide dissipative 

beaches with large tidal range (which means large part of the beach is dominated by evaporation 

process). However, for mud beaches or where native materials has substantial amount of clay, 

the effect of hysterisis must be included to obtain reasonable model performance. 

 



CHAPTER 8    SUMMARY AND DISCUSSION 

8.1  Summary of the Study 

In pursuit of the ultimate goal of this project - to model the spatial and temporal dynamics 

of beach surface moisture-numerous parameters were directly monitored, including beach 

surface moisture content, evaporation rates, tide and groundwater table elevations, atmospheric 

conditions (including wind speed and direction, air temperature, and relative humidity), at a fine-

grained beach of the Padre Island National Seashore, Texas. Spatial and temporal variability in 

surface moisture content was documented over an eight-day period. Key factors controlling this 

variability were identified as groundwater table fluctuations and evaporation (no precipitation 

was recorded through the study period). These two key factors were successfully modeled 

independently. Finally, variability in surface moisture content was found to be reasonably 

represented using the numerically solved Richard’s equation, in conjunction with the coupled 

groundwater  model (Boussinesq equation) and the evaporation model (Penman equation), and 

the soil water characteristic models (van Genuchen model). This study demonstrated that beach 

surface moisture dynamics can be simulated with data inputs that include tide levels, beach 

topography, sediment texture, aquifer depth, and routine climatic data (solar radiation, wind 

speed, air temperature and relative humidity). 

Field measurements show that the beach can be classified into three moisture-content 

zones: the dry back beach, extending from the dune toe to ~45 m (distance from the time-

averaged shoreline), the highly-variable middle beach, extending between ~25-45 m from the 

shoreline, and the wet fore beach, lying in the region from ~25 m to the shoreline. Beach surface 

moisture content exhibits the highest variability in the middle part of the beach, up to ± 30% 
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(volumetric) in a day or across a space of ~20 m, while the variability in the back beach and the 

fore beach is less than ± 6% for the entire study period. In the alongshore direction, surface 

moisture content also varies quite notably (up to ~10%). The alongshore variability in surface 

moisture content is controlled, at least partly, by the alongshore variations in beach surface 

elevation. Over time, the moisture contours shift position in response to tide oscillations, with 

relatively low speed in the dune side and high velocity in the foreshore side.  

To simulate evaporation rates and evaluate the applicability of popular evaporation 

models to the study site, the mass-transfer method (represented by the Singh and Xu (1998) 

equation), and an approach combing the energy-budget and mass-transfer methods (represented 

by the Penman equation), were tested against field-measured evaporation data. Results showed 

that the mass-transfer method consistently generated large errors in prediction. It appears that the 

employed parameters are not the key controlling factors for the evaporation in the unique coastal 

climatic pattern (day sea-breeze and night land-breeze pattern). Simulations generated by the 

Penman equation provide much better agreement with field measurements, although a clear time 

offset (~2 hrs) and some underestimation in the early evening were apparent. With modification 

of the time offset and the constants used in the wind function, the accuracy of the Penman 

equation improved substantially. 

The tide-induced groundwater table fluctuations were simulated using the numerical 

solutions of the linearized Boussinesq equation. Two approaches were employed, based on 

assumptions of a vertical beach and a sloping beach, respectively. Both simulations reproduced 

the signal from the tide quite well in terms of phase change, but the simulation with a sloping 

beach performed significantly better in regard to the magnitude of the groundwater table 

fluctuations, particularly during low tides. Underestimations were found in both simulations 
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during high tides in the second portion of the beach, especially for the first five tidal cycles. 

These underestimations can be attributed to additional infiltration from swash-induced, 

transitional ponding on the beach surface near the berm crest. This latter process cannot be 

included in the Boussinesq equation. The field measurements of ground water table elevations 

and spectral analyses show that the lower frequency signals in the groundwater oscillations (e.g., 

diurnal tidal oscillations) do not follow the exponentially damping trend in the landward 

direction as previous investigators reported. This means the analytical solutions of the 

Boussinesq equation (which imply an exponential damping rate) are not directly applicable to 

this study site and similar environments. 

Simulated time series and maps of beach surface moisture content both indicate that the 

numerically solved Richard’s equation, combined with models describing the fluctuations of the 

groundwater table, the evaporation rates and the hydraulic properties of the sediment, provides a 

reasonable approach to represent surface moisture dynamics. The combination successfully 

captured most signals from the groundwater table and surface evaporation. However, some 

systematic errors can also be found by the comparison of the simulated and observed moisture 

contents.  

8.2   Discussion 

The systematic errors mentioned above derive mainly from the simplification of the 

system. Since it is not possible to measure all relevant parameters in appropriate detail for the 

entire system, some assumptions were made here for the sake of mathematical convenience and 

simplicity, as is done in all modeling. The simplifications of the system based on these 

assumptions inevitably introduce some degree of error into the simulated results. It is thus 
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worthwhile to consider the assumptions used herein. The critical assumptions underlying this 

study include: 

1) The beach is assumed to be composed of homogeneous sediments. Although the beach 

can be considered as a homogeneous porous medium, beach sand close to dune toe has often 

been found to be slightly finer with lower bulk density than that close to the shoreline. Further, 

surface sand often has a lower compaction rate than sand from lower layers. Also, some 

heterogeneity in surface sand composition usually exists due to unpredictable factors, such as 

entrapped air, shells, vegetation and sea weed residuals (Faybishenko, 1995; Yang and 

Davidson-Arnott, 2005). The hydraulic properties (including water retention characteristics and 

hydraulic conductivity) of the sediment therefore may not remain exactly same for the whole 

beach (Figure 7.1). It should be noted that even a low degree of spatial heterogeneity in soil 

hydraulic properties may cause a high degree of the spatial and temporal variability in surface 

moisture content. Unfortunately, no reasonable approach to date has been reported to represent 

the subtle heterogeneity of a “homogeneous” medium like a beach. This is an area where further 

research is necessary and any advances in this problem will greatly improve model performance 

and accuracy in simulating the surface moisture dynamics. 

2) Vertical flows are assumed to dominate the unsaturated water transport within the 

vadose zone. Although the beach groundwater table is usually gently sloping and fluctuates at 

very small angles, it is indeed not flat (Nielson, 1990), and this leads to horizontal water flows in 

the vadose zone. The horizontal flow becomes more evident in the vicinity of the water table and 

areas where water table is shallow. Horizontal flow may also be important in the area 

immediately adjacent to the shoreline due to the dynamic swash. Employment of the two-

dimensional or three-dimensional version of the Richard’s equation may be helpful to better 
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simulations. However, this scenario can not be achieved until the spatial heterogeneity of 

required parameters (e.g., groundwater table depths and hydraulic conductivity) is able to be 

accurately predicted. 

3) It is assumed that the sediment has same water retention curves in the drying and 

wetting cycles. The cyclic movement of the groundwater table results in corresponding 

movement of the moisture profile above the groundwater table (Stauffer and Kinzebach, 2001). 

These processes are governed by the water retention curve, which is generally not constant, 

rather it shows hysteresis effects. That is, the same pressure head usually corresponds with 

higher water contents during water table falling (drying cycle) than during water table rising 

(wetting cycle) (Childs, 1969; Kessler and Rubin, 1987). Although well-sorted beach sand 

usually exhibits only a small hysterisis effect, the hysterisis may still exert some uncertain 

influences on surface moisture evolution. For example, in Line 6 of Figure 7.4, the measured 

surface moisture content in July 30th is apparently lower than that in Aug 2nd although the 

magnitudes of groundwater table fluctuation were almost same. This is possibly due to the 

hysterisis effect: although the hydraulic pressures were almost same, a long-term drying trend in 

the area is apparent as the beach experienced substantial drainage during the study period. 

Carefully-designed laboratory experiments and more field measurements are required to 

determine the extent to which hysterisis is involved in the evolution of beach surface moisture. 

4) The water content profile within the sand column is assumed to be in a steady state 

with no transient water flow. The assumption of steady state implies that the matric potential on 

the surface corresponds exactly and synchronously with water table changes. However, realistic 

matric potential on the surface may substantially lag behind the water table oscillation, and this 

time lag proportionally increases with the water table depth. Fortunately, for a real beach 
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environment, the amplitudes of water table fluctuation decrease exponentially with distance from 

the shoreline as the water table depth increases, which implies the existence of transient water 

flow may not fundamentally hurt model performance. This was also found to be the case by Raes 

and Deproost (2003). 

5) Atmospheric stresses and demands on evaporation are assumed to be identical for the 

entire beach. As commonly recognized, potential evaporation is determined by the incoming net 

radiation, air temperature, humidity and wind speed, which are in turn affected by soil surface 

conditions (including roughness, albedo and adjacent topography, etc.). Since surface conditions 

of the beach are not exactly the same, the evaporation potential will also not be spatially uniform. 

Again, however, this kind of spatial heterogeneity cannot be adequately represented with the 

current level of knowledge. 

6) It is assumed that the real soil evaporation rates respond to surface moisture content 

variations strictly following the linear relationship given by equation (7.14). Gavin and Agnew 

(2000) found the surface resistance (to evaporation) of the Penman-Monteith equation is 

definitely not linearly related the soil moisture content, although their field study has far too few 

points to generalize a clear relationship. Similar results can also be found in the study of 

Aluwihare and Watanabe (2003). These results indicate that equation (7.14) may need to be 

further modified to obtain a more accurate estimation of real soil evaporation, particularly for a 

dry soil surface. However, such a modification is not currently available. Many researchers have 

found that the measurements of temperature and humidity of the drying soil surface usually 

provides a better estimate of real soil evaporation. However, it not possible in practice to 

measure such information at each point on a grid as large as that employed in the present study. 

On the other hand, the formation of a dry soil layer (which is usually a few millimeters in depth) 
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often imposes dramatic influences on the evaporation process (Yamanaka and Yonetani, 1999; 

Aluwihare and Watanabe, 2003). A more accurate soil evaporation model, particularly for the 

driest areas, would almost certainly enhance model performance in this study. This is yet an area 

where further investigations are needed. 

The assumptions mentioned above make contributions in varying degrees to the 

discrepancies that were found between measured and simulated surface moisture contents. 

Nevertheless, these assumptions are carefully considered and are based on the environmental 

conditions and field observations. More importantly, they are quite reasonable for balancing the 

concerns of measurement feasibility, model simplicity, computational convenience, and the 

complexity of the system. They indeed provide a solid basis to sufficiently simulate the spatial 

and temporal variability in surface moisture content. However, before this variability is fully 

understood and improved predictions can be obtained, many more experiments must be 

conducted to obtain exact information about soil hydraulic properties and more precise functions 

must be developed to describe the related physical phenomena.  

8.3   Model Applicability 

Although all model inputs were obtained for a relative short time period and a specific 

environmental setting, the findings of this study should be fully applicable to other environments 

where surface moisture dynamics are primarily controlled by evaporation and/or groundwater 

table fluctuations. As all the models and involved constants are specified physically instead of 

empirically, associated simulations can be readily conducted with inputs from independent 

measurements of local atmospheric parameters and hydraulic properties. In addition, all required 

inputs (e.g., wind speed, air temperature, relative humidity, topography, and grain sizes) are 
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routine data or can be easily measured. This clearly further enhances the applicability of the 

model proposed in this study. 

For locations where other major water inputs and/or outputs may involve (e.g., 

precipitation, surface water infiltration, evapotranspiration, etc.), the findings and proposed 

models of this study can also be easily modified according to the required environmental 

adjustment. High accuracy of model performance can be expected if those additional fluxes are 

described accurately.  

8.4   Future Work 

This study has succeeded in documenting beach surface moisture dynamics, tide and 

groundwater table fluctuations, and evaporation rates with associated atmospheric parameters. A 

suite of models describing these processes have been identified and successfully employed. The 

resulting simulations of temporal and spatial variability in surface moisture content represent 

dramatic improvement on previous capabilities in this area. However, it should be noted that all 

modeling and simulations are based on data obtained in an eight-day field investigation. Longer 

term measurements that reflect a broader range of environmental conditions are highly desirable. 

Instruments or devices specifically designed for the “surface” layer are needed to achieve better 

consistency and accuracy in soil moisture content measurements. Specific investigations 

regarding evaporation from soil, particularly dry soil surface, are required to obtain better 

understanding of hydrodynamics in the surface layer. Detailed knowledge regarding hydraulic 

properties of native sediment may be helpful to incorporate the hysterisis effect into the 

simulation and then enhance the model performance.  
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APPENDIX I: FIT REPORT OF PROBE A CALIBRATION (BY 
GRAPHER®) 

Fit Polynomial 
Y=0.911495143-0.07626323823*X+0.001820139858*X2-1.106137341E-005*X3+2.909333627E-
008*X4-3.422044472E-011*X5+1.483354465E-014*X6 
 
Degree = 6 
Number of data points used = 50 
Average X = 395.74 
Average Y = 11.952 
 
Coefficients: 
Degree 0 = 0.911495143 
Degree 1 = -0.07626323823 
Degree 2 = 0.001820139858 
Degree 3 = -1.106137341E-005 
Degree 4 = 2.909333627E-008 
Degree 5 = -3.422044472E-011 
Degree 6 = 1.483354465E-014 
 
Degree: 0 
Residual sum of squares = 3291.6 
Coef of determination, R-squared = 0 
 
Degree: 1 
Residual sum of squares = 321.283 
Coef of determination, R-squared = 0.902393 
 
Degree: 2 
Residual sum of squares = 221.468 
Coef of determination, R-squared = 0.932717 
 
Degree: 3 
Residual sum of squares = 217.175 
Coef of determination, R-squared = 0.934022 
 
Degree: 4 
Residual sum of squares = 109.647 
Coef of determination, R-squared = 0.966689 
 
Degree: 5 
Residual sum of squares = 108.213 
Coef of determination, R-squared = 0.967125 
 
Degree: 6 
Residual sum of squares = 89.3372 
Coef of determination, R-squared = 0.972859 
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APPENDIX II: PARAMETER CALCULATIONS IN THE PENMAN 
EQUATION  

 
Particularly,  can be calculated by  Δ

2

4098

a

s

T
e⋅

=Δ                                                                                                                          (A.II.1) 

in which  is air temperature, and  is saturation vapor pressure (kPa) estimated by the 

Clausius-Clapeyron Equation 
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λ  varies only slightly over a normal temperature range (Valiantzas, 2006) and usually takes a 

constant value 2.45 MJ/kg for T =20 oC, but for higher accuracy it can be calculated by  

)3.237)(10361.2(501.2 3 −×−= −
aTλ                                                                           (A.II.3) 

γ  is usually set as a single constant value 0.0671 (kPa), and can be estimated by 

26.5)
293

0065.0293(3.1010016286.0 z⋅−
⋅=

λ
γ                                                                  (A.II.4) 

in which z is the height of other parameters been measured (m). The net radiation  is 

calculated as the difference between the incoming net short wave radiation , and  the 

outgoing net long wave radiation  as below (Rowntree, 1991) 

nR

nSR

nLR

nLnSn RRR −=                                                                                                                       (A.II.5) 

in which  is computed as  nSR

SnS RR )1( α−=                                                                                                                      (A.II.6) 

where  is measured or estimated incoming solar radiation (MJ/msR 2/d); α  is reflection 

coefficient or albedo. For an open water surface, α  is approximately 0.07-0.08. However, it is 
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expected to be somewhat higher for evaporation pan. We use 0.14 here following   can be 

estimated by (Rotstayn et al., 2007) 

nLR

4)( anL TfR σε ′=                                                                                                                    (A.II.7) 

Where σ is Stephan-Boltzman constant  (MJ/m2/K4/d); 910903.4 −×= T is mean air temperature 

(Celsius); ε ′  is the net emissivity, and  is adjustment for cloud cover. Details for calculations 

and 

f

f ε ′  can be found in Valiantzas (2006). 
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APPENDIX III: DERIVATION OF WAVE SETUP ANGLE 

Longuet-Higgins (1983) considered the balance between the radiation stress Sxx and the on-

shore pressure gradient relative to the still water level h(x), and proposed a differential equation, 

0
( )( ( ))xxdS dh xg h h x

dx dx
ρ+ + = 0                                                                                       (A.III.1) 

where ρ is the water density and h0 is the water depth relative to the still water level.  

The simple analytical solution provide by Longuet-Higgins (1983) was solved for a semi-infinite 

domain, but the free surface boundary conditions at the water table and the landward boundaries 

were not included (Massel, 2001b), therefore has restricted applicability to natural beaches (Li 

and Barry, 2000). Li & Barry presented a numerical study of the instantaneous, phase-resolved 

wave motion and resulting groundwater variation in the swash zone due to progressive bore. 

They also considered the average flow due to wave setup using a simplified representation of the 

setup gradient. 

Using the shallow-water approximation of Longuet-Higgins’ equation, Massel (2001a, 

2001b) present a formula for the setup-induced water table variation in the vicinity of shoreline, 

2

2
( ) [ ( )]31

8

s b bx h h xγη η
γ

= + −
+

                                                                                       (A.III.2) 

in which γ is the ratio of wave height to water depth (Hb/hb),  ηb is the setdown value at the 

breaking point, equal to γHb/16.  

A coordinate system can be set using the intercept of beach slope and still water level as 

the origin O, where 

2

2
(0) , 031

8

s b bh xγη η
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                                                                                     (A.III.3) 
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Figure A.III.1 Schematic of wave setup 

 
The point D (water line), where set-up watertable intercept the beach slope, can be illustrated as 

2

2
[ ( )],3 tan1

8

sMax
sMax b b Dh h x x ηγη η

βγ
= + − =

+
                                                            (A.III.4) 

The point E, where setup watertable intercept the still water level, setup height is 0, can be 

illustrated as, 

2

2
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s
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                                                                (A.III.5) 

where is the angle between the setup watertable and still water level (here assumed the setup 

watertable is linear). 
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Since for flat beach 1
1.2

γ ≈  (Turner, 1997), h(xE) hence might be approximated by 1.079hb, 

given: 
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βtan232.0=  
Therefore, setup angle could be approximated by: 

tan 0.232 tanα β=                                                                                                               (A.III.8) 
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