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Abstract 

 In the face of severe disasters, some or all of the endangered residents must be 

evacuated to a safe place. A portion of people, due to various reasons (e.g., no available 

vehicle, too old to drive), will need to take public transit buses to be evacuated. However, to 

optimize the operation efficiency, the location of these transit pick-up stops and the 

allocation of the available buses to these stops should be considered seriously by the 

decision-makers. In the case of a large number of alternative bus stops, it is sometimes 

impractical to use the exhaustive (brute-force) search to solve this kind of optimization 

problem because the enumeration and comparison of the effectiveness of a huge number of 

alternative combinations would take too much model running time.  

 A genetic algorithm (GA) is an efficient and robust method to solve the 

location/allocation problem. This thesis utilizes GA to discover accurately and efficiently 

the optimal combination of locations of the transit bus stop for a regional evacuation of the 

New Orleans metropolitan area, Louisiana. 

 When considering people’s demand for transit buses in the face of disaster 

evacuation, this research assumes that residents of high social vulnerability should be 

evacuated with high priority and those with low social vulnerability can be put into low 

priority. Factor analysis, specifically principal components analysis, was used to identify 

the social vulnerability from multiple variables input over the study area. The social 

vulnerability was at the census block group level and the overall social vulnerability index 

was used to weight the travel time between the centroid of each census block to the nearest 

transit pick-up location. 

 The simulation results revealed that the pick-up locations obtained from this study 

can greatly improve the efficiency over the ones currently used by the New Orleans 

government. The new solution led to a 26,397.6 (total weighted travel time for the entire 
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system measured in hours) fitness value, which is much better than the fitness value 

62,736.3 rendered from the currently used evacuation solution. 

  



1 

Chapter 1 Introduction 

1.1 Introduction 

The Intergovernmental Panel on Climate Change’s (IPCC) Fourth Assessment 

Report (2007) indicated that increased Atlantic hurricane intensity can be expected under 

global warming scenarios. Southern Louisiana is one of the most hurricane vulnerable 

areas. There were 14 hurricanes (a new record) in the 2005 hurricane season, three of which 

were among the most powerful and costly in the 154-year history of record-keeping in the 

Atlantic Basin (Wolshon, 2006). 

The best and perhaps the only way to reduce the risks when a severe hurricane 

approaches is to evacuate all the residents in the endangered area. Hurricane Katrina in Aug 

2005 exposed the need for all levels of government officials to reassess each component of 

disaster preparedness, especially the mass evacuation by private vehicles and public 

transportation. The personal vehicle evacuation was widely considered successful by 

applying contraflow in New Orleans metropolitan area. Most of the residents evacuated the 

city before the landfall. However, over twenty-seven percent of New Orleans households 

had no access to private vehicles and no way to evacuate due to inadequate public transit 

vehicles available (Hess and Gotham, 2007). The poor, elderly, and disabled are most 

vulnerable. Among these non-evacuated residents, over 1,000 people lost their lives during 

Hurricane Katrina. The New Orleans government was therefore rigorously criticized by the 

public about the failure to evacuate all these residents.  

 To avoid the failure of evacuating the endangered residents again, the best way, 

accessible transit buses must move the endangered residents to shelters outside the city 

before hurricane landfall. However, due to the limited number of available transit buses 

during disaster evacuation, the government can only offer a limited number of transit bus 
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stops. Therefore, to maximize the effectiveness of these transit bus stops, how and where to 

locate/allocate these transit stops poses a critical issue to the decisionmakers.    

The study area in this research is the densely-populated New Orleans metropolitan 

area. It includes parts of the Orleans Parish, St. Bernard Parish, St. Charles Parish and 

Jefferson Parish (Fig.1.1). This area is bordered by Lake Pontchartrain to the north and the 

Gulf of Mexico to the south. There were over one million residents living in this area.  The 

Greater New Orleans Metropolitan Area faces a big evacuation problem due to the large 

population and very limited road system. 

 New Orleans has long been considered “a disaster waiting to happen” area 

(Wolshon, 2006) and the disaster did happen during Hurricane Katrina. Evacuating this city 

is difficult because New Orleans is bounded on the north by the lake, which limits the 

routes out. In the last 10 years, there were already four major evacuations: 1998 for 

Hurricane Georges, 2004 for Hurricane Ivan, 2005 for Hurricane Katrina, and 2008 for 

Hurricane Gustav. 1.2 The Current Situation 

 In New Orleans, the City-Assisted Evacuation Plan (CAEP) is a program designed to 

help people who have no means of evacuating on their own due to various reasons, such as: 

financial need, unreliable or no transportation, or homelessness, etc. 

(http://www.norta.com/files/City_Assisted_Evacuation.pdf). Before and during Hurricane  

Katrina and Rita as well as Gustav, the CAEP was applied by the Office of Emergency 

Preparedness of New Orleans to evacuate the people who are willing to be evacuated during 

an emergency but have no accessible vehicles to self- evacuate. According to the CAEP, 

only those residents of Orleans Parish who meet one or more of the following criteria are 

eligible for help from the city: those who are homeless, those with no transportation or fuel 

to get out of the city, or those whose transportation mode is too small to accommodate their 

whole family and/or pets. In the plan, there were 17 evacuation pick-up locations, which 



3 

  

Figure 1.1. The study area 
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included four senior center locations for Orleans Parish (Figure 1.2).  

 During Hurricane Katrina, over ten thousand people still failed to evacuate or be 

evacuated before the hurricane made landfall near New Orleans. To make the transit buses 

convenient to for the most people in need, the CAEP cannot be deemed as a considerate 

plan that makes full use of the available transit bus resources. The reasons to criticize this 

plan are mainly twofold. First, all these transit bus stops for emergency evacuation are 

chosen arbitrarily by the decisionmakers almost without any criteria. The second drawback 

of this CAEP is that it only considers Orleans Parish. A more effective plan would take all 

the New Orleans Metropolitan area into consideration when locating the emergency transit 

bus stops, since several adjacent parishes also participated in the evacuation simultaneously.  

 The CAEP was changed in 2006. In preparation for the 2006 Atlantic storm season, 

New Orleans Mayor Ray Nagin and Terry Ebbert, director of the city's Homeland Security 

Department, drew upon the lessons of Hurricane Katrina and released a new evacuation 

plan that uses trains, airplanes, and buses to evacuate people out of town. The 2006 CAEP 

shows that Amtrak trains will be used to evacuate the sick and elderly, the airplanes will be 

held to help tourists out of New Orleans, and transit buses will be used to pick up residents 

with no means of transportation from designated points and deliver them to the Morial 

Convention Center (Figure 1.3). 

 Although the new CAEP shows flexibility and improves on the old plan, there are 

still some doubts about the effectiveness of this plan. CNN criticizes the plan because of a 

lack of available rail operators and doctors for Amtrak for evacuating the sick and elderly. 

Furthermore, agreement between the airlines and the government for evacuating tourists has 

not been completed.  Regarding the use of buses to evacuate residents, which is the very 

concern of this research, CNN says that there are no more than one hundred buses available 

to carry over 10,000 people out of the city, and that the bus drivers have not agreed to 
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Figure 1.2. City Assisted Evacuation Plan (CAEP) of New Orleans before Hurricane 
Katrina. 
(Source: A guide to accessing the CAEP from the office of Emergency Preparedness of 
New Orleans. Http://www.norta.com/files/City_Assisted_Evacuation.pdf) 
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remain in the city under evacuation orders 

(http://www.cnn.com/2006/US/05/11/new.orleans.evacuation/index.html). 

1.3 The Objectives of This Research 

 The objectives of this research are as follows: 

 1.  To develop a location/allocation strategy which considers both the endangered 

residents’ demands for convenient pick-up locations and the social vulnerability of the 

affected residents. In this proposed strategy, highly-vulnerable residents should be able to 

reach their nearest transit bus stop relatively easier in terms of the travel time. In disaster 

evacuation, the social vulnerability of residents should be considered because we assume 

that for those living in high social vulnerability areas,  a relatively higher percentage of 

people need public transit than the percentage of people living in low social-vulnerable 

areas. 

 2.  To obtain the optimal transit bus stop locations by utilizing the genetic algorithm 

(GA). The basic assumptions of this algorithm are that all the residents without a personal 

vehicle in the endangered area will be assigned a transit bus stop for evacuation, and that 

the overall travel time for all residents involved to reach their nearest transit bus stops 

should be minimized. 
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Chapter 2 Literature Review 

 This research is mainly about utilizing the genetic algorithm (GA) to locate the best 

bus stop locations from a large number of possible bus stops for the disaster endangered 

areas. “Best” in this case is defined as minimizing the total traffic demand distance from the 

residents’ home to the nearest pick-up locations. When deciding the locations of these 

transit bus stops, the different vulnerabilities of residents of the endangered locations were 

also identified and used. In addition, the traffic routing model was applied to calculate the 

minimum travel time from any resident to its nearest transit bus stop. Finally, this transit 

bus stop location problem is one aspect of evacuation transportation planning research, so 

this section will also introduce the regional evacuation problem issue.     

 Therefore, this chapter provides a review of five topics: disaster transportation 

planning research, location/allocation problem, GA, social vulnerability, and traffic routing 

model. 

2.1 Research on Disaster Transportation Planning 

 The majority of previous studies on disaster transportation planning were concerned 

with: 1) estimating the accurate evacuation time, and 2) finding different strategies to 

decrease the needed evacuation time (Jamei, 1984).   

 Simulation models are most often used to estimate the accurate evacuation time 

(Chen, 2006). Due to the different level of detail in modeling traffic flow in a simulation, 

the simulation level can be mainly classified into two basic categories: macroscopic and 

microscopic. Macrosimulation is based on aggregate traffic flow. Because the implicit 

assumption in a flow-based model is that the flow on a link is instantaneous and 

homogeneous, the macrosimulation model is not so accurate. Microsimulation, the finer 

level, traditionally focuses on the characteristics of individual motorist and travel behavior 

(Hoogendoorn and Bovy, 2001). In most situations, microsimulation is the best choice as it 
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can lead to the most accurate result (Chen, 2006). However, microsimulation requires more 

computing power and time to simulate. 

 Many studies have attempted to decrease the evacuation time needed in the 

endangered area by applying various strategies. The first of these types of strategies is to 

modify the normal road network configuration and optimize the evacuation route as well as 

traffic light control. Such examples include Wolshon’s (2006) research on the contraflow 

implementation in New Orleans, which is a proven success in relieving traffic congestion 

during the Hurricane Katrina evacuation. Another good example is research on configuring 

the traffic signal to improve traffic conditions during disaster evacuation, which was 

conducted by Chen and Zhan (2006). In their research, approaches for signal timing to 

facilitate evacuation and response in the event of a no-advance-notice disaster requiring 

evacuation in an urban area were investigated using a simulation model constructed with 

data from Washington, D.C. The other kind of strategy used to decrease the evacuation time 

is called staged evacuation. The basic idea of the staged evacuation is to decrease the peak 

number of vehicles on the road at any time, thus mitigating the traffic congestion (Cova and 

Johnson, 2002). Chen (2006) divided the evacuation area into four parallel areas, which fall 

into two groups, and simulated evacuation so that the residents in different zones evacuated 

in a sequence. The simulation result showed that there exist some staged strategies can 

reduce the overall evacuation time.  

 The last strategy often used to optimize the evacuation efficiency is called intelligent 

transportation systems (ITS). The basic idea of these systems is to make timely traffic and 

weather information available to the evacuees, and then the evacuees can make a more 

suitable evacuation decision. To accomplish this, this system encompasses a broad range of 

wireless and wire line communication-based information and electronics technologies.  

technologies.  When integrated into the transportation system's infrastructure, and in 
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vehicles themselves, these technologies relieve congestion, improve safety, and enhance 

productivity (Urbina and Wolshon, 2003).    

 However, the current literature on mass evacuation plans devotes little attention to 

the segment of the populations who do not own vehicles (U.S. DOT, 2006; Hess and 

Gotham, 2007). In a “walking city” with a large number of impoverished residents, such as 

New Orleans, more attention to this issue is needed. 

2.2 Location/Allocation Problem 

 Location/allocation problems are “a class of mathematical programs that seek the 

least cost method for simultaneously locating a set of service facilities and satisfying the 

demands of a given set of customers” (Sherali and Adams, 1984). Cooper (1963) built the 

following formulation (1) to solve this location/allocation problem: 

  1+k
jx = ∑=

=

ni

i 1
(aij wij xDi / k

ijD )/ ∑=

=

ni

i 1
(aij wij / Dij), 

 1+k
jy = ∑=

=

ni

i 1
(aij wij yDi / k

ijD )/ ∑=

=

ni

i 1
(aij wij / Dij), ( j=1,2, ···, m)                  (1) 

 
where: 

 aij is a multiplier, which is 0 or 1; 

 wij is the weighting factor ; 

            xDi, yDi are the locations in the set of n known destinations. 

 k
ijD  is the distance between the source and the destination. 

 This equation is feasible for small problems. However, Cooper (1963) admitted that 

this method is not computationally attractive for a large number of destinations (>10). 

When Cooper addressed the limitation of this method, he thought that even with the modern 

computer’s calculation capability at that time, it was still very difficult to overcome the 

limitation of this multi-facility locational problem. However, Cooper’s research problem 

has been solved by using different kinds of optimization algorithms, including the GA, 

which was used by this research.  
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 Facility location models are used in a wide variety of applications. These include 

locating warehouses within a supply chain to minimize the average time to market, locating 

hazardous material sites to minimize exposure to the public, and locating post offices to 

facilitate the accessibility of most residents, locating a coastal search and rescue station to 

minimize the response time to maritime accidents (Trevor and Christopher, 2003). Many 

other such facility location problems exist in our daily lives, even though they can be very 

much different in their objectives. “Minisum” and “minimax” have been the two 

predominant objective functions in location science (Hale and Moberg, 2003).  

 Location problems are generally solved on one of three basic spaces: continuous 

spaces (spatial), discrete spaces, and network spaces (Hale and Moberg, 2003). Continuous 

space means that the location problems are such that any place with x, y, z coordinates can 

be a feasible location for a facility. Discrete space means that the locations must be chosen 

from a pre-defined set of locations. Network space, which was used in this research, means 

that the locations are confined to the links and nodes of an underlying network.  

 This research aims to locate the optimal bus stop combination locations for the 

disaster-threatened areas, so it should fall under the realm of disaster mitigation. However, 

most previous disaster mitigation research dealing with the disaster location/allocation 

issues were concerned with locating the shelters in a region threatened by a hurricane 

(Sherali et al., 1991). In their research, the model selected a set of candidate shelters among 

a given set of admissible alternatives in a manner feasible to available resources, and 

prescribed an evacuation plan which minimizes the total congestion-related evacuation 

In the end, they concluded that the location of shelters in a region threatened by a hurricane 

can greatly influence the highway network clearance time, (i.e., the time needed by 

evacuees to escape from their origin locations to safe areas). However, Sherali et al. (1991) 
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did not consider the different social vulnerabilities of residents in the endangered area when 

locating the shelters.   

2.3 The Classification of Facility Location Models  

 Four major general classes of location models are identified by Church (1999): 

median, covering, capacitated, and competitive. A median model involves locating a fixed 

number of facilities in such a manner that the average distance from any user to their closest 

facility is minimized. Covering models locate facilities to cover all or most demand within 

some desired service distance, such as covering the maximum population. Compared to 

median models, which assume that there are enough resources at each facility to handle 

demand, capacitated models place the limit on what can be accomplished at each facility. 

Competition models allow a competitor to readjust to any location decisions that other 

competitors have made (Church, 1999). 

 For this study, we consider our research problem a p-median problem because the 

task is to locate p facilities in a given Euclidean space which satisfy n demand points in 

such a way that the total sum of distances between each demand point and its nearest 

facility is minimized (Teitz and Bart, 1968) Specifically, this research aims to determine the 

optimized transit bus stop locations that can minimize the total sum of distances from the 

endangered residents to their nearest bus stops. The p facilities are the alternative transit bus 

stops, while n demand points are the census block centroids which represent the evacuees’ 

locations.  

 As a P-median problem, this research question can be formulated as follows: 

1. Assuming that we have 183 alternative transit bus stops, this set of 183 facilities 

(potential transit bus stop locations) is the set V (|V|=183) of all candidates to median 

(selected transit bus stop locations).  

2. Let VP ≤ V (|VP|=20) be the set of the 20 selected transit bus stop locations. This 
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means that the combination of final 20 transit bus stops that will optimize the overall travel 

time should be chosen out of the 183 alternative bus stops. 

3. When evacuation is needed, every evacuee who uses the transit bus to evacuate 

the endangered area will go to his/her nearest transit bus stop. 

4. The goal is to select a subset VP ≤ V that minimizes the total sum of weighted 

travel time between each evacuation needed residents’ home and its nearest transit bus stop 

(median). 

2.4 Genetic Algorithm 

 GAs are a heuristic method used to find approximate solutions to complicated 

problems through application of the principles of evolutionary biology. GAs have been 

applied in many fields such as biogenetics, computer science, engineering, economics, 

chemistry, manufacturing, mathematics, and physics (Correa et al., 2004). As a heuristic 

method, GA can contribute to identifying the circulation eyes of tropical cyclones (TCs) 

(Yan et al., 2008); detecting the irregularly-shaped spatial clusters (Duczmal et al., 2007); 

and capturing the spatio-temporal trend in landscape pattern change of Daqing City, China 

(Tang et al., 2007). Because of their powerful functionality and high efficiency, they were 

also introduced to geography in recent years. Some geographers applied GAs to solve some 

traditional hard-to-resolve problems in their research. 

2.4.1 Application of Genetic Algorithms in Geography 

Because a huge amount of calculation and comparison is required to efficiently 

identify the optimal border values for separating classes, cartography is one of geography 

sub-disciplines that uses GA often. Armstrong et al. (2003) created multicriteria class 

intervals for choropleth maps by using a GA approach. In their research, they designed a 

piece of interactive software to find Pareto-optimal solutions for multi-objective choropleth 

classification problems with respect to multiple criteria instead of based on statistical ones. 
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Wilson et al. (2003) used a GA approach to resolve spatial conflict between objects after 

scaling to achieve optimal solutions within practical time constraints when making 

cartographic maps. GAs were also applied on restoration of gray images (Chen et al., 1999) 

and multi-component aerial image segmentation (Awad et al., 2007). 

Huang et al. (2003) combined a GA method with GIS technology to solve route 

planning problems. Due to the concern for transportation security, there is an urgent need to 

improve the routing of trucks carrying hazardous materials (HAZMATs) on urban and 

suburban road networks. They evaluated the risk of HAZMAT transportation by integrating 

GIS and GA to set evaluation criteria for identifying and accessing the routes of HAZMAT 

vehicles. In their research, a GA was applied to determine the weights of the different 

factors in a hierarchical form, allowing for the computation of the relative total costs of the 

alternate routes.  

Li and Yeh (2005) integrated GAs with geographical information systems (GIS) 

technology to study optimal location selection. Their experiments indicated that the 

proposed method performed much better than simulated annealing and GIS neighborhood 

search methods. Also, the GA method is very convenient in finding the solution with the 

highest utility value. 

2.4.2 Applications of Genetic Algorithm on Facility-Location Problem 

Because of the large number of calculations needed for a multi-facility-location 

problem, scientists in different disciplines such as geography (Li and Yeh, 2005), 

mechanical engineering (Madadi and Balaji, 2008), electrical engineering (Mendoza et al., 

2007), as well as biology (Zhang et al., 2006) have already noticed the advantages of GAs 

and successfully used them to solve various kinds of facility location problems. The 

implementation of GA and GIS can effectively solve the spatial decision problems for 

optimally siting n sites of a facility.  
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  To evaluate the optimal locations of three discrete heat sources that could be placed 

anywhere inside a ventilated cavity and cooled by forced convection, a micro GA was 

utilized by Madadi and Balaji (2008) with six coordinates of the heat sources as input 

parameters and five individuals composed of a population for the optimization, with the 

objective function as minimizing the maximum temperature of any of the heat sources. 

Initially for 66 generations, simulations were done repeatedly to evaluate the objective 

function. This data were used to train an artificial neural network (ANN) to predict the 

fitness from the six inputs. The result shows that by integrating ANN with GA, the 

computational time can be reduced substantially in location problems such as this one. 

 In electrical engineering, automatic voltage regulators (AVRS) help to reduce energy 

losses and improve the energy quality of electric utilities, compensating the voltage drops 

through distribution lines. To help electric companies in the decision-making process, 

Mendoza et al. (2007) used a GA to define the optimal locations of a set of AVRs in electric 

distribution networks. The result of this research showed that GA is capable of finding 

solutions in a very efficient way, thus giving the decision-maker a set of possible (trade-off) 

solutions from which to choose. 

2.5 Social Vulnerability Research 

 Vulnerability is a term used to describe the potential for loss, which is always linked 

to risk, disaster, and hazard. Urban “vulnerability” refers to the inherent weakness in certain 

aspects of the urban environment that are susceptible to harm due to certain biological, 

physical, or design characteristics.  It is generally defined as a measure of coping abilities of 

human and physical systems in the urban environment (Rashed and Weeks, 2003). There 

are many different definitions of vulnerability from different views with geography (Cutter, 

1996). One of the most famous definitions describes vulnerability as the likelihood that an 

individual or group will be exposed to and adversely affected by a hazard. Social 
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vulnerability is the interaction between the hazards of place (risk and mitigation) and the 

social profile of communities (Cutter, 1993). 

2.6 Traffic Routing Model 

 A challenge of this research is how to identify the accurate distances between each 

evacuee and his/her nearest transit bus stop. The Euclidean distance is most often used to 

solve this kind of distance issue in facility location research, but in this road network study 

environment, it cannot represent the accurate distance. For example, if two points are 

located on opposite sides of a river, the Euclidean distance between them may be very 

small, but without an accessible bridge, the travel time between them could be much longer. 

In light of this, since the evacuees must travel along the road to reach the desired transit bus 

stops, adding the route selection model into this facility location research and then using the 

travel time rather than Euclidean distance can make the study results more reliable.  

 Due to the characters of road traffic, most of the decisions of route selection are not 

independent. Thus, in traffic systems the interdependence of actions leads to a high 

frequency of implicit co-ordination decisions (Klugl and Bazzan, 2004). Some methods 

already exist (e.g., radio, Internet) that can help the drivers to make decisions to find an 

efficient path, but most of these methods do not consider the drivers’ decision. To overcome 

this shortcoming, Klugl and Bazzan (2004) studied the influence of drivers' decision-

making on the traffic system as a whole and how simulation can be used to understand 

complex traffic systems.  

 Empirical studies on route choice behavior have shown that drivers use numerous 

criteria in choosing a route, among these criteria fastest path routing has typically been 

adopted in-route guidance systems because of its simplicity. Through all these recent years, 

because enumerating all non-dominated paths is computationally too expensive, many 

efficient shortest path methods have been developed (Handler and Zang, 1980, Huang et al., 
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2007, Park et al., 2007, Santos et al., 2007). Among them, Park et al.’s (2007) method is 

one of the most current and accurate. The objective of their research was to develop 

computationally efficient algorithms for identifying a manageable subset of the non-

dominated (i.e., Pareto optimal) paths for real-time in-vehicle routing. However, obtaining a 

stable mathematical representation of the driver's utility function is theoretically difficult 

and impractical, and identifying the optimal path given a nonlinear utility function is a 

nondeterministic polynomial time (NP)-hard problem. So they proposed a heuristic two-

stage strategy that identifies multiple routes and then selects the near-optimal path in their 

research. The result showed that their algorithm can significantly reduce computational 

complexity while identifying reasonable alternative paths. Another study that dealt with 

shortest-path algorithm was done by Huang et al. (2007), who proposed an incremental 

search approach with novel heuristics based on a variation of the A* algorithm which is 

Lifelong Planning A* (LPA*). Huang et al. (2007) also suggested using an ellipse to prune 

the unnecessary nodes to be scanned to speed up the dynamic search process. Their 

algorithm determines the shortest-cost path between a moving object and its destination by 

continually adapting to the dynamic traffic conditions, while making use of the previous 

search results. Experimental results showed that the proposed algorithm performs 

significantly better than the well-known A* algorithm. In this research, we assume that each 

evacuee knows the best route to reach his/her nearest transit bus stop, so the shortest-path 

algorithm was used. 
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Chapter 3 Data 

There are three total input layers for the GA-based facility location problem: 

alternative bus stops, weighted census block centroids, and major road segments. For 

calculation convenience, all these input layers were transformed into raster format with the 

same spatial resolution. This makes each image layer the same number of columns and 

rows of cells. The following sections describe the data used in this study. 

3.1 Geographical Data 

Theoretically, to find out the locations of optimal transit bus stop combination in this 

research is a capacitated p-median problem. One should take the total weighted distance 

from all residents’ homes to their nearest transit bus stop into consideration and minimize 

this value. The census data which can represent the resident distribution normally include 

census blocks, census block groups, and census tracts. A census block is the smallest 

geographic unit used by the United States Census Bureau for tabulation of 100-percent data 

(data collected from all houses, rather than a sample of houses). Block groups are composed 

of several census blocks, and several census blocks make up census tracts. There are, on 

average, about 39 blocks per block group.  

This research uses the centroid of each census block to represent the location of the 

residents living in each given census block. As a result, distance is measured from a transit 

bus stop to an aggregation point, which is the centroid of each census block group instead 

of from the dispersed residents’ homes in the metropolitan New Orleans area in this 

research. According to Hillsman and Rhoda (1978) and Goodchild (1979), this type of data 

aggregation does cause errors when solving the location/allocation problems. The two 

reasons that it is worth the risk of the effects of data aggregation in our study are as follows: 

1. We are dealing with an emergency facility problems. In terms of efficiency and 

accuracy,  
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       “When the demand is based on a highly dispersed pattern of individuals, it 
is necessary in the interests of manageability to aggregate to some set of more 
or less arbitrary statistical areas. The same is true of emergency facility 
problems, where a virtually continuous probability surface of demand must be 
collapsed onto a number of zones. The zones themselves may be chosen to 
coincide with standard statistical areas, such as census tracts, to allow 
predictive models to be built, or may be chosen to allow easy administrative 
implementation of the plan through the use of administrative ‘building 
blocks’.” (P245, Goodchild 1979). 
 
2. According to Casillas’s (1987) research, data aggregation only has a little effect 

on the patterns of locations of facilities, especially on low-level aggregated data. 

Another issue in this aggregate data is that although census block data is the most 

accurate, we could not find some demographic data and socioeconomic data which are 

essential in our research when getting the different social vulnerabilities for the study areas 

in this census level. One feasible way to solve this problem is to calculate the social 

vulnerability for each census block group in the study area first, and then assign this social 

vulnerability value to the census block centroids falling into this given census block. 

3.2 Social Vulnerability Data 

The social vulnerability and population weighted census block centroid will be used 

to represent the evacuees who need the transit buses in an evacuation situation. Many social 

vulnerability indicators will be culled from the 2000 census and will be used to create a 

composite social vulnerability index. These data sources are indicated in Table 3.1. 

According to Cutter et al. (2003), major social vulnerability indicators include: lack of 

access to resources (including information, knowledge, and technology), limited access to 

political power and representation, social capital (including social networks and 

connections), building stock and age, frail and physically limited individuals, and type and 

density of infrastructure and lifelines. 

 The evacuees were represented by census block centroids in this research (Fig. 3.1), 

and the number of evacuees is the initial attribute of each census block centroid.  After the 
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Figure 3.1. Census block centroids in New Orleans  
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Table 3.1. Major social vulnerability indicators used in this research (Unit: Percent) 
 

Social Vulnerability indicator Increase(+) or decrease(-) 
 Social vulnerability 

 

Foreign born (born 1990 — March 2000)                    +  

No high school diploma (25 years of age or 

older) 

                   +  

Speak no English at home                    +  

Under 5 years old                    +  

65 years of age or older                    +  

Female                    +  

Female headed households                    +  

Unmarried (males and females)                    _  

Minority ethnicity                    +  

Renter occupied housing units                    +  

Housing units that are mobile homes                     +  

Housing units that are boats, vans, or 

recreational vehicles 

                   +  

Housing unit built before 1940                    +  

Civilian unemployment                    +  

Households earning $75,000+                    _  

Living below poverty level                    +  

Disabled (5 years old +)                    +  

Employment in farming, fishing, and forestry 

occupations 

                   +  

Employment in transportation, communications, 

and other public utilities 

                   +  

Employment in services industry                    +  

 

 



22 

social vulnerability value for each census block group in the study area was computed, the 

corresponding social vulnerability of the census block group in which it falls into for each 

census block centroid was assigned. Multiplying the value of social vulnerability by the 

attribute of each census block’s population results in the final weighted attribute for each 

census block centroid used to locate the transit bus stops. The larger number of the weight 

of each census block will be taken more consideration when locating the pick-up locations. 

3.3 Road Network Attribute  

This section was co-authored with Wei Liang (see also Liang (2009)) for road 

network analysis. 

Only the major road network was included in this GA-based facility location model, 

and it was digitized from Google map. The interstate highway was eliminated based on the 

assumption that the evacuees without accessible vehicles cannot use the interstate highway 

to arrive at their nearest transit bus stops. Since there are numerous detailed local road 

segments, it is too difficult to include them into this model. The road network map in 

Google has been cached for 20 levels, and from 10th -20th cached level, there are two kinds 

of yellow lines on the road map. The lighter and narrower yellow roads represent the major 

road network in this research (Figure 3.2), while the darker links represent the interstate 

highways.  

The attributes for each major road segment (i.e. link) in the total driving time for all 

residents to their nearest transit bus stop model include: length, speed limit, start node ID, 

and end node ID. Start node ID and end node ID are the two end ID number of this road 

segment, and they were used to find the optimized route in terms of driving time. In this 

research, the driving time from any census block centroid to its nearest transit bus stop is 

the static time (i.e. by using the optimized route), which does not take into account the 

dynamic traffic situation.    
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Figure 3.2. Local major road network in New Orleans 
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3.3.1 Nodes Attribute 

 Nodes are the end points (i.e. intersections) for each road segment. In the New 

Orleans metropolitan area, there are a total of 310 nodes for the local major road network. 

The attributes for each node include geographical location represented by vertical and 

horizontal coordinates and node IDs which are directly connected with this node by road 

links. At each time of iteration of one possible transit bus stop combination, the travel time 

of driving to all the transit bus stops will be calculated for every census block centroid, and 

the least one will be chosen for this given centroid as its travel time attribute. 

To fulfill this nearest route selection purpose, a “shortest travel time matrix” between 

each pair of nodes was obtained by using Dijkstra's (1959) algorithm. Thus, the best route 

can always be chosen correctly by each census block centroid while they are traveling. For 

example, to calculate the distance between one census block centroid and one transit bus 

stop, the nearest nodes should be found for this given census block centroid and this given 

transit bus stop individually, and then the “shortest travel time matrix” should be consulted 

to reveal the shortest travel time between these two nodes. From this procedure, any 

shortest traveling time between each census block centroid and every alternative transit bus 

stop can be found. 

3.4 Location of Alternative Transit Bus Stops 

3.4.1 Criteria for Locating Alternative Transit Bus Stops 

 The emergency office of New Orleans did not define any criteria that should be met 

to be an alternative bus stop for Orleans Parish in CAEP. It simply arbitrarily chose several 

transit bus stops from the locations for which stops were offered.  To improve the efficiency 

in terms of accessibility to transit bus stop locations by all evacuees who need transit buses, 

several rules were formulated to choose the alternative transit bus stops in this research: 
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1. The study area was extended from Orleans Parish only to the entire New Orleans 

metropolitan area. 

2. “The alternative transit bus stops” are defined as the locations and facilities which 

can be utilized as potential transit bus stop locations. They may include all the 

desired schools, churches, pharmacies, recreation centers, and bus stops. 

3. To be chosen as an alternative transit bus stop, a candidate must have an open area 

that can support seven transit buses simultaneously. The rationale of choosing 

seven is that there are one hundred buses available to be divided among fifteen bus 

stops located in Orleans Parish for evacuation preparation. 

3.4.2 Decision Making in Locating Alternative Transit Bus Stops 

 Based on three guidelines mentioned in 3.3.1 and the fact that the CAEP plan uses 

high schools, community centers, churches, bus stops, senior centers, and parking lots as 

pick up locations, we decided to examine all the high schools, community centers, 

churches, bus stops, senior centers, and parking lots in the study area and selected those 

which meet all three guidelines as alternative transit bus stops.  

Finally, 274 alternative transit bus stops which fulfilled all the criteria were selected. 

We input the coordinates of these alternative transit bus stops into ArcGIS software to plot 

their locations (Figure 3.3). 
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Figure 3.3. The alternative bus stop locations selected according to the criteria 
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Chapter 4 Methodology 

 Because of the advantages of genetic algorithms (GAs) on facility location problems, 

the social vulnerability-based genetic model developed in this research to locate the transit 

bus stop is expected to perform well for regional disaster evacuation. The model was 

programmed in MATLABTM. There are three raster input layers in this facility location 

model: the local major road network layer, weighted census block centroid layer, and 

alternative transit bus stop layer. An information layer for node (i.e. intersection) as well as 

other simulation parameters should also be input before model simulation. The mechanism 

of this transit bus stop location model is shown in Figure 4.1. 

4.1 Social Vulnerability 

 The social vulnerability of New Orleans is not evenly distributed among different 

social groups and between different places. Some areas may be more susceptible to the 

impact of hazards than other regions based on the socioeconomic variables and 

demographic characteristics of residents residing within them. Similar to the purpose of the 

emergency office of New Orleans, the main goal of the City Assisted Evacuation Plan 

(CAEP) is to evacuate those New Orleans citizens who want to evacuate during an 

emergency, but lack the capability to self-evacuate. This segment of the population is more 

vulnerable than those who can access personal vehicles to schedule their own evacuation 

plan. In light of this, when the decisionmakers locate-allocate the transit bus stops for the 

evacuees willing to take transit to evacuate the endangered area, they must consider the 

social vulnerability of all the residents over the entire study area. This is because the higher 

the social vulnerability of the residents, the more likely they would use the public transit 

buses to evacuate in the face of severe disaster. So based on the vulnerability value, high 

vulnerability priority residents should have higher priority to be considered when locating 

the transit bus stops. This means that the decisionmakers should identify transit bus stops
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that allow for relatively easier access for those people in terms of travel time.  

 For the social vulnerability analysis, Cooperation with Wei Liang was undertaken 

(see also Liang (2009)). In this research, a modified version of Cutter’s (1996) hazards-of-

place model of vulnerability (Fig. 4.2) was used to examine the components of social 

vulnerability for the study area. Modification to the original model is as follows. In Cutter’s 

(1996) model, physical vulnerability and social vulnerability are merged into one individual 

vulnerability called “place vulnerability” with an “explicit focus on locality”, while in this 

study, the vulnerability model simply focuses on the social vulnerability. However, the 

decisionmakers should still keep in mind that the higher physical vulnerability area may 

suffer more damage from the disaster.  

 This modified hazards-of-place model of vulnerability was utilized to calculate the 

weighted distances from the centroid of each census block to their nearest transit bus stops 

in the New Orleans Metropolitan area. 

 To examine the social vulnerability, socioeconomic data were collected for all 925 

census block groups, our unit of analysis, in the study area. Using the U.S. Census 2000 

data, all the possible variables were collected and analyzed. Originally, more than 60 

variables were collected, after all the computations and normalization of data (to 

percentages), 20 independent variables were used in the statistical analysis (Table 3.1). The 

primary statistical procedure used to reduce the data was factor analysis, specifically, 

principal components analysis, which is described in detail in the next section. 

4.2 Factor Analysis 

 Because many obtained social-economic variables are inter-correlated, it is improper 

to integrate them together directly to obtain the social vulnerability. By utilizing factor 

analysis we can reduce a large number of variables to a smaller number of factors for 

modeling purposes, thus eliminating the inter-correlation. The technique also facilitates  
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Figure 4.2. The hazards-of-place model of vulnerability (Source: Cutter, 1996) 
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replication of the variables at other spatial scales, thus making data compilation more 

efficient (Cutter et al., 2003). The first 12 factors were retained, which explained over 90 

percent of the variance among all the census block groups, to differentiate the relative level 

of social vulnerability in 2000 in the study area (Table 4.1). 

 This factor analysis was performed in SPSS, and one of the important output 

matrices is called, “Component Score Coefficient Matrix”. Each column of this matrix is a 

set of factor score coefficients, which were used to calculate the given factor score by using 

all the variable values for each of these twelve factors (Table 4.2). 

 After we obtained all twelve factors, a composite social vulnerability index score 

was produced for each census block group, and this score is a relative measure of the 

overall social vulnerability. Since each of these factors explains a different portion (e.g., 

first factor explains 32.301%, while the twelfth factor only explains 2.452%) of the 

information provided by the original twenty social economic variables, each factor cannot 

be viewed as having an equal contribution to the census block group’s overall vulnerability. 

So, for each factor in a given census block group, its value was multiplied by the percentage 

of variance of the initial eigenvalue, and finally added all these twelve multiplied values 

together to produce the overall social vulnerability. In this calculation process, all factors 

with positive values indicated higher levels of vulnerability whereas the factors with the 

negative values decreased or lessened the overall vulnerability. For the social vulnerability 

result, the lowest value of all these census block groups was -1.2141, and the highest social 

vulnerability was 29.4907. To classify the study area into low and high social vulnerability 

classes, the natural break method was used to classify these census block groups into five 

categories (Fig. 4.3). As we can see, the most and second-most vulnerable areas were 

almost all located in the downtown area, while the outlying areas were relatively low in 
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Table 4.1. Total variance explained by each component 
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social vulnerability.  

Evacuees who need to take the transit buses were assumed to know how to reach the 

nearest destinations (i.e. transit bus stops). This means when an evacuee arrives at a node 

(i.e. intersection), he/she will evaluate all the possible routes that can lead to the desired 

transit bus stop. After assessing these available routes, the evacuee will finally choose the 

shortest path in terms of the travel time. In this research, the routing sub-model, which is 

also called shortest path model, was used to solve this problem of how to choose the 

shortest path when arriving at a node. 

The main purpose of this shortest path model is to find the shortest path from any 

origin node to all other nodes. The basic idea of this model is to build a matrix, and the 

shortest distance between any two nodes in the road network is stored in this matrix.  

4.3 Routing Model 

The basic hypothesis of the algorithm to build the shortest path matrix is contained in 

the equation below (Jamei, 1984): 

dkj =min(dki + dij)                                                               (2) 

where: 

dkj =length of the shortest path from node k to node j 

dki =length of the shortest path from node k to node i 

dij =distance of i to j node. 

The most famous algorithm used to find the shortest path is credited to Dijkstra (1959). 

His algorithm is a graph search algorithm that solves the single-source shortest path 

problem for a graph with non-negative edge path costs (Dijkstra, 1959). This algorithm is 

often used in routing, and it works by visiting nodes in the graph starting with a given node. 

It then repeatedly examines the closest not-yet-examined nodes, adding this node to the set 

of nodes already examined. It expands outward from the starting node until it reaches all the 
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other nodes. This above process is repeated for every node to find their shortest travel time 

to other nodes. And then the current travel time of all the traveled links through this routing 

process from the starting given node to destination node just identified should be added as 

the cost attribute of this beginning given node. This algorithm is applied in this research so 

that the optimized route to the desired transit bus stop can be found for each census block 

centroid. 

4.4 Genetic Algorithm 

 The location/allocation of the transit bus stops for disaster evacuation is mainly a p-

median problem, and there are several methods to solve this problem. Among them, GA is 

one of the most widely used and successful. GA uses techniques inspired by evolutionary 

biology such as crossover and mutation, and it is a heuristic algorithm used to find exact or 

approximate solutions to p-median problems through application of the principles of 

evolutionary biology to computer science (Armstrong et al., 2003; Li and Yeh, 2005).  

 The GA was used to solve the problem in this research because the search space is 

extremely large when there are a large number of alternative transit bus stop locations. It is 

infeasible to use the exhaustive blind (brute-force) search to solve an optimization problem 

that involves large amounts of spatial data. For example, the number of possible solutions 

to any given instance of p-median problem is shown in Equation 4.1 (Correa et al., 2004):  

         
)!(!

!
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=⎟⎟
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⎞
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⎝

⎛     (4.1) 

where N is the number of demand points and P is the number of facilities to be located. 

 During Hurricanes Katrina and Gustav, there were a total of 17 evacuation pick-up 

sites used in New Orleans Parish (including 4 senior center locations and 13 for the general 

population) and two general population pick-up sites in Jefferson Parish (Fig. 4.4), and the 
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Figure 4.4. All 15 general pick-up locations and 4 senior pick-up locations 
(Source: Metro New Orleans website 
http://www.nola.com/hurricane/index.ssf/2008/06/interactive_hurricane_shelter.html) 
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state contracted for 700 charter buses for the public evacuation system. In this research, the 

final general population pick-up locations was set to 15 for the New Orleans metropolitan 

area. This number equals the number of pick-up locations for Orleans Parish and Jefferson 

Parish, excluding four senior center locations. Then the best locations in terms of weighted 

travel time for the fifteen location combination was sought by using GA.  

When choosing the alternative sites in the study area, since not all the required buses 

should approach a given pick-up location at one time, a large open area is not required for 

each of these transit bus stops. Schools, churches, and convention centers that can hold at 

least seven buses simultaneously were chosen as alternative transit bus stops in the study 

area. By applying these criteria, over 200 alternative available sites were chosen in New 

Orleans. To identify the best bus stop combination from all these alternative bus stops, 

manually comparison would take too much time and may even be impossible. Therefore, 

the GA was explored to find the best transit bus stop combination using much less model 

running time. The following sections explain how to accomplish this task. 

4.4.1 The Procedure of the Algorithm 

Several terms about GA are defined here for this study. In the GA, a chromosome 

(i.e., individual) is a set of parameters which define a possible solution that the GA is trying 

to solve. Inside chromosomes, each bit position in the string is called a gene. Specifically, 

in this study, a gene is a potential pick-up bus stop, an individual is one possible solution of 

the 15 bus stop combination, and a population is the number of individuals in each 

generation (i.e. iteration). When GAs are constructed to solve the non-trivial optimization 

problems, several sub-operations should always be followed, i.e., encoding, initialization, 

fitness function, selection, crossover, and mutation. The whole procedure of GAs can be 

explained as follows: 
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Step 1 (Encoding): Choose the encoding method to enact the way to express each gene and 

individual.  

Step 2 (Initialization): Input the required rasterized images and several model running 

parameters. 

Step 3 (Selection): Select half of the individuals from the population as parent candidates, 

and group them into pairs. 

Step 4 (Crossover): Apply the pre-specified crossover operator to each of the selected pairs 

in Step 3 to generate the child chromosomes. 

Step 5 (Mutation): Apply the pre-specified mutation operator to each of the generated 

chromosomes with the pre-specified mutation probability. 

Step 6 (Termination test): If a pre-specified stopping condition is satisfied, stop this 

algorithm. Otherwise, return to Step 2. The outline of GA is illustrated in Figure 4.5. 

4.4.2 Encoding 

 Encoding of chromosomes is the first issue to be solved when dealing with the GA 

problem, and it depends heavily on the problem. The following encoding methods have 

been used with some success: binary encoding, permutation encoding, value encoding, and 

tree encoding. Among them, binary encoding and permutation encodings are the two 

methods that are most often used. Considering the characters and applying the scope of all 

of these encoding methods as well as the research question itself, the permutation method is 

found to be the most suitable one to be used in this research. This is mainly because the 

permutation encoding is useful for ordering problems, and every chromosome is a string of 

numbers that represents a position in a sequence in this method. In this research, every gene 

in a chromosome should represent an alternative transit bus stop ID. Figure 4.6 is a sample 

chromosome in this research. 
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Figure 4.5. The genetic algorithm procedure   
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35 133 13 79 242 54 8 182 117 219 72 90 42 21 197 

 
 
Figure 4.6. A sample chromosome  
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4.4.3 Initialization  

To process the GA model in MatLab, four rasterized images should be set as input 

with the same spatial range and resolution. These four layers are: the census block centroids 

with population attribute; census block group with social vulnerability; alternative transit 

bus stops; and the major road network with speed limit attribute for each road segment.  

 Besides these input rasterized images, both the number of individuals (i. e., 

chromosomes) in each generation population and the desired number of transit bus stops 

should be specified in the program before running the model. So, at the initial phase of the 

model running period, n individual solutions are generated to form an initial population.  In 

a population, each individual is a possible transit bus stop combination solution which 

contains 15 alternative pick-up location IDs (i. e., genes) in this research. And all the IDs of 

pick-up locations in any of these initial individuals are generated randomly. Occasionally, 

the solutions may be "seeded" in areas where optimal solutions are likely to be found.  

4.4.4 Selection 

To generate new children chromosomes in the GA, selection is the first operation 

which selects two parent chromosomes form the current generation. In each generation, this 

selection process is repeated several times until half of the chromosomes have been picked 

out as parents, and no chromosome has been selected twice in this generation.  

There are mainly two ways to do the selection: the roulette wheel selection scheme 

and the rank-based selection scheme. The roulette wheel selection is also called stochastic 

sampling with replacement, which is the simplest selection scheme. Its technique is similar 

to a roulette wheel with each slice proportional in size to the fitness. On the contrary, by 

using the rank-based selection, which is used in this research, the population is sorted 

according to the fitness value. The one which has the highest fitness value will be ranked as 

the first chromosome in the current generation of population. This fitness value is calculated 
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by using the fitness function, which is a particular type of objective function that quantifies 

the optimality of a individual (i. e., a chromosome) in a GA so that the particular 

chromosome may be ranked against all the other chromosomes. For each individual, the 

fitness function in this research is to calculate the total weighted travel time for all the 

census block centroids to their nearest pick-up locations. The weighted travel time for each 

census block centroid is obtained by using the following formula: 

Weighted travel time=a * b * c;               (4.2) 

Where a is the shortest travel time from the given census block centroid to its nearest 

pick-up location, and the unit is hour; b is the population of this census block; and c is the 

social vulnerability of this census block. 

So, in this selection process, parent chromosomes are selected by weight and are 

chosen randomly from the current population. A chromosome with a high fitness value has 

more chance to be selected as a parent than a chromosome with a relatively low fitness 

value, and the weight is the fitness value. 

4.4.5 Crossover 

Crossover is an operator to generate next generation child chromosomes from parent 

chromosomes. Various crossover operators have been proposed for GAs. The crossover 

operators for permutation chromosomes are different from those for binary chromosomes 

because permutation problems usually have a requirement that each element of a 

chromosome should appear only once in the chromosome. 

The standard one-point crossover is the typical operator for permutation 

chromosomes. The operator is applied to selected parent chromosomes as follows: a pre-

defined crossover point is selected between two adjacent elements. Two new chromosomes 

are generated by swapping all elements in the head part of the chromosomes. Since two 

parents produce two children, and only half of the individuals are being selected as parents 
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from each generation population through one selection operation, we should do the 

selection twice to guarantee that the number of individuals in each generation’s population 

is the same. 

When crossover occurs for the parent individuals, we try to cut both of them in the 

middle and then swap. Because each chromosome contains 15 genes in this study, for each 

pair of the parents from the first time selection, all the genes from the first position to the 

seventh position are swapped (Fig 4.7 (a)). Likewise, for each pair of the parents from the 

second time selection, all the genes from the first position to the eighth position are 

swapped (Fig 4.7(b)). In this way, two new children are generated. 

4.4.6 Mutation 

 Mutation is a genetic operator to alter elements in a chromosome which is generated 

by a crossover operator. The common method to implement the mutation operator is to 

generate a random variable (gene) from the gene pool which is obtained in the initiation 

step for each chromosome. The purpose of mutation in GAs is to avoid “local minima” by 

preventing the population of chromosomes from becoming too similar to each other which 

will result in prematurity of evolution or even stop evolution. Applying mutation in GAs is 

very critical because this is the essential way to maintain the genetic diversity.  

In this study, 2 percent of the total genes are mutated in each generation population 

(the number should be 15*n, where n is the number of individuals in each population). By 

doing this, all the genes are checked in each individual in that crossover, as former steps 

may create the same genes in one single individual, which is prohibited. All of these 

duplicated genes are mutated and assured to be unique in its individual after mutation. If all 

the numbers of these duplicated genes is less than 10 percent of the total genes in each 

generation, the rest of the genes from any individual are randomly chosen for mutation to 

compensate this demand number.    
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4.5 Results 

 Before the model is run, the number of individuals in each population must be set. It 

is easy to understand that the more individuals in a population, the better chance we can 

obtain the best solution from the model simulation result. However, as the number of 

individuals increases in each population, the GA model running time will be increased 

correspondingly. This makes the model running time and running result reliability a 

tradeoff relationship. To solve this issue, the GA model was simulated with different 

parameter settings (i.e. number of individuals in each population) many times, and the 

identification of the most suitable one was done (i.e. with the least number of individuals 

that can find the correct result). Within one single simulation, the indicator to check the 

effectiveness of each setting is the mean fitness value. Then the optimized solution is 

assumed to be found (i.e. simulation could stop) when the mean fitness value change is less 

than 0.1 percent for 10 consecutive generations. The model was run on a workstation with a 

dual core 2.41 GHz CPU and 8 GB memory. Table 4.3 shows the results of the recorded 

average final best fitness value from running the model 10 times with the same setting. 

 From Table 4.3 we can observe that the final best fitness value becomes almost 

steady (i.e. within 1% change) after the number of individuals exceeds 160. So the 

conclusion is that any number of individuals more than 160 in a population can obtain an 

acceptable pick-up location combination. And finally 200 is chosen as the number of 

individuals for each population in this research. 

  By using the setting of 200 individuals for one population, the GA model is run 10 

times. Results suggest the best final combination (Figure 4.8) with its best fitness value is 

26397592.  The mean and best fitness values of each iteration for model simulation are 

shown in Figure 4.9. The names of the final pick-up locations and the percentage of the 

buses which should be assigned to these final pick-up locations are listed in Table 4.4.
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Table 4.3. Final best fitness value with different number of individual in each population 

Number of individuals in 
each population 

Final best Fitness value 
(unit: weighted hour) 

Model running 
time (unit: hour) 

40 28,178.1 1.2 

80 27,351.1 2 

120 26,713.2 3.1 

160 26,526.5 4.2 

200 26,452.2 5.4 

240 26,419.7 6.8 
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Figure 4.8. The 15 pick-up locations derived from the genetic algorithm.  
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Figure 4.9. The mean and best fitness values for each iteration. 
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Table 4.4. The final pick-up locations and their bus quotas 

ID Name Bus quota Parish 
1 Archbishop Shaw High School 8.2102% Jefferson 

2 Fisher Middle/High School 5.5492% Jefferson 

3 Walgreen's 5.6633% Orleans 

4 Laurel Elementary School 5.0867% Orleans 

5 Walgreen's 2.6816% St. Bernard 

6 Shops at Canal Place Parking Lot 7.4045% Orleans 

7 A. C. Alexander Elementary School 2.0444% Jefferson 

8 Rite Aid 3.6142% Orleans 

9 St. Marys Dominican High School 15.5014% Orleans 

10 Lucille Cherbonnier Elementary School 5.5543% Jefferson 

11 Gretna Middle School 19.1699% Jefferson 

12 Lusher Charter School 11.4306% Orleans 

13 Sanchez Center 5.2202% Orleans 

14 Rite Aid 1.4442% Jefferson 

15 J. B. Martin Middle School 1.4252% St. Charles 
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 To examine the effectiveness of these pick-up locations, the 15 pick-up locations 

used for Hurricane Gustav evacuation by New Orleans Government and Jefferson Parish 

government were input into the same simulation environment. The overall vulnerability 

weighted travel time was calculated for it. The fitness value was 62,736.3, which is much 

larger than the fitness value of the pick-up location combination identified in this research. 

So the conclusion can be drawn that the pick-up location combination obtained from this 

study can greatly improve the efficiency in evacuating the residents who need public transit 

in the New Orleans metropolitan area. 

 

  



52 

Chapter 5 Conclusions 

5.1 Conclusions 

 When a disaster threatens a regional area, the best way to evacuate residents without 

accessible vehicles is by using transit buses. However, since the residents who need the 

buses to evacuate are spread throughout the endangered area, the location of these pick-up 

locations must minimize the overall weighted travel time for all the evacuees in need, and 

allocation of the available buses to these bus stops should be seriously considered by 

decisionmakers. This study aimed at solving this tough problem by incorporating three new 

aspects: social vulnerability, network analysis, and genetic algorithm (GA).  

 1) When deciding where to locate these pick-up locations, the first aspect we 

took into consideration is the social vulnerability in the study area. We assumed that a 

higher percentage of residents living in the high social-vulnerability area would use the 

transit buses to evacuate than people living in low social-vulnerability areas.  

 Based on the method in Cutter et al.’s (2003) study, we obtained about 20 social-

economic variables, and then used factor analysis to eliminate the inter-correlation among 

all the variables. Among obtained 20 factors, the first 12 factors were used to calculate the 

final social vulnerability for each census block group. The vulnerability values ranged from 

-1.2141 to 29.4907. 

 2) The road network travel time has also been utilized to calculate the distance 

between each census block centroid and its nearest pick-up location. The accuracy of this 

method should be much better than the simple Euclidean distance. To compute the travel 

time between two points, the major road network in New Orleans was used in this research.  

All three variables, shortest travel time for each census block centroid, its 

and social vulnerability, were multiplied and used are to compute the final weighted travel 
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time for each given census block centroid. The total weighted travel time for all census 

block centroids is the fitness value for each bus stop combination. 

 3) There are 274 alternative locations that fit the criteria as the pick-up locations, 

and 15 of them are selected as the optimal bus stop locations. Through the use of GAs, the 

best combination was identified. By comparing the total travel time, the new solution led to 

a fitness value of 26,397.6 (weighted hours), whereas the old solution which used 15 pick-

up locations by the New Orleans government results in a fitness value of 62,736.3 

(weighted hours). 

 The results from this study show that the current pick-up locations used by the New 

Orleans government are not located wisely in terms of the total weighted travel time for all 

the evacuees, while the pick-up location combination obtained from GA offers a dramatic 

improvement over the current one.  

5.2 Future Research 

 The limitation of this study is that it used Cutter et al.’s (2003) method to obtain 

social vulnerability by calculating 20 social-economic variables. Future research is needed 

to find better ways to quantify the social vulnerability.  

Another aspect that can improve the accuracy of the result is to use more complex 

road networks. In this study, we only considered the major road network in New Orleans 

when calculating the minimum travel time between two points. If we can add the local 

roads and all highways into this routing model, the accuracy of the results can certainly be 

improved. 

The methods used to select the best pick-up location combinations in this research 

can be extended to other research questions, such as in locating the distribution stations for 

temporary food supply to the refugees after the disaster.  
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Finally, in location/allocation literature, different criteria can be used. Instead of 

minimizing the total travel time, a different criterion could be to minimize the maximum 

travel time. Future research could explore the different optimization functions. 

This research also need for good data. If we have data on the people who will use the 

bus and their locations, the results will be more accurate and useful. 
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