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Abstract

This dissertation studies the standard random assignment problem (Bogomolnaia and

Moulin (2001)) and investigates the scope of designing a desirable random assignment

rule. Specifically, I ask the following two questions:

1. Is there a reasonably restricted domain of preferences on which there exists an sd-

strategy-proof, sd-efficient and sd-envy-free or equal-treatment-of-equals rule?

2. Moreover, if the answer is in the affirmative, what is that rule?

As a starting point, attention is restricted to the connected domains (Monjardet (2009)).

It is shown that if a connected domain admits a desirable random assignment rule, it is

structured in a specific way: a tier structure is fixed such that each tier contains at most

two objects and every admissible preference respects this tier structure. A domain struc-

tured in this way is called a restricted tier domain. In addition, on such a domain, the

probabilistic serial (PS) rule is characterized by either sd-efficiency and sd-envy-freeness

or sd-strategy-proofness, sd-efficiency, and equal-treatment-of-equals.

Since these domains are too restricted, it becomes an important question whether we

can find some unconnected domains on which desirable rules exist. To facilitate such an

investigation, the adjacency notion in Monjardet (2009) is weakened to block-adjacency,

which refers to a flip between two adjacent blocks. Hence block-connectedness can be

defined accordingly. Block-connected domains include connected domains as well as

many unconnected ones. A sufficient condition called ”path-nestedness” is proposed for

the equivalence between sd-strategy-proofness and the local sd-strategy-proofness on a

block-connected domain, called the block-adjacent sd-strategy-proofness.

Next, a class of domains, sequentially dichotomous domains, is proposed. A partition

of the object set is called a direct refinement of another partition if from the latter to the

former, exactly one block breaks into two and all the other blocks are inherited. Then a

sequence of partitions is called a partition-path if it starts from the coarsest partition, ends

at the finest partition, and along the sequence every partition is a direct refinement of its

previous one. Hence a partition-path plots a way of differentiating objects by dichotomous
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divisions. Fix a partition-path, the corresponding sequentially dichotomous domain is the

collection of preferences that respect all the partitions along the partition-path.

Every such domain satisfies path-nestedness and hence the PS rule is shown to be sd-

strategy-proof by verifying block-adjacent sd-strategy-proofness. In addition, every such

domain is maximal for the PS rule to be sd-strategy-proof. Hence sequentially dichoto-

mous domains significantly expand the scope of designing a desirable rule beyond what

is indicated by the restricted tier domains.

The last part of this dissertation investigates realistic preference restrictions, which

are modeled as follows. Each object can be evaluated according to a large set of char-

acteristics. The planner chooses a subset of these characteristics and a ranking of them.

Then she describes each object as a list according to the chosen characteristics and their

ranking. Being informed of such a description, each agent’s preference that is assumed to

be lexicographically separable with respect to the ranking proposed by the planner. Hence

a description induces a collection of admissible preferences.

It is shown that, under two technical assumptions, whenever a description induces a

preference domain which admits an sd-strategy-proof, sd-efficient, and equal-treatment-

of-equals rule, it is a binary tree, i.e., for each feasible combination of the top-t char-

acteristic values, the following-up characteristic takes two feasible values. In addition,

whenever a description is a binary tree, the PS rule is sd-strategy-proof on the induced

preference domain. In order to show sd-strategy-proofness of the PS rule on the do-

main induced by a binary tree, the domain is shown to be contained by a sequentially

dichotomous domain and then the result stating the sd-strategy-proofness of the PS rule

on sequentially dichotomous domains is invoked.
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1 Overview

We consider the problem of allocating several indivisible objects to a group of agents,

each of whom consumes at most one object. Classical examples include assigning college

seats to applicants (Gale and Shapley (1962)), houses to residents (Shapley and Scarf

(1974)), and jobs to workers (Hylland and Zeckhauser (1979)).

From a design point of view, a primary target is to allocate the objects efficiently, i.e.,

no reallocation among the agents strictly improves some agents’ welfare without hurting

any others. To achieve efficiency is not very difficult if the planner, who has the authority

to implement allocations, knows every agent’s true preference. However, this is usually

not true, i.e., agents’ preferences on objects is private information. To cope with this

problem, the planner is supposed to design an allocation rule which provides incentives

for the agents to truthfully reveal their preferences. This requirement on an allocation rule

is summarized by strategy-proofness, which says that, in a revelation game associated to

the rule, truth-telling is a weakly dominant strategy for each agent. A strategy-proof rule

is attractive not only in that it makes evaluating whether an allocation is efficient possible,

but also that reporting the true preference is readily optimal for each agent without wor-

rying about other agents’ strategic behavior. In addition, if a rule is not strategy-proof,

i.e., a profitable manipulation is possible for some agent, agents will try to find such a

manipulation which is usually costly. So taking the potential cost of manipulation into

account, strategy-proofness can be interpreted also as a way of achieving efficiency.

The literature has introduced various classes of efficient and strategy-proof rules, e.g.,

serial dictatorship rules (Svensson (1999)), hierarchical exchange rules (Pápai (2000)), re-

stricted endowment inheritance rules (Ehlers et al. (2002)) and trading cycles rules (Pycia

and Ünver (2017)).

However, none of these rules satisfies any fairness requirement.1 For instance, two

1Fairness in many realistic assignment problems is a property even more concerned than efficiency. This

is because of the fact that the objects to be allocated are collectively owned, for example, public houses.

Also fairness is concern maybe because of legal issues. For example, Abdulkadiroglu and Sönmez (2003)

noted that in USA, when the parents think the allocation of school seats are ”unfair”, they can sue the local

government.
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agents reporting the same strict preference always receive distinct objects and hence are

never treated equally. Consequently, one of them must envy the other. Instead of allo-

cating deterministic objects, the literature has resorted to random assignment rules that

assign to each agent a lottery on objects to restore ex ante fairness.2 Thus, agents rep-

resenting the same preference may receive the same lottery, and the random assignment

rule satisfies a classic fairness axiom: equal treatment of equals.

Since ordinal preferences on deterministic objects are collected to establish the ran-

dom assignment, one needs to extend agents’ preferences over deterministic objects to

assess lotteries. A standard practice is to adopt the stochastic dominance extension.3

A lottery is viewed at least as good as another if the former (first-order) stochastically

dominates the latter according to the ordinal preference over objects. Equivalently, under

the von-Neumann-Morgenstern hypothesis, a lottery (first-order) stochastically dominates

another one if and only if it delivers an expected utility weakly higher than the expected

utility delivered by the other lottery for every cardinal utility representing her ordinal pref-

erence on objects. By adopting the stochastic dominance extension, ex ante efficiency and

strategy-proofness are defined and referred to as sd-efficiency and sd-strategy-proofness.4

Beyond equal treatment of equals, ex ante fairness, in random rules can be strengthened

by sd-envy-freeness which requires that each agent always prefers her own lottery to any

others.

There are essentially two random assignment rules in the literature: the Random Serial

Dictatorship (or RSD) rule (Abdulkadiroğlu and Sönmez (1998)) and the Probabilistic Se-

rial (or PS) rule (Bogomolnaia and Moulin (2001)). In deterministic assignment models,

serial dictatorship rules are known to be (ex-post) strategy-proof and efficient (Svensson

(1999)). As a uniform randomization among all serial dictatorship rules, the RSD rule

treats equals equally and inherits ex ante incentive property, i.e., sd-strategy-proofness

from ex-post strategy-proofness of serial dictatorship rules. However, the RSD rule fails

2Another strand of the literature resorts to the possibility of side payment, for example Miyagawa (2001).

However, side payment is not allowed in many realistic applications either morally or legally.
3For other preference extensions, please refer to Cho (2012) and Aziz et al. (2014).
4Henceforth, we add prefix “sd-” to emphasize that the corresponding axiom is established with respect

to the stochastic dominance extension.
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sd-efficiency, for which Abdulkadiroğlu and Sönmez (2003) and Kesten (2009) provide

excellent explanations.

The PS rule is initially introduced by Crès and Moulin (2001) to deal with the schedul-

ing problem and later introduced to the standard random assignment problem by Bogo-

molnaia and Moulin (2001). The PS rule is fundamentally different from the RSD rule as

it specifies directly a random assignment for each preference profile, rather than using a

mixture of some deterministic assignments to determine the random assignment. The PS

rule treats the objects as infinitely divisible and agents consume the objects as time flows.

When time starts, each agent consumes her favorite object at the uniform speed, until

some object(s) are exhausted. Then agents reformulate their preferences by removing the

exhausted object(s), and resume consuming their favorite object in the remaining ones at

the uniform speed. This procedure proceeds until all the objects are exhausted. Finally,

the share of an object consumed by an agent is interpreted as the probability she receives

this object. The axiomatic performance of the PS rule is very different from the RSD rule.

It is sd-efficient and sd-envy-free since at each point in time each agent is consuming her

favorite available object. However, the major drawback of the PS rule is that it is ma-

nipulable, i.e., not sd-strategy-proof. This happens because the consumption procedure is

sensitive to unilateral deviations, which will be elaborated by Example 1 in chapter 3.

From the above discussion of the RSD rule and the PS rule, there seems to be a

fundamental conflict between sd-strategy-proofness and sd-efficiency. Such a conflict is

formally established in the following impossibility result.

Proposition 1 (Bogomolnaia and Moulin (2001)) There exists no sd-strategy-proof, sd-

efficient and equal-treatment-of-equals rule on the universal domain.5

Recently, this impossibility has been established on some restricted preference domains,

e.g., single-peaked domains and single-dipped domains by Kasajima (2013), Chang and

5The universal domain is referred to as the collection of all strict preferences. Throughout this paper,

we assume that the preference is strict. This impossibility is established for the situations where the number

of agents is the same as the number of objects, which is also a standard assumption we make. In addition,

this number is supposed to be at least four since when there are less than four objects and agents the RSD

is also sd-efficient.
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Chun (2016) and Altuntaş (2016).

These results raise two natural questions and also the central questions addressed in

this dissertation:

1. Is there a reasonably restricted domain of preferences on which there exists an sd-

strategy-proof, sd-efficient and sd-envy-free or equal-treatment-of-equals rule?

2. Moreover, if the answer is in the affirmative, what is that rule?

We start our research by introducing a class of restricted domains of preferences:

restricted tier domains. We show that, on a restricted tier domain, a rule is sd-strategy-

proof, sd-efficient and equal-treatment-of-equals (or sd-efficient and sd-envy-free) if and

only if it is the PS rule. More importantly, we prove that a restricted tier structure is

necessary for the existence of an sd-strategy-proof, sd-efficient and sd-envy-free (or equal-

treatment-of-equals) rule, provided that the domain satisfies a mild richness condition:

connectedness (Monjardet (2009)). These results are collected in Chapter 3, titled as

random assignments on preference domains with a tier structure.6

To construct a restricted tier domain, objects are first partitioned into several tiers

each of which contains one or two objects; and all preferences are required to respect a

common ranking of these tiers while the relative rankings of objects within a tier may

vary arbitrarily. Such a common ranking of 1-or-2-object tiers is referred to as a restricted

tier structure. As an example, consider a skyscraper with two apartments on each floor.

A restricted tier structure can be generated according to floors (for instance, from the top

down to the bottom), i.e., all agents prefer higher apartments to lower ones. Between two

apartments on the same floor, however, the preferences may be arbitrary across agents. For

another example, consider a road from the downtown to the suburb along which houses

of similar quality are located on both sides. A restricted tier structure can be generated

according to the distance away from the downtown.

Theorem 1 shows that a rule on a restricted tier domain is sd-strategy-proof, sd-

efficient and equal-treatment-of-equals if and only if it is the PS rule. Recall that the

PS rule is manipulable on the universal domain since the lotteries prescribed by the PS
6All results in Chapter 3 are co-authored with Huaxia Zeng.
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rule are sensitive to unilateral deviations. Intuitively, the restricted tier structure embed-

ded in a restricted tier domain reduces such sensitivity, and therefore restores appropriate

incentive properties on the PS rule.7 At every preference profile of a restricted tier do-

main, according to the PS rule, all agents first equally share each tier of object(s), and

moreover, within a tier with two objects, say a and b, each agent in the (weak) majority

group (e.g., the group of agents with cardinality l > n
2

who prefer a to b, provided that

n is the total number of agents) consumes 1
l

of her preferred object a and obtains 2
n
− 1

l

of her less preferred object b, while each agent in the minority group (i.e., the comple-

mentary group of the (weak) majority group) merely consumes 2
n

of her preferred object

b. Consequently, any individual preference misrepresentation does not affect the manipu-

lator’s share on each tier, and cannot increase the consumption of her sincerely preferred

object in each 2-object tier. Therefore, we restore sd-strategy-proofness of the PS rule on

a restricted tier domain. Moreover, in the verification of this characterization, we find that

sd-envy-freeness is endogenized in an sd-strategy-proof, sd-efficient and equal-treatment-

of-equals rule, and essentially sd-efficiency and sd-envy-freeness pin down all random

assignments induced to the PS rule. Therefore, the PS rule is also uniquely characterized

by sd-efficiency and sd-envy-freeness on a restricted tier domain. This result is presented

as the Corollary 1 of the Theorem 1.

As the restricted tier structure helps to restore sd-strategy-proofness of the PS rule, it

provides one particular sufficient condition for the existence of an sd-strategy-proof, sd-

efficient and sd-envy-free or equal-treatment-of-equals rule. More importantly, we char-

acterize restricted tier domains for the existence of such an admissible rule. We restrict

attention to the class of connected domains which have been widely studied in the vot-

ing literature (e.g., Monjardet (2009), Sato (2013), Chatterji et al. (2013) and Chatterji

et al. (2016)), and recently have been adopted for characterizing random assignment rules

in Cho (2012) and Cho (2016a). A pair of preferences is said to be adjacent if they are

identical up to a switch of two consecutively ranked objects. Given a domain, a undi-

rected graph is constructed such that the vertex set is the preferences in the domain and

7Kojima and Manea (2010) restrict such sensitivity by increasing the copies of objects, and hence restore

sd-strategy-proofness of the PS rule.
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an edge is drawn between two adjacent preferences. Correspondingly, a domain is said

to be connected if this graph is connected. Theorem 2 proves that if a connected do-

main admits an sd-strategy-proof, sd-efficient and sd-envy-free rule, it must be a restricted

tier domain. This axiomatically justifies the necessity of the restricted tier structure, and

clearly specifies a boundary between the impossibility and possibility for designing desir-

able strategy-proof random assignment rules. Furthermore, when we weaken the fairness

axiom from sd-envy-freeness to equal treatment of equals, the domain characterized is,

surprisingly, not enlarged at all (see Theorem 3).

In addition to the above-mentioned domain and rule characterizations, we extend our

preference restriction, i.e., restricted tier structures, to a generalized model where each

agent has an outside option, and the number of agents may differ from the number of ob-

jects. This domain strictly nests the one investigated by Bogomolnaia and Moulin (2002),

where a scheduling problem is addressed. Imagine that there is a public service center

which can serve one agent in each slot, each agent wants to be served in a earlier slot.

In addition, each agent has a deadline above which receiving serve slot is perceived to be

of no value. The major difficulty is that these individual deadlines are private informa-

tion, hence the planner needs a schedule rule that incentivizes the agents to report their

true deadlines and hence design an efficient service plan. Treating service slots as ob-

jects and each agent has an outside option, each agent has a common preference on slots,

i.e., earlier is better, and the only difference among agents is how do they rank their out-

side options. On such a restricted domain, Bogomolnaia and Moulin (2002) characterize

the PS rule as the unique one that satisfies either sd-strategy-proofness, sd-efficiency and

equal treatment of equals or sd-efficiency and sd-envy-freeness. Such characterizations

strongly suggest the use of the PS rule in scheduling problems.

On a restricted tier domain with outside options, called an augmented restricted tier

domain, we also establish these two characterizations of the PS rule. This generalization

suggests the use of the PS rule in a scheduling problem where there might be slight per-

turbation of rankings of service slots. For example, each day has two service slots, one in

the morning and the other in the afternoon, and every agent agrees on that being served

in an earlier day is better, however some agents prefer being served in the morning while

6



some afternoon.

The results in Chapter 3 may be interpreted as both negative and positive. On the

one hand, in some realistic situations, for example the house allocation in a skyscraper or

along a road, the restricted tier structure seems to be an appropriate assumption. Then our

characterization of the PS rule supports its application in these situations. On the other

hand, a restricted tier domain is restrictive, and does not give much freedom for agents

to spell their preferences. More importantly, we identify the restricted tier domain as a

boundary for the compatibility of these canonical axioms under connectedness.

In other words, in order to find domains restricted in a more reasonable way, we must

go beyond connected ones. However, this is not an easy task because of mainly two

reasons. The first is that when we go beyond connected domains, we do not have any

domain structure such as the adjacency notion for connected domains. The second is

that, verifying sd-strategy-proofness is usually difficult, which is even more difficult on

unconnected domains. Hence it helps a lot if we have a domain structure which facilitates

the analysis on unconnected domains and simplifies the verification of the sd-strategy-

proofness.

To do this, we weaken the adjacency notion of Monjardet (2009) so that two pref-

erences are block-adjacent if they are different only in a flip of two adjacent blocks.8

Particularly, the relative rankings within two blocks flipped remain unchanged. Accord-

ingly, we say a domain is block-connected if between two arbitrary preferences we can

arrange a sequence of admissible preferences such that every two contiguous preferences

are block-adjacent. Hence, the class of block-connected domains contains the connected

domains as well as many unconnected domains.

On a block-connected domain, we propose a sufficient condition between sd-strategy-

proofness and a weaker notion, called block-adjacent sd-strategy-proofness, which re-

quires that reporting the true preference always delivers a lottery that stochastically dom-

inates the lottery induced by any preference that is block-adjacent to the sincere one.

Hence, given a block-connected domain, an arbitrarily fixed random assignment rule is

sd-strategy-proof as long as it is block-adjacent sd-atrategy-proof.

8A block in this dissertation refers to a subset of objects.
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Sato (2013) defines local strategy-proofness on a connected domain which requires

that reporting the true preference always delivers an alternative that is as least as good

as the alternative induced by any preference that is adjacent to the sincere one. In ad-

dition, he shows that on a connected domain, if strategy-proofness is equivalent to local

strategy-proofness, then the domain satisfies a structural condition called non-restoration.

Afterwards, Cho (2016a) considers incentives for random mechanisms and verifies the

non-restoration as a sufficient condition for the equivalence between local sd-strategy-

proofness and sd-strategy-proofness.

The sufficient condition we propose for the equivalence between block-adjacent sd-

strategy-proofness and sd-strategy-proofness on block-connected domains is called path-

nestedness. Pick an arbitrary pair of preferences, it is possible to arrange a sequence

between them such that each contiguous pair is block-adjacent and satisfying the fol-

lowing structural condition. Let A1, A2 be two blocks flipped between two contiguous

preferences and A3, A4 be two blocks flipped between two contiguous preferences ranked

latter along the sequence, path-nestedness requires either A3∪A4 ⊂ A1 or A3∪A4 ⊂ A2

or (A3 ∪ A4) ∩ (A1 ∪ A2) = ∅.

The equivalence result in chapter 4 and it is supposed to be useful either when the

interesting domain is block-connected but not connected or when the interesting domain

is connected but violates non-restoration. We illustrate the latter with Example 5. As

to the former, we use path-nestedness to show that on a quite flexible class of prefer-

ence domains, each of which is block-connected and quite large in size, the PS rule is

sd-strategy-proof. These domains are called sequentially dichotomous domains and pre-

sented in chapter 5.

Recall that, in the literature there are essentially two random assignment rules: ran-

dom priority rule (Abdulkadiroğlu and Sönmez (1998)) and the probabilistic serial rule

(Bogomolnaia and Moulin (2001)). The random priority rule is the uniform randomiza-

tion on serial dictatorship rules. It is sd-strategy-proof and treating equals equally, but

not sd-efficient. Quite a few papers are devoted to understanding why the random pri-

ority rule is sd-inefficient and under what conditions it becomes sd-efficient, including

Abdulkadiroğlu and Sönmez (2003), Kesten (2009), Manea (2008), and Manea (2009).
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The second rule, the probabilistic serial rule (PS), is sd-efficient and treating equals

equally, but not sd-strategy-proof. The issue of why the PS rule is not sd-strategy-proof

and under what conditions it becomes sd-strategy-proof is largely neglected. The only

paper in this line, as far as my knowledge, is Kojima and Manea (2010). However they

are essentially dealing with the so-called ”large assignment problems”, that is each object

has sufficiently many copies. For the baseline model discussed in the beginning, we

still don’t know much. To fill this gap, we propose, in chapter 5, a class of preference

domains and shows that on such domains the PS rule is sd-strategy-proof. We call them

sequentially dichotomous domains. In addition, each of these domains is shown to be

maximal for the PS rule to be sd-strategy-proof, i.e., not a single preference can be added

into a sequentially dichotomous domain while the sd-strategy-proofness of the PS rule is

preserved.

The results associated with sequentially dichotomous domains contribute to the liter-

ature from another point of view. The literature of random assignment comes with many

impossibilities. It starts from Bogomolnaia and Moulin (2001) who proved that there is

no acceptable rule on the universal domain. This impossibility was then strengthened

to the single-peaked domain by Kasajima (2013), and then to the single-peaked domain

when all preferences have a common peak by Chang and Chun (2016). In light of these

impossibilities, one might be pessimistic about the prospect of finding a reasonably re-

stricted preference domain on which there is an acceptable rule. In addition, normatively

speaking, the characterization result with respect to the restricted tier domains should be

treated largely as an impossibility. In this line of the literature, the results in chapter 5 are

probably the first possibility results.

To define a sequentially dichotomous domain, we need some preliminary definitions.

We say a partition on the object set is a direct refinement of another if from the latter to

the former there is exactly one block that breaks into two smaller blocks and all the other

blocks are inherited. Then we say a sequence of partitions is a path if it starts from the

coarsest partition, ends at the finest partition, and along the sequence each partition is a

direct refinement of the previous one. In other words, a path plots a way to differentiate

objects by sequentially dichotomous divisions. Given a partition and a preference, we
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say this preference respects this partition if, for every pair of blocks in this partition,

every object in one block is better than every object in the other. Then a collection of

preferences is said to be a sequentially dichotomous domain if we can find a path such

that a preference is included if and only if it respects every partition along the path.

It is worth noting that a sequentially dichotomous domain satisfies minimal richness,

i.e., every object is found the top of some admissible preference. In addition, the size of

a sequentially dichotomous domain is quite large. Given the number of objects being n, a

sequentially dichotomous domain contains 2n−1 preferences, exactly the same size as the

single-peaked domain.

Surprisingly, sequentially dichotomous domains have shown up in the literature on

”Condorcet domain.” A preference domain is a Condorcet domain if majority rule does

not generate Condorcet cycles. Classical papers in this literature include Black (1948),

Black et al. (1958), Abello (1981), Fishburn (1997), Fishburn (2002), and so on. An

excellent survey is by Monjardet (2009).

It turns out that each sequentially dichotomous domain is a maximal Condorcet do-

main. In addition, the size of a sequentially dichotomous domain is the largest in a class

of maximal Condorcet domains. This class is called the symmetric domains, requiring

that whenever a preference is admissible, its total reversal is also admissible.

The structure of sequentially dichotomous domains has already been found in Danilov

and Koshevoy (2013), who describe such a structure in a much more abstract manner from

the view point of operations research.

As discussed in chapter 3 and 5, on some domains it is impossible to design a desired

random assignment rule, examples include Bogomolnaia and Moulin (2001), Kasajima

(2013), Chang and Chun (2016), and the results presented in chapter 3, while it is some-

times possible to find a rule satisfying desired properties, an example is the PS rule on

sequentially dichotomous domains.

In theory, we simply assume what preferences are admissible and a larger domain is

preferred. It is interesting to ask, in reality, how should we model preference restrictions,

if any, and what is its implication on the scope of designing acceptable rules. We address

this issue in the final chapter, i.e. chapter 6.
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Facing these questions, the first observation is that, in reality, the way people figure

out their preferences on the objects is fundamentally affected by the way these objects

are described. Since in reality, when people are required to submit their preferences

on the objects, the information they have is usually a description of the objects. Take

house allocation as an example, people are usually required to express their preferences

on houses before they can really live in the houses and consume the housing service.

Rather, the information they have for them to figure out their preferences is usually a

description of the houses, which is usually provided by the authority who organize the

allocation. Take the working task allocation as another example, it is impossible that

workers express their preferences on tasks after they have experienced every task. Rather,

the information they have for them to figure out their preferences is usually a description

of the tasks, provided by the manager or their team leader.

Hence let’s take a closer look on the descriptions of objects in reality and the way

descriptions affect people’s formulation of their preferences on the objects. A frequently

seen description in reality is in the following format:

Table 1: A typical description of objects in reality

Characteristic
House

#1 #2 #3 #4 #5 #6

1. Type (no. of rooms) 2-Room 2-Room 3-Room 3-Room 4-Room 5-Room

2. floor area (approximately in m2) 30 35 60 65 90 110

3. no. of bedrooms 1 2 3 3 4 3

4. no. of bathrooms 1 2 2 2 3 2

• Source: Website of Housing Development Board of Singapore. See Flat Type.

That is, each object is described as a combination of various characteristic values.

Notice that the characteristics presented are deliberately chosen from a much larger set

of characteristics. Essentially a house can be evaluated from much more dimensions,

for example how long does it take to the nearest subway station, which floor the house

is on, how many public primary schools in the community, etc. In addition, even the

characteristics chosen here can be expressed in different ways. For example, the floor
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area may be expressed as a series of binary choices: is the area larger than 30, 40, 50, and

so on.

The reason we need to take such a close look on the descriptions of objects is as we

mentioned, different descriptions induce people to formulate their preferences in differ-

ent ways. Observing that objects are described as combinations of various characteristic

values, we make the central behavioral assumption in this paper that people figure out

their preferences on objects that are lexicographically separable with respect to the given

description. As illustrated by the above table, a typical resident tends to compare a pair of

houses first by their type and then floor area if they are of the same type and then number

of bedrooms if they have the same values of both type and area, and so on.

Here are two arguments that support this behavioral assumption. First, in reality some-

times people are required to submit their marginal preferences immediately when they are

informed of the characteristic values in a sequential way. For example, a frequently ob-

served practice is as follows. First they choose a specific type on a webpage and then

they are redirected to another webpage where they choose a floor area from a collection

of admissible choices which depend on which type they have chosen. After they have

chosen a floor area, they are led to a third page to choose a number of bedrooms and so

on until the end of the characteristic list.

Second, the set of feasible combinations of characteristic values is usually very sparse

relative to the whole Cartesian product. For example, in Table 1, the whole Cartesian

product has 4 × 6 × 4 × 3 = 288 elements. However, the feasible set has only 6 combi-

nations. In other words, the characteristics are heavily interdependent. Such interdepen-

dence makes our behavioral assumption not that restrictive as it appears. For example,

according to Table 1, knowing that a house with more rooms is always having a larger

area, there is not much difference in whether a person compares two houses according to

first the number of rooms and then area or first the area and then the number of rooms.

According to the behavioral assumption, by choosing a specific description of the

objects, i.e., a subset of characteristics and a ranking of them, the planner actually imposes

a preference restriction. In chapter 6, we model the situation as follows. The set of

available objects is a subset of the Cartesian product of a finite set of characteristics. The
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planner chooses a specific description, i.e., a subset of the characteristics and a ranking of

them. Facing the description provided by the planner, the agents report lexicographically

separable preferences. Then the planner assign a lottery to each agent according to a

prescribed rule.

Within this setting, we investigate how choices of descriptions affect the scope for

designing an acceptable rule. Specifically we ask the following three questions one by

one.

1. Given an arbitrary object set, does each possible description induces a preference

domain on which an acceptable rule exists?

2. If the answer to the above question is negative, what characterizes a good descrip-

tion so that an acceptable rule exists on the induced domain?

3. Given a good description, what allocation rule should we use?

Let us examine the questions with a specific object set illustrated in Table 2. That

is, each object can be evaluated according to each of three characteristics, c = {1, 2}

c′ = {a, b, c} and c′′ = {x, y}.

Table 2: An object set

Characteristic
Object

o1 o2 o3 o4 o5

c 1 1 1 2 2

c′ a b c a b

c′′ x y y x y

The answer to the first question is obviously negative. Consider the description such

that c and c′ are chosen and c is ranked above c′, illustrated by Table 3.

Table 3: A bad description

Characteristic
Object

o1 o2 o3 o4 o5

1: c 1 1 1 2 2

2: c′ a b c a b
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Then according to the behavioral assumption, the following three preferences are ad-

missible.
o1 � o3 � o2 � o4 � o5

o1 �′ o2 �′ o3 �′ o4 �′ o5

o2 �′′ o1 �′′ o3 �′′ o4 �′′ o5

This domain exhibits the elevating structure and hence implies nonexistence of an

acceptable rule. (See definition 2 and Theorem 3.)

From the description illustrated by Table 3, it’s evident that a necessary condition for

a description to induce a domain admitting an acceptable rule is that the last characteristic

can not take more than two feasible values, conditional on the previous characteristics.

A simple way to meet this necessary condition is to reverse the ranking of c and c′, as

illustrated by Table 4.

Table 4: Another bad description

Characteristic
Object

o1 o4 o2 o5 o3

1: c′ a a b b c

2: c 1 2 1 2 1

Now the induced domain will not exhibit the structure illustrated by �, �′, and �′′

above. Does this domain admits an acceptable rule?

To answer the question, we strengthen the impossibility with respect to the elevating

property in a manner so that, if n satisfies two technical assumptions ( Assumptions 1

and 2 in Appendix D.1), then the three preferences forming the structure below imply

nonexistence of an acceptable rule.

E � B � D � C � F

E �′ B �′ C �′ D �′ F

E �′′ C �′′ B �′′ D �′′ F

Specifically, let B,C,D be three nonempty blocks of objects and �,�′,�′′ three admis-

sible preferences such that (1)B,C,D take consecutive positions in three preferences, (2)

B and C take the first two positions in two preferences, and (3) in the third preference, B
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takes the first position and C takes the third position. E is the common upper contour set

that can be empty. Notice that the sizes of three blocks are arbitrary and the ranking of

objects within each block is allowed to be arbitrary across preferences.9

According to this impossibility, we know that the description illustrated by Table 4,

i.e., c and c′ are chosen and c′ is ranked above c, admits no acceptable rule since the

induced domain includes three preferences exhibiting the structure that leads to impossi-

bility, as illustrated below.

{o1, o4} � {o3} � {o2, o5}

{o1, o4} � {o2, o5} � {o3}

{o2, o5} � {o1, o4} � {o3}

Hence, according to this impossibility, we have a stronger necessary condition on

descriptions that induce domains admitting an acceptable rule. The condition is that, for

each feasible combination of values of the top-t ranked characteristics, the following-up

characteristic can take at most two feasible values. Whenever this condition is violated,

the induced domain include three preferences that exhibit the block elevating structure

that leads to impossibility.

For the object set illustrated in Table 2, a description that satisfies the necessary condi-

tion is as follows: all three characteristics are chosen and c ranked the first, c′′ the second,

and c′ the last. This description is illustrated by Table 5 below. It’s evident that the neces-

sary condition is satisfied: the first characteristic c takes two values 1 and 2; conditional

on c’s value the second characteristic c′′ takes two values x and y; conditional on a com-

bination of the first two characteristics, the last characteristic c′ takes either one value or

two values.
9We provide the proof subject to two technical assumptions in Appendix D.1. Although we can not

prove these two assumptions analytically, we conjecture them to be true. In addition, we provide Matlab

code to verify them given specific n and we have verified the assumptions with these codes for all the cases

where n 6 1000.
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Table 5: A good description

Characteristic
Object

o1 o2 o3 o4 o5

1: c 1 1 1 2 2

2: c′′ x y y x y

3: c′ a b c a b

We call a description satisfying this necessary condition a binary tree. The reason we

name it in this way can be seen easily from the following representation of the above table.

Particularly, according to the first characteristic c, objects are divided into two subsets, i.e.,

{o1, o2, o3} and {o4, o5}. Then according to the second characteristic, {o1, o2, o3} breaks

into {o1} and {o2, o3} and {o4, o5} breaks into {o4} and o5. Finally, according to the last

characteristic, {o2, o3} breaks into {o2} and {o3}.

o1, o2, o3, o4, o5

o4, o5

o5

o5

o4

o4

o1, o2, o3

o2, o3

o3o2

o1

o1

However since the impossibility justifies the binary tree as only a necessary condition,

we still don’t know whether there is an acceptable rule on the domain induced by the

description in Table 5. To justify the condition as also a sufficient condition, we verify

that the PS rule is sd-strategy-proof on the domain induced by a binary tree. Hence a

description induces a preference domain on which there is an acceptable rule if and only

if it is a binary tree, subject to two technical assumptions. To show sd-strategy-proofness

of the PS rule on the domain induced by a binary tree, we utilize Theorem 6, which shows

that the PS rule is sd-strategy-proof on any sequentially dichotomous domain. It then

suffices to show that as long as the description is a binary tree, the induced domain is

covered by a sequentially dichotomous domain.
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2 Model

This section presents the general model, which can be seen as the common model

setting for all chapters. Settings specific to each chapter will be presented chapter-wisely.

Let A ≡ {a, b, . . . } be a finite set of objects and I ≡ {1, 2, . . . , n}, n > 4, a finite

set of agents. For most of this dissertation (except for the extension part of Chapter

3), we assume |A| = |I| = n. Each agent i is equipped with a complete, transitive and

antisymmetric binary relation Pi overA, i.e., a linear order. Let P denote the set consisting

of all strict preferences over A. The set of admissible preferences is a set D ⊆ P, referred

to as the preference domain. Thus, P is referred to as the universal domain. Given Pi ∈ D

and a ∈ A, let rk(Pi), k = 1, . . . , n, denote the kth ranked object according to Pi, and

B(Pi, a) = {x ∈ A|x Pi a} denote the (strict) upper contour set of a in Pi. A preference

profile P ≡ (P1, . . . , Pn) ≡ (Pi, P−i) ∈ Dn is an n-tuple of admissible preferences.

Let ∆(A) denote the set of lotteries, or probability distributions, over A. Given λ ∈

∆(A), λa denotes the probability assigned to object a. A (random) assignment is a bi-

stochastic matrix L ≡ [Lia]i∈I,a∈A, namely a non-negative square matrix whose elements

in each row and each column sum to unity, i.e., Lia > 0 for all i ∈ I and a ∈ A,∑
a∈A Lia = 1 for all i ∈ I , and

∑
i∈I Lia = 1 for all a ∈ A. Evidently, in a bi-stochastic

matrix L, each row is a lottery, i.e., Li ∈ ∆(A) for all i ∈ I . Let L denote the set

of all bi-stochastic matrices. Agents assess lotteries according to (first-order) stochastic

dominance. Given Pi ∈ D and lotteries λ, λ′ ∈ ∆(A), λ stochastically dominates λ′

according to Pi, denoted λ P sd
i λ′, if

∑k
l=1 λrl(Pi) >

∑k
l=1 λ

′
rl(Pi)

for all 1 6 k 6

n. Analogously, given P ∈ Dn, we say an assignment L stochastically dominates L′

according to P , denoted L P sd L′, if Li P sd
i L′i for all i ∈ I .

A rule is a mapping ϕ : Dn → L. Given P ∈ Dn, ϕia(P ) denotes the probability of

agent i receiving object a, and thus ϕi(P ) denotes the lottery assigned to agent i.

Given P ∈ Dn, an assignment L is sd-efficient if it is not stochastically dominated by

any another assignment L′, i.e., [L′ P sd L]⇒ [L′ = L]. Accordingly, a rule ϕ : Dn → L

is sd-efficient if the assignment ϕ(P ) is sd-efficient for all P ∈ Dn.

Next, a rule is sd-strategy-proof if for every agent, her lottery under truthtelling always
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stochastically dominates her lottery induced by any misrepresentation, according to her

true preference. Formally, a rule ϕ : Dn → L is sd-strategy-proof if for all i ∈ I ,

Pi, P
′
i ∈ D, and P−i ∈ Dn−1, ϕi(Pi, P−i) P sd

i ϕi(P
′
i , P−i).

Last, we require that every agent weakly prefer her own lottery to any other’s. Given

P ∈ Dn, an assignment L is sd-envy-free if Li P sd
i Lj for all i, j ∈ I . Accordingly, a

rule ϕ : Dn → L is sd-envy-free if ϕ(P ) is sd-envy-free for all P ∈ Dn. As a weaker

notion of fairness, we say that an assignment L ∈ L satisfies equal treatment of equals

if for all i, j ∈ I , [Pi = Pj] ⇒ [Li = Lj]. Similarly, a rule ϕ : Dn → L satisfies equal

treatment of equals if ϕ(P ) satisfies equal treatment of equals for all P ∈ Dn. Evidently,

sd-envy-freeness implies equal treatment of equals.
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3 Random Assignments on Preference Domains with a

Tier Structure

In this chapter we answer the central questions by proposing a class of connected

domains: restricted tier domains. As a simpler starting point, we ask, in stead of the

original question, what preference restriction restores the sd-strategy-proofness of the PS

rule? As long as we find such a preference restriction, it can serve as a candidate answer

to the original question. We start our investigation by presenting a heuristic example.

Example 1 Let A = {a, b, c, d}. Let P ≡ (P−4, P4) and P ′ ≡ (P−4, P
′
4) be two prefer-

ence profiles below which specify an possible manipulation of agent 4. In the PS rule, the

corresponding consumption procedures are depicted in Figure 1.

P =


P1 : a � c � b � d

P2 : a � b � c � d

P3 : b � a � c � d

P4 : b � a � c � d

 P ′ =


P1 : a � c � b � d

P2 : a � b � c � d

P3 : b � a � c � d

P ′4 : a � b � c � d



0 1
2

3
4 1

1

2

3

4

a c d
a c d

b c d

b c d

0 1
3

5
9

3
4 1

1

2

3

4

a c d
a b c d

b c d
a b c d

Figure 1: Consumption procedures under P and P ′ in the PS rule

Observe that ϕ4a(P ) + ϕ4b(P ) = 1
2
< 5

9
= ϕ4a(P

′) + ϕ4b(P
′). Thus, agent 4

can profitably manipulate at profile P via P ′4. This indicates that the PS rule is vulnerable

to small manipulations like P4 and P ′4 which differ on the relative rankings of exactly

one pair of objects. Note that in profile P , each of a and b is most preferred by two

agents. Therefore, as shown in Figure 1, objects a and b are exhausted simultaneously at

time 1
2
, and all agents turn to objects in {c, d} at the same time. However, in profile P ′,

19



a is top ranked in the preferences of agents 1, 2 and 4, and therefore is exhausted in a

shorter time: 1
3
. This indicates that agent 3, who prefers b the most, only consumes 1

3
of b

while all others exhaust a. Furthermore, since c is the second best in agent 1’s preference

while a and b occupy the top two positions in all others’ preferences, after time 1
3
, agent

1 starts to consume c while agents 2, 3 and 4 are going to equally share the rest of object

b. Consequently, agent 4 obtains 2
9

of b, and therefore has 5
9

of a and b combined which is

more desirable than that under profile P .

This manipulation is made possible by the following two facts. First, according to the

PS rule, agents are myopic and greedy: every agent consumes her favorite object among

what are not exhausted at every time point. Second, more specifically, agent 1’s preference

differs to others in both profiles P and P ′ in the sense that c is ranked in between a and b

in P1 while all others rank both a and b above c.

Observe that in preferences P1, P2 and P3, object b occupies three distinct ranking

positions, and more specifically, is elevated successively from the third position in P1 to

the second in P2, and to the top in P3. Now, we impose an additional restriction on all

agents’ preferences to avoid such 3-position elevating phenomenon: both a and b occupy

the top two positions, and c and d obtain the other two positions. Thus, preference P1

is no longer admissible, and more importantly, all preferences preserve a common tier

structure: both a and b are ranked above c and d. Accordingly, let P̄ ≡ (P̄1, P2, P3, P4)

and P̄ ′ ≡ (P̄1, P2, P3, P
′
4) where for instance, P̄1 = P2. The consumption procedure at P̄

(specified in Figure 2 below) remains identical to that in Figure 1, while the consumption

procedure at P̄ ′ becomes significantly simpler than that at profile P ′, and is depicted in

Figure 2 below.

P̄ =


P̄1 : a � b � c � d

P2 : a � b � c � d

P3 : b � a � c � d

P4 : b � a � c � d

 P̄ ′ =


P̄1 : a � b � c � d

P2 : a � b � c � d

P3 : b � a � c � d

P ′4 : a � b � c � d


Now, the manipulation of agent 4 at P̄ via P ′4 is non-profitable, i.e., the lottery assigned

to agent 4 at P̄ first-order stochastically dominates that at P̄ ′ according to her sincere

preference P4. First, it is evident that agent 4 obtains identical shares of objects c and d

across profiles P̄ and P̄ ′. Second, more importantly, due to the common tier structure,
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Figure 2: Consumption procedures under P̄ and P̄ ′ in the PS rule

the combined share of a and b assigned to agent 4 at P̄ ′ is fixed to 1
2

which is identical to

that at profile P̄ . Last, the switch of a and b in P̄1 and P̄ ′1 makes agent 4 worse off as she

consume less of b at P̄ ′ than that at P̄ , i.e., agent 4 gets 1
6

of b at P̄ ′, and 1
2

at P̄ . �

3.1 Restricted tier domains: A possibility result

Now, we formally establish the preference restriction introduced in Example 1: all

object are partitioned into tiers; each tier consists of one or two objects; and all admissible

preferences respect a common ranking of tiers.

Let P ≡ (Ak)
T
k=1 denote a tier structure, i.e., (i) tier Ak ⊆ A is not empty, k =

1, . . . , T , (ii)Ak∩Ak′ = ∅ for all k 6= k′, (iii) ∪Tk=1Ak = A. According to an arbitrary tier

structure, we have a tier domain where the relative rankings over tiers in every preference

are identical. Moreover, we impose an additional restriction: every tier contains at most

two objects, and then construct a restricted tier domain.

Definition 1 A domain D is a restricted tier domain if there exists a restricted tier struc-

ture P ≡ (Ak)
T
k=1 such that

1. For all 1 6 k 6 T , |Ak| 6 2 ;

2. Given Pi ∈ D and a, b ∈ A, [a ∈ Ak, b ∈ Ak′ and k < k′]⇒ [a Pi b].

Let D(P) denote the restricted tier domain containing all admissible preferences.

Remark 1 Given a tier structure where some tier contains more than two objects, let D be

the tier domain containing all admissible preferences. Then, there are three preferences
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analogous to P1, P2 and P3 in Example 1, and consequently, by a similar argument in

Example 1, the PS rule fails sd-strategy-proofness.

Remark 2 In an auction model, Bikhchandani et al. (2006) study a particular class of

tiered domains, named “order-based domains” where all (quasi linear) cardinal prefer-

ences they examine induce an identical ordinal preference on objects at each payment

level. More recently, tiered domains are examined in two-sided matching (Akahoshi

(2014) and Kandori et al. (2010)), school choice (Kesten (2010) and Kesten and Kurino

(2013)), and spectrum license auctions (Serizawa and Zhou (2016)).

Remark 3 Let P ≡ (Ak)
T
k=1 be a tier structure with |Ak| = 2 for all 1 6 k 6 T . The

cardinality of the restricted tier domain D(P) is 2T .

On a restricted tier domain, we can escape from the impossibility in Proposition 1 by

restoring sd-strategy-proofness of the PS rule. Moreover, Theorem 1 below shows that

the PS rule is the unique one on a restricted tier domain satisfying sd-strategy-proofness,

sd-efficiency and equal treatment of equals.

Theorem 1 On a restricted tier domain, a rule is sd-strategy-proof, sd-efficient and equal-

treatment-of-equals if and only if it is the PS rule.

Proof : Given P ≡ (Ak)
T
k=1, let D ⊆ D(P) be a restricted tier domain.

Due to the restricted tier structure embedded in D, at each preference profile, we can

clearly specify the random assignment induced by the PS rule as shown in Fact 1 below.

Fact 1 Given P ∈ Dn, let L be the random assignment induced by the PS rule. Then, the

following two conditions: for each 1 6 k 6 T ,

1. LiAk ≡
∑

x∈Ak Lix = |Ak|
n

for all i ∈ I .

2. Assume Ak = {a, b}. Let Ik ≡ {i ∈ I|a Pi b} and l ≡ |Ik|.

(i) If n
2
6 l 6 n, then

– Lia = 1
l

and Lib = 2
n
− 1

l
for all i ∈ Ik;
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– Lja = 0 and Ljb = 2
n

for all j ∈ I\Ik.

(ii) If 0 6 l < n
2
, then

– Lia = 2
n

and Lib = 0 for all i ∈ Ik;

– Lja = 2
n
− 1

n−l and Ljb = 1
n−l for all j ∈ I\Ik.

The verification of Fact 1 is routine, and we hence omit it. We first intuitively explain

two conditions in Fact 1. In the assignment L , all agents first equally share every tier.

Next, in a particular tier with two objects, say Ak = {a, b}, the set of agents who prefer

a to b, i.e., Ik ≡ {i ∈ I|a Pi b}, is either a (weak) majority, i.e., n
2
6 |Ik| 6 n, or a

(strict) minority, i.e., 0 6 |Ik| < n
2
. If Ik is a (weak) majority, then all agents in Ik share a

equally and exclusively, and hence each receives the share 1
|Ik|

of a; I\Ik only consume b,

and each of them receives the share 2
n

of b. Moreover, all agents in Ik split what remains

of b, and hence each obtains the share 1−(n−|Ik|)× 2
n

|Ik|
= 2

n
− 1
|Ik|

of b. If Ik is a (strict)

minority, then I\Ik is a (strict) majority, i.e., n
2
< |I\Ik| 6 n, and objects a and b are

shared in an opposite symmetric way.

It is evident that the PS rule is always sd-efficient and equal-treatment-of-equals. We

verify that the PS rule is sd-strategy-proof on D. Given i ∈ I , Pi, P ′i ∈ D and P−i ∈ Dn−1,

let L and L′ be two random assignments induced by the PS rule at profile P ≡ (Pi, P−i)

and P ′ ≡ (P ′i , P−i) respectively. We show Li P
sd
i L′i.

According to condition 1 above, we know that for every 1 6 k 6 T ,
∑k

t=1 LiAt =∑k
t=1 L

′
iAt

. Therefore, to complete the verification, it suffices to show that given 1 6 k 6

T , assuming Ak = {a, b} and a Pi b, we have Lia > L′ia. If a P ′i b, condition 2 above

implies Lia = L′ia. Next, assume b P ′i a. Let l be the number of agents who prefer a to b

at P , i.e., l ≡ |{j ∈ I|a Pj b}|. Thus, 1 6 l 6 n and the number of agents who prefer

a to b at P ′ must be l − 1. If n
2
< l 6 n, condition 2(i) implies Lia = 1

l
> 0 = L′ia. If

1 6 l 6 n
2
, condition 2(i) (if l = n

2
) or condition 2(ii) (if 1 6 l < n

2
) implies Lia = 2

n
.

Moreover, since L′ia 6
2
n

by condition 1, we have Lia > L′ia. Therefore, Lia > L′ia as

required and hence Li P sd
i L′i. In conclusion, the PS rule is sd-strategy-proof on domain

D. This completes the verification of the sufficiency part of Theorem 1.

Henceforth, we prove the necessity part of Theorem 1. Let ϕ : Dn → L a rule which
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satisfies all three axioms. Fix P ≡ (P1, . . . , Pn) ∈ Dn and L ≡ ϕ(P ) for the verifications

below. Specifically, we show that L satisfies conditions 1 and 2 of Fact 1.

Lemma 1 For all k ∈ {1, . . . , T} and i ∈ I , LiAk = |Ak|
n

.

The proof of Lemma 1 is in Appendix A.1.

Thus, random assignment L satisfies condition 1 of Fact 1.

Lemma 2 Given 1 6 k 6 T , assume Ak = {a, b} and let Ik = {i ∈ I|a Pi b}. The

following statements hold.

(i) For all i, j ∈ Ik, Lia = Lja.

(ii) For all i ∈ Ik and j ∈ I\Ik, Lia > Lja and Lib 6 Ljb.

The proof of Lemma 2 is in Appendix A.2.

Lemma 3 Random assignment L satisfies sd-envy-freeness.

Proof: Given a ∈ A, assume a ∈ Ak. Given i ∈ I , assume a = rl(Pi). If Ak = {a},

or |Ak| = 2 and a = min(Pi, Ak), then Lemma 1 implies
∑l

t=1 Lirt(Pi) =
∑k

t=1
|Ak|
n

=∑l
t=1 Ljrt(Pi) for all j 6= i. If |Ak| = 2 and a = max(Pi, Ak), then Lemmas 1 and 2

imply
∑l

t=1 Lirt(Pi) =
∑k−1

t=1
|Ak|
n

+ Lia >
∑k−1

t=1
|Ak|
n

+ Lja =
∑l

t=1 Ljrt(Pi) for all j 6= i.

Therefore, Li P sd
i Lj for all j 6= i. Thus, ϕ satisfies sd-envy-freeness.

Now, given 1 6 k 6 T , assume Ak = {a, b}, and let Ik ≡ {i ∈ I|a Pi b} and

l ≡ |Ik|. By sd-envy-freeness, we first know that for each pair i, j ∈ Ik, or each pair

i, j ∈ I\Ik, Lia = Lja and Lib = Ljb. Next, by sd-efficiency and feasibility, we know that

(i) If n
2
6 l 6 n, then

– Lia = 1
l

and Lib = 2
n
− 1

l
for all i ∈ Ik;

– Lja = 0 and Ljb = 2
n

for all j ∈ I\Ik.

(ii) If 0 6 l < n
2
, then

– Lia = 2
n

and Lib = 0 for all i ∈ Ik;
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– Lja = 2
n
− 1

n−l and Ljb = 1
n−l for all j ∈ I\Ik.

Thus, random assignment L satisfies condition 2 of Fact 1. Therefore, L is induced by the

PS rule. This completes the verification of the necessity part of Theorem 1. �

According to the verification of Theorem 1, on a restricted tier domain, we also char-

acterize the PS rule under sd-efficiency and sd-envy-freeness.

Corollary 1 On a restricted tier domain, a rule is sd-efficient and sd-envy-free if and only

if it is the PS rule.

Proof : The sufficiency part holds evidently. We focus on the necessity part. Let ϕ :

Dn → L be an sd-efficient and sd-envy-free rule. Fixing P ≡ (P1, . . . , Pn) ∈ Dn, let

L ≡ ϕ(P ). Fix 1 6 k 6 T . First, sd-envy-freeness implies that LiAk = LjAk for all

i, j ∈ I . Hence, feasibility implies that LiAk = |Ak|
n

for all i ∈ I . Thus, L satisfies

condition 1 of Fact 1. Furthermore, in the proof of the necessity part of Theorem 1, note

that the verification of Lemma 3 only relies on the application of sd-efficiency and sd-

envy-freeness. Hence, L must also satisfy condition 2 of Fact 1. Therefore, ϕ is the PS

rule. �

Remark 4 Since every preference profile on a restricted tier domain has rich support on

a partition (Heo (2014a)) and is recursively decomposable in the sense of Cho (2016b),

by invoking either Theorem 1 in Heo (2014a) or Theorem 3 in Cho (2016b), we can also

establish Corollary 1. We use the following examples to illustrate. Let A ≡ {a, b, c, d},

P ≡ (A1, A2) where A1 ≡ {a, b} and A2 ≡ {c, d}), and I ≡ {1, 2, 3, 4}. Consider two

preference profiles on the restricted tier domain D(P) specified below.

P =


P1 : a � b � c � d

P2 : a � b � c � d

P3 : b � a � c � d

P4 : b � a � c � d

 P̄ =


P̄1 : a � b � c � d

P̄2 : a � b � c � d

P̄3 : b � a � d � c

P̄4 : a � b � d � c


According to profile P , in the tier A2, since every agent prefers c to d, we refine

the tier structure P to P ′ ≡ (A1, A
1
2, A

2
2) ≡ ({a, b}, {c}, {d}). Thus, profile P has rich
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support on partition P ′, and hence the PS rule is the unique one satisfying sd-efficiency

and sd-envy-freeness.

According to profile P̄ , we first partition the objects intoA1 ≡ {a, b} andA2 ≡ {c, d}

and construct a type 1 decomposition in Cho (2016b). Then, sd-efficiency and sd-envy-

freeness requires that each agent should consume 1
2

of {a, b} and 1
2

of {c, d}. Next, we

partition A2 ≡ {c, d} into {c} and {d} and agents into {1, 2} and {3, 4}. Thus, we

construct a type 2 decomposition in Cho (2016b). Then, by sd-efficiency and sd-envy-

freeness, agents 1 and 2 both consume 1
2

of c; and agents 3 and 4 both consume 1
2

of

d. Last, we “partition” {a, b} into {a, 1
2

of b}, and {1
2

of b}, and partition agents into

{1, 2, 4} and {3}. In this way, we construct a type 3 decomposition in Cho (2016b).

Then, sd-efficiency and sd-envy-freeness implies that agents 1, 2 and 4 share a equally and

each obtains 1
6

of b, while agent 3 receives 1
2

of b.

3.1.1 Relation to the literature

In the literature, there are two main strands on the axiomatic characterizations of the

PS rule. The first strand focuses on identifying axioms that characterize the PS rule on

the universal domain.10 For instance, Bogomolnaia and Heo (2012) proposes the axiom

bounded invariance, and characterizes the PS rule along with sd-efficiency and sd-envy-

freeness.11 Recently, Bogomolnaia (2015) adopts different preference extension approach

for lotteries: lexicographic preference extension to establish a weaker incentive notion,

and then shows that the PS rule is unique for sd-efficiency, sd-envy-freeness and strategy-

10We discuss here only the characterizations in the model where ordinal preferences are strict; each agent

receives exactly one object; and each object has one unit. There are also interesting characterizations of the

PS rule in other environments, e.g., Heo and Yılmaz (2015) add indifferences in preferences; Heo (2014b)

allows each agents to consume more than one object; Liu and Pycia (2011a) increase the copies of each

object to infinity; while both infinitely many copies and multiple-unit consumption are allowed in Liu and

Pycia (2011b).
11Bounded invariance requires that whenever an agent’s unilateral deviation does not involve her top

k ranked objects, the allocation of each of these k objects remains unchanged. Hashimoto et al. (2014)

weaken bounded invariance and characterize the PS rule accordingly.
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proof on lexicographic preference extension.12 Alternatively, Hashimoto et al. (2014)

neglect the incentive issue in random assignment rules, and characterize the PS rule with

a new axiom ordinal fairness which in fact strengthens sd-efficiency and sd-envy-freeness

combined.13

In the second strand, restrictions are imposed on either preference domains or pref-

erence profiles, and the PS rule is characterized by canonical axioms, i.e., the axioms

studied in our paper. Bogomolnaia and Moulin (2002) introduce an assignment model

with preference restrictions which can be described by the following realistic application.

Consider a public service center which is able to serve only one agent in each time slot.

All agents want to be served earlier and differ only on their deadlines of services beyond

which the services are perceived of no value. The deadlines are private information of

agents, and the planner wants to truthfully elicit them and then schedule an efficient and

fair service plan. Then, they characterize the PS rule by either sd-strategy-proofness, sd-

efficiency and equal treatment of equals or sd-efficiency and sd-envy-freeness. As we men-

tioned above, the assignment model studied in Bogomolnaia and Moulin (2002) is nested

in our generalized model with outside options, and the same characterization results are

established. Alternatively, various restrictions are introduced on preference profiles, and

the PS assignments are characterized via sd-efficiency and sd-envy-freeness, e.g., the full

support requirement in Liu and Pycia (2011a), rich support on a partition in Heo (2014a)

and rich preferences in Cho (2016b).14

12Fix a preference and two distinct lotteries over objects. We rearrange each lottery according to the pref-

erence from the worst object up to the best object. One lottery is evaluated better than the other according

to the lexicographic preference extension, if we can find one object which has strictly higher probability

in the former lottery than that in the latter one while for any less preferred object, the probabilities in both

lotteries are identical. The lexicographic preference extension induce a linear order over all lotteries while

stochastic-dominance preference extension only produces a partial order over all lotteries.
13Ordinal fairness requires that whenever an agent is assigned an object a with strictly positive probabil-

ity, the probability of this agent receiving an object better than a is no greater than the probability of any

other agent getting an object better than a.
14The full support requires that in a preference profile, each preference in the universal domain is adopted

by some agent. In a preference profile which is rich support on a partition, we first observe that all agents

preference share a common ranking on a partition of objects where some block of the partition may contain
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Our paper lies in the same vein of the second strand. We focus on the incentive

property of rules on restricted preference domains (provided that each agent’s domain is

assumed to be identical), and canonically characterize the PS rule on restricted tier do-

mains. More importantly, we axiomatically justify the necessity of our domain restriction

for the existence of sd-strategy-proof, sd-efficient and sd-envy-free or equal-treatment-of-

equals rules. Our characterization result implies that the PS assignments are unique for

sd-efficiency and sd-envy-freeness on profiles of restricted tier preferences.

In the verification of our domain characterization theorems (Theorems 2 and 3), we in-

troduce an important notion called the elevating property which is a sufficient domain con-

dition for the incompatibility of sd-strategy-proofness, sd-efficiency and sd-envy-freeness

or equal treatment of equals. To the best of our knowledge, the elevating property covers

all existing literature related to the study of impossibility on the existence of sd-strategy-

proof, sd-efficient and sd-envy-free or equal-treatment-of-equals rules (e.g., Bogomolnaia

and Moulin (2001), Kasajima (2013), Chang and Chun (2016) and Altuntaş (2016)). More

importantly, in contrast to this literature which proposes some domain conditions and es-

tablishes negative results, we formulate the elevating property in a greater more sense so

that the avoidance of the elevating property becomes a critical and informative condition

which then is adopted to characterize restricted tier domains.

3.2 Necessity: A characterization of restricted tier domains

We have proposed a class of restricted domains, restricted tier domains, which is

sufficient for the admission of an sd-strategy-proof, sd-efficient and sd-envy-free (or equal-

more than 2 objects. Moreover, in each block of the partition, the full support requirement holds. In a rich

preference profile, for each agent j and each object a, we can find an agent k (either k = j or k 6= j)

who prefers a the most and moreover, after partitioning all objects into two blocks according to agent

j’s preference: objects better than or identical to a and objects worse than a, we note that agent k also

prefers the first block to the second one. Cho (2016b) studies economies with random assignments, and

shows that if an economy is able to be decomposed into several feasible sub-economies via his recursive

decomposability condition, then the PS assignment is the unique one satisfying sd-efficiency and sd-envy-

freeness in the economy. For more detailed relation of our paper to Heo (2014a) and Cho (2016b), please

refer to Remark 4.
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treatment-of-equals) rule, specifically the PS rule. Despite of the significant restriction

and small cardinality of restricted tier domains (recall Remark 3), we show in this section

that a restricted tier structure is necessary for the existence of an sd-strategy-proof, sd-

efficient and sd-envy-free (or equal-treatment-of-equals) rule, provided a mild richness

condition.

We first introduce the richness condition: connectedness (Monjardet (2009)). Two

preferences Pi, P ′i ∈ D are adjacent, denoted Pi ∼A P ′i , if there exist x, y ∈ A such that

(i) x = rk(Pi) = rk+1(P ′i ) and y = rk+1(Pi) = rk(P
′
i ) for some 1 6 k 6 n− 1; and

(ii) rl(Pi) = rl(P
′
i ) for all l 6= k.

Accordingly, a domain D is connected if for every pair of distinct preferences Pi, P ′i ∈ D,

there exists a sequence of consecutively adjacent preferences (in other words, a path)

{P k
i }tk=1 ⊆ D connecting Pi and P ′i , i.e., P 1

i = Pi, P t
i = P ′i and P k

i ∼A P k+1
i , k =

1, . . . , t − 1. Intuitively, connectedness implies that the difference of two preferences

in the domain can be reconciled via a sequence of local switchings. When a domain is

interpreted as a collection of opinions in a society (Puppe (2016)), connectedness implies

that the society’s opinions are sufficiently dispersed.

Remark 5 The notion of connectedness is introduced in Monjardet (2009) for the study

of maximal Condorcet domain. Recently, it has been identified by Sato (2013) as a nec-

essary condition for the equivalence of local and global strategy-proofness in determin-

istic voting. Note that many well studied domains are connected, including the universal

domain (Gibbard (1973) and Satterthwaite (1975)), the single-peaked domain (Moulin

(1980) and Demange (1982)), the single-dipped domain (Barberà et al. (2012)), and max-

imal single-crossing domains (Saporiti (2009) and Carroll (2012)).

We now present the domain characterization result.

Theorem 2 If a connected domain admits an sd-strategy-proof, sd-efficient and sd-envy-

free rule, it is a restricted tier domain.
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Proof : First, note that if D contains exactly two preferences, by connectedness, it is

evident that it is a restricted tier domain. Henceforth, we assume that D contains at least

three preferences. Let ϕ : Dn → L be an sd-strategy-proof, sd-efficient and sd-envy-free

rule. To prove Theorem 2, we first introduce an important terminology, the elevating

property.

Definition 2 A domain satisfies the elevating property if there exist three preferences

P̄i, Pi, P̂i, three objects a, b, c and a ranking position 1 6 k 6 n − 2 such that the

following three conditions are satisfied.

1. a = rk(P̄i) = rk(Pi) = rk+1(P̂i).

2. b = rk+2(P̄i) = rk+1(Pi) = rk(P̂i).

3. c = rk+1(P̄i) = rk+2(Pi) = rk+2(P̂i).

4. B(P̄i, a) = B(Pi, a) = B(P̂i, b).15

We use Table 6 below to illustrate the elevating property:

Ranking: k k + 1 k + 2

P̄i: · · · · · · · · ·︸ ︷︷ ︸
B(P̄i,a)

� a � c � b � · · · · · · · · ·

q

Pi:
B(Pi, a)︷ ︸︸ ︷
· · · · · · · · ·︸ ︷︷ ︸
B(Pi, a)

� a � b � c � · · · · · · · · ·

q

P̂i:
B(P̂i,b)︷ ︸︸ ︷
· · · · · · · · · � b � a � c � · · · · · · · · ·

Table 6: The elevating property

Recall preferences P1, P2 and P3 in Example 1. Note that objects a, b and c cluster

in 3 ranking positions of these preferences; three corresponding upper contour sets are

empty (and hence identical); and moreover, object b is elevated from the third ranking

position in P1 to the second in P2, and then is successively elevated to the top of P3. (This

15Note that within the upper contour set, the relative rankings of objects in three preferences are arbitrary.
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is a problem. Either remove this part or change the preference in Example 1.) Many well

known voting domains satisfy the elevating property.16 In a contrary, since each object

takes at most two positions in all preferences of a restricted tier domain, it is evident that

restricted tier domains always violate the elevating property. Lemma 4 below shows that

domain D must violate the elevating property since it is the key for the incompatibility of

sd-strategy-proofness, sd-efficiency and sd-envy-freeness.

Lemma 4 Domain D violates the elevating property.

Proof : Suppose that D satisfy the elevating property. Specifically, assume that D con-

tains three preferences in Table 6. LetB ≡ B(P̄i, a) = B(Pi, a) = B(P̂i, b) for notational

convenience. Thus, |B| = k − 1. In the detailed verification below, we consider four par-

ticular profiles:

(i) P , where every agent presents preference Pi in Table 6,

(ii) (P̄1, P−1), where agent 1 deviates at P via P̄i in Table 6,

(iii) (P̂2, P−2), where agent 2 deviates at P via P̂i in Table 6, and

(iv) (P̄1, P̂2, P−{1,2}), where agent 2 deviates at (P̄1, P−1) via P̂i in Table 6.

First, at all four profiles, sd-envy-freeness and feasibility imply that the cumulative proba-

bility placed on subset B for each agent is fixed to k−1
n

which is identical to that given by

the PS rule. Next, at all these four preference profiles, we only focus on the probabilities

assigned to objects a and b. We first show that at profiles P , (P̄1, P−1) and (P̂2, P−2),

these probabilities induced by ϕ are the same as those induced by the PS rule. Last, we

show that, under (P̄1, P̂2, P−{1,2}), sd-strategy-proofness implies that agent 2’s probability

of receiving a is the same as that given by the PS rule, while sd-efficiency requires that

16See for instance, the universal domain (Gibbard (1973)), the single-peaked domain (Moulin (1980)

and Demange (1982)), the single-dipped domain (Barberà et al. (2012)), all the maximal single-crossing

domains (Saporiti (2009)), the multi-dimensional single-peaked domain (Barberà et al. (1993)) and the

separable domain (Le Breton and Sen (1999)), some linked domains (Aswal et al. (2003)) and some circular

domains (Sato (2010)).

31



the probability of agent 2 getting b is higher than that given by the PS rule. Consequently,

every agent other than 1 and 2 envies agent 2.

By sd-envy-freeness and feasibility, it is evident that
∑

x∈B ϕix(P ) =
∑

x∈B ϕix(P̄1, P−1) =∑
x∈B ϕix(P̂2, P−2) =

∑
x∈B ϕix(P̄1, P̂2, P−{1,2}) = k−1

n
for all i ∈ I .

Now, we start with profile P . By sd-envy-freeness, ϕix(P ) = 1
n

for all i ∈ I and

x ∈ A. Next, we consider profile (P̄1, P−1).

Claim 1: The following two statements hold:

(i) ϕia(P̄1, P−1) = 1
n

for all i ∈ I by sd-envy-freeness.

(ii) ϕ1b(P̄1, P−1) = 0 by sd-efficiency, and ϕib(P̄1, P−1) = 1
n−1

for all i 6= 1 by sd-envy-

freeness.

Next, we consider profile (P̂2, P−2).

Claim 2: The follow two statements hold:

(i) ϕ2a(P̂2, P−2) = 0 by sd-efficiency, and ϕ2b(P̂2, P−2) = 2
n

by sd-strategy-proofness

according to ϕ2(P ).

(ii) ϕia(P̂2, P−2) = 1
n−1

for all i 6= 2 and ϕib(P̂2, P−2) = 2
n
− 1

n−1
for all i 6= 2 by

sd-envy-freeness and Claim 2(i).

Last, we consider profile (P̄1, P̂2, P−{1,2}).

Claim 3: The following two statements hold:

(i) ϕ1a(P̄1, P̂2, P−{1,2}) = 1
n−1

by sd-strategy-proofness according to ϕ1(P̂2, P−2) and

Claim 2, and ϕ1b(P̄1, P̂2, P−{1,2}) = 0 by sd-efficiency.

(ii) ϕ2a(P̄1, P̂2, P−{1,2}) = 0 by sd-efficiency, and ϕ2b(P̄1, P̂2, P−{1,2}) = 1
n

+ 1
n−1

by

sd-strategy-proofness according to ϕ2(P̄1, P−1) and Claim 1.

Now, by feasibility and Claim 3 (i) and (ii), we know that for all i /∈ {1, 2},

ϕia(P̄1, P̂2, P−{1,2}) =
1

n− 2

[
1−

∑
j∈{1,2}

ϕja(P̄1, P̂2, P−{1,2})
]

=
1

n− 1
,

ϕib(P̄1, P̂2, P−{1,2}) =
1

n− 2

[
1−

∑
j∈{1,2}

ϕjb(P̄1, P̂2, P−{1,2})
]

=
1

n− 2
(1− 1

n
− 1

n− 1
).
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Consequently, between agent 2 and any agent i /∈ {1, 2}, we have
∑

x∈B∪{a,b}
ϕ2x(P̄1, P̂2, P−{1,2}) =

k−1
n

+ 0 + ( 1
n

+ 1
n−1

) > k−1
n

+ 1
n−1

+ 1
n−2

(1− 1
n
− 1

n−1
) =

∑
x∈B∪{a,b}

ϕix(P̄1, P̂2, P−{1,2}).

This contradicts sd-envy-freeness and we hence completes the verification of Lemma 4.

�

Henceforth, we will use the information of violating the elevating property in Lemma

4 to characterize the restricted tier structure in domain D.

Lemma 5 For every path {P k
i }tk=1, if there exists 1 6 l 6 n − 1 such that rl(P 1

i ) = a,

rl+1(P 1
i ) = b and rl(P k

i ) = b for all k = 2, . . . , t, then rl+1(P k
i ) = a for all k = 2, . . . , t.

Proof : Given a path {P k
i }tk=1, consider l = n − 1. Thus, rn−1(P 1

i ) = a, rn(P 1
i ) = b,

and rn−1(P k
i ) = b for all k = 2, . . . , t. Suppose rn(P 2

i ) ≡ c 6= a. Thus, cP 1
i b (recall that

b is the bottom ranked object) and bP 2
i c. Therefore, the local switching pair in P 1

i and

P 2
i is b and c. Consequently, it must be the case that rn−1(P 1

i ) = c 6= a. Contradiction!

Therefore, rn(P 2
i ) = a. Next, consider P 3

i , and suppose rn(P 3
i ) ≡ c 6= a. Thus, cP 2

i a

(recall that a is the bottom ranked object) and aP 3
i c. Therefore, the local switching pair

in P 2
i and P 3

i is c and a. Consequently, it must be the case that rn−1(P 2
i ) = c 6= b.

Contradiction! Therefore, rn(P 3
i ) = a. Applying the same argument along the path, we

can show that rn(P k
i ) = a for all k = 4, . . . , t. We next adopt an induction argument.

Induction Hypothesis: Given 1 6 l 6 n − 1, for every path {P k
i }tk=1, if there exists

l < l′ 6 n− 1 such that rl′(P 1
i ) = a, rl′+1(P 1

i ) = b, and rl′(P k
i ) = b for all k = 2, . . . , t,

then rl′+1(P k
i ) = a for all k = 2, . . . , t.

Now, given a path {P k
i }tk=1, assume that rl(P 1

i ) = a, rl+1(P 1
i ) = b; and rl(P k

i ) = b

for all k = 2, . . . , t. We will show that rl+1(P k
i ) = a for all k = 2, . . . , t.

Since P 1
i ∼A P 2

i , it is evident that rl+1(P 2
i ) = a. Suppose that there exists 2 6 k̄ 6 t

such that rl+1(P k̄
i ) 6= a. Assume rl+1(P k̄

i ) = c. Evidently, k̄ > 2 and c /∈ {a, b}.

Moreover, we can assume rl+1(P k
i ) = a for all 2 6 k 6 k̄ − 1. Since P k̄−1

i ∼A P k̄
i ,

rl(P
k̄−1
i ) = rl(P

k̄
i ) = b, and rl+1(P k̄−1

i ) = a 6= c = rl+1(P k̄
i ), it must be the case that

rl+2(P k̄−1
i ) = c and rl+2(P k̄

i ) = a. Now, consider the path {P k̄
i , P

k̄−1
i , . . . , P 2

i }. Since

rl+1(P k̄
i ) = c, rl+2(P k̄

i ) = a and rl+1(P k
i ) = a for all k = k̄ − 1, . . . , 2, induction
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hypothesis implies rl+2(P k
i ) = c for all k = k̄ − 1, . . . , 2. Furthermore, since P 1

i ∼A P 2
i ,

rl+2(P 1
i ) = rl+2(P 2

i ) = c. Along the sub-path {P k
i }k̄k=1, since a, b and c take positions l,

l + 1 and l + 2 in every preference, it is easy to verify that the sets of top l − 1 ranked

objects are identical for all preferences. Thus, B(b, P k̄
i ) = B(b, P k̄−1

i ) = B(a, P 1
i ).

Consequently, preferences P k̄
i , P

k̄−1
i and P 1

i indicates that domain D satisfies the elevating

property (see the table below). Contradiction to Lemma 4!

Ranking: l l + 1 l + 2

P k̄
i : · · · · · · · · ·︸ ︷︷ ︸

B(P k̄i ,b)

� b � c � a � · · · · · · · · ·

q

P k̄−1
i :

B(P k̄−1
i , b)︷ ︸︸ ︷

· · · · · · · · ·︸ ︷︷ ︸
B(P k̄−1

i , b)

� b � a � c � · · · · · · · · ·

q

P 1
i :

B(P 1
i ,a)︷ ︸︸ ︷

· · · · · · · · · � a � b � c � · · · · · · · · ·

Therefore, rl+1(P k
i ) = a for all k = 2, . . . , t. This completes the verification of

induction hypothesis and hence the lemma. �

Lemma 6 For every path {P k
i }tk=1, if there exists 1 6 l 6 n − 1 such that rl(P 1

i ) = a,

rl+1(P 1
i ) = b, and rl+1(P k

i ) = a for all k = 2, . . . , t, then rl(P k
i ) = b for all k = 2, . . . , t.

Proof : The verification of this lemma is symmetric to Lemma 5. The induction argument

in the proof of Lemma 5 starts from the bottom (i.e., l = n−1) and proceeds successively

up to the top (i.e., l = 1). To verify this lemma, an analogous induction argument can be

adopted from the top (i.e., l = 1) down to the bottom (i.e., l = n− 1). �

Lemma 7 Given Pi, P
′
i ∈ D, assume Pi ∼A P ′i , a = rl(Pi) = rl+1(P ′i ) and b =

rl+1(Pi) = rl(P
′
i ). In every preference, objects a and b occupy positions l and l + 1,

i.e.,
{
rl(Pj), rl+1(Pj)

}
= {a, b} for all Pj ∈ D.

Proof : It is evident that
{
rl(Pi), rl+1(Pi)

}
= {a, b} and

{
rl(P

′
i ), rl+1(P ′i )

}
= {a, b}.

Next, fix an arbitrary Pj ∈ D\{Pi, P ′i}, and we show
{
rl(Pj), rl+1(Pj)

}
= {a, b}. Since
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D is connected and Pi ∼A P ′i , it is true that there exists a path {P k
i }tk=1 ⊆ D such that

{P 1
i , P

2
i } = {Pi, P ′i} and P t

i = Pj . We assume P 1
i = Pi and P 2

i = P ′i . The verification

of the situation P 1
i = P ′i and P 2

i = Pi is symmetric and we hence omit it.

If rl(P k
i ) = b for all k = 3, . . . , t, then Lemma 5 implies

{
rl(Pj), rl+1(Pj)

}
= {a, b}.

Next, we assume that there exists 3 6 k 6 t such that rl(P k
i ) 6= b. We highlight the

subset {kj}νj=1 ⊆ {3, . . . , t} such that rl(P
kj
i ) 6= rl(P

kj−1
i ), j = 1, . . . , ν. Since there

exists 3 6 k 6 t such that rl(P k
i ) 6= b, the set of preferences {P kj

i }νj=1 is not empty.

Moreover, we can separate the path {P k
i }tk=1 into ν + 1 parts according to the l-th ranked

object in each preference, i.e., rl(P 2
i ) = · · · = rl(P

k1−1
i ), rl(P k1

i ) = · · · = rl(P
k2−1
i ),

...... , rl(P
kν−1

i ) = · · · = rl(P
kν−1
i ), and rl(P kν

i ) = · · · = rl(P
t
i ) (see the table below).

P 2
i , . . . , P

k1−1
i ; P k1

i , . . . , P
k2−1
i ; P k2

i , . . . . . . , P
kν−1−1
i ; P

kν−1

i , . . . , P kν−1
i ; P kν

i , . . . , P t
i

the same lth the same lth the same lth the same lth

ranked alternative ranked alternative ranked alternative ranked alternative

Evidently, rl(P 2
i ) = · · · = rl(P

k1−1
i ) = b. Then, we apply Lemma 5 on the sub-path

{P 1
i , P

2
i , . . . P

k1−1
i } and obtain rl+1(P k

i ) = a for all k = 2, . . . , k1 − 1.

Claim 1: rl(P k1
i ) = a.

Evidently, rl(P k1
i ) 6= rl(P

k1−1
i ) = b. Suppose rl(P k̄

i ) = c 6= a. Thus, c /∈ {a, b}.

Since P k1−1
i ∼A P k1

i and rl(P
k1−1
i ) = b 6= c = rl(P

k1
i ), it must be the case that

rl+1(P k1
i ) = a. Furthermore, since rl+1(P k1−1

i ) = rl+1(P k1
i ) = a, it is true that rl−1(P k1

i ) =

b and rl−1(P k1−1
i ) = c. Now, we can apply Lemma 6 on the sub-path {P k1

i , P
k1−1
i , . . . , P 2

i }

and obtain rl−1(P k
i ) = c for all k = k1 − 1, . . . , 2. Moreover, since P 1

i ∼A P 2
i ,

rl−1(P 1
i ) = rl−1(P 2

i ) = c. Furthermore, it is easy to verify that the set of top l − 2

ranked objects in each preference of the sub-path {P k
i }

k1
k=1 is identical. Thus, B(c, P 1

i ) =

B(c, P k1−1
i ) = B(b, P k1

i ). Consequently, preferences P 1
i , P

k1−1
i and P k1

i indicates that

domain D satisfies the elevating property (see the table below). Contradiction to Lemma

4!
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Ranking: l − 1 l l + 1

P 1
i : · · · · · · · · ·︸ ︷︷ ︸

B(P 1
i ,c)

� c � a � b � · · · · · · · · ·

q

P k1−1
i :

B(Pk1−1
i , c)︷ ︸︸ ︷

· · · · · · · · ·︸ ︷︷ ︸
B(Pk1−1

i , c)

� c � b � a � · · · · · · · · ·

q

P k1
i :

B(P
k1
i ,b)︷ ︸︸ ︷

· · · · · · · · · � b � c � a � · · · · · · · · ·

This completes the verification of the claim.

Now, we know rl(P
k1
i ) = · · · = rl(P

k2−1
i ) = a. Applying Lemma 5 on {P k1−1

i , P k1
i , . . . , P

k2−1
i },

we have rl+1(P k1
i ) = · · · = rl+1(P k2−1

i ) = b. Along the path {P k
i }tk=1, repeatedly apply-

ing the symmetric argument above, we finally have {rl(Pj), rl+1(Pj)} = {a, b}. �

Now, we are ready to reveal the restricted tier structure in domain D. If there exists

a ∈ A such that r1(Pi) = a for all Pi ∈ D, let A1 = {a}. If there exist Pi, P ′i ∈ D such

that r1(Pi) ≡ a 6= b ≡ r1(P ′i ), connectedness implies that there must exist P̄i, P̄ ′i ∈ D

such that P̄i ∼A P̄ ′i , r1(P̄i) = a and r1(P̄ ′i ) = b. Thus, r2(P̄i) = b and r2(P̄ ′i ) = a. Then,

Lemma 7 implies {r1(Pi), r2(Pi)} = {a, b} for all Pi ∈ D. Then, let A1 = {a, b}.

Assume |A1| = l (either l = 1 or l = 2). If there exists x ∈ A such that rl+1(Pi) = x

for all Pi ∈ D, let A2 = {x}. Next, assume that there exist Pi, P ′i ∈ D such that

rl+1(Pi) ≡ x 6= y ≡ rl+1(P ′i ). Since the set of top l ranked objects in every preference

is identical, connectedness implies that there must exist P̄i, P̄ ′i ∈ D such that P̄i ∼A P̄ ′i ,

rl+1(P̄i) = x and rl+1(P̄ ′i ) = y. Thus, rl+2(P̄i) = y and rl+2(P̄ ′i ) = x. Then, Lemma 7

implies {rl+1(Pi), rl+2(Pi)} = {x, y} for all Pi ∈ D. Then, let A2 = {x, y}.

Applying the symmetric argument repeatedly, since A is finite, we can generate tiers

A1, A2, . . . , AT such that (i) Ak ∩ Ak′ = ∅ for all 1 6 k < k′ 6 T and ∪Tk=1Ak = A, (ii)

1 6 |Ak| 6 2 for all 1 6 k 6 T , and (iii) for all 1 6 k < k′ 6 T , [a ∈ Ak and b ∈

Ak′ ]⇒ [aPib for all Pi ∈ D]. In conclusion, domain D is a restricted tier domain. �

We now weaken sd-envy-freeness to equal treatment of equals, and investigate the
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connected domains which admit an sd-strategy-proof, sd-efficient, and equal-treatment-

of-equals rule. Surprisingly, such weakening does not expand the characterized domains,

i.e., they are still restricted tier domains.

Theorem 3 If a connected domain admits an sd-strategy-proof, sd-efficient and equal-

treatment-of-equals rule, it is a restricted tier domain.

Lemmas 5 - 7 remain valid for the proof of Theorem 3. However, the proof of Lemma

4 becomes significantly complicated as we weaken sd-envy-freeness to equal treatment of

equals. Therefore, we relegate the proof of Theorem 3 to the Appendix A.3.

As restricted tier domains are characterized in Theorems 2 and 3 under different

fairness axioms, it suggests that the source of restriction power that pins down the re-

stricted tier domains arises mainly from the resolution of the conflict between sd-strategy-

proofness and sd-efficiency under the elevating property. Since the weakening of fairness

axiom in Theorem 3 does not expand the characterized domain in Theorem 2 and more

importantly the proof of Theorem 2 is significantly simpler and conveys the central logic

of the proof of Theorem 3, we believe that Theorem 2 is of special interest and present it

in the first place.

Our proof of Theorem 3 uses the proof strategy introduced by Chang and Chun (2016)

in their impossibility which says that there is no sd-strategy-proof, sd-efficient, and equal-

treatment-of-equals rule on a domain that includes three particular preferences such that

one object takes the last three ranking positions respectively and all the other objects

are identically ranked in these three preferences. Their preference structure is actually a

special case of our elevating property! In the Appendix, we establish the impossibility

of the existence of an sd-strategy-proof, sd-efficient and equal-treatment-of-equals rule

on a domain satisfying the elevating property which hence generalizes the impossibility

theorem in Chang and Chun (2016). We believe that our generalization is significant since

it allows first the elevated object to take arbitrary three consecutive positions; second the

other objects to be arbitrarily ranked as long as the truncation sets up to the elevating

positions in three preferences are the same; and more importantly, our impossibility result

under the elevating property appears to be informative and is repeatedly referred to for

37



establishing Theorem 3. Last, our proof slightly improves theirs in logical conciseness

and fluency (see for instance, footnote 22).

We conclude this section by emphasizing insightful light shed by our domain char-

acterization results on the direction of identifying a unified necessary and sufficient con-

dition for the existence of an sd-strategy-proof, sd-efficient and sd-envy-free or equal-

treatment-of-equals rule. When we encounter with a preference domain which fails

connectedness but admits an sd-strategy-proof, sd-efficient and sd-envy-free or equal-

treatment-of-equals rule, we first partition the domain into several connected subdomains.

Thus, Theorem 2 or 3 implies that each subdomain must be a restricted tier domain.

Therefore, to completely revealing the domain structure, one needs to resolve this prob-

lem: what are the relations among the restricted tier structures of these subdomains? For

instance, more specifically, if two restricted tier subdomains share an identical set of tiers,

how is this set of tiers systematically organized in two distinct restricted tier structures?

3.3 A generalized model with outside options

In this section, we extend our model to situations in which the number of agents may

differ from the number of objects, and each agent has an outside option. In the generalized

model, the characterizations of the PS rule in Theorem 1 still hold. This extension can

be viewed as a strengthening of Bogomolnaia and Moulin (2002) since their domain is

strictly nested in the class of domains investigated in this section.

Let m ≡ |A| and n ≡ |I|. Moreover, there is an object ∅ with at least n copies.

Object ∅ can be interpreted as an individual outside option for each agent. Each agent i

has a strict preference order Pi over A ∪ {∅}. An object a ∈ A is acceptable if a Pi ∅.

Let A(Pi) denote the set of acceptable objects in Pi.

Since the number of agents may differ from the number of objects, it may be that

an object is not fully shared by all agents. Accordingly, the definition of an assignment

[Lia]i∈I,a∈A∪{∅} is modified in such a way that (i) Lia > 0 for all i ∈ I and a ∈ A ∪ {∅},

(ii)
∑

a∈A∪{∅} Lia = 1 for all i ∈ I , and (iii) 0 6
∑

i∈I Lia 6 1 for all a ∈ A.

All original axioms of sd-strategy-proofness, sd-efficiency, sd-envy-freeness, and equal
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treatment of equals apply without any modification. Also, the definition of the PS rule

remains unchanged. Evidently, the PS rule remains sd-efficient and sd-envy-free.

However, we need to modify the definition of a restricted tier domain of preferences.

Notably, we require restricted tier structure only on the acceptable objects.

Definition 3 A domain D is an augmented restricted tier domain if there exists a re-

stricted tier structure P ≡ (Ak)
T
k=1 (over A, not A ∪ {∅}) such that

1. For all 1 6 k 6 T , |Ak| 6 2;

2. Given Pi ∈ D, A(Pi) = ∪tk=1Ak for some 0 6 t 6 T ;

3. Given Pi ∈ D and a, b ∈ A, [a ∈ Ak, b ∈ Ak′ , a, b ∈ A(Pi) and k < k′] ⇒

[a Pi b].

Example 2 Let |A| = 5 and P ≡ (A1, A2, A3) where A1 = {a1, a2}, A2 = {a3},

and A3 = {a4, a5}. Then D = {P1, P2, P3, P4} is an augmented restricted tier domain

associated to P .

P1: ∅ � · · ·
P2: a1 � a2 � ∅ � · · ·
P3: a2 � a1 � a3 � ∅ � · · ·
P4: a1 � a2 � a3 � a5 � a4 � ∅

In words, an agent with P1 perceives every object as unacceptable, and all unacceptable

objects are ranked arbitrarily. An agent with P2 perceives only A1 as acceptable and

she prefers a1 to a2. An agent with P3 perceives A1 and A2 as acceptable and A3 as

unacceptable. In addition, she prefers all objects in A1 to all objects in A2 according to

the tier structure. Last, in P4, all objects are acceptable, and ranked according to the tier

structure restriction. �

Analogous to Theorems 1, Theorem 4 below characterizes the PS rule on augmented

restricted tier domains.

Theorem 4 On an augmented restricted tier domain, a rule is sd-strategy-proof, sd-

efficient and equal-treatment-of-equals if and only if it is the PS rule.
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Proof : Given P ≡ (Ak)
T
k=1, let D ⊆ D(P) be a augmented restricted tier domain.

Given P ∈ Dn and 1 6 k 6 T , let Nk ≡ {i ∈ I|Ak ⊆ A(Pi)} denote the set of

agents whose acceptable set includes tier Ak, and nk ≡ |Nk|. Given 1 6 k 6 T , if

nk > 0 (equivalently, tier Ak is acceptable for some agent), it is true that nk′ > 0 for all

1 6 k′ 6 k − 1 (equivalently, each tier Ak′ , 1 6 k′ < k − 1, is also acceptable for some

agent). Therefore, given 1 6 k 6 T with nk > 0, we can define rk′ =
∑k′−1

t=1
|At|
nt

for all

1 6 k′ 6 k + 1. Note that it is either rk 6 1 or rk > 1.17

Due to the augmented restricted tier structure embedded in D, at each preference pro-

file, we can clearly specify the random assignment induced by the PS rule as shown in

Fact 2 below.

Fact 2 Given a profile P ∈ Dn, let L be the random assignment induced by the PS rule.

Then, the following five conditions hold.

1. Given i ∈ I , assume A(Pi) = ∪kt=1At. Then, Li∅ = max(0, 1 − rk+1) and Lia =

for all a /∈ A(Pi).

Given 1 6 k 6 T , assume Ak = {a} or Ak = {a, b}, and nk > 0. If Ak = {a, b}, let

Ik = {i ∈ I|a Pi b} and |Ik ∩Nk| = l.

2. If rk > 1, then LiAk = 0 (equivalently, Lia = 0 for all a ∈ Ak) for all i ∈ Nk.

3. If rk < 1 and Ak = {a}, then Lia = min( 1
nk
, 1− rk) for all i ∈ Nk.

4. If rk < rk+1 < 1 and Ak = {a, b}, we have

• [nk
2
< l 6 nk]⇒

 Lia = 1
l

and Lib = 2
nk
− 1

l
for all i ∈ Nk ∩ Ik;

Lia = 0 and Lib = 2
nk

for all i ∈ Nk\Ik.

• [0 6 l 6 nk
2

]⇒

 Lia = 2
nk

and Lib = 0 for all i ∈ Nk ∩ Ik;

Lia = 2
nk
− 1

nk−l
and Lib = 1

nk−l
for all i ∈ Nk\Ik.

17For instance, in profile P , if all tiers are acceptable for all agents, then rk 6 1 for all 1 6 k 6 T + 1.

If one agent accepts all tiers and all others do not accept any tier, then rk > 1 for all 1 6 k 6 T + 1. In

particular, recall the consumption procedure at profile P in the PS rule, and note that if 0 6 rk < 1, then

rk is identical to the time at which all tiers A1, . . . , Ak−1 are exhausted, and all agents in Nk are about to

consume Ak.
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5. If rk < 1 6 rk+1 and Ak = {a, b}, we have

• [nk

2 < l 6 nk]⇒

 Lia = min( 1
l , 1− rk) and Lib = max(1− rk − 1

l , 0) for all i ∈ Nk ∩ Ik;

Lia = 0 and Lib = 1− rk for all i ∈ Nk\Ik.

• [0 6 l 6 nk

2 ]⇒

 Lia = 1− rk and Lib = 0 for all i ∈ Nk ∩ Ik;

Lia = max(1− rk − 1
nk−l , 0) and Lib = min( 1

nk−l , 1− rk) for all i ∈ Nk\Ik.

The verification of Fact 2 is routine, and we hence omit it.

It is evident that the PS rule satisfies sd-efficiency and equal treatment of equals. We

first show that the PS rule is sd-strategy-proof on D.

Fix i ∈ I , P ∈ Dn and P ′i ∈ D. Assume A(Pi) = ∪kt=1At and A(P ′i ) = ∪k′t=1At. Let

L and L′ be two random assignments induced by the PS rule at profiles P and (P ′i , P−i)

respectively. We show Li P
sd
i L′i.

According Fact 2, we know LiAt = L′iAt for all 1 6 t 6 min(k, k′). Moreover, given

1 6 t 6 min(k, k′), assume At = {a, b} and a Pi b. By a similar argument in verifying

sd-strategy-proofness of the PS rule in Theorem 1, we have Lia > L′ia.

Let l ≡
∑min(k,k′)

t=1 |At| and l̄ ≡
∑max(k,k′)

t=1 |At|. Given x ∈ A ∪ {∅}, assume x =

rl(Pi). If 1 6 l 6 l, then
∑l

t=1 Lirt(Pi) >
∑l

t=1 L
′
irt(Pi)

. If l > l and k 6 k′, it is evident

that
∑l

t=1 Lirt(Pi) = 1 >
∑l

t=1 L
′
irt(Pi)

by condition 1 of Fact 2.

Last, assume l > l and k > k′. Observe that L′iz = 0 for all z ∈ ∪kt=k′+1At by

condition 1 of Fact 2. Therefore, if l < l 6 l̄, we have
∑l

t=1 Lirt(Pi) =
∑l

t=1 Lirt(Pi) +∑l
t=l+1 Lirt(Pi) >

∑l
t=1 L

′
irt(Pi)

+
∑l

t=l+1 L
′
irt(Pi)

=
∑l

t=1 L
′
irt(Pi)

. Furthermore, if l̄ <

l 6 |A|+ 1, it is evident that
∑l

t=1 Lirt(Pi) = 1 >
∑l

t=1 L
′
irt(Pi)

by condition 1 of Fact 2.

Therefore,
∑l

t=1 Lirt(Pi) >
∑l

t=1 L
′
irt(Pi)

for all 1 6 l 6 |A| + 1. Hence, Li P sd
i L′i

as required. In conclusion, the PS rule is sd-strategy-proof on domain D.

Henceforth, we prove that on domain D, the PS rule is the unique one satisfying sd-

strategy-proofness, sd-efficiency and equal treatment of equals. Let ϕ : Dn → L a rule

which satisfies all three axioms.

Fixing P ≡ (P1, . . . , Pn) ∈ Dn, let L ≡ ϕ(P ). We first show that L satisfies sd-envy-

freeness, and then show that L satisfies all five conditions of Fact 2. Given 1 6 k 6 T ,

recall Nk ≡ {i ∈ I|Ak ⊆ A(Pi)} and nk ≡ |Nk|. Moreover, let k∗ ≡ max
{
k ∈
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{1, . . . , T}|LiAk > 0 for some i ∈ I
}

be the maximum index in {1, . . . , T} such that

some agent consumes strictly positive proportion of Ak∗ . Consequently, nk∗ > 0. Hence,

nk > 0 for all 1 6 k 6 k∗, and rk =
∑k−1

t=1
|At|
nk

, 1 6 k 6 k∗ + 1, is well-defined.

First, taking each tier Ak as one combined object and applying Theorem 5.1 in Bogo-

molnaia and Moulin (2002), we have the following three statements.

(i) Given i ∈ I , assume A(Pi) = ∪kt=1At. Then, we have

• Li∅ = max(0, 1− rk+1) and Lia = 0 for all a /∈ A(Pi).

•
∑k′

t=1 LiAt >
∑k′

t=1 LjAt for all 0 6 k′ 6 min(k, k∗) and j 6= i.

(ii) Given 1 6 k < k∗, LiAk = |Ak|
nk

for all i ∈ Nk.

(iii) LiAk∗ = 1− rk∗ 6 |Ak∗ |
nk∗

for all i ∈ Nk∗ .

According to the first part of statement (i) above, condition 1 of Fact 2 is satisfied in

L.

Lemma 8 Given 1 6 k 6 k∗, assume Ak = {a, b} and let Ik = {i ∈ I|a Pi b}. The

following two statements hold.

(1) For all i, j ∈ Nk ∩ Ik, Lia = Lja.

(2) For all i ∈ Nk ∩ Ik and j ∈ Nk\Ik, Lia > Lja and Lib 6 Ljb.

Proof : The verification of this lemma follows from a modification of the proof of Lemma

2. Specifically, fix all preferences in profile P whose acceptable set do not include Ak,

and apply all proofs of Lemma 2 with respect to the remaining preferences in P with the

following modifications:

• Change I in the proof of Lemma 2 to Nk.

• Change Ik in the proof of Lemma 2 to Nk ∩ Ik.

• Change I\Ik in the proof of Lemma 2 to Nk\Ik.

• Change n in the proof of Lemma 2 to nk.
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• If k < k∗, change 2
n

, n
2

and 1
n

in the proof of Lemma 2 to 2
nk

, nk
2

and 1
nk

respectively.

Moreover, whenever Lemma 1 is referred to in the proof of Lemma 2, change it to

statement (ii) above.

• If k = k∗, change 2
n

, n
2

and 1
n

in the proof of Lemma 2 to 1−rk, 1
1−rk

and min( 1
nk
, 1−

rk) respectively. Moreover, whenever Lemma 1 is referred to in the proof of Lemma

2, change it to statement (iii) above.

�

Lemma 9 Random assignment L satisfies sd-envy-freeness.

Proof : Fix i ∈ I and assume A(Pi) = ∪kt=1At. Thus, ∅ = rl∗(Pi) where l ≡∑k
t=1 |At| + 1. Evidently, sd-efficiency implies

∑l∗

t=1 Lirt(Pi) = 1 >
∑l∗

t=1 Ljrt(Pi) for

all j 6= i.

Next, given a ∈ A, assume a ∈ As and a = rl(Pi). We consider three cases.

Case 1: s > min(k, k∗).

Statements (i) - (iii) above imply
∑l

t=1 Lirt(Pi) = 1 >
∑l

t=1 Ljrt(Pi) for all j 6= i.

Case 2: s 6 min(k, k∗) and moreover, eitherAs = {a}, or |As| = 2 and a = min(Pi, As).

The second part of statement (i) above implies
∑l

t=1 Lirt(Pi) =
∑s

t=1 LiAs >
∑s

t=1 LjAs =∑l
t=1 Ljrt(Pi) for all j 6= i.

Case 3: s 6 min(k, k∗) and moreover, |As| = 2 and a = max(Pi, As).

Let j 6= i. If As is not included in A(Pj), the first part of statement (i) above implies

Lja = 0. If As is included in A(Pj), Lemma 8 implies Lia > Lja. Therefore, Lia > Lja.

Furthermore, since
∑s−1

t=1 LiAt >
∑s−1

t=1 LjAt by the first part of statement (i) above, we

have
∑l

t=1 Lirt(Pi) =
∑s−1

t=1 LiAt + Lia >
∑s−1

t=1 LjAt + Lja =
∑l

t=1 Ljrt(Pi).

In conclusion,
∑l

t=1 Lirt(Pi) >
∑l

t=1 Ljrt(Pi) for all 1 6 l 6 |A| + 1 and j 6= i.

Therefore, L satisfies sd-envy-freeness. �

Last, we use the following 5 claims to show that conditions 2 - 5 of Fact 2 are satisfied

in L.
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Claim 1: rk∗ < 1 6 rk∗+1.

According to the definition of k∗, there exist i ∈ Nk∗ such that LiAk∗ > 0. Fix such

an agent i. By statement (ii) above, we know rk∗ =
∑k∗−1

t=1
|At|
nt

=
∑k∗−1

t=1 LiAt < 1.

Moreover, by statement (iii), we have rk∗+1 =
∑k∗

t=1
|At|
nt

= rk∗ + |Ak∗ |
nk∗

> 1. This

completes the verification of the claim.

Given 1 6 k 6 T , assume Ak = {a} or Ak = {a, b}, and nk > 0. If Ak = {a, b}, let

Ik = {i ∈ I|a Pi b} and |Ik ∩Nk| = l.

Claim 2: Condition 2 of Fact 2 is satisfied in L.

According to the hypothesis of condition 2, since rk > 1, Claim 1 implies k > k∗+ 1.

Then, the definition of k∗ implies LiAk = 0 for all i ∈ I (hence for all i ∈ Nk). This

completes the verification of the claim.

Claim 3: Condition 3 of Fact 2 is satisfied in L.

According to the hypothesis of condition 3, since rk < 1, Claim 1 implies k 6 k∗. Fix

i ∈ Nk. If k < k∗, then statement (ii) above implies Lia = |Ak|
nk

= 1
nk

. Since k + 1 6 k∗

and rk∗ < 1, it must be the case that rk + |Ak|
nk

= rk + 1
nk

= rk+1 6 rk∗ < 1. Thus,
1
nk
< 1 − rk, and hence Lia = min( 1

nk
, 1 − rk). If k = k∗, statement (iii) above implies

Lia = 1− rk∗ = min( 1
nk∗

, 1− rk∗). In conclusion, Lia = min( 1
nk
, 1− rk) for all i ∈ Nk.

This completes the verification of the claim.

Claim 4: Condition 4 of Fact 2 is satisfied in L.

According to the hypothesis of condition 4, since rk+1 < 1, Claim 1 implies k + 1 6

k∗, and hence k < k∗. Therefore, Lia + Lib = LiAk = |Ak|
nk

= 2
nk

for all i ∈ Nk by

statement (ii) above. Recall Ik = {i ∈ I|a Pi b} and |Nk ∩ Ik| = l. Then, sd-efficiency

and sd-envy-freeness (recall Lemma 9) imply

• [nk
2
< l 6 nk]⇒

 Lia = 1
l

and Lib = 2
nk
− 1

l
for all i ∈ Nk ∩ Ik;

Lia = 0 and Lib = 2
nk

for all i ∈ Nk\Ik.

• [0 6 l 6 nk
2

]⇒

 Lia = 2
nk

and Lib = 0 for all i ∈ Nk ∩ Ik;

Lia = 2
nk
− 1

nk−l
and Lib = 1

nk−l
for all i ∈ Nk\Ik.
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Claim 5: Condition 5 of Fact 2 is satisfied in L.

According to the hypothesis of condition 5, since rk < 1 6 rk+1, Claim 1 implies

k = k∗. Thus, by statement (iii), Lia + Lib = LiAk∗ = 1 − rk∗ 6
|Ak∗ |
nk∗

= 2
nk∗

for all

i ∈ Nk∗ . Recall Ik∗ ≡ {i ∈ I|a Pi b} and l ≡ |Nk∗∩Ik∗|. We know either nk∗
2
< l 6 nk∗

or 0 6 l 6 nk∗
2

.

First, assume nk∗
2
< l 6 nk∗ . Subsequently, two cases are separately considered.

Case 1: nk∗
2
< l 6 nk∗ and 1

l
6 1− rk∗ .

If l = nk∗ , then sd-envy-freeness implies Lia = 1
l
, and hence Lib = 1− rk∗ − 1

l
for all

i ∈ Nk ∩ Ik. If nk∗
2
< l < nk∗ , sd-efficiency first implies Lia = 0, and hence Lib = 1− rk∗

for all i ∈ Nk\Ik. Consequently, sd-envy-freeness implies Lia = 1
l

for all i ∈ Nk ∩ Ik.

Hence, Lib = 1− rk∗ − 1
l

for all i ∈ Nk ∩ Ik.

Case 2: nk∗
2
< l 6 nk∗ and 1

l
> 1− rk∗ .

If l = nk∗ , sd-envy-freeness implies Lia = Lja for all i, j ∈ Nk ∩ Ik. Moreover,

since 1
l
> 1 − rk∗ , it is true that Lia = 1 − rk∗ , and hence Lib = 0 for all i ∈ Nk ∩ Ik.

If nk∗
2

< l < nk∗ , sd-efficiency first implies Lia = 0, and hence Lib = 1 − rk∗ for all

i ∈ Nk\Ik. Next, sd-envy-freeness implies Lia = Lja for all i, j ∈ Nk ∩ Ik. Since
1
l
> 1 − rk∗ , it is true that Lia = 1 − rk∗ for all i ∈ Nk ∩ Ik. Hence, Lib = 0 for all

i ∈ Nk ∩ Ik.

In conclusion, if nk∗
2
< l 6 nk∗ ,

Lia = min(
1

l
, 1− rk∗) and Lib = max(1− rk∗ −

1

l
, 0) for all i ∈ Nk ∩ Ik;

Lia = 0 and Lib = 1− rk∗ for all i ∈ Nk\Ik.

By a symmetric argument, if 0 6 l 6 nk∗
2

,

Lia = 1− rk∗ and Lib = 0 for all i ∈ Nk ∩ Ik;

Lia = max(1− rk∗ −
1

nk∗ − l
, 0) and Lib = min(

1

nk∗ − l
, 1− rk∗) for all i ∈ Nk\Ik.

Thus, all five conditions of Fact 2 are verified. Therefore, ϕ is the PS rule. This

completes the verification of Theorem 4. �
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Analogous to Corollary 1, the verification of Theorem 4 implies that the PS rule is the

unique one satisfying sd-efficiency and sd-envy-freeness on an augmented restricted tier

domain.

Corollary 2 Let D be an augmented restricted tier domain. A rule is sd-efficient and

sd-envy-free if and only if it is the PS rule.

Proof : The sufficiency part hold evidently. We focus on the necessity part. Let ϕ : Dn →

L be an sd-efficient and sd-envy-free rule. Fixing P ≡ (P1, . . . , Pn) ∈ Dn, let L ≡ ϕ(P ).

First, according to Theorem 4.1 in Bogomolnaia and Moulin (2002), we have statements

(i) - (iii) in the proof of the necessity part of Theorem 4. Furthermore, in the proof of the

necessity part of Theorem 4, note that the verification of Claims 1 - 5 only relies on the

application of statements (i) - (iii) and the axioms of sd-efficiency and sd-envy-freeness.

Therefore, we assert that ϕ is the PS rule. �

3.4 Final remarks

In this chapter, we have shown that if a connected domain admits an sd-strategy-proof,

sd-efficient and equal-treatment-of-equals (or sd-envy-free) rule, the domain is a restricted

tier domain, and this rule must be the PS rule.

Our results may be interpreted as both negative and positive. On the one hand, a

restricted tier domain is restrictive, and does not give much freedom for agents to spell

their preferences. On the other hand, in some realistic situations, for example the house

allocation in a skyscraper or along a road, the restricted tier structure seems to be an

appropriate assumption. Then our characterization of the PS rule supports its application

in these situations.

More importantly, we identify the restricted tier domain as a boundary for the com-

patibility of these canonical axioms, within connected domains. Since connectedness is

a mild and economically reasonable domain richness assumption and the axioms we im-

pose are both canonical and normatively desirable, our characterizations suggest that a

restricted tier structure must be embedded and the PS rule should be used to determine all

random assignments.
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For further research, it would be interesting to investigate the analogous characteriza-

tion problem for more general class of domains beyond connectedness. Another interest-

ing problem is related to the domain characterization under different preference extension

approaches (e.g., Cho (2012) and Aziz et al. (2014)) other than the stochastic-dominance

extension.
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4 The Equivalence between Local and Global SD-Strategy-

Proofness on Block-Connected Domains

In this chapter we introduce a new adjacency notion: block-adjacency. Two prefer-

ences are block-adjacent if they are different only in a flip between two adjacent blocks.

Accordingly, a undirected graph can be constructed for a given domain such that the ver-

tex set is the domain itself and an edge links two block-adjacent preferences. In addition

we call a domain block-connected if its corresponding undirected graph is connected.

The first section in this chapter formalizes the above notions and the second section

proposes a condition on a block-connected domain which implies the equivalence be-

tween local and global incentive compatibility.

4.1 Block-connected domains

We start from the formal definition of block-adjacency.

Definition 4 Two preferences P0, P̃0 ∈ D are block-adjacent if there are two nonempty

and disjoint subsets A1, A2 ⊂ A such that

1. a P̃0 b if and only if b P0 a, for all a ∈ A1 and b ∈ A2

2. a P̃0 b if and only if a P0 b, for all a, b ∈ A either a 6∈ A1 or b 6∈ A2

3. 6 ∃ a ∈ A1 b ∈ A2 c ∈ A\{A1, A2} such that a P0 c P0 b or b P0 c P0 a.

For any two preferences, it’s either that they are not block-adjacent or that they are

block-adjacent with respect to a unique pair of nonempty and disjoint subsetsA1, A2 ⊂ A.

We denote for two block-adjacent preferences, P0, P̃0, the corresponding pair of object

subsets as FB1(P0, P̃0) and FB2(P0, P̃0), where FB represents ”flipped block.” In addi-

tion, we refer to the change from a preference to a block-adjacent one as a block-adjacent

reversal.

Given the notion of block-adjacency, we define block-connected domains. A domain

is block-connected if between any two admissible preferences a sequence of admissible
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preferences can be arranged such that any two contiguous preferences along the path are

block-adjacent. Formally:

Definition 5 A preference domain D is block-connected if for any two admissible pref-

erences P0, P̃0 ∈ D, there is a sequence of admissible preferences P1, · · · , PM ∈ D such

that (i) P1 = P0, (ii) PM = P̃0, and (iii) for each m = 1, · · · ,M − 1, Pm and Pm+1 are

block-adjacent.

For a pair of preferences P0, P̃0 admissible to a block-connected domain, we call a

sequence in the above definition a path from P0 to P̃0. Particularly, when we say a path

P1, · · · , PM is from P0 to P̃0, P0 is the start and P̃0 is the end, i.e., P1 = P0 and PM = P̃0.

On a block-connected domain, a mechanism is called block-adjacent sd-strategy-proof

if reporting true preference always leads to a lottery that stochastically dominates the

lottery delivered by reporting a preference that is block-adjacent to the sincere one.

Definition 6 A rule defined on a block-connected domain ϕ : Dn → L satisfies block-

adjacent sd-strategy-proofness if for all i ∈ I , Pi, P̃i ∈ D, and P−i ∈ Dn−1, such that P̃i

and Pi are block-adjacent, ϕ(Pi, P−i) P sd
i ϕ(P̃i, P−i).

The incentive compatibility defined above is a local notion. Since block-adjacency is

weaker than the adjacency notion in Cho (2016a), block-adjacent sd-strategy-proofness

is stronger than the ”local sd-strategy-proofness” defined by Cho (2016a). Example 5

illustrates this point.

4.2 The equivalence between local and global incentive compatibili-

ties

In this section, we introduce a condition on a block-connected domain that is suf-

ficient to guarantee the equivalence between block-adjacent sd-strategy-proofness and

sd-srategy-proofness. However, some preliminary definitions are needed.

Given two pairs of nonempty and pairwise disjoint subsets of objects, we say one pair

is nested in or disjoint with the other pair if either the union of the former pair is a subset

of either one of the latter pair or the unions of these two pairs are disjoint; formally
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Definition 7 Let A1, A2 and A3, A4 be two pairs of nonempty and pair-wisely disjoint

subsets of objects, i.e., ∅ 6= A1, A2, A3, A4 ⊂ A, A1 ∩ A2 = ∅, and A3 ∩ A4 = ∅. We

say A1, A2 are nested in or disjoint with A3, A4, denoted {A1, A2} v {A3, A4}, if either

(A1 ∪ A2) ∩ (A3 ∪ A4) = ∅ or A1 ∪ A2 ⊂ A3 or A1 ∪ A2 ⊂ A4.

Recall that a path is a sequence of preferences, along which adjacent preferences are

different only in a flip between two adjacent blocks. We now define a special class of paths

which guarantees the equivalence between block-adjacent sd-strategy-proofness and sd-

strategy-proofness. Particularly, we call a path nested if along the path, the blocks flipped

latter are nested in or disjoint with the blocks flipped earlier.

Definition 8 A path P1, · · · , PM is nested if for all 1 6 m′ < m 6M − 1

{FB1(Pm, Pm+1), FB2(Pm, Pm+1)} v {FB1(Pm′ , Pm′+1), FB2(Pm′ , Pm′+1)}.

A domain is called path-nested if between any two preferences, there is a nested path

connecting them; formally:

Definition 9 A domain D is path-nested if for all distinct P0, P̃0 ∈ D, there is a nested

path P1, · · · , PM ∈ D such that P1 = P0 and PM = P̃0.

By definition, a path-nested domain needs first to be block-connected. The following

are two weakly connected domains, one is path-nested and the other is not.

Example 3 Figure 3 depicts a block-connected domain which is path-nested. Boldface

sequences of letters denote the preferences, for example, abcd refers to the preference

a � b � c � d. A dotted line denotes a block-adjacency relation and the two blocks

connected with a hyphen denote the associated flipped pair of blocks.

A nested path from cadb to bdac is highlighted by red and thick lines: from cadb to

bcad {a, c, d} is flipped with {b}; then from bcad to bdca {a, c} is flipped with {d}; finally

from bdca to bdac {a} is flipped with {c}. It can be checked easily that from an arbitrary

preference to another, there is a nested path.

Example 4 Figure 4 depicts a block-connected domain that is not path-nested. From

abcd to cadb, there are two paths, one through cdab and the other through acdb. It is

evident that neither one of them is nested.
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acdb

cadb

dcab

dacb bcad

bacd

bdca

bdac

d-ac

a-c

a-c

d-ac

d-ac

a-c

a-c

d-ac

b-acd

b-acd

b-acd

b-acd

Figure 3: A Path-Nested Domain.

abcd cdab cadb

acdb

ab-cd a-d

b-cd a-c

Figure 4: A Block-Connected Domain that is not Path-Nested

Theorem 5 shows that path-nestedness is sufficient to guarantee the equivalence be-

tween block-adjacent sd-strategy-proofness and sd-strategy-proofness.

Theorem 5 Block-adjacent sd-strategy-proofness is equivalent to sd-strategy-proofness

on a path-nested domain.

The following is a sketch of the proof. Consider the path-nested domain depicted in

Figure 3. Let the unilateral deviation be from acdb to bdca. Consider the nested path

connecting them as follows.

P1 : a c d b

↓ (b− acd) L1 P
sd
1 L2 + L2 P

sd
1 L3 + L3 P

sd
1 L4 ⇒ L1 P

sd
1 L4

P2 : b a c d ⇑ ⇑

↓ (ac− d) L2 P
sd
2 L3 L3 P

sd
2 L4

P3 : b d a c ⇑

↓ (a− c) L3 P
sd
3 L4

P4 : b d c a
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The lotteries L1, L2, L3, L4 denote the deviating agent’s lottery when she reports re-

spectively P1, P2, P3, P4. To verify sd-strategy-proofness, it suffices to establish L1 P
sd
1

L4. By block-adjacent sd-strategy-proofness, L1 P
sd
1 L2, L2 P

sd
2 L3, and L3 P

sd
3 L4. Ac-

cording to L2 P
sd
2 L3 and the fact that b is not involved in this local deviation, L2b = L3b.

Then since the ranking of a, c, d is the same in P1 and P2, L2 P
sd
2 L3 implies L2 P

sd
1 L3.

Similarly L3 P sd
3 L4 implies L3 P sd

2 L4, which then implies L3 P sd
1 L4. Finally the

transitivity of P sd
1 establishes L1 P

sd
1 L4.

The proof follows the above logic. It is in Appendix B.1.

4.2.1 Necessity of path-nestedness

In this subsection we discuss the necessity of path-nestedness. We show first that

whenever block-adjacent sd-strategy-proofness is equivalent to sd-strategy-proofness, the

domain is block-connected.

Proposition 2 If block-adjacent sd-strategy-proofness is equivalent to sd-strategy-proofness,

then the domain is block-connected.

Proof : Let D be a domain which is not block-connected.18 Let P0 ∈ D and D ⊂ D

be the block-connected sub-domain that contains P0. By definition, D exists but may be

singleton. Since D is not block-adjacent, D\D 6= ∅. Let x = r1(P0) and y ∈ A\{x}.

Define

ϕ(P ) =

δy, if P1 ∈ D

δx, otherwise

where δy denotes the degenerated lottery that gives full probability to y. It is evident that

ϕ is block-adjacent sd-strategy-proof but not sd-strategy-proof. �

With the domain illustrated in Figure 4, we show that path-nestedness is not nec-

essary to the equivalence between block-adjacent sd-strategy-proofness and sd-strategy-

proofness.

Lemma 10 There is a block-connected but not path-nested domain on which block-adjacent

sd-strategy-proofness is equivalent to sd-strategy-proofness.
18This proof is inspired by the proof of Proposition 3.1 in Sato (2013).
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Proof : Consider the domain illustrated in Figure 4, i.e., D ≡ {abcd, cdab, cadb, acdb}.

It is easy to see that this domain is block-connected but not path-nested. We will show

that on this domain, a block-adjacent sd-strategy-proof rule is sd-strategy-proof.

a b c d

abcd la + δ1 + δ2 lb + δ3 lc − δ2 − δ4 ld − δ1 − (δ3 − δ4)

cdab la lb lc ld

cadb la + δ1 lb lc ld − δ1

acdb la + δ1 + δ2 lb lc − δ2 ld − δ1

Consider an arbitrary fixed preference profile and an arbitrary agent who unilaterally

deviates. We need only to specify the lottery for the unilateral deviator, hence we denote

his lottery as ϕ(Pi) where Pi is this agent’s reported preference. Without loss of gener-

ality, let (la, lb, lc, ld) ≡ ϕ(cdab). The block-adjacent sd-strategy-proofness implies non-

manipulability between cdab and cadb, which is equivalent to the existence of δ1 ∈ [0, ld]

such that ϕ(cadb) = (la + δ1, lb, lc, ld − δ1). Similarly, the block-adjacent sd-strategy-

proofness implies non-manipulability between cadb and acdb, which is equivalent to the

existence of δ2 ∈ [0, lc] such that ϕ(cadb) = (la + δ1 + δ2, lb, lc − δ2, ld − δ1). Last, the

block-adjacent sd-strategy-proofness implies non-manipulability between acdb and abcd,

which is equivalent to the existence of δ4 ∈ [0, lc−δ2] and δ3 such that δ3−δ4 ∈ [0, ld−δ1]

such that ϕ(abcd) = (la + δ1 + δ2, lb + δ3, lc − δ2 − δ4, ld − δ1 − (δ3 − δ4)).

To check sd-strategy-proofness, we need only to check non-manipulability between

abcd and cadb and between cdab and acdb. This is easily verified for any δ1, δ2, δ3, δ4

given above. �

4.3 Final remarks

Theorem 5 is useful either when the domain of interest is block-connected but not

connected, or when it is connected but violates non-restoration, the sufficient condition

on a connected domain to guarantee the equivalence between local and global sd-strategy-

proofness in Cho (2016a). As to the former, we use Theorem 5 to show that on a quite

flexible class of preference domains, each of which is block-connected and quite large in
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domain size, the PS rule is sd-strategy-proof. As to the latter, the following is an example.

Example 5 Consider a domain that consisting of the following five preferences.19 Among

these preferences, the adjacency relations are illustrated by solid lines. It is easy to see that

this domain is connected but it does not satisfy non-restoration. Specifically, from xyvwz

to xyzvw, there is only one path which involves two flips between x and y. Hence we can

not invoke the result in Cho (2016a) to simplify the verification of sd-strategy-proofness.

However, we start from block-adjacent sd-strategy-proofness rather than sd-strategy-

proofness, we can draw two more links, illustrated by dotted lines. It is easy to check

path-nestedness of this domain. Then invoking Theorem 5, we have sd-strategy-proofness

on this domain whenever block-adjacent sd-strategy-proofness is satisfied.

xyvwz yxvwz yxvzw yxzvw xyzvwx-y z-w z-v x-y

z-vw

z-vw

Figure 5: A Connected Domain that Violates non-Restoration

Another remark is that, although we focus on random assignment rules, the equiv-

alence result can be applied to all stochastic-dominance ordinal mechanisms, i.e., cen-

tralized mechanisms where agents report ordinal preferences, receive lotteries, and the

lotteries are evaluated according to the stochastic-dominance extensions of ordinal pref-

erences.

19The preferences in this example come from Table 1 in Sato (2013).
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5 Strategy-Proofness of the Probabilistic Serial Rule on

Sequentially Dichotomous Domains

This chapter proposes a class of domains, sequentially dichotomous domains. It is

shown that the PS rule is sd-strategy-proof on any such domain. In addition, any such

domain is shown to be maximal for the PS rule to be sd-strategy-proof. The results in

this chapter significantly enlarge the scope of designing a satisfactory random assignment

rule.

The organization of this chapter is as follows. The first section presents the domains.

Section 2 proves sd-strategy-proofness of the PS rule. Section 3 presents the maximality

result. The last section presents some final remarks.

5.1 Sequentially dichotomous domains

This section defines the sequentially dichotomous domains. However, before we

present the domains, several preliminary definitions are needed.

A partition of the object set A is a set of nonempty subsets of A such that every

object a in A is in exactly one of these subsets, i.e., A ≡ {Ak ⊂ A : Ak 6= ∅} such that⋃
Ak∈AAk = A and Ak ∩ Al = ∅ for all distinct Ak, Al ∈ A. A typical element of a

partition is called a block and denoted Ak ∈ A. We denote the collection of all partitions

ofA byA and define a binary relation, called direct refinement, onA. A partition is called

a direct refinement of another if there is exactly one block of the latter partition broken into

two smaller blocks in the former partition and all the other blocks are inherited; formally:

Definition 10 A partition A′ is a direct refinement of another partition A, if there are

blocks Ak ∈ A and A′i, A
′
j ∈ A′ such that Ak = A\A′ and {A′i, A′j} = A′\A.

We define a partition-path as a sequence (At)
T
t=1 ⊂ A such that A1 = {A}, AT =

{{a} : a ∈ A}, and At+1 is a direct refinement of At for every t = 1, · · · , T − 1. Let A′

be a direct refinement of A, it is evident that |A′| = |A| + 1 and hence T = n for any

partition-path. Henceforth we denote a partition-path as (At)
n
t=1. A partition-path plots

a sequence from the coarsest partition to the finest partition by sequentially breaking one
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block into two. For each t ∈ {1, · · · , n− 1}, let At∗ ≡ At\At+1 be the block in At that

breaks into two smaller blocks. For each t = 2, · · · , n, let {At1, At2} ≡ At\At−1 be the

two blocks whose union is a block in At−1. Hence from A1 to A2, A1∗ breaks into A21

andA22; from A2 to A3, A2∗ breaks intoA31 andA32, etc. Two partition-paths are plotted

in Figure 6, one with darkened arrows and the other with darkened and dotted arrows.

Figure 6: Direct refinement relation when A = {a, b, c, d}. A shade covering several objects

means a block containing these objects and each square containing objects and shade(s) is a parti-

tion. An arrow pointing from one partition to another means the latter is a direct refinement of the

former.

Given a strict preference P0 ∈ P and a block Ak, we say P0 clusters objects in Ak

if all the objects in Ak are ranked next to each other in P0, i.e., for each x ∈ A\Ak,

either [a P0 x for all a ∈ Ak] or [x P0 a for all a ∈ Ak]. We say a preference P0 ∈ P

respects a partition A if, for each Ak ∈ A, P0 clusters objects in Ak. Given a partition

A, the collection of all preferences that respect this partition is called the domain that

respects A. It is denoted DA, i.e., DA ≡ {P0 ∈ P|P0 respects A}. Finally given a

partition-path (At)
n
t=1, we say a preference respects the partition-path if it respects

every partition along the partition-path. A sequentially dichotomous domain is hence

defined as the collection of preferences that respect a common partition-path.

56



Definition 11 A preference domain D ⊂ P is a sequentially dichotomous domain if

there is a partition-path (At)
n
t=1 such that P0 ∈ D if and only if P0 respects At for all

t = 1, · · · , n, i.e., D =
⋂n
t=1 DAt .

Notice that the definition above imposes a richness condition: every preference re-

specting the partitions along the partition-path is included. This facilitates our analysis

as we focus on verifying sd-strategy-proofness and the fact that if a rule is sd-strategy-

proof on a domain, it is sd-strategy-proof on every sub-domain. Here are two examples

of sequentially dichotomous domains.

Example 6 Let A = {a, b, c, d} and consider the partition-path plotted in Figure 6 with

darkened arrows, i.e., (At)
4
t=1 where A1 = {{a, b, c, d}}, A2 = {{a, c, d}, {b}}, A3 =

{{a, c}, {d}, {b}}, and A4 = {{a}, {c}, {d}, {b}}. Let D be the corresponding sequen-

tially dichotomous domain.

It is evident that the collection of preferences respecting A1 is the universal domain,

i.e., DA1 = P. However, not every preference respecting A1 is in D since it needs to

respect in addition A2. To respect A2 is equivalent to ranking b either at the top or

at the bottom. However not every preference ranking b at the top (or at the bottom) is

admissible since it is required to respect in addition A3. For a preference in
⋂2
t=1 DAt to

respect A3, it suffices that a and c be ranked next to each other. Last, it is evident that

every preference in P respects A4 trivially. Hence the domain D ≡ {P1, · · · , P8} is a

sequentially dichotomous domain.

P1 P2 P3 P4 P5 P6 P7 P8

a c d d b b b b

c a a c a c d d

d d c a c a a c

b b b b d d c a

Similarly, let us consider the partition-path plotted in Figure 6 with darkened and

dotted arrows, i.e., (A′t)
4
t=1 where A′1 = {{a, b, c, d}}, A′2 = {{a, c}, {b, d}}, A′3 =

{{a}, {c}, {b, d}}, and A′4 = {{a}, {c}, {b}, {d}}.
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From similar procedure above, we can find the sequentially dichotomous domain with

respect to (A′t)
4
t=1 as such that includes preferences P ′1 to P ′8 below.

P ′1 P ′2 P ′3 P ′4 P ′5 P ′6 P ′7 P ′8

a c a c b b d d

c a c a d d b b

b b d d a c a c

d d b b c a c a

This section ends with several remarks on the sequentially dichotomous domains.

Remark 6 A sequentially dichotomous domain D satisfies minimal richness, i.e., for each

a ∈ A, there is a preference P0 ∈ D such that r1(P0) = a. This is already illustrated by

the domains in Example 6.

Remark 7 Given n be the number of objects, a sequentially dichotomous domain has

2n−1 preferences, exactly the same size as the single-peaked domain. As in Example 6,

when n = 4, a sequentially dichotomous domain includes 8 preferences.

Remark 8 Two different partition-paths may lead to the same sequentially dichotomous

domain. Consider the domain containing P ′1 to P ′8 in the above example. This domain can

also be seen as respect to the partition-path (A′′t )
4
t=1, where A′′3 ≡ {{a, c}, {b}, {d}} and

A′′t ≡ A′t for t = 1, 2, 4.

However such nonuniqueness is not a problem for our analysis since we always start

from a given domain and as long as this domain can be structured as a sequentially di-

chotomous domain according to some partition-path, our analysis applies.

Remark 9 A sequentially dichotomous domain can be expressed as a union of several

restricted tier domains. And given a sequentially dichotomous domain and a partition-

path with respect to which the domain is defined, the involving ordered partitions can be

recovered. For example, the domain in Example 6 defined with respect to (At)
4
t=1 is the

58



union of four restricted tier domains with the ordered partitions being, respectively,

P1 : A1
1 = {a, c}, A1

2 = {d}, A1
3 = {b}

P2 : A2
1 = {d}, A2

2 = {a, c}, A2
3 = {b}

P3 : A3
1 = {b}, A3

2 = {a, c}, A3
3 = {d}

P4 : A4
1 = {b}, A4

2 = {d}, A4
3 = {a, c}

In addition, the domain in Example 6 defined with respect to (A′t)
4
t=1 is the union of

two restricted tier domains with the ordered partitions being, respectively, P1 : A1
1 =

{a, c}, A1
2 = {b, d} and P2 : A2

1 = {b, d}, A2
2 = {a, c}.

Remark 10 A sequentially dichotomous domain can be understood as a lexicographic

(non-separable) preference domain. Imagine that the object set is the Cartesian product

of T characteristics, each of which takes two values. We illustrate this with the following

example. Suppose the objects in consideration are four houses which are labeled accord-

ing to their relative positions, particularly, house 1 on northeast, house 2 on northwest,

house 3 on southeast, and house 4 on southwest. An agent first expresses her taste be-

tween south and north. Suppose she prefers houses on the north, then houses 1 and 2 are

supposed to be better than houses 3 and 4. Conditional on north, she expresses her taste

between east and west. And conditional on south, she expresses her taste between east

and west. Suppose she prefers east conditional on north and west conditional on south,

her preference on houses is 1 � 2 � 4 � 3.

Remark 11 A sequentially dichotomous domain is a Condorcet domain (Monjardet (2009)),

on which the majority rule applies without a cycle. This is a very interesting feature

of this domain. In the current paper, we focus on the sd-strategy-proofness of the PS

rule. This interesting feature of sequentially dichotomous domains also guarantees sd-

strategy-proofness of some random voting rules, for example the maximal lotteries (Fish-

burn (1984) and Brandl et al. (2016)).

5.2 Strategy-proof probabilistic serial rule

This section shows that the PS rule is sd-strategy-proof on a sequentially dichotomous

domain. We show first, by Lemma 11, that any sequentially dichotomous domain is block-
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connected. Second, Lemma 12 implies block-adjacent sd-strategy-proofness of the PS

rule on any sequentially dichotomous domain. Then, by invoking Theorem 5, we have

what is desired.

Lemma 11 Any sequentially dichotomous domain is path-nested.

This lemma can be verified easily according to the definitions of the sequentially di-

chotomous domain and path-nestedness. Hence the proof is omitted.

Due to Theorem 5, to show sd-strategy-proofness of the PS rule on a sequentially

dichotomous domain, it suffices to show block-adjacent sd-strategy-proofness. Actually,

what we can show is slightly stronger:

Lemma 12 Let P ∈ Pn, P̃1 ∈ P, if there are two nonempty subsets of objectsA1, A2 ⊂ A

such that

1. for all i ∈ I , Pi clusters objects in A1, A2, and A1 ∪ A2 respectively;

2. P̃1 is block-adjacent to P1 with the reversal between A1 and A2 such that a P1 b

and b P̃1 a for a ∈ A1 and b ∈ A2.

then:

1. PS1,a(P ) > PS1,a(P̃1, P−1) for all a ∈ A1,

2. PS1,b(P ) 6 PS1,b(P̃1, P−1) for all b ∈ A2, and

3. PS1,x(P ) = PS1,x(P̃1, P−1) for all x ∈ A\A1 ∪ A2.

The proof of Lemma 12 is in Appendix C.1.

Lemma 12 says that if one agent performs a block-adjacent reversal with respect to

two blocks A1, A2 ⊂ A and it is known that in every other’s preference these two objects

are adjacent, then for every object that has moved downward in the deviator’s prefer-

ence, the probability that the deviator gets this object is non-increasing. It is evident that

this lemma implies block-adjacent sd-strategy-proofness on a sequentially dichotomous

domain.
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The statement of Lemma 12 is stronger than that the PS rule satisfies block-adjacent

sd-strategy-proofness on a sequentially dichotomous domain in two respects. First, the

lemma does not require the preferences to be taken from a sequentially dichotomous

domain. Rather, the requirement is that, in every preference, objects in A1, A2, and

A1 ∪ A2 be respectively clustered. Second, block-adjacent sd-strategy-proofness does

not require the probability of every object that moves down the deviator’s preference to

be non-increasing. Rather, block-adjacent sd-strategy-proofness requires only the prob-

ability of every upper contour set to be non-increasing. For example, consider a block-

adjacent reversal from abcd to cabd. Block-adjacent sd-strategy-proofness requires that

the probability of getting a, b combined be non-increasing. Particularly, it is allowed that

the probability of getting b increases as long as the decrease in a’s probability exceeds the

increase in b’s probability.

We are now ready to present the theorem.

Theorem 6 The PS rule is sd-strategy-proof on a sequentially dichotomous domain.

The theorem follows directly from Lemma 11, Lemma 12, and Theorem 5.

Remark 12 As the other important random assignment rule, the random serial dictator-

ship, is known to be sd-inefficient on the universal domain. However, what kind of pref-

erence restriction guarantees the sd-efficiency for it is deserved effort. Some preliminary

results are in Appendix E.

5.3 Maximality

From Theorem 6, a sequentially dichotomous domain guarantees the sd-strategy-

proofness of the PS rule. The next interesting question is can we expand a sequentially

dichotomous domain while preserving the sd-strategy-proofness of the PS rule? The an-

swer is negative, as indicated by Theorem 7. The theorem shows that given an arbitrary

sequentially dichotomous domain, whenever an additional preference is admissible, the

PS rule becomes manipulable.

Theorem 7 A sequentially dichotomous domain is maximal for the probabilistic serial

rule to be sd-strategy-proof.
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The proof of Theorem 7 is in Appendix C.2.

In the proof, we fix an arbitrary sequentially dichotomous domain D and an arbitrary

preference out of it P̃0 ∈ P\D. We first compare the fixed preference with the partition-

path according to which the sequentially dichotomous domain is defined. Then according

to such comparison, we identify two preferences within the sequentially dichotomous do-

main P0, P̄0 ∈ D and then construct two preference profiles consisting of only P̃0, P0, P̄0.

In these two preference profiles, one agent unilaterally deviates. Finally we calculate the

relevant probabilities specified by the PS rule and show that this deviation is profitable.

5.4 Final remarks

In this chapter, we introduced a class of preference domains, sequentially dichotomous

domains. We first show that the PS rule is sd-strategy-proof on any such domain. Then

we show that each such domain is maximal for the PS rule to be sd-strategy-proof.

A remaining interesting question is whether the class of sequentially dichotomous

domains is uniquely maximal. In other words, if we know already that the PS rule is sd-

strategy-proof on a given domain, can we structure it as a sub-domain of a sequentially

dichotomous domain? Unfortunately, the next example proves this to be false.

Example 7 Consider a domain D consisting of only two preferences as follows

P0 :a � b � c � d

P̄0 :c � a � d � b

It is easy to check that the PS rule is sd-strategy-proof on D. However D can never be

structured as a sequentially dichotomous domain. The key insight is that we can not find

a dichotomous partition that both P0 and P̄0 respect it.

Interestingly the pattern indicated by D is an important structure for some computer

science studies, for example Rossin and Bouvel (2006). In their language, a permuta-

tion, i.e., a linear order like P̄0 given P0 already present, is ”separable” if we can find a

partition-path that both P0 and P̄0 respect it. It seems that separability is a convenient and
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fundamental structure for a computer either to generate permutations fast or compare two

sets of permutations fast.

For CS studies, it is perfectly justified that the pattern of D is excluded artificially due

to computational targets. However, there is no economically reasonable argument, in my

understanding, to exclude such a pattern artificially. Hence, although it might be possi-

ble that by excluding such pattern, we can establish the uniqueness of the sequentially

dichotomous domain for the PS rule to be sd-strategy-proof, this exercise is not of much

economic interest.

However, it is still interesting that we find some economically reasonable richness

condition, under which the uniqueness of the sequentially dichotomous domain can be

established. This is left for future studies.

Another remark is a conjecture: any sequentially dichotomous domain is maximal for

the existence of a random assignment rule satisfying sd-strategy-proofness, sd-efficiency,

and equal-treatment-of-equals. However, even from the results presented in this chapter,

verifying this conjecture is still a very difficult question.
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6 How to Describe Objects?

This chapter models the preference restrictions as an implication of specific choices

of object descriptions. Specifically, each object can be evaluated according to a large

number of characteristics. The planner chooses a subset and a ranking of the chosen

ones. Then she describes each object to the agents as a sequence of values according to

the ranking of chosen characteristics. After that each agent reports a lexicographically

separable preference according to the informed description. So a specific description

induces a collection of admissible preferences.

The question we ask is what are the descriptions which induce the good preference

domains, in the sense that there is an sd-strategy-proof, sd-efficient, and equal-treatment-

of-equals rule. The answer provided is a characterization of these descriptions: binary

trees, i.e., conditional on each feasible combinations of the top-t characteristics, the next

characteristic takes two feasible values. This characterization is under two technical as-

sumptions. (See Theorem 8.)

In addition, the domain induced by a binary tree is shown to be covered by a sequen-

tially dichotomous domain. Hence the PS rule is sd-strategy-proof on such a domain.

This result in addition to the other nice properties suggests the use of the PS rule.

The next section formally defines the notions mentioned above. Section 2 presents the

results and the last section concludes.

6.1 Descriptions of objects and induced preference domains

Let C denote the collection of characteristics, according to each of which an object can

be evaluated. Hence the object set is a subset of a Cartesian product A ⊂
∏

c∈C Ac where

Ac is the collection of all possible values of characteristic c. For each object a ∈ A and

each characteristic c ∈ C, we denote object’s value of characteristic c by ac. Without loss

of generality, we assume no unused characteristic value, i.e., for each c ∈ C and v ∈ Ac
there is an object a ∈ A such that ac = v.

Given A ⊂
∏

c∈C Ac, the planner chooses a subset of the characteristics and specifies

a ranking of these chosen characteristics. We call the pair of the chosen subset and the
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ranking of characteristics a description of the objects. Formally it is defined as below.

Definition 12 A description of the object set A ⊂
∏

c∈C Ac is a pair (C, σ) where

• C ⊂ C is a subset of characteristics such that for each pair of distinct objects

x, y ∈ A there is a characteristic c ∈ C that gives xc 6= yc, and

• σ is an one-to-one mapping σ : C → {1, · · · , |C|}.

The condition imposed on the chosen set of characteristics is requiring that the chosen

characteristics be sufficiently informative so that an agent can differentiate each object

from the others according to the description given by the planner.

Given a description (C, σ), an t ∈ {1, · · · , |C|}, and an object a ∈ A, let aσt ≡

aσ−1(t) be a’s value of the characteristic which is t-th ranked according to σ and let

Aσt ≡ Aσ−1(t) be the admissible value set of the t-th ranked characteristic. In addi-

tion, for any t ∈ {2, · · · , |C|} and any combination of values of the top-(t − 1) ranked

characteristics (v1, · · · , vt−1) ∈
∏t−1

τ=1A
σ
τ , let Aσt |(v1, · · · , vt−1) ≡ {vt ∈ Aσt |∃a ∈

A s.t. (aσ1 , · · · , aσt−1, a
σ
t ) = (v1, · · · , vt−1, vt)}. For notational convenience, we write

Aσ1 |v0 ≡ Aσ1 .

After choosing a description (C, σ), the planner disclose the information of objects

to the agents. Facing the chosen description of objects, an agent compares each pair of

objects lexicographically according to the characteristics in C and the ranking specified

by σ. Formally the preference and the collection of these preferences are defined as below.

Definition 13 Given a description (C, σ) of A ⊂
∏

c∈C Ac, a preference P0 ∈ P is lex-

icographically separable with respect to (C, σ) if there is a strict preference P c
0 on each

Ac such that x P0 y if and only if there exists t ∈ {1, · · · , |C|} s.t.
(
xσ1 , · · · , xσt−1

)
=(

yσ1 , · · · , yσt−1

)
and xσt P

σ−1(t)
0 yσt .

In addition, let the domain induced by the description (C, σ) be the collection of all

lexicographically separable preferences with respect to (C, σ) and denoted as D(C,σ).

The preferences on Ac’s that spell a lexicographically separable preference are called

marginal preferences. We now present the example discussed in the introduction in the

language just defined.
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Example 8 Consider the object set illustrated by Table 2. Let C ≡ {c, c′, c′′}, Ac ≡

{1, 2}, Ac′ ≡ {a, b, c}, and Ac′′ ≡ {x, y}. Now the object set in Table 2 can be expressed

as a subset of
∏

c∈C Ac.

Consider the description illustrated in Table 4. The characteristic subset chosen is

C ≡ {c, c′} and the ranking is σ(c′) = 1 and σ(c) = 2. The domain induced by descrip-

tion (C, σ) is such one that includes P1 to P24 and is described as follows.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

o1 o4 o1 o4 o1 o4 o1 o4 o3 o3 o3 o3

o4 o1 o4 o1 o4 o1 o4 o1 o1 o4 o1 o4

o3 o3 o3 o3 o2 o2 o5 o5 o4 o1 o4 o1

o2 o2 o5 o5 o5 o5 o2 o2 o2 o2 o5 o5

o5 o5 o2 o2 o3 o3 o3 o3 o5 o5 o2 o2

P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24

o3 o3 o3 o3 o2 o2 o5 o5 o2 o2 o5 o5

o2 o2 o5 o5 o5 o5 o2 o2 o5 o5 o2 o2

o5 o5 o2 o2 o3 o3 o3 o3 o1 o4 o1 o4

o1 o4 o1 o4 o1 o4 o1 o4 o4 o1 o4 o1

o4 o1 o4 o1 o4 o1 o4 o1 o3 o3 o3 o3

Consider another description, illustrated in Table 5. Now the description is (C̄, σ̄)

where C̄ ≡ {c, c′, c′′} and σ̄ is such that σ̄(c) = 1, σ̄(c′) = 3, and σ̄(c′′) = 2. Then the

domain induced by this description is such that includes all preferences P̄1 to P̄16 below.

P̄1 P̄2 P̄3 P̄4 P̄5 P̄6 P̄7 P̄8 P̄9 P̄10 P̄11 P̄12 P̄13 P̄14 P̄15 P̄16

o1 o1 o1 o1 o2 o3 o2 o3 o4 o5 o4 o5 o4 o5 o4 o5

o2 o3 o2 o3 o3 o2 o3 o2 o5 o4 o5 o4 o5 o4 o5 o4

o3 o2 o3 o2 o1 o1 o1 o1 o1 o1 o1 o1 o2 o2 o3 o3

o4 o4 o5 o5 o4 o4 o5 o5 o2 o2 o3 o3 o3 o3 o2 o2

o5 o5 o4 o4 o5 o5 o4 o4 o3 o3 o2 o2 o1 o1 o1 o1

6.2 Results

This section presents two results. First, whenever the problem size satisfies the two

technical assumptions 1 and 2, the objects should be described as a binary tree since this
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is the only way the induced domain admits an acceptable rule.

Theorem 8 Let (C, σ) be a description and D(C,σ) the corresponding induced domain. In

addition, let n satisfy the Assumptions 1 and 2. If there is an sd-strategy-proof sd-efficient

and equal-treatment-of-equals rule defined on D(C,σ), then
∣∣∣∣Aσt |(v1, · · · , vt−1)

∣∣∣∣ 6 2 for

all t ∈ {1, · · · , |C|} and (v1, · · · , vt−1) ∈
∏t−1

τ=1 A
σ
τ , i.e., the description is a binary tree.

In order to prove Theorem 8, we show an impossibility result, which states that when-

ever a domain exhibits the ”block elevating” property and two technical assumptions are

satisfied, there is no possibility of finding an acceptable rule. We first formally define the

block elevating property and then the impossibility.

A domain D satisfies the block elevating property if there are three admissible pref-

erences and three nonempty blocks such that the block (can be empty) ranked above these

three blocks in all three preferences is the same, three blocks are ranked next to each other

in all three preferences, one block is ranked last among the three blocks in two of the three

preferences and the second among the three in the third preference; formally:

Definition 14 A domain D satisfies the block elevating property if there are three pref-

erences P̄0, P0, P̂0 ∈ D, three nonempty blocks B,C,D ⊂ A and two blocks E,F ⊂ A

which can be empty such that B ∪ C ∪ D ∪ E ∪ F = A and three preferences are as

follows, where B P0 C means b P0 c for all b ∈ B and c ∈ C.

E P̄0 B P̄0 D P̄0 C P̄0 F

E P0 B P0 C P0 D P0 F

E P̂0 C P̂0 B P̂0 D P̂0 F

Table 7: The Block Elevating Property

The block elevating property is a generalization of the elevating property in Table 6,

which requires all three blocks to be singletons. The impossibility with respect to the

block elevating property is as follows.

Proposition 3 Let D be a domain satisfying block elevating property. If n satisfies As-

sumptions 1 and 2, then D admits no sd-strategy-proof, sd-efficient, and equal-treatment-

of-equals rule.
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The proof of Proposition 3 is in Appendix D.3. The proof is by contradiction, i.e., suppose

D satisfies block elevating property and admits an acceptable rule, then we specify a

series of preference profiles consisting of only three preferences illustrated in Table 7.

We characterize the random assignments of these profiles according to the three axioms.

Finally a contradiction is identified.

The identification of the contradiction relies on two assumptions, each of which com-

pares zero with an expression of a floor function20, conditional on that the real number is

strictly larger than the integer identified by the floor function for this real number. I am

unable to verify the comparisons analytically. However, I provide two Matlab codes to

verify, for a specific n, whether these two assumptions hold, and I have verified them to

be true for all n no larger than 1000. As to 1000, it is not that when n goes beyond it the

impossibility fails but that my laptop is not that powerful.

Proof : [Proof of Theorem 8] In stead of showing it directly, we show its contrapositive

statement. Let (C, σ) be a description and D(C,σ) its induced domain, in addition let t∗ ∈

{1, · · · , |C|} and (v1, · · · , vt∗−1) ∈
∏t∗−1

τ=1 A
σ
τ be such that

∣∣∣∣Aσt∗|(v1, · · · , vt∗−1)

∣∣∣∣ > 3, we

show that D(C,σ) satisfies the block elevating property.

Pick any three values ut∗ , u′t∗ , u
′′
t∗ ∈ Aσt∗|(v1, · · · , vt∗−1) and letB ≡ {b ∈ A|(bσ1 , · · · , bσt∗−1) =

(v1, · · · , vt∗−1) and bσt∗ = ut∗}, C ≡ {c ∈ A|(cσ1 , · · · , cσt∗−1) = (v1, · · · , vt∗−1) and cσt∗ =

u′t∗}, and D ≡ {d ∈ A|(dσ1 , · · · , dσt∗−1) = (v1, · · · , vt∗−1) and dσt∗ = u′′t∗}. Consider the

marginal preferences (P̄ c
0 )c∈C , (P c

0 )c∈C , and (P̂ c
0 )c∈C such that

r1(P̄
σ−1(τ)
0 ) = r1(P

σ−1(τ)
0 ) = r1(P̂

σ−1(τ)
0 ) = vτ for all τ 6 t∗ − 1

ut∗ P̄
σ−1(t∗)
0 u′′t∗ P̄

σ−1(t∗)
0 u′t∗ P̄

σ−1(t∗)
0 vt∗ for all vt∗ ∈ Aσt∗\{ut∗ , u′t∗ , u′′t∗}

ut∗ P
σ−1(t∗)
0 u′t∗ P

σ−1(t∗)
0 u′′t∗ P

σ−1(t∗)
0 vt∗ for all vt∗ ∈ Aσt∗\{ut∗ , u′t∗ , u′′t∗}

u′t∗ P̂
σ−1(t∗)
0 ut∗ P̂

σ−1(t∗)
0 u′′t∗ P̂

σ−1(t∗)
0 vt∗ for all vt∗ ∈ Aσt∗\{ut∗ , u′t∗ , u′′t∗}

It’s evident that these marginal preferences give the following preferences P̄0, P0, P̂0 ∈

D(C,σ), which completes the proof.

20A floor function identifies for a real number the largest integer no larger than the real number itself.
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B P̄0 D P̄0 C P̄0 A\(B ∪ C ∪D)

B P0 C P0 D P0 A\(B ∪ C ∪D)

C P̂0 B P̂0 D P̂0 A\(B ∪ C ∪D)

�

Given Theorem 8, an interesting question arises: what rule can we use on a domain

induced by a binary tree? The following result shows that the PS rule is sd-strategy-proof

on the domain induced by a binary tree.

Theorem 9 Let (C, σ) be a description and D(C,σ) the corresponding induced domain. If

(C, σ) is a binary tree, then the PS rule is sd-strategy-proof on D(C,σ).

The proof of Theorem 9 is in Appendix D.4.

We prove the theorem by showing that when the description is a binary tree, the in-

duced domain is a sub-domain of a sequentially dichotomous domain. Then Theorem 6

implies the desired conclusion.

6.3 Final remarks

The result in this chapter suggests that, if the planner believes that agents report pref-

erences lexicographically separable according to the ranking of the chosen characteristics,

she should describe the objects as a binary tree, i.e., given any feasible values of the top-t

ranked characteristics, the following up characteristic can take at most two feasible values.

In addition, due to the fact that the PS rule is sd-strategy-proof on the domain induced by

a binary tree, she should use the PS rule to allocate the objects after agents report their

preferences.21

However since I assume explicitly that the problem size n satisfies two technical as-

sumptions, before following the above suggestions, the planner needs to check these two

assumptions. Although I can not prove them to be true analytically, I conjecture that they

are true. For applications, a planner can use the Matlab code I provide to check whether

21In addition to sd-strategy-proofness, PS rule is favored also in the sense that it satisfies sd-efficiency

and sd-envy-freeness, a fairness axiom stronger than equal treatment of equals.
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these two assumptions hold. In addition, if the problem size is smaller than 1000, I have

already checked them to be true so the suggestion above can be adopted directly.
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7 Conclusion and Further Research

This dissertation studies the scope of designing a satisfactory random assignment rule

and provides some answers. Specifically, whenever the preference domain is connected,

it is nearly impossible to find a satisfactory rule. However, there is a very large class

of unconnected domains, i.e., sequentially dichotomous domains, on which possibility

holds.

Besides the answers, I think this dissertation raised several following-up questions.

Some of them are listed for further research. First, under what reasonable richness con-

ditions, can the sequentially dichotomous domain be verified as the unique maximal do-

mains for the PS rule being sd-strategy-proof ? Second, I conjecture that any sequentially

dichotomous domain is maximal for the existence of an sd-strategy-proof, sd-efficient, and

equal-treatment-of-equals rule. The last conjecture is with respect to the characterization

of the binary trees as the unique ones that induce good domains. Specifically, it would be

good if the two technical assumptions imposed can be verified analytically.
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ABDULKADIROĞLU, A. AND T. SÖNMEZ (1998): “Random serial dictatorship and the

core from random endowments in house allocation problems,” Econometrica, 689–701.

——— (2003): “Ordinal efficiency and dominated sets of assignments,” Journal of Eco-

nomic Theory, 112, 157–172.
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A Appendix to Chapter 3

A.1 Proof of Lemma 1

Let P̄ ∈ Dn be such that P̄i = P̄j for all i, j ∈ I . Then equal treatment of equals

implies ϕia(P̄ ) = 1
n

for all i ∈ I and all a ∈ A. Hence, ϕiAk(P̄ ) = |Ak|
n

for all i ∈ I and

all k ∈ {1, . . . , T}. According to P and P̄ , we can separate all agents into two groups:

Î = {i ∈ I|Pi 6= P̄i} and I\Î = {i ∈ I|Pi = P̄i}. Given S ⊆ Î , let P̄ S ∈ Dn be such

that P̄ S
i = Pi for all i ∈ S and P̄ S

i = P̄i for all i /∈ S. Thus, P̄ S = (PS, P̄−S). Evidently,

P̄ ∅ = P̄ and P̄ Î = P .

Now, given i ∈ Î , sd-strategy-proofness implies
∑k

t=1 ϕiAt(P̄
{i}) =

∑k
t=1 ϕiAt(P̄

∅)

for all k ∈ {1, . . . , T}, which in turn implies ϕiAk(P̄
{i}) = |Ak|

n
for all k ∈ {1, . . . , T}.

Furthermore, equal treatment of equals implies ϕjAk(P̄
{i}) = |Ak|

n
for all j 6= i and

all k ∈ {1, . . . , T}. Therefore, given i ∈ Î , ϕjAk(P̄
{i}) = |Ak|

n
for all j ∈ I and all

k ∈ {1, . . . , T}. We continue with an induction argument on S ⊆ Î .

Induction Hypothesis: Given 1 < l 6 |Î|, for all S ⊆ Î with 1 6 |S| 6 l − 1, we have

ϕiAk(P̄
S) = |Ak|

n
for all i ∈ I and k ∈ {1, . . . , T}.

Let S ⊆ Î with |S| = l. We will show ϕiAk(P̄
S) = |Ak|

n
for all i ∈ I and all

k ∈ {1, . . . , T}. Given j ∈ S, by sd-strategy-proofness and induction hypothesis,∑k
t=1 ϕjAt(P̄

S) =∑k
t=1 ϕjAt(P̄

S\{j}) =
∑k

t=1
|At|
n

for all k ∈ {1, . . . , T}, which in turns impliesϕjAk(P̄
S) =

|Ak|
n

for all k ∈ {1, . . . , T}. Furthermore, equal treatment of equals implies ϕiAk(P̄
S) =

|Ak|
n

for all i /∈ S and all k ∈ {1, . . . , T}. Therefore, ϕiAk(P̄
S) = |Ak|

n
for all i ∈ I and

all k ∈ {1, . . . , T}. This completes the verification of induction hypothesis. Therefore,

LiAk = |Ak|
n

for all i ∈ I and k ∈ {1, . . . , T}.

A.2 Proof of Lemma 2

Assume |Ik| = l. If l = 0, statements (i) and (ii) are satisfied vacuously. Henceforth,

assume 1 6 l 6 n. We consider three cases.

Case 1: l = 1.
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Statement (i) is satisfied vacuously. Assume Ik = {i}. By sd-efficiency, either Lib =

0, or Lja = 0 for all j 6= i. Suppose Lib > 0. Then, Lja = 0 for all j 6= i. Consequently,

Lia = 1 and Lia + Lib > 1. Contradiction! Therefore, Lib = 0. Then, Lemma 1 implies

Lia = 2
n

. Moreover, since Lja +Ljb = 2
n

for all j ∈ I\Ik, it is evident that Lia > Lja and

Lib 6 Ljb for all i ∈ Ik and all j ∈ I\Ik. This completes the verification of statement (ii)

in Case 1.

Case 2: l = n.

Statement (ii) is satisfied vacuously. We focus on statement (i). Let P̄ ∈ Dn be such

that P̄i = P̄j for all i, j ∈ I and a P̄i b for all i ∈ I . Thus, according to P and P̄ , we can

separate all agents into two groups: Î = {i ∈ I|Pi 6= P̄i} and I\Î = {i ∈ I|Pi = P̄i}.

Given S ⊆ Î , let P̄ S ∈ Dn be such that P̄ S
i = P̄i for all i ∈ Î\S and P̄ S

i = Pi for all

i /∈ Î\S. Thus, P̄ ∅ = P̄ and P̄ Î = P . First, equal treatment of equals implies ϕia(P̄ ) = 1
n

for all i ∈ I = Ik. Next, we provide an induction argument on S.

Induction Hypothesis: Given 0 < s 6 |Î|, for all S ⊆ Î with 0 6 |S| < s and all i ∈ I ,

we have ϕia(P̄ S) = 1
n

.

Given S ⊆ Î with |S| = s, we show ϕia(P̄
S) = 1

n
for all i ∈ I . Given i ∈

S, sd-strategy-proofness and induction hypothesis imply ϕia(P̄
S) = ϕia(Pi, P̄

S
−i) =

ϕia(P̄i, P̄
S
−i) = ϕia(P̄

S\{i}) = 1
n

. Furthermore, in P̄ S , for all j ∈ I\S, equal treatment of

equals implies ϕja(P̄ S) =
1−

∑
i∈S ϕia(P̄S)

|I\S| =
1−s× 1

n

n−s = 1
n

. Therefore, ϕia(P̄ S) = 1
n

for all

i ∈ I . This completes the verification of induction hypothesis. Therefore, Lia = Lja for

all i, j ∈ Ik = I . This completes the verification of statement (i) in Case 2.

Case 3: 1 < l < n.

First, sd-efficiency implies either Lib = 0 for all i ∈ Ik, or Lja = 0 for all j ∈ I\Ik. If

Lib = 0 for all i ∈ Ik, then Lemma 1 implies Lia = 2
n

for all i ∈ Ik. Thus, Lia = Lja for

all i, j ∈ Ik. Moreover, since Lja + Ljb = 2
n

for all j ∈ I\Ik, it is evident that Lia > Lja

and Lib 6 Ljb for all i ∈ Ik and j ∈ I\Ik.

Next, assume Lja = 0 for all j ∈ I\Ik, and Lib > 0 for some i ∈ Ik. By Lemma 1,

Ljb = 2
n

for all j ∈ I\Ik. Moreover, since Lia + Lib = 2
n

for all i ∈ Ik, it is evident that

Lia > Lja and Lib 6 Ljb for all i ∈ Ik and j ∈ I\Ik. Hence, statement (ii) is verified.
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Last, we verify statement (i). We first claim l > n
2
. Suppose not, i.e., l 6 n

2
and hence

|I\Ik| = n − l > n
2
. Since Lja = 0 for all j ∈ I\Ik, Lemma 1 implies Ljb = 2

n
for all

j ∈ I\Ik. Consequently,
∑

i∈I Lib =
∑

i∈Ik Lib+
∑

j∈I\Ik Ljb =
∑

i∈Ik Lib+(n−l) 2
n
> 1.

Contradiction! Therefore, l > n
2
.

Let P̄ ≡ (P̄Ik , P−Ik) ∈ Dn be such that P̄i = P̄j for all i, j ∈ Ik, and a P̄i b for all

i ∈ Ik. We divide Ik into two groups: Î = {i ∈ Ik|Pi 6= P̄i} and Ik\Î = {i ∈ Ik|Pi =

P̄i}. Given S ⊆ Î , let P̄ S ∈ Dn be such that P̄ S
i = P̄i for all i ∈ Î\S, and P̄ S

i = Pi for

all i /∈ Î\S. Evidently, P̄ ∅ = P̄ and P̄ Î = P .

Since l > n
2
, sd-efficiency impliesϕja(P̄ ∅) = 0 for all j ∈ I\Ik, and hence

∑
i∈Ik ϕia(P̄

∅) = 1.

Moreover, since equal treatment of equals implies ϕia(P̄ ∅) = ϕja(P̄
∅) for all i, j ∈ Ik, it

is true that ϕia(P̄ ∅) = 1
l

for all i ∈ Ik. Next, we provide an induction argument on S.

Induction Hypothesis: Given 0 < s 6 |Î|, for all S ⊆ Î with 0 6 |S| < s, ϕia(P̄ S) = 1
l

for all i ∈ Ik.

Let S ⊆ Ik with |S| = s. We show ϕia(P̄
S) = 1

l
for all i ∈ Ik. Since l > n

2
,

sd-efficiency implies ϕja(P̄ S) = 0 for all j ∈ I\Ik. Thus,
∑

i∈Ik ϕia(P̄
S) = 1. Given

i ∈ S, sd-strategy-proofness and induction hypothesis imply ϕia(P̄ S) = ϕia(Pi, P̄
S
−i) =

ϕia(P̄i, P̄
S
−i) = ϕia(P̄

S\{i}) = 1
l
. Furthermore, in P̄ S , for all j ∈ Ik\S, equal treatment

of equals implies ϕja(P̄ S) =
1−

∑
i∈S ϕia(P̄S)

l−s =
1−s× 1

l

l−s = 1
l
. Therefore, ϕia(P̄ S) = 1

l
for

all i ∈ Ik. This completes the verification of induction hypothesis. Therefore, Lia = 1
l

for all i ∈ Ik, and hence, Lia = Lja for all i, j ∈ Ik. This completes the verification of

statement (i) in Case 3, and hence the lemma.

A.3 Proof of Theorem 3

To prove Theorem 3, it suffices to show that if domain D satisfies the elevating prop-

erty, there exists no sd-strategy-proof, sd-efficient and equal-treatment-of-equals rule.

Suppose that D satisfy the elevating property, e.g., domain D contains preferences

P̄i, Pi, P̂i in Table 6. Let ϕ : Dn → L be a rule satisfying sd-strategy-proofness, sd-

efficiency, and equal treatment of equals. Let n̄ ≡ n
2

if n is even, and n̄ ≡ n−1
2

if n is odd.

We search for a contradiction. We first provide the sketch of proofs.
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We consider the following four groups of preference profiles: Profile Groups I - IV.

In particular, for the case of odd number of agents, we consider two additional groups

of preference profiles: Profile Groups V and VI. See Table 8 below. Note that every

preference profile in these groups consists of only preferences of P̄i, Pi and P̂i.

Profile Group I: n is either even or odd Profile Group II: n is either even or odd

P 1,0 = (P1, P2, . . . , Pn)

P 1,1 = (P̂1, P2, . . . , Pn) P 2,1 = (P1, P2, . . . , Pn−1, P̄n)

... P 2,2 = (P̂1, P2, . . . , Pn−1, P̄n)

...
...

P 1,m = (P̂1, . . . , P̂m, Pm+1, . . . , Pn) P 2,m = (P̂1, . . . , P̂m−1, Pm, . . . , Pn−1, P̄n)

...
...

P 1,n̄ = (P̂1, . . . , P̂n̄, Pn̄+1, . . . , Pn) P 2,n̄ = (P̂1, . . . , P̂n̄−1,Pn̄, Pn̄+1, . . . , Pn−1, P̄n)

P 2,n̄+1 = (P̂1, . . . , P̂n̄−1, P̂n̄, Pn̄+1, . . . , Pn−1, P̄n)

Profile Group III: n is either even or odd Profile Group IV: n is either even or odd

P 3,0 = (P̂1, . . . , P̂n−1, P̂n)

P 3,1 = (P̂1, . . . , P̂n−1, Pn) P 4,1 = (P̂1, . . . , P̂n−2, P̂n−1, P̄n)

... P 4,2 = (P̂1, . . . , P̂n−2, Pn−1, P̄n)

...
...

P 3,m = (P̂1, . . . , P̂n−m, Pn−m+1, . . . , Pn) P 4,m = (P̂1, . . . , P̂n−m, Pn−m+1, . . . , Pn−1, P̄n)

...
...

P 3,n̄ = (P̂1, . . . , P̂n−n̄, Pn−n̄+1, . . . , Pn) P 4,n̄ = (P̂1, . . . , P̂n−n̄, Pn−n̄+1, . . . , Pn−1, P̄n)

Profile Group V: n is odd Profile Group VI: n is odd

P 5,1 = (P1, P2, . . . , Pn−2, P̄n−1, P̄n) P 6,1 = (P̂1, . . . , P̂n−3, P̂n−2, Pn−1, P̄n)

P 5,2 = (P̂1, P2, . . . , Pn−2, P̄n−1, P̄n) P 6,2 = (P̂1, . . . , P̂n−3, P̂n−2, P̄n−1, P̄n)

... P 6,3 = (P̂1, . . . , P̂n−3, Pn−2, P̄n−1, P̄n)

...
...

P 5,m = (P̂1, . . . , P̂m−1, Pm, . . . , Pn−2, P̄n−1, P̄n) P 6,m = (P̂1, . . . , P̂n−m, Pn−m+1, . . . , Pn−2, P̄n−1, P̄n)

...
...

P 5,n̄ = (P̂1, . . . , P̂n̄−1, Pn̄, Pn̄+1, . . . , Pn−2, P̄n−1, P̄n) P 6,n̄ = (P̂1, . . . , P̂n−n̄, Pn−n̄+1, . . . , Pn−2, P̄n−1, P̄n)

P 5,n̄+1 = (P̂1, . . . , P̂n̄−1, P̂n̄,Pn̄+1, . . . , Pn−2, P̄n−1, P̄n)

Table 8: Preference Profile Groups

We first show that for every preference profile of each profile group and every agent,

the sum of probabilities over objects a, b and c equals to 3
n

(see Lemma 13). Then, in the

rest of verification, we only focus on the random assignments of objects a, b and c.
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At every preference profile in profile groups I - IV, we fully characterize the random

assignment of objects a, b and c(see Claims 1 - 5). Then, we realize that when n is an

even number, the probability of assigning object c to agent n̄ under profile P 2,n̄ is distinct

from that under profile P 4,n̄. This formulates a contradiction against sd-strategy-proofness

since from P 2,n̄ to P 4,n̄, agent n̄ unilaterally deviates from Pi to P̂i, and object c shares

the same upper contour set in both Pi and P̂i.

When n is an odd number, in addition to profile groups I - IV, we consider profile

groups V and VI. At every preference profile in both profile groups V and VI, we focus

on characterizing probabilities of assigning object c to every agent (see Claims 6 - 8).

Eventually, we observe that the probability of assigning object c to agent n̄+ 1 under pro-

file P 5,n̄+1 is distinct from that under profile P 6,n̄. This formulates a similar contradiction

against sd-strategy-proofness.

Lemma 13 For every profile P in profile groups I - VI, ϕia(P ) + ϕib(P ) + ϕic(P ) = 3
n

.

Proof : The verification of this lemma is routine. In each profile group, repeatedly ap-

plying sd-strategy-proofness and equal treatment of equals, we have the result. Due to the

tediousness, we omit the detailed proof. �

Now, we consider profile groups I - IV. According to Lemma 13, we only focus on the

random assignments over a, b and c in each preference profile.

Claim 1 In profile group I, for each m = 0, 1, . . . , n̄, the random assignment ϕ(P 1,m)

over a, b and c is specified below

a b c

1 0 2
n

1
n

...
...

...
...

m 0 2
n

1
n

m+ 1 1
n−m

n−2m
n(n−m)

1
n

...
...

...
...

n 1
n−m

n−2m
n(n−m)

1
n
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Proof : For m = 0, equal treatment of equals implies ϕix(P 1,0) = 1
n

for all i ∈ I and

x ∈ {a, b, c}.

Next, we show ϕic(P
1,m) = 1

n
for all i ∈ I and m = 1, . . . , n̄. We specify an

induction hypothesis: given 1 6 m 6 n̄, for all 0 6 l < m, ϕic(P 1,l) = 1
n

for all i ∈ I .

We will show ϕic(P
1,m) = 1

n
for all i ∈ I . Notice that profiles P 1,m−1 and P 1,m are

different only in agent m’s preference, i.e., Pm−1
m = Pi and Pm

m = P̂i in Table 6. Then

sd-strategy-proofness and induction hypothesis imply ϕmc(P 1,m) = ϕmc(P
1,m−1) = 1

n
.

Moreover, equal treatment of equals and feasibility imply ϕic(P 1,m) = 1
n

for all i ∈ I .

Last, for m = 1, . . . , n̄, note that |{1, . . . ,m}| 6 n
2

and all agents in {m + 1, . . . , n}

prefer a to b in profile P 1,m. Consequently, by sd-efficiency, feasibility and Lemma 13,

we have ϕia(P 1,m) = 0 for all i = 1, . . . ,m.

Finally, by Lemma 13, feasibility and equal treatment of equals, we have the claim.

�

Claim 2 In profile group II, the random assignment ϕ(P 2,1) over a, b and c is specified

below
a b c

1 1
n

1
n−1

n−2
n(n−1)

...
...

...
...

n− 1 1
n

1
n−1

n−2
n(n−1)

n 1
n

0 2
n

Proof : The verification is routine and we hence omit it. �

Claim 3 In profile group II, for each m = 2, . . . , n̄ (if n is even), and for each m =

2, . . . , n̄, n̄ + 1 (if n is odd), the random assignment ϕ(P 2,m) over a, b and c is specified

83



below
a b c

1 0 3
n
− α(m) α(m)

...
...

...
...

m− 1 0 3
n
− α(m) α(m)

m 1
n−(m−1)

1−(m−1)[ 3
n
−α(m)]

n−m
1−[ 3

n
− 1
n−(m−1)

]−(m−1)α(m)

n−m

...
...

...
...

n− 1 1
n−(m−1)

1−(m−1)[ 3
n
−α(m)]

n−m
1−[ 3

n
− 1
n−(m−1)

]−(m−1)α(m)

n−m

n 1
n−(m−1)

0 3
n
− 1

n−(m−1)

where α(m) = n2−(m+1)n+(3m−4)
n(n−1)[n−(m−1)]

Proof : The verification of this claim consists of 4 steps. The first 3 steps are valid for

m = 2, . . . , n̄, n̄+ 1 no matter n is even or odd. The last steps is verified under the cases

of even and odd number of agents separately.

Step 1, we show ϕna(P
2,m) = 1

n−(m−1)
for all m = 2, . . . , n̄, n̄+ 1. Notice that P 2,m

and P 1,m−1 are different merely in agent n’s preferences, i.e., P 2,m
n = P̄i and P 1,m−1

n =

Pi in Table 6. Then, sd-strategy-proofness implies P 2,m
na = P 1,m−1

na = 1
n−(m−1)

. This

completes the verification of step 1.

Step 2, we showϕnb(P
2,m) = 0 andϕnc(P 2,m) = 3

n
− 1
n−(m−1)

for allm = 2, . . . , n̄, n̄+

1. Givenm ∈ {1, . . . , n̄, n̄+1}, since all agents other than n prefer b to c, sd-efficiency and

feasibility imply ϕnb(P 2,m) = 0. Then, by Lemma 13 and Step 1, we have ϕnc(P 2,m) =

3
n
− 1

n−(m−1)
. This completes the verification of step 2.

Step 3, we show ϕic(P
2,m) = α(m) for all i = 1, . . . ,m−1 and m = 2, . . . , n̄, n̄+ 1.

By equal treatment of equals, it suffices to show ϕm−1,c(P
2,m) = α(m) for all m =

2, . . . , n̄, n̄+ 1.

Notice that for all m = 2, . . . , n̄, n̄+ 1, profiles P 2,m and P 2,m−1 are different merely

in agent m− 1’s preferences, i.e., P 2,m−1
m−1 = Pi and P 2,m

m−1 = P̂i in Table 6.

Now, we prove Step 3 by an induction argument on m = 2, . . . , n̄, n̄+ 1.
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Initial statement: for m = 2, by sd-strategy-proofness and Claim 2, we have

ϕ1,c(P
2,2) = ϕ1,c(P

2,1) =
n− 2

n(n− 1)
=
n2 − (2 + 1)n+ (3× 2− 4)

n(n− 1)[n− (2− 1)]
= α(2).

Induction Hypothesis: Given 2 6 m 6 n̄, for all 2 6 l < m + 1, we have ϕl−1,c(P
2,l) =

α(l).

We show ϕm,c(P
2,m+1) = α(m+ 1) by the following elaboration.

ϕm,c(P
2,m+1) = ϕm,c(P

2,m) by sd-strategy-proofness

=
1−ϕnc(P 2,m)−

∑m−1
i=1 ϕic(P

2,m)

n−m by equal treatment of equals and feasibility

=
1−[ 3

n
− 1
n−(m−1)

]−(m−1)ϕm−1,c(P 2,m)

n−m by Step 2 and equal treatment of equals

=
1−[ 3

n
− 1
n−(m−1)

]−(m−1)α(m)

n−m by induction hypothesis

= α(m+ 1) by simplifying the expression

This completes the verification of induction hypothesis and hence step 3.

Step 4, we show ϕia(P
2,m) = 0 for all i = 1, . . . ,m − 1 and m = 2, . . . , n̄ (if n

is even) or m = 2, . . . , n̄, n̄ + 1 (if n is odd).22 Given m ∈ {2, . . . , n̄} (if n is even),

or m ∈ {2, . . . , n̄, n̄ + 1} (if n is odd), suppose that ϕia(P 2,m) = β > 0 for some

i = 1, . . . ,m−1. Thus, sd-efficiency implies that ϕjb(P 2,m) = 0 for all j = m, . . . , n−1.

Consequently, since ϕnb(P 2,m) = 0 by Step 2, we know
∑m−1

i=1 ϕib(P
2,m) = 1.

Evidently, equal treatment of equals implies ϕia(P 2,m) = β for all i = 1, . . . ,m− 1.

Thus, by Lemma 13 and Step 3, we have ϕib(P 2,m) = 3
n
−α(m)−β for all i = 1, . . . ,m−

1. Therefore, equal treatment of equals implies

m−1∑
i=1

ϕib(P
2,m) = (m−1)×

[
3

n
− α(m)− β

]
< (m−1)×

[
3

n
− n2 − (m+ 1)n+ (3m− 4)

n(n− 1)[n− (m− 1)]

]
.

To induce the contradiction
∑m−1

i=1 ϕib(P
2,m) < 1, we show (m−1)×

[
3
n
− n2−(m+1)n+(3m−4)

n(n−1)[n−(m−1)]

]
6

1. Equivalently, we show −2m2n+ 3mn2 +m− n3 − 2n2 + 2nm− 1 6 0.

Consider the function f(θ) = −2θ2n + 3θn2 + θ − n3 − 2n2 + 2nθ − 1, θ ∈ R. We

know f ′(θ) = −4nθ + 3n2 + 1 + 2n and f ′′(θ) = −4n < 0 for all θ ∈ R. It is evident

22In Chang and Chun (2016), the verification related to this step is simply an application of sd-efficiency.

However, due to the complexity of α(m), mere sd-efficiency is not enough for the verification.
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that f ′(θ) is a strictly decreasing function on R. Now, we consider the case n is even and

the case n is odd separately.

Case 1: n is even. Thus, n̄ = n
2
. Since f ′(n

2
) = (n+ 1)2 > 0, it must be the case that

f ′(θ) > 0 for all 2 6 θ 6 n
2
. Therefore, f is a strictly increasing function on 2 6 θ 6 n

2
.

Next, since f(n
2
) = −(n− 1

4
)2 − 15

16
< 0, we have f(θ) < 0 for all 2 6 θ 6 n

2
.

Case 2: n is odd. Thus, n̄ = n−1
2

. Since f ′(n+1
2

) = n2 + 1 > 0, it must be the case

that f ′(θ) > 0 for all 2 6 θ 6 n+1
2

. Therefore, f is a strictly increasing function on

2 6 θ 6 n+1
2

. Since f(n+1
2

) = −1
2
(n− 1)2 < 0, we have f(θ) < 0 for all 2 6 θ 6 n+1

2
.

In conclusion, no matter n is even or odd, we have−2m2n+ 3mn2 +m−n3−2n2 +

2nm− 1 = f(m) < 0, and hence,
∑m−1

i=1 ϕib(P
2,m) < 1. Contradiction! This completes

the verification of step 4.

Finally, Lemma 13, feasibility and equal treatment of equals give the rest of charac-

terizations in the claim. �

Claim 4 In profile group III, for each m = 0, 1, . . . , n̄, the random assignment ϕ(P 3,m)

over a, b and c is specified below

a b c

1 n−2m
n(n−m)

1
n−m

1
n

...
...

...
...

n−m n−2m
n(n−m)

1
n−m

1
n

n−m+ 1 2
n

0 1
n

...
...

...
...

n 2
n

0 1
n

Proof : The verification follows from a similar argument in the proof of Claim 1. �

Claim 5 In profile group IV, for each m = 1, . . . , n̄, the random assignment ϕ(P 4,m)
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over a, b and c is specified below

a b c

1 n−2m
n(n−m)

1
n−m

1
n

...
...

...
...

n−m n−2m
n(n−m)

1
n−m

1
n

n−m+ 1 2
n

0 1
n

...
...

...
...

n− 1 2
n

0 1
n

n 2
n

0 1
n

Proof : The verification of the claim consists of 4 steps.

Step 1, we show ϕn,a(P
4,m) = 2

n
for all m = 1, . . . , n̄. Notice that, for all m =

1, . . . , n̄, P 4,m and P 3,m are different merely in agent n’s preferences, i.e., P 4,m
n = P̄i and

P 3,m
n = Pi in Table 6. By sd-strategy-proofness, we have ϕn,a(P 4,m) = ϕn,a(P

3,m) = 2
n

.

This completes the verification of step 1.

Step 2, we show ϕn,b(P
4,m) = 0 and ϕn,c(P 4,m) = 1

n
for all m = 1, . . . , n̄. The

verification of this step follows from the same verification of Step 2 in the proof of Claim

3.

Step 3, we show ϕic(P
4,m) = 1

n
for all i ∈ I and m = 1, . . . , n̄. First, since

ϕn,c(P
4,1) = 1

n
by Step 2, feasibility and equal treatment of equals imply ϕic(P 4,1) = 1

n

for all i = 1, . . . , n− 1. Therefore, ϕic(P 4,1) = 1
n

for all i ∈ I .

Next, we specify an induction hypothesis: given 2 6 m 6 n̄, for all 1 6 l < m,

ϕic(P
4,l) = 1

n
for all i ∈ I . We will show ϕic(P

4,m) = 1
n

for all i ∈ I . Notice that, P 4,m

and P 4,m−1 are different merely in agent (n − m + 1)’s preferences, i.e., P 4,m
n−m+1 = Pi

and P 4,m−1
n−m+1 = P̂i in Table 6. Then sd-strategy-proofness and induction hypothesis imply

ϕn−m+1,c(P
4,m) = ϕn−m+1,c(P

4,m−1) = 1
n

. Then, by equal treatment of equals, we know

ϕic(P
4,m) = 1

n
for all i = n−m+ 1, . . . , n− 1. Moreover, by Step 2 and feasibility, we

have ϕjc(P 4,m) = 1
n

for all j = 1, . . . , n −m. Therefore, ϕic(P 4,m) = 1
n

for all i ∈ I .

This completes the verification of induction hypothesis and hence step 3.
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Step 4, we show ϕi,b(P
4,m) = 0 for all i = n−m + 1, . . . , n− 1 and m = 2, . . . , n̄.

Givenm ∈ {2, . . . , n̄}, suppose ϕi,b(P 4,m) = α > 0 for some i ∈ {n−m+1, . . . , n−1}.

Then equal treatment of equals and Step 4 imply ϕi,b(P 4,m) = α and ϕi,a(P 4,m) = 2
n
−α

for all i = n − m + 1, . . . , n − 1. Moreover, by sd-efficiency, it must be the case that

ϕi,a(P
4,m) = 0 for all i = 1, . . . , n−m. Then, Lemma 13 and Step 3 imply ϕi,b(P 4,m) =

2
n

for all i = 1, . . . , n−m Thus, the feasibility of a implies α = 1
m−1

2
n
(m− n

2
) 6 0 since

m 6 n̄ 6 n
2
. Contradiction!

Finally, Lemma 13, feasibility and equal treatment of equals give the rest of charac-

terizations in the claim. �

Now we have the contradiction for the case of even number of agents. Let n

be even. Notice that P 2,n̄ and P 4,n̄ are different merely in agent n̄’s preference, i.e.,

P 2,n̄
n̄ = Pi and P 4,n̄

n̄ = P̂i where Pi and P̂i are from Table 6. Then sd-strategy-proofness

requires ϕn̄,c(P 2,n̄) = ϕn̄,c(P
4,n̄). Thus, we have

1− [ 3
n
− 1

n−(n
2
−1)

]− (n
2
− 1)

n2−(n
2

+1)n+(3×n
2
−4)

n(n−1)[n−(n
2
−1)]

n− n
2

=
1

n
⇔ n2−n−2 = n2−n. Contradiction!

When n is odd, profiles P 2,n̄+1 and P 4,n̄ are different merely in agent (n̄+ 1)’s prefer-

ences, i.e., P 2,n̄+1
n̄+1 = Pi and P 4,n̄

n̄+1 = P̂i in Table 6. However, we cannot induce a contra-

diction similar to that above since we can verify that ϕn̄+1,c(P
2,n̄+1) = 1

n
= ϕn̄+1,c(P

4,n̄).

Henceforth, we assume that n is an odd number. Hence, n > 5. We proceed the verifica-

tion on profile groups V and VI.

Claim 6 In profile group V, the random assignment ϕ(P 5,1) over a, b and c is specified

below
a b c

1 1
n

1
n−2

2
n
− 1

n−2

...
...

...
...

n− 2 1
n

1
n−2

2
n
− 1

n−2

n− 1 1
n

0 2
n

n 1
n

0 2
n
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Proof : The verification is routine and we hence omit it. �

Claim 7 In profile group V, for eachm = 2, . . . , n̄, n̄+1, the random assignment ϕ(P 5,m)

over a, b and c is specified below23

a b c

1 − − γ(m)

...
...

...
...

m− 1 − − γ(m)

m − −
1−2×( 3

n
− 1
n−(m−1)

)−(m−1)γ(m)

n−(m+1)

...
...

...
...

n− 2 − −
1−2×( 3

n
− 1
n−(m−1)

)−(m−1)γ(m)

n−(m+1)

n− 1 1
n−(m−1)

0 3
n
− 1

n−(m−1)

n 1
n−(m−1)

0 3
n
− 1

n−(m−1)

where γ(m) = n4−2(m+2)n3+(m2+11m−5)n2−(7m2+m−8)n+(6m2−6m−4)
n(n−1)(n−2)(n−(m−1))(n−m)

.

Proof : The verification of this claim consists of 3 steps.

Step 1, we show ϕia(P
5,m) = 1

n−(m−1)
for i = n − 1, n and all m = 2, . . . , n̄, n̄ +

1. Notice that P 5,m and P 2,m are different merely in agent (n − 1)’s preferences, i.e.,

P 5,m
n−1 = P̄i and P 2,m

n−1 = Pi in Table 6. Then sd-strategy-proofness implies ϕn−1,a(P
5,m) =

ϕn−1,a(P
2,m) = 1

n−(m−1)
. This completes the verification of step 1.

Step 2, we show ϕib(P
5,m) = 0 and ϕic(P 5,m) = 3

n
− 1

n−(m−1)
for i = n−1, n and all

m = 2, . . . , n̄, n̄+ 1. The verification simply follows from an application of sd-efficiency,

equal treatment of equals, feasibility and Lemma 13. Therefore, we omit the details.

Step 3, we show ϕic(P
5,m) = γ(m) for all i = 1, . . . ,m− 1 and m = 2, . . . , n̄, n̄+ 1.

By equal treatment of equals, it suffices to show ϕm−1,c(P
5,m) = γ(m) for all m =

2, . . . , n̄, n̄+ 1.
23A dash “−” in the random assignment matrix represents that the probability of assigning one object to

a corresponding agent is not specified.
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First, notice that for all m = 2, . . . , n̄, n̄ + 1, profiles P 5,m and P 5,m−1 are different

merely in agent m− 1’s preferences, i.e., P 5,m−1
m−1 = Pi and P 5,m

m−1 = P̂i in Table 6.

Now, we prove Step 3 by an induction argument on m = 2, . . . , n̄, n̄+ 1.
Initial statement: for m = 2, by sd-strategy-proofness and Claim 6, we have

ϕ1,c(P
5,2) = ϕ1,c(P

5,1)

=
2

n
− 1

n− 2

=
n4 − 2× (2 + 2)n3 + (22 + 11× 2− 5)n2 − (7× 22 + 2− 8)n+ (6× 22 − 6× 2− 4)

n(n− 1)(n− 2)(n− (2− 1))(n− (2 + 1))

= γ(2).

Induction Hypothesis: Given 2 6 m 6 n̄, for all 2 6 l < m + 1, we have ϕl−1,c(P
5,l) =

γ(l).

We show ϕm,c(P
5,m+1) = γ(m+ 1) by the following elaboration.

ϕm,c(P
5,m+1) = ϕm,c(P

5,m) by sd-strategy-proofness

=
1−ϕn−1,c(P 5,m)−ϕnc(P 5,m)−

∑m−1
i=1 ϕic(P

5,m)

n−(m+1)
by equal treatment of equals and feasibility

=
1−2×[ 3

n
− 1
n−(m−1)

]−(m−1)ϕm−1,c(P 5,m)

n−(m+1)
by Step 2 and equal treatment of equals

=
1−2×[ 3

n
− 1
n−(m−1)

]−(m−1)γ(m)

n−(m+1)
by induction hypothesis

= γ(m+ 1) by simplifying the expression

This completes the verification of induction hypothesis and hence step 3.

Finally, by feasibility and equal treatment of equals, we haveϕic(P 5,m) =
1−2×[ 3

n
− 1
n−(m−1)

]−(m−1)γ(m)

n−(m+1)

for all i = m, . . . , n − 2 and m = 2, . . . , n̄, n̄ + 1. This completes the verification of the

claim. �

Claim 8 In profile group VI, for each m = 2, . . . , n̄, the random assignment ϕ(P 6,m)
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over a, b and c is specified below

a b c

1 − − 1
n

...
...

...
...

n−m − − 1
n

n−m+ 1 − − 1
n

...
...

...
...

n− 2 − − 1
n

n− 1 2
n

0 1
n

n 2
n

0 1
n

Proof : The verification of this claim consists of 3 steps.

Step 1, we show ϕia(P
6,m) = 2

n
for i = n − 1, n and all m = 2, . . . , n̄. For

each m = 2, . . . , n̄, notice that P 6,m and P 4,m are different merely in agent (n − 1)’s

preferences, i.e., P 6,m
n−1 = Pi and P 4,m

n−1 = P̄i in Table 6. Then, sd-strategy-proofness

implies ϕn−1,a(P
6,m) = ϕn−1,a(P

4,m) = 2
n

. Then, equal treatment of equals implies

ϕna(P
6,m) = 2

n
. This completes the verification of step 1.

Step 2, we show ϕib(P
6,m) = 0 and ϕic(P

6,m) = 1
n

for i = n − 1, n and all

m = 2, . . . , n̄. The verification simply follows from an application of sd-efficiency, equal

treatment of equals, feasibility and Lemma 13. Therefore, we omit the details.

Step 3, we show ϕic(P
6,m) = 1

n
for all i = 1, . . . , n − 2 and m = 3, . . . , n̄.

First, in P 6,2, according to Step 2, by feasibility and equal treatment of equals, we have

ϕic(P
6,2) = 1

n
for all i = 1, . . . , n− 2.

Next, notice that P 6,3 and P 6,2 are different merely in agent n− 2’s preferences, i.e.,

P 6,3
n−2 = Pi and P 6,2

n−2 = P̂i where Pi and P̂i are from Table 6. Then, sd-strategy-proofness

implies ϕn−2,c(P
6,3) = ϕn−2,c(P

6,2) = 1
n

. Last, by feasibility, equal treatment of equals

and Step 2, we know ϕic(P
6,3) = 1

n
for all i = 1, . . . , n−3. Next, we provide an induction

argument.

Induction Hypothesis: Given 4 6 m 6 n̄, for all 3 6 l < m, ϕic(P 6,l) = 1
n

for all

i = 1, . . . , n− 2.
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We will show ϕic(P
6,m) = 1

n
for all i = 1, . . . , n−2. Notice that P 6,m and P 6,m−1 are

different merely in agent n−m+ 1’s preference, i.e., P 6,m
n−m+1 = Pi and P 6,m−1

n−m+1 = P̂i in

Table 6. Then, sd-strategy-proofness and induction hypothesis imply ϕn−m+1,c(P
6,m) =

ϕn−m+1,c(P
6,m−1) = 1

n
. Furthermore, equal treatment of equals implies ϕi,c(P 6,m) = 1

n

for all i = n−m+ 1, . . . , n− 2. Last, by feasibility, equal treatment of equals and Step

2, we have ϕic(P 6,m) = 1
n

for all i = 1, . . . , n − m. This completes the verification of

induction hypothesis, hence Step 3 and the claim. �

Now we have the contradiction for the case of odd number of agents. Now, n̄ =
n−1

2
. Notice that P 5,n̄+1 and P 6,n̄ are different only in agent (n̄ + 1)’s preference, i.e.,

P 5,n̄+1
n̄+1 = Pi and P 6,n̄

n̄+1 = P̂i where Pi and P̂i are from Table 6. Then sd-strategy-proofness

requires ϕn̄+1,c(P
5,n̄+1) = ϕn̄+1,c(P

6,n̄). Thus, we have

1− 2×
[

3
n −

1
n−[(n̄+1)−1]

]
− [(n̄+ 1)− 1]γ(n̄+ 1)

n− [(n̄+ 1) + 1]
=

1

n
⇔ n3 − 6n2 + 11n− 2

n(n3 − 6n2 + 11n− 6)
=

1

n
. Contradiction!

In conclusion, a domain satisfying the elevating property admits no sd-strategy-proof,

sd-efficient and equal-treatment-of-equals rule. Therefore, the connected domain D in

Theorem 3 must violate the elevating property. Last, applying Lemmas 5 - 7, we show

that domain D is a restricted tier domain. This completes the verification of Theorem 3.
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B Appendix to Chapter 4

B.1 Proof of Theorem 5

The necessity part is evident by definition. We prove the sufficiency part.

Let D be a path-nested domain and ϕ : Dn → L a block-adjacent sd-strategy-proof

rule. Let P ∈ Dn and P ′i ∈ D\{Pi}. In addition, let L ≡ ϕ(P ) and L′ ≡ ϕ(P ′i , P−i).

Fix a nested path from Pi to P ′i and denote it as (Pm)Mm=1 where P1 = Pi, PM = P ′i ,

and for all 1 6 m′ < m 6M − 1, either

1. FB1(Pm, Pm+1) ∪ FB2(Pm, Pm+1) ⊂ FB1(Pm′ , Pm′+1), or

2. FB1(Pm, Pm+1) ∪ FB2(Pm, Pm+1) ⊂ FB2(Pm′ , Pm′+1), or

3. [FB1(Pm, Pm+1) ∪ FB2(Pm, Pm+1)] ∩ [FB1(Pm′ , Pm′+1) ∪ FB2(Pm′ , Pm′+1)] =

∅.

Let Lm ≡ ϕ(Pm, P−i) for allm = 1, · · · ,M . To prove the theorem, it suffices to show

L1
i P

sd
1 LMi . In the following, we show Lmi P sd

1 Lm+1
i for each m ∈ {1, · · · ,M − 1}.

Then the transitivity of P sd
1 implies what is desired.

Fix m ∈ {2, · · · ,M − 1}, we show Lmi P sd
1 Lm+1

i by the following induction.

Initial statement: Lmi P sd
m Lm+1

i by block-adjacent sd-strategy-proofness.

Induction statement: Lmi P sd
α Lm+1

i implies Lmi P sd
α−1 L

m+1
i for each 2 6 α 6 m.

Proof: Either one of the following three cases happens.

Case 1: FB1(Pα, Pα+1) ∪ FB2(Pα, Pα+1) ⊂ FB1(Pα−1, Pα).

We illustrate the situation as follows.

Pα−1 : · · · · · · � · · · � FB1(Pα, Pα+1) � FB2(Pα, Pα+1) � · · ·︸ ︷︷ ︸
FB1(Pα−1,Pα)

� FB2(Pα−1, Pα) � · · · · · ·

Pα : · · · · · · � FB2(Pα−1, Pα) � · · · � FB1(Pα, Pα+1) � FB2(Pα, Pα+1) � · · ·︸ ︷︷ ︸
FB1(Pα−1,Pα)

� · · · · · ·

By Lmi P sd
α Lm+1

i , Lmia = Lm+1
ia for all a ∈ \ [FB1(Pα, Pα+1) ∪ FB2(Pα, Pα+1)], and∑

a∈Bk(Pα,FB1(Pα,Pα+1)∪FB2(Pα,Pα+1)) L
m
ia >

∑
a∈Bk(Pα,FB1(Pα,Pα+1)∪FB2(Pα,Pα+1)) L

m+1
ia for
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all k = 1, · · · , |FB1(Pα, Pα+1) ∪ FB2(Pα, Pα+1)|.24 Then it is easy to check Lmi P sd
α−1

Lm+1
i .

The same logic applies to both the remaining two cases. However, for a better under-

standing, these two cases are illustrated as follows.

Case 2: FB1(Pα, Pα+1) ∪ FB2(Pα, Pα+1) ⊂ FB2(Pα−1, Pα).

Pα−1 : · · · · · · � FB1(Pα−1, Pα) � · · · � FB1(Pα, Pα+1) � FB2(Pα, Pα+1) � · · ·︸ ︷︷ ︸
FB2(Pα−1,Pα)

� · · · · · ·

Pα : · · · · · · � · · · � FB1(Pα, Pα+1) � FB2(Pα, Pα+1) � · · ·︸ ︷︷ ︸
FB2(Pα−1,Pα)

� FB1(Pα−1, Pα) � · · · · · ·

Case 3:

[FB1(Pα, Pα+1) ∪ FB2(Pα, Pα+1)] ∩ [FB1(Pα−1, Pα) ∪ FB2(Pα−1, Pα)] = ∅.

Pα−1 : · · · � FB1(Pα, Pα+1) � FB2(Pα, Pα+1) � · · · � FB1(Pα−1, Pα) � FB2(Pα−1, Pα) � · · ·

Pα : · · · � FB1(Pα, Pα+1) � FB2(Pα, Pα+1) � · · · � FB2(Pα−1, Pα) � FB1(Pα−1, Pα) � · · ·

By verifying the induction statement, we prove the theorem.

24Note that for arbitrary P0 ∈ P and subset of objects Ā ⊂ A, Bk(P0, Ā) denotes the collection of the

top ranked k objects in Ā according to P0.
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C Appendix to Chapter 5

C.1 Proof of Lemma 12

For illustration purpose, we start from the definition of the PS rule. The PS rule treats

the objects as if they are divisible and specifies random assignment for a given preference

profile as follows. Starting from time 0, all agents consume their most preferred object at

unit speed until some objects reach exhaustion. Then agents reformulate their preferences

by removing the objects exhausted and then resume consuming their most preferred ob-

jects in the available set, until some objects reach exhaustion. This procedure is repeated

until all objects reach exhaustion. The ending time of this procedure is 1, since we have n

agents consuming n objects with unit speed. Finally, the share of an object consumed by

an agent is interpreted as the probability of this agent obtaining this object. Formally the

PS rule is defined as follows. We borrow the notation from Kojima and Manea (2010).

Definition 15 Fix a preference profile P ∈ Dn, PS(P ) is the random assignment [Lia]i∈I,a∈A ∈

L calculated as follows. For any a ∈ A′ ⊂ A, let N(a,A′) = {i ∈ I|a Pi b, ∀b ∈

A′\{a}} be the set of agents whose most preferred object in A′ is a. Let A0 = A, t0 = 0,

and L0
ia = 0 for any i ∈ I and a ∈ A. For any v > 1, given t0, A0, [L0

ia]i∈I,a∈A, · · · ,

tv−1, Av−1, [Lv−1
ia ]i∈I,a∈A, define

tv = min
a∈Av−1

max

{
t ∈ [0, 1]|

∑
i∈I

Lv−1
ia + |N(a,Av−1)|(t− tv−1) 6 1

}

Av = Av−1
∖{

a ∈ Av−1|
∑
i∈I

Lv−1
ia + |N(a,Av−1)|(tv − tv−1) = 1

}

Lvia =

L
v−1
ia + tv − tv−1 if i ∈ N(a,Av−1)

Lv−1
ia otherwise.

(1)

Since A is a finite set, there exists v̄ such that Av̄ = ∅. Let PS(P ) = Lv̄.

Fix a preference profile P , we call the sequence generated by applying the PS rule

to P , (tv, Av, Lv)v̄v=0, the corresponding consumption procedure. Evidently, for each

v ∈ {0, · · · , v̄}, Av is the collection of objects which are still available at time tv. In
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other words, if a ∈ Av−1\Av, a is available at tv−1 and reaches exhaustion at tv, i.e.,

tv is exactly the time when a reaches exhaustion. For each a ∈ A, let ta ≡ tv where

a ∈ Av−1\Av denote the time when a reaches exhaustion.

Recall that a sequentially dichotomous domain is an intersection of domains, each of

which respects a partition. Then for a better understanding of the consumption procedure

specified by the PS rule when the preferences are from a sequentially dichotomous do-

main, we investigate the consumption procedure subject to a given partition, denoted as(
tv
∣∣
A
, Av
∣∣
A
, Lv
∣∣
A

)
.

Given a preference profile P ∈ Dn
A, every agent’s preference clusters every block in

A. Let {a, b} ∈ A be a block, then for every agent either a is ranked just above b or

b is ranked just above a. Hence if a reaches exhaustion before b, then agents who pre-

fer a to b start to consume b immediately when a reaches exhaustion and all the others

keep consuming b until it reaches exhaustion. If instead b reaches exhaustion before a,

then agents who prefer b to a start to consume a immediately when b reaches exhaus-

tion and all the others keep consuming a until it reaches exhaustion. So, if we focus on

only blocks rather than objects, we can simply ignore the time when a reaches exhaus-

tion if it reaches exhaustion before b and ignore the time when b reaches exhaustion if it

reaches exhaustion before a. In other words, what we care about is only the time when

the whole block reaches exhaustion. Formally the consumption procedure subject to

A,
(
tv
∣∣
A
, Av
∣∣
A
, Lv
∣∣
A

)
, is defined as follows.

Let V
∣∣
A
≡ {v ∈ {0, · · · , v̄}|∃Ak ∈ A s.t. tv = maxa∈Ak ta} be the collection of time

points when a block reaches exhaustion.

• tv
∣∣
A

is the subsequence of (tv)v̄v=0 involving elements in V
∣∣
A

. We record only the

time points when a block in A reaches exhaustion.

• Av
∣∣
A

is the subsequence of (Av)v̄v=0 involving elements in V
∣∣
A

.

• Lv
∣∣
A

is a matrix [LviAk ]i∈I,Ak∈A defined only for elements in V
∣∣
A

, where LviAk ≡∑
a∈Ak L

v
ia.

When we focus on the consumption procedure subject to a partition, an important

observation is that the consumption procedure subject to A should not change when the
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preference profile is changing in a way that the ”ranking” of the blocks remain the same.

That is, the change involves only permutations within blocks won’t change the consump-

tion procedure subject to the partition. Here is an example.

Example 9 Let P ≡ (P1, P2, P5, P6) and P̄ ≡ (P3, P2, P5, P6) where the preferences are

from Example 6. The consumption procedures of two profiles are illustrated as follows.

1:

2:

3:

4:
0 1/2 3/4 1

a a d

c c d

b a d

b c d

1:

2:

3:

4:
0 1/2 3/4 1

d d d

c c a

b a a

b c a

It is evident that all involved preferences respect A2 = {{a, c, d}, {b}}. In addition

the consumption procedure subject to A2 = {{a, c, d}, {b}} is not changing: In time

interval (0, 1/2] agents 1 and 2 consume objects in block {a, c, d} and agents 3 and 4

consume {b}. Then in time interval (1/2, 1] all agent consume objects in {a, c, d}.

We formalize the observation illustrated in Example 9. Given a partition A, a prefer-

ence respecting it, P0 ∈ DA, induces a (strict) preference on A in a natural way: a block

is said to be ranked above another block if every object in the former is ranked above

every object in the latter. Given a partition A, P(A) denotes the collection of all strict

preferences, i.e., linear orders, on A.

Definition 16 For fixed partition A, a preference on the blocks PA
0 ∈ P(A) is induced

by a preference on objects P0 ∈ DA if, for each pair of blocks Ak, Al ∈ A, Ak PA
0 Al if

and only if a P0 b for all a ∈ Ak and b ∈ Al.

It is easy to see that a preference P0 ∈ DA induces a unique preference PA
0 on A.

However the converse is not true: two different preferences P0, P
′
0 ∈ DA may induce the

same preference PA
0 on A. For example, preferences P1 and P3 in Example 6 induce the

same preference on A2: {a, c, d} � {b}.

Now we formalize the observation in Example 9 as the following lemma.
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Lemma 14 For P, P̄ ∈ Dn
A such that PA

i = P̄A
i for all i ∈ I , the consumption proce-

dures subject to A for two preference profiles are the same, which implies
∑

a∈Ak PSia(P ) =∑
a∈Ak PSia(P̄ ) for all i ∈ I and Ak ∈ A.

We are now ready to prove Lemma 12.

LetL ≡ PS(P ) and L̃ ≡ PS(P̃1, P−1). Let (tv, Av, [Lvia]i∈I,a∈A)v̄v=0 and
(
t̃v, Ãv, [L̃via]i∈I,a∈A

)¯̃v

v=0

be respectively consumption procedures for P and (P̃1, P−1). In addition, let B ≡ {a ∈

A|aP1x,∀x ∈ A1 ∪A2} and C ≡ A\ (A ∪ A1 ∪ A2) be respectively the upper and lower

contour sets of objects in A1 ∪A2 according to P1. Evidently, these two sets are the same

for P̃1.

Before proceeding to the proof, we clarify some notations.

• For each a ∈ A, let ta ≡ tv s.t. a ∈ Av−1\Av, i.e., ta is the time when a reaches

exhaustion in the consumption procedure of applying the PS rule to P . For each

a ∈ A, let t̃a ≡ t̃v s.t. a ∈ Ãv−1\Ãv, i.e., t̃a is the time when a reaches exhaustion

in the consumption procedure of applying the PS rule to (P̃1, P−1). Similarly, for

each Ā ⊂ A, let tĀ ≡ max{ta : a ∈ Ā}, i.e., tĀ is the time when all the objects

in Ā reach exhaustion in the consumption procedure of applying the PS rule to P .

For each Ā ⊂ A, let t̃Ā ≡ max{t̃a : a ∈ Ā}, i.e., t̃Ā is the time when all the

objects in Ā reach exhaustion in the consumption procedure of applying the PS rule

to (P̃1, P−1).

• For each a ∈ A and v ∈ {0, 1, · · · , v̄}, let Sa(tv) ≡ 1 −
∑

i∈I L
v
ia, i.e., Sa(tv) is

the remaining share of a at time tv in the consumption procedure of applying the

PS rule to P . For each a ∈ A and v ∈ {0, 1, · · · , ¯̃v}, let S̃a(t̃v) ≡ 1 −
∑

i∈I L̃
v
ia,

i.e., S̃a(t̃v) is the remaining share of a at time t̃v in the consumption procedure of

applying the PS rule to (P̃1, P−1).

• For each a ∈ A and each i ∈ I , let ti(a) ≡ max{tx : xPia} be the time when

all the objects in the upper contour set of a in Pi reach exhaustion when the PS

rule is applied to P . Hence ti(a) is also the time when agent i starts to consume a

whenever there is still some of a available, i.e., Sa(ti(a)) > 0. In addition, for a

block Ā, let ti(Ā) = min{ti(a) : a ∈ Ā} be the time when the upper contour set of
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Ā reaches exhaustion before deviation. Similarly, for each a ∈ A and each i ∈ I ,

let t̃i(a) ≡ max{t̃x : xP̃ia} be the time when all the objects in the upper contour

set of a in P̃i reach exhaustion when the PS rule is applied to (P̃1, P−1). In addition,

for a block Ā, let t̃i(Ā) = min{t̃i(a) : a ∈ Ā} be the time when the upper contour

set of Ā reaches exhaustion after deviation.

We prove the lemma in three steps.

Step 1: L1a = L̃1a for all a ∈ B ∪ C.

Consider a partition A ≡ {A1 ∪ A2, {a} : a ∈ A\ (A1 ∪ A2)}. Then it is evident

that the profiles of preferences on A induced by P and (P̃1, P−1) are the same. Hence

by Lemma 14, we have what we want. In addition, by Lemma 14, we have the following

claims which are used subsequently.

Claim 9 For each i ∈ I , ti(A1 ∪ A2) = t̃i(A1 ∪ A2), i.e., each agent starts to consume

A1 ∪ A2, if any, at the same time before and after agent 1’s deviation.

Claim 10 tA1∪A2 = t̃A1∪A2 , i.e., each agent stops consuming A1 ∪A2, if any, at the same

time before and after the deviation.

Claim 11 tB = t̃B, i.e., B reaches exhaustion at the same time before and after the

deviation. In addition, Sa(tB) = S̃a(tB) for each a ∈ A1 ∪ A2, that is when B reaches

exhaustion the remaining share of each object inA1∪A2 is not changing because of agent

1’s deviation.

Step 2: L1a > L̃1a for all a ∈ A1.

If
∑

a∈A1
Sa(tB) = 0, i.e., whenB reaches exhaustion and agent 1 is about to consume

objects in A1, A1 already reached exhaustion, then by Claim 11 L1a = L̃1a = 0 for all

a ∈ A1 and hence the result holds trivially.

If
∑

a∈A2
Sa(tB) = 0, i.e., when B reaches exhaustion the objects in A2 already

reached exhaustion, then it is evident that the consumption procedures of applying the PS

rule to P and (P̃1, P−1) are the same. Which then implies L1a = L̃1a for all a ∈ A1 and

hence the result holds trivially.

In addition, if
∑

a∈A1
L̃1a = 0, the result holds trivially.
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Hence we show Step 2 when
∑

a∈A1
Sa(tB) > 0,

∑
a∈A2

Sa(tB) > 0, and
∑

a∈A1
L̃1a >

0.

Notice that before deviation tB is the time when agent 1 starts to consume A1. After

deviation, when B reaches exhaustion, agent 1 starts to consume A2 and will turn to A1

when A2 reaches exhaustion. Hence t̃B∪A2 > t̃B = tB is the time when agent 1 starts to

consumeA1 after deviation. That is agent 1 starts to consumeA1 latter after the deviation.

Then to show Step 2, it suffices to show the following two statements.

1. Sa(tB) > S̃a(t̃B∪A2) for each a ∈ A1, i.e., when agent 1 is about to consume objects

in A1, she finds that the remaining share of each object in A1 is less;

2. For each i ∈ I\{1} with
∑

a∈A1
Lia > 0, agent i starts consuming A1 after agent

1’s deviation at a time no latter than the time when she started to consumeA1 before

deviation, i.e., all the agents who compete with agent 1 in consuming A1 will still

do so after the deviation.

Recall that t̃B∪A2 > tB, then to show statement 1, it suffices to show for each agent

i ∈ I\{1} who started to consume A1 before agent 1’s deviation at a time before tB will

start consuming A1 after agent 1’s deviation at a time no latter than that time. Notice that

this new statement is implied by the statement 2. Hence what we need to show is just

statement 2.

To show this, recall first Claim 9 which says that each agent starts to consumeA1∪A2

at the same time before and after agent 1’s deviation. Then pick any i ∈ I\{1} with∑
a∈A1

Lia > 0, if a Pi b for all a ∈ A1 and b ∈ A2, we know that she starts to consume

A1 at the same time before and after agent 1’s deviation. Suppose instead, b Pi a for all

a ∈ A1 and b ∈ A2, since we know this agent starts to consume A1 immediately when

all the objects in A2 reach exhaustion, what we need is just tB∪A2 > t̃B∪A2 . This can

be seen from the consumption procedures for P and (P̃1, P−1) subject to the partition

{A1, A2, {a ∈ A : a 6∈ A1 ∪ A2}}. Hence we have shown that for each i ∈ I\{1}

with
∑

a∈A1
Lia > 0, if she prefers A1 to A2, she starts to consume A1 at the same time

before and after the deviation; if she prefers A2 to A1, she starts to consume A1 after the

deviation at a time earlier than before deviation, which proves Step 2.
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Step 3: L1a 6 L̃1a for all a ∈ A2.

By exchanging the roles of P1 and P̃1, Step 3 is implied by Step 2.

C.2 Proof of Theorem 7

Let D be a sequentially dichotomous domain and (At)
n
t=1 the corresponding path.

Let P̃0 be an arbitrary preference out of D, we show that the PS rule defined on the

combination of D and P̃0, i.e., PS :
(
D ∪ {P̃0}

)n
→ L, is manipulable.

Let t ≡ min{t ∈ {1, · · · , n} : P̃0 does not observe At}. Since P̃0 ∈ P\D, t is

well-defined. In addition, since P̃0 observes A1 trivially, t > 2 and P̃0 observes At−1.

Recall that from At−1 to At, A(t−1)∗ breaks into At1 and At2. Let a ≡ r1(P̃0, A(t−1)∗)

be the most preferred objects according to P̃0 in A(t−1)∗. Without loss of generality, let

a ∈ At1. In addition, let c ≡ r1(P̃0, At2) be the most preferred objects according to P̃0

in At2. Since P̃0 does not observe At, there must be b ∈ At1\{a} ranked below c. Let

b ≡ r1(P̃0, {x ∈ At1 : c P̃0 x}) be the most preferred object in At1 that is ranked below c.

In addition, let C ≡ {x ∈ At1\{a} : x P̃0 c}. Notice that C may be empty. Hence P̃0 can

be illustrated as follows.

P̃0 : · · · · · · �
A(t−1)∗︷ ︸︸ ︷

a � · · ·C · · ·︸ ︷︷ ︸
⊂At1

� c � · · ·︸ ︷︷ ︸
⊂At2

� b � · · ·︸ ︷︷ ︸
⊂At1

� · · · · · · � · · · · · ·

There must be an unique t > t such that a, b ∈ A(t−1)∗, a ∈ At1, and b ∈ At2, i.e., from

At−1 to At, a and b are split into two separate blocks. Respectively, let B ≡ At1\{a}

and D ≡ At2\{b}. In the following, we identify two preferences P0, P̄0 ∈ D. Then we

construct two preference profiles consisting of only P̃0, P0 and P̄0 and show that there is

a profitable manipulation. To do this, we need to consider four cases.

Case 1: C = ∅ or r1(P̃0, C) 6∈ B ∪D.

Since P̃0 observes At−1, P̃At−1

0 is well-defined. Let PAt−1

0 = P̄
At−1

0 = P̃
At−1

0 . Sec-

ond, let A(t−1)∗ be the first ranked block in At−1 according to both P0 and P̄0. Third, let

At1P
At
0 At2 and At2P̄

At
0 At1. Fourth, let respectively a the first ranked object in At1 and b

the first ranked object in At2 according to both P0 and P̄0. Last, let P0 and P̄0 have the
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same ranking of the objects contained in the same block. It’s evident that P0, P̄0 ∈ D.

Hence, P0 and P̄0 are illustrated below.

P0 : · · · · · · �
=At1︷ ︸︸ ︷

a � · · ·B · · · �
=At2︷ ︸︸ ︷

b � · · ·D · · · � · · ·︸ ︷︷ ︸
=At1

� c · · · · · ·︸ ︷︷ ︸
=At2

� · · · · · ·

P̄0 : · · · · · · �
=At2︷ ︸︸ ︷

b � · · ·D · · · �
=At1︷ ︸︸ ︷

a � · · ·B · · · � · · ·︸ ︷︷ ︸
=At1

� c · · · · · ·︸ ︷︷ ︸
=At2

� · · · · · ·

Let P ≡ (P̃1, P2, P3, · · · , Pn) and P ′ ≡ (P̃1, P̄2, P3, · · · , Pn). We calculate the prob-

abilities specified by the PS rule as follows.

PS(P ) : a B b D

1 : 1
n

0 0 0

2 · · ·n : 1
n

|B|
n−1

1
n−1

|D|
n−1

For P , all agents equally share a. After that agents 2 to n consume B ∪{b}∪D while

agent 1 consumes c if C is empty and r1(P̃0, C) if not. By sd-efficiency, PS(P )1x = 0

for all x ∈ B ∪ {b} ∪D. Then equal-treatment-of-equals implies the other entries.

PS(P ′) : a B b D

1 : 1
n−1

0 0 0

2 : 0 0 1
n−1

+ |B|
n−2

+
1− 1

n−1
− |B|
n−2

n−1
|D|
n−1

3 · · ·n : 1
n−1

|B|
n−2

1− 1
n−1
− |B|
n−2

n−1
|D|
n−1

For P ′, agents other than 2 equally share a. By sd-efficiency, PS(P )1x = 0 for all

x ∈ B ∪ {b} ∪ D. During the period when agents other than 2 consume a, agent 2

consumes b. When a is exhausted, agents 3 to n start to consume B if B is nonempty and

b is b is empty; agent 1 starts to consume c if C is empty and r1(P̃0, C) if not; and agent

2 still consume b. It’s evident that B will be exhausted before b or r1(P̃0, C). After that

agents 3 to n join agent 2 in consuming b, so they equally share the remaining share of b,

i.e., 1− 1
n−1
− |B|

n−2
. Last, agents 2 to n equally share D.
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Now we have a contradiction against sd-strategy-proofness:

sd-strategy-proofness⇒
∑

x∈{a,b}∪B∪D

PS2x(P ) =
∑

x∈{a,b}∪B∪D

PS2x(P ′)

⇒ 1

n
+
|B|
n− 1

+
1

n− 1
+
|D|
n− 1

=
1

n− 1
+
|B|
n− 2

+
1− 1

n−1 −
|B|
n−2

n− 1
+
|D|
n− 1

⇒ n = 2 : contradiction.

Case 2: r1(P̃0, C) ∈ B.

In order to calculate the random assignments specified by the PS rule, we need to

consider two sub-cases. Given r1(P̃0, C) ∈ B, there is an upper contour set inC contained

in B. Let B1 be the largest such upper contour set, i.e., B1 ≡ maxk6|C|{Uk(P̃0, C) ⊂

B}25. Hence either B1 = C or r1(P̃0, C\B1) 6∈ B. We consider the sub-cases: (i)

B1 = C or r1(P̃0, C\B1) 6∈ D, or (ii) r1(P̃0, C\B1) ∈ D.

Sub-case 2.1: B1 = C or r1(P̃0, C\B1) 6∈ D.

For this sub-case, we use the same preferences P̃0, P0, and P̄0 as in Case 1 and the

same profiles P ≡ (P̃1, P2, P3, · · · , Pn) and P ′ ≡ (P̃1, P̄2, P3, · · · , Pn).

GivenB1, there must be a largest lower contour set inB according to P0 such that does

not contain any object in B1, i.e., let B̄1 ≡ mink6|B|{Uk(P0, B) : (B\Uk(P0, B)) ∩B1 =

∅}. For reader to understand the consumption procedure better, preferences are illustrated

below with B1 and B̄1 explicitly located.

P̃0 : · · · · · · �

A(t−1)∗︷ ︸︸ ︷
a � B1 � C\B1︸ ︷︷ ︸

⊂At1

� c � · · ·︸ ︷︷ ︸
⊂At2

� b � · · ·︸ ︷︷ ︸
⊂At1

� · · · · · · � · · · · · ·

P0 : · · · · · · �

=At1︷ ︸︸ ︷
a � B̄1 � B\B̄1 �

=At2︷ ︸︸ ︷
b � · · ·D · · · � · · ·︸ ︷︷ ︸

=At1

� c · · · · · ·︸ ︷︷ ︸
=At2

� · · · · · ·

P̄0 : · · · · · · �
=At2︷ ︸︸ ︷

b � · · ·D · · · �

=At1︷ ︸︸ ︷
a � B̄1 � B\B̄1 � · · ·︸ ︷︷ ︸

=At1

� c · · · · · ·︸ ︷︷ ︸
=At2

� · · · · · ·

25Uk(P̃0, C) denotes the collection of the most preferred k objects in C according to P̃0, i.e.,

Uk(P̃0, C) ≡ {r1(P̃0, C), · · · , rk(P̃0, C)}
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We calculate the probabilities specified by the PS rule as follows.

PS(P ) : a B b D

1 : 1
n

|B̄1|
n

0 0

2 · · ·n : 1
n

|B̄1|
n

+ |B\B̄1|
n−1

1
n−1

|D|
n−1

For P , all agents equally share a. By construction, after a is exhausted agent 1 con-

sumes B1 and all the others consume B̄1. Notice that the time when agent 1 stops con-

suming B1 is exactly the time when the other agents stop consuming B̄1. Hence all the

agents start consuming B̄1 at the same time and stop consuming B̄1 also at the same time.

Then each agent consumes exactly |B̄1|
n

share of B̄1. After that agent 1 consumes c if

B1 = C and C\B1 if not while all the others consume B\B̄1 and then b and D. Notice

that sd-efficiency implies that agent 1 consumes no share of b or D.

PS(P ′) : a B b D

1 : 1
n−1

|B̄1|
n−1

0 0

2 : 0 0 1
n−1

+ |B̄1|
n−1

+ |B\B̄1|
n−2

+
1− 1

n−1
− |B̄1|
n−1
− |B\B̄1|

n−2

n−1
|D|
n−1

3 · · ·n : 1
n−1

|B̄1|
n−1

+ |B\B̄1|
n−2

1− 1
n−1
− |B̄1|
n−1
− |B\B̄1|

n−2

n−1
|D|
n−1

For P ′, all agents other than 2 equally share a and during they do this agent 2 consumes

b. After that agents other than 2 equally share B̄1 and agent 2 still consumes b. Then agent

1 starts to consume c if C = B1 and C\B1 if not and agents 3 to n equally share B\B̄1.

During this time period agent 2 is still consuming b. After that, all agents other than 1

equally share the remaining share of b, and D after b is exhausted. The zero entries in the

above table are implied by sd-efficiency.

Now we have a contradiction against sd-strategy-proofness:

sd-strategy-proofness⇒
∑

x∈{a,b}∪B∪D

PS2x(P ) =
∑

x∈{a,b}∪B∪D

PS2x(P ′)

⇒ 1

n
+
|B̄1|
n

+
|B\B̄1|
n− 1

+
1

n− 1
+
|D|
n− 1

=
1

n− 1
+
|B̄1|
n− 1

+
|B\B̄1|
n− 2

+
1− 1

n−1 −
|B̄1|
n−1 −

|B\B̄1|
n−2

n− 1
+
|D|
n− 1

⇒n = 2 : contradiction.
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Sub-case 2.2: r1(P̃0, C\B1) ∈ D.

Given r1(P̃0, C\B1) ∈ D, letD1 be the largest upper contour set inC\B1 contained in

D, i.e.,D1 ≡ maxk6|C\B1|{Uk(P̃0, C\B1) ⊂ D}. Similarly, let D̄1 ≡ mink6|D|{Uk(P0, D) :

(D\Uk(P0, D)) ∩ D1 = ∅}. For this sub-case, we use the same preferences and profiles

as in the previous sub-case except a small change in P0: D is ranked above b.

For reader to understand the consumption procedure better, preferences are illustrated

below with B1, B̄1, D1 and D̄1 explicitly located.

P̃0 : · · · · · · �

A(t−1)∗︷ ︸︸ ︷
a � B1 � D1 � C\(B1 ∪D1)︸ ︷︷ ︸

⊂At1

� c � · · ·︸ ︷︷ ︸
⊂At2

� b � · · ·︸ ︷︷ ︸
⊂At1

� · · · · · · � · · · · · ·

P0 : · · · · · · �

=At1︷ ︸︸ ︷
a � B̄1 � B\B̄1 �

=At2︷ ︸︸ ︷
D̄1 � D\D̄1 � b � · · ·︸ ︷︷ ︸

=At1

� c · · · · · ·︸ ︷︷ ︸
=At2

� · · · · · ·

P̄0 : · · · · · · �
=At2︷ ︸︸ ︷

b � · · ·D · · · �

=At1︷ ︸︸ ︷
a � B̄1 � B\B̄1 � · · ·︸ ︷︷ ︸

=At1

� c · · · · · ·︸ ︷︷ ︸
=At2

� · · · · · ·

We calculate the probabilities specified by the PS rule as follows.

PS(P ) : a B b D

1 : 1
n

|B̄1|
n

0 |B\B̄1|
n−1

+
|D̄1|− |B\B̄1|

n−1

n

2 · · ·n : 1
n

|B̄1|
n

+ |B\B̄1|
n−1

1
n−1

|D̄1|− |B\B̄1|
n−1

n
+ |D\D̄1|

n−1

For P , all agents equally share a and B̄1. After that, agent 1 consumes D1 and all the

others consumes B\B̄1. It’s evident that B\B̄1 is exhausted faster and after this agents 2

to n join agent 1 in consuming D̄1. When D̄1 is exhausted, agent 1 starts consume c if

C\(B1 ∪D1) = ∅ and C\(B1 ∪D1) is otherwise. Agents 2 to n equally share D\D̄1.

PS(P ′) :

a B b D

1 : 1
n−1

|B̄1|
n−1 0 |B\B̄1|

n−2 +
|D̄1|− |B\B̄1|

n−2

n−1

2 : 0 0 α+ 1−α
n−1 0

3 · · ·n : 1
n−1

|B̄1|
n−1 + |B\B̄1|

n−2
1−α
n−1

|D̄1|− |B\B̄1|
n−2

n−1 + |D\D̄1|
n−2
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where α = 1
n−1 + |B̄1|

n−1 + |B\B̄1|
n−2 +

|D̄1|− |B\B̄1|
n−2

n−1 + |D\D̄1|
n−2 .

For P ′, agents other than 2 equally share a. When they consume a, agent 2 consumes

b. After a is exhausted, agents other than 2 equally share B̄1 and agent 2 still consumes

b. After B̄1 is exhausted, agent 1 consumes D1, agents 3 to n equally share B\B̄1, and

agent 2 still consumes b. It’s evident thatB\B̄1 is exhausted faster. After that agents other

than 2 equally share the remaining share of D̄1 and agent 2 still consumes b. Then agent

1 consumes c if C\(B1 ∪D1) = ∅ and C\(B1 ∪D1) if otherwise, agents 3 to n equally

share D\D̄1, and agent 2 still consumes b. After that agents other than 1 consume the

remaining share of b.

Now we have a contradiction against sd-strategy-proofness:

sd-strategy-proofness⇒
∑

x∈{a,b}∪B∪D

PS2x(P ) =
∑

x∈{a,b}∪B∪D

PS2x(P ′)

⇒ 1

n
+
|B̄1|
n

+
|B\B̄1|
n− 1

+
1

n− 1
+
|D̄1| − |B\B̄1|

n−1

n
+
|D\D̄1|
n− 1

= α+
1− α
n− 1

⇒n > |B|+ |D| = 3(n− 1)

n− 2
|D\D̄1|+ n(n− 2) > n : contradiction.

Case 3: r1(P̃0, C) ∈ D and B 6= ∅.

Given r1(P̃0, C) ∈ D, let D1 be the largest upper contour set in C contained in

D, i.e., D1 ≡ maxk6|C|{Uk(P̃0, C) ⊂ D}. Similarly, let D̄1 ≡ mink6|D|{Uk(P0, D) :

(D\Uk(P0, D)) ∩ D1 = ∅}. For this sub-case, we use the same preferences and profiles

as in Case 1.

For reader to understand the consumption procedure better, preferences are illustrated

below with D1 and D̄1 explicitly located.
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P̃0 : · · · · · · �

A(t−1)∗︷ ︸︸ ︷
a � D1 � C\D1︸ ︷︷ ︸

⊂At1

� c � · · ·︸ ︷︷ ︸
⊂At2

� b � · · ·︸ ︷︷ ︸
⊂At1

� · · · · · · � · · · · · ·

P0 : · · · · · · �
=At1︷ ︸︸ ︷

a � · · ·B · · · �

=At2︷ ︸︸ ︷
b � D̄1 � D\D̄1 � · · ·︸ ︷︷ ︸

=At1

� c · · · · · ·︸ ︷︷ ︸
=At2

� · · · · · ·

P̄0 : · · · · · · �

=At2︷ ︸︸ ︷
b � D̄1 � D\D̄1 �

=At1︷ ︸︸ ︷
a � · · ·B · · · � · · ·︸ ︷︷ ︸

=At1

� c · · · · · ·︸ ︷︷ ︸
=At2

� · · · · · ·

P = (P̃0, P2, P3, · · · , Pn) and P ′ = (P̃1, P̄2, P3, · · · , Pn)

PS(P ) : a B b D

1 : 1
n

0 0 |B|
n−1

+ 1
n−1

+
|D̄1|− |B|n−1

− 1
n−1

n

2 · · ·n : 1
n

|B|
n−1

1
n−1

|D̄1|− |B|n−1
− 1
n−1

n
+ |D\D̄1|

n−1

For P , all agents equally share a. Then agent 1 consumesD1 and all the others equally

share B and b. It’s evident that B ∪ {b} is exhausted faster. After that all agents share the

remaining of D̄1. Then agent 1 consumes c if C\D1 = ∅ and C\D1 if otherwise and all

the other agents share D\D̄1.

PS(P ′) :

a B b D

1 : 1
n−1 0 0 |B|

n−1 +
1− 1

n−1
− |B|
n−1

n−1 +
|D̄1|− |B|n−1

−
1− 1

n−1−
|B|
n−1

n−1

n

2 : 0 0 1
n−1 + |B|

n−1 +
1− 1

n−1
− |B|
n−1

n−1

|D̄1|− |B|n−1
−

1− 1
n−1−

|B|
n−1

n−1

n + |D\D̄1|
n−1

3 · · ·n : 1
n−1

|B|
n−1

1− 1
n−1
− |B|
n−1

n−1

|D̄1|− |B|n−1
−

1− 1
n−1−

|B|
n−1

n−1

n + |D\D̄1|
n−1

For P ′, all agents except 2 equally share a and during they do this agent 2 consumes

b. After a is exhausted, agent 1 consumes D1, agent 2 still consumes b, and all the others

consume B. It’s evident that B is exhausted faster. Then agents 3 to n join agent 2 in

consuming the remaining share of b and agent 1 still consumes D1. After b is exhausted,
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all agents equally share the remaining share of D̄1. Then agent 1 consumes c if C\D1 = ∅

and C\D1 if otherwise and all the other agents share D\D̄1.

Now we have a contradiction against sd-strategy-proofness:

sd-strategy-proofness⇒
∑

x∈{a,b}∪B∪D

PS2x(P ) =
∑

x∈{a,b}∪B∪D

PS2x(P ′)

⇒ 1

n
+
|B|
n− 1

+
1

n− 1
+
|D̄1| − |B|

n−1 −
1

n−1

n
+
|D\D̄1|
n− 1

=
1

n− 1
+
|B|
n− 1

+
1− 1

n−1 −
|B|
n−1

n− 1
+
|D̄1| − |B|

n−1 −
1− 1

n−1
− |B|
n−1

n−1

n
+
|D\D̄1|
n− 1

⇒(1− n)|B| = 0 : contradiction.

Case 4: r1(P̃0, C) ∈ D and B = ∅.

In this case At1 = {a}. We use the same preferences and profiles as in Case 3 except

a small change in P0: D is ranked above b.

P̃0 : · · · · · · �

A(t−1)∗︷ ︸︸ ︷
a � D1 � C\D1︸ ︷︷ ︸

⊂At1

� c � · · ·︸ ︷︷ ︸
⊂At2

� b � · · ·︸ ︷︷ ︸
⊂At1

� · · · · · · � · · · · · ·

P0 : · · · · · · �
=At1︷︸︸︷
a �

=At2︷ ︸︸ ︷
D̄1 � D\D̄1 � b � · · ·︸ ︷︷ ︸

=At1

� c · · · · · ·︸ ︷︷ ︸
=At2

� · · · · · ·

P̄0 : · · · · · · �
=At2︷ ︸︸ ︷

b � · · ·D · · · �
=At1︷︸︸︷
a � · · ·︸ ︷︷ ︸

=At1

� c · · · · · ·︸ ︷︷ ︸
=At2

� · · · · · ·

P = (P̃0, P2, P3, · · · , Pn) and P ′ = (P̃1, P̄2, P3, · · · , Pn)

PS(P ) : a D b

1 : 1
n

|D̄1|
n

0

2 · · ·n : 1
n

|D̄1|
n

+ |D\D̄1|
n−1

1
n−1

For P , all agents equally share a. Then they equally share D̄1. After that agent 1

consumes c if C\D1 = ∅ and C\D1 if otherwise and all the others equally share D\D̄1

and then b.
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PS(P ′) :

a D b

1 : 1
n−1

|D̄1|
n−1 0

2 : 0 0 |D̄1|
n−1 + |D\D̄1|

n−2 +
1− |D̄1|

n−1
− |D\D̄1|

n−2

n−1

3 · · ·n : 1
n−1

|D̄1|
n−1 + |D\D̄1|

n−2

1− |D̄1|
n−1
− |D\D̄1|

n−2

n−1

For P ′, all agents other than 2 equally share a and during they do this agent 2 consumes

b. After a being exhausted, agents other than 2 equally share D̄1 and agent 2 still consumes

b. It’s evident that D̄1 is exhausted faster. After that agent 1 consumes c if C\D1∅ and

C\D1 if otherwise, agent 3 to n equally share D\D̄1, and agent 2 still consumes b. It’s

evident that D\D̄1 is exhausted faster. After that, agents 3 to n join agent 2 in consuming

b so they equally share the remaining share of b.

Now we have a contradiction against sd-strategy-proofness:

sd-strategy-proofness⇒
∑

x∈{a,b}∪D

PS2x(P ) =
∑

x∈{a,b}∪D

PS2x(P ′)

⇒ 1

n
+
|D̄1|
n

+
|D\D̄1|
n− 1

+
1

n− 1

=
|D̄1|
n− 1

+
|D\D̄1|
n− 2

+
1− |D̄1|

n−1 −
|D\D̄1|
n−2

n− 1

⇒(n− 1)2 = −|D̄1| : contradiction.
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D Appendix to Chapter 6

D.1 Two Technical Assumptions

Assumption 1

f(m1,m2) ≡− n(m1 +m2)

([
m2n

m1 +m2

]
−

)2

+
[
(n2 − n+ 1)m1 + (2n2 − n)m2

]([ m2n

m1 +m2

]
−

)
− n2(n− 1)m2 6 0

for all positive integers m1,m2 such that m1 + m2 < n and m2n
m1+m2

is not an integer,

where [x]− denotes for a real number the largest integer which is no greater than x.

Assumption 2

g(m1,m2,m3) ≡
m3 − 2(m

n
− m1

n−(n̄5−1)
)− (n̄5 − 1)× γ(n̄5)

n− (n̄5 + 1)
6= m3

n

for all positive integers m1,m2,m3 such that m1 + m2 + m3 6 n and m2n
m1+m2

is not an

integer.

where n̄5 =

[
m2n

m1 +m2

]
−

+ 1,

γ(k) =
Γ1(k)m1 + Γ2(k)m2 + Γ3(k)m3

n[n4 − 2(k + 1)n3 + (k2 + 5k − 1)n2 − (3k2 + k − 2)n+ 2(k2 − k)]

and Γ1(k) = 2(k − 2)n2 − 2(k2 − k − 2)n+ 2(k2 − k − 2)

Γ2(k) = −2n3 + 4kn2 − 2(k2 + k − 1)n+ 2(k2 − k)

Γ3(k) = n4 − 2(k + 1)n3 + (k2 + 5k − 1)n2 − (3k2 + k − 2)n+ 2(k2 − k)

D.2 Matlab Codes for Checking The Assumptions Given a Fixed n.

• Check f(m1,m2) 6 0 for all positive integers m1,m2 such that m1 + m2 < n and
m2n

m1+m2
is not an integer.
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c l e a r ; c l c

syms n m1 m2 x

a=sym(’−n ∗ (m1+m2 ) ’ ) ;

b=sym ( ’ ( nˆ2−n +1)∗m1+(2∗ nˆ2−n )∗m2 ’ ) ;

c=sym(’−n ˆ 2∗ ( n−1)∗m2 ’ ) ;

eqn = a∗x ˆ2+ b∗x+c == 0 ;

s o l x = s o l v e ( eqn , x ) ; %s o l v e e q u a t i o n ax ˆ2+ b+c =0 .

n =1000; % Fix an n

f l a g =1;

f o r m1=1: n−2

f o r m2= 1 : ( n−m1−1)

f p r i n t f ( ’ n=%d m1=%d m2=%d ’ , [ n m1 m2 ] )

f p r i n t f ( ’\ n ’ )

x= f l o o r (m2∗n / ( m1+m2 ) ) ;

i f x<m2∗n / ( m1+m2)

i f x<max ( e v a l ( s o l x ) ) && x>min ( e v a l ( s o l x ) )

f l a g =0;

f p r i n t f ( ’ n=%d m1=%d m2=%d x 1 ˆ∗ x 2 ˆ∗ x ’ , [ n m1 m2 min ( e v a l ( s o l x ) ) . . . ,

max ( e v a l ( s o l x ) ) f l o o r (m2∗n / ( m1+m2 ) ) m2∗n / ( m1+m2 ) ] )

f p r i n t f ( ’\ n ’ )

b r e a k

end

end

end

i f f l a g ==0

b r e a k

end

end

• Check g(m1,m2,m3) 6= m3

n
for all positive integers m1,m2,m3 such that m1 +

m2 +m3 6 n and m2n
m1+m2

is not an integer.

n =1000; % Fix an n

f o r m1=1: n−2
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f o r m2=1: n−m1−1

f o r m3=1: n−m1−m2

f p r i n t f ( ’ n=%d m1=%d m2=%d m3=%d ’ , [ n m1 m2 m3 ] )

f p r i n t f ( ’\ n ’ )

i f f l o o r (m2∗n / ( m1+m2))<m2∗n / ( m1+m2)

nba r5 = f l o o r (m2∗n / ( m1+m2 ) ) + 1 ;

A1=2∗ ( nbar5 −2)∗n ˆ2−2∗( nba r5 ˆ2−nbar5 −2)∗n +2∗ ( nba r5 ˆ2−nbar5 −2);

A2=−2∗n ˆ3+4∗ nba r5 ∗n ˆ2−2∗( nba r5 ˆ2+ nbar5 −1)∗n +2∗ ( nba r5 ˆ2− nba r5 ) ;

A3=n ˆ4−2∗( nba r5 +1)∗ n ˆ 3 + ( nba r5 ˆ2+5∗ nbar5 −1)∗n ˆ 2 . . . ,

−(3∗ nba r5 ˆ2+ nbar5 −2)∗n +2∗ ( nba r5 ˆ2− nba r5 ) ;

gamma=(A1∗m1+A2∗m2+A3∗m3 ) / ( n ˆ ( n ˆ4 −2∗( nba r5 + 1 ) ˆ n ˆ 3 . . . ,

+( nba r5 ˆ2+5∗ nbar5 −1)∗n ˆ2−(3∗ nbar5 ˆ2+ nbar5 −2)∗n +2∗ ( nba r5 ˆ2− nbar5 ) ) ) ;

m=m1+m2+m3 ;

f =(m3−2∗(m/ n−m1 / ( n−( nbar5 −1)))−( nbar5 −1)∗gamma ) / ( n−( nba r5 + 1 ) ) ;

i f abs ( f − m3 / n ) < eps

f p r i n t f ( ’ n=%d m1=%d m2=%d m3=%d nbar5=%f gamma=%f f=%f ’ . . . ,

, [ n m1 m2 m3 nbar5 f ] )

f l a g =0;

b r e a k

end

end

end

i f f l a g ==0

b r e a k

end

end

i f f l a g ==0

b r e a k

end

end

D.3 Proof of Proposition 3

Let E,B,C,D, F ⊂ A with m1 ≡ |B| > 1, m2 ≡ |C| > 1, m3 ≡ |D| > 1. Let

m ≡ m1 + m2 + m3. In addition, given a real number x, [x]− denotes the largest integer
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which is smaller or equal to x. Finally given a random assignment L and a subset of

objects B ⊂ A, we denote Li,B =
∑

x∈B Li,x.

Let D ≡ {P̄i, Pi, P̂i} where the preferences are from Table 7. To prove the theorem,

it suffices to prove D admits no good rule. Suppose not, and let ϕ : Dn −→ L be a good

rule.

Lemma 15 For any P ∈ Dn, ϕi,B(P ) + ϕi,C(P ) + ϕi,D(P ) = m
n

for all i ∈ I .

This lemma can be proved by applying repeatedly equal treatment of equals and sd-

strategy-proofness. The proof is standard and hence omitted.

Notice that, since m1n
m1+m2

+ m2n
m1+m2

= n, it’s either both m1n
m1+m2

and m2n
m1+m2

are integers

or neither one of them is an integer. I’ll show two contradictions, one for each case. When
m2n

m1+m2
is an integer, the contradiction is identified. While Assumptions 1 and 2 are needed

to identify the contradiction for the cases where m2n
m1+m2

is not an integer.

In the following ,I’ll construct six groups of profiles and characterize the random

assignments of B, C, D for each of these profiles. The contradiction for the cases where
m2n

m1+m2
is an integer can be found using profile groups I to IV. To find the contradiction

for the cases where m2n
m1+m2

is not an integer, we need in addition profile groups V and VI.

Firstly I list all profiles.

Profile group I:

P 1,0 = (P1, · · · , Pn)

P 1,1 = (P̂1, P2, · · · , Pn)

...

P 1,k = (P̂1, · · · , P̂k, Pk+1, · · · , Pn)

...

P 1,n̄1 = (P̂1, · · · , P̂n̄1 , Pn̄1+1, · · · , Pn)

where n̄1 = m2n
m1+m2

when m2n
m1+m2

is an integer and n̄1 =
[

m2n
m1+m2

]
−

otherwise.

Profile group II:
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P 2,1 = (P1, · · · , Pn−1, P̄n)

P 2,2 = (P̂1, P2 · · · , Pn−1, P̄n)

...

P 2,k = (P̂1, · · · , P̂k−1, Pk, · · · , Pn−1, P̄n)

...

P 2,n̄2 = (P̂1, · · · , P̂n̄2−1, Pn̄2 , · · · , Pn−1, P̄n)

where n̄2 = m2n
m1+m2

when m2n
m1+m2

is an integer and n̄2 =
[

m2n
m1+m2

]
−

+ 1 otherwise.

Profile group III:

P 3,0 = (P̂1, · · · , P̂n)

P 3,1 = (P̂1, · · · , P̂n−1, Pn)

...

P 3,k = (P̂1, · · · , P̂n−k, Pn−k+1, · · · , Pn)

...

P 3,n̄3 = (P̂1, · · · , P̂n−n̄3 , Pn−n̄3+1, · · · , Pn)

where n̄3 = m1n
m1+m2

when m1n
m1+m2

is an integer and n̄3 =
[

m1n
m1+m2

]
−

otherwise.

Profile group IV:

P 4,1 = (P̂1, · · · , P̂n−1, P̄n)

P 4,2 = (P̂1, · · · , P̂n−2, Pn−1, P̄n)

...

P 4,k = (P̂1, · · · , P̂n−k, Pn−k+1, · · · , Pn−1, P̄n)

...

P 4,n̄4 = (P̂1, · · · , P̂n−n̄4 , Pn−n̄4+1, · · · , Pn−1, P̄n)

where n̄4 = m1n
m1+m2

when m1n
m1+m2

is an integer and n̄4 =
[

m1n
m1+m2

]
−

otherwise.

Profile group V:
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P 5,1 = (P1, · · · , Pn−2, P̄n−1, P̄n)

P 5,2 = (P̂1, P2 · · · , Pn−2, P̄n−1, P̄n)

...

P 5,k = (P̂1, · · · , P̂k−1, Pk, · · · , Pn−2, P̄n−1, P̄n)

...

P 5,n̄5 = (P̂1, · · · , P̂n̄5−1, Pn̄5 , · · · , Pn−2, P̄n−1, P̄n)

where n̄5 =
[

m2n
m1+m2

]
−

+ 1 and m2n
m1+m2

is not an integer.

Profile group VI:

P 6,1 = (P̂1, · · · , P̂n−2, Pn−1, P̄n)

P 6,2 = (P̂1, · · · , P̂n−2, P̄n−1, P̄n)

P 6,3 = (P̂1, · · · , P̂n−3, Pn−2, P̄n−1, P̄n)

...

P 6,k = (P̂1, · · · , P̂n−k, Pn−k+1, · · · , Pn−2, P̄n−1, P̄n)

...

P 6,n̄6 = (P̂1, · · · , P̂n−n̄6 , Pn−n̄6+1, · · · , Pn−2, P̄n−1, P̄n)

where n̄6 =
[

m1n
m1+m2

]
−

and m2n
m1+m2

is not an integer.

Now we characterize the random assignments for the preference profiles through a

series of claims.

Claim 12 For each preference profile P 1,k, ϕ(P 1,k) specifies probabilities on B, C, and

D as follows

B C D

1 0 m1+m2

n
m3

n

...
...

...
...

k 0 m1+m2

n
m3

n

k + 1 m1

n−k
m1+m2

n
− m1

n−k
m3

n

...
...

...
...

n m1

n−k
m1+m2

n
− m1

n−k
m3

n
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Proof : Verification of the claim consists of three steps.

Step 1: We show ϕi,D(P 1,k) = m3

n
for all i ∈ I and all k = 0, 1, · · · , n̄1.

First, by equal treatment of equals, ϕi,D(P 1,0) = m3

n
for all i = 1, · · · , n. Second,

we show for all k = 1, · · · , n̄1 if ϕi,D(P 1,k−1) = m3

n
for all i ∈ I , then ϕi,D(P 1,k) = m3

n

for all i ∈ I . Notice that P 1,k and P 1,k−1 are different only in agent k’s preference, i.e.,

P 1,k
k = P̂i and P 1,k−1

k = Pi where P̂i and Pi are from Table 7. Then sd-strategy-proofness

implies ϕk,D(P 1,k) = ϕk,D(P 1,k−1) = m3

n
. Hence by feasibility and equal treatment of

equals, ϕi,D(P 1,k) = m3

n
for all i ∈ I .

Step 2: We show ϕi,B(P 1,k) = 0 for all i = 1, · · · , k and all k = 0, 1, · · · , n̄1. Fix

an k and suppose without loss of generality ϕ1,B(P 1,k) = β > 0. Then sd-efficiency

implies ϕi,C(P 1,k) = 0 for all i = k + 1, · · · , n and equal treatment of equals implies

ϕi,C(P 1,k) = m2

k
for all i = 1, · · · , k.

ϕ1,B(P 1,k) + ϕ1,C(P 1,k) + ϕ1,D(P 1,k) = β +
m2

k
+
m3

n

>
m2

k
+
m3

n

>
m

n

where the last inequality comes from k 6 n̄1 6
m2n

m1+m2
: a contradiction against Lemma 15.

Step 3: Lemma 15 and equal treatment of equals imply all other entries. �

Claim 13 For each preference profile P 2,k, ϕ(P 2,k) specifies probabilities on B, C, and

D as follows

B C D

1 0 m
n
− α(k) α(k)

...
...

...
...

k − 1 0 m
n
− α(k) α(k)

k m1

n−(k−1)

m2−(k−1)×(m
n
−α(k))

n−k
m3−(m

n
− m1
n−(k−1)

)−(k−1)×α(k)

n−k

...
...

...
...

n− 1 m1

n−(k−1)

m2−(k−1)×(m
n
−α(k))

n−k
m3−(m

n
− m1
n−(k−1)

)−(k−1)×α(k)

n−k

n m1

n−(k−1)
0 m

n
− m1

n−(k−1)
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where α(k) = (k−2)m1−(n−(k−1))m2+(n−1)(n−(k−1))m3

n(n−1)(n−(k−1))
.

Proof : Verification of the claim consists of six steps.

Step 1: We show ϕ(P 2,1) specifies probabilities on B, C, and D as follows

B C D

1 m1

n
m2

n−1
m2+m3

n
− m2

n−1

...
...

...
...

n− 1 m1

n
m2

n−1
m2+m3

n
− m2

n−1

n m1

n
0 m2+m3

n

First notice that P 2,1 and P 1,0 are different only in agent n’s preference, i.e., P 2,1
n = P̄1

and P 1,0 = Pi where P̄i and Pi are from Table 7. Then sd-strategy-proofness implies

ϕn,B(P 2,1) = ϕn,B(P 1,0) = m1

n
. Hence feasibility and equal treatment of equals imply

ϕi,B(P 2,1) = m1

n
for all i ∈ I .

Second ϕn,C(P 2,1) = 0. Suppose not, then sd-efficiency implies ϕi,D(P 2,1) = 0 for

all i = 1, · · · , n − 1. Hence feasibility implies ϕn,D(P 2,1) = m3 > 1: a contradiction

against Lemma 15.

Last, feasibility and equal treatment of equals imply all other entries.

Step 2: We show ϕn,B(P 2,k) = m1

n−(k−1)
for all k = 2, · · · , n̄2. Fix an k. Notice that

P 2,k and P 1,k−1 are different only in agent n’s preference, i.e., P 2,k
n = P̄i and P 2,k

n = Pi

where P̄i and Pi are from Table 7. Then sd-strategy-proofness implies ϕn,B(P 2,k) =

ϕn,B(P 1,k−1) = m1

n−(k−1)
.

Step 3: We showϕn,C(P 2,k) = 0 for all k = 2, · · · , n̄2. Fix an k and supposeϕn,C(P 2,k) >

0. Then sd-efficiency implies ϕi,DP 2,k = 0 for all i = 1, · · · , n−1 and hence ϕn,DP 2,k =

m3: a contradiction against Lemma 15.

Step 4: We show ϕi,D(P 2,k) = α(k) for all i = 1, · · · , k − 1 and all k = 2, · · · , n̄2.

First we show ϕ1,D(P 2,2) = α(2). Notice that P 2,2 and P 2,1 are different only in agent

1’s preference, i.e., P 2,2
1 = P̂i and P 2,1

1 = Pi where P̂i and Pi are from Table 7. Then

sd-strategy-proofness implies ϕ1,D(P 2,2) = ϕ1,D(P 2,1) = m2+m3

n
− m2

n−1
.
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α(2) =
(2− 2)m1 − (n− (2− 1))m2 + (n− 1)(n− (2− 1))m3

n(n− 1)(n− (2− 1))

=
(n− 1)m3 −m2

n(n− 1)

=
m2 +m3

n
− m2

n− 1
.

Second, we show an induction: If ϕi,D(P 2,k) = α(k) for all i = 1, · · · , k − 1 and an

k ∈ {2, · · · , n̄2 − 1}, then ϕi,D(P 2,k+1) = α(k + 1) for all i = 1, · · · , k. Notice that

P 2,k+1 and P 2,k are different only in agent k’s preference, i.e., P 2,k+1
k = P̂i and P 2,k

k = Pi

where P̂i and Pi are from Table 7. Then sd-strategy-proofness implies ϕk,D(P 2,k+1) =

ϕk,D(P 2,k). Hence for all i = 1, · · · , k

ϕi,D(P 2,k+1) = ϕk,D(P 2,k+1) by equal treatment of equals

= ϕk,D(P 2,k) by sd-strategy-proofness

=
m3−(m

n
− m1
n−(k−1)

)−(k−1)×ϕk−1,D(P 2,k)

n−k by feasibility and equal treatment of equals

=
m3−(m

n
− m1
n−(k−1)

)−(k−1)×α(k)

n−k by induction hypothesis

= α(k + 1) by simplifying expression.

Step 5: We show ϕi,B(P 2,k) = 0 for all i = 1, · · · , k − 1 and all k = 2, · · · , n̄2. Fix

an k. Suppose without loss of generality ϕ1,B(P 2,k) = β > 0. Then equal treatment

of equals implies ϕi,B(P 2,k) = β for all i = 1, · · · , k − 1. Hence Lemma 15 and Step

4 imply ϕi,C(P 2,k) = m
n
− α(k) − β for all i = 1, · · · , k − 1 and sd-efficiency implies

ϕi,C(P 2,k) = 0 for all i = k, · · · , n− 1.
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Now we show (k − 1)× (m
n
− α(k)− β) < m2: a contradiction against feasibility.

(k − 1)× (
m

n
− α(k)− β) < m2

⇐(k − 1)× (
m

n
− α(k)) 6 m2

⇔(k − 1)×
[
m

n
− (k − 2)m1 − (n− (k − 1))m2 + (n− 1)(n− (k − 1))m3

n(n− 1)(n− (k − 1))

]
−m2 6 0

⇔(k − 1)× [(n− 1)(n− (k − 1))(m1 +m2)− (k − 2)m1 + (n− (k − 1))m2]

− n(n− 1)(n− (k − 1))m2 6 0

⇔− n(m1 +m2)(k − 1)2 +
[
(n2 − n+ 1)m1 + (2n2 − n)m2

]
(k − 1)− n2(n− 1)m2 6 0

Let f(θ) = −n(m1+m2)(θ−1)2+[(n2 − n+ 1)m1 + (2n2 − n)m2] (θ−1)−n2(n−

1)m2. To verify the Step, it suffices to show f(θ) 6 0 for all k = 2, · · · , n̄2.

From the functional form of f(θ), we have first-order derivative and the second order

derivative as follows

f ′(θ) = −2n(m1 +m2)(θ − 1) + (n2 − n+ 1)m1 + (2n2 − n)m2

f ′′(θ) = −2n(m1 +m2)

When m2n
m1+m2

is an integer, n̄2 = m2n
m1+m2

.

f(n̄2) =− n(m1 +m2)

(
m2n

m1 +m2

− 1

)2

+
[
(n2 − n+ 1)m1 + (2n2 − n)m2

]( m2n

m1 +m2

− 1

)
− n2(n− 1)m2

=
1

m1 +m2

{−n[(n− 1)m2 −m1]2

+
[
(n2 − n+ 1)m1 + (2n2 − n)m2

]
[(n− 1)m2 −m1]− n2(n− 1)m2(m1 +m2)}

=
1

m1 +m2

[
−(n2 + 1)m2

1 −
(

(n− 1

2
)2 +

3

4

)
m1m2

]
< 0.
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f ′(n̄2) =− 2n(m1 +m2)(
m2n

m1 +m2

− 1) + (n2 − n+ 1)m1 + (2n2 − n)m2

=
1

m1 +m2

[−2n(m1 +m2)((n− 1)m2 −m1) + (n2 − n+ 1)m1(m1 +m2)

+ (2n2 − n)m2(m1 +m2)]

=
1

m1 +m2

[(n2 + n+ 1)m2
1 + nm2

2 + (n2 + 2n+ 1)m1m2] > 0

By f ′′(θ) < 0 and f ′(n̄2) > 0, f ′(θ) > 0 for all θ 6 n̄2, that is f(θ) is increasing

through 2 to n̄2. Then f(n̄2) < 0 implies f(θ) < 0 for all θ 6 n̄2, which is what we want.

When m2n
m1+m2

is not an integer, n̄2 =
[

m2n
m1+m2

]
−

+ 1.

f(n̄2) =− n(m1 +m2)

([
m2n

m1 +m2

]
−

)2

+
[
(n2 − n+ 1)m1 + (2n2 − n)m2

]([ m2n

m1 +m2

]
−

)
− n2(n− 1)m2 6 0

where the last inequality comes from Assumption 1 in Appendix D.1.

f ′(n̄2) =− 2n(m1 +m2)(
m2n

m1 +m2

− δ) + (n2 − n+ 1)m1 + (2n2 − n)m2

=
1

m1 +m2

[−2n(m1 +m2)((n− δ)m2 − δm1) + (n2 − n+ 1)m1(m1 +m2)

+ (2n2 − n)m2(m1 +m2)]

=
1

m1 +m2

[m1n(n− 1) +m2n(m1(n− 2)−m2) +m1m2 +m2
1

+ 2δ(m2
1n+m2

2n+ 2m1m2n)] > 0

where the last inequality comes from m2 6 (n− 2) and m1 > 1.

Step 6: Lemma 15 and equal treatment of equals imply all other entries. �

Claim 14 For each preference profile P 3,k, ϕ(P 3,k) specifies probabilities on B, C, and

D as follows
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B C D

1 m1+m2

n
− m2

n−k
m2

n−k
m3

n

...
...

...
...

n− k m1+m2

n
− m2

n−k
m2

n−k
m3

n

n− k + 1 m1+m2

n
0 m3

n

...
...

...
...

n m1+m2

n
0 m3

n

Proof : This claim can be verified by the similar arguments that verify Claim 12. �

Claim 15 For each preference profile P 4,k , ϕ(P 4,k) specifies probabilities on B, C, and

D as follows

B C D

1 m1+m2

n
− m2

n−k
m2

n−k
m3

n

...
...

...
...

n− k m1+m2

n
− m2

n−k
m2

n−k
m3

n

n− k + 1 m1+m2

n
0 m3

n

...
...

...
...

n− 1 m1+m2

n
0 m3

n

n m1+m2

n
0 m3

n

Proof : Verification of the claim consists of five steps.

Step 1: We show ϕn,B(P 4,k) = m1+m2

n
for all k = 1, · · · , n̄4. Fix an k. Notice that P 4,k

and P 3,k are different only in agent n’s preference, i.e., P 4,k
n = P̄i and P 3,k

n = Pi where P̄i

and Pi are from Table 7. Then sd-strategy-proofness implies ϕn,B(P 4,k) = ϕn,B(P 3,k) =

m1+m2

n
.

Step 2: We show ϕn,C(P 4,k) = 0 and ϕn,D(P 4,k) = m3

n
for all k = 1, · · · , n̄4. Fix

an k. Suppose ϕn,C(P 4,k) > 0, then sd-efficiency implies ϕi,D(P 4,k) = 0 for all i =

1, · · · , n − 1 and hence ϕn,D(P 4,k) = m3: a contradiction against Lemma 15. Given

ϕn,C(P 4,k) = 0, Lemma 15 implies ϕn,D(P 4,k) = m3

n
.
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Step 3: We show ϕi,D(P 4,k) = m3

n
for all i = 1, · · · , n − 1 and all k = 1, · · · , n̄4. First

equal treatment of equals and Step 2 imply ϕi,D(P 4,1) = m3

n
for all i = 1, · · · , n − 1.

Second we prove an induction: For any k = 2, · · · , n̄4, if ϕi,D(P 4,k−1) = m3

n
for all

i = 1, · · · , n − 1, then ϕi,D(P 4,k) = m3

n
for all i = 1, · · · , n − 1. Notice that P 4,k−1

and P 4,k are different only in agent (n − k + 1)’s preference, i.e., P 4,k−1
n−k+1 = P̂i and

P 4,k
n−k+1 = Pi where P̂i and Pi are from Table 7. Then sd-strategy-proofness implies

ϕn−k+1,D(P 4,k) = ϕn−k+1,D(P 4,k−1) = m3

n
. Hence feasibility and equal treatment of

equals imply ϕi,D(P 4,k) = m3

n
for all i = 1, · · · , n− 1.

Step 4: We show ϕi,C(P 4,k) = 0 for all i = n−k+1, · · · , n−1 and all k = 2, · · · , n̄4. Fix

an k and suppose without loss of generality ϕn−1,C(P 4,k) = β > 0. By equal treatment

of equals, ϕi,C(P 4,k) = β for all i = n − k + 1, · · · , n − 1. Then Lemma 15 implies

ϕi,B(P 4,k) = m1+m2

n
− β for all i = n − k + 1, · · · , n − 1 and sd-efficiency implies

ϕi,B(P 4,k) = 0 for all i = 1, · · · , n− k. Then we have a contradiction against feasibility

m1 = (n− k)× 0 + (k − 1)× (
m1 +m2

n
− β) +

m1 +m2

n

< k × m1 +m2

n
6 m1

where the last inequality comes from k 6 n̄4 6
m1n

m1+m2
.

Step 5: Lemma 15 and equal treatment of equals imply all other entries. �

Now we have the contradiction for the cases where m2n
m1+m2

is an integer.

P 2,n̄2 =(P̂1, · · · , P̂ m2n
m1+m2

−1, P m2n
m1+m2

, · · · , Pn−1, P̄n)

P 4,n̄4 =(P̂1, · · · , P̂n− m1n
m1+m2

, Pn− m1n
m1+m2

+1, · · · , Pn−1, P̄n)

=(P̂1, · · · , P̂ m2n
m1+m2

, P m2n
m1+m2

+1, · · · , Pn−1, P̄n)

Hence P 2,n̄2 and P 4,n̄4 are different only in agent m2n
m1+m2

’s preference, i.e., P 2,n̄2
m2n

m1+m2

=

Pi and P 2,n̄2
m2n

m1+m2

= P̂i where Pi and P̂i are from Table 15. Then sd-strategy-proofness

implies ϕ m2n
m1+m2

,D(P 2,n̄2) = ϕ m2n
m1+m2

,D(P 4,n̄4). Now we have the contradiction as the
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following elaboration:

ϕ m2n
m1+m2

,D(P 2,n̄2) = ϕ m2n
m1+m2

,D(P 4,n̄4)

⇔
m3 − (m

n
− m1

n−(n̄2−1)
)− (n̄2 − 1)× α(n̄2)

n− n̄2

=
m3

n

⇔−m1n(m1 +m2)((n+ 1)m1 +m2) = 0: contradiction!

To find the contradiction for the cases where m2n
m1+m2

is not an integer, we charac-

terize the assignment of D for the profiles in groups V and VI.

Let k∗ be such that k∗−1 = n− m1
m
n
−m3

2

, which is equivalent to m
n
− m1

n−(k∗−1)
−m3

2
= 0.

I first present two types of assignments and later I will show that both assignments are

possible for profiles in group V by Claim 16, 17, and 18.

Assignment 1:

B C D

1 − − γ(k)

...
...

...
...

k − 1 − − γ(k)

k − −
m3−2(m

n
− m1
n−(k−1)

)−(k−1)×γ(k)

n−(k+1)

...
...

...
...

n− 2 − −
m3−2(m

n
− m1
n−(k−1)

)−(k−1)×γ(k)

n−(k+1)

n− 1 m1

n−(k−1)
0 m

n
− m1

n−(k−1)

n m1

n−(k−1)
0 m

n
− m1

n−(k−1)

where γ(k) =
Γ1(k)m1 + Γ2(k)m2 + Γ3(k)m3

n[n4 − 2(k + 1)n3 + (k2 + 5k − 1)n2 − (3k2 + k − 2)n+ 2(k2 − k)]

and Γ1(k) = 2(k − 2)n2 − 2(k2 − k − 2)n+ 2(k2 − k − 2)

Γ2(k) = −2n3 + 4kn2 − 2(k2 + k − 1)n+ 2(k2 − k)

Γ3(k) = n4 − 2(k + 1)n3 + (k2 + 5k − 1)n2 − (3k2 + k − 2)n+ 2(k2 − k)

Assignment 2:
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B C D

1 − − 0

...
...

...
...

k − 1 − − 0

k − − 0

...
...

...
...

n− 2 − − 0

n− 1 m1

n−(k−1)
m
n
− m1

n−(k−1)
− m3

2
m3

2

n m1

n−(k−1)
m
n
− m1

n−(k−1)
− m3

2
m3

2

Claim 16 If m3

m2
> 2

n−2
, ϕ(P 5,k) specifies probabilities on B, C, and D as assignment 1

for all k = 1, · · · , n̄5.

Proof : Verification of the claim consists of four steps.

Step 1: We show, if m3

m2
> 2

n−2
, ϕ(P 5,1) specifies probabilities on B, C, and D as

follows

B C D

1 m1

n
m2

n−2
m2+m3

n
− m2

n−2

...
...

...
...

n− 2 m1

n
m2

n−2
m2+m3

n
− m2

n−2

n− 1 m1

n
0 m2+m3

n

n m1

n
0 m2+m3

n

First notice that P 5,1 and P 2,1 are different only in agent (n − 1)’s preference, i.e.,

P 5,1
n−1 = P̄i and P 2,1

n−1 = Pi where P̄i and Pi are from Table 7. Then sd-strategy-proofness

implies ϕn−1,B(P 5,1) = ϕn−1,B(P 2,1) = m1

n
and hence feasibility and equal treatment of

equals imply ϕi,B(P 5,1) = m1

n
for all i ∈ I .

Second we showϕn−1,C(P 5,1) = ϕn,C(P 5,1) = 0. Suppose not, let β ≡ ϕn−1,C(P 5,1) =

ϕn,C(P 5,1) > 0, then sd-efficiency implies ϕi,D(P 5,1) = 0 for all i = 1, · · · , n − 2

and hence ϕn−1,D(P 5,1) = ϕn,D(P 5,1) = m3

2
. Then Lemma 15 requires m1+m2+m3

n
=
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m1

n
+ β + m3

2
. Then β > 0 implies m1+m2+m3

n
− m1

n
− m3

2
> 0 which is equivalent to

m3

m2
< 2

n−2
: contradiction!

All the other entries are implied by Lemma 15 and equal treatment of equals.

Step 2: We show ϕn−1,D(P 2,k) = ϕn,D(P 2,k) = m
n
− m1

n−(k−1)
for all k = 1, · · · , n̄5.

Fix an k. First notice that P 5,k and P 2,k are different only in agent (n−1)’s preference,

i.e., P 5,k
n−1 = P̄i and P 2,k

n−1 = Pi where P̄i and Pi are from Table 7. Then sd-strategy-

proofness implies ϕn−1,B(P 5,k) = ϕn−1,B(P 2,k) = m1

n−(k−1)
and hence equal treatment of

equals implies ϕn,B(P 5,k) = ϕn−1,B(P 5,k) = m1

n−(k−1)
.

Second we show ϕn−1,C(P 5,k) = ϕn,C(P 5,k) = 0. Suppose not, let ϕn−1,C(P 5,k) =

ϕn,C(P 5,k) = β > 0, sd-efficiency implies ϕi,D(P 5,k) = 0 for all i = 1, · · · , n − 2 and

hence ϕn−1,DP
5,k = ϕn,DP

5,k = m3

2
. Then we have a contradiction:

ϕn,B(P 5,k) + ϕn,C(P 5,k) + ϕn,D(P 5,k) = ϕn,B(P 5,1) + ϕn,C(P 5,1) + ϕn,D(P 5,1)

⇔ m1

n− (k − 1)
+ β +

m3

2
=
m1

n
+ 0 +

m2 +m3

n
: contradiction!

where the contradiction comes from m1

n−(k−1)
> m1

n
, β > 0, and that m3

m2
> 2

n−2
implies

m3

2
> m2+m3

n
.

Lastly, Lemma 15 implies what we want.

Step 3: We show ϕ1,D(P 5,2) = γ(2). Notice that P 5,2 and P 5,1 are different only in

agent 1’s preference, i.e., P 5,2
1 = P̂i and P 5,2

1 = Pi where P̂i and Pi are from Table 7. Then

sd-strategy-proofness implies ϕ1,D(P 5,2) = ϕ1,D(P 5,1) = m2+m3

n
− m2

n−2
= −2m2

n(n−2)
+ m3

n
.

Notice thatB(2) = 0,C(2) = −2n3+8n2−10n+4, andD(2) = n4−6n3+13n2−12n+4.

Then

γ(2) =
0m1 + (−2n3 + 8n2 − 10n+ 4)(k)m2 + (n4 − 6n3 + 13n2 − 12n+ 4)(k)m3

n[n4 − 6n3 + 13n2 − 12n+ 4]

=
−2m2

n(n− 2)
+
m3

n
.

Step 4: We show an induction: For any 2 6 k < n̄5, if ϕi,D(P 5,k) = γ(k) for all

i = 1, · · · , k − 1, then ϕi,D(P 5,k+1) = γ(k + 1) for all i = 1, · · · , k. By equal treatment

of equals, it suffices to show ϕk,D(P 5,k+1) = γ(k + 1). Notice that P 5,k+1 and P 5,k are

different only in agent k’s preference, i.e., P 5,k+1
k = P̂i and P 5,k

k = Pi where P̂i and Pi

are from Table 7. Then
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ϕk,D(P 5,k+1) = ϕk,D(P 5,k) by sd-strategy-proofness

=m3−2×ϕn−1,D(P 5,k)−(k−1)×ϕk−1,D(P 5,k)

n−(k+1)
by feasibility and equal treatment of equals

=
m3−2(m

n
− m1
n−(k−1)

)−(k−1)×γ(k)

n−(k+1)
by Step 2 and hypothesis assumption

=γ(k + 1) by simplifying the expression

�

Claim 17 If m3

m2
< 2

n−2
and n̄5 < k∗, ϕ(P 5,k) specifies probabilities on B, C, and D as

assignment 2 for each k = 1, · · · , n̄5.

Proof : Verification of the claim consists of four steps.

Step 1: We show, if m3

m2
< 2

n−2
, ϕ(P 5,1) specifies probabilities on B, C, and D as

follows

B C D

1 m1

n
m2+m3

n
0

...
...

...
...

n− 2 m1

n
m2+m3

n
0

n− 1 m1

n

m2−(n−2)×m2+m3
n

2
m3

2

n m1

n

m2−(n−2)×m2+m3
n

2
m3

2

First by the same argument showing the Step 1 in Claim 16, ϕi,B(P 5,1) = m1

n
.

Second we show ϕn−1,C(P 5,1) = ϕn−1,C(P 5,1) > 0. Suppose not, ϕ(P 5,1) is specified

as by the Step 1 in Claim 16. Then ϕ1,D(P 5,1) = m2+m3

n
− m2

n−2
> 0: contradicting against

m3

m2
< 2

n−2
.

Lastly, sd-efficiency implies ϕi,D(P 5,1) = 0 for all i = 1, · · · , n − 2. All the other

entries are implied by Lemma 15 and equal treatment of equals.

Step 2: We show ϕn−1,B(P 5,k) = ϕn,B(P 5,k) = m1

n−(k−1)
for all k = 1, · · · , n̄5. Fix

an k. Notice that P 5,k and P 2,k are different only in agent (n − 1)’s preference, i.e.,

P 5,k
n−1 = P̄i and P 2,k

n−1 = Pi where P̄i and Pi are from Table 7. Then sd-strategy-proofness

implies ϕn−1,B(P 5,k) = ϕn−1,B(P 2,k) = m1

n−(k−1)
and hence equal treatment of equals

implies ϕn,B(P 5,k) = ϕn−1,B(P 5,k) = m1

n−(k−1)
.
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Step 3: For any k < k∗, if ϕi,D(P 5,k−1) = 0 for all i = 1, · · · , n − 2, then

ϕi,D(P 5,k) = 0 for all i = 1, · · · , n−2. By sd-efficiency, it suffices to showϕn−1,C(P 5,k) =

ϕn,C(P 5,k) > 0. Suppose not. First, by Step 2 and Lemma 15, ϕn−1,D(P 5,k) = ϕn,D(P 5,k) =

m
n
− m1

n−(k−1)
. Second, notice that P 5,k and P 5,k−1 are different only in agent k’s prefer-

ence, i.e., P 5,k
k = P̂i and P 5,k−1

k = Pi where P̂i and Pi are from Table 7. Then sd-

strategy-proofness and equal treatment of equals imply ϕi,D(P 5,k) = ϕk,D(P 5,k−1) = 0

for all i = 1, · · · , k. Last, feasibility and equal treatment of equals imply ϕi,D(P 5,k) =
m3−2(mn −

m1
n−(k−1))

n−(k+1)
. Then by k < k∗, we have a contradiction: ϕi,D(P 5,k) <

m3−2(mn −
m1

n−(k∗−1))
n−(k+1)

=

0.

�

Claim 18 If m3

m2
< 2

n−2
and n̄5 > k∗, ϕ(P 5,k) specifies probabilities on B, C, and D as

assignment 2 for each k = 1, · · · , k∗ and as assignment 1 for each k = k∗ + 1, · · · , n̄5.

Proof : Verification of the claim consists of two steps.

By Claim 17, ϕ(P 5,k) specifies probabilities on B, C, and D as assignment 2 for each

k = 1, · · · , k∗.

Step 1: ϕ(P 5,k∗) specifies probabilities on B, C, and D as follows.

B C D

1 − − 0

...
...

...
...

k∗ − 1 − − 0

k∗ − − 0

...
...

...
...

n− 2 − − 0

n− 1 m1

n−(k∗−1)
0 m3

2

n m1

n−(k∗−1)
0 m3

2

Step 2: For any k > k∗, if ϕn−1,C(P 5,k−1) = ϕn,C(P 5,k−1) = 0, then ϕn−1,C(P 5,k) =

ϕn,C(P 5,k) = 0. Suppose not, then ϕi,D(P 5,k) = 0 for all i = 1, · · · , n − 2 and
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hence ϕn−1,D(P 5,k) = ϕn,D(P 5,k) = m3

2
. By Step 2 and Lemma 15, ϕn−1,C(P 5,k) =

ϕn,C(P 5,k) = m
n
− m1

n−(k−1)
−m3

2
. Then by k > k∗, we have a contradiction: ϕn−1,C(P 5,k) =

ϕn,C(P 5,k) < m
n
− m1

n−(k∗−1)
− m3

2
= 0.

�

Claim 19 For each preference profile P 6,k, ϕ(P 6,k) specifies probabilities on B, C, and

D as follows

B C D

1 − − m3

n

...
...

...
...

n− k − − m3

n

n− k + 1 − − m3

n

...
...

...
...

n− 2 − − m3

n

n− 1 m1+m2

n
0 m3

n

n m1+m2

n
0 m3

n

Proof : Verification of the claim consists of three steps.

Step 1: We show ϕn−1,B(P 6,k) = ϕn,B(P 6,k) = m1+m2

n
for all k = 2, · · · , n̄6. Fix

an k. Notice that P 6,k and P 4,k are different only in agent (n − 1)’s preference, i.e.,

P 6,k
n−1 = P̄i and P 4,k

n−1 = Pi where P̄i and Pi are from Table 7. Then sd-strategy-proofness

implies ϕn−1,B(P 6,k) = ϕn−1,B(P 4,k) = m1+m2

n
. Hence equal treatment of equals implies

ϕn−1,B(P 6,k) = ϕn,B(P 6,k) = m1+m2

n
.

Step 2: We show ϕn−1,C(P 6,k) = ϕn,C(P 6,k) = 0 and ϕn−1,D(P 6,k) = ϕn,D(P 6,k) =

m3

n
for all k = 2, · · · , n̄6. Fix an k. By Lemma 15, it suffices to show ϕn−1,C(P 6,k) =

ϕn,C(P 6,k) = 0. Suppose not, then sd-efficiency implies ϕi,D(P 6,k) = 0 for all i =

1, · · · , n − 2 and hence feasibility and equal treatment of equals imply ϕn−1,D(P 6,k) =

ϕn,D(P 6,k) = m3

2
. Then m1+m2

n
+ 0 + m3

2
> m

n
: contradiction against Lemma 15.

Step 3: We show ϕi,D(P 6,k) = m3

n
for all i = 1 ∈ I and all k = 3, · · · , n̄6.
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We first show ϕi,D(P 6,3) = m3

n
for all i = 1 ∈ I . Notice that, by Step 2 and equal

treatment of equals, ϕn−2,D(P 6,2) = m3

n
. Notice also that P 6,3 and P 6,2 are different only

in agent (n − 2)’s preference, i.e., P 6,3
n−2 = Pi and P 6,2

n−2 = P̂i where Pi and P̂i are from

Table 7. Then sd-strategy-proofness implies ϕn−2,D(P 6,3) = ϕn−2,D(P 6,2) = m3

n
. Then

Step 2 and equal treatment of equals imply what we want.

Now we show an induction: for any 3 6 k < n̄6, if ϕi,D(P 6,k) = m3

n
for all i = 1 ∈ I ,

then ϕi,D(P 6,k+1) = m3

n
for all i = 1 ∈ I . Notice that P 6,k+1 and P 6,k are different

only in agent (n − k)’s preference, i.e., P 6,k+1
n−k = Pi and P 6,k

n−k = P̂i where Pi and P̂i are

from Table 7. Then sd-strategy-proofness implies ϕn−k,D(P 6,k+1) = ϕn−k,D(P 6,k) = m3

n
.

Hence Step 2 and equal treatment of equals imply what we want.

�

Now we have the contradiction to prove the theorem for the case where m2n
m1+m2

is

not an integer.

P 5,n̄5 = (P̂1, · · · , P̂[
m2n

m1+m2

]
−

, P[
m2n

m1+m2

]
−

+1
, · · · , Pn−2, P̄n−1, P̄n)

P 6,n̄6 = (P̂1, · · · , P̂n−
[

m1n
m1+m2

]
−

, P
n−

[
m1n

m1+m2

]
−

+1
, · · · , Pn−2, P̄n−1, P̄n)

Notice that
[

m2n
m1+m2

]
−

=
[
n− m1n

m1+m2

]
−

=

(
n−

[
m1n

m1+m2

]
−

)
− 1. Then P 5,n̄5 and

P 6,n̄6 are different only in agent
([

m2n
m1+m2

]
−

+ 1

)
’s preference, i.e., P 5,n̄5[

m2n
m1+m2

]
−

+1
= Pi

and P 6,n̄6[
m2n

m1+m2

]
−

+1
= P̂i. Hence sd-strategy-proofness implies ϕ[

m2n
m1+m2

]
−

+1,D
(P 5,n̄5) =

ϕ[
m2n

m1+m2

]
−

+1,D
(P 6,n̄6).

If ϕ(P 5,n̄5) is in the form of Assignment 2, the contradiction is evident: 0 6= m3

n
.

If ϕ(P 5,n̄5) is in the form of Assignment 1, the contradiction is verified by Assumption

2 in Appendix D.1.

m3 − 2(m
n
− m1

n−(n̄5−1)
)− (n̄5 − 1)× γ(n̄5)

n− (n̄5 + 1)
6= m3

n
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D.4 Proof of Theorem 8

Fix a description (C, σ) that satisfies the condition in Statement ??, we show that the

induced preference domain D(C,σ) is covered by a sequentially dichotomous domain.

For each t∗ ∈ {2, · · · , |C|}, let

Aσ
t∗ ≡

{
B ⊂ A

∣∣∣∣∃(v1, · · · , vt∗−1) ∈
t∗−1∏
τ=1

Aστ s.t. b ∈ B whenever (bσ1 , · · · , bσt∗−1) = (v1, · · · , vt∗−1)

}
,

i.e., objects are grouped according to their values of the top-(t∗−1) ranked characteristics.

Now we construct a sequence of partitions (At)
n
t=1 using (At∗)

|C|
t∗=2 as the backbones.

• A1 ≡ {A}

• A|At∗ | ≡ At∗ , for each t∗ ∈ {2, · · · , |C|}

• for each t∗ ∈ {2, · · · , |C| − 1}, the partitions At with |At∗ | < t < |At∗+1| are

defined as follows

– pick any B ∈ At∗\At∗+1, due to statement ??, there are two blocks C,D ∈

At∗+1\At∗ such that B = C ∪D

– label blocks in At∗\At∗+1 as
(
B1, · · · , B|At∗+1|−|At∗ |

)
and blocks in At∗+1\At∗

as
(
C1, D1, · · · , C |At∗+1|−|At∗ |, D|At∗+1|−|At∗ |

)
such that Bm = Cm ∪Dm for

all m = 1, · · · , |At∗+1| − |At∗ |

– define A|At∗ |+m ≡ (At∗\{Bm})
⋃
{Cm, Dm} for each m = 1, · · · , |At∗+1|−

|At∗|.

The following two claims prove that the induced domain is covered by a sequentially

dichotomous domain and hence Theorem 6 implies what we want.

Claim 20 The sequence (At)
n
t=1 is a path.

By definition, A1 = {A} and An = {{a} : a ∈ A}, it suffices to show for each t ∈

{1, · · · , n−1}, At+1 is a direct refinement of At, i.e., there is exactly one block Ak ∈ At

and two blocks Ai, Aj ∈ At+1 such that Ak = Ai ∪Aj and for each Al ∈ At\{Ak} there

is Ai ∈ At+1 such that Al = Ai. This is obvious from the construction of (At)
n
t=1.
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Claim 21 Every preference P0 ∈ D(C,σ) observes every partition in the path (At)
n
t=1.

This is evident from the definition of lexicographically separable preferences and the path

(At)
n
t=1.
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E Two Necessary Preference Restrictions for the Ran-

dom Priority Rule to be sd-Efficient

The major virtue of random priority rule (RP henceforth) in theory is sd-strategy-

proofness. In realistic applications, it has additional desired properties. The first one is

that it is easy to implement. Since RP is a convex combination of deterministic allocations

induced by serial dictatorships, to implement it, the authority simply randomly draws an

order of agents and then implement the corresponding serial dictatorship. The second is

its transparency, which comes directly from the way it is implemented: once the order

of agents is settled down, agents just line up and each takes one object when it’s her

turn to do so. The third is that it is easily adjustable to context-born requirements. For

example, when we allocate offices to professors, a commonly adopted practice is that

senior professors should have higher priorities. To observe this requirement, it needs only

to exclude some orders from the pool of admissible orders.

However, RP has its major drawback: it is not ex ante sd-efficient (See Bogomolnaia

and Moulin (2001)), which causes strong opposition. After all, the major justification of

pursuing sd-strategy-proofness is that it makes it easily tractable to pursuing other desired

axioms, a major one of which is efficiency. So if it’s sure that RP is not sd-efficient, the

support of sd-strategy-proofness and hence RP itself is severely weakened.

However, RP being ex ante inefficient is built on the universal domain, which should

not be the case in realistic applications. In stead of allowing all possible preferences, a

reasonable assumption should be that agents preferences are intercorrelated in some way,

as addressed by Che et al. (2015). For example, within a particular school district, when

we observe that there are several parents who rank school 1 as the best and school 2 as

the worse, it seems impossible to have another parent who ranks school 2 over school 1.

Then a natural question is: is it possible that in reality the RP is actually sd-efficient?

To answer this question, we need to investigate the preference restrictions which in-

duce inefficiency for RP.
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E.1 Definitions and Notations

Let A denote the object set and I denote the agent set. Typical elements in A are

denoted a, b, x, y, and typical element in I are denoted i, j, l. We assume |A| = |I| = n >

426. A preference of agent on objects is a linear order on A and typically denoted as Pi.

By B(a, Pi) we mean the upper contour set of a in Pi, i.e., B(a, Pi) = {x ∈ A : xPia}.

A preference profile is a list of preferences, one for each agent. Given a preference profile

P , we refer to Pi as the preference of agent i. A random assignment, or a bi-stochastic

matrix, is denoted as L. In addition, Lia denotes the probability that agent i gets object a.

We focus on RP rule, which is a convex combination of serial dictatorships. By a

prior, we mean an order of agents, i.e., a one-to-one bijection σ : I → {1, · · · , n}. And

σ(i) = m means according to σ agent i is ranked as the m-th in I . Hence σ(i) < σ(j)

means according to σ agent i is ranked before j. Given a prior σ and a preference profile

P , we denote Pri(σ, P ) = a when the serial dictatorship defined by σ gives agent i object

a.

Definition 17 Given a pair of preferences, Pi and P̄i, we say they are adjacent if there

is an index 1 6 k < n and two objects x, y ∈ A such that rk(Pi) = rk+1(P̄i) = x,

rk+1(Pi) = rk(P̄i) = y, and B(x.Pi) = B(y, P̄i).

ranking: · · · k k + 1 · · ·

Pi : · · · · · · · · ·︸ ︷︷ ︸
B(x,Pi)

x y · · ·

||

P̄i :

B(y,P̄i)︷ ︸︸ ︷
· · · · · · · · · y x · · ·

(2)

When Pi and P̄i are adjacent through a reversal between x and y, we denote it by Pi ∼{xy}

P̄i.

Lemma 16 Let P be an arbitrary profile and L = RP (P ), for any i ∈ I and any a ∈ A,

Lia > 0 if and only if there is a prior σ such that Pri(σ, P ) = a,

26When n 6 3, RP is sd-efficient.
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Given a preference profile P and a random assignment L, we define a relation on A

as aτ(P,L)b⇔ ∃i ∈ I : aPib, Lib > 0.

Lemma 17 (Lemma 3 in Bogomolnaia and Moulin (2001)) The random assignment L

is sd-efficient at profile P if and only if τ(P,L) is acyclic.

Proof : Suppose τ(P,L) is a cycle, let

a1 τ(P,L) a2 τ(P,L) a3 · · · aK τ(P,L) a1

i1 i2 iK

where ik is the agent such that akPikak+1 and Likak+1
> 0.

By Lemma 16, there exists this cycle if and only if for each k = 1, · · · , K there is

a σk such that Prik(σk, P ) = ak+1 (let aK+1 = a1). For each k = 1, · · · , K, define

another (infeasible) matching µk such that µk(ik) = ak and µk(j) = Prj(σk, P ) for all

j 6= ik. Then it’s easy to see that {µ1, · · · , µK} dominates {Pr(σ1, P ), · · · , P r(σK , P )},

which is equivalent to saying that L is sd-inefficient at P , by Abdulkadiroğlu and Sönmez

(2003). �

E.2 Conditions

Condition 1 A domain D satisfies condition 1 if for any Pi, P̄i ∈ D and any x, y ∈ A

such that xPiy, yP̄ix and rk(Pi) = y, |B(x, P̄i)\B(x, Pi)| > n− k.

P̄i : · · · y · · ·︸ ︷︷ ︸
B(x,P̄i)

x · · · · · · · · ·

Pi :

B(x,Pi)︷ ︸︸ ︷
· · · · · · · · · · · · x · · · y · · ·

...
ranking: k

(3)

Condition 2 A domain D satisfies condition 2 if there exists no adjacent pair Pi, P̄i ∈ D .
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E.3 Results

The following two results showing that both Condition 1 and 2 are necessary for RP

to be sd-efficient. In other words, whenever either one of these two conditions is violated,

the RP rule is for sure inefficient.

Proposition 4 The RP is sd-efficient on a domain D only if D satisfies condition 1.

Proof : We prove the contrapositive statement. Let Pi, P̄i ∈ D be such that xPiy, yP̄ix,

and |B(x, P̄i)\B(x, Pi)| 6 n − k − 1, where rk(Pi) = y. Let P ∈ D I be a profile

such that agents i1, · · · , ik report Pi and agents ik+1, · · · , ik+(n−k) report P̄i. In addition,

denote L ≡ RP (P ). It sufices to show L is sd-inefficient at P .

Consider a prior σ1 : i1, · · · , ik, ik+1, · · · , ik+(n−k). According to σ1, agent ik takes y,

which givesLik,y > 0. Consider in addition another prior σ2 : i1, · · · , i|B(x,Pi)|−1, ik+1, · · · , ik+(n−k), · · · .

According to σ2, agents i1, · · · , i|B(x,Pi)|−1 takeB(x, Pi)\{x}. After that, agents ik+1, · · · , ik+(n−k)

take objects inB(x, P̄i)\B(x, Pi), if there are some remaining. Notice that it takes at most

n − k − 1 agents to take away B(x, P̄i)\B(x, Pi) and there are n − k agents waiting to

do so. Hence there must be an agent in ik+1, · · · , ik+(n−k) who takes x. That agent is ac-

tually ik+|B(x,P̄i)\B(x,Pi)|+1, which gives Lik+|B(x,P̄i)\B(x,Pi)|+1,x
> 0. Combining the above

two observations, we know L is sd-inefficient at P . �

Proposition 5 The RP is sd-effficient on a domain only if D satisfies condition 2.

Proof : We prove the contrapositive statement. Let Pi, P̄i ∈ D and two objects x, y ∈ A

such that x = rk(Pi) = rk+1(P̄i), y = rk+1(Pi) = rk(P̄i) for some k = 1, · · · , n− 1, and

B(x, Pi) = B(y, P̄i). To prove the statement, it suffices to show that there exists a profile

P which consists of only these two preferences and L ≡ RP (P ) is sd-inefficient at P .

When n is even, let P be a profile, according to which agents i1, · · · , in/2 report Pi

and the remaining agents, in/2+1, · · · , in, report P̄i.

If k 6 n/2, consider two order of agents σ1 and σ2 depicted in (4).

According to σ1, agents i1, · · · , ik−1 take the first k − 1 ranked objects. And after

this, agents in/2+1 and in/2+2 take y and x respectively. Hence we have Lin/2+2,x > 0.

135



According to σ2, agents in/2+1, · · · , in/2+(k−1) take the first k − 1 ranked objects. And

after this, agents i1 and i2 take x and y respectively. Hence we have Li2,y > 0. Combining

these two observations, we know L is sd-inefficient at P .

order: 1 · · · k − 1 k k + 1 · · ·
σ1 : i1 · · · ik−1 in/2+1 in/2+2 · · ·
σ2 : in/2+1 · · · in/2+(k−1) i1 i2 · · ·

(4)

If k > n/2 + 1, consider two orders of agents σ3 and σ4, where σ3(l) = il for all

l = 1, · · · , n, σ4(l) = in/2+l and σ4(n/2 + l) = il for l = 1, · · · , n/2. According to

σ3, agent ik+1 takes x, which gives Lik+1,x > 0. According to σ4, agent ik−n/2+1 takes

y, which gives Lik−n/2+1,y > 0. Combining these two observations, we know L is sd-

inefficient at P .

The case where n is odd can be verified similarly, we omit it here. �

Remark 13 Almost all domains in the voting literature violate the Condition 2: the

universal domain (Gibbard (1973)), linked domains (Aswal et al. (2003)), circular do-

mains (Sato (2010)), the single-peaked domain (Moulin (1980), Demange (1982)), the

single-dipped domain (Barberà et al. (2012)), maximal single-crossing domains (Sapor-

iti (2009)), generalized single-peaked domains (Nehring and Puppe (2007)), the multi-

dimensional single-peaked domain (Barberà et al. (1993)) and the separable domain (Bar-

berà et al. (1991)). Therefore, our impossibility result also prevails on these domains.

Unfortunately, these two conditions combined is not sufficient to guarantee efficiency,

as indicated by the following example.

Example 10 A domain which satisfies both conditions but gives a profile for which the

random priority is inefficient. Consider the following four preference. It’s easy to verify

that the domain consisting of these preferences satisfies both conditions.

P1 : c a b d

P2 : c b d a

P3 : d a c b

P4 : d b c a
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Let P = (P1, P2, P3, P4).

Consider prior σ : 2 < 4 < 3 < 1, we have Pr(σ, P ) = (b, c, a, d). Consider prior

σ′ : 1 < 3 < 4 < 2, we have Pr(σ′, P ) = (c, a, d, b). Then let L = RP (P ), we have

L1b > 0 and L2a > 0: L is inefficient at P .
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