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Abstract 

The unique configuration of the human clavicle and mastoid process suggests a functional 

connection between the head and shoulders in humans.  The hypothesis in this study is that the 

clavicle, scapula and head form a functional complex and are interconnected by the 

sternocleidomastoid and trapezius muscles.  In this complex, the trapezius muscles attach to the 

skull and become active when loads are carried.  The sternocleidomastoid muscles are anchored 

to the clavicles; when loads are being carried, they act as guy ropes for the head, thereby keeping 

the head from being extended by the force of the contracting trapezius muscles.  These muscle 

actions can be expected to leave evidence on the bones to which they attach, and this evidence 

could be measurable.  The hypothesis was tested by comparing the mensural and morphological 

bilateral asymmetries of 15 skeletal features, most of which would likely be affected by the 

functioning of this complex in individuals.  The hypothesis is supported by the results which 

show that four character pairs of the functional complex (i.e., rise of the superior nuchal line, 

width of the mastoid, breadth of the scapula, diameter of the humerus) display significant 

directional asymmetry in right-handed individuals; the sample size of left-handed individuals 

was too small to provide meaningful results.   
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1. Introduction 

 The mastoid process is much larger, relative to body size, in humans than in most other 

primates and mammals (Krantz, 1963).  The clavicle is also well-developed in humans (Trotter, 

1885).  Despite a number of studies on these subjects, the causes for these morphological 

distinctions of humans have not been resolved.  This research focuses on these morphologies as 

they are affected by mechanical loading. 

The robust mastoid process is a characteristic feature of the human skull (Krantz, 1963).  At 

birth, it is not yet formed, but becomes noticeable after a year or two (Leidy, 1883; Romanes, 

1964).  After a year, an infant is sitting upright, crawling or walking, holding up her own head, 

and using her hands in different activities.  Hence, the mastoid process appears to be related to its 

function as the attachment site of the sternocleidomastoid muscle, because the mastoid process 

provides a mechanical advantage to the muscle.  According to Krantz (1963), the simultaneous 

bilateral contraction of the sternocleidomastoid muscle returns the head that has been pulled 

backwards to a horizontal position.  If the sternocleidomastoid muscle attached directly to the 

skull surface, the contraction of the muscle would pull the neck forward, but the head would be 

pulled farther back.  The presence of the mastoid process, however, enables the 

sternocleidomastoid muscle to attach anterior to the axis of the atlanto-occipital joint, thereby 

allowing the head and neck to be pulled forward.  In a later article, Krantz (1980) considered the 

mastoid to be a part of a trait complex that evolved in connection with the evolution of spoken 

language.  He also suggested that the anterior placement of the mastoid process on the skull is a 

result of the elongation of the pharynx and the skull’s subsequent adaptations to match this 

elongation.  Neither of these studies of the mastoid process addresses its large size in humans. 
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The characteristically thick clavicle in humans acquires its s-shape in utero (Gardner, 1968; 

Black and Scheuer, 1996).  According to White (2000), the clavicle acts as a bony strut that 

keeps the shoulders from collapsing.  Inman and Saunders (1946) support the idea that the 

clavicle is important by suggesting that there is less stability in the loaded arm in extreme ranges 

of motion when an individual is without a clavicle or with a damaged one.  Other authors, 

however, disagree about the importance of the clavicle’s function.  Basmajian (1963) writes that 

the clavicle is no more than an artificial boundary between muscles.  Abbott and Lucas (1954) 

suggest that this boundary is not necessary; by stitching together the muscles that attach to the 

clavicle, the function of the shoulder would be basically unaffected.  Black and Scheuer (1996) 

support the previous authors by reporting that the clavicle, other than serving as an attachment 

site for muscles, is simply superfluous. 

Although the functions of the mastoid process and clavicle may be argued, they are 

connected by the sternocleidomastoid muscle and are integral parts of a structural complex, 

which includes the skull and the scapula and is named the cranio-cervico-omo-clavicular 

complex in this study.  In addition, the trapezius muscle is part of this complex, because it acts 

with the sternocleidomastoid muscle during movements of the head and neck (Simons et al., 

1999; Moore and Dalley, 2006), and attaches in part to the superior nuchal line of the skull and 

to the spine of the scapula.  The anterior scalene muscle is also discussed as part of this complex 

because it helps move and stabilize the neck and head while the arms and shoulders are moving.    

 Interestingly, the distinctive mastoid process and clavicle are great liabilities for humans 

under certain conditions.  For example, mastoiditis, an infection and inflammation of the air cells 

of the mastoid process, which are connected with the middle ear cavity, can damage the middle 

ear and facial nerve and even be life-threatening if left untreated (Moore and Dalley, 2006).  The 
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clavicle, in turn, can also be a liability.  Shoulder dystocia occurs when the wide shoulders, 

which are held apart by the clavicles, have difficulty passing through the birth canal (Al Hadi et 

al., 2001).  To get the shoulders through the birth canal, one arm of the baby often must be 

pulled out ahead of the other.  During this procedure, the nerves and blood vessels of the arm 

easily can be compressed between the clavicle and the first rib (Moore and Dalley, 2006) and 

paresis or spasticity of the arm muscles (Erb’s Palsy) may result (Pugh, 2000; Al Hadi et al., 

2001).  Considering that the mastoid process and clavicle in their present states can be serious 

liabilities, they must have a crucial function or they would have been eliminated or modified by 

natural selection in early humans.   

As a working hypothesis for this study, the mastoid process and clavicle in humans are 

surmised to be related to the development and evolution of erect posture and bipedality, in the 

course of which the shoulder girdle became essentially suspended from the skull.  As a result, 

when a load is lifted or carried, the shoulder girdle tends to be pulled down by the weight and has 

to be held in place and stabilized by the counteracting muscle force of the upper portion of the 

trapezius muscle.  Because of its orientation, the trapezius muscle also exerts a medial force, 

which, in turn, is counteracted by the clavicle to prevent the shoulder from being pulled 

medially.  The contraction of the trapezius muscle not only pulls the shoulder upwards, it also 

pulls the head backwards.  The sternocleidomastoid muscle, attaching on the clavicle and 

mastoid process, counteracts this force and keeps the head from being pulled back as a result of 

shoulder stabilization during the lifting or holding of weights. 

To test the validity of this hypothesis as an explanation for the large mastoid process and 

thick clavicle in humans, a natural experiment was designed that involves human handedness.  

The frequent, and often strenuous, preferential use of one arm over the other has visible effects 
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on the involved skeletal elements (Trinkaus et al., 1994; Kannus et al., 1995; Steele and Mays, 

2005; Ruff et al., 2006).  Hence, the lifting and carrying of loads and the related actions of the 

sternocleidomastoid and trapezius muscles should leave evidence of this activity on the bones to 

which they attach.  Because humans lift and carry objects frequently on a favored side, this 

preferential use can be expected to affect the involved bones unequally on each side.  This 

prediction can be tested by comparing the sizes of characters on the preferred side with those on 

the other side.  In doing this, the effects of the use of the arms and shoulders can be tested in the 

same individual. 

The expected results of this natural experiment are qualitative and quantitative bilateral 

asymmetries, of which there are three types: fluctuating asymmetry, antisymmetry, and 

directional asymmetry.  Fluctuating asymmetry describes the natural, random morphological 

asymmetry that is assumed to be caused by the random processes of development as opposed to 

being caused by function, such as the preferential use of one side (Van Valen, 1962). Bilateral 

asymmetry caused by function (e.g. handedness) is known as either antisymmetry or directional 

asymmetry (Van Valen, 1962).  Antisymmetry is random morphological asymmetry that would 

be found in populations (e.g. adult rhesus monkeys and some chimpanzees) where about 50% of 

the population shows a preference for one hand and the other 50% shows a preference for the 

opposite hand (Warren, 1953; Van Valen, 1962; McGrew and Marchant, 1992).  Directional 

asymmetry is non-random morphological asymmetry that would be found in populations (e.g. 

humans) where the majority of the population shows a preference for the same hand and arm 

over the other (Van Valen, 1962; Coren and Porac, 1977; Holder, 2008).   

The asymmetries from this sample will be analyzed to see if they could be evidence of the 

preferential use of one hand and arm.  If there is skeletal evidence of preferential hand use, then 
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there is some evidence that the cranio-cervico-omo-clavicular complex is a functional complex.  

Then, further research into this complex can be undertaken.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

6 

 

2. Materials and Methods 

2.1. Materials 

Features on 101 modern human skeletons from the William M. Bass collection at the 

University of Tennessee, Knoxville, were measured.  Only males were used, because their 

muscle attachment sites tend to be more pronounced than those of females and, therefore, easier 

to measure.  The sample included 93 white males, 6 black males, and 2 Hispanic males.  These 

individuals lived during the 20
th

 century and were donated to the collection between the years of 

2000 to 2005.  The majority of individuals (i.e., 86) were between the ages of 40 and 79, at the 

time of death.  Only individuals with intact skulls were included in the study.  Because the skull 

was always measured first (see below), some other missing or damaged skeletal elements were 

discovered later and certain features could not be measured.  Aside from the Bass skeletal 

collection, several individual bones from the Louisiana State University Physical Anthropology 

Cadaver collection were used in ascertaining the measurement error. 

2.2. Methods  

2.2.1 Quantitative Characters 

Measurements were taken in two rounds, with the first round comprising the skull and the 

second round comprising the other bones (i.e., clavicle, scapula, humerus, first rib, mandible and 

femur).  Measurement tools included a flexile tape measure, an osteometric board, and sliding 

calipers.  All measurements were taken once and reported to the nearest one tenth of a 

millimeter.  Unconventional measurements, such as the circumference of the mastoid process, 

were measured with a piece of moist twine.  The twine was marked with a pencil at the point 

where its wrapped ends met, thereby marking two points on the twine.  The twine was then 

straightened and measured from pencil mark to pencil mark with sliding calipers.  For this 
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measurement and the thickness of the scalene tubercle of the first rib, the average of three 

measurements was recorded. 

2.2.2. Selection of Measurements 

The mastoid process was observed as being obviously different when the left and right sides 

were compared (M. L. Osborn, unpublished data). Length is the only standard measurement for 

the mastoid process (Moore-Jansen et al., 1994), but the circumference at the base and the width 

were also measured in this study to get a better assessment of the possible effect of the 

attachment of the sternocleidomastoid muscle. 

The height and breadth of the scapula were also observed displaying bilateral asymmetry (M. 

L. Osborn, unpublished data).  Since the trapezius muscle attaches to the spine of the scapula, the 

length of the spine was chosen as an additional measurement.     

The diameter and circumference of the clavicle were selected as measurements because of 

the attachment site of the sternocleidomastoid muscle.  Most of the sternocleidomastoid muscle 

attachments sites were not rugose or robust, so they had to be estimated.   

The diameter of the humerus was selected because bilateral asymmetry in humeri has been 

attributed to the preferential use of one side (Schulter-Ellis, 1980; Stirland, 1993; Sládek et al., 

2007).  Since the head of the humerus is considered to be part of the shoulder girdle and would 

thereby be affected by shoulder moevement, the humerus should have measurable asymmetries 

caused by the muscles that attach on it: supraspinatus, infraspinatus, teres major and minor, 

pectoralis major, coracobrachialis, etc. (Pick and Howden, 1995).   

The mandible was selected as a bone presumably not related to the hypothesized complex 

and would, thereby, show the asymmetry that was found in the body that would not be related to 

preferential hand, arm and shoulder use.  The maximum height of the ascending ramus of the 
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mandible was selected because it involved measuring both sides of the mandible.  The condyle 

width was measured because bilateral asymmetry had been noticed in previous skeletal 

observations (M. L. Osborn, unpublished data). 

The diameter of the first rib at the scalene tubercle was selected because of its close 

proximity to the clavicle, but not initially considered to be part of the hypothesized complex. 

The circumference of the femur was selected as a feature presumably not related to the 

hypothesized complex because the legs are used evenly in everyday walking (Dusewicz and 

Kershner, 1969; Peters and Durding, 1979), even if some people show a preference for a 

particular side, such as always stepping first with the right leg.  Therefore, asymmetry in the 

femur would be less than in the upper body. 

2.2.3 Description of Measurements  

2.2.3.1. Mastoid Process 

 Length:  From the top of the external auditory meatus to mastoidale (i.e., the distal-most 

point of the mastoid process) at a 90 degree angle to the zygomatic arch as reported by 

Keen (1950:70; see also Giles and Elliot, 1963: 58-59; Moore-Jansen et al., 1994: 57).   

Circumference:  At the base of the mastoid process along the mastoid notch (i.e.,   

  digastric groove).   

Width:  From the posterior ridge of the external auditory meatus to the widest point of  

  the mastoid process where it blends with the rest of the skull. 

2.2.3.2. Scapula  

Height: From the inferior border of the scapula to its superior border (Hrdlička, 1920: 

130; Martin and Saller, 1959: 528; Montagu, 1960: 68; Olivier, 1969: 219; Moore-Jansen 

et al., 1994: 62;  Bass, 1995: 122). 
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Breadth: From the midpoint on the border of the glenoid fossa to the midpoint on the end 

  of the spine of the scapula (Hrdlička, 1920: 131; Martin and Saller, 1959: 528; Montagu,  

  1960: 68-70; Moore-Jansen et al., 1994: 62; Bass, 1995: 122).  

Length of Spine: From the tip of the acromion to the midpoint on the medial border of  

  the spine of the scapula (Bass, 1995: 122).  

2.2.3.3. Clavicle 

Diameter: At the level of the sternocleidomastoid muscle attachment site. 

Circumference: At the level of the sternocleidomastoid muscle attachment site. 

Length: From the medial end to the lateral end (Martin and Saller, 1959: 527; Olivier,  

  1969: 214; Moore-Jansen et al., 1994: 61; Bass, 1995: 131-132). 

2.2.3.4. Humerus  

Diameter: At mid-length (i.e., midshaft) (Moore-Jansen et al., 1994: 63-64).   

2.2.3.5. Mandible   

  Height of Ascending Ramus: From gonion (i.e., the point at the angle of the mandible)  

  to the superior-most point on the condyle (Moore-Jansen et al., 1994: 60; Bass, 1995: 84). 

Condyle Width: Maximal (transverse) width of the condyle. 

2.2.3.6. First Rib 

 

      Diameter: At the level of the scalene tubercle. 

2.2.3.7. Femur  

    Circumference: At mid-length (i.e., midshaft). 

2.2.4. Measurement Error 

 To ascertain measurement error, one specimen of each bone (i.e., cranium, clavicle, scapula, 

humerus, first rib, femur, and mandible) was selected from the Physical Anthropology Cadaver 
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Collection at Louisiana State University.   Each character was measured ten times on the same 

bone.  The standard deviation from these sets of measurements was used as the measurement 

error for each characteristic.   

2.2.5. Morphological Characteristics 

In addition to the measurements, one morphological difference was also recorded in a 

subsample of 11 individuals.  On the back of the skull, the obvious “m” shape of the superior 

nuchal line was recorded, because bilateral asymmetry was observed in several individuals.  One 

side of the “m” often rose higher and was straighter than the other side.  The frequency of the 

superior nuchal line within the population was analyzed qualitatively. Since the superior nuchal 

line was a non-mensural character, it was not included in the postulated asymmetry patterns, but 

was compared to the width of the mastoid process and handedness. 

2.3. Analysis of Bilateral Asymmetry 

2.3.1. Ascertaining Significance of Asymmetry Based on Function 

 For each character pair, the difference between the right and left measurement was 

computed.  This differential value was established by subtracting the right measurement from the 

left measurement.  For individuals with greater right measurements, the differential value was 

negative; for individuals with greater left measurements, the differential value was positive.  

Therefore, each differential value represented the degree of asymmetry in each individual 

character pair. If the differential value for a character pair was less than or equal to the 

measurement error, it was not considered significantly asymmetrical and removed from further 

analysis.   

In order to estimate the degree of asymmetry that reasonably could be assumed to be 

meaningful for each character pair, a threshold was established.  Because Coren and Porac 
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(1977) reported that right-handed individuals comprise approximately 90% of a population and 

left-handed individuals comprise the remaining approximate 10%, and because an internet search 

produced numbers ranging from 70% to 90% for right-handed individuals and 10% to 30% for 

left-handed individuals (Holder, 2008), a conservative 85% of individuals displaying an 

asymmetrical character pair was used as the threshold for meaningful asymmetry of a particular 

character pair.  Therefore, for each character, the percent of asymmetrical character pairs was 

established.  If this percentage was above 85%, then the asymmetry was assumed to be due to 

function (i.e., preferential use) and not to chance.    

The directions of asymmetry in these character pairs were then used to postulate left- and 

right-handed patterns (See results).  Since the majority of the subsample was right-handed, the 

majority direction of asymmetry was assumed to be indicative of right-handedness, irrespective 

of whether the greater side of the character pair was on the right or the left.  Conversely, the 

minority direction of asymmetry was assumed to be indicative of left-handedness.  These 

postulated patterns were then compared to the patterns of individuals (see Results). 

2.3.2. Analysis of Directional Asymmetries in Individuals of Known Handedness 

 The number of individuals displaying character pairs with asymmetry patterns in 

concordance with the postulated asymmetry patterns was tallied to show how well the individual 

asymmetry patterns were concordant with the postulated asymmetry patterns.  The number of 

individual character pairs with asymmetry patterns in concordance with the postulated 

asymmetry pattern was also tallied. 

2.3.3. Testing the Validity of the Postulated Asymmetry Patterns 

 The validity of the postulated asymmetry patterns was tested by comparing each individual’s 

asymmetry pattern to either the right- or left-handed postulated asymmetry pattern.  The 
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individuals were grouped according to how many of their character pairs expressed asymmetries 

that were concordant with those in the postulated asymmetry pattern.   

 Twenty-nine right-handed individuals and three left-handed individuals were missing one or 

more character pairs and, therefore, were not included in the tests of validity of the postulated 

asymmetry patterns. The asymmetry patterns of their available character pairs were used in the 

analysis of directional asymmetries in individuals of known-handedness. 
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3. Results 

3.1. Asymmetry Patterns of Characters 

The standard deviation from the 14 character pairs was used as the measurement error for 

each characteristic (Table 1). 

 

Table 1. Measurement error (standard deviation) for 

each character from the Physical Anthropology 

Teaching Collection at Louisiana State University. 

All measurements in mm.
 

Character Mean
 
+ SD 

Length of mastoid 30.5 + 1.1 

Circumference at base of mastoid 53.1 + 2.3 

Width of mastoid 19.0 + 0.4 

Height of scapula 152.1 + 0.5 

Breadth of scapula 109.2 + 0.3 

Length of scapular spine 160.4 + 10.4 

Diameter of clavicle 15.4 + 1.9 

Circumference of clavicle 52.4 + 5.9 

Length of clavicle 155.0 + 0.0 

Diameter of humerus 26.3 + 0.01 

Width of mandibular condyle 20.8 + 0.07 

Height of mandibular ramus 53.4 + 1.5 

Diameter of first rib 4.2 + 0.1 

Circumference of femur 87.2 + 0.7 

 

Seven of these character pairs show at least 85% of individuals from the Bass collection 

showing asymmetry greater than the measurement error: width of the mastoid process, length of 
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the clavicle, height of the scapula, breadth of the scapula, diameter of the humerus, width of the 

mandibular condyle, and diameter of the first rib.  Of these seven characters, five of them were 

significantly different: width of the mastoid process, length of the clavicle, breadth of the 

scapula, diameter of the humerus, and diameter of the first rib (Table 2).   

 

Table 2. Characters with > 85% of individuals showing asymmetry greater than 

measurement error and paired t-test results (two-tailed).  All measurements in mm.
1
 

Character Individuals 

Left mean + 

SD 

Right mean + 

SD 

P 

(two-tailed) 

  Width of mastoid process 101  21.8 + 3.6 22.7 + 3.6 < 0.001 

  Length of clavicle 87 158.3 + 8.3 157.0 + 9.5 0.033 

  Height of scapula 94 159.6 + 14.3 159.8 + 14.4 0.712 

  Breadth of scapula 95 106.7 + 16.3 105.9 + 16.2 < 0.001 

  Diameter of humerus  98 23.7 + 1.9 24.3 + 2.1 < 0.001 

  Width of mandibular condyle 100 20.2 + 3.7 20.0 + 3.8 0.297 

  Diameter of first rib  89 3.9 + 0.9 4.1 + 1.1  0.01 
1
Character pairs that are significantly asymmetrical are highlighted. Statistical significance is set as P < .05. 

 

In the sample of 101 individuals, a subsample of 62 individuals was of known handedness, 

with 54 individuals (87%) being right-handed and eight individuals (13%) being left-handed. 

This coincides with the proportions of 85% versus 15% that were used to select the meaningfully 

asymmetrical character pairs based on function (see above).  The means of the five characters 

were then compared for these individuals of known handedness.  Although only three character 

pairs displayed significant asymmetry in the subsample of individuals of known handedness, the 

means display the same direction of asymmetry as the entire sample (Table 3).  The direction of 

asymmetry for the means of each character pair for left- or right-handedness was then assembled 
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and used to postulate asymmetry patterns for left- and right-handed individuals.  These 

postulated patterns comprised the character pairs that were significantly different (Table 2) in 

this order: (1) width of the mastoid process; (2) length of the clavicle; (3) breadth of the scapula; 

(4) diameter of the humerus; and (5) diameter of the first rib.     

 

Table 3. Paired t-test results (two-tailed) for subsample of individuals of known 

handedness. All measurements in mm.
1
 

Character Individuals 

Left mean + 

SD 

Right mean + 

SD 

P 

(two-tailed) 

  Width of mastoid process 53 21.1 + 3.6 22.7 + 3.6 < 0.001 

  Length of clavicle 55 156.9 + 8.2 156.2 + 9.7 0.354 

  Breadth of scapula 54 108.9 + 5.4 108.0 + 6.0 < 0.001 

  Diameter of humerus 59 23.7 + 1.8 24.6 + 2.0 < 0.001 

  Diameter of first rib 48 3.9 + 1.0 4.1 + 0.9 0.064 
1
Character pairs that are significantly asymmetrical are highlighted. Statistical significance is set as   

P < .05. 

 

For each individual, the direction of asymmetry for each character pair was represented by an 

“R” or an “L”.  For example, an “R” represents that the mean for that character pair was 

directionally asymmetrical toward the right side.   An “L” represents that the mean for that 

character pair was directionally asymmetrical on the left side.   Therefore, the right-handed 

postulated asymmetry pattern is represented as RLLRR and the left-handed postulated 

asymmetry pattern is represented as LRRLL.      

3.2. Overview of Individual Variability in Asymmetry 

 Twenty-nine right-handed individuals and three left-handed individuals were either missing 

measurements for character pairs or had one or more differential values from characters pairs 

that were below the measurement error (Tables 4 and 5).  These individuals did not display 
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complete asymmetry patterns and, therefore, their individual asymmetry patterns were not 

compared to the postulated asymmetry patterns.   

 

Table 4. Asymmetry patterns of right-handed individuals with incomplete sets of character 

pairs in comparison with the right-handed postulated asymmetry pattern.
1 

Number of 
concordance 

Number of 
individuals 

ID 
number 

 
Width of 
mastoid 
R 

 
Length of 
clavicle 
L 

 
Breadth of 
scapula 
L 

Diameter 
of 
humerus 
R 

 
Diameter 
of first rib 
R 

4 2 42, 69      

1 92      

2 48, 59      

1 67      

3 2 32, 62      

2 28, 33      

1 10      

1 34      

1 38       

1 60      

1 61      

1 78      

1 86      

2 1 18      

1 35      

1 66      

1 76      

1 87      

1 97      

1 1 3      

1 37      

1 54      

1 75      

1 82      

1 89      
1
Dark grey squares represent character pairs that are in concordance with the right-handed postulated asymmetry 

pattern.  White squares represent character pairs that are not in concordance with the right-handed postulated pattern.  

Vertically-striped squares represent character pairs that are missing.  Diagonally-striped squares represent character 

pairs in which the differential value was below the measurement error. 
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Table 5. Asymmetry patterns of left-handed individuals with incomplete sets of character 

pairs in comparison with the left-handed postulated asymmetry pattern.
1 

Number of 
concordance 

Number of 
individuals 

ID 
number 

Width of 
mastoid 
L 

Length of 
clavicle 
R 

Breadth 
of scapula 
R 

Diameter 
of 
humerus 
L 

Diameter 
of first rib 
L 

2 1 13      

1 93      

1 100      
1
Dark grey squares represent character pairs that are in concordance with the left-handed postulated asymmetry 

pattern.  White squares represent character pairs that are not in concordance with the left-handed postulated pattern.  

Vertically-striped squares represent character pairs that are missing.  Diagonally-striped squares represent character 

pairs in which the differential value was below the measurement error.  

 

 
Among individuals who were known to be right-handed, 71% (32 of 45) show asymmetry in 

the mastoid process concordant with the postulated pattern for right-handed individuals (Fig. 1).  

The corresponding percentages for the other characters are 60% (28 of 47) for the clavicle, 72% 

(34 of 47) for the scapula, 92% (47 of 51) for the humerus, and 57% (24 of 42) for the first rib.  

 Among individuals who were known to be left-handed, 50% (four of eight) show asymmetry 

in the mastoid process concordant with the postulated pattern for right-handed individuals (Fig. 

1).  The corresponding percentages for the other characters are 63% (five of eight) for the 

clavicle, 43% (three of seven) for the scapula, 63% (five of eight) for the humerus, and 50% 

(four of eight) for the first rib.  

 The asymmetry patterns of the character pairs of the right-handed individuals (Fig. 2) are 

variably concordant with one to five character pairs of the postulated asymmetry pattern.  

Among individuals who were known to be right-handed, 76% (20 of 25) display asymmetry 

patterns with two, three or four of the character pairs being concordant with the right-handed 

postulated asymmetry pattern.  Only 20% (five of 25) of these individuals display asymmetry 
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patterns with five character pairs being completely concordant with the right-handed asymmetry 

pattern.  

 

   
Figure 1. Number and percentage of character pairs from right-handed  

individuals (taller, left columns, black) and left-handed individuals (lower, right  

columns, grey) whose asymmetry is concordant with the asymmetry of particular  

character pairs established in the right- and left-handed postulated asymmetry  

patterns, respectively.  

 

The asymmetry patterns of the character pairs of left-handed individuals (Fig. 2) are variably 

concordant with two or three character pairs of the postulated asymmetry pattern.  Among 

individuals who were known to be left-handed, 40% (two of five) display asymmetry patterns 

with two character pairs being concordant with the left-handed asymmetry pattern.  The 

remaining 60% (three of five) display asymmetry patterns with three character pairs being 

concordant with the left-handed asymmetry pattern.     

 



 

19 

 

   
Figure 2. Number of right-handed individuals (taller, left columns, black) and  

left-handed individuals (lower, right columns, grey) displaying asymmetry patterns  

with a particular number (1-5) of character pairs being concordant with the right-  

or left-handed postulated asymmetry patterns, respectively.   

 

3.3. Asymmetry Patterns in Right-handed Individuals 

Concordance of all five asymmetrical character pairs (i.e., width of the mastoid process, 

length of the clavicle, breadth of the scapula, diameter of the humerus, and diameter of the first 

rib) with the postulated asymmetry pattern of five character pairs is displayed by only five (i.e., 

ID numbers 8, 46, 70, 74, and 84) out of the 25 right-handed individuals (Fig. 2 and Table 6).  

Among the right-handed individuals showing concordance with four, three, and two 

characters with that of the postulated pattern, there is a variation among individuals in which 

characters are concordant.  For example, among the individuals with four concordant character 

pairs, four individuals show discordance with the diameter of the first rib, two show discordance 
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with length of the clavicle, two show discordance with breadth of the scapula, and one shows 

discordance with diameter of the humerus (Table 6). 

 

Table 6. Asymmetry patterns of right-handed individuals in comparison with the right-

handed postulated asymmetry pattern.
1 

Number of 

concordance 

Number of 

individuals 

ID 

number 

Width of 

mastoid 

 

R 

Length 

of 

clavicle 

L 

Breadth 

of 

scapula 

L 

Diameter 

of 

humerus 

R 

Diameter 

of first rib 

R 

5 5 
8, 46, 70, 74, 

84 
     

4 

4 4, 30, 43, 72      

2 20, 36      

2 29, 64      

1 91      

3 

2 2, 51      

1 49      

1 79      

1 88      

2 

3 31, 57, 65      

1 44      

1 19      

1 39      
1
Dark grey squares represent character pairs that are in concordance with the right-handed postulated asymmetry 

pattern.  White squares represent character pairs that are not in concordance with the right-handed postulated 

pattern. 

 

3.4. Asymmetry Patterns in Left-handed Individuals  

 The sample size of left-handed individuals is too small for meaningful results.  Still, the 

available data are intriguing.  None of the left-handed individuals display concordance of all five 

or even four significantly asymmetrical character pairs (i.e., width of the mastoid process, length 

of the clavicle, breadth of the scapula, diameter of the humerus, and diameter of the first rib) 

with the postulated asymmetry pattern of five character pairs (Fig. 2 and Table 7). 
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Table 7. Asymmetry patterns of left-handed individuals in comparison with the left-handed 

postulated asymmetry pattern.
1 

Number of 

concordance 

Number of 

individuals 

ID 

number 

Width of 

mastoid 

 

L 

Length 

of 

clavicle 

R 

Breadth 

of 

scapula 

R 

Diameter 

of 

humerus 

L 

Diameter 

of first rib 

 

L 

3 

1 7      

1 5      

1 68      

2 
1 63      

1 58      
1
Dark grey squares represent character pairs that are in concordance with the left-handed postulated asymmetry 

pattern.  White squares represent character pairs that are not in concordance with the left-handed postulated pattern. 

 

 Among the left-handed individuals showing concordance with three and two characters with 

that of the postulated pattern, there is a variation among individuals in which characters are 

concordant.  For example, among the individuals with three concordant character pairs, one 

individual shows discordance with diameter of the humerus and diameter of the first rib, one 

shows discordance with breadth of the scapula and diameter of the humerus, and one shows 

discordance with width of the mastoid and breadth of the scapula (Table 7). 

3.5. Asymmetry Patterns Involving the Superior Nuchal Line, Mastoid Process, and 

       Handedness 

 

The rise of the superior nuchal line was the one non-mensural character in this study and, 

therefore, could not be included in the postulated asymmetry pattern.  Still, the rise of the 

superior nuchal line shows directional asymmetry (Fig. 3A) in right-handed individuals, which 

parallels the directional asymmetry of the width of the mastoid process.  The sample size of the 

rise of the superior nuchal line in left-handed individuals (Fig. 3B) is too small for  meaningful 

results.      

The asymmetry pattern observed in the rise of the superior nuchal line was compared in nine 

right-handed individuals to the asymmetry pattern observed in the width of the mastoid process 
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and their handedness (Fig. 3A).  In eight of the nine right-handed individuals (i.e., ID numbers 8, 

9, 28, 43, 49, 60, 69, and 86), the asymmetry pattern of the superior nuchal line matches the 

asymmetry pattern of the width of the mastoid process and their handedness.  In one of the nine 

right-handed individuals (i.e., ID number 34), the asymmetry of the superior nuchal line matches 

the width of the asymmetry of the mastoid, but not his handedness. 

     

 
 Figure 3. Asymmetry patterns of the width of the mastoid process (left column, dark blue) 

 and the rise of the superior nuchal line (right column, green) for right-handed individuals  

 (A) and left-handed individuals (B).  Identified by ID numbers. 
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4. Discussion 

4.1. Significance of Asymmetries 

The preferential use of one side over the other will be evidenced on the involved skeletal 

structures (Trinkaus et al., 1994; Kannus et al., 1995; Steele and Mays, 2005; Ruff et al., 2006).  

This is known as bilateral asymmetry. When the majority of individuals in a human population 

preferentially use the right hand and arm, they display directional asymmetry (Van Valen, 1962; 

Coren and Porac, 1977; Holden, 2008) and, thus, they show non-random morphological 

asymmetry toward the right side. 

 Although all of the character pairs in this study were selected based on functional 

considerations to test a working hypothesis, seven out of 14 character pairs displayed a degree of 

asymmetry that was not above the measurement error.  However, five of the character pairs 

displayed asymmetry that was above the measurement error and also significantly directional.  A 

sixth, non-mensural character pair also displayed directional asymmetry.  These six character 

pairs predicted right-handedness to varying degrees.  Four of the characters had 70% or more of 

right-handed individuals displaying asymmetry toward the same side: rise of the superior nuchal 

line, breadth of the scapula, diameter of the humerus, and width of the mastoid.  Two of the 

asymmetrical character pairs displayed weaker directional asymmetry, with more than 50% but 

less than 70% of right-handed individuals displaying asymmetry towards the same side: length of 

the clavicle and diameter of the first rib.  However, the asymmetries observed in these six 

character pairs can be explained in causal terms.   

4.2. Significance of Asymmetry in the Superior Nuchal Line and Scapula  

 Among the character pairs showing directional asymmetry, the comparably high degree of 

asymmetry of the rise of the superior nuchal line, width of the mastoid process and the breadth of 
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the scapula indicate that a functional relationship may exist.  This hypothesis is supported by the 

trapezius muscle, which attaches on the medial third of the superior nuchal line of the skull and 

along the spine of the scapula (Pick and Howden, 1995).  The trapezius muscle, however, is a 

complex muscle with at least three portions and several different attachments and, for this 

reason, may affect the morphology of several characters but to varying degrees.   

 Generally, the trapezius muscle suspends, elevates, and supports the scapula, especially when 

a load is carried in a hand or applied directly to the shoulder (Basmajian, 1980; Pick and 

Howden, 1995).  More specifically, according to Basmajian (1979), Cartmill et. al. (1987), Biel 

(2001), and Moore and Dalley (2006), the upper portion of each trapezius muscle elevates the 

scapula.  The left and right upper trapezius muscles extend the head and neck when contracting 

together, but when contracting individually, they flex the head and neck to the left or right side, 

respectively, or rotate the head and neck to the opposite side (Biel, 2001).  They also elevate the 

scapula and rotate it superiorly.  When contracting together, the left and right middle portions of 

the trapezius muscles fix the scapula in place (Basmajian, 1979; Biel, 2001).  When contracting 

individually, the left and right middle trapezius muscles each adduct a scapula (Basmajian, 1979; 

Biel, 2001; Moore and Dalley, 2006). The lower portions of the trapezius muscles depress each 

scapula (Basmajian, 1979; Cartmill et. al. 1987; and Biel, 2001).  The lower trapezius muscles 

also act with the upper trapezius muscles in rotating the scapula (Moore and Dalley, 2006). 

4.3. Significance of Asymmetry in the Humerus 

  The directional asymmetry of the diameter of the humerus at the midshaft indicates that it is 

causally related to the cranio-cervico-omo-clavicular complex, because it lies just beneath the 

attachment site of the deltoid muscle (i.e., deltoid tuberosity).  The deltoid muscle also attaches 

to the clavicle and the scapula, so that it pulls on the humerus and abducts it during the lifting of 
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objects (Pick and Howden, 1995).  Since one side is often used preferentially during this activity, 

asymmetry in this character can be expected.  

 Because a load on the arm exerts tension on the humerus, which is pulled toward the 

shoulder joint by the deltoid muscle, one would expect that the length of the humerus would also 

show directional asymmetry.  Indeed, this prediction is confirmed by the observations of 

Schulter-Ellis (1980) and Steele and Mays (2005).  This idea, however, occurred after the 

original data had been analyzed and interpreted, so the asymmetry of the length of the humerus 

in this sample remains to be assessed. 

4.4. Significance of Asymmetry in the Mastoid Process 

 The directional asymmetry of the width of the mastoid process points to some underlying 

mechanical causes, in particular because it serves as attachment site for at least part of the 

sternocleidomastoid muscle.  The sternocleidomastoid muscle, like the trapezius muscle, is a 

complex muscle.  It consists of a sternal portion and a clavicular portion.  The sternal portion 

attaches to the sternum and the mastoid process.  The clavicular portion attaches to the clavicle 

and partly to the mastoid process, extending backwards onto the occipital region of the skull at 

the level of the superior nuchal line (Pick and Howden, 1995).  According to Simons et al. 

(1999) and Biel (2001), the left and right sternocleidomastoid muscles bend the head forward 

when contracting at the same time, but when they contract separately, they flex the head and 

neck to the left or right side, respectively, or rotate them to the opposite side.  The 

sternocleidomastoid muscle, however, acts with the trapezius muscle. According to Simons et al. 

(1999), the sternocleidomastoid muscle counteracts and “checkreins” the trapezius muscle when 

the head and neck are tilted back, so that the head is stabilized and does not fall backwards.   
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 The sternocleidomastoid and trapezius muscles not only perform closely coordinated actions, 

but also are innervated by the accessory nerve (i.e., cranial nerve XI), develop from the same 

embryonic primordium, and are located in the same fascial pocket (Cartmill et al., 1987).  These 

two muscles also run along the same level of the skull: the attachment of the sternocleidomastoid 

muscle runs along the mastoid process onto the skull and toward the attachment of the trapezius 

muscle (Pick and Howden, 1995).       

 The trapezius muscle pulls on the back of the skull at the superior nuchal line during every 

motion of the shoulder, and the sternocleidomastoid muscle acts as a guy rope that is anchored to 

the clavicle to stabilize the head during shoulder movements.  For example, when an individual 

carries a load in each hand, the weight of the loads exerts a downward pull on the shoulders, but 

the trapezius muscles pull the shoulders upward at the same time so that the shoulders are held in 

place.  Normally, the head does not extend at this time, even though the trapezius muscle exerts a 

backward pull on it, because the sternocleidomastoid muscles are counteracting this pull by a 

forward force, thereby holding the head in place.  When an individual carries a load only in one 

hand, however, the one-sided load must be counterbalanced by bending the body toward the 

opposite side to maintain overall balance.  In healthy individuals, this is achieved by the core 

vertebral muscles that move and stabilize the vertebral column.  Then the sternocleidomastoid 

and trapezius muscles are free to move the shoulder girdle independently from and relative to the 

vertebral column (personal communication with D. G. Homberger; see also Moore and Dalley, 

2006).  This scenario is supported by the results that only the width of the mastoid process is 

directionally asymmetrical, but not its length in this study.  If the sternal portion of the 

sternocleidomastoid muscle is not influenced by shoulder movements while stabilizing the head, 

the length of the mastoid process would be less likely to be asymmetrical.  The clavicular 
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portion, in contrast, is influenced by shoulder movements.  Therefore, asymmetry in its 

attachment sites on the mastoid process and superior nuchal line would be expected.  While this 

is observed in the directional asymmetry of the width of the mastoid process, this is not the case 

for the attachment on the clavicle where the diameter was measured.  This lack of quantifiable 

asymmetry in this character may be an artifact of the measuring method which required 

estimation of the attachment site because its rugosity was often barely noticeable.  

4.5. Significance of Asymmetry in the Clavicle 

The left clavicle of humans is usually longer than the right one (Parsons, 1916; Schultz, 

1937; Huggare and Houghton, 1995; Mays et al., 1999; Andermahr et al., 2007).  The current 

study confirms this observation, but the percentage of directional asymmetry in this character 

pair is less than in the humerus.  One could be tempted to tie the observation that the majority of 

people have a longer left clavicle to the fact that the majority of individuals are right-handed. 

However, the degree of asymmetry in the length of the clavicle only matched the asymmetry 

pattern of this character in the postulated right-handed asymmetry pattern (i.e., the left clavicle 

being longer in right-handed individuals) in a little over half (58%) of the right-handed 

individuals in the current study .  Hence, asymmetry in this character pair is not a strong or 

reliable predictor of handedness.  

The weak directional asymmetry observed in the length of the clavicle in right-handed people 

can be explained within the context of the biomechanics of the cranio-cervico-omo-clavicular 

complex.  Because the fibers of the trapezius muscle are oriented obliquely from the shoulder to 

the superior nuchal line of the head, when the trapezius muscle is contracting, it generates a force 

that elevates the scapula and also tends to compress the clavicle (see Mays et al., 1999).  In these 

conditions, the clavicle acts like a spoke in a wheel.  However, while the trapezius muscle 
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contracts for virtually all shoulder movements, the clavicle is not necessarily under compression 

during all of them.  For example, the clavicle is not compressed when the shoulder is retracted or 

abducted.  Therefore, the length of the clavicle would be expected to be less strongly 

asymmetrical in right-handed individuals than the rest of the significantly asymmetrical character 

pairs in this study.    

The diameter of the clavicle at the sternocleidomastoid attachment site, where the clavicular 

portion of the muscle attaches, was also measured and found not to be asymmetric.  The reasons 

for this lack of asymmetry are discussed in section 4.4. 

4.6. Significance of Asymmetry in the First Rib 

 The diameter of the first rib was originally selected as a measurement that was expected, for 

functional reasons, to be essentially symmetrical and, therefore, could be used as a standard 

against which to measure the degree of asymmetry in other measurements that were expected to 

be asymmetrical.   Contrary to this expectation, however, the diameter of the fist rib turned out to 

be significantly asymmetrical.  This asymmetry is most likely related to the function of the 

scalene muscle that attaches on the first rib where the diameter was measured.  

 The scalene muscle, like the trapezius and sternocleidomastoid muscles, is a complex 

muscle.  It has three portions that attach to the cervical vertebrae and the first two ribs, but only 

the portion attaching to the first rib will be discussed further (Pick and Howden, 1995).  The 

weak directional asymmetry observed in the diameter of the first rib in right-handed people can 

be explained within the context of the biomechanics of the cranio-cervico-omo-clavicular 

complex.  This portion (i.e., the anterior scalene) attaches to the 3
rd

, 4
th

, 5
th

, and 6
th

 cervical 

vertebrae and to the scalene tubercle on the first rib.  As described above (see section 4.4), the 

anterior scalene is one of the core vertebral muscles that moves and stabilizes the vertebral 
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column when the head and neck are bent to one side in order to counteract the force produced by 

a load carried in only one hand (personal communication with D. G. Homberger; see also Moore 

and Dalley. 2006).  As with the clavicle, the anterior scalene muscle is not necessarily activated 

in every shoulder movement.  Therefore, the diameter of the first rib would be expected to be 

less strongly asymmetrical in right-handed individuals than the rest of the significantly 

asymmetrical character pairs in this study.    

4.7. Patterns of Asymmetry and the Cranio-cervico-omo-clavicular Complex 

 Each character that is part of a significantly asymmetrical character pair in this study (i.e., 

rise of the superior nuchal line, breadth of the scapula, diameter of the humerus, width of the 

mastoid process, length of the clavicle, and diameter of the first rib) displayed directional 

asymmetry and was shown to be connected through the actions of the trapezius, 

sternocleidomastoid and scalene muscles during movements of the shoulder and arm, at least in 

right-handed individuals.  This observation provides support for the existence of the postulated 

cranio-cervico-omo-clavicular complex.   

 The data for right-handed individuals show that six characters were directionally 

asymmetrical.  The data for left-handed individuals, however, were not informative with respect 

to directional asymmetry for several reasons.  First, the subsample of left-handed individuals was 

small, with only eight individuals.  This sample is too small to be meaningful.  Future studies of 

a larger sample may reveal whether the lack of concordance between the character pairs in left-

handed individuals and the postulated asymmetry pattern in this study is due to the small sample 

size or to the fact that left-handed individuals generally have to conform to an environment that 

is built for right-handed people (Holder, 2008). 
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 The observation (at least for the right-handed individuals of this study) that some character 

pairs varied in the concordance of their asymmetry pattern with the postulated asymmetry pattern 

may be explained by the variability of the frequency and intensity of physical exercise among 

individuals, especially in the increasingly sedentary people of the U. S. A.  Many individuals 

likely have a limited range and frequency of movement and may, therefore, exhibit little 

directional asymmetry in their character pairs.   

 The working hypothesis for this study suggested that the unique shape and size of the 

mastoid process and clavicle in humans developed and evolved in response to the development 

and evolution of erect posture and bipedality, in the course of which the shoulder girdle 

essentially became suspended from the skull.  This suspension of the shoulder girdle allows the 

arms to move independently from the rest of the body.  The conjecture that the mastoid process 

and clavicle, as well as several other structures, are related by function within the cranio-cervico-

omo-clavicular complex is supported by some of the results from this study.  Many of the 

original characters that were measured were not significantly different or did not exceed the 

measurement error and, therefore, were not used for further analysis.  This does not mean that 

these characters are not involved with the cranio-cervico-omo-clavicular complex.  Their exact 

relationship within the complex is not yet known.  Future tests of this hypothetical complex will 

be geared toward a more complete understanding of the manner in which all relevant structures 

are functionally related.   

 The results from this current research show that, in right-handed individuals, there is 

evidence of a functional relationship between the head and shoulders.  This functional 

relationship is evidenced in the asymmetries in the width of the mastoid process, rise of the 

superior nuchal line, diameter of the humerus, and breadth of the scapula.  
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