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ABSTRACT 
 

 

This thesis presents a study of LIBOR1 market model calibration. In 

particular, the study builds on the prevailing calibration methodologies in an attempt 

to find a method that simultaneously recovers implied volatility and forward rate 

correlations structures from market prices of plain vanilla options.  In order to 

ensure that complex derivative pricing and hedging requirements are jointly 

addressed, the study extends the performance analysis of calibration methods from a 

static level of goodness-of-fit with market prices test, to a dynamic level of 

approximation to next period’s LIBOR dynamics when tested on a series of market 

prices.   

 

Among the methodologies considered, the results show that for caplets, full 

calibration results in least pricing error when tested on an intra-day pricing 

prediction, and generates a stable evolution of day-to-day implied volatility.  For 

swaptions, analytic approximation provides better estimate on an intra-day pricing 

but Monte Carlo simulation with parametrized correlations matrix provides a stable 

evolution of volatility and correlation (or covariance).  This approach for swaptions 

calibration outperforms the other methods used despite the modifications made in 

volatility and initial thetas2 specifications.   

 

All together, the results suggest that the Monte Carlo method with 

parametrized correlations appear to be superior as it provides smooth evolution of 

covariance of forward rates that is desired in complex derivative pricing and 

hedging.   

 

                                                 
1 LIBOR stands from London Interbank Offer Rate.  LIBOR has become a standard term for the 
quoted interest rate at which a particular bank is willing to make a large wholesale deposit.   
 
2 Parameters for the correlations matrix based on Rebonato’s volatility specification expressed in 
spherical coordinates.  

  - 1 -



1 INTRODUCTION 

   

Perhaps a most interesting development in finance is the emergence of exotic 

options and structured products that paved the way for more advanced risk 

management techniques.   Further, the growing liquidity of plain vanilla derivatives 

has elevated hedging techniques to a level that goes beyond the assumed linear 

relationship between an option and its underlying asset (delta hedging).  These 

developments have spawned a two-fold challenge in the finance industry – that of 

pricing and hedging.    

 

The pricing of exotic interest rate products hinges on interest rate process 

with parameters that are calibrated according to existing market prices of related 

interest rate products.  This thesis improves on prevailing studies by extracting 

information on implied volatilities as well as implied correlations from frequently 

traded caps and swaptions.  In addition, in order to ensure that pricing and hedging 

requirements are satisfied, we extend the performance analysis to a dynamic level by 

investigating the goodness-of-fit when tested on a one-month time series of market 

prices.  We motivate this research as follows. 

 

 Among the financial markets, the interest rate market and currency market 

are the most dynamic in terms of exotic derivative trading; and among derivatives, 

pricing interest rate exotics remains the most challenging.  This is due to the fact that 

interest rates underlie the concepts used in assets or future claims valuation.  Hence, 

how interest rates will behave in the future remains a widely-researched topic in 

finance.  Despite the extensively researched literature, the notion of interest rate 

dynamics modeling continuously evolves in response to the changing needs of the 

markets.    Recently, the use of models by complex derivative traders for pricing and 

hedging has shifted the emphasis in modeling from one that simply accounts for the 

features of the underlying variable to one that effectively recovers the prices of plain 

vanilla options.  

 

The challenge of complex derivatives pricing is brought about by the need of 

models to formulate arbitrage-free prices.  Prevailing pricing practice among traders 
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hinges on the notion of market efficiency such that inputs to models that are implied 

from liquidly traded options are preferred over statistically estimated parameters.  In 

addition, emerging complex derivatives rely on the joint realization of underlying 

rates such that models that allow for changes in the shape of the underlying yield 

curve are preferred.  Traders’ pricing needs have heightened their interest in the 

ability of a model to accurately describe the behavior of the parameters as implied 

by market prices of standard options.  

 

Aside from pricing, equally important are the practices of joint delta-gamma 

and vega hedging triggered by the increased volatility of plain vanilla options, 

specifically caps and swaptions in interest rate markets.  Ease in trading these 

options has encouraged traders to include them in the set of hedging instruments.  

The challenge in hedging lies in the appropriate choice of model inputs such that 

today’s market prices are recovered while tomorrow’s model dynamics (i.e. 

volatility and correlation) will produce plain vanilla prices as close as possible to the 

market prices.  This implies that the best model for hedging purposes does not only 

recover current prices but likewise approximates tomorrow’s model’s inputs.  The 

widely-accepted Black-Scholes model in the market is inadequate since vega 

hedging involves neutralizing the sensitivity of an instrument to fluctuations in 

volatility that Black-Scholes model assumes to be constant.   

 

Because of the joint industry practice of complex derivative pricing and 

hedging, traders have resorted to the so-called “relative approach” in creating 

arbitrage-free prices and correct hedging position.  Relative pricing approach entails 

estimating the dynamics (i.e. volatility and correlation) of the underlying financial 

variables that influence the prices of an instrument. The challenge therefore is to 

choose the best model and employ a calibration methodology such that the 

objectives of pricing and hedging are jointly addressed.   

 

Among the models on term structure of interest rates, the LIBOR market 

model is built within a framework appropriate for the above pricing and hedging 

issues. Being a Heath-Jarrow-Merton type of model, LMM is defined by the 

volatilities imposed on various rates.  Further, LMM affords a methodology that is 

built around market observable variables and is consistent with the Black formula in 
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pricing two standard interest rate options – caps and swaptions.  Thus, after a 

rigorous derivation of the Black formula based on interest rate dynamics, LMM 

provides a model by which market information on the behavior of interest rate 

dynamics can be extracted.  These features of LMM earned the model a “market 

model” title. 

 

The first step when using the LMM is to appropriately choose the volatilities 

of the interest rates.  Since LMM is formulated under a forward risk neutral world, 

the volatility as given by the model is a forward volatility.  Hence, the volatilities as 

given by LMM define the evolution or dynamics of market volatilities of interest 

rates.  In addition, an important characteristic of LMM is that it helps achieve 

decorrelation3 among forward rates by finding a most effective way of redistributing 

the variance of forward rates over time (Brigo and Mercurio, 2001).   LMM 

improves on the short rate models4 which imply perfectly correlated forward rate 

dynamics.   Thus, fundamental in using LMM is the determination of these two 

structures: volatility and correlation.  This process is called calibration.  These 

parameters allow traders to introduce changes in the shape of the yield curve that are 

useful in complex derivatives pricing and hedging.    

 

With the benefits afforded by LMM, complex derivatives pricing and 

hedging problem simply boils down to choosing a calibration methodology such that 

the desired characteristics of the dynamics of interest rates are recovered.  Several 

calibration methodologies have been proposed in an attempt to address the above 

issues.  However, most of the studies are limited to model calibration to caplets and 

an exogenously defined correlations matrix.  Further, prevailing methodologies were 

evaluated on their static performance as the fit is mainly tested on today’s prices.     

For pricing and hedging purposes, especially for vega hedging, this is insufficient 

since future re-estimation would have to be done to ensure that vega hedge position, 

given today’s volatilities, is correct.  This thesis therefore attempts to address this 

gap in the literature of calibration.   

 

 
                                                 
3 This means lowering the correlation of forward rates. 
4 Examples of short rate models are the Hull-White and Black-Karasinski models.  
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1.1 Background 
 

The main challenge in the calibration of the LIBOR market model lies in the 

correct specification of the instantaneous volatilities of forward rates such that 

decorrelation among forward rates is achieved.  

 

 Several specifications from non-parametric to parametric approach have 

been formulated in an attempt to effectively capture the market observed dynamics 

as discussed in Brigo and Mercurio (2001).  Although the non-parametric approach 

is preferred due to its high degree of freedom, the choice of volatility specification is 

greatly influenced by a trader’s beliefs on how the market behaves as well as the 

prices of the standard interest rate options.  Non-parametric approach also poses 

minimization problems as the number of unknown parameters becomes large and 

impossible to estimate given that the number of forward rates alive may not be 

sufficient.   

 

Due to the dimensionality problem, Pedersen (1999) and Sidenius (2000) 

proposed the use of principal component analysis as rank-reduction technique.  

However, this technique implies that the rank of the covariance matrix must be less 

than the number of factors being used.  In order to address this problem, Rebonato 

(1999) proposed an elegant parametrization using hypersphere decomposition before 

a reduced-rank minimization is performed.  This technique, however, generates an 

infinite number of solutions. Correlation matrices can be arbitrary and highly 

depends on the constraints imposed on the angles that determine the correlation 

matrix entries.   

 

Brigo and Morini (2004) proposed a calibration methodology via 

parametrization that establishes a one-to-one correspondence between the 

instantaneous covariance parameters and swaptions volatilities.    Their proposed 

cascade calibration attempts to generate the general piecewise instantaneous 

volatilities structure that exactly recovers swaptions prices, but not caps prices.  In 

addition, although the method eliminates the need for optimization and simulation 

processes, smoothing must first be applied on the swaptions matrix to ensure that 
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resulting volatility estimates are all positive.    Wu (2004) developed a calibration 

approach using Lagrange multipliers.  However, the approach hinges on an 

exogenously determined correlation matrix.  For pricing and hedging purposes, it is 

deemed more appropriate to use information on volatilities and correlation as 

implied by market prices of caps and swaptions.  This is consistent with the 

fundamental notion on risk-neutral probability measure underlying pricing, in 

contrast to a physical probability measure-based exogenous correlation information.   

Further, existing methodologies in the literature were evaluated on their static 

performance as the fit is mainly tested on today’s prices, which is deemed 

insufficient for hedging purposes.   

 

This inadequacy in the literature of calibration is the primary motivation of 

this study.   The study builds on the prevailing methodologies and improves on the 

evaluation criteria by extending the analysis to a dynamic level of goodness-of-fit by 

testing the method on a series of market prices of plain vanilla options.    Results of 

the study will significantly contribute in modeling arbitrage-free prices and 

evaluating correct hedging positions. 

 

 

1.2 Objectives of the Study 
 

The primary objective of this thesis is to find a calibration methodology that 

simultaneously recovers volatility and correlations as implied by the market prices 

of plain vanilla derivatives.  Under this umbrella objective are the following 

supporting goals: 

 

i) Present a comprehensive review of the theory of the LIBOR market model 

(LMM). 

ii) Identify alternative calibration methodologies. 

iii) Apply the methodologies identified in (ii) to a set of market prices.  In this 

study, South Korean caps and swaptions are used.  This is a dynamic and 

interesting Asian market that is scarcely studied in the literature. 
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iv) Evaluate the performance of the identified calibration methodologies based 

on a set of criteria consistent with the joint practice of complex derivative 

pricing and hedging requirements. 

 

 

1.3 Structure of the Thesis 
 

The thesis proceeds as follows:  Chapter 2 presents a comprehensive 

discussion of the theory of the LIBOR market model.  It discusses the fundamental 

pricing principles that underlie the model.  Chapter 3 contains the discussion of 

relevant calibration concepts and methodologies.  Relevant theoretical results are 

presented to facilitate understanding of and show the appropriate approach toward 

the calibration proposed in this thesis.  It should be stated outfront that the 

theoretical results in the form of theorems are not original but are reproduced form 

from existing literature.  Chapter 4 analyzes the results of the empirical work. 

Chapter 5 concludes the thesis with a summary and recommendations for future 

research.  In addition, it discusses the limitations of this study.   
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2 DISCUSSION ON THE THEORY OF  
LIBOR MARKET MODEL5

 

The LIBOR market model (LMM)6, introduced and developed by Miltersen, 

Sandmann and Sondermann (1997), Brace, Gatarek and Musiela (1997), Jamshidian 

(1997) and Mutsiela and Rutkowski (1997), is a tool for pricing and hedging interest 

rate derivatives.  The LMM models LIBOR forward rates and expresses the 

expected payoffs of the derivative products in terms of these rates under some 

LIBOR measure.   The forward rates are assumed to follow a geometric Brownian 

motion.  They modeled the forward rates such that the Black formula-based price of 

a European style option is recovered.   

 

However, forward rates are not directly traded in the market.  In order to 

achieve consistency with the no-arbitrage pricing theory, LMM used bonds as the 

underlying tradable assets and expressed forward rates in terms of bond prices.   

Thus, the dynamics of bond prices forms the foundation of LMM pricing.   Since the 

primary objective of LMM is to recover exactly the prices of liquidly traded plain 

vanilla options as priced by the Black model, its framework recognizes the fact that 

certain interest-rate derivative products depend on the joint realization of a finite 

number of rates at pre-specified times.  Hence, pricing under the LMM depends on 

the evolution of forward rates.  Because the rates are interrelated, the model defines 

a class of no-arbitrage specifications of the yield curve dynamics that hinges on the 

covariance structure among the rates.   

 

 This feature of the LMM has spawned a variety of versions attempting to 

define the appropriate structure of the volatility of the forward rate.  Brace, Gatarek, 

and Musiela (1995) and Musiela and Rutkowski (1997) developed the FRA-based 

LIBOR market model by assuming that the volatilities of the forward rates are 

deterministic over time.  Jamishidian (1997) introduced the swap-rate version of the 

model that assumes deterministic volatility on a vector of forward swap rates.    
                                                 
5  Theoretical discussions in this section are mainly based on the books of Brigo and Mercurio (2001) 

and Hull and White (2006). 
6 LMM is also commonly called the BGM, referring to the authors of the first paper which gave a 

rigorous discussion of the model.   
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These two versions of the model however are not consistent.  While the first model 

affords exact recovery of the Black generated prices for caplets (but not for 

swaptions prices), the second version produces swaptions prices consistent with 

Black prices.  This is due to the fact that forward rates and swap rates cannot be 

simultaneously lognormal.   This study however will focus more on the first version 

of the LMM – also called the BGM model.  

 

Because LMM was formulated with the aim to price plain vanilla interest 

rate options, the next sections will walk through the fundamental concepts that led to 

the formulation of the model.    

 

 

2.1 Fundamental Interest Rates Concepts 
 

Since LMM is about forward rates, it is imperative that one has a good grasp 

of the fundamental concepts of interest rates to ensure correct implementation of the 

model.  Hence, in this section, we briefly define interest rate terms that are relevant 

in the next sections of this thesis.   

 

Definition 1 

The n-year zero coupon interest rate is the rate of interest earned on an investment 

that starts at time t  and lasts for n years.   

 

It is important to note that an investment placed on a zero-coupon bond has 

no intermediate or coupon payments, hence the term “zero-coupon”.   Zero rates can 

be extracted either from market prices of coupon-bearing bonds (for Treasury zero 

rates) or interest rate swaps (for LIBOR zero rates).  It can also be found from 

STRIP prices.  

 

Definition 2 

Forward rates are interest rates implied by current zero rates for periods of time in 

the future.  Forward rates are characterized by three time instants - t  at which the 
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rate is considered, T  is the expiry of the agreement and is the end of the interest 

accrual – where .   

S

ST≤t ≤

 

Another way to define forward rates is to relate it to forward rate agreements 

(FRA).   An FRA is an agreement that give the holder an interest payment between 

the expiry T  and maturity .   The agreed rate,S K , at time  is the fixed rate that 

must be exchanged against a floating payment at maturity date.  In practice, 

t

K  is 

quoted such that the value of the FRA is 0.  Such K  is referred to as a forward rate.    

 

Definition 3 

Let K be the fixed interest rate, iτ , βα ,...,1+=i , be the time interval between the 

pre-specified future dates , βα TT ,...,1+ P be the notional amount,  be the 

observed LIBOR resetting at the previous instant  for the maturity given by the 

current payment instant .  Given , an interest rate swaps (IRS) is a contract that 

exchanges payments between the fixed leg, 

( ii TTL ,1− )

1−iT

iT αT

KP iτ , and the floating leg, 

( )iii TTLP ,1−τ .   

 

 Given the above definition, the discounted payoff of an IRS for the 

counterparty receiving the fixed rate can be written as  

( ) ((∑
+=

−−
β

α

τ
1

1 ,,
i

iiii TTLKPTtD ) )

)

   (1) 

where  is the discount factor. ( iTtD ,

 

Definition 4 

The rate K  that makes the value of an IRS in Equation (1) zero is called the forward 

swap rate, ( )tS βα , .   If ( ) ( )jjj TTtLtL ,; 1−=  is the forward LIBOR at time  for 

the time instant between  and , then 

t

1−jT jT ( )tS βα ,  can be written as 

( ) ( )

( )∑ ∏

∏

+= +=

+=

+

+
−

=
β

α α

β

α

βα

τ
τ

τ

1 1

1

,

1
1

1
11

i

i

j
jj

i

j
jj

tL

tL
tS   (2) 

 These definitions will be used in the succeeding sections. 
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2.2 Theoretical framework for pricing derivatives7 
 

LMM is built around the forward LIBOR rates such that payoffs of 

contingent claims are expressed in these rates.  By a change-of-numeraire technique, 

LMM affords a no-arbitrage pricing technique that is consistent with prevailing term 

structure of interest rates.  Fundamental in the development of LMM is the 

underlying economic assumption of arbitrage-free markets and pricing.  Hence, in 

this section, we present a concise discussion of this underlying concept that led to 

the formulation of the LMM. 

 

Consider a market with M 1+N  assets traded continuously in a compact 

time interval [ .   The future prices of these assets are uncertain and assumed to 

follow a geometric Brownian motion on a probability space 

]T,0

( )PF ,,Ω .  Define a 

filtration ]  as the augmentation of the natural filtration generated by 

the Brownian motion, i.e.  is the 

{ } [ TttF ,0∈=F

( )tF σ -field generated by ( )( )tssW ≤≤0:σ  

and the null sets of F .   For Ni ,...,1= , let ( )⋅iB  be the price of asset i .    is 

assumed to be a positive Itô diffusion, i.e. 

( )⋅iB

( )⋅iB  is assumed to satisfy the following 

stochastic differential equation 

( )
( ) ( ) ( ) ( )

( ) ( )

( ) NibB

TttdWdtt

tdWtdtt
tB
tdB

ii

d

j
jiji

ii
i

i

,...,1,0

0,

,0

1

==

≤≤+=

⋅+=

∑
=

βµ

βµ

 (3) 

where  is the price of asset  at time zero.  The processes ib ,0 i [ ] RTi →Ω×,0:µ   

and   may be stochastic and are assumed to be locally 

bounded and previsible.   Further, assume that there are an infinite number of 

investors in the market and hold portfolios of the assets such that no individual 

investor can significantly affect market prices. 

[ ] d
i RT →Ω×,0:β

 

 

 

                                                 
7 Based on the discussion of Brigo and Mercurio (2001). 
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Definition 5  

(i) A portfolio processπ , [ ] NRT →Ω×,0:π  is any locally bounded F - 

previsible process. 

(ii) The value process defined on a portfolio π  is the process 

 such that [ ] RTV →Ω×,0:π

( ) ( ) ( )∑
=

≤≤≡
N

i
ii TttBttV

1

0,ππ   (4) 

(iii)  A portfolio π is said to be self-financing if its value process  follows the 

process given by 

πV

( ) ( ) ( ) TttdBttdV t

N

i
i ≤≤= ∑

=

0,
1

ππ   (5) 

(iv)  A self-financing portfolio π  is called admissible in the market M  if the 

corresponding value process  is bounded from below almost surely ( a.s.), 

i.e. there exists a real number 

πV

∞<K  such that  

( ) a.s.0, TttKtV ≤≤∀−≥π   (6) 

 

 A portfolio π  at any given time [ ]Tt ,0∈  holds ( )tiπ  amount of security 

.  An admissible self-financing portfolio Nii ...,,2,1, = π  is tradable in the market 

 at the price  at time M ( )tV π [ ]Tt ,0∈ .  Note that ( )tiπ  is allowed to take 

negative values which amounts to short-selling asset i .   Condition (iv) of Definition 

1 excludes portfolios with doubling-up strategies, which make almost sure profits 

starting with zero value.    

 

Definition 6 

i) An arbitrage portfolio π  is a self-financing portfolio that has zero value 

at time  and that has a non-negative value at time 0 T  a.s., with positive 

probability of the value being strictly positive at time T . 

ii) A market  is said to be arbitrage-free if there does not exist an 

arbitrage portfolio in  at any given time 

M

M [ ]Tt ,0∈ . 

iii) An equivalent martingale probability measure Q  of market  is a 

probability measure on 

M

( )F,Ω  equivalent to P , such that all assets are 

martingales under Q .   
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Theorem 1 (Absence of arbitrage)  

If an equivalent martingale measure exists for the market , then  is arbitrage-

free. 

M M

 

Proof: 

 Suppose that there exists π  an admissible arbitrage portfolio in .  Then 

by Definition 6.(iii), is a martingale under .  By the martingale property, it 

follows that  

M

πV Q

( )[ ] ( ) 00 == ππ VTVE Q      (7) 

But a.s. by Definition 6.(i).  Hence, a contradiction.  Thus,  is 

arbitrage-free.  ■ 

( ) 0≥TV π M

 

 In this study, we assume that markets are arbitrage-free and any portfolio is 

self-financing and admissible. 

 

 In asset pricing, prices of assets are expressed in values relative to the prices 

of a traded asset – referred to as a numeraire in finance literature.   Detailed 

discussion of numeraires in relation to LMM is tackled in Section 2.4 of this chapter. 

 

Suppose B  is a numeraire, then any asset  where  ;  ,iB Ni ...,,2,1=

⎭
⎬
⎫

⎩
⎨
⎧

B
B

B
B

B
B N,...,, 21  together with the probability space ( )F,,, PFΩ  constitute a 

market  where the prices are expressed in units of the numeraire, M B .  Such a 

transformation of markets is referred to as change of numeraire. 

 

Let  be a set of -measurable random variables on the probability 

space .  Denote by 

X ( )tF

( F,,, PFΩ ) X∈X  a contingent T -claim which pays out a 

random amount X  at time T .   
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Definition 7 

i) A portfolio π  is said to hedge against a claim X  if 

( ) XTV =π   a.s.     (8) 

Claim X  is said to be attainable in the market . M

ii) If for every X∈X , X  is attainable, then is said to be complete with 

respect to .   

M

X

iii) The price of a claim X  is the smallest value x  such that there exists a 

portfolioπ  that hedges against X  and that  ( ) xV =0π . 

iv) A hedging portfolio of the claim X  is the minimal cost portfolio that 

hedges against a claim X . 

 

It is easy to show then that if π  is a hedging portfolio of a claim X  at a price x , then 

π−  is a hedging portfolio of the claim X−  at a price x− .   This implies that the 

price of a hedge is the same whether the position of an investor is short or long.   

 

Theorem 2 (Completeness) 

If there exists an equivalent martingale measure Q  for the market  and if such a 

measure is unique, then every claim 

M

X∈X   is attainable in the market . M

 

The proof of the above theorem can be found in Karatzas and Shreve (1991) and 

uses the Brownian-martingale integral representation theorem. 

 

Theorem 3 

Suppose there exists an equivalent martingale measure  for the market .  Let Q M

X∈X  be attainable in .  Then the price of the claim M X  at time  is 

given by .  In particular, if Q

Ttt ≤≤0,

( )[ tFXE |Q ] ~  is an equivalent martingale measure for 

a market M~  that is obtained from  under a change of numeraire M B , then the price 

of the claim X  at time Ttt ≤≤0, ,  is given by 

( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
tF

TB
XEtB |

~Q .     (9) 
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Proof: 

Since the value process is a martingale under Q , then 

( ) ( ) ( )[ ]tFTVEtV |ππ Q=  

 

Using Definition 7.iii that the value of X  at time t  is equal to the value process of 

its hedging portfolio, then we have the following 

 

 ( ) ( ) ( )[ ] ( )[ ] TttFXEtFTVEtV ≤≤== 0,|| QQ ππ . 

 

It follows by change of numeraire technique that  

( ) ( ) ( )tB
XtF

TB
XE Q =⎥

⎦

⎤
⎢
⎣

⎡~
 

Hence, under the equivalent martingale measure Q~  the price of the claim X  is 

given by 

( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
= tF

TB
XEtBX Q~  ■ 

 

 

2.3 The LIBOR Market Model  
 

Given the above market framework, we now limit our discussion to the 

LIBOR market wherein LMM operates. 

 

Consider an arbitrage-free LIBOR market  with M 1+N  zero-coupon bonds.  

Assume that the bonds are driven by a d-dimensional Weiner process with maturities 

 , { } 1
1
+
=

N
iiT 11 ...0 +<<< NTT  for each of the bond.    Let  thi 00 ≡T . 

 

    Define the maturity date  of the  zero-coupon bond as the horizon time NT thN

T  of the LMM.  Denote by ( )⋅iB  as the price process of the  bond such that thi
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( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ij

i

j
iji

ii
i

i

TttdWtdtt

tdWtdtt
tB
tdB

≤≤+=

+=

∑
=

0,
1

βµ

βµ
 

 (10) 

( ) 1,...,2,1,0 ,0 +== NibB Market
ii  

 

where  is the bond price observed in the market at time 0. Market
ib ,0

  

 LMM is expressed in forward rates, which makes it easy for traders to work 

with.  Since these forward rates are rates foreseen in future transactions, investors 

normally hedge positions from fluctuating rates by entering into forward rate 

agreements (FRAs).  Normally, FRAs are entered into with the underlying 

assumption that the applicable borrowing or lending rate is the prevailing LIBOR.  

 

A LIBOR FRA at ( )NiTi ...,,2,1=  is a contract to borrow or lend 1 unit 

of currency from time   until time   at a fixed rate iT 1+iT r .  The contract gives the 

holder an interest rate payment within the accrual period iii TT −= +1δ , 

.  The fixed rate agreed upon is called the forward LIBOR for 

lending/borrowing in the period from  to .  It is formally defined as the 

return, , at time  of 1 unit of currency borrowed at , where 

Ni ...,,2,1=

iT 1+iT

iL 1+iT iT

[ ] RTL ii →Ω×,0:  and 

( )
( ) NiTt
tB

tBL i
i

i
ii ,..,2,1,0,1

1

=≤≤=+
+

δ .  (11) 

 

 In LMM, one has to specify the instantaneous volatility of the forward 

LIBOR rates.  Suppose [ ] d
ii RT →Ω×,0:σ  are locally bounded previsible 

processes for , the bond price process is defined such that  Ni ,..,2,1=

 

( )
( ) ( ) ( ) NiTttdWt
tL
tdL

i
i

i ...,,2,1,0,... =≤≤⋅+= σ    (12) 
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 This entails establishing a set of conditions on 1...,,2,1, += Niiβ  such 

that the bond price process is defined as in Equation (10).  Define a process 

  by  [ ] d
ii RTs →Ω×,0: ( ) ( ) ( )ttLts iii σ=  where  ,0 iTt ≤≤ dj ...,,2,1= ; 

.  Then, Equation (12) becomes Ni ...,,3,2,1=

( ) ( ) ( ) NiTttdWtstdL ii ,...,2,1,0,... =≤≤⋅+=  (13) 

 

Taking the derivative of Equation (11) and applying to Equation (13), then Equation 

(13) can be written as 

 

( ) ( )
( )

( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( )[ ] ( ) ( )[ ] ( )( ) )14(1

1

1111
1

*

1

tdWttdtttttt
tB

tB
tB

tBdtdL

iiiiiii
i

i

i

i

i

i
i

⋅−+⋅−−−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

++++
+

+

βββββµµ
δ

δ

 

where   NiTt ...,2,1,0 =≤≤

 

(*) is by the results in stochastic differential of the quotient of two processes.  

Comparing Equations (13) and (14), it follows that the necessary condition for iβ  is  

( ) ( ) ( ) ( ) NiTtts
tL

tt i
ii

i
ii ,...,2,1,0,

11 =≤≤
+

=− + δ
δ

ββ   (15)  

 

At this point, we need to define a new index for the bond price. 

 

Definition 8  

For , define  as the index of the bond which expires at time  where  [ Tt ,0∈ ] ( )ti t

ii TtT <<−1 . 

 

We then can express Equation (15) as  

( ) ( ) ( ) ( )( )
( )

( ) ( )
( )

( ) ( ) TttNtiits
tL

tttt

i

tij
j

jj

j

i

tij
jjii

≤≤=
+

=

−=−

∑

∑

=

=
++

0,...,,,
1

11

δ
δ

ββββ

(16) 
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where jjj tt −= +1δ .    

Let  be any locally bounded [ ] dRT →Ω×,0:β F -previsible process, continuous 

on ( ) 1...,,2,1,, 1 +=+ NiTT ii .  Then, it can easily be shown that if iβ , for every 

, satisfies i

( )
( ) ( ) ( )

( )

( )⎪
⎩

⎪
⎨

⎧

≤<

≤≤
+

−
=

−

−

−

=
∑

ii

i

i

tij
j

jj

j

i

TtTt

Ttts
tL

t
t

1

1

1

,

0,
1

β

δ
δ

β
β   (17) 

 

then Equation (10)  is satisfied.  This ensures that the price process defined is self-

financing.   

 

2.4 No arbitrage assumption 
 

Following is the no arbitrage assumption of the LMM for the drift term µ . 

 

Assumption 1 

Assume that there exists a locally bounded F -previsible process 
8[ ] dMPR RT →Ω×,0:ϕ  such that 

    ( ) ( ) ( )ttt MPR
ii ϕβµ ⋅=     (18)   

 

for all iTtNi ≤≤+= 0,1...,,2,1 .  This assumption about the existence of  is 

used in the construction of an equivalent martingale measure for the LIBOR market 

model.  Two measures developed under the LMM framework will be discussed in 

the next section.  The existence of these equivalent martingale measures ensures 

absence of arbitrage in the forward LIBOR-based market.    If the process  is 

almost surely uniquely defined at all times, then the LIBOR market is said to be 

complete under Theorem 2.   

MPRϕ

MPRϕ

 

                                                 
8 MPR stands for “market price of risk”.   It is measured as the quotient of expected rate of return 
over the amount of uncertainty.   
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 Note that component j  of the process ( )tMPRϕ  refers to the market price of 

risk due to the uncertainty of the process  at time jW [ ]Tt ,0∈ , .  

Thus, Equation (18) only implies that the market price of risk per factor at a 

particular point in time is the same for all bonds i , 

dj ...,,2,1=

1...,,2,1 += Ni . 

  

2.5 Measures and Numeraires 
 

Definition 9 

A numeraire is any non-dividend paying asset with price positive almost surely. 

 

Alternatively, numeraire can also be defined as a reference asset that is 

chosen to normalize all other asset prices with respect to it.  This means that if Z is 

the chosen numeraire, then the relative prices NkZS k ,..,2,1, =  are considered 

instead of the original prices themselves.    It was shown in the previous section that 

the resulting relative price is a martingale given a measure for the market price of 

risk.   

 

 Several asset prices can be chosen as numeraire that results in a more 

convenient calculation of contingent claims prices. Different numeraire has different 

resulting martingale measures.  This section presents two types of numeraire as well 

as their martingale measures that work under the LMM.  A thorough understanding 

of how LMM defines the dynamics of the forward LIBOR is important in pricing 

caplets and swaptions.   Specifically, this plays a significant role in defining a 

discrete process for the dynamics of the forward LIBOR in Monte Carlo simulation.   

 

2.5.1 Spot LIBOR measure 

 

Under this measure, the spot LIBOR portfolio is assumed to consist of bonds with 

the following investment strategy: 

(i) At , with an initial investment of $1 , buy 0=t ( )01 1B   bonds. −1T

(ii) At , reinvest the proceeds of $11 =T ( )01 1B  in ( ) ( )12
1 0
1 TB

B
  bonds. −2T
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(iii) At 22 =T , reinvest again the proceeds of $ ( ) ( )001 21 BB  in 

( ) ( )[ ] ( )2321 001 TBBB  - bonds. 3T

(iv) And so on… 

 

This type of numeraire is also referred to as a “rolling cd.”  Under this measure, 

between times  and , the spot LIBOR portfolio holds an amount of iT 1+iT

( )1
1
11 −

+
=Π jj

i
j TB   of  -bonds.   Hence, the value 1+iT ( )tB  at time , of the 

spot LIBOR portfolio is given by 

Ttt ≤≤0,

 

( ) ( )
( ) 1

1
1
1

1 , +
−

+
=

+ ≤≤
Π

= ii
jj

i
j

i TtT
TB
tB

tB   (19) 

 

 Note that if we take the first order derivative of Equation (19), it follows that 

the spot LIBOR portfolio is self-financing.  This implies that the stochastic 

differential equation of the spot LIBOR process can be written as follows 

 

 ( )
( ) ( ) ( ) ( ) TttdWtdtt
tB
tdB

BB ≤≤⋅+= 0,βµ  (20) 

 

where ( )tBµ  and ( )tBβ  are linear combinations of ( )tiµ  and ( )tiβ , 

respectively; where [ ] RTiB →Ω×,0:, µµ   ; [ ] d
iB RT →Ω×,0:, ββ   and 

.  Since under the spot LIBOR measure quotients of price processes 

have to become martingales, then each component of the portfolio in Equation (19) 

must be a  

1...,,1 += Ni

 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( ) ([ ]

( ) ( )[ ] ( )tdWtt

dtttttt
tBtB
tBtdB

iB

iiBiB
i

i

⋅−+

⋅⋅−−−=

ββ

βββµµ )
  (21) 

 

for 1...,,2,1,0 +=≤≤ NiTt . 
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 Now, suppose we incorporate the no-arbitrage assumption in Assumption 1.  

Suppose there exists a process [ ] dSpot RT →Ω×,0:ϕ  such that 

( ) ( ) ( ) Ttttt i
MPRSpot ≤≤−≡ 0,βϕϕ   (22) 

 

where  is the process defined in Assumption 1. MPRϕ

 

 Because the spot LIBOR portfolio is self-financing, then it follows that if  

and  are LIBOR portfolios, the following can be obtained from Equation (22) 

1V

2V

 

( ) ( ) ( ) ( )[ ] ( )
( ) ( )[ ] ( ) ( )[ ]tttt

ttttt

i
Spot

VV

MPR
VVVV

βϕββ

ϕββµµ

+⋅−=

⋅−=−

21

2121  

  

Simplifying the above expresssion, we get 

 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( )tttttttt Spot
VViVVVV ϕβββββµµ ⋅−=⋅−−− 212121  (23) 

 

Define a local martingale [ ] RTM →Ω×,0:  by 

 

    (24) ( ) ( ) ( )∫ ≤≤⋅≡
t Spot TtsdWstM

0
0,ϕ

 

and define the process [ ] dSpotQ RTW →Ω×,0:,   by 

 

 
( ) ( )

( ) ( )∫ ≤≤+=

+≡
T Spot

SpotQ

TtdsstW

tMWtWW

0

,

0,

,

ϕ
   (25) 

 

which follows from Kunita-Watanabe results.   Applying the results from Girsanov’s 

theorem, it follows that  is a local martingale under the measure  as 

determined by its Radon-Nikodym derivative as follows

SpotQW ,
SpotQ

9

                                                 
9 See stochastic calculus books such as those by Karatzas and Shreve (1991). 
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( ) ( ) ( )

( ) ( ) ( )
Tte

et
dP

dQ

t t SpotSpot dsssdWs

tMtMSpot

≤≤∫ ∫=

≡

−⋅

−

0,0

2

02
1

2
1

ϕϕ

   (26) 

 

10Note that   is a finite variation process.  Thus,  has quadratic 

variation structure similar to a Brownian motion.   In addition,  is a local 

martingale under .

( )∫
t

dss
0
ϕ SpotQW ,

SpotQW ,

SpotQ 11   

  

 Re-writing Equation (21) in terms of the −SpotQ Brownian motion  

and applying the result in Equation (23), we obtain 

SpotQW ,

 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( ) ( )[ ]

( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ] ( )tdWtt

dtttdWtt

dtttttt
tBtB
tBtdB

SpotQ
iB

SpotSpotQ
iB

iiBiB
i

i

,

,

⋅−=

⋅−⋅−+

⋅⋅−−−=

ββ

ϕββ

βββµµ

  (27) 

 

for .  Equation (27) only shows that quotient of price 

processes are martingales under the measure , and we refer to this measure as 

the spot LIBOR.   

1...,,1,0 +=≤≤ NiTt

SpotQ

 

 If we substitute Equation (25) into Equation (14) and using the results in 

Equations (15) and (16), we derive the SDE for the LIBOR forward rates under the 

spot LIBOR measure as follows 

 

                                                 
10 The norm  used in Equation 25 denotes the  norm unless explicitly stated otherwise.  P is the 
probability measure of the probability space we defined earlier for the geometric Brownian motion. 

2L

 
11 See stochastic calculus books such as those by by  Karatzas and Shreve (1991). 
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( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )[ ]
( ) ( )

( )

( )

( ) ( ) )28(
1

1

),(

,

,
111

∑
=

+++

⋅+
+

⋅
=

⋅−+⋅−⋅−⋅
+

=

i

iBj

QSpot
i

jj

ijj

SpotQ
iiiBii

i

ii
i

tdWtsdt
tL
tsts

tdWttdttttt
tL

tdL

δ
δ

ββββββ
δ

δ

 

for .    Recall that NiTt ,...,2,1,0 =≤≤ ( ) ( ) ( )⋅⋅≡⋅ iii sLσ .  So we can re-write 

Equation (28) to obtain the following final result for the dynamics of the forward 

LIBOR 

 

( )
( )

( ) ( ) ( )
( ) ( ) ( )∑

=

⋅+
+

⋅
=

i

iBj

QSpot
i

jj

ijjj

i

i tdWtdt
tL

tttL
tL
tdL

),(

,

1
σ

δ
σσδ

 (29) 

 

for NiTt ,...,2,1,0 =≤≤ .   

 

2.5.2 Terminal LIBOR Measure 

 

Under this measure, the numeraire is one of the bonds, say  for some 

.  This portfolio with only one bond is automatically self-financing. 

1+nB

{ Nn ...,,2,1∈ }
  

 For an asset price process to be a martingale under this measure, it has to be 

expressed as a quotient over the bond price process.  Specifically, 1+nn BB  is a 

martingale.  It then follows that an  LIBOR forward rate which can be expressed 

as an affine transformation of 

thn

1+nn BB  is a martingale under this measure.   

 

 Following the same lines of argument as in the spot LIBOR measure, it can 

then be shown that under the terminal measure, the dynamics of the forward LIBOR 

is given by 

 

( )
( )

( ) ( ) ( )
( ) ( ) ( )tdWtdt
tL

tttL
tL
tdL alTer

i

n

ij jj

ijjj

i

i min

1 1
⋅+

+

⋅
−= ∑

+=

σ
δ

σσδ
 (30) 

 

for  ( ) ....,,2,1,,min0 1 NiTTt ni =≤≤ +
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3 CALIBRATION 
 

 Calibration, in general, is the process of estimating the parameters of a model 

consistent with market information as implied by quoted prices of liquid 

instruments.  In this study, we focus on the calibration of the LIBOR market model 

(LMM).  Hence, throughout this thesis, “calibration” will always refer to LMM 

calibration.  

 

In LMM calibration, recall from Equations (29) and (30) that the dynamics 

of forward LIBOR is defined in terms of two important parameters:  volatility and 

covariance among rates.  Normally, covariance is normalized and correlation is used 

instead to measure the same relationship between variables.  Hence, the objective in 

LMM calibration is to estimate the parameters iσ  and ijρ , Nji ,...,2,1, = , such that 

model-derived prices match as close as possible to market-observed prices of 

liquidly traded instruments, specifically caplets and swaptions.   The art of LMM 

calibration heavily relies on the specification of the volatility structure of LIBOR 

forward rates.  This can be determined in several ways depending on some specific 

targets such as to recover the market prices of some (or a subset of) liquid standard 

options, to reflect traders’ beliefs about the behavior of interest rate volatilities, or to 

match historical information.  In pricing and hedging, however, the first target is 

deemed most relevant.   

 

 The liquid standard options used in the calibration are called calibration 

instruments.  In interest rate markets, these are the caps and swaptions.  Although 

historical forward rate correlation matrix is sometimes used, in this study, we instead 

extract implied correlations to be consistent with the forward risk neutrality 

assumption.   

 

 This section tackles the details of the calibration process.  Specifically, this 

section shows why caps and swaptions are good calibration instruments and presents 

the details of the calibration methodologies used. 
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3.1 Calibration Instruments: Caps and Swaptions12  
 

In the interest rate markets, caps and swaptions are the frequently traded 

standard options.  This section presents the features of these derivative instruments.  

 

3.1.1 Caps 

 

 Interest rate caps are popular over-the-counter instruments offered by 

financial institutions.  It is designed to insure the holder from increases in interest 

rates above a certain level called the cap rate.  It can be shown that its payoff has a 

call option-like feature.  Hence, it is usually referred to as a call option on the 

LIBOR in the literature.  Hence, just like other options, it is quoted in the market at 

Black implied volatilities.   

 

A cap is usually tied with a floating rate note such that interest rate is 

periodically reset equal to the LIBOR.  The time between resets is called the tenor 

and is usually equal to three months.  At each reset date over the life of the cap, the 

observed LIBOR determines the amount of payments that must be made.  In other 

words, if the life of the cap is T , principal is P , the cap rate is K  and the reset dates 

are  such that , the cap leads to a payoff at time  nttt ,...,, 21 Ttn =+1 ( )njt j ,...,2,1,1 =+

 

( )0,max jjj KLP −δ      (31)  

 

where jjj tt −= +1δ  and  is the LIBOR for the period  and .   Notice that 

Equation (31) resembles a call option feature with the forward LIBOR as the 

underlying.  Each of such call option is called a caplet.  Because of its option-like 

feature, its price can be expressed under the Black formula, as follows 

jL jt 1+jt

 

( ) ( ) ( )( )21
1 dNKdNLePCaplet jj

rt
j

Black
j

j −= +−δσ   (32) 

where 

                                                 
12 This thesis focuses on European-style exercise features of options. 
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( )

( )
j

j

jjj

j

jjj

td
t

tKL
d

t

tKL
d

σ
σ

σ

σ

σ

−=
−

=

+
=

1

2

2

2

1

2
1ln

2
1ln

 

where [ ]1,0: →RN   is the standard normal distribution function.  The Black 

implied volatility of a caplet is the volatility with which the Black formula returns 

the market quoted price of the caplet price.    

 

A cap can therefore be viewed as a portfolio of n such options with price given by 

    (33) 
( )[ ]

( ) ( )( )∑

∑

=

−

=

−=

−=

+
n

j
jj

rt
j

n

j
jj

j
j

dNKdNLeP

KLEPCap

j

1
21

1

1

0,max

δ

δ

 

where  and  are as in Equation (32).   1d 2d

 

 Moving on to the LIBOR market, LMM assumes that the LIBOR forward 

rates are lognormally distributed.  Hence, it follows that the Black implied volatility 

for the caplet is some average of the instantaneous volatility thj ( )⋅nσ .  This can 

easily be proven as shown in the next paragraphs. 

 

 To compute the price of a caplet, ( )jj
LMM
j KtCaplet ,  of the  caplet within 

the LMM, , the  terminal measure  will be used.  Under this 

measure, the  LIBOR forward rate is a martingale, 

thj

{ }nj ...,,2,1∈ thj
1+jtQ

thj

 

( )
( ) ( ) ( ) Tttdt
tL
tdL

1jT

j
j

j ≤≤⋅= + 0,QWσ   (34) 

 

 Hence, the LMM price of the  caplet is given by thj
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( ) ( ) ( )( )
( )

( ) ( )( )++

++

+

+

−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
=

+

+

KtLEBP

tB
KtL

EBPKtCaplet

jjjj

jj

jj
jjj

LMM
j

1jt

1jt

Q

Q

0

0,

1

11
1

δ

δ
   (35) 

 

since ( ) 111 =++ jj tB .  Application of integral calculus on the above expectation leads 

to the following pricing expressions for the  caplet thj

 

( ) ( ) ( ) ( ) ( )[ ]211 00, dNKdNLBPKtCaplet jjjj
LMM
j −= +δ    (36) 

where 

  

( )

( )

τ

τ

τ

τ

2

2

2

1

2
10

log

2
10

log

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

K
L

d

K
L

d

j

j

 

and 

( )∫≡
T

j dss
0

22 στ  

   

Notice that Equation (36), if compared with the Black formula for the caplet price in 

Equation (32), the following relation can be derived: 

 

Theorem 4 

The Black implied volatility of the  caplet, thj { }Nj ...,,2,1∈  under the LIBOR 

market model framework is given by 

 

( ) dss
t

jt

j
j

LMMBlack
j ∫=

0

2, 1 σσ     (37) 

 

Because of the ability of LMM to exactly match the market price of caplets, 

caplets therefore become a source of information on forward LIBOR volatility as 

implied by the market prices.  
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3.1.2 Swaptions 

 

Swap options or swaptions are a popular type of option on interest rate 

swaps.  This type of option gives the holder the right to enter into a certain swap 

agreement at a certain time in the future.  A swap agreement is a contract between 

two parties to swap fixed for floating interest rate payments on some notional loan 

amount.  Typically there are several exchanges of interest payments over the life of 

the loan, so a swap can be decomposed into swaplets.  Each swaplet prescribes the 

swap of fixed for floating interest rate over each accrual period of the loan contract.  

Actual payments happen at the end of each accrual period.  The rate of the fixed leg 

that makes the value of the swap agreement equal to zero is called the swap rate.   

 

In order to understand the valuation of a swaption, we first review the 

mechanics of a swap agreement.  Consider a swap agreement composed of a number 

of swaplets.  Suppose that the first swaplet is set at time   with   a given date 

and first payment is on  and the last swaplet is set at time  with payment on 

, for some 

iT αT

1+αT 1−βT

βT { } { }1,....,2,1,...,,2,1, +∈∈< NN βαβα .  Hence, a swap 

agreement consists of αβ −  swaplets.  Denote by  the pre-negotiated fixed 

swap rate, which can be defined as follows 

βα ,S

 

( ) ( )

( )
i

k
kk

Tt
tB

tBtB
S ≤≤

−
=

∑
+=

+

0,

1
1

, β

α

βα
βα

δ

13   

 (38) 

 

  Now consider an option on this swap agreement.  Suppose that the strike rate 

is K  and the swaptions expiry is .   The cash flow from the swaptions at time αT

βα ,...,1, +=kTk  can be expressed in the following manner 

 

( )( +− KTSP ik βαδ , )

                                                

      (39) 

 
 

13 This equivalent to the definition of a swap rate as shown in Equation (2) if we apply the value the 
spot LIBOR portfolio shown in Equation (19). 
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 Applying Equation (2) that relates swap rates and forward rates, Equation 

(39) can be expressed as follows: 

       (40) ( )(
+

+=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∑

β

α
βαδ

1
,

k
ik KTLP )

 

 Notice that the expression in Equation (40) cannot be decomposed 

additively, unlike the price formula for a cap in Equation (33).  Equation (40) 

implies that the joint distribution of the forward LIBOR within the life of a swaption 

is necessary to compute for its price.   Thus, correlation among forward LIBOR is 

fundamental in pricing swaptions. 

 

 Swaptions prices, similar to other options, are quoted in the market at 

implied volatilities.  Under the Black framework, swap rates are assumed to be log-

normally distributed with constant volatility.  By Black formula, the above described 

swaptions with instantaneous volatility ( )tσ , Tt ≤≤0 , [ ] [ )∞→ ,0,0: iTσ  is 

priced as follows 
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 In order to price swaptions under the LMM framework, swap rates volatility 

must be expressed in terms of forward rates volatility.  The following Existing 

Result14 shows the equivalence between the swap rates and forward rates volatilities: 

 

Theorem 5 

                                                 
14 We only show a sketch of the proof.  A detailed proof can be found in Hull and White (2000).   
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Within the LMM, the swap rate  for βα ,S { },...,,2,1, N∈< αβα  

{ 1....,,2,1 }+∈ Nβ , satisfies the following stochastic differential equation 

 

( )
( ) ( ) ( ) iTttdWt
tS
tdS

≤≤⋅+= 0,... ,
,

,
βα
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βα σ   

  

where   is defined by [ ] d
i RT →Ω×,0:,βασ
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and   [ ] RTik →Ω×,0:,βαγ
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for . 1,...,,0, −=≤≤ jikTtt i

 

Proof: 

 

Recall from Equation (2) that the forward swap rate can be written as follows 
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Taking the natural logarithm of the above equation, we obtain 
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such that 
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Applying Ito’s Lemma, the volatility, we therefore, obtain the volatility of the 

forward swap rate as follows 

   ( ) ( ) ( ) ( )t
L

ttL
t k

k kk

kkk σ
δ
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≡
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,
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3.2 Some Specifications of Instantaneous Volatility15 
 

The diffusion term ( ) [ ] d
ni RTt →+1,0:σ  in the dynamics of the forward 

LIBOR  is referred to as the instantaneous volatility of the forward LIBOR.   

If we take the set of unit vectors 

( )tLi

{ }Meee ...,,, 21  spanning the dR , then every 

volatility structure can be decomposed into 

 

( ) ( ) ( ) MiRetett d
iiii ,...,2,1,, =∈= γσ      (43) 

 

where  [ ] ++ → RTni 1,0:γ .  

 

 Hence, because of the above decomposition, instantaneous volatility 

structure can be specified in several ways depending on the belief of the trader.  This 

also enables separate calibration method to swaptions since only iγ  influences the 

prices of caplets while choice of  will determine the correlation structure.    ie

 

                                                 
15 Based on the discussion in Brigo and Mercurio (2001). 
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Some of the possible specifications of the volatility decomposition are as 

follows: 

i) Piecewise-constant instantaneous volatility 

Under this assumption, the instantaneous volatility of  is constant in 

each “expiry-maturity” time interval , 

( )tLi

t ii TtT ≤<−1 , i.e.  This specification entails 

parameter estimates equivalent to the number of expiry-maturity time intervals 

defined or 2)1( +MM .  This poses problems on estimation since normally the 

number of forward rates alive is less than the number of time intervals specified.    

 

ii) Time-to-maturity dependent volatilities 

An alternative specification of the volatility structure is to assume that the 

forward LIBOR diffusion depends only on the time-to-maturity.  This formulation 

reduces the number of volatility parameters to M.   

 

iii) Constant instantaneous volatility 

This formulation assumes that the volatilities of the forward LIBOR are 

constant regardless of t .   

 

iv) Separable Piecewise Constant 

In this formulation, each instantaneous volatility is expressed as a product of 

two factors:  a) time-to-maturity dependent factor and b) maturity-dependent factor.   

 

Following Theorem 4, it is easy to show that for caplets, time in-

homogenous volatility function exactly fits caplet prices under the LMM framework.  

This is evidenced by the humped volatility structure that is observed in the data.   

 

Regardless of the volatility specification used, a result shown by Rebonato 

(1999) lends useful insight in the calibration process.  He showed that expressing the 

instantaneous volatilities in spherical coordinates enables independent minimization 

scheme for volatility and correlation in the calibration process.  This is discussed in 

detail in the next section. 

 

3.3 Spherical Coordinates 
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Rebonato (1999) proposed a methodology that allows for independent 

calibration of volatility and correlation by expressing instantaneous volatilities in 

terms of spherical coordinates.  Using hypersphere decomposition, his study shows 

that use of spherical coordinates in the specification of instantaneous volatility 

allows for a more robust minimization scheme.  The calibration method reduces to a 

methodology similar to principal component analysis.    Herein we discuss the 

results of Rebonato’s study and show how to employ the method in a comparative 

calibration exercise to a dynamic setting. 

 

Definition 10 

Let  be a vector of angles.  Define a mapping  

where  

( ) 1
121 ,...,, −
− ∈ d

d Rθθθ 11: −− → dd SRf

{ }1:1 =∈=− xRxS dd   and  is given by f
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Definition 11 

Let   and [ ] ),0[,0: ∞→Σ ii T [ ] 1,0: −→ d
ii RTθ   be functions.   The instantaneous 

volatility structure   is said to be written in spherical 

coordinates if  

[ ] NiRT d
ii ...,,2,1,,0: =→σ

 

( ) ( ) ( )( ) NiTtdjtftt iijiij ,...,2,1,0;,...,1, =≤≤=Σ= θσ   (45) 

 

iΣ    is referred to as the total instantaneous volatility of the  forward. thi

 

Note that if we perform some simple manipulation of the above expression in 

Equation (45), we obtain the following relationships: 

( ) ( )

( )( ) ( )t
tf
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ij
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=Σ ∑
=

σ
θ

σ
1

22

     (46) 
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where  NiTtdj i ,...,2,1;0;,..,1 =≤≤= . 

 

Recall the formula for caplet volatility shown in Equation (36).  Notice that 

the expressions in Equations (45) and (46) imply that caplet prices depend only on 

 while correlation among forward rates depend only on  ( )⋅Σ ( )⋅⋅θ . 

 

These established relations between the spherical coordinates of 

instantaneous volatilities and the caplets volatilities and forward rate correlations 

afford a separate minimization strategy when volatility and correlation structures are 

calibrated.   Hence, in the calibration process, separate fit to market prices can be 

performed to obtain information on instantaneous volatility and correlations.  In 

particular, implied volatility of forward LIBOR is obtained by a fit to caps while 

implied correlations among rates are obtained by a fit to swaptions.  

 

 Another important consequence of the above is that it affords 

parametrization of the correlations structure of forward LIBOR under the LMM 

(Rebonato, 1999).  Applying hypersphere decomposition, correlations calibration is 

reduced to specifying arbitrary thetas,  ( )⋅⋅θ , such that the model correlation matrix 

matches the market implied correlations.    This addresses the problem caused by 

insufficient forward LIBOR alive at each time step to establish the covariance 

relationship among rates since the number of factors or thetas can be exogenously 

specified.  For instance, for a two-factor model, Rebonato (1999) proved that the 

correlation between rates i  and  is given by  j

)(cos 11 jiij θθρ −=     (47)  

 

 At this point, it is important to emphasize that the focus in the calibration 

process is to estimate the instantaneous correlation matrix.  Instantaneous correlation 

matrix summarizes the degree of dependence between the changes of forward rates 

as seen at instant time, say t .  Information on instantaneous correlation may be 

obtained from historical data or from prices of swap options.   For pricing and 

hedging, the latter is deemed more appropriate and consistent with the forward risk 

neutrality assumption underlying LMM.    
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3.4 Term Structure of Volatilities and Terminal Correlations 
 

As mentioned in the earlier part of this study, a significant contribution of 

LMM is that it allows one to extract information on the dynamics of interest rates 

once calibrated to the prices of liquid plain vanilla options, i.e. caps and swaptions.  

In particular, once instantaneous volatilities and correlations are obtained from the 

prices of caps and swaptions, one can then plot the term structure of volatilities, and 

define the correlation of forward rates at future times, or the so-called “terminal 

correlations”.   

 

The term structure of volatility at time is the graph of points jt

( )( ) ( ) ( )( )( ){ }11221,1 ,,...,,,,,, −−++++ MjMjjjjjj ttVtttVtttVt    

 

where 
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1 2

1
1

2 1, σ     (48) 

 

for .  Note that different specifications of 1+> jh hσ  imply different evolutions of 

the term structure of volatilities.  Since this evolution is deterministic in LMM, it is 

generally perceived as smooth and qualitatively stable (Brigo, 2001).   

  

 Similarly, once LMM is calibrated, correlation of forward rates at future time 

instants can be analytically computed as follows   
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where  (Brigo 2001, Rebonato 1999).   An alternative way is to perform 

Monte Carlo simulations to evolve forward rates  and  as implied by a 

calibrated LMM at time  under a forward measure as follows 

tt >α

iF jF

t γQ
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 However, traders prefer to use the analytic formula rather than perform 

Monte Carlo simulation due to time constraints.  Notice that terminal correlation 

between forward rates is influenced not only by the instantaneous correlation but the 

by the volatility specification as well.   

 

Terminal correlation plays a significant role in complex derivative pricing 

and hedging.  It is a mechanism that allows for a stochastic evolution of the 

underlying forward rates (Rebonato, 2004).  

 

 

3.5   Calibration Methodologies 
 

As mentioned in the preceding section, LMM calibration involves estimation 

of volatility and correlations parameters such that market prices of caps and 

swaptions are recovered.  This section discusses the details of the methodologies 

employed in this study.  

 

3.5.1  Preliminary Steps 

 

In the calibration process, preliminary steps have to be done since some 

necessary information are not readily available in the market.  The following 

summarizes the initial steps before actual calibration is performed: 

 

i) Bootstrapping of the IRS to extend the LIBOR zero curve. 

ii) Computation of forward LIBOR rates. 

 

LIBOR rates are typically quoted only for maturities out to 12 months.   

Traders normally use swap rates to extend the LIBOR zero curve.   This hinges on 

the notion that newly issued swaps are quoted at prevailing swap rates such that the 
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value of a fixed-rate bond underlying the swap equals the value of a floating-rate 

bond underlying the same swap.  Thus, applying the bootstrap method, the LIBOR 

zero curve is constructed out to ten years using the quoted interest rate swaps 

(IRS)16. 

 

The LIBOR zero-curve is then used to compute the forward rates and to 

discount payoffs in options valuation.  Although for the latter purpose risk-free rates 

or Treasury bills rates are more appropriate, in this study we follow the usual 

practice in the industry.  Traders prefer to use the LIBOR zero rates over Treasury 

rates as discount rates for some reasons.  Among those reasons is that the increased 

demand for Treasury bills and bonds that drives prices up and yield down is highly 

motivated by regulatory requirements that must be complied with by some 

institutions (Hull, 2006).    

 

 In this study, in order to achieve consistency with the day count convention 

in the South Korean interest markets, we express the bootstrapped LIBOR zero 

curves in quarterly compounding.  For discounting purposes, we express the LIBOR 

zero rates in continuous compounding consistent with the Black assumption.   

 

 Once LIBOR zero curve is determined, we compute the forward rates for 

each LIBOR rate and the forward swap rates using Equation (2) defined in Chapter 

2.  Forward swap rates are necessary for swaption valuation and calibration to 

swaption prices.    

 

 After all the preliminary steps are done, actual calibration process can be 

performed.  The details of the methodologies are discussed in the subsequent 

sections. 

 

 

3.5.2  Volatility Calibration 

 

                                                 
16 Linear interpolation is used to determine the rates at intervening periods (quarterly periods) since 

IRS are quoted at annual rates.   
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 As discussed in Section 3.3, when written in spherical coordinates, caplets 

depend entirely on the total instantaneous volatility of the  forward.  Hence, to 

back out market information about volatility of forward rates, caplets are a good 

source of information. Further, as shown in Section 3.1.1, caplets, which are quoted 

at Black prices in the market, can be exactly recovered by the LMM.  Hence, 

calibration to caplets is automatic.  One can simply input the caplet implied 

volatilities in the LMM.   

thi

 

 However, caplets prices are not directly observable in the market. Instead, 

markets adopt the convention of quoting the cap implied volatility and assumes flat 

volatility among the caplets forming the cap.   Hence, given the strike and the expiry 

date, the associated implied volatility is the single number that must be plugged into 

the Black formula for all the corresponding caplets such that the cap price is simply 

the sum of the resulting caplet prices.   Thus, caplets must be bootstrapped from the 

quoted caps implied volatilities.  In this study, we follow the piecewise linear 

method described below. 

 

1. Given the caps quoted implied volatilities ( )tMarket
Tσ , where   

maturities, perform linear interpolation to get the flat volatility for a cap that 

matures on the caplet quarterly maturities, i.e. if 

NT ...,,2,1=

25.0=τ , for every 

, interpolate , 1...,,2,1 −= NT Market
bT τσ + 3,2,1=b .  For caps with maturities less 

than one year, use the one-year cap implied volatility. 

 

2. Using the interpolated flat volatilities, compute the fair value of the cap using 

the Black formula shown in Equation (35).  Note that quoted caps are at-the-

money, hence, the strike rate is the prevailing swap rate with the same 

maturity as the caps. 

 

3. Compute the fair value of the intervening caplet prices by taking the 

difference of the adjacent cap prices.  

 

1...,,1,0,25.0 ,3,2,1
1

−===−= ++ +
NTbCapCapCaplet Black

bT
Black

bT
Black
T ii

τττ     (51) 
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4. Once the set of caplet prices has been computed using Equation (36), 

compute the implied instantaneous volatilities using the Black formula in 

Equation (37). 

 

3.5.3  Correlations Calibration 

 

Correlations calibration is more delicate compared with volatilities 

calibration due to insufficient forward rates alive and the dimensionality problem.   

 

Calibration of the LMM to swaptions is analogous to modeling correlations 

among forward rates.  Thus, one must ensure that the following properties of the 

correlation matrix are preserved: 

 

i) Symmetry:  jijiij ,, ∀= ρρ  

ii) Positive semi-definiteness:   MRxxx ∈∀≥′ ,0ρ

iii) Unitary diagonal: iii ∀= ,1ρ  

iv) Normalized entries: jiij ,,1 ∀≤ρ    

 

In addition to the above properties, forward rate correlations bear additional 

properties based on both intuition and empirical observation.  The first desired 

characteristic is termed in the literature as decorrelation.  Decorrelation means that 

the correlation decreases as the distance between maturities increases.  This means 

that column entries decrease when moving away from the main diagonal.  This 

feature is typically observed in the interest rate market.  Another important feature is 

the increase in interdependency between equally spaced forward rates as their 

maturities increase.  This means that the sub-diagonals of the correlations matrix are 

increasing when moving south-eastwards.  This feature can be justified with the 

well-observed behavior of the zero curve dynamics that “flattens” for large 

maturities.  (Brigo and Morini, 2003) 

 

In this section, we discuss in detail how we extract implied correlations from 

swaptions and caplets.   
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Method A:  Joint Calibration using Rebonato’s Approximation 

 

 This method hinges on the analytical approximation to Black swaptions 

implied volatilities derived by Rebonato (Rebonato, 2004).    

 
 The objective in this methodology is to find the best-fitting parameters iψ  

and iθ  with initial guesses of 1=iψ  and 2πθ =i , 1,...,1,,..., ++== NiNi βα , 
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LMM
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 (56)  
 

( )jiij θθρ −= cos       (57) 

 

Equation (54) specifies the volatility structure.  Equation (55) follows from 

Equation (54), given the equivalence between LMM and Black’s caplet prices as 

shown in Theorem 4.  Equation (56) is the Rebonato approximation to Black’s 

implied volatilities for swaptions.  Equation (57) follows Rebonato’s 2-factor 

parametrization of the correlation structures for forward rates using hypersphere 

decomposition (Rebonato, 1999).  
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This approach uses a two-stage minimization.  First minimization to obtain 

the optimum s is performed using MS Excel Solver.  Second minimization for 

optimum 

iΣ

iθ  is performed using MS Excel Visual Basic Applications.   

 

Method B:  Monte Carlo Simulation with parametrized correlations matrix  

 

 This method recovers the prices of swaptions by Monte Carlo simulation 

with parametrized correlations matrix.  The correlations matrix is based on 

Rebonato’s hypersphere decomposition model.  The algorithm for this methodology 

is described below: 

  

1. Simulate n forward rates ( NjiLij ,...2,1,, = .) using Milstein scheme: 
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Using trigonometric identities, the correlation matrix is constructed via the 

following functions: 
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   [ ] [ ] [ ]ij

T
ijNij bb≡ρ     (60) 

 
where  refers to the number of factors in Rebonato’s hypersphere 

parametrization of the correlations matrix and 

s

[ ]0,ikθ π∈ .  In this method,  

is determined as the number of non-zero eigenvalues when principal 

component analysis is performed on the historical forward rate correlations 

matrix as follows 
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2. Compute swaption prices using Equation (40), assuming the notional 

amount 1=P , given 1,...,1,,...,1 ++== NiN βα  
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3. Compute swaption prices using Black formula in Equation (41), given the 

market implied volatilities, . Market
βασ ,

 
4. Solve the following optimization equation: 

 
    

 Market

SimulatedMarket
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swaptionswaption
Min
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θ
,

,, −
=    (64) 

 

 The above algorithm is implemented in MS Excel Visual Basic Applications.  

 

Method C:  Monte Carlo Simulation, non-parametric correlations matrix. 

 

This method recovers the prices of swaptions by Monte Carlo simulation.  

The correlations between forward rates are randomly chosen from [  such that 

adjacent swaptions prices are recovered.  The problem that has to be addressed in 

this method is that typically, the number of available swaptions are not sufficient to 

completely calibrate the correlations matrix.  For instance, in the South Korean 

market, while the swap lengths run from one year to ten years, the options expiries 

available are only from one year to five years.    

]1,0

 

In order to complete the entries in the correlation matrix, this study 

approximates the instantaneous correlation of forward rates with missing option 

expiry series by assuming that the terminal correlations are solely determined by the 

chosen volatility specification.  Hence, in the calibration process, we expect to get 

mostly ones for correlations at the fourth quadrant of the matrix.      

 

The algorithm for this methodology is described below: 
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1. Simulate n forward rates ( NjiLij ,...2,1,, = .) using Milstein scheme 
shown in Equation (58): 
 
The correlation matrix ijρ  is randomly drawn from the interval ( , 
except for the terminal correlations, which are estimated using Equation 
(50). 

]1,0

 
 

2. Compute swaption prices using Equation (40), assuming that the 
notional amount 1=P , given 1,...,1,,...,1 ++== NiN βα  

 

( )(
+

+=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

β

α
βαβα δ

1
,,

k
ik

Simulated KTLswaption )   (65) 

 
3. Compute swaption prices using Black formula in Equation (41), given 

the market implied volatilities,  . Market
βασ ,

 
4. Solve the following optimization equation: 

 

Market

SimulatedMarket

swaption

swaptionswaption
Min

ij βα

βαβα

ρ
,

,, −
=    (66) 

 
5. Compute for the terminal correlations using Equation (50). 
 
 

The above algorithm is implemented in MS Excel Visual Basic Applications.  
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4   EMPIRICAL ANALYSIS 
 

This section presents an application to the observed market data of the 

methodologies discussed in Chapter 3.   We use quoted caps and swaptions prices in 

the South Korean market.     

 

Emphasis on South Korean interest rate market is motivated by the 

remarkable growth of the South Korean economy that landed the country in the 12th 

spot in GDP ranking in 2005.  Moreover, its incumbent government is determined to 

make South Korea a full-blown financial hub in East Asia by 2020.  South Korea, 

aside from Japan, emerged as the only Asian country which has substantial market 

for securitization, as the country attempts to restructure huge amounts of distressed 

assets which are offshoots of the 1997-1998 Asian crisis.  This led to the 

development of interest-rate based securities and active trading of interest rate 

options to hedge positions in credit instruments.  Financial liberalization has also led 

to the development of innovative financing options in the country.   

 

 

4.1 Description of the data 
 

 The data set consists of South Korean caps and swaptions implied volatilities 

quoted within the period February 1, 2006 until February 28, 2006.   Within this 

period, there were 19 trading days.   On each trading day, the following at-the-

money implied volatilities were available:  options for exercise of cap on into 1 year, 

2 years, 3 years, 4 years, 5 years, 7 years and 10 years swap rates.  As for swaptions, 

on each trading day, at-the-money implied volatilities were obtained:  1y, 2y, 3y, 4y, 

and 5y option into 1y, 2y, 3y, 5y, 7y, 10y swap rates.   The data were obtained from 

Bloomberg. 
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4.2 Evaluation Criteria 
 

There is no definitive set of criteria for a good model calibration.   After 

several investigations of calibration methodologies, Brigo (2001) enumerated the 

following desired features of a well-calibrated LMM: 

 

1. A small calibration error, where the error, iε  is computed as follows: 

Market

SimulatedMarket

swaption

swaptionswaption

βα

βαβα
βαε

,

,,
, 100

−
×=   (67) 

2. Regular instantaneous correlations or decorrelation is observable in the 

correlations matrix.  This means that a monotonically decreasing pattern 

when moving away from a diagonal term of the matrix along the related row 

or column is deemed desirable.  

3. Regular terminal correlations.    

4. Smooth and qualitatively stable evolution of the term structure of caplet 

volatilities over time.   

 

In addition to the above, this thesis extends the evaluation to a dynamic level 

by investigating the performance of calibrated parameters over a period.  This is 

done by computing the average calibration changes, ijξ , of a series of calibrated 

volatilities and correlations (covariance), i.e. 

  

( ) ( ) ( ) ( ) ( ) ( )∑
=

−−−−=
T

t
ijjiijjiij tttttt

T 1

1111 ρσσρσσξ     (68) 

   

for  Nji ,...,1, =

 

Small ijξ  means that current estimates of volatility and correlations from a 

chosen calibration methodology closely approximate tomorrow’s volatility and 

correlations.  This indeed is a desirable quality as it implies less need for very 

frequent re-estimation of model parameters which may be too costly or impractical 

to do so.  
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4.3 Analysis of Results 
 

For a comprehensive analysis in line with the previously discussed 

evaluation criteria, we first present individual analysis for each parameter, volatility 

and correlation, and then the joint analysis for both parameters.    

 

4.3.1 Volatility Calibration 

 

As discussed in Chapter 3 Section 2, instantaneous volatility of forward 

LIBOR can be specified in several ways.   Although calibration of volatilities to 

caplets is automatic, the evolution of the term structure of volatilities differs 

depending on the chosen volatility specification.     

 

Empirical observations show that a humped shape term structure of 

volatilities is a desirable quality (i.e. Rebonato, 1998).   Moreover, Rebonato (2004) 

described such quality as normal or low volatility state of the instantaneous forward 

rates in contrast to a monotonically decreasing shape which he described as an 

excited state.  Figure 1 shows selected instantaneous forward LIBOR curves 

bootstrapped from caps market prices.  Notice that the term structures of South 

Korean forward LIBOR show a monotonically decreasing shape on February 1 and 

maintained more humped shape towards the end of the month.  This could be 

attributed to the fact the South Korean interest rate markets is in its development 

stage, hence, the growing liquidity of caps contribute to the evolution of the term 

structure of forward rates.  

 

 Figures 2a and 2b show the implied evolution of forward LIBOR rates under 

different specifications.  As discussed in Section 3.2, instantaneous volatility of 

forward rates can be specified in many ways depending on the belief of the trader on 

how the forward rates are expected to behave in the future.  These differences in 

assumptions or beliefs lead to different evolution of the term structure of volatilities. 

Based on the set of criteria discussed in Section 2 of this Chapter, a smooth and 

stable evolution is preferred and signifies a well-calibrated set of implied volatilities.   
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Notice that specifications i) - constant time-to-maturity volatility – and ii) – constant 

instantaneous volatility - yield smooth sets of curves.   

 

4.3.2 Correlations Calibration 

 

For the correlations structure, Tables 1 and 2 and Figure 2 show the results in 

the calibration to South Korean swaptions.  Notice that none of the correlations 

matrices exhibit the desired qualities mentioned in the previous section.  However, 

among the three methods, Method B shows less fluctuation among the forward 

LIBOR.  Perhaps the behavior of the correlations matrices could be attributed to the 

less liquid swaptions, especially the into 4-year option expiry swaptions, as the 

South Korean interest rate market is still in its development process.  Frequent 

trading of South Korean swaptions for all options expiry and swap maturities began 

only in the last quarter of year 2005.    

 

In terms of market fit and convergence time, Table 3a summarizes the results 

for the three methods.  Among the three methods, Method A requires less time due 

to the fact that swaptions volatility uses the analytic approximation proposed by 

Rebonato (Rebonato, 2004).  However, Method A’s market fit is the worst.  Method 

B with parametrized correlations matrix has the longest simulation/optimization 

time.  This is due to the additional step of parametrization in establishing the 

correlations matrix.  Method C has the least error in estimation, hence assures good 

market fit.  However, it must be noted that the lower portion (in the fourth quadrant) 

of the correlations matrix is only estimated due to the unavailability of sufficient 

swaptions to calibrate with.      

 

4.3.3 Joint analysis on the calibrated volatilities and correlations 

 

Recall in the previous sections we mentioned that the best calibration 

methodology must not only recover today’s prices but must closely estimate 

tomorrow’s interest rates dynamics as well.  Hence, the best way to test whether a 

method is able to satisfy this criterion is to examine its performance when applied 

not only to a one-day set of prices but to a time series of prices.  This criterion 
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ensures that the simultaneously calibrated volatilities and correlations minimize the 

need for future re-estimation of LMM parameters for hedging purposes. 

 

In the empirical analysis, Table 3b shows the performance of Methods A, B 

and C.  Notice that among the methods used, Method B shows the minimum 

calibration errors.  This implies that a parametrized correlations matrix provides 

better estimates for correlations matrix not only for today’s dynamics but for the 

next period’s as well.  This result is evident in Figure 4.  Figure 4 graphs the 

volatilities as jointly implied by the prices of caps and swaptions.  Indeed, Method B 

shows less fluctuation among volatilities in the period February 1 – 28, 2006. 

 

4.3.4 Alternatives to Method B 

 

Since Method B appears to be a promising approach given the results from 

the empirical analyses, we investigate some alternatives to improve the implied 

correlations structure as well as the convergence rate.   

 

In order to ensure the robustness of the results of Method B and explore possibilities 

of improved convergence, we employ different volatility specifications that assumes 

different distribution of volatilites among forward rates at different maturities and 

initial thetas in the parametrization of the correlation matrix.    We implement three 

alternatives to Method B.  In the first alternative, we use as initial values the thetas 

obtained form the analytic-based calibration of correlations matrix.  This is to 

investigate if convergence is further improved.  We also employed different 

distribution of forward rate volatilities such as constant time-to-maturity volatility 

and constant instantaneous volatility specification as discussed in Chapter 3, Section 

3.2.  The objective of this modification is to ensure that the results obtained in 

Method B will hold regardless of the beliefs on the behavior of the volatility 

structure that the traders may follow.  Summary of descriptions of the alternative 

specifications for Method B is found in Table 5a. 

 

Results in Table 5a show that not much improvement is achieved.  However, 

looking at the correlations structure in Figure 6, Method B3 appears to generate a 

smoothly decorrelated matrix except at the 4-year option expiry, which could be due 

  - 48 -



to the illiquidity of 4-year option expiry series.   Further, Table 5b shows the 

volatilities of forward LIBOR as implied by caps and swaptions.  Among the 

alternatives, Method B3 has the least average calibration error.   Notice that all the 

Method B alternatives show average calibration errors that are lower than the errors 

under Methods A and C. 

 

The results in this section of the study only confirm that, despite the 

modified specifications for volatility and initial thetas, a parametrized correlations 

matrix provides better estimates of the LIBOR dynamics.   

 

 

4.4 Further Analysis:   Intra-day pricing  
 

Following De Jong, Driessen and Pelsser (2001), we employ an intra-day 

analysis of pricing errors of the calibration methods identified in this study to further 

verify the robustness of the results in Section 4.3.   

 

In the intra-day analysis, we segment the daily at-the-money prices of caps 

and swaptions into two sets, A and B.    At each trading day, Set A , which is 20% of 

the entire sample set, contains one swaption price for each option expiry and swap 

maturity17.  The remaining swaption prices comprise the Set B (80%).   Set B is used 

in the calibration process and set A is used for pricing comparison between the 

market prices and the calibrated LMM prices.   Since after the data is segmented, set 

B has incomplete option expiry-swap maturity series, we perform linear 

interpolation to complete the option expiry and swap length series.  This is 

consistent with the method we used earlier to fill in missing swaptions maturity 

series.   

 

Then, we follow similar calibration algorithm for Methods A, B and C on the 

new dataset B.  Once the calibrated parameters are generated, we price dataset A 

using the LMM.  Pricing results are compared with quoted market prices.   Errors 

                                                 
17 Extremes of the series (i.e. 1y-1y and 5y-5y) however are retained in Set B (calibration set) so as to enable 
linear interpolation for missing series and form a complete set of swaptions prices for calibration purposes. 
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are expressed in percentage as well as in implied volatility points18.  Results are 

shown in Table 6a.  

 

Results show that Methods B and C which use constant time to maturity 

volatility specification result in least pricing error for caps compared with Method A 

which is based on a separable piecewise instantaneous volatility function.  This 

result is intuitively correct since cap prices are quoted in Black implied volatility 

that assumes constant volatility.  At intra-day pricing, constant time to maturity 

volatility specification of Methods Band C would simply equal to the constant 

instantaneous volatility.  Errors could be due to the less liquidity of the set of caps 

used in intra-day pricing analysis. 

 

For swaptions, the result shows that the analytic approximation (Method A) 

is superior compared with the Monte-Carlo based methods (Methods A and B).  

Again, this result is consistent with the analytic approximation used in the method 

that is directly from the Black swaptions formula by Rebonato (Rebonato, 1999).  

Hence, on an intra-day basis, Method A will result in prices that are close to the 

quoted Black swaptions prices.   

 

Examination of the prices further shows that LMM generally overprices 

swaptions under Methods B and C (see Table 6b).  However, under Method A, 

LMM results are generally lower than Black prices.  Results further show that 

instances of overpricing decreases towards the end of February.  This could be 

attributed to the increasing liquidity of swaptions in the South Korean market.  

 

 

 
 
 
 

                                                 
18 This will enable us to compare the results obtained by De Jong, et. al. (2001). 
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5  CONCLUSION 
 

In this study, we attempt to address the prevailing challenge in the joint 

practice of complex derivative pricing and hedging observed in the interest rate 

market.  The key to address this challenge is to choose a calibration methodology for 

the LMM such that prices of plain vanilla options are recovered while decorrelation 

among forward rates at future time instants is achieved.   

 

Hence the thesis identified and tested several calibration methods that jointly 

recover caps and swaptions prices.  When tested on a series of options prices, results 

show that Monte Carlo simulation with parametrized correlations matrix (Method B) 

seems a promising approach in LMM volatility and correlations calibration.  Not 

only is the approach able to generate good market fit with current prices of caps and 

swaptions, it is also able to closely estimate next period’s LIBOR dynamics as 

evidenced by low average calibration changes error.    Furthermore, Method B 

remains superior compared with the other calibration methods despite the changes 

made in the volatility specification consistent with prevailing market beliefs.  

 

However, when intra-day pricing test was done, joint analytic calibration 

(Method A) proved better compared with the Monte Carlo based methods (B and C) 

for swaptions pricing.  This is due to Method A’s swaptions approximation that is 

directly derived from the Black formula.  For caplets, methods B and C generated 

better results due to the consistency of the volatility specification with the Black 

assumption of constant volatility.  For complex derivative pricing and trading, we 

deem that intra-day pricing test is not enough since the prime objective is to extract 

the dynamics of forward rates such that evolution of term structure of interest rates 

is smooth and decorrelation among rates is regular.  

 

Given these results, Method B seems superior for the joint practice of 

complex derivative pricing and hedging as it provides smooth evolution of 

covariance of forward rates that is desired in complex derivative pricing and 

hedging.   
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Directions for future research include the use of more sophisticated 

optimization method or low discrepancy numbers for improved and fast 

convergence.  Smoothing can also be used on the dataset to ensure that market 

noises that could distort the results are excluded.    In addition, the sample size could 

be extended to capture more movements in the prices of caps and swaptions that 

could affect the performance of the calibration methodologies identified in the study. 
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Figure 1.  Selected volatility term structure 
from South Korean Won caplets 

 

 

 

              
                 a.   February 1, 2006     b.  February 14, 2006 

 

            
                 c.   February 20, 2006     d.  February 28, 2006 

 

Note:  This figure shows the term structure of volatilities at selected dates. These volatilities 
are bootstrapped from South Korean caps quoted at implied volatilities.  The x-axis 
represents the term of the caplet (in years) while the y-axis shows the volatility values.  
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Figure 2a.  Evolution of the term structure of volatilities  
under different volatility specifications, February 1, 2006. 
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i. Constant time-to-maturity specification 
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ii.   Constant instantaneous volatility specification 
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iii.    Separable piecewise constant instantaneous  

 
Note:  The figures above show the evolution of the term structure of volatilities under 

different specification of volatility as discussed in Section3.2.  The x-axis 
represents term (in years) while the y-axis shows the volatility values. 
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Figure 2b.  Evolution of the term structure of volatilities 
under different volatility specifications, February 14, 2006. 
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i.   Constant time-to-maturity specification 
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ii.   Constant instantaneous volatility specification 
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iii.    Separable piecewise constant instantaneous  

 
Note:  The figures above show the evolution of the term structure of volatilities under 

different specification of volatility as discussed in Section3.2.  The x-axis 
represents  term (in years) while the y-axis shows the volatility values. 
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Tables 1a-c.  Correlation matrices 
February 1, 2006 

 
 
 
 

 
a. Method A 

 
 

 

 
b. Method B 

 
 
 

 
c. Method C 

 
 

Note: Each entry of the above matrices corresponds to jiρ ,  where i (rows)  is the index for 

time at future instant (i.e.  ) and it j  (columns) is the index for the maturity/length in 

time of the forward rate (i.e. )  , jt 10...,,1, =ji .   
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Tables 2a-c.  Correlation matrices 
February 14, 2006 

 
 
 

 
a. Method A 

 
 

 

 
b. Method B 

 
 
 

 
c. Method C 

 
 

Note: Each entry of the above matrices corresponds to jiρ ,  where i (rows)  is the index for 

time at future instant (i.e.  ) and it j  (columns) is the index for the maturity/length in 

time of the forward rate (i.e. )  , jt 10...,,1, =ji .   
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Figure 3.  Correlation surfaces 
February 1 and 14, 2006 

 
 

 Feb 1 Feb 14 

A 

  

B 

  

C 

  

Note: Each point of the above surface represents x-axis represents jiρ  where i  is the index for time 

at future instant (i.e.  ) and it j is the index for the maturity/length in time of the forward rate 

(i.e. )  , .  x-axis represents i  values, y-axis represents jt 10...,,1, =ji j values and  z-axis 
represents the correlation values.  
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Table 3a 
Summary of methods 

 
 

This table presents a summary of alternative calibration methods identified and described in Chapter 3, Section 4. 
 

Method  Description Correlation Specification Average Calibration
 Time 

Average Estimation 
Error (in %) 

A Joint Calibration using 
Rebonato’s approximation 

2-factor hypersphere 
decomposition 4 min, 29 sec 15.59% 

B 
Monte Carlo simulation 
with parametric correlation 
matrix 

5-factor hypersphere 
decomposition 12 min, 15 sec 2. 21% 

C 

 
Monte Carlo Simulation 
with non-parametric 
correlation (exact 
calibration to swaption 
prices) 
 

 
Randomly drawn from a 
sequence of low-
discrepancy numbers; 
terminal correlations 
estimated through 
simulation 
 

10 min, 58 sec 0.24% 
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Table 3b 
Average calibration changes error 

 
 
 
This table presents the averages from a 19-day set of volatility and correlations changes calibrated to South Korean caps and swaptions under each of the 
three methods described in Chapter 3 Section 4.   
 

Correlation Surface Met-

hod 

Volatility 

Curve 1-1               1-2 1-3 1-4 1-5 2-2 2-3 2-4 2-5 3-3 3-4 3-5 4-4 4-5 5-5

A 0.0390                0.0024 0.0343 0.0275 0.0360 0.0079 0.0030 0.0367 0.0249 0.0379 0.0041 0.0393 0.0168 0.0037 0.0292 0.0047

B 0.0228                

                

0.0023 0.0023 0.0027 0.0027 0.0034 0.0027 0.0023 0.0025 0.0039 0.0038 0.0025 0.0030 0.0037 0.0019 0.0044

C 0.0228 0.0023 0.0317 0.0369 0.0065 0.0338 0.0027 0.0441 0.0039 0.0035 0.0038 0.0117 0.0428 0.0037 0.0440 0.0044

   Note:  Dataset includes all trading days within the period February 1 – 28, 2006.  
   Data Source:  Bloomberg  
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Figure 4. Daily forward rates volatilities, 
calibrated to caps and swaptions 

February 1 – 28, 2006. 
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a.   Method A 

 

 
b. Method B 

 

 
c. Method C 

Note:  x-axis represents term in year;  y-axis represents the forward rate 
volatilities; and the  z-axis represents dates (daily interval). 
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Table 5a 
Summary of Alternative Specifications for Method B 

 
 
 

Method Volatility 
Specification 

Correlation 
Specification Initial Thetas Average 

Simulation Time 

Average 
Estimation Error 

(in %) 

B Spherical Coordinates 5-factor, hypersphere 
decomposition 

π and π/2  (increments are LD 
numbers)  12 min, 15 sec 2.21% 

B1 Constant Time-to-
Maturity 

5-factor, hypersphere 
decomposition 

Joint-calibration, using 
Rebonato approximation 6 min, 52 sec 2.52% 

B2 Constant 
Instantaneous 

5-factor, hypersphere 
decomposition 

Joint-calibration, using 
Rebonato approximation 13 min, 3 sec 3.83% 

B3 Constant Time-to-
Maturity 

5-factor, hypersphere 
decomposition 

Low discrepancy (LD) 
numbers, within the interval 
[ ]1416.3,1416.3−  

10 min, 28 sec 2.34% 
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Table 5b 
Average Calibration Changes Error 

 
This table presents the averages from a 19-day set of volatility and correlations changes calibrated to South Korean caps and swaptions under each of the 
alternative specifications for method B described in Table2a. 
   

Correlation Surface Met-

hod 

Volatility 

Curve 1-1               

                

1-2 1-3 1-4 1-5 2-2 2-3 2-4 2-5 3-3 3-4 3-5 4-4 4-5 5-5

B 0.0228 0.0023 0.0023 0.0027 0.0027 0.0034 0.0027 0.0023 0.0025 0.0039 0.0038 0.0025 0.0030 0.0037 0.0019 0.0044

B1 0.0228                

                

                

0.0023 0.0304 0.0309 0.0361 0.0267 0.0027 0.0165 0.0298 0.0291 0.0038 0.0182 0.0198 0.0037 0.0111 0.0044

B2 0.0228 0.0023 0.0191 0.0223 0.0289 0.0208 0.0027 0.0128 0.0240 0.0237 0.0038 0.0108 0.0165 0.0038 0.0087 0.0044

B3 0.0028 0.0023 0.0240 0.0195 0.0105 0.0053 0.0027 0.0072 0.0099 0.0143 0.0038 0.0037 0.0036 0.0037 0.0020 0.0044

   Note:  Dataset includes all trading days within the period February 1 – 28, 2006.  
   Data Source:  Bloomberg  
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Figure5.  Correlation surfaces 
Method B alternatives 
February 1 and 14, 2006 

 
 

 Feb 1 Feb 14 

B1 

  

B2 

  

B3 

  

Note: Each point of the above surface represents x-axis represents jiρ  where  is the index for 

time at future instant (i.e.  ) and 

i

it j is the index for the maturity/length in time of the 

forward rate (i.e. )  , jt 10...,,1, =ji .  x-axis represents i  values, y-axis represents j  
values and z-axis represents the correlation values.  
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Table 6a 
Intra-Day Pricing Results19

 
 
This table contains summary statistics on intra-day pricing errors.  Daily sample of caps 
and swaptions was segmented into two sets: A and B.  Set A was used as benchmark prices 
for LMM pricing while Set B was used for calibration.  Results are presented for the three 
calibration methods described in the body of the thesis.          
 

Caplets Swaptions 
Method In % Price 

Error 

In Implied 
Volatility Points 

Error 

In % Price 
Error 

In Implied 
Volatility Points 

Error 

A 11.3% 1.95 14.9% 2.31 

B 10.8% 2.50 20.0% 2.76 

C 10.8% 2.50 16.1% 2.48 

 
 

                                                 
19 Paper (by A. Pelsser, et.al. (2001)) reported pricing errors in the interval 0 - 3.26 implied 
volatility points for caplets and 0.6 – 2.23 implied volatility points for swaptions. 
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Table 6b 
Selected Intra-Day Pricing Results 

 
This table shows selected prices of swaptions when calibrated LMM dynamics are applied 
to Set A sample and the quoted Black swaptions prices.  Swaptions selected are expressed 
in terms of option expiry (in years) – swap length (in years), i.e. 2y-4y means a swaption 
with 2-year option on a 4-year swap. 
 
Method A 

  

Prices in Implied 
Volatility Points 

Prices in South 
Korean Won Date / Swaption 

Black LMM Black LMM 

% of Set A 
such that 
LMM > 

Black prices 
Feb 1: (1y-2y) 0.1590 0.1771 0.0057 0.0063 40% 

Feb 13:  (2y-3y) 0.1390 0.1379 0.0102 0.0102 40% 

Feb 20: (3y-4y) 0.1310 0.1240 0.0145 0.0146 40% 

Feb 28 : (4y-5y) 0.1110 0.1155 0.0163 0.0177 40% 

 
 
Method B 

Prices in Implied 
Volatility Points 

Prices in South 
Korean Won Date / Swaption 

Black LMM Black LMM 

% of Set A 
such that 

LMM > Black 
prices 

Feb 1: (1y-2y) 0.1590 0.1777 0.0057 0.0064 80% 

Feb 13:  (2y-3y) 0.1380 0.1460 0.0101 0.0108 60% 

Feb 20: (3y-4y) 0.1310 0.1308 0.0145 0.0144 40% 

Feb 28 : (4y-5y) 0.1110 0.1260 0.0163 0.0180 40% 

 

 
Method C 

Prices in Implied 
Volatility Points 

Prices in South 
Korean Won Date / Swaption 

Black LMM Black LMM 

% of Set A such 
that LMM > 
Black prices 

Feb 1: (1y-2y) 0.1590 0.1785 0.0056 0.0063 80% 

Feb 13:  (2y-3y) 0.1380 0.1382 0.0101 0.0103 60% 

Feb 20: (3y-4y) 0.1310 0.1205 0.0145 0.0143 60% 

Feb 28 : (4y-5y) 0.1110 0.1131 0.0163 0.0177 40% 
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APPENDIX A 
Documentation of Thesis Workbook 
 
The thesis implementation used the Microsoft Excel Visual Basic program with 
MatLab 7.04 interface.  This section discusses in detail the steps to run the 
calibration and pricing process within this workbook. 
 
 
Thesis Workbook:  LMM Calibration 
 
This workbook runs the calibration process of the LIBOR market model under the 
different alternative methods described in the body of the thesis.  It has seven (7) 
sheets described below: 
  

Sheet 
Number Name Content 

1 Data - Daily quotes of South Korean Won caps and 
swaptions prices (February 1 – February 28, 
2006) 

- Daily quotes of South Korean IRS rates 
(February 1 – February 28, 2006) 

2 Interpolation This section performs interpolation of interest 
rates depending on the compounding frequency 
chosen.  In this study, we mainly use quarterly 
compounding as it is the convention observed in 
the South Korean interest rate market. 

3 Caplets BS This sheet performs the bootstrapping of caplet 
volatilities using the piecewise linear method.  
The returned values are the implied volatilities of 
caplets. 

4 Pricing In this sheet, swaptions implied volatilities are 
converted into prices using the Black formula.  
Interpolation is first done to complete the matrix 
of swaptions prices.   

5 Method A This sheet performs LMM calibration using 
Method A as described in the body of the thesis. 

6 Method B This sheet performs LMM calibration using 
Method B as described in the body of the thesis. 

7 Method C This sheet performs LMM calibration using 
Method C as described in the body of the thesis. 
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Sheet 1:  Data 
 

 
 
Steps: 

1. On Sheet 1 (Data), click on “Date” cell until the arrow tabs for sorting 
appears.  

2. Select from the drop- down list the desired date of quoted prices to which 
LMM will be calibrated. 

3. Highlight the cells containing the quoted prices. 
4. Click on “Copy” icon or right-click your mouse and select “Copy”. 
5. Go to Sheet 2 (Interpolation). 
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Sheet 2: Interpolation  
 

 
 
Steps, cont. 

6. On Sheet 2 (Interpolation), activate cell B6 (click on cell B6). 
7. Right-click your mouse and select “Paste Special”.  If “Paste Special” 

command cannot be found from the drop-down list, go to “Edit” from the 
menu tab and select “Paste Special”. 

8. In the “Paste Special” dialogue box, click on “Values” in the set of options 
under the “Paste” category. 

9. Click “OK”. 
10. Click the “Interpolate” button to run macro. 
11. Go to Sheet 3 (Caplet BS) for caplet prices bootstrapping.  
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Sheet 3: Caplet BS 
 

 
 
Steps: 

12. On Sheet 3 (Caplet BS), click on the “Bootstrap” button to run macro. 
13. The instantaneous volatilities as implied by caplet prices are shown under 

column “CG”. 
14. Go to Sheet 4 (Pricing).   
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Sheet 4: Pricing 
 

 
 
Steps: 

15. On Sheet 4 (Pricing), click on the “Calculate” button to run macro that 
converts swaptions implied volatilities to monetary prices. 

16. Go to Sheet 5 (Method A) to perform calibration using Method A. 
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Sheet 5: Method A 
 

 
 
Steps: 

17. Input the desired number of iterations on cell O214. 
18. Click on the “Calculate Joint Calibration” to run macro.   
19. The calibrated volatilities are found on cells C231:AC240.   
20. The calibrated correlations matrix is found on cells T218:AC227. 
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Sheet 6:  Method B 
 

 
 
Steps: 
 

21. Input the desired optimization iteration on cell M94. 
22. Click on the button “Compute Forward Rates” to compute the initial rates. 
23. Select the button indicating the desired volatility specification to run macro.  

This sheet includes the alternatives for Method B as described in Table 5a. 
24. The calibrated volatilities are found on cells B35:K44. 
25. The calibrated correlation matrix is found on cells B50:K59. 
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Sheet 7:  Method C 
 

 
 
Steps: 
 

26. Input the desired optimization iteration on cell M74. 
27. Click on the button “Compute Forward Rates” to compute the initial rates. 
28. Click on the “Run Exact Simulation” to run macro.   
29. The calibrated volatilities are found on cells B35:K44. 
30. The calibrated correlation matrix is found on cells B50:K59. 
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APPENDIX B 
Program Codes 
 
 
Method A 
 
Option Explicit 
Option Base 1 
 
'****************************************************************** 
' Returns the opt theta for a 2-factor HP using Rebonato 

approximation 
'  in Joint calibration to caps and swaptions 
'****************************************************************** 
 
Sub Reb() 
 
Dim i As Integer, j As Integer 
Dim k As Integer, l As Integer, m As Integer 
Dim iteration As Integer, n As Long 
Dim forwardrates As Variant, ForwardSwaps As Variant 
Dim sigma As Variant 
Dim rho As Variant 
Dim theta As Variant 
Dim marketvolas As Variant 
 
forwardrates = Range("AH244:AQ253") 
ForwardSwaps = Range("AH231:AQ240") 
rho = Range("T218:AC227") 
sigma = Range("T231:AC240") 
theta = Range("N202:N211") 
marketvolas = Range("T202:X206") 
iteration = Range("O214") 
 
Range("O220").Value = Now() 
 
Application.ActiveSheet.Calculate 
 
Application.Range("N202:N211").ClearContents 
Application.Range("T210:X214").ClearContents 
Application.Range("AB202:AF206").ClearContents 
Application.ActiveWindow.ScrollColumn = 14 
 
For i = 1 To 5 
For j = 1 To 5 
ReDim swaptionsvola(i, j) 
ReDim Errors(i, j) 
 
Do 
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 For m = i To (i + j) 
  
 For n = 1 To iteration 
   
        ReDim LD2(1 To iteration) As Double 
        ReDim randoms(1 To iteration) 
                   
         randoms(n) = MoroNormSInv(Rnd) 
                
        If 0 <= theta(m, 1) < 3.1416 Then 
             
        theta(m, 1) = 1.5708 + randoms(n) 
                                         
        Else: 
        If theta(m, 1) < 0 Then 
                theta(m, 1) = theta(m, 1) + 1.5708 
        Else: 
                 theta(m, 1) = theta(m, 1) - 1.5708 
            End If 
        End If 
         
If i < j Then 

For k = i + 1 To j 
     For l = 1 To i 
      ReDim Integral(i) 
      Integral(i) = Integral(i)+sigma(i, l) * sigma(j, l) 
     Next l 
 

    swaptionsvola(i, j) = Sqr(forwardrates(i, k) * 
forwardrates(j, k) * rho(k, j) * Integral(i) / 
ForwardSwaps(i, j) ^ 2) 

    Errors(i, j) = (Sqr((marketvolas(i, j) - swaptionsvola(i, j)) ^ 
2)) / marketvolas(i, j) 

                           
Next k 

End If 
 
If i > j Then 
For k = j To i - 1 
    For l = 1 To j 
    ReDim Integral(j) 
        Integral(j) = Integral(j)+ sigma(i, l) * sigma(j, l) 
    Next l 
    swaptionsvola(i, j) = Sqr(forwardrates(i, k) * forwardrates(j, 

k) * rho(k, j) * Integral(j) / ForwardSwaps(j, i) ^ 2) 
    Errors(i, j) = (Sqr((marketvolas(i, j) - swaptionsvola(i, j)) ^ 

2)) / marketvolas(i, j) 
                                                 
Next k 
End If 
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If i = j Then 
    For l = 1 To j 
    ReDim Integral(j) 
        Integral(j) = Integral(j) + sigma(i, l) * sigma(j, l) 
    Next l 
    swaptionsvola(i, j) = Sqr(Integral(j)) 
    Errors(i, j) = (Sqr((marketvolas(i, j) - swaptionsvola(i, j)) ^ 

2)) / marketvolas(i, j) 
End If 
 
Application.ActiveSheet.Calculate 
Cells(209 + i, 19 + j) = swaptionsvola(i, j) 
Cells(201 + i, 27 + j) = Errors(i, j) 
Cells(201 + m, 14) = theta(m, 1) 
Cells(215, 15) = n 
 
Next n 
Next m 
 
Loop While n < iteration 
 
Next j 
Next i 
 
Application.ActiveSheet.Calculate 
Range("O221").Value = Now() 
Application.ActiveSheet.Calculate 
MsgBox "Joint Calibration Complete!" 
 
End Sub 
 
 
'****************************************************************** 
'  Returns the equivalent first sequence number of QMC 
'  with base = 2 
'****************************************************************** 
 
Function Base2(n As Long) As Double 
 
Dim c As Double, ib As Double 
Dim i As Long, n1 As Long, n2 As Long 
 
n1 = n 
c = 0 
ib = 1 / 2 
Do While n1 > 0 
    n2 = Int(n1 / 2) 
    i = n1 - n2 * 2 
    c = c + ib * i 
    ib = ib / 2 
    n1 = n2 
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Loop 
Base2 = c 
End Function 
 
'****************************************************************** 
'  Returns the equivalent first sequence number used in Halton, 

Faure, Sobol 
'  base = b, arbitrary/varible 
'****************************************************************** 
 
Function Baseb(b As Long, n As Long) As Double 
Dim c As Double, ib As Double 
Dim i As Long, n1 As Long, n2 As Long 
 
n1 = n 
c = 0 
ib = 1 / b 
 
Do While n1 > 0 
    n2 = Int(n1 / b) 
    i = n1 - n2 * b 
    c = c + ib * i 
    ib = ib / b 
    n1 = n2 
Loop 
Baseb = c 
End Function 
 
'****************************************************************** 
'  Calculates the standard normal numbers given u, the associated 
'  uniform number (0,1) 
'****************************************************************** 
 
Function MoroNormSInv(u As Double) As Double 
Dim c1, c2, c3, c4, c5, c6, c7, c8, c9 
Dim X As Double 
Dim r As Double 
Dim a As Variant 
Dim b As Variant 
a = Array(2.50662823884, -18.61500062529, 41.39119773534, -

25.44106049637) 
b = Array(-8.4735109309, 23.08336743743, -21.06224101826, 

3.13082909833) 
c1 = 0.337475482272615 
c2 = 0.976169019091719 
c3 = 0.160797971491821 
c4 = 2.76438810333863E-02 
c5 = 3.8405729373609E-03 
c6 = 3.951896511919E-04 
c7 = 3.21767881768E-05 
c8 = 2.888167364E-07 

  80



c9 = 3.960315187E-07 
X = u - 0.5 
 
If Abs(X) < 0.42 Then 
    r = X ^ 2 
    r = X * (((a(4) * r + a(3)) * r + a(2)) * r + a(1)) / ((((b(4) 

* r + b(3)) * r + b(2)) * r + b(1)) * r + 1) 
Else 
    If X > 0 Then r = Log(-Log(1 - u)) 
    If X <= 0 Then r = Log(-Log(u)) 
     
    r = c1 + r * (c2 + r * (c3 + r * (c4 + r * (c5 + r * (c6 + r * 

(c7 + r * (c8 + r * c9))))))) 
    If X <= 0 Then r = -r 
 
End If 
MoroNormSInv = r 
End Function 

 
 Method B 
  
Option Explicit 
Option Base 1 
 
'****************************************************************** 
'*Computation of Monte Carlo Simulation swaption prices-B 
'****************************************************************** 
 
Sub MC5by5_5factor() 
 
Dim iteration As Long, n As Long, iter As Long, niter As Integer 
Dim i As Integer, j As Integer, k As Integer, r As Integer, c As 

Integer 
Dim l As Integer, a As Integer, b As Integer, u As Integer, v As 

Integer 
Dim InFwd As Variant, sigma As Variant, Theta1 As Variant, Theta2 

As Variant, Expiry As Variant 
Dim Tyr As Variant, DiscR As Variant, Interval As Variant, DiscRQ 

As Variant 
Dim Strike As Variant, rho As Variant, vectorB As Variant, JCTheta 

As Variant 
Dim diff As Variant, TDiff As Double, TPrice As Double, Tfwds As 

Double, Afwds As Double 
Dim APrice As Double, ADiff As Double, inc As Double, thetadiff As 

Double 
Dim Market As Variant, CountNo As Double 
 
Range("M77").Value = Now() 
Expiry = Range("A50:A59") 
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sigma = Range("B35:K44")   'assumes constant vol in each expiry-
maturity time interval (Vol Table2) 

InFwd = Range("AA21:AJ30")   'forward rates 
Strike = Range("AA21:AJ30") 'quarterly compounded forward swap 

rates 
rho = Range("b50:k59")    'using Hypershpere decomposition 3-

factors 
JCTheta = Range("O146:O155")   'from jc theta 
Interval = Range("b2:k2")      'annual 
Market = Range("B62:F78") 
DiscR = Range("AA46:AV46") 
DiscRQ = Range("Q2:BD2") 
inc = Range("B157") 
niter = Range("M94") 
thetadiff = Range("B158") 
 
Application.ActiveSheet.Calculate 
Application.Range("B74:F78").ClearContents 
Application.Range("B86:F90").ClearContents 
Application.Range("Q211:Q4786").ClearContents 
 
For u = 1 To 5 
For v = 1 To 5 
 
iter = 1 
 
Do 
    For a = 1 To 10 
    ReDim factor1(a, 1) 
    ReDim factor2(a, 1) 
    ReDim factor3(a, 1) 
    ReDim factor4(a, 1) 
    ReDim factor5(a, 1) 
    ReDim rho(a, a) 
    ReDim Theta1(a, 1) 
    ReDim Theta2(a, 1) 
    ReDim Theta3(a, 1) 
    ReDim Theta4(a, 1) 
    ReDim LD2(1 To niter) As Double 
    ReDim randoms2(1 To niter) 
                   
         LD2(iter) = Base2(iter) 
         randoms2(iter) = MoroNormSInv(LD2(iter))                    
                   
         Cells(210 + iter, 17) = randoms2(iter) 
                       
         Theta1(a, 1) = 3.1416 / a + randoms2(iter) 
         Theta2(a, 1) = 1.5708 + randoms2(iter) 
         Theta3(a, 1) = 3.1416 / a - randoms2(iter) 
         Theta4(a, 1) = 1.5708 - Rnd 
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         If Abs(Theta1(a, 1)) <= 3.1416 Then 
               Theta1(a, 1) = Theta1(a, 1) 
          Else:  Theta1(a, 1) = Theta1(a, 1) - 3.1416 
         End If 
           
         If Abs(Theta2(a, 1)) <= 3.1416 Then 
        Theta2(a, 1) = Theta2(a, 1) 
         Else:  Theta2(a, 1) = Theta2(a, 1) - 3.1416 
         End If 
     
         If Abs(Theta3(a, 1)) <= 3.1416 Then 
         Theta3(a, 1) = Theta3(a, 1) 
         Else:  Theta3(a, 1) = Theta3(a, 1) - 3.1416 
         End If 
     
        If Abs(Theta4(a, 1) <= 3.1416) Then 
         Theta4(a, 1) = Theta4(a, 1) 
         Else:  Theta4(a, 1) = Theta4(a, 1) - 3.1416 
         End If 
                       
         Cells(145 + a, 2) = Theta1(a, 1) 
         Cells(145 + a, 3) = Theta2(a, 1) 
         Cells(145 + a, 4) = Theta3(a, 1) 
         Cells(145 + a, 5) = Theta4(a, 1) 
                                               
        factor1(a, 1) = Abs(Cos(Theta1(a, 1))) 
        factor2(a, 1) = Abs(Cos(Theta2(a, 1)) * Sin(Theta1(a, 1))) 
        factor3(a, 1) = Abs(Cos(Theta3(a, 1)) * Sin(Theta1(a, 1)) * 

Sin(Theta2(a, 1))) 
        factor4(a, 1) = Abs(Cos(Theta4(a, 1)) * Sin(Theta1(a, 1)) * 

Sin(Theta2(a, 1)) * Sin(Theta3(a, 1))) 
        factor5(a, 1) = Abs(Sin(Theta1(a, 1)) * Sin(Theta2(a, 1)) * 

Sin(Theta3(a, 1)) * Sin(Theta4(a, 1))) 
         
   
        Cells(145 + a, 7) = factor1(a, 1) 
        Cells(145 + a, 8) = factor2(a, 1) 
        Cells(145 + a, 9) = factor3(a, 1) 
        Cells(145 + a, 10) = factor4(a, 1) 
        Cells(145 + a, 11) = factor5(a, 1) 
  
    Next a 
 
iteration = Range("m74").Value 
ReDim Price(iteration) As Double 
ReDim forwards(iteration) As Double 
ReDim Payoff(u, v) 
ReDim LD(1 To iteration) As Double 
ReDim randoms(1 To iteration) 
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TPrice = 0 
CountNo = 0 
 
For n = 1 To iteration 
        
     randoms(n) = Rnd() 
        Cells(210 + n, 3) = randoms(n) 
                 
        For l = 1 To v 
        ReDim fwd(u, v) As Double 
        ReDim summation(v) As Double 
            
        If u < v Then 
                          
        For r = u + 1 To u + v 
         
        summation(v) = summation(v) + rho(r, v) * sigma(r, u) * 

InFwd(u, r) * Interval(1, r) / (1 + Interval(1, r) * InFwd(u, 
r)) 

         
        Next r 
                        
        fwd(u, v) = Exp(Log(InFwd(u, v)) + sigma(u + l, u + l) * 

summation(v) * Interval(1, l) - 0.5 * (sigma(u + l, u + l) ^ 
2) * Interval(1, l) + sigma(u + l, u + l) * randoms(n) * 
Sqr(Interval(1, l))) 

         
        Payoff(u, v) = Payoff(u, v) + Exp(-DiscR(1, u + l + 1) * (u 

+ l + 1)) * (fwd(u, v) - Strike(u, v)) 
                         
        End If 
                
        If u > v Then 
         
        For r = v + 1 To u + v 
         
        summation(v) = summation(v) + rho(r, v) * sigma(r, v) * 

InFwd(u, r) * Interval(1, l) / (1 + Interval(1, l) * InFwd(u, 
r)) 

         
        Next r 
         
        fwd(u, v) = Exp(Log(InFwd(u, v)) - sigma(u + l, u + l) * 

summation(v) * Interval(1, l) - 0.5 * (sigma(u + l, u + l) ^ 
2) * Interval(1, l) + sigma(u + l, u + l) * randoms(n) * 
Sqr(Interval(1, l))) 

          
        Payoff(u, v) = Payoff(u, v) + Exp(-DiscR(1, l) * (l)) * 

(fwd(u, v) - Strike(u, v)) 
                  
        End If 
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       If u = v Then 
         
        fwd(u, v) = Exp(Log(InFwd(u, v)) - 0.5 * (sigma(v, v) ^ 2) 

* Interval(1, l) + sigma(v, v) * randoms(n) * Sqr(Interval(1, 
l))) 

          
        Payoff(u, v) = Payoff(u, v) + Exp(-DiscR(1, l) * (l)) * 

(fwd(u, v) - Strike(u, v)) 
        
       End If 
                       
        If l = 1 Then 
          forwards(n) = fwd(u, v) 
            Tfwds = forwards(n) 
        End If 
               
        Next l 
           
        Price(n) = Application.WorksheetFunction.Max(Payoff(u, v), 

0) 
        TPrice = Price(n) 
Next n 
               
        iter = iter + 1 
        Cells(93, 13) = iter 
        Application.ActiveSheet.Calculate 
         
Loop While Application.WorksheetFunction.And((Abs((Market(u, v) - 

TPrice / n)) / Market(u, v)) > 0.01, iter <= niter) 
  
APrice = TPrice / (iteration) 
ADiff = ((Market(u, v) - APrice) / Market(u, v)) 
Afwds = Tfwds * 10 / iteration 
Cells(u + 73, v + 1) = APrice 
Cells(u + 85, v + 1) = ADiff 
Cells(20 + u, 38 + v) = Afwds 
 
Next v 
Next u 
 
Range("M86").Value = Now() 
Application.ActiveSheet.Calculate 
MsgBox "Simulation Complete" 
 
End Sub 
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Method C 
 
Option Explicit 
Option Base 1 
 
'****************************************************************** 
'*Computation of Monte Carlo Simulation swaption prices - EXACT 
'****************************************************************** 
 
Sub MC5by5_Exact() 
 
Dim iteration As Long, n As Long, iter As Long, niter As Long 
Dim i As Integer, j As Integer, k As Integer, r As Integer, c As 

Integer 
Dim l As Integer, a As Integer, b As Long, u As Integer, v As Long 
Dim InFwd As Variant, sigma As Variant, Theta1 As Variant, Theta2 

As Variant, Expiry As Variant 
Dim Tyr As Variant, DiscR As Variant, Interval As Variant, DiscRQ 

As Variant 
Dim Strike As Variant, rho As Variant, vectorB As Variant, JCTheta 

As Variant, Infwd2 As Variant 
Dim diff As Variant, TDiff As Double, TPrice As Double, Tfwds As 

Double, Afwds As Double, TDiff2 As Double 
Dim Afwds2 As Double, termcorr As Double, Afwds3 As Double, TDiff3 

As Double, Tfwds2 As Double 
Dim APrice As Double, ADiff As Double, inc As Double, thetadiff As 

Double 
Dim Market As Variant, CountNo As Double, f As Double 
 
Range("M77").Value = Now() 
Expiry = Range("A50:A59") 
sigma = Range("B35:K44")    'assumes constant vol in each expiry-

maturity time interval (Vol Table2) 
InFwd = Range("AA21:AJ30")    'forward rates 
Infwd2 = Range("B4:K4")       'rates for term corr 
Strike = Range("AA21:AJ30") 'quarterly compounded forward swap 

rates 
rho = Range("b50:k59")      'using Hypershpere decomposition 3-

factors 
Interval = Range("b2:k2")      'annual 
Market = Range("B62:F78") 
DiscR = Range("AA46:AV46") 
DiscRQ = Range("Q2:BD2") 
inc = Range("B157") 
niter = Range("M94") 
thetadiff = Range("B158") 
 
Application.ActiveSheet.Calculate 
Application.Range("P74:Y83").ClearContents 
Application.Range("B86:K90").ClearContents 
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For u = 1 To 5 
For v = 1 To 5 
 
iter = 1 
 
Do 
    For a = u To v 
    For b = a + 1 To u + v 
    ReDim rhos(a, b) 
    ReDim LD2(1 To niter) As Double 
    ReDim randoms2(1 To niter) 
                   
         LD2(Application.WorksheetFunction.Min(iter * b, 30000)) = 

Base2(Application.WorksheetFunction.Min(iter * b, 30000)) 
         randoms2(Application.WorksheetFunction.Min(iter * b, 

30000)) = 
MoroNormSInv(LD2(Application.WorksheetFunction.Min(iter * b, 
30000)))               'using quasi-monte carlo 

            
         rhos(a,b)= randoms2(Application.WorksheetFunction.Min(iter 

* b, 30000)) 
   
Do 
    If Abs(rhos(a, b)) > 1 Then 
       rhos(a, b) = Abs(rhos(a, b)) - 0.1 
    Else:  rhos(a, b) = Abs(rhos(a, b)) 
    End If 
    Cells(49 + a, b + 1) = rhos(a, b) 
   
Loop While Abs(rhos(a, b)) > 1 
   
Next b 
Next a 
 
iteration = Range("m74").Value 
ReDim Price(iteration) As Double 
ReDim forwards(iteration) As Double 
ReDim forwards2(iteration) As Double 
ReDim FwdsDiff(iteration) As Double 
ReDim FwdsDiff2(iteration) As Double 
ReDim FwdsDiff3(iteration) As Double 
ReDim Payoff(u, v) 
ReDim LD(1 To iteration) As Double 
ReDim randoms(1 To iteration) 
 
TPrice = 0 
CountNo = 0 
For n = 1 To iteration 
 
        'LD(N) = Base2(N) 
        'randoms(N) = MoroNormSInv(LD(N)  'using quasi-monte carlo 
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        randoms(n) = Rnd() 
                
        For l = 1 To v 
        ReDim fwd(u, v) As Double 
        ReDim summation(v) As Double 
            
        If u < v Then 
            For r = u + 1 To u + v 
            summation(v) = summation(v) + rho(r, v) * sigma(r, u) * 

InFwd(u, r) * Interval(1, r) / (1 + Interval(1, r) * InFwd(u, 
r)) 
      Next r 

                        
        fwd(u, v) = Exp(Log(InFwd(u, v)) + sigma(u + l, u + l) * 

summation(v) * Interval(1, l) - 0.5 * (sigma(u + l, u + l) ^ 
2) * Interval(1, l) + sigma(u + l, u + l) * randoms(n) * 
Sqr(Interval(1, l))) 

         
        Payoff(u, v) = Payoff(u, v) + Exp(-DiscR(1, u + l + 1) * (u 

+ l + 1)) * (fwd(u, v) - Strike(u, v)) 
                           
        End If 
                
        If u > v Then 
         
        For r = v + 1 To u + v 
        summation(v) = summation(v) + rho(r, v) * sigma(r, v) * 

InFwd(u, r) * Interval(1, l) / (1 + Interval(1, l) * InFwd(u, 
r)) 

         Next r 
         
        fwd(u, v) = Exp(Log(InFwd(u, v)) - sigma(u + l, u + l) * 

summation(v) * Interval(1, l) - 0.5 * (sigma(u + l, u + l) ^ 
2) * Interval(1, l) + sigma(u + l, u + l) * randoms(n) * 
Sqr(Interval(1, l))) 

          
        Payoff(u, v) = Payoff(u, v) + Exp(-DiscR(1, u + l) * (u + 

l)) * (fwd(u, v) - Strike(u, v)) 
                 
        End If 
                 
        If u = v Then 
        fwd(u, v) = Exp(Log(InFwd(u, v)) - 0.5 * (sigma(v, v) ^ 2) 

* Interval(1, l) + sigma(v, v) * randoms(n) * Sqr(Interval(1, 
l))) 

          
        Payoff(u, v) = Payoff(u, v) + Exp(-DiscR(1, l) * (l)) * 

(fwd(u, v) - Strike(u, v)) 
          
  End If 
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    Next l 
           
' to compute terminal correlations 
 
        For a = u + 5 To u + 5 
        For i = u + 6 To Application.WorksheetFunction.Min(10, u + 

6) 
        For b = v + 5 To v + 5 
        For j = v + 6 To Application.WorksheetFunction.Min(10, v + 

6) 
        

  For k = 1 To j 
        For l = 1 To b 
        ReDim fwds(a, b) As Double 
        ReDim fwds(i, j) As Double 
        ReDim summation(b) As Double 
        ReDim summation(j) As Double 
                       
        If a < b Then 
                          
        For r = a + 1 To Application.WorksheetFunction.Min(10, a + 

b) 
         summation(b) = summation(b) + rho(r, b) * sigma(r, a) * 

Infwd2(1, r) * Interval(1, r) / (1 + Interval(1, r) * 
Infwd2(1, r)) 

        
  Next r 

                        
        fwds(a, b) = Exp(Log(InFwd(1, b)) + sigma(a, a) * 

summation(b) * Interval(1, l) - 0.5 * (sigma(a, a) ^ 2) * 
Interval(1, l) + sigma(a, a) * Rnd() * Sqr(Interval(1, l))) 

        f = fwds(a, b) 
         
        End If 
                
        If a > b Then 
 
        For r = b + 1 To Application.WorksheetFunction.Min(10, a + 

b) 
        summation(b) = summation(b) + rho(r, b) * sigma(r, b) * 

Infwd2(1, r) * Interval(1, l) / (1 + Interval(1, l) * 
Infwd2(1, r)) 

         Next r 
         
        fwds(a, b) = Exp(Log(Infwd2(1, b)) - sigma(b, b) * 

summation(b) * Interval(1, l) - 0.5 * (sigma(b, b) ^ 2) * 
Interval(1, l) + sigma(b, b) * randoms(n) * Sqr(Interval(1, 
l))) 

        f = fwds(a, b) 
        End If 
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        If a = b Then 
        fwds(a, b) = Exp(Log(Infwd2(1, b)) - 0.5 * (sigma(b, b) ^ 

2) * Interval(1, l) + sigma(b, b) * Rnd() * Sqr(Interval(1, 
l))) 

         f = fwds(a, b) 
        End If 
                         
        Next l 
                       
      If i < j Then 
        For r = i + 1 To Application.WorksheetFunction.Min(10, i + 

j) 
       summation(j) = summation(j) + rho(r, i) * sigma(r, i) * 

Infwd2(1, r) * Interval(1, r) / (1 + Interval(1, r) * 
Infwd2(1, r)) 

       Next r 
                        
        fwds(i, j) = Exp(Log(Infwd2(1, j)) + sigma(i, i) * 

summation(j) * Interval(1, k) - 0.5 * (sigma(i, i) ^ 2) * 
Interval(1, k) + sigma(i, i) * Rnd() * Sqr(Interval(1, k))) 

                 
        End If 
                
      If i > j Then 
         
        For r = j + 1 To Application.WorksheetFunction.Min(10, i + 

j) 
        summation(j) = summation(j) + rho(r, j) * sigma(r, j) * 

Infwd2(1, r) * Interval(1, k) / (1 + Interval(1, k) * 
Infwd2(1, r)) 

        Next r 
         
        fwds(i, j) = Exp(Log(Infwd2(1, j)) - sigma(j, j) * 

summation(j) * Interval(1, k) - 0.5 * (sigma(j, j) ^ 2) * 
Interval(1, k) + sigma(j, j) * randoms(n) * Sqr(Interval(1, 
k))) 

        End If 
                 
       f i = j Then 
         fwds(i, j) = Exp(Log(Infwd2(1, j)) - 0.5 * (sigma(j, j) ^ 

2) * Interval(1, k) + sigma(k, k) * randoms(n) * 
Sqr(Interval(1, k))) 

        End If 
                         
        Next k 

forwards(n) = fwds(a, b) 
forwards2(n) = fwds(i, j) 
Tfwds = forwards(n) 
Tfwds2 = forwards2(n) 
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FwdsDiff(n) = (fwds(a, b) - Tfwds / n) * (fwds(i, j) - 
Tfwds2 / n) 

FwdsDiff2(n) = (fwds(a, b) - Tfwds / n) ^ 2 
FwdsDiff3(n) = (fwds(i, j) - Tfwds2 / n) ^ 2 
TDiff3 = FwdsDiff3(n) 
TDiff2 = FwdsDiff2(n) 
TDiff = FwdsDiff(n) 

        
        Next j 
      Next b 
    Next i 
 Next a 
        
'** ends computation of terminal correlations 
        
        Price(n) = Application.WorksheetFunction.Max(Payoff(u, v), 

0) 
        TPrice = Price(n) 
Next n 
         
iter = iter + 1 
Cells(93, 13) = iter 
            
Application.ActiveSheet.Calculate 
APrice = TPrice / (iteration) 
ADiff = (Abs(Market(u, v) - APrice) / Market(u, v)) 
Afwds = TDiff / iteration 
Afwds2 = TDiff2 / iteration 
Afwds3 = TDiff3 / iteration 
 
Loop While ADiff > 0.005 And iter < niter 
 
Cells(u + 73, v + 1) = APrice 
Cells(u + 85, v + 1) = ADiff 
 
Cells(55 + u - 1, 7 + u + v - 1) = Afwds / (Sqr(Afwds2) * 

Sqr(Afwds3)) 
 
Next v 
Next u 
 
Range("M86").Value = Now() 
Application.ActiveSheet.Calculate 
Application.Range("L55:P59").ClearContents 
MsgBox "Simulation Complete" 
 
End Sub 
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