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Abstract 
 

Computational methods have been widely applied to the problem of predicting 

regulatory elements.  Many tools have been proposed.  Each has taken a different 

approach and has been based on different underlying sets of assumptions, frequently 

similar to those of other tools.  To date, the accuracy of each individual tool has been 

relatively poor.  Noting that different tools often report different results, common practice 

is to analyze a given set of regulatory regions using more than one tool and to manually 

compare the results.  Recently, ensemble approaches have been proposed that automate 

the execution of a set of tools and aggregate the results.  This has been seen to provide 

some improvement but is still handled in an ad hoc manner since tool outputs are often in 

dissimilar formats.  Another approach to improve accuracy has been to investigate the 

objective functions currently in use and identify additional informational statistics to 

incorporate into them.  As a result of this investigation, one statistical measure of 

positional specificity has been demonstrated to be informative. 

In this context, this thesis explores the application of three simple models for the 

positional distribution of transcription factor binding sites (TFBS) to the problem of 

TFBS discovery.  As alternate measures of positional specificity, log-likelihood ratios for 

the three models are calculated and treated as features to classify TFBSs as biologically 

relevant or irrelevant.  As a verification step, randomly generated positional distributions 

are analyzed to demonstrate the robustness and accuracy of the log-likelihood ratios at 

classifying data from known distributions using a simple classifier.  To improve 

classification accuracy, a support vector machine (SVM) approach is used.  

Subsequently, randomly generated sequences seeded with TFBSs at positions chosen to 

conform to one of the three models are analyzed as an additional verification step.  

Finally, two types of sets of real regulatory region sequences are analyzed.  First, results 

consistent with the literature are obtained in three cases for genes experimentally 

determined to be co-expressed during mouse thymocyte maturation, and a novel role is 

predicted for three families of TFBSs in single positive (SP) T-cells.  Second, the mouse 

and human ―real‖ sets from Tompa et al’s ―Assessment of Computational Motif 

Discovery Tools‖ are analyzed, and the results are reported. 
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Introduction 
 

The biological sciences, like all branches of science, seek to observe, understand, 

predict, and, ultimately, manipulate events in the physical world.  In the past 400 years, 

significant progress has been made in advancing these goals.  Through the visual 

observation of microscopic ―cells‖ by Robert Hooke in the mid-1600s and the 

development of the ―cell theory‖ of Matthias Schleiden, Theodore Schwann, and Rudolf 

Virchow in the mid-1800s, the cell is accepted as the fundamental structural and 

functional unit of life.  Thanks to the timely rediscovery of Gregor Johann Mendel’s pea 

plant experiments and the efforts of a host of scientists in the 1900s, the gene has been 

identified as the fundamental unit of heredity through which traits are passed to offspring, 

and Watson, Crick, et al’s famous DNA double-helix has been identified as the 

biochemical embodiment of genes.  From the ―Central Dogma of Molecular Biology‖ 

first enunciated by Crick and also an ever-growing body of experimental evidence, the 

flow of information between DNA, RNA, and proteins has been elucidated, thus 

providing an understanding of how DNA is transcribed to RNA which is in turn 

translated into proteins and providing an explanation for the phenotype of any given 

organism.  This understanding has laid the foundation for predicting the phenotypes of 

organisms, including a variety of prenatal and post-natal genetic screens for humans, and, 

in the form of genetically modified plants and modern small molecule and protein 

pharmaceuticals, is beginning to allow human manipulation, beyond selective breeding, 

to achieve desired outcomes such as increased yield and disease resistance for plants and 

improved health for humans. 

More recently, numerous efforts have been undertaken to sequence all of the 

DNA, the complete genomes, for a variety of organisms including mice, rats, fruit flies, 

yeast, chimpanzees, and humans.  These massive research efforts have provided vast 

amounts of information necessary for further progress, driven the development of new 

technologies to determine genetic sequences, and pushed computer technology and 

computational methods vital to storage and analysis of this data.  In so doing, these 

efforts have also produced results that have surprised researchers.  For example, initial 

estimates of the number of genes in the human genome were repeatedly revised 
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downward from 100,000 or more to the current estimate of 20,000 to 25,000.  With less 

than twice as many genes as many far simpler organisms such as fruit flies, roughly the 

same number of genes as mice and rats, nearly exactly as many as chimpanzees, and 

roughly 95% of the human and chimpanzee genomes having been determined to be 

identical, biological complexity is clearly not directly related to the number of genes in 

an organism’s genome.  To better understand this apparent discrepancy, a great deal of 

current research involves understanding the significance of those relatively small 

differences, DNA regions of unknown function, the RNA splice variations that allow the 

modest human genome to encode a much larger proteome, and the complex regulatory 

networks that modulate the expression of genes. 

As with any complex system, this system can operate in a number of modes, not 

all of them associated with good health.  Many diseases and conditions, including heart 

disease, cancer, stroke, diabetes, and Alzheimer’s disease, have a known genetic 

component.  Viewed through this lens, the nearly 60% of deaths each year in the US 

attributed to these diseases and conditions are problems of misregulation, or the levels of 

elements of this regulatory network being outside of ―healthy‖ ranges.  The cost of heart 

disease and stroke alone, including health care expenditures and lost productivity from 

deaths and disability, is projected to be more than $475 billion in 2009. As the U.S. 

population ages, the economic impact of cardiovascular diseases on our nation’s health 

care system will become even greater.  The cost of cancer care, which excludes the huge 

economic impacts of deaths and lost productivity, was estimated to have been $72.1 

billion in 2004 alone.  Estimates for 2009 are currently being calculated by the National 

Cancer Institute and seem likely to be significantly higher.  The other diseases and 

conditions listed have huge economic and emotional impacts also.  Whether measured 

monetarily, in terms of lost lives, or in terms of decreased quality of life, there are huge 

potential benefits to be reaped from a better understanding of the basic science behind 

gene regulation and the application of that knowledge to create interventions that alter 

gene expression patterns to push the complex regulatory network to a more healthy state. 

The sets of genes expressed and their levels of expression typically vary from cell 

type to cell type, tissue to tissue, and with the age of the organism, from fetus to adult.  

Common across these cell lineage, spatial, and temporal distances, the expression of 
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genes is largely controlled at the level of transcription, though the set of genes being 

transcribed and the levels of transcription may be radically different.  Due to its key role, 

this is both a biological process that needs to be well understood and a potential point of 

intervention to treat or prevent disease development.  Challengingly, transcription is a 

complex process dependent on a myriad of factors.  At a gross level, how tightly DNA is 

coiled around the histone and non-histone proteins that, in addition to DNA, compose 

chromatin dictates how available the DNA will be to the cellular machinery responsible 

for transcription.  Within regions of DNA that are less compacted, transcription factors 

(TFs) are known to drive complex patterns of gene expression through their influence on 

the recruitment of the basal transcription complex to and its activation at particular sites 

within the genome.  TFs are small regulatory proteins that typically have a modest 

affinity for DNA in general and a high affinity for particular short sequences or families 

of sequences of DNA.  Such a short sequence is often called a DNA motif and has been 

seen to vary from as few as three or four to more than a dozen nucleotides in length. 

Many TFs have been experimentally identified, and, increasingly, computational tools 

have been used to predict additional transcription factor binding sites (TFBSs), to identify 

other genes likely to be under the regulatory control of the same known TFs, and, based 

on patterns of gene co-expression, to identify genes that are likely to have common, yet-

to-be-identified TFs.  Despite the efforts to date, a recent survey paper estimated that, for 

more than half of the TFs in the human genome, neither the binding partners nor the 

binding sites are known.  Though steady progress is being made, this is a daunting 

―needle in a haystack‖ problem for bench biologists.  Similarly, the task of developing 

effective computational methods, particularly for the identification of yet-to-be-identified 

TFs, is extremely difficult due to the large size of the human genome, the small size of 

the DNA ―alphabet‖, the frequent degeneracy of motifs for individual TFBSs, and the 

complexity inherent in the environment in which transcription is occurring.  Though 

many computational tools have been created in attempts to address this problem and a 

significant contribution has been made, a 2005 study reported that current performance 

was poor with only roughly 35% of known binding sites being correctly predicted by 

even the best publicly available tools.  As a result, research has been ongoing to improve 

this set of tools. 
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The ideal tool would include, at its heart, a complete mathematical model accurately 

and completely capturing the biological complexity of transcriptional regulation.  Such a 

model would necessarily include pattern specificity, positional preference, interaction 

among TFs and the basal transcriptional apparatus, and a variety of other dimensions.  

When faced with a complex system, projections and first-order approximations are often 

meaningfully applied to obtain information or make predictions about the system.  In this 

vein and because a complete model of transcriptional regulation is well beyond the scope 

of this thesis, simple models of position specificity will be considered.  By applying 

model selection via machine learning techniques, these simple models will inform the 

winnowing of candidate motifs to putative TFBS motifs.   
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Background 
 

Demonstrating the challenges and perceived potential benefits of a having a good 

solution, there are more than 120 TFBS prediction tools in the literature according to one 

recent count.  Dozens of tools for de novo prediction of TFBS motifs have been proposed 

and are currently publically available and in wide use.  Each tool approaches the problem 

of TFBS discovery slightly differently in terms of the types of input data required, how 

binding sites are internally represented, the data structures and algorithms that are used, 

and how putative TFBSs are scored and ranked.  Because of differences in how the 

problem has been conceptualized, each tool is predisposed to score different candidate 

sites differently than the other tools and to potentially yield different predictions.  Despite 

their differences, the current tools can be grouped according to a relatively small set of 

dimensions into a short list of families.  Table #1 contains a list of common tools and 

some relevant details.  Cells in Table #1 are blank if the reference did not clearly provide 

the information.  Also, since promoter regions are required by all tools, this is implied. 

 

Table #1:  Common TFBS Prediction Tools 

 

Tool Name 

Type Of 

Reference Algorithm 
Motif 
Model 

Match 
Model 

Required 
Information 

Objective 
Function 

A-GLAM Probabilistic 
(Gibbs) 

string   Positional 
anchors 

position and 
sequence 
specificity 
(e-value) 

(Kim, 
Tharakaram

an and 
Mariño-

Ramírez) 

AlignACE Probabilistic 
(Gibbs) 

matrix PWM Full genome motif over-
representation 
(MAP score) 

(Hughes, 
Estep and 
Tavazoie) 

ANN-Spec Probabilistic 
(Gibbs) 

matrix PWM Positive 
training data 
Background 

sequence 
specificity 

(Information 
content, or IC) 

(Workman 
and Stormo) 

BioProspector Probabilistic 
(Gibbs) 

matrix, 
dyad 

PWM Background motif over-
representation 

(z-score) 

(Liu, Brutlag 
and Liu) 

Consensus Greedy 
(Tree 

building) 

matrix PWM   sequence 
specificity 

(IC) 

(Hertz) 

cWINNOWER Combinatori
al (Graph-

based) 

matrix PWM   pattern 
specificity 

(Liang) 
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Table #1:  Common TFBS Prediction Tools (continued) 

 

Tool Name 

Type Of 

Reference Algorithm 
Motif 
Model 

Match 
Model 

Required 
Information* 

Objective 
Function 

EMD Ensemble Multiple Multiple Determined 
by the 
ensemble of 
tools used 

Multiple (Hu, Yang 
and Kihara) 

EMnEm Probabilistic 
(EM) 

    Phylogenetic   (Moses) 

FMGA Probabilistic matrix PWM     (Liu, Tsai 
and Chen) 

Gibbs 
Sampler 

Probabilistic 
(EM) 

matrix PWM     (Newberg, 
Thompson 

and Conlan) 

GibbsST Probabilistic 
(Gibbs) 

        (Shida) 

GLAM Probabilistic 
(Gibbs) 

string       (Frith) 

Improbizer Probabilistic 
(EM) 

  PWM Background 
(Positional 
anchors) 

  (Ao, Gaudet 
and Kent) 

MDScan Greedy string PWM     (Liu, Brutlag 
and Liu) 

MEME Probabilistic 
(EM) 

matrix PWM   p-value 
(Log 

likelihood 
ratios) 

(Bailey and 
Elkan) 

Mitra Combinatorial string, 
dyad 

mismatch     (Eskin) 

MotifSampler Probabilistic 
(Gibbs) 

  PWM Background   (Thijs) 

NestedMICA Probabilistic 
(Gibbs) 

  PWM     (Down and 
Hubbard) 

Oligo/Dyad-
Analysis 

Combinatorial string, 
dyad 

oligos Background   (van Helden, 
Andre and 

and Collado-
Vides) 

OrthoMEME Probabilistic 
(EM) 

  PWM Phylogenetic p-value 
(Log 

likelihood 
ratios) 

(Prakash) 

PhyloCon Greedy 
(Tree 

building) 

  PWM Phylogenetic   (Wang) 

PhyloGibbs Probabilistic 
(Gibbs) 

matrix PWM Phylogenetic   (Siddharthan, 
Siggia and 

van 
Nimwegen) 

PhyloScan       Phylogenetic   (Carmack, 
McCue and 
Newberg) 
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Table #1:  Common TFBS Prediction Tools (continued) 

 

Tool Name 

Type Of 

Reference Algorithm 
Motif 
Model 

Match 
Model 

Required 
Information* 

Objective 
Function 

PhyME Probabilistic 
(EM) 

    Phylogenetic sequence 
specificity 

(Information 
content) 

(Sinha, Blanchette 
and Tompa, 
PhyME: A 

probabilistic 
algorithm for 

finding motifs in 
sets of orthologous 

sequences) 

QuickScore   string IUPAC Background motif over-
representation 

(z-score/p-
value) 

(Regnier and 
Denise) 

SeSiMCMC Probabalistic 
(Gibbs) 

  PWM   sequence 
specificity 

(Information 
content) 

(Favorov) 

SP-STAR Combinatorial 
(Graph-
based) 

string mismatch   pattern 
specificity 

(sum of pair-
wise 

dissimilarity 
scores) 

(Pevzner and Sze) 

Weeder Combinatorial string mismatch   pattern 
specificity 
(similarity 
score and 

information 
content) 

(Pavesi, Mauri and 
Pesole) 

WINNOWER Combinatorial 
(Graph-
based) 

string mismatch   pattern 
specificity 

(Pevzner and Sze) 

YMF Combinatorial string reg.exp   motif over-
representation 

(z-score) 

(Sinha and Tompa, 
YMF: A program 
for discovery of 

novel transcritpion 
factor binding sites 

by statistical 
overrepresentation) 

 

 

Though genome-wide searches have been conducted in an attempt to identify 

species-level regulatory networks and biological pathways, TFBS discovery tools are 

more often applied to sets of co-expressed genes.  Commonly, sequence information from 

the upstream promoter/enhancer regions for genes experimentally determined to be co-

expressed, sequence information from upstream promoter/enhancer regions for 

homologous genes indentified, phylogenic information, or some combination of the 

aforementioned is used by de novo TFBS discovery algorithms.  For protozoa, sequence 
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information from the promoter/enhancer regions for genes experimentally determined to 

be co-expressed has been used by several algorithms that have been observed to perform 

well in tests to identify TBFSs for genes regulated by known TFs with known TFBSs.  

For the more complex regulatory networks of metazoans, performance has been more 

modest.  This has been partially attributed to the interplay of a variety of different TFs 

influencing the expression of genes.  Also, binding sites for regulatory proteins have been 

identified in introns and downstream regions of metazoan genes expanding the size and 

nature of the regions that must be considered.  Phylogenetic footprinting and approaches 

that search for binding sites for sets of TFs at a time have both been investigated with 

some success as means to improve performance. 

Several models for capturing motifs have been proposed and are described below 

in Table #2 and Table #3.  They are listed in increasing order of generality.  Contrary to 

intuition, successful TFBS predictions have been reported using even the simplest 

models, primarily in yeast.  Position-weight matrices are currently the most common 

internal representation for motifs. 

 

Table #2:  Common Models for Representing Motifs 

 

Motif Representation 

Name Description Example* 

String Represents each motif as a consensus 
sequence of nucleotides 

CCATAAATAG 

IUPAC String Allows specification of a list of preferred 
nucleotides for each position within the motif 
using the IUPAC nucleotide naming 
convention, but does not allow weighting of the 
individual nucleotides at each position. 

CYWWWWWWRG 

Regular 
Expression 
(RegEx) 

In practice, typically used as an alternate 
representation equivalent to an IUPAC string.  
RegEx can additionally represent variable-
length regions and a wide range of more 
complex motifs but does not capture positional 
weighting information. 

C(C|T)(A|T){6}(A|G)G 

  *The example motif depicted 
is the Arabidopsis thaliana 
motif AGL3 from the Jaspar 
CORE database. 
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Table #2:  Common Models for Representing Motifs (continued) 

 

Motif Representation 

Name Description Example* 

Position 
Frequency 
Matrix (PFM) 

A matrix of the frequency of 
each nucleotide at each 
position within a set of 
occurrences of a given motif.  
This representation is often 
used for experimentally 
determined or verified motifs. 

A  [ 0  3 79 40 66 48 65 11 65  0] 

C  [94 75  4  3  1  2  5  2  3  3] 

G  [ 1  0  3  4  1  0  5  3 28 88] 

T  [ 2 19 11 50 29 47 22 81  1  6] 

Position 
Weight Matrix 
(PWM) 
Position 
Specific 
Weight Matrix 
(PSWM) 
Position 
Specific 
Scoring Matrix 
(PSSM) 

Similar to PFM but no 
experimental verification is 
implied.  Represents the 
relative frequency or 
probability of each nucleotide 
at each position.  This is 
equivalent to a zero-order 
Markov Model. 

A  [.00 .03 .81 .41 .68 .49 .67 .11 .67 .00] 

C  [.97 .77 .04 .03 .01 .02 .05 .02 .03 .03] 

G  [.01 .00 .03 .04 .01 .00 .05 .03 .29 .91] 

T  [.02 .20 .11 .52 .30 .48 .23 .84 .01 .06] 

LOGO A common graphical 
representation of the 
information content at each 
position within a motif.  
LOGOs are typically 
generated using PWM and 
the GC content of the 
genome of interest.  The GC 
content of the genome of 
interest is important because, 
for example, the motif ATAT 
would have significantly 
higher information content in 
a genome with high GC 
content than the motif GCGC. 

 

  *The example motif depicted is the Arabidopsis 
thaliana motif AGL3 from the Jaspar CORE 
database. 

 

 

 The representations in Table #3 are less common and are more general models 

than those listed in Table #2.  The representations in Table #3, due to their complexity 

and the general support for the assumption of the independence among the sites in a 

given motif, are not in general use.  See Ben-Gal et al (Ben-Gal) for examples of these 

representations. 
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Table #3:  More General Models for Representing Motifs 

 

Motif Representation 

Name Description 

Variable-Order 
Markov Model 
(VOM) 

Though not in common use, a VOM allows the probability or relative 
frequency of each nucleotide at each position within a motif to be dependent 
on the nucleotide(s) zero or more immediately preceding positions.  
Positional independence within motifs is assumed by simpler 
representations.  This assumption is generally supported by current 
experimental evidence but has been challenged recently.  VOMs would 
allow more accurate representation of motifs that contained adjacent 
nucleotides that do not co-occur independently. 

Bayesian 
Network (BN) 

Extends VOM to allow each position within a motif to be dependent on a 
fixed number of adjacent and/or non-adjacent positions within the motif. 

Variable-Order 
Bayesian 
Network 
(VOBN) 

Extends BN to allow each position to be dependent on a variable number of 
other positions. 

 

 

TFBS discovery algorithms are exhaustive, heuristic, or probabilistic.  Exhaustive 

solutions typically utilize combinatorial approaches and produce globally optimal 

solutions for a given algorithm’s objective function.  Exhaustive algorithms are generally 

―word-based‖ and treat the problem of motif identification as a search problem over the 

alphabet of the algorithm’s internal motif representation for over-represented matches 

within the set of sequences being analyzed.  It is worth noting that if any algorithm’s 

objective function correctly scores candidate TFBSs, then this corresponds to finding 

precisely the true TFBSs.  A perfect objective function would be able to perfectly 

separate in vivo TFBSs from biologically irrelevant sites.  Based on the performance of 

the current set of tools, the common objective functions are far from perfect, but 

suggestions have been made to improve them.  Regardless, many approaches have been 

reported to demonstrate at least modest success.  Table #4 provides some additional 

details about several common tools that take a combinatorial approach. 
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Table #4:  Algorithm Details for Common Combinatorial Tools 

 

Tool Name Algorithm Details 

cWINNOWER Improves on WINNOWER and SP-STAR by adding a stronger constraint 
function. 

Mitra Assumes a hypergeometric distribution of TFBSs and scores results for 
putative motifs relative to background sequences using a suffix tree based 
approach. 

Oligo/Dyad-
Analysis 

Relies on a user-selected model of expected frequency of motifs and predicts 
TFBSs by comparing actual frequencies against expected results.  Typically, 
the expected model is a hidden Markov model of order 0-3.  The algorithm 
was extended to additionally detect dyads spaced by 0-16bp. 
Only effective at finding short motifs with well-conserved cores because 
variations within the oligonucleotide is not allowed. 

QuickScore Calculates z-scores and p-values for rare or infrequent patterns relative to the 
background which is modelled as a Markov model of order up to 3. 

SP-STAR Utilizes a local sum of pairwise score improvement algorithm 

Weeder Makes use of suffix trees to perform an efficient, nearly exhaustive search for 
candidate motifs that the creators describe as "'almost' exact".  Matches are 
ranked using a "significance" metric and a measure of relative entropy.  High-
scoring matches are typically clustered to improve results. 
Requires a trade-off be made between execution time and probability of 
missing a significant motif.  Has scored highly in benchmarks. 

WINNOWER Uses a word-based graph-theoretic method to find motifs by representing 
candidate binding sites as vertices and pruning edges from the graph to retain 
a minimal spanning set 

YMF Assumes a binomial distribution of k-mers with a fixed small number of 
allowed substitutions to estimate the probability of the random occurrence of 
the detected number of matches to each candidate motif of length k.  The 
probability of each motif can be estimated either assuming independent 
nucleotides (matching a given or measured GC content) or based on a 
Markov chain. 
Shown to perform well on sets of promoter regions for co-regulated yeast 
genes.  (Outperformed MEME and AlignACE for such data sets.)  
Performance against eukaryotic and mammalian data sets has been weaker. 

 

 

Greedy algorithms are generally considered a type of heuristic algorithms and 

have been used by several TFBS prediction tools.  Like other greedy algorithms, the idea 

is to pursue one or more ―best‖ partial solutions to one or more ―best‖ full solution.  

Though global optimality of the solution is not guaranteed, the resources required, either 

in storage or computation time, are typically greatly reduced.  This reduction in the 

required resources is often considered acceptable because of the wider range of data sets 
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that can be analyzed.  Table #5 provides some additional details about several common 

tools based on greedy algorithms. 

 

Table #5:  Algorithm Details for Common Greedy Tools 

 

Tool Name Algorithm Details 

Consensus Based on a greedy strategy that progressively extends a bounded number of 
partial alignments. 

MDScan Uses a word-enumeration strategy to find abundant k-mers using an 
approximate maximum a posteriori scoring function.  The enumerated words 
are used as "seeds" against which to score similarity to other sites, build a list 
of similar sites, and generate a consensus motif. 
Performance reported to be comparable to BioProspector but significantly faster 

PhyloCon Groups sequences based on orthology, aligns the sequences, and extracts 
motifs from the groups of aligned sequences. 

PhyloScan Allows the combination of alignable and non-alignable sequence data from 
multiple intergenic regions to be used without training data to predict significant 
motifs. 

 

 

Like greedy algorithms, probabilistic algorithms make a trade-off between the 

guaranteed optimality of solutions and the execution time and storage resources required 

for the algorithm to be applied to data sets.  The common feature of all probabilistic 

algorithms is that some part of the algorithm depends on chance, typically in the form of 

a (pseudo-)random number generator.  They tend to have objective functions that are 

simpler to describe than combinatorial approaches and simpler data structures since data 

structures generally do not need to be optimized for efficiency.  Gibbs sampling (Gibbs) 

and Expectation Maximization (EM) form the basis of most probabilistic algorithms for 

TFBS discovery.  Table #6 provides additional details about several common 

probabilistic tools for TFBS discovery. 

 

Table #6:  Algorithm Details for Common Probabilistic Tools 

 

Tool Name Algorithm Details 

A-GLAM Scores candidate motifs using a Bayesian model based on sequence specificity 
and occurrence location relative to TSS, or some other positional landmark, for 
genes of interest. 
Requires a consistent anchor, such as the correct TSS, be known for the genes 
of interest.  Prefers longer sequences for best performance. 
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Table #6:  Algorithm Details for Common Probabilistic Tools (continued) 

 

Tool Name Algorithm Details 

AlignACE Gauges over-representation using Gibbs sampling to obtain a maximum a 
priori log-likelihood (MAP) score.  A cutoff based on how frequently a motif 
occurs in the full genome or the specificity of the motif for the genes of interest 
can be specified to filter the results obtained.  The latter is considered more 
useful than the former since some motifs are observed to occur frequently in 
some genomes, such as yeast.  Clustering of the obtained results, using 
CompareACE, is typically performed to improve predictions. 
Outperformed by several tools 

ANN-Spec Uses an artificial neural network and Gibbs sampling to find parameters of a 
weight martix representing DNA-binding specificity to indirectly learn an 
ungapped local multiple sequence alignment. 
Requires positive training data and background data for optimal performance.  
(Outperformed Gibbs sampler, Consensus, and MEME in terms of specificity 
and Consensus and MEME overall.) 

BioProspector Uses a variant on Gibbs sampling, a 0- to 3-order Markov model generated 
from a provided sequence file (typically the intergenic or promoter regions of 
the full genome of the species of interest), and an algorithm accepting 15 
user-provided parameters to find significant motifs.  Among the options, 
gapped or dyad motifs can be detected. 
Performance reported to be comparable to MDScan but significantly slower 

EMnEm Considers special motifs that are generated from ancestral sequences 
represented as a two-component mixture of background and motifs. 

FMGA Relies on a genetic algorithm with a rearrangement method to avoid extremely 
stable local minima. 
Outperformed MEME and Gibbs Sampler 

Gibbs 
Sampler 

Is a stochastic variant of the EM method that uses sampling weighted based 
on site scores from previous iterations. 

GibbsST Combines Gibbs sampling and simulated annealling in an effort to avoid the 
tendancy of the former to converge to local maxima. 

GLAM Uses Gibbs sampling and seeks to optimize the alignment and alignment 
width of candidate sites. 
Fragments long sequences into shorter ones to find more than one binding 
site per sequence. 

Improbizer Uses EM to find motifs that occur improbably often relative to an order <=2 
Markov model of the background.  A Gaussian model of positions of sites can 
optionally be constructed to add a test of positional specificity. 

MEME Is an expectation maximization (EM) method that uses a product of p-values 
associated with the information content of the positions within candidate 
motifs.  This statistic implies the assumption that the positions within the motif 
are independent. 
Outperformed by several tools 

MotifSampler Extends Gibbs sampling using a higher order Markov model for the 
background and incorporating a Bayesian mechanism to estimate the number 
of motifs occurring in each sequence. 
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Table #6:  Algorithm Details for Common Probabilistic Tools (continued) 

 

Tool Name Algorithm Details 

NestedMICA Treats the problem of motif finding as an independent component analyis, 
similar to principle component analysis, problem within a Bayesian probabilistic 
framework.  Short motifs are modelled as position weight matrix "voices" in a 
the sea of "noise" of the remainder of the promoters being analyzed.  Nested 
sampling, a Monte Carlo method more orderly than Metropolis-Hastings and 
Gibbs Sampling, is used to drive more efficiently convergence. 

OrthoMEME Generalizes MEME's framework and algorithm to allow regulatory regions from 
two species can be included in analysis for significant motifs. 

PhyloGibbs Combines phylogenetic footprinting and a search for overrepresented 
sequence motifs in an integrated framework and performs an anneal-and-track 
strategy to make estimates of the reliability of its predictions. 

PhyME Integrates two different axes of information content, one scoring intra-species 
motif frequency and one scoring inter-species conservation for the candidate 
motifs. 

SeSiMCMC Alternates between two-stages.  One stage optimizes a candidate motif; 
optionally assuming the symmetry of a palindrome, a direct repeat, and a 
spacer; using likelihood relative to a Bernoulli background.  Candidate motifs 
are organized via a Gibbs-like Markov chain.  The other stage uses information 
content of matches and the position of occurrences to find the best matches. 

 

 

Many objective functions rely on an e-value, p-value, and/or z-score representing 

the over- or under-representation of a particular motif relative to other motifs or some 

other background.  To obtain the statistic(s), frequencies of occurrence of the candidate 

motifs are often assumed to be accurately modeled by binomial, hypergeometric, or 

negative binomial distributions to allow the estimates to be calculated.  Most tools 

additionally consider a measure of sequence specificity such as information content when 

generating predictions.  The choice of the objective function for a tool, since it is the 

scoring function by which candidate motifs and sites will be judged when making 

predictions, is obviously critically important.  Recent analysis of computational 

approaches for motif discovery has demonstrated that statistics representing over- and 

under-representation are not sufficiently informative to allow accurate separation of 

known TFBS motifs from background.  Significant improvements in prediction accuracy 

were demonstrated using an objective function incorporating information about the 

position of the binding sites.  By the extension of the Bayesian model central to GLAM 

to include positional specificity, the tool A-GLAM provides at least one example of a 

tool that has been extended to incorporate this additional type of information. 
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To demonstrate the potential benefit of a new tool, favorable pair-wise 

comparisons of tools against generated and/or real data sets have frequently been 

reported.  Though anecdotally supportive, pair-wise comparisons fail to provide a ―big 

picture‖ of relative performance and were not typically conducted on common data sets 

for any large set of tools.  More recently, comparison of tool performance relative to a set 

of common benchmark data sets has been reported for a variety of motif finding tools to 

remedy this deficiency (Tompa, Assessing computational tools for the discovery of 

transcription factor binding sites).   Such tool benchmarking is now relatively common 

despite the acknowledged challenges in creating benchmarks that accurately gauge tool 

performance.  The central challenge is that the underlying biology of regulatory networks 

is not well understood.  The diversity of algorithms and approaches employed by the 

different tools is also a challenge because it makes it difficult to know whether a tool’s 

performance is attributable to the relative optimality of the algorithm and internal model 

or to how a given test set was generated. 

While the diversity of approaches presents a challenge, it also provides an 

opportunity.  To exploit the strengths of a variety of different tools, ensemble approaches 

have been a recent area of focus to improve prediction performance.  The use of 

complementary tools and ensemble approaches potentially provides significantly 

improved performance over any one tool alone.  The EMD algorithm represents one 

ensemble approach (Hu, Yang and Kihara).  In a 2006 test, a set of five TFBS discovery 

tools showed only 25-35% accuracy at the binding site level for sequences 400bp long 

and 15-25% accuracy at the nucleotide level for any individual tool, results comparable to 

those reported in 2005 benchmarks.  Significantly, at least one tool in the set was capable 

of predicting the correct binding site 90% of the time.  Overall, the best reported EMD 

algorithm performed 22.4% better than the best single component tool in terms of 

nucleotide-level accuracy.  The reported ensemble objective function was a weighted 

aggregate of the scores from the component tools.  The authors noted that the 

performance of the ensemble algorithm might be improved by optimizing the parameters 

of the component tools, by optimizing the weighting of the predictions from the 

component tools in the ensemble score, and/or by implementing a position-based voting 

scheme for candidate binding sites.  Further exploring the ensemble approach, Wijaya et 
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al reported the development of a tool that was able, using a voting scheme, to locate more 

than 95% of the binding sites found by its component tools and showed significant 

improvements in sensitivity and specificity. 

Though significant steps forward, the refinement of ensemble methods does little 

to address the underlying problem, namely how to tell which tool (if any) has predicted 

one or more real TFBS motifs and which of the predicted TFBS motif(s) correspond to 

biologically relevant TFBSs.  With a more complete understanding of how the 

component algorithms, their internal motif models, and their predicted binding sites are 

different, the performance of an ensemble approach might be significantly improved.  

Since each tool implicitly scores putative TFBS motifs against a different mathematical 

model, the problem of picking which predictions to believe from a set of predictions from 

different tools can be viewed as a model selection problem.  Though the model for each 

tool might be complex and difficult to represent in a closed, non-algorithmic form, the 

underlying objective functions are likely simpler and easier to represent.  If so, this 

implies that a common representation could be used to obtain a common set of metrics 

for a set of tools and their predictions, potentially allowing direct comparison of 

predictions in a common framework.  If not, the outputs from each component tool could 

serve as features for a pattern classification algorithm to characterize the set of resulting 

predictions and when each tool’s predictions are more likely to be correct. 

It is common to use toy problems as both learning aids and to demonstrate the 

applicability of new approaches.  In the latter vein, let us consider a relatively simple set 

of possible mathematical models, based on the positional occurrence of a perfectly 

conserved seven base-pair motifs, for TFBSs.  It is possible that such simple models 

might correctly predict some known TFBS, but it is likely that more complex models, 

such as are implicitly embedded in the best TFBS prediction tools, are required for good 

results. The use of more complex models will be left to future work. 
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This thesis seeks to explore the following question: 

 

Using simple mathematical models incorporating both frequency and positional 

specificity for DNA motifs, can the problem of de novo TFBS discovery for co-

regulated genes be meaningfully treated as a model selection problem? 
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Methods and Materials 

Three simple models will be considered.  For simplicity, each model will use 

strings to represent candidate motifs and will represent a different positional distribution 

of occurrences of each candidate motif, relative to the nearest TSS, within the set of DNA 

promoter regions being analyzed.  Though an exact match with the candidate motif will 

be required, reverse, complement, and reverse-complement patterns are treated as 

equivalent to the candidate motif to allow a small amount of biologically relevant 

flexibility.  The three models will be referred to as ―the uniform model‖, ―the normal 

model‖, and ―model 3‖.  The models will be described in subsequent sections.  Since 

each model represents a hypothesis about the positional distribution of candidate TFBSs, 

the models will represented as h1, h2, and h3 respectively.  The position of occurrences of 

each candidate motif within any given promoter region will be represented as a position x 

relative to TSS.  Positions upstream of the TSS for the gene of interest are defined to 

have negative values of x; positive values of 𝑥 are downstream of TSS. 

Assumption of the Uniform Model 

The uniform model is the simplest of the three models and assumes that positions 

of occurrences of matches to the candidate motif are uniformly distributed.  Represented 

mathematically, the underlying assumption of model h1 is a position probability mass 

function 

𝑃ℎ1
(𝑥) =  1/(𝑙 − 𝑘 + 1) 

where 𝑙 is the common length of all promoter regions, or strands, being analyzed and 𝑘 is 

the length of the motif.  Because this model assumes that the probability of occurrence of 

the motif is independent of position, this model corresponds to the case of a uniform 

background ―noise‖ of occurrences of the motif in question. 

Assumption of the Normal Model 

The normal model represents the hypothesis that occurrences of matches to the 

motif are normally distributed with an unknown mean µ and standard deviation σ, or  

𝑃ℎ2
(𝑥) =  

e
−
 y−μ 2

2σ2

σ 2π

x+
1
2

y=x−
1
2

𝑑𝑦 
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A motif that exhibits strong positional preference would have a set of occurrences, or a 

―signal‖, clustered about the position 𝑥 = 𝜇.  In principle, μ is unbounded, but, given the 

nature of the problem, reasonable bounds can be imposed at the ends of the strands.  

Similarly, a reasonable upper bound can be imposed on 𝜎, namely 𝜎 ≤ 𝑙. 

Assumption of Model 3 

Model 3 is the most complex of the models being considered.  This model 

corresponds to a normal signal with some amount of uniform noise and literally combines 

the uniform and normal models by assuming that the occurrences of matches to the given 

motif are the result of some linear combination of the uniform and normal models, or 

𝑃ℎ3
 𝑥 = 𝑢 𝑃ℎ1

 𝑥 +   1 − 𝑢 𝑃ℎ2
(𝑥) 

where 𝑢 𝜖 ℝ | 0 ≤ 𝑢 ≤ 1 and is a measure of how much uniform character is present.  

This model explicitly adds a third unknown real-valued parameter to the set of unknown 

real-valued parameters implicitly inherited from the normal model. 

Assumed Prior 

To compare the quality of fit of data sets to the models and thereby enable us to 

choose the model that best explains the data, we will find the maximum-likelihood 

parameters for each model and calculate the corresponding model likelihoods.  Recall 

that the posterior probability of any given model hi is given by Bayes rule 

𝑃 ℎ𝑖 𝐷 =
𝑃 𝐷 ℎ𝑖 𝑃(ℎ𝑖)

𝑃(𝐷)
 

where 𝐷 is the data, or evidence; 𝑃 𝐷 ℎ𝑖  represents the likelihood of ℎ𝑖  given 𝐷, the 

strength of the evidence supporting model ℎ𝑖 ; 𝑃(ℎ𝑖) is our subjective prior; and 𝑃(𝐷) is 

effectively a normalizing constant.  Notice that under the assumption that each model is 

equally probable (i.e., 𝑃 ℎ𝑖 =  𝑃 ℎ𝑗   ∀𝑖, 𝑗), Bayes rule reduces to 

𝑃 ℎ𝑖  𝐷 = 𝑐 𝑃 𝐷 ℎ𝑖  

where 𝑐 is a constant independent of the model but dependent on the data 𝐷. 

Maximum Likelihood Parameter Estimation 

Let Θ represent a parameter vector for any one of the three models and Θ∗ 

represent a maximum-likelihood parameter vector for a given model.  The maximum 
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likelihood for model ℎ𝑖  is then directly proportional to 𝑃 𝐷 ℎ𝑖 , Θ
∗ .  Once Θ∗ is 

determined for the given 𝐷, we can perform a maximum-likelihood model selection by 

directly comparing values of 𝑃 𝐷 ℎ𝑖 , Θ
∗  for each model ℎ𝑖 .  Other measures, such as the 

Bayesian information criterion (BIC) or Akaike’s information criterion (AIC) or related 

measures, could be used instead but are not since the maximum-likelihood model 

parameters and maximum likelihood are to be part of a feature set for a non-linear 

classifier. 

Based on the previously described position probability mass functions for the 

three models, we can represent 𝑃 𝐷 ℎ𝑖 , Θ
∗  in closed form for each model.  Letting 𝑛𝑥  

represent the total number of occurrences of a given motif at position 𝑥 in the set of 

strands corresponding to 𝐷 and 𝑛 =  𝑛𝑥𝑥 , we obtain 

𝑃 𝐷 ℎ𝑖 , Θ
∗ =   

𝑛

𝑛𝑥
  𝑃ℎ 𝑖 𝑥  

𝑛𝑥

 1 − 𝑃ℎ 𝑖 𝑥  
𝑛−𝑛𝑥

𝑥

 

For computational convenience, we use the standard technique of working with 

log-likelihoods.  For the uniform model, the parameter vector has dimension zero and, 

thus, the determination of Θ∗ for this model is trivial.  For the normal model, the 

maximum-likelihood parameters are simply 

𝜇 =
 𝑥 𝑛𝑥𝑥

𝑛
 

and 

𝜎 =  
  𝑥 𝑛𝑥 −  𝜇 2

𝑥

𝑛
 

For model 3, the determination of Θ∗ is significantly more difficult and requires 

exploration of the three-dimensional parameter space to maximize the likelihood 

function.  A modified Bees Algorithm, using the log-likelihood function as a fitness 

function, is seeded with a reasonable estimate of the parameters and is used to explore the 

parameter space until it converges to a local maximum.  Though not proven, evidence 

will be presented supporting the assumption that the maximum found is the global 

maximum. 

Since model 3 reduces to the normal model when 𝑢 = 0, estimates for ℎ3’s 

maximum-likelihood parameters can be obtained by assuming 𝑢 = 0 and calculating the 
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mean and standard deviation for 𝐷 as in the normal model, but these estimates might vary 

significantly from the true Θ∗, particularly if the maximum-likelihood value of 𝑢 isn’t 

close to 0.  To obtain a better estimate, consider the effect of increasing 𝑢 from zero 

toward one. As 𝑢 is increased, the contribution of the uniform model is increased thereby 

increasing the expected number of occurrences of the given motif at every position.  The 

expected portion of the motif occurrences that are then attributed to the normal model at 

each position 𝑥 must necessarily decrease by a constant amount for a given choice of 𝑢.  

If all of the motif occurrences attributable to the uniform model could be correctly 

subtracted, then the maximum-likelihood choices of µ and σ could be readily calculated 

as for the normal model.  Obviously, this is not possible in general, but we can apply the 

idea to obtain an initial estimate of Θ∗ by arbitrarily assuming that the median 𝑛𝑥  is the 

level of the uniform background.  Call this uniform background level 𝑛𝑏 .  This then 

implies that 

𝑢 ≈
𝑛 −  max⁡(0, 𝑛𝑥 − 𝑛𝑏)𝑥

𝑛
 

and estimates of µ and σ can be calculated as just described to obtain an estimate of Θ∗.  

Since the parameter space for model 3 is three dimensional, regions within the parameter 

space defined by bounds on each parameter independently correspond to right rectangular 

prisms.  Though not technically correct, we will refer to such regions as ―cubes‖ for 

convenience. 

In the vicinity of the best estimate, a swarm of 125 points is generated.  To avoid 

local maxima, 125 additional points are selected at equal intervals to span the cube of 

interest, initially the full parameter space.  The corresponding log-likelihood for each 

point in the swarm is then calculated, and the points in the swarm are rank-ordered 

according to fitness.  The two points in the swarm that are most fit for each parameter are 

then used to define bounds for the next cube of interest and the process is repeated until 

the swarm converges to a solution.  Since convergence is never slower than penta-section 

of the parameter space, the number of repetitions is bounded above by log5 𝑙/𝜀, where 𝜀 

is a constant representing the maximum numeric precision required.  For 𝜀 = 1.0𝑒 − 14 

and 𝑙 = 3300, log5 𝑙/𝜀 ≈ 25 , or approximately 25 repetitions. 
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The models, a library of the log-based functions used to calculate the model 

likelihoods, and the algorithms to optimize the model parameters were implemented in 

Java.  Perl was initially considered because of the ease with which DNA sequence data 

can be manipulated as strings, but this language was rejected for this use due to the 

challenges that Perl’s ―loose typing‖ model presented in maintaining numeric precision 

and avoiding computational errors.  C/C++ was also briefly considered, but Java’s far 

superior platform-independence and high-quality standard math libraries made Java the 

natural choice.  The math libraries, particularly a good method for generating samples 

from a normal distribution, were critical to constructing classes to generate random sets 

of positional tallies from known distributions to verify the proper operation of the classes 

encapsulating the models, especially the normal model and model 3, and their likelihood 

calculations and parameter optimization algorithms.  The class for each model includes a 

test method to provide verification that 𝜃∗, or, in the case of model 3, at least a locally 

optimum 𝜃, is being correctly determined. 

Confirmation of Likelihood Maximization 

The following figures show examples of how log-likelihood for each model varies 

over the parameter space given typical randomly generated data sets.  Markers are 

colored by log-likelihood from blue to red, from least to greatest.  The maximum 

likelihood encountered in the parameter space is shown in green to highlight its location. 

For the Uniform Model 

For the uniform model, the log-likelihood function is dependent only on 𝑃ℎ1
(𝑥) 

and 𝑛 and 𝑛𝑥  determined from 𝐷.  Unsurprisingly, varying 𝑃ℎ1
(𝑥) such that the expected 

𝑛 differs from the actual 𝑛 has a significant effect on the log-likelihood.  Figure #1 shows 

results for a typical randomly-generated uniformly distributed data set.  On the x-axis, ―p-

adj‖ is an additive term, and translational adjustment, of 𝑃ℎ1
(𝑥) from its optimal value. 
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Figure #1: Uniform Model Log-Likelihood Near the Predicted 𝜃∗ 

 

For the Normal Model 

For the normal model, µ and σ are verified to be the maximum-likelihood 

parameters.  Given the exponential nature of the probability mass function’s dependency 

on µ and σ, the smoothness and concavity of the log-likelihood function are unsurprising.  

Figure #2 shows results for a typical randomly-generated normally distributed data set.  

Similar to the axes in the previous figure, ―mean-adj‖ and ―stddev-adj‖ are additive terms 

used to translate on µ and σ.  This choice of axes highlights that the choice of parameters 

that maximizes the log-likelihood does not differ from the predicted 𝜃∗. 
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Figure #2: Normal Model Log-Likelihood Near the Predicted 𝜃∗ 

 

For Model 3 

To visualize the model 3’s four-dimensional log-likelihood function, we’ll look at 

each of the two-dimensional projections.  Figure #3, Figure #4, and Figure #5 show 

different projections of the same results for a typical randomly-generated data set 

generated with equal contributions of normal and uniform character.  Similar to the axes 

in the previous figures, ―u-adj‖, ―mean-adj‖, and ―stddev-adj‖ are additive terms used to 

translate u, µ, and σ and highlight that the predicted θ∗produce at least a locally 

maximized value of the model’s log-likelihood. 



25 

 

 
Figure #3: Model 3 Log-Likelihood vs 𝑢 

 

 
Figure #4: Model 3 Log-Likelihood vs 𝜇 
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Figure #5: Model 3 Log-Likelihood vs 𝜎 

 

 

Observe that the log-likelihood for model 3 seems particularly sensitive to the 

choice of u and 𝜎 but is less sensitive to changes in 𝜇.  Note also that the log-likelihood 

trends upward as 𝑢 and 𝜎 increase.  The data set fit here was generated from a known 

distribution with 𝑢 = 0.5, a significant amount of uniform character.  The resulting 

positional scattering of occurrences, though best fit by only one choice of 𝜃∗, can be well 

fit by any set of parameters that does not include too small a choice of 𝜎 or too small a 

choice of 𝑢. 

The next figure, Figure #6, shows the set of points in the parameter space that 

have been tested during the parameter optimization process for a particular data set.  As 

in the previous figures, the parameters have been translated such that the predicted θ∗ is 

located at (0,0,0).  The points sampled can be seen to span the parameter space with a 

cluster near (0,0,0).  Note also that the points sampled are not exclusively on a three-

dimensional grid.  Typical of a ―Bees‖ approach, the algorithm favors points near the best 

estimate discovered thus far by taking additional samples in its vicinity.  In the middle of 
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each iteration, a set of points, each of which is a small distance in a pseudo-random 

direction from the best estimate, is tested.  These additional samples are the points that 

are not aligned to the grid on which the other points lie. 

 

 
Figure #6: Model 3 Log-Likelihood Over the Full Parameter Space 

 

 

Zooming into the apparently solid cube near (0, 0, 0), the iterative nature of the 

optimization algorithm is visible.  Again, observe that the samples are not exclusively 

drawn from the parameter space along the lines of penta-section.  This is due to the 

additional sampling conducted in the vicinity of the current best estimate during the 

subsequent iteration. 
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Figure #7: Model 3 Log-Likelihood Nearer the Predicted 𝜃∗ 

 

 

In subsequent iterations, the estimate of the maximum-likelihood parameters is 

refined.  The points sampled in the subsequent iterations are located within the region of 

dense sampling in Figure #7.  Looking at (0,0,0) in Figure #8, we find the maximum 

likelihood parameters, as expected. 
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Figure #8: Model 3 Maximum Log-Likelihood Found at the Predicted 𝜃∗ 

 

 

Classifier Construction and Verification 

Distinguishing Data Sets from the Uniform Model, Normal Model, and Model 3 

Once the maximum-likelihood parameters and maximum log-likelihood for each 

model have been determined for the occurrences of each candidate motif, selecting the 

model with the maximum log-likelihood yields the maximum-likelihood model selection.  

The log-likelihood ratio provides an additional measure of information by quantifying 

how much more likely one model is than another.  Particularly if a candidate motif shows 

strong positional preference, this information alone might be sufficient to identify 

interesting candidate motifs. 

To provide additional verification that the models and algorithms are behaving as 

expected, a set of 112136 sets of randomly generated positional tally data was generated 

and analyzed.  Each set was generated using one of the three models and a known set of 
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parameters.  The parameters were selected from pseudo-uniform distributions over the 

ranges in Table #7. 

 

Table #7: Model Parameter Bounds for Model and Algorithm Verification 

 
Parameter Minimum Maximum 

𝑛 1 1000 

µ -3000 300 

σ 0.0 600.0 

𝑢 0.0 1.0 

 

 

The three models were fit to each of the sets, and the known ―actual‖ model and 

parameters and the value of 𝜃∗ obtained for each model for each data set were recorded.  

It is worth noting that the modified Bees algorithm to find 𝜃∗ for model 3 typically 

converged in six to twelve iterations.  Though a systematic analysis of error was not 

performed, simple linear regression comparing maximum-likelihood and known 

parameters was performed. 

 

Table #8: Verification of 𝜽∗ 

 
Model Parameter R value 

Normal 
µ 0.996 

σ 0.951 

Model 3 

µ 0.896 

σ 0.717 

𝑢  0.943 

 

 

The relatively low R values for known versus maximum-likelihood values of µ 

and σ were noticeably dependent on 𝑛.  As tally sets were excluded from the calculation 

by progressively more stringent minimum values of 𝑛, model 3’s predicted parameter 

values tended to better correlate with the actual values.  Excluding tally sets with 

progressively smaller actual values of 𝑢 produced a similar result. 

Satisfied that the maximum-likelihood parameters are being correctly calculated, 

we consider the type of classifier that we will use to identify interesting candidate motifs.  

If a candidate motif shows strong positional preference, simply knowing which model 
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has the greatest log-likelihood for that motif might be useful.  Typically, to gain a relative 

measure of the likelihood of one model relative to another, the log-likelihood ratio (LLR) 

is calculated.  Figure #7 shows a scatter plot of model 3’s likelihood relative to the other 

two models as a means to visually separate the verification sets. 

 

 
Figure #9: Model 3/Normal LLR vs Model 3/Uniform LLR 

 

 

In the above figure, each marker represents a data set; with green, red, and blue 

representing sets from the uniform model, the normal model, and model 3, respectively.  

At a glance, it seems surprisingly promising that a simple linear classifier based only on 

these two features might reliably identify the actual model of occurrences for any given 

candidate motif.  On closer inspection, this continues to appear likely, but the 

classification is not perfect.  Consideration of additional features might provide superior 

classification. 

Presuming that over-training can be avoided, the performance of a classifier based 

on just these dimensions should provide a reasonable lower bound for the expected 
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performance of a classifier based on a larger feature set.  Rather than make any attempt to 

find an optimal linear classifier in these two dimensions, we can just freehand two lines 

to partition the space into four regions as shown below to obtain an estimate. 

 

 
Figure #10: ―A Simple Classifier‖ 

 

 

The classifier in Figure #8 classifies all points to the left of the purple line as 

―uniform‖, all points to the right of the purple line and above the black line as ―model 3‖, 

and all points to the right of the purple line and below the black line as ―normal‖.  

Despite its simplicity, this classifier is reasonably accurate in classifying the sets of test 

data, as seen below, and achieves better than 73% accuracy. 
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Figure #11: Classification of Verification Data Sets Using ―A Simple Classifier‖ 

 

 

Considering only test sets from the normal and uniform models, the classification 

is extremely good, better than 99.3% accurate.  Consider the subset of the test sets that 

excludes test sets for which the actual model was model 3.  Figure #10 shows a receiver 

operating characteristic (ROC) curve for a classifier operating on this subset of data.  The 

ROC curve in Figure #10 was generated using only the normal-vs-uniform log-likelihood 

ratio as the predictor, we can see that the level of performance demonstrated by the 

simple ad hoc classifier should not be unexpected; test sets from these two models are 

generally easily distinguished from one another. 
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Figure #12:  ROC Curve for LLR-Based Classification of Normal and Uniform Sets. 

 

 

To provide more accurate classification, we choose to use a support vector 

machine (SVM).  Rather than create our own SVM implementation, LibSVM 2.86 

(Chang) is used.  To gauge the potential improvement in classification accuracy, a radial-

basis function (RBF) kernel with default parameters is used initially.  The feature set used 

is shown below. 
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SVM #1 Features (13 total features): 

• Actual Model (required for training but not a feature) 

• 𝑛 
• Uniform Model output 

– Log-Likelihood 

• Normal Model output 

– Log-Likelihood 

– Mean 

– Standard deviation 

• ―Model 3‖ output 

– Log-Likelihood 

– % Uniform 

– Mean 

– Standard deviation 

– ―n of signal‖ (defined to be 𝑛 ∗ (1 − 𝑢) ) 

• Log-Likelihood Ratios 

– ―Model 3‖ vs Normal 

– ―Model 3‖ vs Uniform 

– Normal vs Uniform 

 

For this default SVM, the accuracy was significantly better than the simple 

classifier, slightly better than 91%, when trained on the full set of test sets. For 

subsequent data sets, we follow the following steps to prepare our SVM, per the 

recommendation of the authors: 

 

1. Transform our data to the format required by LibSVM 

2. Conduct simple scaling on the data 

3. Use the RBF kernel to provide the flexibility of a non-linear classifier 

4. Use cross-validation to find kernel parameters to maximize accuracy while 

avoiding over-fitting 

5. Use the best kernel parameters and train the SVM on the whole training set 

6. Classify  

 

Following the recommended procedure above yields a classifier with accuracy 

from five-fold cross-validation greater than 90% and accuracy of 98.5% when trained on 

the full set of randomly generated data sets, reliably identifying the model from which a 

set was generated. 

Distinguishing Seeds Motifs from Background in Seeded Sequences 

Though important as a validation test set, the set of randomly generated test sets 

has neither biological context nor relevance.  To address this deficiency, sets of strands of 
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DNA are generated and the strands in each set are seeded with occurrences of a particular 

motif.  As in the case of the set of sets of tally data, the set of positions for seed 

occurrences in each set of strands are generated using the three models.  Once the seed 

motifs of length six or seven are generated and planted, the resulting sets of strands are 

analyzed.  For each set, the set of unique 7-mer candidate motifs is identified, the 

positional occurrences of each candidate motif are tallied, and the model fitting is 

performed to obtain the maximum likelihood and 𝜃∗ for each model.  This is analogous to 

running multiple TFBS discovery tools on promoter regions for sets of co-expressed 

genes and obtaining metrics for sets of putative motifs.  The next step is to prepare an 

SVM to separate the seed motifs from the irrelevant candidate motifs.  The features used 

for the second SVM are shown below. 

 

SVM #2 Features (14 total features): 

• 0 – not a seed; 1 – a seed (equivalent to ―Actual Model‖ from 

SVM #1) 

• Number of strands in the set 

• 𝑛 
• Uniform Model output 

– Log-Likelihood 

• Normal Model output 

– Log-Likelihood 

– Mean 

– Standard deviation 

• ―Model 3‖ output 

– Log-Likelihood 

– % Uniform 

– Mean 

– Standard deviation 

– ―n of signal‖ (defined to be 𝑛 ∗ (1 − 𝑢) ) 

• Log-Likelihood Ratios 

– ―Model 3‖ vs Normal 

– ―Model 3‖ vs Uniform 

– Normal vs Uniform 

 

Discovering Motifs in Promoter Regions of Co-Expressed Genes 

After acceptable discriminating power has been demonstrated in separating seed 

motifs from the irrelevant candidate motifs, promoter regions for two kinds of sets of 

genes determined experimentally to be co-expressed are analyzed.  The first type of data 
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set is a set of five sets, obtained from the literature, composed of promoter regions for 

sets of genes determined experimentally to be co-expressed in mouse thymocyte cells 

developmentally blockaded at different stages of development (Puthier).  The second 

kind of set is composed of the 12 mouse and 26 human sets of type ―real‖ from the 

Tompa benchmark (Tompa, Assessing computational tools for the discovery of 

transcription factor binding sites). 

In Puthier et al’s ―A General Survey of Thymocyte Differentiation by 

Transcriptional Analysis of Knockout Mouse Models‖, thymocyte-laden thymus samples 

were collected from mice representing six mouse lines, one wild-type and five knockout 

models that impose different developmental blockades at various stages of thymocyte 

development.  The stages of thymocyte maturation toward mature T-cells in the thymus, 

in chronological order, and the mouse models used are listed here for reference. 

 

Lymphocyte maturation stages 

• CD44
high

CD25
-
 (DN1) 

• CD44
high

CD25
+
 (DN2) 

• CD44
low

CD25
+
 (DN3) 

• CD44
low

CD25
-
 (DN4) 

• CD4
+
CD8

+
 (DP) 

• CD4
+
CD8

-
 / CD4

-
CD8

+
 (SP) 

 

 

 

Mouse lines 

• Wild type 

– C57BL/6 

• DN enrichment 

– RAG1° 

– LAT° 

– CD3-ε
Δ5

 (CD3ε°) 

• Lack of medullary dendritic cells 

– TCRα° 

– RelB° 

 

Puthier et al used fluorescence-assisted cell sorting (FACS) to isolate cells in the 

various stages of development.  RNA was then extracted from the purified samples and 

tested using a microarray prepared from publically available mouse cDNA libraries to 

obtain gene expression data.  The resulting data was hierarchically clustered to obtain six 

clusters of preferentially expressed genes.  The authors identified the clusters as being 

specific to thymocyte proliferation, DN T-cells, TCR rearrangement, DP T-cells, SP T-

cells, and cells of the stromal compartment.  Names for the genes in each of the latter five 

clusters were obtained from the supplemental materials. 

To obtain the promoter regions for each of the genes, MGI (Bult CJ and Group) is 

searched for each of the gene names and, if the gene name is recognized as a valid gene 

name or synonym, the location of the gene in the mouse genome is retrieved.  Using the 
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location information, the promoter sequences, arbitrarily defined to be 𝑥 ∈ [−3000,300], 

are then retrieved from MGI for analysis.  Since the true regulatory motifs, if any, are not 

known, we use the first of the two previously trained SVM to identify the model which 

best explains the occurrence of each motif in each of these sets of co-expressed genes.  

Motifs that demonstrate positional specificity are expected to be best explained by either 

the normal model or model 3 and, based on this classification, are tentatively deemed 

interesting.  Interesting motifs that are present in one cluster but not any of the others are 

most likely to represent TFBSs for TFs specific to the stage of thymocyte maturation 

associated with the cluster.  The interesting motifs are then scored for similarity with 

known mouse TFBS motifs from the JASPAR Core database to look for possible matches 

with known motifs. 

To obtain the second type of co-expressed gene sets, the mouse and human ―real‖ 

sets are retrieved from the Tompa benchmark website (Tompa, Assessment of 

Computational Motif Discovery Tools).  To verify that the sequences represent the same 

positions relative to the nearest TSS, the locations of the retrieved sequences are 

determined by performing a genome-wide Blast search and matching these to the 

locations of the nearest known genes. 

 

The mouse and human genomes, respectively, were downloaded from 

ftp://ftp.ncbi.nlm.nih.gov/genomes/M_musculus/  (dated Jul 05, 2007) and 

ftp://ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/  (dated Mar 24, 2008) 

 

Blast was performed locally using Blast 2.2.19 downloaded from 

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/LATEST/ 

 

The locations of the best hits were checked against the locations of known genes in 

ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2accession.gz  (dated Mar 4, 2009) 

 

Promoter regions from the Tompa sets that are offset more than 16bp from the 

expected TSS are discarded.  The retained DNA sequences are then analyzed.  The 

classifier trained on the seeded test sets is used to perform the classification to produce a 
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small set of putative TFBS motifs.  The best putative motif, if any, for each of the sets is 

then submitted to the benchmark for scoring.  
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Results 

Results For Lymphocyte Data 

To obtain maximum likelihood values and corresponding sets of maximum-

likelihood parameters, the three models were fit to each candidate motif identified in the 

promoter regions, defined as -3000 to 300, for each set of co-expressed genes identified 

by Puthier et al.  Puthier et al did not provide a list of the genes identified in the cluster 

associated with thymocyte proliferation, so this cluster was not considered.  For the 

remaining clusters, not all of the identifiers provided in the supplemental materials were 

recognized by MGI or could be uniquely resolved.  Gene identifiers that could not be 

uniquely resolved were discarded.  The ―catch all‖ cluster associated with generic ―cells 

of the stromal compartment‖ was also discarded. 

 

Table #9: Puthier et al Clusters and Gene Counts 

 

Cluster 
Description 

Cluster 
Identifier 

Number of 
Genes in 
Cluster 

Number of 
Genes 

Considered 

DN T-cells S1 39 39 

TCR 
Rearrangement 

S2 50 47 

DP T-cells S3 56 54 

SP T-cells S4 69 67 

 

 

Exploring the hypothesis that the simple models themselves might be able to 

identify TFBS motifs, the normalized feature sets for all of the candidate motifs in each 

cluster were generated and classified using SVM #1.  The classified results were then 

filtered to obtain lists of potentially interesting 7-mers, where ―interesting‖ was defined 

as being equivalent to satisfying the following set of filters. 

 

Filters to Identify ―Interesting‖ Motifs: 

– Classified as either ―normal model‖ or ―model 3‖ by SVM #1 

– 𝑢 ≤ 0.50 
– At least one occurrence in at least half of the strands of the set 

– Motif not considered ―interesting‖ in any of the other clusters 
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As seen in Table #10, significant numbers of candidate motifs remain in each 

cluster after these filters are applied.  At a minimum, the full set of features used by SVM 

#1 might meaningfully be used to identify putative motifs among the candidate motifs.  

Given the large number of variables by which the candidate motifs might meaningfully 

be filtered and the intuitive but relatively arbitrary means by which the filters were 

chosen, the set of putative motifs could readily be reduced further.  It seems difficult to 

know if any biologically relevant motifs have been retained.  Though still an 

impractically large set for one-off experimental confirmation, comparison against known 

motifs provides supporting evidence that the relatively small fraction of motifs retained 

from the full set of candidate motifs in each cluster contains at least some biologically 

relevant TFBS motifs.  Toward this end, the JASPAR Core database was searched for 

mouse motifs highly similar to the interesting putative motifs remaining in each cluster 

and the sets of highly similar motifs were generated. 

 

 

Table #10: “Interesting” Motif Counts and JASPAR 

Motif Counts and Names by Cluster 

 

Cluster 
Identifier 

Number of 
7mers, Post-

Filter 

7mers Matching 
Jaspar Motifs at >= 

0.9 
Jaspar Motifs 

Matched at >= 0.9 

S1 140 5 
Prrx2 
Gata1 

S2 87 7 
Gata1 
Fos 

S3 110 4 Gata1 

S4 98 12 

Gata1 
Bapx1 

Hand1-Tcfe2a 
Sox17 
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Figure #13: Venn Diagram of JASPAR Motifs for ―Interesting‖ Motifs 

 

 

Anecdotal support for the associations between the putative TFBS motifs and the 

sets of known TFBS motifs in JASPAR Core was obtained by electronically searching 

the literature.  In support of the DP and DN regions of the Venn diagram, the literature 

suggests that T-cells ―exhibit a distinct molecular expression pattern‖ and links this 

expression pattern to both the Gata1 and Prrx2 motifs.  Also, based on experimental 

evidence, c-Fos has been associated with TCR rearrangement.  Neither supporting nor 

contradictory evidence was obtained for the known motifs exclusive to SP T-cells in the 

Venn diagram.  Though this is likely simply due to a deficiency in the search 

methodology employed, it is possible that one of more of the identified motifs play a role 

in SP T-cell gene expression that has not yet been experimentally identified.  Given the 

extreme simplicity of the models being considered, this support is both surprising and 

encouraging. 

Table #11 shows the motifs in each cluster that were identified as ―Interesting‖ 

and provides the details behind Table #10 and Figure #13.  When looking at the ―Number 

of Promoters in Set With At Least One Occurrence‖ column, it may be beneficial to 

compare the number of promoter regions in which each motif was found to the total 

number of sequences in each set shown in Table #9. 
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Table #11: “Interesting” Motifs Highly Similar to Known Motifs 

 

Cluster pattern n 

Number of 
Promoters 
in Set With 

At Least 
One 

Occurrence 

Model 3 JASPAR 

u x s 
Model 

ID 
Model 
Name 

Rela- 
tive 

Score Site Sequence 

S1 

taattta 40 20 0.0 -1737.3 908.5 MA0075 Prrx2 1.0 AATTA 

ggatgct 23 18 0.5 -387.7 339.0 MA0035 Gata1 1.0 GGATGC 

catctat 23 18 0.2 -1345.8 911.2 MA0035 Gata1 0.9 AGATGN 

aaacatc 30 20 0.2 -1218.6 851.5 MA0035 Gata1 0.9 NGATGT 

gattgtg 26 18 0.0 -1774.5 822.6 MA0035 Gata1 0.9 NGATTG 

S2 

gatggga 39 25 0.3 -1350.0 939.0 MA0035 Gata1 1.0 NGATGG 

tggatgc 32 24 0.2 -843.8 992.4 MA0035 Gata1 1.0 GGATGC 

accaatc 33 23 0.2 -1899.0 955.2 MA0035 Gata1 0.9 NGATTG 

tgagtaa 39 23 0.1 -1759.3 920.5 MA0099 Fos 0.9 NTGAGTAA 

tatcctg 36 25 0.4 -2198.5 778.0 MA0035 Gata1 0.9 GGATAN 

gaaggat 37 25 0.2 -1685.7 1002.0 MA0035 Gata1 0.9 GGATNN 

aagggat 36 25 0.1 -1612.0 901.9 MA0035 Gata1 0.9 GGATNN 

S3 

ccatcac 38 28 0.2 -1397.8 927.5 MA0035 Gata1 1.0 TGATGG 

gatgatg 35 29 0.2 -1636.5 926.9 MA0035 Gata1 0.9 TGATGN 

aagatac 44 27 0.3 -1698.5 863.7 MA0035 Gata1 0.9 AGATAC 

agatgac 55 36 0.1 -1759.2 925.1 MA0035 Gata1 0.9 AGATGA 

S4 

cagcatc 46 34 0.4 -1076.0 832.3 MA0035 Gata1 1.0 NGATGC 

tgagatg 59 42 0.3 -1270.2 935.3 MA0035 Gata1 0.9 AGATGN 

aacatcc 46 33 0.4 -2150.2 810.5 MA0035 Gata1 0.9 GGATGT 

cacttag 57 36 0.3 -1339.6 918.9 MA0122 Bapx1 0.9 CTAAGTGNN 

gtcatcc 53 38 0.4 -1852.2 897.8 MA0035 Gata1 0.9 GGATGA 

tggatga 56 38 0.4 -1802.9 921.7 MA0035 Gata1 0.9 GGATGA 

ttgagtg 101 51 0.3 -1823.9 887.0 MA0122 Bapx1 0.9 TTGAGTGNN 

gaagtgg 69 50 0.4 -979.4 971.9 MA0122 Bapx1 0.9 NGAAGTGGN 

tgccaga 53 39 0.4 -1370.0 954.3 MA0092 
Hand1- 
Tcfe2a 

0.9 NNTCTGGCAN 

attgtgt 69 39 0.4 -1786.7 991.7 MA0078 Sox17 0.9 NNNATTGTG 

caaggat 51 34 0.5 -1160.7 643.8 MA0035 Gata1 0.9 GGATNN 

atcctgt 60 40 0.4 -1254.2 830.2 MA0035 Gata1 0.9 GGATNN 

 

Results For Seeded Sequences  

For use in training SVM #2, 256 sets of random DNA sequences were generated 

and seeded with known 7-mer motifs to simulate promoter regions for sets of co-

expressed genes.  Similar to the Tompa benchmark sets, sequences of length 2007 were 

used to allow putative motifs to be identified in the region [-2000, 0] relative to TSS.  
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Sets of between one and thirty-five sequences were considered.  This matches the range 

of numbers of genes per set in the Tompa benchmark and was thus taken to be a 

biologically and experimentally relevant range of set sizes to be considered. 

A GC content of 50% was assumed both for the sequences and the 7-mer seed 

motifs.  One seed motif was planted per set.  The frequency and locations of the seed 

motif for each set were dictated by random samples from a distribution corresponding to 

one of the three models and with the necessary model parameters, if any, selected 

uniformly from the ranges in Table #7.  Once the 7-mer seeded sets of sequences were 

generated, all candidate motifs were identified for each set, and the occurrences of each 

candidate motif were fit to the three models to obtain the maximum likelihood value and 

corresponding sets of maximum-likelihood parameters for the motif in the set.  To the 

obtained data set, an attribute was added to indicate whether or not the given motif 

matched the seed motif for that set.  In total, this constituted a training set of 938408 

points, 938152 negatives and 256 positives, for training SVM #2. 

Per the procedure suggested by LibSVM’s authors, the training set was converted 

to a normalized feature set and formatted to match LibSVM’s required input format.  

Ensuring that the SVM is no more complex than required is important to reduce the 

likelihood of over-fitting.  For the RBF kernel, two parameters, c and g, may be specified 

to adjust the complexity of the projection of the data to a higher dimension space and the 

cost of adding additional support vectors to the classifier.  Though not stated explicitly, 

the authors imply that reasonable ranges are 𝑐 ∈ [2−5, 215] and 𝑔 ∈ [2−15 , 23].  To 

obtain a good estimate of the best SVM parameters, three-fold cross validation was used 

to identify regions of the RBF parameter space that provided optimal accuracy during the 

cross validation.  The normalization constants shown in Table #12 were used to maintain 

a consistent scale for the parameters to SVM #2.  These values were selected because 

they were simple fractions that scaled the training set data very near to a range of [0, 1]. 
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Table #12:  Normalization Constants Used for Input to SVM #2 

 

Feature 
Category 

Feature 
Normalization 

Constant 

Set-specific 

Cardinality of the set 1/35 

n for the candidate 
motif 

1/125 

Uniform 
model 

Log-likelihood 1/500 

Normal 
model 

Log-likelihood 1/500 

x 1/2000 

s 1/1000 

Model 3 

Log-likelihood 1/500 

x 1/2000 

s 1/1000 

u 1 

Derived 
features 

"n of signal" 1/125 

Model3vsNormal 1 

Model3vsUniform 1 

NormalvsUniform 1 
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Figure #14: Optimization of Kernel Parameters g and c for SVM #2 using ―Seeded‖ 

Random DNA Sequences 

 

Notice that the point (9, −5) in Figure #12 is the brightest red.  This point showed 

the highest 3-fold cross-validation accuracy during training of SVM #2.  Based on the 

results of the exploration of the parameter space, the kernel parameters 𝑐 = 29 and 

𝑔 = 2−5 were selected.  SVM #2 was then generated by training on the full set of training 

data using these kernel parameters.  SVM #2 was then used to classify the training set, 

and the classification results were compared to the known values.  To translate into 

standard information retrieval concepts, we consider the seed motifs to be ―positives‖ and 

non-seed motifs to be ―negatives‖.  Since SVM #2 seeks to classify motifs as either seeds 

or non-seeds, correct classifications are ―true‖ while incorrect classifications are ―false‖.  
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Following these naming conventions, Figure #13 shows the performance of SVM #2 

classifying the seeded sequences of DNA. 

 

 
Figure #15: SVM #2 Classification Accuracy for Candidate Motifs (7-mer Seeds) 

 

 

Using the tallies shown in Figure #13, a common set of information retrieval 

statistics were calculated to better characterize the performance of the classifier.  Table 

#13 shows the calculated values of these statistics. 

 

 

Table #13: SVM #2 Information Retrieval Metrics For 7-mer Seeds 

 

Metric Count 

Precision 
(PPV) 

0.94764 

Sensitivity (Sn) 0.70703 

Specificity (Sp) 0.99999 

NPV 0.99992 

F-score 0.80984 
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Unsurprisingly, SVM #2 performs extremely well at classifying the set on which 

it was trained, as demonstrated by the information retrieval metrics in Table #13.  The 

extremely high values of the specificity and negative predictive value (NPV) metrics are 

due in part to the small fraction of positives relative to negatives.  Though the set could 

have been constructed such that this fraction would have been closer to 0.5, such a 

training set would less accurately reflect the sets that would be analyzed in practice.  The 

other metrics, which are less influenced by this feature of the training set, are also 

demonstrative of the good performance of SVM #2 at classifying this set.  Viewed on the 

same axes that were used when viewing the results for model identification using SVM 

#1, Figure #14 seems to be a favored region for positives, but, as expected, positives and 

negatives seem to be intermixed when viewed according to these dimensions. 

 

 
Figure #16: SVM #2 Classification of Candidate Motifs from ―Seeded‖ Random DNA 

Sequences 

 

For this data set, the three simple models and SVM #2 have correctly identified 

nearly 71% of the seed motifs with very few false positives, performance far beyond 
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what would have been expected from tools in the current tool set and improbably good 

given the simplicity of the models. 

Results For Benchmark Sequences  

To provide a test against sets of known data, the mouse and human ―real‖ sets of 

sets of promoter regions for co-expressed genes were downloaded from the Tompa 

benchmark.  Given the relatively high degeneracy of the known TFBSs in these sets, the 

variability in binding site length, and the relatively poor performance of the current set of 

tools against these sets, performance was expected to be extremely poor.  Motifs were 

predicted for only 13 of the 38 sets.  The best two, the only two sets for which any true 

positives were predicted, were human set #25 and mouse set #8.  The scoring results for 

these two sets are shown in Table #15, Table #16, and Table #17.  Tompa et al define 

several additional statistics, as seen in Table #14. 

 

Table #14:  Additional Statistics 

 

Metric Name Definition 

Nucleotide-level Performance 
Coefficient 

nPC =
nTP

nTP +  nFN +  nFP
 

Nucleotide-level Correlation 
Coefficient 

nCC =
nTP nTN −  nFN nFP

 (nTP + nFN)(nTN + nFP)(nTP + nFP)(nTN + nFN)
 

Site-level Average Site 
Performance 𝑠𝐴𝑆𝑃 =

𝑠𝑆𝑛 +  𝑠𝑃𝑃𝑉

2
 

 

 

Table #15: Best Results from the Tompa Benchmark 

 
Data 
set nTP nFP nFN nTN sTP sFP sFN 

hm25r 2 12 68 918 0 2 5 

mus08r 2 128 39 4331 0 93 3 

 

 

Table #16:  Information Retrieval Metrics for 

Best Results from the Tompa Benchmark 

 
Data 
set nSn nPPV nSp nPC nCC sSn sPPV sASP 

hm25r 0.0286 0.1429 0.9871 0.0244 0.0340 0 0 0 

mus08r 0.0488 0.0154 0.9713 0.0118 0.0114 0 0 0 
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As expected, performance against the benchmark sets was extremely poor.  

Comparing the sets of predicted motifs against the known TFBSs, there appears to be 

very little similarity.  Figure #17 and Figure #18 show the locations of the predicted 

motifs and the known sites for the ―hm25r‖ set and the ―mus08r‖ set respectively.   

 

 

Table #17: Predicted Motifs and Known TFBSs for 

Best Results from the Tompa Benchmark 

 
Data set Predicted Motif Known TFBSs 

hm25r ACTGCTG ATTACACCAAGTACC 
GGAATTTCCTGTTGATCC 

ACCTAAGCTG 
CTAAAGGACGTCACATTGC 

ATATAGGA 

mus08r AAGGAAG 
AGAAGAG 
CACCACT 
CTCTCTC 
GATTAGG 
TCTCTCT 

AGGGGGATTTTCCCT 
CTGGGGACTCTCCCT 

GGGGGCTTTCC 

 

 

Observe in Table #17 that more motifs were predicted for the mouse data set than 

for the human data set.  As Table #18 indicates, this was generally the case regardless of 

the number of sequences in the set being considered.  This may be due to inherent 

differences in the gene sets considered or between mice and humans or may simply be a 

result of the choice of training data.  Though the reason is not clear, the difference was 

determined to be significant at a confidence level of p=0.018 using a one-tailed t test. 
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Table #18:  Number of Predicted Motifs and Number of Sequences Per Set 

 

Set 
Name 

Sequence 
Count 

Number of 
Predictions 

 

Set 
Name 

Sequence 
Count 

Number of 
Predictions 

hm01r 18 5 
 

mus01r 3 0 

hm02r 9 0 
 

mus02r 9 0 

hm03r 10 0 
 

mus03r 5 0 

hm04r 13 0 
 

mus04r 7 1 

hm05r 15 0 
 

mus05r 4 1 

hm06r 9 0 
 

mus06r 3 0 

hm07r 5 0 
 

mus07r 4 8 

hm08r 15 0 
 

mus08r 3 5 

hm09r 10 5 
 

mus09r 2 9 

hm10r 6 0 
 

mus10r 13 4 

hm11r 8 0 
 

mus11r 12 6 

hm12r 2 0 
 

mus12r 3 14 

hm13r 6 0 
    hm14r 2 0 
    hm15r 4 0 
    hm16r 7 5 
    hm17r 11 4 
    hm18r 5 0 
    hm19r 5 0 
    hm20r 35 0 
    hm21r 5 0 
    hm22r 6 0 
    hm23r 4 0 
    hm24r 8 0 
    hm25r 2 6 
    hm26r 9 0 
     

 

Looking at the locations of the predicted TFBSs, in green, relative to the known 

TFBSs, in blue, there is no clear relationship between the positional occurrences of the 

predicted motifs and locations of the known TFBSs. 

 

 



52 

 

 
Figure #17:  Visualization of Predicted and Known TFBSs for hm25r 

 

 

 
Figure #18:  Visualization of Predicted and Known TFBSs for mus08r 
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Conclusions 
 

Three extremely simple mathematical models incorporating frequency and 

positional and sequence specificity were applied to the problem of de novo TFBS 

discovery for simulated and real promoter regions of co-expressed genes.  For simulated 

sets of co-expressed genes, the resulting analyses showed promise by performing 

extremely well on a training set and, for a confirmation set, correctly identifying several 

seed motifs without producing any false positives.  For sets of genes determined 

experimentally to be preferentially co-expressed in mouse lymphocytes at different stages 

of thymocyte maturation, simple model selection and subsequent filtering resulted in a set 

of predicted TFBS motifs for each of the stages considered.  The motifs predicted by this 

approach included motifs highly similar to a small number of known TFBS motifs.  For 

three of the four stages of maturation investigated, the predicted motifs correctly matched 

with the TFBS motifs known to be associated with the stage of development; for the 

fourth stage, neither confirmation nor refutation was uncovered in a search of the 

literature.  Based on these results, we conclude that even such simple models are 

informative and provide information that can be applied to improve the predictions of 

current de novo TFBS discovery tools. 

The performance of the models was extremely poor when used to predict known 

TFBS motifs in sets from the Tompa benchmark, specifically sets of promoter regions for 

mouse and human genes determined experimentally to be co-expressed and regulated via 

TF interactions at occurrences of exactly one known TFBS motif per set of genes.  

Comparing the known binding sites to the predicted motifs, the poor performance of the 

TFBS motif discovery approach employed is seen to largely be due to the simplicity of 

the models investigated and, more specifically and most significantly, the inability of the 

chosen motif representation to capture the variable-length and degenerate nature of the 

motifs for the known TFBSs.  Accurate prediction is further complicated by the 

possibility that there are unknown but biologically relevant TFBS motifs in the 

benchmark sets analyzed.  If these unknown motifs are discovered and unknown sites are 

reported by a tool being scored, the tool would be incorrectly penalized for reporting 

―false positives‖ since the results would not match the known motifs. 
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These results imply that machine learning approaches such as supervised learning 

and model induction may yet yield better objective functions for TFBS discovery than are 

currently in common use.  Though models as simple as those investigated here can be 

informative, far superior results could be expected for more complex models that are 

capable of representing more biologically relevant information, such as the models 

underlying the best of the TFBS discovery tools currently in general use.  Significant 

improvements in accuracy are to be expected if machine learning methods are applied to 

statistics generated by the best of the currently available tools or models mimetic of their 

objective functions. 
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Discussion and Recommendations 
 

In many areas of research, a problem will often have several common approaches 

if the problem is sufficiently trivial to allow many paths to a solution or, alternately, if the 

problem is difficult and no clear ―best approach‖ has been identified.  De novo TFBS 

discovery currently represents an example of the latter.  From 1995 to present, there have 

been several waves of new TFBS prediction tools resulting in the solution space being 

quite saturated.  Despite the many efforts, the overall performance of the tools in this 

space remains poor.  This implies that the correct information is not available or is simply 

not being incorporated in the prediction process.  Recently, positional specificity, in the 

form of the Kolmogorov-Smirnov (K-S) statistic, has been shown to provide a valuable 

additional dimension for use in separating TFBSs from background (Kim, Tharakaraman 

and Mariño-Ramírez).  In the work presented here, the likelihoods of the various models 

serve a very similar function.  Though not demonstrated here, there would be expected to 

be a strong correlation between the K-S statistic, calculated with the uniform distribution 

as the null model, and the log-likelihood score obtained for the uniform model.  This was 

likely a contributing factor in the positive results obtained for the mouse thymocycte data.  

Future methods that incorporate other types of information might demonstrate further 

improvements in performance.  For example, considering multiple TSSs per gene and 

distinguishing among upstream, downstream, intronic, and extronic regions might be 

beneficial.  Semi-empirical methods that incorporate high-throughput amino acid/DNA 

affinity data may provide another boost to prediction accuracy and enable prediction of 

the structure of novel DNA binding domains to predict unknown TFs for putative TFBS 

motifs. 

In addition to needing to assess how informative additional dimensions may be, 

the possibility must be considered that one or more of the assumptions currently being 

made by most tools is not valid.  The ―hard‖ assumption of independence among 

positions within a motif has received some scrutiny and is one assumption that merits 

further study.  Even considering only the possibility that coupling between adjacent 

positions in a motif might be biologically relevant, a more general representation for 

motifs than the ubiquitous PWM would be necessitated.  Informed by experimental 
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evidence, options to search for direct and mirrored repeats have been included in several 

tools, and work on tools to detect cis-regulatory modules is on-going.  Both of these 

efforts would be well served by a comprehensive approach to detecting more complex 

motifs. 

Though the different approaches to TFBS discovery have each reported successful 

prediction of known and novel TFBS motifs, the optimality of predictions is guaranteed 

only for combinatorial approaches.  With quantum computing on the horizon and as the 

Moore’s Law trends in computational power and storage capacity continue, the resource 

constraints that often necessitate greedy and probabilistic approaches can be expected to 

relax and allow combinatorial approaches to be applied more widely.  Though these 

trends are a boon to computational biology, we obviously cannot trust to faster hardware 

and more storage to eliminate the challenge of unraveling transcriptional regulation.  

Even with no performance or resource constraints, scoring candidate motifs using an 

objective function that does not include necessary and sufficient information to 

distinguish biologically relevant motifs from background will produce erroneous 

predictions unacceptably often.  Extending proven algorithms to include additional 

information, such as considering positional specificity in a MDScan-like algorithm to 

grow motifs from ―seeds‖, exact n-mers found in the set of regulatory sequences, can be 

expected to provide some improvement and seems a promising direction for future 

investigation. 

Ultimately, the synergy between computational investigation and experimental 

investigation of transcriptional regulation must be exploited to allow better 

characterization of an ever-larger set of known TFBSs so that either the fully biological 

mechanism or an optimal set of features for prediction can be identified.  Only through 

the repetitive cycle of hypothesis generation and confirmation using both computational 

and experimental approaches will we gain a more complete understanding of the 

underlying mechanics of transcriptional regulation.  Though largely neglected here, the 

experimental front has not been silent while efforts on the computational front have 

continued.  Experimental approaches, such as genome-wide screening for binding sites 

for known transcription factors using ChIP-on-Chip or ChIP-Seq, are powerful tools that 

have become widely used.  Though each method, computational or experimental, has 
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limitations, each method has a useful niche to fill.  ChIP-on-Chip and ChIP-Seq, for 

example, are invaluable tools when a transcription factor is known.  Motif finders, such 

as discussed in this thesis, are more relevant to cases in which a common transcription 

factor for a set of co-expressed genes is not known or to cases in which regulatory 

networks are being predicted for entire genomes. 

 

Three areas for extension of this work are immediately obvious: 

 Improving the training data used with the current models and approach 

 Comparison of performance on training data with a small set of the best tools 

 Improving the set of models 

 

The randomly generated sequences seeded with relatively plentiful exact 

occurrences of a perfectly conserved motif of a fixed width should have provided a very 

easy test case, perhaps too easy.  For such a simple and non-biological test set, a classifier 

trained on the test set might classify exclusively on a dimension such as the number of 

exact matches detected and ignore features that would be relevant for real data.  

Obviously, the training set must be representative of the data that will actually be 

encountered in normal use of the tool if the classifier is to learn the distinctions between 

TFBSs and background.  By this argument, the Tompa benchmark would be an excellent 

training set.  By performing automated cycles of training reserving one set from the 

benchmark as a test set, the optimal SVM parameters could be determined, and a good 

estimate of the performance of this approach using the current models and features could 

be obtained. 

It is possible that the construction of the randomly generated test sets 

systematically incorporated unexpected characteristics that would make it difficult to 

predict the seeded TFBSs.  If these sets are to be used for training, it would be beneficial 

to use at least one of the common tools to predict TFBSs in them as a verification step.  A 

comparison of the performance of this approach to the performance of tools that have 

been demonstrated to perform well on real data sets should provide a meaningful measure 

of how difficult the TFBSs are to predict in the test sets, regardless of the type of test set 

being analyzed. 

Improving the set of models is the most urgent direction for future work.  One 

common feature of the three models currently being considered, the reliance on a string 
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representation of the 7-mer candidate motifs, is extremely inflexible and unrealistic.  At a 

minimum, the models need to be extended to represent motifs as PWM.  This will require 

that the models incorporate probability-weighted candidate TFBSs in the model and in 

the likelihood calculations.  Adding additional models, models mimetic of the objective 

functions of the best current tools, should also be explored. 

Based on recently published results, better than a 20% improvement is possible 

using simple voting schemes based on the binding site predictions of current tools.  For 

the same set of tools, at least one tool in a set of five predicted the correct motif 90% of 

the time for the data sets analyzed.  Based on these results, it seems reasonable that a 

20% improvement, and possibly as high as a 300% improvement, in accuracy may be 

possible by applying machine learning methods to the tool outputs or, equivalently, to 

statistics generated by models mimetic of the objective functions of the best current tools. 

If models mimetic of the objective functions of a few of the most accurate current 

tools are created, it would be desirable to work with all of the models in a single 

statistical framework.  There is a challenge to be overcome if the current approach were 

to be carried forward.  The current approach is based on a point estimate of the maximum 

likelihood parameters.  As a result, the current approach suffers from a problem similar to 

most EM algorithms, namely difficulty obtaining z-scores, e-values, p-values, or some 

other standard statistic and the resulting need for one or more custom statistics to fill this 

void.  To avoid this difficulty, a purely Bayesian approach to obtaining model likelihoods 

would be preferable and should be pursued. 

In addition to the results from fitting the current models to the data, the fit results 

for new models or the outputs from a diverse set of tools should be included as features 

for classification.  The Tompa benchmark and ensemble approaches such as EMD 

provide side-by-side performance comparisons for tools that utilize diverse approaches to 

predict TFBSs and a common set of benchmark data.  Though not novel, at least a modest 

improvement over previous performance could be expected.  After bloating the feature 

set and demonstrating improved performance, the aim would be to trim the feature set, to 

induce a simple predictive model that demonstrates comparable performance with a 

reduced feature set. 
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Particularly given the initial promise shown in using simple maximum-likelihood 

model selection to obtain meaningful TFBS motif predictions, the performance of the 

approach against the Tompa benchmark was, if not unexpected, all the more 

disappointing.  Though the poor performance was almost exclusively due to the 

inflexibility of the models used, improving the models cannot be expected to fully 

ameliorate the problem of poor performance; Tompa et al discuss the failings of the 

benchmark and how it should be changed to be more fair and reflective of the relative 

performance of the tools being assessed.  Even with the authors’ suggestions for future 

benchmarks, each of the subcategories of benchmark sets will present a different set of 

difficulties.  Tompa et al acknowledge that the ―real‖ data sets may contain unknown 

TFBSs and that the other sets in the benchmark are potentially flawed in different ways.  

The ―Markov‖ sets, for example, were generated using a Markov chain of order three, 

and, as a result, it may be very easy for some tools to find such motifs because the tools 

may be based on an approach that, intentionally or unintentionally, exploits this fact.  The 

order zero Markov chain used to generate the training and confirmation sequences in this 

thesis similarly produce output that likely lacks key characteristics of real data and 

embeds non-biological characteristics that tools might exploit.  It is an unfortunate Catch-

22 that good test sets cannot be created without an accurate model of the biology of 

transcriptional regulation but the goal of the tools is to answer questions raised by the 

lack of just such a model. 

A perfect generative model for sets of regulatory regions for co-regulated genes 

would necessarily be a complex model that includes both variables that are currently 

unknown and those that are known to be informative in motif discovery or predictive 

modeling.  Since the true model for TFBS generation in vivo is not completely 

understood, good experimentally generated test sets and test sets derived from generative 

models of varying complexity will be the training and validation test sets.  Whatever 

approach is taken to predict motifs, it must be robust enough to accommodate the known 

data and some amount of noise. 

It is worth noting that the Tompa benchmark sets presume that 2000bp upstream 

of TSS contains all relevant regulatory regions.  In contradiction to this assumption, 

regulatory regions have been identified in exonic and intronic regions as well as 
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downstream of the gene of interest.  The relative dearth of sets of fully characterized co-

regulated genes for which transcriptional regulation is well understood poses a significant 

but not insurmountable challenge to progress. 
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