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Notation 

 

( )B t  :   Risk free discount factor at time t  

( )B t :  Defaultable discount factor at time t  associate with corporate bonds 

λ :  Default intensity / hazard rate of defaultable asset 

y :  Tranche Spread  

τ   Default time 

{ }1 tτ ≤ :   Indicate function of default 

R   Recovery rate 

( )P T M mτ < = : Conditional on M=m, the probability of no default before time T 

 

Accumulated Loss Function in percentage, equally weighted credit portfolio: 

  ( ) ( ) ( )
1

1
1

N
i

i
i

R
l t t

N
τ

=

−
≤∑ , N is the asset number in portfolio 

 

pdf:  Probability distribution function 

cdf:  Cumulative distribution function 

LHP:  Large Homogeneous Portfolio  

( )0,N t  The normal distribution with mean 0 and variance t 
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Abstract 
 
Portfolio credit products, such as CDO and Single Tranche CDO (STCDO) have gained 

their popularity in financial industry. The key problem facing by the financial engineers 

is how to price these portfolio credit derivatives, especially how to model the dependent 

default structure. Copula model proposed by Li (2000) is widely used in practice. 

Comparing with simulation, factor copula model and conditional independent framework 

provide good balance between accuracy and computational efficiency, but it is hard to 

achieve good performance if sticking to normal distribution. There are a few ways to 

improve it: introducing Levy distributions, using generic copula functions, and the semi 

parametric estimation. In this paper the Levy distribution and conditional independent 

factor copula model are examined. The flexibility and accuracy improvement comes from 

calibrating the skewness and heavy tail of Levy distribution for the underlying marginal 

distributions. The simulation result and short period prediction result are discussed too.  

 

One of the other benefits of this model is that once calibrating to the standard market 

tranches spreads,  the model can handle the customized CDO, e.g. Single Tranche CDO,.  

 

JEL classification: G13 

Key words: factor copula model, portfolio credit derivatives, Levy process 
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1. INTRODUCTION  
 

Synthetic Collateralized Debt Obligations (CDO) has gained great attention from both 

industry and academy due to the increasing traded CDO and the difficulty to price them. 

CDO is basket credit derivative based on Credit Default Swap (CDS). By pooling and 

tranching some CDSs, CDO transfers the credit risk of the reference credit portfolio to 

the investors with different seniority in tranches.  

 

The risk of credit default losses on the reference credit portfolio is divided into tranches 

of increasing seniority. Losses will first affect the equity or first tranche, next the 

mezzanine tranches, and finally the senior tranches.  

 

The investors receive the premium payment every 3 month as the compensation to bear 

the losses for outstanding tranche value incurred by credit defaults. The spread of 

premium for different tranches is determined by CDO pricing models. 

 

Dow Jones iTraxx Indices 

This index composites of 125 equally weighted entities of CDS based on investment 

grade European bonds according to some liquid and diversification criterion. The pool’s 

outstanding amount will reduce upon default events. And the pool is tranched and sold to 

the investors quoted by spread1. The payment is made every 3 month and the payment is 

based on the outstanding amount for each tranche at payment tenor.  

 

There is a total index spread which is the average of CDS spread in the pool, since the 

CDS are equally chosen in the CDO.  

 

The most liquid synthetic CDOs are based on iTraxx index. 

The attachment and detachment points for the DJ iTraxx European CDO are 3%, 6%, 9%, 

12%, 22%. They are called equity tranche, junior mezzanine tranche, senior mezzanine 
                                                 
1 The equity tranched is quoted as upfront payment plus 5% annual payment. 
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tranche, senior tranche and most senior tranche. The tranche 22-100% is not quoted in 

market, but its spread is implied by the index and the other five tranches.  

 

The CDO pricing models are calibrated by these five tranches spreads and CDS spreads. 

 

DJ iTraxx European CDO 5 year is the chosen instrument since it is most liquid with the 

least bid ask difference of quoted spreads. 

 

The Economic of CDO 

The CDO can help investors to hedge or speculate according to their own risk attitude 

and perspective on default risk and default correlation.  

 

Here are some benefits gained from CDO trading: 

• Some single name credit derivatives are not liquid, the bid ask spread for some 

singe name CDS could be prohibitive high for the potential investors. CDO 

provides the liquidity and diversity for the portfolio credit derivative market. 

• For some institutes, such as commercial banks and insurance companies, the loan 

and insurance asset are not tradable. And they can diversify their portfolio to 

reduce the systematical risk by CDO products.  

• The CDO also meets some investors’ individual risk aversion attitude for credit 

risk, which can hardly meet without CDO products.  

• The market for credit risks is not complete, and CDO make some credit 

investment chance possible. 

• Facing the new capital requirement in Basel II, the institutes such as banks or 

insurance companies may find that it is more profitable to use CDO to transfer the 

asset with credit risk in their balance sheets.  

• The CDO indices provide the transparence and liquidity of credit risk market. 
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2. LITERAUTRE REVIEW 
The benchmark of synthetic CDO model is the factor model (factor copula model) and 

conditional independence concept, which means that conditional on the factors, 

individual defaults are independent. Since there are 125 CDSs in the Dow Jones iTraxx 

tranched CDO, this factor copula model can substantially reduce the pricing dimension 

and make the CDO pricing model tractable.  

 

Homogenous portfolio assumption further simplifies the factor copula model.  The 

building block is copula method introduced by Li (2000). However the Gaussian copula 

factor model does not yield a unique correlation through all the tranches. Default events 

are rare and happen in the tail range of the distribution; however, the Gaussian 

distribution has a very thin tail to capture the dependent defaults.  Other copula functions 

and other distributions are proposed to improve the CDO model’s pricing capability.  

 

Among factor copula models, Gaussian copula and student t copula model are popular, 

see [Hull (2004, 2005)]. And [Laurent (2005)] provides a good survey on comparison 

among the different models.  The main advantage in these Gaussian copula and student t 

copula factor models is that the correlation coefficients have economic meaning, hence 

can be communicated and interpreted as dependence on common market factor or 

industry section factor. The student t distribution is conditional normal2 with heavier tail 

than Gaussian distribution.  

 

However, the Gaussian copula factor model fails to catch the dependent structure of the 

rare default events; it results in correlation smile for the quoted CDO spreads among 

different tranches. In this thesis I try to apply other heavy tail asymmetric distribution to 

price synthetic CDO while still keep the factor model and conditional independence 

framework for tractability. 

 
                                                 
2 Conditional on Chi-Square variable, student t distribution is normal. 
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There are some further extended models beyond conditional independent factor 

models which are not so tractable, such as double student t [Hull & White (2004)], 

Clayton copula model [Schönbucher (2001)], random factor loadings [Andersen & 

Sidenius (2004)] and CDO pricing with term structure of default intensity 

[Schönbucher (2005)]. In addition, Fast Fourier Transformation (FFT) and Inverse 

FFT are proposed to facilitate computational implementation in the CDO modeling. 
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3. CREDIT MODELS  
 

There are mainly two kinds of credit models: intensity model and structural model. And 

sometimes they are both used as a hybrid model. 

 

Intensity Model 

Intensity model is also called reduced form model. It models the default hazard rate.  

 

Let ( )tλ  be the hazard rate (default intensity) function given no default up to current 

time. Let τ be the default time, ( )S t be the survival probability from time 0, and ( )p t  be 

the default probability3.  Then:  

( )( )
( ) ( )

d S t
t

S t
λ= − ⇒  

( ) ( ) ( )( )0
Pr exp

t
t S t s dsτ λ> = = −∫  

( ) ( ) ( ) ( )( )0
Pr 1 1 exp

t
p t t S t s dsτ λ= < = − = − −∫  

 

Structural Model 

Structural model originates from Merton’s framework of valuing corporate equity as an 

option. The structural model assumes complete market and risk neutral measure. Let the 

firm’s value ( )V t follows the process of:  

( ) ( ) ( ) ( ) ( )dV t V t r t dt t dW tσ⎡ ⎤= +⎣ ⎦  

( )r t  is interest rate ; ( )tσ is volatility of the firm; ( ) ( )0,W t N t∼ is the standard 

Brownian motion.  

( )0,N t is the normal distribution with mean 0 and variance t. 

                                                 
3 The probability measure used in this thesis is a risk neutral measure. 
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By solving this SDE,   

( ) ( ) ( ) ( ) ( ) ( )2

0

10 exp
2

t
V t V r s s ds s dW sσ σ

⎛ ⎞⎡ ⎤⎛ ⎞= − +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠
∫  

If ( )r t and ( )tσ  are constant:  

( ) ( ) ( )210 exp
2

V t V rt t W tσ σ⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 

In the factor copula model, assume ( )iW t be the random variable for the ith company. 

Assume all the variables ( )iW t  are correlated by depending on a common factor ( )M t : 

( ) ( ) ( )21i iW t M t B tρ ρ= + −  
 

where ρ  is correlation coefficient to the common factor ( )M t , ( )iB t  is idiosyncratic 

factor 4 . ( ) ( )0,M t N t∼ , ( ) ( )0,iB t N t∼ . Assume that ( )M t and ( )B t are independent, 

( )iW t is also normal distribution. 

 

It is worth to note that conditional on the common factor M m= , given i j≠ the 

conditional variables ( )iW t M m=  and ( )jW t M m=  are independent.   

 

For simple, I drop off the index i. 

If  ( )M t  is joint normal distributed vector, ( )B t is another independent normal variable,  

( ) ( ) ( )21W t M t B tρ ρ= + −  

Since ( )M t and ( )B t are the normal univariables ( )0,N t , and scale them by 1
t

, let: 

( )W t t W= ⋅ ; ( )M t t M= ⋅ ;  and ( )B t t ε= ⋅  

SoW , M  and ε are independent normal variables with standard normal distribution: 

( ) ( ) ( ) ( ), , 0,1W t M t t Nε ∼  

The above formula becomes: 

                                                 
4 If ( )iB t 1, ,i N= have the same distribution, ρ is same for all ( )iW t . 
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21W Mρ ρ ε= + −  

M is common factor and ε is individual variable. If they follow other distributions, the 

above expression is similar. For instance, ,   and W Mε  have the cumulative distribution 

function of 1 2,  F F and 3F  respectively.  

 

The structural model assumes that the default happens when the firm value first time 

drops below an exogenous threshold determined by the firm’s debt value. For long term 

bond the threshold is exponential increase function of time t. For short term, the simplest 

structural model assumes the default happens if the firm’s value is less than its debt value 

D when debt is mature, namely: 

( ) 210 exp
2

V r t Wt Dσ σ⎛ ⎞⎛ ⎞− + <⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

The unconditional default for name i  occurs if: 

( ) 210log
2

V r tD
W K

t

σ

σ

⎛ ⎞ ⎛ ⎞+ −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠< −  

K  is called the default threshold.  

The conditional default probability becomes: 

 

( ) ( )
{ }

{ }
( )

2

2

| Pr |

Pr

Pr 1

1

p t M m t M m

W K

m K

K m

τ

ρ ρ ε

ρ

ρ

= = < =

= <

= + − <

⎛ ⎞−
⎜ ⎟= Φ
⎜ ⎟−⎝ ⎠

 

Φ  is normal cumulative distribution function. 

In general case, assume the unconditional cumulative distribution function of a CDS 

default is ( )1F x  and the default probability ( )ip t at time t , the default threshold is:  

( )1
1 ( )K F p t−=  

Recall: 
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( ) ( )1 expp t tλ= − −  

Conditional on M=m, the default happens if:  

( )21W m Kρ ρ ε= + − <  

( )
21

K mρ
ε

ρ

−
⇒ <

−
 

The conditional default probability is: 

( ) ( )
2 21

K m
P t M m F

ρ
τ

ρ

⎛ ⎞−
⎜ ⎟< = =
⎜ ⎟−⎝ ⎠

 

Where τ  is the default time for the firm. 2F is the cumulative distribution function of 

individual variable. In simple case, it follows standard normal distributionΦ , ( )0,1N . 

 

The conditional default independent model is built upon structured model, while the 

default probability is from intensity model. The above conclusions play important role in 

later synthetic CDO pricing model. 

 

Drawbacks of Structural model 

The major drawback of the structural model is that the default probability reduces to zero 

as time horizon approaching zero. The structural model calculates very small spread for 

corresponding short time horizon. However this violates the observed market data. Since 

there is some concern of credit event happens when the firm value drops suddenly in a 

short period of time. On the other hand, the intensity model allows default jump in a very 

short time horizon, and it is popular in the industry. 

 

In CDO pricing model, the conditional default probability is based on structural model, 

and the unconditional default probability ( )p t at time t  is derived from intensity model.  
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Credit Default Swap  
 

First the defaultable bond price is investigated in the intensity model.  Let ( )B t be risk 

free discount factor at time t. If interest rate r  is stochastic, then: 

( ) ( )( )0
exp

t
B t E r s ds⎡ ⎤= −⎢ ⎥⎣ ⎦∫  

However, stochastic interest rate r  has little effect on the result of synthetic CDO model 

in this thesis, deterministic interest rate r is used. Then ( )B t  becomes: 

( ) ( )( )0
exp

t
B t r s ds= −∫  

If the bond recovery rate is 0, the corresponding defaultable discount factor ( )B t  is: 

( ) ( ) ( ) ( ) ( )( )( )0
exp

t
B t B t S t r s s dsλ= = − +∫  

( )tλ is the default intensity and ( )S t is the cumulative survival probability at time t.  

Assume that the bond recovery rate R is based on par value, then ( )B t  becomes: 

( ) ( ) ( )( ){ } ( ) ( ) ( )( )0 0 0
exp exp

t t s
B t r s s ds R s S s r d dsλ λ τ τ= − + + ⋅ ⋅ −∫ ∫ ∫  

( ) ( )( ){ } ( ) ( )( )( ) ( )
0 0 0

exp exp
t t s

r s s ds R r d s dsλ τ λ τ τ λ= − + + − +∫ ∫ ∫  

 

In above expression, the first term is the payment if there is no default during the CDS 

contract life time. The second term is the expected recovery amount of the default bond if 

the default happens during the CDS contract life time.  

 

The above formula shows that ( )B t  is not equal to ( )B t even when 1R = . This is due to 

the recovery payment is par once bond defaults while the corresponding zero coupon 

bond value is less than par before maturity.  So when 1R = , ( )B t is slightly larger 

than ( )B t ; assuming R=1, ( )B t  equals ( )B t  only if risk free interest rate is zero.  
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For CDS with 5 years to maturity or less, we can assume the interest rate and default 

intensity are constant, the above formula becomes: 

( ) ( ){ } ( ) 

0
exp

t rB t r t R e dλ τλ λ τ− += − + + ⋅ ⋅ ∫  

Under no arbitrage opportunity assumption, at the starting time of CDS, the premium 

payment spread is determined to ensure the expected premium leg value equals to the 

expected default leg value. The CDS premium pays every three months.  

The following is how to calculate the expected premium leg value 

Assuming y is the CDS premium spread, then: 

( ) ( ) ( )1
1

exp  
m

j j j j
j

y t t t B t accrumedλ−
=

⎛ ⎞
− − +⎜ ⎟

⎝ ⎠
∑  

     

If default occurs, the CDS accrued interest is paid with the same spread rate for the 

interval between default and last premium payment date.  

The expected accrued payment value approximates to: 

( ) ( ){ }1 1
1

1
exp exp

2 2

m
j j j j

j j
j

t t t t
accrumed B t tλ λ− −

−
=

+ −⎛ ⎞ ⎛ ⎞
= − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑  

Adding the above two terms together, the following integration is a good approximation 

for the expected premium leg value: 

( ) ( )
0
exp

t
y s B s dsλ−∫  

 

On the other side, the expected default leg value is: 

( ) ( )
0

1
t sR e B s dsλλ −−∫  

Further if the CDS term is within 5 year, the creditworthiness is relatively stable. So we 

can assume that the hazard rate λ  and recovery rate, R, are constant.  

 

At the beginning of the CDS contact, the values for two legs are equal, so: 

( ) ( ) ( )
0 0

1
t Ts sR e B s ds y e B s dsλ λλ − −− =∫ ∫  



  

 

 

16

In this simplest case, hazard rate λ is determined by credit default y spread and recovery 

rate R: 

( )1
y
R

λ =
−

 

From the CDS spread, the hazard rate can be derived as above; hence the default 

probability at any given time is obtained. 

 

4. FACTOR COPULAE FUNCTIONS 
 

The most commonly used copula functions are Gaussian and student t. Other copula 

functions include double t copula, exponential copula, Archimedean copula and Clayton 

copula function, for details see appendix.   

 

Common Copula functions 

Gaussian Copula 

As shown in previous chapter, conditional on common factor M , the default probability 
is:  

( ) ( )
21

K m
P t M m

ρ
τ

ρ

⎛ ⎞− ⋅
⎜ ⎟< = = Φ
⎜ ⎟−⎝ ⎠

 

( )( )1K p t−= Φ  

Where Φ  is normal cdf; M and ρ are either scalar ρ or vector, where 2ρ  becomes 2|| ||ρ .  
 

Student t Distribution 

The student distribution is the quotation of a normal variable and square root of a Chi-

Square distribution scaled by its degree of freedom, namely: 

/ n
X t
Z n

∼  

Where 
( )
2
n

0,1  normal distribution

  

X N

Z χ

⎧ ∼⎪
⎨

∼⎪⎩
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This is a symmetric t distribution, it has similar bell shape curve as normal distribution, 

but with heavier tail.  

 

Conditional on each implementation of the random variable Z , the conditional variable 

/
X Z z
Z n

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 follows normal distribution. So the above conditional independent 

Gaussian copula expression is applicable.  

 

Double t Copula: 

In double t copula, the distributions change from normal distribution to student t 

distribution. 

 

As shown in previous chapter, assume the individual firm random variable is correlated 

with the common random variable: 

 
1 1
2 2

21 2
1 2

1 2

2 21n nW
n n

ρ ξ ρ ξ
⎛ ⎞ ⎛ ⎞− −

= + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
Where 1t  and 2t are independent t distribution with degree of freedom 1n  and 2n . 1ξ is the 

market factor.  

The random variable is normalized with unit variance to get a unique expression. 

 

( )
2

1

1
2

1 2
2

( )
2

2 1
i n

nK m M
nnP t m t

n

ρ

τ ξ
ρ

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟− ⎜ ⎟⎜ ⎟−⎜ ⎟⎝ ⎠⎛ ⎞ ⎝ ⎠⎜ ⎟< = = ⎜ ⎟−⎜ ⎟−⎝ ⎠
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

( )1
*( ) ( )K M F p t−=  

*F  is the cumulative distribution function for W . 
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The double student t copula overcomes the thin tail problem in the Gaussian copula. By 

adjusting the degree freedom parameters, the double student t copula is capable to catch 

the correlated default structure more accurate than the Gaussian copula. However the 

determinant of the degree of freedom is a new problem. And the student t distribution is 

not stable under convolution5 hence the double student t copula is computationally costly. 

 

Generalization for Levy copula: 

First I will generalize the expression: 
1 1
2 2

21 2
1 2

1 2

2 21n nW
n n

ρ ξ ρ ξ
⎛ ⎞ ⎛ ⎞− −

= + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

If we define 

1
2

1
1

1

2n
n

ξ
⎛ ⎞−
⎜ ⎟
⎝ ⎠

and 

1
2

2
2

2

2n
n

ξ
⎛ ⎞−
⎜ ⎟
⎝ ⎠

as new random variables: common 

factor M and individual variableε . If the cumulative distribution function for individual 

variableε  is 2F , then the conditional individual default probability is: 

( ) ( )( )1
*

1 2 2

( )

1
i

F p t m
P t X m F

ρ
τ

ρ

−⎛ ⎞−
⎜ ⎟< = =
⎜ ⎟−⎝ ⎠

 

 

This generic formula is also held in Levy one factor copula. For example, common 

factor M and individual variableε  follow Variance Gamma distribution [Luciano (2005)] 

or Normal Inverse Gaussian distribution [Kalemanova (2005)]. 

 

The distribution parameters in these Levy factor models are calibrated to the quoted 

market tranches spreads. This calibration is associated with the model in the following 

chapters on synthetic CDO pricing. 

 

 

 

                                                 
5 The distribution of sum of random variables is implemented by convolution.  
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5. SYNTHETIC CDO PRICING  
 

The general problem of pricing synthetic CDO is how to calculate the dynamic loss 

distribution of the reference portfolio over different time horizon under some specified 

default correlation structure.   

 

The factor copula used in the synthetic CDO pricing model in this thesis is based on 

conditional independence; namely conditional on some common factor, the conditional 

defaults are independent.  
 

The justification for the factor copula model is that the correlation coefficients in the 

model have economy interpretation and are easy to commute. Similar methods have been 

adopted:  see [JPMorgan (2004)] on base correlation and [Elizalde (2005)] for general 

review on different CDO pricing models.  

 

The frame work of pricing synthetic CDO in this thesis is: 

1. Find out the marginal default distribution under the risk neutral measure 

2. Identity default dependent structure 

3. Discount the default loss distribution to calculate the expected default loss 

4. Calculate the expected premium based on marginal default distribution and 

default dependent structure 

5. Find out premium payment spread for each tranche by dividing expected default 

loss with expected premium value 

 

The essential components in CDO pricing model are: individual marginal default 

distribution and default correlation structure.  

 

If the default correlation increases, the CDO’s equity tranche spread decreases, while the 

senior tranches spreads increase. The relationship between the spreads and correlation for 

the mezzanine tranches is more complicated.  
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Since the 5-year synthetic CDO tranches’ spreads are not sensitive to interest rate, the 

deterministic Euro interest rate swap is used. Most synthetic CDOs are financed by 

interest rate swap, so the swap rate is the proper choice for discounting. 

And the recovery rate is assumed constant. 

 

Model Specification 
 

I choose the conditional independent copula model by adjusting marginal default 

distribution to Levy distribution. First a very generic t copula model is discussed briefly 

and then conditional independent factor copula model is elaborated. The conditional 

independence approach is more parsimonious than the generic copula model. So it speeds 

up the computational time and has clear economic interpretation.  

 

A Generic t Copula Model  
 

Consider a portfolio with N different names of CDS; this generic CDO model does not 

required equally weighted CDS pool. 

 

Let the random variable iτ  represents the random default time for each name.  

According to intensity model, the risk neutral default probability for each name is:  

( ) ( ) ( )0
Pr 1 exp ( )

t

i i ip t t u duτ λ= ≤ = − −∫  

The joint default time distribution can be expressed in the following generic formula:  

 

( )( ) ( )( ) ( )( )( )
1 1, ,

1 1 1
1 1 1 2 2 2

Pr( ) Pr( )

, ,
i i N N

N N N N

T T T T

p T p T p T

τ τ τ τ

φ φ φ− − −

≤ = ≤ ≤ ≤

= Φ
 

 

T is the time vector; NΦ  is a multi dimension copula function with covariance matrix 

Σ and 1
iφ
− is the inverse of marginal cumulative distribution function.  
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The above copula function is an n-dimension cumulative distribution function. Under 

some loose conditions, differentiating this n-dimension joint cumulative distribution 

function uniquely determines an n-dimension joint probability distribution 

function ( )f Tτ ≤ .6  

Here Tτ ≤ means 1 1, ,i i N NT T Tτ τ τ≤ ≤ ≤  

 

For multi dimension Gaussian or t copula function, there is explicit expression on this 

joint default distribution function. For example, t copula will give the following result on 

the multi dimension probability distribution function: 7 

 

 ( ) ( )( )
1

1 12 2

,
1 1,

1( ) 1 1 1

N v v
T TN

N v k i k k
k v

z z z zf T C T p T
v C v

τ λ

+ +
−− −

=

⎛ ⎞ ⎛ ⎞Σ Σ
≤ = + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∏i i i  

Here 
( )

,
2

| |
2

N v
N

v N

C
v vπ

+⎛ ⎞Γ⎜ ⎟
⎝ ⎠=

⎛ ⎞Γ Σ⎜ ⎟
⎝ ⎠

,  

( )xΓ is Gamma function. 

 

Here ( )( )1

1,k v k kz t p T
−

, 1,vt  is the cumulative distribution function of one dimension t 

distribution with v degree of freedom; 
1

1,vt
−

 is the corresponding inverse function. 

 

After specifying the expressions of premium and default value for the tranche in synthetic 

CDO with attachment point α and the detachment pointβ , we can use this joint default 

distribution to compute the expected premium value and default value for that tranche. 

 

This approach is also applicable to cash CDO given the cash flow structure.  

 

                                                 
6 See appendix on Sklar’ theorem  
7 For details, see [Andersen 2003] 
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Conditional Independent Model for synthetics CDO Pricing 
 

In this model, the synthetic CDO pool consists of N equally weighted names of CDS. 

Since the synthetic CDO is composite of equally weighted CDS, the conditional default 

loss for each CDS is assumed homogeneous, hence exchangeable.  

 

The conditional independent model can reduce the dimension of covariance matrixΣ in 

the previous generic t copula model and speed up the computation.  

 

The conditional independent model is also referred as semi analytical parametric model 

on dependent defaults, because there is an explicit expression for the conditional 

cumulative default loss function of the CDS pool. 

 

The loss function for each individual CDS is: 

( ) ( )1
1 i

R
t

N
τ

−
≤ . 

Here R is recovery rate; random variable iτ  represents the random default time for each 

name; and it is scaled by the equal weight 1
N

 for each CDS. 

Define: at time t, the cumulative portfolio percentage loss function as 

( ) ( ) ( )
1

1
1

N

i
i

R
l t t

N
τ

=

−
≤∑  

The function ( )l t is standardized to range from 0 to 1. It takes the discrete values of  

( )1
, 0,1, ,

R
k k N

N
−

= . 

It is worthy to notice that: 

( ) ( ) ( ) ( ) ( )
1 1

1 1
1 Pr

N N

i i
i i

R R
E l t E t t

N N
τ τ

= =

− −
⎡ ⎤ ⎡ ⎤= ≤ = ≤⎣ ⎦ ⎣ ⎦∑ ∑  

And       

( ) ( )Pr 1 expi it tτ λ≤ = −  
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This shows the linkage between the indication function and the individual default 

probability, which is used to calculate the expected cumulative portfolio percentage loss.  

 

Recalled that the conditional default probability for ith CDS is: 

( ) ( ) ( )
2, 2

| Pr
1
i i

i i i

i

K m
p t m t M m F

ρ
τ

ρ

⎛ ⎞−
⎜ ⎟< = =
⎜ ⎟−⎝ ⎠

 

Where 2, iF is the cumulative distribution function of the ith individual variable iε , 

( )( )1
1, 0

1 exp
t

i iK F s dsλ− ⎛ ⎞= − −⎜ ⎟
⎝ ⎠∫  

1,iF is the unconditional cumulative distribution function of the ith CDS default probability. 

 

Since the CDSs are equally weighted, the homogeneity in the CDS pool is assumed, then 

the subscript i is omitted.  

The cumulative portfolio percentage loss function ( ) ( ) ( )
1

1
1

N

i
i

R
l t t

N
τ

=

−
= ≤∑ takes the 

discrete values ( )1
, 0,1, ,

R
k k N

N
−

= .  

 

Notice that conditional on the common factor, the individual defaults are independent. 

Then the probability of cumulative portfolio percentage loss being ( )1 R
k

N
−

 is: 

( ) ( ) ( )( ) ( )( )1
Pr 1

k N kNk R
l t M m p t m p t m

kN
−⎛ ⎞− ⎛ ⎞

= = = −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

The conditional default loss for each CDS is a binary random variable; only two possible 

states are possible:  

( ) ( )
( )

1
,  with probability 

0,            with probability 1

i

i

R
p t m

N
p t m

⎧ −
⎪
⎨
⎪ −⎩

 



  

 

 

24

And the CDS is assumed homogenous, so the conditional default loss for each CDS is 

exchangeable. Thus the cumulative portfolio percentage loss follows the above binomial 

expression. 

 

The unconditional probability of cumulative portfolio percentage loss being ( )1 R
k

N
−

is 

obtained by integrating the product of the above conditional expression and probability 

density function of common M over the value range of common factor M: 

( ) ( ) ( )( ) ( )( ) ( )3

1
Pr 1

k N kNk R
l t p t m p t m dF m

kN

∞
−

−∞

⎛ ⎞− ⎛ ⎞
= = −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
∫  

Here, ( )3F m is the cumulative distribution function for common factor M at time t.  

 

Now consider the probability that the cumulative portfolio percentage loss 

( ) ( ) ( )
1

1
1

N

i
i

R
l t t

N
τ

=

−
≤∑  does not exceed [0,1]x∈ . x is percentage loss of the portfolio.  

 

Define ( )F x  as the probability that cumulative portfolio percentage loss doesn’t exceed x:  

( ) ( )( ) Pr ,    [0,1]F x l t x x= ≤ ∈  

From here ( ) F x is called cumulative portfolio percentage loss probability function or just 

cumulative loss probability for simple. 

 

F(x) is the cumulative distribution function of portfolio percentage loss, both x and 

function value range between 0 and 1.  

 

Notice that ( ) F x  is a function of time t, and ( ) F x  should be written as ( ) ,F x t , 

however if there is no confusion in the context, I omit t in the expression. 

 

Specifically, in the above discrete setting for portfolio default loss percentage is: 
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( ) ( ) ( )
0

1
 Pr

xN

k

k R
F x l t

N

⎢ ⎥⎣ ⎦

=

⎛ ⎞−
= =⎜ ⎟

⎝ ⎠
∑  

Here xN⎢ ⎥⎣ ⎦ is the maximum integral less or equal to xN  

 

Similarly, conditional cumulative probability of portfolio default loss percentage not 

exceeding [0,1]x∈  is defined as: 

( ) ( )( ) | Pr | ,    [0,1]F x m l t x M m x= ≤ = ∈  

Specifically,  

( ) ( ) ( )
0

1
 | Pr |

xN

k

k R
F x m l t M m

N

⎢ ⎥⎣ ⎦

=

⎛ ⎞−
= = =⎜ ⎟

⎝ ⎠
∑  

 

Generally, once we specify this cumulative loss probability, the portfolio’s joint default 

distribution is determined. So the tranches spreads in synthetic CDO are determined.  The 

following is the details of the procedure to calculate the tranche spreads. 

 

According to the CDO tranche structure, at time t, the premium payment is the product of 

the spread and outstanding value for each tranche. 

At time t, the outstanding value of tranche ( ),α β  takes the form of following function:   

[ ] ( )( ) ( )( )H t : l t l tβ α
+ +

− − −  

Similarly at time t, the tranche loss value of tranche ( ),α β  is defined in this function:   

( ) ( ) ( ) ( )( ) ( )( )Q : Ht t l t l tβ α α β
+ +

− − = − − −  

Notice the fact that at any time t the sum of tranche outstanding value and tranche loss 

value is the initial tranche value: 

( ) ( ) ( )Q t H t β α+ = −  

Since the portfolio percentage loss ( )l t takes discrete values, so the functions of ( )Q t  

and ( )H t are discrete increasing functions; the increment is triggered y default occurrence.  
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Define ( )dQ t is as the increment of ( )Q t  at time t. ( )dQ t is positive when default 

happens. This is for the later integration. 

 

Let me further investigate the relationship between the values of ( )Q t  and ( )l t : 

( ) ( )( ) ( )( )
( ) ( )

( )
( )

Q

,        [ , ]

,           [ ,1]

0,                   [0, ]          

t l t l t

l t l t

l t

l t

α β

α α β

β α β

α

+ +
= − − −

⎧ − ∈
⎪

= − ∈⎨
⎪ ∈⎩

 

Apply this result, the expected value for tranche loss value ( )Q t  can be rewritten as: 

( ) ( )( ) ( )( )

( ) ( ) ( ) ( )

( )( ) ( )( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )( )
( )( ) ( )

( )( )

1

1

Q

1

1

1

E t E l t l t

x dF x dF x

F x x F x dx F x

F F x dx F F

F F x dx

F x dx

β

α β

ββ
α βα

β

α

β

α

β

α

α β

α β α

α β α

β β α β α β

β α

+ +⎡ ⎤⎡ ⎤ = − − −⎣ ⎦ ⎢ ⎥⎣ ⎦

= − + −

= − − + −

= − − + − −

= − −

= − ⋅

∫ ∫

∫

∫
∫

∫

 

The third line is derived by integrating by parts.  

 

The cumulative portfolio percentage loss probability function ( )F x is defined above as 

the probability of cumulative portfolio percentage loss not exceeding x:  

( ) ( )( ) Pr ,    [0,1]F x l t x x= ≤ ∈  

The last line is due to the fact that ( )1 1F =  for any given time t, which means the 

probability of percentage loss less than 1 is definitely for sure, with probability 1. 

 

And the expectation of the outstanding tranche value can be calculated according to this:  



  

 

 

27

( ) ( ) ( )
( ) ( )

( )

H Q

Q

E t E t

E t

F x dx
β

α

β α

β α

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦
⎡ ⎤= − − ⎣ ⎦

= ∫

 

These two expectations expression hold over different time through the CDO life time.  

 

The premium leg value ( )PL t  is the present value of all spread payments made based on 

outstanding tranche value over the payment period of time: 

( ) ( ) ( )
1

K

k k k
k

PL t y t H t B t
=

= Δ∑  

And the expectation of premium leg value ( )PL t is: 

( ) ( ) ( )
1

K

k k k
k

E PL t y t E H t B t
=

⎡ ⎤ ⎡ ⎤= Δ⎣ ⎦ ⎣ ⎦∑  

Here kt , 1, ,k K= are the premium spread payment dates, and Kt T=  is the maturity 

date of the synthetic CDO.  Let 0 0t = ; 1k kt t t −Δ = −  denotes the time interval between 

each payment; y is CDO spread rate; ( )iB t is the discount factor. The expectation is 

calculated under risk neutral measure.   

 

If the accrued premium payment is considered for the defaults between payment times, 

the more accurate premium expectation of premium leg value should be: 

 

( )

( ) ( ) ( ) ( )( ) ( ) ( )1 1
1

1 1 2 2

K K
k k k k

k k k k k
k k

E PL t

t t t t
y t E H t B t y E H t E H t B− −

−
= =

⎡ ⎤ =⎣ ⎦
⎛ ⎞− −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤Δ + − ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎝ ⎠

∑ ∑
 

 

The second term is the accrued premium payment, assuming the defaults happen at the 

middle points of each time interval. It is a first order approximation. If higher order 

approximation is applied, then the expectation of premium leg value asymmetrically 

approaches to the following expression: 
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( ) ( ) ( )
0

T

E PL t y B t E H t dt⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦∫  

In the programming the first order approximation is used. But for conciseness, in the 

following part of the thesis, I use the first expression without accrued payments.  

 

Rephrase the definition of ( )dQ t  as the increment of tranche loss value ( )Q t  at time t. 

( )dQ t is positive when default happens.   

 

The default leg value is the summery of product of ( )dQ t and the corresponding discount 

factor at each default time, namely:    

( ) ( )
0

T
DL B t dQ t= ∫  

This is Riemann-Stieltjes integration since ( )Q t is a discrete increasing function.  

And the expectation of default leg value is: 

[ ] ( ) ( )
0

T
E DL E B t dQ t⎡ ⎤= ⎢ ⎥⎣ ⎦∫  

Then simplify the DL  expression.  

 

First integrate the default leg value DL  by parts: 

( ) ( )

( ) ( ) ( ) ( )
0

0|

T

Tt T
t t

DL B t dQ t

B t Q t dB t Q t=
=

=

= −

∫
∫

 

Then apply the fact that: 

( ) ( )( )0
exp

t
B t f s ds= −∫ ; 

( )f t is the instantaneous forward rate. So: 

( ) ( ) ( )dB t f t B t= − . 

Then the above default leg value DL expression becomes:  
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( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0

0 0

0

|

T

Tt T
t

T

DL B t dQ t

B t Q t f t B t Q t dt

B T Q T f t B t Q t dt

=
=

=

= −

= −

∫
∫
∫

 

The third line is because that no default occurs at t=0, hence ( )0 0Q t = = .  

 

And the expectation of default leg value DL becomes: 

[ ] ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0

0

0

T

T

T

E DL E B t dQ t

E B T Q T f t B t Q t dt

B T E Q T E Q t f t B t dt

⎡ ⎤= ⎢ ⎥⎣ ⎦
⎡ ⎤= −⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦

∫

∫

∫

 

Here the expectation and integration is assumed exchangeable. 

 

When synthetic CDO starts, y for the tranche ( ),α β  the expectations of default leg 

value and premium leg value are set equal: 

[ ] [ ]E DL E PL= . 

Since ( ) ( ) ( )
1

K

k k k
k

E PL t y t E H t B t
=

⎡ ⎤ ⎡ ⎤= Δ⎣ ⎦ ⎣ ⎦∑ , then the spread y of the tranche ( ),α β is: 

( ) ( ) ( ) ( ) ( )

( ) ( )
0

1

T

K

k k k
k

B T E Q T E Q t f t B t dt
y

t E H t B t
=

⎡ ⎤ ⎡ ⎤+⎣ ⎦ ⎣ ⎦=
⎡ ⎤Δ ⎣ ⎦

∫
∑

 

 

If the forward rate is a constant r, the expectation of default leg value [ ]E DL  becomes: 

[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0

T T
E DL E B t dQ t B T E Q T E Q t f t B t dt⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = +⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦∫ ∫  

( ) ( ) ( ) ( )
0

exp exp
T

rT E Q T r rt E Q t dt⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦∫  

Then the spread y is: 
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( ) ( )( ) ( ) ( )

( ) ( )
0

1

exp exp
T

K

k k k
k

rT E Q T r rt E Q t dt
y

t E H t B t
=

⎡ ⎤− + − ⎣ ⎦=
⎡ ⎤Δ ⎣ ⎦

∫
∑

 

More details on calculating ( )( )E H t and ( )( )E Q t  will be conducted in the next section. 

 

Cumulative Loss Distribution Function of Homogenous Portfolio 

 

Since the main problem in synthetic CDO pricing model is to derive the cumulative loss 

distribution of the correlated defaults, in this section details on conditional independent 

factor copula model is presented. Since the synthetic CDO is composite of equally 

weighted CDS, the conditional default loss for each CDS is assumed homogeneous, 

hence exchangeable. .  

 

Remind that the default leg value is: 

[ ] ( ) ( ) ( ) ( ) ( )
0

T
E DL B T E Q T E Q t f t B t dt⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦∫  

 

Since ( )E Q t⎡ ⎤⎣ ⎦  is the only unknown, the following shows how to calculate ( )E Q t⎡ ⎤⎣ ⎦ .  

 

Remind that for tranche ( ),α β , the tranche loss value function is: 

( ) ( )( ) ( )( )
( )

( ) ( )
( )

0,              [0, ] 

,    [ , ]  

,       [ ,1] 

l t

Q t l t l t l t l t

l t

α

α β α α β

β α β

+ +

⎧ ∈
⎪

= − − − = − ∈⎨
⎪ − ∈⎩

 

Remind the probability that the cumulative loss function ( )l t equals to ( )1k R
N
−

 is:  

( ) ( ) ( )( ) ( )( ) ( )1
Pr 1

k N kNk R
l t p t m p t m dF m

kN

∞
−

−∞

⎛ ⎞− ⎛ ⎞
= = −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
∫  

Since ( )l t takes the discrete values of ( )1
, 1, ,

k R
k N

N
−

= , the expectation of tranche 

loss value ( )E Q t⎡ ⎤⎣ ⎦ becomes: 
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( )E Q t⎡ ⎤ =⎣ ⎦  

( ) ( ) ( ) ( )( ) ( ) ( )
1 1

1 1
Pr Pr

NN

k N k N

k R k R
l t l t l t

N N

β

β α

β α α
⎢ ⎥⎣ ⎦

= + = +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎛ ⎞ ⎛ ⎞− −
− = + − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ i  

 

In there are one summation and one integration in this expression of ( )E Q t⎡ ⎤⎣ ⎦ , since 

( ) ( ) ( )( ) ( )( ) ( )1
Pr 1

k N kNk R
l t p t m p t m dF m

kN

∞
−

−∞

⎛ ⎞− ⎛ ⎞
= = −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
∫  requires integration over 

the range of common factor. 

 

So in the expression [ ] ( ) ( ) ( ) ( ) ( )
0

T
E DL B T E Q T E Q t f t B t dt⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦∫ , there are two 

integrations and one summation. The additional integration is over the time horizon.  

 

The integrations and summation are assumed exchangeable. In the numerical 

implementation, it is more convenient to make the integration over time before the 

summation in computing ( )E Q t⎡ ⎤⎣ ⎦ . 

 

And the expectation of tranche outstanding value can be derived by:  

( ) ( ) ( )E H t E Q tβ α⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦  

Once ( )E Q t⎡ ⎤⎣ ⎦ and ( )E H t⎡ ⎤⎣ ⎦ are calculated, the tranche spread is delivered by:  

( ) ( ) ( ) ( ) ( )

( ) ( )
0

1

T

K

k k k
k

B T E Q T E Q t f t B t dt
y

t E H t B t
=

⎡ ⎤ ⎡ ⎤+⎣ ⎦ ⎣ ⎦=
⎡ ⎤Δ ⎣ ⎦

∫
∑

 

 

The main difficulty and variety of the synthetic CDO pricing model lie in how to 

compute cumulative percentage loss probability function ( ) ( )( )Pr ,    [0,1]F x l t x x= ≤ ∈ . 

This crucial function can be asymmetric Levy distributions providing more flexibility and 

accuracy. But the parameters in Levy distributions need to be calibrated to the market 

quoted spreads y.  
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Asymptotic Large Homogenous Portfolio Approximation 

 

The idea of asymptotic large homogenous portfolio approximation is from [Vasicek, 

(1987), (1991)]. According to the law of large number, when the number of CDS in the 

portfolio is very large, the distribution of portfolio percentage loss approaches to the 

individual default loss. However since the accurate expression on cumulative portfolio 

percentage loss is shown above, this asymptotic approximation is no more necessary. But, 

this model can be modified based on Levy processes, see [Albrecher (2006)], [Baxter 

(2006)] and [Moosbrucker (2006a, 2006b)], especially useful for risk management8.  

 

The Levy process in the model compensates the inaccuracy incurred by the asymptotic 

approximation. The adjusted parameters in Levy distribution provide the capability and 

flexibility to fit the market quoted spreads.  

 

Remind the expectation of tranche loss value function: 

( )( ) ( )( )Q 1E t F x dx
β

α
= − ⋅∫  

 

The cumulative portfolio percentage loss probability function ( )F x  is defined above as 

the probability of cumulative portfolio percentage loss not exceeding x:  

 

( ) ( )( ) Pr ,    [0,1]F x l t x x= ≤ ∈  

Here the value of ( )F x is the only unknown. As discussed before, ( )F x is a function of 

time t and should be expressed as ( ),F x t . Some researchers propose that in the fully 

diversified portfolio of many equally weighted CDSs, the homogeneity is assumed. Then 

by the law of large number, the portfolio loss distribution ( )l t  converges to the individual 

default probability: ( ) ( ) ( )0
Pr 1 exp ( )

t
p t t u duτ λ= ≤ = − −∫  

                                                 
8 The Basel Benchmark Risk Weight is based this asymptotic approximation. For detail , see appendix 4 
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One of the reprehensive papers is [Albrecher et al. (2006)] : 9 

( ) ( )2 1

 

1  
, ( ) 1 Z

Portfolio Loss M

C F x
F t x F x F

ρ
ρ

−⎛ ⎞− −
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 

This is a function of t since C is a function of t. 

 

In that paper Variance Gamma distribution is proposed for ( )MF x and  ( )Portfolio LossF x based 

on [Schoutens (2003)] and they also checked Normal Inverse Gaussian (NIG) distribution 

under asymptotic large homogeneous approximation.  

In this model, if F(x, t) is symmetric, then:  

 

( )2 1

 

1  
( ) Z

Portfolio Loss M

F x C
F x F

ρ
ρ

−⎛ ⎞− −
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 

Some authors give this result without claiming symmetric assumption. 

These loss distribution functions ZF , MF and  ( )Portfolio LossF x  can be different asymmetric 

Levy distributions such as Variance Gamma or NIG. 

 

However, since exact expression on pricing synthetic CDO is derived, I use the 

conditional dependent copula factor model for the following computations. 

 

                                                 
9 See appendix 2 for the conduction of asymptotic large homogenous portfolio approximation. 
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First Result from Conditional Independent Factor Model  
 

Settings:  

 

There are 125N =  CDS with five years to maturity in the synthetic CDO. The hypothetic 

tranches are 0-3%, 3-14% and 14-100%. 

 

The correlation coefficient is defined as 2ρ . 

Parameters: 0.05r = , 0.4R = , correlation coefficient 2 0.3ρ = , default intensity 0.03λ = . 

Normal distribution ( )0,1N is assumed as underlying distribution in this first attempt. 

 

The following table shows the tranches spreads obtained from conditional independent 

factor copula model shown in previous context. This is exact number and later I will 

compare the spreads values in this table with the simulated spreads values. 

 
Table 1 Tranche Spreads  

from conditional independent factor model 
 

Tranche 0%-3% 3%-14% 14%-100% 

Spread 41.48% 9.685% 0.34754%10 

 

For the equity tranche 0-3%, the upfront payment based on a 5% annual spread is quoted; 

this upfront payment effort minimizes the counterparty risk for the equity tranche. And 

the corresponding spread for the equity tranche is 67.32%. 

The upfront payment is used in all the following examples for equity tranche 0-3%. 

 

The following three figures depict conditional expectation of premium leg value, 

individual default probability and conditional cumulative portfolio default probability. 

 

                                                 
10 Namely 34.754 bp, 1bp=0.0001 
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There two curves in Figure 1. The upper curve shows the conditional premium leg value 

for the 0-3% equity tranche conditional on common factor M m= . Namely, the value of: 

 

[ ] ( )( ) ( )
1

| |
K

k k k
k

E PL M m t E H t M m B t
=

= = Δ =∑  

 
Figure 1  

Conditional Expectation of Premium Leg Value 
with respect to common factor M 

[ ]|E PL M m=  

 
 

Upper curve (curve 1): [ ]|E PL M m=  

Lower curve (curve 2): [ ] ( )|E PL M m pdf m= i  
Area below curve 2:  unconditional expectation of premium leg value 

 

The x-coordination is common factor value M=m. 

The lower bell shape curve (curve 2) is the product of upper curve and the probability 

density function of common factor M. Normal distribution ( )0,1N is assumed as 

underlying distribution in this first simple attempt. Although ( )0,1N  is symmetric, curve 

2 is asymmetric, skews to the right. 

 

Common Factor m 

[ ]|E PL M m=  
Conditional
Expectation 
of Premium
Leg Value

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
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The expectation of premium leg value is the area below the bell shape curve 2. This 

expectation is computed by integrating [ ] ( )|E PL M m pdf m= i numerical over the 

possible range of common factor M: 

 

[ ] ( )|E PL M m pdf m dm=∫ i i  

If the common factor M=m follows other asymmetric Levy distribution, in the above 

formula on the expectation of premium leg value, the distribution density function 

( )pdf m  will change accordingly. But these two curves still have similar shape.  

 

Figure 2  
Individual Default Probability  

with respect to time t 
 

 
 

These two curves depict individual default probability with different default intensity. 

The above curve has higher default intensity 0.03λ = , and 0.015 for lower curve.  

The time ranges from 0 to 5 years. 

Figure 3 shows the conditional cumulative loss probability for the CDO portfolio 

percentage loss; it is conditional on common factor M= 0.  

 

The common factor M is set as M=0. 

The x-coordination is the portfolio percentage loss. 

t  in year 

Individual 
Default 

Probability 
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( )|F x M m= is defined above as the conditional probability of cumulative portfolio 

percentage loss not exceeding x:  

( ) ( )( ) Pr ,    [0,1]F x l t x x= ≤ ∈  

It is called conditional cumulative percentage loss probability function. 

 
Figure 3 

Conditional Cumulative Percentage Loss Probability  
  with respect to portfolio percentage loss x 

( )| 0F x M =  
 

 
 
 

Since F(x) is the cumulative distribution function of portfolio percentage loss, both x and 

function value range from 0 to 1. 

 

Spread Sensitivity Analysis 
 

The following tables and figures show the sensitivity of CDO tranches spreads with 

respective to the different parameters in the conditional independent factor copula model; 

the parameters include correlation coefficient, default intensity, maturity, interest rate and 

recovery rate.  

 

 x, (percentage loss)   

( )| 0F x M =  
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1. Spread Sensitivity of Correlation Coefficient 2ρ for 0-3% tranche 

Table 2 Spread Sensitivity of Correlation Coefficient 2ρ for 0-3% tranche 

Correlation 

Coefficient  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Upfront 

Payment 
76.19% 54.77% 41.48% 32.30% 25.45% 20.06% 15.57% 11.62% 7.69% 

For tranche 0-3%, the higher correlation coefficient 2ρ , the lower the upfront payment.  
 

Figure 4 Spread Sensitivity of Correlation Coefficient 2ρ for 0-3% tranche 

 
 

The higher coefficient assigns higher spread for senior tranche and lower spread or 

upfront payment to the equity tranche, vice versa. The relationship between the 

mezzanine tranche spread and correlation coefficient is more complicate. It is not 

monotonic function, increasing with correlation coefficient when coefficient is at low 

level, but decreasing when coefficient is high.  

 

2. Spread Sensitivity of Default Intensity λ for 0-3% tranche 

Table 3 Spread Sensitivity of Default Intensityλ for 0-3% tranche  
 

Default 

Intensity 
0.005 0.01 0.02 0.03 0.04 

Spread 0.08239 0.1533 0.2856 0.4148 0.5451 

Correlation Coefficient   

Spread 
0-3% 

tranche 
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The higher default intensity results in higher premium spread; but the marginal increment 
decreases.  
 

Figure 5 Spread Sensitivity of Default Intensityλ for 0-3% tranche  
 

 
 

 
3. Spread Sensitivity of Interest Rate r for 0-3% tranche 

 
Table 4 Spread Sensitivity of Interest Rate r for 0-3% tranche 

 
Interest Rate 0.01 0.02 0.03 0.04 0.05 

Tranche Spread 0.4086 0.4101 0.4117 0.4132 0.4148 

 
Figure 6 Spread Sensitivity of Interest Rate r for 0-3% tranche 

 

 

Spread 
0-3% 

tranche 
  

Default Intensityλ  

Spread 
0-3% 

tranche 
  

Interest Rate 
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There is another illustration on spread sensitivity of interest rate for the 9-12% tranche.  

Table 5 Spread Sensitivity of Interest Rate r for 9-12% tranche 
 

Interest rate 0% 1% 2% 3% 4% 

Tranche Spread  45.21 bp 44.84 bp 44.46 bp 44.08 bp 43.71 bp 

 

Here “bp” is base point, 1 bp = 0.01%.  

These two tables demonstrate that the tranches spreads are not sensitive to the interest 

rate. Neither of then are sensitive to interest rate. The results for other tranches on interest 

rate sensitivity are similar. This justifies the usage of constant interest rate in synthetic 

CDO pricing model.  

 

4. Spread Sensitivity of Maturity for 0-3% tranche 

Table 6 Spread Sensitivity of Maturity for 0-3% tranche  

Maturity 

(in year) 
1 2 3 4 5 

Spread 0.5058 0.4631 0.4397 0.4249 0.4148 

Figure 7 Spread Sensitivity of Maturity for 0-3% tranche 

 
 
From the model, based on 5% annual spread rate, as CDO contract time increases from 1 

to 5 years, the upfront payment for equity tranche 0-3% decreases from 0.5058 to 0.4148.  

Spread 
0-3% 

tranche 
{Upfront} 

 {Payment} 

Maturity (year) 



  

 

 

41

5. Spread Sensitivity of Recovery Rate for 0-3% tranche 
 

Table 7 Spread Sensitivity of Recovery Rate for 0-3%Tranche  
 
 

Recovery 

Rate 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Tranche 

Spread 
0.5531 0.5234 0.4895 0.4538 0.4148 0.3710 0.3219 0.2650 0.1965 0 .1083

 
 

Figure 8 Spread Sensitivity of Recovery Rate for tranche 0-3% 
 

 
 

From the above figures, the spread of the equity tranche 0-3% is not sensitive to interest 

rate, but it is very sensitive to the correlation coefficient, default intensity and recovery 

rate. High correlation incurs a low the spread for equity tranche.  

 

The spread for senior tranche is also sensitive to correlation coefficient, default intensity 

and recovery rate. But high correlation incurs a high spread for senior tranche, such as 

senior tranche 9-12%.  

 

Spread 
0-3% 

tranche 
  

Maturity (year) 
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6. SIMULATION METHOD FOR PRCING SYNTHETIC CDO  

Simulation Procedure 
 

Monte Carlo simulation is convenient to implement. Since there is no imperative 

requirement for explicit expression, this method is very flexible, but at the cost of long 

computational time. Because convergence rate is quite slow for high dimension 

simulation on the joint default distribution, simulation time is long. There are some new 

simulation methods to reduce simulation time, such as Important Sampling and 

Sequential Monte Carlo. But they are not covered here, since the conditional independent 

factor model is implemented in the next chapter. 

 

Model Settings: 

Again consider a portfolio with N equally weighted CDS, each one with notional 1
N

. 

At time t, given default time iτ , 1...i n= , the cumulative default loss function is: 

( ) ( ) { }
1

1
1

N

i
i

R
l t t

N
τ

=

−
= ≤∑  

And  

( ) ( ) { }
1

1
Pr

N

i
i

R
E l t t

N
τ

=

−
⎡ ⎤ = ≤⎣ ⎦ ∑  

{ } ( )Pr 1 expi it tτ λ≤ = −  

So the tranche loss function and remained outstanding are given as: 

( ) ( )( ) ( )( )
( ) ( ) ( ) ( )( ) ( )( )

H

Q H

s l s l s

s s l s l s

β α

β α α β

+ +

+ +

= − − −

= − − = − − −
 

Let 1 2... nt t t< <  denote the payment dates. 

For each payment date, calculate the expected11 value of premium payment; then sum the 

product of these payment and risk free discounted factor over all dates to get premium 

                                                 
11 Under risk neutral measure. 
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leg PL . Similar method is applied to for expected value of default leg DL. From default 

leg DL and premium leg PL , the spread y is derived. 

 

The simulation is based on the following one factor and multi factor copula 

models. 
One Factor Copula Model: 
The one factor model assumes that the ith  individual variable iW  correlates with each 

other by depending on a common market factor M : 

21i i i iW Mρ ρ ε= + −  

Where iε  is idiosyncratic factor of firm i ; it is independent of M . 

Since iε and M are independent, covariance matrix of ( )1, , T
NW W W  is 

( )
1,  

,
,  i j

i j
i j

i jρ ρ
=⎧

Σ = ⎨ ≠⎩
 

Multi Factor Copula Model: 
The multi factor model assumes that the ith  individual variable iW  is correlated with a 

few common market factors kM : 

 

2
, ,

1 1

1
K K

i i k k i i k
k k

W Mρ ε ρ
= =

= + −∑ ∑  

Where K is the number of common factors. ( )1, , T
Nε ε and ( )1, , T

KM M M  are 

independent. So conditional on the common factors kM , iW  is independent with each 

other; the conditional default is independent.  

 

In homogenous portfolio, the subscript i is dropped, hence: 

2

1 1
1

K K

k k k
k k

W Mρ ε ρ
= =

= + −∑ ∑  

For example, if there are two common factors: 

2 2
1 1 2 2 1 21i iW M M Zρ ρ ρ ρ= + + − −  
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The common factor 1M is shared by all individual variables iε ; 2M is divided by sectors. 

In each sector, iε  has same values of 1M and 2M ; cross different sectors, only 1M keeps 

unchanged; 2M varies independently cross sectors. 

In this two factor model, the covariance matrix of iX becomes: 

( ) 2 2
1 2
2
1

1,               
, ,     name i , j  in same section

,            otherwise

i j
i j i jρ ρ

ρ

=⎧
⎪

Σ = + ≠⎨
⎪
⎩

 

 

According to the single or two factor model, I simulate the joint random variables iτ  

based on the distributions such as Normal or NIG. Then convert these random variables 

iτ  to the default times to compute synthetic CDO spreads, as shown following. 

 

First generate the random variables according above description. The in each 

implementation, calculate the premium and default leg value, the spread is their quotient. 

 

Here are the steps for Monte Carlo simulation: 

• Generate a n  joint random variables iW  as above formulae 

• Calculate the default time by ( )ln 1 i
i

u
τ

λ
−

= − , ( )i iu F W= , F is the cumulative 

distribution function of iW . See following recap for details. 

• Calculate the cumulative default loss function for each payment date based on 

default times 

• Calculate the present values of  premium and default payment  

• Sum the present values to get the total value of premium leg payment PL and 

default leg payment DL  

Repeat the above steps, calculate the average of both premium leg PL  and default leg 

DL . Calculate tranche spread from these two values. 

 

The second step is derived in the following recap: 
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Recap: { } ( )1 Pri i iE t t uτ τ⎡ ⎤≤ = ≤ =⎣ ⎦   

Let the cumulative value ( )i iu F W=  equal to default probability:  

( ) ( ) ( )Pr 1 expi i i iu p t t tτ λ= = ≤ = − −  

The default time is an exponential distribution. And it can be generated by: 

( )ln 1 i
i

i

u
τ

λ
−

= −  

{ } ( )1 Pri i iE t t uτ τ⎡ ⎤≤ = ≤ =⎣ ⎦  

 

Simulation Result 
 

Single Factor Copula Model Simulation Result 

Factor Copula model setting:  

125N = , 0.05r = and 0.4R = correlation 2 0.3ρ = and default intensity 0.03λ = . 

The tranches are 0-3%, 3-14% and 14-100%. 

The simulation is based on Matlab software at a PC with 2.0G CPU. 

Table 8 Simulation Result in One Factor Gaussian Copula Model 
 

Iteration 500 5,000 25,000 50,000 

Simulation Time 5.42 second 52.75 second 266.7 second 530.2 second 

0-3% 41.03% 4.18%, 41.69% 41.98% 

3-14% 9.406% 9.798% 9.769% 9.781% 

14-100% 0.3552% 0.3482% 0.3519% 0.3515% 

 

The equity tranche spread is quoted as the upfront payment based 5% annual premium 

rate. The absolute spreads will be 67.51 %, 67.99%, 67.84% and 67.63% correspondingly.  

 

The following is simulation result comparison among one factor and two factor’s model 

based on Gaussian and Normal Inverse Gaussian (NIG) distributions. For more details on 

NIG distribution property, see appendix 3. 
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Multi Factor Copula Model Simulation Result 

In this multi factor model, two factor copula model is applied, the market factor and the 

section factor. 

Settings: 125N = , 0.05r = , 0.4R = , default intensity 0.03λ = , correlation 2
1 0.3ρ = , 

2
2 0.1ρ = , or 1 0.3ρ = , 2 0.1ρ = . 

Table 9 Two Factor Gaussian Copula Model  
 

Iteration 500 5,000 25,000 50,000 

Computing  

Time (seconds) 

 

4.6 

 

55.4 

 

262.1 

 

481.1 

0-3% 40.46% 39.48% 39.06% 39.06% 

3-14% 9.775% 9.760% 9.551% 9.551% 

14-100% 0.3841% 0.3806% 0.3780% 0.3755% 

 

By comparing the results with one or two correlation factors, it is shown that with an 

additional factor the spread for equity tranche decrease and the spread for senior tranche 

increase. It is similar to the effect of increasing correlation coefficient.  

 
Table 10 Simulation Result Comparison among Factor Copula Model 

(Gaussian and NIG Factor Models) 

In one fact model, 2 0.3ρ =   (or 0.3ρ = ) 

In two fact model, 2
1 0.3ρ = , 2

2 0.3ρ =   (or 1 0.3ρ = , 2 0.1ρ = ) 

NIG distribution setting:  0u = and 1δ =  

 

Copula Model 1 Factor NIG 2 Factor NIG 
1 Factor 

Gaussian 

2 Factor 

Gaussian 

Iterations 5,000 5,000 50,000 50,000 

Computing Time 100 minutes 100 minutes 6 minutes 6 minutes 

0-3% (Spread) 76.36% 74.41% 67.63% 65.57% 

3-14% 9.42% 10.00% 9.71% 9.58% 

14-100% 0.43% 0.47% 0.35% 0.37% 
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The following table compares the simulation result with the result computed by the 

conditional independent copula factor model introduced in previous chapter. 

 

Table 11 Comparison between spreads in one factor model and simulation 
 

Tranche 0%-3% 3%-14% 14%-100% 

Spread by 

Conditional Independent 

Factor Model 

67.32% 

(41.48%) 12 
9.685% 0.34754% 

Spread by 

Simulation Method 

5000 iterations 

67.63% 

(41.98%) 
9.781% 0.3515% 

 

This table illustrates the performance of simulation method and converge speed. The 

Monte Carlo simulation with 5000 iteration already provides a sufficient accuracy. 

 

Recap: 

From the above tables and analysis, there are two main advantages for the simulation 

methods: flexibility and easy to implement. 

 

The simulation method based on other heavy tail distributions, such NIG distribution, can 

give a higher spread for the senior tranche while a lower spread for the equity tranche. 

But the computational speed is much slower than the Gaussian model.  

 
 

 

                                                 
12 The number in blanket is the upfront payment. In 0-3% tranche, the quotations are upfront payment with 

an additional 5% annual spread paid quarterly from the protection buyer to the protection seller. The benefit 

of upfront payment arrangement is to reduce the counterpart risk for the protection buyer.  
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7. NUMERIAL RESULT FOR MARKET DATA 
 

Data Source: Bloomberg consolidate Market Data, Date: March 20th 2006 

 

Underlying Index: iTraxx European CDS Tranched Index  

 

iTraxx Series 3: based on 125 five years time maturity CDS 

 

The five year CDS is the most liquid CDS in the market and series 3 can provide most 

trading information comparing with other series. It is effective from 2005 March. The 

date ranges from March 30th 2005 – July 25th 2006. 

 

The average iTraxx Credit Index spread on that day is 39.917 bp. The average credit 

rating for iTraxx Credit Index is A-.  There is an adjustment for the index’s average 

spread due to the volatility among the CDS spreads.  

 

The tranche detachment and attachment points are: 3%, 6%, 9%, 12% and 22%. The 

trading tranches are 0-3%, 3-6%, 6-9%, 9-12% and 12-22%. The most senior tranche 22-

100% is not quoted in the market. But its spread can be determined by the all the tranche 

spread and the index spread.   

 

The Euro interest swap rate is chosen as the interest rate. From the above analysis, the 

spread and upfront payment is not sensitive to the interest rate. 

  

Implied Correlation Coefficients in Conditional Independent Model 

 

The normal and NIG one factor copula model is used. 

The quoted tranches spreads at March 20th 2006 are chosen to calibrate the model. The 

implied coefficients in normal one factor copula model on different tranches are:  
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Table 9 Implied Correlation Coefficients 2ρ  
(Normal one factor copula model) 

Date: March 20th 2006 

Tranche Spread13 
Implied Correlation 

Coefficient 2ρ  

0-3% 
(upfront) 

22.158% 0.229129 

3-6% 60.323 bp 0.270185 

6-9% 17.661 bp 0.36606 

9-12% 10.431 bp 0.437607 

12-22% 2.951 bp 0.477493 

 

In this normal one factor copula model, the implied correlation coefficient 2ρ increases 

as tranche getting senior. During the calibration, it is found that the spread for tranche 12-

22% is very sensitive to the correlation coefficient and it is distinctively different from 

the implied correlation for equity tranche. It is impossible to give a flat correlation 

structure for all tranches, which results in correlation smile effects. 

 

The following figure depicts the above correlation smile relationship between tranches 

and correlation coefficients. 

 

 

 

 

 

 

 

 

 

                                                 
13 The “bp” is base point, which is 100th of 1%.  
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In Gaussian factor copula model, no unique correlation coefficient can fit all the quoted 

spreads simultaneously. This leads to correlation smile as above graph shows.  

 

There are some reasons for the correlation smile in Gaussian factor copula model: 

1. The tail of normal distribution is to thing to catch the dependent structure 

2. The underlying distribution for the structural model is not symmetric  

3. The dependent structure is more complex than the factor model describes 

 

The asymmetric Levy distribution chosen in conditional independent factor copula model 

will overcome the first two problems here.    

 

The following is the computed spread for tranche 12-22% in different correlation 

coefficient 2ρ settings. The spread is strict increasing function with respect to coefficient 

for this tranche. Other tranches spreads may have different function forms. 

Table 10 Tranche spread (12-22%) in different Correlation Coefficient 2ρ  
 

Correlation 

coefficient 2ρ  
0.15 0.17 0.2 0.23 0.25 0.275 

Tranche 

Spread 
2.15bp 3.38bp 5.81 bp 8.88bp 11.2bp 14.4 bp 

 

Figure 9 Tranche spread (12-22%) in different Correlation Coefficient 2ρ  
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The correlation smile has been discussed above. The following model will assume a 

correlation coefficient for all tranches, and determine correlation coefficient value by 

minimizing the sum of absolute errors for all tranches.  

 
The NIG distribution setting is 0u = and 1δ = . It has more parametersα , β  to adjust 

during calibration process to fit better market data better. The parametersα andβ  decide 

the shape of NIG distribution, skewness and tail decay speed. 

 

Table 11 Comparison between Gaussian and NIG Copula factor model 
Date: April 29th 2005 

Tranche 
Market 

Quotation 

Gaussian Copula 

factor Model 

NIG factor model 

with two parameters 

0-3%14 24.962% 24.88% 24.75% 

3-6% 161.5 bp 285.1 bp 153.0 bp 

6-9% 50.25 bp 105.5 bp 53.89 bp 

9-12% 23.00 bp 44.31bp 28.72 bp 

12-22% 13.75 bp 10.06 bp 12.75 bp 

Correlation 

Coefficient 
NA 0.24 0.232 

α , β  NA NA 
1.2
0

α
β
=
=

 

 

NIG distribution setting: 0u = and 1δ = .  

The calibration criterion for NIG distribution ( ); , , ,f x α β μ δ  is: 

, 1

min | |
TR

i iu i

Spread Spread
δ

=

⎧ ⎫
−⎨ ⎬

⎩ ⎭
∑  

TR : the total tranche number;  

spread : computed spread from conditional independent factor copula model;  

spread : quoted spread 

                                                 
14 This is upfront payment based on 5% tranche spread for equity tranche 0-3% 
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The iTraxx CDS index for that day is 39.917, which is relatively higher than other days. 

 

The table shows that the main drawback of the Gaussian factor model is failure to fit all 

the market quoted tranches spreads consistently with one correlation coefficient for all 

tranches. Especially the market quoted mezzanine tranche spread is much lower than the 

one fitted in Normal copula factor model. The required correlation coefficient is higher 

for mezzanine tranche than both equity and more senior tranches. In the NIG distribution, 

the two parametersα  and β  affect symmetric property and the shape and thickness of the 

distribution tail. The parameterα decides the skewness; when it is 0, the distribution is 

symmetric. Beta (β ) decides the tails’ shape in NIG distribution. Since Normal 

distribution is symmetric, I fixed Alpha at 0 to compare the results. The fitting result in 

NIG factor Copula model is even better if alpha is not fixed at 0. But it is hard to 

determine its value numerically.  

 

Since the NIG model can improve the fitting to market data by choosing the distribution 

parameters, Alpha and Beta, it is more reliable to price customized Single Tranche CDO.  

 

The factor copula models based on other Levy distributions can provide similar result. 

For details of the specific property of NIG, see [Kalemanova (2005)] and for details of 

general Levy processes see [Schoutens (2003)].  

 

From optimization process of NIG factor model: 

1. As the correlation coefficient increases, the upfront payment of equity tranche 

decreases, and the spreads of senior tranches increase. This is inline with all the 

factor copula models. 

2. For the heavier tailed distribution, Beta generally determines the tail’s thickness. 

The higher the value of Beta, the heavier the tail. When Beta value increases, the 

upfront payment will decrease and spreads senior tranches increase. This means 

the extreme events happen more frequently than Gaussian distribution, which is 

one drawback in Normal copula. So senior tranches have a higher spread.   

3. Alpha is symmetric parameter, when its value is not 0, it is asymmetric. 
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Correlation Smile and Trading Strategy 

As shown above, in Normal factor copula model, market quoted spreads of the 

mezzanine tranches (3-6% and 6-9%) is much smaller than the ones from the model. Due 

to this inconsistence; the market implied correlation coefficient for the mezzanine tranche 

is smaller than the implied correlation for equity and senior tranches. In the market, this 

inconsistence leads to a so called “bear-bull” trading strategy:  the dealer holds the equity 

tranche and sells the mezzanine tranche to trade the correlation inconsistence.  

 

The NIG factor copula model can cure this correlation smile effect by choosing optimal 

parameters. The NIG factor model fits tranches spreads better to market quoted spreads.  

Short Term Prediction 
 

This is forward prediction over short time horizon, such as one day. The short term 

prediction is also a test of model consistence. First fit the correlation coefficient in the 

Normal factor copula model to the tranches spreads at the prevailing day. Then use this 

correlation coefficient and next day’s iTraxx Index data to predict the forward CDO 

tranches spreads.  Finally compare the predicted spreads with the next day’s spreads in 

the market. The following is the conclusion. 

 

European iTraxx index based on 125 equally weighted CDS:  

X coordinate is the number of trading days  from the starting of the 3rd series iTrxx index 

based on 5 year CDS. Y coordinate is spread in base points. 

Figure 10 iTraxx European Tranche Index 
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Figure 11 Spread for Tranche A 0-3% 

 
The X and Y setting is same as above figure. 

Figure 12 Spread for Tranche B 3-6% 

 
 

Figure 13 Spread for Tranche C 6-9% 
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Figure 14 Spread for Tranche D 9-12% 

 
Figure 15 Spread for Tranche E 12-22% 

   
These figures show similar pattern, the trading data for tranche E 12-22% started at April 

2005 and has less trading days than other ones; it is not as liquid as other tranches. 

 

Some outliers in the above figures have been deleted. The period of forward prediction is 

from May 2005 to July 2006.  

 

Prediction Results: 

 

The following figure shows implied correlation coefficient of tranche 12-22%. 

 

The correlation coefficient for this tranche fluctuates around 0.25 during this period of 

time. The fluctuation ranges from near 0.28 to 0.22. 

  

Spread  
(Trance 9-12%) 

  

Spread  
(Trance 12-22%) 

  

Day 

Day 



  

 

 

56

 

Figure 16 Implied Correlation Coefficient from tranche E 12-22% 

 
This is the implied correlation coefficient calibrated from super senior tranche 12-22%. It 

ranges from 0.22 to 0.28, but most points are around 0.25.   

 
Figure 12 One Day Forward Prediction Result 

  
Check the predict error: 
 
Define the prediction error as the ratio:  

 
Predicted Spread - Quoted Spread
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The following figure shows this prediction error.  

Figure 17 Prediction Errors for Tranche E 12-22% 

 
The Y coordinator is in percentage. 

 

The prediction is based on conditional independent Normal factor copula model, since 

the NIG factor in the predicted date has unknown parameters which need to be calibrated 

by the market quoted spreads from the next predicting day. 

 

From the figure, most of the one day forward prediction errors lay in the range between 

5% and -5%. Given the fact that the bid ask spread in the credit derivative market is about 

the same level as percentage of tranche spreads, the prediction error is relative accurate.  

 

The other tranches prediction results are similar. 
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8. CONCLUSION 

 

The conditional independent factor copula provides an explicit and accurate solution for 

synthetic CDO pricing. Comparing with generic copula method by simulation, it is still 

very parsimonious and computational faster.  

 

 The model driven by Levy distribution fits the market quoted spreads better than Normal 

factor copula model. This model can give relevant accurate forward prediction for the 

spreads over short time horizon. But longer prediction requires modeling the dynamic of 

default intensity; this will be further development. 

 

The factor model becomes popular due to its tractability and clear economic meaning. 

The correlation coefficient can explain most of the tranches spreads if a flexible Levy 

distribution is chosen and calibrated to the market quoted spreads. Since the spread of 

trance is a nonlinear function of both attachment and detachment points, the model’s 

capability to price other bespoke and customized Single Tranche CDO depends on how 

accurately the model is calibrated to the market quoted tranches and how flexible the 

model is.  

 

Further Development 
 

The dynamic model which models the dynamic term structure of CDS spread and 

correlation simultaneously is one of the further research areas. Stochastic recovery rate is 

another one. Further contract, such as Option on CDO, Single Tranche CDO and forward 

starting CDO pricing model require modeling the dynamic of the default term structure, 

stochastic correlation coefficient or recovery rate; the model will be more reliable if it is 

calibrated to the whole default intensity curve, which is similar idea as the HJM model. 

See [Schönbucher (2006)] for term structure of default intensity curves, or transition 

matrix [Albanese et al. (2006)].  
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The further two dynamic CDO model approaches are:  

1. Markov transition probability density or transition matrix: [Schönbucher (2006)], 

[Albanese (2006)], [Sidenius (2005)] and [Walker (2006)] 

2. The Generic Factor Levy Copula CDO factor model: [Baxter (2006)], [Cariboniy 

& Schoutens (2006)], [Luciano & Schoutens (2005)] and [Moosbrucker (2006b)]. 

 

Hedging 

 
 The iTraxx index family becomes a popular hedge instrument for CDS and CDO. There 

are some sub indices for different industries in the iTraxx index family, such as Financial 

Industry, Automobile Industry or High Volatility sub iTraxx indices. The CDS in 

corresponding industry section can be hedged by using the sub indices. 

 

Risk Management 

 
The factor copula method is also applied for risk management to calculate new VaR in 

Basel II accord. See appendix 4 and Walker (2004) for details. 
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9. APPENDIX  

1. The Theory of Copula Function 

The theory of copula investigates the dependence structure of multi-dimensional random 

vectors given the marginal distribution. Copula is function that joins or “couples” 

multivariate distribution functions to their corresponding marginal distribution functions. 

A copula function itself is a multivariate distribution function with uniform margins on 

the interval [0, 1]. As a way of studying the dependence structure of an asset portfolio 

irrespective of its marginal asset-return distributions, copula is of interest in credit-risk 

management. It is a starting point for constructing multi-dimensional distributions for 

asset portfolios for simulation.  

 

The common definition of the copula function is: 

Definition: Let [ ] [ ]:  0,1 0,1nC →  be an n-dimensional distribution function on[ ]0,1 n . 

Then C is called a copula if it has uniformly distributed margins on the interval [0, 1]. 

Example 1: Let F  is the cumulative distribution function of random variable ε and 

define 

( ):X F ε= . 

For any [ ]0,1x∈ , then:  

( )Pr X x x≤ =  

So X  is unit random variable, the probability distribution function is: 

( ) [ ]1,      0,1
0,     otherwise

x
f x

⎧ ∈⎪= ⎨
⎪⎩

. 

 

The following theorem gives the foundation for a copula to inherit the dependence 

structure of a multi-dimensional distribution. 
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Theorem (Sklar’s theorem): Let F  be an n-dimensional distribution function with 

margins 1,..., nF F . Then there exists a copula functionC , such that for all nX R∈  

( ) ( ) ( )( )1 1 1,..., ,...,n n nF x x C F x F x=  

If 1,..., nF F  are all continuous, then C  is unique; otherwise C is uniquely determined on 

nRanF RanF×⋅⋅⋅× . Conversely, if C  is a copula and 1,..., nF F  are distribution functions, 

then the function F  defined above is an n-dimensional distribution function with 

margins 1,..., nF F . 

 

An immediate Corollary shows how one can obtain the copula of a multi-dimensional 

distribution function. 

 

Corollary: Let F be an n-dimensional continuous distribution function with margins 

1,..., nF F . Then the corresponding copula C has representation 

( ) ( ) ( )( )1 1
1 1 1,..., ,...,n n nC u u F F u F u− −=  

Where 1 1
1,..., nF F− −  denote the generalized inverse distribution functions of 1,..., nF F , i.e. 

for all ( )1,..., 0,1nu u ∈ : ( ) ( ){ }1 : inf , 1,... .i i i i iF u x R F x u i n− = ∈ ≥ =  

 

Remark: 

The copula is invariant while the margins may be changed at will, it follows that it is 

precisely the copula which captures those properties of the joint distribution which are 

invariant under a.s. (almost surely) strictly increasing transformations. Thus the copula 

function represents the dependence structure of a multivariate random vector. Adding 

some more copula properties needed here: 

• Independent distribution’s copula: 

( ) ( ) ( )1 1
1 1

,..., ,...,
n n

n n i i
i i

C u u F x x F x u
= =

= = =∏ ∏  

• Upper bound: 
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( ) ( ) ( )( ) ( ) ( )
( ) ( )

1 1 1 1

1 1

,..., ,..., ,..., 1...,1, ,1,...,1

,..., min ,...,
n n n n i i

n n

C u u C F x F x F x x F x x

C u u u u

= = ≤ =

≤
 

• Lower bound: 

( ) ( ) ( )( ) ( )1 1
1 1

,..., ,..., 1 1 1
n n

n n i i
i i

C u u F x x F x u n
= =

= ≥ − − = − −∑ ∑  

• A copula is increasing in each component. In particular the partial derivatives 

( )i

i

C u
u

∂
∂ , i = 1 . . . n,  

 Exist almost everywhere. 

• Consequently, the following conditional distributions of the form exist. 

( )1 1 1,..., , ,...,j j n jC u u u u u− + , j = 1, . . . , n, 

• A copula C is uniformly continuous on [ ]0,1 n  

 

Tail Dependence 

This can be interpreted as given one name defaults, what is the default probability for 

another name in the portfolio.  

 

Definition (Upper Tail dependence coefficient) 

 Let ( )1 2, 'X X X=  be a two-dimensional random vector. We say that X is tail dependent 

if 

( ) ( )( )1 1
1 1 2 2

1
: lim 0P X F X F

ν
λ ν ν

−

− −

→
= > > >  

Definition (Lower Tail dependence coefficient) 

 Let ( )1 2, 'X X X=  be a two-dimensional random vector. We say that X is tail dependent 

if  

( ) ( )( )1 1
1 1 2 2

0
: lim 0P X F X F

ν
ω ν ν

−

− −

→
= ≤ ≤ >  

Proposition: 

Let X  be a continuous bi variant random vector, then 
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( )
1

1 2 ,
lim

1u

u C u u
u

λ
−→

− +
=

−
 

Where C  denotes the copula of X.  

Analogous ( )
0

,
lim
u

C u u
u

ω
+→

=  holds for the lower tail dependence coefficient. 

Example: 

If the two random variables are independent, then ( ) 2,C u u u=  

( ) ( )
1 1

1 2 ,
lim lim 1 0

1u u

u C u u
u

u
λ

− −→ →

− +
= = − =

−
 

And  

( )
0 0

,
lim lim 0
u u

C u u
u

u
ω

+ +→ →
= = =  

In fact, if 

( ) ( ) ( )( )
1 1

lim , lim 1 2 1 1
u u

C u u u o u
− −→ →

= − − + − , 

Then 

( ) ( )
1 1

1 2 ,
lim lim 1 0

1u u

u C u u
o u

u
λ

− −→ →

− +
= = − =

−
15 

If 

( ) ( )
0

lim ,
u

C u u o u
+→

= . 

Then  

( ) ( )
0 0

,
lim lim 0
u u

C u u o u
u u

ω
+ +→ →

= = =  

These two cases are lack of tail dependence in upper right or bottom left corners. To deal 

with the dependent structure in finance and insurance, the copula functions are chosen 

with these two limits not equal to zero.  

 

Even with the simple characterization for upper and lower tail dependence in this 

proposition, it will be still difficult and tedious to verify certain tail dependencies if the 

                                                 
15 The proof can be deducted by definition of conditional probability.  
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copula is not a closed-form expression. Therefore, the following Theorem gives another 

approach calculating tail dependence. We restrict ourselves to the upper tail. 

 

Let X be a bivariate random vector with differentiable copulaC . 

Then the upper tail dependence coefficient λ can be expressed using conditional 

probabilities if the following limit exists: 

( )( ) ( )( )1 2 2 11
lim
v

P U v U v P U v U vλ
−→

= > = + > =  

where ( )1 2,U U  are distributed according to the copula C  of X . 

 

If 1 2,U U have some marginal distribution of Normal or student t, then:  

( )( ) ( )( ) ( )( )1 2 2 1 1 21 1
lim 2 lim
v v

P U v U v P U v U v P U v U vλ
− −→ →

= > = + > = = > =  

 

The tail dependent coefficient for bi normal distribution is zero, except perfect linear 

correlation. So the Gaussian copula can not hand the required dependent structure for risk 

management or collateral obligations.  

21
1 1

x y zρ ρ
ρ

= + −

− < <
 

Where ,  are i.i.d normal distributions (0,  1)y z N  

( )( )1 21
lim 2 0
v

P U v U vλ
−→

= > = =  

Archimedean Copula 

 

A bivariate Archimedean copula has the form ( ) [ 1], ( ( ) ( ))C u v u vϕ ϕ ϕ−= +  for some 

continuous, strictly decreasing, and convex generator function :[0,1] [0, ]ϕ → ∞ such that 

(1) 0ϕ = and the pseudo-inverse function [ 1]ϕ −  is defined by: 

 
1

[ 1] ( ),   0 (0)
( )

0,            (0)     
x x

x
x

ϕ ϕ
ϕ

ϕ

−
− ⎧ ≤ ≤

= ⎨
< ≤ ∞⎩
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From Cízek (2003), it can be shown: 

• Upper tail-dependence implies, '(1) 0ϕ = and 12 ( 2 ) '(1)λ ϕ ϕ−= −  

• '(1) 0ϕ < implies upper tail-independence, 

• '(0)ϕ > −∞ or (0)ϕ < ∞ implies lower tail-independence, 

• lower tail-dependence implies '(0)ϕ = −∞ , (0)ϕ = ∞ and 1( 2 ) '(0)ω ϕ ϕ−=  

 
Clayton is one of the popular Archimedean Copulae.  

( ){ }1/
( , ) max 1 ,0C u v u v

θθ θ −− −= + −  

[ 1, ) \{0}θ ∈ − ∞ . 

 

There is hardly any meaningful economics explanation for the parameters estimated in 

Archimedean copula models.  

 

Exponential copula Semi Parametric Method 

This method was introduced by econometricians and it is useful for risk management as 

well. The basic idea is to form the underlying distribution by a non parametric estimation 

and form the dependent structure in a parametric form. Once the data of daily traded 

CDO tranches spreads are large enough, the seized maximum likelihood estimation16 

could be conducted. This is a problem called “curse of dimensionality” in high dimension 

non parametric estimation methods, the estimation accuracy will decay quickly as 

dimension increases. 

 

                                                 
16 In econometrics literature the copula function’s parameters are estimated by Seize Max 

Likelihood method. 
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2. The Conduction of Asymptotic Large Homogenous 
Approximation  
 
Define default function for each CDS as:  

( ) { }1
ii tz t τ ≤=  

Given M m= , by the law of large number, the portfolio loss percentage is: 

( ) ( ) ( ) ( ). .

1

1 ,   
N

a s
i i

i
l t z t E z t N

N =

⎡ ⎤= ⎯⎯→ →∞⎣ ⎦∑  

From central limit theorem, 
( )( ) ( ){ }lim Pr | 1

iE z t xN
l t x M m

⎡ ⎤≤→∞ ⎣ ⎦
≤ = =  

So:  
( )( ) ( ){ }Pr | 1

iE z t x
l t x M m

⎡ ⎤≤⎣ ⎦
≤ =  

Since, 
( ) ( )Pri iE z t x tτ⎡ ⎤ ≤ ⇔ ≤⎣ ⎦  

{ }

( )

( )

2

2

1

2

2 1

Pr |

Pr |
1

|
1

1

1

i

i

z

Z

Z

X C M m x

C mz M m x

C mF M m x

C m F x

C F x
m

ρ

ρ

ρ
ρ

ρ
ρ

ρ
ρ

−

−

⇔ ≤ = ≤

⎧ ⎫−⎪ ⎪⇔ ≤ = ≤⎨ ⎬
−⎪ ⎪⎩ ⎭

⎛ ⎞−⎜ ⎟⇔ = ≤
⎜ ⎟−⎝ ⎠
−

⇔ ≤
−

− −
⇔ ≥

 

Hence,  

( ) ( ){ } ( ){ } ( )

( )
( )

( )

2 11

2 1

, Pr Pr |

1

1
1

Z

M

MC F x
m

Z
Z

F x t l t x l t x M m dF m

dF m

C F x
F

ρ
ρ

ρ
ρ

−

+∞

−∞

+∞

⎧ ⎫−∞ − −⎪ ⎪≥⎨ ⎬
⎪ ⎪⎩ ⎭

−

≤ = ≤ =

=

⎛ ⎞− −
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

∫
∫  
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3. NIG distribution and its properties 

 
NIG is a mixture of normal and Inverse Gaussian distribution.17 

The density function of Inverse Gaussian distribution is: 

( )
( )2

3/ 2 exp ,       0
, , 22

0,                                                     0
IG

y
y y

f x y

y

α βα
α β βπβ

−
⎧ ⎛ ⎞−
⎪ ⎜ ⎟− >⎪ ⎜ ⎟= ⎨ ⎝ ⎠⎪

≤⎪⎩

 

A random variable X follows NIG distribution with parameters ( ), , ,uα β δ  if: 

( )

( )( )2 2 2 2

| ,

,IG

X Y y N u y y

Y f

β

δ α β α β

= +

− −

∼

∼
 

The NIG density function has the explicit expression as: 

 

( )
( )( )

( )
( )

2 2
22

122

exp
; , , ,NIG

x u
f x u K x u

x u

δα δ α β β
α β δ α δ

π δ

− + −
⎛ ⎞= − −⎜ ⎟
⎝ ⎠− −

 

 

Where 1K  is the modified Bessel function of third the type: 

( )1 0

1 1 1: exp
2 2

K x x t dt
t

∞ ⎛ ⎞⎛ ⎞= − +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∫  

The NIG moment generating function ( ) ( )expM t E tx⎡ ⎤= ⎣ ⎦  is: 

( ) ( )
( )

( )

2 2

22

exp
; , , , exp

exp
NIGM t ut

t

δ α β
α β μ δ

δ α β

−
=

⎛ ⎞− +⎜ ⎟
⎝ ⎠

 

 

The important scaling property for NIG distribution is: 

                                                 
17 For generic Levy distributions property, see Schoutens (2003) 
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( ), , ,

, , ,

X NIG u

cX NIG cu c
c c

α β δ

α β δ⎛ ⎞⇒ ⎜ ⎟
⎝ ⎠

∼

∼
 

And further more,  

( )
( )

( )

1 2

2 2

1 2 1 2

, , ,

, , ,

, , ,

X NIG u

Y NIG u

X Y NIG u u

α β δ

α β δ

α β δ δ⇒ + + +

∼

∼

∼

 

The mean and variance of ( )1 2, , ,X NIG uα β δ∼  are: 

[ ]

[ ]

2 2

2

3
2 2

E x u

V x

βδ
α β

αδ
α β

= +
−

=
−

 

Hence in the NIG distribution the parameter 

α  determines the distribution shape;  

β  determines the distribution skewness 

u  determines the distribution location 

δ is a scaling parameter.  

 

From these properties, the NIG distribution can capture the asymmetrical heavy tail 

distribution of the dependent defaults.  

 

Further NIG distribution properties refer to [Schoutens, (2003)] and [Kalemanov (2005)]. 
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4. Basel II Accord and Copula Function 

 

The Basel II accord is based on Gaussian factor model to compute VaR, Walker (2004) 

and Rosen (2005).  

 

Vasicek (1987, 1991) considers the fractional number of defaults in a portfolio of a large 

number of risky correlated loans. He finds that the probability that the fractional number 

of defaults is less that θ  is 

 

( ) ( )2 1
*1 ( )i im Z K F p tρ ρ −+ − < =  

( ) ( )2 1 11 ( ) ( )p t
W

ρ θ
θ

ρ

− −⎛ ⎞− ⋅Φ −Φ
⎜ ⎟= Φ
⎜ ⎟
⎝ ⎠

 

( )p t ( )P t  is default probability at time t, Φ  is normal cumulative distribution function 

N(0,1). 

 

Define the “fractional defaults at risk,” FDaR, to be the fractional number of defaults that 

will not be exceeded within a 99.9% confidence level. Then W(FDaR) = 0.999 

Solving FDaR gives: 

1 1

2

( ( )) (0.999)FDaR 
1

P t ρ
ρ

− −⎛ ⎞Φ − ⋅Φ⎜ ⎟= Φ
⎜ ⎟−⎝ ⎠

 

Using different distribution functions to set up the economic capital requirement is an 

interesting topic.  

 

 

( )
1 2 1

* 2
1

( ( )) 1 ( )
1

F P t F
W F

ρ θ
θ

ρ

− −⎛ ⎞− − ⋅
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 

Then  
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1 1
* 1

2 2

( ( )) (0.001)FDaR 
1

F P t FF ρ

ρ

− −⎛ ⎞− ⋅
⎜ ⎟=
⎜ ⎟−⎝ ⎠

 

Here 1F , 2F and *F can be different heavy tailed distribution, which allow a more accurate 

estimation of the Basel II formula for (corporate, etc.) risk-weighted assets: 

 

Risk-Weighted Assets = 12.50 * FDaR * LGD * EAD *MatAd  

 

where LGD is the loss given default, EAD is the exposure at default, and MatAd is a 

maturity adjustment. Taking 8% of the risk-weighted assets gives the maximum loss at 

the 99.9% confidence level, and the required buffer capital is set equal to this loss. 

The formula for the correlation parameter given in Basel II, which has an empirical basis, 

can be simplified to 
2  0.12[1  exp( 50 )]PDρ = + −  
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