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ABSTRACT

By decomposing close to close returns into close to open returns (overnight returns) and open to close

returns (daytime returns), we test the predictability of overnight information, which is captured by ab-

solute values of close to open returns, on daytime return volatility. Applying the stochastic volatility

model, we find that overnight price changes contain important information to predict daytime volatil-

ity. The predictive power is highest at market opening and declines gradually over the trading day.

Moreover, the predictive power is higher for inactive traded stocks than for actively traded stocks.
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1 Introduction

Conventionally, returns are defined as changes in closing price. The underlying assumption is that

returns during the non-trading period (e.g., close-to-open) follow the same data generating process

as the returns during the trading period (e.g., open-to-close). This assumption is arguable since there

is usually no trade in the overnight period. Since information is incorporated into prices through

trades, the data generating process in the overnight period is unlikely to be the same as that in the

daytime trading period. Several studies have shown that the two data generating processes can be

quite different. For example, Fama (1965), French and Roll (1986), Lockwood and Linn (1990) show

that volatility over the trading period is significantly different from volatility over the non-trading

period. Oldfield and Rogalski (1980), Hong and Wang (2000) have provided theoretical models to

explain why they are different.

Market microstructure theory suggests that information revealed through trades affects security

returns [see Hasbrouck (1991), Dufour and Engle (2000)] and volatility [see Xu, Chen, and Wu

(2006)]. When the market is closed, no trading takes place and investors are prevented from adjusting

their expectation based on trading information. This in turn can affect the return generating process.

Craig, Dravid, and Richardson (1995), Chan, Chockalingam, and Lai (2000), Hong, Gallo, and Lee

(2001) examine stock returns during the trading and non-trading periods. Barclay and Hendershott

(2003) examine price discovery in after-hours trading period. These studies focus on the behavior

of stock returns. Studies on volatility are relatively few. One example is Gallo and Pacini (1998)

who employ the GARCH(1,1) model to incorporate the overnight information in forecasting daytime

volatility.

This paper attempts to further explore the ability of overnight return to predict of daytime return

volatility. Our approach differs from Gallo and Pacini (1998) in several ways. First, we employ the
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stochastic volatility model, which is considered to be more efficient than GARCH(1,1) model [see

Kim, Shephard, and Chib (1998), Granger and Poon (2003)]. Second, our data spans over a much

longer period. Third, we examine the relationship between overnight return and daytime volatility

condition on the trading frequency.

Our paper contributes to the literature in several aspects. First, our results show that overnight

returns contain important information for daytime return volatility. Second, we find that overnight

return has higher predictive power for daytime return volatility for inactive trading stocks. This find-

ing is consistent with the model of Easley et al. (1996) which predicts that the information content of

trades is higher for infrequently traded stocks. Third, we find that overnight return of inactive stocks

can predict the daytime return volatility over a longer horizon, which implies that overnight informa-

tion plays a more important role in determining the volatility of inactive stocks. Finally, consistent

with the finding of Kim, Shephard, and Chib (1998), Granger and Poon (2003), our paper show that

the stochastic volatility model outperform the GARCH(1,1) model.

The rest of this paper is organized as follows. In Section 2, we review the literature. In Section 3,

we describe the design of our empirical tests and discuss the Bayesian analysis. The data used in our

empirical analysis is illustrated in Section 4.1. In Section 4.2, we present our empirical findings. In

Section 4.3, we provide the cross-sectional results. In Section 4.4, we further explore the duration of

overnight returns predictability for different stocks. Finally, Section 5 concludes our paper.
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2 Literature Reviews

2.1 Theoretical Frameworks on Information of Non-trading Periods

Oldfield and Rogalski (1980) propose a model with multiple jump processes to explain the differences

between returns in the trading and non-trading periods. They assume that returns over the trading and

non-trading periods can be characterized by a stochastic process with diffusion and multiple jumps:

dP

P
= µdt+ σdW +

∑
i

zidθi

where W is the Wiener process, z represents random changes in share prices resulting from various

non-trading periods’ jumps, and dθ is a random jump process associated with each jump. Hong and

Wang (2000) provide an equilibrium model to describe a stock market with periodic market closures,

which is able to explain the phenomenon of higher volatility during the trading period.

2.2 Empirical Findings on Information of Non-trading Periods

Fama (1965), French and Roll (1986), Lockwood and Linn (1990) show that the volatility in the trad-

ing period is much higher than the volatility in the nontrading period. French and Roll (1986) link

this phenomenon to public and private information flow, and pricing errors. Barclay, Litzenberger,

and Warner (1990) examine the Japanese stock market1 to identify the determinants of stock return

variance. The change in Japanese stock market trading days permits them to compare stock vari-

ances between trading Saturday and non-trading Saturday. They conclude that the key determinant of

variance is private information. They find that neither the irrational trading noise hypothesis nor the

public information hypothesis can explain the variance of the Japanese stock market return. Craig,

1Japanese stock market is allowed to trade for half a normal trading day approximately three Saturdays per month, and

closed on other Saturdays.
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Dravid, and Richardson (1995) use the Japanese Nikkei index-based futures traded in US as the proxy

of contemporaneous overnight information in Japan stock market, and find close links between im-

plied changes in the Nikkei index and actual overnight changes in the Nikkei index. They show that

overnight information is efficiently reflected by derivatives traded in the US market. Barclay and Hen-

dershott (2003) explore the relationship between after-hours trading and price discovery on Nasdaq.

They find that albeit after-hour trading volume is low, it generates significant price discovery. They

also find that information asymmetry in the pre-open period is higher than any other time of the day.

An important question is whether overnight return can predict daytime returns. Past studies have

shown that overnight return has some predictability on daytime returns. Using cross listed firms in

different exchanges, Chan, Chockalingam, and Lai (2000) show that overnight returns have signifi-

cant effects on intra-day returns for the first half hour after market is open. By splitting close-to-close

returns into two non-overlap series and introducing a functional coefficient model, Hong, Gallo, and

Lee (2001) find evidence of an in-sample nonlinear predictability for daytime returns but this pre-

dictability is rejected by the out-sample test. In addition to return predictions, the issue of predictabil-

ity of volatility has caught much attention since volatility is important for pricing derivatives. Gallo

and Pacini (1998) show that the overnight surprise measured by absolute returns during market clo-

sures affects volatility. However, their finding is ambiguous because they used close-to-close returns

instead of open-to-close returns to test the prediction of overnight shocks.

Our study is also related to the literature of public information effects. Ederington and Lee (1993)

examine the impact of macroeconomic news releases on returns and volatility. They find that while

returns reflect the information in less than a minute, the impact of news on volatility can persist for

several hours. Berry and Howe (1994) measure the public information flow by the number of news re-

leased by Reuter’s News Service per unit of time. They find a positive moderate relationship between
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public information flow and trading volume, but an insignificant relationship with price volatility.

They also show that overnight information has significant impact on the opening volume which is

consistent with Gerety and Mulherin (1992) findings of a positive relationship between opening vol-

ume and unexpected overnight volatility.

Understanding the effect of information in the non-trading period is important also for practition-

ers. As pointed out by Taylor (2005), a Value-at-Risk (VaR) model based on a conditional volatility

model that incorporates overnight information produces more accurate results. Boes, Drost, and

Werker (2006) model the overnight price process by a single jump while the daytime price process is

following the standard affine model. They find that overnight jumps accounted for about 1/4 of total

jump risk.

While there are a number of studies on the relationship between overnight and daytime returns,

there are relatively few studies on the predictive ability of overnight return on daytime volatility. This

paper attempts to fill this gap. In addition to tests of overnight return information, we examine the

relationship between overnight returns and daytime volatility for stocks with different frequencies.
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3 Empirical Models

The close-to-close return for a security is

rt = lnCt − lnCt−1

We can decompose returns into two distinct components, namely overnight returns and daytime re-

turns,

rt = lnCt − lnOt︸ ︷︷ ︸
Daytime Returns

+ lnOt − lnCt−1︸ ︷︷ ︸
Overnight Returns

An important question is whether overnight return contains information that affects the daytime mar-

ket performance, a dimension of which is return volatility. The easiest way is test this hypothesis is

to examine the relationship between two return series directly by estimating the following regression:

|yt| = θ0 + θ1|xt′|+ θ2|yt−1|+ νt

where yt is the daytime return at time t, xt is the overnight return at time t′ preceded the market open

at time t; More specifically,

r1, r2, ..., rt, ... = x1′ , y1︸ ︷︷ ︸
r1

, x2′ , y2︸ ︷︷ ︸
r2

, ..., xt′ , yt︸ ︷︷ ︸
rt

, ...

However, using the absolute value of daytime returns to represent daytime volatility and the abso-

lute value of overnight returns to represent the overnight shock may induce measurement errors. To

conduct a more robust test, we employ the stochastic volatility model (SV henceforth) first proposed

by Taylor (1982). Compared to the GARCH model, one of the main advantages of the SV model lies

in the more realistic feature it embraces. Since volatility itself cannot be precisely predicted, adding

another random shock in the volatility equation makes more sense in modeling the data. Assuming

volatility itself follows a stochastic process is therefore more appealing than the GARCH model that

does not allow for random disturbance. An important difference between SV or GARCH model and
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simple linear regression model is that the former treats volatility as a state variable, which cannot

be observed. This specification allows us to avoid the error associated with volatility measured by

absolute returns.

3.1 The Model

The SV model can be written as
εt = exp(0.5ht)ηt ηt ∼ N (0, 1)

ht = α0 + α1ht−1 + ωt ω ∼ N (0, σ2
ω)

This model was proposed by Taylor in 1982 but only becomes popular after mid 1990s. A main

reason is that estimation of the model is much more complicated compared to the ARCH and GARCH

models proposed by Engle (1982) and Bollerslev (1986) respectively. The likelihood function of the

SV model is

l(θ; y) =

∫
R+

f(y,h|θ)dh

, which involves a multidimensional integral with no analytical form.

Due to the intractability of the likelihood function in the SV model, researchers often use an alter-

native method which focuses on sampling the density f(θ,h|y) to overcome the estimation problem.

In a seminal work, Jacquier, Polson, and Rossi (1994) use a Bayesian approach to estimate the SV

model and draw the inference based on the posterior distribution.

f(θ, h0, ..., hT |y1, ..., yT ) ∝ f(θ)
∏

t

f(ht|ht−1, θ)
∏

t

f(yt|ht, θ)

In this paper, posterior distributions are obtained by using Gibbs Sampling, a Markov Chain Monte

Carlo (MCMC) technique. The idea behind the MCMC method is to produce variate from a given

multivariate density by repeatedly sampling a Markov Chain whose invariant distribution is the target

density of interest. The Forward Filtering Backward Sampling algorithm developed by Carter and
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Kohn (1994) and Fruhwirth-Schnatter (1994) is applied to estimate the time series of ht based on

draws of parameters in each step. Details of the estimation procedure are presented in the Appendix.

In empirical estimation, we use 7 normal distributions with different means and variances to approx-

imate the distribution of lnχ2
1, which are also used by Kim, Shephard, and Chib (1998) to make the

SV Estimation more robust. The 7 normal distributions are outlined in Table 1.

3.2 The Test Hypothesis

We can express the return process under stochastic volatility as

yt = ρ0 + ρ1yt−1 + εt

where yt represents daytime returns,


εt = exp(0.5ht)ηt ηt ∼ N (0, 1)

ht = α0 + α1ht−1 + β|xt′|+ ωt ω ∼ N (0, σ2
ω)

where |xt′| captures overnight shocks. We name this modelM1.

Our null hypothesis is

H0 : β = 0

and the alternative hypothesis is

H1 : β 6= 0

The test hypothesis is that overnight returns contain no information to predict daytime return volatility.

Under the null hypothesis, the model becomes

yt = ρ0 + ρ1yt−1 + εt
εt = exp(0.5ht)ηt ηt ∼ N (0, 1)

ht = α0 + α1ht−1 + ωt ω ∼ N (0, σ2
ω)
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where overnight shocks are not taken into consideration. We define this model asM0.

Bayesian analysis is used in making statistical inference. The hypothesis can be evaluated by

Highest Posterior Density Intervals (HPDI, henceforth) and by the Posterior Odds Ratio.

The statistical inference using the HPDI is straightforward. For example, a 95% HPDI indicates

that researchers are 95% confident that β lies within the HPDI. Although the inference is similar to

the concept of confidence intervals in the standard statistic test, the interpretation is quite different.

While p− value is referred to as the confidence interval in the standard test, p− value is referred to

the posterior distribution of the parameter in the Bayesian inference.

Although it is easy to apply, the HPDI does not have a firm probability justification. An alternative

is to adopt the concept of Posterior Odds Ratio which can be expressed as

Pr(M0|y)
Pr(M1|y)

=
Pr(M0)

Pr(M1)
×B

where B is the Bayes Factor

B =
f(y|M0)

f(y|M1)
=

∫
Θ0
f(y|θ0,M0)f(θ0|M0)dθ0∫

Θ1
f(y|θ1,M1)f(θ1|M1)dθ1

and Pr(M0)
Pr(M1)

is the Prior Odds Ratio which is set equal to 1 to avoid any prejudiced prior. The Bayes

factor is estimated based on the method developed by Chib (1995):

ln f(y|M0)− ln f(y|M1) = ln f(y|M0, θ
∗
0) + ln f(θ∗0|M0)− ln f(θ∗0|M0, y)

− [ln f(y|M1, θ
∗
1) + ln f(θ∗1|M1)− ln f(θ∗1|M1, y)]

for any values of θ∗0 and θ∗1.

In our paper, we use the posterior mean as the point estimator for parameters and posterior den-

sities f(θi|Mi, y) are estimated at θi by applying the Gaussian kernel to the posterior distribution

of parameters. The likelihood function f(y|Mi, θi) is estimated by the filtering simulation. That is,

L(θ) =
∑

t

∑M
1 ln f(yt|hj

t )

M
where hj

t ∼ N (α̂0 + α̂1h
j
t−1, σ

2
ω).

9



The rationale of using the Posterior Odds Ratiois that the Bayesian analysis allows researchers to

attach probability to competing models given a particular dataset. The Posterior Odds Ratio indicates

which model is more likely to be the true data generating process. For example, if the Posterior Odds

Ratio is less than unity, we would conclude that given the data, M1 is favored. Hence, the model

selection is determined by judging on the probability of each model being the true DGP instead of

resorting to some arbitrary criteria.

3.3 Priors

Since the SV model is estimated by the MCMC method under the Bayesian framework, we need

to specify the prior distribution for each parameter. We use flat priors in our paper, meaning that

parameter prior distributions are governed by a large dispersion. More specifically,

α0 ∼ N (0, 108)

α1 ∼ N (0, 108)

β ∼ N (0, 104)

σ2
ω ∼ IG(

2× 10−8

2
,
2× 10−8

2
)

Flat priors permit the information contained in priors and its influenced to be reduced in the empirical

analysis.

We adopt the Normal-Inverse Gamma prior in the empirical estimation which is somewhat differ-

ent from previous studies. Despite this, using different priors should generate similar point estimation

and statistical inferences since the likelihood function contains the same information from the data.

To illustrate that differences in priors shall not affect the posterior analysis, we adopt two priors

to estimate the model from a simulated dataset and compare their performance. Table 2 reports the

results based on the Normal-Inverse Gamma prior whereas Table 3 reports the results based on the

10



prior suggested by Kim, Shephard, and Chib (1998). Results show that both priors lead to a very close

posterior conclusion in terms of the point estimation and HPDI inferences. Therefore, the posterior

analysis is not affected by the prior chosen. Thus, we use the Normal-Inverse Gamma prior in our

empirical estimation.
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4 Data and Empirical Results

4.1 Data

We employ both market index and individual firm data in empirical tests. For the market index, we

use the daily data of Dow Jones Industrial Average index (DJIA) over the period from January 1997

to December 2005. The DJIA index is the most watched stock market index, which captures the

performance of the overall market very well. In addition to the aggregate market data, we employ

individual firm data to examine cross-sectional variations in volatility predictability. Specifically,

we examine the information content of overnight returns for stocks with different trading frequency.

Following previous studies [see Easley et al. (1996)], we use volume as a proxy. We sort all stocks

traded on the NYSE into ten groups based on their average daily trading volumes over the period

from January 1997 to December 2005. We then randomly choose 30 stocks in the first, fifth, and

eighth deciles. In addition to the daily data, we also collected intraday data for these stocks from

TAQ to examine the duration of overnight predictability for stocks of different frequency. Intraday

analysis provides more detailed information to substantiate the empirical results for individual firms.

The DJIA index data are obtained from Bloomberg and individual stock data are collected from CRSP

and TAQ.

4.2 The Information Content of the Overnight Return

Table 4 reports summary statistics of the DJIA data. As shown, the variance of daytime returns is

much larger than the variance of overnight returns. The result is consistent with the finding of French

and Roll (1986) that the variance in the non-trading period is much less than that in the trading period.

As shown in the last two panels of Figure 1, the time series of the daytime return is quite different

12



from that of the overnight return, suggesting that they have different generating processes.

Table 5 and Figure 2 report the estimation result, MCMC iteration records and posterior distribu-

tions of parameters from the following linear regression model,

|yt| = θ0 + θ1|xt′|+ θ2|yt−1|+ νt

θ1 represents the impact of overnight information to daytime volatility. This coefficient is significant

since the 95% HPDI([2.0419, 3.6290]) does not contain 0. The left panels of Figure 2 show parameter

values in the MCMC iternations. The estimation converges after 16000 iterations where we discard

the first 1000 sweeps which form the burn-in period.

Table 6 and Figure 3 report the estimation result, MCMC iterations, and the posterior distributions

of parameters from the stochastic volatility model M0 without the overnight information. On the

other hand, Table 7 and Figure 4 report the estimation result, MCMC iterations, and the posterior

distributions of parameters from the stochastic volatility model M1 with the overnight information.

As shown in the right panels of Figure 3 and Figure 4 for the posterior distribution of parameters, both

models show that past volatility can predict future volatility since the probability mass of parameter

α1 does not include 0. Table 6 shows that the 95% HPDI of α1 is [0.9717, 0.9933], whereas Table 7

shows that the 95% HPDI of α1 is [0.9511, 0.9952]. Both indicate that past volatility has a significant

predictive power for future volatility. The left panels of both figures show the MCMC iterations. The

estimation of parameters converges after 16000 iterations where the first 1000 sweeps are discarded

in the burn-in period.

The estimation results for the SV model that include the overnight information is consistent with

those of the simple linear regression model. As shown in Table 7, under flat priors2 the point estimate

2Flat priors are referred to prior distributions with large dispersions. More information of priors is illustrated in the

Appendix, p. 27.
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of β (the posterior mean) is 0.5201 indicating that the marginal effect of a overnight information

shock to daytime volatility is about a half of its magnitude. This effect is significant since the 95%

HPDI for β is [0.0963, 1.0134] which does not include 0. The results are in favor of model M1, the

stochastic volatility model including the overnight return as an explanatory variable. Results strongly

suggest that the overnight return contains important information that affects daytime volatility. The

Bayesian method provides the exact finite sample performance3. As such, Figure 4 illustrates exact

distributions for the corresponding parameters. We observe that the probability mass of β being

positive is dominant over the probability of β being negative. From the posterior distribution of β, we

have Pr(β > 0|It) = 99.12%.

Given M = 5000 filtering conditional volatility, we have

B = 0.018

Pr(M0 : β = 0|I) = 1.77%

Pr(M1 : β 6= 0|I) = 98.23%

The Posterior Odds Ratio, which is equal to 0.018, implies that model M1 is favored by the Rule of

Thumb as suggested by Koop (2005). More specifically, there is only a 1.77% chance that modelM0

is favored whereas there is a 98.23% chance that modelM1 is favored.

Empirical evidence strongly indicates that β 6= 0 and the null hypothesis is soundly rejected.

Thus, the overnight return contains important information that predicts daytime return volatility.

Our findings are consistent with the contention that daytime volatility reflects not only the new

information at the daytime but also the overnight information. This is largely due to no trading in

the overnight period and so the overnight information is impounded into the return next day. Thus,

jumps in the overnight return could be used to predict daytime volatility. Our empirical evidence also

3The exact posterior distribution is based on the prior specification
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suggests that daytime return variance is larger than the overnight return variance, since the former

incorporates the information in the trading and nontrading periods while the latter may only reflect

the overnight information partially.

We next compare the result of the stochastic volatility model with that of the GARCH model.

Table 8 reports the estimation result for the GARCH(1,1) model with an exogenous variable in the

volatility equation. More specifically, we estimate the following GARCH model:

yt = ρ0 + ρ1yt−1 + εt
εt =

√
htνt νt ∼ N (0, 1)

ht = ω + δ1ε
2
t + δ2ht−1 + γ|xt′|

where |xt′| represents the overnight information and ht is daytime volatility. The results for the

GARCH model are similar to those for the SV model, confirming that daytime volatility reflects the

overnight information. The γ coefficient is significantly different from 0 under the 95% confidence

interval. Figure 5 plots the estimated volatility for both the SV model and the GARCH(1,1) model

over time. Table 9 shows that the SV model performs better since the adjusted R2 is higher than that

of the GARCH(1,1) model. The result is consistent with the finding of Kim, Shephard, and Chib

(1998) that the SV model outperforms the GARCH(1,1) model in predicting return volatility. Thus,

in the remainder of our analysis, we focus on the SV model in volatility forecasting.

4.3 Trading Frequency and Overnight Information

Previous studies [see Easley et al. (1996)] have shown trades of less frequently traded stocks contain

more information than those of more frequently traded stocks. We next examine whether the effect

of the overnight return differs across stocks of different frequency. If trades of less frequently traded

stocks contain more information, we would expect that the information accumulated overnight will
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be reflected more in the daytime trading of less frequently traded stocks. We estimate the SV model

for stocks in the high, medium and low trading frequency categories as described in Section 4.1.

The results of estimation for the three groups are reported in (Table 10, Table 11,and Table 12),

respectively. These results conform our finding for the market index that the overnight return contain

useful information to predict daytime return volatility. More importantly, we find that the predicting

power of the overnight information is much higher for less frequently traded stocks. The high trading

frequency group has the lowest marginal effect of the overnight information βi = 5% while the low

trading frequency group have the largest marginal effect of the overnight information, βi = 13.96%.

Thus, the predictability of the overnight information on daytime return volatility is larger for less

actively traded stocks.

The mid column of Figure 6 shows that more active stocks tend to have more overnight infor-

mation than less active stocks as reflected by the absolute overnight returns. However, the marginal

effect of the overnight information is the smallest for the most active stocks.

The lower marginal effect of the overnight information for more actively traded stocks is consis-

tent with our prediction. On the one hand, market microstructure theory Easley et al. (1996) suggests

that the probability of information-based trading is lower for more active stocks. Since the overnight

information primarily contains the private information [see Barclay, Litzenberger, and Warner (1990),

Lockwood and Linn (1990)], and informed trading intensity tends to be higher for less active stocks,

Hasbrouck (1991), the overnight information should have higher predictability on the daytime re-

turn volatility of inactively traded stocks. On the other hand, more new information arrives during

the daytime for active stocks than for inactive stocks. Also, since the daytime information is more

than the overnight information, the former will eventually dominate the latter in determining daytime

volatility. As shown in Figure 6, the magnitude for trading volume for the most actively traded group
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is dramatically larger than that for the least actively traded group. Therefore the daytime information

should carry a heavier weight in determining daytime volatility in active stocks than in inactive stocks.

Thus, the magnitude of the overnight information effect on the daytime volatility would tend to be

smaller for active stocks.

Daytime volatility reflect both the daytime information and the overnight information. Since

for high trading frequency group, more daytime information is impounded into those stocks, the

predictability of the overnight information tends to be lower, even though its overnight jumps are

large.

In summary, the cross-sectional study supports our conjecture that the overnight information has

predictive power on daytime volatility. Furthermore, our results suggest that the overnight information

plays a more influential role in inactive stocks than in active stocks in the prediction of daytime

volatility.

4.4 Intraday Estimated Results

To provide a further diagnosis on the relationship between daytime volatility and the daytime and

overnight information, we estimate the following regression model using the intraday trading data:

|yti| = α+ β × |xt′|+ γ × |yt−1|+ εti

, where

• xt′ represents the overnight return at time t′ preceded to the market open at time t

• yt−1 is the daytime return at time t− 1

• yti is the intraday return at time t, for example, time t9:30to10:00A.M. represents the first half hour

return after market opens.
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• ti indexes the time of intraday transactions

Table 13 and Table 14 report the results of estimation. The estimate of β, which represents the

marginal effect of overnight information, shows that the overnight information effect on both groups

decreases over the daytime trading period with the highest on the first half hour of trading and the

lowest near the market closure. Figure 7 shows the evolution of β, which depicts a gradual assimila-

tion process on overnight information. There are differences between actively and inactively traded

stocks. For actively traded stocks, the decline in the marginal effect of the overnight information is

greater right after the market open.

Table 15 and Table 16 summarize the t-statistics of β for both groups. In Table 15, the median

t-statistic is significant up until 11:00 a.m. for active traded stocks, whereas Table 16 shows that the

median t-statistic remains significant in the afternoon. Results suggest that the effect of the overnight

information on return volatility is more persistent for inactively traded stocks.

The higher diminishing rate for the marginal effect β of the overnight information for active

traded stocks suggests that the overnight information is impounded into prices more quickly for these

stocks due to more active trading. It also reflects that daytime information is assimilated faster into

actively traded stocks. Previous studies have shown that the information arrival rate is higher during

the daytime trading period. High trading frequency tends to reveal the information faster for actively

traded stocks, thereby further dilute the effect of the overnight information.

Results show that the overnight information plays a more important role in affecting daytime

volatility for inactive stocks. Because these stocks are less frequently traded, the effect of the overnight

information lasts longer. At the same time, the impounding of the daytime information is slower. Both

forces tend to increase the relative effect of the overnight information. As a consequence, the predic-

tive power of the overnight information for daytime return volatility tends to be higher for inactive
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stocks.
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5 Conclusion

In this paper, we examine the predictability of the overnight information on daytime return volatility.

Information is accumulated overnight, but there is no trading to reflect the information. The accumu-

lated information thus tends to reflected in the daytime return volatility. Both of our linear regression

model and the SV model suggest that overnight shocks, measured as absolute value of overnight

returns, have significant impact on prediction of daytime volatility.

In addition to the test for the information effect at the market level, we examine individual stocks

with different trading frequencies. Market microstructure theory suggests that higher trading volume

stocks contain less informed trading than lower trading volume stocks. Since the overnight informa-

tion mainly consists of private information4, trading of the inactive stocks during the daytime contains

a higher private information content that affects return volatility. Empirical evidence shows that the

marginal effect of overnight information shocks in inactive stocks is larger. This result is consistent

with previous findings that there is more intense arrivals of new information during the daytime and

slower release of the overnight information by inactive stocks. Empirical findings based on intraday

transactions confirm this argument and suggest that the overnight information plays a more impor-

tant role in affecting the daytime volatility of inactively traded stocks. These in turn suggest that for

inactive stocks, the overnight information has more predictive power on return volatility. The effect

of the overnight information lasts longer for inactive stocks than in active stocks, implying that more

frequently traded stocks impound the information more efficiently.

4 Barclay, Litzenberger, and Warner (1990), Lockwood and Linn (1990) have explicitly test the private Information-

based model and conclude that non-trading information generally consists of private information.
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Appendix

Univariate Dynamic Linear Model with Exogenous Variables

For Univariate Dynamic Linear Model,
yt = x′tβ + F ′ξt + εt εt ∼ N (0, σ2

ε )

ξt = Gξt−1 + ψzt + ωt ωt ∼ N (0, σ2
ω)

Let It represent the information up to time t,in other words It = y0, ..., yt;x0, ..., xt; z0, ..., zt, zt+1 by

linear projection we would have following results [see West and Harrison (1997)]

• the forward filtering,

1. Initialization

ξ̂1|0 = E(ξ1)

P1|0 = E [ξ1 − E(ξ1)]
2

2. the Evolution step

ξ̂t|t−1 = Gξt−1|t−1 + ψzt

Pt|t−1 = GPt−1|t−1G
′ + σ2

ω

3. the Updating step

ξ̂t|t = ξ̂t|t−1 + Pt|t−1F (F ′Pt|t−1F + σ2
ε )
−1(yt − x′tβ − F ′ξt)

Pt|t = Pt|t−1 − Pt|t−1F (F ′Pt|t−1F + σ2
ε )
−1F ′Pt|t−1
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where

ξ̂t|t−1 = E(ξt|It−1)

ξ̂t|t = E(ξt|yt, xt, It−1)

Pt|t = E[(ξt − ξ̂t|t)(ξt − ξ̂t|t)
′]

Pt|t−1 = E[(ξt − ξ̂t|t−1)(ξt − ξ̂t|t−1)
′]

Results above are named forward filtering, and for backward sampling.

• the backward distribution is

(ξt−1|ξt, It) ∼ N (mt,Mt)

where

Bt−1 = Pt−1|t−1G
′P−1

t|t−1

mt = ξt|t +Bt−1 × (ξt − ξ̂t|t−1)

Mt = Pt−1|t−1 −Bt−1Pt|t−1B
′
t−1

Proof. Using Bayes’ theorem, we could have

f(ξt−1|ξt, It−1) ∝ f(ξt−1|It−1)f(ξt|ξt−1, It−1)

and since

(ξt−1|It−1) ∼ N (ξ̂t−1|t−1, Pt−1|t−1)

(ξt|ξt−1, It−1) ∼ N (ξ̂t|t−1, Pt|t−1)
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by simple algebra we would have

(ξt−1|ξt, It−1) ∼ N (mt,Mt)

Bt−1 = Pt−1|t−1G
′P−1

t|t−1

mt = ξt|t +Bt−1 × (ξt − ξ̂t|t−1)

Mt = Pt−1|t−1 −Bt−1Pt|t−1B
′
t−1

SV models could be transformed into DLM, which would be shown in followings.
εt = exp(0.5ht)ηt ηt ∼ N (0, 1)

ht = α0 + α1ht−1 + βXt + ωt ωt ∼ N (0, σ2
ω)

⇒ 
ln ε2t = ht + ln η2

t ln η2
t ∼ lnχ2

1

ht = α0 + α1ht−1 + βXt + ωt ωt ∼ N (0, σ2
ω)

and the lnχ2
1 is approximated by 7 normal distributions

lnχ2
1

a∼
7∑
1

wiN (µi, τ
2
i )

which can be found in Table 1.

An Artificial Data Generating Process

A simulated example of the canonical stochastic volatility model with external variables in state equa-

tions. 
yt = exp(0.5ht)σt σt ∼ N (0, 1)

ht = 0.95× ht−1 + 1.5×Xt + νt νt ∼ N (0, 0.152)

where α0 = 0,α1 = 0.95,σω = 0.15,and β = 1.5. Results are shown in Table 2.
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Adopting alternative prior beliefs

Instead of using Normal-InverseGamma priors we also adopt priors used in the Kim, Shephard, and

Chib (1998). 
εt = exp(0.5ht)µt µt ∼ N (0, 1)

ht = µ+ φ(ht−1 − µ) + ψXt + η η ∼ N (0, σ2
η)

and priors are,

µ ∼ N (0, 10)

φ = 2φ∗ − 1

φ∗ ∼ Beta(20, 1.5)

ση ∼ IG(2.5, 0.025)

ψ ∼ N (0, 10)

The estimated results for the artificially generated data based on 16000 sweeps where first 5000 acts

as the burn-in period. Results are included in Table 3.
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Table 1: Using 7 normal distribution to approximate lnχ2
1

i w µ τ 2

1 0.00730 −11.40039 5.79596

2 0.10556 −5.24321 2.61369

3 0.00002 −9.83726 5.17950

4 0.04395 1.50746 0.16735

5 0.34001 −0.65098 0.64009

6 0.24566 0.52478 0.34023

7 0.25750 −2.35859 1.26261

Table 2: Results of the Simulated Data
Mean Std. 2.5% median 97.5%

α0 −0.0023 0.0044 −0.0112 −0.0022 0.0064

α1 0.9519 0.0042 0.9435 0.9520 0.9598

β 1.5413 0.0889 1.3670 1.5412 1.7255

σw 0.1176 0.0225 0.0772 0.1158 0.1664 yt = exp(ht/2)σt σt ∼ N (0, 1)

ht = α0 + α1ht−1 + βXt′ + νt νt ∼ N (0, σ2
ν)
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Table 3: Results Based on Alternative Priors
Mean Std. 2.5% median 97.5%

µ −0.059 0.0856 −0.2292 −0.0576 0.1068

φ 0.9528 0.0043 0.9441 0.9529 0.9608

ψ 1.532 0.0923 1.387 1.519 1.759

ση 0.1201 0.0157 0.0942 0.1178 0.1555 εt = exp(ht/2)µt µt ∼ N (0, 1)

ht = µ+ φ(ht−1 − µ) + ψXt′ + ηt ηt ∼ N (0, σ2
η)

Table 4: Summary Statistics of DJIA data

Observations Mean Variance

Close-to-Close Returns 2264 0.0225 1.3416

Open-to-Close Returns 2264 0.0298 1.3217

Close-to-Open Returns 2264 −0.0073 0.0022

Table 5: OLS Estimation of DJIA
Mean Std. 2.5% median 97.5%

θ0 0.6696 0.0255 0.6194 0.6695 0.7197

θ1 2.8431 0.4020 2.0419 2.8440 3.6290

θ2 0.1166 0.0210 0.0755 0.1167 0.1572

θ3 0.7691 0.0114 0.7472 0.7690 0.7919

|yt| = θ0 + θ1|xt′|+ θ2|yt−1|+ νt

where xt′ represents the overnight return on time t′, and yt represents the daytime return on time t.
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Table 6: Results of Stochastic Volatility Model without Overnight Shocks

Mean Std. 2.5% median 97.5%

α0 −0.0007 0.0028 −0.0063 −0.0006 0.0049

α1 0.9835 0.0056 0.9717 0.9840 0.9933

σw 0.1314 0.0170 0.1017 0.1308 0.1663

yt = ρ0 + ρ1yt−1 + εt εt = exp(ht/2)ηt ηt ∼ N (0, 1)

ht = α0 + α1ht−1 + ωt ωt ∼ N (0, σ2
ω)

where yt is the daytime return and ht is the conditional daytime volatility.

Table 7: Results of Stochastic Volatility Model with Overnight Shocks

Mean Std. 2.5% median 97.5%

α0 −0.0156 0.0434 −0.1025 −0.0151 0.0688

α1 0.9752 0.0111 0.9511 0.9759 0.9952

β 0.5201 0.2324 0.0963 0.5088 1.0134

σw 0.1411 0.0209 0.1050 0.1392 0.1882

yt = ρ0 + ρ1yt−1 + εt εt = exp(ht/2)ηt etat ∼ N (0, 1)

ht = α0 + α1ht−1 + β|xt′|+ ωt ωt ∼ N (0, σ2
ω)

where yt and ht is same as before, xt′ is the overnight return.
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Table 8: Results of GARCH(1,1) with Overnight Shocks

Coef Std. t-Stat Pr

ω 0.0098 0.0050 1.9391 0.0525

δ1 0.0877 0.0068 12.9800 0.0000

δ2 0.8988 0.0094 95.7356 0.0000

γ 0.4690 0.1946 2.4104 0.0159

yt = ρ0 + ρ1yt−1 + εt εt =
√
htνt νt ∼ N (0, 1)

ht = ω + δ1ε
2
t + δ2ht−1 + γ|xt′|

where yt is the daytime return and xt′ is the overnight return and ht is the conditional daytime volatil-

ity.

Table 9: Predictability Comparisons with GARCH using |yt|
Const E(ht|It) 100× Adj.R2

SV Model −0.1953∗∗∗ 0.9113∗∗∗ 35.39

GARCH(1,1) Model 0.5344∗∗∗ 0.2251∗∗∗ 10.46

|yt| = Const+ Coef × E(ht|It) + et

where yt is the daytime return and E(ht|It) is the estimated daytime volatility from SV and GARCH

model respectively.
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Table 10: Results for High Trading Frequency Sample

Ticker Mean Std. 2.5% median 97.5%

1 A 0.0172 0.0068 0.0046 0.0170 0.0311

2 ADI 0.0205 0.0064 0.0088 0.0203 0.0339

3 ADM 0.2747 0.0402 0.2002 0.2729 0.3571

4 AMD 0.1068 0.0165 0.0772 0.1056 0.1438

5 AMP 0.1022 0.0612 0.0034 0.0952 0.2321

6 ANDW 0.0766 0.0189 0.0431 0.0752 0.1180

7 ATI 0.0016 0.0003 0.0010 0.0016 0.0024

8 AV 0.0178 0.0050 0.0087 0.0176 0.0281

9 CAT 0.0160 0.0058 0.0049 0.0159 0.0279

10 CCU 0.0332 0.0093 0.0161 0.0330 0.0524

11 CHIR 0.0314 0.0109 0.0110 0.0312 0.0529

12 CNC −0.0056 0.0025 −0.0102 −0.0058 −0.0002

13 CVS 0.0202 0.0065 0.0077 0.0199 0.0336

14 DISH 0.0290 0.0061 0.0175 0.0290 0.0412

15 DOW 0.0255 0.0081 0.0112 0.0249 0.0433

16 DUK 0.0167 0.0098 −0.0009 0.0161 0.0371

17 ERICY 0.0013 0.0025 −0.0029 0.0011 0.0066

18 FISV 0.0298 0.0104 0.0094 0.0296 0.0504

19 FRE 0.0051 0.0048 −0.0044 0.0051 0.0145

20 HLT 0.0884 0.0230 0.0486 0.0869 0.1382

21 HOT 0.0530 0.0177 0.0235 0.0512 0.0928

22 NOK 0.0193 0.0043 0.0113 0.0191 0.0282

23 SPY 0.2132 0.0382 0.1416 0.2111 0.2919

24 TJX 0.0135 0.0045 0.0048 0.0135 0.0228

25 TXU 0.0425 0.0145 0.0173 0.0413 0.0753

26 VIA 0.0811 0.0154 0.0527 0.0803 0.1133

27 VOD 0.0140 0.0035 0.0077 0.0137 0.0218

28 WMB 0.0577 0.0124 0.0358 0.0568 0.0842

29 X 0.0985 0.0309 0.0400 0.0963 0.1636

30 YHOO 0.0017 0.0037 −0.0052 0.0015 0.0095
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Table 11: Results for Mid Trading Frequency Sample

Ticker Mean Std. 2.5% median 97.5%

1 ABN −0.0090 0.0010 −0.0110 −0.0089 −0.0069

2 AIRT 0.1227 0.0144 0.0949 0.1226 0.1514

3 ALAN 0.0686 0.0106 0.0490 0.0690 0.0877

4 ASHW 0.1240 0.0254 0.0767 0.1231 0.1748

5 ATLS 0.1678 0.0698 0.0559 0.1540 0.3181

6 BBG 0.0658 0.0440 −0.0158 0.0648 0.1573

7 BLK 0.0465 0.0154 0.0173 0.0461 0.0782

8 BPT 0.1563 0.0259 0.1072 0.1555 0.2100

9 CMTL 0.0922 0.0127 0.0672 0.0920 0.1170

10 CNLG 0.0431 0.0065 0.0309 0.0430 0.0561

11 CPTS 0.0885 0.0114 0.0678 0.0881 0.1119

12 CTRX 0.0228 0.0081 0.0091 0.0222 0.0407

13 DUSA 0.1387 0.0189 0.1037 0.1384 0.1770

14 ENZ 0.0926 0.0224 0.0538 0.0906 0.1411

15 EWS 0.1021 0.0184 0.0687 0.1009 0.1409

16 EWW 0.1649 0.0272 0.1158 0.1637 0.2207

17 GFF 0.1686 0.0333 0.1055 0.1679 0.2366

18 HCN 0.2871 0.0493 0.1955 0.2856 0.3879

19 HH 0.0623 0.0133 0.0380 0.0619 0.0901

20 ISCA 0.1927 0.0369 0.1258 0.1911 0.2702

21 JOSB 0.1056 0.0173 0.0726 0.1053 0.1403

22 PGI 0.0050 0.0035 −0.0014 0.0048 0.0121

23 SUG 0.0839 0.0198 0.0488 0.0826 0.1282

24 TXI 0.0610 0.0250 0.0195 0.0584 0.1187

25 USA 0.1838 0.0296 0.1286 0.1824 0.2456

26 VMSI 0.0346 0.0108 0.0141 0.0342 0.0564

27 VSAT 0.0488 0.0130 0.0257 0.0480 0.0757

28 WRI 0.0825 0.0202 0.0461 0.0817 0.1257

29 WSTM 0.1111 0.0178 0.0729 0.1129 0.1415

30 ZONA 0.0490 0.0100 0.0309 0.0484 0.0699
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Table 12: Results for Low Trading Frequency Sample

Ticker Mean Std. 2.5% median 97.5%

1 AAON 0.1986 0.0294 0.1431 0.1976 0.2564

2 APX 0.2753 0.0518 0.1804 0.2723 0.3839

3 ASGR 0.1248 0.0220 0.0825 0.1254 0.1659

4 BNS 0.0040 0.0042 −0.0039 0.0038 0.0128

5 BPL 0.0666 0.0255 0.0196 0.0652 0.1187

6 BTF 0.1873 0.0352 0.1215 0.1865 0.2591

7 CEE 0.2103 0.0426 0.1406 0.2046 0.3088

8 CFS 0.1421 0.0121 0.1189 0.1420 0.1665

9 DASTY 0.0306 0.0074 0.0173 0.0301 0.0462

10 DDRX 0.0764 0.0088 0.0591 0.0763 0.0940

11 DRCO 0.1401 0.0183 0.1051 0.1398 0.1770

12 EMBX 0.1954 0.0224 0.1533 0.1948 0.2408

13 FFEX 0.1092 0.0172 0.0770 0.1085 0.1441

14 FTF 0.0649 0.0671 −0.0588 0.0626 0.2029

15 GBCI 0.0927 0.0218 0.0528 0.0917 0.1379

16 GBX 0.2857 0.0477 0.1928 0.2850 0.3795

17 GSH 0.1213 0.0153 0.0934 0.1206 0.1535

18 IF 0.1071 0.0226 0.0678 0.1053 0.1500

19 IMKTA 0.2131 0.0314 0.1534 0.2133 0.2750

20 LANV 0.0830 0.0089 0.0655 0.0828 0.1007

21 LBF 0.2248 0.0332 0.1626 0.2233 0.2944

22 PHF 0.2534 0.0492 0.1625 0.2514 0.3549

23 SIMC 0.1111 0.0136 0.0856 0.1106 0.1390

24 TKF 0.1161 0.0207 0.0778 0.1150 0.1600

25 TRH 0.0379 0.0237 −0.0058 0.0372 0.0869

26 UMBF 0.3324 0.0492 0.2373 0.3324 0.4279

27 USAK 0.1534 0.0199 0.1151 0.1529 0.1941

28 WRS 0.0160 0.0366 −0.0481 0.0133 0.0982

29 WST 0.1348 0.0356 0.0759 0.1291 0.2126

30 ZIF 0.0790 0.0239 0.0367 0.0777 0.1303
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Table 13: Summary of β for High Trading Frequency Group

09:30-10:00 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00

average β 0.0349 0.0162 0.0126 0.0080 0.0072 0.0080

median β 0.0182 0.0085 0.0049 0.0038 0.0034 0.0036

25% β 0.0044 0.0044 0.0022 0.0006 0.0016 0.0007

95% β 0.0464 0.0156 0.0122 0.0076 0.0053 0.0081

Table 14: Summary of β for Low Trading Frequency Group

09:30-10:00 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00

average β 0.0241 0.0139 0.0078 0.0052 0.0058 0.0057

median β 0.0196 0.0069 0.0043 0.0035 0.0033 0.0037

25% β 0.0064 0.0032 0.0016 0.0016 0.0009 0.0012

95% β 0.0292 0.0144 0.0084 0.0064 0.0078 0.0082

Table 15: Summary of t Statistics for High Trading Frequency Group

09:30-10:00 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00

average t Stat. 4.8979 3.4401 2.9310 2.1504 2.0731 1.8953

median t Stat. 2.8844 2.2478 1.8814 1.4546 1.6222 1.5533

25% t Stat. 1.7438 1.0916 0.6881 0.4831 0.9350 0.6335

95% t Stat. 6.0208 4.7415 3.3743 2.7044 2.2114 2.9616

Table 16: Summary of t Statistics for Low Trading Frequency Group

09:30-10:00 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00

average t Stat. 8.0775 5.2193 3.2167 2.6105 2.5823 2.7694

median t Stat. 7.6459 5.0384 2.8017 1.8841 2.7932 2.9824

25% t Stat. 3.5928 2.0193 1.3332 1.0591 0.9299 0.9672

95% t Stat. 12.3445 6.9451 5.1569 4.2514 3.8299 4.0827
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Figure 1: Time Series for Trading and Non-trading Periods
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Figure 2: Results of the OLS Model
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Figure 3: Results of Stochastic Volatility Model without Overnight Shocks
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Figure 4: Results of Stochastic Volatility Model with Overnight Shocks
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Figure 6: Summary for Different Trading Frequency Groups
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