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Abstract

Three Econometric Essays on Continuous Time Models

Xiaohu Wang

Multivariate continuous time models are now widely used in economics and fi-

nance. Empirical applications typically rely on some process of discretization so

that the system may be estimated with discrete data. The Chapter 2 introduces a

framework for discretizing linear multivariate continuous time systems that includes

the commonly used Euler and trapezoidal approximations as special cases and leads

to a general class of estimators for the mean reversion matrix. Asymptotic distribu-

tions and bias formulae are obtained for estimates of the mean reversion parameter.

Explicit expressions are given for the discretization bias and its relationship to esti-

mation bias in both multivariate and in univariate settings. In the univariate context,

we compare the performance of the two approximation methods relative to exact

maximum likelihood (ML) in terms of bias and variance for the Vasicek process.

The bias and the variance of the Euler method are found to be smaller than the

trapezoidal method, which are in turn smaller than those of exact ML. Simulations

suggest that for plausible parameter settings the approximation methods work bet-

ter than ML, the bias formulae are accurate, and for scalar models the estimates

obtained from the two approximate methods have smaller bias and variance than

exact ML. For the square root process, the Euler method outperforms the Nowman

method in terms of both bias and variance. Simulation evidence indicates that the

Euler method has smaller bias and variance than exact ML, Nowman’s method and

the Milstein method.

The Chapter 3 examines the asymptotic properties of the maximum likelihood



(ML) estimate of the mean reversion matrix that is obtained from the corresponding

exact discrete model. Both the consistency and the asymptotic distribution are de-

rived in the cases of stationarity and non-stationarity. Special attention is paid to the

explicit expressions for the asymptotic covariance matrix, especially in low dimen-

sional cases. This limit theory is facilitated by a new formula for the mapping from

the discrete to the continuous system coefficients and its derivatives. An empirical

application is conducted on daily realized volatility data on Pound, Euro and Yen

exchange rates, illustrating the implementation of the theory.

Recently, with the coming of the financial crisis, the interest of using explosive

process to model asset bubbles has been growing tremendously. This underlies the

importance of statistic properties of the explosive process. The Chapter 4 develops

a double asymptotic limit theory for the persistent parameter (κ) in explosive con-

tinuous time models driven by Lévy processes with a large number of time span (N)

and a small number of sampling interval (h). The simultaneous double asymptotic

theory is derived using a technique in the same spirit as in Phillips and Magdali-

nos (2007) for the mildly explosive discrete time model. Both the intercept term

and the initial condition appear in the limiting distribution. In the special case of

explosive continuous time models driven by the Brownian motion, we develop the

limit theory that allows for the joint limits where N →∞ and h→ 0 simultaneously,

the sequential limits where N → ∞ is followed by h → 0, and the sequential limits

where h→ 0 is followed by N →∞. All three asymptotic distributions are the same.
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Chapter 1 Introduction

Continuous time models, which are specified in terms of stochastic differential

equations, have found wide applications in economics and finance. Empirical in-

terest in systems of this type has grown particularly rapidly in recent years with the

availability of high frequency financial data. Correspondingly, growing attention

has been given to the development of econometric methods of inference. In order to

capture causal linkages among variables and allow for multiple determining factors,

many continuous systems are specified in multivariate form. The literature is now

wide-ranging. Bergstrom (1990) motivated the use of multivariate continuous time

models in macroeconomics; Sundaresan (2000) provided a list of multivariate con-

tinuous time models, particularly multivariate diffusions, in finance; and Piazzesi

(2009) discusses how to use multivariate continuous time models to address various

macro-finance issues.

Data in economics and finance are typically available at discrete points in time or

over discrete time intervals and many continuous systems are formulated as Markov

processes. These two features suggest that the log likelihood function can be ex-

pressed as the product of the log transition probability densities (TPD). Conse-

quently, the implementation of maximum likelihood (ML) requires evaluation of

TPD. But since the TPD is unavailable in closed form for many continuous systems

and several methods have been proposed as approximations.

The simplest approach is to approximate the model using some discrete time

system. Both the Euler approximation and the trapezoidal rule have been suggested

in the literature. Sargan (1974) and Bergstrom (1984) showed that the ML estima-

tors (MLEs) based on these two approximations converge to the true MLE as the

1



sampling interval h → 0, at least under a linear specification. This property also

holds for more general diffusions (Florens-Zmirou, 1989). Of course, the quality of

the approximation depends on the size of h. However, the advantage of the approx-

imation approach is that it is computationally simple and often works well when h

is small, for example at the daily frequency.

More accurate approximations have been proposed in recent years. The two

that have received the most attention are in-fill simulations and closed-form ap-

proximations. Studies of in-fill simulations include Pedersen (1995) and Durham

and Gallant (2002). For closed-form approximations, seminal contributions include

Aı̈t-Sahalia (1999, 2002, 2008), Aı̈t-Sahalia and Kimmel (2007), and Aı̈t-Sahalia

and Yu (2006). These approximations have the advantage that they can control the

size of the approximation errors even when h is not small. Aı̈t-Sahalia (2008) pro-

vides evidence that the closed-form approximation is highly accurate and allows for

fast repeated evaluations. Since the approximate TPD takes a complicated form in

both these approaches, no closed form expression is available for the MLE. Conse-

quently, numerical optimizations are needed to obtain the MLE.

No matter which of the above methods is used, when the system variable is per-

sistent, the resulting estimator of the speed of mean reversion can suffer from severe

bias in finite samples. This problem is well known in scalar diffusions (Phillips and

Yu, 2005a, 2005b, 2009a, 2009b) but has also been reported in multivariate models

(Phillips and Yu, 2005a and Tang and Chen, 2009). In the scalar case, Tang and

Chen (2009) and Yu (2009) give explicit expressions to approximate the bias. To

obtain these explicit expressions, the corresponding estimators must have a closed-

form expression. That is why explicit bias results are presently available only for

the scalar Vasicek model (Vasicek, 1977) and the Cox-Ingersoll-Ross (CIR, 1985)

model.

The present Chapter 2 focuses on extending existing bias formulae to the multi-

variate continuous system case. We partly confine our attention to linear systems so

that explicit formulae are possible for approximating the estimation bias of the mean

2



reversion matrix. It is known from previous work that bias in the mean reversion

parameter has some robustness to specification changes in the diffusion function

(Tang and Chen, 2009), which gives this approach a wider relevance. Understand-

ing the source of the mean reversion bias in linear systems can also be helpful in

more general situations where there are nonlinearities.

The Chapter 2 develops a framework for studying estimation in multivariate

continuous time models with discrete data. In particular, we show how the estima-

tor that is based on the Euler approximation and the estimator based on the trape-

zoidal approximation can be obtained by taking Taylor expansions to the first and

second orders. Moreover, the uniform framework simplifies the derivation of the

asymptotic bias order of the ordinary least squares estimator and the two stage least

squares estimator of Bergstrom (1984). Asymptotic theory is provided under long

time span asymptotics and explicit formulae for the matrix bias approximations are

obtained. The bias formulae are decomposed into the discretization bias and the es-

timation bias. Simulations reveal that the bias formulae work well in practice. The

results are specialized to the scalar case, giving two approximate estimators of the

mean reversion parameter which are shown to work well relative to the exact MLE.

The results confirm that bias can be severe in multivariate continuous time mod-

els for parameter values that are empirically realistic, just as it is in scalar models.

Specializing our formulae to the univariate case yields some useful alternative bias

expressions. Simulations are reported that detail the performance of the bias formu-

lae in the multivariate setting and in the univariate setting.

Although the approximations by using some discrete time system can help to

simplify the estimation of continuous time model, they also bring some drawbacks.

For example, all estimators from approximate discrete time model are not consis-

tent. Therefore, it is still necessary to study the estimator from exact discrete time

model.

For multivariate continuous time models with a linear drift function, an exact

discrete time vector autoregressive (VAR) model can be obtained. When the diffu-

3



sion function is constant, the VAR model is Gaussian and hence can be estimated

by ordinary least squares (OLS) or ML. When the diffusion function has the level

effect, the VAR model becomes non-Gaussian but can be estimated by generalized

least squares. The asymptotic theory for VAR estimation is standard; see, for exam-

ple, Mann and Wald (1943) for the stationary case and Phillips and Durlauf (1986)

for the unit root case. It is known that the mean reversion matrix in the continuous

time model is the logarithmic transformation of the autoregressive (AR) coefficient

matrix. Under the identification condition, this relation is bijective. It is this bijec-

tive and measurable relationship that will be used find the asymptotic theory of the

estimated mean reversion matrix.

It appears that the delta method, when applied to the principal value of the log-

arithm of the VAR coefficient matrix, can be used to find the limit distribution of

the estimated mean reversion matrix. Unfortunately, this straightforward applica-

tion of the delta method leads to a covariance matrix that is practically difficult to

use. The standard limit distribution is available for the estimated VAR coefficient

matrix. But to utilize this distribution, the standard matrix calculus formula implies

that the mean reversion matrix is expressed as an infinite polynomial of the VAR co-

efficient matrix. As a result, the covariance matrix involves an infinite polynomial

which must be truncated in practice and hence the calculation of the asymptotic

covariance is difficult to implement. This situation is in the sharp contrast to the

univariate setup where the delta method is easily applied.

The Chapter 3 contributes to the literature in three ways. First, under regular

conditions, we derive the asymptotic distribution of the estimated mean reversion

matrix whose covariance matrix is very easy to calculate. We do this by using a new

result obtained in the linear algebra literature, which enables us to relate the mean

reversion matrix to the VAR coefficient matrix as a polynomial function of finite

order. Second, we derive the asymptotic theory for the estimated mean reversion

matrix not only for the stationary case but also for the non-stationary case. Third,

we provide the joint limit distribution of the estimated mean reversion matrix and

4



its eigenvalues. The theory is established in the context of the multivariate diffusion

model of an arbitrary dimension but with a linear drift and a constant diffusion. We

focus on this model simply because the asymptotic theory is well developed for the

exact discrete time model. However, our theory continues to work for models with

a more complicated diffusion function. As long as the asymptotic theory for the

exact discrete time model is known, our method is applicable.

All Continuous time models concerned in Chapter 2 and Chapter 3 are driven

by the Brownian motion, and, therefore, can be called as diffusion processes. An

important property of diffusion processes is that, under some smoothness condition

on the drift function and the diffusion function, the sample path is continuous ev-

erywhere. This restriction is often found to be too strong in applications. There are

different ways to introduce discontinuity into the continuous time models. For ex-

ample, Poisson processes, which allow for a finite number of jumps in a finite time

interval, have been used to model jumps in finance (Merton, 1976). In recent years,

however, strong evidence of the presence of infinite activity jumps have been doc-

umented in finance; see, for example, Aı̈t-Sahalia and Jacod (2011). Consequently,

continuous time Lévy processes have become increasingly popular to model dis-

continuity in financial time series. Not surprisingly, various Lévy processes have

been developed in the asset pricing literature (see, for example, Barndorff-Nielsen

(1998), Madan, Carr and Chang (1998), Carr and Wu (2003)).

Independent to the development in continuous time modeling, there has been a

long-standing interest in statistics for developing the asymptotic theory for explo-

sive processes. Two of the earliest studies are White (1958) and Anderson (1959)

where the asymptotic distribution of the autoregressive (AR) coefficient was derived

when the root is larger than unity. Phillips and Magdalinos (2007, PM hereafter)

has provided an asymptotic theory and an invariance principle for mildly explosive

processes where the root is moderately deviated from unity. Magdalinos (2011) ex-

tended the result to the case where the error is serially dependent. Anu and Horvath

(2007) extended the result to the case where the error is infinite. In economics,
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there has recently been a growing interest on using explosive processes to model

asset price bubbles. Phillips et al (2011) has developed a recursive method to detect

bubbles in the discrete time AR model. Phillips and Yu (2011) applied the method

to analyze the bubble episodes in various markets in the U.S. and documented the

bubble migration mechanism during the subprime crisis.

All the above cited studies on explosiveness focus exclusively on discrete time

models. Explosive behavior can also be described using continuous time models.

Let T , h, N be the sample size, the sampling interval, and the time span of the data,

respectively. Obviously T = N/h. While the asymptotic theory in discrete time

models always corresponds to the scheme of T → ∞, how to develop the asymp-

totic theory in continuous time is less a clear cut because T →∞ is achievable from

different ways. In the literature, three alternative sampling schemes have been dis-

cussed (see, for example, Jeong and Park (2011) and Zhou and Yu (2011)), namely:

N → ∞, h is fixed; (A1)

N → ∞, h→ 0; (A2)

h→ 0, N is fixed. (A3)

The main purpose of the Chapter 4 is to develop the double asymptotic theory

under scheme (A2) for explosive continuous time models driven by Lévy processes,

in which N →∞ and h→ 0 simultaneously. In the special case of Brownian motion

driven continuous time models, three alternative double asymptotics are considered.

In the first case, N → ∞ and h → 0 simultaneously. In the second case, a sequen-

tial asymptotic treatment is considered, i.e., N → ∞ is followed by h → 0. In the

third case, another sequential asymptotic treatment is considered wherein, h→ 0 is

followed by N → ∞. We show that the asymptotic distributions under these three

treatments are the same. Different from PM, in our double asymptotic distribution,

the initial condition, either fixed or random, appears in the limiting distribution.

6



Chapter 2 Bias in Estimating Multivariate

and Univariate Diffusions

2.1 Introduction

Continuous time models, which are specified in terms of stochastic differential

equations, have found wide applications in economics and finance. Empirical in-

terest in systems of this type has grown particularly rapidly in recent years with the

availability of high frequency financial data. Correspondingly, growing attention

has been given to the development of econometric methods of inference. In order to

capture causal linkages among variables and allow for multiple determining factors,

many continuous systems are specified in multivariate form. The literature is now

wide-ranging. Bergstrom (1990) motivated the use of multivariate continuous time

models in macroeconomics; Sundaresan (2000) provided a list of multivariate con-

tinuous time models, particularly multivariate diffusions, in finance; and Piazzesi

(2009) discusses how to use multivariate continuous time models to address various

macro-finance issues.

Data in economics and finance are typically available at discrete points in time or

over discrete time intervals and many continuous systems are formulated as Markov

processes. These two features suggest that the log likelihood function can be ex-

pressed as the product of the log transition probability densities (TPD). Conse-

quently, the implementation of maximum likelihood (ML) requires evaluation of

TPD. But since the TPD is unavailable in closed form for many continuous systems

and several methods have been proposed as approximations.
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The simplest approach is to approximate the model using some discrete time

system. Both the Euler approximation and the trapezoidal rule have been suggested

in the literature. Sargan (1974) and Bergstrom (1984) showed that the ML estima-

tors (MLEs) based on these two approximations converge to the true MLE as the

sampling interval h → 0, at least under a linear specification. This property also

holds for more general diffusions (Florens-Zmirou, 1989). Of course, the quality of

the approximation depends on the size of h. However, the advantage of the approx-

imation approach is that it is computationally simple and often works well when h

is small, for example at the daily frequency.

More accurate approximations have been proposed in recent years. The two

that have received the most attention are in-fill simulations and closed-form ap-

proximations. Studies of in-fill simulations include Pedersen (1995) and Durham

and Gallant (2002). For closed-form approximations, seminal contributions include

Aı̈t-Sahalia (1999, 2002, 2008), Aı̈t-Sahalia and Kimmel (2007), and Aı̈t-Sahalia

and Yu (2006). These approximations have the advantage that they can control the

size of the approximation errors even when h is not small. Aı̈t-Sahalia (2008) pro-

vides evidence that the closed-form approximation is highly accurate and allows for

fast repeated evaluations. Since the approximate TPD takes a complicated form in

both these approaches, no closed form expression is available for the MLE. Conse-

quently, numerical optimizations are needed to obtain the MLE.

No matter which of the above methods is used, when the system variable is per-

sistent, the resulting estimator of the speed of mean reversion can suffer from severe

bias in finite samples. This problem is well known in scalar diffusions (Phillips and

Yu, 2005a, 2005b, 2009a, 2009b) but has also been reported in multivariate models

(Phillips and Yu, 2005a and Tang and Chen, 2009). In the scalar case, Tang and

Chen (2009) and Yu (2009) give explicit expressions to approximate the bias. To

obtain these explicit expressions, the corresponding estimators must have a closed-

form expression. That is why explicit bias results are presently available only for

the scalar Vasicek model (Vasicek, 1977) and the Cox-Ingersoll-Ross (CIR, 1985)

8



model.

The present paper focuses on extending existing bias formulae to the multivari-

ate continuous system case. We partly confine our attention to linear systems so that

explicit formulae are possible for approximating the estimation bias of the mean re-

version matrix. It is known from previous work that bias in the mean reversion

parameter has some robustness to specification changes in the diffusion function

(Tang and Chen, 2009), which gives this approach a wider relevance. Understand-

ing the source of the mean reversion bias in linear systems can also be helpful in

more general situations where there are nonlinearities.

The paper develops a framework for studying estimation in multivariate con-

tinuous time models with discrete data. In particular, we show how the estimator

that is based on the Euler approximation and the estimator based on the trapezoidal

approximation can be obtained by taking Taylor expansions to the first and second

orders. Moreover, the uniform framework simplifies the derivation of the asymp-

totic bias order of the ordinary least squares estimator and the two stage least squares

estimator of Bergstrom (1984). Asymptotic theory is provided under long time span

asymptotics and explicit formulae for the matrix bias approximations are obtained.

The bias formulae are decomposed into the discretization bias and the estimation

bias. Simulations reveal that the bias formulae work well in practice. The results

are specialized to the scalar case, giving two approximate estimators of the mean

reversion parameter which are shown to work well relative to the exact MLE.

The results confirm that bias can be severe in multivariate continuous time mod-

els for parameter values that are empirically realistic, just as it is in scalar models.

Specializing our formulae to the univariate case yields some useful alternative bias

expressions. Simulations are reported that detail the performance of the bias formu-

lae in the multivariate setting and in the univariate setting.

The rest of the paper is organized as follows. Section 2 introduces the model

and the setup and reviews four existing estimation methods. Section 3 outlines

our unified framework for estimation, establishes the asymptotic theory, and pro-

9



vides explicit expressions for approximating the bias in finite samples. Section 4

discusses the relationship between the new estimators and two existing estimators

in the literature, and derives a new bias formula in the univariate setting. Section

5 compares the performance of the estimator based on the Euler scheme relative

to that the method proposed by Nowman (1997) in the context of the square root

process and a diffusion process with a linear drift but a more general diffusion. Sim-

ulations are reported in Section 6. Section 7 concludes and the Appendix collects

together proofs of the main results.

2.2 The Model and Existing Methods

We consider an M-dimensional multivariate diffusion process of the form (cf. Phillips,

1972):

dX(t) = (A(θ)X(t)+B(θ))dt +ζ (dt), X(0) = X0, (2.2.1)

where X(t) = (X1(t), · · · ,XM(t))′ is an M-dimensional continuous time process,

A(θ) and B(θ) are M×M and M×1 matrices, whose elements depend on unknown

parameters θ =(θ1, · · · ,θK) that need to be estimated, ζ (dt) (:=(ζ1(dt), · · · ,ζM(dt)))

is a vector random process with uncorrelated increments and covariance matrix Σdt.

The particular model receiving most attention in finance is when ζ (dt) is a vector

of Brownian increments (denoted by dW (t)) with covariance Σdt, viz.,

dX(t) = (A(θ)X(t)+B(θ))dt +dW (t), X(0) = X0, (2.2.2)

corresponding to a multivariate version of the Vasicek model (Vasicek, 1977).

Although the process follows a continuous time stochastic differential equation

system, observations are available only at discrete time points, say at n equally

spaced points {th}n
t=0, where h is the sampling interval and is taken to be fixed.

In practice, h might be very small, corresponding to high-frequency data. In this

paper, we use X(t) to represent a continuous time process and Xt to represent a

discrete time process. When there is no confusion, we simply write Xth as Xt .

10



Bergstrom (1990) provided arguments why it is useful for macro-economists

and policy makers like central bankers to formulate models in continuous time even

when discrete observations only are available. In finance, early fundamental work

by Black and Scholes (1973) and much of the ensuing literature such as Duffie and

Kan (1996) successfully demonstrated the usefulness of both scalar and multivariate

diffusion models in the development of financial asset pricing theory.

Phillips (1972) showed that the exact discrete time model corresponding to

(2.2.1) is given by

Xt = exp{A(θ)h}Xt−1−A−1(θ)[exp{A(θ)h}− I]B(θ)+ εt . (2.2.3)

where εt = (ε1, · · · ,εM)′ is a martingale difference sequence (MDS) with respect to

the natural filtration and

E(εtε
′
t ) =

∫ h

0
exp{A(θ)s}Σexp{A(θ)′s}ds := G.

Letting F(θ) := exp{A(θ)h} and g(θ) :=−A−1(θ)[exp{A(θ)h}− I]B(θ), we have

the system

Xt = F(θ)Xt−1 +g(θ)+ εt , (2.2.4)

which is a vector auto-regression (VAR) model of order 1 with MDS(0,G) innova-

tions.

In general, identification of θ from the implied discrete model (2.2.3) generating

discrete observations {Xth} is not automatically satisfied. The necessary and suffi-

cient condition for identifiability of θ in model (2.2.3) is that the correspondence be-

tween θ and [F(θ),g(θ)] be one-to-one, since (2.2.3) is effectively a reduced form

for the discrete observations. Phillips (1973) studied the identifiability of (A(θ),Σ)

in (2.2.3) in terms of the identifiability of the matrix A(θ) in the matrix exponen-

tial F = exp(A(θ)h) under possible restrictions implied by the structural functional

dependence A = A(θ) in (2.2.1). In general, a one-to–one correspondence between
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A(θ) and F , requires the structural matrix A(θ) to be restricted. This is because if

A(θ) satisfies exp{A(θ)h}= F and some of its eigenvalues are complex, A(θ) is not

uniquely identified. In fact, adding to each pair of conjugate complex eigenvalues

the imaginary numbers 2ikπ and −2ikπ for any integer k, leads to another matrix

satisfying exp{Ah} = F . This phenomenon is well known as aliasing in the signal

processing literature. When restrictions are placed on the structural matrix A(θ)

identification is possible. Phillips (1973) gave a rank condition for the case of linear

homogeneous relations between the elements of a row of A. A special case is when

A(θ) is triangular. Hansen and Sargent (1983) extended this result by showing that

the reduced form covariance structure G > 0 provides extra identifying information

about A, reducing the number of potential aliases.

To deal with the estimation of (2.2.1) using discrete data and indirectly (because

it was not mentioned) the problem of identification, two approximate discrete time

models were proposed in earlier studies. The first is based on the Euler approxima-

tion given by ∫ th

(t−1)h
A(θ)X(r)dr ≈ A(θ)hXt−1,

which leads to the approximate discrete time model

Xt −Xt−1 = A(θ)hXt−1 +B(θ)h+ut . (2.2.5)

The second, proposed by Bergstrom (1966), is based on the trapezoidal approxima-

tion ∫ th

(t−1)h
A(θ)X(r)dr ≈ 1

2
A(θ)h(Xt +Xt−1),

which gives rise to the approximate nonrecursive discrete time model

Xt −Xt−1 =
1
2

A(θ)h(Xt +Xt−1)+B(θ)h+νt . (2.2.6)

The discrete time models are then estimated by standard statistical methods, namely

OLS for the Euler approximation and systems estimation methods such as two-stage
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or three-stage least squares for the trapezoidal approximation. As explained by Lo

(1988) in the univariate context, such estimation strategies inevitably suffer from

discretization bias. The size of the discretization bias depends on the sampling

interval, h, and does not disappear even if n → ∞. The bigger is h, the larger is

the discretization bias. Sargan (1974) showed that the asymptotic discretization

bias of the two-stage and three-stage least squares estimators for the trapezoidal

approximation is O(h2) as h → 0. Bergstrom (1984) showed that the asymptotic

discretization bias of the OLS estimator for the Euler approximation is O(h).

For the more general multivariate diffusion

dX(t) = κ(µ−X(t))dt +Σ(X(t);ψ)dW (t), X(0) = X0, (2.2.7)

where W is standard Brownian motion, two other approaches have been used to

approximate the continuous time model (2.2.7). The first, proposed by Nowman

(1997), approximates the diffusion function within each unit interval, [(i− 1)h, ih)

by its left end point value leading to the approximate model

dX(t) = κ(µ−X(t))dt +Σ(X(i−1)h;ψ)dW (t) for t ∈ [(i−1)h, ih). (2.2.8)

Since (2.2.8) is a multivariate Vasicek model within each unit interval, there is a

corresponding exact discrete model as in (2.2.3). This discrete time model, being an

approximation to the exact discrete time model of (2.2.7), facilitates direct Gaussian

estimation.

To reduce the approximation error introduced by the Euler scheme, Milstein

(1978) suggested taking the second order term in a stochastic Taylor series expan-

sion when approximating the drift function and the diffusion function. Integrating

(2.2.7) gives

∫ ih

(i−1)h
dX(t) =

∫ ih

(i−1)h
κ(µ−X(t))dt +

∫ ih

(i−1)h
Σ(X(t);ψ)dW (t). (2.2.9)
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By Itô’s lemma, the linearity of the drift function in (2.2.7), and using tensor sum-

mation notation for repeated indices (p,q) , we obtain

dµ(X(t);θ) =
∂ µ(X(t);θ)

∂Xp
dXp(t),

and

dΣ(X(t);ψ) =
∂Σ(X(t);ψ)

∂Xp
dXp(t)+

1
2

∂ 2Σ(X(t);ψ)
∂Xp∂X ′q

dXp(t)dXq(t), (2.2.10)

where µ j(X(t);θ) is the jth element of the (linear) drift function κ(µ−X(t)), Σpq

is the (p,q)th element of Σ and Xp is the pth element of X . These expressions lead

to the approximations

µ(X(t);θ)' µ(X(i−1)h;θ),

and

Σ(X(t);ψ)' Σ(X(i−1)h;θ)+
∂Σ(X(i−1)h;ψ)

∂Xp
Σpq(X(i−1)h;ψ)

∫ t

(i−1)h
dWq(τ).

Using these approximations in (2.2.9) we find

Xih−X(i−1)h =
∫ ih

(i−1)h
κ(µ−X(t))dt +

∫ ih

(i−1)h
Σ(X(t);ψ)dW (t)

' µ(X(i−1)h;θ)h+Σ(X(i−1)h;ψ)
∫ ih

(i−1)h
dW (t)

+
∂Σ(X(i−1)h;ψ)

∂Xp
Σpq(X(i−1)h;ψ)

∫ ih

(i−1)h

∫ t

(i−1)h
dWq(τ)dW (t) .

(2.2.11)
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The multiple (vector) stochastic integral in (2.2.11) reduces as follows:

∫ ih

(i−1)h

∫ t

(i−1)h
dWq(τ)dWp (t) =

∫ ih

(i−1)h

(
Wq(t)−Wq(i−1)h

)
dWp (t)

=





1
2

{(
Wqih−Wq(i−1)h

)2−h
}

p = q
∫ ih
(i−1)h

(
Wq(t)−Wq(i−1)h

)
dWp (t) p 6= q

.

(2.2.12)

The approximate model under a Milstein second order discretization is then

Xih−X(i−1)h ' µ(X(i−1)h;θ)h+Σ(X(i−1)h;ψ)
(
Wih−W(i−1)h

)

+
∂Σ(X(i−1)h;ψ)

∂Xp
Σpq(X(i−1)h;ψ)

∫ ih

(i−1)h

∫ t

(i−1)h
dWq(τ)dWp (t) .

(2.2.13)

In view of the calculation (2.2.12), when the model is scalar the discrete approxi-

mation has the simple form (c.f., Phillips and Yu, 2009)

Xih−X(i−1)h '
[

µ(X(i−1)h;θ)− 1
2

σ ′(X(i−1)h;ψ)σ(X(i−1)h;ψ)
]

h

+σ(X(i−1)h;ψ)
(
Wih−W(i−1)h

)

+σ ′(X(i−1)h;ψ)σ(X(i−1)h;ψ)
1
2

(
Wih−W(i−1)h

)2
. (2.2.14)

Since 1
2

{(
Wqih−Wq(i−1)h

)2−h
}

has mean zero, the net contribution to the drift

from the second order term is zero.

In the multivariate Vasicek model, Σ(X(t);ψ) = Σ, and the Milstein approxima-

tion (2.2.13) reduces to

Xih−X(i−1)h ' µ(X(i−1)h;θ)h+Σ(X(i−1)h;ψ)
(
Wih−W(i−1)h

)
.

Thus, for the multivariate Vasicek model, the Milstein and Euler schemes are equiv-

alent.
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2.3 Estimation Methods, Asymptotic Theory and Bias

In this paper, following the approach of Phillips (1972), we estimate θ directly from

the exact discrete time model (2.2.3). In particular, we first estimate F (θ) and θ

from (2.2.3), assuming throughout that A(θ) and θ are identifiable and that all the

eigenvalues in A(θ) have negative real parts. The latter condition ensures that Xt is

stationary and is therefore mean reverting. The exact discrete time model (2.2.3) in

this case is a simple VAR(1) model which has been widely studied in the discrete

time series literature. We first review some relevant results from this literature.

Let Zt = [X
′
t ,1]

′
. The OLS estimator of H = [F,g] is

Ĥ = [F̂ , ĝ] =

[
n−1

n

∑
t=1

XtZ
′
t−1

]
·
[

n−1
n

∑
t=1

Zt−1Z
′
t−1

]−1

. (2.3.1)

If we have prior knowledge that B(θ) = 0 and hence g = 0, the OLS estimator of F

is:

F̂ =

[
n−1

n

∑
t=1

XtX
′
t−1

]
·
[

n−1
n

∑
t=1

Xt−1X
′
t−1

]−1

, (2.3.2)

for which the standard theory first order limit theory (e.g., Fuller (1976, p.340) and

Hannan (1970, p.329)) is well known.

Lemma 2.3.1 For the stationary VAR(1) model (2.2.4), if h is fixed and n→ ∞, we

have

(a) F̂
p−→ F;

(b)
√

n{Vec(F̂)−Vec(F)} d−→ N(0,(Γ(0))−1⊗G),

where Γ(0) = Var(Xt) = ∑∞
i=0 F i ·G ·F ′i and G = E(εtε ′t )

Under different but related conditions, Yamamoto and Kunitomo (1984) and

Nicholls and Pope (1988) derived explicit bias expressions for the OLS estimator

F̂ . The proof of the following lemma is given in Yamamoto and Kunitomo (1984,

theorem 1).
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Lemma 2.3.2 (Yamamoto and Kunitomo (1984)) Assume:

(A1) Xt is a stationary VAR(1) process whose error term is iid (0,G) with G nonsin-

gular;

(A2) For some s0 ≥ 16, E|εti|s0 < ∞, for all i = 1, · · · ,M;

(A3) E
∥∥∥
[
n−1∑n

t=1 Zt−1Z′t−1
]−1

∥∥∥2 is bounded, where the operator ‖ · ‖ is defined by

‖ Q ‖= sup
β

(β ′Q′Qβ )1/2(β ′β ≤ 1),

for any vector β ;

Under (A1)-(A3) if n→∞, the bias of OLS estimator of F in the VAR(1) model with

an unknown intercept is

BIAS(F̂) =−n−1G
∞

∑
k=0
{F

′k +F
′ktr(Fk+1)+F

′2k+1}D−1 +O(n−
3
2 ), (2.3.3)

where

D =
∞

∑
i=0

F iGF
′i,

and the bias of the OLS estimator of F for the VAR(1) model with a known intercept

is

BIAS(F̂) =−1
n

G
∞

∑
k=0
{F

′ktr(Fk+1)+F
′2k+1}D−1 +O(n−

3
2 ). (2.3.4)

We now derive a simplified bias formulae in the two models which facilitates

the calculation of the bias formulae in continuous time models.

Lemma 2.3.3 Assume (A1)-(A3) hold, h is fixed and n → ∞. The bias of the least

squares estimator for F in the VAR(1) is given by

Bn = E(F̂)−F =−b
n

+O(n−
3
2 ). (2.3.5)

When the model has a unknown intercept,

b = G[(I−C)−1 +C(I−C2)−1 + ∑
λ∈Spec(C)

λ (I−λC)−1]Γ(0)−1, (2.3.6)
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where C = F ′, Γ(0) =Var(Xt) = ∑∞
t=0 F i ·G ·F ′i, G = E(εtε ′t ), and Spec(C) denotes

the set of eigenvalues of C. When the model has a known intercept,

b = G[C(I−C2)−1 + ∑
λ∈Spec(C)

λ (I−λC)−1]Γ(0)−1. (2.3.7)

Remark 2.3.1 The alternative bias formula (2.3.5) is exactly the same as that given

by Nicholls and Pope (1988) for the Gaussian case, although here the expression

is obtained without Gaussianity and in a simpler way. If the bias is calculated to

a higher order, Bao and Ullah (2009) showed that skewness and excess kurtosis of

the error distribution figure in the formulae. In a related contribution, Ullah et al

(2010) obtain the second order bias in the mean reversion parameter for a (scalar)

continuous time Lévy process.

We now develop estimators for A. To do so we use the matrix exponential ex-

pression

F = eAh =
∞

∑
i=0

(Ah)i

i!
= I +Ah+H = I +Ah+O(h2) as h→ 0. (2.3.8)

Rearranging terms we get

A =
1
h
(F− I)− 1

h
H =

1
h
(F− I)+O(h) as h→ 0, (2.3.9)

which suggest the following simple estimator of A

Â =
1
h
(F̂− I), (2.3.10)

where F̂ is the OLS estimator of F . We now develop the asymptotic distribution for

Â and the bias in Â.

Theorem 2.3.1 Assume Xt follows Model (2.2.1) and that all characteristic roots of

the coefficient matrix A have negative real parts. Let {Xth}n
t=1 be the available data

and suppose A is estimated by (2.3.10) with F̂ defined by (2.3.1). When h is fixed,
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as n→+∞, we have

Â−A
p→ 1

h
(F− I−Ah) =

1
h

H = O(h) as h→ 0, (2.3.11)

where H = F− I−Ah, and

h
√

nVec
[

Â− 1
h
(F− I)

]
d→ N(0,Γ(0)−1⊗G), (2.3.12)

where Γ(0) = Var(Xt) = ∑∞
i=0 F iGF

′i, G = E(εtε ′t ).

Theorem 2.3.2 Assume that Xt follows Model (2.2.2) where W (t) is a vector Brow-

nian Motion with covariance matrix Σ and that all characteristic roots of the co-

efficient matrix A have negative real parts. Let {Xth}n
t=1 be the available data and

suppose A is estimated by (2.3.10) with F̂ defined by (2.3.1). When h is fixed and

n→ ∞, the bias formula is:

BIAS(Â) = E(Â−A) =
1
h

H +
−b
T

+o(T−1), (2.3.13)

where H = F− I−Ah, and T = nh is the time span of the data. If B(θ) is unknown,

then

b = G[(I−C)−1 +C(I−C2)−1 + ∑
λ∈Spec(C)

λ (I−λC)−1]Γ(0)−1, (2.3.14)

where Γ(0) = Var(Xt) = ∑∞
i=0 F i ·G ·F ′i, G = E(εtε ′t ), and Spec(C) is the set of

eigenvalues of C. If B(θ) is known, then

b = G[C(I−C2)−1 + ∑
λ∈Spec(C)

λ (I−λC)−1]Γ(0)−1. (2.3.15)

Remark 2.3.2 Expression (2.3.11) extends the result in equation (32) of Lo (1988)

to the multivariate case. According to Theorem 2.3.2, the bias of the estimator

(2.3.10) can be decomposed into two parts, the discretization bias and the estima-
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tion bias, which take the following forms:

discretization bias =
H
h

=
F− I−Ah

h
= O(h) as h→ 0,

estimation bias =
−b
T

+o(T−1).

It is difficult to determine the signs of the discretization bias and the estimation

bias in a general multivariate case. However, in the univariate case, the signs are

opposite to each other as shown in Section 4.2.

Higher order approximations are possible. For example, we may take the ma-

trix exponential series expansion to the second order to produce a more accurate

estimate using

F = eAh =
∞

∑
i=0

(Ah)i

i!

= I +Ah+
Ah
2

[
(eAh− I)+

−A2h2

3!
+
−2A3h3

4!
+ . . .+

−(n−2)An−1hn−1

n!
+ · · ·

]

= I +Ah+
Ah
2

[F− I]+η

= I +Ah+
Ah
2

[F− I]+O(h3) as h→ 0. (2.3.16)

Consequently,

A =
2
h
(F− I)(F + I)−1− 2

h
η(F + I)−1 =

2
h
(F− I)(F + I)−1 +ν

=
2
h
(F− I)(F + I)−1 +O(h2) as h→ 0. (2.3.17)

After neglecting terms smaller than O
(
h2), we get the alternative estimator

Â =
2
h
(F̂− I)(F̂ + I)−1. (2.3.18)

Theorem 2.3.3 Assume that Xt follows Model (2.2.1) and that all characteristic

roots of the coefficient matrix A have negative real parts. Let {Xth}n
t=1 be the avail-

able data and A is estimated by (2.3.18) with F̂ defined by (2.3.1). When h is fixed,
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n→+∞, we have

Â−A
p→ 2

h
(F− I)(F + I)−1−A = O(h2) as h→ 0,

and

h
√

nVec
[

Â− 2
h
(F− I)(F + I)−1

]
d→ N(0,Ψ),

where

Ψ = 16ϒ[Γ(0)−1⊗G]ϒ′, ϒ = (F ′+ I)−1⊗ (F + I)−1.

Theorem 2.3.4 Assume that Xt follows (2.2.2) where W (t) is a vector Brownian

motion with covariance matrix Σ and that all characteristic roots of the coefficient

matrix A have negative real parts. Let {Xth}n
t=1 be the available data and suppose

A is estimated by (2.3.18) with F̂ defined by (2.3.1). When h is fixed, n → ∞, and

T = hn, the bias formula is:

BIAS(Â) =−ν− 4
T

(I +F)−1b(I +F)−1− 4
h

L(I +F)−1 +o(T−1), (2.3.19)

where ν = A− 2
h(F − I)(F + I)−1, ∆ = [IM ⊗ (I + F)−1] ·Γ(0)−1⊗G · [IM ⊗ (I +

F)−1]′ , and L is a M×M matrix whose i jth element is given by

Li j =
1
n

M

∑
s=1

e′M(s−1)+i ·∆ · eM( j−1)+s,

with ei being a column vector of dimension M2 whose ith element is 1 and other

elements are 0. If B(θ) is an unknown vector, then

b = G[(I−C)−1 +C(I−C2)−1 + ∑
λ∈Spec(C)

λ (I−λC)−1]Γ(0)−1.

If B(θ) is a known vector, then

b = G[C(I−C2)−1 + ∑
λ∈Spec(C)

λ (I−λC)−1]Γ(0)−1.
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Remark 2.3.3 Theorem 2.3.4 shows that the bias of the estimator (2.3.18) can be

decomposed into a discretization bias and an estimation bias as follows:

discretization bias = −ν =
2
h
(F− I)(F + I)−1−A = O(h2) as h→ 0,

estimation bias =− 4
T

(I +F)−1b(I +F)−1− 4
h

L(I +F)−1 +o(T−1).

As before, it is difficult to determine the signs of the discretization bias and estima-

tion bias in a general multivariate case. However, in the univariate case, the signs

are opposite each other as reported in Section 4.2.

Remark 2.3.4 The estimator (2.3.10) is based on a first order Taylor expansion

whereas the estimator (2.3.18) is based on a second order expansion, so it is not

surprising that (2.3.18) has a smaller discretization bias than (2.3.10). It is not as

easy to compare the magnitudes of the two estimation biases. In the univariate case,

however, we show in Section 4.2 that the estimator (2.3.18) has a larger estimation

bias than the estimator (2.3.10).

2.4 Relations to Existing Results

2.4.1 The Euler and Trapezoidal Approximations

The estimators given above include as special cases the two estimators obtained

from the Euler approximation and the trapezoidal approximation. Consequently,

both the asymptotic and the bias properties are applicable to these two approxi-

mation models and the simple framework above unifies some earlier theory on the

estimation of approximate discrete time models.
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The Euler approximate discrete time model is of the form:

Xt −Xt−1 = AhXt−1 +Bh+ut .

The OLS estimator of A is given by

[Î +Ah, B̂h] :=

[
n−1

n

∑
t=1

XtZ
′
t−1

][
n−1

n

∑
t=1

Zt−1Z
′
t−1

]−1

=: [F̂ , ĝ].

If B is known apriori and assumed zero without loss of generality, then the OLS

estimator of A is

[Î +Ah] =

[
n−1

n

∑
t=1

XtX
′
t−1

][
n−1

n

∑
t=1

Xt−1X
′
t−1

]−1

=: [F̂ ],

where Zt−1, F̂ , ĝ are defined in the same way as before. Hence,

Â =
1
h
[F̂− I].

This is precisely the estimator given by (2.3.10) based on a first order expansion of

the matrix exponential exp(Ah) in h.

The trapezoidal approximate discrete time model is of the form

Xt −Xt−1 =
1
2

Ah(Xt +Xt−1)+Bh+νt . (2.4.1)

If B = 0, the approximate discrete model becomes

Xt −Xt−1 =
1
2

Ah(Xt +Xt−1)+νt . (2.4.2)

Note that (2.4.2) is a simultaneous equations model, as emphasized by Bergstrom

(1966,1984). We show that the two stage least squares estimator of A from (2.4.1)

is equivalent to the estimator given by (2.3.18) based on a second order expansion

of exp(Ah) in h. To save space, we focus on the approximate discrete time model
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with known B = 0. The result is easily extended to the case of unknown B.

The two stage least squares estimator of Bergstrom (1984) takes the form

Â =

[
n

∑
t=1

1
h
(Xt −Xt−1)V ′

t

][
n

∑
t=1

1
2
(Xt +Xt−1)V ′

t

]−1

, (2.4.3)

where

Vt =
1
2
(X∗t +Xt−1), (2.4.4)

X∗t =

[
n

∑
t=1

XtX ′t−1

][
n

∑
t=1

Xt−1X ′t−1

]−1

Xt−1. (2.4.5)

Theorem 2.4.1 The two stage least squares estimator suggested in Bergstrom (1984)

has the following form

Â =
2
h
[F̂− I][F̂ + I]−1,

and is precisely the same estimator as that given by (2.3.18) based on a second

order expansion of exp(Ah) in h.

2.4.2 Bias in univariate models

The univariate diffusion model considered in this section is the OU process:

dX(t) = κ(µ−X(t))dt +σdW (t), X(0) = 0, (2.4.6)

where W (t) is a standard scalar Brownian motion. The exact discrete time model

corresponding to (2.4.6) is

Xt = φXt−1 + µ(1− e−κh)+σ

√
1− e−2κh

2κ
εt , (2.4.7)

where φ = e−κh, εt ∼ iid N(0,1) and h is the sampling interval.
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The ML estimator of κ (conditional on X0) is given by

κ̂ =− ln(φ̂)/h, (2.4.8)

where

φ̂ =
n−1ΣXtXt−1−n−2ΣXtΣXt−1

n−1ΣX2
t −n−2(ΣXt−1)2 ,

and κ̂ exists provided φ̂ > 0. Tang and Chen (2009) analyzed the asymptotic prop-

erties and derived the finite sample variance formula and the bias formula, respec-

tively,

Var(κ̂) =
1−φ 2

T hφ 2 +o(T−1),

E(κ̂)−κ =
1
T

(
5
2

+ eκh +
e2κh

2

)
+o(T−1). (2.4.9)

When µ is known (assumed to be 0), the exact discrete model becomes

Xt = φXt−1 +δ

√
1− e−2κh

2κ
εt , (2.4.10)

and the ML estimator of κ is κ̂ = − ln(φ̂)/h, where φ̂ = ΣXtXt−1/ΣX2
t−1. In this

case, Yu (2009) derived the following bias formula under stationary initial condi-

tions

E(κ̂)−κ =
1

2T
(3+ e2κh)− 2(1− e−2nκh)

T n(1− e−2κh)
+o(T−1). (2.4.11)

When the initial condition is X(0) = 0, the bias formula becomes

E(κ̂)−κ =
1

2T
(3+ e2κh)+o(T−1). (2.4.12)

Since the MLE is based on the exact discrete time model, there is no discretization

bias in (2.4.7) and (2.4.10). The bias in κ̂ is induced entirely by estimation and is

always positive.

We may link our results for multivariate systems to the univariate model. For

example, κ = −A in (2.4.6) and the first order Taylor series expansion (i.e., the

25



Euler method) gives the estimator

κ̂1 =
1
h
[1− φ̂ ]. (2.4.13)

In this case the results obtained in Theorems 2.3.1 and 2.3.2 may be simplified as in

the following two results.

Theorem 2.4.2 Assuming κ > 0, when h is fixed, and n→ ∞, we have

κ̂1−κ p→−exp(−κh)−1+κh
h

= O(h) as h→ 0,

and

h
√

n
[

κ̂1− 1− exp(−κh)
h

]
d→ N(0,1− exp(−2κh)). (2.4.14)

For the OU process with an unknown mean,

BIAS(κ̂1) =−H
h

+
1+3exp(−κh)

T
+o(T−1), (2.4.15)

For the OU process with a known mean,

BIAS(κ̂1) =−H
h

+
2exp(−κh)

T
+o(T−1), (2.4.16)

where 1+3exp(−κh)
T +o(T−1) and 2exp(−κh)

T +o(T−1) are the estimation biases in the

two models, respectively. In both models, the discretization bias has the following

form:
−H

h
=−exp(−κh)−1+κh

h
. (2.4.17)

Remark 2.4.1 From (2.4.14) the asymptotic variance for κ̂1 is

AsyVar(κ̂1) =
1− exp(−2κh)

T h
.

Remark 2.4.2 The estimation bias is always positive in both models. If κh ∈ (0,3]
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which is empirically realistic, the discretization bias may be written as

−H
h

=−κ2h
∞

∑
i=2

(−κh)i−2

i!

=−κ2h ∑
j=2,4,···

(−κh) j−2

( j +1)!
( j +1−κh)

< 0.

This means that the discretization bias has sign opposite to that of the estimation

bias.

Remark 2.4.3 For the unknown mean model, if T < h(1 + 3φ)/(κh + φ − 1), the

estimation bias is larger than the discretization bias in magnitude because this con-

dition is equivalent to

1+3exp(−κh)
T

>
κh+ exp(−κh)−1

h
.

Further

h(1+3φ)/(κh+φ −1) =
h(1+3(1−κh+O(h2)))

1
2κ2h2− 1

6κ3h3 +O(h4)

=
2

κ2h
(4−3κh+O(h2)))

(
1− 1

3
κh+O(h2)

)−1

=
2

κ2h
(4−3κh+O(h2)))

(
1+

1
3

κh+O(h2)
)

=
8

κ2h
(1+O(h)) .

In empirically relevant cases, 8/(κ2h) is likely to take very large values, thereby

requiring very large values of T before the estimation bias is smaller than the dis-

cretization bias. For example, if κ = 0.1 and h = 1/12, T > 9,600 years are needed

for the bias to be smaller. The corresponding result for the known mean case is

2hφ/(κh+φ−1) =
(
4/(κ2h)

)
(1+O(h)) and again large values of T are required

to reduce the relative magnitude of the estimation bias.

Similarly, the second order expansion (i.e. the trapezoidal method) gives the
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estimator

κ̂2 =−Â =−2
h
[F̂− I][F̂ + I]−1 =

2(1− φ̂)
h(1+ φ̂)

, (2.4.18)

for which we have the following result.

Theorem 2.4.3 Assuming κ > 0, when h is fixed, and n→ ∞, we have

κ̂2−κ p→ 2(1− exp(−κh))
h(1+ exp(−κh))

−κ = O(h2) as h→ 0,

and

h
√

n
[

κ̂2− 2(1− exp(−κh))
h(1+ exp(−κh))

]
d→ N

(
0,

16(1− exp(−κh))
(1+ exp(−κh))3

)
. (2.4.19)

For the OU process with an unknown mean,

BIAS(κ̂2) = ν +
8

T (1+ exp(−κh))
+o(T−1). (2.4.20)

For the OU process with a known mean,

BIAS(κ̂2) = ν +
4

T (1+ exp(−κh))
+o(T−1), (2.4.21)

where 8
T (1+exp(−κh))+ o(T−1) and 4

T (1+exp(−κh)) + o(T−1) are the two estimation

biases. In both models, the discretization bias has the form

ν =−κ +
2(1− exp(−κh))
h(1+ exp(−κh))

= O(h2). (2.4.22)

Remark 2.4.4 From (2.4.19) the asymptotic variance for κ̂2 is

AsyVar(κ̂2) =
16(1− exp(−κh))

T h(1+ exp(−κh))3 .

Remark 2.4.5 The estimation bias is always positive in both models. If κh ∈ (0,2],
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the discretization bias may be written as

ν =−κ +
2(1− exp(−κh))
h(1+ exp(−κh))

=
−κ

1+ exp(−κh)

∞

∑
i=3

(i−2)(−κh)i−1

i!

=
−κ

1+ exp(−κh) ∑
j=3,5,···

(−κh) j−1

( j +1)!
(( j−2)( j +1)−κh( j−1))

< 0.

Hence, the discretization bias has the opposite sign of the estimation bias.

Remark 2.4.6 For the unknown mean model, if T < 8h/(κh(1+φ)−2(1−φ)),

the estimation bias is larger than the discretization bias in magnitude because this

condition is equivalent to

8
T (1+ exp(−κh))

> κ− 2(1− exp(−κh))
h(1+ exp(−κh))

.

Further

8h
κh(1+φ)−2(1−φ)

=
8h

κh(2−κh+ 1
2κ2h2 +O(h3))−2(κh− 1

2κ2h2 + 1
6κ3h3 +O(h4))

= 8h
(

1
6

κ3h3 +O(h4)
)−1

=
48

κ3h2 (1+O(h))−1

=
48

κ3h2 (1+O(h)) .

Again, in empirically relevant cases, 48/(κ3h2) is likely to take very large values

thereby requiring very large values of T before the estimation bias is smaller than

the discretization bias. For example, if κ = 0.1 and h = 1/12, T > 6,912,000 years

are needed for the bias to be smaller. Hence the estimation bias is inevitably much

larger than the discretization bias in magnitude for all realistic sample spans T .

Remark 2.4.7 It has been argued in the literature that ML should be used whenever

it is available and the likelihood function should be accurately approximated when

it is not available analytically; see Durham and Gallant (2002) and Aı̈t-Sahalia

(2002) for various techniques to accurately approximate the likelihood function.
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From the results in Theorems 2.4.2 and 2.4.3 we can show that the total bias of the

MLE based on the exact discrete time model is bigger than that based on the Euler

and the trapezoidal approximation. For example, for the estimator based on the

trapezoidal approximation, considering ν = O(h2) as h→ 0, when the model is the

OU process with an unknown mean,

|BIAS(κ̂ML)|− |BIAS(κ̂2)|= 5+2eκh + e2κh

2T
−

∣∣∣∣
8

T (1+ e−κh)
+ v

∣∣∣∣+o(T−1)

=
5+2eκh + e2κh

2T
− 8

T (1+ e−κh)
− v+o(T−1)

=
(1−φ)2(1+5φ)

2T φ 2(1+φ)
− v+o(T−1)

> 0.

Using the same method, it is easy to prove the result still holds for the OU process

with an known mean. Similarly, one may show that

|BIAS(κ̂ML)|− |BIAS(κ̂1)|> 0,

in both models.

Remark 2.4.8 The two approximate estimators reduce the total bias over the exact

ML and also the asymptotic variance when κ > 0. This is because

AsyVar(κ̂ML)−AsyVar(κ̂1) =
1−φ 2

T hφ 2 −
1−φ 2

T h
> 0. (2.4.23)

and

AsyVar(κ̂ML)−AsyVar(κ̂2) =
1−φ 2

T hφ 2 −
16(1−φ)

T h(1+φ)3 (2.4.24)

=
(1−φ)3

T hφ 2

(
φ 2 +6φ +1

)

(1+φ)3 > 0. (2.4.25)

In consequence, the two approximate methods are preferred to the exact ML for

estimating the mean reversion parameter in the univariate setting. Of course, the
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two approximate methods do NOT improve the asymptotic efficiency of the MLE.

This is because the asymptotic variance of the MLE is based on large T asymptotics

whereas the asymptotic variance of κ̂1 and κ̂2 is based on large n asymptotics and

the two approximate estimators are inconsistent with fixed h. Nevertheless, equa-

tions (2.4.14) and (2.4.19) seem to indicate that in finite (perhaps very large finite)

samples, the inconsistent estimators may lead to smaller variances than the MLE,

which will be verified by simulations.

Remark 2.4.9 Comparing Theorem 2.4.2 and Theorem 2.4.3, it is easy to see the

estimator (2.4.18) based on the trapezoidal approximation leads to a smaller dis-

cretization bias than the estimator (2.4.13) based on the Euler approximation. How-

ever, when κh > 0 and hence φ = e−κh ∈ (0,1), the gain in the discretization error

is earnt at the expense of an increase in the estimation error. For the OU process

with an unknown mean,

estimation bias (κ̂2)− estimation bias (κ̂1) =
8

T (1+ e−κh)
− 1+3e−κh

T
+o(T−1)

=
(1−φ)(7+3φ)

T (1+φ)
+o(T−1) > 0.

Similarly, for the OU process with a known mean,

estimation bias (κ̂2)− estimation bias (κ̂1) =
4

T (1+ e−κh)
− 2e−κh

T
+o(T−1)

=
(1−φ)(4+2φ)

T (1+φ)
+o(T−1) > 0.

Since the sign of the discretization bias is opposite to that of the estimation bias,

and the trapezoidal rule makes the discretization bias closer to zero than the Euler

approximation, we have the following result in both models.

|BIAS(κ̂2)|− |BIAS(κ̂1)|> 0.

Remark 2.4.10 The estimator based on the Euler method leads not only to a smaller

31



bias but also to a smaller variance than that based on the trapezoidal method when

κ > 0. This is because

AsyVar(κ̂2)−AsyVar(κ̂1) =
16(1−φ)

T h(1+φ)3 −
1−φ 2

T h

=
(1−φ)2(3+φ)[4+(1+φ)2]

T h(1+φ)3 > 0.

In consequence, the Euler method is preferred to the trapezoidal method and exact

ML for estimating the mean reversion parameter in the univariate setting.

2.5 Bias in General Univariate Models

2.5.1 Univariate square root model

The square root model, also known as the Cox, Ingersoll and Ross (1985, CIR

hereafter) model, is of the form

dX(t) = κ(µ−X(t))dt +σ
√

X(t)dW (t). (2.5.1)

If 2κµ/σ2 > 1, Feller (1951) showed that the process is stationary, the transitional

distribution of cXt given Xt−1 is non-central χ2
ν(λ ) with the degree of freedom ν =

2κµσ−2 and the non-central component λ = cXt−1e−κh, where c = 4κσ−2(1−
e−κh)−1. Since the non-central χ2-density function is an infinite series involving

the central χ2 densities, the explicit expression of the MLE for θ = (κ,µ,σ) is not

attainable.

To obtain a closed-form expression for the estimator of θ , we follow Tang and

Chen (2009) by using the estimator of Nowman. The Nowman discrete time repre-

sentation of the square root model is

Xt = φ1Xt−1 +(1−φ1)µ +σ

√
Xt−1

1−φ 2
1

2κ
εt ,
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where φ1 = e−κh, εt ∼ iid N(0,1) and h is the sampling interval. Hence, Nowman’s

estimator of κ is

κ̂Nowman =−1
h

ln(φ̂1),

where

φ̂1 =
n−2 ∑n

t=1 Xt ∑n
t=1 X−1

t−1−n−1 ∑n
t=1 XtX−1

t−1

n−2 ∑n
t=1 Xt−1 ∑n

t=1 X−1
t−1−1

.

For the stationary square root process, Tang and Chen (2009) derived explicit ex-

pressions to approximate E(φ̂1−φ1) and Var(φ̂1). Using the following relations,

E(κ̂Nowman−κ) =−1
h

[
1
φ1

E(φ̂1−φ1)− 1
2φ 2

1
E(φ̂1−φ1)2 +O(n−3/2)

]
, (2.5.2)

and

Var(κ̂Nowman) =
1

h2φ 2
1
[Var(φ̂1)+O(n−2)],

they further obtained the approximations to E(κ̂Nowman − κ) and Var(κ̂Nowman).

With a fixed h and n→∞ they derived the asymptotic distribution of
√

n(κ̂Nowman−
κ). The fact that the mean of the asymptotic distribution is zero implies that the

Nowman method causes no discretization bias for estimating κ .

The estimator of κ based on the Euler approximation also has a closed form

expression under the square root model. The Euler discrete time model is

Xt = φ2Xt−1 +(1−φ2)µ +σ
√

Xt−1hεt ,

where φ2 = (1−κh). Hence, the Euler scheme estimator of κ is

κ̂Euler =−1
h
(φ̂2−1),

where

φ̂2 =
n−2 ∑n

t=1 Xt ∑n
t=1 X−1

t−1−n−1 ∑n
t=1 XtX−1

t−1

n−2 ∑n
t=1 Xt−1 ∑n

t=1 X−1
t−1−1

.

Obviously φ̂2 = φ̂1. Hence, κ̂Euler = −1
h(φ̂1− 1). Considering φ1 = e−κh = 1−
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κh+∑∞
i=2(−κh)i/i!, the finite sample bias for κ̂Euler can be expressed as

E(κ̂Euler−κ) =−1
h

E(φ̂1−φ1)− 1
h

H, (2.5.3)

where

−1
h

H =−1
h

∞

∑
i=2

(−κh)i/i! = O(h), as h→ 0,

which is the discretization bias caused by discretizing the dirft function. Since the

asymptotic mean of
√

n(φ̂1− φ1) and hence the asymptotic mean of
√

n(κ̂Euler −
κ + 1

hH) is zero for a fixed h and n → ∞, the Euler discretization of the diffusion

function introduces no discretization bias to κ under the square root model.

Furthermore, the finite sample variance for κ̂Euler is

Var(κ̂Euler) =
1
h2Var(φ̂1).

If κ > 0, φ1 = e−κh < 1. When h is fixed, we have

Var(κ̂Nowman) =
1

h2φ 2
1

[
Var(φ̂1)+O(n−2)

]
>

1
h2Var(φ̂1) = Var(κ̂Euler),

leading to
Var(κ̂Euler)

Var(κ̂Nowman)
= φ 2

1 +O(n−1) < 1. (2.5.4)

According to (2.5.4), the Euler scheme always gains over Nowman’s method in

terms of variance. The smaller is φ1, the larger the gain.

Tang and Chen (2009) obtained a bias formula of E(φ̂1− φ1) for the Nowman

estimator under the square root model. Unfortunately, the expression is too complex

to be used to determine the sign of the bias analytically. However, the simulation

results reported in the literature (Phillips and Yu, 2009, for example) and in our

own simulations reported in Section 6 suggest that E(κ̂Euler−κ) > 0. Since H > 0,

(2.5.3) implies that

E(φ̂1−φ1) < 0,
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and the estimation bias −1
hE(φ̂1−φ1) dominates the discretization bias −1

hH in the

Euler approximation. Consequently, the negative discretization bias −1
hH reduces

the total bias in the Euler method. Consequently, the bias in κ̂Nowman is larger than

that in κ̂Euler because

E(κ̂Nowman−κ) =−1
h

[
1
φ1

E(φ̂1−φ1)− 1
2φ 2

1
E(φ̂1−φ1)2 +O(n−3/2)

]

≥−1
h

1
φ1

E(φ̂1−φ1)

≥−1
h

E(φ̂1−φ1)− 1
h

H = E(κ̂Euler−κ).

The Milstein scheme is another popular approximation approach. For the square

root model, the discrete time model obtained by the Milstein scheme is given by

Xt = Xt−1 +κ(µ−Xt−1)h+σ
√

Xt−1hεt +
1
4

σ2h
[
ε2

t −1
]
. (2.5.5)

Let a = σ
√

Xt−1h, b = 1
4σ2h, Yt = Xt−Xt−1−κ(µ−Xt−1)h+ 1

4σ2h, then Equation

(2.5.5) can be represented by

Yt = aεt +bε2
t = b

[(
εt +

a
2b

)2
− a2

4b2

]
.

Since εt ∼ iid N(0,1), Z =
(
εt + a

2b

)2 follows a noncentral χ2 distribution with 1

degree of freedom and noncentrality parameter λ = a2

4b2 . Elerian (1998) showed that

the density of Z may be expressed as

f (z) =
1
2

exp
{
−λ + z

2

}( z
λ

)−1/4
I−1/2

(√
λ z

)
, (2.5.6)

where

I−1/2(x) =

√
2
x

∞

∑
i=0

(x/2)2i

i!Γ( j +0.5)
=

√
1

2πx
{exp(x)+ exp(−x)}.

This expression may be used to compute the log-likelihood function of the approx-
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imate model (2.5.5). Unfortunately, the ML estimator does not have a closed form

expression and it is therefore difficult to examine the relative performance of the

bias and the variance using analytic methods. The performance of the Milstein

scheme is therefore compared to other methods in simulations.

2.5.2 Diffusions with linear drift

We consider the following general diffusion process with a linear drift

dX(t) = κ(µ−X(t))dt +σq(X(t);ψ)dW (t), (2.5.7)

as a generalization to the Vasicek and the square root models, where σq(X(t);ψ)

is a general diffusion function with parameters ψ , and θ = (κ,µ,σ ,ψ) ∈ Rd is the

unknown parameter vector. This model include the well known Constant Elasticity

of Variance (CEV) model, such as the Chan, et al (1992, CKLS) model, as a special

case. In this general case, the transitional density is not analytically available.

The Nowman approximate discrete model is

Xt = φ1Xt−1 +(1−φ1)µ +σq(Xt−1;ψ)

√
1−φ 2

1
2κ

εt , (2.5.8)

The Euler approximate discrete model is

Xt = φ2Xt−1 +(1−φ2)µ +σq(Xt−1;ψ)
√

hεt . (2.5.9)

Theorem 2.5.1 For Model (2.5.7), the MLE of κ based on the Nowman approxi-

mation is

κ̂Nowman =−1
h

ln(φ̂1),

where φ̂1 is the ML estimator for φ1 in (2.5.8). The MLE of κ based on the Euler

approximation is

κ̂Euler =−1
h
(φ̂2−1),
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where φ̂2 is the ML estimator for φ2 in (2.5.9). Then we have

φ̂2 = φ̂1.

Remark 2.5.1 The ML estimator of φ1 does not have a closed-form expression.

Neither does the ML estimator of φ2. So numerical calculations are needed for

comparisons. However, according to Theorem 2.5.1, even without a closed-form

solution, we can still establish the equivalence of φ̂1 and φ̂2. After φ̂1 and φ̂2 are

found numerically, one may find the estimators of κ by using the relations κ̂Nowman =

−1
h ln(φ̂1) and κ̂Euler =−1

h(φ̂2−1).

To compare the magnitude of the bias in κ̂Nowman to that of κ̂Euler, no gen-

eral analytic result is available. However, under some mild conditions, compar-

ison is possible. In particular, we make the following three assumptions. As-

sumption 1: φ̂1 − φ1 ∼ Op(n−1/2); Assumption 2: E(φ̂1 − φ1) < 0; Assumption

3: −1
hE(φ̂1−φ1) >−1

hH, i.e., the estimation bias dominates the discretization bias

in Euler approximation. Under Assumption 1, we get

E(κ̂Nowman−κ) =−1
h

[
1
φ1

E(φ̂1−φ1)− 1
2φ 2

1
E(φ̂1−φ1)2 +O(n−3/2)

]
,

Var(κ̂Nowman) =
1

h2φ 2
1
[Var(φ̂1)+O(n−2)],

E(κ̂Euler−κ) =−1
h

E(φ̂1−φ1)− 1
h

H,

and

Var(κ̂Euler) =
1
h2Var(φ̂1),

where H = ∑∞
i=2(−κh)i/i! = O(h2).

If κ > 0, κ̂Euler has a smaller finite sample variance than κ̂Nowman because

Var(κ̂Nowman) =
1

h2φ 2
1

[
Var(φ̂1)+O(n−2)

]≥ 1
h2Var(φ̂1) = Var(κ̂Euler).
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Under Assumptions 1, 2, 3, κ̂Euler has a smaller bias than κ̂Nowman because

E(κ̂Nowman−κ) =−1
h

[
1
φ1

E(φ̂1−φ1)− 1
2φ 2

1
E(φ̂1−φ1)2 +O(n−3/2)

]

≥−1
h

1
φ1

E(φ̂1−φ1)

≥−1
h

E(φ̂1−φ1)− 1
h

H = E(κ̂Euler−κ).

2.6 Simulation Studies

2.6.1 Linear models

To examine the performance of the proposed bias formulae and to compare the two

alternative approximation scheme in multivariate diffusions, we estimate κ = −A

in the bivariate model with a known mean:

dXt = AXtdt +ΣdWt , X0 = 0, (2.6.1)

where Wt is the standard bivariate Brownian motion whose components are inde-

pendent, and

Xt =




X1t

X2t


 ,κ =−A =




κ11 0

κ21 κ22


 , and Σ =




σ11 0

0 σ22


 .

Since A is triangular, the parameters are all identified. While keeping other pa-

rameters fixed, we let κ22 take various values over the interval (0,3], which covers

empirically reasonable values of κ22 that apply for data on interest rates and volatil-

ities. The mean reversion matrix is estimated with 10 years of monthly data. The

experiment is replicated 10,000 times. Both the actual total bias and the actual

standard deviation are computed across 10,000 replications. The actual total bias

is split into two parts — discretization bias and estimation bias — as follows. The

estimation bias is calculated as H/h and −v as in (2.3.13) and (2.3.19) for the two
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approximate methods. The estimation bias is calculated as:

estimation bias = actual total bias - discretization bias

Figure 2.1 plots the biases of the estimate of each element in the mean reversion

matrix κ , based on the Euler method, as a function of the true value of κ22. Four

biases are plotted, the actual total bias, the approximate total bias given by the

formula in (2.3.13), the discretization bias H/h as in (2.3.13), and the estimation

bias.

Several features are apparent in the figure. First, the actual total bias in all cases

is large, especially when the true value of κ22 is small. Second, except for κ12 whose

discretization bias is zero, the sign of the discretization bias for the other parameters

is opposite to that of the estimation bias. Not surprisingly, in these cases, the actual

total bias of estimator (2.3.10) is smaller than the estimation bias. The discretization

bias for κ12 is zero because it is assumed that the true value is zero. In the bivariate

set-up, however, it is possible that the sign of the discretization bias for the other

parameters is the same as that of the estimation bias (for example when κ12 = 5 and

κ21 = −0.5). Third, the bias in all parameters is sensitive to the true value of κ22.

Finally, the bias formula (2.3.13) generally works well in all cases.

Figure 2.2 plots the biases of the estimate of each element in the mean reversion

matrix κ , based on the trapezoidal method, as a function of the true value of κ22.

Four biases are plotted, the actual total bias, the approximate total bias given by

the formula in (2.3.19), the discretization bias −ν as in (2.3.19), and the estimation

bias. In all cases, the discretization bias is closer to zero than that based on the

Euler approximation. This suggests that the trapezoidal method indeed reduces the

discretization bias. Moreover, the bias formula (2.3.19) generally works well in all

cases.

The performance of the two approximation methods is compared in Figure 2.3,

where the actual total bias of the estimators given by (2.3.10) and (2.3.18) is plotted.

It seems that the bias of the estimator obtained from the trapezoidal approximation
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Figure 2.1: The bias of the elements in Â in Model (2.6.1) as a function of κ22 at the
monthly frequency and T = 10. The estimates are obtained from the Euler method.
The solid line is the actual total bias; the broken line is the approximate total bias
according to the formula (2.3.13); the dashed line is the discretization bias H/h; the
point line is the estimation bias. The true value for κ11, κ12, and κ21 is 0.7, 0, and
0.5, respectively.

40



0 0.5 1 1.5 2 2.5 3
−0.1

0

0.1

0.2

0.3

0.4

κ22

B
ia

s
o
f
κ̂

1
1

0 0.5 1 1.5 2 2.5 3
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

κ22

B
ia

s
o
f
κ̂

1
2

 

 

actual total bias
approximate total bias
discretization bias
estimation bias

0 0.5 1 1.5 2 2.5 3
−0.05

0

0.05

0.1

0.15

κ22

B
ia

s
o
f
κ̂

2
1

0 0.5 1 1.5 2 2.5 3
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

κ22

B
ia

s
o
f
κ̂

2
2

Figure 2.2: The bias of the elements in Â in Model (2.6.1) as a function of κ22 at
the monthly frequency and T = 10. The estimates are obtained from the trapezoidal
method. The solid line is the actual total bias; the broken line is the approximate
bias according to the formula (2.3.13); the dashed line is the discretization bias −v;
the point line is the estimation bias. The true value for κ11, κ12, and κ21 is 0.7, 0,
and 0.5, respectively.
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Figure 2.3: The bias of the elements in Â in Model (2.6.1) as a function of κ22 at the
monthly frequency and T = 10. The estimates are obtained from the Euler and the
trapezoidal methods, respectively. The solid line is the actual total bias for the Euler
method; the broken line is the actual total bias for the trapezoidal method. The true
value for κ11, κ12, and κ21 is 0.7, 0, and 0.5, respectively.

is larger than that from the Euler approximation for all parameters except κ12. For

κ12, the performance of the two methods are very close with the Euler method being

slightly worse when κ22 is large.

Figure 2.4 plots the actual standard deviations for the two approximate estima-

tors, (2.3.10) and (2.3.18) as a function of κ22. We notice that, for all the parameters,

the standard deviation of the Euler method is smaller than that of the trapezoidal

method. The percentage difference can be as high as 20%.

We also design an experiment to check the performance of the alternative esti-

mators in the univariate case. Data are simulated from the univariate OU process

with a known mean

dX(t) =−κX(t)dt +σdW (t), X(0) = 0. (2.6.2)

Figure 2.5 reports the bias in κ̂ obtained from the Euler method and the trape-

zoidal method in the OU process with a known mean. Three biases are plotted: the
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Figure 2.4: The standard deviation of the elements in Â in Model (2.6.1) as a func-
tion of κ22 at the monthly frequency and T = 10. The estimates are obtained from
the Euler and the trapezoidal methods, respectively. The solid line is the standard
deviation for the Euler method; the broken line is the standard deviation for the
trapezoidal method. The true value for κ11, κ12, and κ21 is 0.7, 0, and 0.5, respec-
tively.

43



0 0.5 1 1.5 2 2.5 3
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

κ

B
ia

s
o
f
κ̂

Based on the Euler approximation

 

 

actual total bias
approximate total bias
estimation bias
discretization bias

0 0.5 1 1.5 2 2.5 3
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

κ

B
ia

s
o
f
κ̂

Based on the Trapezoidal approximation

 

 

actual total bias
approximate total bias
estimation bias
discretization bias

Figure 2.5: The bias of the κ estimates in the univariate model as a function of κ at
the monthly frequency and T = 10 for the two approximate methods. The left panel
is for the Euler method and the right panel is for the trapezoidal method. The solid
line is the actual total bias; the dashed line is the approximate total bias; the dotted
line is the estimation bias; the broken line is the discretization bias.

actual total bias, the estimation bias and the discretization bias. Figure 2.6 compares

the bias in κ̂ obtained from the exact ML methods with that of the two approximate

methods. Several conclusions may be drawn from these two Figures. First, our bias

formula provides a good approximation to the actual total bias. Second, for the two

approximate estimators, (2.4.13) and (2.4.18), the sign of the discretization bias is

opposite to that of the estimation bias. Third, while the trapezoidal method leads

to a smaller discretization bias than the Euler method, it has a larger estimation

bias. Finally, the actual total bias for the Euler method is smaller than that of the

trapezoidal method and both methods lead to a smaller total bias than the exact ML

estimator (2.4.8).

Figure 2.7 reports the standard deviations for estimators (2.4.8), (2.4.13) and

(2.4.18). It is easy to find that the standard deviations of estimator (2.4.13) is

the smallest among those of all estimators. The standard deviations of estimator

(2.4.18) are almost the same with those from the exact ML estimator (2.4.8), but
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Figure 2.6: The actual total bias of the κ estimates in the univariate model as a
function of κ at the monthly frequency and T = 10 for the two approximate methods
and the exact ML. The solid line is for the exact ML; the dashed line is for the Euler
method; the broken line is for the trapezoidal method.

smaller when κ is bigger than 1. Considering the sample size is 120, we can roughly

say that, focusing on bias and standard deviation, the estimator (2.4.13) from the Eu-

ler approximation is better than the other estimators in comparatively small sample

sizes.

2.6.2 Square root model

For the square root model, we designed an experiment to compare the performance

of the various estimation methods, including the exact ML, the Euler scheme, the

Nowman scheme and the Milstein scheme. In all cases we fix h = 1/12, T = 120,

µ = 0.05, σ = 0.05, but vary the value of κ from 0.05 to 0.5. These settings cor-

respond to 10 years of monthly data in the estimation of κ . The experiment is

replicated 10,000 times.

Table 1 reports the bias, the standard error (Std err), and the root mean square

error (RMSE) of κ for all estimation methods, obtained across 10,000 replications.

Several conclusions emerge from the table. First, all estimation methods suffer from
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Figure 2.7: The standard deviation of the κ estimates in the univariate model as a
function of κ at the monthly frequency and T = 10. The solid line is for the exact
ML; the broken line is for the Euler method; the dotted line is for the trapezoidal
method.

a serious bias problem. Second, the Euler scheme performs best both in terms of

bias and variance. Third, the ratios of the standard error of κ̂Euler and that of κ̂Norman

are 0.9958, 0.9917, 0.9835, 0.9592 when κ is 0.05, 0.1, 0.2, 0.5, respectively. The

ratio decreases as κ increases, as predicted in (2.5.4). Finally, although the bias for

the Milstein method is larger than that for the Euler method, the variances for these

two methods are very close.

2.7 Conclusions

This paper provides a framework for studying the implications of different dis-

cretization schemes in estimating the mean reversion parameter in both multivariate

and univariate diffusion models with a linear drift function. The approach includes

the Euler method and the trapezoidal method as special cases, an asymptotic theory

is developed, and finite sample bias comparisons are conducted using analytic ap-

proximations. Bias is decomposed into a discretization bias and an estimation bias.
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Table 2.1: Exact and approximate ML estimation of κ from the square root model
using 120 monthly observations. The experiment is replicated 10,000 times.
Method Exact Euler Nowman Milstein

κ = 0.05
Bias .1156 .1126 .1152 .1132
Std err .2251 .2205 .2249 .2206
RMSE .2531 .2476 .2526 .2480

κ = 0.1
Bias .1392 .1342 .1387 .1350
Std err .2670 .2590 .2668 .2592
RMSE .3011 .2917 .3007 .2922

κ = 0.2
Bias .1615 .1529 .1610 .1538
Std err .3178 .3070 .3178 .3068
RMSE .3565 .3430 .3562 .3432

κ = 0.5
Bias .1869 .1625 .1862 .1639
Std err .4210 .3999 .4209 .3993
RMSE .4607 .4317 .4603 .4316

It is shown that the discretization bias is of order O(h) for the Euler method and

O(h2) for the trapezoidal method, respectively, whereas the estimation bias is of the

order of O(T−1). Since in practical applications in finance it is very likely that h is

much smaller than 1/T , estimation bias is likely to dominate discretization bias.

Applying the multivariate theory to univariate models gives several new results.

First, it is shown that in the Euler and trapezoidal methods, the sign of the dis-

cretization bias is opposite that of the estimation bias for practically realistic cases.

Consequently, the bias in the two approximate method is smaller than the ML es-

timator based on the exact discrete time model. Second, although the trapezoidal

method leads to a smaller discretization bias than the Euler method, the estimation

bias is bigger. As a result, it is not clear if there is a gain in reducing the total bias

by using a higher order approximation. When comparing the estimator based on the

Euler method and the exact ML, we find that the asymptotic variance of the former

estimator is smaller. As a result, there is clear evidence for preferring the estimator

based on the Euler method to the exact ML in the univariate linear diffusion.

Simulations suggest the bias continues to be large in finite samples. It is also
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confirmed that for empirically relevant cases, the magnitude of the discretization

bias in the two approximate methods is much smaller than that of the estimation

bias. The two approximate methods lead to a smaller variance than exact ML. Most

importantly for practical work, there is strong evidence that the bias formulae work

well and so they can be recommended for analytical bias correction with these mod-

els.

For the univariate square root model, the Euler method is found to have smaller

bias and smaller variance than the Nowman method. Discretizing the diffusion func-

tion both in the Euler method and the Nowman method causes no discretization bias

on the mean reversion paramter. For the Euler method, we have derived an explicit

expression for the discretization bias caused by discretizing the drift function. The

simulation results suggest that the Euler method performs best in terms of both bias

and variance.

The analytic and expansion results given in the paper are obtained for station-

ary systems. Bias analysis for nonstationary and explosive cases require different

methods. For diffusion models with constant diffusion functions, it may be possi-

ble to extend recent finite sample and asymptotic expansion results for the discrete

time AR(1) model (Phillips, 2010) to a continuous time setting. Such an analysis

would involve a substantial extension of the present work and deserves treatment in

a separate study.
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Chapter 3 Limit Theory for Multivariate Lin-

ear Diffusion Estimation

3.1 Introduction

Multivariate continuous time models had received a considerable level of interest in

macro-econometrics over the period from 1960s to 1980s, featured in several use-

ful theoretical contributions such as Bergstrom (1966, 1984), Phillips (1972) and

various applications such as Bergstrom and Wymer (1976) and Knight and Wymer

(1978). After experiencing a quiet period among econometricians, they are once

again at the forefront in academic econometric circles. The main fuel for the res-

urrection is the usefulness of these models in the development of the modern asset

pricing theory. Given complicated interplay among economic and financial vari-

ables, not surprisingly, multivariate continuous time models, which allow for in-

teractions among variables, have received more attention in the recent literature on

asset pricing in the hope of capturing more realistic dynamic interactions. Promi-

nent examples include stochastic volatility models for equity and exchange rate se-

ries (Duffie, Pan and Singleton, 2000) and term structure models for multiple yields

(Duffie and Kan, 1996).

Continuous time models used in macroeconomics often take a linear form. Un-

der Gaussianity, this assumption implies a diffusion model with a linear drift func-

tion and a constant diffusion function. The efficient estimation of system parame-

ters, based on discrete observations, is achieved by the mean of maximum likelihood

(ML) or least squares; see, for example, Phillips (1972). In finance, more success-
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ful models allow the diffusion function to be time varying but maintain linearity

for the drift function. To match these developments in the use of more complicated

multivariate continuous time models in the theoretical finance literature, various

econometric techniques have been developed for estimating system parameters from

discrete data. Examples include the efficient method of moments (EMM) (Gallant

and Tauchen, 1996), Bayesian MCMC methods (Eraker, 2001), the empirical char-

acteristic function method (Singleton, 2001; Knight and Yu, 2002), and in-fill ML

(Pedersen, 1995; Durham and Gallant, 2002), as well as approximate ML meth-

ods based on closed-form expansions (Aı̈t-Sahalia, 2008; Aı̈t-Sahalia and Kimmel,

2007; Aı̈t-Sahalia and Yu, 2006).

For multivariate continuous time models with a linear drift function, an exact

discrete time vector autoregressive (VAR) model can be obtained. When the diffu-

sion function is constant, the VAR model is Gaussian and hence can be estimated

by ordinary least squares (OLS) or ML. When the diffusion function has the level

effect, the VAR model becomes non-Gaussian but can be estimated by generalized

least squares. The asymptotic theory for VAR estimation is standard; see, for exam-

ple, Mann and Wald (1943) for the stationary case and Phillips and Durlauf (1986)

for the unit root case. It is known that the mean reversion matrix in the continuous

time model is the logarithmic transformation of the autoregressive (AR) coefficient

matrix. Under the identification condition, this relation is bijective. It is this bijec-

tive and measurable relationship that will be used find the asymptotic theory of the

estimated mean reversion matrix.

It appears that the delta method, when applied to the principal value of the log-

arithm of the VAR coefficient matrix, can be used to find the limit distribution of

the estimated mean reversion matrix. Unfortunately, this straightforward applica-

tion of the delta method leads to a covariance matrix that is practically difficult to

use. The standard limit distribution is available for the estimated VAR coefficient

matrix. But to utilize this distribution, the standard matrix calculus formula implies

that the mean reversion matrix is expressed as an infinite polynomial of the VAR co-
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efficient matrix. As a result, the covariance matrix involves an infinite polynomial

which must be truncated in practice and hence the calculation of the asymptotic

covariance is difficult to implement. This situation is in the sharp contrast to the

univariate setup where the delta method is easily applied.

This paper contributes to the literature in three ways. First, under regular condi-

tions, we derive the asymptotic distribution of the estimated mean reversion matrix

whose covariance matrix is very easy to calculate. We do this by using a new re-

sult obtained in the linear algebra literature, which enables us to relate the mean

reversion matrix to the VAR coefficient matrix as a polynomial function of finite

order. Second, we derive the asymptotic theory for the estimated mean reversion

matrix not only for the stationary case but also for the non-stationary case. Third,

we provide the joint limit distribution of the estimated mean reversion matrix and

its eigenvalues. The theory is established in the context of the multivariate diffusion

model of an arbitrary dimension but with a linear drift and a constant diffusion. We

focus on this model simply because the asymptotic theory is well developed for the

exact discrete time model. However, our theory continues to work for models with

a more complicated diffusion function. As long as the asymptotic theory for the

exact discrete time model is known, our method is applicable.

Phillips (1972) used least squares to estimate a structural continuous time model

where the mean reversion matrix depends on a set of structural parameters, es-

tablished the asymptotic normality, and derived the analytical expression for the

asymptotic variance based on the assumption that the derivative of the mean re-

version matrix with respect to the VAR coefficient matrix is known. The setup of

Phillips (1972) is simpler than the model we consider here in the sense that we esti-

mate the full mean reversion matrix and hence the dimension of our parameter space

is higher. Also, we do not assume that the derivative of the mean reversion matrix

with respect to the VAR coefficient matrix is known. In the context of univariate dif-

fusion, Ait-Sahalia (2002) developed the asymptotic theory for his approximate ML

method under the long span asymptotics whereas Jeong and Park (2009) established
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the asymptotic theory for a wide range of estimators in the cases of stationarity and

unit root with a large time span and a small sampling interval. The results obtained

in our paper may be regarded as a multivariate generalization to those in the uni-

variate diffusion although our model specification only allow a linear drift function.

The rest of the paper is organized as follows. Section 2 describes the model

and introduces the estimator of the mean reversion matrix based on LS estimation

of the VAR model. The consistency of the estimator is established, and some argu-

ments on the reasons why the new estimator is preferred are addressed. Section 3

derives asymptotic properties for the stationary diffusion case. Some important spe-

cial cases are discussed. The limit theory is obtained in Section 4 for the diffusion

model with unit roots. In Section 5, the theory is illustrated using the daily realized

volatility data on Pound, Euro and Yen exchange rates. Section 6 concludes. Proofs

of the propositions and theorems are collected in the Appendix.

3.2 The Model and New Estimation Approach

We consider an m-dimensional multivariate diffusion process of the form:

dX (t) = (AX (t)+b)dt +Σ1/2dW (t) , (3.2.1)

where X(t) = (X1(t), · · · ,Xm(t))′ is an m-dimensional continuous time process, A

and b are m×m and m×1 matrices, whose elements need to be estimated, Σ1/2 is

a matrix of the diffusion coefficients, and W (t) is a m-dimensional standard Brow-

nian motion. We assume the matrix Σ =
[
Σ1/2

][
Σ1/2

]′
is positive definite. This

model has been used to model multiple yields in the term structure literature and

the univariate version was first proposed in Vasicek (1977).

Although the process follows a continuous time stochastic differential equation

system, observations are available only at discrete time points, say at T equally

spaced points {th}T
t=0, where h is the sampling interval and is taken to be fixed. In

practice, h might be very small, corresponding to high-frequency data. We can also
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write sample size T as T = N/h by letting N denote the time span of the data. In

this paper, we use X(t) to represent a continuous time process and Xt to represent a

discrete time process. When there is no confusion, we simply write Xth as Xt .

The exact discrete time representation of (3.2.1) is

Xt = eAhXt−1 +
∫ h

0
eAsbds+ εt (3.2.2)

where the matrix exponential eAh is defined as eAh = ∑∞
j=0

1
j! (Ah) j, εt =(ε1t , · · · ,εmt)

′

is a Gaussian martingale difference sequence (MDS) with respect to the natural fil-

tration with

E
(

εtε
′
t

)
=

∫ h

0
eAsΣeA′sds := Ω.

Letting F = eAh, g =
∫ h

0 eAsbds, we have the system

Xt = FXt−1 +g+ εt , (3.2.3)

which is a VAR model of order 1 with MDS(0,Ω) innovations.

One common method to estimate the VAR system (3.2.3) is OLS approach,

which gives us an estimator equivalent to the ML estimator under constant initial

conditions. Setting Zt =
[
X
′
t ,1

]′
, the least square (LS) estimator of [F,g] is

[
F̂ , ĝ

]
=

[
n

∑
t=1

XtZ
′
t−1

]
×

[
n

∑
t=1

Zt−1Z
′
t−1

]−1

. (3.2.4)

If we have prior knowledge that b = 0 and hence g = 0, the LS estimator of F is:

F̂ =

[
n

∑
t=1

XtX
′
t−1

]
×

[
n

∑
t=1

Xt−1X
′
t−1

]−1

. (3.2.5)

The key issue is how to get one desired estimation of A in terms of consistency

and efficiency by using the estimation of F .

In general, identification of A from the implied discrete model (3.2.2) generating

discrete observations {Xth} is not automatically satisfied. The necessary and suffi-
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cient condition for identifiability of A in model (3.2.1) is that the correspondence

between A and [F,g] be one-to-one, since (3.2.2) is effectively a reduced form for the

discrete observations. Phillips (1973) studied the identifiability of (A,Σ) in (3.2.2) in

terms of the identifiability of the matrix A in the matrix exponential F = exp(Ah) un-

der possible restrictions implied by the structural functional dependence A in (3.2.1).

In general, a one-to–one correspondence between A and F , requires the structural

matrix A to be restricted. This is because if A satisfies exp{Ah}= F and some of its

eigenvalues are complex, A is not uniquely identified. In fact, adding to each pair

of conjugate complex eigenvalues the imaginary numbers 2ikπ/h and −2ikπ/h for

any integer k, leads to another matrix satisfying exp{Ah} = F . This phenomenon

is well known as aliasing in the signal processing literature. When restrictions are

placed on the structural matrix A identification is possible. Phillips (1973) gave a

rank condition for the case of linear homogeneous relations between the elements

of a row of A. A special case is when A is triangular. Hansen and Sargent (1983)

extended this result by showing that the reduced form covariance structure G > 0

provides extra identifying information about A, reducing the number of potential

aliases.

To address this aliasing problem, we impose a principal value condition which

excludes such aliases by restricting the continuous time eigenvalues to the open

strip {η ∈ C,−π/h < Im(η) < π/h} . Empirically realistic values for h are almost

always small in finance (e.g. h = 1/12 for monthly data and 1/252 for daily data),

so that the support (−π/h,π/h) implied by this condition is typically quite wide

and covers empirically relevant cases.

Assumption 1: The eigenvalues in A lie in the open strip {η ∈ C,−π/h < Im(η) < π/h}
of the complex plane.

Proposition 3.2.1 Under Assumption 1, F has no eigenvalues on the closed nega-

tive real axis, namely,

spec{F}∩R−0 =∅

where spec{F}, the spectrum of F, is the set of all the distinct eigenvalues of F.
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When F has no eigenvalues on the closed negative real axis, F has a unique log-

arithm with eigenvalues in the open strip {z ∈ C,−π < Im(z) < π} of the complex

plane. This is a well known result in literature of linear algebra. The unique loga-

rithm is called the principal logarithm and is denoted by ln(F). Under Assumption

1, Ah is the principal logarithm of F , namely,

A =
1
h

ln(F)

To get an explicit relationship between F and A that only involves a summation

of finite order, we propose to use the following new result recently obtained in the

linear algebra literature. It gives an explicit formula for the principal logarithm of

a matrix F as a polynomial in the matrix (I−F) of the finite order with simple

integral formulae for the coefficients involving the coefficients of the characteristic

polynomial of I−F .

Lemma 3.2.1 (Cardoso (2005)) Assume F ∈Rm×m. If D = {τ ∈R| spec{I− (I−F)τ}∩
R−0 =∅}, then for all τ ∈ D,

ln [I− (I−F)τ] = f1(τ)I + f2(τ)(I−F)+ · · ·+ fm(τ)(I−F)m−1 (3.2.6)

where f1, · · · , fm are differentiable functions in D, given by

f1(τ) =
∫ τ

0

CmSm−1

1+C1S + · · ·+CmSM dS,

f j(τ) =
∫ τ

0

−S j−2−C1S j−1−·· ·−Cm− jSm− j

1+C1S + · · ·+CmSm dS, for j = 2, · · · ,m−1,

fm(τ) =
∫ τ

0

−Sm−2

1+C1S + · · ·+CmSm dS,

and C j, j = 1, · · · ,m, are the real coefficients of the characteristic polynomial of

I−F.
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Remark 3.2.1 Since the characteristic polynomial of I−F takes the form of

P(z) = det[zI− (I−F)] = zm +C1zm−1 + · · ·+Cm−1z+Cm, (3.2.7)

the coefficients
{

C j
}m

j=1 have the following expressions in terms of the elementary

symmetric functions

C1 = (−1)
m

∑
s=1

(1−λs) =−tr(I−F),

C2 = (−1)2 ∑
1≤s<k≤m

(1−λs)(1−λk) =
1
2

{
[tr (I−F)]2− tr

[
(I−F)2

]}
,

...

Cm = (−1)m
m

∏
s=1

(1−λs) = (−1)m det(I−F) ,

where {λs}m
s=1 are the eigenvalues of F.

By Proposition 3.2.1, 1 ∈ D. Let τ = 1 in (3.2.6), giving

Ah = ln(F) = f1I + f2 (I−F)+ · · ·+ fm (I−F)m−1 , (3.2.8)

where

f1 =
∫ 1

0

CmSm−1

1+C1S + · · ·+CmSm dS, (3.2.9)

f j =
∫ 1

0

−S j−2−C1S j−1−·· ·−Cm− jSm− j

1+C1S + · · ·+CmSm dS, for j = 2, · · · ,m−1, (3.2.10)

fm =
∫ 1

0

−Sm−2

1+C1S + · · ·+CmSm dS. (3.2.11)

Therefore, a nature estimator of matrix A is

Â =
1
h

ln
(
F̂

)
=

1
h

{
f̂1I + f̂2

(
I− F̂

)
+ · · ·+ f̂m

(
I− F̂

)m−1
}

, (3.2.12)
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where

f̂1 =
∫ 1

0

ĈmSm−1

1+Ĉ1S + · · ·+ĈmSm
dS,

f̂ j =
∫ 1

0

−S j−2−Ĉ1S j−1−·· ·−Ĉm− jSm− j

1+Ĉ1S + · · ·+ĈMSM
dS, for j = 2, · · · ,m−1,

f̂m =
∫ 1

0

−Sm−2

1+Ĉ1S + · · ·+ĈmSm
dS,

{
λ̂s

}m

s=1
are the eigenvalues of F̂ , and for j = 1, · · · ,m,

Ĉ j = (−1) j ∑
1≤s1<s2...<s j≤m

(
1− λ̂s1

)
· · ·

(
1− λ̂s j

)
. (3.2.13)

When all the eigenvalues of (I−F) have modulus less than unity, there is an-

other widely used expression for the principal logarithm of F , which possesses the

form of

Ah = lnF =−
∞

∑
j=1

1
j
(I−F) j . (3.2.14)

Given F̂ , the above representation leads to the estimation of A as

Ã =
1
h

ln F̂ =−1
h

∞

∑
j=1

1
j

(
I− F̂

) j
. (3.2.15)

Notice the fact that for j = 1, · · · ,∞,

(
I− F̂

) j− (I−F) j =−
j−1

∑
s=0

(I−F)s (F̂−F
)(

I− F̂
) j−1−s

.

Then, straightforward calculations allow us to show that

Vec
(
Ã−A

)
=

1
h

{
∞

∑
j=1

1
j

[
j−1

∑
k=0

(I−F)k⊗
[(

I− F̂
) j−1−k

]′
]}

Vec
(
F̂−F

)
,

where Vec(·) denotes raw stacking of a matrix and ⊗ means Kronecker product.

As Ã is a measurable transformation of F̂ , it seems to suggest that one can apply

the standard results, such as the delta method, to obtain the asymptotic theory for Ã
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once the asymptotic theory for F̂ is known. And the matrix

Λ =
∞

∑
j=1

1
j

[
j−1

∑
k=0

(I−F)k⊗
[
(I−F) j−1−k

]′
]

is supposed to use in the sandwich form to get the asymptotic covariance matrix of

Ã.

While, the later mentioned estimation approach is not as applicable as Â pro-

posed in (3.2.12). First of all, an infinite sum is involved in Ã as well as in Λ.

Hence, the calculation of Ã and its asymptotic covariance matrix requires one to

truncate the infinite sum in practice. Clearly, the truncation rules for Ã and Λ should

be quite different. Unfortunately, there is no clear guideline as to how to truncate the

infinite sum either in Ã or Λ. If too few terms are used, the truncation error would

be quite large, especially for the estimation of the asymptotic covariance matrix. If

too many terms are used, which is necessary when the discrete model in (3.2.3) is

very stationary, the computational cost might be considerably high. Moreover, once

the truncation is done, Ã will not be a consistent estimation any more. So is the

estimation of asymptotic covariance matrix. This highlights the advantage of the

proposed estimation Â in (3.2.12) which only involves a summation of finite order.

And, Â is always a consistent estimation as we will discussed later in this section.

Secondly, the preferred representation of A in (3.2.8) (also Â in (3.2.12)) has

a wider circle of convergence comparing to that of representation (3.2.14) (Ã in

(3.2.15)), namely,

{
F : spec{F}∩R−0 =∅

}⊃{F : eigenvalues of (I−F) have modulus less than unity} .

This is a significant advantage of representations of A in (3.2.8) and Â in (3.2.12),

which makes them much more applicable in practice. For example, let one eigen-

value of A is the imaginary number iπ/(2h), which satisfies the Assumption 1.

Then, the corresponding eigenvalue of F is exp{iπ/2}= i, the imaginary unit. Con-

sequently, (I−F) has one eigenvalue whose modulus is equal to 2, which makes
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the representation of A in (3.2.14) undefined. However, in this case, we may still

have spec{F}∩R−0 =∅. Hence, the representation of A in (3.2.8) works very well.

Moreover, even if all the eigenvalues of (I−F) have modulus less than 1, some

eigenvalues of
(
I− F̂

)
may lie outside the domain corresponding to the circle of

convergence - as it inevitably will for some fitted values, even though the prob-

ability of being in that domain tends to zero. For example, assume that one F’s

eigenvalue is 0.1. Hence, the modulus of the corresponding eigenvalue of (I−F)

is 0.9. Therefore, representation of A in (3.2.14) is well-defined. However, the es-

timated eigenvalue of F̂ could be 0.1i, which makes the corresponding eigenvalue

of
(
I− F̂

)
has modulus

√
1+0.01 > 1. The estimation Ã in (3.2.15) diverges to in-

finity. Not surprisingly, we still have spec{F̂}∩R−0 =∅. As a result, Â in (3.2.12)

provide us a valid estimation.

When spec{F̂} ∩R−0 = ∅, both Â in (3.2.12) and Ã in (3.2.15) fail to work.

The reason for the failure of Â is that some integrations in f̂ j, for j = 1, · · · ,m, are

infinity.

Based on the above argument, we may conclude that Â works very well as long

as Ã works, but not vice versa.

Before leaving this section, we establish the consistency of the proposed esti-

mation Â in (3.2.12). Notice the fact that eigenvalues under ordering are continuous

functions of the elements of the matrix (the ordering rule is discussed in Section

3). Hence, the eigenvalues of F̂ ,
{

λs
(
F̂

)}m
s=1, converge to the eigenvalues of F ,

{λs (F)}m
s=1, in probability, as long as F̂

p−→ F . Since Ĉ j, j = 1, · · · ,m, in rep-

resentation (3.2.13) is continuous on
{

λs
(
F̂

)}m
s=1, and f̂ j, for j = 1, · · · ,m, are

continuous functions of
{

Ĉ j
}m

j=1, it is straightforward to get the consistency of Â.

We collect these results in the following theorem.

Theorem 3.2.1 Let Â be defined in (2.3.10), Assumption 1 is hold, h is fixed and

T → ∞. If F̂
p−→ F , then

Â
p−→ A
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3.3 Asymptotic Theory for Stationary Model

This Section develops a limit theory for Â in (3.2.12) under a stationary condition.

Assumption 2: The eigenvalues in A have negative real parts.

This is one commonly used condition that ensures the discrete time model (3.2.2)

corresponding to the continuous time model (3.2.1) to be covariance stationary, as

all the eigenvalues of F = exp(Ah) have modulus less than 1. In this case, A is

known as the mean reversion matrix. Notice that A is non-singular. The discrete

model (3.2.2) can be rewritten as (see Phillips (1972))

Xt = eAhXt−1 +A−1
[
eAh− I

]
b+ εt (3.3.1)

= FXt−1 +g+ εt

where εt are MDS(0,Ω).

The ML/LS estimators of the coefficients in the discrete model (3.3.1),
[
F̂ , ĝ

]

in (3.2.4), or F̂ in (3.2.5) which is obtained under the prior knowledge of b = 0,

are also supposed to use. Under constant initial condition, both these two kinds of

estimators have the following standard limit theory (see Hannan (1970, p.329)).

Lemma 3.3.1 When Assumption 2 is true, h is fixed and sample size T goes to in-

finity, we have

(a) F̂ a.s−→ F,

(b)
√

n
{

Vec
(
F̂

)−Vec(F)
} d−→ N (0,VF)

where Vec(F) denotes row stacking of F, VF = Ω⊗(VX)−1, VX =Var (Xt)= ∑∞
i=0 F iΩF

′i

and Ω = E (εtε ′t ).

Before reporting the limit theory of Â in (3.2.12), we introduce some notations.

For any matrix Ψ, (Ψ)k j denotes the matrix formed by deleting row k and column j

from Ψ. Let ad j (Ψ) denote the adjoint of Ψ which is a matrix whose row k, column

j element is given by (−1)k+ j
∣∣∣(Ψ) jk

∣∣∣, where
∣∣∣(Ψ)k j

∣∣∣ is the matrix’s determinant.
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Theorem 3.3.1 Let Assumption 1 and 2 hold. When h is fixed and sample size T

goes to infinity, we have

h
√

nVec
(
Â−A

) d−→ N
(
0,ΓVFΓ′

)
, (3.3.2)

where

Γ =

{
m

∑
j=1

Vec
[
(I−F) j−1

]
z′jL−1H−

m

∑
j=2

j−2

∑
s=0

f j

{
(I−F)s⊗

[
(I−F) j−2−s

]′}
}

,

z′j =
[

∂ f j
∂Cm

∂ f j
∂Cm−1

· · · ∂ f j
∂C1

]
, for j = 1, · · · ,m, with f j taking the forms as formu-

lae (3.2.9), (3.2.10) and (3.2.11), L =




1 1 · · · 1

1 2 · · · 2m−1

...
... . . . ...

1 m · · · mm−1




is a nonsingular matrix,

H =




[Vec(H1)]
′

...

[Vec(Hm)]′




with Hz = [ad j (zI− (I−F))]′ for z = 1, · · · ,m, and VF is given

in Lemma 3.3.1.

Remark 3.3.1 In the appendix, we give a proof of

Γ = Im2 +O(h), (3.3.3)

where Im2 is a m2×m2 identity matrix. Therefore, when h is comparatively small, Γ

is nonsingular and close to Im2 . Consequently, asymptotic covariance matrix ΓVFΓ′

is positive definite. And we can safely claim that the formula (3.3.2) provides a

non-degenerated asymptotic distribution for every elements of h
√

nVec
(
Â−A

)
.

Remark 3.3.2 The analytic expression for the asymptotic covariance in Theorem

(3.3.1) involves only summations of finite order, making the implementation straight-

forward. From the consistency of Ĉ j, j = 1, · · · ,m, and F̂, we could get a consistent
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estimation of Γ as following

Γ̂ =

{
m

∑
i=1

Vec
[(

I− F̂
)i−1

]
ẑ′iL−1Ĥ−

m

∑
j=2

j−2

∑
s=0

f̂i

{(
I− F̂

)s⊗
[(

I− F̂
) j−2−s

]′}
}

(3.3.4)

where ẑ′j and f̂ j are obtained from z′j and f j by replacing
{

C j
}m

j=1 with
{

Ĉ j
}m

j=1.

Certain low dimensional models, such as m = 1,2,3, always attract consider-

able interests in practical applications. In order to facilitate the use of Theorem

3.3.1 in low dimensional cases, the following two Corollary provide a more explicit

expression of the asymptotic covariance matrix, ΓVFΓ′, in the cases where m = 2,3,

respectively. The results can be derived directly by straightforward calculations

based on the rules given in Theorem 3.3.1. So, the proofs are omitted. For the case

m = 1, the long time span asymptotics have already been well studied (see, Tang

and Chen (2009)).

Corollary 3.3.2 When M = 2, the matrix Γ in the asymptotic covariance matrix

defined in Theorem 3.3.1 takes the following form

Γ = Vec [ϕ1I +ϕ3 (I−F)]∆1 +Vec [ϕ2I +ϕ4 (I−F)]∆2− f2I4,

where

ϕ1 =
∫ 1

0

−C2S2

(1+C1S +C2S2)2 dS, ϕ2 =
∫ 1

0

S +C1S2

(1+C1S +C2S2)2 dS,

ϕ3 =
∫ 1

0

S

(1+C1S +C2S2)2 dS, ϕ4 =
∫ 1

0

S2

(1+C1S +C2S2)2 dS,

f2 =
∫ 1

0

−1
1+C1S +C2S2 dS, C1 =−tr(I−F), C2 = det(I−F),

∆1 = ( 1 0 0 1 ), ∆2 =−
(

1−F(2,2) F(2,1) F(1,2) 1−F(1,1)

)
,

and I and I4 denote 2× 2, 4× 4 identity matrix, respectively. F(k, j) denotes the

elements of F in row k, column j.
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Corollary 3.3.3 When m = 3, the matrix Γ in the asymptotic covariance matrix

defined in Theorem 3.3.1 takes the form of

Γ = Vec
[
ξ1I +ξ4 (I−F)+ξ7 (I−F)2

]
∆3 +Vec

[
ξ2I +ξ5 (I−F)+ξ8 (I−F)2

]
∆4

+Vec
[
ξ3I +ξ6 (I−F)+ξ9 (I−F)2

]
∆8− f2I9− f3

[
1

∑
s=0

{
(I−F)s⊗

[
(I−F)1−s

]′}
]

,

where

ξ1 =
∫ 1

0

−C3S3

(1+C1S +C2S2 +C3S3)2 dS, ξ2 =
∫ 1

0

−C3S4

(1+C1S +C2S2 +C3S3)2 dS,

ξ3 =
∫ 1

0

(1+C1S +C2S2)S2

(1+C1S +C2S2 +C3S3)2 dS, ξ4 =
∫ 1

0

−(C2 +C3S)S3

(1+C1S +C2S2 +C3S3)2 dS,

ξ5 =
∫ 1

0

(1+C1S)S2

(1+C1S +C2S2 +C3S3)2 dS, ξ6 =
∫ 1

0

(1+C1S)S3

(1+C1S +C2S2 +C3S3)2 dS,

ξ7 =
∫ 1

0

S2

(1+C1S +C2S2 +C3S3)2 dS, ξ8 =
∫ 1

0

S3

(1+C1S +C2S2 +C3S3)2 dS,

ξ9 =
∫ 1

0

S4

(1+C1S +C2S2 +C3S3)2 dS,

C1 =−tr(I−F), C2 =
1
2

{
[tr(I−F)]2− tr

[
(I−F)2

]}
, C3 =−det(I−F),

∆3 = ( 1 0 0 0 1 0 0 0 1 ), ∆4 = {−tr(I−F)∆3 +∆3[(I−F)⊗ I]},

∆5 = ∆3

[
(I−F)2⊗ I

]
, ∆6 =

1
2

{
−tr (I−F)2 ∆3−2tr(I−F)∆3[(I−F)⊗ I]

}
,

∆7 =
1
2

[tr(I−F)]2 ∆3, ∆8 = ∆5 +∆6 +∆7,

f2 =
∫ 1

0

−1−C1S
1+C1S +C2S2 +C3S3 dS, f3 =

∫ 1

0

−S
1+C1S +C2S2 +C3S3 dS,

and I and I9 denote the 3×3, 9×9 identity matrix, respectively.

If we are willing to assume that the mean reversion matrix A has distinct eigen-

values, the asymptotic covariance matrix representation could be much simplified,

and the limit distribution of the eigenvalues could be derived.
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Assumption 3: The matrix A is diagonalizable with distinct eigenvalues.

Proposition 3.3.1 Under Assumption 1 and 3, F = eAh is diagonalizable with dis-

tinct eigenvalues.

Before reporting the limit theory when A has distinct eigenvalues, we intend to

introduce a specific ordering rule for eigenvalues and a specific normalization rule

of eigenvectors, in order to make eigen-decomposition of matrix unique. Firstly, we

let F’s eigenvalues {λ1, · · · ,λm} be ordered according to

Re(λ1)≥ ·· · ≥ Re(λm).

Then, any complex eigenvalues with Re
(
λ j

)
= Re

(
λ j+1

)
will be ordered based on

the absolute value of their imaginary parts as

∣∣Im(λ j)
∣∣≥

∣∣Im(λ j+1)
∣∣ .

Finally, for complex conjugate pairs (λk,λk+1), we order them based on the sign

of the imaginary part, i.e., Im(λm) > 0 followed by Im(λm+1) < 0. This rule leads

to a unique ordering of the eigenvalues. Let p j, for j = 1, ...,m, are eigenvectors

corresponding to eigenvalues λ j, respectively. The normalization rule

p′j p j = 1

makes each corresponding eigenvector unique. As a result, F can be uniquely de-

composed as

F = Pdiag{λ1, · · · ,λm}Q,

where P =
[

p1 · · · pm

]
, Q = P−1. The eigenvalues of A would be {η1, · · · ,ηm}=

1
h {ln(λ1) , · · · , ln(λm)}.

Theorem 3.3.4 Let Assumption 1, 2, and 3 hold. When h is fixed and sample size

T goes to infinity, we have h
√

nVec
(
Â−A

) d−→ N (0,ΓVFΓ′) as proved in Theorem
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3.3.1, but with a simplified representation of Γ as

Γ =
(
P⊗Q′)Λ−1 (

Q⊗P′
)

where Λ = diag{Λ1, · · · ,ΛM}, and Λk, for k = 1, · · · ,m is a m×m diagonal matrix

whose (k,k)th element is equal to eηkh, and (τ,τ)th element with τ 6= k is equal to
(
eητ h− eηkh)/ [(ητ −ηk)h].

Remark 3.3.3 Notice that
(
eητ h− eηkh)/ [(ητ −ηk)h] = 1 +O(h), and eηkh = 1 +

O(h). Hence,

Γ =
(
P⊗Q′)Λ−1 (

Q⊗P′
)

=
(
P⊗Q′) Im2

(
Q⊗P′

)
+O(h) = Im2 +O(h),

Therefore, Γ is nonsingular when h is comparatively small.

Remark 3.3.4 Notice the fact that eigenvalues and eigenfunctions are continuous

functions of elements of matrix. The following estimation, which is easy to get in

practice, is consistent, as long as F̂ is consistent.

Γ̂ =
(
P̂⊗ Q̂′) Λ̂−1 (

Q̂⊗ P̂′
)
,

where Λ̂ is obtained by replacing ηk with η̂k = 1
h ln

(
λ̂k

)
for k = 1, · · · ,m,

{
λ̂1, · · · , λ̂m

}

are the ordered eigenvalues of F̂ , P̂ =
[

p̂1 · · · p̂m

]
with p̂ j being the normalized

eigenvector associated with the corresponding eigenvalues, Q̂ = P̂−1.

Using the technics proposed by Phillips (1982), we may also derive the limit

distribution of the eigenvalues and the joint limit distribution of the matrix and its

eigenvalues.

Lemma 3.3.2 Assume that the eigenvalues of F in (3.3.1) have modulus less than

unity and F is diagonalizable with distinct eigenvalues. Let λ = (λ1, · · · ,λm)′ be

the ordered eigenvalues of F. When h is fixed and T → ∞,
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(a)
√

T
(

λ̂ −λ
)

d→ N
(
0,GVFG′) ,

(b)

√
T




λ̂ −λ

Vec
(
F̂−F

)


 d→ N

(
0,RVFR′

)

where λ̂ =
(

λ̂1, · · · , λ̂m

)′
are the ordered eigenvalues of F̂, G is an m×m2 matrix

whose jth row is
(

p j)′⊗ p′j with
(

p j)′ and p j denoting the jth row of P−1 and the

jth column of P, respectively, and R′ = [G′, Im2].

The same approach in the proof of Lemma 3.3.2 can be applied to obtain the

limit distribution of the eigenvalues of Â, and the joint limit distribution of Â and its

eigenvalues. The results are reported in the following theorem.

Theorem 3.3.5 Under Assumptions 1-3, let η =(η1, · · · ,ηm)′=(lnλ1/h, · · · , lnλm/h)′

be the eigenvalues of A, and {λ1, · · · ,λm} be the ordered eigenvalues of F. When h

is fixed and T → ∞,

(a)

h
√

T (η̂−η) d→ N
(
0,GΠG′) ;

(b)

h
√

T




η̂−η

Vec
(
Â−A

)


 d→ N

(
0,RΠR′

)
,

where η̂ = (η̂1, · · · , η̂m)′ =
(

ln λ̂1/h, · · · , ln λ̂m/h
)′

,
(

λ̂1, · · · , λ̂m

)
are the ordered

eigenvalues of F̂, Π = ΓVFΓ′ defined in Theorem 3.3.4, and matrices G and R are

as defined in Lemma 3.3.2.

3.4 Asymptotic Theory for Non-Stationary Model

This section concentrates on developing limit theory for Â under a non-stationary

situation. We let A = 0m×m, a zero m×m matrix. Therefore the continuous time
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model (3.2.1) changes to be

dX(t) = (b)dt +Σ1/2dW (t). (3.4.1)

The exact discrete time representation should be

Xt = Xt−1 +bh+ εt (3.4.2)

= FXt−1 +g+ εt ,

where F = I, g = bh, εt = (ε1t , · · · ,εmt)
′ is a Gaussian MDS (0,Ω = Σh).

Setting Zt =
[
X
′
t ,1

]′
, the LS estimator of [F,g] is

[
F̂ , ĝ

]
=

[
n−1

n

∑
t=1

XtZ
′
t−1

]
×

[
n−1

n

∑
t=1

Zt−1Z
′
t−1

]−1

. (3.4.3)

From the functional central limit theory (FCLT), we may get

T−1/2
bTrc
∑
t=1

εt ⇒ B1 (r)

where r ∈ [0,1], B1 (r) is m-vector Brownian motion with covariance Σh, bTrc de-

notes the integer part of Tr, the symbol ”⇒” signifies weak convergence of asso-

ciated probability measures and the limit is taken as the sample size T ↑ ∞. Here

and elsewhere in the paper, to achieve notational economy we frequently eliminate

function arguments and write, for example, B1 in place of B1 (r) and
∫ 1

0 B1 in place

of
∫ 1

0 B1 (r)dr.

We first discuss the limit theory of
[
F̂ , ĝ

]
when g = bh = 0. We use the following

functional introduced by Park and Phillips (1988):

f (B,M,Θ) =
(∫ 1

0
dBM′+Θ′

)(∫ 1

0
MM′

)−1

where B is vector Brownian motion, M is a process with continuous sample paths
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such that
∫ 1

0 MM′ > 0 a.s., and Θ is a (possibly random) matrix of conformable

dimension. As in Theorem 3.2 of Park and Phillips (1988) we find that:

T
(
F̂−F

)⇒ f (B1,B∗1,421) (3.4.4)

where B∗1 = B1−
∫ 1

0 B1, 421 = 0m×m as εt are Gaussian MDS.

For the case in which g = bh 6= 0, we define µ1 = g/(g′g)1/2 = b/(b′b)1/2 and

let U = [µ1,U2] be an orthogonal matrix of dimension m×m. We further define

B1 = U ′
2B1 and 421 = U ′

2421 = 0m×m. From Theorem 3.6 of Park and Phillips

(1988) we have that

T
(
F̂−F

)⇒ f
(

B1,B∗∗1 ,421

)
U ′

2 (3.4.5)

T 3/2 (
F̂−F

)
µ1 ⇒

(
g′g

)−1/2 f (B1,P,δ ) (3.4.6)

where B∗∗1 = B1−4
(∫ 1

0 B1− (3/2)
∫ 1

0 sB1

)
+6r

(∫ 1
0 B1−2

∫ 1
0 sB1

)
, δ = 01×m, and

P = r−1/2−
(∫ 1

0 sB′1− (1/2)
∫ 1

0 B′1
)(∫ 1

0 B1B′1−
∫ 1

0 B1
∫ 1

0 B′1
)−1 (

B1−
∫ 1

0 B1

)
.

By using the reported limit theory in discrete time model, the following theorem

shows the asymptotic distribution of ML/LS estimator Â defined in 3.2.12.

Theorem 3.4.1 Assume X (t) follows the model (3.4.1). When h is fixed and T →∞,

we have:

(a) when b = 0,

T h
(
Â−A

) d−→ f (B1,B∗1,421) ,

(b) when b 6= 0,

T h
(
Â−A

) d−→ f
(

B1,B∗∗1 ,421

)
U ′

2,

T 3/2h
(
Â−A

)
µ1

d−→ (
g′g

)−1/2 f (B1,P,δ ) ,

where f (B1,B∗1,421) , f
(

B1,B∗∗1 ,421

)
U ′

2 and (g′g)−1/2 f (B1,P,δ ) are defined as

(3.4.4), (3.4.5) and (3.4.6), respectively, g = bh and µ1 = g/(g′g)1/2 = b/(b′b)1/2.

Remark 3.4.1 When b 6= 0, T h
(
Â−A

) d−→ f
(

B1,B∗∗1 ,421

)
U ′

2 give the asymp-
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totic theory for all linear combinations of the matrix T h
(
Â−A

)
. Note that only

T h
(
Â−A

)
µ1 is degenerate in the limit and the asymptotic theory for these vectors

is given by T 3/2h
(
Â−A

)
µ1

d−→ (g′g)−1/2 f (B1,P,δ ) .

Remark 3.4.2 For the case in which m = 1, the results in Theorem 3.4.1 turn out

to be:

T
(
Â−A

) d−→
∫ 1

0 W (r)dW (r)−W (1)
∫ 1

0 W (r)dr
∫ 1

0 [W (r)]2 dr−
{∫ 1

0 W (r)dr
}2 , when b = 0,

T 3/2h
(
Â−A

) d−→ N
(

0,
12
b2h

Σ
)

, when b 6= 0,

where W (r) is 1-dimensional standard Brownian motion.

Theorem 3.4.2 Assume X (t) follows the model (3.4.1) and F̂ is defined as in (3.4.3).

Let
{

λ̂ j

}m

j=1
are ordered eigenvalues of F̂, and

{
η̂ j = ln

(
λ̂ j

)
/h

}m

j=1
are corre-

sponding eigenvalues of Â. When h is fixed and T → ∞,

(a) when b = 0,

T

{
m

∑
j=1

λ̂ j−m

}
d−→ ∆ ·Vec [ f (B1,B∗1,421)] ,

T h
m

∑
j=1

η̂ j
d−→ ∆ ·Vec [ f (B1,B∗1,421)] ,

(b) when b 6= 0,

T

{
m

∑
j=1

λ̂ j−m

}
d−→ ∆ ·Vec

[
f
(

B1,B∗∗1 ,421

)
U ′

2

]
,

T h
m

∑
j=1

η̂ j
d−→ ∆ ·Vec

[
f
(

B1,B∗∗1 ,421

)
U ′

2

]
,

where ∆ is a row vector of dimension m2 whose 1st , [m +2]th, · · · , [(m−1)m +m]th

elements are 1 and 0 otherwise, f (B1,B∗1,421) , f
(

B1,B∗∗1 ,421

)
U ′

2 are defined as

in Theorem 3.4.1.
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Remark 3.4.3 When b = 0 is a apriori knowledge, the discrete model 3.4.2 changes

to be a AR(1) model without drift. Hence, the LS estimator of F would be

F̂ =

[
n

∑
t=1

XtX
′
t−1

]
×

[
n

∑
t=1

Xt−1X
′
t−1

]−1

.

From Park and Phillips (1988), we have

T
(
F̂−F

) d−→ f (B1,B1,421) .

The approach used in this section can be applied to this simple case easily. And,

similar results should be obtained.

3.5 An Empirical Illustration

To illustrate the implementation of the new theory, a multivariate Ornstein–Uhlenbeck

(OU) model is conducted to describe the joint movement over time of logarithmic

daily realized volatility (RV) of Pound, Euro and Yen exchange rates, all against the

US dollar. The logarithmic daily RV, X = (X1,X2,X3)
′, is sampled from January 4,

1999 to August 31, 2008. The sample interval (h) is 1/252 and the sample size is

2444. The RV data are obtained from The Oxford-Man Institute’s “realized library”.

The logarithmic transformation is applied to RV to induce Gaussianity (Andersen,

et al, 2001). The time series plot of the logarithmic daily RV data is given in Fig. 1.

The OU model can be expressed as

dX(t) = K (θ −X(t))dt +Σ1/2dW (t)

= (AX(t)+B)dt +Σ1/2dW (t),

where A = −K , B = K θ are 3× 3 and 3× 1 matrices. The exact discrete time

representation is

Xt = FXt−1 +g+ εt ,where F = eA/252.
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Figure 3.1: Time series plot of the logarithmic daily RV of Pound, Euro and Yen
exchange rates, all against the US dollar, from January 4, 1999 to August 31, 2008.

The ML/LS estimates of F , F̂ , is given by

F̂ =




0.5155 0.0997 −0.0186

−0.1032 0.7847 −0.0393

−0.0669 0.0300 0.6699




.

Using (3.2.12) with F̂ calculated as in (3.2.4), the estimated K is

ˆK =




163.76(10.55) −39.06(7.87) 6.72(5.92)

41.02(11.41) 58.02(8.17) 14.10(6.29)

27.45(12.34) −12.29(9.03) 100.99(6.51)




. (3.5.1)

From Theorem 3.3.3, h
√

TVec
(
Â−A

) d→ N (0,ΓVFΓ′). By using the explicit ex-

pression of Γ given in Theorem 3.3.3, the consistent estimator of the asymptotic

covariance of Â, Γ̂V̂ ′
F Γ̂/

(
T h2), is reported in Table 1. The estimated standard errors

of all the elements in ˆK are reports in parenthesis in (3.5.1).

Table 1. Estimated Covariance Matrix of Vec
(

ˆK −K
)

dKi j denotes the i jth element of the matrix ˆK −K .
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dK11 dK12 dK13 dK21 dK22 dK23 dK31 dK 32 dK33

dK11 111.38 -58.48 -9.25 90.59 -50.00 -7.30 70.03 -35.48 -9.74

dK12 -58.48 61.98 -12.30 -46.12 49.01 -9.68 -35.62 37.57 -7.14

dK13 -9.25 -12.30 35.08 -7.21 -9.74 27.56 -5.56 -7.46 21.20

dK21 90.59 -46.12 -7.21 130.27 -66.45 -10.35 87.28 -44.28 -7.25

dK22 -50.00 49.01 -9.74 -66.45 66.79 -14.03 -44.49 46.91 -12.76

dK23 -7.30 -9.68 27.56 -10.35 -14.03 39.59 -6.92 -9.30 26.38

dK31 70.03 -35.62 -5.56 87.28 -44.49 -6.92 152.15 -77.21 -12.28

dK32 -35.48 37.57 -7.46 -44.28 46.91 -9.30 -77.21 81.60 -16.10

dK33 -9.74 -7.14 21.20 -7.25 -12.76 26.38 -12.28 -16.10 42.42

The ordered eigenvalues of F̂ are
(

λ̂1, λ̂2, λ̂3

)
= (0.7386,0.6705,0.561), and

the eigenvalues of ˆK are

−η̂ =−
(

ln
(

λ̂1

)
, ln

(
λ̂2

)
, ln

(
λ̂3

))
/h

= (76.36,100.71,145.68) .Table 2 reports the estimated asymptotic covariance ma-

trix of −η̂ and Table 3 the 95% confidence intervals of −η .

The empirical results may be summarized as follows. First, in all three series,

RV at period t significantly depends on RV at period t−1, featured by large values

of t-ratio (15.5, 7.1 and 15.5). Second, all elements, with the exception two, in ˆK

is statistically significant. The two insignificant elements in K are K13 and K32,

suggesting that the RV of Pound at period t does not significantly depend on the RV

of Yen at period t− 1 and the RV of Yen at period t does not significantly depend

on the RV of Euro at period t − 1. Third, since the 95% confidence intervals of

η all exclude 0, suggesting strong evidence against a unit root in the three series.

Fourth, the point estimates in η̂ are very large, implies strong mean reversion in all

the series. In fact, using these point estimates, we can calculate the estimated half

lives of a shock to volatility for the three exchange rates, which are 0.1089, 0.0826,

and 0.0571 months for Pound, Euro and Yen, respectively. The estimated half lives
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are short.

Table 2. Estimated Covariance Matrix of −η̂

−η̂1 −η̂2 −η̂3

−η̂1 18.4334 -3.7412 -4.3002

−η̂2 -3.7412 28.0748 -4.1163

−η̂3 -4.3002 -4.1163 53.3981

Table 3. 95% Confidence Intervals of −η

−η1 −η2 −η3

Confidence Interval (67.95,84.78) (90.33,111.10) (131.36,160.01)

3.6 Conclusions

This paper derives the asymptotic distribution of the ML/LS estimator of the mean

reversion matrix in a multivariate diffusion model with a linear drift and a constant

diffusion when only discretely sampled data are available. Both the stationary case

and the unit root case are examined. The limit theory gives an analytic expression

of the asymptotic covariance matrix, for which a consistent estimator is provided

thereby facilitating inference about the mean reversion matrix. Our method replies

on the asymptotic theory of the ML/LS estimator of the exact discrete time VAR

model.

The transformation from the continuous time model to the exact discrete system

involves a nonlinear matrix logarithmic mapping. The mean reversion matrix is

shown to be identified under a weak condition. When identification is achieved, our

method also utilizes a novel explicit relationship between the AR coefficient matrix

and the mean reversion matrix. This relationship is a polynomial of an finite order,

facilitating the use of the delta method and the calculation of the covariance matrix

in the limit distribution.

Both in the stationary case and in the unit root case, we develop the limit theory

of the ML/LS estimator of the mean reversion matrix by using the limit distribution
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of the estimated AR coefficient matrix only. The expression of the asymptotic co-

variance matrix in stationary case is a little complicated. Different situations have

been discussed to get an explicit representation of the asymptotic covariance ma-

trix. For models of low dimension, such as m ≤ 3, using our framework, the mean

reversion matrix is shown to have a straightforward expression as a continuously

differentiable mapping of the AR coefficient matrix.

The new theory is illustrated in an empirical application to a multivariate OU

model for the logarithmic daily realized volatility (RV) of Pound, Euro and Yen

exchange rates. Using our method, we are able to obtain the estimate of the asymp-

totic covariance of the mean reversion matrix. The statistical inferences, conducted

on these covariances, suggest that the three series are stationary and revert to their

means in fast rates, and that the RV of the Pound does not depend on the lagged RV

of the Yen and the RV of the Yen does not depend on the lagged RV of the Yen.

Although in the present paper we only develop the asymptotic theory for multi-

variate diffusion models with a linear drift and a constant diffusion, our method is

generally applicable to continuous time models with a linear drift but with a more

flexible diffusion function and to continuous time models which are driven by Lévy

process. In this case, OLS may be applied to estimate the AR coefficient matrix

of the exact discrete time system. As long as the asymptotic theory of the OLS

estimator is available, our method can be applied in the same manner.
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Chapter 4 Double Asymptotics for Explosive

Continuous Time Models

4.1 Introduction

Continuous time models driven by the Brownian motion, i.e., diffusion processes,

have found wide applications in science and social science. An important property

of diffusion processes is that, under some smoothness condition on the drift func-

tion and the diffusion function, the sample path is continuous everywhere. This

restriction is often found to be too strong in applications. There are different ways

to introduce discontinuity into the continuous time models. For example, Poisson

processes, which allow for a finite number of jumps in a finite time interval, have

been used to model jumps in finance (Merton, 1976). In recent years, however,

strong evidence of the presence of infinite activity jumps have been documented in

finance; see, for example, Aı̈t-Sahalia and Jacod (2011). Consequently, continuous

time Lévy processes have become increasingly popular to model discontinuity in

financial time series. Not surprisingly, various Lévy processes have been developed

in the asset pricing literature (see, for example, Barndorff-Nielsen (1998), Madan,

Carr and Chang (1998), Carr and Wu (2003)).

Independent to the development in continuous time modelling, there has been a

long-standing interest in statistics for developing the asymptotic theory for explo-

sive processes. Two of the earliest studies are White (1958) and Anderson (1959)

where the asymptotic distribution of the autoregressive (AR) coefficient was derived

when the root is larger than unity. Phillips and Magdalinos (2007, PM hereafter)
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has provided an asymptotic theory and an invariance principle for mildly explosive

processes where the root is moderately deviated from unity. Magdalinos (2011) ex-

tended the result to the case where the error is serially dependent. Anu and Horvath

(2007) extended the result to the case where the error is infinite. In economics,

there has recently been a growing interest on using explosive processes to model

asset price bubbles. Phillips et al (2011) has developed a recursive method to detect

bubbles in the discrete time AR model. Phillips and Yu (2011) applied the method

to analyze the bubble episodes in various markets in the U.S. and documented the

bubble migration mechanism during the subprime crisis.

All the above cited studies on explosiveness focus exclusively on discrete time

models. Explosive behavior can also be described using continuous time models.

Let T , h, N be the sample size, the sampling interval, and the time span of the data,

respectively. Obviously T = N/h. While the asymptotic theory in discrete time

models always corresponds to the scheme of T → ∞, how to develop the asymp-

totic theory in continuous time is less a clear cut because T →∞ is achievable from

different ways. In the literature, three alternative sampling schemes have been dis-

cussed (see, for example, Jeong and Park (2011) and Zhou and Yu (2011)), namely:

N → ∞, h is fixed; (A1)

N → ∞, h→ 0; (A2)

h→ 0, N is fixed. (A3)

The main purpose of the present paper is to develop the double asymptotic the-

ory under scheme (A2) for explosive continuous time models driven by Lévy pro-

cesses, in which N → ∞ and h → 0 simultaneously. In the special case of Brown-

ian motion driven continuous time models, three alternative double asymptotics are

considered. In the first case, N →∞ and h→ 0 simultaneously. In the second case, a

sequential asymptotic treatment is considered, i.e., N →∞ is followed by h→ 0. In

the third case, another sequential asymptotic treatment is considered wherein, h→ 0
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is followed by N → ∞. We show that the asymptotic distributions under these three

treatments are the same. Different from PM, in our double asymptotic distribution,

the initial condition, either fixed or random, appears in the limiting distribution.

The paper is organized as follows. Section 2 develops the double asymptotic

distribution of the persistent parameter in the explosive Ornstein-Uhlenbeck (OU)

process driven by Lévy processes with N → ∞ and h → 0 simultaneously. Section

3 develops the sequential asymptotic distribution where N → ∞ is followed by h→
0 for the explosive Brownian motion driven OU process. Section 4 develops the

sequential asymptotic distribution of the same process when h → 0 is followed by

N → ∞. Section 5 concludes. Appendix collects the proof of the theoretical results.

4.2 Simultaneous Double Asymptotics for Explosive

Lévy Processes

Consider the following Lévy-driven OU process:

dy(t) = κ (µ− y(t))dt +σdL(t), y(0) = y0, (4.2.1)

where (L(t))t≥0 is a Lévy process defined on
(
Ω,F ,{F}t≥0 ,P

)
with L(0) = 0 a.s.

and satisfies the following three properties:

1. Independent increments: for every increasing sequence of times t0, · · · , tn the

random variables L(t0),L(t1)−L(t0), · · · ,L(tn)−L(tn−1) are independent;

2. Stationary increments: the law of L(t +h)−L(t) is independent of t.

3. Stochastic continuity: for all ε > 0, limh→0 P(|L(t +h)−L(t)| ≥ ε) = 0. For

a given t, the probability of seeing a jump at t is zero. In other words, jumps

happen at random times.

Every Lévy process has a unique modification which is càdlàg (right continuous

with left limits) and which is also a Lévy process. We shall therefore assume that

77



our Lévy process has these properties.

In the special case when (L(t))t≥0 is Brownian motion, the stochastic process

(4.2.1) is interpreted as an Itô equation with solution {y(t) , t ≥ 0} satisfying

y(t) = e−κhy(0)+ µ
[
1− e−κh

]
+σ

∫ t

0
e−κ(t−s)dW (s),

where W (t) is a standard Brownian motion and the integral is defined as the L2

limit of approximating Rieman-Stieltjes sums. For the second-order driving Lévy

process, {y(t) , t ≥ 0} can be defined in the same way. And {y(t) , t ≥ 0} can also

be defined pathwise as a Rieman-Stieltjes integral, when the paths of (L(t))t≥0 are

almost surely of finite variation on compact intervals (Sato, 1999, Theorem 21.9).

When y(t) is assumed to be observed at discrete points in time, say t = 0,1,2, . . . ,T ,

the exact discrete time model corresponding to (4.2.1) is

yth = e−κhy(t−1)h + µ
[
1− e−κh

]
+σ

∫ th

(t−1)h
e−κ(th−s)dL(s).

By the properties of Lévy process, the sequence of
{

σ
∫ th
(t−1)h e−κ(th−s)dL(s)

}T

t=1

consists of independent and identically distributed (iid) random variables.

The characteristic function of (L(t))t≥0 is E (exp{isL(t)}) = exp{−tψ (s)} ,

where ψ (·) :R→C is referred to as the Lévy exponent of (L(t))t≥0. For the square-

integrable process (L(t))t≥0, it is known that

iψ ′ (0) = E [L(1)] =
E [L(t)]

t
, (4.2.2)

ψ ′′ (0) = Var [L(1)] =
Var [L(t)]

t
. (4.2.3)

Therefore,

E
(

σ
∫ th

(t−1)h
e−κ(th−s)dL(s)

)
= σ iψ ′ (0)

1− e−κh

κ
,

and

Var
(

σ
∫ th

(t−1)h
e−κ(th−s)dL(s)

)
= σ2ψ ′′ (0)

1− e−2κh

2κ
.
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Let

gh =
[

µ +
σ iψ ′ (0)

κ

][
1− e−κh

]
,

σ

√
ψ ′′ (0)

1− e−2κh

2κ
εth = σ

∫ th

(t−1)h
e−κ(th−s)dL(s)−σ iψ ′ (0)

1− e−κh

κ
.

We rewrite the exact discrete time model corresponding to (4.2.1) as

yth = ah(κ)y(t−1)h +gh +σ

√
ψ ′′ (0)

1− e−2κh

2κ
εth, y0h = y0, (4.2.4)

where ah(κ) = e−κh, {εth}T
t=1

iid∼ (0,1) whose distribution depends on the speci-

fication of the Lévy measure of L(t). It should be pointed out that {εth}T
t=1 is a

martingale-difference array, because in general the distribution of εth depends on

the sampling interval h, although the first two moments of εth do not.

In the paper, we focus our analysis on the explosive case, κ < 0, which means

that ah(κ) > 1. The initial value, y0h, may be a random variable, whose distribution

is fixed and independent of the sampling interval h, or a constant. The least squares

(LS) estimators of ah(κ) and κ are, respectively,

âh(κ) =
T

T
∑

t=1
y(t−1)hyth−

(
T
∑

t=1
yth

)(
T
∑

t=1
y(t−1)h

)

T
T
∑

t=1
y2
(t−1)h−

(
T
∑

t=1
y(t−1)h

)2 ,

and

κ̂ =−1
h

ln(âh(κ)) . (4.2.5)

Letting λ (h) = σ
√

ψ ′′ (0) 1−e−2κh

2κ which has the order O(
√

h), xth = yth/λ (h),

x0h = y0h/λ (h), g̃h = gh/λ (h), and dividing both sides of Model (4.2.4) by λ (h),

we get the following explosive AR(1) model

xth = ah(κ)x(t−1)h + g̃h + εth = e−κhx(t−1)h + g̃h + εth, x0h = y0h/λ (h). (4.2.6)

79



This model compares to Model (1) in PM,

xt =
(

1+
−κ
kT

)
xt−1 + εt , x0 = op

(√
kT

)
, kT → ∞,

kT

T
→ 0. (4.2.7)

Let kT = 1/h so that Model (4.2.6) may be written as

xth = ah(κ)x(t−1)h+ g̃h+εth = e−κ/kT x(t−1)h+ g̃h+εth, x0h = y0h/λ (h)= Op

(√
kT

)
,

(4.2.8)

hence, âh(κ) and κ̂ can also be obtained from xth, and

âh(κ)−ah (κ) =
T

T
∑

t=1
x(t−1)hεth−

(
T
∑

t=1
εth

)(
T
∑

t=1
x(t−1)h

)

T
T
∑

t=1
x2
(t−1)h−

(
T
∑

t=1
x(t−1)h

)2 .

The double asymptotics, h→ 0 and N → ∞, implies that

kT =
1
h
→ ∞ and

kT

T
=

1
N
→ 0. (4.2.9)

Model (4.2.8) is similar to Model (1) of PM but with four subtle differences.

First, Model (4.2.8) includes an additional intercept term comparing with Model (1)

of PM. Second, the AR coefficient in (4.2.8) is e−κ/kT whereas it is 1+(−κ/kT ) in

PM. This difference is small since e−κ/kT = 1+(−κ/kT )+O(k−2
T ) and, not surpris-

ingly, it has no impact on the limiting distribution. Third, {εth}T
t=1 is a martingale-

difference array, whereas it is assumed to be a sequence with iid random variables in

PM. Fourth, the initial condition in (4.2.8) is x0h ∼Op
(√

kT
)
, whereas it is assumed

to be op
(√

kT
)

in PM.

In Model (1) of PM, the root, 1+(−κ/kT ), represents moderate deviations from

unity in the sense that it is in a larger neighborhood of one than the conventional

local to unity root, 1 +(−κ/T ). Therefore, under the double asymptotics the root

in Model (4.2.8) is also moderately deviated from unity. With a different initial
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condition, our analysis can be regarded as an extension to PM from x0h ∼ op
(√

kT
)

to x0h ∼ Op
(√

kT
)
. It turns out this change of the order of magnitude in the initial

condition leads to a change in the limiting distribution of the LS estimators, âh(κ)

and κ̂ .

Let

XT h =
1√
kT

T

∑
t=1

(ah(κ))−(T−t)−1 εth, (4.2.10)

YT h =
1√
kT

T

∑
t=1

(ah(κ))−t εth. (4.2.11)

We can obtain the following lemma.

Lemma 4.2.1 Let ah(κ) = e−κ/kT , kT = 1/h, T = N/h. For some δ > 0 and a

constant M, assume that the martingale-difference array, {εth}T
t=1

iid∼ (0,1), satisfies

E
(
|εth|2+δ

)
< M for small h.1 When h→ 0 and N → ∞, we have

(a)

(ah(κ))−T = o
(

kT

T

)
= o

(
1
N

)
;

(b)
(ah(κ))−T

kT

T

∑
t=1

T

∑
j=t

(ah(κ))t− j−1 ε jhεth
L1−→ 0;

(c)
1√
T

T

∑
t=1

εth =⇒ N(0,1);

(d)

(XT h,YT h) =⇒ (X ,Y ) ,

where X and Y are independent N
(
0, 1
−2κ

)
random variables.

Note that x0h/
√

kT
L1−→ y0h/

(
σ

√
ψ ′′ (0)

)

and
√

kT g̃h → (κµ +σ iψ ′ (0))/
(

σ
√

ψ ′′ (0)
)

. Theorem 4.2.1 reports the double

asymptotic distribution of âh(κ) with h→ 0 and N → ∞ simultaneously.

1This condition excludes the stable process whose index parameter is less than 2, although Model
(4.2.1) allows L(t) to be a stable process.
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Theorem 4.2.1 Let kT = 1/h, ah(κ) = e−κh, âh(κ) be the LS estimator obtained

from xth, κ̂ = −(1/h) ln(âh(κ)). For some δ > 0 and a constant M, assume that

the martingale-difference array, {εth}T
t=1

iid∼ (0,1), satisfies E
(
|εth|2+δ

)
< M for

small h. Under the simultaneous double asymptotics, we have

(a)
(ah(κ))−T [ah(κ)−1]√

kT

T

∑
t=1

x(t−1)h =⇒
√

1
−2κ

[η +D] ;

(b)
(ah(κ))−T

kT

T

∑
t=1

x(t−1)hεth =⇒ 1
−2κ

ξ [η +D] ;

(c)
(ah(κ))−2T

[
(ah(κ))2−1

]

kT

T

∑
t=1

x2
(t−1)h =⇒ 1

−2κ
[η +D]2 ;

(d)
(ah(κ))T

[
(ah(κ))2−1

] (âh(κ)−ah(κ)) =⇒ ξ
η +D

;

(e)
e−κN

2κ
(κ̂−κ) =⇒ ξ

η +D
,

where ξ =
√−2κX , η =

√−2κY are independent N (0,1) random variables with

(X ,Y ) defined in Lemma 4.2.1 and D =
√

2(κµ +σ iψ ′ (0)−κy0h)/
(

σ
√
−κψ ′′ (0)

)
.

Remark 4.2.1 If the long run mean is zero (i.e., µ = 0), the mean of the Lévy

process is zero (i.e., iψ ′ (0) = E (L(1)) = 0), and the initial condition, y0h, is also

zero, we get D = 0,

(ah(κ))T
[
(ah(κ))2−1

] (âh(κ)−ah(κ)) =⇒ Cauchy,

and
e−κN

2κ
(κ̂−κ) =⇒ Cauchy.

Remark 4.2.2 For the discrete time explosive AR(1) model without intercept, An-

derson (1959) showed that the limiting distribution is dependent on the distribution
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of the errors and no invariance principle applies. Only under the assumption that

the error distribution is Gaussian, was he able to show that the limiting distribution

is Cauchy. However, the results in Lemma 4.2.1 and Theorem 4.2.1 suggest that al-

though the invariance principle does not cover the discrete time explosive model, it

covers the continuous time explosive model under the simultaneous double asymp-

totics.

Remark 4.2.3 Let ĝh be the LS estimator of gh in Model (4.2.4), the t statistic is

t =
âh (κ)−ah (κ)

δ̂âh(κ)
=

[âh (κ)−ah (κ)]

{
T

T
∑

t=1
y2
(t−1)h−

(
T
∑

t=1
y(t−1)h

)2
}1/2

{
∑T

t=1
[
yth− âh (κ)y(t−1)h− ĝh

]2
}1/2 .

It can be identically expressed as

t =
T

T
∑

t=1
x(t−1)hεth−

(
T
∑

t=1
εth

)(
T
∑

t=1
x(t−1)h

)

{
∑T

t=1

[
xth− âh (κ)x(t−1)h− ̂̃gh

]2
}1/2

{
T

T
∑

t=1
x2
(t−1)h−

(
T
∑

t=1
x(t−1)h

)2
}1/2

where ̂̃gh is LS estimator of g̃h in Model (4.2.8). By using the Law of Large Number

of the martingale-difference array (see e.g. Hall and Heyde, 1980, Theorem 2.23),

it can be shown that

1
T

T

∑
t=1

[
xth− âh (κ)x(t−1)h− ̂̃gh

]2 p−→ 1

Based on the results in Lemma 4.2.1 and Theorem 4.2.1, we may show that

t =⇒ ξ ∼ N (0,1) . (4.2.12)

Remark 4.2.4 Using Lemma 4.2.1 and Theorem 4.2.1, we can obtain the following
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results under the simultaneous double asymptotics,

1
N

T

∑
t=1

[
yth− âh (κ)y(t−1)h− ĝh

]2 p−→ σ2ψ ′′ (0) ,

ĝh/h
p−→ κµ +σ iψ ′ (0) ,

which in turn give a consistent estimator of D.

In the special case of Brownian motion driven OU processes with a known mean

(without the loss of generality, it is assumed to be zero),

dy(t) =−κy(t)dt +σdW (t), y(0) = y0, (4.2.13)

the exact discrete time model (4.2.4) becomes

yth = ah(κ)y(t−1)h +σ

√
1− e−2κh

2κ
εth, y0h = y0, (4.2.14)

where ah(κ) = e−κh, {εth}T
t=1

iid∼ N (0,1). The LS estimators of ah(κ) and κ are,

respectively,

âh(κ) =

T
∑

t=1
y(t−1)hyth

T
∑

t=1
y2
(t−1)h

,

and

κ̂ =−1
h

ln(âh(κ)) . (4.2.15)

Let kT = 1/h, rewrite the Model (4.2.6) as

xth = ah(κ)x(t−1)h + εth = e−κ/kT x(t−1)h + εth, x0h = y0h/λ (h) = Op

(√
kT

)
,

(4.2.16)

The limit theory for this traditional OU process is reported in Corollary 4.2.2.

Corollary 4.2.2 Let kT = 1/h, ah(κ)= e−κh, âh(κ) be the LS estimator from (4.2.16),

κ̂ =−(1/h) ln(âh(κ)). Under the simultaneous double asymptotics, we have
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(a)
(ah(κ))T

[
(ah(κ))2−1

] (âh(κ)−ah(κ)) =⇒ ξ
η +d

; (4.2.17)

(b)
e−κN

2κ
(κ̂−κ) =⇒ ξ

η +d
, (4.2.18)

where ξ , η are independent N (0,1) random variables, and d = y0h
√−2κ/σ .

Remark 4.2.5 To facilitate the comparison of our results with those of PM, we may

rewrite the limit theory in (4.2.17) as

(ah(κ))T kT

−2κ
(âh(κ)−ah(κ)) =⇒ X

Y + y0/σ
, (4.2.19)

where X , Y are defined in Lemma 4.2.1. When y0 = 0, the limiting distribution is

Cauchy and the same as in PM. Since the finite sample distribution always depends

on the initial value in continuous time models, we expect that the double asymptotic

distribution in (4.2.19) is a better approximation than the Cauchy distribution when

y0 is different from 0.

4.3 Sequential Asymptotics: N →∞ Followed by h→
0

Focusing on the explosive OU process driven by the Brownian motion, we now

study two alternative sequential limit theory in the rest of the paper. This section

develops the sequential asymptotic distribution where N →∞ is followed by h→ 0.

In Section 4 we will develop the sequential asymptotic distribution where h→ 0 is

followed by N → ∞.

When h is fixed, the discrete time model (4.2.16) is an explosive AR(1) model
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with Gaussian errors. Letting N → ∞, Anderson (1959) showed that

(ah (κ))T [âh (κ)−ah (κ)]

(ah (κ))2−1
=⇒ Ya

Za +ah (κ)x0

d=
N

(
0,1/

[
1− (ah (κ))−2

])

N
(

0,1/
[
1− (ah (κ))−2

])
+ah (κ)x0

,

where Ya and Za are independent. The proof was done under the condition that x0h

is a constant, but it still holds when x0h ∼ Op(1). It is straightforward to show that

Ya

Za +ah (κ)x0h

d=
N (0,1)

N (0,1)+ x0h

√
(ah (κ))2−1

d=
ξ

η +d
,

because d = y0h
√−2κ/σ , and

x0h =
y0h

λ (h)
=

y0h

σ

√
−2κ

(ah (κ))2−1
.

Letting h→ 0, the sequential limiting distribution is

lim
h→0

lim
N→∞

(ah (κ))T [âh (κ)−ah (κ)]

(ah (κ))2−1
= lim

h→0

Ya

Za +ah (κ)x0

d=
ξ

η +d
,

which is the same as the double asymptotic distribution derived in Section 2. We

now collect these results together in the following theorem.

Theorem 4.3.1 Let ah(κ) = e−κh, âh(κ) be the LS estimator obtained from xth in

model (4.2.16), κ̂ =−(1/h) ln(âh(κ)), we have

(a)

lim
h→0

lim
N→∞

(ah (κ))T [âh (κ)−ah (κ)]

(ah (κ))2−1
d=

ξ
η +d

;

(b)

lim
h→0

lim
N→∞

exp{−κN}
2κ

(κ̂−κ) d=
ξ

η +d
,

where ξ , η are independent N (0,1) random variables and d = y0
√−2κ/σ .

Remark 4.3.1 Although the sequential asymptotic theory developed here is the

same as that developed in Section 2 for the explosive Lévy process, there is a
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clear advantage of deriving the asymptotic theory under the assumption of N → ∞

and h→ 0 simultaneously, that is, the invariance principle can be established.

4.4 Sequential Asymptotics: h→ 0 Followed by N →
∞

Perron (1991) derived a sequential limiting distribution for the LS estimator of the

persistent parameter κ in the explosive OU process driven by the Brownian motion;

see Corollary 1 (ii) on Page 217 and the corresponding proof on Page 234 in Perron

(1991). The sequential asymptotics first requires h → 0 and then N → ∞. To our

surprise, however, his sequential limiting distribution is different from the limiting

distributions that we obtained in Section 2 and Section 3. It is important to find

the reasons that cause this discrepancy. In this section we investigate the double

asymptotic theory under the sequential limits where h→ 0 is followed by N → ∞.

The continuous time OU process considered in Perron is given in (4.2.13) where

the initial condition is assumed to be constant, y0 = b. First, by letting time interval

h goes to zero with fixed time span N, Perron developed the in-fill asymptotics for

âh(κ),

T (âh(κ)−ah(κ)) =⇒ A(γ,c)
B(γ,c)

, (4.4.1)

where

A(γ,c) = γ
∫ 1

0
exp{cr}dW (r)+

∫ 1

0
Jc (r)dW (r), (4.4.2)

B(γ,c) = γ2 exp{2c}−1
2c

+2γ
∫ 1

0
exp{cr}Jc (r)dr +

∫ 1

0
Jc (r)2 dr, (4.4.3)

and Jc (r) =
∫ r

0 exp{c(r− s)}dW (s) is generated by the stochastic differential equa-

tion

dJc (r) = cJc (r)dr +dW (r),

with the initial condition Jc (0) = 0, c =−κN, γ = b/
(
σ
√

N
)
.

To derive the sequential limiting distribution, he then let N → ∞, namely, c →
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+∞, and showed that (see (vi) and (viii) of Lemma A.2 in his paper)

(2c)3/2 e−2c
∫ 1

0
exp{cr}Jc (r)dr =⇒ N(0,1),

and

(2c)1/2 e−c
∫ 1

0
exp{cr}dW (r) =⇒ N(0,1).

Then he argued, without a proof, that these two limiting distributions are identical

(call it η). Based on this argument and the two results in Phillips (1987), Perron

obtained the limiting distributions of A(γ,c) and B(γ,c), and the sequential limiting

distribution for âh(κ) and κ̂ ,

lim
N→∞

lim
h→0

e−κN (âh(κ)−ah(κ))
−2κh

= lim
c→∞

(2c)e−cA(γ,c)

(2c)2 e−2cB(γ,c)
=

dη +ξ η
[d +η ]2

, (4.4.4)

lim
N→∞

lim
h→0

e−κN (κ̂−κ)
2κ

=
dη +ξ η
[d +η ]2

, (4.4.5)

where ξ and η are independent N(0,1) variates, d = y0
√−2κ/σ = b

√−2κ/σ .

The limiting distribution in (4.4.4) (or (4.4.5)) is different from that in (4.2.17)

(or (4.2.18)) unless y0 = b = 0 where the two limiting distributions become the

Cauchy distribution. In this section we will show that the limiting distributions of

(2c)3/2 e−2c ∫ 1
0 exp{cr}Jc (r)dr and (2c)1/2 e−c ∫ 1

0 exp{cr}dW (r) are not identical

and hence, his sequential limiting distribution is not correct. Instead, the two limit-

ing distributions are independent. The correct sequential limiting distribution turns

out to be identical to the simultaneous double asymptotic distribution developed in

Section 2.

Let us start the investigation from the joint moment generating function (MGF)

of A(γ,c) and B(γ,c) given by Perron. Firstly, we derive the limiting joint MGF

in Theorem 4.4.1, from which we obtain the sequential limiting distribution. Sec-

ondly, in Theorem 4.4.2, we give the correct limiting distributions of

(2c)3/2 e−2c ∫ 1
0 exp{cr}Jc (r)dr and (2c)1/2 e−c ∫ 1

0 exp{cr}dW (r) and show that they

are actually independent.
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Theorem 4.4.1 Let d = b
√−2κ/σ , γ = b/

(
σ
√

N
)
. When N →+∞, c =−κN →

+∞,we have

(a) The limiting joint MGF of (2c)e−cA(γ,c) and (2c)2 e−2cB(γ,c) is

lim
c→+∞

M (ṽ, ũ) = lim
c→+∞

E
[
exp

(
ṽ(2c)e−cA(γ,c)+ ũ(2c)2 e−2cB(γ,c)

)]

=
1

{1−2ũ− ṽ2}1/2 exp

{
d2 [

2ũ+ ṽ2]

2(1−2ũ− ṽ2)

}
.

(b) Letting ξ and η be independent N (0,1) random variables, then

(
(2c)e−cA(γ,c) ,(2c)2 e−2cB(γ,c)

)
=⇒

(
ξ [d +η ] , [d +η ]2

)
.

(c)

lim
N→∞

lim
h→0

e−κN (âh(κ)−ah(κ))
−2κh

= lim
c→∞

(2c)e−cA(γ,c)

(2c)2 e−2cB(γ,c)
=

ξ [d +η ]

[d +η ]2
=

ξ
d +η

,

lim
N→∞

lim
h→0

e−κN (κ̂−κ)
2κ

=
ξ

d +η
.

Remark 4.4.1 The new sequential limiting distribution wherein h → 0 is followed

by N → ∞ is the same as the simultaneous double asymptotic distribution derived

in Section 2 and the sequential limiting distribution wherein N → ∞ is followed by

h→ 0 derived in Section 3.

Remark 4.4.2 Anderson (1959) proved that, when the error term in the explosive

AR(1) model is independent over time and the initial condition is a constant, the

limit distribution for the LS estimator should be a ratio of two independent random

variables. Our new sequential limiting distributions reported in Theorem 4.4.1 and

Theorem 4.3.1, and the double asymptotic distribution are consistent with this re-

sult. However, the asymptotic distribution developed in Perron (1991) is at odds

with Anderson’s result.
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Remark 4.4.3 It is easy to show that the joint MGF of dη +ξ η and [d +η ]2 is

1

{1−2ũ− ṽ2}1/2 exp

{
d2 [

2ũ−2ũṽ2 +4ũṽ+ ṽ2]

2(1−2ũ− ṽ2)

}
,

which is different from the limiting joint MGF of (2c)e−cA(γ,c) and (2c)2 e−2cB(γ,c).

This supports the conclusion that the limiting distribution developed in Corollary 1

in Perron (1991) is not correct.

Theorem 4.4.2 Let Jc (r)=
∫ r

0 exp{c(r− s)}dW (s), ξ and η be independent N (0,1)

variates, N →+∞, and c =−κN →+∞. Then

(a)

(2c)2 e−2c
∫ 1

0
Jc (r)2 dr =⇒ η2; (4.4.6)

(b)

(2c)e−c
∫ 1

0
Jc (r)dW (r) =⇒ ξ η ; (4.4.7)

(c) {
(2c)3/2 e−2c

∫ 1

0
exp{cr}Jc (r)dr

}2

=⇒ η2; (4.4.8)

(d)

(2c)1/2 e−c
∫ 1

0
exp{cr}dW (r) =⇒ ξ . (4.4.9)

Comparing results in Theorem 4.4.2 to those in (ii), (iv), (vi) and (viii) of

Lemma A.2 in Perron, we notice that we disagree on the limit of

(2c)1/2 e−c ∫ 1
0 exp{cr}dW (r). While Perron argued the limit is the same as that of

(2c)3/2 e−2c ∫ 1
0 exp{cr}Jc (r)dr, they should be independent. This difference is the

source of the discrepancy in the sequential limits. Interestingly, the sequential limit-

ing distribution holds true even when y0 is a random variable. This is reported in the

following Corollary. Therefore, the simultaneous and sequential double asymptotic

distributions are identical to each other no matter what the initial condition is, fixed

or random.
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Corollary 4.4.3 Let y0 be any random variable whose distribution is fixed and in-

dependent of sampling interval h or be a constant. Then

lim
N→∞

lim
h→0

e−κN (âh(κ)−ah(κ))
−2κh

d= lim
c→∞

(2c)e−cA(γ,c)

(2c)2 e−2cB(γ,c)
d=

ξ [d +η ]

[d +η ]2
=

ξ
d +η

,

lim
N→∞

lim
h→0

e−κN (κ̂−κ)
2κ

=
ξ

d +η
.

To understand the difference between the two limiting distributions, (4.4.5) and

(4.2.18), in Table 1, we report the 0.5%, 1%, 2.5%, 5%, 10%, 90%, 95%, 97.5%,

99%, 99.5% percentiles of the two distributions for five different initial conditions.

Several conclusions can be made. First, in all cases, the difference between two

distributions are very substantial. For example when d ∼ N(0,1), the 99% confi-

dence interval for Perron’s distribution is more than 40 times wider than that for the

distribution derived in the present paper. Second, the difference in the left tail is

more substantial. Third, Perron’s distribution is skewed to the left.

To further appreciate the difference between the two limiting distributions, we

apply them to a real dataset – the real quarterly U.S. housing market data between

1996:Q1 to 2007:Q1 used in Shiller (2005). The Gaussian OU model is fitted to

the logarithmic housing market data with h = 1/4, N = 11, T = 44, and y0 = 4.68

which is the logarithmic housing price in 1996:Q1. For this initial value, the 0.5%

percentile of the two distributions, (4.4.5) and (4.2.18), is -2.8002 and -0.6602,

while the 99.5% percentile of the two distributions is 0.2735 and 0.6602, respec-

tively. The estimated value of κ is -0.016. The 99% confidence interval of κ is

(−0.093,−0.009) based on Perron’s distribution, indicating that there is evidence

of explosiveness as it excludes κ = 0. On the other hand, the 99% confidence inter-

val of κ is (−0.034,0.002) based on the correct distribution, indicating that there is

no evidence of explosiveness.
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d Limit Theory 0.5% 1% 2.5% 5% 10% 90% 95% 97.5% 99% 99.5%
N(0,1) Correct -45.0 -22.5 -9.0 -4.5 -2.2 2.2 4.5 9.0 22.5 45.0

Perron -3583 -895 -143 -35.4 -8.6 1.0 2.6 8.8 51.9 205
N(0,4) Correct -28.5 -14.2 -5.7 -2.8 -1.4 1.4 2.8 5.7 14.2 28.5

Perron -2280 -570 -91.0 -22.6 -5.5 0.5 1.1 3.3 18.0 70.3
N(0,1/4) Correct -56.9 -28.5 -11.4 -5.6 -2.8 2.8 5.6 11.4 28.5 56.9

Perron -2470 -617 -99.0 -24.9 -6.4 1.7 4.7 16.0 94.3 374
N(5,1) Correct -0.75 -0.62 -0.47 -0.37 -0.28 0.28 0.37 0.47 0.62 0.75

Perron -3.82 -2.36 -1.30 -0.82 -0.49 0.16 0.20 0.23 0.26 0.29
N(5,0) Correct -0.60 -0.53 -0.43 -0.35 -0.27 0.27 0.35 0.43 0.53 0.60

Perron -2.25 -1.66 -1.07 -0.73 -0.46 0.16 0.19 0.22 0.24 0.26

Table 4.1: This table reports various percentiles of the two limiting distributions,
(4.4.5) and (4.2.18), for five initial conditions. The last initial condition is simply a
constant 5.

4.5 Conclusions

This paper develops the double asymptotic limit theory for the persistent parameter

in the explosive continuous time models driven by Lévy processes with a large num-

ber of time span (N) and a small number of sampling interval (h). It is shown that

the invariance principle applies to the explosive continuous time models under the

simultaneous double asymptotics. This finding differs from the well known result

for the explosive discrete time model where the limiting distribution is dependent

on the error distribution and no invariance principle applies (Anderson, 1959). In

the special case of the explosive OU process driven by the Brownian motion but

with a known mean, both the simultaneous limits and the two alternative sequential

limits have been considered. The three limiting distributions are identical and the

expression works for both the fixed and the random initial condition. These results

complement the asymptotic theory for stationary continuous time models developed

in Tang and Chen (2009). However, the new asymptotic theory is different from the

sequential limit theory derived in Perron (1991). We have identified the source of

the discrepancy. While Perron argued the limit of (2c)1/2 e−c ∫ 1
0 exp{cr}dW (r) is

the same as that of (2c)3/2 e−2c ∫ 1
0 exp{cr}Jc (r)dr, the two limits should actually

be independently distributed. The empirical application to the U.S. house market

data highlights the difference between the two distributions.
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Chapter 5 Summary of Conclusions

The Chapter 2 provides a framework for studying the implications of different dis-

cretization schemes in estimating the mean reversion parameter in both multivariate

and univariate diffusion models with a linear drift function. The approach includes

the Euler method and the trapezoidal method as special cases, an asymptotic theory

is developed, and finite sample bias comparisons are conducted using analytic ap-

proximations. Bias is decomposed into a discretization bias and an estimation bias.

It is shown that the discretization bias is of order O(h) for the Euler method and

O(h2) for the trapezoidal method, respectively, whereas the estimation bias is of the

order of O(T−1). Since in practical applications in finance it is very likely that h is

much smaller than 1/T , estimation bias is likely to dominate discretization bias.

Applying the multivariate theory to univariate models gives several new results.

First, it is shown that in the Euler and trapezoidal methods, the sign of the dis-

cretization bias is opposite that of the estimation bias for practically realistic cases.

Consequently, the bias in the two approximate method is smaller than the ML es-

timator based on the exact discrete time model. Second, although the trapezoidal

method leads to a smaller discretization bias than the Euler method, the estimation

bias is bigger. As a result, it is not clear if there is a gain in reducing the total bias

by using a higher order approximation. When comparing the estimator based on the

Euler method and the exact ML, we find that the asymptotic variance of the former

estimator is smaller. As a result, there is clear evidence for preferring the estimator

based on the Euler method to the exact ML in the univariate linear diffusion.

Simulations suggest the bias continues to be large in finite samples. It is also

confirmed that for empirically relevant cases, the magnitude of the discretization
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bias in the two approximate methods is much smaller than that of the estimation

bias. The two approximate methods lead to a smaller variance than exact ML. Most

importantly for practical work, there is strong evidence that the bias formulae work

well and so they can be recommended for analytical bias correction with these mod-

els.

For the univariate square root model, the Euler method is found to have smaller

bias and smaller variance than the Nowman method. Discretizing the diffusion func-

tion both in the Euler method and the Nowman method causes no discretization bias

on the mean reversion paramter. For the Euler method, we have derived an explicit

expression for the discretization bias caused by discretizing the drift function. The

simulation results suggest that the Euler method performs best in terms of both bias

and variance.

The analytic and expansion results given in the paper are obtained for station-

ary systems. Bias analysis for nonstationary and explosive cases require different

methods. For diffusion models with constant diffusion functions, it may be possi-

ble to extend recent finite sample and asymptotic expansion results for the discrete

time AR(1) model (Phillips, 2010) to a continuous time setting. Such an analysis

would involve a substantial extension of the present work and deserves treatment in

a separate study.

The Chapter 3 derives the asymptotic distribution of the ML/LS estimator of

the mean reversion matrix in a multivariate diffusion model with a linear drift and

a constant diffusion when only discretely sampled data are available. Both the sta-

tionary case and the non-stationary case are examined. The limit theory gives an

analytic expression of the asymptotic covariance matrix, for which a consistent es-

timator is provided thereby facilitating inference about the mean reversion matrix.

Our method replies on the asymptotic theory of the ML/LS estimator of the exact

discrete time VAR model.

The transformation from the continuous time model to the exact discrete system

involves a nonlinear matrix logarithmic mapping. The mean reversion matrix is
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shown to be identified under a weak condition. When identification is achieved, our

method also utilizes a novel explicit relationship between the AR coefficient matrix

and the mean reversion matrix. This relationship is a polynomial of an finite order,

facilitating the use of the delta method and the calculation of the covariance matrix

in the limit distribution.

Both in the stationary case and in the unit root case, we develop the limit theory

of the ML/LS estimator of the mean reversion matrix by using the limit distribution

of the estimated AR coefficient matrix only. The expression of the asymptotic co-

variance matrix in stationary case is a little complicated. Different situations have

been discussed to get an explicit representation of the asymptotic covariance ma-

trix. For models of low dimension, such as m ≤ 3, using our framework, the mean

reversion matrix is shown to have a straightforward expression as a continuously

differentiable mapping of the AR coefficient matrix.

The new theory is illustrated in an empirical application to a multivariate OU

model for the logarithmic daily realized volatility (RV) of Pound, Euro and Yen

exchange rates. Using our method, we are able to obtain the estimate of the asymp-

totic covariance of the mean reversion matrix. The statistical inferences, conducted

on these covariances, suggest that the three series are stationary and revert to their

means in fast rates, and that the RV of the Pound does not depend on the lagged RV

of the Yen and the RV of the Yen does not depend on the lagged RV of the Yen.

Although in chapter 3 we only develop the asymptotic theory for multivariate

diffusion models with a linear drift and a constant diffusion, our method is generally

applicable to continuous time models with a linear drift but with a more flexible

diffusion function and to continuous time models which are driven by Lévy process.

In this case, OLS may be applied to estimate the AR coefficient matrix of the exact

discrete time system. As long as the asymptotic theory of the OLS estimator is

available, our method can be applied in the same manner.

The Chapter 4 develops the double asymptotic limit theory for the persistent pa-

rameter in the explosive continuous time models driven by Lévy processes with a

95



large number of time span (N) and a small number of sampling interval (h). It is

shown that the invariance principle applies to the explosive continuous time mod-

els under the simultaneous double asymptotics. This finding differs from the well

known result for the explosive discrete time model where the limiting distribution

is dependent on the error distribution and no invariance principle applies (Ander-

son, 1959). In the special case of the explosive OU process driven by the Brownian

motion but with a known mean, both the simultaneous limits and the two alter-

native sequential limits have been considered. The three limiting distributions are

identical and the expression works for both the fixed and the random initial con-

dition. These results complement the asymptotic theory for stationary continuous

time models developed in Tang and Chen (2009). However, the new asymptotic

theory is different from the sequential limit theory derived in Perron (1991). We

have identified the source of the discrepancy. While Perron argued the limit of

(2c)1/2 e−c ∫ 1
0 exp{cr}dW (r) is the same as that of (2c)3/2 e−2c ∫ 1

0 exp{cr}Jc (r)dr,

the two limits should actually be independently distributed. The empirical applica-

tion to the U.S. house market data highlights the difference between the two distri-

butions.
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Appendix

A Proofs in Chapter 2

Proof of Lemma 2.3.3. Let C = F
′
and then

∞

∑
t=0

F
′k = (I−F

′
)−1 = (1−C),

∞

∑
k=0

F
′ktr(Fk+1) =

∞

∑
k=0

F
′k ∑

λ∈spec(F)
λ k+1 = ∑

λ∈spec(F)
[λ

∞

∑
k=0

λ kF
′k]

= ∑
λ∈spec(C)

[λ
∞

∑
k=0

λ kCk] = ∑
λ∈spec(C)

λ (I−λC)−1,

where Spec(C) denotes the set of eigenvalues of C. Thus,

∞

∑
k=0

F
′2k+1 =

∞

∑
k=0

C2k+1 = C(I−C2)−1,

Γ(0) = Var(xt) =
∞

∑
i=0

F i ·G ·F ′i = D,

Bn = BIAS(F̂) = E(F̂)−F =−b
n

+O(n−
3
2 ).

Proof of Lemma 2.3.1. By Lemma 2.3.1, for fixed h, as n→∞, F̂
p→ F. Hence,

Â−A =
1
h
[F̂−F ]+

1
h

H
p→ 1

h
H.

104



From Equations (2.3.8), 1
hH = 1

h [F− I−Ah] = O(h) as h→ 0, proving the first part.

(b) According to Lemma 2.3.1, fixed h, as n→ ∞,

√
n{Vec(F̂)−Vec(F)} d→ N(0,(Γ(0))−1⊗G),

√
nhVec[Â− 1

h
(F− I)] =

√
nVec[Âh− (F− I)]

=
√

nVec[F̂−F ] d→ N(0,(Γ(0))−1⊗G),

giving the second part.

Proof of Lemma 2.3.2. According to formulae (2.3.8), (2.3.9) and Lemma

2.3.3,

E(Â−A) =
1
h

E(F̂−F)+
1
h

H =
1
h

E(
−b
n

+O(n−3/2))+
1
h

H

=− b
T

+
1
h

H +o(T−1).

Proof of Lemma 2.3.3. (a) From formulae (2.3.17),

Â−A =
2
h
(F̂− I)(F̂ + I)−1− 2

h
(F− I)(F + I)−1−ν

=
2
h
(F̂ + I−2I)(F̂ + I)−1− 2

h
(F− I)(F + I)−1−ν

=
2
h
[I−2(F̂ + I)−1]− 2

h
[I−2(F + I)−1]−ν

=−4
h
[(F̂ + I)−1− (F + I)−1]−ν

=
4
h
(I +F)−1(F̂−F)(I + F̂)−1−ν .

As h is fixed, according Lemma 2.3.1, as n → ∞, F̂
p→ F , the first part of above

equation goes to zero. And from formula (2.3.17),

Â−A
p→−ν =

2
h
(F− I)(F + I)−1−A.
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(b)

Vec(Â−A+ν) = Vec[Â− 2
h
(F− I)(F + I)−1] =

4
h

Vec[(I +F)−1(F̂−F)(I + F̂)−1]

=
4
h
{(F̂ ′+ I)−1⊗ (F + I)−1}Vec(F̂−F).

Again when h is fixed, according to Lemma 2.3.1, as n→∞,
√

n(F̂−F) d→N(0,Γ(0)−1⊗
G), and we get

h
√

nVec[Â− 2
h
(F− I)(F + I)−1] d→ N(0,Ψ),

where

Ψ = 16ϒ[Γ(0)−1⊗G]ϒ′, ϒ = (F ′+ I)−1⊗ (F + I)−1

Proof of Lemma 2.3.4. From the proof of theorem 2.3.3, we have

E[Â]−A =−4
h

E[(F̂ + I)−1− (F + I)−1]−ν

=−4
h

E[(F̂ + I)−1]+
4
h
(F + I)−1−ν .

For the first term, we note that

(F̂ + I)−1 = (I +F + F̂−F)−1 = [(I +F)(I +(I +F)−1(F̂−F))]−1

= [I +(I +F)−1(F̂−F)]−1(I +F)−1,

and

[I +(I +F)−1(F̂−F)]−1 =
∞

∑
i=0

(−1)i[(I +F)−1(F̂−F)]i

= I− (I +F)−1(F̂−F)+ [(I +F)−1(F̂−F)]2

+
∞

∑
i=3

(−1)i[(I +F)−1(F̂−F)]i.
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By Lemma 2.3.1, we have

√
n[Vec(F̂)−Vec(F)] d→ N(0,Γ(0)−1⊗G),

and so,

F̂i j−Fi j = OP(n−
1
2 ).

Then,

[(I +F)−1(F̂−F)]3 = Op(n−
3
2 ) and [(I +F)−1(F̂−F)]i = op(n−

3
2 ), i≥ 3,

[I+(I+F)−1(F̂−F)]−1 = I−(I+F)−1(F̂−F)+[(I+F)−1(F̂−F)]2+Op((n−
3
2 )),

and

E[Â−A] =−4
h

E{[I +(I +F)−1(F̂−F)−1]}(I +F)−1 +
4
h
(F + I)−1 +O(h2)

=
4
h

E{(I +F)−1(F̂−F)(I +F)−1}− 4
h

E{[(I +F)−1(F̂−F)]2(I +F)−1}

+
1
h

O(n−
3
2 )−ν .

Now let ĝ = [(I +F)−1(F̂−F)], so that

√
n·Vec[ĝ] =

√
n·Vec[(I+F)−1(F̂−F)]= [IM⊗(I+F)−1]

√
nVec(F̂−F) d→N(0,∆),

where ∆ = [IM⊗ (I +F)−1] ·Γ(0)−1⊗G · [IM⊗ (I +F)−1]′. As a result,

Var(
√

n ·Vec(ĝ)) = ∆+o(1)→Var[Vec(ĝ)] =
∆
n

+o(n−1),

and

E[Vec(ĝ) ·Vec(ĝ)T ] = Var[Vec(ĝ)]+E[Vec(ĝ)] ·E[Vec(ĝ)]T

=
∆
n

+E[Vec(ĝ)] ·E[Vec(ĝ)]T +o(n−1).
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From Lemma 2.3.3,

Bn = E(F̂)−F =−b
n

+O(n−
3
2 ).

When the exact discrete model involves an unknown B(θ) we have

b = G[(I−C)−1 +C(I−C2)−1 + ∑
λ∈Spec(C)

λ (I−λC)−1]Γ(0)−1,

and when we have a prior knowledge that B(θ) = 0 in (2.2.2), we have

b = G[C(I−C2)−1 + ∑
λ∈Spec(C)

λ (I−λC)−1]Γ(0)−1.

Then

E[Vec(ĝ)] = E[(IM⊗ (I +F)−1)Vec(F̂−F)]

= [IM⊗ (I +F)−1]E[Vec(F̂−F)]

= [IM⊗ (I +F)−1]Vec[E(F̂−F)]

= [IM⊗ (I +F)−1]Vec[−b
n

+O(n−
3
2 )] = O(n−1)

→ E[Vec(ĝ)Vec(ĝ)T ] =
∆
n

+o(n−1).

Here we assume Ŵ = [(I +F)−1(F̂−F)]2 = ĝĝ and Ŵi j = ∑M
s=1 ĝisĝs j. It is easy to

find that ĝis is the (M(s−1)+ i)th element of Vec(ĝ), and ĝisĝs j is the (M(s−1)+

i,M( j−1)+ s)th element of Vec(ĝ)Vec(ĝ). Defining ei to be the column vector of

dimension M2 whose ith element is 1 and other elements are 0, we have

E[ĝisĝs j] = e′M(s−1)+iE[Vec(ĝ)Vec(ĝ)]′]eM( j−1)+s

=
1
n

e′M(s−1)+i ·∆ · eM( j−1)+s +o(n−1),
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E[Ŵi j] =
M

∑
s=1

E[ĝisĝs j]

=
M

∑
s=1

1
n

e′M(s−1)+i ·∆ · eM( j−1)+s +o(n−1).

Next, define the matrix P with (i, j) element

Pi j =
1
n

M

∑
s=1

e′M(s−1)+i ·∆ · eM( j−1)+s.

Then

E{[(I +F)−1(F̂−F)]2}= E(Ŵ ) = P+o(n−1).

Again, using Lemma 2.3.3, the formula for the estimation bias is

E[Â−A] =
4
h

E{(I +F)−1(F̂−F)(I +F)−1}− 4
h

E{[(I +F)−1(F̂−F)2](I +F)−1}

+
1
h

O(n−
3
2 )−ν

=
4
h
(I +F)−1[−b

n
+O(n−

3
2 )](I +F)−1

− 4
h
·W · (I +F)−1 +

1
h

o(n−1)+
1
h

O(n−
3
2 )−ν

=− 4
T

(I +F)−1 ·b · (I +F)−1− 4
h
·W · (I +F)−1−ν +o(T−1).
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Proof of Lemma 2.4.1. Using (2.4.4) and (2.4.5) in (2.4.3), we have

n

∑
t=1

1
h
(Xt −Xt−1)V ′

t =
1

2h

n

∑
t=1

XtX ′t−1−
1

2h

n

∑
t=1

Xt−1X ′t−1

+
1

2h

n

∑
t=1

XtX ′t−1

(
n

∑
t=1

Xt−1X ′t−1

)−1 n

∑
t=1

Xt−1X ′t −
1

2h

n

∑
t=1

Xt−1X ′t

=
1

2h
[

(
n

∑
t=1

XtX ′t−1

)(
n

∑
t=1

Xt−1X ′t−1

)−1

− I

+

(
n

∑
t=1

XtX ′t−1

)(
n

∑
t=1

Xt−1X ′t−1

)−1 (
n

∑
t=1

Xt−1X ′t

)(
n

∑
t=1

Xt−1X ′t−1

)−1

−
(

n

∑
t=1

Xt−1X ′t

)(
n

∑
t=1

Xt−1X ′t−1

)−1

]

(
n

∑
t=1

Xt−1X ′t−1

)

=
1

2h
[F̂− I + F̂

(
n

∑
t=1

Xt−1X ′t

)(
n

∑
t=1

Xt−1X ′t−1

)−1

−
(

n

∑
t=1

Xt−1X ′t

)(
n

∑
t=1

Xt−1X ′t−1

)−1

]

(
n

∑
t=1

Xt−1X ′t−1

)

=
1

2h
(F̂− I)


I +

n

∑
t=1

Xt−1X ′t

(
n

∑
t=1

Xt−1X ′t−1

)−1



n

∑
t=1

Xt−1X ′t−1

=
1

2h
(F̂− I)

[
n

∑
t=1

Xt−1X ′t−1 +
n

∑
t=1

Xt−1X ′t

]

=
1

2h
(F̂− I)

(
n

∑
t=1

Xt−1X ′t−1

)
(F̂ ′+ I).

By the same method, it is easy to obtain

[
n

∑
t=1

1
2
(Xt +Xt−1)V ′

t

]−1

=

[
1
4
(F̂ + I)(

n

∑
t=1

Xt−1X ′t−1)(F̂
′+ I)

]−1

Using the above two formulae in (2.4.3), the two stage least squares estimator is

Â =
2
h
(F̂− I)(F̂ + I)−1.

Proof of Lemma 2.5.1. The Nowman approximate discrete time model yields
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the following transition function

f (XiX(i−1)) =
[(1− e−2κh)/2κ]−1/2
√

2πσg(Xi−1;ψ)
exp

{
− [Xi−φ1Xi−1− (1−φ1)µ]2

2σ2g2(Xi−1;ψ)(1− e−2κh)/2κ

}
,

and the following log-likelihood function

`(θ) =−n
2

ln(σ2)−
n

∑
i=1

ln[g(Xi−1;ψ)]− n
2

ln(
1− e−2κh

2κ
)

−
n

∑
i=1

[Xi−φ1Xi−1− (1−φ1)µ]2

2σ2g2(Xi−1;ψ)(1− e−2κh)/2κ
.

The first order conditions are

∂`(θ)
∂ µ

= 0 ⇒
n

∑
i=1

[Xi−φ1Xi−1− (1−φ1)µ]
g2(Xi−1;ψ)

= 0, (.0.1)

∂`(θ)
∂σ2 = 0 ⇒ σ2

(
1− e−2κh

2κ

)
− 1

n

n

∑
i=1

[Xi−φ1Xi−1− (1−φ1)µ]2

g2(Xi−1;ψ)
= 0, (.0.2)

∂`(θ)
∂κ

= 0 ⇒ 0 =−n
2

[
2he−2κh

1− e−2κh −
1
κ

]

−he−κh
n

∑
i=1

[Xi−φ1Xi−1− (1−φ1)µ](Xi−1−µ)
σ2g2(Xi−1;ψ)(1− e−2κh)/2κ

−
n

∑
i=1

[Xi−φ1Xi−1− (1−φ1)µ]2

2σ2g2(Xi−1;ψ)

[
2(1− e−2κh)−4κhe−2κh

(1− e−2κh)2

]
. (.0.3)

and

∂`(θ)
∂ψ j

= 0 ⇒ 0 = σ2 1− e−2κh

2κ

n

∑
i=1

∂g(Xi−1;ψ)/∂ψ j

g(Xi−1;ψ)

−
n

∑
i=1

[Xi−φ1Xi−1− (1−φ1)µ]2

g2(Xi−1;ψ)
∂g(Xi−1;ψ)/∂ψ j

g(Xi−1;ψ)
(.0.4)

Taking Equation (.0.2) into (.0.3), the first term and the third term cancel and we

obtain
n

∑
i=1

[Xi−φ1Xi−1− (1−φ1)µ](Xi−1−µ)
g2(Xi−1;ψ)

= 0. (.0.5)
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Taking Equation (.0.2) into (.0.4), we have

0 =
1
n

n

∑
i=1

[Xi−φ1Xi−1− (1−φ1)µ]2

g2(Xi−1;ψ)

n

∑
i=1

∂g(Xi−1;ψ)/∂ψ j

g(Xi−1;ψ)

−
n

∑
i=1

[Xi−φ1Xi−1− (1−φ1)µ]2

g2(Xi−1;ψ)
∂g(Xi−1;ψ)/∂ψ j

g(Xi−1;ψ)
. (.0.6)

Equations (.0.1), (.0.5) and (.0.6) yield the ML estimators, φ̂1, µ̂ and ψ̂ and Equation

(.0.2) gives the ML estimator, σ̂2.

The Euler approximate discrete model yields the following log-likelihood func-

tion,

`(θ) =−n
2

ln(σ2)−
n

∑
i=1

ln[g(Xi−1;ψ)]−
n

∑
i=1

[Xi−φ2Xi−1− (1−φ2)µ]2

2σ2hg2(Xi−1;ψ)
.

It is easy to obtain the first order conditions, three of which are identical to those in

(.0.1), (.0.5) and (.0.6). Hence,

φ̂2 = φ̂1.
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B Proofs in Chapter 3

Proof of Proposition 3.2.1.

The eigenvalues of F = eAh are eη jh, j = 1, · · ·m, where
{

η j
}m

j=1 are the eigen-

values of A. For any j = 1, · · ·m, if η j is a real number, eη jh > 0. If η j is a complex

number, say η j = α + iβ , then

eη jh = e(α+iβ )h = eαh [cos(βh)+ isin(βh)] .

Since βh∈ (−π,π) by Assumption 1, eη jh cannot be a negative real number or zero

for any j = 1, · · · ,m. Hence,

spec{F}∩R−0 =∅.

Proof of Theorem 3.3.1.

Based on the formulae (3.2.8) and (3.2.12), straightforward calculation allow us

to show

h
(
Â−A

)
=

(
f̂1− f1

)
I +

m

∑
j=2

(
f̂ j− f j

)(
I− F̂

) j−1 +
m

∑
j=2

f j

{(
I− F̂

) j−1− (I−F) j−1
}

=
m

∑
j=1

(
f̂ j− f j

)(
I− F̂

) j−1−
m

∑
j=2

f j

{
j−2

∑
s=0

(I−F)s (F̂−F
)(

I− F̂
) j−2−s

}
,

which leads to

hVec
(
Â−A

)
=

m

∑
j=1

{
Vec

[(
I− F̂

) j−1
](

f̂ j− f j
)}

−
m

∑
j=2

j−2

∑
s=0

f j

{
(I−F)s⊗

[(
I− F̂

)′] j−2−s
}

Vec
(
F̂−F

)
.

Notice the fact that
{

f j
}m

j=1 defined as in (3.2.9), (3.2.10) and (3.2.11), are

differentiable functions on
{

C j
}m

j=1, and
{

C j
}m

j=1 are continuous functions of the
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elements of F . Let z j =
[

∂ f j
∂Cm

∂ f j
∂Cm−1

· · · ∂ f j
∂C1

]′
, for j = 1,2, · · · ,m. We could

get that

f̂ j− f j =z′j




ĈM−CM

...

Ĉ1−C1




+op
(
Vec

(
F̂−F

))
, for j = 1,2, · · · ,m.

Let |·| denotes the determinant of matrix, ψ̂z = zI− (
I− F̂

)
, ψz = zI− (I−F)

are matrix polynomials with z ∈ R. Then, we have

[
1 z z2 · · · zm−1

]



Ĉm−Cm

...

Ĉ1−C1




= det
[
zI− (

I− F̂
)]−det [zI− (I−F)] = |ψ̂z|− |ψz|

=
∂ |ψ̂z|

∂ [Vec(ψ̂z)]
′

∣∣∣∣
ψ̂z=ψz

Vec(ψ̂z−ψz)+op (Vec(ψ̂z−ψz))

=
∂ |ψ̂z|

∂ [Vec(ψ̂z)]
′

∣∣∣∣
ψ̂z=ψz

Vec
(
F̂−F

)
+op

(
Vec

(
F̂−F

))

= [Vec(Hz)]
′Vec

(
F̂−F

)
+op

(
Vec

(
F̂−F

))

where Hz = [ad j (ψz)]
′. The first equation comes from the representation of charac-

teristic polynomial in (3.2.7). The third equation can be obtained by simply using

the first order Taylor expansion. The last equation is a standard result on matrix

derivatives.

Let

L =




1 1 · · · 1

1 2 · · · 2m−1

...
... · · · ...

1 m · · · mm−1




,

whose k row, k = 1,2, · · · ,m, is equivalent to the raw vector
[

1 z z2 · · · zm−1

]
with
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z = k. And L is a nonsingular matrix as det(L) = ∏
1≤ j<s≤m

(s− j) 6= 0. Let H =
[
Vec(H1) · · · Vec(Hm)

]′
. Therefore, we could get

L




Ĉm−Cm

...

Ĉ1−C1




= HVec
(
F̂−F

)
+op

(
Vec

(
F̂−F

))
.

Together with the above representation for f̂ j− f j, we could get that

f̂ j− f j =z′jL−1HVec
(
F̂−F

)
+op

(
Vec

(
F̂−F

))
.

And, finally, by using the result in Lemma 3.3.1, we have

h
√

nVec
(
Â−A

)

=

(
m

∑
j=1

{
Vec

[(
I− F̂

) j−1
]
z′jL−1H

}
−

m

∑
j=2

j−2

∑
s=0

f j

{
(I−F)s⊗

[(
I− F̂

)′] j−2−s
})

×√nVec
(
F̂−F

)
+op

(√
nVec

(
F̂−F

))

= Γ̃
√

nVec
(
F̂−F

)
+op (1) d−→ ΓN(0,VF) d= N

(
0,ΓVFΓ′

)
.

Proof of the formula 3.3.3. From Lemma 3.3.1, F̂ a.s−→ F . As eigenvalues are

continuous functions of the elements of the matrix, we get the consistency of the

eigenvalues

λ̂ j
(
F̂

) a.s−→ λ j (F) , for j = 1,2, · · · ,m.

When Assumption 1 is true, spec{F}∩R−0 =∅. Hence, when the sample size T is

large enough, we could get

spec
{

F̂
}∩R−0 =∅

Therefore, based on Lemma 3.2.1, Â represented in (3.2.12) is the principle loga-
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rithm of F̂ . We could rewrite the relationship between Â and F̂ as F̂ = exp
{

Âh
}

=

∑∞
j=0

(
Âh

) j
/ j!. As a result,

F̂−F =
(
Â−A

)
h+

∞

∑
j=2

(
Âh

) j− (Ah) j

j!
=

(
Â−A

)
h+

∞

∑
j=2

(h) j

j!

{
j−1

∑
s=0

As (Â−A
)(

Â
) j−1−s

}
,

which leads to

Vec
(
F̂−F

)
=

{
Im2 +

∞

∑
j=2

j−1

∑
s=0

(h) j−1

j!

[
As⊗ (

Â′
) j−1−s

]}

︸ ︷︷ ︸
Ẽ

hVec
(
Â−A

)

From F̂ a.s−→ F , it is easy to get Â a.s−→ A. Hence,

Ẽ a.s−→ Im2 +
∞

∑
j=2

j−1

∑
s=0

(h) j−1

j!

[
As⊗ (

A′
) j−1−s

]

︸ ︷︷ ︸
E2

≡ E.

Let ‖·‖ denote the Frobenius norm of a matrix. Then, the second part satisfies

‖E2‖=

∥∥∥∥∥
∞

∑
j=2

j−1

∑
s=0

(h) j−1

j!

[
As⊗ (

A′
) j−1−s

]∥∥∥∥∥≤
∞

∑
j=2

j−1

∑
s=0

(h) j−1

j!
‖As‖

∥∥∥
(
A′

) j−1−s
∥∥∥

≤
∞

∑
j=2

j−1

∑
s=0

(h) j−1

j!
‖A‖s ‖A‖ j−1−s =

∞

∑
j=2

j−1

∑
s=0

(h) j−1

j!
‖A‖ j−1 =

∞

∑
j=2

(h) j−1

( j−1)!
‖A‖ j−1

= exp{‖A‖h}−1 = O(h)

Hence

Ẽ a.s→ E = Im2 +O(h)

which also means that the matrix Ê is nonsingular almost surely when T is large

and h is small. Therefore,

h
√

nVec
(
Â−A

)
= Ẽ−1√nVec

(
F̂−F

) d−→ E−1N(0,VF).

Together with the conclusion in Theorem 3.3.1, we get Γ = E−1 = IM2 +O(h).
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Proof of Proposition 3.3.1. Let η1 = µ1 + iν1 and η2 = µ2 + iν2 be any two

distinct eigenvalues of A, where µ j, ν j, for j = 1,2, are real numbers and i =
√−1.

If eη1h = eη2h, we have

1 = eη1h/eη2h = exp{(µ1−µ2)h+ i(ν1−ν2)h}

= exp{(µ1−µ2)h} [cos(ν1−ν2)h+ isin(ν1−ν2)h] .

This implies that µ1−µ2 = 0 and (ν1−ν2)h = 2kπ , where k is any integral number.

Under Assumption 1, ν1, ν2 ∈ (−2π/h,2π/h), and hence (ν1−ν2)h ∈ (−2π,2π).

As a result, k = 0 is the only possible solution to ensure eη1h = eη2h. In this case,

we have µ1− µ2 = 0 and (ν1−ν2)h = 0 and hence η1 = η2. This contradicts to

the assumption that η1 and η2 are distinct. In general, all the eigenvalues of F are

distinct.

Proof of Theorem 3.3.4. Under Assumption 3, A has the Jordan decomposition

form as

A = Pdiag{η1, · · · ,ηm}Q = PV Q (.0.7)

Therefore, the coefficient matrix E mentioned in the proof of the formula 3.3.3 can

be rewritten as

E = IM2 +
∞

∑
j=2

j−1

∑
s=0

(h) j−1

j!

[
As⊗ (

A′
) j−1−s

]

= IM2 +
∞

∑
j=2

j−1

∑
s=0

(h) j−1

j!
[
(PV sQ)⊗ (

Q′V j−1−sP′
)]

= IM2 +
∞

∑
j=2

j−1

∑
s=0

(h) j−1

j!
[(

P⊗Q′)(
V s⊗V j−1−s)(

Q⊗P′
)]

=
(
P⊗Q′)

{
IM2 +

∞

∑
j=2

j−1

∑
s=0

(h) j−1

j!
[(

V s⊗V j−1−s)]
}

(
Q⊗P′

)

=
(
P⊗Q′)diag{Λ1, · · · ,Λm}

(
Q⊗P′

)
,
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where, for k = 1, · · · ,m,

Λk = diag

({
1+

∞

∑
j=2

j−1

∑
s=0

(h) j−1

j!
ηs

kη j−1−s
τ

}m

τ=1

)
.

When k = τ , it is easy to get

1+
∞

∑
j=2

j−1

∑
s=0

(h) j−1

j!
ηs

kη j−1−s
τ = 1+

∞

∑
j=2

j−1

∑
s=0

(h) j−1

j!
η j−1

k = 1+
∞

∑
j=2

(h) j−1

( j−1)!
η j−1

k = eηkh.

When k 6= τ , as all the eigenvalues are distinct, we assume |ηk| < |ητ | (the same

result is easy to get when |ηk|> |ητ |). Then

1+
∞

∑
j=2

j−1

∑
s=0

(h) j−1

j!
ηs

kη j−1−s
τ = 1+

∞

∑
j=2

j−1

∑
s=0

(h) j−1

j!

(
ηk

ητ

)s

η j−1
τ

= 1+
∞

∑
j=2

(h) j−1 η j−1
τ

j!
1− (ηk/ητ)

j

1− (ηk/ητ)

= 1+
∞

∑
j=2

(h) j−1

j!
η j

τ −η j
k

ητ −ηk
= 1+

1
(ητ −ηk)h

∞

∑
j=2

(h) j

j!

(
η j

τ −η j
k

)

= 1+
1

(ητ −ηk)h
{(exp{ητh}−1−ητh)− (exp{ηkh}−1−ηkh)}

=
eητ h− eηkh

(ητ −ηk)h
.

Proof of Lemma 3.3.2. Let (λ1, · · · ,λm)′ be the ordered set of eigenvalues, p j

be the corresponding eigenvectors after normalization, and P =
(

p1 · · · pm

)
.

Hence,

F = Pdiag(λ1, · · · ,λm) p−1 = PΛP−1.

Since F̂ a.s→F , F̂ is diagonalizable almost surely and could be expressed as following

when T is large,

F̂ = P̂diag
(

λ̂1, · · · , λ̂m

)
P̂−1 = P̂Λ̂P̂−1,

where p̂ j is the normalized eigenvector corresponding to the eigenvalue λ̂ j. As a
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result,

F̂−F = dF = P̂Λ̂P̂−1−PΛP−1

=
(
P̂−P

)
Λ̂P̂−1 +P

(
Λ̂−Λ

)
P̂−1 +PΛ

(
P̂−1−P−1)

=
(
P̂−P

)
Λ̂P̂−1 +P

(
Λ̂−Λ

)
P̂−1−PΛP−1 (

P̂−P
)

P̂−1

= (dP) Λ̂P̂−1 +P(dΛ) P̂−1−PΛP−1 (dP) P̂−1,

and

P−1 (dF) P̂ = P−1 (dP) Λ̂+dΛ−ΛP−1 (dP)

= dΛ+P−1 (dP)
(
Λ̂−Λ

)
+P−1 (dP)Λ−ΛP−1 (dP)

Note that the diagonal elements of P−1 (dP)Λ and ΛP−1 (dP) are identical (c.f.,

Phillips, 1982) and we get

(
P−1 (dF) P̂

)
( j, j) =

(
λ̂ j−λ j

)
+

(
P−1 (dP)

)
( j, j)

(
λ̂ j−λ j

)
.

Let
(

p j)′ and p̂ j denote the jth row of P−1 and the jth column of P̂, respectively,

we have

{
1+

[
P−1 (dP)

]
( j, j)

}(
λ̂ j−λ j

)
=

(
p j)′ (dF) p̂ j =

[(
p j)′⊗ p̂′j

]
Vec(dF) .

As
√

nVec
(
F̂−F

) d→N (0,VF) , and P̂ =
(

p̂1 · · · p̂m

)
a.s→ p =

(
p1 · · · pm

)
,

we get
√

n
(

λ̂ j−λ j

)
d→

[(
p j)′⊗ p′j

]
N (0,VF) .

Let G =
[(

p j)′⊗ p′j
]

m×m2
. We obtain the limit distribution of the eigenvalues of F̂
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as

√
n
(

λ̂ −λ
)

=
√

n




λ̂1−λ1

...

λ̂m−λm




=
√

nGVec(dF)+op(1) d→ N
(
0,GVFG′) .

The joint asymptotic distribution of
(

λ̂ −λ
)

and Vec
(
F̂−F

)
is:

√
n




λ̂ −λ

Vec
(
F̂−F

)


 =




G

Im2



√

nVec
(
F̂−F

)
+op(1) d→ N

(
0,RVFR′

)
.

where R =




G

Im2




(m2+m)×m2

.

Proof of Theorem 3.4.1. We only give the proof of (a), as the proof of (b) can

be obtained in a similar way. First, we give the proof for the case in which m > 1.

As A = 0 and F = I, straightforward calculation can give the results that C j = 0, for

j = 1, · · · ,m, and f1 = 0, fs =−1/(s−1) , for s = 2, · · · ,m. we could also get

T h
(
Â−A

)
= T Â = T ln

(
F̂

)
= T f̂1I + f̂2T

(
I− F̂

)
+ · · ·+ f̂mT

(
I− F̂

)m−1
.

The convergence result in (3.4.4) signifies that

T
(
I− F̂

) j p−→ 0 for j > 1.

From the consistency of f̂ j, j = 1, · · · ,m, the following expression is obtained

T h
(
Â−A

)
= T f̂1I + f̂2T

(
I− F̂

)
+op(1).

Note that

T f̂1 =
∫ 1

0

TĈmSm−1

1+Ĉ1S + · · ·+ĈmSm
dS,
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with

TĈm = T (−1)m det
(
I− F̂

)
= n(−1)m

m!

∑
j=1

ζ j.

where ζ j, for any j, is a multiplication of elements in matrix
(
I− F̂

)
with the num-

ber of m. Because that T
(
I− F̂

)
= Op (1) and m > 1, it it easy to get T ζ j

p−→ 0.

As a result, TĈm
p−→ 0. Based on the consistency of Ĉ j, j = 1, · · · ,m, we have

T f̂1
p−→ 0.Consequently,

T h
(
Â−A

)
= f̂2T

(
I− F̂

)
+op(1) d−→− f2 · f (B1,B∗1,421) = f (B1,B∗1,421)

For the case m = 1, we have

T h
(
Â−A

)
= T Â = T f̂1,

and

T f̂1 = TĈ1

∫ 1

0

1
1+Ĉ1S

dS, with Ĉ1 = (−1)
(
1− F̂

) p−→ 0.

Again, as T
(
F̂−1

) d−→ f (B1,B∗1,421) , we have

T h
(
Â−A

)
= TĈ1

∫ 1

0

1
1+Ĉ1S

dS = T
(
F̂−1

)
+op (1) d−→ f (B1,B∗1,421)

Proof of Theorem 3.4.2. When b = 0, we have T
(
F̂− I

) d−→ f (B1,B∗1,421).

Then, it is easy to get

T

{
m

∑
j=1

λ̂ j−m

}
= T

m

∑
j=1

(
λ̂ j−1

)
= T × tr

(
F̂− I

)

= T ∆Vec
(
F̂− I

) d−→ ∆ ·Vec [ f (B1,B∗1,421)] ,

where ∆ is a row vector of dimension m2, whose 1st , [m+2]th, · · · , [(m−1)m+m]th

elements are 1 and 0 otherwise. The other parts of the theorem can be easily proved

by using the same method.
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C Proofs in Chapter 4

Proof of Proposition 4.2.1. (a), (b) are similar to those in PM and are omitted.

(c) Notice that {εth}T
t=1 is a martingale-difference array. For any fixed h and N,

T = N
h , {εth}T

t=1
iid∼ (0,1). Therefore,

T

∑
t=1

E

((
εth√

T

)2
∣∣∣∣∣FT,t−1

)
=

T

∑
t=1

1
T

= 1,

and

max
1≤t≤T

E

((
εth√

T

)2
∣∣∣∣∣FT,t−1

)
=

1
T
→ 0.

The Lindeberg condition holds since, when h→ 0, N → ∞, for any ε > 0,

T

∑
t=1

E

((
εth√

T

)2

1
{∣∣∣∣

εth√
T

∣∣∣∣ > ε
})

= E
(
ε2

1h1
{

ε2
1h > T ε2})≤

(
E

(
|ε1h|2+δ

)) 2
2+δ (

P
{

ε2
1h > T ε2}) δ

2+δ

≤
(

E
(
|ε1h|2+δ

)) 2
2+δ

(
E

(
ε2

1h

)

T ε2

) δ
2+δ

≤M
2

2+δ

(
1

T ε2

) δ
2+δ

→ 0,

by the assumption that for some δ > 0, E
(
|ε1h|2+δ

)
is uniformly bounded about h

when h is small. Using the Central Limit Theory for the martingale-difference array

(see e.g. Hall and Heyde, 1980, Theorem 3.5), we get 1√
T

T
∑

t=1
εth =⇒ N (0,1).

(d) Denote ah(κ) = ah when there is no confusion. By the Cramér-Wold device

(e.g. Kallenberg, 2002, Corollary 5.5), it is sufficient to show that

aXT h +bYT h =⇒ aX +bY for all a,b ∈ R, (.0.8)

where X and Y are independent N (0,1/(−2κ)) random variables. If Z is an

N
(
0,

(
a2 +b2)/(−2κ)

)
random variable, aX + bY d= Z, so aXT h + bYT h =⇒ Z is
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sufficient for (.0.8). We can write aXT h +bYT h =
T
∑

t=1
ζTt , where

{ζTt}T
t=1 =

{(
a [ah]

−(T−t)−1 +b [ah]
−t

) εth√
kT

}T

t=1

is a martingale-difference array, as {εth}T
t=1

iid∼ (0,1) for any fixed h, N and T = N/h.

Hence,

T

∑
t=1

E
(

(ζTt)
2
∣∣∣FT,t−1

)
=

1
kT

T

∑
t=1

(
a [ah]

−(T−t)−1 +b [ah]
−t

)2

=
1
kT

{
T

∑
t=1

a2 [ah]
−2(T−t)−2 +

T

∑
t=1

b2 [ah]
−2t +2Tab [ah]

−T−1

}

=
{

a2 +b2} 1
kT

T

∑
t=1

[ah]
−2t +O

(
T [ah]

−T

kT

)

=
a2 +b2

−2κ
+o(1) → a2 +b2

−2κ
, as h→ 0, N → ∞.

And as ah = ah(κ) = exp{−kh}> 1,

max
1≤t≤T

E
(

(ζTt)
2
∣∣∣FT,t−1

)
= max

1≤t≤T

(
a [ah]

−(T−t)−1 +b [ah]
−t

)2 1
kT

≤ max
1≤t≤T

2
(

a2 [ah]
−2(T−t)−2 +b2 [ah]

−2t
) 1

kT

≤ 2
(
a2 +b2) 1

kT
→ 0 as h→ 0, N → ∞.
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The Lindeberg condition holds since, when h→ 0, N → ∞, for any ε > 0,

T

∑
t=1

E
(
(ζTt)

2 1{|ζTt |> ε}
)

=
T

∑
t=1

(
a(ah)

−(T−t)−1 +b(ah)
−t

)2

kT
E


(εth)

2 1





∣∣∣a(ah)
−(T−t)−1 +b(ah)

−t
∣∣∣ |εth|√

kT
> ε








≤
{

a2 +b2

−2κ
+o(1)

}
max

1≤t≤T
E

(
(εth)

2 1
{(

a(ah)
−(T−t)−1 +b(ah)

−t
)2

(εth)
2 > kT ε2

})

≤
{

a2 +b2

−2κ
+o(1)

}
max

1≤t≤T
E

(
(εth)

2 1
{

2
(
a2 +b2)(εth)

2 > kT ε2
})

=
{

a2 +b2

−2κ
+o(1)

}
E

(
(ε1h)

2 1
{

2
(
a2 +b2)(ε1h)

2 > kT ε2
})

≤
{

a2 +b2

−2κ
+o(1)

}{
E

(
|ε1h|2+δ

)} 2
2+δ

(
P

{
2
(
a2 +b2)(ε1h)

2 > kT ε2
}) δ

2+δ

≤
{

a2 +b2

−2κ
+o(1)

}{
E

(
|ε1h|2+δ

)} 2
2+δ

{
2
(
a2 +b2)

kT ε2

} δ
2+δ

= o(1) ,

by the assumption that for some δ > 0, E
(
|ε1h|2+δ

)
is uniformly bounded about h

when h is small. Using the same Central Limit Theory for the martingale-difference

array, we get aXT h +bYT h =⇒ Z, for all a,b ∈ R, establishing (.0.8).

Proof of Proposition 4.2.1. (a) Denote ah(κ) = ah when there is no confusion.

From Model (4.2.8) we get

xth = ahx(t−1)h + g̃h + εth = g̃h
1−at

h
1−ah

+
t

∑
j=1

at− j
h ε jh +at

hx0h.
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Hence,

a−T
h√
kT

xT h =
a−T

h√
kT

(
g̃h

1−aT
h

1−ah
+

T

∑
j=1

aT− j
h ε jh +aT

h x0h

)

=
√

kT g̃h
a−T

h −1
(1−ah)kT

+YT h +
x0h√

kT

=⇒ κµ +σ iψ ′ (0)
−κσ

√
ψ ′′ (0)

+Y +
y0h

σ
√

ψ ′′ (0)

=

√
1

−2κ

(
√−2κY +

√−2κ
κµ +σ iψ ′ (0)−κy0h

−κσ
√

ψ ′′ (0)

)
=

√
1

−2κ
[η +D] .

From Lemma 4.2.1 (c), η is N (0,1) variate.

Notice that xth− x(t−1)h = (ah−1)x(t−1)h + g̃h + εth. Therefore,

xT h− x0h = (ah−1)
T

∑
t=1

x(t−1)h +T g̃h +
T

∑
t=1

εth,

and

a−T
h (ah−1)√

kT

T

∑
t=1

x(t−1)h =
a−T

h√
kT

xT h−a−T
h

x0h√
kT
− a−T

h T
kT

√
kT g̃h−

a−T
h

√
T√

kT

1√
T

T

∑
t=1

εth

=
a−T

h√
kT

xT h +op (1)→
√

1
−2κ

[η +D] ,

by Lemma 4.2.1 (a), (c), a−T
h = o(kT /T ) and 1√

T

T
∑

t=1
εth ∼ Op (1) .

(b) From Model (4.2.8) we get

xth = ahx(t−1)h + g̃h + εth = g̃h
1−at

h
1−ah

+
t

∑
j=1

at− j
h ε jh +at

hx0h,
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and

T

∑
t=1

x(t−1)hεth

= g̃h

T

∑
t=1

1−at−1
h

1−ah
εth +

T

∑
t=1

[
t−1

∑
j=1

at− j−1
h ε jh

]
εth + x0h

T

∑
t=1

at−1
h εth

= g̃h

T

∑
t=1

1−at−1
h

1−ah
εth +

T

∑
t=1

[
T

∑
j=1

at− j−1
h ε jh

]
εth−

T

∑
t=1

[
T

∑
j=t

at− j−1
h ε jh

]
εth + x0h

T

∑
t=1

at−1
h εth

= g̃h

T

∑
t=1

1−at−1
h

1−ah
εth +

[
T

∑
t=1

at−1
h εth

][
T

∑
j=1

a− j
h ε jh

]
−

T

∑
t=1

[
T

∑
j=t

at− j−1
h ε jh

]
εth + x0h

T

∑
t=1

at−1
h εth

=
g̃h

1−ah

T

∑
t=1

εth +

[
T

∑
t=1

at−1
h εth

][
g̃h

ah−1
+

T

∑
j=1

a− j
h ε jh + x0h

]
−

T

∑
t=1

[
T

∑
j=t

at− j−1
h ε jh

]
εth.

From Lemma 4.2.1 (b), (c), we have a−T
h
kT

T
∑

t=1

[
T
∑
j=t

at− j−1
h ε jh

]
εth

L1−→ 0, and a−T
h g̃h

(1−ah)kT

T
∑

t=1
εth =

√
N exp{κN}
(1−ah)kT

g̃h
√

kT

(
1√
T

T
∑

t=1
εth

)
= op(1) as h→ 0, N → ∞. Hence,

a−T
h
kT

T

∑
t=1

x(t−1)hεth

=

[
1√
kT

T

∑
t=1

a−(T−t)−1
h εth

][
g̃h

(ah−1)
√

kT
+

1√
kT

T

∑
j=1

a− j
h ε jh +

x0h√
kT

]
+op(1)

= XT h

[
g̃h

(ah−1)
√

kT
+YT h +

x0h√
kT

]
+op(1)

=⇒ X

[
κµ +σ iψ ′ (0)
−κσ

√
ψ ′′ (0)

+Y +
y0h

σ
√

ψ ′′ (0)

]

=
1

−2κ

[√−2κX
][
√−2κY +

√−2κ
κµ +σ iψ ′ (0)−κy0h

−κσ
√

ψ ′′ (0)

]
=

1
−2κ

ξ [η +D] ,

where, by Lemma 4.2.1 (c), ξ and η are independent N (0,1) variates.

(c) Since xth = ahx(t−1)h + g̃h + εth, we get

x2
th = a2

hx2
(t−1)h +2g̃hahx(t−1)h +2ahx(t−1)hεth + g̃2

h + ε2
th +2g̃hεth,
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and

x2
th− x2

(t−1)h =
(
a2

h−1
)

x2
(t−1)h +2g̃hahx(t−1)h +2ahx(t−1)hεth + g̃2

h + ε2
th +2g̃hεth.

Hence,

(
a2

h−1
) T

∑
t=1

x2
(t−1)h

=
(
x2

T h− x2
0h

)−2g̃hah

T

∑
t=1

x(t−1)h−2ah

T

∑
t=1

x(t−1)hεth−T g̃2
h−

T

∑
t=1

ε2
th−2g̃h

T

∑
t=1

εth.

Notice that a−2T
h

x2
0h

kT
→ 0, a−2T

h
kT

T g̃2
h → 0. The proof of Part (a) and (b) suggests

2g̃hah
a−2T

h
kT

T

∑
t=1

x(t−1)h = 2g̃h
√

kT
a−T+1

h
[ah−1]kT

(
a−T

h [ah−1]√
kT

T

∑
t=1

x(t−1)h

)
→ 0,

2ah
a−2T

h
kT

T

∑
t=1

x(t−1)hεth = 2a−T+1
h

(
a−T

h
kT

T

∑
t=1

x(t−1)hεth

)
→ 0.

And, as E
∣∣∣∣

a−2T
h
kT

T
∑

t=1
ε2

th

∣∣∣∣ = a−2T
h
kT

T
∑

t=1
E

(
ε2

th

)
= a−2T

h T
kT

→ 0, we get a−2T
h
kT

T
∑

t=1
ε2

th
L1→ 0. By

Lemma 4.2.1 (c),

2g̃h
a−2T

h
kT

T

∑
t=1

εth = 2g̃h
a−2T

h T
kT

(
1
T

T

∑
t=1

εth

)
→ 0.

Therefore, from the proof of Part (a), we have

(
a2

h−1
) a−2T

h
kT

T

∑
t=1

x2
(t−1)h =

(
a−T

h√
kT

xT h

)2

+op(1) =⇒ 1
−2κ

(η +D)2 .

(d) This is an immediate consequence of (a), (b) and (c).

(e) Since κ =−(1/h) ln(ah (κ)) and κ̂ =−(1/h) ln(âh(κ)), by the mean value

theorem,

−h(κ̂−κ) = ln(âh(κ))− ln(ah(κ)) =
1

ãh(κ)
(âh(κ)−ah(κ)) (.0.9)
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for some ãh(κ) whose value is between âh(κ) and ah(κ). The Delta method is not

directly applicable since ah(κ) is a not constant but a real sequence that goes to 1 as

h→ 0. However, if we can show ãh(κ)
p→ 1, we can obtain the limiting distribution

for κ̂ . For any ε > 0, when h is small enough, |ah(κ)−1|< ε/2, and

Pr{|ãh(κ)−1|> ε} = Pr{|ãh(κ)−ah(κ)+ah(κ)−1|> ε}

≤ Pr{|ãh(κ)−ah(κ)|+ |ah(κ)−1|> ε}

≤ Pr{|âh(κ)−ah(κ)|+ |ah(κ)−1|> ε}

= Pr{|âh(κ)−ah(κ)|> ε−|ah(κ)−1|}

≤ Pr{|âh(κ)−ah(κ)|> ε/2}

→ 0, as h→ 0, and N → ∞,

where the first inequality is the triangular inequality, the second comes from the

fact that ãh(κ) is between âh(κ) and ah(κ), and the final result based on the fact

that âh(κ)−ah(κ)
p→ 0. Hence, ãh(κ)

p→ 1 and

e−κN

2κ
(κ̂−κ) =

1− (ah(κ))2

2κh
1

ãh(κ)

[
(ah(κ))T

(ah(κ))2−1
(âh(κ)−ah(κ))

]
=⇒ ξ

η +D
.

(.0.10)

Proof of Proposition 4.4.1. (a) Letting γ = b/
(
σ
√

N
)
, Perron (1991) derived

the joint MGF of A(γ,c) and B(γ,c) as

M (v,u)

= E [exp(vA(γ,c)+uB(γ,c))]

= Ψc (v,u)exp
{
−

(
γ2

2

)
(v+ c−λ )

[
1− exp(v+ c+λ )Ψ2

c (v,u)
]}

= Ψc (v,u)︸ ︷︷ ︸
I

exp
{
−

(
γ2

2

)
(v+ c−λ )

}

︸ ︷︷ ︸
II

exp
{(

γ2

2

)
(v+ c−λ )exp(v+ c+λ )Ψ2

c (v,u)
}

︸ ︷︷ ︸
III

,
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where

λ =
(
c2 +2cv−2u

)1/2
,

Ψc (v,u) =
[

2λ exp{−(v+ c)}
(λ +(v+ c))exp{−λ}+(λ − (v+ c))exp{λ}

]1/2

.

Let v = ṽ(2c)e−c and u = ũ(2c)2e−2c. The joint MGF of (2c)e−cA(γ,c)

and (2c)2 e−2cB(γ,c) is

M (ṽ, ũ) = E
[
exp

(
ṽ(2c)e−cA(γ,c)+ ũ(2c)2e−2cB(γ,c)

)]
.

We get

λ =
{

c2 +(2c)2e−cṽ−2(2c)2e−2cũ
}1/2

=
{[

c+(2c)e−cṽ−2(2c)e−2cũ− (2c)e−2cṽ2]2
+O

(
e−3c)}1/2

= c+(2c)e−cṽ−2(2c)e−2cũ− (2c)e−2cṽ2 +O
(
e−3c) ,

λ +(v+ c) = 2c+2(2c)e−cṽ−2(2c)e−2cũ− (2c)e−2cṽ2 +O
(
e−3c) ,

λ − (v+ c) =−2(2c)e−2cũ− (2c)e−2cṽ2 +O
(
e−3c) ,

e−λ = e−c− (2c)e−2cṽ+O
(
e−3c) ,

and

(λ − (v+ c))eλ =−(2c)e−c [
2ũ+ ṽ2]+O

(
e−2c) .

The denominator of Ψ2
c (v,u) is

(λ +(v+ c))e−λ +(λ − (v+ c))eλ = (2c)e−c [
1−2ũ− ṽ2]+O

(
e−2c) .

The numerator of Ψ2
c (v,u) is

2λ exp{−(v+ c)}= 2λ exp
{−(2c)e−cṽ− c

}
= (2c)e−c +O

(
e−2c) .
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Hence,

I = Ψc (v,u) =

{
(2c)e−c +O

(
e−2c)

(2c)e−c [1−2ũ− ṽ2]+O(e−2c)

}1/2

→
{

1
1−2ũ− ṽ2

}1/2

.

It is easy to show that II → 1 because

−
(

γ2

2

)
(v+ c−λ ) =

(−b2κ
2σ2c

)[−2(2c)e−2cũ− (2c)e−2cṽ2 +O
(
e−3c)]→ 0.

Since

exp{λ + v+ c}= e2c exp
{

2(2c)e−cṽ−2(2c)e−2cũ− (2c)e−2cṽ2 +O
(
e−3c)} ,

letting d = b
√−2κ/σ , we get (2c)γ2 = d2 and

(
γ2

2

)
(v+ c−λ )exp{λ + v+ c}

=
d2

2
[
2ũ+ ṽ2 +O

(
e−c)]exp

{
2(2c)e−cṽ−2(2c)e−2cũ− (2c)e−2cṽ2 +O

(
e−3c)}

→ d2

2
[
2ũ+ ṽ2] .

Therefore,

III → exp

{
d2 [

2ũ+ ṽ2]

2 [1−2ũ− ṽ2]

}
.

The limiting behavior of I, II and III gives rise to the limiting joint MGF of (2c)e−cA(γ,c)

and (2c)2 e−2cB(γ,c).

(b) Since ξ and η are independent N (0,1) random variables and d = b
√−2κ/σ
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is a constant, we have

M (ṽ, ũ) = E
{

exp
(

ξ [d +η ] ṽ+[d +η ]2 ũ
)}

= E
{

E
[

exp
(

ξ [d +η ] ṽ+[d +η ]2 ũ
)∣∣∣zξ

]}

= E

{
exp

(
[d +η ]2 ũ

)
exp

(
[d +η ]2 ṽ2

2

)}

=
1

{1−2ũ− ṽ2}1/2 exp

{
d2 [

2ũ+ ṽ2]

2 [1−2ũ− ṽ2]

}
.

This is the joint MGF of ξ [d +η ] and [d +η ]2 and is equivalent to the result in (a).

(c) This is an immediate consequence of (b).

Proof of Proposition 4.4.2. (a) and (b) are the classical results from Phillips

(1987) and also identical to (ii) and (iv) of Lemma A.2 in Perron (1991).

(c) Note that 2c
∫ 1

0 exp{cr}Jc (r)dr = ecJc(1)− ∫ 1
0 exp{cr}dW (r) and hence,

{
(2c)3/2 e−2c

∫ 1

0
exp{cr}Jc (r)dr

}2

= (2c)e−4c
{

ecJc(1)−
∫ 1

0
exp{cr}dW (r)

}2

= (2c)e−2cJc(1)2 + e−2c
[
(2c)1/2 e−c

∫ 1

0
exp{cr}dW (r)

]2

−2e−c
[
(2c)1/2 e−cJc(1)

][
(2c)1/2 e−c

∫ 1

0
exp{cr}dW (r)

]
.

By stochastic differentiation of {∫ r
0 exp{−cs}dW (s)}2, we deduce the following

useful relationship, as pointed out in Phillips (1987),

{Jc(1)}2 = 1+2c
∫ 1

0
Jc (r)2 dr +2

∫ 1

0
Jc (r)dW (r).

From (a) and (b), we get

{
(2c)1/2 e−cJc(1)

}2

= (2c)e−2c +(2c)2 e−2c
∫ 1

0
Jc (r)2 dr +2(2c)e−2c

∫ 1

0
Jc (r)dW (r) =⇒ η2.
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As
∫ 1

0 exp{cr}dW (r) ∼ N
(

0, exp{2c}−1
2c

)
, (2c)1/2 e−c ∫ 1

0 exp{cr}dW (r) is Op(1),

we have

{
(2c)3/2 e−2c

∫ 1

0
exp{cr}Jc (r)dr

}2

=
{

(2c)1/2 e−cJc(1)
}2

+op(1) =⇒ η2.

(d) Based on the results in (a), (b), (c), and 2cγ2 =−2κb2/σ2 = d2, we get

(2c)e−cA(γ,c)

(2c)2 e−2cB(γ,c)

=
(2c)1/2 γ

[
(2c)1/2 e−c ∫ 1

0 exp{cr}dW (r)
]
+(2c)e−c ∫ 1

0 Jc (r)dW (r)

γ2 (2c) [1− e−2c]+2γ (2c)1/2
[
(2c)3/2 e−2c

∫ 1
0 exp{cr}Jc (r)dr

]
+(2c)2 e−2c

∫ 1
0 Jc (r)2 dr

=
d
[
(2c)1/2 e−c ∫ 1

0 exp{cr}dW (r)
]
+[ξ η +op (1)]

[d2 +o(1)]+2d [η2 +op (1)]1/2 +[η2 +op (1)]

=
d
[
(2c)1/2 e−c ∫ 1

0 exp{cr}dW (r)
]
+[ξ η +op (1)]

[d +η ]2 +op (1)
.

From Theorem 4.4.1 we have

(
(2c)e−cA(γ,c) ,(2c)2 e−2cB(γ,c)

)
=⇒

(
ξ [d +η ] , [d +η ]2

)
.

Therefore, (2c)1/2 e−c ∫ 1
0 exp{cr}dW (r) =⇒ ξ .
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