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Abstract

Three Essays on Large Panel Data Models with Cross-Sectional Dependence

Yonghui Zhang

My dissertation consists of three essays which contribute new theoretical re-

sults to large panel data models with cross-sectional dependence. These essays try

to answer or partially answer some prominent questions such as how to detect the

presence of cross-sectional dependence and how to capture the latent structure of

cross-sectional dependence and estimate parameters efficiently by removing its ef-

fects.

Chapter 2 introduces a nonparametric test for cross-sectional contemporaneous

dependence in large dimensional panel data models based on the squared distance

between the pair-wise joint density and the product of the marginals. The test can be

applied to either raw observable data or residuals from local polynomial time series

regressions for each individual to estimate the joint and marginal probability density

functions of the error terms. In either case, we establish the asymptotic normality

of our test statistic under the null hypothesis by permitting both the cross section

dimension n and the time series dimension T to pass to infinity simultaneously

and relying upon the Hoeffding decomposition of a two-fold U-statistic. We also

establish the consistency of our test. A small set of Monte Carlo simulations is

conducted to evaluate the finite sample performance of our test and compare it with

that of Pesaran (2004) and Chen, Gao, and Li (2009).

Chapter 3 analyzes nonparametric dynamic panel data models with interactive

fixed effects, where the predetermined regressors enter the models nonparametri-

cally and the common factors enter the models linearly but with individual spe-



cific factor loadings. We consider the issues of estimation and specification testing

when both the cross-sectional dimension N and the time dimension T are large. We

propose sieve estimation for the nonparametric function by extending Bai’s (2009)

principal component analysis (PCA) to our nonparametric framework. Following

Moon and Weidner’s (2010, 2012) asymptotic expansion of the Gaussian quasi-

log-likelihood function, we derive the convergence rate for the sieve estimator and

establish its asymptotic normality. The sources of asymptotic biases are discussed

and a consistent bias-corrected estimator is provided. We also propose a consistent

specification test for the linearity of the nonparametric functional form by compar-

ing the linear and sieve estimators. We establish the asymptotic distributions of the

test statistic under both the null hypothesis and a sequence of Pitman local alter-

natives. To improve the finite sample performance of the test, we also propose a

bootstrap procedure to obtain the bootstrap p-values and justify its validity. Monte

Carlo simulations are conducted to investigate the finite sample performance of our

estimator and test. We apply our model to an economic growth data set to study the

relationship between capital accumulation and real GDP growth rate.

Chapter 4 proposes a nonparametric test for common trends in semiparametric

panel data models with fixed effects based on a measure of nonparametric goodness-

of-fit (R2). We first estimate the model under the null hypothesis of common trends

by the method of profile least squares, and obtain the augmented residual which

consistently estimates the sum of the fixed effect and the disturbance under the null.

Then we run a local linear regression of the augmented residuals on a time trend and

calculate the nonparametric R2 for each cross section unit. The proposed test statis-

tic is obtained by averaging all cross sectional nonparametric R2’s, which is close

to 0 under the null and deviates from 0 under the alternative. We show that after

appropriate standardization the test statistic is asymptotically normally distributed

under both the null hypothesis and a sequence of Pitman local alternatives. We

prove test consistency and propose a bootstrap procedure to obtain p-values. Monte

Carlo simulations indicate that the test performs well infinite samples. Empirical



applications are conducted exploring the commonality of spatial trends in UK cli-

mate change data and idiosyncratic trends in OECD real GDP growth data. Both

applications reveal the fragility of the widely adopted common trends assumption.
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Chapter 1 Introduction

In recent years one of the most active research areas in the panel data literature

has been cross-sectional dependence. The topic has figured prominently in work

on economic growth, housing prices, indices of economic activity, asset pricing,

and other economic, business and financial activities and decisions. The sources

of dependence are manifold and include spatial effects, spillover effects, unobserv-

able common factors and social interactions. Ignoring cross-sectional dependence

in panel applications can have serious consequences such as inconsistent estima-

tion, misleading inference and distortions in hypothesis testing. Amidst the ongoing

work on cross-sectional dependence, two questions are prominent: (i) how to detect

its presence; and (ii) how to capture its latent structure and estimate parameters effi-

ciently by removing its effects. For the first question, many tests have been proposed

such as the Breusch-Pagan (1978) LM test and Pesaran (2004) cross-sectional de-

pendence test. For the second question, there are two mainstreams in the literature.

In spatial econometric work, one approach is to use additional information such as

spatial/economic distance, which has been widely used in research on crime, re-

gional science and social interactions. A second approach is to use factor models

which have become popular in empirical finance and macroeconomics.

My dissertation seeks to address these issues: (i) How to test for cross-sectional

dependence; (ii) How to estimate and make statistical test for nonparametric dy-

namic panel data models with interactive fixed effects; (iii) How to test for common

trends in semiparametric panel data models with fixed effects where cross-sectional

dependence is present in the errors. The contributions of my thesis have twofold.

First, it would contribute to theoretical methods, specially to the nonparamteric and

1



semiparametric estimation and testing; Second, my dissertation research would ben-

efit extensive empirical studies, as it could provide methodological approach to help

analyze practical real-world questions. We propose a nonparametric test for cross-

sectional dependence in Chapter 2. Once we find strong evidence of cross-sectional

dependence, we can adopt the nonparametric dynamic panel data models with in-

teractive fixed effects to capture the unknown cross-sectional dependence, which

is considered in Chapter 3. Chapter 4 considers a nonparametric test for common

trends in semiparametric panel data models with fixed effects and cross-sectional

dependence in the errors.

Chapter 2 proposes a test for cross-sectional dependence based on the squared

distance between the pair-wise joint density and the product of the marginals. Un-

like all available tests which are designed to test for “cross-sectional correlation”,

the new test is designed for “cross-sectional dependence”. Our test has several ad-

vantages over traditional tests. First, it can detect cross-sectional dependence in

non-Gaussian and nonlinear cases where traditional tests may fail. Second, com-

pared with Pesaran’s (2004) and Chen, Gao and Li’s (2012) tests, our test is able to

detect cross-sectional dependence with multifactor structure errors and zero mean

factor loadings. Finally, the test can be applied either to raw observable data or to

the residuals from local polynomial time series regression for each cross-sectional

unit. This chapter establishes asymptotic normality of the test statistic under the

null hypothesis when both the cross-section dimension n and time-series dimension

T are large. Test consistency is proved. The theory developed in the chapter relies

on the Hoeffding decomposition of a two-fold U-statistic.

Chapter 3 develops a new panel data model with cross-sectional dependence.

The model has several desirable features. First, it incorporates time-varying com-

mon factors (time fixed effects) and individual-specific factor loadings (individual

fixed effects) multiplicatively, which captures heterogeneity in a more flexible way.

Second, it does not impose a parametric form for the unknown regression function

and is therefore robust to functional misspecification. Finally, just as for the classic

2



dynamic panel data model, predetermined variables may be included in the regres-

sors, which is a desirable feature in empirical research. We propose sieve estimation

for the nonparametric function by extending Bai’s (2009) principal component anal-

ysis (PCA) to the nonparametric framework. Following Moon and Weidner’s (2010,

2012) asymptotic expansion of the quasi likelihood function, we derive the conver-

gence rate of the sieve estimator and establish its asymptotic normal distribution.

The sources of asymptotic bias are discussed and a consistent bias-corrected esti-

mator is provided. We also introduce a consistent specification test for the linearity

of the nonparametric function by comparing its linear estimator with the sieve es-

timator. We establish the asymptotic distributions of the test statistic both under

the null hypothesis and a sequence of Pitman local alternatives. The new model is

well suited to macroeconomic and financial applications. An empirical application

is conducted with economic growth data from the Penn World Table 7.1 to study

the relationship between capital accumulation and real GDP growth rate, showing

evidence of a nonlinear relationship.

Chapter 4 considers commonality of slowly changing time trends in panel data

models with fixed effects and cross-section dependence in the errors. A nonpara-

metric test for common trends is constructed based on a measure of nonparametric

goodness-of-fit (R2). Under the null hypothesis of common trends, we estimate the

model by profile least squares, and obtain the augmented residual as a consistent

estimator for the sum of the fixed effect and the disturbance. We then run a lo-

cal linear regression of the augmented residuals on a time trend and calculate the

nonparametric R2 for each cross-sectional unit. The test statistic is obtained by av-

eraging all cross-section nonparametric R2’s, which is close to 0 under the null and

deviates from 0 under the alternative. It is shown that the test statistic is asymptoti-

cally normally distributed under both the null hypothesis and a sequence of Pitman

local alternatives after appropriate standardization. We prove consistency of the

proposed test and introduce a bootstrap procedure to compute p-values. The test

is illustrated in two applications, covering the UK climate change data and OECD

3



real GDP growth data. Both examples reveal the fragility of the widely adopted

common trends assumption.
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Chapter 2 Testing Cross-Sectional Dependence

in Nonparametric Panel Data Mod-

els

2.1 Introduction

In recent years, there has been a growing literature on large dimensional panel data

models with cross-sectional dependence. Cross-sectional dependence may arise

due to spatial or spillover effects, or due to unobservable common factors. Much

of the recent research on panel data has focused on how to handle cross-sectional

dependence. There are two popular approaches in the literature: one is to assume

the individuals are spatially dependent, which gives rise to spatial econometrics;

and the other is to assume that the disturbances have a factor structure, which gives

rise to static or dynamic factor models. For a recent and comprehensive overview

of panel data factor model, see the excellent monograph by Bai and Ng (2008).

Traditional panel data models typically assume observations are independent

across individuals, which leads to immense simplification to the rules of estima-

tion and inference. Nevertheless, if observations are cross-sectionally dependent,

parametric or nonparametric estimators based on the assumption of cross-sectional

independence may be inconsistent and statistical inference based on these estima-

tors can generally be misleading. It has been well documented that panel unit root

and cointegration tests based on the assumption of cross-sectional independence are

generally inadequate and tend to lead to significant size distortions in the presence
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of cross-sectional dependence; see Chang (2002), Bai and Ng (2004, 2010), Bai

and Kao (2006), and Pesaran (2007), among others. Therefore, it is important to

test for cross-sectional independence before embarking on estimation and statistical

inference.

Many diagnostic tests for cross-sectional dependence in parametric panel data

model have been suggested. When the individuals are regularly spaced or ranked

by certain rules, several statistics have been introduced to test for spatial depen-

dence, among which the Moran-I test statistic is the most popular one. See Anselin

(1988, 2001) and Robinson (2008) for more details. However, economic agents are

generally not regularly spaced, and there does not exist a “spatial metric” that can

measure the degree of spatial dependence across economic agents effectively. In

order to test for cross-sectional dependence in a more general case, Breusch and

Pagan (1980) develop a Lagrange multiplier (LM) test statistic to check the diago-

nality of the error covariance matrix in SURE models. Noticing that Breusch and

Pagan’s LM test is only effective if the number of time periods T is large relative to

the number of cross sectional units n, Frees (1995) considers test for cross-sectional

correlation in panel data models when n is large relative to T and show that both the

Breusch and Pagan’s and his test statistic belong to a general family of test statistics.

Noticing that Breusch and Pagan’s LM test statistic suffers from huge finite sample

bias, Pesaran (2004) proposes a new test for cross-sectional dependence (CD) by

averaging all pair-wise correlation coefficients of regression residuals. Neverthe-

less, Pesaran’s CD test is not consistent against all global alternatives. In particular,

his test has no power in detecting cross-sectional dependence when the mean of

factor loadings is zero. Hence, Ng (2006) employs spacing variance ratio statistics

to test cross-sectional correlations, which is more robust and powerful than that of

Pesaran (2004). Huang, Kao, and Urga (2008) suggest a copula-based tests for test-

ing cross-sectional dependence of panel data models. Pesaran, Ullah, and Yamagata

(2008) improve Pesaran (2004) by considering a bias adjusted LM test in the case

of normal errors. Based on the concept of generalized residuals (e.g., Gourieroux

6



et al. (1987)), Hsiao, Pesaran, and Pick (2009) propose a test for cross-sectional

dependence in the case of non-linear panel data models. Interestingly, an asymp-

totic version of their test statistic can be written as the LM test of Breusch and Pagan

(1980). Sarafidis, Yamagata, and Robertson (2009) consider tests for cross-sectional

dependence in dynamic panel data models.

All the above tests are carried out in the parametric context. They can lead

to meaningful interpretations if the parametric models or underlying distributional

assumptions are correctly specified, and may yield misleading conclusions other-

wise. To avoid the potential misspecification of functional form, Chen, Gao, and Li

(2009, CGL hereafter) consider tests for cross-sectional dependence based on non-

parametric residuals. Their test is a nonparametric counterpart of Pesaran’s (2004)

test. So it is constructed by averaging all pair-wise cross-sectional correlations and

therefore, like Pesaran’s (2004) test, it does not test for “pair-wise independence”

but “pair-wise uncorrelation”. It is well known that uncorrelation is generally dif-

ferent from independence in the case of non-Gaussianity or nonlinear dependence

(e.g., Granger, Maasoumi, and Racine (2004)). There exist cases where testing for

cross-sectional pair-wise independence is more appropriate than testing pair-wise

uncorrelation.

Since Hoeffding (1948), there has developed an extensive literature on testing

independence or serial independence. See Robinson (1991), Brock et al. (1996),

Ahmad and Li (1997), Johnson and McClelland (1998), Pinkse (1998), Hong (1998,

2000), Hong and White (2005), among others. All these tests are based on some

measure of deviations from independence. For example, Robinson (1991) and Hong

and White (2005) base their tests for serial independence on the Kullback-Leibler

information criterion, Ahmad and Li (1997) on an L2 measure of distance between

the joint density and the product of the marginals, and Pinkse (1998) on the distance

between the joint characteristic function and the product of the marginal character-

istic functions. In addition, Neumeyer (2009) considers a test for independence

between regressors and error term in the context of nonparametric regression. Su

7



and White (2003, 2007, 2008) adopt three different methods to test for conditional

independence. Except CGL, none of the above nonparametric tests are developed

to test for cross-sectional independence in panel data model.

In this chapter, we propose a nonparametric test for contemporary “pair-wise

cross-sectional independence”, which is based on the average of pair-wise L2 dis-

tance between the joint density and the product of pair-wise marginals. Like CGL,

we base our test on the residuals from local polynomial regressions. Unlike them,

we are interested in the pair-wise independence of the error terms so that our test

statistic is based on the comparison of the joint probability density with the prod-

uct of pair-wise marginal probability densities. We first consider the case where

tests for cross-sectional dependence are conducted on raw data so that there is no

parameter estimation error involved and then consider the case with parameter esti-

mation error. For both cases, we establish the asymptotic normal distribution of our

test statistic under the null hypothesis of cross-sectional independence when n→∞

and T → ∞ simultaneously. We also show that the test is consistent against global

alternatives.

The rest of the chapter is organized as follows. Assuming away parameter esti-

mation error, we introduce our testing statistic in Section 2 and study its asymptotic

properties under both the null and the alternative hypotheses in Section 3. In Sec-

tion 4 we study the asymptotic null distribution of our test statistic when tests are

conducted on residuals from heterogeneous nonparametric regressions. In Section

5 we provide a small set of Monte Carlo simulation results to evaluate the finite

sample performance of our test. Section 6 concludes. All proofs are relegated to the

appendix.

NOTATION. Throughout the chapter we adopt the following notation and con-

ventions. For a matrix A, we denote its transpose as A′ and Euclidean norm as

‖A‖ ≡ [tr(AA′)]1/2 , where≡means “is defined as”. When A is a symmetric matrix,

we use λmin(A) and λmax(A) to denote its minimum and maximum eigenvalues, re-

spectively. The operator
p→ denotes convergence in probability, and d→ convergence

8



in distribution. Let Pl
T ≡ T !/(T − l)! and Cl

T ≡ T !/ [(T − l)!l!] for integers l ≤ T .

We use (n,T )→ ∞ to denote the joint convergence of n and T when n and T pass

to the infinity simultaneously.

2.2 Hypotheses and test statistics

To fix ideas and avoid distracting complications, we focus on testing pair-wise

cross-sectional dependence in observables in this section and the next. The case

of testing pair-wise cross-sectional dependence using unobservable error terms is

studied in Section 4.

2.2.1 The hypotheses

Consider a nonparametric panel data model of the form

yit = gi (Xit)+uit , i = 1,2, . . . ,n, t = 1,2, . . . ,T, (2.2.1)

where yit is the dependent variable for individual i at time t, Xit is a d× 1 vector

of regressors in the ith equation, gi (·) is unknown smooth regression function, and

uit is scalar random error term. We are interested in testing for the cross-sectional

dependence in {uit} . Since it seems impossible to design a test that can detect all

kinds of cross-sectional dependence among {uit} , as a starting point we focus on

testing pair-wise cross-sectional dependence among them.

For each i, we assume that {uit}T
t=1 is a stationary time series process that has a

probability density function (PDF) fi (·). Let fi j (·, ·) denote the joint PDF of uit and

u jt . We can formulate the null hypothesis of pair-wise cross-sectional independence

among {uit , i = 1, ...,n} as

H0 : fi j
(
uit ,u jt

)
= fi (uit) f j

(
u jt

)
almost surely (a.s.) for all i, j = 1, . . . ,n, and i 6= j.

(2.2.2)

That is, under H0, uit and u jt are pair-wise independent for all i 6= j. The alternative
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hypothesis is

H1 : the negation of H0. (2.2.3)

2.2.2 The test statistic

For the moment, we assume that {uit} is observed and consider a test for the null

hypothesis in (2.2.2). Alternatively, one can regard gi’s are identically zero in (2.2.1)

and testing for potential cross-sectional dependence among {yit} . The proposed

test is based on the average pair-wise L2 distance between the joint density and the

product of the marginal densities:

Γn =
1

n(n−1) ∑
1≤i 6= j≤n

∫ ∫ [
fi j (u,v)− fi (u) f j (v)

]2 dudv, (2.2.4)

where ∑1≤i6= j≤n stands for ∑n
i=1 ∑n

j=1, j 6=i. Obviously, Γn = 0 under H0 and is

nonzero otherwise.

Since the densities are unknown to us, we propose to estimate them by the kernel

method. That is, we estimate fi (u) and fi j (u,v) by

f̂i (u) ≡ T−1 ∑T
t=1 h−1k ((uit −u)/h) , and

f̂i j (u,v) ≡ T−1 ∑T
t=1 h−2k ((uit −u)/h)k

((
u jt − v

)
/h

)
,

where h is a bandwidth sequence and k (·) is a symmetric kernel function. Note

that we use the same bandwidth and (univariate or product of univariate) kernel

functions in estimating both the marginal and joint densities, which can facilitate

the asymptotic analysis to a great deal. Then a natural test statistic is given by

Γ̂1nT =
1

n(n−1) ∑
1≤i 6= j≤n

∫ ∫ [
f̂i j (u,v)− f̂i (u) f̂ j (v)

]2
dudv. (2.2.5)

Let k
i
h,ts ≡ h−1k ((uit −uis)/h), where k (·)≡ ∫

k (u)k (·−u)du is the two-fold con-

10



volution of k (·). It is easy to verify that we can rewrite Γ̂1nT as follows:

Γ̂1nT =
1

n(n−1) ∑
1≤i 6= j≤n

{
1

T 4 ∑
1≤t,s,r,q≤T

k
i
h,ts

(
k

j
h,ts + k

j
h,rq−2k

j
h,tr

)}
, (2.2.6)

where ∑1≤t,s,r,q≤T ≡ ∑T
t=1 ∑T

s=1 ∑T
r=1 ∑T

q=1 .

The above statistic is simple to compute and offers a natural way to test H0.

Nevertheless, we propose a bias-adjusted test statistic, namely

Γ̂nT =
1

n(n−1) ∑
1≤i 6= j≤n

{
1

P4
T

∑
1≤t 6=s 6=r 6=q≤T

k
i
h,ts

(
k

j
h,ts + k

j
h,rq−2k

j
h,tr

)}
, (2.2.7)

where P4
T ≡ T !/ [(T −4)!] and ∑1≤t 6=s 6=r 6=q≤T denotes the sum over all different

arrangements of the distinct time indices t,s,r, and q. In effect, Γ̂nT removes the the

“diagonal” (e.g. t = s,r = q, t = r) elements from Γ̂1nT , thus reducing the bias of

the statistic in finite samples. A similar idea has been used in Lavergne and Vuong

(2000), Su and White (2007), and Su and Ullah (2009), to name just a few. We

will show that, after being appropriately centered and scaled, Γ̂nT is asymptotically

normally distributed under the null hypothesis of cross-sectional independence and

some mild conditions.

2.3 Asymptotic distributions of the test statistic

In this section we first present a set of assumptions that are used in deriving the

asymptotic distributions of our test statistic. Then we study the asymptotic distribu-

tion of our test statistic under the null hypothesis and establish its consistency.

2.3.1 Assumptions

To study the asymptotic distribution of the test statistic with observable “errors”

{uit}, we make the following assumptions.

Assumption A.1 (i) For each i, {uit , t = 1, 2, ...} is stationary and α-mixing

11



with mixing coefficient {αi (·)} satisfying αi (l) = O
(
ρ l

i
)

for some 0≤ ρi < 1. Let

ρ ≡max1≤i≤n ρi. We further require that 0≤ ρ < 1.

(ii) For each i and 1 ≤ l ≤ 8, the probability density function (PDF) fi,t1,...,tl of

(uit1, ...,uitl) is bounded and satisfies a Lipschitz condition: | fi,t1,...,tl(u1+v1, . . . ,ul +

vl)− fi,t1,...,tl(u1, . . . ,ul)| ≤ Di,t1,...,tl(u)||v||, where u ≡ (u1, ...,ul), v ≡ (v1, ...,vl),

and Di,t1,...,tl
is integrable and satisfies the conditions that

∫
Rl Di,t1,...,tl(u)||u||2(1+δ )du

< C1 and
∫
Rl Di,t1,...,tl(u) fi,t1,...,tl(u)du < C1 for some C1 < ∞ and δ ∈ (0,1). When

l = 1, we denote the marginal PDF of uit simply as fi.

Assumption A.2 The kernel function k :R→R is a symmetric, continuous and

bounded function such that k (·) is a γth order kernel:
∫

k (u)du = 1,
∫

u jk (u)du = 0

for j = 1, . . . ,γ−1, and
∫

uγk (u)du = κγ < ∞.

Assumption A.3. As (n,T )→ ∞, h→ 0, nT 2h2 → ∞, nh
1−δ
1+δ /T → 0.

Remark 1. Assumption A.1(i) requires that {uit , t = 1, 2, ...} be a stationary

strong mixing process with geometric decay rate. This requirement on the mixing

rate is handy for our asymptotic analysis but can be relaxed to the usual algebraic

decay rate with more complications involved in the proof. It is also assumed in

several early works for stationary β -mixing processes such as Fan and Li (1999),

Li (1999), and Su and White (2008), and can be satisfied by many well-known pro-

cesses such as linear stationary autoregressive moving average (ARMA) processes,

and bilinear and nonlinear autoregressive processes. Here we only assume that the

stochastic process is strong mixing, which is weaker than β -mixing. Assumption

A.1(ii) assumes some standard smooth conditions on the PDF of (uit1, ...,uitl). As-

sumption A.2 imposes conditions on the kernel function which may or may not be

a higher order kernel. The use of a higher order kernel typically aims at reducing

the bias of kernel estimates, which is common in the nonparametric literature (see

Robinson, 1988; Fan and Li, 1996; Li, 1999, and Su and White, 2008). Assumption

A.3 imposes restrictions on the bandwidth, n, and T . These restrictions are weak

and can be easily met in practice for a wide combinations of n and T. In addition, it

is possible to have n/T → c ∈ [0,∞] as (n,T )→ ∞.

12



By the proof of Theorem 2.3.1 below, one can relax Assumption A.1(i) to:

Assumption A.1(i*): For each i, {uit , t = 1, 2, ...} is stationary and α-mixing

with mixing coefficient αi(·). Let α (s) ≡ max1≤i≤n αi (s) . ∑∞
τ=1 α

δ
1+δ (τ) ≤C2 for

some C2 < ∞ and δ ∈ (0,1). There exists m≡ m(n,T ) such that

max
(

n−1T 4h
4

1+δ ,T 4h
2(2+δ )

1+δ ,T 2h
2

1+δ

)
α

δ
1+δ (m)→ 0 (2.3.1)

and max
(
m4h4,m3h2)→ 0 as (n,T )→ ∞.

For the result in Corollary 2.3.2 to hold, we further need m and α (·) to meet the

following condition.

Assumption A.1(i**): For the m and α (·) defined in Assumption A.1(i*), they

satisfy that h
2(1−δ )

1+δ T 4α
δ

1+δ (m)+h2m4 → 0 as (n,T )→ ∞.

Clearly, under Assumption A.1(i), we can take m = bL logTc (the integer part

of L logT ) for a large positive constant L such that both Assumptions A.1(i*) and

A.1(i**) are satisfied. For notational simplicity, we continue to apply Assumption

A.1(i).

2.3.2 Asymptotic null distributions

To state our main results, we further introduce some notation. Let Et denote ex-

pectation with respect to variables with time indexed by t only. For example,

Et [k
i
h,ts] ≡

∫
k

i
h,ts fi (uit)duit , and EtEs[k

i
h,ts] ≡

∫ [∫
k

i
h,ts fi (uit)duis

]
fi (uit)duit . Let

ϕi,ts ≡ k
i
h,ts−Et [k

i
h,ts]−Es[k

i
h,ts]+EtEs[k

i
h,ts]. Define1

BnT ≡ 1
n−1 ∑

1≤i6= j≤n

h
T −1 ∑

1≤t 6=s≤T
E [ϕi,ts]E

[
ϕ j,ts

]
, and (2.3.2)

σ2
nT ≡ 4h2

n(n−1) ∑
1≤i 6= j≤n

1
T (T −1) ∑

1≤t 6=s≤T
Var

(
k

i
h,ts

)
Var

(
k

j
h,ts

)
. (2.3.3)

1The notation can be greatly simplied under identical distributions across individuals. In this
case, BnT = n(T −1)−1 h∑1≤t 6=s≤n[E(ϕ1,ts)]2, and σ2

nT = 4 [T (T −1)]−1 h2 ∑1≤t 6=s≤n[Var(k1
h,ts)]

2.
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We establish the asymptotic null distribution of the Γ̂nT test statistic in the following

theorem.

Theorem 2.3.1 Suppose Assumptions A.1-A.3 hold. Then under the null of cross-

sectional independence we have

nT hΓ̂nT −BnT
d→ N

(
0,σ2

0
)

as (n,T )→ ∞,

where σ2
0 ≡ lim(n,T )→∞ σ2

nT .

Remark 2. The proof of Theorem 2.3.1 is tedious and is relegated to Appendix

A. The idea underlying the proof is simple but the details are quite involved. To

see how complications arise, let γnT,i j ≡ γnT
(
ui,u j

)≡ 1
P4

T
∑1≤t 6=s 6=r 6=q≤T k

i
h,ts(k

j
h,ts +

k
j
h,rq−2k

j
h,tr) where ui≡ (ui1, ...,uiT )′. Then we have Γ̂nT = 1

n(n−1) ∑
1≤i 6= j≤n

γnT
(
ui,u j

)
.

Clearly, for each pair (i, j) with i 6= j, γnT,i j is a fourth order U-statistic along the

time dimension, and by treating γnT as a kernel function, Γ̂nT can be regarded as a

second order U-statistic along the individual dimension. To the best of our knowl-

edge, there is no literature that treats such a two-fold U-statistic, and it is not clear in

the first sight how one should pursue in order to yield a useful central limit theorem

(CLT) for Γ̂nT . Even though it seems apparent for us to apply the idea of Hoeffding

decomposition, how to pursue it is still challenging.

In this chapter, we first apply the Hoeffding decomposition on γnT,i j for each

pair (i, j) and demonstrate that γnT,i j can be decomposed as follows

γnT,i j = 6G(2)
nT,i j +4G(3)

nT,i j +G(4)
nT,i j

where, for l = 2,3,4, G(l)
nT,i j ≡ 1

Pl
T

∑1≤t1 6=...6=tl≤T ϑ (l)
i j

(
Zi j,t1, ...,Zi j,tl

)
is an l-th order

degenerate U-statistic with kernel ϑ (l)
i j being formerly defined in Appendix A, and

Zi j,t ≡
(
uit ,u jt

)
. Then we can obtain the corresponding decomposition for Γ̂nT :

Γ̂nT = 6G(2)
nT +4G(3)

nT +G(4)
nT

14



where G(l)
nT ≡ 1

n(n−1) ∑1≤i 6= j≤n G(l)
nT,i j for l = 2, 3, 4. Even though for each pair (i, j) ,

G(l)
nT,i j is an l-th order degenerate U-statistic with kernel ϑ (l)

i j along the time dimen-

sion under H0, G(l)
nT is by no means an l-th order degenerate U-statistic along the

individual dimension under H0. Despite this, we can conjecture as usual that the

dominant term in the decomposition of Γ̂nT is given by the first term 6G(2)
nT , and the

other two terms 4G(3)
nT and G(4)

nT are asymptotically negligible. So in the second step,

we make a decomposition for 6G(2)
nT −6E[G(2)

nT ] and demonstrate that

nT h
{

6G(2)
nT −6E[G(2)

nT ]
}

= ∑
1≤i< j≤n

wnT
(
ui,u j

)
+oP (1)

where wnT
(
ui,u j

) ≡ 4h
nT ∑1≤t<s≤T ϕc

i,tsϕc
j,ts, and ϕc

i,ts = ϕi,ts−E [ϕi,ts] . Despite the

fact that wnT,i j ≡ wnT
(
ui,u j

)
is a non-degenerate second order U-statistic along

the time dimension any more, ∑1≤i< j≤n wnT
(
ui,u j

)
is a degenerate second order

U-statistic along the individual dimension. The latter enables us to apply the de

Jong’s (1987) CLT for second order degenerate U-statistics with independent but

non-identical observations. [Under the null hypothesis of cross-sectional indepen-

dence ui’s are independent across i but not identically distributed.] The asymp-

totic variance of ∑1≤i< j≤n wnT
(
ui,u j

)
is given by σ2

0 defined in Theorem 2.3.1 and

6nT hE[G(2)
nT ] delivers the asymptotic bias BnT to be corrected from the final test

statistic. In the third step, for l = 3,4 we demonstrate nT hG(l)
nT = oP (1) by using

the explicit formula of ϑ (l)
i j .

Remark 3. The asymptotic distribution in Theorem 2.3.1 is obtained by let-

ting n and T pass to ∞ simultaneously. Phillips and Moon (1999) introduce three

approaches to handle large dimensional panel, namely, sequential limit theory, di-

agonal path limit theory, and joint limit theory, and discuss relationships between

the sequential and joint limit theory. As they remark, the joint limit theory generally

requires stronger conditions to establish than the sequential or diagonal path con-

vergence, and by the same token, the results are also stronger and may be expected

to be relevant to a wider range of circumstances.
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To implement the test, we require consistent estimates of σ2
nT and BnT . Noting

that

σ2
nT =

4h2

n(n−1)T (T −1) ∑
1≤i6= j≤n

∑
1≤t 6=s≤T

E
[(

k
i
h,ts

)2
]

E
[(

k
j
h,ts

)2
]
+o(1)

=
4R

(
k
)2

n(n−1)T (T −1) ∑
1≤i6= j≤n

∑
1≤t 6=s≤T

∫
fi,ts (u,u)du

∫
f j,ts (v,v)dv+o(1) ,

where R
(
k
)≡ ∫

k (u)2 du, then we can estimate σ2
nT by

σ̂2
nT ≡

4R
(
k
)2

n(n−1) ∑
1≤i 6= j≤n

1
T

T

∑
t=1

f̂i j,−t
(
uit ,u jt

)

where f̂i j,−t
(
uit ,u jt

) ≡ (T − 1)−1 ∑T
s=1,s 6=t h−2 k ((uis−uit)/h) k

((
u js−u jt

)
/h

)
,

i.e., f̂i j,−t(uit , u jt) is the leave-one-out estimate of fi j(uit ,u jt). One can readily

demonstrate σ̂2
nT is a consistent estimate of σ2

nT under the null. Let

B̂nT ≡ 2
T −1

T

∑
r=2

(T − r +1)h
n−1 ∑

1≤i6= j≤n
Ê [ϕi,1r] Ê

[
ϕ j,1r

]
,

where Ê [ϕi,1r]≡ (T − r +1)−1 ∑T−r+1
t=1 k

i
h,t,t+r−1−T−1 (T −1)−1 ∑1≤t 6=s≤T k

i
h,ts. We

establish the consistency of B̂nT for BnT in Appendix B. Then we can define a fea-

sible test statistic:

ÎnT =
nT hΓ̂nT − B̂nT

σ̂nT
,

which is asymptotically distributed as standard normal under the null. We can com-

pare ÎnT to the one-sided critical value zα , the upper α percentile from the standard

normal distribution, and reject the null if ÎnT > zα . The following corollary formerly

establishes the asymptotic normal distribution of ÎnT under H0

Corollary 2.3.2 Suppose the conditions in Theorem 2.3.1 hold. Then we have

ÎnT
d→ N (0,1) as (n,T )→ ∞.
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2.3.3 Consistency

To study the consistency of our test, we consider the nontrivial case where µA ≡
limn→∞ Γn > 0, where

Γn ≡ 1
n(n−1) ∑

1≤i 6= j≤n

∫ ∫ [
fi j (u,v)− fi (u) f j (v)

]2 dudv.

We need to add the following assumption that takes into account cross-sectional

dependence under the alternative.

Assumption A.4 For each pair (i, j) with i 6= j, the joint PDF fi j of uit and u jt

is bounded and satisfies a Lipschitz condition: | fi j(u1 + v1,u2 + v2)− fi j(u1,u2)| ≤
Di j(u1,u2)||(v1,v2) ||, and Di j is integrable uniformly in (i, j):

∫ ∫
Di j(u,v) fi j(u,v)

dudv < C3 for some C3 < ∞.

The following theorem establishes the consistency of the test.

Theorem 2.3.3 Suppose Assumptions A.1-A.4 hold and µA > 0. Then under H1,

P
(

ÎnT > dnT

)
→ 1 for any sequence dnT = oP(nT h) as (n,T )→ ∞.

Remark 4. Theorem 2.3.3 indicates that under H1 our test statistic ÎnT explodes

at the rate nT h provided µA > 0. This can occur if fi j (u,v) and fi (u) f j (v) differ

on a set of positive measure for a “large” number of pairs (i, j) where the number

of explodes to the infinity at rate n2. It rules out the case where they differ on a set

of positive measure only for a finite fixed number of pairs, or the case where the

number of pair-wise joint PDFs that differ from the product of the corresponding

marginal PDFs on a set of positive measure is diverging to infinity as n→∞ but at a

slower rate than n2. In either case, our test statistic ÎnT cannot explode to the infinity

at the rate nT h, but can still be consistent. Specifically, as long as λnT Γn → µA and

λnT /(nT h)→ 0 as (n,T )→ ∞ for some diverging sequence {λnT} , our test is still

consistent as ÎnT now diverges to infinite at rate (nT h)/λnT .

Remark 5. We have not studied the asymptotic local power property of our test.

Unlike the CGL’s test for cross-sectional uncorrelation, it is difficult for us to set up
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a desirable sequence of Pitman local alternatives that converge to the null at a certain

rate and yet enable us to obtain the nontrivial asymptotic power property of our test.

Once we deviate from the null hypothesis, all kinds of cross-sectional dependence

can arise in the data, which makes the analysis complicated and challenging. See

also the remarks in Section 6.

2.4 Tests based on residuals from nonparametric re-

gressions

In this section, we consider tests for cross-sectional dependence among the un-

observable error terms in the nonparametric panel data model (2.2.1). We must

estimate the error terms from the data before conducting the test.

We assume that the regression functions gi (·), i = 1, . . . ,n, are sufficiently smooth,

and consider estimating them by the pth order local polynomial method (p = 1, 2, 3

in most applications). See Fan and Gijbels (1996) and Li and Racine (2007) for the

advantage of local polynomial estimates over the local constant (Nadaraya-Watson)

estimates. If gi (·) has derivatives up to the pth order at a point x, then for any Xit in

a neighborhood of x, we have

gi(Xit) = gi(x)+ ∑
1≤|j|≤p

1
j!

D|j|gi (x)(Xit − x)j +o(‖Xit − x‖p)

≡ ∑
0≤|j|≤p

βi,j (x;b)((Xit − x)/b)j +o(‖Xit − x‖p) .

Here, we use the notation of Masry (1996a, 1996b): j = ( j1, ..., jd), |j| = ∑d
a=1 ja,

xj = ∏d
a=1 x ja

a , ∑0≤|j|≤p = ∑p
l=0 ∑l

j1=0 ...∑l
jd=0

j1+...+ jd=l

, D|j|gi (x) = ∂ |j|gi(x)
∂ j1x1...∂ jd xd

, βi,j (x;b) =

b|j|
j! D|j|gi (x) , where j! ≡ ∏d

a=1 ja! and b ≡ b(n,T ) is a bandwidth parameter that

controls how “close” Xit is from x. With observations {(yit ,Xit)}T
t=1 , we consider

choosing βi, the stack of βi,j in a lexicographical order, to minimize the following
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criterion function

QT (x;βi)≡ T−1
T

∑
t=1

(
yit − ∑

0≤|j|≤p
βj((Xit − x)/b)j

)2

wb (Xit − x) , (2.4.1)

where wb (x) = b−dw(x/b) , and w is a symmetric PDF on Rd . The pth order local

polynomial estimate of gi(x) is then defined as the minimizing concept in the above

minimization problem.

Let Nl ≡ (l + d − 1)!/(l!(d − 1)!) be the number of distinct d-tuples j with

|j| = l. It denotes the number of distinct l-th order partial derivatives of gi(x) with

respect to x. Arrange the Nl d-tuples as a sequence in the lexicographical order

(with highest priority to last position), so that φl(1)≡ (0,0, ..., l) is the first element

in the sequence and φl(Nl) ≡ (l,0, ...,0) is the last element, and let φ−1
l denote the

mapping inverse to φl. Let N ≡ ∑p
l=0 Nl. Define SiT (x) and WiT (x) as a symmetric

N×N matrix and an N×1 vector, respectively:

SiT (x)≡




SiT,0,0 (x) SiT,0,1 (x) · · · SiT,0,p (x)

SiT,1,0 (x) SiT,1,1 (x) · · · SiT,1,p (x)
...

... . . . ...

SiT,p,0 (x) SiT,p,1 (x) · · · SiT,p,p (x)




, WiT (x)≡




WiT,0(x)

WiT,1(x)

:

WiT,p(x)




where SiT, j,k(x) is an N j×Nk submatrix with the (l,r) element given by

[
SiT, j,k(x)

]
l,r ≡

1
T

T

∑
t=1

(
Xit − x

b

)φ j(l)+φk(r)

wb (Xit − x) ,

and WiT, j(x) is an N j ×1 subvector whose r-th element is given by

[
WiT, j(x)

]
r ≡

1
T

T

∑
t=1

yit

(
Xit − x

b

)φ j(r)

wb (Xit − x) .

Then we can denote the pth order local polynomial estimate of gi(x) as

g̃i(x)≡ e′1 [SiT (x)]−1 WiT (x)
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where e1 ≡ (1,0, · · · ,0)′ is an N×1 vector.

For each j with 0≤ |j| ≤ 2p, let µj≡
∫
Rd xjw(x)dx. Define the N×N dimensional

matrix S by

S≡




S0,0 S0,1 ... S0,p

S1,0 S1,1 ... S1,p

...
... . . . ...

Sp,0 Sp,1 ... Sp,p




, (2.4.2)

where Si, j is an Ni×N j dimensional matrix whose (l,r) element is µφi(l)+φ j(r). Note

that the elements of the matrix S are simply multivariate moments of the kernel w.

For example, if p = 1, then

S=




∫
w(x)dx

∫
x′w(x)dx

∫
xw(x)dx

∫
xx′w(x)dx


 =




1 01×d

0d×1
∫

xx′w(x)dx


 ,

where 0a×c is an a× c matrix of zeros.

Let ũit ≡ yit− g̃i (Xit) for i = 1, . . . ,n and t = 1, . . . ,T . Define Γ̃nT , B̃nT , and σ̃2
nT

analogously to Γ̂nT , B̂nT , σ̂2
nT but with {uit} being replaced by {ũit}. Then we can

consider the following “feasible” test statistic

ĨnT ≡ nT hΓ̃nT − B̃nT

σ̃nT
.

To demonstrate the asymptotic equivalence of ĨnT and ÎnT , we add the following

assumptions.

Assumption A.5 (i) For each i = 1, . . . ,n, {Xit , t = 1, 2, ...} is stationary and

α-mixing with mixing coefficient {ai (·)} satisfying ∑∞
j=1 jκ0a( j)δ0/(2+δ0) < C4 for

some C4 < ∞, κ0 > δ0/(2+δ0), and δ0 > 0, where a( j)≡max1≤i≤n ai ( j) .

(ii) For each i = 1, . . . ,n, the support Xi of Xit is compact on Rd. The PDF pi of

Xit exists, is Lipschitz continuous, and is bounded away from zero on Xi uniformly

in i : min1≤i≤n infxi∈Xi pi (xi) > C5 for some C5 > 0. The joint PDF of Xit and Xis is

uniformly bounded for all t 6= s by a constant that does not depend on i or |t− s| .
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(iii) {uit , i = 1,2, . . . , t = 1,2, . . .} is independent of {Xit , i = 1,2, . . . , t = 1,2, . . .} .

Assumption A.6 (i) For each i = 1, . . . ,n, the individual regression function

gi(·), is p+1 times continuously partially differentiable.

(ii) The (p+1)-th order partial derivatives of gi are Lipschitz continuous on Xi.

Assumption A.7 (i) The kernel function w :Rd →R+ is a continuous, bounded,

and symmetric PDF; S is positive definite (p.d.).

(ii) Let w(x) ≡ ‖x‖2(2+δ0)p w(x) . w is integrable with respect to the Lebesgue

measure.

(iii) Let Wj(x)≡ xjw(x) for all d-tuples j with 0≤ |j| ≤ 2p+1. Wj(x) is Lipschitz

continuous for 0≤ |j| ≤ 2p+1. For some C6 < ∞ and C7 < ∞, either w(·) is com-

pactly supported such that w(x) = 0 for ‖x‖>C6, and ||Wj(x)−Wj(x̃)|| ≤C7 ||x− x̃||
for any x, x̃ ∈ Rd and for all j with 0 ≤ |j| ≤ 2p + 1; or w(·) is differentiable,
∥∥∂Wj(x)/∂x

∥∥≤C6, and for some ι0 > 1, |∂Wj(x)/∂x| ≤C6 ‖x‖−ι0 for all ‖x‖> C7

and for all j with 0≤ |j| ≤ 2p+1.

Assumption A.8 (i) The kernel function k is second order differentiable with

first order derivative k′ and second order derivative k′′. Both uk (u) and uk′ (u) tend

to 0 as |u| →∞. (ii) For some ck < ∞ and Ak < ∞, |k′′ (u) | ≤ ck and for some γ0 > 1,

|k′′ (u) | ≤ ck |u|−γ0 for all |u|> Ak.

Assumption A.9 (i) Let η ≡ T−1b−d + b2(p+1). As (n,T ) → ∞, T h5 → ∞,

T 3/2bdh5 → ∞, and nT h(η2 +h−4η3 +h−8η4)→ 0.

(ii) For the m defined in Assumption A.1(i*), max(nhmb2(p+1), nmT−1b−d,

n2T−4m6h−2, n2m2h−2b4(p+1), nhm2/T, nh−3m3/T 2, m3/T )→ 0.

Remark 6 Assumptions A.5 (i)-(ii) are subsets of some standard conditions

to obtain the uniform convergence of local polynomial regression estimates. Like

CGL, we assume the independence of {uit} and
{

X js
}

for all i, j, t, s in Assump-

tions A.5(iii), which will greatly facilitate our asymptotic analysis. Assumptions

A.6 and A.7 are standard in the literature on local polynomial estimation. In par-

ticular, following Hansen (2008), the compact support of the kernel function w in
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Masry (1996b) can be relaxed as in Assumption A.7(iii). Assumption A.8 spec-

ifies more conditions on the kernel function k used in the estimation of joint and

marginal densities of the error terms. They are needed because we need to apply

Taylor expansions on functions associated with k. Assumption A.9 imposes further

conditions on h, n, and T and their interaction with the smoothing parameter b and

the order p of local polynomial used in the local polynomial estimation. If we relax

the geometric α-mixing rate in Assumption A.1(i) to the algebraic rate, then we

need to add the following condition on the bandwidth parameters, sample sizes, and

the choices of m and p :

Assumption A.1(i***): For the m, α (·) , and δ defined in Assumption A.1(i*),

they also satisfy that

max
{

n2T 2h−3− δ
1+δ ,T 2h−4− 2δ

1+δ , T 2h−5− 2δ
1+δ b4(p+1)

}
α

δ
1+δ (m)→ 0 as (n,T )→∞.

Theorem 2.4.1 Suppose Assumptions A.1-A.3 and A.5-A.9 hold. Then under the

null of cross-sectional independence

ĨnT → N (0,1)

as (n,T )→ ∞.

Remark 7. The above theorem establishes the asymptotic equivalence of ĨnT

and ÎnT . That is, the test statistic ĨnT that is based on the estimated residuals from

heterogeneous local polynomial regressions is asymptotically equivalent to ÎnT that

is constructed from the generally unobservable errors. If evidence suggests that

the nonparametric regression relationships are homogeneous, i.e., gi (Xit) = g(Xit)

a.s. for some function g on Rd and for all i, then one can pool the cross section data

together and estimate the homogeneous regression function g at a faster rate than es-

timating each individual regression function gi by using the time series observations

for cross section i only. In this case, we expect that the requirement on the relation-

ship of n,T, h,b, and p becomes less stringent. Similarly, if gi (Xit) = β0i + β ′1iXit

22



a.s. for some unknown parameters β0i and β1i, then we can estimate such paramet-

ric regression functions at the usual parametric rate T−1/2, and it is easy to verify

that the result in Theorem 2.4.1 continue to hold by using the residuals from time

series parametric regressions for each individual.

The following theorem establishes the consistency of the test.

Theorem 2.4.2 Suppose Assumptions A.1-A.9 hold and µA > 0. Then under H1,

P
(

ĨnT > dnT

)
→ 1 for any sequence dnT = oP(nT h) as (n,T )→ ∞.

The proof of the above theorem is almost identical to that of Theorem 2.3.3.

The main difference is that one needs to apply Taylor expansions to show that

(nT h)−1ĨnT is asymptotically equivalent to (nT h)−1ÎnT under H1. Remark 4 also

holds for the test ĨnT .

2.5 Monte Carlo simulations

In this section, we conduct a small set of Monte Carlo simulations to evaluate the

finite sample performance of our test and compare it with Pesaran’s and CGL’s tests

for cross-sectional uncorrelation .

2.5.1 Data generating processes

We consider the following six data generating processes (DGPs) in our Monte Carlo

study. DGPs 1-2 are for size study, and DGPs 3-6 are for power comparisons.

DGP 1:

yit = αi +βiXit +uit ,

where across both i and t, Xit ∼ IID U (−3,3), αi ∼IID U(0,1), βi ∼ IID N (0,1),

and they are mutually independent of each other.

DGP 2:

yit = (1+θi)exp(Xit)/(1+ exp(Xit))+uit ,

23



where across both i and t, Xit ∼ IID U (−3,3) , θi ∼ IID N (0,0.25), and they are

mutually independent of each other.

In DGPs 1-2, we consider two kinds of error terms: (i) uit ∼ IID N (0,1) across

both i and t and independent of {αi,βi,Xit}; and (ii) {uit} is IID across i and an

AR(1) process over t: uit = 0.5ui,t−1 + εit , where εit ∼ IID N (0,0.75) across both

i and t and independent of {αi,βi,Xit}. Clearly, there is no cross-sectional depen-

dence in either case.

In terms of conditional mean specification, DGPs 3 and 5 are identical to DGP 1,

and DGPs 4 and 6 are identical to DGP2. The only difference lies in the specification

of the error term uit . In DGPs 3-4, we consider the following single-factor error

structure:

uit = 0.5λiFt + εit (2.5.1)

where the factors Ft are IID N (0,1) , and the factor loadings λi are IID N (0,1) and

independent of {Ft} . We consider two configurations for εit : (i) εit are IID N (0,1)

and independent of {Ft , λi}, and (ii) εit = 0.5εit−1 +ηit where ηit are IID N (0,0.75)

across both i and t, and independent of {Ft , λi}.
In DGPs 5-6, we consider the following two-factor error structure:

uit = 0.3λ1iF1t +0.3λ2iF2t + εit (2.5.2)

where both factors F1t and F2t are IID N (0,1) , λ1i are IID N (0,1) , λ2i are IID

N (0.5,1) , F1t , F2t , λ1i, and λ2i are mutually independent of each other, and the

error process {εit} is specified as in DGPs 3-4 with two configurations.

2.5.2 Bootstrap

It is well known that the asymptotic normal distribution typically cannot approxi-

mate well the finite sample distribution of many nonparametric test statistics under

the null hypothesis. In fact, the empirical level of these tests can be sensitive to the

choice of bandwidths or highly distorted in finite samples. So we suggest using a
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bootstrap method to obtain the bootstrap p-values. Note that we need to estimate

E (ϕts) in BnT , and that the dependent structure in each individual error process

{uit}T
t=1 will affect the asymptotic distribution of our test under the null. Like Hsiao

and Li (2001), we need to mimic the dependent structure over time. So we propose

to apply the stationary bootstrap procedure of Politis and Romano (1994) to each

individual i’s residual series {ũit}T
t=1 . The procedure goes as follows:

1. Obtain the local polynomial regression residuals ũit = Yit − g̃i (xit) for each i

and t.

2. For each i, obtain the bootstrap time series sequence {u∗it}T
t=1 by the method

of stationary bootstrap. 2

3. Calculate the bootstrap test statistic Ĩ∗nT = (nT hΓ̃∗nT − B̃∗nT )/σ̃∗nT , where Γ̃∗nT ,

B̃∗nT and σ̃∗nT are defined analogously to Γ̃nT , B̃nT and σ̃nT but with ũit be

replaced by u∗it .

4. Repeat steps 2-3 for B times and index the bootstrap statistics as {Ĩ∗nT, j}B
j=1.

Calculate the bootstrap p-value p∗ ≡ B−1 ∑B
j=1 1(Ĩ∗nT, j > ĨnT ) where 1(·) is

the usual indicator function, and reject the null hypothesis of cross-sectional

independence if p∗ is smaller than the prescribed level of significance.

Note that we have imposed the null restriction of cross-sectional independence

implicitly because we generate {u∗it} independently across all individuals. We con-

jecture that for sufficiently large B, the empirical distribution of {Ĩ∗nT, j}B
j=1 is able

to approximate the finite sample distribution of ĨnT under the null hypothesis, but

are not sure whether this can have any improvement over the asymptotic normal ap-

2A simple description of the resampling algorithm goes as follows. Let p be a fixed number in
(0,1). Let u∗i1 be picked at random from the original T residuals {ũi1, ..., ũiT}, so that u∗i1 = ũiT1 ,
say, for some T1 ∈ {1, ...,T}. With probability p, let u∗i2 be picked at random from the original T
residuals {ũi1, ..., ũiT}; with probability 1− p, let u∗i2 = ũi,T1+1 so that u∗i2 would be the “next”
observation in the original residual series following ũiT1 . In general, given that u∗it is determined by
the Jth observation ũiJ in the original residual series, let u∗i,t+1 be equal to ũi,J+1 with probability
1− p and be picked at random from the original T residuals with probability p. We set p = T−1/3

in the simulations.

25



Table 2.1: Finite sample rejection frequency for DGPs 1-2 (size study, nomial level 0.05)

DGP n T (i) uit ∼ IID N (0,1) (ii) uit = 0.5ui,t−1 + εit
P CGL SZ P CGL SZ

1 25 25 0.040 0.044 0.054 0.092 0.060 0.082
50 0.060 0.044 0.048 0.130 0.062 0.082
100 0.056 0.058 0.064 0.126 0.080 0.066

50 25 0.060 0.044 0.062 0.118 0.066 0.128
50 0.070 0.052 0.080 0.112 0.076 0.074
100 0.034 0.030 0.048 0.124 0.066 0.064

2 25 25 0.038 0.044 0.052 0.088 0.050 0.090
50 0.056 0.062 0.060 0.122 0.062 0.082
100 0.058 0.044 0.064 0.128 0.068 0.070

50 25 0.054 0.042 0.058 0.076 0.078 0.120
50 0.064 0.060 0.060 0.110 0.050 0.084
100 0.038 0.052 0.052 0.108 0.068 0.060

Note: P, CGL, and SZ refer to Pesaran’s, CGL’s and our tests, respectively.

proximation. The theoretical justification for the validity of our bootstrap procedure

goes beyond the scope of this chapter.

2.5.3 Test results

We consider three tests of cross-sectional independence in this section: Pesaran’s

CD test for cross-sectional dependence, CGL test for cross-sectional uncorrelation,

and the ĨnT test proposed in this chapter. To conduct our test, we need to choose

kernels and bandwidths. To estimate the heterogeneous regression functions, we

conduct a third-order local polynomial regression (p = 3) by choosing the second

order Gaussian kernel and rule-of-thumb bandwidth: b = sX T−1/9 where sX denotes

the sample standard deviation of {Xit} across i and t. To estimate the marginal and

pairwise joint densities, we choose the second order Gaussian kernel and rule-of-

thumb bandwidth h = sũT−1/6, where sũ denotes the sample standard deviation of

{ũit} across i and t. For the CGL test, we follow their paper and consider a local

linear regression to estimate the conditional mean by using the Gaussian kernel and

choosing the bandwidth through the leave-one-out cross-validation method. For

the Pesaran’s test, we estimate the heterogeneous regression functions by using the
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linear model, and conduct his CD test based on the parametric residuals.

For all tests, we consider n = 25, 50, and T = 25, 50, 100. For each combination

of n and T, we use 500 replications for the level and power study, and 200 bootstrap

resamples in each replication.

Table 2.1 reports the finite sample level for Pesaran’s CD test, the CGL test and

our test (denoted as P, CGL, and SZ, respectively in the table). When the error terms

uit are IID across t, all three tests perform reasonably well for all combinations of n

and T and both DGPs under investigation in that the empirical levels are close to the

nominal level. When {uit} follows an AR(1) process along the time dimension, we

find out the CGL test outperforms the Pesaran’s test in terms of level performance:

the latter test tends to have a large size distortion which does not improve when

either n or T increases. In contrast, our test can be oversized when n/T is not

small (e.g., n = 50 and T = 25) so that the parameter estimation error plays a non-

negligible role in the finite samples, but the level of our test improves quickly as T

increases for fixed n.

Table 2.2 reports the finite sample power performance of all three tests for DGPs

3-6. For DGPs 3-4, we have a single-factor error structure. Noting that the factor

loadings λi have zero mean in our setup, neither Pesaran’s nor CGL’s test has power

in detecting cross-sectional dependence in this case. This is confirmed by our simu-

lations. In contrast, our tests have power in detecting deviations from cross-sectional

dependence. As either n or T increases, the power of our test increases. DGPs 5-6

exhibit a two-factor error structure where one of the two sequences of factor load-

ings have nonzero mean, and all three tests have power in detecting cross-sectional

dependence. As either n or T increases, the powers of all three tests increase quickly

and our test tends to more powerful than the Pesaran’s and CGL’s tests.

2.6 Concluding remarks

In this chapter, we propose a nonparametric test for cross-sectional dependence in

large dimensional panel. Our tests can be applied to both raw data and residuals
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Table 2.2: Finite sample rejection frequency for DGPs 3-6 (power study, nomial level 0.05)

DGP n T (i) εit ∼ IID N (0,1) (ii) εit = 0.5εit−1 +ηit
P CGL SZ P CGL SZ

3 25 25 0.040 0.046 0.446 0.092 0.052 0.590
50 0.060 0.058 0.778 0.130 0.060 0.860
100 0.056 0.074 0.950 0.126 0.038 0.984

50 25 0.060 0.040 0.772 0.118 0.070 0.866
50 0.070 0.060 0.972 0.112 0.074 0.992
100 0.034 0.064 0.998 0.124 0.068 1.000

4 25 25 0.038 0.074 0.446 0.098 0.044 0.616
50 0.056 0.052 0.772 0.206 0.066 0.858
100 0.058 0.062 0.954 0.234 0.044 0.984

50 25 0.054 0.046 0.772 0.148 0.086 0.870
50 0.064 0.068 0.970 0.190 0.072 0.990
100 0.038 0.062 0.998 0.270 0.068 1.000

5 25 25 0.326 0.248 0.208 0.410 0.304 0.418
50 0.412 0.332 0.444 0.486 0.350 0.672
100 0.584 0.446 0.740 0.594 0.424 0.910

50 25 0.550 0.442 0.456 0.626 0.508 0.680
50 0.720 0.620 0.812 0.754 0.640 0.918
100 0.842 0.742 0.988 0.888 0.776 0.996

6 25 25 0.304 0.232 0.250 0.420 0.292 0.406
50 0.428 0.330 0.424 0.488 0.348 0.634
100 0.568 0.426 0.762 0.588 0.402 0.908

50 25 0.548 0.454 0.424 0.624 0.516 0.662
50 0.724 0.636 0.814 0.760 0.636 0.908
100 0.838 0.746 0.980 0.888 0.794 1.000

Note: P, CGL, and SZ refer to Pesaran’s, CGL’s and our tests, respectively.
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from heterogenous nonparametric (or parametric) regressions. The requirement on

the relative magnitude of n and T is quite weak in the former case, and very strong

in the latter case in order to control the asymptotic effect of the parameter estimation

error on the test statistic. In both cases, we establish the asymptotic normality of our

test statistic under the null hypothesis of cross-sectional independence. The global

consistency of our test is also established. Monte Carlo simulations indicate our

test performs reasonably well in finite samples and has power in detecting cross-

sectional dependence when the Pesaran’s and CGL’s tests fail.

We have not pursued the asymptotic local power analysis for our nonparametric

test in this chapter. It is well known that the study of asymptotic local power is

rather difficult in nonparametric testing for serial dependence, see Tjøstheim (1996)

and Hong and White (2005). Similar remark holds true for nonparametric testing

for cross-sectional dependence. To analyze the local power of their test, Hong and

White (2005) consider a class of locally j-dependent processes for which there ex-

ists serial dependence at lag j only, but j may grow to infinity as the sample size

passes to infinity. It is not clear whether one can extend their analysis to our frame-

work since there is no natural ordering along the individual dimensions in panel data

models. In addition, it may not be advisable to consider a class of panel data models

for which there exists cross-sectional dependence at pairwise level only: if any two

of uit , u jt , and ukt (i 6= j 6= k) are dependent, they tend to be dependent on the other

one also. Thus we conjecture that it is very challenging to conduct the asymptotic

local power analysis for our nonparametric test.
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Chapter 3 Nonparametric Dynamic Panel Data
Models with Interactive Fixed Ef-
fects: Sieve Estimation and Spec-
ification Testing

3.1 Introduction

Recently there has been a growing literature on large dimensional panel data mod-

els with interactive fixed effects where both the individual dimension N and time

dimension T pass to infinity. By the adoption of time-varying common factors that

affect the cross-sectional units with individual specific factor loadings, these models

allow individual and time effects to enter the models multiplicatively and can cap-

ture unobserved heterogeneity more flexibly than the traditional ones with additive

individual or time fixed effects. As common factors affect all individuals and then

form a source of cross-sectional dependence, interactive fixed effects have become

a powerful and popular tool to model cross-sectional dependence in economics and

finance. See Bai and Ng (2008) for an overview.

Most of the literature on panel data models with interactive fixed effects falls

into two categories depending on whether the model includes additional regressors

or not. The first category focuses on the estimation of the common components

(factors and factor loadings) or the determination of the number of factors; see Bai

(2003), Bai and Ng (2006a), Bai and Li (2012) and Choi (2012) for estimation,

and Bai and Ng (2002) and Onatski (2009) for the determination of the number of

factors. The second category concentrates on the consistent estimation of the regres-

sion coefficients. Pesaran (2006) proposes a common correlated estimator (CCE)
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for linear static panel data models with homogeneous or heterogeneous coefficients.

Bai (2009) proposes a principal component analysis (PCA) estimator for the same

model but with homogeneous coefficients and establishes its limiting distribution.

Moon and Weidner (2010, 2012) reinvestigate Bai’s (2009) PCA estimator and put

it in the framework of Gaussian quasi-maximum likelihood estimation (QMLE);

they obtain the first order asymptotic theory for the QMLE for linear dynamic panel

data models with interactive fixed effects in the first paper and show that the limiting

distribution of the QMLE is independent of the number of factors used in the estima-

tion as long as the number of factors does not fall below the true number of factors

in the second paper. Lu and Su (2013) propose an adaptive group Lasso method for

simultaneous selection of regressors and factors and estimation in linear dynamic

panel data models with interactive fixed effects and prove the oracle property of

their regression coefficient estimator. For more developments on panel data models

with interactive fixed effects, see Ahn, Lee and Schmidt (2001, 2013) for GMM ap-

proach with fixed T and large N, Zaffaroni (2010) for the generalized least squares

(GLS) estimation, Kapetanios and Pesaran (2007) and Greenaway-McGrevy, Han

and Sul (2012) for factor-augmented panel regression, Harding (2009) for estima-

tion of panel factor models with large N and large T by using structural restrictions

from economic theory, Pesaran and Tosetti (2011) for estimation of panel data mod-

els both with multifactor error structure and spatial correlation, Su and Chen (2013)

for testing for slope homogeneity, Su, Jin, and Zhang (2012) for specification test

of linearity in panel data models, among others.

Note that almost all of the above works are carried out in the parametric frame-

work. Although economic theory dictates that some economic variables are impor-

tant for the causal effects of the others, rarely does it state exactly how the variables

enter an econometric model. Models derived from first principles such as utility

maximization or profit maximization have particular parametric relationship under

some narrow functional form restrictions. So it is not only meaningful but also

necessary to extend some commonly used parametric models to the nonparametric
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framework. Recently, Su and Jin (2012) consider the sieve estimation of nonpara-

metric static panel data models with multifactor error terms, which is a nonparamet-

ric extension of Pesaran’s (2006) models; for the same models Jin and Su (2012)

propose a poolability test of nonparametric functions. Freyberger (2012) studies

nonparametric panel data models with multidimensional unobserved individual ef-

fects. He focuses on identification and estimation when the unobservables have a

factor structure and enter an unknown structural function non-additively under fixed

T and large N. However, there is still no work on the estimation of nonparametric

dynamic panel data models where interactive fixed effects and idiosyncratic errors

enter the model additively.

Linearity assumption is widely adopted in empirical works for its convenience

and interpretability. A correctly specified linear model may afford precise inference

whereas a badly misspecified one may lead to seriously misleading inference. So

it is important to test for the correct specification of functional form. Recently sev-

eral specification tests for linearity have been proposed in panel data models with

fixed effects. Lee (2011) proposes a residual-based test to check the validity of lin-

ear dynamic models with both large N and large T ; Li and Sun (2011) propose a

test for static panel data models with both large N and large T based on an inte-

grated squared difference between a parametric and a nonparametric estimate; Su

and Lu (2013) propose a linearity test based on the comparison of the restricted

estimate under the linear assumption and the unrestricted nonparametric estimate

for dynamic panel data models with large N and fixed T. But none of these tests

works for panel data models with interactive fixed effects. The linear estimators

for the regression coefficients and factor space generally cannot be consistent when

the underlying functional form is nonlinear, and the tests on the coefficients or the

number of factors based on the linear estimators could be invalid. To avoid these

serious consequences of misspecification, there is a need to develop tests for linear

functional forms. To the best of our knowledge, the only available test for linearity

in the framework work of dynamic panel data models with interactive fixed effects
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is due to Su, Jin, and Zhang (2012), who propose a test based on residuals from the

estimation under the null hypothesis of linearity. But they do not propose consistent

estimates of the regression functions once the null of linearity is rejected.

Based on the above observations, we consider the following nonparametric dy-

namic panel data models with interactive fixed effects

Yit = g(Xit)+λ 0′
i f 0

t + eit , (3.1.1)

where i = 1, ...,N, t = 1, ...,T , Xit is a d×1 vector of observable regressors which

may contain dy lagged dependent variables Yi,t−1, ...,Yi,t−dy and dx×1 vector of ex-

ogenous variables X1,it , g(·) is an unknown smooth function, f 0
t is an R×1 vector of

common factors, λ 0
i is an R×1 vector of factor loadings so that λ 0′

i f 0
t = ∑R

l=1 λ 0
li f 0

lt ,

and eit’s are idiosyncratic error terms. Note that λ 0
i , f 0

t and eit are all unobserved.

The superscript “0” in λ 0
i and f 0

t indicates the true parameters. We will assume

that the true number of factors R is known for the theoretical part of the chapter but

discuss how to determine R in empirical applications.

The model specified in (3.1.1) is fairly general and encompasses various panel

data models as special cases. If f 0
t = (1, f̃ 0

t ) and λ 0
i = (λ̃ 0

i ,1)′ where both f̃ 0
t and

λ̃ 0
i are scalars, the interactive fixed effects reduce to the traditional two-way fixed

effects; if f 0
t is time-invariant, i.e., f 0

t = f̄ for t = 1, ...,T and some constant vector

f̄ , the interactive fixed effects become commonly-used additive individual fixed ef-

fects. When f 0
t is time-invariant and g(Xit) = X ′itθ 0, (3.1.1) becomes the classical

dynamic linear panel data models with individual fixed effects given by λ 0′
i f̄ ; when

f 0
t is time-invariant and Xit = Yi,t−1, (3.1.1) reduces to the nonparametric dynamic

panel data model in Lee (2010); when f 0
t is time-invariant and only exogenous re-

gressors are included in Xit , (3.1.1) becomes the fixed effects nonparametric panel

data model in Henderson, Carroll, and Li (2008); when f 0
t is time-invariant and

Xit includes both Yi,t−1 and exogenous regressors, (3.1.1) becomes the general non-

parametric dynamic panel data model, which is investigated by Su and Lu (2013);

when f 0
t is time-invariant and g(Xit) = h(Yi,t−1)+ θ 0′X1,it , (3.1.1) becomes the
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partially linear dynamic panel data model in Baglan (2009); when g(Xit) = X ′itθ 0,

(3.1.1) becomes the model studied by Bai (2009) and Moon and Weidner (2010,

2012). These authors propose various estimators for g(·) (or θ 0) and
(
λ 0

i , f 0
t
)

and

establish their asymptotic properties.

We are mainly interested in consistent estimation and specification testing for

the nonparametric component g(·) in (3.1.1). Noting that g(·) is an unknown

smooth function, we combine the method of sieves with the Gaussian QMLE and

propose a nonparametric sieve estimator of g(·). Following Moon and Weidner

(2010, 2012), we establish its consistency, derive its convergence rates based on

the perturbation theory of matrix operator in Kato (1980), and establish its asymp-

totic normal distribution. We also discuss different sources of biases and propose

a bias-corrected estimator. In addition, we consider the specification test for the

commonly used linear functional form for g(·). Using an empirical L2-distance, we

compare two estimators for g(·), the linear estimator under the null hypothesis and

the sieve estimator under the alternative. We establish the asymptotic distributions

for the proposed test statistic under both the null hypothesis and a sequence of Pit-

man local alternatives. To improve the finite sample performance of the test, we

also propose a bootstrap procedure to obtain the bootstrap p-values and justify its

asymptotic validity.

The chapter also contributes to the literature on nonlinear dynamic panel data

models. Many asymptotic theories for traditional dynamic panel data models are

established with large N and small T ; see Arellano (2003), Baltagi (2008), and

Hsiao (2003). By contrast, we derive the asymptotic results when both N and T

tend to infinity simultaneously. With large T , we need to investigate the properties

of (Xit ,eit) along the time dimension. Stationarity and mixing conditions are usually

imposed on the observed data and the error terms. But in our chapter the correlation

between Xit and randomly realized fixed effects
(

f 0
t ,λ 0

i
)

complicates the analysis

substantially. To be specific, the randomness of λ 0
i leads to the persistence of Yit

along the time dimension such that we cannot directly assume mixing conditions on
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{(Xit ,eit)}T
t=1, and the randomness of f 0

t gives rise to cross-sectional dependence

among {Yit}N
i=1 . Following the idea of Hahn and Kuersteiner (2011), we adopt the

concept of conditional mixing as defined and discussed by Prakasa Rao (2009) and

Roussas (2008). We assume that {Xit ,eit}T
t=1 is strong mixing conditional on the

σ -field D generated by the factors and factor loadings and then establish the asymp-

totic properties of our estimator and test statistic. The concept of conditional mixing

is also used in Ahn and Moon (2001), Gagliardini and Gourieroux (2011), Su and

Chen (2013), and Su, Jin, and Zhang (2012).

The rest of the chapter is organized as follows. In Section 2, we propose a

sieve estimator for g(·). In Section 3, based on the asymptotic expansion of the

Gaussian quasi-log-likelihood function, we prove the consistency of the sieve esti-

mator, derive its convergence rate, establish its asymptotic normality, and provide a

bias-corrected estimator. We propose a specification test statistic for linearity and

study its asymptotic properties in Section 4. In Section 5, Monte Carlo simulations

are conducted to investigate the finite sample performance of our estimator and test

statistic. In Section 6, we apply our model to a set of real data. Section 7 concludes.

All the proofs of the main theorems are relegated to the appendix. Additional proofs

for the technical lemmas are provided in the online supplementary material.

NOTATION. Throughout the chapter we adopt the following notation. Let

µi (A) denote the ith largest eigenvalue (counting multiple eigenvalues multiple

times) of a symmetric matrix A. For an m× n matrix B, let ‖B‖F ≡
√

tr(B′B)

denote its Frobenius norm and ‖B‖ =
√

µ1 (B′B) its spectral norm. For an n× 1

random vector X , let ‖X‖p ≡ [E(∑n
i=1 |Xi|p)]1/p denote its Lp-norm, and ‖X‖p,D

≡ {E[(∑n
i=1 |Xi|p)|D ]}1/p its Lp-norm conditional on D . For an n×m matrix A,

let PA = A(A′A)−1 A′ and MA = In−PA, where In is an n× n identity matrix, and

(A′A)−1 denotes some generalized inverse if A does not full column rank. For any

real square matrices A and B, we use A < B (or A≤ B) to signify that B−A is pos-

itive definite (or positive semi-definite). For a positive definite symmetric matrix

A, we use A1/2 and A−1/2 to stand for the unique symmetric matrices that satisfy
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A1/2A1/2 = A and A−1/2A−1/2 = A−1. For a real number a, let bac denote its integer

part and dae be the largest integer that is strictly smaller than a. We use “a.s.” to

denote “almost surely”. The operators P→ and d→ denote convergence in probability

and distribution, respectively. (N,T )→ ∞ denotes N and T passing to ∞ simultane-

ously.

3.2 Sieve-based quasi-likelihood maximum estimation

Since g(·) is an unknown function in (3.1.1), we propose to estimate g(·) by the

method of sieves. For some excellent reviews on sieve methods, see Chen (2007,

2011). To proceed, let pK(x) ≡ (p1 (x) , · · · , pK (x))′ denote a sequence of basis

functions that can approximate any square-integrable function of x very well (to

be more precise later). Then we can approximate g(x) in (3.1.1) very well by

β ′g pK (x) for some K× 1 vector βg under fairly weak conditions. Let K ≡ KNT be

some integer such that K → ∞ as (N,T ) → ∞. We introduce the following nota-

tion: pit,k ≡ pK
k (Xit), pit ≡ pK(Xit), Pi ≡

(
p′i1, · · · , p′iT

)′, Pi·,k ≡
(

pi1,k, · · · , piT,k
)′

,

Pk ≡
(
P1·,k, · · · ,PN·,k

)′
, Yi ≡ (Yi1, · · · ,YiT )′ , Y ≡ (Y1, · · · ,YN)′ , f 0 ≡ ( f 0

1 , · · · , f 0
T )′,

λ 0 ≡ (
λ 0

1 , · · · ,λ 0
N
)′

. We use β 0 to denote the true vector of coefficients βg in the

sieve approximation of g(x) given basis pK (x). Here we suppress the dependence

of pit , β 0, and βg on K for notational simplicity.

To estimate g, we consider the following approximating linear panel data models

with interactive fixed effects:

Yit = p′itβ 0 +λ 0′
i f 0

t +uit (3.2.1)

where uit ≡ eit +eg,it is the new error term, and eg,it ≡ g(Xit)− p′itβ 0 represents the

sieve approximation error. Let ui ≡ (ui1, · · · ,uiT )′ and u ≡ (u1, · · · ,uN)′ . In vector

and matrix notation, (3.2.1) can be respectively rewritten as

Yi = Piβ 0 + f 0λ 0
i +ui
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and

Y =
K

∑
k=1

β 0
k Pk +λ 0 f 0′+u. (3.2.2)

Then we follow Bai (2009) and Moon and Weidner (2010) and estimate the model

in (3.2.2) by the Gaussian QMLE method. Specifically, we obtain the estimator

(β̂ , λ̂ , f̂ ) of
(
β 0,λ 0, f 0) as follows

(β̂ , λ̂ , f̂ ) = argmin
(β ,λ , f )

L (β ,λ , f ) , (3.2.3)

where L (β ,λ , f ) is the approximating negative quasi-log-likelihood function:

L (β ,λ , f ) =
1

NT
tr

[(
Y−

K

∑
k=1

βkPk−λ f ′
)′(

Y−
K

∑
k=1

βkPk−λ f ′
)]

, (3.2.4)

β = (β1, · · · ,βK)′, f ≡ ( f1, · · · , fT )′ , and λ ≡ (λ1, · · · ,λN)′. In particular, β can be

estimated by

β̂ = argmin
β∈RK

LNT (β ) (3.2.5)

where LNT (β ) is the profile approximating negative quasi-log-likelihood function:

LNT (β ) = min
λ , f

LNT (β ,λ , f ) (3.2.6)

= min
f

1
NT

tr

[(
Y−

K

∑
k=1

βkPk

)
M f

(
Y−

K

∑
k=1

βkPk

)′]
(3.2.7)

=
1

NT

T

∑
t=R+1

µt

[(
Y−

K

∑
k=1

βkPk

)′(
Y−

K

∑
k=1

βkPk

)]
. (3.2.8)

See Moon and Weidner (2010) for the demonstration of equivalence of the above

three expressions. Based on (3.2.8), one only needs to calculate the T −R smallest

eigenvalues of a T ×T matrix at each step of the numerical optimization over β .

Note that the objective function LNT (β ) is neither convex nor differentiable with

respect to β . Multiple starting values for numerical optimization should be used to

find the global minimum. After obtaining β̂ , one estimates g(x) by

ĝ(x) = pK (x)′ β̂ . (3.2.9)
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The expression in (3.2.8) is our starting point to establish the asymptotic theory.

Following Moon and Weidner (2010), we also adopt the perturbation theory for

linear operator in Kato (1980) to derive the asymptotic expansion of LNT (β ) around

β 0. The key idea is to form the following decomposition

Y−
K

∑
k=1

βkPk = λ 0′ f 0
︸ ︷︷ ︸

leading term

+
K

∑
k=1

(
β 0

k −βk
)

Pk + e+ eg

︸ ︷︷ ︸
perturbation terms

(3.2.10)

where eg is an N × T matrix whose (i, t)th element is g(Xit)− p′itβ 0. Compared

with the decomposition in eqn. (3.1) in Moon and Weidner (2010), (3.2.10) has a

diverging number of perturbation terms (as K→∞) and includes the additional sieve

approximation error term. If there were no perturbation term in (3.2.10), LNT (β )

would be equal to zero. By the continuity of the eigenvalue operator, LNT (β ) should

be close to zero when these perturbation terms are small enough. Using the pertur-

bation theory of linear operators, we can work out an expansion of LNT (β ) in the

perturbation terms and show that this expansion is convergent as long as the spec-

tral norm of the perturbation terms is sufficiently small. Based on the first order

asymptotic theory for QMLE, we show the consistency of ĝ(x) and establish its

asymptotic normality under suitable conditions.

3.3 Asymptotic properties of ĝ(·)
In this section, we first derive the convergence rate for ĝ(x) based on an asymp-

totic expansion of LNT (β ), then establish its asymptotic distribution and analyze

the sources of asymptotic biases, and finally propose a consistent bias-corrected

estimator.

3.3.1 Convergence rate for ĝ(·)

To estimate the unknown function by the method of sieves, we assume that g(x) is

a smooth function. Let X ≡ Y ×X1 ⊂ Rdy ×Rdx be the support of Xit . Typical

approximation and estimation of regression functions require that X be compact;
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see Newey (1997). In our model, it seems restrictive to impose the compactness

of X because of the presence of lagged dependent variables. To allow for the

unboundedness of X , we follow Chen, Hong, and Tamer (2005), Blundell, Chen,

and Kristensen (2007), and Su and Jin (2012) and use a weighted sup-norm metric

defined as

‖g‖∞,ω ≡ sup
x∈X

|g(x)|
[
1+‖x‖2

]−ω/2
for some ω ≥ 0. (3.3.1)

If ω = 0, the norm defined in (3.3.1) is the usual sup-norm which is suitable for the

case of compact support.

Recall that a typical smoothness assumption requires that a function g : X →R

belong to a Hölder space. Let α ≡ (α1, · · · ,αd)′ denote a d-vector of non-negative

integers and |α| ≡∑d
l=1 αl . For any x = (x1, · · · ,xd), the |α|th derivative of g : X →

R is denoted as ∇αg(x) ≡ ∂ |α|g(x)/(∂xα1
1 · · ·∂xαd

d ). The Hölder space Λγ(X ) of

order γ > 0 is a space of functions g : X → R such that the first dγe derivatives

are bounded, and the dγeth derivatives are Hölder continuous with the exponent

γ−dγe ∈ (0,1]. Define the Hölder norm:

‖g‖Λγ ≡ sup
x∈X

|g(x)|+ max
|α|=dγe

sup
x 6=x∗

|∇αg(x)−∇αg(x∗)|
‖x− x∗‖γ−dγe .

The following definition is adopted from Chen, Hong, and Tamer (2005).

Definition 1. Let Λγ(X ,ω)≡
{

g : X → R such that g(·)[1+ || · ||2]−ω/2 ∈ Λγ(X )
}

denote a weighted Hölder space of functions. A weighted Hölder ball with radius c

is

Λγ
c(X ,ω)≡

{
g ∈ Λγ(X ,ω) :

∥∥∥g(·)[1+ || · ||2]−ω/2
∥∥∥

Λγ
≤ c < ∞

}
.

Function g(·) is said to be H(γ,ω)-smooth on X if it belongs to a weighted Hölder

ball Λγ
c(X ,ω) for some γ > 0, c > 0 and ω ≥ 0.

Let P(a)≡∑K
k=1 akPk, Q(a)

pp,NT ≡ (NT )−1 P(a)P′(a), and Q(a)
pp ≡ED [Q(a)

pp,NT ], where

a = (a1, ...,aK)′ with ‖a‖= 1, and D ≡σ
(

f 0,λ 0) is the σ -field generated by f 0 and

λ 0. Let Qwpp,NT ≡ 1
NT ∑N

i=1 ∑T
t=1 wit pit p′it and Qwpp ≡ ED [Qwpp,NT ] , where wit =
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w(Xit) and w(·) is some nonnegative integrable function. Let WNT ≡ 1
NT

N
∑

i=1

T
∑

t=1
ZitZ′it ,

where

Zit ≡ pit − 1
N

N

∑
j=1

αi j p jt − 1
T

T

∑
s=1

ηts pis +
1

NT

N

∑
j=1

T

∑
s=1

αi jηts p js, (3.3.2)

αi j ≡ λ 0′
i ( 1

N λ 0′λ 0)−1λ 0
j , and ηts ≡ f 0′

t ( 1
T f 0′ f 0)−1 f 0

s . Let W ≡ ED(WNT ) and Zi ≡
(
Z′i1, ...,Z

′
iT

)′ ≡M f 0Pi−N−1 ∑N
j=1 αi jM f 0Pj.

We first make some assumptions that are used in the derivation of convergence

rate for the sieve estimator.

Assumption 1. (i) λ 0′λ 0/N P→ Σλ as N → ∞ and 0 < cλ ≤ µR (Σλ ) ≤ µ1 (Σλ ) ≤
cλ < ∞;

(ii) f 0′ f 0/T P→ Σ f as T → ∞ and 0 < c f ≤ µR
(
Σ f

)≤ µ1
(
Σ f

)≤ c f < ∞;

(iii) ‖e‖/
√

NT = OP(δ−1
NT ) where δNT ≡

√
min(N,T ).

Assumption 2.(i) Qwpp,NT −Qwpp = oP (1) and 0 < cQ≤ µK (Qwpp)≤ µ1 (Qwpp)≤
cQ < ∞ a.s. for given w(·) and all K as (N,T )→ ∞;

(ii) WNT −W = oP (1) and 0 < cW ≤ µK (W )≤ µ1 (W )≤ cW < ∞ a.s. for all K

as (N,T )→ ∞;

(iii) There exist positive constants C and C such that min{a∈RK ,‖a‖=1}∑N
l=2R+1

µl(Q
(a)
pp,NT )≥C > 0 and µ1(Q

(a)
pp,NT ) =

∥∥P(a)
∥∥/
√

NT ≤C < ∞ for any a∈RK with

‖a‖= 1 as (N,T )→ ∞.

Assumption 3. (i) g(·) is H(γ,ω)-smooth on X for some γ > d/2 and ω ≥ 0;

(ii) For any H(γ,ω)-smooth function g(x) , there exists a linear combination of

basis functions Π∞,Kg ≡ β ′g pK (·) in the sieve space GK ≡
{

g(·) = β ′pK (·)} such

that ‖g(·)−Π∞,Kg‖∞,ω̄ = O
(

K−γ/d
)

;

(iii) plim(N,T )→∞ (NT )−1 ∑N
i=1 ∑T

t=1
(
1+ ||Xit ||2

)ω̄ cit < ∞ for some ω̄ > ω + γ

and cit = w(Xit) and 1;

(v) ||∑N
i=1 ∑T

t=1 piteit || = OP(
√

NT K);

(vi) ||∑N
i=1 [Z′iei−ED (Z′iei)] ||= OP(

√
NT K) and ||∑N

i=1 ED [Z′iei] ||= OP(
√

NK
T ).

Assumption 4. As (N,T )→ ∞, K → ∞, and Kδ−2
NT → 0.
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Assumptions 1(i)-(ii) are widely used in the literature on panel data models

with interactive fixed effects; see Bai (2009) and Moon and Weidner (2010, 2012),

and Su and Chen (2013). Assumption 1(iii) is also adopted by Moon and Weidner

(2010) and can be verified for various error processes; see the supplementary mate-

rial in Moon and Weidner (2010). Assumptions 2(i)-(ii) impose restrictions on the

eigenvalues of conditional probability limits of Qwpp,NT and WNT as (N,T ) → ∞.

Assumption 2(iii) is essential for the consistency and it requires that P(a) be still full

rank after one projects the sieve terms onto the factor space ( f 0) and factor loading

space (λ 0). In other words, we need that the sieve terms are all high rank regressors

as defined by Moon and Weidner (2010). The low rank regressors such as time-

invariant or individual-invariant regressors deserve special attention. Assumption

2(iii) implies that
∥∥P(a)

∥∥/
√

NT is uniformly bounded.

Assumption 3(i) imposes smooth conditions on g(·). Assumption 3(ii) quanti-

fies the approximation error of functions in H(γ,ω) by the linear sieve basis func-

tions pK(x). Assumption 3(iii) is used to deal with unbounded support, which can

be replaced by some conditions on the tail behavior of the marginal density of Xit

as in Chen, Hong, and Tamer (2005) and Su and Jin (2012). Assumptions 3(ii)-(iii)

jointly imply that (NT )−1/2 ∥∥eg
∥∥

F = OP

(
K−γ/d

)
; see Lemma A.2 in Su and Jin

(2012). Assumptions 3(v)-(vi) can be verified for various data generating processes

(DGPs) and various sieve bases. The second part of (vi) is similar to the assump-

tion on ΦK in Lee (2010, Theorem 3.2). If Xit excludes lagged dependent variables,

ED [Z′iei] = 0 and then Assumption 3(vi) reduces to (NT )−1/2 ∑N
i=1 Z′iei = OP(K1/2).

In the next section, we will provide primitive conditions on the DGPs and sieve

bases. Assumption 4 imposes conditions on K.

Let Φ≡ λ 0 (
λ 0′λ 0)−1 (

f 0′ f 0)−1 f 0′. Let C(1)
NT and C(2)

NT be K×1 vectors whose
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kth elements are respectively given by

C(1)
NT,k ≡ 1

NT
tr

(
Mλ 0PkM f 0u′

)
, (3.3.3)

C(2)
NT,k ≡ − 1

NT
tr

(
PkΦ′uM f 0u′Mλ 0 +PkM f 0u′Mλ 0uΦ′+PkM f 0u′Φu′Mλ 0

)

≡ C(2,a)
NT,k +C(2,b)

NT,k +C(2,c)
NT,k, (3.3.4)

where C(2,s)
NT,k denotes the kth element of C(2,s)

NT for s = a, b, and c. We derive an

asymptotic expansion for ĝ(x) and establish its convergence rate in the following

theorem.

Theorem 3.3.1 Suppose that Assumptions 1-4 hold. Then

ĝ(x)−g(x) = pK (x)′W−1
NT

(
C(1)

NT +C(2)
NT

)
+

[
pK (x)′β 0−g(x)

]
+ pK (x)′RNT ,

(3.3.5)
where RNT is a K×1 vector with ‖RNT‖= OP[(K−γ/d +

√
Kδ−2

NT )(δ−1/2
NT +K−γ/(2d))].

Further, suppose µ1
[∫

X pK (x) pK (x)′w(x)dx
]
< ∞ and

∫
X

(
1+‖x‖2

)ω̄
w(x)dx <

∞. Then
∫

X
[ĝ(x)−g(x)]2 w(x)dx = OP

(
K

NT
+Kδ−4

NT +K− 2γ
d

)
, (3.3.6)

1
NT

N

∑
i=1

T

∑
t=1

[ĝ(Xit)−g(Xit)]
2 w(Xit) = OP

(
K

NT
+Kδ−4

NT +K− 2γ
d

)
. (3.3.7)

Remark 1. In (3.3.5), ĝ(x)−g(x) is decomposed into three parts: the first part con-

tributes to the asymptotic variance and bias, the second part signals the sieve approx-

imation error, and the third part summarizes higher order terms from the asymptotic

expansion of LNT (β̂ ). Theorem 3.3.1 also states the convergence rates for both the

weighted integrated mean square error (MSE) and weighted sample mean square

error in (3.3.6) and (3.3.7), respectively. OP
(
K/(NT )+Kδ−4

NT
)

and OP

(
K−2γ/d

)

come from the first and second terms in (3.3.5), respectively.1 It is easy to show

that the optimal choice of K, say Kopt , to minimize the integrated or sample MSE

is of order δ 4/[(2γ/d)+1]
NT , yielding the minimized integrated or sample MSE of order

OP(δ−4/[d/(2γ)+1]
NT ). If there were no lagged dependent variables in Xit and no cross-

sectional heteroskedasticity and serial correlation in the error terms conditional on
1Apparently, K/(NT )+Kδ−4

NT = O
(
Kδ−4

NT

)
. We keep the first term in the expression as it corre-

sponds to the usual variance term for a sieve estimate.
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D , then the rates in (3.3.6) and (3.3.7) should be OP

(
K−2γ/d +K/(NT )

)
, and Kopt

would be proportional to (NT )1/[(2γ/d)+1] .

3.3.2 Asymptotic distribution of ĝ(x)

To study the asymptotic distribution of ĝ(x), we introduce the concept of conditional

strong mixing.

Definition 2. Let (Ω,A ,P) be a probability space and B be a sub-σ -algebra of A .

Let PB (·)≡ P(·|B) . Let {ξt , t ≥ 1} be a sequence of random variables defined on

(Ω,A ,P) . A sequence {ξt , t ≥ 1} is said to be conditionally strong mixing given B

(or B-strong-mixing) if there exists a nonnegative B-measurable random variable

αB (t) converging to 0 a.s. as t → ∞ such that

|PB (A∩B)−PB (A)PB (B)| ≤ αB (t) a.s. (3.3.8)

for all A ∈ σ (ξ1, ...,ξk) , B ∈ σ (ξk+t ,ξk+t+1, ...) and k ≥ 1, t ≥ 1.

The above definition is due to Prakasa Rao (2009); see also Roussas (2008).

When one takes αB (t) as the supremum of the left hand side object in (3.3.8) over

the set {A ∈ σ (ξ1, ...,ξk) , B ∈ σ (ξk+t ,ξk+t+1, ...) , k ≥ 1}, we refer it to the B-

strong-mixing coefficient.

Define

W̃NT ≡ 1
NT

N

∑
i=1

Z̃′i Z̃i ≡ 1
NT

N

∑
i=1

T

∑
t=1

Z̃it Z̃′it and Ω̃NT ≡ 1
NT

N

∑
i=1

T

∑
t=1

Z̃it Z̃′ite
2
it ,

where Z̃i ≡ (Z̃′i1, · · · , Z̃′iT )′ = Pi−Pf 0ED(Pi)−N−1 ∑N
j=1 αi jM f 0ED(Pj), Z̃it ≡ pit −

N−1 ∑N
i=1 αi jED(p jt)−T−1 ∑T

s=1 ηtsED(pis)+(NT )−1 ∑N
i=1 ∑T

s=1 αi jηtsED(p js). Let

W̃ ≡ ED(W̃NT ) and Ω̃≡ ED(Ω̃NT ). We add the following assumptions.

Assumption 5. (i) For each i = 1, ...,N, {(Xit ,εit) : t = 1,2, ...} is D-strong-mixing

with mixing coefficients
{

αD ,i (t) ,1≤ t ≤ T −1
}

. αD (·)≡max1≤i≤N αD ,i (·) sat-

isfies ∑∞
s=1 s2α(1+δ )/(2+δ )

D (s) < ∞ where δ is given in Assumption 6;

(ii) E
[
eit |F t−1

0
]
= 0 a.s. where F t−1

0 ≡σ{(Xit ,Xi,t−1,ei,t−1,Xi,t−2,ei,t−2, · · ·)N
i=1 ,
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λ 0, f 0};

(iii) (eit ,Xit)⊥
(
e js,X js

) |D for all i 6= j and all t, s = 1, ...,T , where A⊥B|C
denotes independence between A and B given C.

Assumption 6. There exists δ > 0 such that

(i) supi,t E |eit |8+4δ < ∞;

(ii) supi E
∥∥λ 0

i

∥∥8+4δ
< ∞, and supt E

∥∥ f 0
t
∥∥8+4δ

< ∞;

(iii) supk supi,t E
∣∣pit,k

∣∣8+4δ
< ∞ and supk supi,t E|Z̃it,k|8+4δ < ∞, where Z̃it,k is

the kth element of Z̃it .

Assumption 7. There exist constants cw, c̄w, cΩ, and c̄Ω that do not depend on K,N,

and T such that 0 < cw ≤ µK(W̃ ) ≤ µ1(W̃ ) ≤ c̄w < ∞ a.s. and 0 < cΩ ≤ µK(Ω̃) ≤
µ1(Ω̃)≤ c̄Ω < ∞ a.s. for all K as (N,T )→ ∞.

Assumption 8. As (N,T )→∞, K→∞ and max{√NT K−γ/d, Kδ−1
NT ,

√
NT Kδ−5/2

NT }
→ 0.

Assumptions 5(i) imposes strong mixing on {(Xit ,eit)}T
t=1 conditional on D . Its

unconditional version is widely used in the time series literature; see, e.g., Bosq

(1998) and Fan and Yao (2003). In the time series literature, one can find var-

ious sufficient conditions for the strong mixing property of a nonlinear autore-

gressive (AR) process with identically and independently distributed (IID) errors

or nonlinear ARCH/GARCH type of errors; see Tjøstheim (1990) and Doukhan

(1994) for nonlinear AR process with IID errors, Fan, Yao, and Cai (2003) for

functional coefficient AR processes, and Meitz and Saikkonen (2010) for nonlin-

ear AR-ARCH/GARCH processes. When the nonlinear time series contains ex-

ogenous regressors, sufficient conditions are also available for the strong mixing

property; see Doukhan (1994) and Chen, Racine, and Swanson (2001) for nonlin-

ear ARX processes where exogenous variables and errors are both IID, Franke and

Diagne (2006) for nonlinear ARX-ARCHX processes but the exogenous variables

are lagged exogenous variables, and Hahn and Kuersteiner (2010) for dynamic To-

bit models with mixing exogenous regressors which follow an AR process. Similar

tools used in the time series literature can be used to establish the conditional strong
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mixing property for {Yit}T
t=1 in our framework. On the other hand, if one assumes

that the interactive fixed effects are not random (which is analogous to treating the

individual fixed effects as nonrandom in a classical linear panel data model), it suf-

fices to use the concept of strong mixing.2 Assumption 5(ii) imposes a martingale

difference sequence (m.d.s.) condition on
{
(eit ,Xit) ,F t

0
}T

t=1 . Assumption 5(iii)

imposes the conditional independence between (eit ,Xit) and
(
e js,X js

)
for i 6= j

given D . This assumption implies that all the cross-sectional dependence comes

from the common factor f 0
t . We can relax this assumption to allow for weak cross-

sectional dependence among
{
(X1,it ,eit)

}N
i=1 conditional on D at the cost of more

complicated proofs.

Assumption 6 imposes moment conditions on eit , λ 0
i , f 0

t , and pit,k. Assump-

tion 6(ii) imposes the existence of (8+4δ )th moments for the factors and factor

loadings and thus relaxes the uniform boundedness of
∥∥ f 0

t
∥∥ and

∥∥λ 0
i

∥∥ in Moon

and Weidner (2010, 2012). Assumption 6(iii) is a little stronger than what is typ-

ically assumed for sieve estimation in the IID framework (e.g., Newey, 1997),

but is more general than that in Lee (2010) where a uniform bound over a trun-

cated support is used. In the case of compact support, it is generally assumed that

supx∈X

∥∥pK (x)
∥∥ = OP (ζ (K)) for a non-decreasing function ζ (·). But for the case

of infinite support, this assumption is not reasonable for general sieves except for

some special sieves (e.g., Fourier series and Hermite polynomials) that can automat-

ically deal with the tail behavior or are uniformly bounded over the infinite support.

For this reason, we impose moment conditions on pit,k instead. One direct impli-

cation of Assumption 6(iii) is that supi,t E ‖pit‖= OP

(
K1/2

)
, which allows for cu-

bic splines or trigonometric series, but excludes polynomial functions. See Newey

(1997) for more discussions on sieves. In addition, we remark that it is possible to

2An alternative for strong mixing is Near Epoch Dependence (NED), which is a much weaker
condition and easily verified for many DGPs; see Gallant (1987), Gallant and White (1988), David-
son (1994), Pötscher and Prucha (1997), and de Jong (2009). However, there are no works on the
sufficient conditions for the NED of {Yit}T

t=1 when the models include both nonlinear ARX and
nonlinear ARCHX/GARCHX error. We conjecture that one can apply NED to study our model but
the proofs are much more complicated in various places. For this reason, we adopt the notion of
conditional strong mixing.
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relax this assumption to supk supi,t E
∣∣pit,k

∣∣8+4δ
< ζ0 (K) for some non-decreasing

function ζ0 (·) to include more sieve bases.

Assumption 7 imposes some restrictions on the eigenvalues of W̃ and Ω̃. As-

sumption 8 specifies the relative rates at which N, T , and K pass to infinity. Note

that we allow for N/T = c ∈ [0,∞]. When N/T ∈ (0,∞), the assumption reduces to

N/Kγ/d +K2/N → 0, i.e., K ∈ (Nd/γ , N1/2).

Asymptotic distribution

Let VK (x) ≡ pK (x)′W̃−1Ω̃W̃−1 pK (x) and ANT ≡
√

NTV−1/2
K (x). Let b1, b2, and

b3 denote K×1 vectors whose kth elements are respectively given by

b1,k ≡ 1
N

tr
[
Pf 0ED

(
e′Pk

)]
,b2,k ≡ 1

T
tr

[
ED

(
ee′

)
Mλ 0PkΦ

]
,and

b3,k ≡ 1
N

tr
[
ED

(
e′e

)
M f 0P′kΦ′

]
.

Define

BK (x) ≡ −ANT pK (x)′W̃−1 (
T−1b1 +N−1b2 +T−1b3

)

≡ −κNT b1 (x)−κ−1
NT b2 (x)−κNT b3 (x) , (3.3.9)

where κNT ≡
√

N/T . Clearly, bs (x) = V−1/2
K (x) pK (x)′W̃−1bs for s = 1,2,3. We

establish the asymptotic normality of ĝ(x) in the following theorem.

Theorem 3.3.2 Suppose that Assumptions 1-8 hold. Then

ANT [ĝ(x)−g(x)]−BK (x) d→ N (0,1)

as (N,T )→ ∞.

Remark 2. The proof of the above theorem is quite complicated despite the fact

that we establish the asymptotic normality by a version of martingale central limit

theorem. Let aNT ≡ ANT pK (x)′W−1
NT . Theorem 3.3.1 suggests that the leading

terms in the expansion of ANT [ĝ(x)−g(x)] are given by aNTC(1)
NT , aNTC(2,a)

NT , and

aNTC(2,b)
NT . aNTC(1)

NT contributes to both the asymptotic variance and asymptotic bias

term (−κNT b1 (x)). The latter also arises in linear dynamic panel data models and
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is caused by the endogeneity of Zit defined in (3.3.2):

ED (Ziteit) =− 1
T

T

∑
s=t+1

(
1− 1

N
αii

)
ηtsED (piseit) 6= 0

by Assumption 5(iii). It is easy to see that an equivalent expression for b1 is

b1 =
1

NT

N

∑
i=1

T−1

∑
t=1

T

∑
s=t+1

ηtsED (piseit) . (3.3.10)

aNTC(2,a)
NT contributes to the second bias term, i.e., −κ−1

NT b2 (x) , and is caused by

cross-sectional heteroskedasticity of errors conditional on D ; aNTC(2,b)
NT contributes

to the third bias term, i.e., −κNT b3 (x) , and is caused by serial correlation and het-

eroskedasticity of errors conditional on D . In the special case where eit’s are IID

conditional on D across both i and t, the last two bias terms disappear.

3.3.3 Bias correction

In this section, we propose a bias-corrected estimator for g(x). Let it be a T × 1

unit vector that has unity at position t. For an N ×N matrix A, define the di-

agonal truncation of A as AtruncD = diag(A), whose (i, j)th element is given by

Ai j1(i = j) with 1(·) being the usual indicator function. Let Γ(·) be the trun-

cation kernel: Γ(s) = 1(|s| ≤ 1). Let MT be a bandwidth parameter such that

MT /T + 1/MT → 0 as T → ∞. The right truncation of matrix B is defined by

BtruncR = ∑T−1
t=1 ∑T

s=t+1 Γ((s− t)/MT )it i′tBisi′s.

To construct consistent estimates for the asymptotic bias and variance, we need

consistent estimates of λ 0 and f 0 under suitable identification restrictions. We use

the same identification restrictions as Bai (2009):

f ′ f /T = IR and λ ′λ = diagonal matrix. (3.3.11)

Given β̂ , we can obtain (λ̂ , f̂ ) as the solution to the following set of nonlinear

equations: [
1

NT

N

∑
i=1

(
Yi−Piβ̂

)(
Yi−Piβ̂

)′
]

f̂ = f̂ VNT , (3.3.12)
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where VNT is a diagonal matrix that consists of the R largest eigenvalues of the

matrix in the above bracket, arranged in descending order, and

λ̂ ≡
(

λ̂1, · · · , λ̂N

)′
= T−1

[
f̂ ′

(
Y1−P1β̂

)
, · · · , f̂ ′

(
YN −PN β̂

)]′
. (3.3.13)

The projection matrices Pf 0 and Pλ 0 can be estimated as follows

Pf̂ ≡ f̂ f̂ ′/T and Pλ̂ ≡ λ̂ (λ̂ ′λ̂ )−1λ̂ ′. (3.3.14)

Then M f̂ ≡ IT −Pf̂ , Mλ̂ ≡ IN −Pλ̂ and Φ̂ ≡ f̂ ( f̂ ′ f̂ )−1(λ̂ ′λ̂ )−1λ̂ ′ are estimators of

M f 0 , Mλ 0 , and Φ, respectively. The residuals are given by

êit ≡ Yit − ĝ(Xit)− λ̂ ′i f̂t . (3.3.15)

Let α̂i j ≡ λ̂ ′i (λ̂ ′λ̂/N)−1λ̂ j, η̂ts ≡ f̂ ′t ( f̂ ′ f̂ /T )−1 f̂s, and Ẑit ≡ pit − 1
N ∑N

j=1 α̂i j p jt −
1
T ∑T

s=1 η̂ts pis + 1
NT ∑N

j=1 ∑T
s=1 α̂i jη̂ts p js. Then we can define

ŴNT ≡ 1
NT

N

∑
i=1

T

∑
t=1

Ẑit Ẑ′it , Ω̂NT ≡ 1
NT

N

∑
i=1

T

∑
t=1

Ẑit Ẑ′it ê
2
it ,

V̂K (x) ≡ pK (x)′Ŵ−1
NT Ω̂NTŴ−1

NT pK (x) , and ÂNT ≡
√

NT/V̂K (x),

which are estimators of WNT , ΩNT , VK (x) and ANT , respectively. For b1,b2, and

b3, define their corresponding estimates as b̂1, b̂2, and b̂3 whose kth elements are

respectively given by

b̂1,k ≡ 1
N

tr
[(

ê′Pk
)truncR Pf̂

]
, b̂2,k ≡ 1

T
tr

[(
êê′

)truncD Mλ̂ PkΦ̂
]

and

b̂3,k ≡ 1
N

tr
[(

ê′ê
)truncD M f̂ P′kΦ̂′

]
.

Let

B̂K (x) = −ÂNT pK (x)′Ŵ−1
NT (T−1b̂1 +N−1b̂2 +T−1b̂3)

≡ −κNT b̂1 (x)−κ−1
NT b̂2 (x)−κNT b̂3 (x)
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and

β̂bc ≡ β̂ +Ŵ−1
NT (T−1b̂1 +N−1b̂2 +T−1b̂3). (3.3.16)

The bias-corrected estimator of g(x) is given by

ĝbc (x)≡ pK (x)′ β̂bc = ĝ(x)− Â−1
NT B̂K (x) . (3.3.17)

To estimate the asymptotic bias and variance consistently, we add the following

assumption.

Assumption 9. (i) As (N,T )→∞, MT →∞ and max{MT /T,
√

NK
T ∑∞

τ=MT
α

3+2δ
4+2δ
D (τ) ,

MT

√
NK
T δ−1

NT }→ 0;

(ii) As (N,T )→ ∞,

max
(
κNT ,κ−1

NT
)[

K3/2
(

K−γ/d +δ−1
NT

)]
→ 0,

max
(

κNT K1/2,κ−1
NT

)
(NT )1/4 K

(
K−γ/d +δ−2

NT

)
→ 0,

κ−1
NT

√
K[N−1/4 +N5/8(K−γ/d +

√
Kδ−2

NT )+T−1N1/2] → 0,

κNT
√

K[T−1/4 +T 5/8(K−γ/d +
√

Kδ−2
NT )+N−1T 1/2] → 0.

Assumption 9(i) imposes conditions on the bandwidth parameter MT . Assump-

tion 9(ii) seems quite complicated but can be simplified under some extra condi-

tions. If we assume κNT → c ∈ (0,∞), then Assumption 9(ii) reduces to K/N1/3 →
0, K3/2−γ/dN1/2 → 0, K1/2−γ/dN5/8 → 0, which, in conjunction with Assumption

8 and the additional requirement γ/d > 3/2, implies that K ∈ (Nγ0,N1/3), where

γ0 ≡max{ 1/2
γ/d−3/2 , 5/8

γ/d−1/2}.

The following theorem establishes the asymptotic distribution for the bias-corrected

estimator ĝbc (x) .

Theorem 3.3.3 Suppose that Assumptions 1-9 hold. Then ÂNT [ĝbc (x)−g(x)] d→
N (0,1) as (N,T )→ ∞.
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3.4 A specification test for linearity

In this section, we consider a specification test for the commonly used linear dy-

namic panel data models with interactive fixed effects. We propose a test statistic

based on the comparison of the linear estimator under the null hypothesis and the

sieve estimator under the alternative.

3.4.1 The hypothesis and test statistic

For the model in (3.1.1), we are interested in testing the null hypothesis:

H0 : Pr
[
g(Xit) = X ′itθ 0] = 1for some θ 0 ∈Θ, (3.4.1)

where Θ is a compact subset of Rd . The alternative hypothesis is

H1 : Pr
[
g(Xit) = X ′itθ

]
< 1 for all θ ∈Θ. (3.4.2)

To facilitate the asymptotic local power analysis, we shall consider the following

sequence of Pitman local alternatives:

H1 (γNT ) : g(Xit) = X ′itθ 0 + γNT ∆(Xit) (3.4.3)

where ∆(·)≡ ∆NT (·)
is a measurable nonlinear function and γNT → 0 as (N,T ) → ∞. Let ∆i ≡

(∆(Xi1) , · · · ,∆(XiT ))′ and ∆≡ (∆1, · · · ,∆N)′.

We propose a test for H0 versus H1 by comparing the L2-distance between two

estimators of g(·), i.e., the linear and sieve estimators. Intuitively, both estimators

are consistent under the null hypothesis of linearity while only the sieve estimator

is consistent under the alternative. So if there is any deviation from the null, the L2-

distance between two estimators will signal it out asymptotically. This motivates us

to consider the following test statistic

ΓNT ≡ 1
NT

N

∑
i=1

T

∑
t=1

[
ĝbc (Xit)− ĝ(l) (Xit)

]2
w(Xit) ,
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where ĝ(l) (x) = x′θ̂ , θ̂ is Moon and Weidner’s (2010, 2012) linear estimator of the

coefficient θ underH0, and w(x) is a user-specified nonnegative weighting function.

Similar test statistics have been proposed in various other contexts in the literature;

see, e.g., Härdle and Mammen (1993) and Hong and White (1995). We will show

that after being appropriately centered and scaled, ΓNT is asymptotically normally

distributed under the null hypothesis of linearity.

3.4.2 The asymptotic distribution under H1 (γNT )

Let Qwxx,NT ≡ 1
NT

N
∑

i=1

T
∑

t=1
witXitX ′it , Qwxx≡ED [Qwxx,NT ], Qwpx,NT ≡ 1

NT

N
∑

i=1

T
∑

t=1
pitX ′itwit ,

and Qwpx ≡ ED [Qwpx,NT ] . Let DNT be a d× d matrix with its (k1,k2)th element

given by

DNT,k1k2 ≡
1

NT
tr

(
Mλ 0Xk1M f 0X′

k2

)
. (3.4.4)

Let D ≡ ED [DNT ] . Let ϒNT be d× 1 vectors whose kth element is given by

ϒNT,k ≡ 1
NT tr

(
Mλ 0XkM f 0∆′

)
. We add the following assumptions.

Assumption 10. ∆(x) is H(γ,ω)-smooth, and there exists β 0
∆ ∈ RK such that

∥∥β 0
∆
∥∥ < ∞ and

∥∥∆(·)− pK (·)′β 0
∆
∥∥

∞,ω̄ = O
(

K−γ/d
)

.

Assumption 11. (i) 0 < CQ ≤ µd (Qwxx)≤ µ1 (Qwxx)≤ C̄Q < ∞ a.s. as (N,T )→ 0;

(ii)
∥∥Qwpx

∥∥≤CQ < ∞ a.s. for all K as (N,T )→ 0;

(iii) 0 < CD ≤ µd (D)≤ µ1 (D)≤ C̄D < ∞ a.s. as (N,T )→ 0,

where CQ, C̄Q, CQ, CD, and C̄D are constants that do not depend on K, N, or T.

Assumption 12. As (N,T )→ ∞, K3/N → 0, max
(
κNT ,κ−1

NT
)

K−1/4 → 0,

K1/4
√

N/T
∞

∑
τ=MT

α(3+2δ )/(4+2δ )
D (τ)+K1/4

√
N/T MT δ−1

NT → 0,

max
(
κNT ,κ−1

NT
)[

K5/4
(

K−γ/d +δ−1
NT

)]
→ 0,

κ−1
NT K1/4[N−1/4 +N5/8(K−γ/d +

√
Kδ−2

NT )+T−1N1/2] → 0,

κNT K1/4[T−1/4 +T 5/8(K−γ/d +
√

Kδ−2
NT )+N−1T 1/2] → 0.

Assumption 11 imposes some restrictions on the eigenvalues of certain matrices.

Assumptions 11(i) and (iii) are reasonable as both Qwxx and D are d×d matrices.
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Assumption 11(ii) is a high-level assumption. Let Qw ≡




Qwpp Qwpx

Q′
wpx Qwxx


, an

augmented version of Qwpp. In the literature on sieve estimation, it is commonly

assumed that µ1 (Qwpp) is bounded above from infinity and below from 0 uniformly

in K in large samples. Under this condition and Assumption 11(i), if one further

requires that µ1 (Qw) < C < ∞, then one can readily demonstrate that
∥∥Qwpx

∥∥2 =

µ1
(
QwpxQ′

wpx
)≤ µ1 (Qwpp)µ1 (Qwxx) < ∞. Assumption 12 imposes some require-

ments on (N,T,K,MT ), which are much weaker than that for the bias-correction

of sieve estimator. Note that the case where N/T = c ∈ [0,∞] is allowed. If we

restrict c ∈ (0,∞), Assumption 12 reduces to K1/4 max{∑∞
τ=MT

α
3+2δ
4+2δ
D (τ) , MT√

N
}→ 0

and K3/N → 0, K ∈ (Nγ1,N1/3), where γ1 ≡ max{ 1/2
γ/d−3/2 , 5/8

γ/d−1/4}. The require-

ment on But it is still necessary to use bias-corrected sieve estimate in specification

testing.

We define the asymptotic bias and variance terms as follows

BNT ≡ tr
(
W̃−1QwppW̃−1Ω̃

)
and VNT ≡ 2tr

(
W̃−1QwppW̃−1Ω̃W̃−1QwppW̃−1Ω̃

)
.

The following theorem establishes the asymptotic distribution of our test statistic

under H1 (γNT ).

Theorem 3.4.1 Suppose that Assumptions 1-8 and 10-12 hold. Under H1 (γNT )
with γNT ≡ (NT )−1/2V1/4

NT ,

JNT ≡ (NT ΓNT −BNT )/
√
VNT

d→ N
(

A∆,1
)

,

where A∆ ≡plim (N,T )→∞
1

NT ∑N
i=1 ∑T

t=1
(
∆it −X ′itD

−1
NT ϒNT

)2
wit is assumed to exist

and be finite.

Remark 3. The proof of the above theorem is tedious and is relegated to Appendix

B. The idea is to express JNT as a degenerate second order U-statistic plus some

smaller order terms and then apply de Jong’s (1987) central limit theorem (CLT)

for independent but non-identically distributed (INID) observations. As Su, Jin,

and Zhang (2012) notice, even though the CLT in de Jong (1987) works for sec-
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ond order U-statistics associated with INID observations, a close examination of

his proof shows that it also works for conditionally independent but nonidentically

distributed (CINID) observations. Noting that A∆ = 0 under H0, an immediate con-

sequence of the above theorem is that (NT ΓNT −BNT )/
√
VNT

d→ N (0,1) under

the null. In view of the fact that VNT = OP (K) , we have γNT = (NT )−1/2V1/4
NT =

OP((NT )−1/2 K1/4). This indicates that JNT has power to detect local alternatives

that converge to the null hypothesis at the rate (NT )−1/2 K1/4 provided that A∆ > 0.

This is the rate we can obtain even if f 0
t and λ 0

i are observable. We obtain this

rate despite the fact that the unobserved factors f 0
t and factor loadings λ 0

i can be

only estimated at slower rates (N−1/2 for the former and T−1/2 for the latter, sub-

ject to certain matrix rotation), which suggests that the slower convergence rates of

the estimates of f 0
t and λ 0

i do not have adverse first-order asymptotic effects on the

asymptotic distribution of JNT .

To implement the test, we propose to estimate BNT and VNT by B̂NT ≡tr(Ŵ−1
NT

×Qwpp,NTŴ−1
NT Ω̂NT ) and V̂NT ≡ 2tr(Ŵ−1

NT Qwpp,NTŴ−1
NT Ω̂NTŴ−1

NT Qwpp,NTŴ−1
NT Ω̂NT ),

respectively, where ŴNT ≡ 1
NT ∑N

i=1 ∑T
t=1 Ẑit Ẑ′it and Ω̂NT ≡ 1

NT ∑N
i=1 ∑T

t=1 Ẑit Ẑ′it ê
2
it .

Then we define a feasible test statistic:

ĴNT ≡
(
NT ΓNT − B̂NT

)
/

√
V̂NT . (3.4.5)

The following theorem establishes the asymptotic distribution of ĴNT underH1 (γNT ).

Theorem 3.4.2 Suppose that Assumptions 1-8 and 10-12 hold. Under H1 (γNT )
with γNT = (NT )−1/2 ×V1/4

NT , ĴNT
d→ N

(
A∆,1

)
.

Remark 4. The above theorem implies that ĴNT has nontrivial asymptotic power

against local alternatives that converges to the null at the rate (NT )−1/2 K1/4. The

asymptotic local power function satisfies Pr
(
ĴNT > z|H1 (γNT )

) → 1−Φ
(
z−A∆)

as (N,T )→ ∞, where Φ(·) is the standard normal cumulative distribution function

(CDF).

Under H0, A∆ = 0, and ĴNT is asymptotically distributed N (0,1). This is stated

in the following corollary.
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Corollary 3.4.3 Suppose that Assumptions 1-8 and 11-12 hold. Then under H0,

ĴNT
d→ N (0,1) .

Remark 5. In principle, one can compare ĴNT with the one-sided critical value zα ,

the upper αth percentile from the standard normal distribution, and reject the null

when ĴNT > zα at the α significant level. An alternative approach is to use bootstrap

critical values or p-values to conduct an asymptotic test.

Remark 6. To understand the asymptotic behavior of ĴNT under global alternatives,

we need to study the asymptotic property of θ̂ under H1. In this case, we define a

pseudo-true parameter θ ∗ as the probability limit of θ̂ . Then

∆̄(Xit)≡ g(Xit)−X ′itθ ∗

is not equal to 0 a.s.. Let ∆̄i ≡
[
∆̄(Xi1) , · · · , ∆̄(XiT )

]′ for i = 1, ...,N and ∆̄ ≡
(
∆̄1, · · · , ∆̄N

)′. With an additional assumption
∥∥∆̄

∥∥ = oP[(NT )1/2],we can show

that θ̂ − θ ∗ = D−1
NT ϒ̄NT + oP (1), where ϒ̄NT is a d× 1 vector whose kth element

is given by ϒ̄NT,k ≡ (NT )−1tr(Mλ 0XkM f 0∆̄′). By some calculations, we can show

that ΓNT = 1
NT ∑N

i=1 ∑T
t=1 ∆̄(Xit)

2 wit +oP (1) = OP (1). This, together with the fact

that B̂NT = OP (K) and V̂NT = OP(
√

K) under H1, implies that our test statistic

ĴNT diverges at the rate OP(NT/
√

K) under H1. That is, Pr(ĴNT > bNT |H1) → 1

as (N,T )→ ∞ under H1for any nonstochastic sequence bNT = o(NT/
√

K). So our

test achieves consistency against any global alternatives.

Remark 7. With a little modification, our test can also be applied to testing for

the specification of various other models with interactive fixed effects. First, one

can consider a partially linear panel data model with interactive fixed effects where

g(Xit) = g1 (X1,it)+ θ 0′
2 X2,it , Xit =

(
X ′1,it ,X

′
2,it

)′
, and g1 (·) is an unknown smooth

function. In this case, the hypotheses are H′0 : Pr[g1 (X1,it) = θ 0′
1 X1,it ] = 1 for some

θ 0
1 ∈ Θ1 v.s. H′1 : Pr[g1 (X1,it) 6= θ ′1X1,it ] < 1 for all θ1 ∈ Θ1. One can continue to

apply our test by estimating the model under the null and under the general non-

parametric alternative for g(·) without imposing its partially linear structure. But

this test may suffer some loss of efficiency as it does not impose the partially linear
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structure under the alternative. Alternatively, one can establish the asymptotic dis-

tribution theory for the sieve estimator for the partially linear model and compare

it with the linear estimator under the null. The asymptotic distribution theory for

the resulting test statistic is similar to what we have above. We omit the details to

save space. Second, our test can also be applied to models that include both additive

and multiplicative fixed effects. Let (λa,1, ...,λa,N) be the N individual fixed effects.

We can write the common component as λa,i fa,t + λ 0′
i f 0

t =~λ 0′
i

~f 0
t for individual i

at time period t, where fa,t = 1, ~f 0
t =

(
1, f 0′

t
)′, and~λ 0

i =
(
λa,i,λ 0′

i
)′

. In this case,

fa,t is known. We can obtain the sieve QMLE without estimating fa,t in the opti-

mization process. With some minor modifications, we can establish the asymptotic

distributions for the resulting estimator and test statistic. Third, we can also mod-

ify our test statistic to test for the hypotheses: H′′0 : Pr[g(Xit) = 0] = 1 v.s. H′′1 :

Pr[g(Xit) = 0] < 1. This testing problem is particularly important in the nonlinear

autoregressive panel data models (e.g., Yit = g(Yi,t−1) + λ 0′
i f 0

t + eit) because it is

equivalent to testing for the presence of dynamic effects. It is also important to test

the presence of anomaly effects in the factor pricing literature. Apparently we can

compare the sieve estimate of g(·) with 0 to construct a test statistic, which is a

special case of our test.

3.4.3 A bootstrap version of the test

Despite the fact that ĴNT is asymptotically N (0,1) under the null, it is not wise to

rely on the asymptotic normal critical values to make statistical inference in finite

samples because of the nonparametric nature of our test. In addition, even though

the slow convergence rates of our factors and factor loadings estimates do not affect

the asymptotic normal distribution of our test statistic, they tend to have adverse

effects in finite samples (see, Su and Chen, 2013). As a result, tests based on stan-

dard normal critical values tend to suffer severe size distortions in finite samples.

Therefore it is worthwhile to propose a bootstrap procedure to improve the finite

sample performance of our test. As Neumann and Paparoditis (2000) note, it is
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not necessary to reproduce the whole dependence structure of the original data to

get a correct estimator of the null distribution of the testing statistic. In the spirit of

Hansen (2000), we propose a fixed-regressor wild bootstrap method. The procedure

goes as follows:

1. Under H0, obtain the linear estimators θ̂ , f̂ (l)
t , λ̂ (l)

i , and ê(l)
it , where the su-

perscript “(l)” denotes estimates under the null hypothesis of linearity; under

H1, obtain the bias-corrected sieve estimators: β̂bc, f̂t , λ̂i, and êit . Calculate

the test statistic ĴNT based on ĝbc (Xit) = β̂ ′bc pK(Xit), θ̂ ′Xit , λ̂i, f̂t , and êit .

2. For i = 1, ...,N, obtain the wild bootstrap errors {e∗it}T
t=1 as follows: e∗it =

νit ê
(l)
it where νit are IID N (0,1). Then generate the bootstrap analogue Y ∗it of

Yit by holding (Xit , f̂ (l)
t , λ̂ (l)

i ) as fixed: Y ∗it = X ′it θ̂ + λ̂ (l)′
i f̂ (l)

t +e∗it for i = 1, ...,N

and t = 1, ...,T .

3. Given the bootstrap resample {Y ∗it ,Xit}, obtain the sieve QMLEs ĝ∗bc (Xit), λ̂ ∗i ,

f̂ ∗t and ê∗it , and the linear estimators θ̂ ∗, λ̂ (l)∗
i , f̂ (l)∗

t and ê(l)∗
it . Calculate the

bootstrap test statistic Ĵ∗NT based on ĝ∗bc (Xit), X ′it θ̂ ∗, f̂ ∗t , λ̂ ∗i , and ê∗it .

4. Repeat Steps 2-3 for B times and index the bootstrap statistics as
{

J∗NT,b

}B

b=1
.

Calculate the bootstrap p-value: p∗ = B−1 ∑B
b=1 1(Ĵ∗NT,b ≥ ĴNT ).

It is straightforward to implement the above bootstrap procedure. Note that we

impose the null hypothesis of linearity in Step 2. Since the regressors are treated

as fixed, there is no dynamic structure in the bootstrap world. The next theorem

implies the asymptotic validity of the above bootstrap procedure.

Theorem 3.4.4 Suppose that the conditions in Theorem 3.4.2 hold. Then Ĵ∗NT
d∗→

N (0,1) in probability, where d∗→ denotes weak convergence under the bootstrap
probability measure conditional on the observed sample WNT ≡ {(Xit ,Yit) : i =
1, ...,N, t = 1, ...,T}.

The above result holds no matter whether the original sample satisfies the null,

the local alternative, or the global alternative hypotheses. IfH0 holds, ĴNT converges
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in distribution to N (0,1) so that a test based on the bootstrap p-value will have

the correct asymptotic level. If H1 holds for the original sample, ĴNT diverges at

NT/
√

K whereas Ĵ∗NT still converges to N (0,1) with some additional assumptions,

which implies that the bootstrap test is consistent.

3.5 Monte Carlo simulations

In this section, we conduct a small set of Monte Carlo simulations to evaluate the

finite sample performance of our estimators and test.

3.5.1 Data generating processes

We consider the following data generating processes (DGPs):

DGP 1: Yit = 1
2Yi,t−1 +λ 0′

i f 0
t + eit ,

DGP 2: Yit = 1
2Yi,t−1 +X1,it +λ 0′

i f 0
t + eit ,

DGP 3: Yit = 1
2Yi,t−1 + 1

2 [
exp(Yi,t−1−Y 2

i,t−1)
1+exp(Yi,t−1−Y 2

i,t−1)
− 1

2 ]+λ 0′
i f 0

t + eit ,

DGP 4: Yit = 1
2Yi,t−1 + 1

2 [Φ
(

Yi,t−1−Y 2
i,t−1

)
− 1

2 ]+λ 0′
i f 0

t + eit ,

DGP 5: Yit = 1
2Yi,t−1 + 1

4 [φ (Yi,t−1)− 1√
2π ]+ 1

2 [φ (X1,it)− 1√
2π ]+λ 0′

i f 0
t + eit ,

DGP 6: Yit = 1
2Yi,t−1 + 1

4X1,it [Φ(Yi,t−1)− 1
2 ]+ 1

2 [φ (X1,it)− 1√
2π ]+λ 0′

i f 0
t + eit ,

where λ 0
i =

(
λ 0

i1,λ
0
i2
)′, f 0

t =
(

f 0
t1, f 0

t2
)′

, i = 1, ...,N, t = 1, ...,T, Φ(·) and φ (·) are

the standard normal CDF and PDF, respectively. The regressors X1,it in DGPs 2,

5, and 6 are generated according to X1,it = 0.5αi,x + 0.5λ 0
x,i1 f 0

t1 + 0.5λ 0
x,i2 f 0

t2 + εit ,

where λ 0
i1,λ

0
i2, λ 0

x,i1, λ 0
x,i2, and εit are IID N (0,1), f 0

t1, f 0
t2, and eit are IID N (0,0.25),

αi,x are IID U [−0.25,0.25], and they are mutually independent of each other. Clearly,

the exogenous regressor X1,it has a factor structure and is correlated with the com-

mon factors f 0
tt and f 0

t2. All the above six DGPs are used to evaluate the finite sample

performance of our estimator and test statistic. In the specification testing for lin-

earity, DGPs 1-2 and 3-6 are used for level and power studies, respectively. For all

DGPs, we discard the first 200 observations along the time dimension when gener-

ating the data.

Note that the idiosyncratic error terms in the above six DGPs are all homoskedas-
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tic (conditionally and unconditionally). To investigate the effect of conditional het-

eroskedasticity for the estimation and testing, we consider another set of DGPs,

namely, DGPs 1h-6h, which are identical to DGPs 1-6, respectively, in the mean

regression components but different from the latter in error terms. For DGPs 1h, 3h-

4h, we generate the errors as follows eit =
√

hitεit , hit = 0.1+0.2Y 2
i,t−1, and εit ∼IID

N(0,1). For DGPs 2h, 5h-6h, the errors are generated according to eit =
√

hitεit ,

hit = 0.1+0.1Y 2
i,t−1 +0.1X2

1,it , and εit ∼IID N(0,1).

3.5.2 Estimation: implementation and evaluation

In each DGP, we compute six estimators. We first compute the sieve estimate ĝ(x)

and its bias-corrected version ĝbc (x). Then we compute the bias-corrected infea-

sible estimate ĝIF (x) which is obtained by treating
{

f 0
t
}T

t=1 as observables. We

also calculate another three estimates by pretending the regression function takes

the commonly assumed linear functional form and term them as the linear QMLE

ĝ(l) (x), its bias-corrected version ĝ(l)
bc (x), and the infeasible linear estimate ĝ(l)

IF (x)

by treating the factors as observables, respectively. The infeasible estimates ĝ(l)
IF (x)

and ĝIF (x) provide a reference for efficiency comparison in DGPs 1-2 (or 1h-2h)

and 3-6 (or 3h-6h), respectively. Compared with the sieve estimates (ĝ(x) , ĝbc (x)),

the linear estimates (ĝ(l) (x) , ĝ(l)
bc (x)) signify the bias due to functional form mis-

specification in DGPs 3-6 or 3h-6h. Although there is no conditional heteroskedas-

ticity across i, or serial correlation or heteroskedasticity across t for some DGPs

(e.g., DGPs 1-6), we correct all three bias terms to obtain ĝbc (x) and ĝ(l)
bc (x).

To obtain these estimates, we need to choose the bandwidth MT for the bias

correction. Throughout the simulation, we use MT =
⌊

T 1/7
⌋

. The cubic B-spline is

adopted as the sieve basis in all DGPs. The basis bi,n of a B-spline of degree n≥ 1

(of order m = n+1) is given recursively by

b j,n (x) = α j,n (x)b j,n−1 (x)+
[
1−α j+1,n (x)

]
b j+1,n−1 (x) ,

b j,0 (x) = 1
(
x ∈ [v j,vJ+1)

)
,
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where α j,n (x) = x−v j
v j+n−v j

1
(
v j+n 6= v j

)
and

{
v j

}J+1
j=0 is a sequence of non-decreasing

real numbers (i.e., knots). We can approximate any smooth scalar function B(x) by

a linear combination of
{

b j,n (x)
}J+m−1

j=0 for x ∈ [v0,vJ+1]. For more details on the

recursive construction of B-spline basis, see Racine (2012). In DGPs 1, 3, 4, 1h, 3h,

and 4h where g(x) is a univariate function, we use the cubic B-spline basis (n = 3)

pJ+4
Y (y) =

[
b(Y )

0,3 (y) ,b(Y )
1,3 (y) , · · · ,b(Y )

J+3,3 (y)
]′

, (3.5.1)

where the superscript “(Y )” denotes its correspondence to
{

Yi,t−1
}

. The knots
{

vy, j
}J+1

j=0 are chosen as the empirical quantiles of {Yi,t−1, i = 1, ...,N, t = 2, ...,T},
i.e., vy, j denotes the j/(J +1)th sample quantile of {Yi,t−1}. So the total number of

approximating terms in the sieve basis is given by K = J+4. In DGPs 2, 5, 6, 2h, 5h,

and 6h, we consider two choices of sieve bases depending on whether we impose

additivity on g(y,x) or not. When we impose additivity, i.e., g(y,x) = g1 (y)+g2 (x),

the basis can be chosen as follows

pK (y,x) = [pJ+4
Y (y)′ , pJ+3

X (x)′]′ (3.5.2)

where pJ+3
X (x) = [b(X)

0,3 (x) ,b(X)
1,3 (x) , · · · ,b(X)

J+2,3 (x)]′ with b(X)
j,3 (x) being analogously

defined as b(Y )
j,3 (x). For convenience, we adopt the same number of knots for dif-

ferent regressors. Note that we leave the last element b(X)
J+3,3 (x) out of pJ+3

X (x) to

avoid perfect multicollinearity as ∑J+3
j=0 b(X)

j,3 (x) = 1. For this case, the total number

of approximating terms is K = 2J +7. When we do not impose additivity, the basis

is chosen as follows

pK (y,x) = [pJ+4
Y (y)⊗ pJ+4

X (x)]′, (3.5.3)

where ⊗ denotes the tensor product. Then the total number of approximating terms

is K = (J + 4)2. Even for as small values as J = 3, 4, and 5, we have K = 49, 64,

and 81 terms in the sieve estimation, respectively. In all cases, to evaluate how the

estimators are sensitive to the choice of J, we consider choosing J = bC (NT )1/7.5c
for C = 1, 1.5, and 2.3

3Alternatively one can follow, e.g., Lee (2010), to use the leave-one-out cross-validation (CV) to
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We consider the (N,T ) pairs with N, T = 20, 40, and 60. To evaluate the finite

sample performance of different estimators, we first calculate the root mean squared

error (RMSE) for each replication: RMSE(ĝ)=

√
1

NT

N
∑

i=1

T
∑

t=1
[ĝ(Xit)−g(Xit)]

2 a(Xit),

where a(·) is used to trim out 2.5% tail observations along each tail of each dimen-

sion of Xit . Then we obtain the average RMSE (ARMSE) by averaging RMSE(ĝ)

across 2000 replications, where ĝ is a generic estimator of g. Other evaluation

criteria like the median of RMSE, the average or median mean absolute deviation

are also considered and they tend to yield qualitatively similar behavior for vari-

ous estimators considered here. We only report the results based on the ARMSE

to conserve space. Tables 3.1-3.2 report the estimation results for homoskedastic

or heteroskedastic errors, respectively, when we do not impose additivity for the

bivariate regressions in DGPs 2, 5, 6, 2h, 5h, and 6h. Table 3.3 reports the estima-

tion results for the latter six DGPs when we impose additivity. We summarize some

important findings. First, for all DGPs, the ARMSEs for ĝ, ĝbc and ĝIF decrease

as either N or T increases. The results for homoskedastic and heteroskedastic er-

rors are similar. Second, as expected, when the regression functions are linear in

DGPs 1, 2, 1h, and 2h, the linear estimate is more efficient than sieve estimate;

when the regression functions are nonlinear, the sieve estimates (bias-corrected or

not) outperform the linear estimates in terms ARMSE significantly, and the ARM-

SEs of the linear estimates tend to be stabilized at some large constant due to their

inconsistency in the case of misspecification of functional form. Third, the bias

correction works well for almost all DGPs and sample combinations (N,T ) under

investigation. The reduction of the percentage of ARMSE due to the bias correction

is diminishing as T increases, which is consistent with our asymptotic result that

the dominant first bias term is of order OP(
√

K/T ). Fourth, the infeasible estimates

always beat the feasible ones but the differences in ARMSEs for different types of

estimates are shrinking as either N or T increases. Fifth, when additivity is cor-

choose K adaptively. Another possibility is to apply the Lasso-type techniques to achieve simultane-
ous variable selection and estimation; see, e.g., Tibshirani (1996) and Fan and Li (2001). We leave
these as a future research topic.
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rectly imposed for the bivariate regressions in DGPs 2, 5, 2h, and 5h, a comparison

across the three tables suggests it leads to more precise estimation and significant

reductions of ARMSEs for all estimates under investigation when compared with

the case it is not imposed. When additivity is not correctly imposed for DGPs 6 and

6h, it generally results in large ARMSEs in large samples; exceptions may occur

when there are too many sieve approximation terms that tend to result in large vari-

ance. Lastly, the above results are kind of robust for the three choices of J for both

univariate regressions and additive bivariate regressions.

3.5.3 Testing: implementation and evaluation

To conduct the specification test, we choose the same MT , J, and basis functions as

in the estimation stage. We use w(Xit) = 1(Xit ∈U ) where U is chosen to trim out

2.5% tail observations along each tail of each dimension of Xit . For the bivariate

regression function g in DGPs 2, 5, 6, 2h, 5h, and 6h, we only consider the test by

imposing additivity of g although g has nonadditive nonlinear component in DGPs

6 and 6h. For each scenario, we consider 250 replications and adopt 200 bootstrap

resamples in each replication for both the size and power studies.

Tables 3.4-3.5 report the empirical rejection frequencies of our test at 1%, 5%,

and 10% nominal levels for the case of homoskedastic and heteroskedastic errors,

respectively. We summarize some important findings from these tables. First, when

the null hypothesis of linearity holds in DGPs 1, 2, 1h, and 2h, these tables suggest

that the level of our test behaves reasonably well for almost all DGPs, sample sizes,

and all choices of J under investigation despite the fact that slight to moderate size

distortions may occur in the case of heteroskedastic errors terms. Second, the power

of our test generally increase very fast as either N or T increases, and it not very

sensitive to the choice of J.
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Table 3.1: ARMSE comparison for DGPs 1-6: homoskedastic errors
C=1 C=1.5 C=2 Linear

DGP N T ĝ ĝbc ĝIF ĝ ĝbc ĝIF ĝ ĝbc ĝIF ĝ(l) ĝ(l)
bc ĝ(l)

IF
1 20 20 0.0575 0.0559 0.0453 0.0639 0.0625 0.0520 0.0688 0.0675 0.0572 0.0304 0.0277 0.0135

40 0.0384 0.0380 0.0310 0.0408 0.0406 0.0342 0.0475 0.0474 0.0410 0.0206 0.0199 0.0105
60 0.0307 0.0303 0.0248 0.0364 0.0361 0.0309 0.0388 0.0385 0.0337 0.0157 0.0152 0.0085

40 20 0.0401 0.0384 0.0317 0.0439 0.0422 0.0358 0.0511 0.0497 0.0440 0.0240 0.0212 0.0107
40 0.0268 0.0262 0.0216 0.0319 0.0314 0.0272 0.0344 0.0339 0.0296 0.0147 0.0140 0.0072
60 0.0230 0.0227 0.0195 0.0248 0.0245 0.0215 0.0289 0.0287 0.0258 0.0117 0.0113 0.0061

60 20 0.0347 0.0322 0.0268 0.0401 0.0379 0.0331 0.0424 0.0403 0.0356 0.0209 0.0175 0.0085
40 0.0230 0.0226 0.0197 0.0253 0.0249 0.0222 0.0289 0.0285 0.0261 0.0115 0.0105 0.0059
60 0.0181 0.0178 0.0159 0.0195 0.0192 0.0174 0.0224 0.0222 0.0204 0.0088 0.0082 0.0046

2 20 20 0.1107 0.1102 0.0844 0.1312 0.1312 0.1025 0.1480 0.1472 0.1194 0.0297 0.0294 0.0251
40 0.0843 0.0841 0.0566 0.0932 0.0931 0.0675 0.1076 0.1072 0.0913 0.0187 0.0186 0.0158
60 0.0732 0.0731 0.0459 0.0772 0.0772 0.0652 0.0844 0.0842 0.0747 0.0156 0.0156 0.0133

40 20 0.0860 0.0858 0.0594 0.0960 0.0959 0.0709 0.1142 0.1128 0.0947 0.0192 0.0190 0.0170
40 0.0679 0.0679 0.0402 0.0685 0.0685 0.0572 0.0729 0.0726 0.0658 0.0127 0.0125 0.0113
60 0.0583 0.0581 0.0394 0.0630 0.0629 0.0462 0.0659 0.0657 0.0605 0.0100 0.0100 0.0094

60 20 0.0756 0.0755 0.0480 0.0828 0.0824 0.0681 0.0912 0.0904 0.0778 0.0156 0.0154 0.0141
40 0.0592 0.0591 0.0405 0.0643 0.0643 0.0477 0.0676 0.0673 0.0623 0.0110 0.0108 0.0100
60 0.0511 0.0511 0.0322 0.0544 0.0543 0.0381 0.0566 0.0566 0.0500 0.0084 0.0084 0.0077

3 20 20 0.0590 0.0576 0.0468 0.0647 0.0634 0.0523 0.0686 0.0673 0.0563 0.0963 0.0956 0.1017
40 0.0398 0.0395 0.0326 0.0426 0.0424 0.0359 0.0490 0.0488 0.0429 0.0928 0.0929 0.1036
60 0.0308 0.0305 0.0259 0.0371 0.0368 0.0321 0.0392 0.0390 0.0344 0.0923 0.0924 0.1046

40 20 0.0410 0.0397 0.0336 0.0443 0.0431 0.0371 0.0511 0.0501 0.0442 0.0934 0.0933 0.1038
40 0.0276 0.0271 0.0230 0.0317 0.0313 0.0274 0.0339 0.0336 0.0297 0.0905 0.0906 0.1033
60 0.0245 0.0243 0.0214 0.0261 0.0259 0.0231 0.0294 0.0293 0.0264 0.0912 0.0913 0.1045

60 20 0.0346 0.0326 0.0278 0.0405 0.0386 0.0340 0.0423 0.0406 0.0361 0.0902 0.0899 0.1016
40 0.0245 0.0241 0.0217 0.0264 0.0260 0.0236 0.0297 0.0293 0.0272 0.0900 0.0902 0.1035
60 0.0192 0.0190 0.0173 0.0203 0.0201 0.0183 0.0232 0.0230 0.0213 0.0895 0.0897 0.1031

4 20 20 0.0591 0.0576 0.0472 0.0645 0.0632 0.0523 0.0687 0.0674 0.0566 0.0869 0.0861 0.0892
40 0.0404 0.0401 0.0336 0.0424 0.0422 0.0360 0.0486 0.0484 0.0425 0.0831 0.0832 0.0905
80 0.0324 0.0321 0.0278 0.0373 0.0370 0.0323 0.0394 0.0391 0.0345 0.0825 0.0825 0.0912

40 20 0.0417 0.0403 0.0346 0.0445 0.0432 0.0373 0.0509 0.0498 0.0440 0.0838 0.0836 0.0905
40 0.0293 0.0288 0.0253 0.0322 0.0318 0.0280 0.0343 0.0340 0.0300 0.0808 0.0809 0.0901
60 0.0252 0.0250 0.0223 0.0263 0.0262 0.0234 0.0293 0.0291 0.0262 0.0814 0.0815 0.0911

60 20 0.0358 0.0338 0.0294 0.0405 0.0386 0.0340 0.0424 0.0406 0.0361 0.0809 0.0805 0.0888
40 0.0254 0.0250 0.0227 0.0268 0.0264 0.0241 0.0300 0.0296 0.0274 0.0804 0.0805 0.0903
60 0.0203 0.0201 0.0185 0.0209 0.0207 0.0190 0.0232 0.0230 0.0213 0.0798 0.0800 0.0898

5 20 20 0.1176 0.1132 0.0831 0.1403 0.1344 0.0990 0.1623 0.1552 0.1145 0.0893 0.0872 0.0785
40 0.0742 0.0723 0.0537 0.0893 0.0864 0.0655 0.1224 0.1182 0.0899 0.0803 0.0799 0.0768
60 0.0594 0.0586 0.0435 0.0854 0.0834 0.0628 0.0989 0.0965 0.0721 0.0787 0.0784 0.0760

40 20 0.0842 0.0786 0.0576 0.1024 0.0951 0.0688 0.1374 0.1276 0.0929 0.0825 0.0809 0.0762
40 0.0536 0.0520 0.0382 0.0783 0.0753 0.0555 0.0911 0.0877 0.0645 0.0776 0.0773 0.0755
60 0.0504 0.0493 0.0378 0.0629 0.0611 0.0449 0.0831 0.0807 0.0590 0.0780 0.0778 0.0760

60 20 0.0677 0.0638 0.0467 0.0996 0.0928 0.0668 0.1135 0.1059 0.0769 0.0798 0.0791 0.0752
40 0.0521 0.0503 0.0383 0.0655 0.0629 0.0456 0.0862 0.0827 0.0598 0.0774 0.0771 0.0753
60 0.0419 0.0410 0.0313 0.0522 0.0507 0.0372 0.0704 0.0683 0.0491 0.0773 0.0771 0.0755

6 20 20 0.1164 0.1121 0.0832 0.1400 0.1343 0.0988 0.1611 0.1542 0.1144 0.0885 0.0867 0.0792
40 0.0732 0.0713 0.0540 0.0886 0.0859 0.0660 0.1220 0.1180 0.0907 0.0802 0.0798 0.0771
60 0.0585 0.0577 0.0433 0.0850 0.0830 0.0626 0.0981 0.0957 0.0718 0.0781 0.0780 0.0761

40 20 0.0835 0.0781 0.0575 0.1010 0.0940 0.0688 0.1354 0.1260 0.0928 0.0820 0.0804 0.0765
40 0.0524 0.0510 0.0381 0.0777 0.0748 0.0555 0.0904 0.0869 0.0645 0.0776 0.0773 0.0761
60 0.0495 0.0485 0.0377 0.0619 0.0602 0.0447 0.0820 0.0797 0.0586 0.0778 0.0777 0.0765

60 20 0.0664 0.0627 0.0466 0.0983 0.0916 0.0668 0.1121 0.1048 0.0772 0.0790 0.0784 0.0755
40 0.0512 0.0496 0.0384 0.0648 0.0623 0.0456 0.0854 0.0820 0.0599 0.0771 0.0769 0.0757
60 0.0402 0.0394 0.0312 0.0510 0.0496 0.0370 0.0691 0.0671 0.0487 0.0770 0.0769 0.0761
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Table 3.2: ARMSE comparison for DGPs 1h-6h: heteroskedastic errors
C=1 C=1.5 C=2 Linear

DGP N T ĝ ĝbc ĝIF ĝ ĝbc ĝIF ĝ ĝbc ĝIF ĝ(l) ĝ(l)
bc ĝ(l)

IF
1h 20 20 0.0724 0.0693 0.0531 0.0765 0.0733 0.0558 0.0802 0.0770 0.0596 0.0527 0.0488 0.0299

40 0.0488 0.0480 0.0381 0.0517 0.0510 0.0406 0.0560 0.0554 0.0449 0.0346 0.0326 0.0216
60 0.0389 0.0385 0.0314 0.0429 0.0426 0.0348 0.0446 0.0443 0.0363 0.0249 0.0235 0.0179

40 20 0.0492 0.0474 0.0384 0.0528 0.0511 0.0415 0.0575 0.0559 0.0462 0.0381 0.0333 0.0219
40 0.0334 0.0329 0.0271 0.0368 0.0365 0.0302 0.0385 0.0381 0.0317 0.0228 0.0211 0.0141
60 0.0290 0.0288 0.0242 0.0304 0.0302 0.0256 0.0327 0.0324 0.0278 0.0211 0.0203 0.0141

60 20 0.0454 0.0420 0.0329 0.0509 0.0477 0.0371 0.0525 0.0494 0.0390 0.0340 0.0288 0.0177
40 0.0299 0.0293 0.0248 0.0314 0.0308 0.0262 0.0332 0.0326 0.0280 0.0199 0.0185 0.0128
60 0.0234 0.0230 0.0194 0.0244 0.0239 0.0204 0.0261 0.0256 0.0220 0.0156 0.0150 0.0101

2h 20 20 0.1447 0.1450 0.1161 0.1685 0.1682 0.1317 0.1806 0.1791 0.1481 0.0483 0.0474 0.0453
40 0.1050 0.1053 0.0777 0.1164 0.1161 0.0890 0.1274 0.1267 0.1124 0.0345 0.0342 0.0327
60 0.0899 0.0898 0.0620 0.0928 0.0926 0.0806 0.1003 0.0997 0.0898 0.0264 0.0262 0.0245

40 20 0.1054 0.1051 0.0794 0.1161 0.1158 0.0911 0.1337 0.1320 0.1151 0.0340 0.0326 0.0310
40 0.0802 0.0802 0.0549 0.0825 0.0824 0.0720 0.0860 0.0856 0.0807 0.0230 0.0228 0.0220
60 0.0695 0.0695 0.0521 0.0755 0.0755 0.0589 0.0764 0.0761 0.0724 0.0194 0.0192 0.0180

60 20 0.0910 0.0910 0.0659 0.0976 0.0971 0.0861 0.1076 0.1062 0.0960 0.0269 0.0267 0.0253
40 0.0688 0.0686 0.0513 0.0736 0.0735 0.0580 0.0761 0.0758 0.0726 0.0195 0.0192 0.0180
60 0.0598 0.0598 0.0433 0.0630 0.0630 0.0489 0.0676 0.0676 0.0605 0.0166 0.0165 0.0159

3h 20 20 0.0813 0.0777 0.0612 0.0850 0.0815 0.0634 0.0873 0.0838 0.0660 0.1139 0.1119 0.1087
40 0.0545 0.0542 0.0461 0.0576 0.0573 0.0479 0.0613 0.0610 0.0509 0.1018 0.1023 0.1080
60 0.0453 0.0449 0.0382 0.0493 0.0490 0.0409 0.0504 0.0502 0.0417 0.1013 0.1015 0.1089

40 20 0.0566 0.0547 0.0455 0.0596 0.0576 0.0476 0.0634 0.0617 0.0511 0.1024 0.1017 0.1077
40 0.0399 0.0396 0.0347 0.0422 0.0418 0.0359 0.0430 0.0426 0.0364 0.0970 0.0975 0.1056
60 0.0356 0.0354 0.0309 0.0365 0.0362 0.0315 0.0368 0.0365 0.0317 0.0976 0.0981 0.1073

60 20 0.0520 0.0494 0.0408 0.0562 0.0534 0.0433 0.0577 0.0550 0.0444 0.0989 0.0981 0.1045
40 0.0350 0.0346 0.0307 0.0360 0.0356 0.0314 0.0375 0.0370 0.0320 0.0954 0.0963 0.1057
60 0.0299 0.0297 0.0267 0.0301 0.0298 0.0266 0.0303 0.0300 0.0263 0.0948 0.0953 0.1041

4h 20 20 0.0788 0.0754 0.0598 0.0815 0.0783 0.0611 0.0837 0.0805 0.0638 0.1023 0.1002 0.0956
40 0.0543 0.0541 0.0466 0.0559 0.0556 0.0464 0.0596 0.0592 0.0489 0.0914 0.0914 0.0940
80 0.0461 0.0458 0.0402 0.0476 0.0473 0.0396 0.0485 0.0483 0.0402 0.0899 0.0899 0.0944

40 20 0.0565 0.0548 0.0468 0.0581 0.0564 0.0470 0.0611 0.0596 0.0496 0.0921 0.0912 0.0936
40 0.0413 0.0410 0.0372 0.0403 0.0400 0.0346 0.0410 0.0407 0.0348 0.0866 0.0867 0.0915
60 0.0349 0.0347 0.0306 0.0352 0.0350 0.0307 0.0357 0.0354 0.0304 0.0866 0.0869 0.0928

60 20 0.0515 0.0490 0.0417 0.0539 0.0512 0.0414 0.0552 0.0524 0.0423 0.0888 0.0877 0.0909
40 0.0347 0.0343 0.0305 0.0350 0.0345 0.0305 0.0356 0.0351 0.0305 0.0851 0.0856 0.0915
60 0.0296 0.0294 0.0265 0.0291 0.0288 0.0257 0.0287 0.0284 0.0248 0.0841 0.0845 0.0899

5h 20 20 0.1213 0.1200 0.0889 0.1444 0.1380 0.1042 0.1627 0.1520 0.1184 0.0937 0.0915 0.0833
40 0.0777 0.0773 0.0623 0.0878 0.0876 0.0716 0.1102 0.1088 0.0924 0.0843 0.0836 0.0804
60 0.0649 0.0641 0.0499 0.0816 0.0802 0.0661 0.0939 0.0919 0.0738 0.0808 0.0806 0.0788

40 20 0.0855 0.0826 0.0615 0.0992 0.0953 0.0726 0.1293 0.1210 0.0942 0.0846 0.0826 0.0786
40 0.0548 0.0542 0.0439 0.0745 0.0728 0.0580 0.0842 0.0822 0.0663 0.0794 0.0789 0.0774
60 0.0512 0.0505 0.0407 0.0591 0.0582 0.0462 0.0773 0.0751 0.0584 0.0776 0.0774 0.0769

60 20 0.0706 0.0674 0.0506 0.1006 0.0931 0.0683 0.1129 0.1042 0.0768 0.0830 0.0815 0.0785
40 0.0514 0.0505 0.0408 0.0609 0.0587 0.0473 0.0783 0.0752 0.0596 0.0775 0.0772 0.0763
60 0.0432 0.0422 0.0338 0.0510 0.0502 0.0384 0.0670 0.0651 0.0487 0.0772 0.0770 0.0766

6h 20 20 0.1229 0.1193 0.0904 0.1423 0.1368 0.1040 0.1598 0.1526 0.1177 0.0931 0.0908 0.0846
40 0.0813 0.0796 0.0603 0.0935 0.0907 0.0711 0.1208 0.1164 0.0915 0.0825 0.0819 0.0798
60 0.0649 0.0643 0.0487 0.0853 0.0833 0.0652 0.0965 0.0941 0.0732 0.0795 0.0793 0.0776

40 20 0.0895 0.0849 0.0635 0.1048 0.0974 0.0732 0.1351 0.1250 0.0947 0.0872 0.0841 0.0796
40 0.0563 0.0552 0.0428 0.0785 0.0755 0.0575 0.0890 0.0854 0.0650 0.0790 0.0785 0.0775
60 0.0530 0.0521 0.0409 0.0618 0.0602 0.0472 0.0789 0.0767 0.0594 0.0784 0.0783 0.0774

60 20 0.0730 0.0692 0.0513 0.1005 0.0933 0.0691 0.1127 0.1048 0.0782 0.0818 0.0803 0.0776
40 0.0553 0.0539 0.0419 0.0650 0.0625 0.0478 0.0825 0.0792 0.0598 0.0781 0.0777 0.0766
60 0.0436 0.0429 0.0345 0.0507 0.0492 0.0392 0.0660 0.0639 0.0494 0.0775 0.0774 0.0767
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Table 3.3: ARMSE comparison for DGPs 2 , 5, 6, 2h, 5h, and 6h: additivity is imposed
C=1 C=1.5 C=2 Linear

DGP N T ĝ ĝbc ĝIF ĝ ĝbc ĝIF ĝ ĝbc ĝIF ĝ(l) ĝ(l)
bc ĝ(l)

IF
2 20 20 0.1105 0.0933 0.0636 0.1034 0.1032 0.0715 0.1024 0.1022 0.0785 0.0297 0.0294 0.0251

40 0.0547 0.0546 0.0426 0.0668 0.0668 0.0473 0.0734 0.0734 0.0561 0.0187 0.0186 0.0158
60 0.0445 0.0444 0.0358 0.0599 0.0599 0.0430 0.0607 0.0606 0.0467 0.0156 0.0156 0.0133

40 20 0.0554 0.0553 0.0463 0.0679 0.0677 0.0514 0.0755 0.0756 0.0614 0.0192 0.0190 0.0170
40 0.0377 0.0377 0.0311 0.0523 0.0523 0.0384 0.0533 0.0533 0.0415 0.0127 0.0125 0.0113
60 0.0417 0.0417 0.0293 0.0434 0.0434 0.0324 0.0437 0.0437 0.0374 0.0100 0.0100 0.0094

60 20 0.0446 0.0445 0.0374 0.0610 0.0610 0.0451 0.0606 0.0606 0.0490 0.0156 0.0154 0.0141
40 0.0427 0.0427 0.0291 0.0434 0.0434 0.0316 0.0432 0.0432 0.0365 0.0110 0.0108 0.0100
60 0.0357 0.0357 0.0243 0.0370 0.0370 0.0263 0.0357 0.0357 0.0298 0.0084 0.0084 0.0077

5 20 20 0.0762 0.0748 0.0627 0.0853 0.0839 0.0706 0.0921 0.0909 0.0770 0.0893 0.0872 0.0785
40 0.0465 0.0460 0.0400 0.0514 0.0509 0.0455 0.0605 0.0601 0.0546 0.0803 0.0799 0.0768
60 0.0390 0.0388 0.0343 0.0469 0.0467 0.0421 0.0506 0.0505 0.0461 0.0787 0.0784 0.0760

40 20 0.0517 0.0499 0.0441 0.0567 0.0551 0.0495 0.0650 0.0634 0.0586 0.0825 0.0809 0.0762
40 0.0314 0.0311 0.0281 0.0382 0.0379 0.0347 0.0413 0.0410 0.0381 0.0776 0.0773 0.0755
60 0.0289 0.0287 0.0267 0.0320 0.0317 0.0299 0.0373 0.0371 0.0354 0.0780 0.0778 0.0760

60 20 0.0401 0.0387 0.0347 0.0481 0.0468 0.0431 0.0518 0.0505 0.0471 0.0798 0.0791 0.0752
40 0.0293 0.0289 0.0267 0.0319 0.0316 0.0295 0.0365 0.0362 0.0347 0.0774 0.0771 0.0753
60 0.0225 0.0223 0.0207 0.0248 0.0246 0.0230 0.0289 0.0288 0.0273 0.0773 0.0771 0.0755

6 20 20 0.0916 0.0900 0.0796 0.0976 0.0961 0.0853 0.1034 0.1019 0.0912 0.0885 0.0867 0.0792
40 0.0675 0.0669 0.0620 0.0708 0.0703 0.0652 0.0792 0.0787 0.0732 0.0802 0.0798 0.0771
60 0.0605 0.0604 0.0574 0.0658 0.0657 0.0625 0.0683 0.0681 0.0650 0.0781 0.0780 0.0761

40 20 0.0716 0.0697 0.0648 0.0745 0.0726 0.0677 0.0825 0.0808 0.0758 0.0820 0.0804 0.0765
40 0.0567 0.0564 0.0548 0.0611 0.0608 0.0591 0.0628 0.0626 0.0610 0.0776 0.0773 0.0761
60 0.0552 0.0551 0.0536 0.0566 0.0565 0.0550 0.0595 0.0594 0.0580 0.0778 0.0777 0.0765

60 20 0.0622 0.0613 0.0583 0.0674 0.0665 0.0636 0.0700 0.0691 0.0662 0.0790 0.0784 0.0755
40 0.0549 0.0548 0.0534 0.0564 0.0562 0.0548 0.0592 0.0591 0.0579 0.0771 0.0769 0.0757
60 0.0519 0.0518 0.0512 0.0528 0.0528 0.0520 0.0548 0.0548 0.0541 0.0770 0.0769 0.0761

2h 20 20 0.1101 0.1101 0.0920 0.1240 0.1239 0.1010 0.1324 0.1325 0.1091 0.0483 0.0474 0.0453
40 0.0715 0.0714 0.0613 0.0820 0.0820 0.0656 0.0915 0.0915 0.0760 0.0345 0.0342 0.0327
60 0.0584 0.0584 0.0503 0.0723 0.0723 0.0584 0.0752 0.0752 0.0625 0.0264 0.0262 0.0245

40 20 0.0748 0.0747 0.0644 0.0866 0.0866 0.0701 0.0952 0.0951 0.0813 0.0340 0.0326 0.0310
40 0.0496 0.0496 0.0436 0.0624 0.0623 0.0513 0.0650 0.0650 0.0552 0.0230 0.0228 0.0220
60 0.0502 0.0501 0.0393 0.0527 0.0525 0.0422 0.0542 0.0541 0.0478 0.0194 0.0192 0.0180

60 20 0.0602 0.0600 0.0534 0.0739 0.0738 0.0618 0.0770 0.0769 0.0662 0.0269 0.0267 0.0253
40 0.0525 0.0525 0.0407 0.0539 0.0538 0.0436 0.0552 0.0551 0.0485 0.0195 0.0192 0.0180
60 0.0435 0.0435 0.0326 0.0441 0.0441 0.0351 0.0459 0.0459 0.0403 0.0166 0.0165 0.0159

5h 20 20 0.0898 0.0875 0.0723 0.0956 0.0937 0.0798 0.1018 0.1001 0.0855 0.0937 0.0915 0.0833
40 0.0567 0.0558 0.0485 0.0614 0.0606 0.0534 0.0700 0.0692 0.0622 0.0843 0.0836 0.0804
60 0.0444 0.0443 0.0386 0.0515 0.0514 0.0456 0.0551 0.0550 0.0492 0.0808 0.0806 0.0788

40 20 0.0606 0.0585 0.0505 0.0649 0.0628 0.0548 0.0731 0.0711 0.0641 0.0846 0.0826 0.0786
40 0.0377 0.0372 0.0339 0.0448 0.0442 0.0411 0.0480 0.0474 0.0444 0.0794 0.0789 0.0774
60 0.0322 0.0319 0.0297 0.0347 0.0345 0.0323 0.0393 0.0391 0.0369 0.0776 0.0774 0.0769

60 20 0.0488 0.0470 0.0418 0.0556 0.0540 0.0490 0.0589 0.0573 0.0526 0.0830 0.0815 0.0785
40 0.0338 0.0333 0.0303 0.0364 0.0359 0.0329 0.0403 0.0399 0.0372 0.0775 0.0772 0.0763
60 0.0274 0.0272 0.0254 0.0294 0.0293 0.0274 0.0332 0.0331 0.0316 0.0772 0.0770 0.0766

6h 20 20 0.1014 0.0997 0.0886 0.1065 0.1046 0.0932 0.1116 0.1099 0.0983 0.0931 0.0908 0.0846
40 0.0739 0.0732 0.0672 0.0773 0.0767 0.0702 0.0843 0.0837 0.0774 0.0825 0.0819 0.0798
60 0.0651 0.0649 0.0612 0.0705 0.0703 0.0660 0.0727 0.0725 0.0684 0.0795 0.0793 0.0776

40 20 0.0788 0.0765 0.0698 0.0821 0.0798 0.0731 0.0903 0.0881 0.0811 0.0872 0.0841 0.0796
40 0.0604 0.0599 0.0578 0.0650 0.0646 0.0619 0.0666 0.0662 0.0639 0.0790 0.0785 0.0775
60 0.0573 0.0572 0.0556 0.0587 0.0587 0.0570 0.0618 0.0617 0.0602 0.0784 0.0783 0.0774

60 20 0.0675 0.0658 0.0615 0.0728 0.0712 0.0669 0.0750 0.0735 0.0692 0.0818 0.0803 0.0776
40 0.0577 0.0574 0.0555 0.0590 0.0587 0.0569 0.0618 0.0616 0.0599 0.0781 0.0777 0.0766
60 0.0539 0.0538 0.0529 0.0548 0.0547 0.0537 0.0570 0.0569 0.0558 0.0775 0.0774 0.0767

Note: Here the additivity of functional form is imposed in the estimation, which is correct for DGPs 2, 5, 2h and 5h, but incorrect
for DGPs 6 and 6h.
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Table 3.4: Rejection frequency for DGPs 1-6
C=1 C=1.5 C=2

DGP N T 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 20 20 0.016 0.064 0.128 0.012 0.068 0.124 0.008 0.040 0.100

40 0.016 0.044 0.108 0.016 0.052 0.108 0.012 0.048 0.116
60 0.004 0.052 0.100 0.016 0.040 0.112 0.012 0.056 0.100

40 20 0.010 0.060 0.096 0.012 0.052 0.088 0.016 0.060 0.104
40 0.012 0.052 0.096 0.012 0.036 0.100 0.012 0.044 0.104
60 0.008 0.056 0.096 0.016 0.044 0.088 0.012 0.048 0.092

60 20 0.010 0.072 0.116 0.010 0.050 0.100 0.010 0.040 0.096
40 0.008 0.036 0.072 0.012 0.036 0.080 0.012 0.040 0.096
60 0.016 0.048 0.108 0.012 0.040 0.104 0.016 0.056 0.112

2 20 20 0.016 0.048 0.080 0.008 0.068 0.100 0.008 0.060 0.096
40 0.016 0.056 0.100 0.008 0.056 0.088 0.012 0.072 0.104
60 0.020 0.056 0.088 0.012 0.052 0.096 0.008 0.044 0.096

40 20 0.032 0.088 0.132 0.032 0.060 0.136 0.012 0.076 0.120
40 0.012 0.084 0.116 0.004 0.064 0.100 0.012 0.048 0.112
60 0.024 0.064 0.096 0.024 0.068 0.116 0.008 0.056 0.104

60 20 0.008 0.048 0.124 0.012 0.048 0.108 0.008 0.052 0.112
40 0.004 0.052 0.104 0.000 0.044 0.104 0.016 0.052 0.092
60 0.020 0.060 0.100 0.016 0.052 0.120 0.020 0.068 0.100

3 20 20 0.248 0.460 0.616 0.184 0.432 0.568 0.176 0.372 0.532
40 0.740 0.888 0.932 0.676 0.848 0.904 0.572 0.764 0.852
60 0.904 0.964 0.984 0.832 0.912 0.960 0.808 0.904 0.944

40 20 0.656 0.820 0.908 0.608 0.784 0.888 0.536 0.752 0.840
40 0.984 1.000 1.000 0.976 0.996 1.000 0.972 0.996 1.000
60 1.000 1.000 1.000 1.000 1.000 1.000 0.996 1.000 1.000

60 20 0.848 0.948 0.984 0.748 0.876 0.940 0.716 0.864 0.916
40 1.000 1.000 1.000 0.996 1.000 1.000 0.996 1.000 1.000
60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

4 20 20 0.248 0.488 0.620 0.224 0.436 0.592 0.180 0.408 0.548
40 0.740 0.888 0.944 0.688 0.864 0.912 0.608 0.796 0.872
60 0.908 0.976 0.988 0.848 0.924 0.964 0.824 0.912 0.956

40 20 0.684 0.864 0.928 0.664 0.848 0.912 0.596 0.776 0.872
40 0.992 1.000 1.000 0.984 1.000 1.000 0.976 1.000 1.000
60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

60 20 0.920 0.972 0.988 0.852 0.952 0.964 0.848 0.944 0.956
40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 20 20 0.440 0.632 0.716 0.396 0.564 0.668 0.352 0.484 0.644
40 0.844 0.924 0.968 0.796 0.908 0.940 0.696 0.872 0.924
60 0.968 0.988 0.992 0.948 0.980 0.988 0.932 0.980 0.992

40 20 0.860 0.928 0.948 0.836 0.900 0.936 0.736 0.860 0.904
40 0.992 1.000 1.000 0.992 0.996 0.996 0.988 0.992 0.996
60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

60 20 0.972 0.992 0.992 0.936 0.984 0.992 0.892 0.952 0.980
40 1.000 1.000 1.000 0.996 1.000 1.000 0.988 0.992 1.000
60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

6 20 20 0.246 0.400 0.516 0.208 0.388 0.472 0.196 0.312 0.448
40 0.572 0.740 0.852 0.492 0.692 0.776 0.368 0.576 0.708
60 0.828 0.928 0.972 0.744 0.880 0.920 0.728 0.872 0.900

40 20 0.580 0.752 0.848 0.488 0.712 0.804 0.440 0.628 0.712
40 0.944 0.988 0.992 0.912 0.952 0.976 0.884 0.936 0.972
60 0.996 1.000 1.000 0.996 1.000 1.000 0.988 0.996 1.000

60 20 0.780 0.900 0.952 0.716 0.864 0.912 0.664 0.836 0.884
40 0.988 1.000 1.000 0.984 1.000 1.000 0.980 0.996 1.000
60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Note: J = bC (NT )1/7.5c, where C = 1, 1.5, and 2.
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Table 3.5: Rejection frequency for DGPs 1h-6h
C=1 C=1.5 C=2

DGP N T 1% 5% 10% 1% 5% 10% 1% 5% 10%
1h 20 20 0.024 0.060 0.112 0.024 0.080 0.136 0.028 0.072 0.124

40 0.020 0.076 0.136 0.020 0.084 0.128 0.024 0.088 0.144
60 0.032 0.076 0.124 0.028 0.056 0.108 0.024 0.056 0.112

40 20 0.032 0.064 0.144 0.036 0.072 0.136 0.028 0.068 0.120
40 0.040 0.080 0.128 0.036 0.076 0.136 0.040 0.080 0.132
60 0.028 0.064 0.128 0.024 0.064 0.128 0.020 0.064 0.108

60 20 0.024 0.072 0.124 0.032 0.068 0.116 0.032 0.064 0.116
40 0.016 0.056 0.096 0.016 0.052 0.100 0.020 0.056 0.096
60 0.012 0.060 0.100 0.012 0.060 0.088 0.008 0.056 0.092

2h 20 20 0.020 0.052 0.120 0.016 0.040 0.120 0.028 0.076 0.128
40 0.024 0.060 0.136 0.016 0.056 0.136 0.032 0.076 0.120
60 0.028 0.068 0.124 0.016 0.064 0.124 0.020 0.068 0.132

40 20 0.020 0.076 0.124 0.016 0.076 0.124 0.004 0.072 0.128
40 0.012 0.064 0.108 0.016 0.056 0.100 0.012 0.044 0.104
60 0.008 0.048 0.096 0.008 0.052 0.096 0.012 0.056 0.100

60 20 0.016 0.056 0.104 0.016 0.060 0.104 0.012 0.052 0.104
40 0.008 0.044 0.096 0.012 0.036 0.092 0.016 0.056 0.104
60 0.016 0.064 0.132 0.012 0.056 0.120 0.016 0.064 0.124

3h 20 20 0.140 0.296 0.448 0.152 0.292 0.436 0.140 0.288 0.396
40 0.372 0.588 0.680 0.352 0.560 0.652 0.336 0.472 0.612
60 0.532 0.684 0.772 0.504 0.652 0.796 0.484 0.664 0.780

40 20 0.348 0.508 0.672 0.348 0.500 0.680 0.308 0.488 0.620
40 0.616 0.816 0.872 0.620 0.828 0.912 0.628 0.812 0.896
60 0.808 0.936 0.956 0.800 0.948 0.960 0.808 0.948 0.964

60 20 0.400 0.556 0.656 0.368 0.568 0.684 0.368 0.556 0.692
40 0.760 0.904 0.932 0.760 0.912 0.928 0.748 0.908 0.964
60 0.996 1.000 1.000 0.992 0.996 1.000 0.996 1.000 1.000

4h 20 20 0.148 0.300 0.424 0.168 0.324 0.436 0.144 0.276 0.400
40 0.380 0.600 0.672 0.404 0.612 0.684 0.360 0.536 0.660
60 0.524 0.676 0.768 0.548 0.724 0.824 0.536 0.740 0.832

40 20 0.364 0.536 0.676 0.392 0.572 0.724 0.348 0.520 0.672
40 0.604 0.820 0.856 0.712 0.852 0.928 0.708 0.852 0.932
60 0.876 0.972 0.988 0.868 0.972 0.984 0.868 0.968 0.988

60 20 0.460 0.676 0.780 0.548 0.736 0.808 0.528 0.696 0.800
40 0.824 0.948 0.980 0.820 0.948 0.976 0.808 0.944 0.976
60 0.988 0.996 1.000 0.984 0.992 1.000 0.980 0.988 0.996

5h 20 20 0.344 0.516 0.616 0.316 0.504 0.616 0.284 0.484 0.592
40 0.744 0.848 0.916 0.660 0.820 0.876 0.604 0.796 0.840
60 0.920 0.964 0.976 0.892 0.940 0.972 0.864 0.940 0.960

40 20 0.756 0.880 0.896 0.716 0.848 0.900 0.620 0.784 0.832
40 0.976 0.996 1.000 0.956 0.988 0.996 0.936 0.984 0.992
60 0.996 1.000 1.000 0.996 0.996 1.000 0.996 0.996 1.000

60 20 0.892 0.944 0.972 0.840 0.924 0.944 0.804 0.896 0.944
40 0.996 1.000 1.000 0.992 0.996 1.000 0.992 0.996 1.000
60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

6h 20 20 0.228 0.384 0.464 0.204 0.336 0.456 0.188 0.296 0.408
40 0.400 0.612 0.708 0.356 0.552 0.712 0.332 0.476 0.588
60 0.692 0.824 0.896 0.584 0.772 0.840 0.596 0.764 0.840

40 20 0.416 0.632 0.756 0.416 0.584 0.688 0.412 0.556 0.664
40 0.848 0.932 0.972 0.800 0.896 0.948 0.772 0.892 0.940
60 0.964 0.984 0.996 0.952 0.976 0.992 0.944 0.980 0.992

60 20 0.580 0.736 0.828 0.556 0.696 0.792 0.520 0.664 0.764
40 0.964 0.984 0.992 0.948 0.976 0.988 0.924 0.976 0.988
60 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Note: J = bC (NT )1/7.5c, where C = 1, 1.5, and 2.
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3.6 An application to the economic growth data

The relationship between the long-run economic growth and investment in physical

capital has been studied extensively and has played a crucial role in the evaluation of

different growth theories. A positive association between the investment as a share

of gross domestic product (GDP) and per capita GDP growth rate is supported by the

early endogenous growth models such as the AK model. However, the exogenous

growth theories such as the Solow model assert that an increase in investment can

only raise the level of per capita GDP, but have no effect on the steady-state growth

rate. Many empirical studies show that there is little or no association between

the investment and the long-run growth rate; see Jones (1995) and Easterly and

Levine (2001). Recently, Bond, Leblebicioglu and Schiantarelli (2010) reassess the

relationship between these two by using a panel data of 71 countries covering 41

years (1960-2000). By estimating a dynamic panel data model with both individual

and time fixed effects they find strong evidence of a positive relationship between

the investment as a share of real GDP and the long-run growth rate of GDP per

worker.

Note that most empirical works are carried out under the linear framework and

only include additive fixed effects to control unobservable heterogeneity. In this

section, we re-investigate the problem using the following nonparametric dynamic

panel data model with interactive fixed effects

Yit = g(Yi,t−1, Iit ,∆Iit)+λ ′i ft + eit

where Yit ≡ log(GDPit)− log(GDPi,t−1), GDPit is the real GDP per worker for

country i in year t, Iit is the logarithm of the investment as a share of real GDP,

∆Iit ≡ Iit − Ii,t−1, and the multi-factor error structure λ ′i ft + eit is used to control

for heterogeneity and capture the unobservable common shocks. Yi,t−1 is included

in the unknown function g(·) to partially control serial correlation; see some re-

cent empirical studies on growth such as Chambers and Guo (2009) and Meierrieks
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and Gries (2012) that consider dynamic panel data models. Su and Lu (2013) also

consider nonparametric dynamic panel growth regressions but with individual fixed

effects only.

The data set is from the Penn World Tables (PTW7.1); see Heston, Summers,

and Aten (2009). We use the same set of countries as Bond, Leblebicioglu, and

Schiantarelli (2010) but exclude Guyana which does not have observations for the

period 1960-1970 for the investment as a share of real GDP. The number of coun-

tries is 74 (N = 74) and the time period is 1960-2010 (T = 51).

We use the cubic B-spline to approximate the unknown function g. Note that g

has three variables. Without imposing any structure on g, we need to use the tensor

product of the sieve bases for each variable to approximate the unknown function.

Then the total number of sieve approximation terms is K = (J + 4)3. Even for a

small number of knots J = 1, 2, or 3, we have K = 125, 216, or 343, respectively.

This is the notorious “curse of dimensionality” in nonparametric regression. For this

reason, we only allow bivariate interactions and a single trivariate interaction term

in our sieve estimation. Specifically, our sieve approximate terms are comprised

of pJ+4
Y (Yi,t−1)⊗ pJ+4

I (Iit) , pJ+4
Y (Yi,t−1)⊗ pJ+3

∆I (∆Iit) , pJ+3
∆I (∆Iit)⊗ pJ+3

I (Iit), and

Yi,t−1Iit∆Iit where we have avoided perfect multicollinearity. In this case, the total

number of sieve approximating terms is (J +4)2 +(J +4)(J +3)+(J +3)2 +1. To

choose the number of factors, we follow Bai and Ng (2002) and adopt the following

information criteria:

PC1 (R) = V
(
R, f̂ R)

+Rσ̂2
(

N +T
NT

)
ln

(
NT

N +T

)
,

PC2 (R) = V
(
R, f̂ R)

+Rσ̂2
(

N +T
NT

)
ln [min(N,T )] ,

IC1 (R) = ln
[
V

(
R, f̂ R)]

+R
(

N +T
NT

)
ln

(
NT

N +T

)
,

IC2 (R) = ln
[
V

(
R, f̂ R)]

+R
(

N +T
NT

)
ln [min(N,T )] ,

where V (R, f̂ R) = (NT )−1 ∑N
i=1 ∑T

t=1
(
êR

it
)2, êR

it = Yit − ĝR (Xit)− λ̂ R′
i f̂ R

t , ĝR (·), f̂ R
t

and λ̂ R
i are estimates when R factors are used, and σ̂2 is a consistent estimate for
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(NT )−1 ∑N
i=1 ∑T

t=1 E(e2
it) and is replaced by V (Rmax, f̂ Rmax) in applications. Here

Rmax denotes the maximum number of factors under consideration and has to be

specified before one tries to minimize any of the above information criteria. In

simulations we find that IC1 and IC2 work fairly well in finite samples for different

choices of knots in cubic B splines, but PC1 and PC2 tend to choose a larger number

of factors, which may be close to the largest upper bound sometimes. When this

occurs, we use the number of factors recommended by IC1 and IC2. We follow Bai

and Ng (2006b) and set Rmax = 8 throughout. For both estimation and testing, we

use MT =
⌊

T 1/7.5
⌋

for bias correction as in the simulations and consider a sequence

of knots in the cubic B-spline: J = 3,4, ...,8.

To reduce the risk of structural change, we partition the full sample (1960-2010)

into two subsamples (1960-1985 and 1986-2010. For both the full sample and two

subsamples, IC1 and IC2 recommend 1 v 2 factors both for linear estimation and

sieve estimations with different choices of J. So we set R = 2 for all samples. We

first consider the problem of estimation and report the estimation results for the two

subsamples in Figures 3.1 and 3.2, respectively. Figure 3.1 plots the estimation of

g(·, ·, ·) against each of its three arguments when the other two are fixed at their

sample medians. For example, Figure 3.1(a)-(c) reports the estimates of g(·, Ī, ∆̄I)

together with their bootstrap-based 90% pointwise confidence bands for J = 3,5,

and 7, respectively, where Ī and ∆̄I are the respective sample medians of Iit’s and

∆Iit’s in the first subsample (1960-1985). Figure 3.2 repeats the above exercises for

the second subsample (1986-2010). We summarize some important findings from

these figures. First, as expected, the fitted curves tend to be smooth for a small value

of J and rough for a large value of J. By looking at those plots along, whether

one can conclude a regressor (e.g., lagged economic growth rate) has significant

nonlinear effect on the economic growth rate simply depends on the choice of J.

This calls upon a formal test for the linear functional form. Second, Figures 3.1(a)-

(c) and 3.2(a)-(c) suggest that lagged economic growth rate is globally positively

related to the current economic growth rate when investment share and its growth
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Table 3.6: Bootstrap p-values for testing the linear economic growth model
Subsamples (J) 3 4 5 6 7 8

1960−1985
(T=26, N=74)

0.0000 0.0001 0.0001 0.0002 0.0003 0.0000

1986−2010
(T=25, N=74)

0.0030 0.0028 0.0022 0.0019 0.0021 0.0019

1960−2010
(T=51, N=74)

0.0498 0.0427 0.0390 0.0338 0.0299 0.0261

are fixed at their sample medians. Third, Figures 3.1(d)-(f) and 3.2(d)-(f) suggest

that investment share generally has positive effect on the economic growth rate.

Fourth, Figures 3.1(g)-(i) and 3.2(g)-(i) indicate that the effect of the change of

investment on the economic growth rate is nonlinear and non-monotone, and the

effect tends to vary across subsamples. This suggests that some sort of structural

change may occur during the full sample period.

Table 3.6 reports the bootstrap p-values for the specification test of linearity for

both subsamples and the full sample based on 10000 bootstrap resamples. The p-

values are smaller than 0.05 across all J’s for both subsamples and the full sample

as well. This suggests a strong degree of nonlinearity in the data.

3.7 Conclusion

In this chapter we consider the estimation and testing for large dimensional non-

parametric dynamic panel data models with interactive fixed effects. A sieve-based

QMLE is proposed to estimate the nonparametric function and common compo-

nents jointly. Following Moon and Weidner (2010, 2012), we derive the conver-

gence rate for the sieve estimator and establish its asymptotic distribution. The

sources of different asymptotic biases are discussed in detail and a consistent bias-

corrected estimator is provided. We also propose a consistent specification test for

the commonly used linear dynamic panel data models based on the L2 distance be-

tween the linear and sieve estimators. We establish the asymptotic distributions of

the test statistic under both the null hypothesis and a sequence of Pitman local al-
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Figure 3.1: Relationship between GDP growth rate and lagged GDP growth rate,
investment share, and change of investment share(1960-1985) (solid line: estimated
function, dotted lines: 90% bootstrap confidence band)
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Figure 3.2: Relationship between GDP growth rate and lagged GDP growth rate,
investment share, and change of investment share(1986-2010) (solid line: estimated
function, dotted lines: 90% bootstrap confidence band)
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ternatives. To improve the finite sample performance of the test, we also propose

a bootstrap procedure to obtain the bootstrap p-values and justify its asymptotic

validity. Through Monte Carlo simulations, we investigate the finite sample perfor-

mance of our estimator and test statistic. We apply the model to an economic growth

data set and demonstrate that lagged economic growth rate, investment share and its

change have significant nonlinear effect on the economic growth rate.
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Chapter 4 Testing for Common Trends in Semi-
parametric Panel Data Models with
Fixed Effects

4.1 Introduction

Modeling trends in time series has a long history. Phillips (2001, 2005, 2010) pro-

vides recent overviews covering the development, challenges, and some future di-

rections of trend modeling in time series. White and Granger (2011) offer working

definitions of various kinds of trends and invite more discussion on trends in order

to facilitate development of increasingly better methods for prediction, estimation

and hypothesis testing for non-stationary time-series data. Due to the wide avail-

ability of panel data in recent years, research on trend modeling has spread to the

panel data models. Most of the literature falls into two categories depending on

whether the trends are stochastic or deterministic. But there is also work on evapo-

rating trends (Phillips, 2007) and econometric convergence testing (Phillips and Sul,

2007, 2009). For reviews on stochastic trends in panel data models, see Banerjee

(1999) and Breitung and Pesaran (2005).

Recently, some aspects of modeling deterministic time trends in nonparamet-

ric and semiparametric settings have attracted interest. Cai (2007) studies a time-

varying coefficient time series model with a time trend function and serially cor-

related errors to characterize the nonlinearity, nonstationarity, and trending phe-

nomenon. Robinson (2010) considers nonparametric trending regression in panel

data models with cross-sectional dependence. Atak, Linton, and Xiao (2011) pro-

pose a semiparametric panel data model to model climate change in the United
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Kingdom (UK hereafter), where seasonal dummies enter the model linearly with

heterogeneous coefficients and the time trend enters nonparametrically. Li, Chen,

and Gao (2010) extend the work of Cai (2007) to panel data time-varying coefficient

models. Most recently, Chen, Gao, and Li (2010, CGL hereafter) extend Robinson’s

(2010) nonparametric trending panel data models to semiparametric partially linear

panel data models with cross-sectional dependence where all individual unit share a

common time trend that enters the model nonparametrically. They propose a semi-

parametric profile likelihood approach to estimate the model.

A conventional feature of work on deterministic trending panel models is the im-

position of a common trends assumption, implying that each individual unit follows

the same time trend behavior. Such an assumption greatly simplifies the estimation

and inference process, and the proposed estimators can be efficient if there is no

heterogeneity in individual time trend functions and some other conditions are met.

Nevertheless, if the common trends assumption does not stand, the estimates based

on nonparametric or semiparametric panel data models with common trends will

be generally inefficient and statistical inference will be misleading. It is therefore

prudent to test for the common trends assumption before imposing it.

Since Stock and Watson (1988) there has been a large literature on testing for

common trends. But to our knowledge, most empirical works have focused on test-

ing for common stochastic trends. Tests for common deterministic trends are far

and few between. Vogelsang and Franses (2005) propose tests for common deter-

ministic trend slopes by assuming linear trend functions and a stationary variance

process and examining whether two or more trend-stationary time series have the

same slopes. Xu (2011) considers tests for multivariate deterministic trend coeffi-

cients in the case of nonstationary variance process. Sun (2011) develops a novel

testing procedure for hypotheses on deterministic trends in a multivariate trend sta-

tionary model where the long run variance is estimated by series method. In all

cases, the models are parametric and the asymptotic theory is established by pass-

ing the time series dimension T to infinity and keeping the number of cross sec-
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tional units n fixed. Empirical applications include Fomby and Vogelsang (2003)

and Bacigál (2005), who apply the Vogelsang-Franses test to temperature data and

geodetic data, respectively.

This chapter develops a test for common trends in a semiparametric panel data

model of the form

Yit = β ′Xit + fi (t/T )+αi + εit , i = 1, . . . ,n, t = 1, . . . ,T, (4.1.1)

where β is a d×1 vector of unknown parameters, Xit is a d×1 vector of regressors,

fi is an unknown smooth time trend function for cross section unit i, the αi’s rep-

resent fixed effects that can be correlated with Xit , and εit’s are idiosyncratic errors.

The trend functions fi (t/T ) that appear in (4.1.1) provide for idiosyncratic trends

for each individual i. For simplicity, we will assume that (i) {εit} satisfies certain

martingale difference conditions along the time dimension but may be correlated

across individuals, and (ii) {εit} are independent of {Xit}. Note that fi and αi are

not identified in (4.1.1) without further restrictions.

Model (4.1.1) covers and extends some existing models. First, when fi ≡ 0 for

all i, (4.1.1) becomes the traditional panel data model with fixed effects. Second,

if n = 1, then model (4.1.1) reduces to the model discussed in Gao and Hawthorne

(2006). Third, when fi = f for some unknown smooth function f and all i, (4.1.1)

becomes the semiparametric trending panel data model of CGL (2010).

The main objective of this chapter is to construct a nonparametric test for com-

mon trends. Under the null hypothesis of common trends: fi = f for all i in (4.1.1),

we can pool the observations from both cross section and time dimensions to esti-

mate both the finite dimensional parameter (β ) and the infinite dimensional parame-

ter ( f ) under the single identification restriction ∑n
i=1 αi = 0 or f (0) = 0, whichever

is convenient. Let uit ≡αi +εit . Let ûit denote the estimate of uit based on the pooled

regression. The residuals {ûit} should not contain any useful trending information

in the data. This motivates us to construct a residual-based test for the null hypoth-

esis of common trends. To be concrete, we will propose a test for common trends
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by averaging the n measures of nonparametric goodness-of-fit
(
R2) from the non-

parametric time series regression of ûit on the time trend for each cross sectional

unit i. Such nonparametric R2 should tend to zero under the null hypothesis of com-

mon trends and diverge from zero otherwise. We show that after being properly

centered and scaled, the average nonparametric R2 is asymptotically normally dis-

tributed under the null hypothesis of common trends and a sequence of Pitman local

alternatives. We also establish the consistency of the test and propose a bootstrap

method to obtain the bootstrap p-values.1

To proceed, it is worth mentioning that (4.1.1) complements the model of Atak,

Linton, and Xiao (2011) who allow for heterogenous slopes but a single nonpara-

metric common trend across cross sections. As mentioned in the concluding re-

marks, it is also possible to allow the slope coefficients in (4.1.1) to vary across

individuals and consider a joint test for the homogeneity of the slope coefficients

and trend components. But this is beyond the scope of the current chapter.

The rest of the chapter is organized as follows. The hypotheses and the test

statistic are given in Section 2. We study the asymptotic distributions of the test

under the null and a sequence of local alternatives, establish the consistency of the

test, and propose a bootstrap procedure to obtain the bootstrap p-values in Section

3. Section 4 conducts a small simulation experiment to evaluate the finite sample

performance of our test and reports empirical applications of the test to UK climate

change data and OECD economic growth data. Section 5 concludes.

NOTATION. Throughout the chapter we adopt the following notation. For a

matrix A, its transpose is A′ and Euclidean norm is ‖A‖ ≡ [tr(AA′)]1/2 , where ≡
signifies “is defined as”. When A is a symmetric matrix, we use λmax(A) to denote

its maximum eigenvalue. For a natural number l, we use il and Il to denote the

l× 1 vector of ones and the l× l identity matrix, respectively. For a function f

1To the best of our knowledge, Su and Ullah (2011) are the first to suggest applying such a
measure of nonparametric R2 to conduct model specification test based on residuals from restricted
parametric, nonparametric, or semiparametric regressions, and apply this idea to test for conditional
heteroskedasticity of unknown form. Clearly, the nonparametric R2 statistic can serve as a useful
tool for testing many popular hypotheses in econometrics and statistics by playing a role comparable
to the important role that R2 plays in the parametric setup.
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defined on the real line, we use f (a) to denote its a’th derivative whenever it is well

defined. The operator
p→ denotes convergence in probability, and d→ convergence in

distribution. We use (n,T )→ ∞ to denote the joint convergence of n and T when n

and T pass to the infinity simultaneously.

4.2 Basic Framework

In this section, we state the null and alternative hypotheses, introduce the estimation

of the restricted model under the null, and then propose a test statistic based on the

average of nonparametric goodness-of-fit measures.

4.2.1 Hypotheses

The main objective is to construct a test for common trends in model (4.1.1). We

are interested in the null hypothesis that

H0 : fi (τ) = f (τ) for τ ∈ [0,1] and some smooth function f , i = 1, . . . ,n, (4.2.1)

i.e., all the n cross sectional units share the common trends function f . The alterna-

tive hypothesis is

H1 : the negation of H0.

As mentioned in the introduction, we will propose a residual-based test for the

above null hypothesis. To do so, we need to estimate the model under the null

hypothesis and obtain the augmented residual, which estimates αi + εit . Then for

each i, we run the local linear regression of the augmented residuals on t/T , and

calculate the nonparametric R2. Our test statistics is constructed by averaging these

n nonparametric R2’s.
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4.2.2 Estimation under the null

To proceed, we introduce the following notation.

Yi ≡ (Yi1, . . . ,YiT )′ , Y ≡ (
Y ′1, . . . ,Y

′
n
)′

, Xi ≡ (Xi1, . . . ,XiT )′ , X ≡ (
X ′1, . . . ,X

′
n
)′

,

εi ≡ (εi1, . . . ,εiT )′ , ε ≡ (
ε ′1, . . . ,ε

′
n
)′

, α ≡ (α2, . . . ,αn)
′ , D≡ (−in−1, In−1)

′⊗ iT ,

fi ≡ ( fi(1/T ), . . . , fi (T/T ))′ , F≡ (f1, . . . , fn)
′ , f≡ [ f (1/T ) , . . . , f (T/T )]′ .

Note that under H0, F =in⊗ f, and we can write the model (4.1.1) as

Yit = X ′itβ + f (t/T )+αi + εit , (4.2.2)

or in matrix notation as

Y = Xβ + in⊗ f+Dα + ε, (4.2.3)

provided we impose the identification condition ∑n
i=1 αi = 0.

Following Su and Ullah (2006) and CGL (2010), we estimate the model (4.2.2)

by using the profile least squares method. Let k (·) denote a univariate kernel func-

tion and h a bandwidth. Let kh (·) ≡ k (·/h)/h. For any positive integer p, let

z[p]
h,t (τ)≡ (1,(t/T − τ)/h, . . . , [(t/T − τ)/h]p)′ ,

z[p]
h (τ)≡

(
z[p]

h,1 (τ) , . . . ,z[p]
h,T (τ)

)′
, and Z[p]

h (τ)≡ in⊗ z[p]
h (τ) .

We assume that f is (p+1)th order continuously differentiable a.e. Let Dp
h f (τ)≡

( f (τ) ,h f (1) (τ) , . . . ,hp f (p) (τ)/p!)′. Then for t/T in the neighborhood of τ ∈
(0,1), we have by the pth order Taylor expansion that f

( t
T

)
= Dp

h f (τ)′ z[p]
h,t (τ)+

o
(( t

T − τ
)p)

. Let kh,t (τ) ≡ kh (t/T − τ), Kh (τ) ≡ diag
(
kh,1 (τ) , . . . ,kh,T (τ)

)
, and

Kh (τ)≡ In⊗Kh (τ). Define

s(τ) ≡
(

z[p]
h (τ)′Kh (τ)z[p]

h (τ)
)−1

z[p]
h (τ)′Kh (τ) and

S (τ) ≡
(

Z[p]
h (τ)′Kh (τ)Z[p]

h (τ)
)−1

Z[p]
h (τ)′Kh (τ) = n−1i′n⊗ s(τ).
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The profile least squares method is composed of the following three steps:

1. Let θ ≡ (α ′,β ′)′. For given θ and τ ∈ (0,1), we estimate Dp
h f (τ) by

D̂p
h,θ f (τ)≡ argmin

F∈Rp+1
(Y−Xβ−Dα−Z[p]

h (τ)F)′Kh (τ)(Y−Xβ−Dα−Z[p]
h (τ)F).

Noting that S (τ)D = 0 by straightforward calculations, the estimator D̂p
h,θ f (τ)

is in fact free of α and its first element is given by

f̂β (τ)≡ e′1S (τ)(Y −Xβ −Dα) = n−1
n

∑
i=1

e′1s(τ)(Yi−Xiβ ) , (4.2.4)

where e1 =(1,0, . . . ,0)′ is a (p+1)×1 vector. Let f̂β ≡ ( f̂β (1/T ) , . . . , f̂β (T/T ))′,

ST ≡ ([e′1S (1/T )]′, · · · , [e′1S (T/T )]′)′ , and SnT ≡ in⊗ST . Then we have

F̂β ≡ in⊗ f̂β = SnT (Y −Xβ ) . (4.2.5)

2. We estimate (α,β ) by

(
α̂, β̂

)
≡ argmin

α,β

(
Y −Xβ −Dα− F̂β

)′(
Y −Xβ −Dα− F̂β

)

= argmin
α,β

(Y ∗−X∗β −Dα)′ (Y ∗−X∗β −Dα)

where Y ∗≡ (InT −SnT )Y and X∗≡ (InT −SnT )X . Let MD≡ InT−D(D′D)−1 D′.

Using the formula for partitioned regression, we obtain

β̂ =
(
X∗′MDX∗

)−1 X∗′MDY ∗, and (4.2.6a)

α̂ ≡ (α̂2, ..., α̂n) =
(
D′D

)−1 D′(Y ∗−X∗β̂ ). (4.2.6b)

Then α1 can be estimated by α̂1 ≡−∑n
i=2 α̂i.

3. Plugging (4.2.6a) into (4.2.4), we obtain the estimator of f (τ):

f̂ (τ) = e′1S (τ)(Y −X β̂ ). (4.2.7)
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Let

f̂≡
(

f̂ (1/T ) , . . . , f̂ (T/T )
)′

and F̂≡ SnT

(
Y −X β̂

)
= in⊗ f̂. (4.2.8)

After we obtain estimates of β and f (t/T ), we can estimate uit ≡ αi + εit by ûit ≡
Yit − β̂ ′Xit − f̂ (t/T ) under the null. Let ûi ≡ (ûi1, . . . , ûiT )′ and û ≡ (û′1, . . . , û

′
n)
′.

Then it is easy to verify that

û = (ε−SnT ε)+Dα +X∗(β − β̂ )+F∗,

ûi = (εi−ST ε)+αiiT +(Xi−ST X)(β − β̂ )+(fi−ST F) ,

ûit = αi +
[
εit − e′1S (t/T )ε

]
+[Xit − e′1S(

t
T

)X ](β − β̂ )+ [ fi(
t
T

)− e′1S(
t
T

)F],

where F∗ ≡ (InT −SnT )F.

4.2.3 A nonparametric R2-based test for common trends

The idea behind our test is simple. Under H0, ûit is a consistent estimate for

uit = αi + εit , and there is no time trend in {uit}T
t=1 for each cross sectional unit

i. Nevertheless, under H1 ûit includes an individual-specific time trend compo-

nent fi (t/T )− f 0 (t/T ), where f 0 (τ)≡ p lim f̂ (τ) . This motivates us to consider a

residual-based test for common trends.

For each i, we propose to run the nonparametric regression of {ûit}T
t=1 on {t/T}T

t=1:

ûit = mi (t/T )+ηit (4.2.9)

where mi (τ)≡ fi (τ)− f 0 (τ) and ηit = αi+ε∗it +(β−β̂ )′X∗it + f 0 (t/T )−e′1S (t/T )F

is the new error term in the above regression. Clearly, under H0 we have mi (τ) = 0

for τ ∈ [0,1] . Given observations {ûit}T
t=1, the local linear regression of ûit on t/T

is fitted by weighted least squares (WLS) as follows

min
(ci0,ci1)∈R2

1
T

T

∑
t=1

[
ûit − ci0− ci1

( t
T
− τ

)]2
wb,t (τ) (4.2.10)

where b ≡ b(T ) is a bandwidth parameter such that b → 0 as T → ∞, wb,t (τ) ≡
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wb (t/T − τ)/
∫ 1

0 wb(t/T −s)ds, wb (·) ≡ w(·/b)/b, and w(·) is a probability den-

sity function (p.d.f.) that has support [−1,1]. By the proof of Lemma .0.30 in the

appendix, λtT ≡
∫ 1

0 wb (t/T − s)ds = 1 for t/T ∈ [b,1−b] and is larger than 1/2

otherwise. Therefore, wb,t (τ) plays the role of a boundary kernel to ensure that
∫ 1

0 wb,t (τ)dτ = 1 for any t = 1, ...,T. 2

Let c̃i ≡ (c̃i0, c̃i1)
′ denote the solution to the above minimization problem. Fol-

lowing Su and Ullah (2011), the normal equations for the above regression imply

the following local ANOVA decomposition of the total sum of squares (TSS)

T SSi (τ) = ESSi (τ)+RSSi (τ) (4.2.11)

where

T SSi (τ) ≡
T

∑
t=1

(
ûit − ûi

)2
wb,t (τ) ,

ESSi (τ) ≡
T

∑
t=1

(
c̃i0 + c̃i1 (t/T − τ)− ûi

)2
wb,t (τ) ,

RSSi (τ) ≡
T

∑
t=1

(ûit − c̃i0− c̃i1 (t/T − τ))2 wb,t (τ) ,

and ûi ≡ T−1 ∑T
t=1 ûit . A global ANOVA decomposition of T SSi is given by

T SSi = ESSi +RSSi (4.2.12)

where

T SSi ≡
∫ 1

0
T SSi (τ)dτ =

T

∑
t=1

(ûit − ûi)2, ESSi ≡
∫ 1

0
ESSi (τ)dτ, and

RSSi ≡
∫ 1

0
RSSi (τ)dτ. (4.2.13)

Then one can define the nonparametric goodness-of-fit
(
R2) for the above local

2Alternatively, one can use the standard kernel weight wb (t/T − τ) in place of wb,t (τ) in
(4.2.10) and decompose T SSi (τ) analogously to the decomposition in (4.2.11). But as λtT ≡∫ 1

0 wb (t/T − s)ds is not identically 1 for all t,
∫ 1

0 T SSi (τ)d (τ) in this case does not lead to the
simple expression in (4.2.13).
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linear regression as

R2
i ≡

ESSi

T SSi
.

Under H0, {ûit} contains no useful trending information so that the above R2
i should

be close to 0 for each individual i.

Let Wb (τ)≡diag(wb,1 (τ) , ...,wb,T (τ)),

H (τ)≡Wb (τ)z[1]
b (τ)

(
z[1]

b (τ)′Wb (τ)z[1]
b (τ)

)−1
z[1]

b (τ)′Wb (τ) ,

and H̄ ≡ ∫ 1
0 H (τ)dτ . It is easy to show that

T SSi = û′iMûi, ESSi = û′i(H̄−L)ûi, and RSSi = û′i (IT − H̄) ûi,

where M ≡ IT −L and L≡ iT i′T /T . Define the average nonparametric R2 as

R2 ≡ 1
n

n

∑
i=1

R2
i =

1
n

n

∑
i=1

ESSi

T SSi
.

Clearly 0 ≤ R2 ≤ 1 by construction. We will show that after being appropriately

centered and scaled, R2 is asymptotically normally distributed under the null and a

sequence of Pitman local alternatives.

Before proceeding further, it is worth mentioning a related test statistic that is

commonly used in the literature. Under H0, the mi (·) function in (4.2.9) is also

common for all i and thus can be written as m(·) . m(t/T ) = 0 for all t = 1, ...,T

under H0 and we can estimate this zero function by pulling all the cross sectional

and time series observations together to obtain the estimate m̂(·) , say. Then we can

compare this estimate with the nonparametric trend regression estimate m̂i (t/T ) of

mi (t/T ) to obtain the following L2 type of test statistic

DnT ≡ 1
n

n

∑
i=1

T

∑
t=1

[m̂i (t/T )− m̂(t/T )]2 .

Noting that the estimate m̂(t/T ) has a faster convergence rate than m̂i (t/T ) to 0

under the null, it is straightforward to show that under suitable conditions this test

statistic is asymptotically equivalent to D̄nT ≡ 1
n ∑n

i=1 ∑T
t=1 m̂i (t/T )2 under the null.
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Further noticing that ∑T
t=1 m̂i (t/T )2 /T SSi can be regarded as a version of nonpara-

metric noncentered R2 measure for the cross sectional unit i, we can simply interpret

D̄nT as a weighted nonparametric noncentered R2-based test where the weight for

cross sectional unit i is given by T SSi. In this chapter we focus on the test based

on R2 because it is scale-free and is asymptotically pivotal under the null after bias-

correction. See the remark after Theorem 4.3.1 for further discussion.

4.3 Asymptotic Distributions

In this section we first present the assumptions that are used in later analysis and

then study the asymptotic distribution of average nonparametric R2 under both the

null hypothesis and a sequence of Pitman local alternatives. We then prove the

consistency of the test and propose a bootstrap procedure to obtain bootstrap p-

values.

4.3.1 Assumptions

Let Fn,t (ξ ) denote the σ -field generated by (ξ1, ...,ξt) for a time series {ξt}. To

establish the asymptotic distribution of our test statistic, we make the following

assumptions.

Assumption A1. (i) The regressor Xit is generated as follows:

Xit = gi

( t
T

)
+ vit . (4.3.1)

(ii) Let vt ≡ (v1t , ...,vnt)
′for t = 1, ...,T . {vt , Fn,t (v)} is a stationary martingale

difference sequence (m.d.s.) of n×d random matrices.

(iii) E
[
‖vit‖2 |Fn,t−1 (v)

]
= σ2

v,i a.s. for each i and max1≤i≤n E ‖vit‖4 < cv < ∞.

There exist d×d positive definite matrices Σv and Σ∗v such that

1
n

n

∑
i=1

E
(
vitv′it

)→ Σv,
1
n

n

∑
i=1

n

∑
j=1

E
(
vitv′jt

)→ Σ∗v , and E

∥∥∥∥∥
n

∑
i=1

vit

∥∥∥∥∥
δ

= O
(

nδ/2
)

,

for some δ > 2.
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Assumption A2. (i) Let εt ≡ (ε1t , ...,εnt)
′ for t = 1, ...,T . {εt , t ≥ 1} is a sta-

tionary sequence.

(ii) {εt ,Fn,t (ε)} is an m.d.s. such that E (εit |Fn,t−1 (ε)) = 0 a.s. for each i.

(iii) E
(
εitε jt |Fn,t−1 (ε)

)
= ωi j for each pair (i, j). Let σ2

i ≡ωii. 0 < c≤ min
1≤i≤n

σ2
i ,

max1≤i, j≤n
∣∣ωi j

∣∣≤ c < ∞, max1≤i≤n E
(
ε8

it
)≤ c < ∞, limn→∞

1
n ∑n

i=1 ∑n
j=1

∣∣ωi j
∣∣ < ∞,

limn→∞
1
n2 ∑n

i=1 ∑n
j=1 ∑n

k=1 ∑n
l=1

∣∣ςi jkςi jl
∣∣ < ∞, and limn→∞

1
n2 ∑1≤i1 6=i2≤n ∑1≤i3 6=i4≤n

|κi1i2i3i4|< ∞, where ςi jk ≡ E
(
εitε jtεkt

)
and κi1i2i3i4 ≡ E (εi1tεi2tεi3tεi4t) .

(iv) Let ξit ≡ ε2
it −σ2

i . There exists an even number λ ≥ 4 such that 1
nT λ/2 ∑n

i=1

∑1≤t1,t2,...,tλ≤T E
(
ξit1ξit2...ξitλ

)
< ∞.

(v) εit is independent of v js for all i, j, t,s.

(vi) There exists a d×d positive definite matrix Σvε such that as n→ ∞,

1
n

n

∑
i=1

n

∑
j=1

E
(
vi1v′j1

)
E

(
εi1ε j1

)→ Σvε .

Assumption A3. The trend functions fi (·) and gi (·) have continuous derivatives

up to the (p+1)th order.

Assumption A4. The kernel functions k (·) and w(·) are continuous and sym-

metric p.d.f.’s with compact support [−1,1].

Assumption A5. As (n,T ) → ∞, b → 0, h → 0,
√

nb−1h2/ log(nT ) → ∞,

min(T b, nh1/2)→ ∞, n1/2T h2p+2 → 0, and n1/2+2/λ T−1 → 0.

Remark 1. A1 is similar is to Assumption A2 in CGL (2010). Like CGL,

we allow for cross sectional dependence in {vit} and the degree of cross sectional

dependence is controlled by the moment conditions in A1(iii). Unlike CGL, we

allow {Xit} to possess heterogeneous time trends {gi} in (4.3.1), and we relax their

i.i.d. assumption of vt to the m.d.s. condition. A2 specifies conditions on {εit}
and their interaction with {vit} . Note that we allow for cross sectional dependence

in {εit} but rule out serial dependence in A2(ii). To facilitate the derivation of the

asymptotic variance of our test statistic, we also impose time-invariant conditional
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correlations among all cross sectional units in A2(iii). A2(iv) is readily satisfied

under suitable mixing conditions together with moment conditions. The indepen-

dence between {εit} and {vit} in A2(v) can be relaxed by modifying the proofs in

CGL (2010) significantly. A3 is standard for local polynomial regressions. A4 is a

mild and commonly-used condition in the nonparametrics literature. A5 specifies

conditions on the bandwidths h and b and sample sizes n and T . Note that we al-

low n/T → c ∈ [0,∞] as (n,T )→ ∞. If we use the optimal rate of bandwidths, i.e.,

h ∝ (nT )−1/(2p+3) in the p-th order local polynomial regression and b ∝ T−1/5 in

the local linear regression, then A5 requires

n4p+5

T
→ ∞,

n
1
2− 1

2p+3 T
1

10− 1
2p+3

log(nT )
→ ∞,

(nT )
1

2p+3

n1/2 → 0, and
n1/2+2/λ

T
→ 0.

More specifically, if we choose p = 3, then A5 implies: n7/18/(T 1/90 log(nT ))→∞,

T/n3.5 → 0, and n1/2+2/λ /T → 0. If n ∝ T a, A5 requires a ∈ (2/7,1/(0.5+2/λ )) .

4.3.2 Asymptotic null distribution

Let H̄ts denote the (t,s)th element of H̄. Let αts≡T H̄ts−1 and Q≡T−1diag(α11, . . . ,

αT T ). Define

BnT ≡
√

b
n

n

∑
i=1

ε ′i Qεi

T−1T SSi
,

ΩnT ≡ 2b
T 2 ∑

1≤t 6=s≤T
α2

ts

(
1
n

n

∑
i=1

n

∑
j=1

ρ2
i j

)
, where ρi j ≡ ωi jσ−1

i σ−1
j

ΓnT ≡ n1/2T b1/2R2−BnT =

√
b
n

n

∑
i=1

ESSi− ε ′i Qεi

T−1T SSi
.

The following theorem gives the asymptotic null distribution of ΓnT .

Theorem 4.3.1 Suppose Assumptions A1-A5 hold. Then under H0,

ΓnT
d→ N (0,Ω0)

where Ω0 ≡ lim(n,T )→∞ ΩnT .

Remark 2. The proof of the above theorem is lengthy and involves several
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subsidiary propositions, which are given in Appendix A. Under the null hypothe-

sis, we first demonstrate that ΓnT = ΓnT,1 + oP (1), where ΓnT,1 ≡ ∑n
i=1 ϕi (εi) and

ϕi (εi) = n−1/2T−1b1/2 ∑1≤t<s≤T αtsεitεis/σ2
i . Then we apply the martingale central

limit theorem (CLT) to show that ΓnT,1
d→ N (0,Ω0). In general, ΓnT is not asymp-

totically pivotal as cross sectional dependence enters its asymptotic variance Ω0.

Nevertheless, if cross sectional dependence is absent, then ΓnT is an asymptotic piv-

otal test because now Ω0 = lim(n,T )→∞
2b
T 2 ∑1≤t 6=s≤T α2

ts, which is free of nuisance

parameters. This is one advantage to base a test on the scale-free nonparametric R2

measure.

To implement the test, we need to estimate both the asymptotic bias and variance

terms. Let

B̂nT ≡
√

b
n

n

∑
i=1

û′iMQMûi

T SSi/T
and Ω̂nT ≡ 2b

T 2 ∑
1≤t 6=s≤T

α2
ts

(
1
n

n

∑
i=1

n

∑
j=1

ρ̂2
i j

)

where ρ̂i j ≡ ω̂i j/
(
σ̂iσ̂ j

)
, ω̂i j ≡ T−1 ∑T

t=1(ûit − ûi)(û jt − û j), σ̂2
i = T−1 ∑T

t=1(ûit −
ûi)2 and ûi ≡ T−1 ∑T

t=1 ûit . We show in the proof of Corollary 4.3.2 below that

B̂nT = BnT +oP (1) and Ω̂nT = Ω0 +oP (1). Then we obtain a feasible test statistic

as

ΓnT =
n1/2T b1/2R2− B̂nT√

Ω̂nT

=
1√
Ω̂nT

√
b
n

n

∑
i=1

ESSi− û′iMQMûi

T SSi/T
. (4.3.2)

Corollary 4.3.2 Under Assumptions A1-A5, ΓnT
d→ N (0,1) .

We then compare ΓnT with the one-sided critical value zα , i.e., the upper αth

percentile from the standard normal distribution. We reject the null when ΓnT > zα

at the α significance level.
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4.3.3 Asymptotic distribution under local alternatives

To examine the asymptotic local power of our test, we consider the following se-

quence of Pitman local alternatives:

H1 (γnT ) : fi (τ) = f (τ)+ γnT ∆ni (τ) for all τ ∈ [0,1] and i = 1, ...,n (4.3.3)

where γnT → 0 as (n,T ) → ∞ and ∆ni (·) is a continuous function on [0,1]. Let

∆ni ≡ (∆ni (1/T ) , ..., ∆ni (T/T ))′. Define

Θ0 ≡ lim
(n,T )→∞

1
nT

n

∑
i=1

∆′ni (H̄−L)∆ni/σ2
i .

In the appendix we show that Θ0 = Cw limn→∞(n−1 ∑n
i=1

∫ 1
0 ∆2

ni (τ)dτ/σ2
i ), where

Cw ≡
∫ 1
−1{

∫ 1
−1[1 + ω−1

2 u(u− v)] w(u)w(u− v)du [
∫ 1
−1 w(z− v)dz]−1− 1}dv and

ω2 ≡
∫ 1
−1 w(u)u2du.

To derive the asymptotic property of our test under the alternatives, we add the

following assumption.

Assumption A6. 1
n ∑n

i=1
∫ 1

0 |gi (τ)−g(τ)|dτ = o(1) where g(·)≡ 1
n ∑n

i=1 gi (·) .

That is, the nonparametric trending functions {gi (·) , 1 ≤ i ≤ n} that appear in

A1 are asymptotically homogeneous. This assumption is needed to determine the

probability order of β̂ −β under H1 (γnT ) and H1. Without A6, we can only show

that β̂ −β = OP (γnT ) under H1 (γnT ) and that β̂ −β = OP (1) under H1 for γnT that

converges to zero no faster than n−1/2T−1/2. With A6, we demonstrate in Lemma

.0.35 that β̂ −β = oP (γnT ) under H1 (γnT ) and that β̂ −β = oP (1) under H1, which

are sufficient for us to establish the local power property and the global consistency

of our test respectively in Theorems 4.3.3 and 4.3.4 below.

The following theorem establishes the local power property of our test.

Theorem 4.3.3 Suppose Assumptions A1-A6 hold. Suppose that ∆ni (·) is a continu-
ous function such that ∑n

i=1 ∆ni (τ)= 0 for τ ∈ [0,1] and supn≥1 max1≤i≤n
∫ 1

0 ∆2
ni (τ)dτ

< ∞. Then with γnT = n−1/4T−1/2b−1/4 in (4.3.3) the local power of our test satis-
fies

P
(
ΓnT > zα |H1 (γnT )

)→ 1−Φ
(

zα −Θ0/
√

Ω0

)
,
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where Φ(·) is the cumulative distribution function (CDF) of the standard normal
distribution.

Remark 3. Theorem 4.3.3 implies that our test has nontrivial asymptotic power

against alternatives that diverge from the null at the rate n−1/4T−1/2b−1/4. The

power increases with the magnitude of Θ0. Clearly, as either n or T increases, the

power of our test will increase but it increases faster as T → ∞ than as n → ∞ for

the same choice of b.

4.3.4 Consistency of the test

To study the consistency of our test, we take γnT = 1 and ∆ni (τ) = ∆i (τ) in (4.3.3),

where ∆i (·) is a continuous function on [0,1] such that c∆≤ n−1 ∑n
i=1

∫ 1
0 ∆i (τ)2 dτ ≤

c∆ for some 0 < c∆ < c∆ < ∞. Let ∆i ≡ (∆i (1/T ) , ...,∆i (T/T ))′. Define

ΘA ≡ lim
(n,T )→∞

1
nT

n

∑
i=1

∆′i (H̄−L)∆i/σ2
i .

where σ2
i ≡ σ2

i +
∫ 1

0 ∆i (τ)2 dτ− (
∫ 1

0 ∆i (τ)dτ)2. The following theorem establishes

the consistency of the test.

Theorem 4.3.4 Suppose Assumptions A1-A6 hold. Under H1,

n−1/2T−1b−1/2ΓnT = ΘA +oP (1) .

Theorem 4.3.4 implies that under H1, P
(
ΓnT > dnT

) → 1 as (n,T ) → ∞ for

any sequence dnT = o
(

n1/2T b1/2
)

provided ΘA > 0, thus establishing the global

consistency of the test.

4.3.5 A bootstrap version of the test

It is well known that asymptotic normal distribution of many nonparametric tests

may not approximate their finite sample distributions well in practice. Therefore we

now propose a fixed-regressor bootstrap method [e.g., Hansen (2000)] to obtain the

bootstrap approximation to the finite sample distribution of our test statistic under

the null.
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We propose to generate the bootstrap version of our test statistic ΓnT as follows:

1. Obtain the augmented residuals ûit = Yit − f̂ (t/T )− Xit β̂ , where f̂ and β̂

are obtained by the profile least squares estimation of the restricted model.

Calculate the test statistic ΓnT .

2. Let ûi≡ T−1 ∑T
t=1 ûit and ût ≡ (û1t− û1, ...., ûnt− ûn)′. Obtain the bootstrap er-

ror u∗t by random sampling with replacement from {ûs,s = 1,2, ...,T} . Gen-

erate the bootstrap analog of Yit by holding Xit as fixed: Y ∗it = f̂ (t/T )+Xit β̂ +

ûi + u∗it for i = 1, ...,n and t = 1, . . . ,T , where u∗it is the ith element in the n-

vector u∗t .

3. Based on the bootstrap resample {Y ∗it , Xit}, run the profile least squares es-

timation of the restricted model to obtain the bootstrap augmented residuals

{û∗it}.

4. Based on {û∗it}, compute the bootstrap test statistic Γ∗nT ≡ (T n1/2b1/2R2∗−
B̂∗nT )/

√
Ω̂∗

nT , where R2∗
, B̂∗nT and Ω̂∗

nT are defined analogously to R2
, B̂nT

and Ω̂nT , respectively, but with ûit being replaced by û∗it .

5. Repeat Step 2-4 for B times and index the bootstrap statistics as {Γ∗nT,l}B
l=1.

The bootstrap p-value is calculated by p∗ ≡ B−1 ∑B
l=1 1{Γ∗nT,l > ΓnT}, where

1{·} is the usual indicator function.

Some facts are worth mentioning: (i) Conditionally on the original sample

W ≡ {(Yit ,Xit) , i = 1, . . . ,n, t = 1, . . . ,T}, the bootstrap replicates u∗it are depen-

dent among cross sectional units, and i.i.d. across time for fixed i; (ii) the regressor

Xit is held fixed during the bootstrap procedure; (iii) the null hypothesis of common

trends is imposed in Step 2.

4.4 Simulations and Applications

This section conducts a small set of simulations to assess the finite sample perfor-

mance of the test. We then report empirical applications of the common trend test
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to UK climate change data and OECD real GDP growth data.

4.4.1 Simulation study

Data generating processes

We generate data according to six data generating processes (DGPs), among which

DGPs 1-2 are used for the level study, and DGPs 3-6 are for the power study.

DGP 1:

yit = xitβ +
[( t

T

)3
+

t
T

]
+αi + εit ,

where i = 1, ...,n, t = 1, ...,T, β = 2, for each i we generate xit as i.i.d. U (ai−3,ai +3)

across t with ai being i.i.d. N (0,1), αi = T−1 ∑T
t=1 xit for i = 2, ...,n, and α1 =

−∑n
i=2 αi.

DGP 2:

yit = xit,1β1 + xit,2β2 +
[

2
( t

T

)2
+

t
T

]
+αi + εit ,

where i = 1, ...,n, t = 1, ...,T, β1 = 1, β2 = 1/2, xit,1 = 1+ sin(πt/T )+vit,1, xit,2 =

0.5t/T + vi2,t , vit,1 and vit,2 are each i.i.d. N (0,1) and independent of each other,

αi = max(T−1 ∑T
t=1 xit,1,T−1 ∑T

t=1 xit,2) for i = 2, ...,n, and α1 =−∑n
i=2 αi.

DGP 3:

yit = xitβ +
[
(1+δi1)

( t
T

)3
+(1+δi2)

t
T

]
+αi + εit ,

where i = 1, ...,n, t = 1, ...,T, β , xit , and αi are generated as in DGP 1, and δi1 and

δi2 are each i.i.d. U (−1/2,1/2) , mutually independent and independent of xit and

αi.

DGP 4:

yit = xit,1β1 + xit,2β2 +
[
(2+δi1)

( t
T

)2
+(1+δi2)

t
T

]
+αi + εit ,

where i = 1, ...,n, t = 1, ...,T, β1, β2, xit,1, xit,2, and αi are generated as in DGP 2,

and δi1 and δi2 are each i.i.d. U (−1/2,1/2) , mutually independent and independent

of (xit,1, xit,2, αi).
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DGP 5:

yit = xitβ +
[
(1+δnT,i1)

( t
T

)3
+(1+δnT,i2)

t
T

]
+αi + εit ,

where i = 1, ...,n, t = 1, ...,T, β , xit , and αi are generated as in DGP 1, and δnT,i1

and δnT,i2 are each i.i.d. U (−7γnT ,7γnT ) , mutually independent, and independent

of xit and αi.

DGP 6:

yit = xit,1β1 + xit,2β2 +
[
(1+δnT,i1)

( t
T

)2
+(1+δnT,i2)

t
T

]
+αi + εit ,

where i = 1, ...,n, t = 1, ...,T, β1, β2, xit,1, xit,2, and αi are generated as in DGP

2, and δnT,i1 and δnT,i2 are each i.i.d. U (−7γnT ,7γnT ), mutually independent and

independent of (xit,1, xit,2, αi).

Note that DGPs 5-6 are used to examine the finite sample behavior of our test

under the sequence of Pitman local alternatives. For both DGPs, we set γnT =

n−1/4T−1/2
(

T−1/5
)−1/4

by choosing b = T−1/5, and keep
{

δnT,i1
}

and
{

δnT,i2
}

fixed through the simulations. Similarly, {δi1} and {δi2} are kept fixed through the

simulations for DGPs 3-4.

In all of the above DGPs, we generate {εit} analogously to that in CGL (2010)

and independently of all other variables on the right hand side of each DGP. Specif-

ically, we generate εt as i.i.d. n-dimensional vector of Gaussian variables with zero

mean and covariance matrix (ωi j)n×n. We consider two configurations for (ωi j)n×n :

CD (I) : ωi j = 0.5| j−i|σiσ j and CD (II): ωi j = 0.8| j−i|σiσ j,

where i, j = 1, ...,n, and σi are i.i.d. U (0,1). By construction, {εit} are independent

across t and cross sectionally dependent across i.

Test results

To implement our test, we need to choose two kernel functions and two bandwidth

sequences. We choose both k and w to be the Epanechnikov kernel: k (v) = w(v) =
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0.75
(
1− v2)1{|v| ≤ 1}. To estimate the restricted semiparametric model, we use

the third order local polynomial regression and adopt the “leave-one-out” cross val-

idation method to select the bandwidth h. To run the local linear regression of ûit on

t/T for each cross sectional unit i, we set b = c
√

1
12T−1/5 for c = 0.5,1 and 1.5 to

examine the sensitivity of our test to the choice of bandwidth.3

We consider n,T = 25,50,100. For each combination of n and T, we use 500

replications for both level and power study and 200 bootstrap resamples in each

replication.

Table 4.1 reports the finite sample level of our test when the nominal level is

5%. From Table 4.1, we see that the levels of our test behave reasonably well

except when n/T is big (e.g., (n,T ) = (50,25) or (100,25)). In the latter case, our

test is undersized. For fixed n, as T increases, the level of our test approaches the

nominal level fairly fast. We also note that the size of our test is robust to different

choices of bandwidth.

Tables 4.2 reports the finite sample power of our test against global alternatives

at the 5% nominal level. There is no time trend in the regressor xit in DGP 3 whereas

both regressors xit,1 and xit,2 contain a time trend component in DGP 4. We sum-

marize some important findings from Table 4.2. First, as either n or T increases, the

power of our test generally increases and finally reaches 1, but it increases faster as

T increases than as n increases. This is compatible with our asymptotic theory. Sec-

ondly, comparing the power behavior of our test under CD (I) and CD (II) indicates

that the degree of cross sectional dependence in the error terms has negative impact

on the power of our test. This is as expected, as stronger cross sectional dependence

implies less information in each additional cross sectional observation. Third, the

choice of the bandwidth b has some effect on the power of our test. Surprisingly, a

larger value of b is associated with a larger testing power.

Table 4.3 reports the finite sample power of our test against Pitman local alter-

natives at the 5% nominal level. From the table, we see that our test has nontrivial
3Here, the time trend regressor {t/T, t = 1,2, ...,T} can be regarded as uniformly distributed on

the interval (0,1) and thus has variance 1/12.
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Table 4.1: Finite sample rejection frequency for DGPs 1-2 (nominal level: 0.05)

CD (I) CD (II)
DGP n T c = 0.5 c = 1 c = 1.5 c = 0.5 c = 1 c = 1.5

1 25 25 0.036 0.038 0.038 0.034 0.028 0.032
50 0.038 0.044 0.036 0.032 0.038 0.030
100 0.046 0.054 0.052 0.042 0.042 0.056

50 25 0.014 0.028 0.042 0.030 0.028 0.030
50 0.034 0.056 0.054 0.038 0.044 0.044
100 0.056 0.048 0.046 0.042 0.038 0.054

100 25 0.018 0.024 0.022 0.018 0.028 0.028
50 0.038 0.030 0.024 0.048 0.052 0.048
100 0.052 0.038 0.054 0.042 0.050 0.048

2 25 25 0.048 0.050 0.050 0.036 0.022 0.038
50 0.046 0.040 0.054 0.034 0.026 0.038
100 0.056 0.064 0.072 0.030 0.038 0.062

50 25 0.026 0.024 0.036 0.018 0.026 0.042
50 0.056 0.056 0.062 0.040 0.036 0.046
100 0.056 0.066 0.054 0.044 0.044 0.058

100 25 0.014 0.016 0.016 0.020 0.022 0.036
50 0.044 0.032 0.028 0.022 0.034 0.042
100 0.042 0.046 0.058 0.032 0.040 0.040

power to detect the local alternatives at the rate n−1/4T−1/2b−1/4, which confirms

the asymptotic result in Theorem 4.3.3. As either n or T increases, we observe the

alteration of the local power, which, unlike the case of global alternatives, does not

necessarily increase.

4.4.2 Applications to real data

In this subsection we apply our test to two real data sets to illustrate its power to

detect deviations from common trends, one is to UK climate change data and the

other is to OECD economic growth data.

UK climate change data

The issue of global warming has received a lot of attention recently. Atak, Lin-

ton, and Xiao (2011) develop a semiparametric model to describe the trend in UK
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Table 4.2: Finite sample rejection frequency for DGPs 3-4 (nominal level: 0.05)

CD (I) CD (II)
DGP n T c = 0.5 c = 1 c = 1.5 c = 0.5 c = 1 c = 1.5

3 25 25 0.294 0.486 0.650 0.128 0.184 0.336
50 0.502 0.710 0.840 0.182 0.326 0.454

100 0.938 0.996 0.998 0.580 0.888 0.980
50 25 0.196 0.424 0.606 0.072 0.136 0.224

50 0.700 0.936 0.982 0.268 0.496 0.654
100 1.000 1.000 1.000 0.924 0.996 1.000

100 25 0.456 0.806 0.938 0.162 0.336 0.494
50 0.912 1.000 1.000 0.462 0.756 0.898

100 1.000 1.000 1.000 0.910 0.998 1.000

4 25 25 0.288 0.530 0.730 0.124 0.206 0.344
50 0.432 0.674 0.788 0.156 0.308 0.434

100 0.790 0.948 0.988 0.348 0.656 0.816
50 25 0.352 0.732 0.900 0.142 0.282 0.424

50 0.802 0.962 0.988 0.336 0.586 0.776
100 1.000 1.000 1.000 0.926 0.996 0.998

100 25 0.334 0.712 0.884 0.126 0.234 0.384
50 0.972 0.996 1.000 0.500 0.824 0.946

100 1.000 1.000 1.000 0.926 0.996 1.000
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Table 4.3: Finite sample rejection frequency for DGPs 5-6 (nominal level: 0.05)

CD (I) CD (II)
DGP n T γnT c = 0.5 c = 1 c = 1.5 c = 0.5 c = 1 c = 1.5

5 25 25 0.1051 0.550 0.862 0.954 0.280 0.532 0.758
50 0.0769 0.574 0.796 0.876 0.218 0.390 0.542

100 0.0563 0.884 0.978 0.994 0.532 0.800 0.916
50 25 0.0883 0.436 0.774 0.928 0.200 0.344 0.530

50 0.0647 0.662 0.890 0.952 0.234 0.422 0.554
100 0.0473 0.878 0.976 0.998 0.336 0.556 0.708

100 25 0.0743 0.410 0.770 0.926 0.146 0.272 0.416
50 0.0544 0.612 0.884 0.954 0.198 0.332 0.474

100 0.0398 0.664 0.892 0.960 0.212 0.346 0.516

6 25 25 0.1051 0.570 0.896 0.956 0.288 0.574 0.796
50 0.0769 0.494 0.764 0.876 0.192 0.354 0.538

100 0.0563 0.878 0.976 0.994 0.386 0.408 0.770
50 25 0.0883 0.488 0.836 0.936 0.178 0.366 0.544

50 0.0647 0.702 0.914 0.980 0.232 0.416 0.580
100 0.0473 0.886 0.976 0.996 0.352 0.622 0.796

100 25 0.0743 0.350 0.702 0.902 0.130 0.276 0.422
50 0.0544 0.640 0.924 0.976 0.282 0.468 0.624

100 0.0398 0.722 0.918 0.962 0.290 0.472 0.662
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regional temperatures and other weather outcomes over the last century, where a sin-

gle common trend is assumed across all locations.4 It is interesting to check whether

such a common trend restriction is satisfied. To conserve space, in this application

we investigate the pattern of climate change in the UK over the last 32 years. The

data set contains monthly mean maximum temperature (in Celsius degrees, Tmax

for short), mean minimum temperature (in Celsius degrees, Tmin for short), total

rainfall (in millimeters, Rain for short) from 37 stations covering the UK (available

from the UK Met Office at: www.metoce. gov.uk/climate/uk/stationdata). Accord-

ing to data availability we adopt a balanced panel data set that spans from October

1978 to July 2010 for 26 selected stations (n = 26, T = 382) to see if there exists

a single common trend among these selected stations in Tmax, Tmin, and Rain, re-

spectively. Note that the time span for our data set is much shorter than that in Atak,

Linton and Xiao (2011).

For each series we consider a model of the following form

yit = D′
tβ + fi

( t
T

)
+αi + εit , i = 1, ...,26, T = 1, ...,382,

where yit is Tmax, Tmin, or Rain for station i at time t, Dt ∈R11 is a 11-dimensional

vector of monthly dummy variables, αi is the fixed effect for station i, and the time

trend function fi (·) is unknown. We are interested in testing for fi = f for all

i = 1,2, ...,n.

To implement our test, the Epanechnikov kernel is used in both stages. We

choose bandwidth h by the “leave-one-out” cross validation method and consider

10 different bandwidths of the form: b = c
√

1
12T−1/5, where c = 0.6, 0.7, ...,1.5.

10000 bootstrap resamples are used to construct the bootstrap distribution.

The results are reported in Table 4.4. From the table, we see that the p-values

are smaller than 0.05 for Tmax and Tmin and larger than 0.1 for Rain for all choices

of b. We can reject the null hypothesis of common trends at 5% level for both Tmax

4Atak, Linton, and Xiao (2011) study a model that allows for heterogenous effects of seasonal
dummy variables and use different data sets than ours. Consequently, our result is not directly
comparable with theirs.
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Table 4.4: Bootstrap p-values for application to the U.K. climate data

Series (c) 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Tmax 0.0060 0.0101 0.0073 0.0078 0.0061 0.0074 0.0091 0.0110 0.0151 0.0235

Tmin 0.0142 0.0160 0.0153 0.0130 0.0097 0.0053 0.0038 0.0029 0.0024 0.0010

Rain 0.8726 0.8163 0.7365 0.6592 0.5915 0.5670 0.5731 0.5890 0.6265 0.6790

Note: bandwidth b = c
√

1/12T−1/5 and bootstrap number B = 10000.

and Tmin but not for Rain even at 10% level.

OECD economic growth data

Economic growth has been a key issue in marcoeconomics over many decades. It is

interesting to model the source of economic growth which incorporates a time trend.

In this application we consider a model for the OECD economic growth data which

incorporates a time trend. The data set consists of four economic variables from

16 OECD countries (n = 16) : Gross domestic product (GDP), Capital Stock (K) ,

Labor input (L) , and Human capital (H). We download GDP (at 2005 US$), Cap-

ital stock (at 2005 US$), and Labor input (Employment, at thousand persons) from

http://www.datastream.com, and Human capital (Educational Attainment for Popu-

lation Aged 25 and Over) from http://www.barrolee.com. The first three variables

are seasonally adjusted quarterly data and span from 1975Q4 to 2010Q3 (T = 140).

For Human capital, we have only 5-years census data from the Barro-Lee dataset so

that we have to use linear interpolation to obtain the quarterly observations.

We consider the following model for growth rates

∆lnGDPit = β1∆lnLit +β2∆lnKit +β3∆lnHit + fi (t/T )+αi + εit ,

i = 1, ...,16, T = 1, ...,140, where αi is the fixed effect, fi (·) is unknown smooth

time trends function for country i, and ∆lnZit =lnZit −lnZi,t−1 for Z = GDP, L,

K, and H. We are interested in testing for common time trends for the 16 OECD

countries.

The kernels, bandwidths, and number of bootstrap resamples are chosen as in
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Figure 4.1: Trends in OECD real GDP growth rates from 1975Q4 to 2010Q3

the previous application. In Figure 4.1 we plot the estimated common trends (where

we use the recentered trend: f̂ (τ)− ∫ 1
0 f̂ (τ)dτ for comparison) from the restricted

semiparametric regression model together with its 90% pointwise confidence bands.

Also plotted in Figure 4.1 are three representative individual trend functions for

France, Spain, and the UK, which are estimated from the unrestricted semiparamet-

ric regression models. For the purpose of comparison, for the unconstrained model

we impose the identification condition that the integral of each individual trend

function over (0,1) equals zero and use the Silverman rule-of-thumb to choose the

bandwidth. Clearly, Figure 4.1 suggests that the estimated common trends function

is significantly different from zero over a wide range its support. In addition, the

trend functions for the three representative individual countries are obviously differ-

ent from the estimated common trends, which implies that the widely used common

trends assumption may not be plausible at all.

Table 4.5 reports the bootstrap p-values for our test of common trends. From

the table, we can see that the p-values for all bandwidths are smaller than 0.1 for all

bandwidths under investigation. Then we can reject the null hypothesis of common

trends at the 10% level.
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Table 4.5: Bootstrap p-values for application to OECD real GDP growth rate data

Series (c) 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

∆ lnGDP 0.0001 0.0005 0.0020 0.0063 0.0141 0.0281 0.0336 0.0536 0.0645 0.0820

Note: bandwidth b = c
√

1/12T−1/5 and bootstrap number B = 10000.

4.5 Concluding Remarks

In this chapter we propose a nonparametric test for common trends in semiparamet-

ric panel data models with fixed effects. We first estimate the restricted semipara-

metric model to obtain the augmented residuals and then run a local linear regression

of the augmented residuals on the time trend for each cross sectional unit to obtain

n nonparametric R2 measures. We construct our test statistic by averaging these

individual nonparametric R2’s, and show that after being appropriately centered and

scaled, the statistic is asymptotically normally distributed under both the null hy-

pothesis of common trends and a sequence of Pitman local alternatives. We also

prove the consistency of the test and propose a bootstrap procedure to obtain the

bootstrap p-values. Monte Carlo simulations and applications to both the UK cli-

mate change data and the OECD economic growth data are reported, both of which

point to the empirical fragility of a common trend assumption.

Some extensions are possible. First, our semiparametric model in (4.1.1) only

complements that in Atak, Linton, and Xiao (2011), and it is possible to allow

the slope coefficients also to be heterogenous when we test for the null hypothe-

sis of common trends for the nonparametric component. In this case, the profile

least squares estimation of Su and Ullah (2006) and Chen, Gao, and Li (2010) and

the nonparametric-R2-based test lose much of their advantage and the heterogenous

slope coefficients can only be estimated at a slower convergence rate. It seems

straightforward to estimate the unrestricted model for each cross sectional unit to

obtain the individual trend function estimates f̂i (τ) and propose an L2-distance-

based test by averaging the squared L2-distance between f̂i (τ) and f̂ j (τ) for all

i 6= j. It is also possible to test for the homogeneity of the slope coefficients and
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trend components jointly. Second, to derive the distribution theory of our test statis-

tic, we allow for cross sectional dependence but rule out serial dependence. It is

possible to allow the presence of both as in Bai (2009) by imposing some high-level

assumptions. Nevertheless, the asymptotic variance of the non-normalized version

of test statistic will become complicated and there seems no obvious way to estimate

it consistently in order to implement our test in practice.
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Chapter 5 Summary of Conclusions

In Chapter 2, we propose a nonparametric test for cross-sectional dependence in

large dimensional panel. Our tests can be applied to both raw data and residuals

from heterogenous nonparametric (or parametric) regressions. The requirement on

the relative magnitude of n and T is quite weak in the former case, and very strong

in the latter case in order to control the asymptotic effect of the parameter estimation

error on the test statistic. In both cases, we establish the asymptotic normality of our

test statistic under the null hypothesis of cross-sectional independence. The global

consistency of our test is also established. Monte Carlo simulations indicate our

test performs reasonably well in finite samples and has power in detecting cross-

sectional dependence when the Pesaran’s and CGL’s tests fail.

In Chapter 3 we consider the estimation and testing for large dimensional non-

parametric dynamic panel data models with interactive fixed effects. A sieve-based

QMLE is proposed to estimate the nonparametric function and common compo-

nents jointly. Following Moon and Weidner (2010, 2012), we derive the conver-

gence rate for the sieve estimator and establish its asymptotic distribution. The

sources of different asymptotic biases are discussed in detail and a consistent bias-

corrected estimator is provided. We also propose a consistent specification test for

the commonly used linear dynamic panel data models based on the L2 distance be-

tween the linear and sieve estimators. We establish the asymptotic distributions of

the test statistic under both the null hypothesis and a sequence of Pitman local al-

ternatives. To improve the finite sample performance of the test, we also propose

a bootstrap procedure to obtain the bootstrap p-values and justify its asymptotic

validity. Through Monte Carlo simulations, we investigate the finite sample perfor-
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mance of our estimator and test statistic. We apply the model to an economic growth

data set and demonstrate that lagged economic growth rate, investment share and its

change have significant nonlinear effect on the economic growth rate.

In Chapter 4 we propose a nonparametric test for common trends in semipara-

metric panel data models with fixed effects. We first estimate the restricted semi-

parametric model to obtain the augmented residuals and then run a local linear re-

gression of the augmented residuals on the time trend for each cross sectional unit

to obtain n nonparametric R2 measures. We construct our test statistic by averag-

ing these individual nonparametric R2’s, and show that after being appropriately

centered and scaled, the statistic is asymptotically normally distributed under both

the null hypothesis of common trends and a sequence of Pitman local alternatives.

We also prove the consistency of the test and propose a bootstrap procedure to ob-

tain the bootstrap p-values. Monte Carlo simulations and applications to both the

UK climate change data and the OECD economic growth data are reported, both of

which point to the empirical fragility of a common trend assumption.
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Appendix

A Proofs in Chapter 2

Throughout this appendix, we use C to signify a generic constant whose exact value may

vary from case to case. Recall Pl
T ≡ T !/(T− l)! and Cl

T ≡ T !/ [(T − l)!l!] for integers l≤ T .

Proof of Theorem 2.3.1

Recall ϕi,ts ≡ k
i
h,ts−Et [k

i
h,ts]−Es[k

i
h,ts] + EtEs[k

i
h,ts] where k

i
h,ts ≡ kh (uit −uis) and Es de-

notes expectation taken only with respect to variables indexed by time s, that is, Es(k
i
h,ts)≡∫

kh (uit −u) fi (u)du. Let ci,ts ≡ E(ϕi,ts), and cts ≡ (n−1)−1 ∑n
i=1 ci,ts. We will frequently

use the fact that for t 6= s,

ci,ts ≤Ch−
δ

1+δ α
δ

1+δ
i (|t− s|) (.0.1)

as by the law of iterated expectations, the triangle inequality, and Lemma .0.6, we have |ci,ts|

= |E[ki
h,ts] −EtEs[k

i
h,ts]| = |E{E[ki

h,ts|uit ]−Es[k
i
h,ts]}| ≤ E|E[ki

h,ts|uit ]−Es[k
i
h,ts]| ≤ Ch−

δ
1+δ

×α
δ

1+δ
i (|t− s|) . Let α ( j)≡max1≤i≤n αi ( j) . Let m≡ bL logTc (the integer part of L logT )

where L is a large positive constant so that the conditions on m in Assumption A.1(i*) are

all met by Assumption A.1(i). In addition, it is obvious that ∑∞
τ=1 α

δ
1+δ (τ) = O(1) under

Assumption A.1(i).
Let Zi j,t ≡ (uit ,u jt) and ςi j,tsrq ≡ ς (Zi j,t ,Zi j,s,Zi j,r,Zi j,q) = k

i
h,ts(k

j
h,ts + k

j
h,rq − 2k

j
h,tr).

Let ς i j,tsrq ≡ ς (Zi j,t ,Zi j,s,Zi j,r,Zi j,q)≡ 1
4! ∑4! ςi j,tsrq, where ∑4! denotes summation over all

4! different permutations of (t,s,r,q). That is, ς i j,tsrq is a symmetric version of ςi j,tsrq by
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symmetrizing over the four time indices and it is easy to verify that

ς̄i j,tsrq =
1
12
{k

i
h,ts(2k

j
h,ts +2k

j
h,rq− k

j
h,tr− k

j
h,sr− k

j
h,tq− k

j
h,sq)

+k
i
h,tr(2k

j
h,tr +2k

j
h,qs− k

j
h,ts− k

j
h,sr− k

j
h,tq− k

j
h,rq)

+k
i
h,tq(2k

j
h,tq +2k

j
h,sr− k

j
h,tr− k

j
h,qr− k

j
h,ts− k

j
h,sq)

+k
i
h,sr(2k

j
h,sr +2k

j
h,qt − k

j
h,st − k

j
h,rt − k

j
h,sq− k

j
h,rq)

+k
i
h,sq(2k

j
h,sq +2k

j
h,rt − k

j
h,st − k

j
h,qt − k

j
h,sr− k

j
h,qr)

+k
i
h,rq(2k

j
h,rq +2k

j
h,st − k

j
h,rt − k

j
h,qt − k

j
h,rs− k

j
h,qs)}. (.0.2)

Then we can write Γ̂nT as

Γ̂nT =
1

n(n−1) ∑
1≤i 6= j≤n

1
P4

T
∑

1≤t 6=s6=r 6=q≤T
ςi j,tsrq

=
1

n(n−1) ∑
1≤i 6= j≤n

1
C4

T
∑

1≤t1<t2<t3<t4≤T
ς i j,t1t2t3t4 . (.0.3)

Let θi j = E1E2E3E4 [ς (Zi j,1,Zi j,2,Zi j,3,Zi j,4)] and ς̄i j,c (z1, . . . ,zc)= Ec+1 · · ·E4[ς̄(z1, . . . ,,

zc,Zi j,c+1, . . . ,Zi j,4)] for nonrandom z1, . . . ,zc and c = 1,2,3,4. Let ϑ (1)
i j (z1) = ς̄i j,1 (z1)−

θi j and ϑ (c)
i j (z1, . . . ,zc) = ς̄i j,c (z1, . . . ,zc)−∑c−1

k=1 ∑(c,k) ϑ (k)
i j (zt1 , . . . ,ztk)−θi j for c = 2,3,4,

where the sum ∑(c,k) is taken over all subsets 1≤ t1 < · · ·< tk ≤ c of {1,2, . . . ,c} . It is easy

to verify that θi j = 0, ϑ (1)
i j (Zi j,t) = 0, and

ϑ (2)
i j

(
Zi j,t ,Zi j,s

)
= ς̄i j,2

(
Zi j,t ,Zi j,s

)
=

1
6

ϕi,tsϕ j,ts. (.0.4)

Similarly, straightforward but tedious calculations show that

ϑ (3)
i j

(
Zi j,t ,Zi j,s,Zi j,r

)

= ς̄i j,3
(
Zi j,t ,Zi j,s,Zi j,r

)− ς̄i j,2
(
Zi j,t ,Zi j,s

)− ς̄i j,2
(
Zi j,t ,Zi j,r

)− ς̄i j,2
(
Zi j,s,Zi j,r

)

= − 1
12

[
ϕi,ts

(
ϕ j,tr +ϕ j,sr

)
+ϕi,tr

(
ϕ j,ts +ϕ j,sr

)
+ϕi,sr

(
ϕ j,st +ϕ j,rt

)]
(.0.5)
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and

ϑ (4)
i j

(
Zi j,t ,Zi j,s,Zi j,r,Zi j,q

)

= ς
(
Zi j,t ,Zi j,s,Zi j,r,Zi j,q

)− ς̄i j,2
(
Zi j,t ,Zi j,s

)− ς̄i j,2
(
Zi j,t ,Zi j,r

)− ς̄i j,2
(
Zi j,t ,Zi j,q

)

−ς̄i j,2
(
Zi j,s,Zi j,r

)− ς̄i j,2
(
Zi j,s,Zi j,q

)− ς̄i j,2
(
Zi j,r,Zi j,q

)− ς̄i j,3
(
Zi j,t ,Zi j,s,Zi j,r

)

−ς̄i j,3
(
Zi j,t ,Zi j,s,Zi j,q

)− ς̄i j,3
(
Zi j,t ,Zi j,r,Zi j,q

)− ς̄i j,3
(
Zi j,s,Zi j,r,Zi j,q

)

=
1
6

{
ϕi,tsϕ j,rq +ϕi,trϕ j,sq +ϕi,rqϕ j,ts +ϕi,sqϕ j,tr +ϕi,tqϕ j,sr +ϕi,srϕ j,tq

}
, (.0.6)

where (.0.5) and (.0.6) will be needed in the proofs of Propositions .0.2 and .0.3,

respectively.
Let G(k)

nT ≡ 1
n(n−1)Pk

T
∑1≤i6= j≤n ∑(T,k) ϑ (k)

i j (Zi j,t1 , . . . ,Zi j,tk) for k = 1,2,3,4, where ∑(T,k)

denotes summation over all Pk
T permutations (t1, ..., tk) of distinct integers chosen from

{1,2, ..., T} (See Lee (1990), Ch 1). Then by the Hoeffding decomposition, we have

Γ̂nT = 6G(2)
nT +4G(3)

nT +G(4)
nT . (.0.7)

Let ΓnT ≡ 6G(2)
nT . Noting that nT hE(ΓnT ) = 2h

(n−1)(T−1) ∑1≤i 6= j≤n ∑1≤t<s≤T E [ϕi,tsϕ j,ts] =

BnT under H0, we complete the proof of the theorem by showing that: (i) nT h[ΓnT −

E
(
ΓnT

)
] d→ N

(
0,σ2

0
)
, (ii) nT hG(3)

nT = oP (1) , and (iii) nT hG(4)
nT = oP (1) . These results are

established respectively in Propositions .0.1, .0.2, and .0.3 below.

Proposition .0.1 nT h
[
ΓnT −E

(
ΓnT

)] d→ N
(
0,σ2

0
)
.

Proof. Let ϕc
i,ts ≡ ϕi,ts−E(ϕi,ts). Then we have ΓnT −E(ΓnT ) = ΓnT,1 +ΓnT,2, where

ΓnT,1 ≡ 2
n(n−1) ∑

1≤i< j≤n

1
C2

T
∑

1≤t<s≤T
ϕc

i,tsϕc
j,ts, and

ΓnT,2 ≡ 1
n(n−1) ∑

1≤i 6= j≤n

1
C2

T
∑

1≤t<s≤T

{
ϕc

i,tsE [ϕ j,ts]+ϕc
j,tsE [ϕi,ts]

}
.

We prove the proposition by showing that

nT hΓnT,1 =
nT

(n−1)(T −1)
WnT

d→ N
(
0,σ2

0
)
, (.0.8)

and
nT hΓnT,2 = oP (1) , (.0.9)

where WnT ≡ ∑1≤i< j≤n wi j, wi j ≡ wnT,i j ≡ wnT (ui,u j) ≡ 4h
nT ∑1≤t<s≤T ϕc

i,tsϕc
j,ts, and ui ≡

(ui1, ....,uiT )′. Noting that nT/[(n− 1)(T − 1)] → 1, the proof is completed by Lemmas
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.0.1-.0.2 below.

Lemma .0.1 WnT
d→ N

(
0,σ2

0
)

under H0.

Proof. WnT is a second order degenerate U-statistic that is “clean” (i.e., E [wnT (ui,u j) |ui]
= E [wnT (ui,u j) |u j] = 0 for i 6= j) under H0, we can apply Proposition 3.2 of de Jong (1987)
to prove (.0.8) by showing that

σ2
nT ≡ Var(WnT ) = σ2

nT +o(1) , (.0.10)

GI ≡ ∑
1≤i< j≤n

E
[
w4

i j
]
= o(1) , (.0.11)

GII ≡ ∑
1≤i< j<k≤n

E
[
w2

i jw
2
ik +w2

jiw
2
jk +w2

kiw
2
k j

]
= o(1) , (.0.12)

GIV ≡ ∑
1≤i< j<k<l≤n

E
[
wi jwikwl jwlk +wi jwilwk jwkl +wikwilw jkw jl

]
= o(1) .(.0.13)

Step 1. Proof of (.0.10). First, notice that

σ2
nT =

16h2

n2T 2 Var

(
∑

1≤i< j≤n
∑

1≤t<s≤T
ϕc

i,tsϕc
j,ts

)

=
16h2

n2T 2 ∑
1≤i< j≤n

∑
1≤t1<t2≤T, 1≤t3<t4≤T

E
[
ϕc

i,t1t2ϕc
i,t3t4

]
E

[
ϕc

j,t1t2ϕc
j,t3t4

]
.

We consider three cases for the summation in the last expression: the number of distinct
indices in {t1, t2, t3, t4} are 4, 3, and 2, respectively, and use (a), (b), and (c) to denote these
three cases in order. In cases (a)-(b), we can apply similar arguments to those used in the
proof of (.0.11) below and demonstrate the corresponding sum is o(1) . It follows that

σ2
nT =

16h2

n2T 2 ∑
1≤i< j≤n

∑
1≤t<s≤T

Var
(
ϕc

i,ts
)

Var
(
ϕc

j,ts
)
+o(1) = σ2

nT +o(1) .

Step 2. Proof of (.0.11). We prove a stronger result: GI = o(n−1) by showing that
max1≤i 6= j≤n Gi jI = o(n−3) where Gi jI ≡ E(w4

i j). For i 6= j, we have that under H0,

Gi jI =
256h4

n4T 4 ∑
1≤t2k−1<t2k≤T, k=1,2,3,4

E

[
4

∏
l=1

ϕc
i,t2l−1t2l

]
E

[
4

∏
l=1

ϕc
j,t2l−1t2l

]
.

We consider five cases inside the summation: the number of distinct elements in {t1, t2, ..., t8}

are 8, 7, 6, 5, and 4 or less. We use (A), (B), (C), (D), and (E) to denote these five cases,

respectively, and denote the corresponding sum in Gi jI as Gi jI,A, Gi jI,B, Gi jI,C, Gi jI,D, and

Gi jI,E , respectively (e.g., Gi jI,A is defined as Gi jI but with the time indices restricted to case

(A)).
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For case (A), we consider two different subcases: (Aa) there exists k0 ∈ {1, ...,8} such

that, |tl − tk0 | > m for all l 6= k0; (Ab) all the other remaining cases. We use Gi jI,Aa and

Gi jI,Ab to denote Gi jI,A but with the time indices restricted to subcases (Aa) and (Ab), re-

spectively. Let 1 ≤ r1 < ... < r8 ≤ T be the permutation of t1, ..., t8 in ascending order.

Denote Ai (r1, ...,r8) ≡∏4
l=1 ϕc

i,t2l−1t2l
. Then it is easy to see that |E[A j (r1, ...,r8)]| ≤C uni-

formly in j.
For subcase (Aa), without loss of generality (WLOG) we assume tk0 = t1. We consider

two subsubcases: (Aa1) t1 = r1, (Aa2) t1 = rl0 for l0 ∈ {2, ...,7} . In subsubcase (Aa1), by
splitting variables indexed by t1 from those indexed by t2, . . . , t8, we have by Lemma .0.5
that

|E [Ai (r1, ...,r8)]| ≤
∣∣E {

Et1
(
ϕc

i,t1t2

)
ϕc

i,t3t4ϕc
i,t5t6ϕc

i,t7t8

}∣∣+Ch−
4δ

1+δ α
δ

1+δ (m) .

To bound the first term in the last expression, we apply Lemma .0.6 to obtain

∣∣Et1
(
ϕc

i,t1t2

)∣∣ =
∣∣∣Et1Et2(k

i
h,t1t2)−E(ki

h,t1t2)
∣∣∣ =

∣∣∣E[Et2(k
i
h,t1t2)−E(ki

h,t1t2 |uit1)]
∣∣∣

≤ E
∣∣∣Et2(k

i
h,t1t2)−E(ki

h,t1t2 |uit1)
∣∣∣≤Ch−

δ
1+δ α

δ
1+δ (m) . (.0.14)

Consequently, we have |Ai (t1, ..., t8)| ≤ Ch−
4δ

1+δ α
δ

1+δ (m) . In subsubcase (Aa2), noting that
t2 ∈ {rl0+1, ...,r8} we split first variables indexed by r1, ...,rl0−1 from others and then vari-
ables indexed by rl0(= t1) from {rl0+1, ...,r8} to obtain

|E [Ai (r1, ...,r8)]| ≤ |E {E1,...,l0−1 [Ai (r1, ...,r8)]}|+Ch−
4δ

1+δ α
δ

1+δ (m)

≤ |E [Et1 {E1,...,l0−1 [Ai (r1, ...,r8)]}]|
+Ch−

3δ
1+δ α

δ
1+δ (m)+Ch−

4δ
1+δ α

δ
1+δ (m) .

Now we can apply Fubini theorem and (.0.14) to bound the first term in the last expres-
sion by Ch−

δ
1+δ α

δ
1+δ (m) . Consequently, we have |E [Ai (r1, ...,r8)]| ≤Ch−

4δ
1+δ α

δ
1+δ (m) uni-

formly i in case (Aa). It follows that

Gi jI,Aa ≤ Ch4

n4T 4 T 8h−
4δ

1+δ α
δ

1+δ (m) = O
(

n−4T 4h
4

1+δ α
δ

1+δ (m)
)

= o
(
n−3) , (.0.15)

where here and below o
(
n−3

)
holds uniformly in (i, j) . In case (Ab), the number of terms

in the summation for Gi jI,Ab is of order O
(
T 4m4

)
and each term is uniformly bounded by a

constant C. It follows that

Gi jI,Ab ≤ Ch4

n4T 4 T 4m4 = O
(
n−4h4m4) = o

(
n−3) . (.0.16)

Now, we consider case (B). WLOG we assume t8 = t6 and consider two subcases for
the indices {t1, ..., t7}: (Ba) there exist two distinct integers k1,k2 ∈ {1, ...,7} such that
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|tl − tks | > m for all l 6= ks and s = 1,2 ; (Bb) all the other remaining cases. We use Gi jI,Ba

and Gi jI,Bb to denote Gi jI,B but with the time indices restricted to subcases (Ba) and (Bb),
respectively. In case (Ba), at least one (say tk1) of the two time indices satisfying the condi-
tion in (Ba) is not t6 so that we can apply the same argument as used in case (Aa) to obtain
the bound for GI,Ba as

Gi jI,Ba ≤ Ch4

n4T 4 T 7h−
4δ

1+δ α
δ

1+δ (m) = O
(

n−4T 3h
4

1+δ α
δ

1+δ (m)
)

= o
(
n−3) . (.0.17)

In case (Bb), the number of terms in the summation for Gi jI,Bb is of order O
(
T 4m3

)
and

each term is uniformly bounded by a constant C. It follows that

GI,Bb ≤ Ch4

n4T 4 T 4m3 = O
(
n−4h4m3) = o

(
n−3) . (.0.18)

For case (C), we consider two subcases for the indices {t1, ..., t8}: (Ca) there exists four
distinct integers k1,k2,k3,k4 ∈ {1, ...,8} such that |tl − tks |> m for all l 6= ks and s = 1, 2, 3,
4 (note that some of the tl indices coincide here so that the total number of distinct indices
among {t1, ..., t8} is six); (Cb) all the other remaining cases. We use Gi jI,Ca and Gi jI,Cb to
denote GI,C but with the time indices restricted to subcases (Ca) and (Cb), respectively. In
case (Ca) we can follow the same arguments as used in case (Aa) to bound Gi jI,Ca as

Gi jI,Ca ≤ Ch4

n4T 4 T 6h−
2+4δ
1+δ α

δ
1+δ (m) = O

(
n−4T 2h

2
1+δ α

δ
1+δ (m)

)
= o

(
n−3) . (.0.19)

In case (Cb), the number of terms in the summation for Gi jI,Cb is of order O
(
T 4m2

)
and

each term is uniformly bounded by a constant Ch−2. It follows that

Gi jI,Cb ≤ Ch4

n4T 4 T 4m2h−2 = O
(
n−4h2m2) = o

(
n−3) . (.0.20)

For case (D), we consider two subcases for the indices {t1, ..., t8}: (Da) for all distinct
integers k ∈ {1, ...,8} such that |tl − tk| > m for all l 6= k with tl 6= tk; (Db) all the other
remaining cases. We use Gi jI,Da and Gi jI,Db to denote Gi jI,D but with the time indices
restricted to subcases (Da) and (Db), respectively. In case (Da) we can follow the same
arguments used in cases (Ca), (Ba), and (Aa) to bound Gi jI,Da as

Gi jI,Da ≤ Ch4

n4T 4 T 5h−
2+4δ
1+δ α

δ
1+δ (m) = O

(
n−4T h

2
1+δ α

δ
1+δ (m)

)
= o

(
n−3) . (.0.21)

In case (Db), the number of terms in the summation for Gi jI,Db is of order O
(
T 4m

)
and each

term is uniformly bounded by Ch−2. It follows that

Gi jI,Db ≤ Ch4

n4T 4 T 4mh−2 = O
(
n−4h2m

)
= o

(
n−3) . (.0.22)

123



In case (E), it is straightforward to bound Gi jI,E as

Gi jI,E ≤ Ch4

n4T 4

(
T 4h−4 +T 3h−4 +T 2h−6) = O

(
n−4 +n−4T−2h−2) = o

(
n−3) . (.0.23)

In sum, combining (.0.15)-(.0.23) yields

max
1≤i 6= j≤n

Gi jI = o
(
n−3) . (.0.24)

Step 3. Proof of (.0.12). By the Jensen inequality and (.0.24), GII ≤∑1≤i< j<k≤n[{E(w4
i j)

×E(w4
ik)}1/2 +{E(w4

ji)E(w4
jk)}1/2 +{E(w4

ki)E(w4
k j)}1/2]≤ n3

2 max1≤i6= j≤n E(w4
i j) = o(1) .

Step 4. Proof of (.0.13). Write GIV = ∑
1≤i< j<k<l≤n

{E
[
wi jwikwl jwlk

]
+E

[
wi jwilwk jwkl

]
+

E[wik wilw jkw jl ]} ≡ GIV 1 +GIV 2 +GIV 3. Recalling wi j ≡ 4h
nT ∑1≤t<s≤T ϕc

i,tsϕc
j,ts,

GIV 1 = ∑
1≤i1<i2<i3<i4≤n

E [wi1i2wi1i3wi4i2wi4i3 ]

=
256h4

n4T 4 ∑
1≤i1<i2<i3<i4≤n

∑
1≤t2k−1<t2k≤T, k=1,2,3,4

E
[
ϕc

i1,t1t2ϕc
i1,t3t4

]
E

[
ϕc

i2,t1t2ϕc
i2,t5t6

]

×E
[
ϕc

i3,t3t4ϕc
i3,t7t8

]
E

[
ϕc

i4,t5t6ϕc
i4,t7t8

]
.

Like in the analysis of GI, we consider five cases inside the above summation: the number

of distinct elements in {t1, t2, ..., t8} are 8, 7, 6, 5, and 4 or less. We continue to use (A), (B),

(C), (D), and (E) to denote these five cases, respectively, and denote the corresponding sum

in GIV 1 as GIV 1,A, GIV 1,B, GIV 1,C, GIV 1,D, and GIV 1,E , respectively (e.g., GIV 1,A is defined

as GIV 1 but with the time indices restricted to case (A)). For case (A), we consider two

different subcases: (Aa) there exists k0 ∈ {1, ...,8} such that, |tl − tk0 | > m for all l 6= k0;

(Ab) all the other remaining cases. We use GIV 1,Aa and GIV 1,Ab to denote GIV 1,A but with

the time indices restricted to subcases (Aa) and (Ab), respectively. In case (Aa) we can

follow the same argument as used in case (Aa) in Step 2 to bound GIV 1,Aa as GIV 1,Aa ≤
Ch4

n4T 4 n4T 8h−
2δ

1+δ α
δ

1+δ (m) = O(T 4h
2(2+δ )

1+δ α
δ

1+δ (m)) = o(1) . In case (Ab), the number of terms

in the summation for GIV 1,Ab is of order O
(
T 4m4

)
and each term is uniformly bounded by

a constant C. It follows that GIV 1,Ab ≤ Ch4

n4T 4 n4T 4m4 = O
(
h4m4

)
= o(1) .

For case (B), we consider two different subcases: (Ba) there exists k0 ∈ {1, ...,8} such
that, |tl − tk0 |> m for all l 6= k0 with tl 6= tk0 ; (Bb) all the other remaining cases. For subcase
(Ba), we consider only two representative subcases: (Ba1) t8 = t1 or t8 = t2, (Ba2) t8 = t5
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or t8 = t6 since the other cases are analogous. For subsubcase (Ba1) WLOG we assume
t8 = t1. Noting that all the four time indices in each of the four expectations E[ϕc

i1,t1t2ϕc
i1,t3t4 ],

E[ϕc
i2,t1t2ϕc

i2,t5t6 ], E[ϕc
i3,t3t4ϕc

i3,t7t1 ], and E[ϕc
i4,t5t6ϕc

i4,t7t1 ] are different from each other, we can

easily get the bound for GIV 1,B (with the restriction t8 = t1) as O(T 3h
2(2+δ )

1+δ α
δ

1+δ (m)) =
o(1) . For subsubcase (Ba2) we assume t8 = t5 and consider bounding the following objects:
E[ϕc

i1,t1t2ϕc
i1,t3t4 ], E[ϕc

i2,t1t2ϕc
i2,t5t6 ], E[ϕc

i3,t3t4ϕc
i3,t7t5 ], and E[ϕc

i4,t5t6ϕc
i4,t7t5 ]. Note that the indices

in the last expectation E[ϕc
i4,t5t6ϕc

i4,t7t5 ] are not all distinct. Despite this, since all the four
indices in each of the other three expectations are distinct, we can continue to bound GIV 1,B

(with the restriction t8 = t5) as O(T 3h
2(2+δ )

1+δ α
δ

1+δ (m)) = o(1) . For subcase (Bb), it is easy
to tell GIV 1,B is bounded by T−4h4O

(
T 4m3

)
= O

(
h4m3

)
= o(1) . It follows that GIV 1,B =

o(1) . For case (C), analogous to the study of case (C) in Step 2, we have

GIV 1,C =
h4

T 4 O
(

T 6h−1− 2δ
1+δ α

δ
1+δ (m)+T 4m2h−1

)
= O

(
T 2h

3+δ
1+δ α

δ
1+δ (m)+h3m2

)
= o(1) .

Similarly, in case (D) we have

GIV 1,D ≤ h4

T 4 O
(

T 5h−1− 2δ
1+δ α

δ
1+δ (m)+T 4mh−1

)
= O

(
T h

3+δ
1+δ α

δ
1+δ (m)+h3m

)
= o(1) .

In case (E), it is straightforward to bound GIV 1,E as

GIV 1,E ≤ Ch4

n4T 4 n4 (
T 4h−2 +T 3h−3 +T 2h−4) = O

(
h2 +T−1h+T−2) = o(1) .

In sum, GIV 1 = o(1) . Similarly we can show that GIV s = o(1) for s = 2,3.

Lemma .0.2 nT hΓnT,2 = oP (1) .

Proof. Let n1≡ n−1 and T1≡T−1. Recalling that ci,ts≡E (ϕi,ts) and cts≡ n−1
1 ∑n

i=1 ci,ts,

we have

nT hΓnT,2 =
2h
n1

∑
1≤ j 6=i≤n

T−1
1

T

∑
t=2

t−1

∑
s=1

[
ϕc

i,tsc j,ts +ϕc
j,tsci,ts

]

=
2h
n1

n

∑
i=1

n

∑
j=1

T−1
1

T

∑
t=2

t−1

∑
s=1

[
ϕc

i,tsc j,ts +ϕc
j,tsci,ts

]− 4h
n1

n

∑
i=1

T−1
1

T

∑
t=2

t−1

∑
s=1

ϕc
i,tsci,ts

= 4h
n

∑
i=1

T−1
1

T

∑
t=2

t−1

∑
s=1

ϕc
i,tscts− 4h

n1

n

∑
i=1

T−1
1

T

∑
t=2

t−1

∑
s=1

ϕc
i,tsci,ts

≡ 4V1nT −4V2nT , say.

We complete the proof by showing that V1nT = oP (1) and V2nT = oP (1) . We only prove the

first claim since the proof of the second one is similar.
Let vi,t ≡∑t−1

s=1 h1/2ϕc
i,tscts and vi ≡ T−1

1 ∑T
t=2 vi,t . Then we can write V1nT = h1/2 ∑n

i=1 vi.

Note that E (vi)= 0 and {vi}n
i=1 are independently distributed under H0, we have E[(V1nT )2] =
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h∑n
i=1Var(vi) . For Var(vi), we have

Var(vi) = E

[
1
T1

T

∑
t=2

vi,t

]2

=
1

T 2
1

T

∑
t=2

E
[
v2

i,t
]
+

2
T 2

1

T

∑
t1=3

t1−1

∑
t2=2

E [vi,t1vi,t2 ]≡V1i +V2i, say.

For V1i, we have

V1i =
h

T 2
1

T

∑
t=2

t−1

∑
s=1

E
[
ϕc2

i,ts
]

c2
ts +

2h
T 2

1

T

∑
t=3

t−1

∑
s=2

s−1

∑
r=1

E
[
ϕc

i,tsϕc
i,tr

]
ctsctr ≡V1i,1 +V1i,2, say.

By (.0.1) and Assumption A.1, |cts| = |n−1
1 ∑n

i=1 E[ϕi,ts]| ≤ Ch
−δ
1+δ α

δ
1+δ (t− s) . Thus uni-

formly in i

V1i,1 ≤ C
T 2

1

T

∑
t=2

t−1

∑
s=1

h
−2δ
1+δ α

2δ
1+δ (t− s) max

1≤t 6=s≤T

{
hE

[
ϕc2

i,ts
]}

≤ C
T1

max
1≤i≤n

max
1≤t 6=s≤T

{
hE

[
ϕc2

i,ts
]}

h
−2δ
1+δ

T−1

∑
τ=1

α
2δ

1+δ (τ) = O
(

T−1h
−2δ
1+δ

)
.

For V1i,2, we have that uniformly in i

|V1i,2| =
2h
T 2

1

T

∑
t=3

t−1

∑
s=2

s−1

∑
r=1

∣∣E (
ϕc

i,tsϕc
i,tr

)∣∣ |cts| |ctr| ≤ Chh
−2δ
1+δ

T 2
1

T

∑
t=3

t−1

∑
s=2

s−1

∑
r=1

α
δ

1+δ (t− s)α
δ

1+δ (t− r)

≤ Ch
1−δ
1+δ

T1

∞

∑
τ1=1

∞

∑
τ2=1

α
δ

1+δ (τ1)α
δ

1+δ (τ2) = O
(

T−1h
1−δ
1+δ

)
.

It follows that V1i = O(T−1h
−2δ
1+δ +T−1h

1−δ
1+δ ) uniformly in i.

For V2i, we have

V2i =
2h
T 2

1

T

∑
t1=3

t1−1

∑
t2=2

t1−1

∑
t3=1

t2−1

∑
t4=1

E
[
ϕc

i,t1t3ϕc
i,t2t4

]
ct1t3ct2t4

=
4h
T 2

1

T

∑
t1=3

t1−1

∑
t2=2

t2−1

∑
t3=1

E
[
ϕc

i,t1t3ϕc
i,t2t3

]
ct1t3ct2t3

+
2h
T 2

1

T

∑
t1=3

t1−1

∑
t2=2

t1−1

∑
t3=1,t3 6=t4,t2

t2−1

∑
t4=1

E
[
ϕc

i,t1t3ϕc
i,t2t4

]
ct1t3ct2t4 ≡V2i,1 +V2i,2 say,

where the first term is obtained when t3 = t4 or t2 as ϕi,ts = ϕi,st . Following the analysis of
V1i,2, we can show that |V2i,1| ≤ CT−1

1 h
1−δ
1+δ ∑∞

τ1=1 ∑∞
τ2=1 α

δ
1+δ (τ1)α

δ
1+δ (τ2) = O(T−1h

1−δ
1+δ )

uniformly in i. For V2i,2, we consider three cases: (a) 1≤ t3 < t4 < t2 < t1 ≤ T ; (b) 1≤ t4 <

t3 < t2 < t1 ≤ T ; (c) 1 ≤ t4 < t2 < t3 < t1 ≤ T , and use V2i,2a, V2i,2b, and V2i,2c to denote
the summation over these three cases of indices, respectively. In case (a), by separating
variables indexed by t3 from those indexed by t4, t2, and t1 and Lemma .0.5, we have

∣∣E [
ϕc

i,t1t3ϕc
i,t2t4

]∣∣≤ ∣∣E [
Et3

(
ϕc

i,t1t3

)
ϕc

i,t2t4

]∣∣+Ch
−2δ
1+δ α

δ
1+δ (t4− t3) = Ch

−2δ
1+δ α

δ
1+δ (t4− t3) ,

where the equality follows from the fact that Es(ϕc
i,ts) = EtEs(k

i
h,ts)−E(ki

h,ts) is a constant
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and that E(ϕc
i,ts) = 0 for t 6= s. It follows that uniformly in i

|V2i,2a| ≤ 2h
T 2

1

T

∑
t1=3

t1−1

∑
t2=2

t2−1

∑
t4=1

t4−1

∑
t3=1

∣∣E [
ϕc

i,t1t3ϕc
i,t2t4

]∣∣ |ct1t3 | |ct2t4 |

≤ Chh
−4δ
1+δ

T 2
1

T

∑
t1=3

t1−1

∑
t2=2

t1−1

∑
t3=1,t3 6=t4,t2

t2−1

∑
t4=1

α
δ

1+δ (t4− t3)α
δ

1+δ (t1− t3)α
δ

1+δ (t2− t4)

≤ Ch
1−3δ
1+δ

T1

∞

∑
τ3=1

∞

∑
τ2=1

∞

∑
τ1=1

α
δ

1+δ (τ1)α
δ

1+δ (τ2)α
δ

1+δ (τ3) = O
(

T−1h
1−3δ
1+δ

)
.

By the same token, we can show that
∣∣V2i,2ξ

∣∣ = O(T−1h
1−3δ
1+δ ) uniformly in i for ξ = b,c.

Hence V2i,2 = O(T−1h
1−3δ
1+δ ) and V2i = O(T−1h

1−δ
1+δ ) +O(T−1h

1−3δ
1+δ )= O(T−1h

1−3δ
1+δ ) uniformly

in i. Consequently

E[(V1nT )2] = h
n

∑
i=1

(V1i +V2i) = O
(

nh
(

T−1h
−2δ
1+δ +T−1h

1−3δ
1+δ

))
= O

(
nh

1−δ
1+δ /T

)
= o(1) .

Then V1nT = oP (1) by the Chebyshev inequality.

Proposition .0.2 nT hG(3)
nT = oP (1) .

Proof. By the definition of G(3)
nT and (.0.5), we have

−12nT hG(3)
nT =

−12nT h
n(n−1)C3

T
∑

1≤i6= j≤n
∑

1≤t<s<r≤T
ϑ (3)

i j (Zi j,t ,Zi j,s,Zi j,r)

=
T h

n1C3
T

∑
1≤i 6= j≤n

∑
1≤t<s<r≤T

[ϕi,tsϕ j,tr +ϕi,tsϕ j,sr +ϕi,trϕ j,ts +ϕi,trϕ j,sr

+ϕi,srϕ j,st +ϕi,srϕ j,rt ]

≡ U1nT +U2nT +U3nT +U4nT +U5nT +U6nT , say,

where, e.g., U1nT ≡ T h
n1C3

T
∑1≤i 6= j≤n ∑1≤t<s<r≤T ϕi,tsϕ j,tr. It suffices to show that UrnT = oP (1)

for r = 1,2, ...,6.

For U1nT , we have

U1nT =
T h

n1C3
T

∑
1≤i6= j≤n

∑
1≤t<s<r≤T

ϕc
i,tsϕc

j,tr +
T h

n1C3
T

∑
1≤i6= j≤n

∑
1≤t<s<r≤T

ci,tsϕc
j,tr

+
T h

n1C3
T

∑
1≤i 6= j≤n

∑
1≤t<s<r≤T

ϕc
i,tsc j,tr +

T h
n1C3

T
∑

1≤i 6= j≤n
∑

1≤t<s<r≤T
ci,tsc j,tr

≡ U1nT,1 +U1nT,2 +U1nT,3 +U1nT,4, say,

where recall ϕc
i,ts ≡ ϕi,ts − E(ϕi,ts) and ci,ts ≡ E (ϕi,ts) . We further decompose U1nT,1 as

follows

U1nT,1 =
T h

n1C3
T

∑
1≤i< j≤n

∑
1≤t<s<r≤T

ϕc
i,tsϕc

j,tr +
T h

n1C3
T

∑
1≤ j<i≤n

∑
1≤t<s<r≤T

ϕc
i,tsϕc

j,tr

≡ U1nT,1a +U1nT,1b.
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Noting that E (U1nT,1a) = 0 under H0, we have

Var(U1nT,1a) =
T 2h2

(
n1C3

T

)2 ∑
1≤i1<i2≤n

∑
1≤t1<t2<t3≤T
1≤t4<t5<t6≤T

E
[
ϕc

i1,t1t2ϕc
i2,t1t3ϕc

i1,t4t5ϕc
i2,t4t6

]

=
T 2h2

(
n1C3

T

)2 ∑
1≤i1<i2≤n

∑
1≤t1<t2<t3≤T
1≤t4<t5<t6≤T

E
[
ϕc

i1,t1t2ϕc
i1,t4t5

]
E

[
ϕc

i2,t1t3ϕc
i2,t4t6

]
.

Analogously to the proof of (.0.13), we can show

Var(U1nT,1a) ≤ CT 2h2

(
n1C3

T

)2

{
n2T 6h

−2δ
1+δ α

δ
1+δ (m)+n2T 3m3 +n2T 3h−2

}

= O
(

T 2h
2

1+δ α
δ

1+δ (m)+T−1h2m3 +T−1
)

= o(1) .

Hence U1nT,1a = oP (1) by the Chebyshev inequality. Similarly, U1nT,1b = oP (1) . It follows

that U1nT,1 = oP (1) .
For U1nT,2, write

U1nT,2 =
T h

n1C3
T

n

∑
i=1

n

∑
j=1

∑
1≤t<s<r≤T

c j,tsϕc
i,tr−

T h
n1C3

T

n

∑
i=1

∑
1≤t<s<r≤T

ci,tsϕc
i,tr

=
T h
C3

T

n

∑
i=1

∑
1≤t<s<r≤T

ctsϕc
i,tr−

T h
n1C3

T

n

∑
i=1

∑
1≤t<s<r≤T

ci,tsϕc
i,tr ≡U1nT,2a−U1nT,2b,

where recall cts ≡ n−1
1 ∑n

i=1 ci,ts. Noting E (U1nT,2a) = 0, we have

Var(U1nT,2a) =
T 2h2

(
C3

T

)2

n

∑
i=1

∑
1≤t1<t2<t3≤T
1≤t4<t5<t6≤T

ct1t2ct4t5E
[
ϕc

i,t1t3ϕc
i,t4t6

]

=
T 2h2

(
C3

T

)2

n

∑
i=1

∑
1≤t1<t2<t3≤T,
1≤t4<t5<t6≤T,

t1,...,t6 are all distinct

ct1t2ct4t5E
[
ϕc

i,t1t3ϕc
i,t4t6

]
+o(1)

≤ Ch2h
−4δ
1+δ

T

n

∑
i=1

∞

∑
τ3=1

∞

∑
τ2=1

∞

∑
τ1=1

α
δ

1+δ (τ1)α
δ

1+δ (τ2)α
δ

1+δ (τ3)+o(1)

= O
(

nh
2(1−δ )

1+δ /T
)

+o(1) = o(1) .

So U1nT,2a = oP (1) . By the same token U1nT,2b = oP (1) . Thus U1nT,2 = oP (1) . Similarly
we can show that U1nT,3 = oP (1) . For U1nT,4, we have

|U1nT,4| ≤ T h
n1C3

T
∑

1≤i6= j≤n
∑

1≤t<s<r≤T
|ci,ts|

∣∣c j,tr
∣∣

≤ CT hh
−2δ
1+δ

n1C3
T

∑
1≤i6= j≤n

∑
1≤t<s<r≤T

α
δ

1+δ (s− t)α
δ

1+δ (r− t)

≤ Cnh
1−δ
1+δ

T

∞

∑
τ1=1

∞

∑
τ2=1

α
δ

1+δ (τ1)α
δ

1+δ (τ2) = O
(

nh
1−δ
1+δ /T

)
= o(1) .
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Consequently, U1nT = oP (1) . Analogously we can show that UrnT = oP (1) for r = 2,3, ...,6.

This completes the proof of the proposition.

Proposition .0.3 nT hG(4)
nT = oP (1) .

Proof. By the definition of G(4)
nT and (.0.6), we have

6nT hG(4)
nT =

6T h
n1C4

T
∑

1≤i 6= j≤n
∑

1≤t<s<r<q≤T
ϑ (4)

i j (Zi j,t ,Zi j,s,Zi j,r,Zi j,q)

=
T h

n1C4
T

∑
1≤i 6= j≤n

∑
1≤t<s<r<q≤T

{ϕi,tsϕ j,rq +ϕi,trϕ j,sq +ϕi,rqϕ j,ts +ϕi,sqϕ j,tr

+ϕi,tqϕ j,sr +ϕi,srϕ j,tq} ≡
6

∑
l=1

QlnT , say,

where e.g., Q1nT = T h
n1C4

T
∑1≤i 6= j≤n ∑1≤t<s<r<q ϕi,tsϕ j,rq. It suffices to show QlnT = oP (1) for

l = 1,2, ...,6. We only show that Q1nT = oP (1) since the other cases are similar. Write

Q1nT =
T h

n1C4
T

∑
1≤i 6= j≤n

∑
1≤t<s<r<q≤T

ϕc
i,tsϕc

j,rq +
T h

n1C4
T

∑
1≤i6= j≤n

∑
1≤t<s<r<q≤T

ci,tsϕc
j,rq

+
T h

n1C4
T

∑
1≤i6= j≤n

∑
1≤t<s<r<q≤T

ϕc
i,tsc j,rq +

T h
n1C4

T
∑

1≤i6= j≤n
∑

1≤t<s<r<q≤T
ci,tsc j,rq

≡ Q1nT,1 +Q1nT,2 +Q1nT,3 +Q1nT,4, say.

Analogously to the determination of the probability orders of U1nT,1, U1nT,2, and U1nT,3 in
the proof of Proposition .0.2, we can show that Q1nT,s = oP (1) for s = 1,2,3. For Q1nT,4,

we have

|Q1nT,4| ≤ CT hh−
2δ

1+δ

n1C4
T

∑
1≤i 6= j≤n

∑
1≤t<s<r<q≤T

α
1

1+δ (s− t)α
1

1+δ (q− r) = O(nh
1−δ
1+δ /T ) = o(1) .

It follows that Q1nT = oP (1) .

.0.1 Proof of Corollary 2.3.2

Given Theorem 2.3.1, it suffices to show: (i) D̂1nT ≡ σ̂2
nT −σ2

nT = oP (1) , and (ii) D̂2nT ≡
B̂nT −BnT = oP (1). For (i), we write

σ2
nT =

4h2

n(n−1)T (T −1) ∑
1≤i6= j≤n

∑
1≤t 6=s≤T

E
[(

k
i
h,ts

)2
]

E
[(

k
j
h,ts

)2
]
+o(1)

=
4R

(
k
)2

n(n−1)T (T −1) ∑
1≤i6= j≤n

∑
1≤t 6=s≤T

∫
fi,ts (u,u)du

∫
f j,ts (v,v)dv+o(1) .
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Then

D̂1nT =
4R

(
k
)2

n(n−1) ∑
1≤i6= j≤n

1
T

T

∑
t=1

f̂i j,−t (uit ,u jt)

− 4R
(
k
)2

n(n−1)T (T −1) ∑
1≤i6= j≤n

∑
1≤t 6=s≤T

∫
fi,ts (u,u)du

∫
f j,ts (v,v)dv−o(1)

= D1nT −o(1) .

where D1nT ≡ 4R(k)2

n(n−1)T (T−1) ∑1≤i6= j≤n ∑1≤t 6=s≤T{ki
h,tsk

j
h,ts−

∫
fi,ts (u,u)du

∫
f j,ts (v,v)dv}. It

is easy to show that E (D1nT ) = O(hγ) = o(1) and Var(D1nT ) = o(1) . Consequently, D̂1nT =

oP (1) .
Now we show (ii). Noting that BnT = 2h

n1
∑1≤i6= j≤n ∑T

r=2
T−r+1

T−1 E [ϕi,1r]E [ϕ j,1r] , we have

B̂nT −BnT =
2h
n1

T

∑
r=2

T − r +1
T −1 ∑

1≤i 6= j≤n
{Ê [ϕi,1r] Ê [ϕ j,1r]−E [ϕi,1r]E [ϕ j,1r]}

=
2h
n1

T

∑
r=2

T − r +1
T −1 ∑

1≤i 6= j≤n
E [ϕi,1r]

{
Ê [ϕ j,1r]−E [ϕ j,1r]

}

+
2h
n1

T

∑
r=2

T − r +1
T −1 ∑

1≤i6= j≤n

{
Ê [ϕi,1r]−E [ϕi,1r]

}
E [ϕ j,1r]

+
2h
n1

T

∑
r=2

T − r +1
T −1 ∑

1≤i6= j≤n

{
Ê [ϕi,1r]−E [ϕi,1r]

}{
Ê [ϕ j,1r]−E [ϕ j,1r]

}

≡ 2D2nT,1 +2D2nT,2 +2D2nT,3, say.

Recalling ci,ts≡E [ϕi,ts] and cts≡ n−1
1 ∑n

i=1 ci,ts, we have D2nT,1 = h∑T
r=2

T−r+1
T−1 ∑n

i=1 c1r{Ê [ϕi,1r]

−E [ϕi,1r]} − h
n1

∑T
r=2

T−r+1
T−1 ∑n

i=1 ci,1r

{
Ê [ϕi,1r]−E [ϕ j,1r]

}
≡ D2nT,1a −D2nT,1b, say. We

only show that D2nT,1a = oP (1) as the proof that D2nT,1b = oP (1) is analogous. Noting
that

Ê [ϕi,1r]−E [ϕi,1r] =
1

T − r +1

T−r+1

∑
t=1

{k
i
h,t,t+r−1−E[ki

h,t,t+r−1]}−
1

C2
T

∑
1≤t<s≤T

{k
i
h,ts−EtEs[k

i
h,ts]},

(.0.25)
we have

D2nT,1a = h
n

∑
i=1

T

∑
r=2

c1r
1

Tr +1

Tr+1

∑
t=1

{
k

i
h,t,t+r−1−E[ki

h,t,t+r−1]
}

−h
n

∑
i=1

T

∑
r=2

c1r
1

C2
T

∑
1≤t<s≤T

{
k

i
h,ts−EtEs[k

i
h,ts]

}

≡ D2nT,1a1−D2nT,1a2, say, (.0.26)

130



where c1r ≡ c1r (T − r +1)/(T −1) and Tr ≡ T − r. Noting that E (D2nT,1a1) = 0, we have

Var(D2nT,1a1)

= h2
n

∑
i=1

T

∑
r1=2

c1r1

T

∑
r2=2

c1r2

1
(Tr1 +1)(Tr2 +1)

Tr1+1

∑
t=1

Tr2+1

∑
s=1

Cov
(

k
i
h,t,t+r1−1,k

i
h,s,s+r2−1

)

= h2
n

∑
i=1

T

∑
r1=2

c1r1

T

∑
r2=2

c1r2

1
(Tr1 +1)(Tr2 +1)

Tr1+1

∑
t=1

Tr2+1

∑
s=1,s6=t,s6=t+r1−r2

Cov
(

k
i
h,t,t+r1−1,k

i
h,s,s+r2−1

)

+o(1) . (.0.27)

We consider three cases for the summation in the last expression: (a) t < t + r1− 1 < s <

s + r2− 1 or s < s + r2− 1 < t < t + r1− 1, (b) t < s < s + r2− 1 < t + r1− 1 or s < t <

t +r1−1 < s+r2−1, and (c) t < s < t +r1−1 < s+r2−1 or s < t < s+r2−1 < t +r1−1,

and use V D2nTa, V D2nT b, and V D2nT c denote the summation in (.0.27) corresponding these
three cases, respectively. In case (a) we can apply the fact that ∑T

r=2 c1r ≤ Ch−
δ

1+δ and
the Davydov inequality to obtain V D2nTa ≤ Cnh2− 4δ

1+δ /T = O(nh
2(1−δ )

1+δ /T ) = o(1) . In case
(b), WLOG we assume t < s < s + r2−1 < t + r1−1. Then we apply Lemma .0.5 by first
separating t from (s,s+ r2−1, t + r1−1) and then separating t + r1−1 from (s,s+ r2−1)
to obtain

∣∣∣Cov
(

k
i
h,t,t+r1−1, k

i
h,s,s+r2−1

)∣∣∣
=

∣∣∣E
{[

k
i
h,t,t+r1−1−E(ki

h,t,t+r1−1)
][

k
i
h,s,s+r2−1−E(ki

h,s,s+r2−1)
]}∣∣∣

≤
∣∣∣E

{
Et

[
k

i
h,t,t+r1−1−E(ki

h,t,t+r1−1)
][

k
i
h,s,s+r2−1−E(ki

h,s,s+r2−1)
]}∣∣∣+Ch−

2δ
1+δ α

δ
1+δ (s− t)

≤ Ch−
2δ

1+δ α
δ

1+δ (t + r1− s− r2)+Ch−
2δ

1+δ α
δ

1+δ (s− t) .

Then we have

h2
n

∑
i=1

T

∑
r1=2

c1r1

T

∑
r2=2

c1r2

(Tr1+1)(Tr2+1)

Tr1+1

∑
t=1

Tr2+1

∑
s=1,s6=t,s6=t+r1−r2

t<s<s+r2−1<t+r1−1

∣∣∣Cov
(

k
i
h,t,t+r1−1,k

i
h,s,s+r2−1

)∣∣∣

≤ Mh
2

1+δ

n

∑
i=1

T

∑
r1=2

T

∑
r2=2

c1r1c1r2

(Tr1+1)(Tr2+1)

Tr1+1

∑
t=1

Tr2+1

∑
s=1,s6=t,s6=t+r1−r2

t<s<s+r2−1<t+r1−1

{
α

δ
1+δ (t + r1− s− r2)+α

δ
1+δ (s− t)

}

= O
(

nh
2(1−δ )

1+δ /T
)

= o(1) .

It follows that V D2nT b = o(1) . Similarly, we have V D2nT c = o(1) . Hence Var(D2nT,1a1) =

o(1) and D2nT,1a1 = oP (1) by the Chebyshev inequality.
To study D2nT,1a2 in (.0.26), let χi,ts ≡ k

i
h,ts−EtEs[k

i
h,ts], and χc

i,ts ≡ χi,ts−E (χi,ts). Not-

ing that |E (χi,ts)| ≤ Ch
−δ

1+δ α
δ

1+δ (|s− t|) , we can readily show that D2nT,1a2 =
−→
D 2nT,1a2 +

oP (1) , where
−→
D 2nT,1a2 = h∑n

i=1 ∑T
r=2 c1r

1
C2

T
∑1≤t<s≤T χc

i,ts. By construction, E(
−→
D 2nT,1a2) =
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0 and

E
[(−→

D 2nT,1a2

)2
]

= h2
n

∑
i=1

T

∑
r1=2

c1r1

T

∑
r2=2

c1r2

1(
C2

T

)2 ∑
1≤t1<t2≤T

∑
1≤t3<t4≤T

E
(
χc

i,t1t2 χc
i,t3t4

)

≤ Cnh
2

1+δ /T = o(1) .

Consequently,
−→
D 2nT,1a2 = oP (1) and D2nT,1a2 = oP (1) . Hence D2nT,1a = oP (1) . Analo-

gously D2nT,1b = oP (1) and hence D2nT,1 = oP (1) .
By the same token we can show that D2nT,2 = oP (1) . To show D2nT,3 = oP (1) , by

(.0.25) we can decompose D2nT,3 as follows

D2nT,3 =
h
n1

T1

∑
r=1

Tr

T1

n

∑
1≤i 6= j≤n

1
T 2

r

Tr

∑
t=1

Tr

∑
s=1

(
k

i
h,t,t+r−E[ki

h,t,t+r]
)(

k
j
h,s,s+r−E[k j

h,s,s+r]
)

− h
n1

T1

∑
r=1

Tr

T1

n

∑
1≤i6= j≤n

1
TrC2

T

Tr

∑
t1=1

∑
1≤t2<t3≤T

(
k

i
h,t1,t1+r−E[ki

h,t1,t1+r]
)

χ j,t2t3

− h
n1

T1

∑
r=1

Tr

T1

n

∑
1≤i6= j≤n

1
TrC2

T

Tr

∑
t1=1

∑
1≤t2<t3≤T

χi,t2t3

(
k

j
h,t1,t1+r−E[k j

h,t1,t1+r]
)

+
h
n1

T1

∑
r=1

Tr

T1

n

∑
1≤i6= j≤n

1(
C2

T

)2 ∑
1≤t1<t2≤T

∑
1≤t3<t4≤T

χi,t1t2 χ j,t3t4

≡ D2nT,3a−D2nT,3b−D2nT,3c +D2nT,3d , say

It suffices to show D2nT,3ξ = oP (1) for ξ = a,b,c, and d. We only sketch the proof of
D2nT,3d = oP (1) since the other cases are simpler. First, note that D2nT,3d =

−→
D 2nT,3d +oP (1)

by a simple application of Lemma .0.5, where

−→
D 2nT,3d =

2h

n1
(
C2

T

)2

T1

∑
r=1

Tr

T1
∑

1≤i< j≤n
∑

1≤t1<t2≤T,1≤t3<t4≤T
χc

i,t1t2 χc
j,t3t4 .

Second, noting that E(
−→
D 2nT,3d) = 0, we can write

E
[(−→

D 2nT,3d

)2
]

=
16h2

(
∑T1

r=1
Tr
T1

)2

(n1)
2 (C2

T )4 ∑
1≤i< j≤n

∑
1≤t1<t2≤T
1≤t3<t4≤T

∑
1≤t5<t6≤T,
1≤t7<t8≤T

E
[
χc

i,t1t2 χc
i,t3t4

]
E

[
χc

j,t5t6 χc
j,t7t8

]
.

Now, following the same arguments as used in the proof of (.0.13) and applying Lemmas

.0.5 and .0.6 repeatedly, we can show that E[(
−→
D 2nT,3d)2] = O(h

2(1−δ )
1+δ T 4α

δ
1+δ (m)+h2m4) =

o(1) . Hence
−→
D 2nT,3d = oP (1) . This completes the proof of the corollary.

.0.2 Proof of Theorem 2.3.3

It suffices to show that under H1,(i) Γ̂nT = µA +oP (1) , (ii) (nT h)−1 B̂nT = oP (1) , and (iii)
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σ̂2
nT = σ2

A +oP (1) , because then (nT h)−1 ÎnT = Γ̂nT
σ̂nT
− (nT h)−1B̂nT

σ̂nT

p→ µA
σA

> 0. Using the expres-

sion of Γ̂nT in (2.2.7), we can easily show that E[Γ̂nT ] = µA + o(1) and Var(Γ̂nT ) = o(1) .

Then (i) follows by the Chebyshev inequality. Next, it is easy to show that (nT h)−1 B̂nT =

OP
(
T−1

)
= oP (1) and thus (ii) follows. Lastly one can show (iii) by the Chebyshev in-

equality.

.0.3 Proof of Theorem 2.4.1

Let Γ̃1nT , Γ̃nT , B̃nT , and σ̃2
nT be analogously defined as Γ̂1nT , Γ̂nT , B̂nT , and σ̂2

nT but with

{uit} being replaced by the residuals {ũit} in their definitions. We prove the theorem by

showing that: (i) nT h(Γ̃nT − Γ̂nT ) = oP (1) ; (ii) σ̃2
nT = σ̂2

nT + oP (1) ; and (iii) B̃nT − B̂nT =

oP (1) .
To show (i), let ∆̂nT ≡ Γ̂1nT − Γ̂nT and ∆̃nT ≡ Γ̃1nT − Γ̃nT . By straightforward but tedious

calculations, we have ∆̂nT = ∆̂nT,1 +∆̂nT,2, where ∆̂nT,1 = R
(
k
)
[ 1

T h2 (1+ 1
T )− 2

nT h

n
∑

i=1

∫
f̂ 2
i (u)du],

and

∆̂nT,2 =
1

n(n−1) ∑
1≤i6= j≤n

(
1

T 2 −
1

P2
T

+
6

P4
T

+
2

P3
T

)
∑

1≤t 6=s≤T
k

i
h,tsk

j
h,ts

+
1

n(n−1) ∑
1≤i6= j≤n

(
2

P3
T
− 2

T 3 +
4

P4
T

)
∑

1≤t 6=s,t 6=r≤T
k

i
h,tsk

j
h,tr

+
1

n(n−1) ∑
1≤i6= j≤n

(
1

T 4 −
1

P4
T

)
∑

1≤t 6=s,r 6=q≤T
k

i
h,tsk

j
h,rq. (.0.28)

Similarly, ∆̃nT = ∆̃nT,1 + ∆̃nT,2, where ∆̃nT,1 and ∆̃nT,2 are analogously defined as ∆̂nT,1 and

∆̂nT,2 but with {uit} being replaced by {ũit} in their definitions. It follows that nT h(Γ̃nT −

Γ̂nT ) = nT h(Γ̃1nT − Γ̂1nT ) −nT h(Γ∆̃nT,1− ∆̂nT,1)−nT h(∆̃nT,2− ∆̂nT,2). We prove (i) by es-

tablishing that: (i1) nT h(Γ̃1nT − Γ̂1nT ) = oP (1) , (i2) nT h(∆̃nT,1− ∆̂nT,1) = oP (1) , and (i3)

nT h(∆̃nT,2− ∆̂nT,2) = oP (1) , respectively in Propositions .0.4, .0.5 and .0.6 below.
For (ii), we have

σ̃2
nT − σ̂2

nT =
4R

(
k
)2

n(n−1)T ∑
1≤i 6= j≤n

T

∑
t=1

[
f̃i j,−t (ũit , ũ jt)− f̂i j,−t (uit ,u jt)

]

=
4R

(
k
)2

n(n−1)T (T −1) ∑
1≤i 6= j≤n

∑
1≤t 6=s≤T

[
kh (ũit − ũis)kh (ũ jt − ũ js)− ki

h,tsk
j
h,ts

]

=
4R

(
k
)2

n(n−1)T (T −1) ∑
1≤i 6= j≤n

∑
1≤t 6=s≤T

{h−2ki
h,tsk

′
j,ts (∆u jt −∆u js)

+h−2k j
h,tsk

′
i,ts (∆uit −∆uis)}+oP (1) ,
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where f̃i j,−t is analogously defined as f̂i j,−t with {uit} being replaced by {ũit}, k′i,ts ≡

k′ ((uit −uis)/h) and ∆uit ≡ ũit− uit . Then following the proof of Lemma .0.4 below, one

can readily show that the dominant term in the last expression is oP (1) by the Chebyshev

inequality.
For (iii), letting Ẽ [ϕi,1r] be analogously defined as Ê [ϕi,1r] but with {uit} being replaced

by {ũit}, we have

B̃nT − B̂nT =
h
n1

T

∑
r=2

T − r +1
T −1 ∑

1≤i6= j≤n
{Ẽ [ϕi,1r] Ẽ [ϕ j,1r]− Ê [ϕi,1r] Ê [ϕ j,1r]}

=
h
n1

T

∑
r=2

T − r +1
T −1 ∑

1≤i6= j≤n
Ê [ϕi,1r]

{
Ẽ [ϕ j,1r]− Ê [ϕ j,1r]

}

+
h
n1

T

∑
r=2

T − r +1
T −1 ∑

1≤i6= j≤n

{
Ẽ [ϕi,1r]− Ê [ϕi,1r]

}
Ê [ϕ j,1r]

+
h
n1

T

∑
r=2

T − r +1
T −1 ∑

1≤i6= j≤n

{
Ẽ [ϕi,1r]− Ê [ϕi,1r]

}{
Ẽ [ϕ j,1r]− Ê [ϕ j,1r]

}

≡ DnT,1 +DnT,2 +DnT,3, say.

Analogously to the proofs of Lemmas .0.3-.0.4 below, we can use the expression Ẽ [ϕ j,1r]−

Ê [ϕ j,1r] = 1
T−r ∑T−r

t=1 {kh (ũit − ũi,t+r)−k
i
h,t,t+r}− 1

C2
T

∑1≤t<s≤T{kh (ũit − ũis)−k
i
h,ts}, the Tay-

lor expansions, and the Chebyshev inequality to show that DnT,s = oP (1) for s = 1,2,3.

Proposition .0.4 nT h(Γ̃1nT − Γ̂1nT ) = oP (1) .

Proof. Noting that x2− y2 = (x− y)2 +2(x− y)y, we have

Γ̃1nT − Γ̂1nT =
1

n(n−1)1≤i6= j≤n

∫
Ri j (u,v)2 dudv

+
2

n(n−1)1≤i 6= j≤n

∫
Ri j (u,v)

[
f̂i j (u,v)− f̂i (u) f̂ j (v)

]
dudv≡ ΓnT,1 +ΓnT,2,

where Ri j (u,v)≡ f̃i j (u,v)− f̃i (u) f̃ j (v)− f̂i j (u,v)+ f̂i (u) f̂ j (v) , f̃i and f̃i j are analogously
defined as f̂i and f̂i j with {uit ,u jt}T

t=1 being replaced by {ũit , ũ jt}T
t=1. Expanding kh (ũit −u)=

h−1k ((ũit −u)/h) in a Taylor series around uit−u with an integral remainder term, we have

kh (ũit −u) = h−1kit (u)+h−2k′it (u)∆uit +h−2∆uit

∫ 1

0
k+

it (u,λ )dλ , (.0.29)

where ∆uit ≡ ũit−uit , kit (u)≡ k ((uit −u)/h) , k′it (u)≡ k′ ((uit −u)/h) , k+
it (u,λ )≡ k′((uit−
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u+ λ∆uit)/h)− k′it (u) , and k′ denotes the first order derivative of k. It follows that

Ri j (u,v) =
1
T

T

∑
t=1

[kh (ũit −u)kh (ũ jt − v)− kh (uit −u)kh (u jt − v)]

− 1
T 2

T

∑
t=1

T

∑
s=1

[kh (ũit −u)kh (ũ js− v)− kh (uit −u)kh (u js− v)] =
8

∑
r=1

Rri j (u,v) ,

where

R1i j (u,v) ≡ 1
T 2h3

T

∑
t=1

T

∑
s=1

[k jt (v)− k js (v)]k′it (u)∆uit ,

R2i j (u,v) ≡ 1
T 2h3

T

∑
t=1

T

∑
s=1

[kit (u)− kis (u)]k′js (v)∆u js,

R3i j (u,v) ≡ 1
T 2h3

T

∑
t=1

T

∑
s=1

[k jt (v)− k js (v)]∆uit

∫ 1

0
k+

it (u,λ )dλ ,

R4i j (u,v) ≡ 1
T 2h3

T

∑
t=1

T

∑
s=1

[kit (u)− kis (u)]∆u jt

∫ 1

0
k+

jt (v,λ )dλ ,

R5i j (u,v) ≡ 1
T 2h4

T

∑
t=1

T

∑
s=1

k′it (u)∆uit
[
k′jt (v)∆u jt − k′js (v)∆u js

]
,

R6i j (u,v) ≡ 1
T 2h4

T

∑
t=1

T

∑
s=1

[
k′jt (v)∆u jt − k′js (v)∆u js

]
∆uit

∫ 1

0
k+

it (u,λ )dλ ,

R7i j (u,v) ≡ 1
T 2h4

T

∑
t=1

T

∑
s=1

[
k′it (u)∆uit − k′is (u)∆uis

]
∆u jt

∫ 1

0
k+

jt (v,λ )dλ ,

R8i j (u,v) ≡ 1
T 2h4

T

∑
t=1

T

∑
s=1

[
∆uit

∫ 1

0
k+

it (u,λ )dλ −∆uis

∫ 1

0
k+

is (u,λ )dλ
]

∆u jt

∫ 1

0
k+

jt (v,λ )dλ .

By the Cr inequality, it suffices to prove the theorem by showing that:

RrnT ≡ T h
n1

∑
1≤i6= j≤n

∫
Rri j (u,v)2 dudv = oP (1) for r = 1,2, ...,8, (.0.30)

and

SrnT ≡ T h
n1

∑
1≤i 6= j≤n

∫
Rri j (u,v) [ f̂i j (u,v)− f̂i (u) f̂ j (v)]dudv = oP (1) for r = 1,2, ...,8.

(.0.31)

We prove (.0.30) in Lemma .0.3 below and (.0.31) in Lemma .0.4 below.

To proceed, let τ ((Xit − x)/b) be the stack of ((Xit − x)/b)j , 0 ≤ |j| ≤ p, in the lex-

icographical order such that we can write SiT (x) = 1
T ∑T

t=1 τ(Xit−x
b )τ(Xit−x

b )′wb (Xit − x) .

Let ViT (x) = 1
T ∑T

t=1 vit (x)uit , and BiT (x) = 1
T ∑T

t=1 vit (x)gi (Xit)− gi (x) , where vit (x) ≡

τ ((Xit − x)/b) wb (Xit − x) . By Masry (1996b), we have supx∈Xi
||BiT (x) || = OP

(
bp+1

)
,

supx∈Xi
||ViT (x) || = OP(T−1/2b−d/2√logT ), and supx∈Xi

||SiT (x)− fi (x)S|| = OP(b +
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T−1/2b−d/2√logT ), where S is defined in (2.4.2). Following Chen, Gao, and Li (2009,

Lemma A.1), we can show that

max
1≤i≤n

sup
x∈Xi

||SiT (x)− fi (x)S||= oP (1) . (.0.32)

Then by the Slutsky lemma and Assumptions A.5(ii) and A.7(i), we have

max
1≤i≤n

sup
x∈Xi

[λmin (SiT (x))]−1 =
[

min
1≤i≤n

min
x∈Xi

fi (x)
]−1

[λmin (S)]−1 +oP (1) . (.0.33)

By the standard variance and bias decomposition, we have

uit − ũit = ĝi (Xit)−gi (Xit) = e′1[SiT (Xit)]−1ViT (Xit)+ e′1[SiT (Xit)]−1BiT (Xit)]

≡ Vit +Bit . (.0.34)

Let
ηi,ts ≡ e′1[SiT (Xit)]−1vis (Xit) . (.0.35)

We frequently need to evaluate terms associated with ηi,ts and Bit :

1
n

n

∑
i=1

(
1

T 2 ∑
1≤t,s≤T

|ηi,ts|
)q

= OP (1) , q = 1,2,3, (.0.36)

1
n

n

∑
i=1

(
1

T 3 ∑
1≤t,s,r≤T

|ηi,tsηi,tr|
)q

= OP (1) , q = 1,2, (.0.37)

and
1
n

n

∑
i=1

(
1
T

T

∑
t=1
|Bit |

)q

= OP

(
bq(p+1)

)
, q = 1,2,3,4. (.0.38)

(.0.36) and (.0.37) can be proved by using (.0.33) and the Markov inequality. For (.0.38), we
first need to apply the fact that [SiT (Xit)]−1SiT (Xit) = IN and expanding gi (Xis) in a Taylor
series around Xit with an integral remainder to obtain

Bit = e′1[SiT (Xit)]−1 1
T

T

∑
s=1

vis (Xit)∆is (Xit)

where ∆is (x) ≡ gi (Xis)− gi (x)−∑p
|j|=1

1
j! D

jgi (x)(Xis− x)j = ∑|j|=p+1
1
j! D

jgi (x)(Xis− x)j

+(p+1) ∑|j|=p+1
1
j! (Xis− x)j ∫ [(

Djgi
)
(x+λ (Xis− x))−Djgi (x)

]
(1−λ )p dλ . Then we

can apply (.0.33), the dominated convergence theorem, and the Markov inequality to show

that (.0.38) holds. Let X≡ {Xit , i = 1, ...,n, t = 1, ...,T} and EX (·) denote expectation con-

ditional on X .
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Lemma .0.3 RrnT ≡ T h
n1

∑1≤i 6= j≤n
∫

Rri j (u,v)2 dudv = oP (1) for r = 1,2, ...,8.

Proof. We only prove the lemma for the cases where r = 1, 3, 5, 6, and 8 as the other
cases can be proved analogously. By (.0.34) and the Cauchy-Schwarz inequality, we have

R1nT ≤ 2
n1T 3h5 ∑

1≤i6= j≤n

∫ [
T

∑
1≤t 6=s≤T

[k jt (v)− k js (v)]k′it (u)Vit

]2

dudv

+
2

n1T 3h5 ∑
1≤i6= j≤n

∫ [
T

∑
1≤t 6=s≤T

[k jt (v)− k js (v)]k′it (u)Bit

]2

dudv

=
2

n1T 5h3 ∑
1≤i6= j≤n

∑
1≤t1 6=t2≤T

T

∑
t3=1

∑
1≤t4 6=t5≤T

T

∑
t6=1

κ j,t1t2t4t5k′i,t1t4uit3uit6ηi,t1t3ηi,t4t6

+
2

n1T 3h3 ∑
1≤i6= j≤n

∑
1≤t1 6=t2≤T

∑
1≤t3 6=t4≤T

κ j,t1t2t3t4k′i,t1t3Bit1Bit3

≡ 2R1nT,1 +2R1nT,2,

where k′ is a two-fold convolution of k′, and

κ j,tsrq ≡ k j,tr− k j,tq− k j,sr + k j,sq. (.0.39)

Noting that R1nT,r, r = 1,2, are nonnegative, it suffices to prove R1nT,r = oP (1) by showing
that EX[R1nT,r] = oP (1) by the conditional Markov inequality. For R1nT,1, we can easily
verify that EX[R1nT,1] =

−→
R 1nT,1 +oP (1) , where

−→
R 1nT,1 ≡ 1

n1T 5h3 ∑
1≤i 6= j≤n

∑
t1,t2,t3 are distinct

∑
t4,t5,t6 are distinct

E (κ j,t1t2t4t5)

×E(k′i,t1t4uit3uit6)ηi,t1t3ηi,t4t6 . (.0.40)

We consider two different cases for the time indices {t1, ..., t6} in the above summation:
(a) for at least four different k’s in {1, ...,6}, |tl − tk| > m for all l 6= k; (b) all the other
remaining cases. We use

−→
R 1nT,1a and

−→
R 1nT,1b to denote

−→
R 1nT,1 when the summation over

the time indices are restricted to these two cases, respectively. In case (a) we can apply
Lemmas .0.5 and .0.6 repeatedly and show that either

∣∣h−1E (κ j,t1t2t4t5)
∣∣ ≤ Ch

−δ
1+δ α

δ
1+δ (m)

or
∣∣h−1E(k′i,t1t4uit3uit6)

∣∣≤Ch
−δ
1+δ α

δ
1+δ (m) must hold. It follows that

−→
R 1nT,1a ≤ Ch−

δ
1+δ α

δ
1+δ (m)

n1T 5h ∑
1≤i6= j≤n

∑
t1,t2,t3 are distinct

∑
t4,t5,t6 are distinct

|ηi,t1t3ηi,t4t6 |

≤ CnT h−
1+2δ
1+δ α

δ
1+δ (m)


n−1

n

∑
i=1

(
T−2 ∑

1≤t,s≤T
|ηi,ts|

)2



= OP

(
nT h−

1+2δ
1+δ α

δ
1+δ (m)

)
= oP (1) ,

where we have used the result in (.0.36). In case (b) noting that we have O(n2T 4m2) terms in

the summation in (.0.40) and h−1E (κ j,t1t2t4t5) and h−3E(k′i,t1t4uit3uit6) are bounded uniformly
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in all indices (as k′ behaves like a second order kernel by Lemma .0.7), we can apply (.0.36)

and show that
−→
R 1nT,1b = OP

(
nhm2/T

)
= oP (1) .

For R1nT,2, we can show that EX[R1nT,2] =
−→
R 1nT,2 +oP (1) , where

−→
R 1nT,2 =

1
n1T 3h3 ∑

1≤i 6= j≤n
∑

t1,t2,t3,t4 are distinct
E (κ j,t1t2t3t4)E(k′i,t1t3)Bit1Bit3 .

We consider two cases for the time indices {t1, ..., t4} in the above summation: (a) for

all k’s in {1, ...,4}, |tl − tk| > m for all l 6= k; (b) all the other remaining cases. We use

−→
R 1nT,2a, and

−→
R 1nT,2b to denote

−→
R 1nT,2 when the summation over the time indices are re-

stricted to these cases, respectively. In case (a) we can use the fact that
∣∣h−1E (κ j,t1t2t3t4)

∣∣≤

Ch
−δ
1+δ α

δ
1+δ (m) , the fact that h−1E(k′i,t1t3) ≤ Ch2 (by Lemma .0.7) and (.0.38) to obtain

−→
R 1nT,2a = OP(nT h

1
1+δ b2(p+1)α

δ
1+δ (m)) = oP (1) . In case (b), note that E (κ j,t1t2t3t4) cannot

be bounded by a term proportional to h
−δ
1+δ α

δ
1+δ (m) in the cases where one of the index-

pair {(t1, t3), (t1, t4), (t2, t3), (t2, t4)} has elements that do not fall from each other at least

m-apart. But we can apply the fact that
∣∣h−1E (κ j,t1t2t3t4)

∣∣ ≤ C, |h−1E(k′i,t1t3)| ≤ Ch2, and

(.0.38) to obtain
−→
R 1nT,2b = OP(nmhb2(p+1)) = oP (1) . Hence we have EX[R1nT,2] = oP (1).

Consequently, R1nT = oP (1) .

For R3nT , write

R3nT =
1

n1T 3h4 ∑
1≤i6= j≤n

∑
1≤t1 6=t2≤T

∑
1≤t3 6=t4≤T

κ j,t1t2t3t4∆uit1∆uit3

×
∫ ∫ 1

0

∫ 1

0
k+

it1 (u,λ1)dλ1k+
it3 (u,λ2)dλ2du.

As argued by Hansen (2008, pp.740-741), under Assumption A.8 there exists an integrable
function k∗ such that

∣∣k+
it (u,λ )

∣∣ =
∣∣k′ ((uit −u+λ∆uit)/h)− k′it (u)

∣∣≤ λh−1 |∆uit |k∗ ((uit −u)/h) . (.0.41)

It follows that

EX (R3nT ) ≤ 1
4n1T 3h5 ∑

1≤i6= j≤n
∑

1≤t1 6=t2≤T
∑

1≤t3 6=t4≤T

∣∣E (κ j,t1t2t3t4)
∣∣EX{k∗i,t1t3 (∆uit1)

2 (∆uit3)
2}

≤ 1
n1T 3h5 ∑

1≤i 6= j≤n
∑

1≤t1 6=t2≤T
∑

1≤t3 6=t4≤T

∣∣E (κ j,t1t2t3t4)
∣∣EX{k∗i,t1t3 [V

2
it1V

2
it3 +B2

it1B
2
it3

+V2
it1B

2
it3 +B2

it1V
2
it3 ]}

≡ ER3nT,1 +ER3nT,2 +ER3nT,3 +ER3nT,4,

where k∗i,ts ≡ k∗ ((uit −uis)/h) and k∗ is the two-fold convolution of k∗. It is easy to show
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that ER3nT,1 =
−→
ER3nT,1 +oP (1) , where

−→
ER3nT,1 = 1

n1T 7h5 ∑
1≤i 6= j≤n

∑
t1,...,t8 are all distinct

∣∣E (κ j,t1t2t3t4)
∣∣

E(k∗i,t1t3uit5uit6uit7uit8) ηi,t1t5ηi,t1t6ηi,t3t7ηi,t3t8 . We consider two cases for the time indices
{t1, ..., t8} in the last summation: (a) for at least 4 distinct k’s in {1, ...,8}, |tl − tk| > m
for all l 6= k; (b) all the other remaining cases. We use ER3nT,1a, and ER3nT,1b to denote
ER3nT,1 when the summation over the time indices are restricted to these cases, respectively.
In case (a), we have

∣∣h−1E (κ j,t1t2t3t4)
∣∣ ≤ Ch

−δ
1+δ α

δ
1+δ (m) or

∣∣h−1E(k∗i,t1t3uit5uit6uit7uit8)
∣∣ ≤

Ch
−δ
1+δ α

δ
1+δ (m) , and thus by (.0.37)

|ER3nT,1a| ≤ CT h
−δ
1+δ α

δ
1+δ (m)

h3

n

∑
i=1

{
1

T 3 ∑
1≤t1,t5,t6≤T

|ηi,t1t5ηi,t1t6 |
}2

≤ OP

(
nT h−3− δ

1+δ α
δ

1+δ (m)
)

= oP (1) .

In case (b), noting that h−1
∣∣E (κ j,t1t2t3t4)

∣∣≤C and h−1
∣∣E(k∗i,t1t3uit5uit6uit7uit8)

∣∣≤C, we have
by (.0.37)

|ER3nT,1b| ≤ m3

T 2h3

n

∑
j=1

{
1

T 3 ∑
1≤t1,t5,t6≤T

∣∣η j,t1t5η j,t1t6

∣∣
}2

= OP
(
nm3h−3/T 2) = oP (1) .

Consequently ER3nT,1 = oP (1) . Next, it is easy to show that ER3nT,2 =
−→
ER3nT,2 + oP (1) ,

where
−→
ER3nT,2 = 1

n1T 3h5 ∑1≤i 6= j≤n ∑t1,...,t4 are all distinct
∣∣E (κ j,t1t2t3t4)

∣∣ E(k∗i,t1t3)B2
it1B

2
it3 . Then

we can show that

−→
ER3nT,2 = OP

(
nT h−3− δ

1+δ α
δ

1+δ (m)b4(p+1) +nT h−3b4(p+1)
)

= oP (1) .

Hence ER3nT,2 = oP (1) . Similarly, we can show that ER3nT,r = oP (1) for r = 3,4.

For R5nT , note that

R5nT ≤ 2n−1
1 T h ∑

1≤i 6= j≤n

∫ ∫ [
1

T h4

T

∑
t=1

k′it (u)∆uitk′jt (v)∆u jt

]2

dudv

+2n−1
1 T h ∑

1≤i 6= j≤n

∫ ∫ [
1

T 2h4 ∑
1≤t,s≤T

k′it (u)∆uitk′js (v)∆u js

]2

dudv

≡ R5nT,1 +R5nT,2.

By (.0.36) and (.0.38) and the fact that k′ behaves like second order kernel (see Lemma .0.7),
we can show that

EX (R5nT,1) =
2

n1T h5 ∑
1≤i 6= j≤n

∑
1≤t1,t2≤T

EX
[
k′i,t1t2∆uit1∆uit2

]
EX

[
k′ j,t1t2∆u jt1∆u jt2

]

= OP

(
nT h

(
T−2b−2d +b4(p+1)

))
= oP (1) .

It follows that R5nT,1 = oP (1) . By the same token, R5nT,2 = oP (1) . Consequently R5nT =
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oP (1) .

For R6nT , write R6i j (u,v)= 1
T h4 ∑T

t=1 k′jt (v)∆u jt∆uit
∫ 1

0 k+
it (u,λ )dλ − 1

T 2h4 ∑T
t=1 ∑T

s=1 k′js (v)
∆u js∆uit

∫ 1
0 k+

it (u,λ )dλ ≡R6i j,1 (u,v)−R6i j,2 (u,v) . Define R6nT,1 and R6nT,2 analogously as
R6nT but with R6i j (u,v) being replaced by R6i j,1 (u,v) and R6i j,2 (u,v) , respectively. Then

R6nT,1 =
1

n1T h6 ∑
1≤i6= j≤n

∑
1≤t,s≤T

k′ j,ts∆u jt∆u js∆uit∆uis

∫ ∫ 1

0
k+

it (u,λ1)dλ1

∫ 1

0
k+

is (u,λ2)dλ2du

Using (.0.36) and (.0.38), we have

EX (R6nT,1) =
1

n1T h6 ∑
1≤i 6= j≤n

∑
1≤t,s≤T

EX
[
k′ j,ts∆u jt∆u js

]

×EX
[

∆uit∆uis

∫ ∫ 1

0
k+

it (u,λ1)dλ1

∫ 1

0
k+

is (u,λ2)dλ2du
]

≤ 1
4n1T h7 ∑

1≤i6= j≤n
∑

1≤t,s≤T

∣∣∣EX
[
k′ j,ts∆u jt∆u js

]∣∣∣EX{k∗i,ts (∆uit∆uis)
2}

= OP

(
nT h−3

(
T−3b−3d +b6(p+1)

))
= oP (1) .

Similarly, we can show that EX (R8nT,1) = OP
(
nT h−7

(
T−4b−4d +b8(p+1)

))
= oP (1) .

Lemma .0.4 SrnT ≡ T h
n1

∑1≤i6= j≤n
∫

Rri j (u,v) [ f̂i j (u,v)− f̂i (u) f̂ j (v)]dudv = oP (1) for r =

1,2, ...,8.

Proof. We only prove the lemma for the cases where r = 1, 3, and 5 as the other cases
can be proved analogously. Decompose

S1nT =
1

T 3n1h4 ∑
1≤i6= j≤n

∑
1≤t1 6=t2≤T

∑
1≤t3 6=t4≤T

∫ ∫
[k jt1 (v)− k jt2 (v)] [k jt3 (v)− k jt4 (v)]

×k′it1 (u)kit3 (u)∆uit1dudv

=
1

T 3n1h2 ∑
1≤i6= j≤n

∑
1≤t1 6=t2≤T

∑
1≤t3 6=t4≤T

κ j,t1t2t3t4k+
i,t1t3∆uit1

=
1

T 4n1h2 ∑
1≤i6= j≤n

∑
1≤t1 6=t2≤T

∑
1≤t3 6=t4≤T

T

∑
t5=1

κ j,t1t2t3t4k+
i,t1t3uit5ηi,t1t5

+
1

T 3n1h2 ∑
1≤i 6= j≤n

∑
1≤t1 6=t2≤T

∑
1≤t3 6=t4≤T

κ j,t1t2t3t4k+
i,t1t3Bit1

≡ S1nT,1 +S1nT,2,

where k+
i,ts ≡ k+ ((uit −uis)/h) ≡ h−1 ∫

k′it (u)kis (u)du, and κ j,tsrq is defined in (.0.39). To
show S1nT,1 = oP (1) , we can first show that S1nT,1 =

−→
S 1nT,1 +oP (1) , where

−→
S 1nT,1 is anal-

ogously defined as S1nT,1 but with all distinct time indices inside the summation. Second,
we can decompose

−→
S 1nT,1 as

−→
S 1nT,11+

−→
S 1nT,12 where

−→
S 1nT,11 is analogously defined as−→

S 1nT,1 but with only i < j terms in the summation and
−→
S 1nT,12 ≡ −→S 1nT,1−−→S 1nT,11. Let

ei,tsr ≡ k+
i,tsuir, ec

i,tsr ≡ ei,tsr−E (ei,tsr) , and κc
j,t1t2t3t4 ≡ κ j,t1t2t3t4 −E(κ j,t1t2t3t4). Then we can
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decompose
−→
S 1nT,11 as follows

−→
S 1nT,11 =

1
T 4n1h2 ∑

1≤i 6= j≤n
∑

t1,...,t5 are all distinct
κ j,t1t2t3t4ei,t1t3t5ηi,t1t5 +oP (1)

=
1

T 4n1h2 ∑
1≤i 6= j≤n

∑
t1,...,t5 are all distinct

{κc
j,t1t2t3t4ec

i,t1t3t5ηi,t1t5 +κc
j,t1t2t3t4E (ei,t1t3t5)ηi,t1t5

+E(κ j,t1t2t3t4)e
c
i,t1t3t5ηi,t1t5 +E(κ j,t1t2t3t4)E (ei,t1t3t5)ηi,t1t5}+oP (1)

≡ −→
S 1nT,111 +

−→
S 1nT,112 +

−→
S 1nT,113 +

−→
S 1nT,114 +oP (1) .

For
−→
S 1nT,111, we have

EX
[
(
−→
S 1nT,111)2

]
=

1
T 8n2

1h4 ∑
1≤i< j≤n

∑
t1,...,t5 are all distinct

∑
t6,...,t10 are all distinct

ηi,t1t5ηi,t6t10

×E
[
ec

i,t1t3t5ec
i,t6t8t10

]
E[κc

j,t1t2t3t4κc
j,t6t7t8t9 ].

We consider two cases for the time indices {t1, ..., t10}: (a) for at least six different k’s,
|tl − tk| > m for all l 6= k; (b) all the other remaining cases. We use ES1,111a and ES1,111b

to denote the summation corresponding to these two cases, respectively. In the first case,
ES1,111a≤CT 2h

−2δ
1+δ α

δ
1+δ (m)∑n

i=1 {T−2 ∑1≤t 6=s≤T |ηi,ts|}2 = OP(T 2h
−2δ
1+δ α

δ
1+δ (m))= oP (1) .

In the second case,

ES1,111b ≤CT−1n−1
1 m3

n

∑
i=1

(
T−2 ∑

1≤t 6=s≤T
|ηi,ts|

)2

= OP
(
m3/T

)
= oP (1) .

It follows that
−→
S 1nT,111 = oP (1) . Analogously, we can show that

−→
S 1nT,11r = oP (1) for r =

2,3,4. So
−→
S 1nT,11 = oP (1) . Also

−→
S 1nT,12 = oP (1) by the same argument. Thus

−→
S 1nT,1 =

oP (1) and S1nT,1 = oP (1) . Analogously, we can show that S1nT,2 = oP (1) . Consequently,

S1nT = oP (1) .

For S3nT , we have

S3nT =
1

n1T 3h4 ∑
1≤i 6= j≤n

∑
1≤t1 6=t2≤T

∑
1≤t3 6=t4≤T

∫
[k jt1 (v)− k jt2 (v)] [k jt3 (v)− k jt4 (v)]dv∆uit1

×
∫

kit3 (u)
∫ 1

0
k+

it1 (u,λ )dλdu

=
1

n1T 3h3 ∑
1≤i 6= j≤n

∑
1≤t1 6=t2≤T

∑
1≤t3 6=t4≤T

κ j,t1t2t3t4∆uit1

∫
kit3 (u)

∫ 1

0
k+

it1 (u,λ )dλdu

=
1

n1T 3h3 ∑
1≤i 6= j≤n

∑
1≤t1,t2≤T

∑
1≤t3,t4≤T

E [κ j,t1t2t3t4 ]∆uit1

∫
kit3 (u)

∫ 1

0
k+

it1 (u,λ )dλdu

+
1

n1T 3h3 ∑
1≤i 6= j≤n

∑
1≤t1,t2≤T

∑
1≤t3,t4≤T

κc
j,t1t2t3t4∆uit1

∫
kit3 (u)

∫ 1

0
k+

it1 (u,λ )dλdu

≡ S3nT,1 +S3nT,2.

Noting that h−1κ j,t1t2t3t4 = ϕ j,t1t3−ϕ j,t1t4−ϕ j,t2t3 +ϕ j,t2t4 , we can decompose S3nT,r = S3nT,r1−
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S3nT,r2−S3nT,r3 +S3nT,r4, where S3nT,r1, S3nT,r2, S3nT,r3, and S3nT,r4 are defined analogously
as S3nT,r with E [κ j,t1t2t3t4 ] (for r = 1) or κc

j,t1t2t3t4 (for r = 2) being respectively replaced by
hE [ϕ j,t1t3 ] , hE [ϕ j,t1t4 ] , hE [ϕ j,t2t3 ] , and hE [ϕ j,t2t4 ] (for r = 1), or by hϕc

j,t1t3 , hϕc
j,t1t4 , hϕc

j,t2t3 ,

and hϕc
j,t2t4 (for r = 2). WLOG we prove S3nT,r = oP (1) by showing that S3nT,r1 = oP (1)

for r = 1,2. For S3nT,11, noting that

∣∣∣∣
∫

kis (u)
∫ 1

0
k+

it (u,λ )dλdu
∣∣∣∣≤

1
2
|∆uit |h−1

∫
|k ((uis−u)/h)|k∗ ((uit −u)/h)du =

1
2
|∆uit |k‡

i,ts,

where k‡
i,ts ≡ k‡ ((uit −uis)/h) and k‡ (u)≡ ∫

k∗ (u− v) |k (v)|dv, we have

|S3nT,11| ≤ 1
2n1T h ∑

1≤i6= j≤n
∑

1≤t,s≤T

∣∣E(ϕ j,ts)
∣∣(∆uit)

2 k‡
i,ts

=
1

2n1T h

{
∑

1≤i 6= j≤n
∑

|t−s|≥m
+ ∑

1≤i6= j≤n
∑

0<|t−s|<m

}
∣∣E(ϕ j,ts)

∣∣(∆uit)
2 k‡

i,ts

≡ S3nT,11a +S3nT,11b.

By the fact that
∣∣E(ϕ j,ts)

∣∣≤Ch−
δ

1+δ α
δ

1+δ (|t− s|) (see (.0.1)), we have

S3nT,11a ≤ Ch−1− δ
1+δ α

δ
1+δ (m)

n

∑
i=1

T

∑
t=1

(∆uit)
2 k‡

i,ts

= h−1− δ
1+δ α

δ
1+δ (m)OP

(
nT

(
T−1b−d +b2(p+1)

))
= oP (1) .

For S3nT,11b we can apply (.0.36) and (.0.38) and the Markov inequality to show that S3nT,11b =

OP(nm (T−1b−d +b2(p+1))) = oP (1) . It follows that S3nT,11 = oP (1) .

For S3nT,21, write S3nT,21 = 1
n1T h2 {∑1≤i< j≤n +∑1≤ j<i≤n}∑1≤t1,t2≤T ϕc

j,t1t2∆uit1
∫

kit2 (u)
∫ 1

0

k+
it1(u,λ )dλdu ≡ S3nT,211 + S3nT,212. Note that EX [S3nT,211] = 0, and EX

[
(S3nT,211)2

]
=

S3 +oP (1) , where

S3 ≡ 1

(n1T h2)2 ∑
1≤i1 6=i2< j≤n

∑
1≤t1,t2≤T

∑
1≤t3,t4≤T

E
(
ϕc

j,t1t2ϕc
j,t3t4

)

×EX
[

∆ui1t1

∫
ki1t2 (u)

∫ 1

0
k+

i1t1 (u,λ )dλdu
]

×EX
[

∆ui2t3

∫
ki2t4 (u)

∫ 1

0
k+

i2t3 (u,λ )dλdu
]

≤ 1

4(n1T h2)2 ∑
1≤i1 6=i2< j≤n

∑
1≤t1,t2≤T

∑
1≤t3,t4≤T

∣∣E{ϕc
j,t1t2ϕc

j,t3t4}
∣∣EX

[
(∆ui1t1)

2 k‡
i1,t1t2

]

×EX
[
(∆ui2t3)

2 k‡
i2,t3t4

]
.

It is easy to show that the dominant term on the r.h.s. of the last equation is given by
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S3 =
(
n1T h2)−2 ∑1≤i1 6=i2< j≤n ∑t1,t2,t3,t4 are all distinct

∣∣∣E(ϕc
j,t1t2ϕc

j,t3t4)
∣∣∣EX[(∆ui1t1)

2k+
i1,t1t2]

×EX[(∆ui2t3)
2 k+

i2,t3t4]. We consider two cases for the time indices {t1, ..., t4} in the

last summation: (a) there exists at least an integer k ∈ {1, ...,4}, |tl− tk|> m for all

l 6= k; (b) all the other remaining cases. We use S3a, and S3b to denote S3 when the

summation over the time indices are restricted to these cases, respectively. In case

(a), WLOG we assume that t1 lies at least m-apart from {t2, t3, t4} . Then by Lemma

.0.5, E{ϕc
j,t1t2ϕc

j,t3t4} ≤
∣∣∣E{Et1(ϕc

j,t1t2)ϕ
c
j,t3t4}

∣∣∣ +Ch
−2δ
1+δ α

δ
1+δ (m) = Ch

−2δ
1+δ α

δ
1+δ (m)

as Et1(ϕc
j,t1t2) is nonrandom.

S3a ≤ Ch
−2δ
1+δ α

δ
1+δ (m)

n1T 2h2

{
n

∑
i=1

∑
1≤t1 6=t2≤T

EX
{

(∆uit1)
2 h−1k‡

i,t1t2

}}2

= nT 2h−2− 2δ
1+δ α

δ
1+δ (m)OP

(
T−2b−2d +b4(p+1)

)
= oP (1) .

In case (b), noting that the total number of terms in the summation is of order
O

(
n3T 2m2) , we can easily obtain

∣∣S3b
∣∣ = O

(
nm2h−2)OP

(
T−2b−2d +b4(p+1)

)
=

OP

(
nm2h−2T−2b−2d +nm2h−2b4(p+1))

)
= oP (1) . Consequently S3 = oP (1) and

S3nT,211 = oP (1) by the conditional Chebyshev inequality.Next we study S5nT . Write

S5nT = T h
n1

(
∑1≤i< j≤n +∑1≤ j<i≤n

)∫ ∫
R5i j (u,v) [ f̂i j (u,v)− f̂i (u) f̂ j (v)] dudv≡ S5nT,1 +S5nT,2.

It suffices to show that S5nT,1 = oP (1) and S5nT,2 = oP (1) . We only prove the former claim
as the latter one can be proved analogously. It is easy to show that

S5nT,1 =
1

n1T 3h5 ∑
1≤i< j≤n

∫ ∫
∑

1≤t1 6=t2≤T
∑

1≤t3 6=t4≤T
k′it1 (u)∆uit1 [k

′
jt1 (v)∆u jt1 − k′jt2 (v)∆u jt2 ]

×k jt3 (v) [kit3 (u)− kit4 (u)]dudv

=
1

n1T 3h5 ∑
1≤i< j≤n

∑
1≤t1 6=t2≤T

∑
1≤t3 6=t4≤T

(k†
i,t1t3 − k†

i,t1t4)∆uit1(k
†
j,t1t3∆u jt1 − k†

j,t2t3∆u jt2)

=
−→
S 5nT,1 +oP (1) ,

where k†
i,ts ≡ k† ((uit −uis)/h) , k† (u)≡ ∫

k′ (u− v)k (v)dv,

−→
S 5nT,1 =

1
n1T 3h5 ∑

1≤i< j≤n
∑

t1...t4 are all distinct
(k†

i,t1t3 − k†
i,t1t4)∆uit1(k

†
j,t1t3∆u jt1 − k†

j,t2t3∆u jt2),

and the oP (1) terms arises when the cardinality of the set {t1, t2, t3, t4} is 3 or 2. In partic-
ular, by the standard bias-variance decomposition (for ∆uit1 and ∆u jt2) and the conditional
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Chebyshev inequality, we can show that

1
n1T 3h5 ∑

1≤i< j≤n
∑

t1 6=t2,t3 6=t4
#{t1...t4}=3 or 2

(k†
i,t1t3 − k†

i,t1t4)∆uit1(k
†
j,t1t3∆u jt1 − k†

j,t2t3∆u jt2)

= OP

(
h−5

(
T−1 +T−3/2b−d

)
+nhb2(p+1)

)
= oP (1) .

Decompose
−→
S 5nT,1 =

−→
S 5nT,11 +

−→
S 5nT,12, where

−→
S 5nT,11 ≡ 1

n1T 3h5 ∑
1≤i< j≤n

∑
t1...t4 are all distinct

(k†
i,t1t3 − k†

i,t1t4)∆uit1(k
†
j,t1t3 − k†

j,t2t3)∆u jt1 , and

−→
S 5nT,12 ≡ 1

n1T 3h5 ∑
1≤i< j≤n

∑
t1...t4 are all distinct

(k†
i,t1t3 − k†

i,t1t4)∆uit1k†
j,t2t3(∆u jt1 −∆u jt2).

We prove
−→
S 5nT,1 = oP (1) by showing that

−→
S 5nT,11 = oP (1) and

−→
S 5nT,12 = oP (1) . We only

prove the former claim as the latter can be proved analogously. Let

S (A,B)≡ 1
n1T 3h5 ∑

1≤i< j≤n
∑

1≤t1 6=t2≤T
∑

1≤t3 6=t4≤T

(
k†

i,t1t3 − k†
i,t1t4

)
Ait1

(
k†

j,t1t3 − k†
j,t2t3

)
B jt2 .

By (.0.34), we have
−→
S 5nT,11 = S (∆u,∆u) = S (V,V)+S (B,B)+S (V,B)+S (B,V) .

It suffices to show that each term in the last expression is oP (1) .
First, we consider S (V,V) . It is easy to verify that

S (V,V) = S1 +oP (1)

where

S1 ≡ 1
n1T 5h5 ∑

1≤i< j≤n
∑

t1...t6 are distinct

(
k†

i,t1t3 − k†
i,t1t4

)
uit5

(
k†

j,t1t3 − k†
j,t2t3

)
u jt6ηi,t1t5ηi,t2t6 .

Let ϕ†
i,ts ≡ k†

i,ts − Et(k†
i,ts)− Es(k†

i,ts) + EtEs(k†
i,ts). Then k†

j,t1t3 − k†
j,t1t4 = ϕ†

j,t1t3 − ϕ†
j,t1t4 +

Et1(k
†
j,t1t3)− Et1(k

†
j,t1t4) and k†

j,t1t3 − k†
j,t2t3 = ϕ†

j,t1t3 − ϕ†
j,t2t3 + Et3(k

†
j,t1t3)− Et3(k

†
j,t2t3). With

these we can decompose S1 as follows:

S1 =
1

n1T 3h5 ∑
1≤i< j≤n

∑
t1...t6 are distinct

{[ϕ†
i,t1t3 −ϕ†

i,t1t4 ][ϕ
†
j,t1t3 −ϕ†

j,t2t3 ]

+[ϕ†
i,t1t3 −ϕ†

i,t1t4 ][Et3(k
†
j,t1t3)−Et3(k

†
j,t2t3)]+ [Et1(k

†
i,t1t3)−Et1(k

†
i,t1t4)][ϕ

†
j,t1t3 −ϕ†

j,t2t3 ]

+[Et1(k
†
i,t1t3)−Et1(k

†
i,t1t4)][Et3(k

†
j,t1t3)−Et3(k

†
j,t2t3)]}uit5u jt6ηi,t1t5η j,t2t6

≡ S11 +S12 +S13 +S14, say, (.0.42)

where the definitions of S1r, r = 1,2,3,4, are self-evident. We further decompose S11 as
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follows:

S11 =
1

n1T 5h5 ∑
1≤i< j≤n

∑
t1...t6 are distinct

{ϕ†
i,t1t3ϕ†

j,t1t3 −ϕ†
i,t1t3ϕ†

j,t2t3 −ϕ†
i,t1t4ϕ†

j,t1t3

+ϕ†
i,t1t4ϕ†

j,t2t3}uit5ϕ†
j,t1t3u jt6ηi,t1t5η j,t2t6

≡ S111−S112−S113 +S114

To analyze S111, let Ai1 j1,i2 j2 (t1, ..., t10)≡ϕ†
i1,t1t3ui1t4ϕ†

j1,t1t3u j1t5ηi1,t1t4η j1,t2t5ϕ†
i2,t6t8ui2t9ϕ†

j2,t6t8u j2t10

ηi2,t6t9η j2,t7t10 . Then

EX
[
(S111)

2
]

=
1

(n1T 4h5)2 ∑
1≤i1< j1≤n

∑
1≤i2< j2≤n

∑
t1...t5 are distinct

∑
t6...t10 are distinct

EX [Ai1 j1,i2 j2 (t1, ..., t10)]

=
1

(n1T 4h5)2 ∑
1≤i1< j1≤n,1≤i2< j2≤n,
i1,i2, j1, j2 are all distinct

∑
t1...t5 are distinct

∑
t6...t10 are distinct

EX [Ai1 j1,i2 j2 (t1, ..., t10)]

+
1

(n1T 4h5)2 ∑
1≤i1< j1≤n,1≤i2< j2≤n,

#{i1,i2, j1, j2}=3

∑
t1...t5 are distinct

∑
t6...t10 are distinct

EX [Ai1 j1,i2 j2 (t1, ..., t10)]

+
1

(n1T 4h5)2 ∑
1≤i< j≤n

∑
t1...t5 are distinct

∑
t6...t10 are distinct

EX [Ai j,i j (t1, ..., t10)]

≡ ES111,1 +ES111,2 +ES111,3,

We prove EX[(S111)
2] = oP (1) by showing that ES111,r = oP (1) for r = 1,3 as one can

analogously show that ES111,2 = oP (1) . Write ES111,1 as

ES111,1 =
1

(n1T 4h5)2 ∑
1≤i1< j1≤n,1≤i2< j2≤n,
i1,i2, j1, j2 are all distinct

∑
t1...t5 are distinct

∑
t6...t10 are distinct

E
(

ϕ†
i1,t1t3ui1t4

)

×E
(

ϕ†
j1,t1t3u j1t5

)
E

(
ϕ†

i2,t6t8ui2t9

)
E

(
ϕ†

j2,t6t8u j2t10

)
ηi1,t1t4η j1,t2t5ηi2,t6t9η j2,t7t10

Let G1 ≡ {t1, t3, t4} , G2 ≡ {t1, t3, t5} , G3 ≡ {t6, t8, t9} , and G4 ≡ {t6, t8, t10} . We consider
two cases: (a) there exists at least one time index that belongs to either one of these four
groups and lies at least m-apart from all other indices within the same group, (b) all the other
remaining cases. Noting that |E(ϕ†

i1,t1t3ui1t4)E(ϕ†
j1,t1t3u j1t5) E(ϕ†

i2,t6t8ui2t9)E(ϕ†
j2,t6t8u j2t10)| is

bounded by Ch7− δ
1+δ α

δ
1+δ (m) in case (a) and by Ch8 in case (b), and the total number of

terms in the summation is of order O
(
n4T 4m6

)
in case (b), we can readily obtain ES111,1 =

OP(n2T 2h−3− δ
1+δ α

δ
1+δ (m)+n2T−4m6h−2) = oP (1) . So ES111,1 = oP (1) .

For ES111,3, we have

ES111,3 =
1

(n1T 4h5)2 ∑
1≤i< j≤n

∑
t1...t5 are distinct

∑
t6...t10 are distinct

E
[
ϕ†

i,t1t3uit4ϕ†
i,t6t8uit9

]

×E
[
ϕ†

j,t1t3u jt5ϕ†
j,t6t8u jt10

]
ηi,t1t4η j,t2t5ηi,t6t9η j,t7t10 .

Let G5 ≡ {t1, t3, t4, t6, t8, t9}, G6 ≡ {t1, t3, t5, t6, t8, t10} and G ≡ G5∪G6. We can consider five
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cases: the number of distinct time indices in G are 8, 7, 6, 5, and 4, respectively, and
use (a)-(e) to denote these five cases in order. Also, we use ES111,3ξ to denote ES111,3

when the time indices in the summation are restricted to these five cases in order for ξ =
a, ...,e. Following the arguments used in the analysis of S111,1, we can show that ES111,3a =
OP(T 2h−4− 2δ

1+δ α
δ

1+δ (m) + T−4m6h−2) = oP (1) . Similarly we can show that ES111,3ξ =
oP (1) for ξ = b,c,d. For ES111,3e, noting that the sets {t1, t3, t4, t5} and {t6, t8, t9, t10} must
coincide, we have |ES111,3e|= OP

(
T−2h−8

)
= oP (1) . Hence ES111,3 = oP (1) , and we have

shown that EX[(S111)
2] = oP (1) , implying that S111 = oP (1) . Similarly, we can show that

S11r = oP (1) for r = 2, 3, 4. It follows that S11 = oP (1) .
For S12 defined in (.0.42), we decompose it as follows:

S12 =
1

n1T 5h5 ∑
1≤i< j≤n

∑
t1...t6 are distinct

[ϕ†
i,t1t3 −ϕ†

i,t1t4 ]uit5 [Et3(k
†
j,t1t3)−Et3(k

†
j,t2t3)]u jt6ηi,t1t5η j,t2t6

=
1

n1T 5h5 ∑
1≤i< j≤n

∑
t1...t6 are distinct

{ϕ†
i,t1t3 [Et3(k

†
j,t1t3)− c†

j ]−ϕ†
i,t1t4 [Et3(k

†
j,t1t3)− c†

j ]

−ϕ†
i,t1t3uit5 [Et3(k

†
j,t2t3)− c†

j ]+ϕ†
i,t1t4 [Et3(k

†
j,t2t3)− c†

j ]}uit5u jt6ηi,t1t5η j,t2t6

≡ S121−S122−S123 +S124,

where c†
j ≡ EtEs(k†

j,ts). Analogously to the analysis of S111, we can show EX[(S12r)2] =
oP (1) for r =1, 2, 3, 4. It follows that S12 = oP (1) . By the same token, S113 = oP (1) . For
S114, we have

S14 =
1

n1T 5h5 ∑
1≤i< j≤n

∑
t1...t6 are distinct

{[Et1(k
†
i,t1t3)− c†

i ][Et3(k
†
j,t1t3)− c†

j ]

−[Et1(k
†
i,t1t3)− c†

i ][Et3(k
†
j,t2t3)− c†

j ]− [Et1(k
†
i,t1t4)− c†

i ][Et3(k
†
j,t1t3)− c†

j ]

+[Et1(k
†
i,t1t4)− c†

i ][Et3(k
†
j,t2t3)− c†

j ]}uit5u jt6ηi,t1t5η j,t2t6

≡ S141−S142−S143 +S144.

Then we can show that EX[(S14r)2] = oP (1) for r =1, 2, 3, 4. It follows that S14 = oP (1) .
Hence we have shown that S (V,V) = S1 +oP (1) = oP (1) .

Now, we consider S (B,B) . We have

S (B,B) =
1

n1T 3h5 ∑
1≤i< j≤n

∑
t1...t4 are distinct

{(ϕ†
i,t1t3 −ϕ†

i,t1t4)(ϕ
†
j,t1t3 −ϕ†

j,t2t3)

+(ϕ†
i,t1t3 −ϕ†

i,t1t4)Et3(k
†
j,t1t3 − k†

j,t2t3)+Et1(k
†
i,t1t3 − k†

i,t1t4)(ϕ
†
j,t1t3 −ϕ†

j,t2t3)

+Et1(k
†
i,t1t3 − k†

i,t1t4)Et3(k
†
j,t1t3 − k†

j,t2t3)}Bit1B jt2

≡ S21 +S22 +S23 +S24, say.

Write S21 = 1
n1T 3h5 ∑1≤i< j≤n ∑t1...t4 are distinct{ϕ†

i,t1t3ϕ†
j,t1t3 − ϕ†

i,t1t3ϕ†
j,t2t3 − ϕ†

i,t1t4ϕ†
j,t1t3 + ϕ†

i,t1t4
×ϕ†

j,t2t3}Bit1B jt2 ≡ S211 − S212 − S213 + S214. It is easy to show that S211 dominates S21r

for r = 2,3,4 and

EX
[
(S211)

2
]
= OP(n2T 2h−3− δ

1+δ α
δ

1+δ (m)+n2m2h−2 +T 2h−5− 2δ
1+δ α

δ
1+δ (m))

(
b4(p+1)

)
= oP (1) .
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Hence S211 = oP (1) and S21 = oP (1) . Similarly, by decomposing Et1(k
†
i,t1t3 − k†

i,t1t4) as

[Et1(k
†
i,t1t3)−c†

i ]− [Et1(k
†
i,t1t4)−c†

i ] and Et3(k
†
j,t1t3 −k†

j,t2t3) as [Et3(k
†
j,t1t3)−c†

j ]− [Et3(k
†
j,t2t3)−

c†
j ], we can show S2r = oP (1) for r = 2,3,4 by the conditional Chebyshev inequality.

Consequently, S (B,B) = oP (1) . Analogously, we can show that S (V,B) = oP (1) and

S (B,V) = oP (1) . It follows that S5nT,1 = oP (1) .

Proposition .0.5 nT h(∆̃nT,1− ∆̂nT,1) = oP (1) .

Proof. By the definitions of ∆̂nT,1 and ∆̃nT,1, we have −nT h(∆̃nT,1− ∆̂nT,1)/
[
2R

(
k
)]

= ∑n
i=1

∫
[ f̃ 2

i (u)− f̂ 2
i (u)]du ≡U1nT + 2U2nT , where U1nT ≡ ∑n

i=1
∫
[ f̃i (u)− f̂i (u)]2du, and

U2nT ≡ ∑n
i=1

∫
[ f̃i (u)− f̂i (u)] f̂i (u)du. Then it is straightforward to show that U1nT = oP (1)

and U2nT = oP (1) by arguments similar to but simpler than those used in the proof of Propo-

sition .0.4.

Proposition .0.6 nT h(∆̃nT,2− ∆̂nT,2) = oP (1) .

Proof. Let ∆̂nT,21, ∆̂nT,22, and ∆̂nT,23 denote the three terms on the right hand side of

(.0.28). Define ∆̃nT,21, ∆̃nT,22, and ∆̃nT,23 analogously with the estimated residuals replacing

the unobservable error terms. Then it suffices to show that nT h(∆̃nT,2r − ∆̂nT,2r) = oP (1)

for r = 1,2,3. Each of them can be proved by the use of Taylor expansions and Chebyshev

inequality. We omitted the details to save space.

.0.4 Some technical lemmas

This appendix presents some technical lemmas that are used in proving the main results.

Lemma .0.5 Let {Wt} be a strong (α-) mixing process with mixing coefficient α (t) . For
any integer l > 1 and integers (t1, ..., tl) such that 1 ≤ t1 < t2 < · · · < tl, let θ be a Borel
measurable function such that

∫
|θ (w1, ...,wl)|1+δ dF(1) (w1, ...,w j)dF(2) (w j+1, ...,wl)≤M

for some δ > 0 and M > 0, where F(1) = Ft1,...,t j and F(2) = Ft j+1,...,tl are the distribution
functions of (Wt1 , ...,Wt j) and (Wt j+1 , ...,Wtl ), respectively. Let F denote the distribution
function of (Wt1 , ...,Wtl ) . Then

∣∣∣∣
∫

θ (w1, ...,wl)dF (w1, ...,wl)−
∫

θ (w1, ...,wl)dF(1) (w1, ...,w j)dF(2) (w j+1, ...,wl)
∣∣∣∣

≤ 4M1/(1+δ )α (t j+1− t j)
δ/(1+δ ) .
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Proof. See Lemma 2.1 of Sun and Chiang (1997).

Lemma .0.6 Let {Wt} , θ , δ , and M be defined as above. Let V1 ≡ (Wt1 , ...,Wt j) and V2 ≡
(Wt j+1 , ...,Wtl ). Then E|E[θ(V1,V2)|V1]−Θ(V1)| ≤ 4M1/(1+δ )α (t j+1− t j)

δ/(1+δ ) , where Θ(v1)

≡ E[θ(v1,V2)].

Proof. See Yoshihara (1989) who proved the above lemma for β -mixing processes by

using an inequality in Yoshihara (1976). The analogous result holds for α-mixing processes

by using the Davydov inequality or Lemma .0.5.

Let k : R→ R be a differentiable kernel function, and k′ be its first derivative. De-

fine k (v)≡ ∫
k (u)k (v−u)du, k′ (v)≡ ∫

k′ (u)k′ (v−u)du, and k+ (v)≡ ∫
k′ (u)k (v−u)du.

The following lemma states some properties of k, k′, and k+ that are used in the proof of

our main results.

Lemma .0.7 Suppose k :R→R is a symmetric differential γ-th order kernel function such

that limv→∞ vlk (v) = 0 for l = 0,1. Then

(i)
∫

k (v)dv = 1,
∫

k (v)vldv = 0 for l = 1, . . .γ−1, and
∫

k (v)vγdv = 2κγ where κγ =
∫

k (u)uγdu;

(ii)
∫

k′ (v)vldv = 0 for l = 0,1 and
∫

k′ (v)v2dv = 2;

(iii)
∫

k+ (v)dv = 0, and
∫

vk+ (v)dv =−1.

Proof. (i)
∫

k (v)dv =
∫ ∫

k (u)k (v−u)dudv =
∫

k (u)du
∫

k (s)ds = 1,
∫

k (v)vldv = ∑l
s=0Cs

l
∫

k (u)usdu
∫

k (t) t l−sdt = 0 for l = 1, . . . ,γ−1, and
∫

k (v)vγdv = ∑γ
s=0Cs

γ
∫

k (u)usdu
∫

k (t) tγ−sdt = 2
∫

k (u)du
∫

k (t) tγdt = 2κγ .

(ii)
∫

k′ (v)dv =
∫ ∫

k′ (u)k′ (v−u)dudv =
∫

k′ (u)du
∫

k′ (s)ds = 0,

∫
k′ (v)vdv = 2

∫
k′ (u)udu

∫
k′ (t)dt = 0 by the fact

∫
k′ (u)du = 0, and

∫
k′ (v)v2dv =

∫ ∫
k′ (u)k′ (t)

(
u2 +2ut + t2

)
dudt = 2 [

∫
k′ (u)udu]2 = 2.

(iii)
∫

k+ (v)dv =
∫

k′ (u)
∫

k (u− v)dvdu =
∫

k′ (u)du = 0, and
∫

vk+ (v)dv =
∫

k (u)k′ (s)(s+u)dsdu =
∫

k′ (s)sds+
∫

k′ (s)ds
∫

uk (u)du =−1.
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B Proofs in Chapter 3

Throughout the appendix, let C signify a generic constant whose exact value may

vary from case to case. Let ED (·)≡ E (·|D) and VarD (·)≡Var(·|D). Let E(D ,S) (·)
denote expectation with respect to variables indexed by set S conditional on D .

Let ςN ≡ µmin
(
λ 0′λ 0/N

)
and ςT ≡ µmin

(
f 0′ f 0/T

)
where µmin (A) denotes the

minimum eigenvalue of A. Let εk ≡ β 0
k −βk for k = 1, ...,K, ε0 ≡ ‖u‖/

√
NT and

P0 ≡ (
√

NT/‖u‖)u. Let ϑNT ≡∑K
k=0 εkPk, dmax

(
λ 0, f 0)≡

√
µ1

( 1
NT λ 0′ f 0 f 0′λ 0

)
,

and dmin
(
λ 0, f 0)≡

√
µR

( 1
NT λ 0′ f 0 f 0′λ 0

)
. Define

r0
(
λ 0, f 0)≡

(
4dmax

(
λ 0, f 0)

d2
min (λ 0, f 0)

+
1

2dmax (λ 0, f 0)

)−1

and αNT ≡ ‖ϑNT‖√
NT

16dmax
(
λ 0, f 0)

d2
min (λ 0, f 0)

.

Below we prove the main results in Sections 3 and 4. The proofs of all technical

lemmas and Theorem 3.4.4 are given in the online Supplemental Material which is

available on the first author’s website.

.0.5 Proofs of the main results in Section 3

Convergence rate of ĝ(x)

Lemma .0.8 Suppose that Assumptions 1-4 hold. Then ||β̂ −β 0||= OP(K−γ/(2d) +
δ−1/2

NT ).

Proof of Theorem 3.3.1. Let ak ≡ (β̂k−β 0
k )/||β̂ −β 0|| and P(a) ≡ ∑K

k=1 akPk with

‖a‖ = 1. By Lemma .0.8, Assumptions 1(iii), 2(iii), 3(i)-(iii), and 4, we have
‖ϑNT ‖√

NT
≤ ‖e‖+‖eg‖√

NT
+ ||β̂ −β 0||‖P(a)‖√

NT
= OP

(
δ−1

NT +K−γ/d
)

+OP(K−γ/(2d) +δ−1/2
NT )

= oP (1) . By Assumptions 1(i)-(ii), r0
(
λ 0, f 0) = OP (1) . It follows that ‖ϑNT ‖√

NT
≤

r0
(
λ 0, f 0) w.p.a.1 and we can apply Proposition .0.10 in the supplementary ap-

pendix to expand LNT (β ) as follows

LNT (β ) =
1

NT

K

∑
k1=0

K

∑
k2=0

εk1εk2L(2) (λ 0, f 0,Pk1,Pk2

)

+
1

NT

K

∑
k1=0

K

∑
k2=0

K

∑
k3=0

εk1εk2εk3L(3) (λ 0, f 0,Pk1,Pk2,Pk3

)
+OP

(
α4

NT
)

= LNT
(
β 0)+L1,NT (β )+L2,NT (β )+LR,NT (β )+OP

(
α4

NT
)−OP

(
ε4

0
)
,
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where L(2) and L(3) are defined in Proposition .0.10,

LNT
(
β 0) =

1
NT

ε2
0 L(2) (λ 0, f 0,P0,P0

)
+

1
NT

ε3
0 L(3) (λ 0, f 0,P0,P0,P0

)
+OP

(
ε4

0
)
,

L1,NT (β ) =
2

NT

K

∑
k=1

εkε0L(2) (λ 0, f 0,Pk,P0
)
+

3
NT

K

∑
k=1

εkε2
0 L(3) (λ 0, f 0,Pk,P0,P0

)
,

L2,NT (β ) =
1

NT

K

∑
k1=1

K

∑
k2=1

εk1εk2L(2) (λ 0, f 0,Pk1,Pk2

)
,

and

LR,NT (β ) =
1

NT

K

∑
k2=1

K

∑
k2=1

K

∑
k3=1

εk1εk2εk3L(3) (λ 0, f 0,Pk1,Pk2,Pk3

)

+
3

NT

K

∑
k2=1

K

∑
k2=1

εk1εk2ε0L(3) (λ 0, f 0,Pk1,Pk2,P0
)

+OP[
(∥∥β −β 0∥∥+ ε0

)4− ε4
0 ]

= OP

(∥∥β −β 0∥∥2 ε0 +
∥∥β −β 0∥∥3

+
∥∥β −β 0∥∥ε3

0

)
(.0.43)

Clearly, L1,NT (β ) and L2,NT (β ) are linear and quadratic in εk, k = 1, ...,K, respec-

tively, and LR,NT (β ) includes the third and higher order asymptotically negligible

terms in the likelihood expansion. Noting that L(s) (λ 0, f 0,Pk1, · · · ,Pks

)
is linear in

the last s arguments, we have

L1,NT (β ) =−2(β −β 0)′(C(1)
NT +C(2)

NT ) and L2,NT (β ) = (β −β 0)′WNT (β −β 0),

where C(1)
NT and C(2)

NT are defined in Theorem 3.3.1. Then

LNT (β ) = LNT
(
β 0)−2((β −β 0)′(C(1)

NT +C(2)
NT )+(β −β 0)′WNT (β −β 0)

+OP

{∥∥β −β 0∥∥2 ε0 +
∥∥β −β 0∥∥3

+
∥∥β −β 0∥∥ε3

0

}
. (.0.44)

Noting that rank(PkΦ′uM f 0u′Mλ 0 +PkM f 0u′Mλ 0uΦ′+PkM f 0u′Φu′Mλ 0)≤ 3R

and using the trace inequality tr(A) ≤rank(A)‖A‖ for any real square matrix A,

we have C(2)
NT,k = 1

NT tr(PkΦ′uM f 0u′Mλ 0 +PkM f 0u′Mλ 0uΦ′+ PkM f 0u′Φu′Mλ 0) ≤
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3R
NT ‖Pk‖‖Φ‖‖u‖2 ‖Mλ 0‖

∥∥∥M f 0

∥∥∥ = ‖Pk‖√
NT

OP

(
K−2γ/d +δ−2

NT

)
. It follows that

∥∥∥C(2)
NT

∥∥∥ =

{
K

∑
k=1

[
C(2)

NT,k

]2
}1/2

=

{
K

∑
k=1

‖Pk‖2

NT

}1/2

OP(K−2γ/d +δ−2
NT )

= OP

[√
K

(
K−2γ/d +δ−2

NT

)]
. (.0.45)

For C(1)
NT , we have ||W−1

NT C(1)
NT || =||W−1

NT (NT )−1 ∑N
i=1 Z′iei||+||W−1

NT (NT )−1 ∑N
i=1 Z′ieg,i||.

By Assumption 3(v), the first term is OP(δ−1
NT K1/2/T 1/2). Let−→e g≡ (e′g,1, · · · ,e′g,N)′,

−→
Z ≡ (Z′1, · · · ,Z′N)′ and

−→
W ≡ (NT )−1−→Z ′W−1

NT
−→
Z . Note that

−→
W is a projection matrix

with µ1(
−→
W ) = 1. By Assumptions 2(ii) and 3(i)-(iii), we have

∥∥∥∥∥W−1
NT

1
NT

N

∑
i=1

Z′ieg,i

∥∥∥∥∥
2

=
1

N2T 2 tr
(−→e g

−→
Z ′W−1

NT W−1
NT
−→
Z −→e g

)

≤ [µmin (WNT )]−1 1
N2T 2 tr

(−→e g
−→
W−→e ′

g

)

≤
{

[µmin (W )]−1 +oP (1)
}∥∥−→e g

∥∥2
F /(NT ) = OP

(
K−2γ/d

)
.

Then we have ∥∥∥W−1
NT C(1)

NT

∥∥∥ = OP

(
δ−1

NT

√
K/T +K−γ/d

)
. (.0.46)

Let

rNT ≡W−1
NT C(1)

NT +W−1
NT C(2)

NT and RNT ≡ β̂ −β 0− rNT . (.0.47)

From (.0.45) and (.0.46) we have

‖rNT‖ ≤
∥∥∥W−1

NT C(1)
NT

∥∥∥+
∥∥∥W−1

NT C(2)
NT

∥∥∥ = OP

(√
Kδ−2

NT +K−γ/d
)

. (.0.48)
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Since LNT (β̂ ) ≤ LNT
(
β 0 + rNT

)
, we can apply (.0.44) to the objects on both sides

of the last inequality to obtain

‖RNT‖2 =
(

β̂ −β 0− rNT

)′
W 1/2

NT W−1
NT W 1/2

NT

(
β̂ −β 0− rNT

)

≤ [µmin (WNT )]−1
(

β̂ −β 0− rNT

)′
WNT

(
β̂ −β 0− rNT

)

≤ [µmin (WNT )]−1
[
LR,NT

(
β 0 + rNT

)−LR,NT (β 0 +(β̂ −β 0))
]

≤ OP(‖rNT‖2 ε0 +‖rNT‖ε3
0 +‖rNT‖3)

−OP(||β̂ −β 0||2ε0 + ||β̂ −β 0||ε3
0 + ||β̂ −β 0||3) (.0.49)

We now argue that ||β̂ −β 0|| has the same probability order as ||rNT || by contradic-

tion. Suppose ||β̂−β 0||= oP (||rNT ||) . Then by (.0.47) and (.0.49), and the fact that

ε3
0/||rNT || = oP (1) , we have ||rNT ||2 = OP(‖RNT‖2) ≤ oP

(||rNT ||2
)
, a contradic-

tion. Similarly, suppose ||rNT ||= oP(||β̂−β 0||). Then ||β̂−β 0||2 = OP(‖RNT‖2)≤
OP(||β̂ − β 0||ε3

0 ), implying that ||β̂ − β 0|| ≤ OP
(
ε3

0
)

= oP (||rNT ||) = oP(||β̂ −
β 0||), a contradiction. It follows that

∥∥∥β̂ −β 0
∥∥∥ = OP (||rNT ||) = OP

(√
Kδ−2

NT +K−γ/d
)

(.0.50)

and

RNT = OP(‖rNT‖ε1/2
0 ) = OP[(

√
Kδ−2

NT +K−γ/d)(δ−1/2
NT +K

−2γ/d
)] (.0.51)

because ε2
0/||rNT || = OP (1) and ||rNT ||/ε0 = OP (1) by Assumption 4.

Now we derive the convergence rate of ĝ(x).

∫

X
[ĝ(x)−g(x)]2 w(x)dx

=
∫

X

{
pK (x)′

(
β̂ −β 0

)
+

[
pK (x)′β 0−g(x)

]}2
w(x)dx

≤ 2
∫

X

[
g(x)− pK (x)′β 0]2

w(x)dx+2
∫

X

[
pK (x)′

(
β̂ −β 0

)]2
w(x)dx

≤ 2Cw1
∥∥g(x)− pK (x)′β 0∥∥2

∞,ω̄ +2µ1 (Qpp,w)
∥∥∥β̂ −β 0

∥∥∥
2

= OP

(
K−2γ/d +

∥∥∥β̂ −β 0
∥∥∥

2
)

= OP

(
K−2γ/d +Kδ−4

NT

)
,
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where Cw1 ≡
∫
X (1 + ‖x‖2)ω̄w(x)dx < ∞, Qpp,w ≡

∫
X pK (x) pK (x)′w(x)dx, and

µ1 (Qpp,w) < ∞. Similarly,

1
NT

N

∑
i=1

T

∑
t=1

[ĝ(Xit)−g(Xit)]
2 wit

=
1

NT

N

∑
i=1

T

∑
t=1

[
p′it

(
β̂ −β 0

)
+

(
g(Xit)− p′itβ 0)]2

wit

≤ 2
NT

N

∑
i=1

T

∑
t=1

[
p′it

(
β̂ −β 0

)]2
wit +

2
NT

N

∑
i=1

T

∑
t=1

[
g(Xit)− p′itβ 0]2

wit

≤ 2µ1 (Qwpp,NT )
∥∥∥β̂ −β 0

∥∥∥
2

+2
∥∥g(x)− pK (x)′β 0∥∥2

∞,ω̄
1

NT

N

∑
i=1

T

∑
t=1

(
1+‖Xit‖2

)ω̄
wit

= OP

(∥∥∥β̂ −β 0
∥∥∥

2
)

+OP

(
K−2γ/d

)
= OP

(
Kδ−4

NT +K−2γ/d
)

. ¥

Asymptotic normality of ĝ(x)

Proof of Theorem 3.3.2. Recall that VK (x) = pK (x)′W̃−1Ω̃W̃−1 pK (x) and ANT =

(NT )1/2V−1/2
K (x). Write

ANT [ĝ(x)−g(x)] = ANT pK (x)′
(

β̂ −β 0
)

+ANT
[
g(x)− pK (x)′β 0]

= ANT pK (x)′W−1
NT C(1)

NT +ANT pK (x)′W−1
NT C(2)

NT

+ANT pK (x)′RNT +ANT
[
g(x)− pK (x)′β 0]

≡ Π1NT +Π2NT +Π3NT +Π4NT , say.

It suffices to show that: (i) Π1NT +κNT b1 (x) d→N(0,1), (ii) Π2NT =−κ−1
NT b2 (x)−

κNT b3 (x)+oP (1) , (iii) Π3NT = oP (1) , and (iv) Π4NT = oP (1) . We prove (i) and

(ii) in Propositions .0.7 and .0.8 below, respectively. For (iii), by Cauchy-Schwarz

inequality, (.0.51) and Assumptions 7 and 8, we have

Π3NT ≤
√

NT
VK (x)

∥∥pK (x)
∥∥‖RNT‖ ≤ µ−1/2

K (Ω̃)µ1(W̃ )
√

NT ‖RNT‖

= OP

[√
NT

(√
Kδ−2

NT +K−γ/d
)(

δ−1/2
NT +K−γ/(2d)

)]
= oP (1) ,
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as VK(x) = pK(x)′W̃−1Ω̃W̃−1 pK(x) ≥ µ−2
1 (W̃ )µK(Ω̃)||pK(x)||2. For (iv), by As-

sumptions 3(i)-(ii), and 8, we have for any fixed x ∈X

Π4NT = (NT )1/2V−1/2
K (x)

[
g(x)− pK (x)′β 0]

≤ C
∥∥pK (x)

∥∥−1√
NT

∥∥g(x)− pK (x)′β 0∥∥
∞,ω̄

(
1+‖x‖2

)ω̄/2

= OP

(√
NT K−γ/d

)
= oP (1)

as infx∈X ||pK(x)|| ≥C > 0. ¥

Next, we state some lemmas are used in the proofs of Propositions .0.7-.0.8

below.

Lemma .0.9 Let vK
x ≡ V−1/2

K (x)W̃−1 pK (x) and dit ≡ vK′
x Z̃it . Suppose that the as-

sumptions in Theorem 3.3.2 hold. Then
(i) 1

NT ∑T
t=1 ∑N

i=1

∥∥d4
it

∥∥2
2,D

= OP
(
K4) ;

(ii) 1
N2T ∑T

t=1(∑
N
i=1

∥∥d2
it

∥∥2
2,D

)2 = OP
(
K4) .

Lemma .0.10 Suppose that the assumptions in Theorem 3.3.2 hold. Then
(i)

∥∥W̃NT −W̃
∥∥

F = OP(K/
√

NT );
(ii)

∥∥W̃NT −WNT
∥∥

F = OP(K/
√

NT ).

Lemma .0.11 Suppose that the assumptions in Theorem 3.3.2 hold. Then
1√
NT ∑N

i=1 ∑T
t=1 vK′

x {(Zit − Z̃it)eit −ED [(Zit − Z̃it)eit ]}= oP (1) .

Lemma .0.12 Suppose that the assumptions in Theorem 3.3.2 hold. Then
(i)

∥∥λ 0′e f 0
∥∥

F = OP(
√

NT );

(ii)
∥∥∥Pλ 0ePf 0

∥∥∥
F

= OP (1) ;

(iii)
∥∥ f 0′e′P(a)

∥∥
F = OP(

√
NT KδNT );

(iv)
∥∥∥Pf 0e′P(a)

∥∥∥
F

= OP(
√

NKδNT );

(v)
∥∥∥λ 0′eP′(a)

∥∥∥
F

= OP(N
√

T K);

(vi)
∥∥∥Pλ 0eP′(a)

∥∥∥
F

= OP(
√

NT K);

(vii) 1
N
√

T ∑T
t=1 ∑N

i=1 ∑N
j=1 Aiλ 0

j
[
e jteit −ED

(
e jteit

)]
= OP(

√
K);

(viii) N−1 ∑N
i=1 ||T−1/2 ∑T

s=1 vK′
x

(
pc

is− pλc
is

)
f 0
s G0||2 = OP (K) ;

(ix) N−1 ∑N
i=1 ||(NT )−1/2 ∑T

t=1 ∑N
j=1 λ 0

j
[
eite jt −ED

(
eite jt

)] ||2 = OP (1) ;
(x) 1√

NT ∑N
i=1 ∑T

t=1 ∑T
s=1 Bt f 0′

s [eiteis−ED (eiteis)] = OP(
√

K);

(xi) 1
NT ∑T

t=1 ||∑N
j=1 vK′

x [pc
jt −T−1 ∑T

l=1 ηtl pc
jl]λ

0′
j G0||2 = OP (K) ;

(xii) 1
NT 2 ∑T

t=1 ||∑N
i=1 ∑T

s=1 f 0′
s [eiteis−ED (eiteis)] ||2 = OP(1);
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where Ai ≡ vK′
x [ED

(
Pi−Pλ

i

)′
] f 0G0/T, Pλ

i = N−1 ∑N
j=1 αi jED

(
Pj

)
, G0 ≡ ( f 0′ f 0

T )−1

×(λ 0′λ 0

N )−1, pc
is = pis−ED (pis), pλc

is ≡ pλ
is−ED

(
pλ

is

)
, pλ

is ≡N−1 ∑N
j=1 αi j p js, Bt ≡

vK′
x ED(P·t −P f

·t )′λ 0G0N−1, P f
·t ≡ T−1 ∑T

l=1 ηltP·l, and P·t ≡
(

p′1t , · · · , p′Nt
)′.

Proposition .0.7 Suppose that the assumptions in Theorem 3.3.2 hold. Then Π1NT +
κNT b1 (x) d→ N(0,1).

Proof. Recall vK
x ≡ V−1/2

K (x)W̃−1 pK (x) . One can readily show that
∥∥vK

x
∥∥ =

OP (1) . Note that

Π1NT =
1√
NT

N

∑
i=1

T

∑
t=1

vK′
x Zituit −V−1/2

K (x) pK (x)′
(
W̃−1−W−1

NT
) 1√

NT

N

∑
i=1

T

∑
t=1

Zituit

≡ Π1NT,1 +Π1NT,2, say.

We complete the proof by showing that (i) Π1NT,1 + κNT b1 (x) d→ N(0,1) and (ii)

Π1NT,2 = oP (1) .

First, we consider (ii). By (.0.46), Lemmas .0.10(i)-(ii), and Assumption 8, we

have

∣∣Π1NT,2
∣∣ ≤

∥∥∥V−1/2
K (x) pK (x)′W̃−1
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Now, we consider (i). Using uit = eit + eg,it , we decompose Π1NT,1 as follows:
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We are left to show Π1NT,11 +κNT b1 (x) d→ N(0,1). We further decompose Π1NT,11
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as follows
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∑
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∑
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∑
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∑
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We complete the proof by showing that: (ia) Π1NT,11a
d→ N (0,1) , (ib) Π1NT,11b =

oP (1), and (ic) Π1NT,11c = oP (1). (ic) follows from Lemma .0.11. We are left to

show (ia) and (ib) .

Proof of (ia) . Note that Π1NT,11a = ∑T
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t=1 is a martingale difference sequence (m.d.s.). Consequently, we can
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≡ ~ξNT (1)+3~ξNT (2)−3~ξNT (3) , say.
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By Hölder inequality, Lemma .0.9(i)-(ii), and Assumption 6(i) , we have
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Similarly, we can show that ~ξNT (3) = OP
(
K2/(NT )

)
= oP (1) by Lemma .0.9(i)

and Assumption 6(i). Then (ia1) follows by conditional Markov inequality. Now,

note that ∑T
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straightforward moment calculations, we can show that ED [(∑T
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Proof of (ib) . Noting that ED(p jseit) = 0 for s≤ t, we have
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∑
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+
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where the term OP

(
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)
is obtained by similar arguments as used in the

proof of Lemma .0.11. So Π1NT,11b = oP (1) .
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Proposition .0.8 Suppose that the assumptions in Theorem 3.3.2 hold. Then we
have Π2NT =−κ−1

NT b2 (x) −κNT b3 (x)+oP (1) .

Proof. Let ~vK
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x
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We decompose Π̃2NT as follows
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≡ Π2NT,1 +Π2NT,2 +Π2NT,3, say.

We complete the proof by showing that (i) Π2NT,1 = −κ−1
NT b2 (x) + oP (1) , (ii)

Π2NT,2 =−κNT b3 (x) +oP (1) , and (iii) Π2NT,3 = oP (1) .

First, we consider (i). We further decompose Π2NT,1 as follows
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For Π2NT,11a, by Lemmas .0.28(i) and (v) in the supplemental appendix and Lem-

mas .0.12(i)-(ii),
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For Π2NT,11b, by Lemmas .0.28(i) and (v), we have Π2NT,11b≤ CR√
NT

∥∥eg
∥∥2 ∥∥P(a)

∥∥‖Φ‖=

OP

(√
NT K−2γ/d

)
= oP (1) . For Π2NT,11c, by Lemmas .0.12(i) we have

Π2NT,11c ≤ C√
NT

∣∣∣tr
[
λ 0′e f 0 (

f 0′ f 0)−1
f 0e′gMλ 0P(a) f 0 (

f 0′ f 0)−1 (
λ 0′λ 0)−1

]∣∣∣

≤ CR√
NT

∥∥λ 0′e f 0∥∥
∥∥∥
(

f 0′ f 0)−1
∥∥∥

2 ∥∥∥
(
λ 0′λ 0)−1

∥∥∥
∥∥ f 0∥∥2 ∥∥eg

∥∥∥∥P(a)
∥∥

= OP

(
K−γ/d

)
.
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It follows that Π2NT,11 = oP (1).
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Now we consider (ib). Noting that u = e+ eg, we rewrite Π2NT,12 as follows
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It follows that Π2NT,12 =−κ−1
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Now we consider (ii). Noting that Mλ 0 = IN −Pλ 0 , we have
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Similar to the study of Π1NT,12, we can show that Π2NT,22s = oP (1) for s = b,c,d.

It follows that Π2NT,22 = oP (1).

For Π2NT,21, we have

Π2NT,21

= −
√

N/T
∥∥vK

x
∥∥ tr

[
ED

(
e′e/N

)
M f 0P′(a)Φ

′
]
− 1√

NT
tr

{[
e′e−ED

(
e′e

)]
M f 0P′(a)Φ

′
}

≡ −κNT b3 (x)−Π2NT,21a, say.

It is easy to show that |κNT b3 (x)| = OP (κNT ) by Lemmas .0.28 (i) and (v). For
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Π2NT,21a, by Lemmas .0.12(x) and (xi), we have

Π2NT,21a = (NT )−1/2 ∥∥vK
x
∥∥ tr

{[
e′e−ED

(
e′e

)]
M f 0P′(a)Φ

′
}

=
1√
T

1√
NT

N

∑
i=1

T

∑
t=1

T

∑
s=1

Bt f 0′
s [eiteis−ED (eiteis)]

+
1√
N

1
NT 3/2

N

∑
i=1

N

∑
j=1

T

∑
t=1

T

∑
s=1

vK′
x

[
pc

jt − p f c
jt

]
λ 0′

j G0 f 0′
s [eiteis−ED (eiteis)] ,

where Bt ≡ vK′
x [ED(P·t−P f

·t )′λ 0G0N−1, P f
·t ≡ T−1 ∑T

l=1 ηltP·l , p f c
jt = p f

jt−ED(p f
jt).

By Lemma .0.12(x), the first term is OP

(
K1/2/T 1/2

)
. By Cauchy-Schwarz in-

equlaty, the second term is bounded by 1√
N
{ 1

NT ∑T
t=1 ||∑N

j=1 vK′
x [pc

jt− p f c
jt ]λ 0′

j G0||2}1/2

×{ 1
NT 2 ∑T

t=1 ||∑N
i=1 ∑T

s=1 f 0′
s [eiteis−ED (eiteis)] ||2}1/2,which is OP(

√
K/N) by Lem-

mas .0.12(xi)-(xii) .

Last, we consider (iii). For the first term, using Φ′Pf 0 = Φ′ and Mλ 0 = IN−Pλ 0 ,

we have

Π2NT,3 = −(NT )−1/2 ∥∥vK
x
∥∥ tr

[
u′Mλ 0P(a)M f 0u′Φ′

]

= (NT )−1/2 ∥∥vK
x
∥∥

{
tr

[
Pf 0u′Pλ 0P(a)M f 0u′Φ′

]
− tr

[
Pf 0u′P(a)M f 0u′Φ′

]}

≡ Π2NT,31 +Π2NT,32, say.

By Lemma .0.12(ii), we have

∣∣Π2NT,31
∣∣ ≤ (NT )−1/2 ∥∥vK

x
∥∥

∣∣∣tr
[
Pf 0u′Pλ 0P(a)M f 0u′Φ′

]∣∣∣

≤ R(NT )−1/2
∥∥∥Pf 0u′Pλ 0

∥∥∥
∥∥P(a)

∥∥
∥∥∥M f 0

∥∥∥‖u‖‖Φ‖

= (NT )−1/2 OP

(
1+

√
NT K−γ/d

)
OP

(√
NT

)
OP

(
δ−1

NT +K−γ/d
)

= OP

[(
1+

√
NT K−γ/d

)(
δ−1

NT +K−γ/d
)]

= oP (1) .

By Lemma .0.12(iv), we have

∣∣Π2NT,32
∣∣ ≤ CR(NT )−1/2

(∥∥∥Pf 0e′P(a)

∥∥∥+
∥∥∥Pf 0

∥∥∥
∥∥eg

∥∥∥∥P(a)
∥∥
)
‖u‖‖Φ‖

= CR(NT )−1/2 OP(
√

NKδNT +NT K−γ/d)OP(δ−1
NT +K−γ/d) = oP (1) .

This completes the proof of the proposition.
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Bias-corrected estimator

Lemma .0.13 Suppose that the assumptions in Theorem 3.3.3 hold. Then we have
(i)

∥∥ŴNT −WNT
∥∥

F = OP

[
K(K−γ/d +δ−1

NT )
]

;

(ii) ||Ω̂NT − Ω̃||F = OP

[
Kδ−1

NT +(NT )1/4 K(δ−2
NT +K−γ/d)

]
;

(iii)
∥∥Ŵ−1

NT Ω̂NTŴ−1
NT −W̃−1Ω̃W̃−1

∥∥
F = OP

[
Kδ−1

NT +(NT )1/4 K(δ−2
NT +K−γ/d)

]
.

Lemma .0.14 Suppose that the assumptions in Theorem 3.3.3 hold. Then we have
(i) ||b̂1−b1|| = OP(

√
K ∑T

τ=MT
α(3+2δ )/(4+2δ )

D (τ)+MT
√

Kδ−1
NT );

(ii) ||b̂2−b2|| = OP{
√

K[N−1/4 +N5/8(K−γ/d +
√

Kδ−2
NT )+T−1N1/2]};

(iii) ||b̂3−b3|| = OP{
√

K[T−1/4 +T 5/8(K−γ/d +
√

Kδ−2
NT )+N−1T 1/2]}.

Proof of Theorem 3.3.3. We first make the following decomposition:

ÂNT [ĝbc (x)−g(x)]

= {ANT [ĝ(x)−g(x)]−BK (x)}− [
B̂K (x)−BK (x)

]

+
(
ÂNT /ANT −1

){ANT [ĝ(x)−g(x)]−BK (x)}+
(
ÂNT /ANT −1

)
BK (x)

≡ DB1−DB2 +DB3 +DB4, say.

Noting that DB1
d→ N (0,1) by Theorem 3.3.2, it suffices to show that (i) DB2 =

oP (1); (ii) DB3 = oP (1); and DB4 = oP (1) .

Proof of (i). Recall that B̂K (x) = −κNT b̂1 (x)− κ−1
NT b̂2 (x)− κNT b̂3 (x) where

b̂s (x) = V̂−1/2
K (x) pK (x) ×Ŵ−1

NT b̂s. It follows that

DB2 = κNT
[
b̂1 (x)−b1 (x)

]
+κ−1

NT
[
b̂2 (x)−b2 (x)

]
+κNT

[
b̂3 (x)−b3 (x)

]

≡ DB21 +DB22 +DB23, say.

We prove that DB2 = oP (1) by showing that

(i1) DB21 = κNT

(
V̂−1/2

K (x) pK (x)′Ŵ−1
NT b̂1−V 1/2

K (x) pK (x)′W̃−1b1

)
= oP (1) ,

(i2) DB22 = κ−1
NT

(
V̂−1/2

K (x) pK (x)′Ŵ−1
NT b̂2−V 1/2

K (x) pK (x)′W̃−1b2

)
= oP (1) ,

(i3) DB23 = κNT

(
V̂−1/2

K (x) pK (x)′Ŵ−1
NT b̂3−V 1/2

K (x) pK (x)′W̃−1b3

)
= oP (1) .

163



Note that

DB21 = κNT

[
V̂−1/2

K (x) pK (x)′Ŵ−1
NT b̂1−V 1/2

K (x) pK (x)′W̃−1b1

]

= κNTV−1/2
K (x) pK (x)′W̃−1 (

b̂1−b1
)

+κNTV−1/2
K (x) pK (x)′

(
Ŵ−1

NT −W̃−1)(
b̂1−b1

)

+κNTV−1/2
K (x) pK (x)′

(
Ŵ−1

NT −W̃−1)b1

+κNT

[
V̂−1/2

K (x)−V−1/2
K (x)

]
pK (x)′Ŵ−1

NT b̂1

≡ DB21a +DB21b +DB21c +DB21d , say.

Recalling that vK
x = V K (x)−1/2W̃−1 pK (x) with

∥∥vK
x
∥∥ = OP (1), by Lemma .0.14(i)

and Assumption 9 we have

|DB21a| ≤ κNT
∥∥vK

x
∥∥∥∥b̂1−b1

∥∥= OP

[
κNT

√
K

(
∞

∑
τ=MT

α
3+2δ
4+2δ
D (τ)+MT δ−1

NT

)]
= oP (1) .

Lemmas .0.10 and .0.13 and Minkowski inequality, ||W̃ -ŴNT ||F=OP[K(K−γ/d+δ−1
NT )].

This, in conjunction with Assumption 7, implies that ||Ŵ−1
NT || = OP (1) . Then by

Lemma .0.14(i) and Assumption 9, we have

|DB21b| =
∣∣∣κNTV−1/2

K (x) pK (x)′W̃−1 (
W̃ −ŴNT

)
Ŵ−1

NT
(
b̂1−b1

)∣∣∣

≤ κNT
∥∥vK

x
∥∥∥∥W̃ −ŴNT

∥∥
F

∥∥Ŵ−1
NT

∥∥∥∥b̂1−b1
∥∥

= κNT OP (1)OP

[
K

(
K−γ/d +δ−1

NT

)]
OP (1)

×OP

[√
K

(
∞

∑
τ=MT

α
3+2δ
4+2δ
D (τ)+MT δ−1

NT

)]

= oP (1) .

Similarly,

DB21c ≤ κNT
∥∥vK

x
∥∥∥∥W̃ −ŴNT

∥∥
F

∥∥Ŵ−1
NT

∥∥‖b1‖

= κNT OP (1)OP

[
K

(
K−γ/d +δ−1

NT

)]
OP(

√
K) = oP (1) .
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Now, we decompose DB21d as follows

DB21d = κNT

[
V 1/2

K (x)/V̂ 1/2
K (x)−1

]
V−1/2

K (x) pK (x)′Ŵ−1
NT b̂1

= κNT

[
V 1/2

K (x)/V̂ 1/2
K (x)−1

]
V−1/2

K (x) pK (x)′W̃−1b̂1

+κNT

[
V 1/2

K (x)/V̂ 1/2
K (x)−1

]
V−1/2

K (x) pK (x)′
(
Ŵ−1

NT −W̃−1) b̂1

≡ DB21d,1 +DB21d,2.

By Lemma .0.13(iii) ,

∣∣V̂K(x)−VK (x)
∣∣ =

∣∣pK (x)′
[
Ŵ−1

NT Ω̂NTŴ−1
NT −W̃−1Ω̃W̃−1] pK (x)

∣∣

≤
∥∥pK (x)

∥∥2
OP

[
Kδ−1

NT +(NT )1/4 K
(

δ−2
NT +K−γ/d

)]
.

This, in conjunction with the fact that VK (x)≥
∥∥pK (x)

∥∥2 µmin(W̃−1Ω̃W̃−1)≥C
∥∥pK (x)

∥∥2,

implies that

∣∣∣V 1/2
K (x)/V̂ 1/2

K (x)−1
∣∣∣ =

∣∣∣∣∣∣
V̂K (x)−VK (x)

V̂ 1/2
K (x)

[
V̂ 1/2

K (x)+V 1/2
K (x)

]
∣∣∣∣∣∣

= OP

[
Kδ−1

NT +(NT )1/4 K
(

δ−2
NT +K−γ/d

)]
.(.0.52)

Consequently,
∣∣DB21d,1

∣∣≤ κNT

∣∣∣V 1/2
K (x)/V̂ 1/2

K (x)−1
∣∣∣
∥∥vK

x
∥∥∥∥b̂1

∥∥= κNT OP[Kδ−1
NT +

(NT )1/4 K(δ−2
NT +K−γ/d)]OP

(
K1/2

)
= oP (1) .Similarly, we can show that

∣∣DB21d,2
∣∣

= oP (1) . Then (i1) follows. Analogously, we can show (i2) and (i3) by Lemmas

.0.13 and .0.14.

Proof of (ii). By (.0.52),
∣∣ÂNT /ANT −1

∣∣ =

∣∣∣∣∣
V̂K(x)−VK(x)

V̂ 1/2
K (x)

[
V̂ 1/2

K (x)+V 1/2
K (x)

]
∣∣∣∣∣ = OP[Kδ−1

NT +

(NT )1/4 K(δ−2
NT +K−γ/d)] = oP (1) . It follows that

|DB3| ≤ |ÂNT /ANT −1| |ANT [ĝ(x)−g(x)]−BK (x)|= oP (1)OP (1) = oP (1) .

Proof of (iii). Noting that |BK (x)| ≤ |κNT b1 (x)|+
∣∣κ−1

NT b2 (x)
∣∣+ |κNT b3 (x)| =

OP

(
κNT K1/2

)
+OP

(
κ−1

NT
)
+OP (κNT ) , we have |DB4| ≤

∣∣ÂNT /ANT −1
∣∣ |BK (x)|=

OP[Kδ−1
NT +(NT )1/4 K

(
δ−2

NT +K−γ/d
)
][OP(κNT

√
K)+OP

(
κ−1

NT
)
+OP (κNT )] = oP (1) .

¥
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.0.6 Proofs of main results for specification test

Let ψit ≡ 1
N ∑N

j=1 αi jX jt + 1
T ∑T

s=1 ηtsXis − 1
NT ∑N

j=1 ∑T
s=1 αi jηtsX js and X̃it ≡ Xit−

ED (ψit). Let Ω̃x̃x̃,NT ≡ 1
NT ∑N

i=1 ∑T
t=1 X̃it X̃ ′ite

2
it , Ω̃x̃z̃,NT ≡ 1

NT ∑N
i=1 ∑T

t=1 X̃it Z̃′ite
2
it , Ω̃x̃x̃≡

ED [Ω̃xx,NT ], Ω̃x̃z̃ ≡ ED [Ω̃x̃z̃,NT ], Hpx ≡ W̃−1QwpxD−1, and hit, js ≡ Z̃′itHpxX̃ js. Let

b(l)
1 , b(l)

2 , b(l)
3 denote d×1 vectors whose kth elements are respectively given by

b(l)
1,k ≡ 1

N
tr

[
Pf 0ED

(
e′Xk

)]
, b(l)

2,k ≡
1
T

tr
[
ED

(
ee′

)
Mλ 0XkΦ

]
, and

b(l)
3,k ≡ 1

N
tr

[
ED

(
e′e

)
M f 0X′

kΦ′
]
. (.0.53)

The following lemmas are needed in the proofs of the main results in Section 4.

Lemma .0.15 Suppose that the assumptions in Theorem 3.4.1 hold. Then
(i)

∥∥Qwpp,NT −Qwpp
∥∥

F = OP(K/(NT )1/2);
(ii)

∥∥Qwpx,NT −Qwpx
∥∥

F = OP(K1/2/(NT )1/2);
(iii) ‖DNT −D‖F = OP((NT )−1/2);
(iv)

∥∥Ωxz,NT − Ω̃xz
∥∥

F = OP((NT )−1/2).

Lemma .0.16 Suppose that the assumptions in Theorem 3.4.1 hold. Then β̂bc −
β 0 = W̃−1 1

NT ∑N
i=1 ∑T

t=1 Z̃iteit +Rβ ,NT , where
∥∥Rβ ,NT

∥∥ = oP (γNT ) .

Lemma .0.17 Suppose that the assumptions in Theorem 3.4.1 hold. Then under
H1 (γNT ) we have θ̂−θ 0 = γNT D−1

NT ϒNT +D−1 1
NT ∑N

i=1 ∑T
t=1 X̃iteit +Bθ ,NT +Rθ ,NT ,

where Rθ ,NT = oP (γNT ) and Bθ ,NT ≡−T−1D−1b(l)
1 −N−1D−1b(l)

2 −T−1D−1b(l)
3 .

Proof of Theorem 3.4.1. Recall that eg,it = g(Xit)− p′itβ 0 and g(Xit)−X ′itθ 0 =

γNT ∆it under H1(γNT ). We can decompose ΓNT = 1
NT ∑N

i=1 ∑T
t=1[p

′
it β̂bc−X ′it θ̂ ]2wit

as follows

ΓNT =
1

NT

N

∑
i=1

T

∑
t=1

[
p′it

(
β̂bc−β 0

)
− eg,it + γNT ∆(Xit)−X ′it(θ̂ −θ 0)

]2
wit

= ΓNT 1 +ΓNT 2 +ΓNT 3 +ΓNT 4−2ΓNT 5−2ΓNT 6 +2ΓNT 7

+2ΓNT 8−2ΓNT 9−2ΓNT 10,
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where

ΓNT 1 ≡
(

β̂bc−β 0
)′

Qwpp,NT

(
β̂bc−β 0

)
, ΓNT 2 ≡ (θ̂ −θ 0)′Qwxx,NT (θ̂ −θ 0),

ΓNT 3 ≡ γ2
NT

1
NT

N
∑

i=1

T
∑

t=1
wit∆2

it , ΓNT 4 ≡ (NT )−1 N
∑

i=1

T
∑

t=1
wite2

g,it ,

ΓNT 5 ≡
(

β̂bc−β 0
)

Qwpx,NT (θ̂ −θ 0), ΓNT 6 ≡
(

β̂bc−β 0
)′

1
NT

N
∑

i=1

T
∑

t=1
wit piteg,it ,

ΓNT 7 ≡ γNT

(
β̂bc−β 0

)′
1

NT

N
∑

i=1

T
∑

t=1
wit pit∆it , ΓNT 8 ≡ 1

NT

N
∑

i=1

T
∑

t=1
witeg,itX ′it(θ̂ −θ 0),

ΓNT 9 ≡ γNT
1

NT

N
∑

i=1

T
∑

t=1
wit∆itX ′it(θ̂ −θ 0), ΓNT 10 ≡ γNT

1
NT

N
∑

i=1

T
∑

t=1
witeg,it∆it .

We complete the proof by showing that underH1 (γNT ), (i) (NT ΓNT 1−BNT )/V1/2
NT

d→
N (0,1) ; (ii) γ−2

NT (ΓNT 2 +ΓNT 3−2ΓNT 9) = A∆ +oP (1) , (iii) γ−2
NT ΓNT s = oP (1) for

s = 4, ..,8,10. We prove (i) in Proposition .0.9 below.

For (ii), by Lemma .0.17

θ̂ −θ 0 = γNT D−1
NT ϒNT +D−1 1

NT

N

∑
i=1

T

∑
t=1

X̃iteit +Bθ ,NT +Rθ ,NT

= γNT D−1
NT ϒNT +OP[δ−2

NT +(NT )−1/2]

= γNT D−1
NT ϒNT +oP (γNT ) (.0.54)

Then we have γ−2
NT ΓNT 2=γ−2

NT [γNT D−1
NT ϒNT +oP (γNT )]′Qwxx,NT [γNT D−1

NT ϒNT +oP (γNT )]

=ϒ′NT D−1
NT Qwxx,NT D−1

NT ϒNT +oP (1) , and 2γ−2
NT ΓNT 9=2γ−2

NT
1

NT ∑N
i=1 ∑T

t=1 γNT wit∆itX ′it

×[γNT D−1
NT ϒNT +oP (γNT )] = 2

NT ∑N
i=1 ∑T

t=1 wit ∆itX ′itD
−1
NT ϒNT + oP (1) . It follows

that γ−2
NT (ΓNT 2 +ΓNT 3−2ΓNT 9) = (NT )−1 ∑N

i=1 ∑T
t=1 wit(∆it− X ′itD

−1
NT ϒNT )2 = A∆+

oP (1) .

For (iii), it is clear that γ−2
NT ΓNT 4 = OP

(
γ−2

NT K−2γ/d
)

= oP (1) and γ−2
NT ΓNT 10 =

OP

(
γ−1

NT K−γ/d
)

= oP (1) by Assumption 4 and (.0.54). We complete the proof

of (iii) by showing that (iii1) γ−2
NT ΓNT 5 = oP (1) , (iii2) γ−2

NT ΓNT 6 = oP (1) , (iii3)

γ−2
NT ΓNT 7 = oP (1) , and (iii4) γ−2

NT ΓNT 8 = oP (1) . We first show (iii1) . By Lemmas
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.0.16-.0.17, we have

γ−2
NT ΓNT 5 = γ−2

NT

(
β̂bc−β 0

)′
Qwpx,NT (θ̂ −θ 0)

= γ−2
NT

1
NT

N

∑
i=1

T

∑
t=1

Z̃′iteitW̃−1Qwpx,NT
(
γNT D−1

NT ϒNT
)

+γ−2
NT

1
NT

N

∑
i=1

T

∑
t=1

Z̃′iteitW̃−1Qwpx,NT D−1 1
NT

N

∑
i=1

T

∑
t=1

X̃iteit

+γ−2
NT

1
NT

N

∑
i=1

T

∑
t=1

Z̃′iteitW̃−1Qwpx,NT Bθ ,NT

+γ−2
NT

1
NT

N

∑
i=1

T

∑
t=1

Z̃′iteitW̃−1Qwpx,NT Rθ ,NT

+γ−2
NT R′β ,NT Qwpx,NT (θ̂ −θ 0)

≡ Γ̃NT 51 + Γ̃NT 52 + Γ̃NT 53 + Γ̃NT 54 + Γ̃NT 55, say.

Recall that Hpx = W̃−1QpxD−1. We further decompose Γ̃NT 51 as follows

Γ̃NT 51 = γ−1
NT

1
NT

N

∑
i=1

T

∑
t=1

Z̃′iteitHpxϒNT

+γ−1
NT

1
NT

N

∑
i=1

T

∑
t=1

Z̃′iteitW̃−1Qwpx,NT
[
D−1

NT −D−1]ϒNT

+γ−1
NT

1
NT

N

∑
i=1

T

∑
t=1

Z̃′iteitW̃−1 [Qwpx,NT −Qwpx]D−1ϒNT

≡ Γ̃NT 51a + Γ̃NT 51b + Γ̃NT 51c, say.

For Γ̃NT 51a, we have

∣∣Γ̃NT 51a
∣∣≤ γ−1

NT

∥∥∥∥∥
1

NT

N

∑
i=1

T

∑
t=1

Z̃′iteitW̃−1QwpxD−1

∥∥∥∥∥‖ϒNT‖= OP

(
γ−1

NT (NT )−1/2
)

= oP (1)

as ||(NT )−1 ∑N
i=1 ∑T

t=1 Z̃′iteitW̃−1QpxD−1|| = OP[(NT )−1/2] by Chebyshev inequal-

ity and the fact that ED || 1
NT ∑N

i=1 ∑T
t=1 Z̃′iteitHpx||2 = 1

NT tr(Ω̃W̃−1QwpxD−2Q′
wpxW̃

−1)

≤ d/(NT )µ1(Ω̃)µ1(D−2)[µ1(W̃−1)]2 µ1
(
Q′

wpxQwpx
)

= OP((NT )−1) by Assump-

tion 11 and Lemma .0.28(vi) . By the fact that || 1
NT ∑N

i=1 ∑T
t=1 eit Z̃′itW̃

−1||= OP(
√

K
NT ),
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Lemma .0.15, and Assumption 11(ii), we have

∣∣Γ̃NT 51b
∣∣ ≤ γ−1

NT

∥∥∥∥∥
1

NT

N

∑
i=1

T

∑
t=1

eit Z̃′itW̃
−1

∥∥∥∥∥
∥∥Qwpx,NT

∥∥∥∥D−1
NT −D−1∥∥

F ‖ϒNT‖

= γ−1
NT OP

(
K1/2(NT )−1/2

)
OP

(
(NT )−1/2

)
OP (1) = oP (1)

and

∣∣Γ̃NT 51c
∣∣ ≤ γ−1

NT

∥∥∥∥∥
1

NT

N

∑
i=1

T

∑
t=1

eit Z̃′itW̃
−1

∥∥∥∥∥
∥∥Qwpx,NT −Qwpx

∥∥
F

∥∥D−1∥∥‖ϒNT‖

= γ−1
NT OP

(
K1/2(NT )−1/2

)
OP

(
K1/2(NT )−1/2

)
OP (1) = oP (1) .

It follows that Γ̃NT 51 = oP (1) . For Γ̃NT 52, we decompose it as follows:

Γ̃NT 52 = γ−2
NT

1
N2T 2

N

∑
i=1

T

∑
t=1

N

∑
j=1

T

∑
s=1

Z̃′itHpxX̃ jse jseit

+γ−2
NT

1
NT

N

∑
i=1

T

∑
t=1

Z̃′iteitW̃−1 [Qwpx,NT −Qwpx]D−1 1
NT

N

∑
i=1

T

∑
t=1

X̃ ′iteit

=
γ−2

NT
N2T 2 ∑

1≤i 6= j≤N
∑

1≤t 6=s≤T
Z̃′itHpxX̃ jse jseit +

γ−2
NT

N2T 2

N

∑
i=1

T

∑
t=1

Z̃′itHpxX̃itse2
it

+
γ−2

NT
N2T 2

N

∑
i=1

∑
1≤t 6=s≤T

Z̃′itHpxX̃iseiseit +
γ−2

NT
N2T 2

T

∑
t=1

∑
1≤i6= j≤N

Z̃′itHpxX̃ jteite jt

+
γ−2

NT
NT

N

∑
i=1

T

∑
t=1

Z̃′iteitW̃−1 [Qwpx,NT −Qwpx]D−1 1
NT

N

∑
i=1

T

∑
t=1

X̃ ′iteit

≡ Γ̃NT 52a + Γ̃NT 52b + Γ̃NT 52c + Γ̃NT 52d + Γ̃NT 52e, say.

Recall that hit, js = Z̃′itHpxX̃ js. Apparently, ED [Γ̃NT 52a] = 0 and

ED [Γ̃2
NT 52a]

= 1
γ4

NT N4T 4 ∑
1≤i1 6= j1≤N

∑
1≤i2 6= j2≤N

∑
1≤t1 6=s1≤T

∑
1≤t2 6=s2≤T

ED

[
hi1t1, j1s1e j1s1ei1t1hi2t2, j2s2e j2s2ei2t2

]

= 2
γ4

NT N4T 4 ∑
1≤i 6= j≤N

∑
1≤t 6=s≤T

ED

[
h2

it, jse
2
jse

2
it
]

≤ 2
γ4

NT N4T 4 ∑
1≤i, j≤N

∑
1≤t,s≤T

tr
[
HpxED

(
X̃ jsX̃ ′jse

2
js
)
H ′

pxED

(
Z̃it Z̃′ite

2
it
)]

= 2
γ4

NT N2T 2 tr
[
W̃−1QpxD−1Ω̃xxD−1Q′

pxW̃
−1Ω̃zz

]

= 2
γ4

NT N2T 2 µ1(Ω̃zz)µ2
1
(
D−1)µ1(Ω̃xx)µ1

(
Q′

pxQpx
)

µ1(W̃−1)
∥∥W̃−1∥∥

F = OP
(
K−1) .
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So Γ̃NT 52a = oP (1) by Chebyshev inequality. For Γ̃NT 52b, we have Γ̃NT 52b =
tr(HpxΩx̃z̃)√

VNT

+ 1√
VNT

tr
{
Hpx (Ωx̃z̃,NT −Ωx̃z̃)

} ≡ Γ̃NT 52b,1 + Γ̃NT 52b,2, say. For Γ̃NT 52b,1, using

Lemma .0.15(v), we have

Γ̃NT 52b,1 ≤ V−1/2
NT tr

(
Ωx̃z̃W̃−1QwpxD−1)

≤ V−1/2
NT

[
tr

(
Ωx̃z̃W̃−1QwpxD−1Q′

wpxW̃
−1Ω′

x̃z̃
)]1/2 [

tr
(
D−1)]1/2

≤ V−1/2
NT

[
µ1

(
Q′

wpxW̃
−1Ω′

x̃z̃Ωx̃z̃W̃−1Qwpx
)]1/2

tr
(
D−1)

≤ V−1/2
NT µ1(W̃−1)

∥∥Qwpx
∥∥‖Ωx̃z̃‖OP (1) = OP

(
K−1/2

)
,

where we use the fact ‖Ωx̃z̃‖2 ≤ µ1(Ω̃)µ1 (Ωx̃x̃) = OP (1) by Assumption 7 and ad-

ditional assumption that µ1 (Ωx̃x̃) = OP (1). For Γ̃NT 52b,2, we have

∣∣Γ̃NT 52b,2
∣∣ ≤ V−1/2

NT

∥∥W̃−1QwpxD−1∥∥
F ‖Ωx̃z̃,NT −Ωx̃z̃‖F

≤ V−1/2
NT

∥∥D−1∥∥
F

∥∥W̃−1∥∥∥∥Qwpx
∥∥‖Ωx̃z̃,NT −Ωx̃z̃‖F

= V−1/2
NT OP(K1/2N−1/2T−1/2) = oP (1) .

Similarly, we can show that Γ̃NT 52s = oP (1) for s = c,d. For, Γ̃NT 52e, we have

|Γ̃NT 52e|

≤ γ−2
NT

∥∥∥∥∥
1

NT

N

∑
i=1

T

∑
t=1

Z̃iteit

∥∥∥∥∥
∥∥W̃−1∥∥∥∥Qwpx,NT −Qwpx

∥∥∥∥D−1∥∥
∥∥∥∥∥

1
NT

N

∑
i=1

T

∑
t=1

X̃iteit

∥∥∥∥∥
= γ−2

NT OP(K1/2N−1/2T−1/2)OP (1)OP(K1/2N−1/2T−1/2)OP (1)OP[(NT )−1/2]

= OP(1/
√

NT ).

Consequently, Γ̃NT 52 = oP (1) .

Following the proof of Γ̃NT 51 = oP (1), we can show that Γ̃NT 53 = oP (1) . In

addition, it is straightforward to show that Γ̃NT 5s = oP (1) for s = 4, 5 by using the

rough probability bound for the remainder terms Rβ ,NT and Rθ ,NT . It follows that

γ−2
NT ΓNT 5 = oP (1) .

170



For (iii2) , by Cauchy-Schwarz inequality and Lemma .0.16, we have

∣∣γ−2
NT ΓNT 6

∣∣

= γ−2
NT

∣∣∣∣∣
1

NT

N

∑
i=1

T

∑
t=1

(
β̂bc−β 0

)′
wit piteg,it

∣∣∣∣∣

≤ γ−2
NT

{
1

NT

N

∑
i=1

T

∑
t=1

(
β̂bc−β 0

)′
wit pit p′it

(
β̂bc−β 0

)}1/2 {
1

NT

N

∑
i=1

T

∑
t=1

e2
g,it

}1/2

≤ γ−2
NT

∥∥∥β̂bc−β 0
∥∥∥ [µ1 (Qwpp,NT )]1/2 OP

(
K−γ/d

)

≤ γ−2
NT OP

(
K1/2/

√
NT

)
OP

(
K−γ/d

)
= OP

(√
NT K−γ/d

)
= oP (1) .

Similarly, γ−2
NT ΓNT 8 = OP

(
γ−1

NT K−γ/d
)

= oP (1), proving (iii4) .

We now show (iii3) . By Assumption 10, there exists a K× 1 vector β 0
∆ ∈ RK

satisfying
∥∥β ∆∥∥≤C∆ < ∞ and

∥∥∆(x)− pK (x)′β 0
∆
∥∥

∞,ω̄ = O
(

K−γ/d
)

for as K →∞.

Using ∆it = p′itβ 0
∆ +

(
∆it − p′itβ 0

∆
)

= p′itβ 0
∆ + e∆,it , we have

γ−2
NT ΓNT 7 = γ−1

NT
1

NT

N

∑
i=1

T

∑
t=1

(
β̂bc−β 0

)′
wit pit p′itβ 0

∆

+γ−1
NT

1
NT

N

∑
i=1

T

∑
t=1

(
β̂bc−β 0

)′
pite∆,itwit

≡ Γ̃NT 7a + Γ̃NT 7b, say.

Analogously to the study of
∣∣γ−2

NT ΓNT 6
∣∣ , we have

∣∣Γ̃NT 7b
∣∣≤Cγ−1

NT ||β̂bc−β 0||OP(K−γ/d)

= oP (1). For Γ̃NT 7a, by Lemma .0.15 we have

Γ̃NT 7a =
1

γNT NT

N

∑
i=1

T

∑
t=1

eit Z̃′itW̃
−1Qwppβ 0

∆

+
1

γNT NT

N

∑
i=1

T

∑
t=1

eit Z̃′itW̃
−1 (Qwpp,NT −Qwpp)β 0

∆ + γ−1
NT Rβ ,NT Qwpp,NT β 0

∆

=
1

γNT NT

N

∑
i=1

T

∑
t=1

eit Z̃′itW̃
−1Qwppβ 0

∆

+γ−1
NT OP

(
K1/2(NT )−1/2

)
OP

(
K(NT )−1/2

)
OP (1)+OP

(
γ−1

NT Rβ ,NT
)

= Γ̃NT 7a1 +oP (1) ,
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where Γ̃NT 7a1≡ 1
γNT NT ∑N

i=1 ∑T
t=1 eit Z̃′itW̃

−1Qwppβ 0
∆. For Γ̃NT 7a1, we have ED [Γ̃NT 7a1] =

0 and

ED

[
Γ̃2

NT 7a1
]

=
1

NT γ2
NT

tr
{

Ω̃W−1Qwppβ 0
∆β 0′

∆ QwppW−1}

≤ 1
NT

µ1(Ω̃)µ2
1
(
W−1)γ−2

NT µ2
1 (Qwpp)

∥∥β 0
∆
∥∥2

= OP

(
γ2

NT
NT

)
= oP (1)

Then Γ̃NT 7a1 = oP (1) by Chebyshev inequality. It follows that γ−2
NT ΓNT 7 = oP (1).

¥

Proposition .0.9 Suppose that the assumptions in Theorem 3.4.1 hold. Then

(NT ΓNT 1−BNT )/
√
VNT

d→ N (0,1)

under H1 (γNT ) .

Proof. Noting that
∥∥Qwpp,NT −Qwpp

∥∥= OP( K√
NT

) and ||β̂bc−β 0||= OP(
√

K
NT ),

we have γ−2
NT ΓNT 1 = ΓNT 1,1 + γ−2

NT OP( K√
NT

)OP(
√

K
NT ) = oP (1) , where ΓNT 1,1 ≡

γ−2
NT (β̂bc − β 0)′Qpp(β̂bc − β 0). We are left to show that JNT 1 ≡ NT ΓNT 1,1−BNT√

VNT

d→
N (0,1).

Let Q̄pp ≡ W̃−1QwppW̃−1, Hi j,ts ≡ Z̃′itQ̄ppZ̃ js, and Hi j ≡ Z̃′iQ̄ppZ̃ j. Decompose

γ−2
NT ΓNT 1,1 as follows

γ−2
NT ΓNT 1,1 =

1
N2T 2γ2

NT

N

∑
i=1

N

∑
j=1

e′iHi je j +2γ−2
NT R′β Qwpp

(
β̂bc−β 0

)
+ γ−2

NT R′β QwppRβ

≡ J̃NT +oP (1) , say.

For J̃NT , we have

J̃NT − BNT√
VNT

=
1

N2T 2γ2
NT

∑
1≤i 6= j≤N

e′iHi je j +
1

N2T 2γ2
NT

N

∑
i=1

∑
1≤t 6=s≤T

Hii,tseiteis]

≡ J̃NT,1 + J̃NT,2,say.

We complete the proof by showing that: (i) J̃NT,1
d→N (0,1) and (ii) J̃NT,2 = oP (1) .

Proof of (i). We rewrite J̃NT,1 as follows

J̃NT,1 ≡ 1

NTV1/2
NT

∑
1≤i 6= j≤N

e′iHi je j = ∑
1≤i< j≤N

Wi j,
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where Wi j ≡WNT
(
ui,u j

) ≡ 2(NT )−1V−1/2
NT ∑1≤s,t≤T Hi j,tseite js and ui ≡ (Z̃′i ,ei)′.

Noting that J̃NT,1 is a second order degenerate U-statistic which is “clean” since

ED [WNT (ui,u)] = ED [WNT
(
u,u j

)
] = 0 a.s. for any nonrandom u), we apply Propo-

sition 3.2 in de Jong (1987) to prove the CLT for J̃NT,1 by showing that (i1) VarD(J̃NT,1)

= 1+oP (1) , (i2) GI ≡∑1≤i< j<N ED(W 4
i j)= oP (1) , (i3) GII ≡∑1≤i< j<l≤N ED(W 2

il W
2
jl

+W 2
i jW

2
il +W 2

i jW
2
l j)= oP (1), and (i4) GIII ≡∑1≤i< j<r<l≤N ED(Wi jWirWl jWlr +Wi jWil

×Wr jWrl +WirWilWjrWjl) = oP (1) .

For (i1), noting that ED(J̃NT,1) = 0 by Assumption 5(ii) and by the same as-

sumption we have
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(
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)
=

4
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∑
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T

∑
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∑
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∑
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)
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∑

1≤i< j≤N

T

∑
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∑
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(
H2
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2
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2
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)
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∑
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∑
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∑
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2
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2
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=
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Q̄ppΩ̃Q̄ppΩ̃
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N2VNT
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∑
i=1

tr
(
Q̄ppΩ̃iQ̄ppΩ̃i

)

= 1−OP
(
N−1) = 1+oP (1)

where Ω̃i ≡ T−1 ∑T
t=1 ED(Z̃it Z̃′ite

2
it) with N−1 ∑N

i=1 µ1(Ω̃i)2 ≤C < ∞, and we use the

fact

1
N2VNT

N

∑
i=1

tr
(
Q̄ppΩ̃iQ̄ppΩ̃i

) ≤
{

N−1
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i=1

µ1(Ω̃i)2
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µ1(Q̄pp)tr

(
Q̄pp

)

NVNT

= OP (1)OP

(
1
N

)
= oP (1) .

Proof of (i2). Let qk1k2
be the (k1,k2)th element of Q̄pp. Let φit,k = Z̃it,keit .

Noting that Hi j,ts = Z̃′itQ̄Z̃ js = ∑K
k1=1 ∑K

k2=1 qk1k2
Z̃it,k1Z̃ js,k2, we have

GI = 16
N4T 4V2

NT
∑

1≤k1,...,k8≤K
qk1k2

q̄k3k4 q̄k5k6 q̄k7k8

× ∑
1≤i< j<N

∑
1≤t1,....,t8≤T

ED

(
φit1,k1φit3,k3φit5,k5φit7,k7

)
ED

(
φ jt2,k2φ jt4,k4φ jt6,k6φ jt8,k8

)
.
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First, note that the term inside the last summation takes values 0 if either #{t1, t3, t5, t7}
= 4 or #{t2, t4, t6, t8} = 4. So it suffices to consider three cases according to the

number of distinct time indices in the set S = {t1, ..., t8} : (a) #S = 6, (b) #S = 5,

and (c) #S < 5. We use GIa, GIb, and GIc to denote the corresponding sum-

mations when the time indices are restricted to cases (a) , (b) and (c) , respec-

tively. Then GI = GIa + GIb + GIc. For GIa, we must have #{t1, t3, t5, t7} = 3 and

#{t2, t4, t6, t8} = 3. Without loss of generality, assume that t1 = t3 > t5 > t7 and

t2 = t4 > t6 > t8. By the conditional Davydov inequality (see Lemma .0.26) in the

supplementary appendix, we have
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∥∥4
8+4δ ,D

. Let C1α (T )≡ ∑T
m=1 α(1+δ )/(2+δ )

D (m). Then
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Similarly, we can show that GIs = OP
(
K6/N2) = oP (1). It follows that GI =

OP
(
K6/N2) = oP (1) .1

For (i3), we write GII ≡ ∑1≤i< j<l≤N ED

(
W 2

il W
2
jl +W 2

i jW
2
il +W 2

i jW
2
l j

)
= GII,1 +

GII,2 +GII,3. By Assumptions 5(ii), we have
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∑
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≡ GII,11 +GII,12, say.

For GII,11, we have
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Noting that ED [elt4Z̃′lt4Q̄ppΩ̃Q̄ppZ̃lt3elt3] = 0, by the conditional Davydov inequality

we have

∣∣ED

{
tr

[
elt4Z̃′lt4Q̄ppΩ̃Q̄ppZ̃lt3elt3

]
tr

[
Q̄ppΩ̃Q̄ppZ̃lt6Z̃′lt6e2

lt6

]}∣∣

≤ 8
∥∥tr

[
elt4Z̃′lt4Q̄ppΩ̃Q̄ppZ̃lt3elt3

]∥∥
4+2δ ,D

∥∥tr
[
Q̄ppΩ̃Q̄ppZ̃lt6Z̃′lt6e2

lt6

]∥∥
4+2δ ,D

α
1+δ
2+δ
D (t6− t4)

≤ 8µ2
1
(
Q̄ppΩ̃Q̄pp

)∥∥∥
∥∥elt4Z̃′lt4

∥∥
F

∥∥Z̃lt3elt3

∥∥
F

∥∥∥
4+2δ ,D

∥∥∥
∥∥Z̃lt6

∥∥2
F e2

lt6

∥∥∥
4+2δ

α
1+δ
2+δ
D (t6− t4)

≤ CK2(
∥∥elt4

∥∥
8+4δ ,D

ϕ̃lt4,8+4δ )(
∥∥elt3

∥∥
8+4δ ,D

ϕ̃lt3,8+4δ )(
∥∥elt6

∥∥2
8+4δ ,D

ϕ̃2
lt6,8+4δ )α

1+δ
2+δ
D (t6− t4)

≤ CK2 (
C3,lt4,e +C3,lt4,p +C3,lt3,e +C3,lt3,p +2C3,lt6,e +2C3,lt6,p

)
α

1+δ
2+δ
D (t6− t4)

1This is a rough bound but it suffices for our proof. With more complicated arguments, we can
show that G1 = OP

(
K2/N2

)
.
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where C3,lt,e≡‖elt‖8
8+4δ ,D , C3,lt,p≡ ϕ̃8

lt,8+4δ , ϕ̃is,q≡K−1/q
∥∥Z̃is

∥∥
q,D

, and E
∣∣ϕ̃is,q

∣∣8+4δ

< ∞ by Assumption 6(iii) . Then

GII,11 ≤ 192CK2

N2T 2V2
NT

N

∑
l=1

∑
1≤t3<t4<t6≤T

{
α(1+δ )/(2+δ )

D (t6− t4)

×(
C3,lt4,e +C3,lt4,p +C3,lt3,e +C3,lt3,p +2C3,lt6,e +2C3,lt6,p

)}

= CK2

N2T 2V2
NT

{
(TC2α (T )+3TC1α (T ))

N

∑
i=1

T

∑
t=1

(
C3,it,e +C3,it,p

)
}

= OP
(
N−1)

by Assumption A5(i), where C2α (T ) ≡ T−1 ∑T−1
t=1 ∑T

s=t+1 α
1+δ
2+δ
D (s− t) < ∞. Simi-

larly,

GII,12

≤ 48
N4T 4V2

NT
∑

1≤i< j<l≤N
∑

1≤t1,t2≤T
∑

1≤t3 6=t6≤T
ED

{
tr

[
ED(e2

it1Z̃it1Z̃′it1)Q̄ppe2
lt3Z̃lt3Z̃′lt3Q̄pp

]

× tr
[
ED(e2

jt2Z̃ jt2Z̃′jt2)Q̄ppe2
lt6Z̃lt6Z̃′lt6Q̄pp

]}

≤ 8
N2T 2V2

NT

N

∑
l=1

∑
1≤t3 6=t6≤T

ED

{
tr

[
Ω̃Q̄ppe2

lt3Z̃lt3Z̃′lt3Q̄pp
]

tr
[
Ω̃Q̄ppe2

lt6Z̃lt6Z̃′lt6Q̄pp
]}

≤ 8
N2T 2V2

NT

N

∑
l=1

∑
1≤t3 6=t6≤T

{
ED

[
tr

(
Ω̃Q̄ppe2

lt3Z̃lt3Z̃′lt3Q̄pp
)]

ED

[
tr

(
Ω̃Q̄ppe2

lt6Z̃lt6Z̃′lt6Q̄pp
)]

+ 8
∥∥tr

[
Ω̃Q̄ppe2

lt3Z̃lt3Z̃′lt3Q̄pp
]∥∥

4+2δ ,D

∥∥tr
[
Ω̃Q̄ppe2

lt6Z̃lt6Z̃′lt6Q̄pp
]∥∥

4+2δ ,D
α

1+δ
2+δ
D (|t6− t3|)

}

=
8µ2

1(Ω̃)µ4
1(Q̄pp)

N2T 2V2
NT

N

∑
l=1

∑
1≤t3 6=t6≤T

ED

[
e2

lt3

∥∥Z̃lt3

∥∥2
]

ED

[
e2

lt6

∥∥Z̃lt6

∥∥2
]

+
64µ2

1(Ω̃)µ4
1(Q̄pp)

N2T 2V2
NT

N

∑
l=1

∑
1≤t3 6=t6≤T

∥∥∥e2
lt3

∥∥Z̃lt3

∥∥2
∥∥∥

4+2δ ,D

∥∥∥e2
lt6

∥∥Z̃lt6

∥∥2
∥∥∥

4+2δ ,D
α

1+δ
2+δ
D (|t6− t3|)

= OP

(
1

N2T 2K2

)[
OP

(
NT 2K2)+OP

(
NT K2)] = OP

(
N−1) .

Thus GII,1 = oP (1). Similarly, we can show that GII,2 = oP (1) and GII,3 = oP (1).

It follows that GII = oP (1) .
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For (i4), we write GIII ≡∑1≤i< j<r<l≤N ED(Wi jWirWl jWlr +Wi jWilWr jWrl + WirWilWjrWjl)

≡ ∑4
s=1 GIII,s, say. By Assumptions 5(ii), we have

GIII,1

= 16
N4T 4V2

NT
∑

1≤i< j<r<l≤N
∑

1≤t1,...,t8≤T

[
ED

(
Hi j,t1t2eit1e jt2Hir,t3t4eit3ert4

×Hl j,t5t6elt5e jt6Hlr,t7t8elt7ert8

)]

= 16
N4T 4V2

NT
∑

1≤i< j<r<l≤N
∑

1≤t1,t2,t4,t5≤T
ED

[
e2

it1e2
jt2e2

lt5e2
rt4Hi j,t1t2Hir,t1t4Hl j,t5t2Hlr,t5t4

]

= 16
N4T 4V2

NT
∑

1≤i< j<r<l≤N
∑

1≤t,s,p,q≤T
tr

[
ED

(
Q̄ppZ̃it Z̃′ite

2
itQ̄ppZ̃rsZ̃′rse

2
rsQ̄

2
pp jq

× Z̃l pZ̃′l pe2
l pQ̄ppZ̃ jqZ̃′jqe

)]

= 16
24N4V2

NT
∑

1≤i 6= j 6=r 6=l≤N
tr

(
Q̄ppΩ̃iQ̄ppΩ̃rQ̄ppΩ̃lQ̄ppΩ̃ j

)

= 2
3V2

NT
tr

(
Q̄ppΩ̃Q̄ppΩ̃Q̄ppΩ̃Q̄ppΩ̃

)
+OP

(
1

NK

)
= OP

(
1
K

)
,

where we use the facts that tr
(
Q̄ppΩ̃Q̄ppΩ̃Q̄ppΩ̃Q̄ppΩ̃

) ≤ µ4
1
(
Q̄pp

)
µ3

1 (Ω̃)tr(Ω̃) =

OP (K) and N−1 ∑N
i=1 Ω̃i = Ω̃ in the last line.

For (ii), we can easily show that J̃NT 2 = OP

(
N−1/2

)
= oP (1) by conditional

Chebyshev inequality. The detail is omitted to save space.

Proof of Theorem 3.4.2. Note that ĴNT = NT ΓNT−B̂NT√
V̂NT

= JNT

(
VNT
V̂NT

)1/2
+ BNT−B̂NT√

V̂NT

and V−1
NT = OP

(
K−1) , by Theorem 3.4.1 it suffices to show that (i) B̂NT −BNT =

oP

(
K1/2

)
and (ii) V̂NT −VNT = oP (K). We first prove (i).

B̂NT −BNT =
1

NT

N

∑
i=1

T

∑
t=1

(
ê2

it Ẑ
′
itŴ

−1
NT Qwpp,NTŴ−1

NT Ẑit − e2
it Z̃

′
itW̃

−1QwppW̃−1Z̃it
)

=
1

NT

N

∑
i=1

T

∑
t=1

ê2
it
[
Ẑ′itW̃

−1QwppW̃−1Ẑit − Z̃′itW̃
−1QwppW̃−1Z̃it

]

+
1

NT

N

∑
i=1

T

∑
t=1

(
ê2

it − e2
it
)

Z̃′itW̃
−1QwppW̃−1Z̃it

+
1

NT

N

∑
i=1

T

∑
t=1

ê2
it
[
Ẑ′it

(
Ŵ−1

NT Qwpp,NTŴ−1
NT −W̃−1QwppW̃−1) Ẑit

]

≡ DB1NT +DB2NT +DB3NT , say.
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Following the proof of Lemma .0.14(i), we can readily show that DBsNT = oP (1)

for s = 1,2 because Q1/2
wppW̃−1Z̃it and Q1/2

wppW̃−1Ẑit behave similarly to Z̃it and Ẑit ,

respectively. Let ŵ ≡ Ŵ−1
NT Qwpp,NTŴ−1

NT and w̃ ≡ W̃−1QwppW̃−1. Then we have

DB3NT = tr[(ŵ− w̃)Ω̂NT ]. By Minkowski inequality,

‖ŵ− w̃‖F

≤ ∥∥W̃−1 (Qwpp,NT −Qwpp)W̃−1∥∥
F +

∥∥(Ŵ−1
NT −W̃−1)Qwpp,NT (Ŵ−1

NT −W̃−1)
∥∥

F

+2
∥∥W̃−1Qwpp,NT (Ŵ−1

NT −W̃−1)
∥∥

F

= w1NT +w2NT +2w3NT , say.

By the matrix version of Cauchy-Schwarz inequality, the fact that tr(AB)≤ µ1 (B)tr(A)

for any symmetric matrix A and p.s.d. matrix B, and Lemma .0.15, we have

w1NT ≤ {
tr

[
W̃−1 (Qwpp,NT −Qwpp)W̃−1W̃−1 (Qwpp,NT −Qwpp)W̃−1]}1/2

≤ µ1
(
W̃−1){

tr
[
W̃−1 (Qwpp,NT −Qwpp)(Qwpp,NT −Qwpp)W̃−1]}1/2

≤ [
µ1

(
W̃−1)]2 ∥∥Qwpp,NT −Qwpp

∥∥
F

= OP (1)OP(K/(NT )1/2) = OP(K/(NT )1/2).

Similarly, we can show that w3NT,2 = OP(K2(K−2γ/d +δ−2
NT )) and w3NT,3 = OP(K(K−γ/d

+δ−1
NT )) by Lemmas .0.13 and .0.15. It follows that

‖ŵ− w̃‖F = OP(K
(

K−γ/d +δ−1
NT

)
), (.0.55)

and |DB3NT | ≤ ‖(ŵ− w̃)‖F ||Ω̂NT ||F = OP(K
(

K−γ/d +δ−1
NT

)
)OP(K1/2)= oP(K1/2).

Thus B̂NT −BNT = oP(K1/2).
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(ii) Using the notation ŵ and w̃, we can decompose V̂NT −VNT as follows

V̂NT −VNT = 2tr
(
ŵΩ̂NT ŵΩ̂NT − w̃Ω̃w̃Ω̃

)

= 2tr
(
w̃Ω̂NT w̃Ω̂NT − w̃Ω̃w̃Ω̃

)

+2tr
[
(ŵ− w̃)Ω̂NT (ŵ− w̃)Ω̂NT

]
+4tr

[
(ŵ− w̃)Ω̂NT w̃Ω̂NT

]

= 2tr
[
w̃(Ω̂NT − Ω̃)w̃(Ω̂NT − Ω̃)

]
+4tr

[
w̃(Ω̂NT − Ω̃)w̃Ω̃

]

+2tr
[
(ŵ− w̃)Ω̂NT (ŵ− w̃)Ω̂NT

]
+4tr

[
(ŵ− w̃)Ω̂NT w̃Ω̂NT

]

≡ 2DV1NT +4DV2NT +2DV3NT +4DV3NT .

Observe that |DV1NT | ≤ [µ1 (w̃)]2 ||Ω̂NT − Ω̃||2 = OP(K2/(NT )) = oP (1) , and by

(.0.55)

|DV2NT | ≤ {
tr

[
(ŵ− w̃)Ω̂NT Ω̂NT (ŵ− w̃)

]}1/2 [
tr

(
w̃Ω̂NT Ω̂NT w̃

)]1/2

≤ [µ1(Ω̂NT )]2 ‖ŵ− w̃‖F ‖w̃‖F

= OP (1)OP(K
(

K−γ/d +δ−1
NT

)
)OP

(
K1/2

)
= oP

(
K1/2

)
.

Similarly, we can show that |DV3NT |=OP(K2(K−2γ/d+δ−2
NT ))=oP (1) and |DV4NT |

= OP((K3/2(K−γ/d +δ−1
NT ))= oP

(
K1/2

)
. Consequently, V̂NT−VNT = oP

(
K1/2

)
=

oP (K) . ¥
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C Supplementary Material on Chapter 3

.0.7 Expansion of the quasi-log-likelihood function

We extend the expansion of the (negative) quasi-log-likelihood function of Moon

and Weidner (2010) to our nonparametric framework. This expansion is the starting

point of our asymptotic analysis. Given the sieve basis {pk (x) ,k = 1, ...,K}, we

can linearize model (3.1.1) as (3.2.1). Compared with Moon and Weidner’s (2010)

linear model, the number of regressors increases as sample size (N,T ) tends to

infinity in (3.2.1) and the new error term includes an extra component, i.e., the sieve

approximation error. We can modify the proof in Moon and Weidner (2010) and

still resort to the perturbation theory of operator in Kato (1980) to establish the first

order expansion of approximating quasi-log-likelihood function.

Define

Φ1 ≡ f 0 (
f 0′ f 0)−1 (

λ 0′λ 0)−1 (
f 0′ f 0)−1

f 0′, and

Φ2 ≡ λ 0 (
λ 0′λ 0)−1 (

f 0′ f 0)−1 (
λ 0′λ 0)−1 λ 0′. (.0.56)

Recall that Φ = f 0( f 0′ f 0)−1(λ 0′λ 0)−1λ 0′ and ϑNT = ∑K
k=0 εkPk, where εk = βk−

β 0
k for k = 1, ...,K, ε0 = ‖u‖/

√
NT , and P0 = (

√
NT/‖u‖)‖u‖ . Let dmax

(
λ 0, f 0) ,

dmin
(
λ 0, f 0) , r0

(
λ 0, f 0) , and αNT be as defined at the beginning of the Appendix.

Proposition .0.10 Suppose that ‖ϑNT‖ ≤
√

NT r0
(
λ 0, f 0). Let λ̂ (β ) and f̂ (β ) be

the minimizing parameters in (3.2.6). Let Mλ̂ (β ) ≡ Mλ̂ (β ) and M f̂ (β ) ≡ M f̂ (β ).

Then
(i) the profile quasi-log-likelihood function can be written as a power series in

the K +1 parameters εk (k = 0,1, ...,K), i.e.,

L 0
NT (β ) ≡ 1

NT

K

∑
k1=0

K

∑
k2=0

εk1εk2L(2) (λ 0, f 0,Pk1,Pk2

)

+
1

NT

K

∑
k1=0

K

∑
k2=0

K

∑
k3=0

εk1εk2εk3L(3) (λ 0, f 0,Pk1,Pk2,Pk3

)

+OP
(
α4

NT
)

(.0.57)
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where

L(2) (λ 0, f 0,Pk1,Pk2

) ≡ tr
(

Mλ 0Pk1M f 0P′k2

)

L(3) (λ 0, f 0,Pk1,Pk2,Pk3

) ≡ − 1
3! ∑

all 6 permutations for (k1,k2,k3)
tr

(
Mλ 0Pk1M f 0P′k2

ΦP′k3

)
;

(ii) the projector Mλ̂ (β ) can be written as a power series in the parameters
εk (k = 0,1, ...,K), i.e.,

Mλ̂ (β )= Mλ 0 +
K

∑
k=0

εkM(1)
λ

(
λ 0, f 0,Pk

)
+

K

∑
k1=0

K

∑
k2=0

εk1εk2M(2)
λ

(
λ 0, f 0,Pk1,Pk2

)
+OP

(
α3

NT
)

where

M(1)
λ

(
λ 0, f 0,Pk

)
= −Mλ 0PkΦ−Φ′P′kMλ 0

M(2)
λ

(
λ 0, f 0,Pk1,Pk2

)
= Mλ 0Pk1ΦPk2Φ+Φ′P′k2

Φ′P′k1
Mλ 0 −Mλ 0Pk1M f 0P′k2

Φ2

−Φ2Pk2M f 0P′k1
Mλ 0 −Mλ 0Pk1Φ1P′k2

Mλ 0 +Φ′P′k1
Mλ 0Pk2Φ;

(iii) the projector M f̂ (β ) can be written as a power series in the parameters
εk (k = 0,1, ...,K), i.e.,

M f̂ (β )= M f 0 +
K

∑
k=0

εkM(1)
f

(
λ 0, f 0,Pk

)
+

K

∑
k1=0

K

∑
k2=0

εk1εk2M(2)
f

(
λ 0, f 0,Pk1,Pk2

)
+OP

(
α3

NT
)

where

M(1)
f

(
λ 0, f 0,Pk

)
= −M f 0P′kΦ′−ΦPkM f 0

M(2)
f

(
λ 0, f 0,Pk1,Pk2

)
= M f 0P′k1

Φ′P′k2
Φ′+ΦPk2ΦPk1M f 0 −M f 0P′k1

Mλ 0Pk2Φ1

−Φ1P′k2
Mλ 0Pk1M′

f 0 −M f 0P′k1
Φ2Pk2M f 0 +ΦPk1M f 0P′k2

Φ′;

Proof. (i) The proof follows the proofs of Theorems 2.1 and 3.1 in Moon and

Weidner (2010) closely, and is composed of two steps.

Step 1. We expand the quasi-log-likelihood function into the summation of an

infinite sequence. Observe that

Y−
K

∑
k=1

βkPk = λ 0 f 0′+ ε0P0 + ε1P1 + · · ·+ εKPK, (.0.58)

where we can view the last K +1 terms as perturbations to the leading term λ 0 f 0′.
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Now we rewrite the profile quasi-log-likelihood function in (3.2.8) as follows:

1
NT

T

∑
R+1

µt

[(
Y−

K

∑
k=1

βkPk

)′(
Y−

K

∑
k=1

βkPk

)]
=

1
NT

T

∑
R+1

µt [T (1)] (.0.59)

where T (κ) ≡T 0 +κT (1) +κ2T (2),

T 0 ≡ f 0λ 0′λ 0 f 0′, T (1) ≡ ϑNT
(
λ 0 f 0′+ f 0λ 0′) , and T (2) ≡ ϑNT ϑNT . (.0.60)

Clearly, if εk = 0 for k = 0,1, · · · ,K, then the T −R smallest eigenvalues of T 0 are

all equal to zero.

Since T (1) ≡T 0 +T (1) +T (2), under some conditions to be specified later

(see (.0.66) and (.0.67) below), we can expand the weighted mean λ̂ (1) of the λ -

group eigenvalues (λ = 0 in this case) as

λ̂ (1)≡ 1
T −R

T

∑
R+1

µt [T (1)] = 0+
∞

∑
g=0

1gλ̂ (g), (.0.61)

where the coefficients λ̂ (g) are given by

λ̂ (g) ≡ 1
T−R

g

∑
p=1

(−1)p+1 ∑
v1+···+vp=g,

m1+···+mp+1=p−1
2≥v j≥1,m j≥0

tr(S(k1)T (v1)S(k2) · · ·S(kp)T (vp)S(kp+1)),

(.0.62)

S(0) ≡ −Mλ 0 , S(k) ≡
[
λ 0 (

λ 0′λ 0)−1 (
f 0′ f 0)−1 (

λ 0′λ 0)−1 λ 0′
]k

, (.0.63)

and T (s) (s = 1,2) are defined in (.0.60). Note that 2≥ v j comes from the facts that

T (g) ≡ 0 for g = 3,4, · · · , k j ≥ 0 and requirement −T +R+1 < 0. See (2.12) in p.

76, (2.18) in p. 77, and (2.22) in p. 78 in Kato (1980) for more details. Using the
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expressions in (.0.60) for T (1) and T (2) we have

1
NT

T

∑
R+1

µt [T (1)]

=
1

NT

∞

∑
g=1

g

∑
p=1

(−1)p+1 ∑
v1+···+vp=s

m1+···+mp+1=p−1
2≥v j≥1,k j≥0

tr(S(m1)T (v1)S(m2) · · ·S(mp)T (vp)S(mp+1))

=
1

NT

∞

∑
g=2

K

∑
k1=0

K

∑
k2=0

· · ·
K

∑
kg=0

εk1εk2 · · ·εkgL(g) (λ 0, f 0,Pk1, · · · ,Pkg

)
(.0.64)

by noting that the term with g = 1 is equal to zero, and where

L(g) (λ 0, f 0,Pk1, · · · ,Pkg

)

≡ 1
g!

[
L̃(g) (λ 0, f 0,Pk1, · · · ,Pkg

)
+ all permutations of (k1, · · · ,kg)

]
,

L̃(g) (λ 0, f 0,Pk1, · · ·Pkg

)

≡
g

∑
p=1

(−1)p+1 ∑
v1+···+vp=s,

m1+···+mp+1=p−1,
2≥v j≥1,k j≥0

tr
(

S(m1)T
(v1)

k1...
S(m2) · · ·S(mp)T (vp)

...kg
S(mp+1)

)
,

(.0.65)

T
(1)

k ≡ λ 0 f 0′P′k +Pk f 0λ 0′, and T
(2)

k1k2
≡ Pk1P′k2

.

To ensure that T (κ) can be expanded at κ= 1 in (.0.64), we need the following

conditions:

1. The perturbation terms must be small enough so that the quasi-log-likelihood

function can be expanded. The separating distance of eigenvalue 0 (with mul-

tiplicity T −R) is defined as dsp ≡ NT d2
min

(
λ 0, f 0). Then it requires that

∥∥∥T (1) +T (2)
∥∥∥≤ NT

2
d2

min
(
λ 0, f 0) . (.0.66)

2. Convergence of the expansion in eqn. (.0.64) in an infinite sequence with κ=

1 requires that the convergence radius is at least 1. Define a ≡ √NT ‖ϑNT‖
2dmax

(
λ 0, f 0), c ≡ ‖ϑNT‖

[
2
√

NT dmax
(
λ 0, f 0)]−1

. It is straightforward to
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show that

∥∥∥T (1)
∥∥∥≤ a,

∥∥∥T (2)
∥∥∥≤ ac and

∥∥∥T (s)
∥∥∥≡ 0≤ acs−1 for s = 3,4, · · · .

(.0.67)

Then by (3.51) in Kato (1980, p.95), the sum of the power series for LNT (β )

is convergent if 1≤
(

2a
dsp

+ c
)−1

, i.e., if

‖ϑNT‖√
NT

≤ r0
(
λ 0, f 0)≡

(
4dmax

(
λ 0, f 0)

d2
min (λ 0, f 0)

+
1

2dmax (λ 0, f 0)

)−1

. (.0.68)

Step 2. Finite order truncation of the quasi-log-likelihood function. To conduct

the asymptotic analysis, we need to truncate the expansion in (.0.64) to a finite

order. Noting that
∥∥∥S(g)

∥∥∥ =
[
NT d2

min
(
λ 0, f 0)]−g

,
∥∥∥T (1)

∥∥∥≤ a, and
∥∥∥T (2)

∥∥∥≤ ac,

we have

∥∥∥S(h1)T (v1)S(h2) · · ·S(hp)T (vp)S(hp+1)
∥∥∥

≤ [
NT d2

min
(
λ 0, f 0)]−∑h j

(
2
√

NT dmax
(
λ 0, f 0))2p−∑v j ‖ϑNT‖g .

Using ∑v1+···+vp=g,2≥v j≥1 1≤ 2g and ∑h1+···+hp+1=p−1, h j≥0 ≤ 4p, we have

1
NT ∑

v1+···+vp=g, h1+···+hp+1=p−1
2≥v j≥1, h j≥0

∣∣∣tr
(

S(h1)T (v1)S(h2) · · ·S(hp)T (vp)S(hp+1)
)∣∣∣

≤ Rd2
min

(
λ 0, f 0)(

2
√

NT dmax
(
λ 0, f 0))−g

‖ϑNT‖g
g

∑
p=dg/2e

(
32d2

max
(
λ 0, f 0)

d2
min (λ 0, f 0)

)p

≤ Rgd2
min

(
λ 0, f 0)

2

∥∥∥∥
ϑNT√

NT

∥∥∥∥
g
(

16dmax
(
λ 0, f 0)

d2
min (λ 0, f 0)

)g
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for g≥ 3. Recalling that αNT ≡
∥∥∥ 1√

NT
ϑNT

∥∥∥ 16dmax(λ 0, f 0)
d2

min(λ 0, f 0) , we have

∣∣∣∣∣L
0
NT (β )− 1

NT

G

∑
g=2

K

∑
k1=0

· · ·
K

∑
kg=0

εk1 · · ·εkgL(g) (λ 0, f 0,Pk1, · · · ,Pkg

)
∣∣∣∣∣

=
1

NT

∞

∑
g=G+1

K

∑
k1=0

· · ·
K

∑
kg=0

εk1 · · ·εkgL(g) (λ 0, f 0,Pk1, · · · ,Pkg

)

≤
∞

∑
g=G+1

Rgαg
NT d2

min
(
λ 0, f 0)

2
≤ R(G+1)αG+1

NT d2
min

(
λ 0, f 0)

2(1−αNT )2 .

The infinite summation is convergent given αNT < 1, which is implied by r0
(
λ 0, f 0) >

1. Letting G = 3, we complete the proof of (i).

(ii)-(iii) Following the proof of (i) and that of Theorems 2.1 and 3.1 in Moon

and Weidner (2010), we can prove (ii)-(iii) analogously.

.0.8 Proofs of the technical lemmas

Convergence rate

Lemma .0.18 Suppose that Assumptions 1-4 hold. Then for any f ∈ RT×R satisfy-
ing rank( f ) = R, we have

(i) sup f
∣∣ 1

NT tr
(
P(a)M f e

)∣∣ = OP
(
δ−1

NT
)

for any a ∈ RK with ‖a‖= 1;

(ii) sup f
∣∣ 1

NT tr
(
P(a)M f eg

)∣∣ = OP

(
K−γ/d

)
for any a ∈ RK with ‖a‖= 1;

(iii) sup f
∣∣ 1

NT tr
(
λ 0 f 0′M f u′

)∣∣ = OP

(
δ−1

NT +K−γ/d
)

;

(iv) sup f
∣∣ 1

NT tr
(
uPf u′

)∣∣ = OP

(
δ−2

NT +K−2γ/d
)

.

Proof. (i) Using M f = IT −Pf , we have

1
NT

∣∣tr[P(a)M f e′
]∣∣ ≤

∣∣∣∣
1

NT
tr

[
P(a)e′

]∣∣∣∣+
∣∣∣∣

1
NT

tr
[
P(a)Pf e′

]∣∣∣∣

=

∣∣∣∣∣a
′ 1
NT

N

∑
i=1

T

∑
t=1

piteit

∣∣∣∣∣+
1

NT
rank(P(a)Pf e′)

∥∥Pf
∥∥∥∥P(a)

∥∥‖e‖

≤ ‖a‖
∥∥∥∥∥

1
NT

N

∑
i=1

T

∑
t=1

piteit

∥∥∥∥∥+R

∥∥P(a)
∥∥

√
NT

‖e‖√
NT

= OP

(
K1/2/(NT )1/2

)
+OP

(
δ−1

NT
)

= OP
(
δ−1

NT
)

by Assumptions 1(iii)-(iv), 2(ii), and 5, Lemmas .0.28(vi) , (i), and (xi), and the

fact rank(Pf )≤ R.
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(ii) Using M f = IT −Pf , we have

∣∣∣∣
1

NT
tr

[
P(a)M f e′g

]∣∣∣∣

≤
∣∣∣∣

1
NT

tr
[
P(a)e′g

]∣∣∣∣+
∣∣∣∣

1
NT

tr
[
P(a)Pf e′g

]∣∣∣∣

≤ 1
NT

{
a′

N

∑
i=1

T

∑
t=1

pit p′ita

}1/2 {
N

∑
i=1

T

∑
t=1

e2
g,i

}1/2

+
R

NT

∥∥P(a)
∥∥∥∥Pf

∥∥∥∥e′g
∥∥

≤ µ1 (Qpp,NT )1/2 ‖a‖
∥∥e′g

∥∥
F√

NT
+C

∥∥P(a)
∥∥

√
NT

∥∥e′g
∥∥

F√
NT

= OP

(
K−γ/d

)

by Assumption 2(i), Lemma .0.28(i), and the fact that

‖e′g‖2
F

NT = 1
NT

N

∑
i=1

T

∑
t=1

e2
g,i≤

∥∥g(x)− pK (x)′β 0∥∥2
∞,ω̄

1
NT

N

∑
i=1

T

∑
t=1

(1+‖Xit‖2)ω̄ = OP

(
K−2γ/d

)

by Assumptions 3(i) and 4(i).

(iii) By Lemmas .0.28 (ii) and (iv), we have

∣∣ 1
NT tr

(
λ 0 f 0′M f u′

)∣∣≤ rank
(
λ 0 f 0′M f u′

) ‖λ 0‖√
N
‖ f 0‖√

T

‖e‖+‖eg‖F√
NT

= OP

(
δ−1

NT +K−γ/d
)

.

(iv) By Lemmas .0.28 (ii) and (iv), we have 1
NT

∣∣tr(uPf u′
)∣∣≤rank

(
uPf u′

) ‖u‖2

NT

∥∥Pf
∥∥

= OP

(
δ−2

NT +K−2γ/d
)

= oP (1) .

Proof of Lemma .0.8. Let P(a) ≡ ∑K
k=1 akPk and ak ≡

(
β 0

k −βk
)
/
∥∥β 0−β

∥∥. We

first give a lower bound for SNT (β , f ). Since Y−∑K
k=1 βkPk = λ 0 f 0′+∑K

k=1
(
β 0

k −βk
)

Pk +

u, we have

SNT (β , f )

=
1

NT
tr

{[
λ 0 f 0′+

K

∑
k=1

(
β 0

k −βk
)

Pk +u

]
M f

[
λ 0 f 0′+

K

∑
k=1

(
β 0

k −βk
)

Pk +u

]′}

= SNT
(
β 0, f 0)+ S̃NT (β , f )

+
2

NT
tr

{[
λ 0 f 0′+

∥∥β 0−β
∥∥P(a)

]
M f u′

}
+

1
NT

tr{u(Pf 0 −Pf )u′}

≥ SNT
(
β 0, f 0)+ S̃NT (β , f )− (∥∥β 0−β

∥∥)
OP

(
K−γ/d +δ−1

NT

)
−OP

(
K−γ/d +δ−1

NT

)

where S̃NT (β , f )≡ 1
NT tr

[(
λ 0′ f 0 +

∥∥β 0−β
∥∥P(a)

)
M f

(
λ 0 f 0′+

∥∥β 0−β
∥∥P(a)

)′]. It
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is obvious that

S̃NT (β , f ) ≥ min
f

S̃NT (β , f ) =
∥∥β 0−β

∥∥2 N

∑
i=2R+1

µi

(
Q(a)

pp,NT

)

≥
∥∥β 0−β

∥∥2
min

‖a‖=1,a∈RK

N

∑
i=2R+1

µi

[
Q(a)

pp,NT

]
= b

∥∥β 0−β
∥∥2

,

by Assumption 2(iii). It follows that SNT (β , f ) ≥ SNT
(
β 0, f 0) + b

∥∥β 0−β
∥∥2−

oP
(∥∥β 0−β

∥∥)− oP (1) . Since SNT (β̂ , f̂ ) = minβ , f SNT (β , f ) ≤ SNT
(
β 0, f 0) , we

have

b
∥∥∥β 0− β̂

∥∥∥
2
≤ ∥∥β 0−β

∥∥OP

(
K−γ/d +δ−1

NT

)
+OP

(
K−γ/d +δ−1

NT

)

Then we get ||β 0− β̂ ||= OP(K−γ/2d +δ−1/2
NT ) = oP (1) . ¥

Proof of Lemma .0.9. Recall VK (x)≡ pK (x)′W̃−1Ω̃W̃−1 pK (x) and vK
x ≡ W̃−1 pK(x)√

VK(x)
.

By Cauchy-Schwarz inequality, we have

|dit | = V−1/2
K (x)

∣∣pK (x)′W̃−1Z̃it
∣∣

≤
{

pK (x)′W̃−1 pK (x)
}1/2 {

Z̃′itW̃
−1Z̃it

}1/2

{
pK (x)′W̃−1Ω̃W̃−1 pK (x)

}1/2 ≤
∥∥pK (x)

∥∥µ1
(
W̃−1)∥∥Z̃it

∥∥
‖pK (x)‖µ1/2

min

(
Ω̃

)
µ1

(
W̃−1

)

= µ−1/2
min

(
Ω̃

)∥∥Z̃it
∥∥ .

Recall that Z̃it = pit − 1
N ∑N

j=1 αi jED

(
p jt

)− 1
T ∑T

s=1 ηtsED (pis)+ 1
NT ∑N

j=1 ∑T
s=1

αi jηtsED

(
p js

)≡ pit +ζit . Note that ζit is a K×1 D-measurable vector, and

‖ζit‖ ≤
∥∥λ 0

i
∥∥ ς−1

N
N

N

∑
j=1

∥∥λ 0
j
∥∥∥∥ED

(
p jt

)∥∥+
∥∥ f 0

t
∥∥ ς−1

T
T

T

∑
s=1

∥∥ f 0
s
∥∥‖ED (pis)‖

+
∥∥λ 0

i
∥∥∥∥ f 0

t
∥∥ ς−1

N ς−1
T

NT

N

∑
j=1

T

∑
s=1

∥∥λ 0
j
∥∥∥∥ f 0

s
∥∥∥∥ED

(
p js

)∥∥

where we use the fact that
∣∣αi j

∣∣ ≤ ς−1
N

∥∥λ 0
i

∥∥
∥∥∥λ 0

j

∥∥∥ and |ηts| ≤ ς−1
T

∥∥ f 0
t
∥∥∥∥ f 0

s
∥∥ . For

(i), noting that
∥∥Z̃it

∥∥4 ≤ (‖pit‖+‖ζit‖)4 ≤ 23
(
‖pit‖4 +‖ζit‖4

)
and µ−2

min

(
Ω̃

)
=
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OP (1), we have

1
NT

T

∑
t=1

N

∑
i=1

∥∥d4
it
∥∥2

2,D
≤ 23µ−2

min

(
Ω̃

)

NT

T

∑
t=1

N

∑
i=1

∥∥∥‖pit‖4 +‖ζit‖4
∥∥∥

2

2,D

≤ 24µ−2
min

(
Ω̃

)
{

1
NT

T

∑
t=1

N

∑
i=1

[
ED

(
‖pit‖8

)
+‖ζit‖8

]}
= OP

(
K4) ,

where we use the fact that 1
NT ∑T

t=1 ∑N
i=1 ‖ζit‖8 = OP

(
K4). To see this, using

(a+b+c
3

)8

≤ (
a8 +b8 + c8)/3, we have 1

NT ∑T
t=1 ∑N

i=1 ‖ζit‖8≤ ζNT (4,a)+ζNT (4,b)+ζNT (4,c) ,

where

ζNT (4,a) ≡ 37

NT

T

∑
t=1

N

∑
i=1

(
∥∥λ 0

i
∥∥ ς−1

N
N

N

∑
j=1

∥∥λ 0
j
∥∥∥∥ED

(
p jt

)∥∥
)8

,

ζNT (4,b) ≡ 37

NT

T

∑
t=1

N

∑
i=1

(
∥∥ f 0

t
∥∥ ς−1

T
T

T

∑
s=1

∥∥ f 0
s
∥∥‖ED (pis)‖

)8

, and

ζNT (4,c) ≡ 37

NT

T

∑
t=1

N

∑
i=1

(
∥∥λ 0

i
∥∥∥∥ f 0

t
∥∥ ς−1

N ς−1
T

NT

N

∑
j=1

T

∑
s=1

∥∥λ 0
j
∥∥∥∥ f 0

s
∥∥∥∥ED

(
p js

)∥∥
)4

.

For ζNT (4,a), by Cauchy-Schwarz inequality

ζNT (4,a) ≤ 37ς−8
N

{
1
N

N

∑
i=1

∥∥λ 0
i
∥∥8

}{
1
N

N

∑
j=1

∥∥λ 0
j
∥∥2

}4
1
T

T

∑
t=1

{
ED

(
1
N

N

∑
j=1

∥∥p jt
∥∥2

)}4

= OP (1)OP (1)OP
(
K4) = OP

(
K4) .

Similarly, we can show that ζNT (4,b) = OP
(
K4) and ζNT (4,c) = OP

(
K4) .

For (ii), following the study of (i) and Jensen inequality, we have

1
N2T

T

∑
t=1

(
N

∑
i=1

∥∥d2
it
∥∥2

2,D

)2

≤ µ−2
min

(
Ω̃

) 1
N2T

T

∑
t=1

(
N

∑
i=1

∥∥∥
∥∥Z̃it

∥∥2
∥∥∥

2

2,D

)2

≤ 4µ−2
min

(
Ω̃

)

N2T

T

∑
t=1

(
N

∑
i=1

∥∥∥‖pit‖2
∥∥∥

2

2,D
+

N

∑
i=1
‖ζit‖4

)2

≤ 8µ−2
min

(
Ω̃

)

T

T

∑
t=1



ED




(
1
N

N

∑
i=1
‖pit‖4

)2

+

1
N

N

∑
i=1
‖ζit‖8





= OP (1)OP
(
K4) = OP

(
K4) . ¥

188



Asymptotic normality for the sieve estimator

Proof of Lemma .0.10. (i) Let

p̄it ≡− 1
N

N

∑
j=1

αi j p jt − 1
T

T

∑
s=1

ηts pis +
1

NT

N

∑
j=1

T

∑
s=1

αi jηts p js.

Then Z̃it = pit +ED [p̄it ]. We have

W̃NT −W̃ =
1

NT

N

∑
i=1

T

∑
t=1

[
Z̃it Z̃′it −ED

(
Z̃it Z̃′it

)]

=
1

NT

N

∑
i=1

T

∑
t=1

[
pit p′it −ED

(
pit p′it

)]
+

1
NT

N

∑
i=1

T

∑
t=1

{
[[pit −ED (pit)]ED (p̄it)

′}

+
1

NT

N

∑
i=1

T

∑
t=1

{
ED (p̄it)

[
p′it −ED

(
p′it

)]}

≡ DW̃1NT +DW̃2NT +DW̃3NT , say.

For DW̃1NT , we have

ED

[∥∥DW̃1NT
∥∥2

F

]
=

1
N2

K

∑
l=1

K

∑
k=1

N

∑
i=1

1
T 2 ∑

1≤t 6=s≤T
CovD

(
pit,l pit,k, pis,k pis,l

)

+
1

N2T 2

K

∑
l=1

K

∑
k=1

N

∑
i=1

T

∑
t=1

VarD
(

pit,l pit,k
)

≤ 8
N2T 2

K

∑
l=1

K

∑
k=1

N

∑
i=1

∑
1≤t 6=s≤T

{∥∥pit,l
∥∥

8+4δ ,D

∥∥pit,k
∥∥

8+4δ ,D

×
∥∥pis,k

∥∥
8+4δ ,D

∥∥pis,l
∥∥

8+4δ ,D
α

1+δ
2+δ
D (t− s)

}

+OP

(
K2

NT

)

= OP

(
K2

NT

)
+OP

(
K2

NT

)
= OP

(
K2

NT

)
.

Then
∥∥DW̃1NT

∥∥
F = OP(K/

√
NT ) = oP (1) . Similarly, we can show that DW̃sNT ≡

OP
(
K/
√

NT
)

for s = 2,3. Then (i) follows.

(ii) Noting that Zit = Z̃it + (p̄it −ED [p̄it ]), we can decompose WNT − W̃NT =
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1
NT ∑N

i=1 ∑T
t=1[ZitZ′it − Z̃it Z̃′it ] as follows

WNT −W̃NT =
1

NT

N

∑
i=1

T

∑
t=1

pit (p̄it −ED [p̄it ])
′+

1
NT

N

∑
i=1

T

∑
t=1

(p̄it −ED [p̄it ]) p′it

+
1

NT

N

∑
i=1

T

∑
t=1

ED [p̄it ] (p̄it −ED [p̄it ])
′

+
1

NT

N

∑
i=1

T

∑
t=1

(p̄it −ED [p̄it ])ED [p̄it ]
′

+
1

NT

N

∑
i=1

T

∑
t=1

(p̄it −ED [p̄it ]) (p̄it −ED [p̄it ])
′

≡ DW1NT +DW2NT +DW3NT +DW4NT +DW5NT , say.

It is easy to see that
∥∥WNT −W̃NT

∥∥
F ≤∑5

s=1 ‖DWsNT‖F = 2‖DW1NT‖F +2‖DW3NT‖F

+‖DW5NT‖F .

For DW1NT , using the expression for p̄it and by Minkowski inequality, we have

‖DW1NT‖F ≤
∥∥∥∥∥

1
N2T

N

∑
i=1

N

∑
j=1

T

∑
t=1

αi j pit
(

p jt −ED

[
p jt

])′
∥∥∥∥∥

F

+

∥∥∥∥∥
1

NT 2

N

∑
i=1

T

∑
t=1

T

∑
s=1

ηts pit (pis−ED [pis])
′
∥∥∥∥∥

F

+

∥∥∥∥∥
1

N2T 2

N

∑
i=1

N

∑
j=1

T

∑
t=1

T

∑
s=1

αi jηts pit
(

p js−ED

[
p js

])′
∥∥∥∥∥

F
≡ DW1NT,1 +DW1NT,2 +DW1NT,3, say.

For DW1NT,1, we have

DW1NT,1 =

∥∥∥∥∥
1

N2T

N

∑
i=1

T

∑
t=1

αii pit [pit −ED (pit)]
′
∥∥∥∥∥

F

+

∥∥∥∥∥
1

N2T ∑
1≤i6= j≤N

T

∑
t=1

αi j pit
(

p jt −ED

[
p jt

])′
∥∥∥∥∥

F

= OP

(
K√
N3T

)
+OP

(
K√
NT

)
= OP

(
K√
NT

)

by Chebyshev’s inequality. Similarly, we can show that DW1s = OP(K/
√

NT ) for

s = 2,3. Hence ‖DW1NT‖F = OP(K/
√

NT ).

Analogously, we can show that ‖DWsNT‖F = OP(K/
√

NT ) for s = 3,5. Thus

(ii) follow. ¥
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Proof of Lemma .0.11. Let ΨNT ≡ 1√
NT ∑N

i=1 ∑T
t=1 vK′

x {(Zit − Z̃it)eit −ED [(Zit −
Z̃it)eit ]}. Let pc

is ≡ pis−ED (pis). We first make the following decomposition:

ΨNT = − 1√
NT

N

∑
i=1

T

∑
t=1

vK′
x

{
1
N

N

∑
j=1

αi j pc
jt

}
eit

− 1√
NT

N

∑
i=1

T

∑
t=1

vK′
x

{
1
T

T

∑
s=1

ηts [pc
iseit −ED (pc

iseit)]

}

+
1√
NT

N

∑
i=1

T

∑
t=1

vK′
x

{
1

NT

N

∑
j=1

T

∑
s=1

αi jηts
[
pc

jseit −ED

(
pc

jseit
)]

}

≡ −ΨNT,1−ΨNT,2 +ΨNT,3, say.

We want to show that: (i) ΨNT,1 = oP (1), (ii) ΨNT,2 = oP (1), and (iii) ΨNT,3 =

oP (1) .

First, we consider (i). Note that ED(ΨNT,1) = 0 and

ED

(
Ψ2

NT,1
)

=
1

N3T

N

∑
i1=1

N

∑
i2=1

N

∑
j1=1

N

∑
j2=1

T

∑
t1=1

T

∑
t2=1

αi1 j1αi2 j2vK′
x ED

(
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j1t1 pc′
j2t2ei1t1ei2t2

)
vK

x

=
1

N3T

N

∑
j=1

N

∑
i=1

T

∑
t=1

α2
i jv

K′
x ED

(
pc

jt pc′
jte

2
it
)

vK
x

≤ ζ−2
N

∥∥vK
x
∥∥2

N
1

N2T

N

∑
i=1

N

∑
j=1

T

∑
t=1

∥∥λ 0
i
∥∥∥∥λ 0

j
∥∥∥∥ED

(
pc

jt pc′
jte

2
it
)∥∥

F

≤ ζ−2
N

∥∥vK
x
∥∥2

N
1

N2T

N

∑
i=1

N

∑
j=1

∥∥λ 0
i
∥∥∥∥λ 0

j
∥∥ T

∑
t=1

∥∥pc
jt
∥∥2

2,D

∥∥e2
it
∥∥

2,D
= OP (K/N) .

It follows that Π1NT,121 = OP(K1/2/N1/2) = oP (1) by conditional Chebyshev in-

equality.

Next, we consider (ii). We decompose ΨNT,2 as follows

ΨNT,2 =
1√
NT 3

N

∑
i=1

∑
1≤s≤t≤T

ηtsvK′
x pc

iseit +
1√
NT 3

N

∑
i=1

∑
1≤t<s≤T

ηtsvK′
x [pc

iseit −ED (pc
iseit)]

≡ ΨNT,21 +ΨNT,22, say,

where we use the fact ED (pc
iseit) = ED (piseit) = 0 for s ≤ t in the first term. Fol-

lowing the study of ΨNT,1, we can show that ΨNT,21 = OP

(
K1/2/T 1/2

)
= oP (1) by

conditional Chebyshev inequality. We are left to show that ΨNT,22 = oP (1). By con-
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struction, ED [ΨNT,22] = 0. By Assumption 5(iii) and conditional Jensen inequality,

ED [Ψ2
NT,22] = VarD (ΨNT,22) =

1
NT 3

N

∑
i=1

VarD

(
∑

1≤t<s≤T
ηtsED

(
eitvK′

x pis
)
)

≤ 1
NT 3

N

∑
i=1

∑
1≤t1<t2≤T

∑
1≤t3<t4≤T

ηt1t2ηt3t4vK′
x ED(eit1 pc

it2eit3 pc′
it4)v

K
x

≡ EΨNT,22 . (.0.69)

There are three cases according to the number of distinct time indices in the set S =

{t1, t2, t3, t4} : (a) #S = 4, (b) #S = 3, and (c) #S = 2. We use EΨNT,22a, EΨNT,22b

and EΨNT,22c to denote the summation when the time indices in (.0.69) are re-

stricted to these three cases, respectively. Then EΨNT,22 = EΨNT,22a +EΨNT,22b +

EΨNT,22c. It suffices to prove ΨNT,22 = oP (1) by showing that EΨNT,22s = oP (1)

for s = a,b,c.

We dispense with the easiest term first. In case (c) , we must have t1 = t3 and t2 =

t4. By direct moment calculations, we can readily show that EΨNT,22c = OP (K/T ).

Now we consider EΨNT,22a. There are three subcases: (a1) t1 < t2 < t3 < t4 or

t3 < t4 < t1 < t2; (a2) t1 < t3 < t2 < t4 or t3 < t1 < t4 < t2; (a3) t1 < t3 < t4 < t2 or t3 <

t1 < t2 < t4. Let EΨNT,22a1, EΨNT,22a2, and EΨNT,22a3 denote the corresponding

summation when the time indices are are restricted to subcases (a1), (a2) , and (a3),

respectively, in the definition of EΨNT,22a. We only prove that EΨNT,22a1 = oP (1)

as the proof of EΨNT,22a2 = oP (1) and EΨNT,22a3 = oP (1) is similar. For subcase

(a1), by the symmetry of (t1, t2)←→ (t3, t4), we have

EΨNT,22a1 =
2

NT 3

N

∑
i=1

∑
1≤t1<t2<t3<t4≤T

ηt1t2ηt3t4vK′
x ED

(
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it2eit1 pc′
it4eit3

)
vK

x

Let dl = tl+1 − tl , for l = 1,2,3. Let dlmax be the largest increment, i.e., tlmax −
tlmax−1 = maxs=2,3,4 (ts− ts−1). We consider two subsubcases for (a1): (a11) lmax =

2 or lmax = 4; (a12) lmax = 3. Let EΨNT,22a11 and EΠD214,a12 denote the corre-

sponding summation when the time indices restricted to subsubcases (a11) and

(a12), respectively. For subsubcase (a11), without loss of generality (wlog) as-

sume lmax = 2. Let ϕc
is,q ≡ K−1/q ‖pc

it‖q,D for 0 < q ≤ 8 + 4δ . By the conditional
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Davydov inequality (see Lemma .0.26 in the supplementary appendix) and Hölder

inequality, we have

∣∣ED

(
eit1vK′

x pc
it2eit3 pc′

it4vK
x
)∣∣

≤ 8‖eit1‖8+4δ ,D
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(8+4δ )/3,D
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D (t2− t1)

≤ 8K
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x
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)(∥∥ f 0
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)

×
(∥∥ f 0
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)

α
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2+δ
D (t2− t1) ,

where C1,it,e =
∥∥ f 0

t
∥∥4 ‖eit‖4

8+4δ ,D and C1,it,p =
∥∥ f 0

t
∥∥4 (ϕc

it,8+4δ )4. It follows that

EΨNT,22a11

≤ 2ς−2
T

NT 3

N

∑
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∑
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)
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{
N

∑
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T

∑
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(
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T

∑
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√
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t
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



= CK
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NOP

(√
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NT
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(
K
T 2
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.
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For subsubcase (a12), we have

EΨNT,22a11 ≤ 1
NT 3

N

∑
i=1

∑
1≤t1<t2<t3<t4≤T , d2>d1≥d3

{∥∥ f 0
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∥∥∥∥ f 0
t2

∥∥∥∥ f 0
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×
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≡ EΨNT,22a11 (1)+EΨNT,22a11 (2) , say.

By the conditional Davydov inequality, Hölder and Jensen inequalities, we have
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It is easy to verify that ∑N
i=1 ∑T

t=1(C1,it,e +C1,it,p) = OP (NT ). It follows that
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Similarly, we can show that EΨNT,22a11 (2) = OP (K/T ) = oP (1). Consequently

EΨNT,22a11 = OP (K/T ). By the same token we can show that EΨNT,22a12 = OP (K/T ) .

Thus EΨNT,22a1 = oP (1) . As remarked early on, one analogously show that EΨNT,22as

= oP (1) for s = 2,3. Consequently, we have EΨNT,22a = oP (1) .

Now we study EΨNT,22b. We consider two subcases: (b1) t1 = t3 or t2 = t4, (b2)

t1 = t4 or t2 = t3. Let EΨNT,22b1 and EΨNT,22b2 denote the corresponding summa-

tion when the time indices are restricted to subcases (b1) and (b2), respectively. For

subcases (b1), wlog we assume t1 = t3. By the conditional Davydov inequality, we

have
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∥∥∥e2
it1vK′

x pc
it2

∥∥∥
(8+4δ )/3,D

∥∥∥pc′
it4vK

x

∥∥∥
8+4δ ,D

α
1+δ
2+δ
D (t4− t2)

when t4 > t2 and
∣∣∣ED(e2

it1vK′
x pc

it2 pc′
it4vK

x )
∣∣∣ ≤ 8

∥∥∥e2
it1vK′

x pc
it4

∥∥∥
(8+4δ )/3,D

∥∥∥pc′
it2vK

x

∥∥∥
8+4δ ,D

α
1+δ
2+δ
D (t2− t4) when t2 > t4. If t4 > t2, by Hölder and Jensen inequalities, each term
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Similarly, each term inside the summation is bounded by

2K
∥∥vK

x
∥∥2 (

2C1,it1,e +C1,it2,p +C1,it4,p
)×α

1+δ
2+δ
D (t2− t4)

195



when if t2 > t4. It follows that
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= OP (K/T )+OP (K/T ) = OP (K/T ) .

Similarly, we can show that EΨNT,22b2 = OP (K/T ). Thus EΨNT,22b = OP (K/T ) .

In sum, we have shown that EΨNT,22 = OP (K/T ) , implying that ΨNT,22 = oP (1)

by Chebyshev inequality.

Using arguments as used in the study of ΨNT,22, we can show that ΨNT,23 =

oP (1). ¥

Proof of Lemma .0.12. By straightforward moment calculations and Chebyshev

inequality, one can prove (i)-(ii) ; see also Moon and Weidner (2010, S.4 p.14).

(iii) Noting that the (r,s)th element of f 0′e′P(a) is given by ∑N
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we have
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≡ T1NT +T2NT +T3NT , say.
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inequality. For T2NT and T3NT , following the proof of Proposition .0.7 and by the

conditional Davydov and Jensen inequalities we have
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s=2

{
8K1/2

N

∑
i=1

s−1

∑
t=1

∥∥ f 0
t
∥∥‖eit‖8+4δ ,D ϕis,8+4δ α

3+2δ
4+2δ
D (s− t)

}2

= OP
(
N2T K

)
.

It follows that || f 0′e′P(a)||F = OP

(
(NT K)1/2δNT

)
.

(iv) By (iii) , we have
∥∥∥Pf 0e′P(a)

∥∥∥ |F ≤
∥∥∥ f 0 (

f 0′ f 0)−1
∥∥∥

F

∥∥ f 0′e′P(a)
∥∥

F = OP

(
T−1/2

)

×OP

(
(NT K)1/2δNT

)
= OP(

√
NKδNT ).

(v) Noting that (r, j)th element of λ 0′eP′(a) is given by ∑N
i=1 ∑T

t=1 λ 0
ireita′p jt , we

have

ED

[∥∥∥λ 0′eP′(a)

∥∥∥
2

F

]

= ED




R

∑
r=1

N

∑
j=1

(
N

∑
i=1

T

∑
t=1

λ 0
ireita′p jt

)2



=
R

∑
r=1

∑
1≤i6= j≤N

T

∑
t=1

(
λ 0

ir
)2

ED

[
e2

it
]

ED

(
a′p jt

)2 +
R

∑
r=1

N

∑
j=1

T

∑
t=1

(
λ 0

jr
)2

ED

[
e2

jt
(
a′p jt

)2
]

= ∑
1≤i6= j≤N

T

∑
t=1

∥∥λ 0
i
∥∥2

ED

[
e2

it
]

ED

(
a′p jt

)2 +
N

∑
j=1

T

∑
t=1

∥∥λ 0
j
∥∥2

ED

[
e2

jt
(
a′p jt

)2
]

= OP
(
N2T K

)
+OP (NT K) = OP

(
N2T K

)
.

It follows that
∥∥∥λ 0′eP′(a)

∥∥∥
F

= OP(N
√

T K).

(vi) By (v), we have
∥∥∥Pλ 0eP′(a)

∥∥∥
F
≤

∥∥∥λ 0 (
λ 0′λ 0)−1

∥∥∥
F

∥∥λ 0′e′P(a)
∥∥

F = OP

(
N−1/2

)
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×OP

(
(NT K)1/2δNT

)
= OP(

√
NT K).

(vii) Noting that Ai ≡ T−1vK′
x [ED

(
Pi−Pλ

i

)′
] f 0G0 is a 1× R vector and D-

measurable, we have

ED

{
1

N
√

T

T

∑
t=1

N

∑
i=1

N

∑
j=1

Aiλ 0
j
[
e jteit −ED

(
e jteit

)]
}2

≤ 2ED

{
2

N
√

T

T

∑
t=1

∑
1≤i 6= j≤N

Aiλ 0
j e jteit

}2

+2ED

{
1

N
√

T

T

∑
t=1

N

∑
i=1

Aiλ 0
i
[
e2

it −ED

(
e2

it
)]

}2

= 4
N2T

T

∑
t=1

∑
1≤i 6= j≤N

‖Ai‖2 ∥∥λ 0
j
∥∥2

ED

(
e2

jt
)

ED

(
e2

it
)

+ 2
N2T

T

∑
t=1

N

∑
i=1
‖Ai‖2 ∥∥λ 0

i
∥∥2 [

ED

(
e4

it
)−ED

(
e2

it
)

ED

(
e2

it
)]

= OP (K)+OP (K/N) = OP (K) by Assumption 6.

Then (vii) follows by Chebyshev inequality.

(viii) Note that 1
NT ∑N

i=1 ED

(∥∥∥∑T
s=1 vK′

x

(
pc

is− pλc
is

)
f 0
s G0

∥∥∥
2
)

is bounded by

2
N

N

∑
i=1

ED

∥∥∥∥∥
1√
T

T

∑
s=1

vK′
x pc

is f 0
s G0

∥∥∥∥∥
2

+
2
N

N

∑
i=1

ED

∥∥∥∥∥
1√
T N

T

∑
s=1

N

∑
j=1

αi jvK′
x pc

js f 0
s G0

∥∥∥∥∥
2

.

The first term is bounded by

1
NT

N

∑
i=1

T

∑
s=1

T

∑
t=1

∥∥ f 0
s
∥∥∥∥ f 0

t
∥∥∣∣ED

[
vK′

x pc
is pc′

it vK
x
]∣∣∥∥G0∥∥

≤ 8
∥∥vK′

x
∥∥2

K
∥∥G0∥∥ 1

NT

N

∑
i=1

T

∑
s=1

T

∑
t=1

∥∥ f 0
s
∥∥∥∥ f 0

t
∥∥ϕc

is,8+4δ ϕc
it,8+4δ α

3+2δ
4+2δ
D (|s− t|) = OP (K)

by the conditional Davydov inequality. Similarly, we can show that the second term

is also OP (K). Thus (viii) follows by Markov inequality.

(ix) Using similar arguments as used in the proof of (vii) , one can prove (iv) by

Markov inequality.
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(x) Note that ED{ 1√
NT ∑N

i=1 ∑T
t=1 ∑T

s=1 Bt f 0′
s [eiteis−ED (eiteis)]}2 is bounded by

2ED

{
1√
NT

N

∑
i=1

T

∑
t=1

Bt f 0′
t

[
e2

it −ED

(
e2

it
)]

}2

+2ED

{
1√
NT

N

∑
i=1

∑
1≤t 6=s≤T

Bt f 0′
s eiteis

}2

=
2

NT 2

N

∑
i=1

T

∑
t=1

T

∑
s=1

Bt f 0′
t Bs f 0′

s ED

[
e2

ite
2
is−ED

(
e2

it
)

ED

(
e2

is
)]

+
4

NT 2

N

∑
i=1

∑
1≤t 6=s≤T

‖Bt‖2 ‖ fs‖2 ED

(
e2

ite
2
is
)

= OP (K)+OP (K) = OP (K)

by Assumption 9. Then (x) follows by Chebyshev inequality.

(xi) Note that

ED





1
NT

T

∑
t=1

∥∥∥∥∥
N

∑
j=1

vK′
x

(
pc

jt − p f c
jt

)
λ 0′

j G0

∥∥∥∥∥
2




≤ 2
NT

T

∑
t=1

ED





∥∥∥∥∥
N

∑
j=1

vK′
x pc

jtλ 0′
j G0

∥∥∥∥∥
2


+

2
NT

T

∑
t=1

ED





∥∥∥∥∥
1
T

N

∑
j=1

T

∑
s=1

ηtsvK′
x pc

jsλ 0′
j G0

∥∥∥∥∥
2




=
2

NT

T

∑
t=1

N

∑
j=1

ED

(
vK′

x pc
jt
)2 α0

j +
2

NT

T

∑
t=1

1
T 2

N

∑
j=1

T

∑
s=1

α0
j η2

tsv
K′
x ED

(
pc

js pc′
js
)

vK
x

+
2K

∥∥vK
x
∥∥2

NT

T

∑
t=1

1
T 2

N

∑
j=1

∑
1≤s 6=r≤T

α0
j ηtsηtrϕc

js,8+4δ ϕc
jr,8+4δ α

3+2δ
4+2δ
D (|r− s|)

= OP (K)+OP (K)+OP (K) = OP (K) ,

where α0
j ≡ λ 0′

j G0G0′λ 0
j . Then (xi) follows by Chebyshev inequality.

(xii) The proof is similar to that of (x) and thus omitted. ¥

Bias correction

Let ê(β ) ≡ Y−∑K
k=1 βkPk − λ̂ (β ) f̂ (β )′ . Following Moon and Weidner (2010,

2012), we first derive the asymptotic expansions for the projectors M f̂ (β ) and

Mλ̂ (β ), and the residual matrix ê(β ), and then establish some lemmas that are used

to prove Lemmas .0.13 and .0.14.

Lemma .0.19 Under Assumptions 1-4, we have the following expansions
(i) Mλ̂ (β ) = Mλ 0 +M(1)

λ̂ ,u
+M(2)

λ̂ ,u
+∑K

k=1
(
β 0

k −βk
)

M(1)
λ̂ ,k

+M(rem)
λ̂

(β ) ,

(ii) M f̂ (β ) = M f 0 +M(1)
f̂ ,u +M(2)

f̂ ,u +∑K
k=1

(
β 0

k −βk
)

M(1)
f̂ ,k

+M(rem)
f̂

(β ) ,
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(iii) ê(β ) = Mλ 0uM f 0 + ê(1)
e +∑K

k=1
(
β 0

k −βk
)

ê(1)
k + ê(rem) (β ) ,

where ê(1)
k = Mλ 0PkM f 0, ê(1)

e = −Mλ 0uM f 0u′Φ′−Φ′u′Mλ 0uM f 0 −Mλ 0uΦuM f 0,

the expansion coefficients of Mλ̂ (β ) are given by

M(1)
λ̂ ,u

= −Mλ 0uΦ−Φ′u′Mλ 0 ,

M(1)
λ̂ ,k

= −Mλ 0PkΦ−Φ′P′kMλ 0,

M(2)
λ̂ ,u

= Mλ 0uΦuΦ+Φ′u′Φ′u′Mλ 0 −Mλ 0uM f 0u′Φ2−Φ2uM f 0u′Mλ 0

−Mλ 0uΦ1u′Mλ 0 +Φ′u′Mλ 0uΦ,

and, analogously, the expansion coefficients of M f̂ (β ) are given by

M(1)
f̂ ,u = −M f 0uΦ′−Φu′M f 0,

M(1)
f̂ ,k

= −M f 0P′kΦ′−ΦPkM f 0,

M(2)
f̂ ,u = M f 0u′Φ′u′Φ′+ΦuΦuM f 0 −M f 0u′Mλ 0uΦ1−Φ1u′Mλ 0uM f 0

−M f 0u′Φ2uM f 0 +ΦuM f 0u′Φ′.

For the remainder terms, we have

||M(rem)
λ̂

(β ) || = OP[(δ−1
NT +K−γ/d)

∥∥β 0−β
∥∥+

∥∥β 0−β
∥∥2

+(δ−3
NT +K−3γ/d)],

||M(rem)
f̂

(β ) || = OP[(δ−1
NT +K−γ/d)

∥∥β 0−β
∥∥+

∥∥β 0−β
∥∥2

+(δ−3
NT +K−3γ/d)],

||ê(rem) (β ) || = OP{
√

NT [
∥∥β −β 0∥∥2

+(δ−1
NT +K−γ/d)

∥∥β −β 0∥∥+(δ−3
NT +K−3γ/d)]},

and rank
(

ê(rem) (β )
)
≤ 7R.

Proof. Since the symmetry of N ↔ T, λ ↔ f , u↔ u′, and Pk ↔ P′k, the proofs

for M f̂ (β ) and Mλ̂ (β ) are similar. So we only consider the proof of M f̂ (β ) and

ê(β ) .

Expansion of M f̂ (β ). By Proposition .0.10 (iii) and the fact u = ε0P0, we have

M f̂ (β ) = M f 0 +M(1)
f

(
λ 0, f 0,u

)
+M(1)

f

(
λ 0, f 0,

K

∑
k=1

εkPk

)
+M(2)

f

(
λ 0, f 0,u,u

)

+

{
M(2)

f

(
λ 0, f 0,

K

∑
k=1

εkPk,
K

∑
k=1

εkPk

)
+OP

(
a3

NT
)
}

= M f 0 +M(1)
f̂ ,u +

K

∑
k=1

(
β 0

k −βk
)

M(1)
f̂ ,k

+M(2)
f̂ ,u +M(rem)

f̂
(β )
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Following the proof in Proposition .0.10, we can show that

M(rem)
f̂

(β ) = OP

[(
δ−1

NT +K−γ/d
)∥∥β 0−β

∥∥+
∥∥β 0−β

∥∥2
+

(
δ−3

NT +K−3γ/d
)]

.

Expansion of ê(β ). By the definition of ê(β ) and using the expansions of

Mλ̂ and M f̂ , we have

ê(β ) = Y−
K

∑
k=1

βkPk− λ̂ (β ) f̂ (β )′ = Mλ̂

[
Y−

K

∑
k=1

βkPk

]
M f̂

= Mλ̂

[
u−

K

∑
k=1

(
βk−β 0

k
)

Pk +λ 0 f 0′
]

M f̂

= Mλ 0uM f 0 −
∥∥β −β 0∥∥Mλ 0P(a)M f 0 −Mλ 0uM f 0uΦ′−Mλ 0uΦ′u′M f 0

−Φ′u′Mλ 0uM f 0 + ê(rem) (β ) .

Noting that ||M(1)
f̂ ,u|| = OP(δ−1

NT + K−γ/d), ||M(1)
λ̂ ,u
|| = OP(δ−1

NT + K−γ/d), ||M(2)
f̂ ,u|| =

OP(δ−2
NT +K−2γ/d), ||M(2)

λ̂ ,u
||= OP(δ−2

NT +K−2γ/d), ||∑K
k=1(βk−β 0

k )M(1)
f̂ ,k
||= OP(||β−

β 0||), and ||∑K
k=1

(
βk−β 0

k

)
M(1)

λ̂ ,k
|| = OP(||β −β 0||), we have

∥∥∥ê(rem) (β )
∥∥∥= OP

(√
NT

[∥∥β −β 0∥∥2
+

(
δ−1

NT +K−γ/d
)∥∥β −β 0∥∥+

(
δ−3

NT +K−3γ/d
)])

.

Let A0 = u−∑K
k=1

(
βk−β 0)Pk, A1 = A0−Mλ 0A0M f 0 , A2 = λ 0′ f 0− λ̂ (β )′ f̂ (β )

and A3 =−ê(1)
e , where λ̂ (β )= Pλ̂ (β )λ 0 and f̂ (β )= Pf̂ (β ) f 0. Note that ê(rem) (β )=

A1 +A2 +A3,and rank(A1)≤ 2R, rank(A2)≤ 2R, and rank(A3)≤ 3R. It follows that

rank(ê(rem) (β ))≤ 7R.

Lemma .0.20 Under Assumptions 1-4, we have
(i) ||Pλ̂ −Pλ 0|| = ||Mλ̂ −Mλ 0|| = OP(δ−1

NT +K−γ/d),
(ii) ||Pf̂ −Pf 0|| = ||M f̂ −M f 0|| = OP(δ−1

NT +K−γ/d).
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Proof. Noting that ‖u‖/
√

NT = OP

(
δ−1

NT +K−γ/d
)

,
∥∥P(a)

∥∥/
√

NT = OP (1) ,

and
∥∥∥β 0− β̂

∥∥∥ = OP

(
K1/2δ−2

NT +K−γ/d
)

, we have by .0.20(ii)

∥∥∥Pf̂ −Pf 0

∥∥∥ ≤
∥∥∥M(1)

f̂ ,u

∥∥∥+
∥∥∥M(2)

f̂ ,u

∥∥∥+

∥∥∥∥∥
K

∑
k=1

(
β 0

k − β̂k

)
M(1)

f̂ ,k

∥∥∥∥∥+
∥∥∥M(rem)

f̂
(β )

∥∥∥

= OP

(
δ−1

NT +K−γ/d
)

+OP

(
δ−2

NT +K−2γ/d
)

+OP

(∥∥∥β 0− β̂
∥∥∥
)

+OP

[(
δ−1

NT +K−γ/d
)∥∥β 0−β

∥∥+
∥∥β 0−β

∥∥2
+

(
δ−3

NT +K−3γ/d
)]

= OP

(
δ−1

NT +K−γ/d
)

.

Similarly, we can show that
∥∥Pλ̂ −Pλ̂ 0

∥∥ = OP

(
δ−1

NT +K−γ/d
)

.

Lemma .0.21 Under Assumptions 1-4, there exists an R×R matrix H = HNT such
that

(i) || f̂ − f 0H||/√T = OP(δ−1
NT +K−γ/d);

(ii) ||λ̂ −λ 0 (H ′)−1 ||/√N = OP(δ−1
NT +K−γ/d);

(iii)
√

NT ||Φ̂−Φ|| = OP(δ−1
NT +K−γ/d).

Proof. (i) Noting that ||Pf̂ − Pf 0|| = oP (1), we have rank(Pf̂ Pf 0) = R, i.e.,

rank(Pf̂ f 0) = R as (N,T ) → ∞. Write f̂ = Pf̂ f 0H with some non-singular R×R

matrix H = HNT . It is easy to see that H = ( f̂ ′Pf̂ f 0/T )−1( f̂ ′ f̂ /T ) = ( f̂ ′ f 0/T )−1

and ||H−1|| ≤ T−1|| f̂ ′ f 0|| = OP (1). Note that f̂ = f 0H + (Pf̂ − Pf 0) f 0H and

H = ( f 0′ f 0/T )−1 f 0′ f̂ /T − ( f 0′ f 0/T )−1 f 0′(Pf̂ −Pf 0) f 0H/T. It follows that ||H||
≤ OP (1)+ ||H||OP(δ−1

NT + K−γ/d), which implies that ||H|| = OP (1). Noting that

f̂ = Pf̂ f 0H, we have
∥∥ f̂ − f 0H

∥∥ =
∥∥∥(Pf̂ −Pf 0) f 0H

∥∥∥ ≤ R
∥∥∥Pf̂ −Pf 0

∥∥∥
∥∥ f 0

∥∥‖H‖ =

OP[
√

T
(

δ−1
NT +K−γ/d

)
].

(ii) Recall that λ̂ f̂ ′ f̂ =
(

Y−∑K
k=1 β̂kPk

)
f̂ . Then

λ̂ −λ 0 (
H ′)−1 =

[
λ 0 f 0′+

K

∑
k=1

(
β 0

k − β̂k

)
Pk +u

]
f̂
(

f̂ ′ f̂
)−1−λ 0 (

H ′)−1

= λ 0 f 0′
(

Pf̂ −Pf 0

)
f 0

(
f 0′Pf̂ f 0

)−1 (
H ′)−1

+λ 0 f 0′ f 0
[(

f 0′Pf̂ f 0
)−1

− (
f 0′ f 0)−1

](
H ′)−1

+

[
K

∑
k=1

(
β 0

k − β̂k

)
Pk +u

]
Pf̂ f 0

(
f 0′Pf̂ f 0

)−1 (
H ′)−1

≡ Λ1NT +Λ2NT +Λ3NT , say.
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First,

Λ1NT ≤ 2R
T

∥∥λ 0∥∥∥∥ f 0∥∥2
∥∥∥
(
H ′)−1

∥∥∥
∥∥∥Pf̂ −Pf 0

∥∥∥
∥∥∥( f 0′Pf̂ f 0/T )−1

∥∥∥

= OP[
√

N(δ−1
NT +K−γ/d)].

Noting that

∥∥∥∥
(

f 0′Pf̂ f 0/T
)−1

− (
f 0′ f 0/T

)−1
∥∥∥∥

≤
∥∥∥ f 0′

(
Pf̂ −Pf 0

)
f 0/T

∥∥∥
∥∥∥
(

f 0′ f 0/T
)−1

∥∥∥
∥∥∥∥
(

f 0′Pf̂ f 0/T
)−1

∥∥∥∥

=
∥∥∥Pf̂ −Pf 0

∥∥∥
∥∥ f 0∥∥2

/T
∥∥∥
(

f 0′ f 0/T
)−1

∥∥∥
∥∥∥∥
(

f 0′Pf̂ f 0/T
)−1

∥∥∥∥
= OP

(
δ−1

NT +K−γ/d
)

,

we have

Λ2NT ≤
∥∥λ 0∥∥∥∥ f 0′ f 0/T

∥∥
[
( f 0′Pf̂ f 0/T )−1− (

f 0′ f 0/T
)−1

]∥∥∥
(
H ′)−1

∥∥∥

=
√

NOP

(
δ−1

NT +K−γ/d
)

.

Now,

‖Λ3NT‖ ≤ 1
T

[∥∥∥β 0− β̂
∥∥∥

∥∥P(a)
∥∥+‖u‖

]∥∥∥Pf̂

∥∥∥
∥∥ f 0∥∥

∥∥∥∥
(

f 0′Pf̂ f 0/T
)−1

∥∥∥∥
∥∥H−1∥∥

= OP

[√
N

(∥∥∥β 0− β̂
∥∥∥+δ−1

NT +K−γ/d
)]

= OP

[√
N

(
δ−1

NT +K−γ/d
)]

.

Consequently,
∥∥∥λ̂ −λ 0 (H ′)−1

∥∥∥ = OP

[√
N

(
δ−1

NT +K−γ/d
)]

.

(iii) Noting that

∥∥∥λ̂ ′λ̂/N−H−1λ 0′λ 0(H ′)−1/N
∥∥∥

=
∥∥∥N−1

(
λ̂ ′−H−1λ 0′

)(
λ̂ +λ 0(H ′)−1

)∥∥∥

≤ N−1
∥∥∥λ̂ −H−1λ 0

∥∥∥
[∥∥∥λ̂/

√
N

∥∥∥+
∥∥∥λ 0/

√
N

∥∥∥
∥∥(H ′)−1∥∥

]

= OP(δ−1
NT +K−γ/d),
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we have

∥∥∥∥
(

λ̂ ′λ̂/N
)−1

− (
H−1λ 0′λ 0(H ′)−1/N

)−1
∥∥∥∥

≤
∥∥∥λ̂ ′λ̂/N

∥∥∥
∥∥∥λ̂ ′λ̂/N−H−1λ 0′λ 0(H ′)−1/N

∥∥∥
∥∥H−1λ 0′λ 0(H ′)−1/N

∥∥

= OP

(
δ−1

NT +K−γ/d
)

.

Similarly,
∥∥∥( f̂ ′ f̂ /T )−1− (

H ′ f 0′ f 0H/T
)−1

∥∥∥= OP

(
δ−1

NT +K−γ/d
)

. Combining these

results, we have

√
NT ||Φ̂−Φ||

=
∥∥∥∥ λ̂√

N

(
λ̂ ′λ̂
N

)−1 (
f̂ ′ f̂
T

)−1 f̂ ′√
T
− λ 0√

N

(
λ 0′λ 0

N

)−1 (
f 0′ f 0

T

)−1 f 0′√
T

∥∥∥∥

=

∥∥∥∥∥
λ̂√
N

(
λ̂ ′λ̂
N

)−1 (
f̂ ′ f̂
T

)−1 f̂ ′√
T
− λ 0(H ′)−1

√
N

(
H−1λ 0′λ 0(H ′)−1

N

)−1 (
H ′ f 0′ f 0H

T

)−1 H ′ f 0′√
T

∥∥∥∥∥
= OP

(
δ−1

NT +K−γ/d
)

.

Lemma .0.22 Suppose that the conditions in Theorem 3.3.3 hold. Then we have
(i) (NT )−1 ∑N

i=1 ∑T
t=1 e2

it(Ẑit Ẑ′it − Z̃it Z̃′it) = OP

(
K1−γ/d +Kδ−1

NT

)
;

(ii) (NT )−1 ∑N
i=1 ∑T

t=1(e
2
it− ê2

it)Ẑit Ẑ′it = OP(Kδ−1
NT +(NT )1/4 Kδ−2

NT +(NT )1/4 K1−γ/d).

Proof. (i) Note that 1
NT ∑N

i=1 ∑T
t=1 e2

it(Ẑit Ẑ′it−Z̃it Z̃′it)= 1
NT ∑N

i=1 ∑T
t=1

[
e2

it(Ẑit Ẑ′it −ZitZ′it)
]

+ 1
NT ∑N

i=1 ∑T
t=1

[
e2

it(ZitZ′it − Z̃it Z̃′it)
]≡ A11 +A12, say. Let B1,it = Ẑit−Zit and B2,it =

e2
itZit . Then

A11 =
1

NT

N

∑
i=1

T

∑
t=1

e2
it
(
Ẑit Ẑ′it −ZitZ′it

)

=
1

NT

N

∑
i=1

T

∑
t=1

{[(
Ẑit −Zit

)
Z′ite

2
it +Zite2

it
(
Ẑit −Zit

)′]+ e2
it
(
Ẑit −Zit

)(
Ẑit −Zit

)′}

=
1

NT

N

∑
i=1

T

∑
t=1

(
B1,itB′2,it +B2,itB′1.it

)
+

1
NT

N

∑
i=1

T

∑
t=1

e2
itB1,itB′1,it = A(a)

11 +A(b)
11 , say.

Define N × T matrices B1,k and B2,k with their (i, t)th elements given by the kth

elements of B1,it and B2,it , respectively. Then we have A(a)
11,k1k2

= 1
NT tr(B1,k1B′2,k2

)+

1
NT tr

(
B2,k1B′1,k2

)
. Note that B1,k =

(
Mλ̂ −Mλ 0

)
PkM f 0+ Mλ̂ Pk

(
M f̂ −M f 0

)
and
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∥∥B1,k
∥∥ = OP

(
K−γ/d +δ−1

NT

)
‖Pk‖. For B2,k, we have

∥∥B2,k
∥∥2≤

∥∥B2,k
∥∥2

F =
N

∑
i=1

T

∑
t=1

e4
itZ

2
it,k≤

{
N

∑
i=1

T

∑
t=1

e8
it

}1/2 {
N

∑
i=1

T

∑
t=1

Z4
it,k

}1/2

= OP (NT )
[
Z(4)

k

]2

where Z(4)
k =

(
1

NT ∑N
i=1 ∑T

t=1 Z4
it,k

)1/4
. It follows that

∥∥B2,k
∥∥ = OP[(NT )1/2]Z(4)

k ,

A(a)
11,k1k2

≤ 6R
NT

[∥∥B1,k1

∥∥∥∥B2,k2

∥∥+
∥∥B2,k1

∥∥∥∥B1,k2

∥∥]

= OP

(
K−γ/d +δ−1

NT

)[
Z(4)

k2

∥∥Pk1

∥∥+Z(4)
k1

∥∥Pk2

∥∥
]
/(NT )1/2 ,

and

∥∥∥A(a)
11

∥∥∥
2

F
=

K

∑
k1=1

K

∑
k2=1

[
A(a)

11,k1k2

]2

= OP

(
K−2γ/d +δ−2

NT

) K

∑
k1=1

K

∑
k2=1

(NT )−1
[
Z(4)

k2

∥∥Pk1

∥∥+Z(4)
k1

∥∥Pk2

∥∥
]2

≤ OP

(
K−2γ/d +δ−2

NT

)
2

K

∑
k=1

[
Z(4)

k

]2 K

∑
k=1

(NT )−1 ‖Pk‖2

≤ OP

(
K−2γ/d +δ−2

NT

)√
K

{
K

∑
k=1

[
Z(4)

k

]4
}1/2 K

∑
k=1

‖Pk‖2 /(NT )

= OP

[
K2

(
K−2γ/d +δ−2

NT

)]
,

where we use ∑K
k=1[Z

(4)
k ]4 = 1

NT ∑K
k=1 ∑N

i=1 ∑T
t=1 Z4

it,k = OP (K) by Assumption 6.

For A(b)
11 , its (k1,k2)th element is given by

A(b)
11,k1k2

=
1

NT
tr

(
B(e)

1,k1
B(e)

1,k2

)

=
1

NT
tr

[(
Mλ̂ P(e)

k1
M f̂ −Mλ 0P(e)

k1
M f 0

)(
Mλ̂ P(e)

k2
M f̂ −Mλ 0P(e)

k2
M f 0

)]

≤ (NT )−1
[∥∥∥

(
Pλ 0 −Pλ̂

)
P(e)

k1
M f̂

∥∥∥
F

+
∥∥∥Mλ̂ P(e)

k1

(
Pf 0 −Pf̂

)∥∥∥
F

]

×
[∥∥∥

(
Pλ 0 −Pλ̂

)
P(e)

k2
M f̂

∥∥∥
F

+
∥∥∥Mλ P(e)

k2

(
Pf 0 −Pf̂

)∥∥∥
F

]

≤ (NT )−1
(∥∥Pλ 0 −Pλ̂

∥∥2 +
∥∥∥Pf 0 −Pf̂

∥∥∥
2
)∥∥∥P(e)

k1

∥∥∥
F

∥∥∥P(e)
k2

∥∥∥
F

= OP

(
K−2γ/d +δ−2

NT

)[
(NT )−1

∥∥∥P(e)
k1

∥∥∥
F

∥∥∥P(e)
k2

∥∥∥
F

]
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where B(e)
1,k is an N×T matrix with its (i, t)th element given by the kth element of

eitB1,it and P(e)
k is an N×T matrix with its (i, t)th element pit,keit . Then we have

∥∥∥A(b)
11

∥∥∥
2

F
=

K

∑
k1=1

K

∑
k2=1

[
A(b)

11,k1k2

]2

= OP

(
K−4γ/d +δ−4

NT

) K

∑
k1=1

K

∑
k2=1

[
(NT )−1

∥∥∥P(e)
k1

∥∥∥
F

∥∥∥P(e)
k2

∥∥∥
F

]2

≤ OP

(
K−4γ/d +δ−4

NT

){
1

NT

K

∑
k=1

∥∥∥P(e)
k

∥∥∥
2

F

}2

= OP

(
K−4γ/d +δ−4

NT

)
OP

(
K2) = oP

(
K2

(
K−2γ/d +δ−2

NT

))
,

where we use the fact that ∑K
k=1 ||P(e)

k ||2F = OP (NT K) because ∑K
k=1 E[||P(e)

k ||2F ] =

∑K
k=1 ∑N

i=1 ∑T
t=1 E

(
p2

it,ke2
it

)
= O(NT K) by Assumptions 6(i) and (iii). It follows

that ‖A11‖F = OP

(
K1−γ/d +Kδ−1

NT

)
= oP (1).

Following the study of
∥∥W̃NT −WNT

∥∥ in Lemma .0.13, we can show that ‖A12‖F =

OP(K/
√

NT ). Consequently,
∥∥ 1

NT ∑N
i=1 ∑T

t=1 e2
it(Ẑit Ẑ′it − Z̃it Z̃′it)

∥∥
F = OP

(
K1−γ/d +Kδ−1

NT

)
.

(ii) Write

1
NT

N

∑
i=1

T

∑
t=1

(
ê2

it − e2
it
)

Ẑit Ẑ′it =
1

NT

N

∑
i=1

T

∑
t=1

(êit − eit)
2 Ẑit Ẑ′it +

2
NT

N

∑
i=1

T

∑
t=1

(êit − eit)eit Ẑit Ẑ′it

≡ A21 +2A22, say.

For A22, we have A22,k1k2 = 1
NT tr(M f̂ P̃(e)′

k1
Mλ̂ P(e)

k2
), where P̃(e)

k1
and P(e)

k2
are N×T

matrices with their (i, t)th elements given by pit,k1 (eit − êit) and pit,k2eit , respec-

tively. Noting that

∣∣A22,k1k2

∣∣≤ 1
NT

∥∥∥M f̂ P̃(e)′
k1

∥∥∥
F

∥∥∥Mλ̂ P(e)
k2

∥∥∥
F
≤ 1

NT

∥∥∥P̃(e)
k1

∥∥∥
F

∥∥∥P(e)
k2

∥∥∥
F

,
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we have

‖A22‖2
F ≤ 1

N2T 2

K

∑
k=1

∥∥∥P(e)
k

∥∥∥
2

F

K

∑
k=1

∥∥∥P̃(e)
k

∥∥∥
2

F

≤ 1
N2T 2

{
K

∑
k=1

N

∑
i=1

T

∑
t=1

p2
it,ke2

it

}{
K

∑
k=1

N

∑
i=1

T

∑
t=1

p2
it,k (êit − eit)

2

}

≤
{

1
NT

K

∑
k=1

N

∑
i=1

T

∑
t=1

p2
it,ke2

it

}{
1

NT

N

∑
i=1

T

∑
t=1
‖pit‖4

}1/2 {
1

NT

N

∑
i=1

T

∑
t=1

(êit − eit)
4

}1/2

≤ OP (K)OP (K)

{
1

NT

N

∑
i=1

T

∑
t=1

(êit − eit)
4

}1/2

.

For A21, we have

‖A21‖2
F ≤

1
N2T 2

{
K

∑
k=1

N

∑
i=1

T

∑
t=1

p2
it,k (êit − eit)

2

}2

≤OP
(
K2)

{
1

NT

N

∑
i=1

T

∑
t=1

(êit − eit)
4

}
.

Now we consider the key term 1
NT ∑N

i=1 ∑T
t=1 (êit − eit)

4 . By Lemma .0.19, we

have

êit − eit =
(

β 0− β̂
)′

Zit +−→e it + rit

where−→e it ≡ 1
N ∑N

j=1 αi je jt + 1
T ∑T

s=1 ηtse jt− 1
NT ∑N

j=1 ∑T
s=1 ηtsαi je js, and rit ≡ (ê(1)

e )it +

(ê(rem))it +(Mλ 0egM f 0)it . Note that

∥∥∥ê(1)
e

∥∥∥
2

F
≤ R

∥∥∥ê(1)
e

∥∥∥
2
= OP

(
NT

(
δ−4

NT +K−4γ/d
))

, (.0.70)
∥∥∥ê(rem)

∥∥∥
2

F
≤ OP(NT ||β̂ −β 0||2

(
δ−2

NT +K−2γ/d
)
), (.0.71)

∥∥∥M f 0e′gMλ 0

∥∥∥
2

F
= OP

(
NT K−2γ/d

)
, (.0.72)

by Lemma .0.19, where we use the fact that rank
(

ê(rem) (β )
)
≤ 7R,

∥∥∥β̂ −β 0
∥∥∥ =

oP

(
δ−1

NT +K−γ/d
)

and δ−2
NT +K−2γ/d = oP(||β̂ −β 0||) in the second line. Then

1
NT

N

∑
i=1

T

∑
t=1

(êit − eit)
4

≤ 9

(∥∥∥β 0− β̂
∥∥∥

4 1
NT

N

∑
i=1

T

∑
t=1
‖Zit‖4 +

1
NT

N

∑
i=1

T

∑
t=1

−→e 4
it +

1
NT

N

∑
i=1

T

∑
t=1

r4
it

)
.(.0.73)
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It is easy to see that the first term in (.0.73) is OP

(∥∥∥β 0− β̂
∥∥∥

4
K2

)
. For the second

term, we have

1
NT

N

∑
i=1

T

∑
t=1

−→e 4
it ≤ 9

N2
1

NT

N

∑
i=1

T

∑
t=1

{
1√
N

N

∑
j=1

αi je jt

}4

+
9

T 2
1

NT

N

∑
i=1

T

∑
t=1

{
1√
T

T

∑
s=1

ηtse jt

}4

+
9

N2T 2
1

NT

N

∑
i=1

T

∑
t=1

{
1√
NT

N

∑
j=1

T

∑
s=1

ηtsαi je js

}4

= OP
(
N−2)+OP

(
T−2)+OP

(
N−2T−2) = OP

(
N−2 +T−2) .

where OP
(
N−2) comes from Markov inequality and cross-sectional independence

across i for eit conditional on D , and the OP
(
T−2) and OP

(
N−2T−2) terms can be

obtained by Markov inequality and the strong mixing property of {eit , t = 1, ...,T}
conditional on D . For the third term in (.0.73), we use a rough bound:

1
NT

N

∑
i=1

T

∑
t=1

r4
it ≤ 1

NT

{
N

∑
i=1

T

∑
t=1

r2
it

}2

≤ 9
NT

(∥∥∥M f 0e′gMλ 0

∥∥∥
2

F
+

∥∥∥ê(1)
e

∥∥∥
2

F
+

∥∥∥ê(rem)
∥∥∥

2

F

)2

≤ 27
NT

(∥∥∥M f 0e′gMλ 0

∥∥∥
4

F
+

∥∥∥ê(1)
e

∥∥∥
4

F
+

∥∥∥ê(rem)
∥∥∥

4

F

)

= OP

[
NT

(
δ−8

NT +K−8γ/d
)]

+OP

[
NT

(
K−4γ/d

)]

+OP

{[
NT

(
K2δ−8

NT +K−4γ/d
)(

δ−4
NT +K−4γ/d

)]}

= OP

(
NT δ−8

NT +NT K−4γ/d
)

by (.0.70)-(.0.72). In sum, we have

1
NT

N

∑
i=1

T

∑
t=1

(êit − eit)
4 = OP

(
δ−4

NT +NT δ−8
NT +NT K−4γ/d

)
. (.0.74)

It follows that

‖A21‖F = OP

(
Kδ−2

NT +(NT )1/2 Kδ−4
NT +(NT )1/2 K1−2γ/d

)

and

‖A22‖F = OP

(
Kδ−1

NT +(NT )1/4 Kδ−2
NT +(NT )1/4 K1−γ/d

)
.
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Consequently, 1
NT ∑N

i=1 ∑T
t=1

(
ê2

it − e2
it
)

Ẑit Ẑ′it = OP((NT )1/4 K1−γ/d +(NT )1/4 Kδ−2
NT

+Kδ−1
NT ).

Lemma .0.23 Suppose that the conditions in Theorem 3.3.3 hold. Then we have
‖ê− e‖F = OP(N1/2 +T 1/2).

Proof. Note that

‖ê− e‖F ≤
∥∥∥Pλ 0ePf 0

∥∥∥
F

+‖Pλ 0e‖F +
∥∥∥ePf 0

∥∥∥
F

+
∥∥∥ê(1)

e

∥∥∥
F

+
∥∥∥β̂ −β 0

∥∥∥
∥∥∥Mλ 0P(a)M f 0

∥∥∥
F

+
∥∥∥ê(rem)

∥∥∥
F

+
∥∥∥M f 0e′gMλ 0

∥∥∥
F

by Lemma .0.19. By Lemma .0.12(ii),
∥∥∥Pλ 0ePf 0

∥∥∥
F

= OP (1) . By Chebyshev in-

equality, one can readily show that ‖Pλ 0e‖F = OP

(
T 1/2

)
and

∥∥∥ePf 0

∥∥∥
F

= OP

(
N1/2

)
.

By (.0.70)-(.0.72), we have
∥∥∥ê(1)

e

∥∥∥
F
≤OP[

√
NT

(
δ−2

NT +K−2γ/d
)
],

∥∥∥ê(rem)
∥∥∥

F
≤OP[

√
NT

∥∥∥β̂ −β 0
∥∥∥

(
δ−1

NT +K−γ/d
)
], and

∥∥∥M f 0e′gMλ 0

∥∥∥
F

= OP(
√

NT K−γ/d). In view

of the fact that

1
NT

∥∥∥Mλ 0P(a)M f 0

∥∥∥
2

F
≤ 1

NT

N

∑
i=1

T

∑
t=1

Z2
it,(a) = a′WNT a≤ µ1 (WNT )‖a‖2 = 1,

we have
∥∥∥β̂ −β 0

∥∥∥
∥∥∥Mλ 0P(a)M f 0

∥∥∥
F

= OP

(√
Kδ−2

NT +K−γ/d
)

OP(
√

NT )= oP(
√

N+
√

T ) by (.0.50). Consequently, ‖ê− e‖F = OP(
√

N +
√

T ).

Lemma .0.24 Suppose that the conditions in Theorem 3.3.3 hold. Then we have
(i) N−1||ED [e′Mλ 0e]− (ê′ê)truncD || = oP[T 5/8(K−γ/d +

√
Kδ−2

NT )+T−1/4];
(ii) T−1||ED [eM f 0e′]− (

êê′
)truncD || = oP[N5/8(K−γ/d +

√
Kδ−2

NT )+N−1/4].

Proof. We only prove (i) as the proof of (ii) is analogous. Note that the (t,s)th

element of ED (e′Mλ 0e) is given by

N

∑
i=1

ED

{(
eit − 1

N

N

∑
j=1

αi je jt

)(
eis− 1

N

N

∑
j=1

αi je js

)}
= 0

because ED

[
eite js

]
= 0 for t 6= s, we have ED (e′Mλ 0e) = [ED (e′Mλ 0e)]truncD . Then

1
N

∥∥∥ED

(
e′Mλ 0e

)− (
ê′ê

)truncD
∥∥∥

≤ 1
N

∥∥∥
[
e′Mλ 0e−ED

(
e′Mλ 0e

)]truncD
∥∥∥+

1
N

∥∥∥
[
e′Mλ 0e− ê′ê

]truncD
∥∥∥ .(.0.75)
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For the first term in (.0.75), noting the tth diagonal element of e′Mλ 0e−ED (e′Mλ 0e)

is given by
[
e2

it −ED

(
e2

it
)]− 2

N ∑N
j=1 αi j

[
e jteit −ED

(
e jteit

)]
+ 1

N2 ∑N
j1=1 ∑N

j2=1{αi j1αi j2

×[
e j1te j2t −ED

(
e j1te j2t

)]}, we have

1
N

∥∥∥
[
e′Mλ 0e−ED

(
e′Mλ 0e

)]truncD
∥∥∥

≤ max
1≤t≤T

∣∣∣∣∣
1
N

N

∑
i=1

[
e2

it −ED

(
e2

it
)]

∣∣∣∣∣

+2 max
1≤t≤T

∣∣∣∣∣
1

N2

N

∑
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For the second term in (.0.75), we have
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Finally, we have
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Now we prove the main lemmas used in the proof of consistency of bias-corrected

estimator.
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element of ŴNT −WNT . Noting that
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NT Ŵ−1

NT Ω̂NTŴ−1
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Ŵ−1

NT Ω̂NTŴ−1
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Now, we decompose b̂1−b(2)
1 as follows:

b̂1−b(2)
1

=
1

NT

N

∑
i=1

∑
1≤t<s≤min(t+MT ,T )

[η̂ts pisêit −ηtsED (piseit)]

=
1

NT

N

∑
i=1

∑
1≤t<s≤min(t+MT ,T )
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∣∣ED

(
ζ c′

i,t1s1
ζ c

i2,t2s2

)∣∣

≤ 8
∥∥ζ c

i,t1s1

∥∥
4+2δ ,D

∥∥ζ c
i2,t2s2

∥∥
4+2δ ,D

α
1+δ
2+δ
D (t2− s1)

≤ 32‖pis1eit1‖4+2δ ,D ‖pi2s2ei2t2‖4+2δ ,D α
1+δ
2+δ
D (t2− s1)

≤ 32Kϕis1,8+4δ ‖eit1‖8+4δ ,D ϕi2s2,8+4δ ‖ei2t2‖8+4δ ,D α
1+δ
2+δ
D (t2− s1) .

It follows that

∣∣ED

(
ζ c′

i,t1s1
ζ c

i2,t2s2

)∣∣ |ηt1s1| |ηt2s2|

≤ 32ς−2
T K

∥∥ f 0
t1

∥∥∥∥ f 0
t2

∥∥∥∥ f 0
s1

∥∥∥∥ f 0
s2

∥∥ϕis1,8+4δ ‖eit1‖8+4δ ,D ϕi2s2,8+4δ ‖ei2t2‖8+4δ ,D

×α
1+δ
2+δ
D (t2− s1)

≤ 8ς−2
T K

(
C1,it1,e +C2,it2,e +C̃1,is1,p +C̃1,is2,p

)
α

1+δ
2+δ
D (t2− s1)
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where C̃1,is,p ≡
∥∥ f 0

s
∥∥4 ϕ4

is,8+4δ . Then similarly to the proof of Lemma .0.11, we can

show that

|EDDb21a|

≤ 2
8ς−2

T K
N2T 2

N

∑
i=1

∑
1≤t1<s1≤min(t1+MT ,T )
1≤t2<s2≤min(t2+MT ,T )

(
C1,it1,e +C2,it2,e +C̃1,is1,p +C̃1,is2,p

)
α

1+δ
2+δ
D (t2− s1)

= OP
(
KM2

T /(NT )
)
.

For case (b), it is easy to see that max(s1,s2)−min(t1, t2) ≤ 3MT . Each term in

the summation is bounded by 1
N2T 2 |ηt1s1| |ηt2s2|Var1/2

D (pis1eit1)Var1/2
D (pis2eit2), and

the number of such terms is of order O
(
T M3

T
)
. By Markov inequality, EDb21b =

OP
(
T M3

T K/
(
NT 2)) = OP

(
M3

T
K

NT

)
. Consequently, ED [‖Db2‖2] = OP((M2

T +M3
T ) K

NT )

= OP(M3
T K

NT ) and ‖Db2‖= OP(
√

M3
T K

NT ) by Chebyshev inequality.

For Db1, we have

Db1 =
1

NT

N

∑
i=1

∑
1≤t<s≤min(t+MT ,T )

{
(η̂ts−ηts) piseit +ηts pis (êit − eit)

+(η̂ts−ηts) pis (êit − eit)
}

≡ Db11 +Db12 +Db13, say.

For Db11, we have by Cauchy-Schwarz inequality and Lemma .0.20(ii) ,

‖Db11‖ ≤
{

1
NT

N

∑
i=1

∑
1≤t<s≤min(t+MT ,T )

(η̂ts−ηts)
2

}1/2

×
{

1
NT

N

∑
i=1

∑
1≤t<s≤min(t+MT ,T )

‖piseit‖2

}1/2

≤
{

1
T ∑

1≤t,s≤T
∑(η̂ts−ηts)

2

}1/2 {
1

NT

N

∑
i=1

∑
1≤t<s≤min(t+MT ,T )

‖piseit‖2

}1/2

=
∥∥∥Pf̂ −Pf 0

∥∥∥
F

OP

[
(MT K)1/2

]

≤
√

rank
(

Pf̂ −Pf 0

)∥∥∥Pf̂ −Pf 0

∥∥∥OP

[
(MT K)1/2

]

= OP

((
δ−1

NT +K−γ/d
)√

MT K
)

.
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Similarly, by Cauchy-Schwarz inequality and Lemmas .0.23 and .0.20(ii) , we have

‖Db12‖ ≤ 1
NT

N

∑
i=1

∑
1≤t<s≤min(t+MT ,T )

‖ηts pis‖|êit − eit |

≤
{

1
NT

N

∑
i=1

∑
1≤t<s≤min(t+MT ,T )

η2
ts ‖pis‖2

}1/2

×
{

1
NT

N

∑
i=1

∑
1≤t<s≤min(t+MT ,T )

(êit − eit)
2

}1/2

= OP
(√

MT K
)
{

MT

NT

N

∑
i=1

T

∑
t=1

(êit − eit)
2

}1/2

= OP
(√

MT K
)√

MT /(NT )‖ê− e‖F = OP

(
MT
√

Kδ−1
NT

)
,

and

‖Db13‖ ≤ 1
NT

N

∑
i=1

∑
1≤t<s≤min(t+MT ,T )

|η̂ts−ηts|‖pis‖|êit − eit |

≤ max
i,s
‖pis‖

{
1
T ∑

1≤t<s≤min(t+MT ,T )
|η̂ts−ηts|2

}1/2

×
{

1
NT

N

∑
i=1

∑
1≤t<s≤min(t+MT ,T )

(êit − eit)
2

}1/2

≤ OP

[
(NT )1/8√K

]∥∥∥Pf̂ −Pf 0

∥∥∥
F

√
MT

NT
‖ê− e‖F

= OP

[
(NT )1/8√K

]
OP

(
δ−1

NT +K−γ/d
)

OP
(√

MT δ−1
NT

)
= oP

(
MT
√

Kδ−1
NT

)
.

Consequently, ‖Db1‖= OP(MT
√

Kδ−1
NT ) and

∥∥∥b̂1−b(2)
1

∥∥∥ ≤ ‖Db1‖+‖Db2‖

= OP

(
MT
√

Kδ−1
NT

)
+OP

(√
KM3

T /(NT )
)

= OP

(
MT
√

Kδ−1
NT

)
.

This completes the proof of (i) .
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(ii) Recall that b2,k = T−1tr[ED (ee′)Mλ 0PkΦ] and b̂2,k = T−1tr
[
(êê′)truncDMλ̂ PkΦ̂

]
.

Then by Lemmas .0.19, .0.20, .0.24, and .0.14, we have

∣∣b̂2,k−b2,k
∣∣

= 1
T tr

[(
êê′

)truncD Mλ̂ PkΦ̂
]
− 1

T
tr

[
ED

(
ee′

)
Mλ 0PkΦ

]

= 1
T tr

[(
êê′

)truncD Mλ̂ Pk
(
Φ̂−Φ

)]
+

1
T

tr
[(

êê′
)truncD (

Mλ̂ −Mλ 0
)

PkΦ
]

+ 1
T tr

{[(
êê′

)−ED

(
eM f 0e′

)]truncD
Mλ 0PkΦ

}

+ 1
T tr

{[
ED

(
ee′

)−ED

(
eM f 0e′

)truncD
]

Mλ 0PkΦ
}

≤ R
T ‖Pk‖

[∥∥Mλ̂
∥∥∥∥Φ̂−Φ

∥∥+
∥∥Pλ̂ −Pλ 0

∥∥‖Φ‖]
∥∥∥
(
êê′

)truncD
∥∥∥

+R‖Mλ 0‖‖Pk‖‖Φ‖ 1
T

∥∥∥∥
[

ED

(
ee′

)−ED

(
eM f 0e′

)truncD
]∥∥∥∥

+R‖Mλ 0‖‖Pk‖‖Φ‖ 1
T

∥∥∥∥ED

(
ePf 0e′

)truncD
∥∥∥∥

= ‖Pk‖√
NT

OP

{
Nδ−2

NT (K−γ/d +δ−1
NT )+N−1/4 +N5/8(K−γ/d +

√
Kδ−2

NT )+
N1/2

T

}

= ‖Pk‖√
NT

OP

{
N−1/4 +N5/8

(
K−γ/d +

√
Kδ−2

NT

)
+T−1N1/2

}

where we also use the fact that

∥∥∥∥ED

(
ePf 0e′

)truncD
∥∥∥∥ ≤ max

1≤i≤N

∣∣∣∣∣∣
1
T

T

∑
t=1

ED

[
1
T

T

∑
s=1

ηtseis

]2
∣∣∣∣∣∣

=
1
T

max
1≤i≤N

1
T 2

T

∑
t=1

T

∑
s=1

η2
tsED

(
e2

is
)

= OP

(
T−1N1/2

)

because E|T−2 ∑T
t=1 ∑T

s=1 η2
tsED

(
e2

is
) |2 < ∞. It follow that

∥∥b̂2−b2
∥∥ =

{
K

∑
k=1

∣∣b̂2,k−b2,k
∣∣2

}1/2

=

{
1

NT

K

∑
k=1

‖Pk‖2

}1/2

OP

{
N−1/4 +N5/8(K−γ/d +

√
Kδ−2

NT )+
√

N
T

}

= OP

{√
K

[
N−1/4 +N5/8

(
K−γ/d +

√
Kδ−2

NT

)
+T−1N1/2

]}
.

(iii) The proof is analogous to that of (ii) by using Lemmas .0.20, .0.21, .0.13,

and .0.14. ¥
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Specification test

To establish the asymptotic distribution of our test statistic, we need to study the

behavior of the linear estimator ĝ(l) (x) underH1 (γNT ). Recall ϒNT is a d×1 vector

whose kth element is given by ϒNT,k ≡ 1
NT tr

(
Mλ 0XkM f 0∆

)
and DNT is defined in

(3.4.4). Let C(1)
l,NT , and C(2)

l,NT be d× 1 vectors whose kth elements are respectively

given by

C(1)
l,NT,k ≡ 1

NT
tr

(
Mλ 0XkM f 0ε ′

)
, (.0.77)

C(2)
l,NT,k ≡ − 1

NT
tr

(
XkΦ′εM f 0ε ′Mλ 0 +XkM f 0ε ′Mλ 0εΦ′+XkM f 0ε ′ΦεMλ 0

)
(.0.78)

≡ C(2,a)
l,NT,k +C(2,b)

l,NT,k +C(2,b)
l,NT,k, say, (.0.79)

where ε is an N × T matrix whose (i, t)th element is εit = eit + γNT ∆(Xit). Let

θ̂ be Moon and Weidner’s (2010, 2012) estimate for θ 0 without bias-correction.

Following Su, Jin, and Zhang (2012), we can show that under H1 (γNT ) with γNT =

O(K1/4/
√

NT )

θ̂ −θ 0 = γ−1
NT D−1

NT ϒNT +D−1
NT

(
C(1)

l,NT +C(2)
l,NT

)
+ R̃NT ,

where R̃NT = OP[
(
γNT +δ−2

NT
)
(γ1/2

NT + δ−1/2
NT )] = oP((NT )−1/2). Further, we can

modify the proof of Theorem 3.3.2 to show that

√
NT

(
θ̂ −θ 0− γ−1

NT D−1
NT ϒNT

)−B(l) d→ N (0,Vθ 0)

where B(l) ≡ −D−1(κNT b(l)
1 + κ−1

NT b(l)
2 + κNT b(l)

3 ), b(l)
1 , b(l)

2 , and b(l)
3 are all d× 1

vectors and their kth elements are defined in (.0.53), D = ED [DNT ] , and Vθ 0 is

positive definite.

Our asymptotic analysis indicates it is not necessary to use the bias-corrected

linear estimator for θ . In order for this term related to B(l) to be asymptotically neg-

ligible under both H0 and H1 (γNT ), we need B(l) = oP

(
K1/4

)
. Under Assumption

12, we have B(l) = OP{max
(
κNT ,κ−1

NT
)}= oP

(
K1/4

)
. But if we make bias correc-

tion, B(l) can be corrected up to order oP (1) and then the finite sample performance
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of our test can be improved. After obtaining θ̂ , we obtain the estimators f̂(l), λ̂(l)

and ê(l) under the same identification restrictions as Bai (2009), and then use them

to obtain estimates of the three bias terms, i.e., b̂(l)
1 , b̂(l)

2 , and b̂(l)
3 , which are anal-

ogously defined as b̂1, b̂2, and b̂3 but with the sieve estimates of
(
λ 0, f 0,e

)
being

replaced by Moon and Weidner’s (2010) linear estimates. Let D̂NT be a d×d matrix

whose (k1,k2)th element is given by D̂NT,k1k2 ≡ 1
NT tr(Mλ̂ (l)Xk1M f̂ (l)X′

k2
). Define the

bias-corrected estimator θ̂bc ≡ θ̂ + D̂−1
NT (T−1b̂(l)

1 +N−1b̂(l)
2 +T−1b̂(l)

3 ).

Proof of Lemma .0.15. The proof is similar to that of Lemma .0.13. ¥

Proof of Lemma .0.16. Recall that β̂bc = β̂ +Ŵ−1
NT (T−1b̂1 + N−1b̂2 + T−1b̂3) by

(3.3.16). By (.0.47) and (??)-(3.3.4),

β̂ −β 0 = W−1
NT

1
NT

N

∑
i=1

T

∑
t=1

Zituit +W−1
NT

[
C(2,a)

NT +C(2,b)
NT +C(2,c)

NT

]
+RNT .

Decompose β̂bc−β 0 as follows

β̂bc−β 0 =

{
W−1

NT
1

NT

N

∑
i=1

T

∑
t=1

Ziteit +
1
T

Ŵ−1
NT b̂1

}
+

{
W−1

NT C(2,a)
NT +

1
N

Ŵ−1
NT b̂2

}

+
{

W−1
NT C(2,b)

NT +
1
T

Ŵ−1
NT b̂3

}
+

{
1

NT

N

∑
i=1

T

∑
t=1

W−1
NT Ziteg,it +W−1

NT C(2,c)
NT +RNT

}

≡ BNT 1 +BNT 2 +BNT 3 +BNT 4, say.

We complete the proof by showing that (i) BNT 1 =W̃−1 1
NT ∑N

i=1 ∑T
t=1 Z̃iteit +oP (γNT ) , and

(ii) BNT s = oP (γNT ) for s = 2,3,4. We first study BNT 1. Note that

BNT 1−W̃−1 1
NT

N

∑
i=1

T

∑
t=1

Z̃iteit

= W−1
NT

(
W̃ −WNT

)
W̃−1 1

NT

N

∑
i=1

T

∑
t=1

Z̃iteit +

{
W−1

NT
1

NT

N

∑
i=1

T

∑
t=1

(
Zit − Z̃it

)
eit +

1
T

Ŵ−1
NT b̂1

}

≡ BNT 11 +BNT 12, say.
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By Lemma .0.28(iii) and Assumption 7, we have

‖BNT 11‖ =
∥∥W−1

NT

∥∥∥∥W̃ −WNT
∥∥

F

∥∥W̃−1∥∥
∥∥∥∥∥

1
NT

N

∑
i=1

T

∑
t=1

Z̃′iteit

∥∥∥∥∥

= OP

(
K√
NT

√
K

NT

)
= oP (γNT ) .

For BNT 12, we have

BNT 12 = W−1
NT

1
NT

N

∑
i=1

T

∑
t=1

{(
Zit − Z̃it

)
eit −ED

[(
Zit − Z̃it

)
eit

]}

+

{
W−1

NT
1

NT

N

∑
i=1

T

∑
t=1

ED (Ziteit)+
1
T

Ŵ−1
NT b̂1

}
≡BNT 12a +BNT 12b, say.

Following the proof of Lemma .0.11, we can readily show that BNT 12a = OP

(√
K

NT δ−1
NT

)

= oP (γNT ) . By Lemmas .0.13, .0.14, and (.0.77), we have

BNT 12b =
1
T

(
Ŵ−1

NT −W−1
NT

)
b1 +

1
T

Ŵ−1
NT

(
b̂1−b1

)

+W−1
NT

1
N2T 2

N

∑
i=1

∑
1≤t<s≤T

αiiηtsED (piseit)

=
1
T

OP

(
K3/2

(
δ−1

NT +K−γ/d
))

+
1
T

OP

(√
K

T

∑
τ=MT

α
3+2δ
4+2δ
D (τ)+MT

√
Kδ−1

NT

)
+OP

(√
K

NT

)

= oP (γNT )

under Assumption 12. Consequently, BNT 12 = oP (γNT ) and (i) follows.

For BNT 2, we decompose it as follows:

BNT 2 =
1
N

(Ŵ−1
NT b̂2−W−1

NT b2)+W−1
NT [C(2,a)

NT − 1
N

b2]≡BNT 2a +BNT 2b,say.

As in the study of BNT 12b,

‖BNT 2a‖ ≤ 1
N

∥∥Ŵ−1
NT −W−1

NT

∥∥‖b2‖+
1
N

∥∥Ŵ−1
NT

∥∥∥∥b̂2−b2
∥∥

=
1
N

OP

[
K

(
K−γ/d +δ−1

NT

)]
+

1
N

oP

(
κNT K1/4

)
= oP (γNT )
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by Lemmas .0.13 and .0.14, and Assumption 12. For BNT 2b, recall that

C(2,a)
NT,k +

1
N

b2,k = − 1
NT

tr
(
uu′Mλ 0P(k)Φ

)
+

1
N

b2,k +
1

NT
tr

(
uPf 0u′Mλ 0P(k)Φ

)

= − 1
NT

tr
{[

ee′−ED

(
ee′

)]
Mλ 0P(k)Φ

}− 1
NT

tr
(
ege′gMλ 0P(k)Φ

)

+
1

NT
tr

(
ee′gMλ 0P(k)Φ

)
+

1
NT

tr
(
ege′Mλ 0P(k)Φ

)

+
1

NT
tr

(
uPf 0u′Mλ 0P(k)Φ

)

≡ −C2a1,k−C2a2,k +C2a3,k +C2a4,k +C2a5,k, say.

Denote C2as as a K×1 vector whose kth element is C2as,k, for s = 1, ...,5. Following

the study of Π2NT,1 in Proposition .0.8 we have ‖BNT 2b‖≤
∥∥W−1

NT

∥∥
∥∥∥C(2,a)

NT − 1
N b2

∥∥∥≤
∥∥W−1

NT

∥∥∑5
s=1 ‖C2as‖= OP{

√
K

NT

(
δ−1

NT +K−γ/d
)
}= oP (γNT ) . It follows that ‖BNT 2‖

= oP (γNT ) . Analogously, we can show that ‖BNT 3‖= oP (γNT ) . BNT 12 = oP (γNT ).

Now we consider BNT 4. Following the study of Π2NT,3 in Theorem 3.3.2 we can

show that W−1
NT C(2,c)

NT =
√

K
NT OP(δ−1

NT +K−γ/d). Noting that W−1
NT

1
NT ∑N

i=1 ∑T
t=1 Z′iteg,it

=OP(K−γ/d) and RNT =OP(||rNT ||ε1/2
0 ), we have BNT 4 =

√
K

NT OP

(
δ−1

NT +K−γ/d
)

+

OP

(
K−γ/d

)
+OP[(

√
Kδ−2

NT +K−γ/d)(δ−1/2
NT +K−γ/2d)] = oP (γNT ) . ¥

Proof of Lemma .0.17. Let ε ≡ e+γNT ∆ and ε̃0≡‖ε‖/
√

NT ≤ (‖e‖+ γNT ‖∆‖)/√NT

= OP
(
δ−1

NT + γNT
)
. Let r̃NT = D−1

NT

[
C(1)

l,NT +C(2,a)
l,NT +C(2,b)

l,NT +C(2,c)
l,NT

]
, where C(1)

l,NT ,

C(2,a)
l,NT , C(2,b)

l,NT , and C(2,c)
l,NT are defined in (.0.77)-(.0.79). Noting that

C(1)
l,NT,k =

1
NT

tr
(

M f 0e′Mλ 0Xk

)
+ γNT

1
NT

tr
(

M f 0∆′Mλ 0Xk

)

= OP

(
T−1 +(NT )−1/2 + γNT

)

and D−1
NTC(2)

l,NT = D−1
NT [C(2,a)

l,NT +C(2,b)
l,NT +C(2,c)

l,NT ] = OP
(
δ−2

NT + γ2
NT

)
, we have

‖r̃NT‖= γNT D−1
NT ϒNT +OP

(
T−1/2δ−1

NT

)
+OP

(
δ−2

NT + γ2
NT

)
= OP

(
γNT +δ−2

NT
)
.

Using Proposition .0.10 and following the proof of Theorem 3.3.1, we can show

that

θ̂ −θ 0 = D−1
NTC(1)

l,NT +D−1
NT

[
C(2,a)

l,NT +C(2,b)
l,NT +C(2,c)

l,NT

]
+ R̃NT ,
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where R̃NT = OP[(‖r̃NT‖2 ε̃0 + ‖r̃NT‖ ε̃3
0 + ‖r̃NT‖3)1/2] = OP(‖r̃NT‖ ε̃1/2

0 ); see Su,

Jin, and Zhang (2012) for details. Following the proof of Lemma .0.16, with some

minor modifications2 we can easily show that under H1 (γNT )

θ̂−θ 0 = γNT D−1
NT ϒNT +D−1 1

NT

N

∑
i=1

T

∑
t=1

X̃iteit−D−1
[

1
T

b(l)
1 +

1
N

b(l)
2 +

1
T

b(l)
3

]
+Rθ ,NT

where

Rθ ,NT ≡
(

D−1
NT

1
NT

N

∑
i=1

T

∑
t=1

X̄iteit −D−1 1
NT

N

∑
i=1

T

∑
t=1

X̃iteit +
1
T

D−1b(l)
1

)

+
(

D−1
NTC(2,a)

l,NT +
1
N

D−1b(l)
2

)
+

(
D−1

NTC(2,b)
l,NT +

1
T

D−1b(l)
3

)

+D−1
NTC(2,c)

l,NT + R̃NT

≡ R(1)
θ ,NT +R(2)

θ ,NT +R(3)
θ ,NT +D−1

NTC(2,c)
l,NT + R̃NT , say.

Clearly, R̃NT = OP(‖r̃NT‖ ε̃1/2
0 ) = OP[

(
δ−2

NT + γNT
)
(δ−1/2

NT +γ1/2
NT )] = oP (γNT ) . Fol-

lowing the study of Π2NT,3 in Proposition .0.8 we have D−1
NTC(2,c)

l,NT = OP{[(NT )−1/2+

T−1 +γNT ](δ−1
NT +γNT )}= oP (γNT ) . To complete the proof of the lemma, it suffices

to show that R(s)
θ ,NT = oP (γNT ) for s = 1,2,3. For R(1)

θ ,NT , we have

R(1)
θ ,NT = D−1

NT
1

NT

N

∑
i=1

T

∑
t=1

{(
X̄it − X̃it

)
eit −ED

[(
X̄it − X̃it

)
eit

]}

+

{
D−1

NT
1

NT

N

∑
i=1

T

∑
t=1

ED(X̄iteit)+
1
T

D−1
NT b(l)

1

}

+
1
T

(
D−1−D−1

NT
)

b(l)
1 +

(
D−1

NT −D−1) 1
NT

N

∑
i=1

T

∑
t=1

X̃iteit

≡ R(1,a)
θ ,NT +R(1,b)

θ ,NT +R(1,c)
θ ,NT +R(1,d)

θ ,NT , say.

Following the proof of Lemma .0.11, we have R(1,a)
θ ,NT = OP(δ−1

NT /
√

NT ). Analo-

gously to the proof of (ib) in Proposition .0.7, R(1,b)
θ ,NT = OP((NT )−1). By Lemma

.0.15 (iii) and the facts that b(l)
1 = OP (1) and 1

NT ∑N
i=1 ∑T

t=1 X̃iteit = OP((NT )−1/2),

we have R(1,c)
θ ,NT = OP

(
N−1/2T−3/2

)
and R(1,d)

θ ,NT = OP((NT )−1). It follows that

2There are two main differences. The first one is
∥∥θ̂ −θ 0

∥∥ = OP
(
γNT +δ−2

NT

)
under H1 (γNT ) ,

compared with
∥∥∥β̂ −β 0

∥∥∥ = OP
(
K−γ/d +

√
Kδ−2

NT

)
in sieve QMLE framework; the second one is the

dimension d of unknown parameter θ̂ is fixed.
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R(1)
θ ,NT = OP(δ−1

NT /
√

NT ) = oP (γNT ). For R(2)
θ ,NT , we have

R(2)
θ ,NT = D−1

NT

(
C(2,a)

l,NT +
1
N

b(l)
2

)
+

1
N

(
D−1−D−1

NT
)

b(l)
2 ≡ R(2,a)

θ ,NT +R(2,b)
θ ,NT , say.

It is easy to show that R(2,b)
θ ,NT = OP

(
T−1/2N−3/2

)
by .0.15 (iii) and the fact that

b(l)
2 = OP (1) . Following the proof of (i) in Proposition .0.8, we can show that

R(2,a)
θ ,NT = OP((NT )−1/2 δ−1

NT + γ2
NT +(NT )−1/2 γNT ).

It follows R(2)
θ ,NT = oP (γNT ). Similarly, we can show R(3)

θ ,NT = oP (γNT ) . The details

are omitted for saving space. ¥

Proof of Theorem 3.4.4. Let P∗ denote the probability measure induced by the

wild bootstrap conditional on the original sample WNT ≡ {(Xit ,Yit) : i = 1, ...,N,

t = 1, ...,T}. Let E∗ and Var∗ denote the expectation and variance with respect to

P∗. Let OP∗ (·) and oP∗ (·) denote the probability order under P∗; e.g., bNT = oP∗ (1)

if for any ε > 0, P∗ (‖bNT‖> ε) = oP (1). We will use the fact that bNT = oP (1)

implies that bNT = oP∗ (1) .

Observing that Y ∗it = θ̂ ′Xit + λ̂ (l)′
i f̂ (l)

t + e∗it , the null hypothesis is maintained

in the bootstrap world. Given WNT , e∗it are independent across i and t, and in-

dependent of X js, λ̂ (l)
j and f̂ (l)

s for all i, t, j, and s, because the latter objects

are fixed in the fixed-design bootstrap world. Let F ∗
t be the σ -field generated

by
{

e∗it , ...,e
∗
i1
}N

i=1. For each i, {e∗it ,F
∗
t } is an m.d.s. such that E∗

(
e∗it |F ∗

t−1
)

=

ê(l)
it E (vit) = 0 and E∗[(e∗it)

2 |F ∗
t−1] = [ê(l)

it ]2E
(
v2

it
)

= [ê(l)
it ]2. These observations

greatly simplify the proofs in the bootstrap world. In particular, we can show that:

(i) β̂ ∗bc−β 0∗ = W̃−1 1
NT ∑N

i=1 ∑T
t=1 Z̃ite∗it + R∗β ,NT , where

∥∥∥R∗β ,NT

∥∥∥ = oP∗( K1/4√
NT

) and

β 0∗ ≡ (
β 0∗

1 , ...,β 0∗
K

)′ satisfying ||θ̂ ′x− pK (x)′β 0∗||∞,ϖ =OP

(
K−γ/d

)
; and (ii) θ̂ ∗−

θ 0 = D−1 1
NT ∑N

i=1 ∑T
t=1 X̃ ′ite

∗
it +B∗θ ,NT +R∗θ ,NT , where R∗θ ,NT = oP∗[δ−2

NT +(NT )−1/2],

B∗θ ,NT ≡ −N−1D−1b(l)∗
2 −T−1D−1b(l)∗

3 and b(l)∗
2 ,b(l)∗

3 are the bootstrap analogues

of b(l)
2 ,b(l)

3 , respectively.

Let Γ∗NT , B∗NT , V∗NT , B̂∗NT , and V̂∗NT be the bootstrap analogues of ΓNT , BNT ,
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VNT , B̂NT ,and V̂NT , respectively. Noting that vit are IID N (0,1), we have

B∗NT ≡ tr(W̃−1QwppW̃−1Ω̃∗) and V∗NT ≡ 2tr(W̃−1QwppW̃−1Ω̃∗W̃−1QwppW̃−1Ω̃∗),

where Ω̃∗ ≡ 1
NT ∑N

i=1 ∑T
t=1 E∗(Z̃it Z̃′ite

∗2
it ) = 1

NT ∑N
i=1 ∑T

t=1{Z̃it Z̃′it × [ê(l)
it ]2}. Following

the proof of Theorem 3.4.2, we can show that V∗NT = VNT + oP (K) and B∗NT =

BNT +oP

(
K1/2

)
underH0. Let J∗NT ≡ (NT Γ∗NT−B∗NT )/

√
V∗NT and Ĵ∗NT ≡ (NT Γ∗NT

−B̂∗NT )/
√
V̂∗NT . Similar to γNT , we define γ∗NT ≡ (V∗NT )1/4 /

√
NT . Let Γ∗NT s denote

the bootstrap analogue of ΓNT s for s ∈ S∗ ≡ {1,2,4,5,6,8} . Note that Γ∗NT s = 0 for

s ∈ {3,7,9,10} because the null is explicitly imposed in the bootstrap world. As in

the proof of Theorem 3.4.1, we have

J∗NT ≡ (NT Γ∗NT −B∗NT )/
√
V∗NT

= (NT Γ∗NT 1−B∗NT )/
√
V∗NT + γ∗NT (Γ∗NT 2 +Γ∗NT 4−2Γ∗NT 5−2Γ∗NT 6 +2Γ∗NT 8) .

We prove the theorem by showing that: (i) J̃∗NT ≡
(
NT Γ∗NT 1−B∗NT

)
/
√
V∗NT

d∗→
N (0,1) , (ii) γ∗NT Γ∗NT s = oP∗ (1) for s∈{2,4,5,6,8}, (iii) B̂∗NT =B∗NT +oP∗

(
K1/2

)
,

and (iv) V̂∗NT = V∗NT +oP∗ (K) .

We only outline the proof of (i) as we can follow the proofs of Theorems 3.4.1

and 3.4.2 to show (ii)-(iv). Analogously to the proof of Proposition .0.9, we can

show that J̃∗NT = ∑1≤i 6= j≤N W ∗
i j +oP∗ (1), where W ∗

i j ≡W ∗
NT (u∗i ,u

∗
j)≡ 1

NTV∗NT
∑1≤t,s≤T

e∗itHi j,tse∗js, u∗i ≡ (Z̃i,e∗i )
′, and e∗i is the bootstrap analogue of ei. Noting that J̃∗NT is a

second order degenerate U-statistic that is “clean” (E∗[W ∗
NT (u∗i ,u)]= E∗[W ∗

NT (u,u∗j)]=

0 a.s. for any nonrandom u), we can still apply Proposition 3.2 in de Jong (1987) to

prove the CLT for J̃∗NT by showing that (i1) Var∗(J̃∗NT ) = 1 + oP∗ (1) , (i2) G∗
I ≡

∑1≤i< j<N E∗[(W ∗
i j)

4] = oP∗ (1) , (i3) G∗
II ≡ ∑1≤i< j<l≤N E∗(W ∗2

il W ∗2
jl + W ∗2

i j W ∗2
il +

W ∗2
i j W ∗2

l j ) = oP∗ (1), and (i4) G∗
III ≡∑1≤i< j<r<l≤N E∗(W ∗

i jW
∗
irW

∗
l jW

∗
lr +W ∗

i jW
∗
il W

∗
r jW

∗
rl

+W ∗
irW

∗
il ×W ∗

jrW
∗
jl) = oP∗ (1) . Note that vit is IID across i and t, E∗[(e∗it)] = 0,

E∗[(e∗it)
2] = [ê(l)

it ]2, and E∗[(e∗it)
4] = 3[ê(l)

it ]4.
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For (i1), using the IID property of {vit} , we can readily show that

Var∗(J̃∗NT )

= 4
N2T 2V∗NT

∑
1≤i< j≤N

T

∑
t1=1

T

∑
t2=1

T

∑
s1=1

T

∑
s2=1

Hi j,t1s1Hi j,t2s2 ê(l)
it1 ê(l)

js1
ê(l)

it2 ê(l)
js2

E∗
(
vit1v js1vit2v js2

)

= 4
N2T 2V∗NT

∑
1≤i< j≤N

T

∑
t=1

T

∑
s=1

H2
i j,ts[ê

(l)
it ]2[ê(l)

js ]2

= 1− 2
N2T 2V∗NT

N

∑
i=1

T

∑
t=1

T

∑
s=1

H2
i j,ts[ê

(l)
it ]2[ê(l)

js ]2

= 1+OP
(
N−1) = 1+oP∗ (1) ,

where we follow the proof of Theorem 3.4.2 and show the term OP
(
N−1) in the

last line. For (i2), recall that qk1k2
is the (k1,k2)th element of Q̄pp, and Hi j,ts =

∑K
k1=1 ∑K

k2=1 qk1k2
Z̃it,k1Z̃ js,k2 . Let φ∗it,k ≡ Z̃it,ke∗it . Then we have

G∗
I = 16

N4T 4V2
NT

∑
1≤k1,...,k8≤K

qk1k2
q̄k3k4 q̄k5k6 q̄k7k8

× ∑
1≤i< j<N

∑
1≤t1,....,t8≤T

E∗
(
φ∗it1,k1

φ∗it3,k3
φ∗it5,k5

φ∗it7,k7

)
E∗

(
φ∗jt2,k2

φ∗jt4,k4
φ∗jt6,k6

φ∗jt8,k8

)

First, note that the term inside the last summation takes values 0 if either #{t1, t3, t5, t7}
> 2 or #{t2, t4, t6, t8} > 2. So it suffices to consider three cases according to the

number of distinct time indices in the set S = {t1, ..., t8} : (a) #S = 4, (b) #S = 3,

and (c) #S ≤ 2. We use G∗
Ia, G∗

Ib, and G∗
Ic to denote the corresponding sum-

mations when the time indices are restricted to cases (a) , (b) and (c) , respec-

tively. Then G∗
I = G∗

Ia + G∗
Ib + G∗

Ic. For G∗
Ia, we must have #{t1, t3, t5, t7} = 2

and #{t2, t4, t6, t8} = 2. Without loss of generality, assume that t1 = t3 > t5 = t7

and t2 = t4 > t6 = t8. By the IID property of vit , |E∗(φ∗it1,k1
φ∗it3,k3

φ∗it5,k5
φ∗it7,k7

)| =
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Z̃it1,k1Z̃it1,k3[ê
(l)
it1 ]2Z̃it5,k5Z̃it5,k6[ê

(l)
it5 ]2. Then

|G∗
Ia| ≤ 16

N4T 4V∗2
NT

∑
1≤k1,...,k8≤K

∣∣q̄k1k2

∣∣ ∣∣q̄k3k4

∣∣ ∣∣q̄k5k6

∣∣ ∣∣q̄k7k8

∣∣

×
{

N

∑
i=1

∑
1≤t5<t1≤T

Z̃it1,k1Z̃it1,k3(ê
(l)
it1 )2Z̃it5,k5Z̃it5,k7(ê

(l)
it5 )2

}

×
{

N

∑
j=1

∑
1≤t6<t≤T

Z̃it2,k2Z̃it2,k4(ê
(l)
it2 )2Z̃it6,k6Z̃it6,k8(ê

(l)
it6 )2

}

= 64
N4T 4V∗2

NT
OP

(
K8N2T 4) = OP

(
K6/N2

)
= OP∗

(
K6/N2

)
.

Similarly, we can show that G∗
Is = OP∗

(
K6/N2) = oP∗ (1) for s = b,c. It follows

that G∗
I = oP∗ (1) . For (i3), we write G∗

II ≡ ∑1≤i< j<l≤N E∗(W ∗2
il W ∗2

jl +W ∗2
i j W ∗2

il +

W ∗2
i j W ∗2

l j ) = G∗
II,1 +G∗

II,2 +G∗
II,3. By the IID property of vit , we have

G∗
II,1

≡ 16
N4T 4V∗2

NT
∑

1≤i< j<l≤N
∑

1≤t1,...,t6≤T
E∗

[
e∗2

it1 e∗2
jt2Hil,t1t3Hil,t1t4H jl,t2t5H jl,t2t6e∗lt3e∗lt4e∗lt5e∗lt6

]

= 16
N4T 4V∗2

NT
∑

1≤i< j<l≤N
∑

1≤t1,t2≤T
∑

1≤t3 6=t6≤T
H2

il,t1t3H2
jl,t2t6[ê

(l)
it1 ]2[ê(l)

jt2]
2[ê(l)

lt3
]2[ê(l)

lt6
]2

+ 48
N4T 4V2

NT
∑

1≤i< j<l≤N
∑

1≤t1,t2≤T
∑

1≤t3≤T
H2

il,t1t3H2
jl,t2t3[ê

(l)
it1 ]2[ê(l)

jt2]
2[ê(l)

lt3
]4

= G∗
II,11 +G∗

II,12, say.

For G∗
II,11, we have

G∗
II,11

≤ 16
N4T 4V∗2

NT
∑

1≤i< j<l≤N
∑

1≤t1,t2≤T
∑

1≤t3 6=t6≤T

{
tr

[
(ê(l)

it1 )2Z̃it1Z̃′it1Q̄pp[(ê
(l)
lt3

)2Z̃lt3Z̃′lt3Q̄pp

]

× tr
[
(ê(l)

jt2)
2Z̃ jt2Z̃′jt2Q̄pp(ê

(l)
it6 )2Z̃lt6Z̃′lt6Q̄pp

]}

≤ 8
3N2T 2V∗2

NT

N

∑
l=1

∑
1≤t3 6=t6≤T

tr
[
Ω̃∗Q̄pp(ê

(l)
lt3

)2Z̃lt3Z̃′lt3Q̄pp

]
tr

[
Ω̃∗Q̄pp(ê

(l)
it6 )2Z̃lt6Z̃′lt6Q̄pp

]

≤ 8µ2
1 (Ω̃∗)µ4

1(Q̄pp)
3N2T 2V∗2

NT

N

∑
l=1

∑
1≤t3 6=t6≤T

(ê(l)
lt3

)2 ∥∥Z̃lt3

∥∥2
F (ê(l)

it6 )2 ∥∥Z̃lt6

∥∥2
F

=
8[µ2

1 (Ω̃NT )+oP(1)]µ4
1(Q̄pp)

3N2T 2V∗2
NT

{
N

∑
l=1

∑
1≤t3 6=t6≤T

e2
lt3

∥∥Z̃lt3

∥∥2
F e2

it6

∥∥Z̃lt6

∥∥2
F +oP

(
NT 2K2)

}

= OP
(
N−2T−2K−2)OP

(
NT 2K2) = OP

(
N−1) = OP∗

(
N−1) .
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Then G∗
II,11 = oP∗ (1) . With the same method we can show that G∗

II,12 = oP∗ (1).

Thus G∗
II,1 = oP∗ (1). Similarly, we can show that G∗

II,2 = oP∗ (1) and G∗
II,3 = oP∗ (1).

It follows that G∗
II = oP∗ (1) .

For (i4), we write G∗
III ≡∑1≤i< j<r<l≤N E∗(W ∗

i jW
∗
irW

∗
l jW

∗
lr +W ∗

i jW
∗
il W

∗
r jW

∗
rl+W ∗

irW
∗
il W

∗
jrW

∗
jl)≡

∑4
s=1 G∗

III,s, say. Following the proof of GIII,1 = oP (1) in Proposition .0.9, we have

G∗
III,1 = 16

N4T 4V∗2
NT

∑
1≤i< j<r<l≤N

∑
1≤t1,...,t8≤T

{
E∗(Hi j,t1t2e∗it1e∗jt2Hir,t3t4e∗it3e∗rt4

×Hl j,t5t6e∗lt5e∗jt6Hlr,t7t8e∗lt7e∗rt8)
}

= 16
N4T 4V∗2

NT
∑

1≤i< j<r<l≤N
∑

1≤t,s,p,q≤T

{
tr[E∗(Q̄ppZ̃it Z̃′ite

∗2
it Q̄ppZ̃rsZ̃′rse

∗2
rs Q̄pp

× Z̃l pZ̃′l pe∗2
l p Q̄ppZ̃ jqZ̃′jqe∗2

jq)]
}

= 2
3V∗2

NT
tr

(
Q̄ppΩ̃∗Q̄ppΩ̃∗Q̄ppΩ̃∗Q̄ppΩ̃∗) = OP

(
1
K

)
= oP∗ (1)

where we use the facts that

tr
(
Q̄ppΩ̃∗Q̄ppΩ̃∗Q̄ppΩ̃∗Q̄ppΩ̃∗) = tr

(
Q̄ppΩ̃Q̄ppΩ̃Q̄ppΩ̃Q̄ppΩ̃

)
+oP (1)

and tr
(
Q̄ppΩ̃Q̄ppΩ̃Q̄ppΩ̃Q̄ppΩ̃

) ≤ µ4
1
(
Q̄pp

)
µ3

1 (Ω̃)tr(Ω̃) = OP (K) in the last line.

¥

.0.9 Some technical lemmas

Let {ξt , t ≥ 1} be a D-strong mixing process with mixing coefficient αD (·). We

will use the following lemmas frequently.

Lemma .0.26 (Conditional Davydov Inequality) Suppose that A1 and A2 are ran-
dom variables which are measurable with respect to σ (ξ1, ...,ξs) and σ (ξs+τ , ...,ξT ),
respectively, and that both ‖A1‖p,D and ‖A2‖q,D are bounded in probability, where
p,q > 1 and p−1 +q−1 < 1. Then

|ED (A1A2)−ED (A1)ED (A2)| ≤ 8‖A1‖p,D ‖A2‖q,D α1−p−1−q−1

D (τ) .

Lemma .0.27 Suppose max1≤t≤T E |At |q < ∞. Then max1≤t≤T |At |= oP

(
T 1/q

)
.
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Proof. Let εT ≡ T 1/q. We have

Pr
(

max
1≤t≤T

|At |> εT

)
≤

T

∑
t=1

Pr(|At |> εT ) =
T

∑
t=1

E [1(|At |> εT )]

≤
T

∑
t=1

E
[ |At |q

εq
T

1(|At |> εT )
]

= ε−q
T

T

∑
t=1

E [|At |q 1(|At |> εT )]

≤ max
1≤t≤T

E [|At |q 1(|At |> εT )]→ 0.

It follows that max1≤t≤T |At |= oP

(
T 1/q

)
.

Lemma .0.28 Let A be an n×m matrices, B and C be m× p matrices, and D be an
n×n matrix. Then we have

(i) ‖A‖ ≤ ‖A‖F ≤ ‖A‖
√

rank(A);
(ii) ‖AB‖ ≤ ‖A‖‖B‖ ;
(iii) ‖AB‖F ≤ ‖A‖‖B‖F ≤ ‖A‖F ‖B‖F ;
(iv) max{‖A‖1 ,‖A‖max}≤‖A‖≤√nm‖A‖ , where ‖A‖1≡max j ∑n

i=1

∣∣Ai j
∣∣ and

‖A‖∞ ≡ maxi ∑n
j=1

∣∣Ai j
∣∣;

(v) tr(AB)≤ ‖A‖F ‖B‖F ;
(vi) tr (D)≤ rank(D)‖D‖ ;
(vii) ‖D‖ ≤ tr (D) for any p.s.d. diagonal matrix D;
(viii) ‖D‖ ≤max1≤i≤n |Dii| any diagonal matrix D;
(ix) ‖A‖F = ‖vec(A)‖ ;
(x) µ1 (A′A) = µ1 (AA′) ;
(xi) rank(AB)≤min{rank(A) ,rank(B)};
(xii) rank(B+C)≤ rank(B)+rank(C).

Proof. For the proofs of (i)-(vii), see Theorem S.3.1 in Moon and Weidner

(2010). For the proofs of (viii)-(xi), see Bernstein (2005) or Seber (2007).

.0.10 Data appendix

Countries listed for the application of economic growth: Argentina, Australia, Aus-

tria, Bangladesh, Belgium, Benin, Bolivia, Brazil, Burkina Faso, Cameroon, Canada,

Central African Rep., Chile, China, Colombia, Congo, Rep., Costa Rica, Cote

d’Ivoire, Denmark, Dominican Republic, Ecuador, Egypt, El Salvador, Finland,

France, Ghana, Greece, Guatemala, Honduras, Hong Kong, Iceland, India, In-

donesia, Ireland, Italy, Jamaica, Japan, Kenya, Korea, Republic of, Luxemburg,

Madagascar, Malawi, Malysia, Mali, Mauritania, Mexico, Morocco, Netherlands,
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D Proofs in Chapter 4

.0.11 Proof of Theorem 4.3.1

Noting that

ΓnT =

√
b
n

n

∑
i=1

(ESSi− ε ′i Qεi)
σ2

i
+

√
b
n

n

∑
i=1

(
ESSi− ε ′i Qεi

)(
1

T SSi/T
− 1

σ2
i

)

≡ ΓnT,1 +ΓnT,2, say,

we complete the proof by showing that (i) ΓnT,1
d→N (0,Ω0), and (ii) ΓnT,2 = oP (1).

These results are established in Propositions .0.11 and .0.12, respectively.

Proposition .0.11 ΓnT,1
d→ N (0,Ω0).

Proof. Decompose

ΓnT,1 =

√
b
n

n

∑
i=1

û′i(H̄−L)ûi

σ2
i

−
√

b
n

n

∑
i=1

ε ′i Qεi

σ2
i
≡ ΓnT,11−ΓnT,12. (.0.80)

Let X∗i ≡ Xi−ST X and ε∗i ≡ εi−ST ε. Define

f≡ (
f (1/T ) , ..., f (T/T )

)′ and f̄∗ ≡ f−ST F, (.0.81)

where f (τ)≡ n−1 ∑n
i=1 fi (τ) . Noting that

ûi = ε∗i −X∗i (β̂ −β )+ f∗+(fi− f)+αiiT (.0.82)

and MiT = 0, we have

ΓnT,11 =

√
b
n

n

∑
i=1

û′i(H̄−L)ûi

σ2
i

=
10

∑
l=1

DnT l (.0.83)
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where

DnT 1 ≡
√

b
n

n
∑

i=1
ε∗′i (H̄−L)ε∗i /σ2

i , DnT 2 ≡
√

b
n

n
∑

i=1
(fi− f)′ (H̄−L)(fi− f)/σ2

i ,

DnT 3 ≡
√

b
n

n
∑

i=1
(β̂ −β )′X∗′i (H̄−L)X∗i (β̂ −β )/σ2

i , DnT 4 ≡
√

b
n

n
∑

i=1
f∗′ (H̄−L) f∗/σ2

i ,

DnT 5 ≡−2
√

b
n

n
∑

i=1
ε∗′i (H̄−L)X∗i (β̂ −β )/σ2

i , DnT 6 ≡ 2
√

b
n

n
∑

i=1
ε∗′i (H̄−L) f∗/σ2

i ,

DnT 7 ≡−2
√

b
n

n
∑

i=1
(β̂ −β )′X∗′i (H̄−L)f∗/σ2

i , DnT 8 ≡ 2
√

b
n

n
∑

i=1
ε∗′i (H̄−L)(fi− f)/σ2

i ,

DnT 9 ≡−2
√

b
n

n
∑

i=1
(β̂ −β )′X∗′i (H̄−L)(fi− f)/σ2

i , DnT 10 ≡ 2
√

b
n

n
∑

i=1
f∗′(H̄−L)(fi− f)/σ2

i .

Under H0, DnT s = 0 for s = 2,8,9,10. We complete the proof of the proposition by

showing that:

DnT 1 ≡ DnT 1−ΓnT,12
d→ N (0,Ω0) , and (.0.84)

DnT s = oP (1) , s = 3, ...,7. (.0.85)

Step 1. We first prove (.0.84). Noting that ε∗i ≡ εi− ST ε, we can decompose

DnT 1 as:

DnT 1 =

√
b
n

n

∑
i=1

ε∗′i (H̄−L)ε∗i
σ2

i
−

√
b
n

n

∑
i=1

ε ′i Qεi

σ2
i

=

√
b
n

n

∑
i=1

ε ′i (H̄−L−Q)εi

σ2
i

+

√
b
n

ε ′S′T (H̄−L)ST ε
n

∑
i=1

1
σ2

i

−2

√
b
n

n

∑
i=1

ε ′i (H̄−L)ST ε
σ2

i

≡ DnT 11 +DnT 12−2DnT 13.

We prove (.0.84) by showing that DnT 11
d→N (0,Ω0) and DnT 1s = oP (1) for s = 2,3.

The former claim follows from Lemma .0.29 below. We now prove the latter claim.

Let DnT 12 ≡
√

nbε ′S′T (H̄−L)ST ε. By Lemmas .0.31(ii) and .0.34, we have

DnT 12 =
√

nb
T

∑
t=1

T

∑
s=1

(
e′1S (t/T )ε

)(
H̄ts−T−1)(

e′1S (s/T )ε
)

≤
√

nb max
1≤t≤T

∣∣e′1S (t/T )ε
∣∣2

T

∑
t=1

T

∑
s=1

∣∣H̄ts−T−1∣∣

=
√

nbOP

(
log(nT )

nT h

)
O(T ) = OP

(
log(nT )√

nb−1h2

)
= oP (1) .
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Then DnT 12 = oP (1) by Assumption A2(iii).

For DnT 13, we have DnT 13 = n−1/2b1/2 ∑n
i=1 ε ′i (H̄−L)ST ε/σ2

i =DnT 131+ DnT 132,

where

DnT 131 ≡
√

b
n

n

∑
i=1

T

∑
t=1

attεite′1S (t/T )εσ−2
i ,

DnT 132 ≡
√

b
n

n

∑
i=1

∑
1≤s 6=t≤T

atsεite′1S (s/T )εσ−2
i ,

and ats ≡ H̄ts−T−1. For DnT 131, write

DnT 131 =
b1/2

n3/2

n

∑
i=1

n

∑
j=1

T

∑
t=1

attεite′1s(t/T )ε jσ−2
i

=
b1/2

T n3/2 ∑
1≤i, j≤n

∑
1≤t,s≤T

attctskh,tsεitε jsσ−2
i

=
b1/2

T n3/2

n

∑
i=1

T

∑
t=1

attcttkh,ttε2
itσ−2

i

+
b1/2

T n3/2

n

∑
i=1

∑
1≤t<s≤T

(attcts +asscst)kh,tsεitεisσ−2
i

+
b1/2

T n3/2 ∑
1≤i 6= j≤n

T

∑
t=1

attcttkh,ttεitε jtσ−2
i

+
b1/2

T n3/2 ∑
1≤i 6= j≤n

∑
1≤t<s≤T

(attcts +asscst)kh,tsεitε jsσ−2
i

≡ DnT 131a +DnT 131b +DnT 131c +DnT 131d,

where cts ≡ e′1[T
−1z[p]

h (t/T )′Kh (t/T )z[p]
h (t/T )]−1z[p]

h,s (t/T ) . By Lemmas .0.31 and

.0.33(iii) and Assumption A5, we have

E |DnT 131a| ≤ k(0)b1/2

n1/2h
max

1≤t≤n
|att |

(
1
T

T

∑
t=1
|ctt |

)
= n−1/2b1/2h−1O

(
T−1b−1)O(1)= o(1) .
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So DnT 131a = oP (1) by the Markov inequality. For DnT 131b, we have by Lemmas

.0.31 and .0.33(ii)

E
(
D2

nT 131b
)

=
b

T 2n3

n

∑
i=1

n

∑
j=1

∑
1≤t1<t2≤T

∑
1≤t3<t4≤T

et1t2kh,t1t2et3t4kh,t3t4E
(
εit1εit2ε jt3ε jt4

)
σ−2

i σ−2
j

=
b

T 2n3

n

∑
i=1

n

∑
j=1

∑
1≤t1<t2≤T

(
et1t2kh,t1t2

)2 E
(
εit1εit2ε jt1ε jt2

)
σ−2

i σ−2
j

≤ 2b
T 2n3

n

∑
i=1

n

∑
j=1

∑
1≤t1<t2≤T

(
a2

t1t1c2
t1t2 +a2

t2t2c2
t2t1

)
k2

h,t1t2

∣∣E (
εit1εit2ε jt1ε jt2

)∣∣σ−2
i σ−2

j

≤ 2b
T 2n2

(
1
n

n

∑
i=1

n

∑
j=1

ρ2
i j

)
∑

1≤t1<t2≤T

(
a2

t1t1c2
t1t2 +a2

t2t2c2
t2t1

)
k2

h,t1t2

≤ 2b
n2h

(
max

1≤t≤T
a2

tt

)(
1
n

n

∑
i=1

n

∑
j=1

ρ2
i j

)(
h

T 2 ∑
1≤t1 6=t2≤T

c2
t1t2k2

h,t1t2

)

=
2b
n2h

O
(
T−2b−2)O(1) = O

(
n−2T−2b−1h−1) = o(1) ,

where ets ≡ attcts +asscst , ρi j ≡ ωi jσ−1
i σ−1

j , and the second equality follows from

the fact that E(εit1εit2ε jt1ε jt3) = 0 and E(εit1εit2ε jt3ε jt4) = 0 when t1, t2, t3, and t4

are all distinct by Assumptions A2(ii)-(iii). It follows that DnT 131b = oP (1) by the

Chebyshev inequality. For DnT 131c, we have by Lemma .0.31 and Assumptions A2
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and A5

E
[
D2

nT 131c
]

=
b

T 2n3 ∑
1≤i1 6=i2≤n

∑
1≤i3 6=i4≤n

T

∑
t=1

T

∑
s=1

attcttkh,ttasscsskh,ssE (εi1tεi2tεi3sεi4s)σ−2
i1 σ−2

i3

=
bk2 (0)
T 2n3h2 ∑

1≤i1 6=i2≤n
∑

1≤i3 6=i4≤n
∑

1≤t 6=s≤T
attcttasscssωi1i2ωi3i4σ−2

i1 σ−2
i3

+
bk2 (0)
T 2n3h2

T

∑
t=1

[
a2

ttc
2
tt ∑

1≤i1 6=i2≤n
∑

1≤i3 6=i4≤n
E (εi1tεi2tεi3tεi4t)σ−2

i1 σ−2
i3

]

≤ b
nh2

(
max

1≤t≤T
a2

tt

)(
1
n ∑

1≤i1 6=i2≤n
ωi1i2σ−2

i1

)2 (
1
T

T

∑
t=1
|ctt |

)2

+
b

T nh2

(
max

1≤t≤T
a2

tt

)∣∣∣∣∣
1
n2 ∑

1≤i1 6=i2≤n
∑

1≤i3 6=i4≤n
E (εi1tεi2tεi3tεi4t)σ−2

i1 σ−2
i3

∣∣∣∣∣

(
1
T

T

∑
t=1

c2
tt

)

=
b

nh2 O
(
T−2b−2)O(1)O(1)+

b
T nh2 O

(
T−2b−2)O(1)O(1)

= O
(
n−1T−2h−2b−1 +n−1T−3b−1h−2) = o(1) .

It follows that DnT 131c = oP (1) by the Chebyshev inequality. Similarly, DnT 131d =

oP (1) because

E (DnT 131d)
2

=
4b

T 2n3 ∑
1≤i1 6=i2≤n

∑
1≤i3 6=i4≤n

∑
1≤t1<t2≤T

a2
t1t1c2

t1t2k2
h,t1t2E (εi1t1εi2t2εi3t1εi4t2)σ−2

i1 σ−2
i3

=
4b

T 2n3 ∑
1≤i1 6=i2≤n

∑
1≤i3 6=i4≤n

∑
1≤t1<t2≤T

a2
t1t1c2

t1t2k2
h,t1t2ωi1i3ωi2i4σ−2

i1 σ−2
i3

≤ 4c−2b
nh

(
max

1≤t≤T
a2

tt

)(
h

T 2 ∑
1≤t1<t2≤T

c2
t1t2k2

h,t1t2

)(
1
n ∑

1≤i1,i2≤n
|ωi1i2|

)2

=
b
nh

O
(
T−2b−2)O(1)O(1) = O

(
n−1T−2h−1b−1) = o(1) .

In sum, we have shown that DnT 131 = oP (1) .
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For DnT 132, we have

DnT 132 =
b1/2

n3/2 ∑
1≤i, j≤n

∑
1≤s 6=t≤T

atsεite′1s(s/T )ε jσ−2
i

=
b1/2

T n3/2 ∑
1≤i, j≤n

∑
1≤s 6=t≤T

T

∑
r=1

atscsrkh,srεitε jrσ−2
i

=
b1/2

T n3/2 ∑
1≤i6= j≤n

∑
1≤s 6=t 6=r≤T

atscsrkh,srεitε jrσ−2
i +oP (1)

≡ DnT 132a +oP (1) .

Following the same arguments as used in the proof of DnT 131a = oP (1), we can

show that E (DnT 132a)
2 = o(1). It follows that DnT 132a = oP (1) and DnT 132 =

oP (1).

Step 2. We now prove (.0.85). For DnT 3, by Assumption A2(iii), and Lemmas

.0.32, .0.35(i) and .0.36, we have

|DnT 3| ≤ c−1n−1/2b1/2 ‖H̄−L‖
∥∥∥β̂ −β

∥∥∥
2 n

∑
i=1
‖Xi−ST X‖2

= c−1n−1/2
(

b1/2 ‖H̄−L‖
)∥∥∥β̂ −β

∥∥∥
2
‖X−SnT X‖2

= n−1/2O(1)OP
(
n−1T−1)OP (nT ) = OP

(
n−1/2

)
= oP (1) .

For DnT 4, noting that max1≤t≤T
∣∣ f (t)− e′1S (t/T )F

∣∣ = O
(
hp+1) by analysis analo-

gous to CGL (2010), by Lemma .0.32 and Assumption A5 we have

|DnT 4| ≤ c−1n1/2
(

b1/2 ‖H̄−L‖
)
||f∗||2 = n1/2O(1)O

(
T h2p+2)

= O
(

n1/2T h2p+2
)

= o(1) .

Now decompose DnT 5 as follows

DnT 5 = −2

[√
b
n

n

∑
i=1

ε ′i (H̄−L)X∗i σ−2
i −

√
b
n

n

∑
i=1

(ST ε)′ (H̄−L)X∗i σ−2
i

]
(β̂ −β )

≡ −2(DnT 51−DnT 52)(β̂ −β ), say.
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Noting that DnT 51 =
√

b
n ∑n

i=1 σ−2
i ε ′i (H̄−L)(Xi−ST X)=

√
b
n ∑n

i=1 ∑T
t=1 ∑T

s=1 σ−2
i εitats

×[Xis−e′1S (s/T )X ], by Assumption A2, the Cauchy inequality, and Lemma .0.32(ii),

E ‖DnT 51‖2

=
b
n ∑

1≤i, j≤n1
∑

1≤t,s,r≤T
atsatrE

{
tr[(Xis− e′1S (s/T )X)(X jr− e′1S (r/T )X)′]

}
ωi jσi

−2σ j
−2

≤ T b max
1≤i≤n

max
1≤s≤T

(
E

∥∥Xis− e′1S (s/T )X
∥∥2

)(
1
n ∑

1≤i, j≤n1

∣∣ρi j
∣∣
)(

1
T ∑

1≤t,s,r≤T
|atsatr|

)

= T bO(1)O(1)O(1) = O(T b) .

For DnT 52 we have

‖DnT 52‖2 =
b
n

n

∑
i=1

n

∑
j=1

tr
[
(H̄−L)X∗i X∗′j (H̄−L)ST εε ′S′T

]
σ−2

i σ−2
j

=
b
n

tr

[(
n

∑
i=1

n

∑
j=1

X∗i X∗′j σ−2
i σ−2

j

)
(H̄−L)ST εε ′S′T (H̄−L)

]

≤ c−2

n

(
n

∑
i=1
‖X∗i ‖

)2 (
b‖H̄−L‖2

)
‖ST ε‖2

=
1
n

OP
(
T n2)O(1)OP (1/(nh)) = O(T/h) .

It follows that DnT 5 = OP(T 1/2b1/2 +T 1/2h−1/2)OP((nT )−1/2) = OP(n−1/2(b1/2 +

h−1/2)) = oP (1) .

For DnT 6, we write

DnT 6 = 2

√
b
n

n

∑
i=1

σ−2
i ε ′i (H̄−L)

(
f−ST F

)−2

√
b
n

n

∑
i=1

σ−2
i (ST ε)′ (H̄−L)

(
f−ST F

)

≡ 2DnT 61−2DnT 62,
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where F≡ in⊗f = in⊗f under H0. Noting that DnT 61 = n−1/2b1/2 ∑n
i=1 ∑T

t=1 ∑T
s=1 σ−2

i εitats

×[ f (s/T )−e′1S(s/T )F], by Assumptions A2 and A5 and Lemma .0.32(ii), we have

E
(
D2

nT 61
)

=
b
n ∑

1≤i, j≤n1
∑

1≤t,s,r≤T
ωi jatsatr

[
f (s/T )− e′1S(s/T )F

][
f (r/T )− e′1S(r/T )F

]
σ−2

i σ−2
j

≤ c−2T b max
1≤s≤T

∣∣∣ f
( s

T

)
− e′1S(

s
T

)F
∣∣∣
2
(

1
n ∑

1≤i, j≤n1

∣∣ωi j
∣∣
)(

1
T ∑

1≤t,s,r≤T
|atsatr|

)

= T bO
(
h2p+2)O(1)O(1) = O

(
T bh2p+2) = o(1) .

It follows that DnT 61 = oP (1) by the Chebyshev inequality. For DnT 62, we can fol-

low the proof of DnT 52 and show that DnT 62 = oP (1). Consequently, DnT 6 = oP (1) .

Now write DnT 7 ≡ −2
√

b/n∑n
i=1 σ−2

i (β̂ − β )′X∗′i H̄f∗+ 2(b/n)1/2 ∑n
i=1 σ−2

i (β̂ −
β )′X∗′i Lf∗ ≡−2DnT 71 +2DnT 72. By the Cauchy-Schwarz inequality, we have

DnT 71 ≤
(√

b
n

∥∥∥β̂ −β
∥∥∥

2 n

∑
i=1

σ−4
i

∥∥X∗′i H̄X∗i
∥∥
)1/2 (√

nbf∗′H̄f∗
)1/2

=
[
OP

(
n−1/2

)
O

(
T n1/2h2(p+1)

)]1/2
= OP

(
T 1/2hp+1

)
= oP (1) .

Similarly, we have DnT 72 = oP (1) . Thus DnT 7 = oP (1) .

Lemma .0.29 DnT 11 = b1/2√
n ∑n

i=1 ε ′i (H̄−L−Q)εi/σ2
i

d−→ N (0,Ω0) .

Proof. Write DnT 11 = 1√
T

T
∑

t=2
ZnT,t , where ZnT,t ≡ 2b1/2√

nT ∑t−1
s=1 ∑n

i=1 αtsσ−2
i εitεis

and αts ≡ T H̄ts − 1 = Tats. Noting that {ZnT,t , F n,t (ε)} is an m.d.s., we prove

the lemma by applying the martingale CLT. By Corollary 5.26 of White (2001) it

suffices to show that: (i) E
(

Z4
nT,t

)
< C for all t and (n,T ) for some C < ∞, and (ii)

T−1
T
∑

t=2
Z2

nT,t −Ω0 = oP (1) .
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We first prove (i). For 2≤ t ≤ T, decompose

Z2
nT,t =

4b
nT

t−1

∑
s1=1

t−1

∑
s2=1

n

∑
i1=1

n

∑
i2=1

αts1αts2σ−2
i1 σ−2

i2 εi1tεi1s1εi2tεi2s2

=
4b
nT

t−1

∑
s=1

n

∑
i1=1

n

∑
i2=1

α2
tsσ−2

i1 σ−2
i2 εi1tεi1sεi2tεi2s

+
4b
nT ∑

1≤s1<s2≤t−1

n

∑
i1=1

n

∑
i2=1

αts1αts2σ−2
i1 σ−2

i2 εi1tεi1s1εi2tεi2s2

+
4b
nT ∑

1≤s2<s1≤t−1

n

∑
i1=1

n

∑
i2=1

αts1αts2σ−2
i1 σ−2

i2 εi1tεi1s1εi2tεi2s2

≡ z1t + z2t + z3t , say. (.0.86)

Then E
(

Z4
nT,t

)
= E (z1t + z2t + z3t)

2 ≤ 3{E
(
z2

1t
)
+ E

(
z2

2t
)
+ E

(
z2

3t
)} ≡ 3{Z1t +

Z2t +Z3t}, say.

Z1t

= 16b2

n2T 2 ∑
1≤s1,s2≤t−1

∑
1≤i1,i2≤n

∑
1≤i3,i4≤n

α2
ts1

α2
ts2

σ−2
i1 σ−2

i2 σ−2
i3 σ−2

i4 E (εi1tεi2tεi3tεi4tεi1s1εi2s1εi3s2εi4s2)

= 16b2

n2T 2 ∑
1≤s1,s2≤t−1

∑
1≤i1,i2≤n

∑
1≤i3,i4≤n

α2
ts1

α2
ts2

σ−2
i1 σ−2

i2 σ−2
i3 σ−2

i4 κi1i2i3i4E (εi1s1εi2s1εi3s2εi4s2)

= 16b2

n2T 2

t−1

∑
s=1

∑
1≤i1,i2≤n

∑
1≤i3,i4≤n

α4
tsσ−2

i1 σ−2
i2 σ−2

i3 σ−2
i4 κ2

i1i2i3i4

+ 16b2

n2T 2 ∑
1≤s1 6=s2≤t−1

∑
1≤i1,i2≤n

∑
1≤i3,i4≤n

α2
ts1

α2
ts2

σ−2
i1 σ−2

i2 σ−2
i3 σ−2

i4 κi1i2i3i4ωi1i2ωi3i4

≤ Cb2

T 2

t−1

∑
s=1

α4
ts +C

(
b
T

t−1

∑
s=1

α2
ts

)2

≤ C
T b +C ≤ 2C.

Similarly,

Z2t =
16b2

n2T 2 ∑
1≤s1<s2≤t−1

∑
1≤s3<s4≤t−1

∑
1≤i1,i2≤n

∑
1≤i3,i4≤n

αts1αts2αts3αts4σ−2
i1 σ−2

i2 σ−2
i3 σ−2

i4

×E (εi1tεi2tεi3tεi4tεi1s1εi2s2εi3s3εi4s4)

=
16b2

n2T 2 ∑
1≤s1<s2≤t−1

∑
1≤i1,i2≤n

∑
1≤i3,i4≤n

α2
ts1

α2
ts2

σ−2
i1 σ−2

i2 σ−2
i3 σ−2

i4 κi1i2i3i4ωi1i2ωi3i4

≤ Cb2

T 2 ∑
1≤s1<s2≤t−1

α2
ts1

α2
ts2
≤C,
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where we have used the fact that T−1b∑t
s=1 α2

ts ≤C uniformly in t and C may vary

across lines. By the same token Z3t ≤C for all t. Consequently, E
(

Z4
nT,t

)
< C for

all t and some large enough constant C.

Now we prove (ii) by the Chebyshev inequality. First, by Assumption A2(ii)-

(iii),

E

(
1
T

T

∑
t=2

Z2
nT,t

)
=

4b
nT 2

T

∑
t=2

t−1

∑
s=1

∑
1≤i, j≤n

α2
tsσ−2

i σ−2
j ω2

i j =
2b

nT 2 ∑
1≤t 6=s≤T

α2
ts ∑

1≤i, j≤n
ρ2

i j,

where ρi j = ωi j/(σiσ j) by Assumption A2. Second, decompose

E




(
1
T

T

∑
t=2

Z2
nT,t

)2

 =

1
T 2

T

∑
t=2

E
(
Z4

nT,t
)
+

2
T 2 ∑

2≤t<s≤T
E

(
Z2

nT,tZ
2
nT,s

)≡Z1nT +Z2nT .

By the proof of (i), Z1nT = T−2 ∑T
t=2 E

(
Z4

nT,t

)
= O(1/T ) = o(1) . For Z2nT , by

(.0.86) we have Z2nT = 2T−2 ∑2≤t<s≤T E(z1tz1s + z1tz2s + z1tz3s + z2tz1s + z2tz2s +

z2tz3s+z3tz1s+z3tz2s+z3tz3s)≡∑9
j=1Z2nT j, say, where, e.g., Z2nT 1 = 2T−2 ∑2≤t<s≤T

E (z1tz1s) . For Z2nT 1, we have

Z2nT 1 =
32b2

n2T 4 ∑
2≤t1<t2≤T

t1−1

∑
s1=1

t2−1

∑
s2=1

∑
1≤i1,i2≤n

∑
1≤i3,i4≤n

α2
t1s1

α2
t2s2

σ−2
i1 σ−2

i2 σ−2
i3 σ−2

i4

×ωi3i4E (εi1t1εi2t1εi1s1εi2s1εi3s2εi4s2)

=
32b2

n2T 4 ∑
2≤t1<t2≤T

t1−1

∑
s1=1

t2−1

∑
s2=1

∑
1≤i1,i2≤n

∑
1≤i3,i4≤n

α2
t1s1

α2
t2s2

σ−2
i1 σ−2

i2 σ−2
i3 σ−2

i4 ω2
i1i2ω2

i3i4

+O
( 1

T

)

=
16b2

n2T 4

T

∑
t1=1

T

∑
t2=1

t1−1

∑
s1=1

t2−1

∑
s2=1

∑
1≤i1,i2≤n

∑
1≤i3,i4≤n

α2
t1s1

α2
t2s2

ρ2
i1i2ρ2

i3i4 +O(1/T )

=

(
2b

nT 2 ∑
1≤t 6=s≤T

α2
ts

n

∑
i=1

n

∑
j=1

ρ2
i j

)2

+O(1/T ) .
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Similarly, by Assumption A2 and Lemmas .0.31 and .0.32(ii)

Z2nT 2 =
32b2

n2T 4 ∑
2≤t1<t2≤T

t1−1

∑
s=1

∑
1≤s1<s2≤t2−1

∑
1≤i1,i2≤n

∑
1≤i3,i4≤n

{
α2

t1sαt2s1αt2s2σ−2
i1 σ−2

i2 σ−2
i3 σ−2

i4

× ςi2i3i4E (εi1t1εi1sεi2sεi3s1εi4s2)
}

=
32b2

n2T 4 ∑
2≤t1<t2≤T

t1−1

∑
s=1

∑
1≤i1,i2≤n

∑
1≤i3,i4≤n

α2
t1sαt2sαt2t1σ−2

i1 σ−2
i2 σ−2

i3 σ−2
i4 ςi2i3i4ωi1i4ςi1i2i3

≤ C
(

b2 max
1≤t 6=s≤T

a2
ts

)(
∑

2≤t1<t2≤T

t1−1

∑
s=1

|at2sat2t1|
)(

1
n2 ∑

1≤i1,i2≤n
∑

1≤i3,i4≤n
|ςi2i3i4ςi1i2i3|

)

= O
(
T−2)O(T )O(1) = o(1) ,

where recall ςi jk ≡ E
(
εitε jtεkt

)
. Analogously we can show that Z2nT l = o(1) for

l = 3,4, ...,9. It follows that

E



(

1
T

T

∑
t=2

Z2
nT,t

)2

 =

(
2b

nT 2 ∑
1≤t 6=s≤T

α2
ts

n

∑
i=1

n

∑
j=1

ρ2
i j

)2

+o(1) ,

and

Var

(
1
T

T

∑
t=2

Z2
nT,t

)
= E




(
1
T

T

∑
t=2

Z2
nT,t

)2

−

[
E

(
1
T

T

∑
t=2

Z2
nT,t

)]2

= o(1) .

Consequently, 1
T ∑T

t=2 Z2
nT,t − 2b

nT 2 ∑1≤t 6=s≤T α2
ts ∑n

i=1 ∑n
j=1 ρ2

i j = oP (1) and (ii) fol-

lows by the definition of Ω0.

Proposition .0.12 ΓnT,2 = oP (1) .

Proof. Let σ̂ 2
i ≡ T SSi/T. By a geometric expansion, 1/σ̂ 2

i − 1/σ2
i = −(σ̂ 2

i −
σ2

i )/σ4
i +(σ̂ 2

i −σ2
i )2/(σ4

i σ̂ 2
i ). It follows that

ΓnT,2 = −
√

b
n

n

∑
i=1

(
ESSi− ε ′i Qεi

) σ̂ 2
i −σ2

i

σ4
i

+

√
b
n

n

∑
i=1

(
ESSi− ε ′i Qεi

) (
σ̂ 2

i −σ2
i
)2

σ4
i σ̂ 2

i

≡ −ΓnT,21 +ΓnT,22, say.

Noting that ûi = ε∗i −X∗i (β̂ −β )+ f∗+(fi− f)+ αiiT and MiT = 0 where f and f∗

are defined in (.0.81), we have

σ̂ 2
i = T SSi/T = û′iMûi/T =

10

∑
l=1

T SSil/T, (.0.87)
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where

T SSi1 ≡ ε∗′i Mε∗i , T SSi2 ≡ (β̂ −β )′X∗′i MX∗i (β̂ −β ),

T SSi3 ≡ f∗′Mf∗, T SSi4 ≡−2ε∗′i MX∗i (β̂ −β ),

T SSi5 ≡ 2ε∗′i Mf∗, T SSi6 ≡−2f∗′MX∗i (β̂ −β ),

T SSi7 ≡ 2ε∗′i M(fi− f), T SSi8 ≡ (fi− f)′M(fi− f),

T SSi9 ≡ 2f∗′M(fi− f), T SSi10 ≡−2(β̂ −β )′X∗′i M(fi− f).

Under H0, we have fi− f = 0. Thus T SSil = 0 for l = 7, . . . ,10. We want to show

that

max
1≤i≤n

∣∣T−1T SSi1−σ2
i
∣∣ = OP (υnT ) , and max

1≤i≤n
T−1T SSil = oP (υnT ) for l = 2, ...,6,

(.0.88)

where υnT ≡ n1/λ T−1/2.

For T SSi1, we have

T−1T SSi1−σ2
i =

(
T−1ε ′i Mεi−σ2

i
)−2T−1ε ′i MST ε +T−1 (ST ε)′MST ε. (.0.89)

We first bound the last term in (.0.89). By the idempotence of M and the Markov in-

equality, T−1 (ST ε)′ MST ε ≤ T−1 ‖ST ε‖2 = OP
(
n−1T−1h−1). For the first term in

(.0.89), we want to show that max1≤i≤n |ε ′i Mεi/T−σ2
i |= OP (υnT ) . Write ε ′i Mεi/T =

T−1 ∑T
t=1 (εit − ε i)

2 = T−1 ∑T
t=1 ε2

it − ε2
i . Let ξit ≡ ε2

it −σ2
i . Then by Assumption

A2(iv) and the Chebyshev inequality, for any ε > 0

P

(
max

1≤i≤n

1
T

T

∑
t=1

ξit ≥ εvnT

)
≤ ε−λ υ−λ

nT

n

∑
i=1

E

(
1
T

T

∑
t=1

ξit

)λ

= O
(

nT−λ/2υ−λ
nT

)
= O(1) .

It follows that max1≤i≤n |T−1 ∑T
t=1 ε2

it −σ2
i |= OP(υnT ). Similarly, max1≤i≤n |ε i|=

OP(υ2
nT ) = oP (υnT ). It follows that ε ′i Mεi/T = σ2

i + OP (υnT ) uniformly in i.

Then by the Cauchy-Schwarz inequality, we can readily show that the second term

in (.0.89) is OP

(
n−1/2T−1/2h−1/2

)
= oP (υnT ) . Consequently, the first result in

(.0.88) follows and max1≤i≤n T−1T SSi1 = OP (1).
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For T SSi2, we have

max
1≤i≤n

{
T−1T SSi2

}≤C
∥∥∥β̂ −β

∥∥∥
2

max
1≤i≤n

{
T−1 ‖Xi−ST X‖2

}
= OP

(
1

nT

)
OP(

√
n
T

+1),

where we use the fact that max1≤i≤n T−1 ‖Xi−ST X‖2 = OP(
√

n/T +1) under our

moment conditions. For T SSi3, noting that ||f∗|| =
∥∥f−ST F

∥∥ = O
(

T 1/2hp+1
)

, we

have T−1T SSi3 ≤ T−1
∥∥f−ST F

∥∥2 = O
(
h2p+2) . By the Cauchy-Schwarz inequal-

ity, we have

max
1≤i≤n

T−1 |T SSi4| ≤ max
1≤i≤n

(
T−1T SSi1

)1/2 (
T−1T SSi2

)1/2

= OP

(
n−1/4T−3/4+n−1/2T−1/2

)
=oP (υnT ) ,

max
1≤i≤n

T−1 |T SSi5| ≤ max
1≤i≤n

(
T−1T SSi1

)1/2 (
T−1T SSi3

)1/2

= OP
(
hp+1) = oP (υnT ) , and

max
1≤i≤n

T−1 |T SSi6| ≤ max
1≤i≤n

(
T−1T SSi2

)1/2 (
T−1T SSi3

)1/2
= oP (υnT ) .

Consequently, we have max1≤i≤n |σ̂ 2
i −σ2

i |= OP (υnT ). Then by Assumption A5

ΓnT,22 ≤ max1≤i≤n |σ̂ 2
i −σ2

i |2
min1≤i≤n σ4

i σ̂ 2
i

b1/2
√

n

n

∑
i=1

∣∣ESSi− ε ′i Qεi
∣∣

≤
√

nmax1≤i≤n |σ̂ 2
i −σ2

i |2
min1≤i≤n σ4

i σ̂ 2
i

(
b
n

n

∑
i=1

(
ESSi− ε ′i Qεi

)2

)1/2

=
√

nOP
(
υ2

nT
)

OP (1) = OP

(
n1/2+2/λ T−1

)
= o(1) ,

because one can easily show that b
n ∑n

i=1 (ESSi− ε ′i Qεi)
2 = OP (1) .

For ΓnT,21, we have ΓnT,21 = ∑6
l=1 ΓnT,21l, where

ΓnT,211 ≡
√

b
n

n

∑
i=1

σ−4
i

(
ESSi− ε ′i Qεi

)(
T−1T SSi1−σ2

i
)
, and

ΓnT,21l ≡
√

b
n

n

∑
i=1

σ−4
i

(
ESSi− ε ′i Qεi

)(
T−1T SSil

)
for l = 2, ...,6.

Following the proof of Proposition .0.11 and the above analysis for T SSil, we can

show that ΓnT,21l = oP (1) for l = 1, ...,6.
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.0.12 Proof of Corollary 4.3.2

Given Theorem 4.3.1, it suffices to show that: (i) B̂nT = BnT +oP (1) , and (ii) Ω̂nT =

Ω0 +oP (1) . We first prove (i). By (.0.82) and the fact that MiT = 0, we have

û′iQ̄ûi =
10

∑
l=1

BnT,il, (.0.90)

where
BnT,i1 ≡ ε∗′i Q̄ε∗i , BnT,i2 ≡ (β̂ −β )′X∗′i Q̄X∗i (β̂ −β ),

BnT,i3 ≡ f∗′Q̄f∗, BnT,i4 ≡−2ε∗′i Q̄X∗i (β̂ −β ),

BnT,i5 ≡ 2ε∗′i Q̄f∗, BnT,i6 ≡−2f∗′Q̄X∗i (β̂ −β ),

BnT,i7 ≡ 2f∗′Q̄(fi− f) BnT,i8 ≡−2(β̂ −β )′X∗′i Q̄(fi− f),

BnT,i9 ≡ 2ε∗′i Q̄(fi− f), BnT,i10 ≡ (fi− f)′Q̄(fi− f),

Q̄≡MQM, and f and f∗ are defined in (.0.81). Under H0, we have fi− f = 0. Thus

BnT,il = 0 for l = 7, . . . ,10. By (4.3.2) and (.0.90), it suffices to show that

BnT,1 ≡
√

b
n

n

∑
i=1

σ̂−2
i (BnT,i1−BnT ) =

√
b
n

n

∑
i=1

σ̂−2
i

[
ε∗′i Q̄ε∗i − ε ′i Qεi

]
= oP (1)

BnT,l ≡ n−1/2b1/2 ∑n
i=1 σ̂−2

i BnT,il = oP (1) for l = 2, ...,6.

Recalling ε∗i ≡ εi−ST ε, we decompose BnT,1 as follows

BnT,1 = n−1/2b1/2 ∑n
i=1 σ̂−2

i
[
(εi−ST ε)′ Q̄(εi−ST ε)− ε ′i Qεi

]

= n−1/2b1/2 ∑n
i=1 σ̂−2

i
[
ε ′i Q̄εi− ε ′i Qεi

]−2n−1/2b1/2 ∑n
i=1 σ̂−2

i ε ′i Q̄ST ε

+n−1/2b1/2 ∑n
i=1 σ̂−2

i (ST ε)′ Q̄ST ε

≡ BnT,11−2BnT,12 +BnT,13.

Noting that Q̄−Q = (IT −L)Q(IT −L)−Q = LQL−QL−LQ and both Q and L

are symmetric, we have

BnT,11 = n−1/2b1/2 ∑n
i=1 σ̂−2

i ε ′i LQLεi−2n−1/2b1/2 ∑n
i=1 σ̂−2

i ε ′i QLεi

≡ BnT,11a−2BnT,11b, say.
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Following the proof of Proposition .0.12, we can show that BnT,11a = BnT,11a +

oP (1) , where BnT,11a = n−1/2b1/2 ∑n
i=1 σ−2

i ε ′i LQLεi. Even though Q is not positive

semidefinite (p.s.d.), it can be written as the difference between two p.s.d. matri-

ces: Q = Q∗−T−1IT , where Q∗ =diag(H̄11, ..., H̄T T ) . So we can write BnT,11a =

n−1/2b1/2 ∑n
i=1 σ−2

i ε ′i LQ∗Lεi −n−1/2T−1b1/2 ∑n
i=1 σ−2

i ε ′i LLεi = BnT,11a1−BnT,11a2.

Noting that

E
∣∣BnT,11a1

∣∣ = n−1/2b1/2 ∑n
i=1 σ−2

i E
(
ε ′i LQ∗Lεi

)
= T−2n−1/2b1/2

n

∑
i=1

T

∑
t=1

i′T Q∗iT

= O
(

T−1n1/2b1/2
)

tr(Q∗) = O
(

T−1n1/2b1/2
)

O
(
b−1) = o(1) ,

and similarly E
∣∣BnT,11a2

∣∣ = O
(

T−1n1/2b1/2
)

= o(1) , we have BnT,11a = oP (1) by

the Markov inequality. Similarly, BnT,11b = oP (1) . Consequently BnT,11 = oP (1) .

Analogously, we can show that BnT,1l = oP (1) for l = 2,3. It follows that BnT,1 =

oP (1) .

Using the fact that |tr(AB)| ≤ λmax (A)tr(B) for any conformable p.s.d. matrix

B and symmetric matrix A (see, e.g., Bernstein, 2005, p. 309) and that λmax (M) =

1, we can show that
∥∥X∗′i Q̄X∗i

∥∥2 =tr(MQMX∗i X∗′i MQMX∗i X∗′i ) ≤ ‖X∗′i QX∗i ‖2 . It

follows that

BnT,2 = n−1/2b1/2 ∑n
i=1 σ̂−2

i (β̂ −β )X∗′i Q̄X∗i (β̂ −β )

≤ n−1/2b1/2
∥∥∥β̂ −β

∥∥∥
2
∑n

i=1 σ̂−2
i

∥∥X∗′i QX∗i
∥∥

= n−1/2b1/2OP

(
(nT )−1

)
OP

(
nb−1) = OP

(
n−1/2T−1b−1/2

)
= oP (1)

where we use the fact that ∑n
i=1 σ̂−2

i ‖X∗′i QX∗i ‖= OP
(
nb−1) . Similarly, we have

BnT,3 = n−1/2b1/2 ∑n
i=1 σ̂−2

i f∗′Q̄f∗ ≤ n−1/2b1/2 ∑n
i=1 σ̂−2

i

∥∥∥f∗′Qf∗
∥∥∥

= n−1/2b1/2

∥∥∥∥∥
T

∑
t=1

(
H̄tt −T−1)[

f (t/T )− e′1S (t/T )F
]2

∥∥∥∥∥
2

∑n
i=1 σ̂−2

i

= n−1/2b1/2OP
(
b−1h2p+2)OP (n) = OP

(
n1/2h2p+2b−1/2

)
= oP (1) .

By the repeated use of the Cauchy-Schwarz inequality, we can show that BnT,il =
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oP (1) for l = 4,5, and 6.

To show (ii), it suffices to show that DVnT ≡ n−1 ∑n
i=1 ∑n

j=1(ρ̂2
i j−ρ2

i j) = oP (1) .

Noting that x2− y2 = (x− y)2 +2(x− y)y, we can decompose DVnT as follows

DVnT =
1
n

n

∑
i=1

n

∑
j=1

(ρ̂i j−ρi j)2 +
2
n

n

∑
i=1

n

∑
j=1

(ρ̂i j−ρi j)ρi j ≡ DVnT 1 +2DVnT 2.

Following the argument in the proof of Proposition .0.12, we can show that

DVnT 1 =
1
n

n

∑
i=1

n

∑
j=1

(
û′iMû j

σ̂iσ̂ j
− ωi j

σiσ j

)2

= DV nT 1 +oP (1) , and

DVnT 2 =
1
n

n

∑
i=1

n

∑
j=1

(
û′iMû j

σ̂iσ̂ j
− ωi j

σiσ j

)
ρi j = DV nT 2 +oP (1) .

where DV nT 1≡ n−1 ∑n
i=1 ∑n

j=1 σ−2
i σ−2

j
(
û′iMû j−ωi j

)2 and DV nT 2≡ n−1 ∑n
i=1 ∑n

j=1

ρi jσ−1
i σ−1

j (û′iMû j−ωi j).

By (.0.82) and the fact that MiT = 0, we have that under H0, û′iMû j = ε∗′i Mε∗j +

(β̂−β )′X∗′i MX∗j (β̂−β )+f∗′Mf∗−(ε∗′i MX∗j +ε∗′j MX∗i )(β̂−β )+
(

ε∗i + ε∗j
)′

Mf∗−
f∗′M

(
X∗i +X∗j

)
(β̂ − β ) ≡ ∑6

l=1 DVnT,i jl. We can prove that DV nT 1 = oP (1) by

showing that

DV nT 1,1 ≡ 1
n

n

∑
i=1

n

∑
j=1

σ−2
i σ−2

j
(
DVnT,i j1−ωi j

)2 = oP (1) , and

DV nT 1,l ≡ 1
n

n

∑
i=1

n

∑
j=1

σ−2
i σ−2

j
(
DVnT,i jl

)2 = oP (1) for l = 2, ...,6.

Similarly we can prove DV nT 2 = oP (1) by using the above decomposition for û′iMû j.

The details are omitted for brevity.
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.0.13 Proof of Theorem 4.3.3

By (4.3.2) we have

√
Ω̂nT ΓnT =

b1/2

n1/2

n

∑
i=1

σ̂−2
i

(
ESSi− û′iQ̄ûi

)

=

√
b
n

n

∑
i=1

σ−2
i

(
ESSi− ε ′i Qεi

)−
√

b
n

n

∑
i=1

(
ESSi− ε ′i Qεi

)(
1

σ̂ 2
i
− 1

σ2
i

)

−
√

b
n

n

∑
i=1

σ−2
i

(
û′iQ̄ûi− ε ′i Qεi

)
+

√
b
n

n

∑
i=1

(
û′iQ̄ûi− ε ′i Qεi

)(
1

σ̂ 2
i
− 1

σ2
i

)

≡ ΓnT,1−ΓnT,2−ΓnT,3 +ΓnT,4, say, (.0.91)

where ΓnT,1 and ΓnT,2 are as defined in the proof of Theorem 4.3.1, and σ̂ 2
i ≡

T SSi/T. It is easy to show that Ω̂nT = Ω0 + oP (1) under H1 (γnT ) with γnT =

n−1/4T−1/2b−1/4. It suffices to show that: (i) ΓnT,1
d→ N (Θ0,Ω0), (ii) ΓnT,2 =

oP (1) , (iii) ΓnT,3 = oP (1) , and (iv) ΓnT,4 = oP (1). We complete the proof by

Propositions .0.13-.0.16 below.

Proposition .0.13 ΓnT,1
d→ N (Θ0,Ω0) under H1 (γnT ).

Proof. Decompose ΓnT,1 = ΓnT,11 − ΓnT,12 where ΓnT,11 and ΓnT,12 are de-

fined in (.0.80). Using the notation defined in the proof of Proposition .0.11, it

suffices to show: (i) DnT 1 ≡ DnT 1−ΓnT,12
d→ N (0,Ω0) , (ii) DnT 2 = Θ0 + oP (1) ,

and (iii) DnT s = oP (1) for s = 3, ...,10, where Θ0 = lim(n,T )→∞ ΘnT and ΘnT ≡
n−1/2b1/2γ2

nT ∑n
i=1 σ−2

i ∆′ni(H̄−L)∆ni = n−1T−1 ∑n
i=1 σ−2

i ∆′ni (H̄−L)∆ni. (i) follows

the proof of Proposition .0.11. We are left to prove (ii) and (iii).
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For (ii), letting ω2 and S be as defined in the proof of Lemma .0.31, by (.0.95)

we have

DnT 2 = γ2
nT

√
b
n

n

∑
i=1

σ−2
i ∆′ni(H̄−L)∆ni

= 1
nT

n

∑
i=1

σ−2
i

T

∑
t=1

T

∑
s=1

(
H̄ts−T−1)∆ni

( t
T

)
∆ni

( s
T

)

= 1
nT 2

n

∑
i=1

σ−2
i

T

∑
t=1

T

∑
s=1

{∫ 1

0
wb,t (τ)z

[1]

b,t (τ)′S−1z
[1]

b,s (τ)wb,s (τ)dτ

×
[∫ 1

0
wb,t (τ)dτ

∫ 1

0
wb,s (τ)dτ

]−1

−1

}
∆ni

( t
T

)
∆ni

( s
T

)
+o(1)

= 1
nT 2b

n

∑
i=1

σ−2
i

bT (1−b)c−1

∑
t=bT bc+1

T

∑
s=1

{∫ 1
b− t

T b

− t
T b

[
1+ω−1

2 u
(
u− s−t

T b

)]
w(u)w

(
u− s−t

T b

)
du

×
[∫ 1/b

0
w

(
z− t

T b

)
dz

∫ 1/b

0
w

( s−t
T b −

(
z′− t

T b

))
dz′

]−1

−1

}
∆ni

( t
T

)
∆ni

( s
T

)

+o(1)

= 1
nT

n

∑
i=1

σ−2
i

bT (1−b)c−1

∑
t=bT bc+1

∫ T−t
T b

−t
T b

{∫ 1

−1

[
1+ω−1

2 u(u− v)
]

w(u)w(u− v)du

×
[∫ T−t

T b

−t
T b

w(z)dz
∫ T−t

T b

−t
T b

w
(
z′− v

)
dz′

]−1

−1



∆ni

( t
T

)
∆ni

( t
T + vb

)
dv+o(1)

=
1
n

n

∑
i=1

σ−2
i

∫ 1

0
∆ni (τ)2 dτ Cw +o(1) ,

where Cw≡
∫ 1
−1

{∫ 1
−1

[
1+ω−1

2 u(u− v)
]

w(u)w(u− v)du[
∫ 1
−1 w(z− v)dz]−1−1

}
dv.

That is, DnT 2 = ΘnT = Θ0 +o(1) .

For (iii), following the proof of Proposition .0.11, we can show that DnT l =

oP (1) under H1(γnT ) for l = 3, ...,7. It suffices to prove (iii) by showing that DnT l =

oP (1) under H1(γnT ) for l = 8, ...,10. For DnT 8, write

DnT 8 ≡ 2

√
b
n

n

∑
i=1

ε ′i (H̄−L)(fi− f)/σ2
i −2

√
b
n

n

∑
i=1

(ST ε)′(H̄−L)(fi− f)/σ2
i

≡ 2DnT 8,1−2DnT 8,2.
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It is easy to show that

DnT 8,1 = (b/n)1/2 OP(γnT (n1/2T−1/2b−1 +n1/2T 1/2))

= OP(n−1/4T−1b−3/4 +n−1/4b1/4) = oP (1) ,

and DnT 8,2 = OP(n−1/4b1/4
√

log(nT )) = oP (1) . It follows that DnT 8 = oP (1) . By

the Cauchy-Schwarz inequality, DnT l = oP (1) for l = 9,10.

Proposition .0.14 ΓnT,2 = oP (1) under H1 (γnT ) .

Proof. Analogously to the proof of Proposition .0.12, we can write

ΓnT,2 = −
√

b
n

n

∑
i=1

(
ESSi− ε ′i Qεi

) σ̂ 2
i −σ2

i

σ4
i

+

√
b
n

n

∑
i=1

(
ESSi− ε ′i Qεi

) (
σ̂ 2

i −σ2
i
)2

σ4
i σ̂ 2

i

≡ −ΓnT,21 +ΓnT,22, say.

Note that σ̂ 2
i = ∑10

l=1 T SSil/T by (.0.87). First, we want to show that

max
1≤i≤n

∣∣T−1T SSi1−σ2
i
∣∣ = OP (υnT ) and max

1≤i≤n
T−1T SSil = oP (υnT ) for l = 2, . . . ,10,

(.0.92)

where υnT ≡ n1/λ T−1/2. By (.0.88), it suffices to show that max1≤i≤n T−1T SSil =

oP (υnT ), for l = 7, . . . ,10. In the sequel, we will use the fact that max1≤i≤n supτ∈[0,1]
∣∣ fi (τ)− f (τ)

∣∣ = O(γnT ) and β̂ −β = oP (γnT ) under H1 (γnT ) by Lemma .0.35(ii).

Following the study of T SSi2 in Proposition .0.12, we can show that max1≤i≤n T−1T SSi7

= oP (υnT ). For T SSi8 we have

T−1T SSi8 = T−1γ2
nT ∆′niM∆ni ≤ T−1γ2

nT ‖∆ni‖2

= n−1/2T−2b−1/2
T

∑
t=1

∆2
ni

( t
T

)
= O

(
n−1/2T−1b−1/2

)
= o(vnT )

uniformly in i. By the Cauchy-Schwarz inequality, max1≤i≤n T−1T SSil = oP (υnT )

for l = 9,10. Consequently, we have max1≤i≤n |σ̂ 2
i −σ2

i |= OP (υnT ). By the proof

of Proposition .0.12, b
n ∑n

i=1 (ESSi− ε ′i Qεi)
2 = OP (1) . It follows that

ΓnT,22 ≤ n1/2 max1≤i≤n |σ̂2
i −σ2

i |2
min1≤i≤n σ4

i σ̂2
i

[
b
n

n

∑
i=1

(
ESSi− ε ′i Qεi

)2

]1/2

= n1/2OP
(
υ2

nT
)

= oP (1) .
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To analyze ΓnT,21, using (.0.87) we can write

ΓnT,21 =

√
b
n

n

∑
i=1

(
ESSi− ε ′i Qεi

) σ̂ 2
i −σ2

i

σ4
i

=
10

∑
l=1

ΓnT,21l,

where ΓnT,211 ≡ (b/n)1/2 ∑n
i=1 σ−4

i (ESSi− ε ′i Qεi)(T−1T SSi1−σ2
i ), and ΓnT,21l ≡

(b/n)1/2 ∑n
i=1 σ−4

i (ESSi− ε ′i Qεi)T−1T SSil for l = 2, ...,10. Following the proof of

Proposition .0.11 and the analysis for T SSil in the proof of Corollary 4.3.2, we can

show that ΓnT,21l = oP (1) for l = 1, ...,10. It follows that ΓnT,21 = oP (1) .

Proposition .0.15 ΓnT,3 = oP (1) under H1 (γnT ).

Proof. By the proof of Corollary 4.3.2, we can write

ΓnT,3 =

√
b
n

n

∑
i=1

σ−2
i

(
û′iQ̄ûi− ε ′i Qεi

)
=

10

∑
l=1

BnT,l

where BnT 1 =(b/n)1/2 ∑n
i=1 σ−2

i (BnT,i1− ε ′i Qεi) , and BnT l =(b/n)1/2 ∑n
i=1 σ−2

i BnT,il

for l = 2, ...,10. Following the argument in the proof of Corollary 4.3.2, we can

readily show that BnT l = oP (1) for l = 1,2, ...,6 as in the case when H0 holds. It

remains to prove that BnT l = oP (1) for l = 7, ...,10 under H1 (γnT ) . Noting that

λmax (M) = 1, we have

BnT 10 =

√
b
n

n

∑
i=1

σ−2
i (fi− f)′Q̄(fi− f)≤ b1/2γ2

nT√
n

n

∑
i=1

σ−2
i ∆′niQ∆ni

= n−1T−1
n

∑
i=1

σ−2
i

T

∑
t=1

∆2
ni (t/T )

(
H̄tt −T−1) = O

(
T−1b−1) = o(1) .

By the Cauchy-Schwarz inequality, we have BnT 7 = o(1) and BnT 8 = oP (1) . De-

compose BnT 9 = 2n−1/2b1/2 ∑n
i=1 σ−2

i ε ′i Q̄ f∗i − 2n−1/2b1/2 ∑n
i=1 σ−2

i (ST ε)′Q̄ f∗i ≡
2BnT 9,1− 2BnT 9,2. By moments calculation and the Chebyshev inequality, we can

show that BnT 9,1 = OP

(
T 1/2hp+1b1/2

)
= oP (1) , and BnT 9,2 = OP

(
T 1/2hp+1b1/2

)
=

oP (1) . Consequently BnT 9 = oP (1) .

Proposition .0.16 ΓnT,4 = oP (1) under H1 (γnT ) .
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Proof. Analogously to the proof of Proposition .0.12, we can write

ΓnT,4 = −
√

b
n

n

∑
i=1

(
û′iQ̄ûi− ε ′i Qεi

) σ̂ 2
i −σ2

i

σ4
i

+

√
b
n

n

∑
i=1

(
û′iQ̄ûi− ε ′i Qεi

) (
σ̂ 2

i −σ2
i
)2

σ4
i σ̂ 2

i

≡ −ΓnT,41 +ΓnT,42, say.

We prove the proposition by showing that ΓnT,4l = oP (1) for l = 1,2. For ΓnT,41,

write ΓnT,41 = ∑10
l=1 ΓnT,41 (l) , where

ΓnT,41 (1) =

√
b
n

n

∑
i=1

σ−4
i

(
BnT,i1− ε ′i Qεi

)(
σ̂ 2

i −σ2
i
)

,

ΓnT,41 (l) =

√
b
n

n

∑
i=1

σ−4
i BnT,il

(
σ̂ 2

i −σ2
i
)

for l = 2, ...,10,

and BnT,il are defined after (.0.90). Further decompose ΓnT,41 (1)= ∑10
m=1 ΓnT,41 (1,m)

by using the decomposition σ̂ 2
i = ∑10

l=1 T SSil/T in (.0.87), where ΓnT,41 (1,1) =√
b
n ∑n

i=1 σ−4
i (BnT,i1− ε ′i Qεi)(T−1T SSi1−σ2

i ) and ΓnT,41 (1,m)=
√

b
n ∑n

i=1 σ−4
i

T SSim
T

×(BnT,i1− ε ′i Qεi) for m = 2, ...,10. It is easy to show that ΓnT,41 (1,m) = oP (1) for

m = 1, ...,10. Consequently ΓnT,41 (1) = oP (1) . Similarly, we can show ΓnT,41 (l) =

(b/n)1/2 ∑n
i=1 σ−4

i BnT,il(σ̂ 2
i −σ2

i ) for l = 2, ...,10 by using the decomposition of σ̂ 2
i

in (.0.87). It follows that ΓnT,41 = oP (1) .

For ΓnT,42, we can apply the decomposition of û′iQ̄ûi in (.0.90) to demonstrate

that (b/n)1/2 ∑n
i=1 |û′iQ̄ûi −ε ′i Qεi|= oP

(
n1/2

)
. Then ΓnT,42 = oP

(
n1/2υ2

nT

)
= oP( n

T )=

oP (1) by (.0.92).

.0.14 Proof of Theorem 4.3.4

As in the proof of Theorem 4.3.3, we have the decomposition

√
Ω̂nT ΓnT = ΓnT 1−ΓnT 2−ΓnT 3 +ΓnT 4, (.0.93)

where ΓnT l, l = 1, 2, 3, 4, are defined analogously to ΓnT l in (.0.91) with σ 2
i being

replaced by σ 2
i ≡ σ 2

i + ϒi0, ϒi0 ≡
∫ 1

0 ∆2
i (τ)dτ − [

∫ 1
0 ∆i (τ)dτ]2, and recall ∆i (τ) ≡

fi (τ)− f (τ) under H1. By (.0.87), σ̂ 2
i = T−1 ∑10

l=1 T SSil. Under H1, by Lemma
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.0.35(iii) the results in (.0.88) become

max
1≤i≤n

∣∣T−1T SSi1−σ2
i
∣∣ = oP (1) and max

1≤i≤n
T−1T SSil = oP (1) for l = 2, . . . ,6.

We can also show that T−1T SSil = oP (1) uniformly in i for l = 7, 9, and 10. For

T SSi8, we have uniformly in i,

1
T

T SSi8 =
1
T

T

∑
t=1

[∆i (t/T )−∆i]2 =
∫ 1

0
∆2

i (τ)dτ−
(∫ 1

0
∆i (τ)dτ

)2

+o(1)= ϒi0+o(1) ,

where ∆i ≡ T−1 ∑T
t=1 ∆i (t/T ) . It follows that uniformly in i

σ̂ 2
i = σ2

i +ϒi0 +oP (1) = σ 2
i +oP (1) . (.0.94)

That is, σ 2
i is the probability limit of σ̂ 2

i under H1. We prove the theorem by showing

that (i) ΛnT 1≡ (n1/2T b1/2)−1ΓnT 1 = ΞA+oP (1) , and (ii) ΛnT l ≡ (n1/2T b1/2)−1ΓnT l =

oP (1) for l = 2,3,4.

Following the proof of Propositions .0.11 and .0.13, we can show that ΛnT 1 =
(

n1/2T b1/2
)−1

ΓnT 1 = ΛnT 1 +oP (1) , where ΛnT 1 ≡ (n1/2T b1/2)−1DnT 2. Follow-

ing the analysis of DnT 2 in the proof of Proposition .0.13, we have

ΛnT 1 =
1

nT

n

∑
i=1

T

∑
t=1

T

∑
s=1

(H̄ts−T−1)∆i (t/T )∆i (s/T )/σ2
i = ΘA +o(1) ,

where ΘA is defined analogously to Θ0 with (σ 2
i ,∆ni) being replaced by (σ 2

i ,∆i).

This proves (i). Following the proof of Propositions .0.12 and .0.14-.0.16, we can

show that ΛnT l = oP (1) for l = 2,3,4.

.0.15 Some Useful Lemmas

In this Appendix, we present some technical lemmas that are used in the proofs of

the main results in the chapter.

Lemma .0.30 Let λtT ≡
∫ 1

0 wb
( t

T − τ
)

dτ. Then 1
2 ≤min1≤t≤T λtT ≤max1≤t≤T λtT =

1.

Proof. First, write λtT =
∫ 1

0 w
( τ

b − t
T b

)
d
( τ

b

)
=

∫ 1/b
0 w

(
u− t

T b

)
du =

∫ 1
b− t

T b
−t
T b

w(u)du.

Clearly, max1≤t≤T λtT = 1. If T b ≤ t ≤ T (1−b) , then λtT =
∫ 1
−1 w(u)du = 1. If
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1≤ t = T ε < T b for some ε ∈ (0,b), then

λtT =
∫ 1/b−t/(T b)

−t/(T b)
w(s)ds =

∫ 1

−ε
w(u)du≥

∫ 1

0
w(u)du =

1
2

where the last equality follows from the symmetry of w and the fact that
∫ 1
−1 w(u)du =

1. Similarly, if T (1−b) < t = T ε ≤ T for some ε ∈ (1− b,1), then we have
∫ 1

0 wb
( t

T − τ
)

dτ =
∫ 1/b−t/(T b)
−t/(T b) w(u)du =

∫ ε
−1 w(u)du≥ ∫ 0

−1 w(u)du = 1
2 . This proves

the lemma.

Lemma .0.31 max1≤t,s≤T |H̄ts| ≤ C1 (T b)−1 for some constant C1 < ∞ where H̄ts

denote the (t,s)th element of H̄, H̄ ≡ ∫ 1
0 H (τ)dτ, and

H (τ)≡Wb (τ)z[1]
b (τ)

(
z[1]

b (τ)′Wb (τ)z[1]
b (τ)

)−1
z[1]

b (τ)′Wb (τ) .

Proof. Let Sb (τ)≡ T−1z[1]
b (τ)′Wb (τ)z[1]

b (τ) . Then

Sb (τ) = S+o(1) uniformly in τ ∈ (0,1) , (.0.95)

where S ≡




1 0

0 ω2


 and ω2 =

∫ 1
−1 w(u)u2du. By (.0.95), Lemma .0.30, and

Assumption A4, we have

|H̄ts| =
∣∣∣∣T−1

∫ 1

0
z[1]

b,t (τ)′ [Sb (τ)]−1 z[1]
b,s (τ)wb,t (τ)wb,s (τ)dτ

∣∣∣∣

≈
∣∣∣∣T−1

∫ 1

0
z[1]

b,t (τ)′S−1z[1]
b,s (τ)wb,t (τ)wb,s (τ)dτ

∣∣∣∣

≤
∣∣∣∣T−1

∫ 1

0
wb

( t
T
− τ

)
wb

( s
T
− τ

)
dτ(λtT λsT )−1

∣∣∣∣

+
∣∣∣∣ω−1

2 T−1
∫ 1

0

(
t− τT

T b

)(
s− τT

T b

)
wb

( t
T
− τ

)
wb

( s
T
− τ

)
dτ(λtT λsT )−1

∣∣∣∣

≤ C (T b)−1
∫ 1

0
wb

( t
T
− τ

)
dτ/λtT +C (T b)−1

∫ |t− τT |
T b

wb

( t
T
− τ

)
dτ

≤ C (T b)−1
(

1+
∫ 1

−1
|u|w(u)dτ

)
≤C1 (T b)−1 ,

where A≈ B denotes A = B(1+o(1)) .

Lemma .0.32 (i) AT 1≡ b∑1≤t 6=s≤T a2
ts = O(1) , (ii) AT 2≡T−1 ∑T

t=1 ∑T
s=1 ∑T

r=1 |atsatr|=
O(1) , and (iii) AT 3 ≡ ‖H̄−L‖= O

(
b−1/2

)
, where recall ats ≡ H̄ts−T−1 denotes

the (t,s)th element of H̄−L, and L≡ T−1iT i′T .
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Proof. For (i) it is easy to show that AT 1 = AT 1+O(b) , where AT 1≡ b∑1≤t 6=s≤T H̄2
ts.

By (.0.95),

AT 1

≈ b
T 2 ∑

1≤t 6=s≤T

{∫ 1

0
z[1]

b,t (τ)S−1z[1]
b,s (τ)wb,t (τ)wb,s (τ)dτ

}2

= b
T 2 ∑

1≤t 6=s≤T

{∫ 1

0

[
1+ω−1

2
(T τ−t

T b

)(T τ−s
T b

)] 1
b2 w

(T τ−s
T b

)
w

(T τ−t
T b

)
dτ

}2

λ−1
tT λ−1

sT

= b
T 2 ∑

1≤t 6=s≤T

{∫ 1/b−t/(T b)

−t/(T b)

[
1+ω−1

2 u
(
u+ t-s

T b

)] 1
b

w(u)w
(
u+ t-s

T b

)
du

}2

(λtT λsT )−2

= b
T 2

bT (1−b)c−1

∑
t=bT bc+1

T

∑
s=1

{∫ 1

−1

[
1+ω−1

2 u
(
u+ t-s

T b

)] 1
b

w(u)w
(
u+ t-s

T b

)
du

}2

×
{∫ 1/b

0
w

(
z- t

T b

)
dz

∫ 1/b

0
w

( s-t
T b -(z′- t

T b)
)

dz′
}−2

+O(b)

=
1
T

bT (1−b)c−1

∑
t=bT bc+1

∫ (T−t)/(T b)

−t/(T b)

(∫ 1

−1

[
1+ω−1

2 u(u-v)
]

w(u)w(u-v)du
)2

×
(∫ 1/b−t/(T b)

−t/(T b)
w(z)dz

∫ 1/b−t/(T b)

−t/(T b)
w

(
z′-v

)
dz′

)−2

dv+o(1)

=
∫ 1−b

b

∫ 1

−1

{(∫ 1

−1

[
1+ω−1

2 u(u-v)
]

w(u)w(u-v)du
)2

×
(∫ 1

−1
w(z)dz

∫ 1

−1
w

(
z′-v

)
dz′

)−2
}

dvdv′+o(1)

=
∫ 1

−1

(∫ 1

−1

[
1+ω−1

2 u(u-v)
]

w(u)w(u-v)du
)2 (∫ 1

−1
w(z-v)dz

)−2

dv+o(1) = O(1) .

By the same token, we can show (ii). For (iii), noting that ‖H̄−L‖2 = ∑1≤t 6=s≤T a2
ts+

∑T
t=1 a2

tt = O
(
b−1)+O

(
T−1b−2) , ‖H̄−L‖= O

(
b−1/2

)
as T−1b−1 = o(1) .

Lemma .0.33 Let cts ≡ e′1[T
−1z[p]

h (t/T )′Kh (t/T )z[p]
h (t/T )]−1z[p]

h,s (t/T ) . Then (i)
CT 1 ≡ T−2 ∑1≤t 6=s≤T |cts|kh,ts = O(1) ; (ii) CT 2 ≡ T−2h∑1≤t 6=s≤T c2

tsk
2
h,ts = O(1) ,

(iii) CT 3 ≡ T−1 ∑T
t=1 |ctt |= O(1) ; (iv) CT 4 ≡ T−1 ∑T

t=1 c2
tt = O(1) .

Proof. (i) Let Sp,h (τ) ≡ T−1z[p]
h (t/T )′Kh (t/T )z[p]

h (t/T ) . The ( j, l)th element

of Sp,h (τ) is s jl (τ) = 1
T h ∑T

s=1
( s−τT

T h

) j+l−2 k
( s−τT

T h

)
. For any τ ∈ (0,1) , we have
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by the definition of Riemann integral that

s jl (τ) =
1

T h

T

∑
r=1

( r
T h

− τ
h

) j+l−2
k
( r

T h
− τ

h

)
=

∫ 1/h−τ/(T h)

−τ/(T h)
u j+l−2k (u)du+o(1)

=
∫ 1

−1
u j+l−2k (u)du+o(1) .

That is, Sp,h (τ) = Sp +o(1) for any τ ∈ (0,1) , where

Sp=




µ0 µ1 · · · µp

µ1 µ2 · · · µp+1

...
... . . . ...

µp µp+1 · · · µ2p




,

and µ j ≡
∫ 1
−1 v jk (v)dv for j = 0,1, ...,2p. It follows that

CT 1 =
1

T 2h

T

∑
t=1

T

∑
s=1

∣∣∣∣e′1S−1
p

[
1,

s− t
T h

, ...,
(

s− t
T h

)p]∣∣∣∣k
(

s− t
T h

)
+o(1)

=
1
T

T

∑
t=1

∫ (T−t)/(T h)

−t/(T h)

∣∣e′1S−1
p [1,v, ...,vp]

∣∣k (v)dv+o(1)

=
1
T

bT (1−h)c−1

∑
t=bT hc+1

∫ (T−t)/(T h)

−t/(T h)

∣∣e′1S−1
p [1,v, ...,vp]

∣∣k (v)dv+o(1)

=
∫ 1

−1

∣∣e′1S−1
p [1,v, ...,vp]

∣∣k (v)dv+o(1) = O(1) .

This proves (i). By the same token,

CT 2 =
1

T 2h

T

∑
t=1

T

∑
s=1

∣∣∣∣e′1S−1
p

[
1,

s− t
T h

, ...,
(

s− t
T h

)p]∣∣∣∣
2

k
(

s− t
T h

)2

+o(1)

=
∫ 1

−1

∣∣e′1S−1
p [1,v, ...,vp]

∣∣2
k (v)2 dv+o(1) = O(1) .

Similarly, we can prove (iii)-(iv).

Lemma .0.34 supτ∈(0,1) e′1S (τ)ε = OP

(√
log(nT )/(nT h)

)
.

Proof. The proof is analogous to that of (A.11) in Chen, Gao, and Li (2010, pp.

27-30).

Lemma .0.35 Suppose Assumptions A1-A5 hold. Recall γnT = n−1/4T−1/2b−1/2 in
H1 (γnT ) . Then as (n,T )→ ∞,
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(i) β̂ −β = OP

(
n−1/2T−1/2

)
under H0;

(ii) β̂ −β = oP (γnT ) under H1 (γnT ) provided that A6 also holds;
(iii) β̂ −β = oP (1) under H1 provided that A6 also holds.

Proof. (i) This can be done by following the proof of Theorem 3.1 in CGL

(2010). Note that CGL also proves the asymptotic normality under the indepen-

dence of {(εit ,vit)} across t and the assumption that gi in Assumption A1 is the

same for all i (gi = g, say). One can verify that the above probability order can be

attained even if we relax their independence condition to our m.d.s. condition and

their homogenous trending assumption on g to our heterogeneous case.

(ii) Recalling that F≡ in⊗ f and SnT F = SnT F, we have

β̂−β =
(
X∗′MDX∗

)−1 X∗′MD(ε∗+F∗)+
(
X∗′MDX∗

)−1 X∗′MD(F−F)≡ d1+d2, say.

(.0.96)

The first term also appears under H0 and thus d1 = OP

(
n−1/2T−1/2

)
. The sec-

ond term vanishes under H0 and plays asymptotically non-negligible role under

H1 (γnT ) . Let d2 ≡ X∗′MD(F−F). Note that

d2 = X∗′(F−F)−X∗′D
(
D′D

)−1 D(F−F). (.0.97)

Similarly to the proof in CGL (2010), we can show that the leading term on the right

hand side of the above equation is X∗′(F−F). Noting that Xit = gi (t/T )+ vit and

X∗ = (I−SnT )X , we have

X∗′(F−F)

=
n

∑
i=1

T

∑
t=1

[
Xit − e′1S (t/T )X

][
fi (t/T )− f (t/T )

]

=
n

∑
i=1

T

∑
t=1

vit
[

fi (t/T )− f (t/T )
]−

n

∑
i=1

T

∑
t=1

{
e′1S (t/T )V

}[
fi (t/T )− f (t/T )

]

+
n

∑
i=1

T

∑
t=1

[gi (t/T )−g(t/T )]
[

fi (t/T )− f (t/T )
]

+
n

∑
i=1

T

∑
t=1

[
g(t/T )− e′1S (t/T )G

][
fi (t/T )− f (t/T )

]

≡ ΨnT 1−ΨnT 2 +ΨnT 3 +ΨnT 4, (.0.98)
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where V ≡ (
v′11, ...,v

′
1T , ...,v′n1, ...,v

′
nT

)′, g( t
T ) ≡ n−1 ∑n

i=1 gi( t
T ), gi ≡ (gi( 1

T )′, ...,

gi(T
T )′)′ and G ≡ (g′1, ...,g

′
n)
′. Clearly ΨnT l = 0 for l = 2,4 by the definition of f .

Noting that max1≤i≤n sup0≤τ≤1
∣∣ fi (τ)− f (τ)

∣∣ = O(γnT ) , we have

E ‖ΨnT 1‖2 =
n

∑
i=1

n

∑
j=1

T

∑
t=1

E
(
v′itv jt

)[
fi (t/T )− f (t/T )

][
f j (t/T )− f (t/T )

]

≤
(

max
1≤i≤n

sup
0≤τ≤1

∣∣ fi (τ)− f (τ)
∣∣
)2 (

T
n

∑
i=1

n

∑
j=1

∣∣E (
v′i1v j1

)∣∣
)

= O
(
γ2

nT
)

O(nT ) = o(nT ) ,

implying that ΨnT 1 = oP(
√

nT ). For ΨnT 3, we have

|ΨnT 3| ≤ max
1≤i≤n

sup
0≤τ≤1

∣∣ fi (τ)− f (τ)
∣∣ n

∑
i=1

T

∑
t=1
|gi (t/T )−g(t/T )|

= O(γnT )T
n

∑
i=1

(∫ 1

0
|gi (τ)−g(τ)|dτ +O(1/T )

)

= O(γnT )o(nT ) = o(γnT nT ) .

Consequently, we have shown that X∗′(F− F) = OP(
√

nT ) + o(γnT nT ). It fol-

lows X∗′MD(F−F) = OP(
√

nT ). Noting that (nT )−1 X∗′MDX∗ = OP (1), we have

(X∗′MDX∗)−1 X∗′MD(F−F) = oP (γnT ). Thus β̂ −β = oP (γnT ) under H1 (γnT ).

(iii) Using the notation above, we continue to have d1 = OP(n−1/2T−1/2) and

(nT )−1 X∗′MDX∗ = OP (1) under H1. For d2, we analyze the dominant term X∗′(F−
F) by using the same decomposition in (.0.98). Clearly, we still have ΨnT 2 = 0,

ΨnT 3 = oP(nT ) and ΨnT 4 = 0. For ΨnT 1, since max1≤i≤n sup0≤τ≤1
∣∣ fi (τ)− f (τ)

∣∣

= O(1) under H1, we have E(‖ΨnT 1‖2) = O(nT ) , which implies that ΨnT 1 =

OP(
√

nT ). Thus X∗′(F−F) = oP(nT ) and β̂ −β = oP (1) under H1.

Remark. If gi (τ)− g(τ) = 0 for all τ ∈ [0,1] , then from the proof of (ii) and

(iii) we can see that β̂−β = OP

(
n−1/2T−1/2

)
also holds under H1 (γnT ) and H1 (1)

as ΨnT 3 = 0 in this case.

Lemma .0.36 ‖X−SnT X‖2 = OP (nT ) .
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Proof. Recall gi ≡ (gi (1/T ) , ...,gi (T/T ))′ and G≡ (g′1, ...,g′n)
′. Noting that

Xit = gi (t/T )+ vit , we have

‖X−SnT X‖2

=
n

∑
i=1

T

∑
t=1
‖Xit − e1S (t/T )X‖2

=
n

∑
i=1

T

∑
t=1
‖vit − e1S (t/T )V +[gi (t/T )−g(t/T )]+ [g(t/T )− e1S (t/T )G]‖2

=
n

∑
i=1

T

∑
t=1

v′itvit +
n

∑
i=1

T

∑
t=1
‖e1S (t/T )V‖2 +

n

∑
i=1

T

∑
t=1
‖gi (t/T )−g(t/T )‖2

+
n

∑
i=1

T

∑
t=1
‖g(t/T )− e1S (t/T )G‖2 +2

n

∑
i=1

T

∑
t=1

v′ite1S (t/T )V

+2
n

∑
i=1

T

∑
t=1

v′it (gi (t/T )−g(t/T ))+2
n

∑
i=1

T

∑
t=1

v′it (g(t/T )− e1S (t/T )G)

+2
n

∑
i=1

T

∑
t=1

(e1S (t/T )V )′ (g(t/T )− e1S (t/T )G)

+2
n

∑
i=1

T

∑
t=1

(e1S (t/T )V )′ (gi (t/T )−g(t/T ))

+2
n

∑
i=1

T

∑
t=1

(gi (t/T )−g(t/T ))′ (g(t/T )− e1S (t/T )G)

≡
10

∑
r=1

ΠnT,r, say.

It is easy to show that: ΠnT,1=OP (nT ) by the Markov inequality, ΠnT,2=OP(nT log(nT )
nT h )

= oP (nT ), ΠnT,3 = O(nT ) by the property of Riemann integral, ΠnT,4 = O
(
nT h2p+2)

= o(nT ) by the Taylor expansion. For the remaining terms, it is clear that ΠnT,r = 0

for r = 9,10, and we can show that ∑8
r=6 ΠnT,r = OP (nT ) by the Cauchy-Schwarz

inequality.
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