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Abstract

Three Essays on Large Panel Data Models with Cross-Sectional Dependence

Yonghui Zhang

My dissertation consists of three essays which contribute new theoretical re-
sults to large panel data models with cross-sectional dependence. These essays try
to answer or partially answer some prominent questions such as how to detect the
presence of cross-sectional dependence and how to capture the latent structure of
cross-sectional dependence and estimate parameters efficiently by removing its ef-
fects.

Chapter 2 introduces a nonparametric test for cross-sectional contemporaneous
dependence in large dimensional panel data models based on the squared distance
between the pair-wise joint density and the product of the marginals. The test can be
applied to either raw observable data or residuals from local polynomial time series
regressions for each individual to estimate the joint and marginal probability density
functions of the error terms. In either case, we establish the asymptotic normality
of our test statistic under the null hypothesis by permitting both the cross section
dimension n and the time series dimension 7 to pass to infinity simultaneously
and relying upon the Hoeffding decomposition of a two-fold U-statistic. We also
establish the consistency of our test. A small set of Monte Carlo simulations is
conducted to evaluate the finite sample performance of our test and compare it with
that of Pesaran (2004) and Chen, Gao, and Li (2009).

Chapter 3 analyzes nonparametric dynamic panel data models with interactive
fixed effects, where the predetermined regressors enter the models nonparametri-

cally and the common factors enter the models linearly but with individual spe-



cific factor loadings. We consider the issues of estimation and specification testing
when both the cross-sectional dimension N and the time dimension 7 are large. We
propose sieve estimation for the nonparametric function by extending Bai’s (2009)
principal component analysis (PCA) to our nonparametric framework. Following
Moon and Weidner’s (2010, 2012) asymptotic expansion of the Gaussian quasi-
log-likelihood function, we derive the convergence rate for the sieve estimator and
establish its asymptotic normality. The sources of asymptotic biases are discussed
and a consistent bias-corrected estimator is provided. We also propose a consistent
specification test for the linearity of the nonparametric functional form by compar-
ing the linear and sieve estimators. We establish the asymptotic distributions of the
test statistic under both the null hypothesis and a sequence of Pitman local alter-
natives. To improve the finite sample performance of the test, we also propose a
bootstrap procedure to obtain the bootstrap p-values and justify its validity. Monte
Carlo simulations are conducted to investigate the finite sample performance of our
estimator and test. We apply our model to an economic growth data set to study the
relationship between capital accumulation and real GDP growth rate.

Chapter 4 proposes a nonparametric test for common trends in semiparametric
panel data models with fixed effects based on a measure of nonparametric goodness-
of-fit (R?). We first estimate the model under the null hypothesis of common trends
by the method of profile least squares, and obtain the augmented residual which
consistently estimates the sum of the fixed effect and the disturbance under the null.
Then we run a local linear regression of the augmented residuals on a time trend and
calculate the nonparametric R? for each cross section unit. The proposed test statis-
tic is obtained by averaging all cross sectional nonparametric R>’s, which is close
to O under the null and deviates from O under the alternative. We show that after
appropriate standardization the test statistic is asymptotically normally distributed
under both the null hypothesis and a sequence of Pitman local alternatives. We
prove test consistency and propose a bootstrap procedure to obtain p-values. Monte

Carlo simulations indicate that the test performs well infinite samples. Empirical



applications are conducted exploring the commonality of spatial trends in UK cli-
mate change data and idiosyncratic trends in OECD real GDP growth data. Both

applications reveal the fragility of the widely adopted common trends assumption.
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Chapter 1 Introduction

In recent years one of the most active research areas in the panel data literature
has been cross-sectional dependence. The topic has figured prominently in work
on economic growth, housing prices, indices of economic activity, asset pricing,
and other economic, business and financial activities and decisions. The sources
of dependence are manifold and include spatial effects, spillover effects, unobserv-
able common factors and social interactions. Ignoring cross-sectional dependence
in panel applications can have serious consequences such as inconsistent estima-
tion, misleading inference and distortions in hypothesis testing. Amidst the ongoing
work on cross-sectional dependence, two questions are prominent: (i) how to detect
its presence; and (ii) how to capture its latent structure and estimate parameters effi-
ciently by removing its effects. For the first question, many tests have been proposed
such as the Breusch-Pagan (1978) LM test and Pesaran (2004) cross-sectional de-
pendence test. For the second question, there are two mainstreams in the literature.
In spatial econometric work, one approach is to use additional information such as
spatial/economic distance, which has been widely used in research on crime, re-
gional science and social interactions. A second approach is to use factor models
which have become popular in empirical finance and macroeconomics.

My dissertation seeks to address these issues: (i) How to test for cross-sectional
dependence; (ii)) How to estimate and make statistical test for nonparametric dy-
namic panel data models with interactive fixed effects; (iii) How to test for common
trends in semiparametric panel data models with fixed effects where cross-sectional
dependence is present in the errors. The contributions of my thesis have twofold.

First, it would contribute to theoretical methods, specially to the nonparamteric and



semiparametric estimation and testing; Second, my dissertation research would ben-
efit extensive empirical studies, as it could provide methodological approach to help
analyze practical real-world questions. We propose a nonparametric test for cross-
sectional dependence in Chapter 2. Once we find strong evidence of cross-sectional
dependence, we can adopt the nonparametric dynamic panel data models with in-
teractive fixed effects to capture the unknown cross-sectional dependence, which
is considered in Chapter 3. Chapter 4 considers a nonparametric test for common
trends in semiparametric panel data models with fixed effects and cross-sectional
dependence in the errors.

Chapter 2 proposes a test for cross-sectional dependence based on the squared
distance between the pair-wise joint density and the product of the marginals. Un-
like all available tests which are designed to test for “cross-sectional correlation”,
the new test is designed for “cross-sectional dependence”. Our test has several ad-
vantages over traditional tests. First, it can detect cross-sectional dependence in
non-Gaussian and nonlinear cases where traditional tests may fail. Second, com-
pared with Pesaran’s (2004) and Chen, Gao and Li’s (2012) tests, our test is able to
detect cross-sectional dependence with multifactor structure errors and zero mean
factor loadings. Finally, the test can be applied either to raw observable data or to
the residuals from local polynomial time series regression for each cross-sectional
unit. This chapter establishes asymptotic normality of the test statistic under the
null hypothesis when both the cross-section dimension » and time-series dimension
T are large. Test consistency is proved. The theory developed in the chapter relies
on the Hoeffding decomposition of a two-fold U-statistic.

Chapter 3 develops a new panel data model with cross-sectional dependence.
The model has several desirable features. First, it incorporates time-varying com-
mon factors (time fixed effects) and individual-specific factor loadings (individual
fixed effects) multiplicatively, which captures heterogeneity in a more flexible way.
Second, it does not impose a parametric form for the unknown regression function

and is therefore robust to functional misspecification. Finally, just as for the classic



dynamic panel data model, predetermined variables may be included in the regres-
sors, which is a desirable feature in empirical research. We propose sieve estimation
for the nonparametric function by extending Bai’s (2009) principal component anal-
ysis (PCA) to the nonparametric framework. Following Moon and Weidner’s (2010,
2012) asymptotic expansion of the quasi likelihood function, we derive the conver-
gence rate of the sieve estimator and establish its asymptotic normal distribution.
The sources of asymptotic bias are discussed and a consistent bias-corrected esti-
mator is provided. We also introduce a consistent specification test for the linearity
of the nonparametric function by comparing its linear estimator with the sieve es-
timator. We establish the asymptotic distributions of the test statistic both under
the null hypothesis and a sequence of Pitman local alternatives. The new model is
well suited to macroeconomic and financial applications. An empirical application
is conducted with economic growth data from the Penn World Table 7.1 to study
the relationship between capital accumulation and real GDP growth rate, showing
evidence of a nonlinear relationship.

Chapter 4 considers commonality of slowly changing time trends in panel data
models with fixed effects and cross-section dependence in the errors. A nonpara-
metric test for common trends is constructed based on a measure of nonparametric
goodness-of-fit (R?). Under the null hypothesis of common trends, we estimate the
model by profile least squares, and obtain the augmented residual as a consistent
estimator for the sum of the fixed effect and the disturbance. We then run a lo-
cal linear regression of the augmented residuals on a time trend and calculate the
nonparametric R” for each cross-sectional unit. The test statistic is obtained by av-
eraging all cross-section nonparametric R’s, which is close to 0 under the null and
deviates from O under the alternative. It is shown that the test statistic is asymptoti-
cally normally distributed under both the null hypothesis and a sequence of Pitman
local alternatives after appropriate standardization. We prove consistency of the
proposed test and introduce a bootstrap procedure to compute p-values. The test

is illustrated in two applications, covering the UK climate change data and OECD



real GDP growth data. Both examples reveal the fragility of the widely adopted

common trends assumption.



Chapter 2 Testing Cross-Sectional Dependence
in Nonparametric Panel Data Mod-

els

2.1 Introduction

In recent years, there has been a growing literature on large dimensional panel data
models with cross-sectional dependence. Cross-sectional dependence may arise
due to spatial or spillover effects, or due to unobservable common factors. Much
of the recent research on panel data has focused on how to handle cross-sectional
dependence. There are two popular approaches in the literature: one is to assume
the individuals are spatially dependent, which gives rise to spatial econometrics;
and the other is to assume that the disturbances have a factor structure, which gives
rise to static or dynamic factor models. For a recent and comprehensive overview
of panel data factor model, see the excellent monograph by Bai and Ng (2008).
Traditional panel data models typically assume observations are independent
across individuals, which leads to immense simplification to the rules of estima-
tion and inference. Nevertheless, if observations are cross-sectionally dependent,
parametric or nonparametric estimators based on the assumption of cross-sectional
independence may be inconsistent and statistical inference based on these estima-
tors can generally be misleading. It has been well documented that panel unit root
and cointegration tests based on the assumption of cross-sectional independence are

generally inadequate and tend to lead to significant size distortions in the presence



of cross-sectional dependence; see Chang (2002), Bai and Ng (2004, 2010), Bai
and Kao (2006), and Pesaran (2007), among others. Therefore, it is important to
test for cross-sectional independence before embarking on estimation and statistical
inference.

Many diagnostic tests for cross-sectional dependence in parametric panel data
model have been suggested. When the individuals are regularly spaced or ranked
by certain rules, several statistics have been introduced to test for spatial depen-
dence, among which the Moran-I test statistic is the most popular one. See Anselin
(1988, 2001) and Robinson (2008) for more details. However, economic agents are
generally not regularly spaced, and there does not exist a “spatial metric” that can
measure the degree of spatial dependence across economic agents effectively. In
order to test for cross-sectional dependence in a more general case, Breusch and
Pagan (1980) develop a Lagrange multiplier (LM) test statistic to check the diago-
nality of the error covariance matrix in SURE models. Noticing that Breusch and
Pagan’s LM test is only effective if the number of time periods T is large relative to
the number of cross sectional units 7, Frees (1995) considers test for cross-sectional
correlation in panel data models when 7 is large relative to T and show that both the
Breusch and Pagan’s and his test statistic belong to a general family of test statistics.
Noticing that Breusch and Pagan’s LM test statistic suffers from huge finite sample
bias, Pesaran (2004) proposes a new test for cross-sectional dependence (CD) by
averaging all pair-wise correlation coefficients of regression residuals. Neverthe-
less, Pesaran’s CD test is not consistent against all global alternatives. In particular,
his test has no power in detecting cross-sectional dependence when the mean of
factor loadings is zero. Hence, Ng (2006) employs spacing variance ratio statistics
to test cross-sectional correlations, which is more robust and powerful than that of
Pesaran (2004). Huang, Kao, and Urga (2008) suggest a copula-based tests for test-
ing cross-sectional dependence of panel data models. Pesaran, Ullah, and Yamagata
(2008) improve Pesaran (2004) by considering a bias adjusted LM test in the case

of normal errors. Based on the concept of generalized residuals (e.g., Gourieroux



et al. (1987)), Hsiao, Pesaran, and Pick (2009) propose a test for cross-sectional
dependence in the case of non-linear panel data models. Interestingly, an asymp-
totic version of their test statistic can be written as the LM test of Breusch and Pagan
(1980). Sarafidis, Yamagata, and Robertson (2009) consider tests for cross-sectional
dependence in dynamic panel data models.

All the above tests are carried out in the parametric context. They can lead
to meaningful interpretations if the parametric models or underlying distributional
assumptions are correctly specified, and may yield misleading conclusions other-
wise. To avoid the potential misspecification of functional form, Chen, Gao, and Li
(2009, CGL hereafter) consider tests for cross-sectional dependence based on non-
parametric residuals. Their test is a nonparametric counterpart of Pesaran’s (2004)
test. So it is constructed by averaging all pair-wise cross-sectional correlations and
therefore, like Pesaran’s (2004) test, it does not test for “pair-wise independence”
but “pair-wise uncorrelation”. 1t is well known that uncorrelation is generally dif-
ferent from independence in the case of non-Gaussianity or nonlinear dependence
(e.g., Granger, Maasoumi, and Racine (2004)). There exist cases where testing for
cross-sectional pair-wise independence is more appropriate than testing pair-wise
uncorrelation.

Since Hoeffding (1948), there has developed an extensive literature on testing
independence or serial independence. See Robinson (1991), Brock et al. (1996),
Ahmad and Li (1997), Johnson and McClelland (1998), Pinkse (1998), Hong (1998,
2000), Hong and White (2005), among others. All these tests are based on some
measure of deviations from independence. For example, Robinson (1991) and Hong
and White (2005) base their tests for serial independence on the Kullback-Leibler
information criterion, Ahmad and Li (1997) on an L, measure of distance between
the joint density and the product of the marginals, and Pinkse (1998) on the distance
between the joint characteristic function and the product of the marginal character-
istic functions. In addition, Neumeyer (2009) considers a test for independence

between regressors and error term in the context of nonparametric regression. Su



and White (2003, 2007, 2008) adopt three different methods to test for conditional
independence. Except CGL, none of the above nonparametric tests are developed
to test for cross-sectional independence in panel data model.

In this chapter, we propose a nonparametric test for contemporary “pair-wise
cross-sectional independence”, which is based on the average of pair-wise L, dis-
tance between the joint density and the product of pair-wise marginals. Like CGL,
we base our test on the residuals from local polynomial regressions. Unlike them,
we are interested in the pair-wise independence of the error terms so that our test
statistic is based on the comparison of the joint probability density with the prod-
uct of pair-wise marginal probability densities. We first consider the case where
tests for cross-sectional dependence are conducted on raw data so that there is no
parameter estimation error involved and then consider the case with parameter esti-
mation error. For both cases, we establish the asymptotic normal distribution of our
test statistic under the null hypothesis of cross-sectional independence when n — oo
and T — oo simultaneously. We also show that the test is consistent against global
alternatives.

The rest of the chapter is organized as follows. Assuming away parameter esti-
mation error, we introduce our testing statistic in Section 2 and study its asymptotic
properties under both the null and the alternative hypotheses in Section 3. In Sec-
tion 4 we study the asymptotic null distribution of our test statistic when tests are
conducted on residuals from heterogeneous nonparametric regressions. In Section
5 we provide a small set of Monte Carlo simulation results to evaluate the finite
sample performance of our test. Section 6 concludes. All proofs are relegated to the
appendix.

NOTATION. Throughout the chapter we adopt the following notation and con-
ventions. For a matrix A, we denote its transpose as A’ and Euclidean norm as
|A||l = [tr (AA")] 12 where = means “is defined as”. When A is a symmetric matrix,
we use Amin(A) and Ayax(A) to denote its minimum and maximum eigenvalues, re-

. . o d
spectively. The operator L, denotes convergence in probability, and — convergence



in distribution. Let PL = T!/(T —1)! and C%. = T/ [(T —1)!1!] for integers [ < T.
We use (n,T) — oo to denote the joint convergence of n and T when n and T pass

to the infinity simultaneously.

2.2 Hypotheses and test statistics

To fix ideas and avoid distracting complications, we focus on testing pair-wise
cross-sectional dependence in observables in this section and the next. The case
of testing pair-wise cross-sectional dependence using unobservable error terms is

studied in Section 4.

2.2.1 The hypotheses

Consider a nonparametric panel data model of the form
Vit = &i (Xit) Fuy, i=1,2,...,n,t=12,....T, (2.2.1)

where y; is the dependent variable for individual i at time ¢, Xj; is a d X 1 vector
of regressors in the ith equation, g; () is unknown smooth regression function, and
uj 1s scalar random error term. We are interested in testing for the cross-sectional
dependence in {u;}. Since it seems impossible to design a test that can detect all
kinds of cross-sectional dependence among {u; }, as a starting point we focus on
testing pair-wise cross-sectional dependence among them.

For each i, we assume that {uit}ITZI is a stationary time series process that has a
probability density function (PDF) f; (-). Let f;; (-, ) denote the joint PDF of u;, and
uj;. We can formulate the null hypothesis of pair-wise cross-sectional independence

among {u;,i=1,...,n} as

Hy: fij (ui,,uj,) = fi (uir) f (ujt) almost surely (a.s.) forall i, j=1,...,n, and i # j.
(2.2.2)

That is, under Hy, u;; and u j; are pair-wise independent for all i # j. The alternative



hypothesis is

Hi : the negation of Hy. (2.2.3)

2.2.2 The test statistic

For the moment, we assume that {u;, } is observed and consider a test for the null
hypothesis in (2.2.2). Alternatively, one can regard g;’s are identically zero in (2.2.1)
and testing for potential cross-sectional dependence among {y;}. The proposed
test is based on the average pair-wise L, distance between the joint density and the

product of the marginal densities:

L=—-— Y / / [y (,v) — £ () £ (v)] dud. (2.2.4)

1<i#j<n

where Y <<, stands for 2?212?:17 ji- Obviously, I'y = 0 under Hy and is
nonzero otherwise.
Since the densities are unknown to us, we propose to estimate them by the kernel

method. That is, we estimate f; () and f;; (u,v) by

filu) = 12;1 B ((uig —u) /h), and
Fiiww) = TVY 2 (=) [k (e =) /)

where £ is a bandwidth sequence and k(-) is a symmetric kernel function. Note
that we use the same bandwidth and (univariate or product of univariate) kernel
functions in estimating both the marginal and joint densities, which can facilitate

the asymptotic analysis to a great deal. Then a natural test statistic is given by

1—‘lnT

2
”(”_1 1<z7éj<n// f” :) fl )fj( )] dudv. (2.25)

Let Eim = h 'k ((uy — uys) /h), where k () = [k (u) k(- — u) du is the two-fold con-

10



volution of k (+). It is easy to verify that we can rewrite flnT as follows:

P 1 1 Ao(d T o
I_‘lnT = ﬁ Z T4 Z kh.,ts <kh,ts + kh.,rq - 2kh,tr> ) (226)
=) 1<ij<n 1<t,5,1g<T

The above statistic is simple to compute and offers a natural way to test Hy.

Nevertheless, we propose a bias-adjusted test statistic, namely

- 1 1 T
Lur = m Z {F Z kh,ts (kiz,ts +k{1,rq - 2k;1,tr> } ’ (2.2.7)

1<i#j<n T 1<t#s#r#q<T

where P} = T!/[(T —4)!] and Yi<istrq<r denotes the sum over all different
arrangements of the distinct time indices ¢, s, r, and ¢. In effect, fnT removes the the
“diagonal” (e.g. t = s,r = q,t = r) elements from lA“lnT, thus reducing the bias of
the statistic in finite samples. A similar idea has been used in Lavergne and Vuong
(2000), Su and White (2007), and Su and Ullah (2009), to name just a few. We
will show that, after being appropriately centered and scaled, lA“nT is asymptotically
normally distributed under the null hypothesis of cross-sectional independence and

some mild conditions.

2.3 Asymptotic distributions of the test statistic

In this section we first present a set of assumptions that are used in deriving the
asymptotic distributions of our test statistic. Then we study the asymptotic distribu-

tion of our test statistic under the null hypothesis and establish its consistency.

2.3.1 Assumptions

To study the asymptotic distribution of the test statistic with observable “errors”

{ui; }, we make the following assumptions.

Assumption A.1 (i) For each i, {uy, t = 1, 2,...} is stationary and o-mixing
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with mixing coefficient {¢; (-)} satisfying o; (/) = O (p}) for some 0 < p; < 1. Let
P = max|<i<, p;. We further require that 0 < p < 1.

(i1) For each i and 1 <[ < 8, the probability density function (PDF) f;;, . ; of
(Uit , .., uiz,) is bounded and satisfies a Lipschitz condition: |fj,, .5 (w1 +vy,...,u1+
Vi) = firy,q, (it oo sup)| < Diy, -y (W)||V]], where w = (uy,...,u;), v=(vi,...,v1),
., 1s integrable and satisfies the conditions that [g: Diy, ..., (w)||ul 2(148) 4u

< Cyand [giDiy,...;(0) fir,..,(@)du < C for some C; < ooand 6 € (0,1). When

[ =1, we denote the marginal PDF of u;, simply as f;.

Assumption A.2 The kernel function k : R — R is a symmetric, continuous and
bounded function such that k (-) is a yth order kernel: [k (u)du=1, [w/k (u)du=0

forj=1,...,y—1,and [u"k(u)du= Ky < oo
1-8
Assumption A.3. As (n,T) — oo, h — 0, nT?h*> — oo, nh155 /T — 0.

Remark 1. Assumption A.1(i) requires that {u;, t = 1, 2,...} be a stationary
strong mixing process with geometric decay rate. This requirement on the mixing
rate is handy for our asymptotic analysis but can be relaxed to the usual algebraic
decay rate with more complications involved in the proof. It is also assumed in
several early works for stationary fB-mixing processes such as Fan and Li (1999),
Li (1999), and Su and White (2008), and can be satisfied by many well-known pro-
cesses such as linear stationary autoregressive moving average (ARMA) processes,
and bilinear and nonlinear autoregressive processes. Here we only assume that the
stochastic process is strong mixing, which is weaker than -mixing. Assumption
A.1(i1) assumes some standard smooth conditions on the PDF of (u;, , ...,ui,l). As-
sumption A.2 imposes conditions on the kernel function which may or may not be
a higher order kernel. The use of a higher order kernel typically aims at reducing
the bias of kernel estimates, which is common in the nonparametric literature (see
Robinson, 1988; Fan and Li, 1996; Li, 1999, and Su and White, 2008). Assumption
A.3 imposes restrictions on the bandwidth, n, and 7. These restrictions are weak
and can be easily met in practice for a wide combinations of n and 7. In addition, it

is possible to have n/T — ¢ € [0,0] as (n,T) — oo.
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By the proof of Theorem 2.3.1 below, one can relax Assumption A.1(i) to:
Assumption A.1(i*): For each i, {u;, t =1, 2,...} is stationary and o-mixing
5

with mixing coefficient ¢ (-). Let o (s) = max;<j<, & (s). Y7, a1+ (1) < C, for

some C; < oo and § € (0, 1). There exists m = m (n,T) such that

max (n—lT“hlis,T“hW,Tzhlis) Qs (m) — 0 2.3.1)

and max (m*h*,m*h?) — 0 as (n,T) — .

For the result in Corollary 2.3.2 to hold, we further need m and « (-) to meet the
following condition.

Assumption A.1(i**): For the m and o (-) defined in Assumption A.1(i*), they
satisfy that h% Tt (m) +h?m* — 0as (n,T) — oo.

Clearly, under Assumption A.1(i), we can take m = |LlogT | (the integer part
of LlogT) for a large positive constant L such that both Assumptions A.1(i*) and
A.1(i**) are satisfied. For notational simplicity, we continue to apply Assumption

A 1(1).

2.3.2 Asymptotic null distributions

To state our main results, we further introduce some notation. Let E; denote ex-
pectation with respect to variables with time indexed by ¢ only. For example,
Ex[Ri) = [ Ko t) it and BBy [Ry] = [ | By ) s ;i) . Le
Pits = Ky ps — Et Ky 5] — Es Ky ss) + E+Ey K 5]. Define!

1 h

Bir = — ) o Y E[¢is]E )], and (2.3.2)
1<i#£j<n 1<t#£s<T
G,%T = 4—hz Z _ Z Var(%;l’tS)Var(Ei,tS).(2.3.3)
n(n—1) 1<iZj<n r(T-1) 1<t#£s<T

'The notation can be greatly simplied under identical distributions across individuals. In this
_ - -1
case, B,y =n (T - l) ! thgt;ésgn[E((pl.tx)]za and anT =4 [T (T - l)] I h2Zlgt;ésgn[var(kh,m”z'
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We establish the asymptotic null distribution of the fnr test statistic in the following

theorem.

Theorem 2.3.1 Suppose Assumptions A.1-A.3 hold. Then under the null of cross-

sectional independence we have
nThT iy — Bur 4N (0,(73) as (n,T) — oo,

2 —1; 2
where 65 = lim, 7y_.e, O

Remark 2. The proof of Theorem 2.3.1 is tedious and is relegated to Appendix
A. The idea underlying the proof is simple but the details are quite involved. To

. . . . 1 - =J
see how complications arise, let ¥,7,ij = Yur (u,-, uj) =1 Yi<itstrrqat Kngs(kn s+

H;,rq — 2%;;7”) where u; = (u;1, ..., u;7)'. Then we have Ty = n(nl—l) 1<i§'<n Yor (uj, ;) .
Clearly, for each pair (i, j) with i # j, ¥u7,; is a fourth order U —st;tis{t;c along the
time dimension, and by treating 7,7 as a kernel function, fnT can be regarded as a
second order U -statistic along the individual dimension. To the best of our knowl-
edge, there is no literature that treats such a two-fold U-statistic, and it is not clear in
the first sight how one should pursue in order to yield a useful central limit theorem
(CLT) for fnT. Even though it seems apparent for us to apply the idea of Hoeffding
decomposition, how to pursue it is still challenging.

In this chapter, we first apply the Hoeffding decomposition on ¥,7;; for each
pair (7, j) and demonstrate that y,7,;; can be decomposed as follows

2 3 4
WaT,ij = 6G;(1T),i T 4G1(1T),i ;T GE;T),ij

where, for [ = 2,3,4, G,(f% ij = 1%21<t1¢---7étz<T ﬁi(J.l) (Zij7,1,...,Z,-j7,l) is an /-th order
7 T — —
()

degenerate U-statistic with kernel ¢;;” being formerly defined in Appendix A, and

Zijs = (ui,, u jt). Then we can obtain the corresponding decomposition for IA",ZT:

Lo = 6G,(12T) + 4G;(13T) + G514T)
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where G,g% = 2D 1 Yi<itj<n G,g% ;j for/=2,3, 4. Even though for each pair (i, j),
G,(f} ;j 1s an [-th order degenerate U-statistic with kernel 19( ) along the time dimen-

)

sion under Hy, GiT i1s by no means an [/-th order degenerate U-statistic along the
individual dimension under Hy. Despite this, we can conjecture as usual that the
dominant term in the decomposition of fnT is given by the first term 6G,(12T), and the
other two terms 4G,(13T) and G,(14T) are asymptotically negligible. So in the second step,

we make a decomposition for 6G,(12T) —6F [G,SZT)] and demonstrate that

nT/’l{6G512T) —6E[G512T)]} = Z WnT (ll,‘,llj) +0p(1)

1<i<j<n

where w7 (u;,u;) = 4h T Li<r<s<T Pi1sP] 1> and @, = @i 15 — E[@j 5] . Despite the
fact that w7 ;; = wyr (ui,uj) is a non-degenerate second order U-statistic along
the time dimension any more, }|<;< j<, War (ui,u j) is a degenerate second order
U -statistic along the individual dimension. The latter enables us to apply the de
Jong’s (1987) CLT for second order degenerate U-statistics with independent but
non-identical observations. [Under the null hypothesis of cross-sectional indepen-
dence u;’s are independent across i but not identically distributed.] The asymp-
totic variance of }j<; j<, War (u,-, u j) is given by Gg defined in Theorem 2.3.1 and
6nThE [GizT)] delivers the asymptotic bias B,r to be corrected from the final test

statistic. In the third step, for / = 3,4 we demonstrate nThG,(,l% p (1) by using

)

the explicit formula of %, i

Remark 3. The asymptotic distribution in Theorem 2.3.1 is obtained by let-
ting n and T pass to o simultaneously. Phillips and Moon (1999) introduce three
approaches to handle large dimensional panel, namely, sequential limit theory, di-
agonal path limit theory, and joint limit theory, and discuss relationships between
the sequential and joint limit theory. As they remark, the joint limit theory generally
requires stronger conditions to establish than the sequential or diagonal path con-
vergence, and by the same token, the results are also stronger and may be expected

to be relevant to a wider range of circumstances.
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To implement the test, we require consistent estimates of G,%T and B, 7. Noting

that

o = n(n—;)mTz(T—n L oL E[@Z»”Y}E{(Eiﬂ)z]*0(1)

1<i#j<n1<t#s<T
2
- n(n—4f)<7{6)(T_1) Z Z /ﬁJS(“M)du/fj,ts(V,V)dV+0(l),

1<i#j<n1<t£s<T

where R (k) = [k (u)® du, then we can estimate 62 by

Onr = nn—1) Z 72 ij—t (ttie, )

where fij ¢ (uir,uje) = (T = 1) L b k((uis —wie) /h) k((ujs —uje) /h),
1.e., fi})—t(”it? u j,) is the leave-one-out estimate of f;;(u;,u j,). One can readily
demonstrate G2 is a consistent estimate of 62 under the null. Let

2 L (T—r+1)h

B"TET—lr:Zz n—1

Z E[@i,lr]g [fpj,lr} )
1<i#j<n
where E[(p,-’lr] =(T—-r+ 1)_1 ZtT:_er Fh,t,z+r—1 —T7 (T - 1)_1 Zlg#ngFhJs. We
establish the consistency of EnT for B,7 in Appendix B. Then we can define a fea-

sible test statistic:
~ I’LTthT — BnT
nT e~ —
Onr

Y

which is asymptotically distributed as standard normal under the null. We can com-
pare Tr to the one-sided critical value Za, the upper « percentile from the standard
normal distribution, and reject the null if L > zg. The following corollary formerly

establishes the asymptotic normal distribution of I, under Hy

Corollary 2.3.2 Suppose the conditions in Theorem 2.3.1 hold. Then we have

Lir £>N(0,1) as (n,T) — co.
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2.3.3 Consistency

To study the consistency of our test, we consider the nontrivial case where uy =

lim, ... I';, > 0, where

l"nz; Z //[fij(u,v)—fi(u)fj(v)}zdudv.

n(n—1) 7,

We need to add the following assumption that takes into account cross-sectional

dependence under the alternative.

Assumption A.4 For each pair (i, j) with i # j, the joint PDF f;; of u;; and u
is bounded and satisfies a Lipschitz condition: |fj;(u1 +vi,us +v2) — fij(u1,u2)| <
D;jj(uy,uz)|| (vi,v2) ||, and D;; is integrable uniformly in (i, j): [ [ D;;j(u,v) fij(u,v)
dudv < C; for some C3 < oo,

The following theorem establishes the consistency of the test.

Theorem 2.3.3 Suppose Assumptions A.1-A.4 hold and pus > 0. Then under Hy,

P (Z;T > dnT> — 1 for any sequence d,y = op(nTh) as (n,T) — co.

Remark 4. Theorem 2.3.3 indicates that under H; our test statistic IA,,T explodes
at the rate nTh provided uy > 0. This can occur if f;;(u,v) and f; (u) f; (v) differ
on a set of positive measure for a “large” number of pairs (i, j) where the number
of explodes to the infinity at rate n2. It rules out the case where they differ on a set
of positive measure only for a finite fixed number of pairs, or the case where the
number of pair-wise joint PDFs that differ from the product of the corresponding
marginal PDFs on a set of positive measure is diverging to infinity as n — oo but at a
slower rate than n2. In either case, our test statistic ,7 cannot explode to the infinity
at the rate nTh, but can still be consistent. Specifically, as long as A,,7I';, — 4 and
At/ (nTh) — 0 as (n,T) — oo for some diverging sequence {A,r}, our test is still

consistent as I, now diverges to infinite at rate (nTh) /A,r.

Remark 5. We have not studied the asymptotic local power property of our test.

Unlike the CGL’s test for cross-sectional uncorrelation, it is difficult for us to set up
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a desirable sequence of Pitman local alternatives that converge to the null at a certain
rate and yet enable us to obtain the nontrivial asymptotic power property of our test.
Once we deviate from the null hypothesis, all kinds of cross-sectional dependence
can arise in the data, which makes the analysis complicated and challenging. See

also the remarks in Section 6.

2.4 Tests based on residuals from nonparametric re-
gressions

In this section, we consider tests for cross-sectional dependence among the un-
observable error terms in the nonparametric panel data model (2.2.1). We must
estimate the error terms from the data before conducting the test.

We assume that the regression functions g; (+), i =1,...,n, are sufficiently smooth,
and consider estimating them by the pth order local polynomial method (p =1, 2, 3
in most applications). See Fan and Gijbels (1996) and Li and Racine (2007) for the
advantage of local polynomial estimates over the local constant (Nadaraya-Watson)
estimates. If g; () has derivatives up to the pth order at a point x, then for any Xj, in

a neighborhood of x, we have

aX) = @+ ¥ —Dlilg(x) (X~ +o0 (X —”)

1<ljl<p?”
= Y Bijsb) (Xu—x)/b) +o (]| X —x||7).
0<lj|<p
Here, we use the notation of Masry (1996a, 1996b): j = (j1,.--, ja) li| = Zgzl Jas
j ‘a j a‘-]l i .
o =T34 Roclizp = Lf-o L~ Lm0 Dgi (0) = 57 E550. B (i) =

Jit+ja=l
%Dm gi(x), where j! = [1%_, j,! and b = b(n,T) is a bandwidth parameter that

controls how “close” X;; is from x. With observations {(vi;,X;;)}_,, we consider

choosing f3;, the stack of f3; j in a lexicographical order, to minimize the following

18



criterion function

2

Or(x;B)=1" i (y,-t - Y Bi((Xi—x) /b)j) wp (Xir — X)), (2.4.1)
t=1 0<ljl<p

where wy, (x) = b~%w (x/b), and w is a symmetric PDF on R?. The pth order local

polynomial estimate of g;(x) is then defined as the minimizing concept in the above

minimization problem.

Let Ny = (I+d—1)!/(1!(d —1)!) be the number of distinct d-tuples j with
lj| = . Tt denotes the number of distinct /-th order partial derivatives of g;(x) with
respect to x. Arrange the N; d-tuples as a sequence in the lexicographical order
(with highest priority to last position), so that ¢;(1) = (0,0, ...,1) is the first element
in the sequence and ¢;(N;) = (,0,...,0) is the last element, and let q)l_l denote the
mapping inverse to ¢;. Let N = Y7 N;. Define S;7(x) and W, (x) as a symmetric

N x N matrix and an N X 1 vector, respectively:

Sit00(x) Siro1(x) -+ Siro,p(x) Wiro(x)
Sit10(x) Sirii(x) -+ Siripx) Wir.1(x)
Sit (x) = . . . .p , Wir(x) =
| Sitpo(x) Sitpa(x) o+ Sirpp(x) | | Wir,(x) |

where S;r j «(x) is an N; x Ny submatrix with the (/,r) element given by

1 T Xi —x (Pj(l)'i'(i)k(r)
[Sit,j i (x)] =7 ( tb ) wp (Xir —x),
=1

and W;r j(x) is an N; x 1 subvector whose r-th element is given by

1 I X — x\ %)
(Wirj(0)] ==Y yi ( lb ) wp (Xir —x) .
Then we can denote the pth order local polynomial estimate of g;(x) as

gi(x) =€} [Sir (0] Wir (x)
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where e; = (1,0,---,0)" isan N x 1 vector.

For each j with 0 < |j| <2p, let itj = [pa ¥w(x)dx. Define the N x N dimensional

matrix S by i
Sop 8071 SOJ,
S S ... S
s=| " "M bl (2.42)
| Spo Spi - Spp |

where S; ; is an N; x N; dimensional matrix whose (/,r) element is Ho,(1)+9;(r)- Note
that the elements of the matrix S are simply multivariate moments of the kernel w.

For example, if p =1, then

Jwx)dx [x'w(x)dx 1 01y
Jaw (x)dx [xx'w(x)dx 0451 [xx'w(x)dx
where 0, 1s an a X ¢ matrix of zeros.

Letuy =y —gi (Xiy) fori=1,...,nandt =1,...,T. Define f‘nT, B,r, and 5”2T
analogously to fnT, Enr, 8,%T but with {u; } being replaced by {u; }. Then we can
consider the following “feasible” test statistic
~ nThl:nT — EnT

OnrT
To demonstrate the asymptotic equivalence of I, and ET, we add the following

assumptions.

Assumption A.5 (i) For each i = 1,...,n, {X;, t =1, 2,...} is stationary and
a-mixing with mixing coefficient {; (-)} satisfying ¥.7_ j*a ( j)a‘)/ 2+&) < ¢, for
some Cy < oo, Ky > 8/ (2+ &), and &y > 0, where a (j) = maxj<j<pa;(j).

(ii) For each i = 1,...,n, the support 2; of X;, is compact on R?. The PDF p; of
X;; exists, is Lipschitz continuous, and is bounded away from zero on Z; uniformly
in i : minj <;<,infy.c 2; pi (x;) > Cs for some Cs > 0. The joint PDF of X}, and Xy is

uniformly bounded for all # # s by a constant that does not depend on i or |t — 5] .
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(i) {ui,i=1,2,...,t = 1,2,...} isindependent of {X;;,i =1,2,...,t =1,2,...}.

Assumption A.6 (i) For each i = 1,...,n, the individual regression function
gi(+), is p+ 1 times continuously partially differentiable.

(ii) The (p + 1)-th order partial derivatives of g; are Lipschitz continuous on Z;.

Assumption A.7 (i) The kernel function w : RY — R™ is a continuous, bounded,
and symmetric PDF; S is positive definite (p.d.).

(ii) Let w (x) = [|x]| 2% (x) . w is integrable with respect to the Lebesgue
measure.

(iii) Let Wj(x) = xw(x) for all d-tuples j with 0 < |j| < 2p+ 1. Wj(x) is Lipschitz
continuous for 0 < |j| < 2p+ 1. For some Cg < o0 and C7 < o, either w(+) is com-
pactly supported such that w (x) = 0 for ||x|| > Cg, and ||W(x) —W;(X)|| < C7||x —X]|
for any x, X € R? and for all j with 0 < [j| < 2p + 1; or w(-) is differentiable,
||0W;(x)/9x|| < Cé, and for some 19 > 1, |dWj(x)/dx| < Cs||x|| ™" for all ||x|| > C;

and for all j with 0 < |j| <2p+ 1.

Assumption A.8 (i) The kernel function & is second order differentiable with
first order derivative kK" and second order derivative k”. Both uk (1) and uk’ () tend
to 0 as |u| — oo. (ii) For some ¢; < oo and Ay < oo, |k” (1) | < ¢ and for some ¥ > 1,

(K" (1) | < cx |u] % for all |u| > Ay.

Assumption A9 (i) Let n = T 'b=4 + p2P+D) As (n,T) — oo, Th®> — oo,
T3/2ph> — oo, and nTh(n*+h~*n* + h~8n*) — 0.
(ii) For the m defined in Assumption A.1(i*), max(nhmb*P+D)  nmT—1p=4,

n2T*mOh=2, n?m*h=2b* P+ nhm? /T, nh=3m?/T%, m)T) — 0.

Remark 6 Assumptions A.5 (i)-(ii) are subsets of some standard conditions
to obtain the uniform convergence of local polynomial regression estimates. Like
CGL, we assume the independence of {u;} and {Xj} for all i, j, ¢, s in Assump-
tions A.5(iii), which will greatly facilitate our asymptotic analysis. Assumptions
A.6 and A.7 are standard in the literature on local polynomial estimation. In par-

ticular, following Hansen (2008), the compact support of the kernel function w in
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Masry (1996b) can be relaxed as in Assumption A.7(ii1). Assumption A.8 spec-
ifies more conditions on the kernel function k used in the estimation of joint and
marginal densities of the error terms. They are needed because we need to apply
Taylor expansions on functions associated with k. Assumption A.9 imposes further
conditions on A, n, and T and their interaction with the smoothing parameter » and
the order p of local polynomial used in the local polynomial estimation. If we relax
the geometric o-mixing rate in Assumption A.1(i) to the algebraic rate, then we
need to add the following condition on the bandwidth parameters, sample sizes, and
the choices of m and p :

Assumption A.1(i***): For the m, &t (-), and  defined in Assumption A.1(i*),

they also satisty that

max {n2T2h7371+L5,T2h74*12T§6, Tzhfsf%b“(p“)} ars (m)—0as (n,T)— co.
Theorem 2.4.1 Suppose Assumptions A.1-A.3 and A.5-A.9 hold. Then under the

null of cross-sectional independence

L,r — N(0,1)

as (n,T) — oo.

Remark 7. The above theorem establishes the asymptotic equivalence of Ly
and ET. That is, the test statistic IN,,T that is based on the estimated residuals from
heterogeneous local polynomial regressions is asymptotically equivalent to T,r that
is constructed from the generally unobservable errors. If evidence suggests that
the nonparametric regression relationships are homogeneous, i.e., g; (Xi) = g (Xir)
a.s. for some function g on R? and for all i, then one can pool the cross section data
together and estimate the homogeneous regression function g at a faster rate than es-
timating each individual regression function g; by using the time series observations
for cross section i only. In this case, we expect that the requirement on the relation-

ship of n, T, h,b, and p becomes less stringent. Similarly, if g; (Xi;) = Bo; + ﬁ{iXi,
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a.s. for some unknown parameters fy; and f3;;, then we can estimate such paramet-

ric regression functions at the usual parametric rate 7 1/2

, and it is easy to verify
that the result in Theorem 2.4.1 continue to hold by using the residuals from time

series parametric regressions for each individual.

The following theorem establishes the consistency of the test.

Theorem 2.4.2 Suppose Assumptions A.1-A.9 hold and ps > 0. Then under Hy,

P <Z¢T > d,,T> — 1 for any sequence d,y = op(nTh) as (n,T) — eo.

The proof of the above theorem is almost identical to that of Theorem 2.3.3.
The main difference is that one needs to apply Taylor expansions to show that
(nTh)_IET is asymptotically equivalent to (nTh)_IET under H;. Remark 4 also

holds for the test ET.

2.5 Monte Carlo simulations

In this section, we conduct a small set of Monte Carlo simulations to evaluate the
finite sample performance of our test and compare it with Pesaran’s and CGL’s tests

for cross-sectional uncorrelation .

2.5.1 Data generating processes

We consider the following six data generating processes (DGPs) in our Monte Carlo
study. DGPs 1-2 are for size study, and DGPs 3-6 are for power comparisons.
DGP 1:

Yir = 0+ BiXit + uir,

where across both i and ¢, X;; ~ IID U (—3,3), a; ~IID U(0, 1), B; ~ IID N (0,1),
and they are mutually independent of each other.
DGP 2:

yir = (1+6;) exp(Xir) /(1 +exp(Xit)) + tir,

23



where across both i and ¢, Xj; ~ IID U (—3,3), 6; ~ IID N (0,0.25), and they are
mutually independent of each other.

In DGPs 1-2, we consider two kinds of error terms: (i) u;; ~ IID N (0, 1) across
both i and 7 and independent of {0, B;,X;;}; and (i) {u;} is IID across i and an
AR(1) process over t: u = 0.5u;;—1 + €&, where &, ~ IID N (0,0.75) across both
i and ¢ and independent of {0, B;,X;;}. Clearly, there is no cross-sectional depen-
dence in either case.

In terms of conditional mean specification, DGPs 3 and 5 are identical to DGP 1,
and DGPs 4 and 6 are identical to DGP2. The only difference lies in the specification
of the error term u;;. In DGPs 3-4, we consider the following single-factor error
structure:

uip = 0.5AF; + € (2.5.1)

where the factors F; are IID N (0, 1), and the factor loadings A; are IID N (0, 1) and
independent of {F; } . We consider two configurations for &; : (i) &; are IID N (0, 1)
and independent of {F;, A;}, and (ii) &; = 0.5€;_1 + n;; where n;; are IID N (0,0.75)
across both i and 7, and independent of {F;, A;}.

In DGPs 5-6, we consider the following two-factor error structure:

wiy = 0.3A1;F1; +0.3A,F>; + €; (2.5.2)

where both factors Fj; and Fy, are IID N (0,1), Aj; are IID N (0,1), Ay; are IID
N(0.5,1), Fi;, Fy, A1j, and Ay; are mutually independent of each other, and the

error process {&; } is specified as in DGPs 3-4 with two configurations.

2.5.2 Bootstrap

It is well known that the asymptotic normal distribution typically cannot approxi-
mate well the finite sample distribution of many nonparametric test statistics under
the null hypothesis. In fact, the empirical level of these tests can be sensitive to the

choice of bandwidths or highly distorted in finite samples. So we suggest using a
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bootstrap method to obtain the bootstrap p-values. Note that we need to estimate
E (@) in B,r, and that the dependent structure in each individual error process
{uir} ,TZI will affect the asymptotic distribution of our test under the null. Like Hsiao
and Li (2001), we need to mimic the dependent structure over time. So we propose
to apply the stationary bootstrap procedure of Politis and Romano (1994) to each

individual i’s residual series {ﬁit}thl . The procedure goes as follows:

1. Obtain the local polynomial regression residuals u;; = Y, — g; (x;;) for each i

and .

2. For each i, obtain the bootstrap time series sequence {u, }thl by the method

of stationary bootstrap. 2

3. Calculate the bootstrap test statistic I, = (nThD % —B'.)/G', where lN";le,
EZT and 0 are defined analogously to L7, B,r and 6,7 but with ii; be

replaced by uj;.

B

4. Repeat steps 2-3 for B times and index the bootstrap statistics as {E‘T =1

Calculate the bootstrap p-value p* = B’IZfZI I(N;ﬂ ;> I,r) where 1(-) is
the usual indicator function, and reject the null hypothesis of cross-sectional

independence if p* is smaller than the prescribed level of significance.

Note that we have imposed the null restriction of cross-sectional independence

implicitly because we generate {u}, } independently across all individuals. We con-

jecture that for sufficiently large B, the empirical distribution of {IN;‘T j 1]3: | 1s able
to approximate the finite sample distribution of I, under the null hypothesis, but

are not sure whether this can have any improvement over the asymptotic normal ap-

2 A simple description of the resampling algorithm goes as follows. Let p be a fixed number in

(0,1). Let u}, be picked at random from the original T residuals {u;i,..., uir }, so that u}} = u;r,,
say, for some 77 € {1,...,T}. With probability p, let u}, be picked at random from the original 7'
residuals {uj1, ..., u;7 }; with probability 1 — p, let u}, = ;7,41 so that u}, would be the “next”

observation in the original residual series following u;r,. In general, given that u}, is determined by
the Jth observation u;; in the original residual series, let u;,,; be equal to u; ;1 with probability
1 — p and be picked at random from the original T residuals with probability p. We set p = T-1/3

in the simulations.
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Table 2.1: Finite sample rejection frequency for DGPs 1-2 (size study, nomial level 0.05)

DGP n T (i) uy ~ID N (0,1) (1) iy = 0.5u; ;1 + &
p CGL SZ p CGL SZ

1 25 25 0.040 0.044 0.054 0.092 0.060 0.082

50 0.060 0.044 0.048 0.130 0.062 0.082

100 0.056 0.058 0.064 0.126 0.080 0.066

50 25 0.060 0.044 0.062 0.118 0.066 0.128

50 0.070 0.052 0.080 0.112 0.076 0.074

100 0.034 0.030 0.048 0.124 0.066 0.064

2 25 25 0.038 0.044 0.052 0.088 0.050 0.090
50  0.056 0.062 0.060 0.122 0.062 0.082

100 0.058 0.044 0.064 0.128 0.068 0.070

50 25 0.054 0.042 0.058 0.076 0.078 0.120
50  0.064 0.060 0.060 0.110 0.050 0.084

100 0.038 0.052 0.052 0.108 0.068 0.060

Note: P, CGL, and SZ refer to Pesaran’s, CGL’s and our tests, respectively.

proximation. The theoretical justification for the validity of our bootstrap procedure

goes beyond the scope of this chapter.

2.5.3 Test results

We consider three tests of cross-sectional independence in this section: Pesaran’s
CD test for cross-sectional dependence, CGL test for cross-sectional uncorrelation,
and the I,7 test proposed in this chapter. To conduct our test, we need to choose
kernels and bandwidths. To estimate the heterogeneous regression functions, we
conduct a third-order local polynomial regression (p = 3) by choosing the second

1/9 where sy denotes

order Gaussian kernel and rule-of-thumb bandwidth: b = sx T~
the sample standard deviation of {X;;} across i and ¢. To estimate the marginal and
pairwise joint densities, we choose the second order Gaussian kernel and rule-of-
thumb bandwidth /& = SgT_l/ 6 where s; denotes the sample standard deviation of
{ui } across i and t. For the CGL test, we follow their paper and consider a local
linear regression to estimate the conditional mean by using the Gaussian kernel and

choosing the bandwidth through the leave-one-out cross-validation method. For

the Pesaran’s test, we estimate the heterogeneous regression functions by using the
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linear model, and conduct his CD test based on the parametric residuals.

For all tests, we consider n = 25, 50, and 7 = 25, 50, 100. For each combination
of nand T', we use 500 replications for the level and power study, and 200 bootstrap
resamples in each replication.

Table 2.1 reports the finite sample level for Pesaran’s CD test, the CGL test and
our test (denoted as P, CGL, and SZ, respectively in the table). When the error terms
u;j; are IID across ¢, all three tests perform reasonably well for all combinations of n
and T and both DGPs under investigation in that the empirical levels are close to the
nominal level. When {u;, } follows an AR(1) process along the time dimension, we
find out the CGL test outperforms the Pesaran’s test in terms of level performance:
the latter test tends to have a large size distortion which does not improve when
either n or T increases. In contrast, our test can be oversized when n/T is not
small (e.g., n =50 and T = 25) so that the parameter estimation error plays a non-
negligible role in the finite samples, but the level of our test improves quickly as T’
increases for fixed n.

Table 2.2 reports the finite sample power performance of all three tests for DGPs
3-6. For DGPs 3-4, we have a single-factor error structure. Noting that the factor
loadings A; have zero mean in our setup, neither Pesaran’s nor CGL’s test has power
in detecting cross-sectional dependence in this case. This is confirmed by our simu-
lations. In contrast, our tests have power in detecting deviations from cross-sectional
dependence. As either n or T increases, the power of our test increases. DGPs 5-6
exhibit a two-factor error structure where one of the two sequences of factor load-
ings have nonzero mean, and all three tests have power in detecting cross-sectional
dependence. As either n or T increases, the powers of all three tests increase quickly

and our test tends to more powerful than the Pesaran’s and CGL’s tests.

2.6 Concluding remarks

In this chapter, we propose a nonparametric test for cross-sectional dependence in

large dimensional panel. Our tests can be applied to both raw data and residuals

27



Table 2.2: Finite sample rejection frequency for DGPs 3-6 (power study, nomial level 0.05)

DGP n T ()& ~IDN(0,1) (i) & = 0.56;_1 + N
P CGL SZ P CGL SZ

325 25 0040 0.046 0446 0.092 0.052 0.590
50  0.060 0.058 0.778 0.130 0.060 0.860

100 0.056 0.074 0950 0.126 0.038 0.984

50 25 0.060 0.040 0772 0.118 0.070 0.866

50 0.070 0.060 0972 0.112 0.074 0.992

100 0.034 0.064 0998 0.124 0.068 1.000

4 25 25 0.038 0.074 0446 0.098 0.044 0.616
50 0.056 0.052 0.772 0.206 0.066 0.858

100 0.058 0.062 0954 0.234 0.044 0.984

50 25 0.054 0.046 0.772 0.148 0.086 0.870

50 0.064 0.068 0970 0.190 0.072 0.990

100 0.038 0.062 0998 0.270 0.068 1.000

5 25 25 0326 0248 0208 0410 0.304 0418
50 0412 0332 0444 0486 0350 0.672

100 0.584 0.446 0.740 0.594 0.424 0910

50 25 0550 0442 0456 0.626 0.508 0.680

50 0720 0.620 0.812 0.754 0.640 00918

100 0.842 0.742 0988 0.888 0.776  0.996

6 25 25 0304 0232 0250 0420 0.292 0.406
50 0428 0330 0424 0488 0348 0.634

100 0.568 0426 0.762 0.588 0.402 0.908

50 25 0548 0454 0424 0.624 0516 0.662

50 0.724 0.636 0.814 0.760 0.636  0.908

100 0.838 0.746 0980 0.888 0.794 1.000

Note: P, CGL, and SZ refer to Pesaran’s, CGL’s and our tests, respectively.
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from heterogenous nonparametric (or parametric) regressions. The requirement on
the relative magnitude of n and T is quite weak in the former case, and very strong
in the latter case in order to control the asymptotic effect of the parameter estimation
error on the test statistic. In both cases, we establish the asymptotic normality of our
test statistic under the null hypothesis of cross-sectional independence. The global
consistency of our test is also established. Monte Carlo simulations indicate our
test performs reasonably well in finite samples and has power in detecting cross-
sectional dependence when the Pesaran’s and CGL’s tests fail.

We have not pursued the asymptotic local power analysis for our nonparametric
test in this chapter. It is well known that the study of asymptotic local power is
rather difficult in nonparametric testing for serial dependence, see Tj@stheim (1996)
and Hong and White (2005). Similar remark holds true for nonparametric testing
for cross-sectional dependence. To analyze the local power of their test, Hong and
White (2005) consider a class of locally j-dependent processes for which there ex-
ists serial dependence at lag j only, but j may grow to infinity as the sample size
passes to infinity. It is not clear whether one can extend their analysis to our frame-
work since there is no natural ordering along the individual dimensions in panel data
models. In addition, it may not be advisable to consider a class of panel data models
for which there exists cross-sectional dependence at pairwise level only: if any two
of u, uj;, and uy, (i # j # k) are dependent, they tend to be dependent on the other
one also. Thus we conjecture that it is very challenging to conduct the asymptotic

local power analysis for our nonparametric test.
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Chapter 3 Nonparametric Dynamic Panel Data
Models with Interactive Fixed Ef-
fects: Sieve Estimation and Spec-
ification Testing

3.1 Introduction

Recently there has been a growing literature on large dimensional panel data mod-
els with interactive fixed effects where both the individual dimension N and time
dimension 7 pass to infinity. By the adoption of time-varying common factors that
affect the cross-sectional units with individual specific factor loadings, these models
allow individual and time effects to enter the models multiplicatively and can cap-
ture unobserved heterogeneity more flexibly than the traditional ones with additive
individual or time fixed effects. As common factors affect all individuals and then
form a source of cross-sectional dependence, interactive fixed effects have become
a powerful and popular tool to model cross-sectional dependence in economics and
finance. See Bai and Ng (2008) for an overview.

Most of the literature on panel data models with interactive fixed effects falls
into two categories depending on whether the model includes additional regressors
or not. The first category focuses on the estimation of the common components
(factors and factor loadings) or the determination of the number of factors; see Bai
(2003), Bai and Ng (2006a), Bai and Li (2012) and Choi (2012) for estimation,
and Bai and Ng (2002) and Onatski (2009) for the determination of the number of
factors. The second category concentrates on the consistent estimation of the regres-

sion coefficients. Pesaran (2006) proposes a common correlated estimator (CCE)
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for linear static panel data models with homogeneous or heterogeneous coefficients.
Bai (2009) proposes a principal component analysis (PCA) estimator for the same
model but with homogeneous coefficients and establishes its limiting distribution.
Moon and Weidner (2010, 2012) reinvestigate Bai’s (2009) PCA estimator and put
it in the framework of Gaussian quasi-maximum likelihood estimation (QMLE);
they obtain the first order asymptotic theory for the QMLE for linear dynamic panel
data models with interactive fixed effects in the first paper and show that the limiting
distribution of the QMLE is independent of the number of factors used in the estima-
tion as long as the number of factors does not fall below the true number of factors
in the second paper. Lu and Su (2013) propose an adaptive group Lasso method for
simultaneous selection of regressors and factors and estimation in linear dynamic
panel data models with interactive fixed effects and prove the oracle property of
their regression coefficient estimator. For more developments on panel data models
with interactive fixed effects, see Ahn, Lee and Schmidt (2001, 2013) for GMM ap-
proach with fixed T and large N, Zaffaroni (2010) for the generalized least squares
(GLS) estimation, Kapetanios and Pesaran (2007) and Greenaway-McGrevy, Han
and Sul (2012) for factor-augmented panel regression, Harding (2009) for estima-
tion of panel factor models with large N and large T by using structural restrictions
from economic theory, Pesaran and Tosetti (2011) for estimation of panel data mod-
els both with multifactor error structure and spatial correlation, Su and Chen (2013)
for testing for slope homogeneity, Su, Jin, and Zhang (2012) for specification test
of linearity in panel data models, among others.

Note that almost all of the above works are carried out in the parametric frame-
work. Although economic theory dictates that some economic variables are impor-
tant for the causal effects of the others, rarely does it state exactly how the variables
enter an econometric model. Models derived from first principles such as utility
maximization or profit maximization have particular parametric relationship under
some narrow functional form restrictions. So it is not only meaningful but also

necessary to extend some commonly used parametric models to the nonparametric
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framework. Recently, Su and Jin (2012) consider the sieve estimation of nonpara-
metric static panel data models with multifactor error terms, which is a nonparamet-
ric extension of Pesaran’s (2006) models; for the same models Jin and Su (2012)
propose a poolability test of nonparametric functions. Freyberger (2012) studies
nonparametric panel data models with multidimensional unobserved individual ef-
fects. He focuses on identification and estimation when the unobservables have a
factor structure and enter an unknown structural function non-additively under fixed
T and large N. However, there is still no work on the estimation of nonparametric
dynamic panel data models where interactive fixed effects and idiosyncratic errors
enter the model additively.

Linearity assumption is widely adopted in empirical works for its convenience
and interpretability. A correctly specified linear model may afford precise inference
whereas a badly misspecified one may lead to seriously misleading inference. So
it is important to test for the correct specification of functional form. Recently sev-
eral specification tests for linearity have been proposed in panel data models with
fixed effects. Lee (2011) proposes a residual-based test to check the validity of lin-
ear dynamic models with both large N and large 7'; Li and Sun (2011) propose a
test for static panel data models with both large N and large T based on an inte-
grated squared difference between a parametric and a nonparametric estimate; Su
and Lu (2013) propose a linearity test based on the comparison of the restricted
estimate under the linear assumption and the unrestricted nonparametric estimate
for dynamic panel data models with large N and fixed 7. But none of these tests
works for panel data models with interactive fixed effects. The linear estimators
for the regression coefficients and factor space generally cannot be consistent when
the underlying functional form is nonlinear, and the tests on the coefficients or the
number of factors based on the linear estimators could be invalid. To avoid these
serious consequences of misspecification, there is a need to develop tests for linear
functional forms. To the best of our knowledge, the only available test for linearity

in the framework work of dynamic panel data models with interactive fixed effects

32



is due to Su, Jin, and Zhang (2012), who propose a test based on residuals from the
estimation under the null hypothesis of linearity. But they do not propose consistent
estimates of the regression functions once the null of linearity is rejected.

Based on the above observations, we consider the following nonparametric dy-

namic panel data models with interactive fixed effects
Yi = g (Xu) + A 1+ eur, (3.1.1)

where i=1,....N,t =1,...,T, Xj; is a d x 1 vector of observable regressors which
may contain dy lagged dependent variables ¥;; 1, ..., Yii—a, and d, X 1 vector of ex-
ogenous variables X; j, g () is an unknown smooth function, fYis an R x 1 vector of
common factors, ll.o is an R x 1 vector of factor loadings so that 7Ll.0’ fto = le ll(l? fl?,
and e;;’s are idiosyncratic error terms. Note that ll-o, f,o and e;; are all unobserved.
The superscript “0” in 7Li0 and f° indicates the true parameters. We will assume
that the true number of factors R is known for the theoretical part of the chapter but
discuss how to determine R in empirical applications.

The model specified in (3.1.1) is fairly general and encompasses various panel
data models as special cases. If £0 = (1, /%) and 10 = (A?,1)’ where both f° and
2.0 are scalars, the interactive fixed effects reduce to the traditional two-way fixed
effects; if fto 18 time-invariant, i.e., fto = ffort =1,...,T and some constant vector
f, the interactive fixed effects become commonly-used additive individual fixed ef-
fects. When f? is time-invariant and g (X;;) = X{,OO, (3.1.1) becomes the classical
dynamic linear panel data models with individual fixed effects given by lio’ f: when
f,0 is time-invariant and X;; = Y;,_1, (3.1.1) reduces to the nonparametric dynamic
panel data model in Lee (2010); when £ is time-invariant and only exogenous re-
gressors are included in Xj;, (3.1.1) becomes the fixed effects nonparametric panel
data model in Henderson, Carroll, and Li (2008); when fto is time-invariant and
Xir includes both ¥; ;1 and exogenous regressors, (3.1.1) becomes the general non-
parametric dynamic panel data model, which is investigated by Su and Lu (2013);

when ft0 is time-invariant and g (Xy) = h(Yj,—1)+ OO’XL,-,, (3.1.1) becomes the
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partially linear dynamic panel data model in Baglan (2009); when g (X;;) = Xi’ZGO,
(3.1.1) becomes the model studied by Bai (2009) and Moon and Weidner (2010,
2012). These authors propose various estimators for g (-) (or 8°) and (12, f) and
establish their asymptotic properties.

We are mainly interested in consistent estimation and specification testing for
the nonparametric component g(-) in (3.1.1). Noting that g(-) is an unknown
smooth function, we combine the method of sieves with the Gaussian QMLE and
propose a nonparametric sieve estimator of g(-). Following Moon and Weidner
(2010, 2012), we establish its consistency, derive its convergence rates based on
the perturbation theory of matrix operator in Kato (1980), and establish its asymp-
totic normal distribution. We also discuss different sources of biases and propose
a bias-corrected estimator. In addition, we consider the specification test for the
commonly used linear functional form for g (-). Using an empirical L,-distance, we
compare two estimators for g (-), the linear estimator under the null hypothesis and
the sieve estimator under the alternative. We establish the asymptotic distributions
for the proposed test statistic under both the null hypothesis and a sequence of Pit-
man local alternatives. To improve the finite sample performance of the test, we
also propose a bootstrap procedure to obtain the bootstrap p-values and justify its
asymptotic validity.

The chapter also contributes to the literature on nonlinear dynamic panel data
models. Many asymptotic theories for traditional dynamic panel data models are
established with large N and small T; see Arellano (2003), Baltagi (2008), and
Hsiao (2003). By contrast, we derive the asymptotic results when both N and T
tend to infinity simultaneously. With large 7', we need to investigate the properties
of (X, ej;) along the time dimension. Stationarity and mixing conditions are usually
imposed on the observed data and the error terms. But in our chapter the correlation
between X;; and randomly realized fixed effects ( fto,lio) complicates the analysis
substantially. To be specific, the randomness of lio leads to the persistence of Yj

along the time dimension such that we cannot directly assume mixing conditions on
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{(X,-,,e,-t)}[T: 1> and the randomness of f0 gives rise to cross-sectional dependence
among {Yit}ﬁvz | - Following the idea of Hahn and Kuersteiner (2011), we adopt the
concept of conditional mixing as defined and discussed by Prakasa Rao (2009) and
Roussas (2008). We assume that {Xit,ei,}thl is strong mixing conditional on the
o-field & generated by the factors and factor loadings and then establish the asymp-
totic properties of our estimator and test statistic. The concept of conditional mixing
is also used in Ahn and Moon (2001), Gagliardini and Gourieroux (2011), Su and
Chen (2013), and Su, Jin, and Zhang (2012).

The rest of the chapter is organized as follows. In Section 2, we propose a
sieve estimator for g(-). In Section 3, based on the asymptotic expansion of the
Gaussian quasi-log-likelihood function, we prove the consistency of the sieve esti-
mator, derive its convergence rate, establish its asymptotic normality, and provide a
bias-corrected estimator. We propose a specification test statistic for linearity and
study its asymptotic properties in Section 4. In Section 5, Monte Carlo simulations
are conducted to investigate the finite sample performance of our estimator and test
statistic. In Section 6, we apply our model to a set of real data. Section 7 concludes.
All the proofs of the main theorems are relegated to the appendix. Additional proofs
for the technical lemmas are provided in the online supplementary material.

NOTATION. Throughout the chapter we adopt the following notation. Let
Ui (A) denote the ith largest eigenvalue (counting multiple eigenvalues multiple
times) of a symmetric matrix A. For an m X n matrix B, let ||B||, = +/tr(B'B)
denote its Frobenius norm and ||B|| = /u; (B'B) its spectral norm. For an n x 1
random vector X, let || X||, = [E(X], |X;|”)]'/P denote its L,-norm, and 1X1|, &
= {E[(X™, |Xi|")|2]}"/? its L,-norm conditional on 2. For an n x m matrix A,
let P, =A (A’A)_IA’ and My = I, — Py, where I, is an n x n identity matrix, and
(A’A) ! denotes some generalized inverse if A does not full column rank. For any
real square matrices A and B, we use A < B (or A < B) to signify that B — A is pos-
itive definite (or positive semi-definite). For a positive definite symmetric matrix

A, we use A'/2 and A=1/2 to stand for the unique symmetric matrices that satisfy
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A2A12 = A and A=1/24~1/2 = A=, For a real number a, let |a| denote its integer
part and [a] be the largest integer that is strictly smaller than a. We use “a.s.” to
denote “almost surely”. The operators %, and % denote convergence in probability
and distribution, respectively. (N, T) — oo denotes N and T passing to e simultane-

ously.

3.2 Sieve-based quasi-likelihood maximum estimation

Since g(-) is an unknown function in (3.1.1), we propose to estimate g (-) by the
method of sieves. For some excellent reviews on sieve methods, see Chen (2007,
2011). To proceed, let pX(x) = (p (x),---,pk (x))" denote a sequence of basis
functions that can approximate any square-integrable function of x very well (to
be more precise later). Then we can approximate g(x) in (3.1.1) very well by
ﬁg’ pX (x) for some K x 1 vector B, under fairly weak conditions. Let K = Kyt be
some integer such that K — oo as (N,T) — oo. We introduce the following nota-
tion: pyx = pF (Xa), pir = pX(Xar), B = (ply,-+ ,pﬁr)/, Py = (pig aPiT,k)/7
Pr= (P Pyvi), Yi= Ya, - Yr), Y=, ), 0= (0, £,
A0 = (A0,--- A9)". We use B to denote the true vector of coefficients B, in the
sieve approximation of g (x) given basis pX (x). Here we suppress the dependence
of pir, B°, and B, on K for notational simplicity.

To estimate g, we consider the following approximating linear panel data models

with interactive fixed effects:
Yie = pliBO + A 2+ ui (3.2.1)

where u;; = e;; +eg j; 1S the new error term, and ey ;; = g (Xit) — pgt BO represents the
. . . / !/
sieve approximation error. Let u; = (u;1,- -+ ,u;7) and w = (uy,- - ,uy) . In vector

and matrix notation, (3.2.1) can be respectively rewritten as

Y; =PB%+ oA +u;
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and

>

=Y BP+ 2% +u (3.2.2)

Then we follow Bai (2009) and Moon and Weidner (2010) and estimate the model

n (3.2.2) by the Gaussian QMLE method. Specifically, we obtain the estimator

A

(3 A f ) of (ﬁo,lo,fo) as follows

A

(B, A, f) = argminZ (B, A, f), (3.2.3)
(BA.f)

where .Z (B, A, f) is the approximating negative quasi-log-likelihood function:

K ! K
Z(B,A.f)= —tf <Y— ZﬁkPk_)vf/) <Y— ZﬁkPk_)vf/)] , (32.4)
=1 k=1

B=Bi, - .Bx).f=(fi, . fr),and A = (A1, --,Ay)’. In particular, B can be

estimated by

A

B = argminLy7 (B) (3.2.5)
BERK

where Lyt (B) is the profile approximating negative quasi-log-likelihood function:

Lyt (B) = f)rtli}lfNT(ﬁal,f) (3.2.6)
] K K !
— m}nﬁtr (Y—k;ﬁkPk) Mf< 1; ﬁkPk) (3.2.7)
| T K ! K
= NT Y w (Y—Zﬁkl’k> ( ZBkPk> (3.2.8)
t=R+1 k=1 k=1

See Moon and Weidner (2010) for the demonstration of equivalence of the above
three expressions. Based on (3.2.8), one only needs to calculate the 7 — R smallest
eigenvalues of a T x T matrix at each step of the numerical optimization over f3.
Note that the objective function Ly7 () is neither convex nor differentiable with
respect to . Multiple starting values for numerical optimization should be used to

find the global minimum. After obtaining 3, one estimates g (x) by

g(x) = p* (x)'B. (3.2.9)
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The expression in (3.2.8) is our starting point to establish the asymptotic theory.
Following Moon and Weidner (2010), we also adopt the perturbation theory for
linear operator in Kato (1980) to derive the asymptotic expansion of Lyr () around

BO. The key idea is to form the following decomposition

K
Z —Bi) P +-e+eg (3.2.10)

leadlng term v
perturbation terms

K
- Y BiPs
=1

where e, is an N x T matrix whose (i,#)th element is g (X;;) — p/,8°. Compared
with the decomposition in eqn. (3.1) in Moon and Weidner (2010), (3.2.10) has a
diverging number of perturbation terms (as K — o) and includes the additional sieve
approximation error term. If there were no perturbation term in (3.2.10), Lyt ()
would be equal to zero. By the continuity of the eigenvalue operator, Lyr () should
be close to zero when these perturbation terms are small enough. Using the pertur-
bation theory of linear operators, we can work out an expansion of Ly (f) in the
perturbation terms and show that this expansion is convergent as long as the spec-
tral norm of the perturbation terms is sufficiently small. Based on the first order
asymptotic theory for QMLE, we show the consistency of g(x) and establish its

asymptotic normality under suitable conditions.

3.3 Asymptotic properties of g(-)

In this section, we first derive the convergence rate for g(x) based on an asymp-
totic expansion of Lyt (f), then establish its asymptotic distribution and analyze
the sources of asymptotic biases, and finally propose a consistent bias-corrected

estimator.

3.3.1 Convergence rate for g(-)

To estimate the unknown function by the method of sieves, we assume that g (x) is
a smooth function. Let 2" =% x 27 C R% x R% be the support of X;,. Typical

approximation and estimation of regression functions require that 2~ be compact;
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see Newey (1997). In our model, it seems restrictive to impose the compactness
of 2" because of the presence of lagged dependent variables. To allow for the
unboundedness of 2", we follow Chen, Hong, and Tamer (2005), Blundell, Chen,
and Kristensen (2007), and Su and Jin (2012) and use a weighted sup-norm metric
defined as

—w/2
18]le0.r = sup [g(x)] [1 + HxHZ} for some w > 0. (3.3.1)

xed

If @ =0, the norm defined in (3.3.1) is the usual sup-norm which is suitable for the
case of compact support.

Recall that a typical smoothness assumption requires that a function g : 2" — R
belong to a Holder space. Let a = (o, -+, 0)" denote a d-vector of non-negative
integers and || = Y_, oy. For any x = (x1,- -+ ,x,), the |ot|th derivative of g : 2~ —
R is denoted as V%g(x) = 9/®lg(x )/(9x]" -+ 9x5?). The Holder space AY(2") of
order v > 0 is a space of functions g : 2"~ — R such that the first [y| derivatives
are bounded, and the [7y]|th derivatives are Holder continuous with the exponent

y—[v] € (0,1]. Define the Holder norm:

[V%(x) —V%(x")|
lgllar = = sup |g (x)|+ max sup .
N e @l =T [l —xr]|7 7]

The following definition is adopted from Chen, Hong, and Tamer (2005).

Definition 1. Let AY( 2, 0) = {g : 2 — Rsuch that g(-)[1+|-|[}]~¢/? € AY(%)}
denote a weighted Holder space of functions. A weighted Holder ball with radius ¢
is

A @)= {g e A2 0): i+ )"

§c<oo}.
AY

Function g(-) is said to be H(y, ®)-smooth on 2 if it belongs to a weighted Holder
ball NI(Z , @) for some y >0, ¢ > 0 and @ > 0.

LetP) =Y£ | P, Q') 7 = (NT) ' P(, P (,-and Oy =E5[0\) 7], where
a=(ay,...,ax) with|jal| = 1,and 2 = o (f°,A°) is the o-field generated by f° and

A0 Let Quppnr = 57 LN X1 wipiePly and Qypp = E [Qwppnt], Where wiy =
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w (Xj) and w (+) is some nonnegative integrable function. Let Wyt = = Z Z ZiZ
l 1t=1

t ll’
where
N T

1
= Pit — Z Qijpjt — Z NisPis + = NT Z Z 0 NisDjss (3.3.2)
j=ls=

OC,']' = 11'0/(%)“0/&0)711]0’ and nts — Jt (TfOIfO) lfo LetW = E@(WNT) and Z =
(Zz{lV"?Zz{T)I =M;oFi -N"! ley:l ;M o P;.
We first make some assumptions that are used in the derivation of convergence

rate for the sieve estimator.

Assumption 1. (i) AY20/N 5%, as N o and 0 < ¢; < pp(Z;) < 1y (%) <
C) < oo

i) fOL)T LoEyas T —ooand 0 < cp < i () < i (Ty) <& < oo

(iii) ||e|| //NT = Op(8y;) where Syr = /min (N, T).

Assumption 2.(i) Qypp N1 — Qwpp =o0p (1) and 0 < ¢y < g (Qwpp) < 1 (Qupp) <
Cp <o as. for given w(-) and all K as (N,T) —

(ii) Wyr —W =op (1) and 0 < ¢y < uxg (W) < g (W) <¢w < o0 a.s. for all K
as (N,T) —

(iii) There exist positive constants C and C such that min {a€RK [lal|=1} YV orii
HI(QE,?WT) >C>0and NI(Q%),NT) = HP(a) | /V/NT <C < o for any a € R¥ with
lal| =1as (N,T) — oo.

Assumption 3. (i) g(-) is H(y, ®)-smooth on 2~ for some ¥ > d /2 and @ > 0;

(ii) For any H(y, @)-smooth function g (x), there exists a linear combination of
basis functions I, kg = Byp* (-) in the sieve space %k = {g(-) = B'p* (-)} such
that [|g (-) ~ T k8]l = O (K7/7)

(iii) plimy 7)o (NT) T ZN XL, (14 ||X,~,\|2)(Dc,-, < oo for some @ > @ + ¥
and ¢, = w(Xj) and 1;

(v) 11 X2 pure] | = Op(VNTK);

(vi) [1ZL, [Ziei — Eg (Ziei)] || = Op(VNTK) and || LY. | Eg [Ziei] || = OP(\/ITK)-

Assumption 4. As (N, T) — oo, K — oo, and K87 — 0.
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Assumptions 1(i)-(ii) are widely used in the literature on panel data models
with interactive fixed effects; see Bai (2009) and Moon and Weidner (2010, 2012),
and Su and Chen (2013). Assumption 1(iii) is also adopted by Moon and Weidner
(2010) and can be verified for various error processes; see the supplementary mate-
rial in Moon and Weidner (2010). Assumptions 2(i)-(ii) impose restrictions on the
eigenvalues of conditional probability limits of Q,,,, n7 and Wyt as (N,T) — oo.
Assumption 2(iif) is essential for the consistency and it requires that P, be still full
rank after one projects the sieve terms onto the factor space (f°) and factor loading
space (A°). In other words, we need that the sieve terms are all high rank regressors
as defined by Moon and Weidner (2010). The low rank regressors such as time-
invariant or individual-invariant regressors deserve special attention. Assumption
2(iii) implies that HP(a) | /v/NT is uniformly bounded.

Assumption 3(i) imposes smooth conditions on g (-). Assumption 3(ii) quanti-
fies the approximation error of functions in H(y, ®) by the linear sieve basis func-
tions pX (x). Assumption 3(iii) is used to deal with unbounded support, which can
be replaced by some conditions on the tail behavior of the marginal density of Xj
as in Chen, Hong, and Tamer (2005) and Su and Jin (2012). Assumptions 3(ii)-(iii)
jointly imply that (NT)~"/? lee||, = O (K"’/d) ; see Lemma A.2 in Su and Jin
(2012). Assumptions 3(v)-(vi) can be verified for various data generating processes
(DGPs) and various sieve bases. The second part of (vi) is similar to the assump-
tion on Pk in Lee (2010, Theorem 3.2). If X;; excludes lagged dependent variables,
Eg|[Zlej] =0 and then Assumption 3(vi) reduces to (NT) /2 N [ Zlei=0p(K'/?).
In the next section, we will provide primitive conditions on the DGPs and sieve
bases. Assumption 4 imposes conditions on K.

Let®=A° (ko’ﬂto)*l (fo’fo)f1 Y. Let CI(VI% and Cj(\,zT) be K x 1 vectors whose
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kth elements are respectively given by

| 1
itk = it (MaoPiMpon) (33.3)
I
Chte = —orte (PLuM o' Myo -+ P jou Myoud' + P jou' u'My )
2 2,b 2
= Cyra+Caa+Chra (3.34)

where CJ(\?T’SI)C denotes the kth element of C](sz)

for s = a, b, and c. We derive an
asymptotic expansion for ¢ (x) and establish its convergence rate in the following
theorem.
Theorem 3.3.1 Suppose that Assumptions 1-4 hold. Then

A - 1 2

§(x) — g (x) = p* (2 Wy (i + QY ) + [P () B = g ()] + P () Rt

(3.3.5)

where Ryt is a K x 1 vector with | Ryt || = Op[(K~ " 4/ K8y ?) (5]\}1/2 4_—[(‘7/(2‘1))].

(0]
Further, suppose 11 [ [ 4 p® (x) p* (x)' w(x) dx] <eoand [, <1 + ||x||2> w(x)dx <
oo, Then

/% 6(x) —gW)Pw()dx = Op (N—KT + K8 +K—ZJ> ,(3.3.6)
1 S, 2 K 4

NT ;t; [6(Xy) —g(Xi)]"w(Xy) = Op (ﬁ + K6y +K 4 ) .(3.3.7)
Remark 1. In (3.3.5), § (x) — g (x) is decomposed into three parts: the first part con-
tributes to the asymptotic variance and bias, the second part signals the sieve approx-
imation error, and the third part summarizes higher order terms from the asymptotic
expansion of Ly ( 3) Theorem 3.3.1 also states the convergence rates for both the
weighted integrated mean square error (MSE) and weighted sample mean square
error in (3.3.6) and (3.3.7), respectively. Op (K/ (NT) —|—K5A7;f) and Op (K—2Y/d>
come from the first and second terms in (3.3.5), respectively.! It is easy to show
that the optimal choice of K, say K, to minimize the integrated or sample MSE

is of order 5;4[(27// d>+”, yielding the minimized integrated or sample MSE of order

OP(SI#/ la/ (ZYHI]). If there were no lagged dependent variables in X;; and no cross-

sectional heteroskedasticity and serial correlation in the error terms conditional on

! Apparently, K/ (NT) + K8y7 = O (K8y7) . We keep the first term in the expression as it corre-
sponds to the usual variance term for a sieve estimate.
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9, then the rates in (3.3.6) and (3.3.7) should be Op (K‘ZWd +K/ (NT)), and K,

would be proportional to (N T)l/ (2v/d)+1]

3.3.2 Asymptotic distribution of g (x)

To study the asymptotic distribution of g (x), we introduce the concept of conditional

strong mixing.

Definition 2. Let (Q2,.o7, P) be a probability space and 9 be a sub-G-algebra of </ .
Let Py (-) = P(:|B). Let {&,t > 1} be a sequence of random variables defined on
(Q, o, P). A sequence {&,t > 1} is said to be conditionally strong mixing given A
(or HB-strong-mixing) if there exists a nonnegative 8-measurable random variable

0. (t) converging to 0 a.s. as t — oo such that
|P%(ANB) — Py (A) Pz (B)| < oz (1) as. (3.3.8)

forallAe o (&,....&), B€ o (EiryEkarrn,-) and k> 11> 1.

The above definition is due to Prakasa Rao (2009); see also Roussas (2008).
When one takes ot () as the supremum of the left hand side object in (3.3.8) over
the set {A € 0 (&1,..,&), B € 6 (Evry Eprrrts-.), k> 1}, we refer it to the %-
strong-mixing coefficient.

Define

1
NT ¢

N
iZ NT !

WNT = ~itZl{l and QNT =

1
1 NT

N

T
Z ltZztem

M=
1=
I Mz

t
where Z; = (Z},,--+,Zjp) = Pi— PpEg(P) =N~ 'Y aijMpEq(P)), Zis = pir —

N7'YN 04Eq(pjr) =T L MisEq (pis) +(NT) ' XX Y1) aijtisEg (pjs). Let
W = Eg(Wyr) and Q = E5(Qn7). We add the following assumptions.

Assumption 5. (i) Foreachi=1,...,N, {(Xir, &) : t = 1,2,...} is Z-strong-mixing
with mixing coefficients {Otg’i (1), 1 <t<T- 1}. O (-) = maxi<j<y Og ;(-) sat-
(146)/(2+9) (S)

isfies )7, sz(x@ < oo where 0 is given in Assumption 6;

(ii) E [ex| Z571] = 0a.s. where Z 1 = 0 {(Xir, Xir—1,€i-1,Xis—2, €102, )0y
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A%, 0%
(iii) (eir,Xir) L (ejs,Xjs) |2 for all i # j and all 1, s = 1,...,T, where ALB|C

denotes independence between A and B given C.

Assumption 6. There exists 6 > 0 such that

(i) supy, E |e;r|* 0 < oo;
8+46 < oo

b

(it) sup; E || A0]|*7* < oo, and sup, E || f9||

8446 5 7 ;
4 < o and supy supl-JE|Zl-t_,k\8+45 < oo, where Z;  is

(iii) supysup;, E | pir k
the kth element of Z;,.
Assumption 7. There exist constants c,,,, ¢y, Cq, and cq that do not depend on K, N,
and T such that 0 < ¢,, < uxg(W) < u;(W) <&, <o as. and 0 < co < ug(Q) <

i (Q) <éq <ooas. forall K as (N, T) — oo.

Assumption 8. As (N, T) — oo, K — oo and max{v/NTK /4 K&}, \/NTK5]Q;/2}

— 0.

Assumptions 5(i) imposes strong mixing on {(Xy;,e;;)}!_, conditional on 2. Its
unconditional version is widely used in the time series literature; see, e.g., Bosq
(1998) and Fan and Yao (2003). In the time series literature, one can find var-
ious sufficient conditions for the strong mixing property of a nonlinear autore-
gressive (AR) process with identically and independently distributed (IID) errors
or nonlinear ARCH/GARCH type of errors; see Tjgstheim (1990) and Doukhan
(1994) for nonlinear AR process with IID errors, Fan, Yao, and Cai (2003) for
functional coefficient AR processes, and Meitz and Saikkonen (2010) for nonlin-
ear AR-ARCH/GARCH processes. When the nonlinear time series contains ex-
ogenous regressors, sufficient conditions are also available for the strong mixing
property; see Doukhan (1994) and Chen, Racine, and Swanson (2001) for nonlin-
ear ARX processes where exogenous variables and errors are both IID, Franke and
Diagne (2006) for nonlinear ARX-ARCHX processes but the exogenous variables
are lagged exogenous variables, and Hahn and Kuersteiner (2010) for dynamic To-
bit models with mixing exogenous regressors which follow an AR process. Similar

tools used in the time series literature can be used to establish the conditional strong
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mixing property for {Y,-t}tT:1 in our framework. On the other hand, if one assumes
that the interactive fixed effects are not random (which is analogous to treating the
individual fixed effects as nonrandom in a classical linear panel data model), it suf-
fices to use the concept of strong mixing.? Assumption 5(ii) imposes a martingale
difference sequence (m.d.s.) condition on {(ei,,Xi,) F thl. Assumption 5(iii)
imposes the conditional independence between (e;,X;;) and (e s X js) for i # j
given . This assumption implies that all the cross-sectional dependence comes
from the common factor f. We can relax this assumption to allow for weak cross-
sectional dependence among {(Xl,i,,ei,)}f.v: ] conditional on & at the cost of more
complicated proofs.

Assumption 6 imposes moment conditions on ej, /ll.o, fto, and pj; . Assump-
tion 6(if) imposes the existence of (8 +44d)th moments for the factors and factor
loadings and thus relaxes the uniform boundedness of H ftOH and ||7Ll-0H in Moon
and Weidner (2010, 2012). Assumption 6(iii) is a little stronger than what is typ-
ically assumed for sieve estimation in the IID framework (e.g., Newey, 1997),
but is more general than that in Lee (2010) where a uniform bound over a trun-
cated support is used. In the case of compact support, it is generally assumed that
sup,c o~ || P (x)|| = Op (£ (K)) for a non-decreasing function ¢ (-). But for the case
of infinite support, this assumption is not reasonable for general sieves except for
some special sieves (e.g., Fourier series and Hermite polynomials) that can automat-
ically deal with the tail behavior or are uniformly bounded over the infinite support.
For this reason, we impose moment conditions on p;  instead. One direct impli-
cation of Assumption 6(iii) is that sup; , E || pi|| = Op (Kl/z), which allows for cu-
bic splines or trigonometric series, but excludes polynomial functions. See Newey

(1997) for more discussions on sieves. In addition, we remark that it is possible to

2An alternative for strong mixing is Near Epoch Dependence (NED), which is a much weaker
condition and easily verified for many DGPs; see Gallant (1987), Gallant and White (1988), David-
son (1994), Potscher and Prucha (1997), and de Jong (2009). However, there are no works on the
sufficient conditions for the NED of {Yi,},T:1 when the models include both nonlinear ARX and
nonlinear ARCHX/GARCHX error. We conjecture that one can apply NED to study our model but
the proofs are much more complicated in various places. For this reason, we adopt the notion of
conditional strong mixing.
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8+40 .
RS &o (K) for some non-decreasing

relax this assumption to supy sup; , E | pit’k’
function {y (-) to include more sieve bases.

Assumption 7 imposes some restrictions on the eigenvalues of W and Q. As-
sumption 8 specifies the relative rates at which N, T, and K pass to infinity. Note

that we allow for N/T = ¢ € [0,00]. When N/T € (0,0), the assumption reduces to

N/K"4 4 K?/N —0,i.e., K € (N¥/7, N'/?),
Asymptotic distribution

Let Vi (x) = pX (x)) W1QW1pK (x) and Anr = \/NTVKA/2 (x). Let by, by, and

bz denote K x 1 vectors whose kth elements are respectively given by

1 1
bl,k = Ntr [PfoE@ (e’Pk)} ,b27k = ?tr [E@ (ee’) M;LoPkCI)} ,and
byx = %tr (Eo (¢/e) MpoP].

Define

Bx (x) —AnTPS ()W (T by + N7 by + T7'b3)

= —iyrbi (x) — Kby (x) — knrbs (x) (3.3.9)

where kyr = \/N/T. Clearly, b, (x) = V,;l/z (x) pX (x) Wb, for s = 1,2,3. We
establish the asymptotic normality of g (x) in the following theorem.

Theorem 3.3.2 Suppose that Assumptions 1-8 hold. Then
A d
Ant [8(x) =g (x)] = Bk (x) = N (0,1)
as (N,T) — oo.

Remark 2. The proof of the above theorem is quite complicated despite the fact
that we establish the asymptotic normality by a version of martingale central limit
theorem. Let ayy = Ay pX (x)'WATTl. Theorem 3.3.1 suggests that the leading
terms in the expansion of Ayr [¢ (x) — g (x)] are given by aNTC](VlT), aNTCI(sza), and

aNTC](\,Z}b). aNTC](\,lT) contributes to both the asymptotic variance and asymptotic bias

term (—Ky7b; (x)). The latter also arises in linear dynamic panel data models and
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is caused by the endogeneity of Z;; defined in (3.3.2):
1 < 1
Eg(Ziei) =—= Y, (1=~ | isEq (pisei) #0
T A N
s=t+1
by Assumption 5(iii). It is easy to see that an equivalent expression for b is
T

1 YD
by = N_Z Z Z tsE.Q plSell (3.3.10)

aNTC](\,zfa) contributes to the second bias term, i.e., —ky;by (x), and is caused by
cross-sectional heteroskedasticity of errors conditional on Z; ayrC 1(\,2;9) contributes
to the third bias term, i.e., —Ky7b3 (x), and is caused by serial correlation and het-
eroskedasticity of errors conditional on Z. In the special case where e;;’s are I[ID

conditional on & across both i and ¢, the last two bias terms disappear.

3.3.3 Bias correction

In this section, we propose a bias-corrected estimator for g (x). Let i, be a T x 1
unit vector that has unity at position . For an N x N matrix A, define the di-
agonal truncation of A as A™"P = diag(A), whose (i, j)th element is given by
A;jj1(i = j) with 1(-) being the usual indicator function. Let I'(-) be the trun-
cation kernel: I'(s) = 1(|s| <1). Let M7y be a bandwidth parameter such that
M7 /T +1 /MT — 0 as T — oco. The right truncation of matrix B is defined by
BrneR =y T-1y T T((s—t) /Mr)ii,Bi,.

To construct consistent estimates for the asymptotic bias and variance, we need
consistent estimates of A° and f© under suitable identification restrictions. We use

the same identification restrictions as Bai (2009):
f'f/T = Ig and A’ A = diagonal matrix. (3.3.11)

Given B3, we can obtain (A, f) as the solution to the following set of nonlinear

equations:

[ i( )(Y Pﬁ)]fszNT, (3.3.12)

l:1
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where Vyr 1s a diagonal matrix that consists of the R largest eigenvalues of the

matrix in the above bracket, arranged in descending order, and

iz(il,---,ﬁw) T [( P1ﬁ> (YN—PN1§>]/. (3.3.13)

The projection matrices Py and Pyo can be estimated as follows

A

Py=ff/Tand P, = A(A'A)'1". (3.3.14)

Then M; = Iy — Py, My = Iy — P; and &= F(f/ )Y (ML)~ A are estimators of

Mo, Mo, and @, respectively. The residuals are given by
& =Yy — & (Xu) — M fr. (3.3.15)

Let 0;; = A/(MA/N)T' A, fius = fL (P F/T) 7 fir and Zi = pi — & XY Qujpje —

T ZT 1 NisDis + w7 NT ): -1 Z —1 a,jn,sp]s Then we can define

§>
~
I1l

- 2
IR
L ) 7z,

HMz

1
NT

T A
L X ZuZi O

PK()W F Qv Wy p® (x), a dA = /NT /Vk (x),

mZ

1
NT

-
=
I

which are estimators of Wyr, Qnr, Vg (x) and Anr, respectively. For by, b, and
bz, define their corresponding estimates as lA)l, 227 and 133 whose kth elements are

respectively given by

~ 1 1 ~
bl,k Ntr [(é/Pk)mmCRPf} bz k= ?tl‘ [(AA/)trunCDMiqu) and

~ _ 1 truncD
byp = Ntr[( &) MkaCI)’]
Let
Bx(x) = —Anrp" (x)Wyr (T7 o1+ N7 by +T7'bs)

—K'NT[;1 (x) — K']QTlgz (x) — KNT]Aﬂg (x)
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and

Bre = B+Wyt (T b1 +N""by + T 'b3). (3.3.16)
The bias-corrected estimator of g (x) is given by

8he (x) = p* () Bpe = § (x) —Ay7Bi (). (3.3.17)
To estimate the asymptotic bias and variance consistently, we add the following

assumption.

3426

Assumption 9. (i) As (N,T) — oo, My — coand max{My /T, /& Y5, a2 (1),
M/ 57 8y} — 0;

(ii) As (N,T) — oo,

max(KNT,KIQ}) [K3/2 (K_Y/d-l-@\?Tl)] — 0,
max (iovr K%, it ) (NT) K (K794 832) — o,
ke VKN4 N3 (kY4 VKRS 2) + TNV — 0,

kv VKT V4 33KV VRSGH +NITV — o,

Assumption 9(i) imposes conditions on the bandwidth parameter M7. Assump-
tion 9(ii) seems quite complicated but can be simplified under some extra condi-
tions. If we assume ky7 — ¢ € (0, o), then Assumption 9(ii) reduces to K /N'/3 —
0, K3/2=v/dN1/2 _, o, K1/2-7/ANS/8 0, which, in conjunction with Assumption

8 and the additional requirement y/d > 3/2, implies that K € (N, N'/3), where

_ 1/2 5/8
= maX{ 7/d£3/2’ y/dil/Z}'

The following theorem establishes the asymptotic distribution for the bias-corrected
estimator gy (x) .
Theorem 3.3.3 Suppose that Assumptions 1-9 hold. Then Ayt [gpe (x) — g (x)] LA
N(0,1) as (N,T) — oo.
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3.4 A specification test for linearity

In this section, we consider a specification test for the commonly used linear dy-
namic panel data models with interactive fixed effects. We propose a test statistic
based on the comparison of the linear estimator under the null hypothesis and the

sieve estimator under the alternative.

3.4.1 The hypothesis and test statistic

For the model in (3.1.1), we are interested in testing the null hypothesis:
Ho : Pr [g (Xi) = Xl-’teo} — 1for some 6° € @, (3.4.1)
where © is a compact subset of R?. The alternative hypothesis is
H, : Pr[g(Xir) = X;,0] < 1forall 6 €®. (3.4.2)

To facilitate the asymptotic local power analysis, we shall consider the following

sequence of Pitman local alternatives:
Hi (yvr) : 8 (Xi) = X0 + WwrA (Xi) (3.4.3)

where A(-) = Ayt ()

is a measurable nonlinear function and Yy — 0 as (N,T) — . Let A; =
(AXi1),--,A(Xir)) and A= (Ay,--- ,Ay)'.

We propose a test for Hy versus H; by comparing the L,-distance between two
estimators of g(-), i.e., the linear and sieve estimators. Intuitively, both estimators
are consistent under the null hypothesis of linearity while only the sieve estimator
is consistent under the alternative. So if there is any deviation from the null, the L,-
distance between two estimators will signal it out asymptotically. This motivates us

to consider the following test statistic

=

1=

5 N
e (%) =87 ()| (0,

1
NT !

1

I'nr

1t=1
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where g (x)=x 6, 6 is Moon and Weidner’s (2010, 2012) linear estimator of the
coefficient 8 under Hy, and w (x) is a user-specified nonnegative weighting function.
Similar test statistics have been proposed in various other contexts in the literature;
see, e.g., Hirdle and Mammen (1993) and Hong and White (1995). We will show
that after being appropriately centered and scaled, I'y7 is asymptotically normally

distributed under the null hypothesis of linearity.

3.4.2 The asymptotic distribution under H; (yvyr)

N T N T

Let wax7NT = ]% Zl Z] WilXil‘Xl'/ta wax = E@[wax,NT]a prx7NT = ]% Zl Zl pitXi/lWit,
i=11= i=1i—

and Qupx = Eg [Qwpxn1|- Let Dy be a d x d matrix with its (kj,k>)th element

given by

1
DNT iky = ﬁtr (MAOXklM foX§Q> : (3.4.4)

Let D = E4 [Dyr]. Let Yyr be d X 1 vectors whose kth element is given by
Y7 = Z%tr (M 20X M foA’ ) . We add the following assumptions.
Assumption 10. A(x) is H(y,®)-smooth, and there exists B € RX such that
B8] < oo and [AC) = ¥ () Bl , = 0 (K714).
Assumption 11. (i) 0 < Cp < Uy (Quxx) < p1 (Qux) < Cp < oo as. as (N,T) — 0;
(ii) || Qupx|| < Co < o as. forall K as (N,T) — 0;
(iii) 0 < Cp < g (D) <y (D) < Cp < as. as (N,T) — 0,
where C, C_‘Q, Co, Cp, and Cp are constants that do not depend on K, N, or T.
Assumption 12. As (N,T) — oo, K3 /N — 0, max (knr, Ky ) K~'/* — 0,

KVAYNIT Y a9/ (o) k14 /N Tt — o,

=Mt
max (Kyr, KIQTl) [K5/4 (K_Y/d+6]\7Tl>] — 0,

ke KT VA4 T3/3 (K=Y 4 VKS2) + NI T2 — 0.

Assumption 11 imposes some restrictions on the eigenvalues of certain matrices.

Assumptions 11(i) and (iii) are reasonable as both Q,,,, and D are d x d matrices.
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prp prx

Assumption 11(ii) is a high-level assumption. Let Q,, = , an
Q{zvpx wax

augmented version of Q,,,. In the literature on sieve estimation, it is commonly
assumed that t1; (Qypp) is bounded above from infinity and below from 0 uniformly
in K in large samples. Under this condition and Assumption 11(i), if one further
requires that i) (Q,,) < C < oo, then one can readily demonstrate that HQWPXH2 =
I (QWPXQ{/Vpx) < U1 (Qwpp) 1 (Quxx) < oo. Assumption 12 imposes some require-
ments on (N, T,K,Mr), which are much weaker than that for the bias-correction
of sieve estimator. Note that the case where N/T = ¢ € [0,o] is allowed. If we

3428
restrict ¢ € (0,00), Assumption 12 reduces to K'/4 max{¥Y.7 . oc%“‘s (1), ﬂ} —0

and K3 /N — 0, K € (N",N'/3), where 7; = max{ /(} 23/2, = 1/4} The require-

ment on But it is still necessary to use bias-corrected sieve estimate in specification
testing.

We define the asymptotic bias and variance terms as follows
Byr = tr (W' QuppW Q) and Vyr = 2tr (W10, W 1QW 10, W 1Q) .

The following theorem establishes the asymptotic distribution of our test statistic

under H] (’)/NT).

Theorem 3.4.1 Suppose that Assumptions 1-8 and 10-12 hold. Under H, (ynr)

with wr = (NT) 2V

JNT = (NTFNT —BNT)/\/VNT i> N (AA, 1) N

where AA =plim (N, T)*°°NT Z 1Zr 1 ( X DNTYNT)zw,-t is assumed to exist
and be finite.

Remark 3. The proof of the above theorem is tedious and is relegated to Appendix
B. The idea is to express Jyr as a degenerate second order U-statistic plus some
smaller order terms and then apply de Jong’s (1987) central limit theorem (CLT)
for independent but non-identically distributed (INID) observations. As Su, Jin,

and Zhang (2012) notice, even though the CLT in de Jong (1987) works for sec-
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ond order U-statistics associated with INID observations, a close examination of
his proof shows that it also works for conditionally independent but nonidentically
distributed (CINID) observations. Noting that A* = 0 under Hl, an immediate con-
sequence of the above theorem is that (NTTn7 — Byr) /v/ VT 4N (0,1) under
the null. In view of the fact that Vyr = Op (K), we have yyr = (NT)_I/ 2 V}V/ﬁ =
Op((N T)fl/ 2K'/4). This indicates that Jyr has power to detect local alternatives
that converge to the null hypothesis at the rate (N T)_l/ 214 provided that A2 > 0.
This is the rate we can obtain even if f and A are observable. We obtain this
rate despite the fact that the unobserved factors f° and factor loadings QLZ-O can be
only estimated at slower rates (N~'/2 for the former and T—'/2 for the latter, sub-
ject to certain matrix rotation), which suggests that the slower convergence rates of
the estimates of fto and 7Ll.0 do not have adverse first-order asymptotic effects on the

asymptotic distribution of Jy7.

To implement the test, we propose to estimate By7 and Vyr by I@NT Etr(W]\TT]
&1 A & &1 &1, -1 &1 A

X prp7NTWNT QNT) and VNT = ZtI(WNT prp7NTWNT -QNTWNT prp7NTWNT QNT);

respectively, where Wy = 1%2{\; VYL 747! and Qur = ]\%Zi\lz YT 7,762,

Then we define a feasible test statistic:

fNT = (NTFNT — I@%NT) /\/ VNT- (345)

The following theorem establishes the asymptotic distribution of Jy7 under H; (Wr)-

Theorem 3.4.2 Suppose that Assumptions 1-8 and 10-12 hold. Under H, (Ynr)
with yyr = (NT) ™2 <V, Inr <5 N (A1)
Remark 4. The above theorem implies that Jy7 has nontrivial asymptotic power
against local alternatives that converges to the null at the rate (N T)fl/ ZK'/4 The
asymptotic local power function satisfies Pr(Jyr > z|H (wr)) — 1 — @ (z—A%)
as (N,T) — oo, where ®(+) is the standard normal cumulative distribution function
(CDF).

Under Hy, A% = 0, and Jyr is asymptotically distributed N (0, 1). This is stated

in the following corollary.
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Corollary 3.4.3 Suppose that Assumptions 1-8 and 11-12 hold. Then under H,
A d

Iyt = N(0,1).

Remark 5. In principle, one can compare Jyr with the one-sided critical value zg,
the upper oth percentile from the standard normal distribution, and reject the null
when Jyr > zq at the « significant level. An alternative approach is to use bootstrap

critical values or p-values to conduct an asymptotic test.

Remark 6. To understand the asymptotic behavior of Jy7 under global alternatives,
we need to study the asymptotic property of 6 under H,. In this case, we define a

pseudo-true parameter 6* as the probability limit of . Then

AXy) =g (Xy) — X, 07

is not equal to 0 ass.. Let A; = [A(X;1), - ,A(Xir)]’ for i=1,..,N and A =
(A, ,AN)/. With an additional assumption [|A|| = 0p[(NT)1/2],we can show
that § — 0* = Dy Ynr +o0p (1), where Tyr is a d x 1 vector whose kth element
is given by Yyrx = (N T)fltr(M;LoXkM foA’ ). By some calculations, we can show
that Tvy = 5 XV X7 A(Xir)* wie +0p (1) = Op (1). This, together with the fact
that Byr = Op (K) and Var = Op(v/K) under H;, implies that our test statistic
Jyt diverges at the rate Op(NT /+/K) under Hy. That is, Pr(Jyr > byr|H;) — 1
as (N,T) — oo under H; for any nonstochastic sequence byt = o(NT /+/K). So our

test achieves consistency against any global alternatives.

Remark 7. With a little modification, our test can also be applied to testing for
the specification of various other models with interactive fixed effects. First, one
can consider a partially linear panel data model with interactive fixed effects where
g(Xir) = g1 (X14) + OS’XQJ,, X; = (Xl’vit,Xz’viJ/, and g (+) is an unknown smooth
function. In this case, the hypotheses are HJ, : Prlg; (X1 ;) = 6'X; ;1] = 1 for some
9{) € 0y v.s. Hj : Prlg; (X)) # 0{X1#) < 1 for all 6; € ®;. One can continue to
apply our test by estimating the model under the null and under the general non-

parametric alternative for g (-) without imposing its partially linear structure. But

this test may suffer some loss of efficiency as it does not impose the partially linear
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structure under the alternative. Alternatively, one can establish the asymptotic dis-
tribution theory for the sieve estimator for the partially linear model and compare
it with the linear estimator under the null. The asymptotic distribution theory for
the resulting test statistic is similar to what we have above. We omit the details to
save space. Second, our test can also be applied to models that include both additive
and multiplicative fixed effects. Let (A,,1,...,A4n) be the N individual fixed effects.
We can write the common component as A, f,; + ll-o’ f,O = ftl-o’ ]?,0 for individual i
at time period 7, where f,, = 1, f0 = (1,£%), and 1% = (A,;,A”)". In this case,
fas 1s known. We can obtain the sieve QMLE without estimating f; ; in the opti-
mization process. With some minor modifications, we can establish the asymptotic
distributions for the resulting estimator and test statistic. Third, we can also mod-
ify our test statistic to test for the hypotheses: H : Prig(X;) =0] =1 v.s. HY :
Pr[g (Xi;) = 0] < 1. This testing problem is particularly important in the nonlinear
autoregressive panel data models (e.g., Yy = g (Y;—1) + ll-o' f,O + ejr) because it is
equivalent to testing for the presence of dynamic effects. It is also important to test
the presence of anomaly effects in the factor pricing literature. Apparently we can
compare the sieve estimate of g(-) with O to construct a test statistic, which is a

special case of our test.

3.4.3 A bootstrap version of the test

Despite the fact that Jy7 is asymptotically N (0, 1) under the null, it is not wise to
rely on the asymptotic normal critical values to make statistical inference in finite
samples because of the nonparametric nature of our test. In addition, even though
the slow convergence rates of our factors and factor loadings estimates do not affect
the asymptotic normal distribution of our test statistic, they tend to have adverse
effects in finite samples (see, Su and Chen, 2013). As a result, tests based on stan-
dard normal critical values tend to suffer severe size distortions in finite samples.
Therefore it is worthwhile to propose a bootstrap procedure to improve the finite

sample performance of our test. As Neumann and Paparoditis (2000) note, it is
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not necessary to reproduce the whole dependence structure of the original data to
get a correct estimator of the null distribution of the testing statistic. In the spirit of
Hansen (2000), we propose a fixed-regressor wild bootstrap method. The procedure

goes as follows:

1. Under Hy, obtain the linear estimators é, ﬁ(l), ii(l), and él(tl ), where the su-

perscript “(1)” denotes estimates under the null hypothesis of linearity; under
Hl;, obtain the bias-corrected sieve estimators: 3;,c, f,, i,-, and é;;. Calculate

the test statistic Jy7 based on g (Xj) = ﬁécpK (Xi), 0'X;;, Xi, £, and é;.

2. For i = 1,...,N, obtain the wild bootstrap errors {ej-‘t}tT:1 as follows: e}, =
(1)

viré;,” where vy are IID N (0,1). Then generate the bootstrap analogue Y;; of
Y;; by holding (X,-,,f,(l) , ii(l)) as fixed: ¥ =X/ 6+ ii(l)/ﬁ(l) +e fori=1,....N

andr=1,...,T.

3. Given the bootstrap resample {Y;, X;; }, obtain the sieve QMLESs g, . (Xi), A

7
F* and ¢, and the linear estimators 0*, jt.(l)*, A and é(l)*. Calculate the
t it i 1 it

bootstrap test statistic /5 based on g%, (X;;), X/,0%, f, 1, and &.

B

4. Repeat Steps 2-3 for B times and index the bootstrap statistics as {J NT b}b "

Calculate the bootstrap p-value: p* = B~! 25:1 l(f;(,T p > Int).

It is straightforward to implement the above bootstrap procedure. Note that we
impose the null hypothesis of linearity in Step 2. Since the regressors are treated
as fixed, there is no dynamic structure in the bootstrap world. The next theorem
implies the asymptotic validity of the above bootstrap procedure.

Theorem 3.4.4 Suppose that the conditions in Theorem 3.4.2 hold. Then JA;\}T 4
N (0,1) in probability, where 4 denotes weak convergence under the bootstrap

probability measure conditional on the observed sample Wyt = {(Xit,Y) 1 i =
l,.,N,t=1,...T}

The above result holds no matter whether the original sample satisfies the null,

the local alternative, or the global alternative hypotheses. If Hy holds, Jy7 converges
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in distribution to N (0,1) so that a test based on the bootstrap p-value will have
the correct asymptotic level. If H; holds for the original sample, Jyr diverges at
NT /v/K whereas J3; still converges to N (0, 1) with some additional assumptions,

which implies that the bootstrap test is consistent.

3.5 Monte Carlo simulations

In this section, we conduct a small set of Monte Carlo simulations to evaluate the

finite sample performance of our estimators and test.

3.5.1 Data generating processes

We consider the following data generating processes (DGPs):
DGP 1: Yi[ = %Yi,l—l "‘AiO/f[O +eil7

DGP 2: Yy = 5Yis 1+ X+ A" ) +eur,
exp(tim1-¥2 )
I4exp (Y1 —Y7,

ir—1

DGP 3: ¥ = 1%, +1] AP S e,
DGP4: Yy = §;, 1+ 3@ (Y1 Y2, ) = S+ 420 + i,

DGP 5: Yy = 5Y;,—1 + 1[0 (Yiem1) — =]+ 5[0 (X1i) — =] + AV 2 + eyt

V2 21
DGP6: YV, = 1v; IX10[® Yigo1) — A4 1[0 (X1i0) — =] + AV O +e
< Iy > l,t—1+4 l,lt[ (l,t—l) 2]+2[¢< l,zt) \/E]—i_ ; ;T eir,

where lio = (lﬁ,?tl%)l, o= (ftol,ft%)/, i=1,.,N,t=1,...,T,®(-) and ¢ (-) are
the standard normal CDF and PDF, respectively. The regressors X ;; in DGPs 2,
5, and 6 are generated according to X ; = 0.504 , + O.SQL)gilfl(i + O.Sl)gizfloz + &,
where /liq , JLZ%, &8”, l)giz, and €; are [ID N (0, 1), fg, f,%, and e; are IID N (0,0.25),
0;  are IID U[—0.25,0.25], and they are mutually independent of each other. Clearly,
the exogenous regressor X ;; has a factor structure and is correlated with the com-
mon factors £ and fto2 All the above six DGPs are used to evaluate the finite sample
performance of our estimator and test statistic. In the specification testing for lin-
earity, DGPs 1-2 and 3-6 are used for level and power studies, respectively. For all
DGPs, we discard the first 200 observations along the time dimension when gener-

ating the data.

Note that the idiosyncratic error terms in the above six DGPs are all homoskedas-
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tic (conditionally and unconditionally). To investigate the effect of conditional het-
eroskedasticity for the estimation and testing, we consider another set of DGPs,
namely, DGPs 1h-6h, which are identical to DGPs 1-6, respectively, in the mean
regression components but different from the latter in error terms. For DGPs 1h, 3h-
4h, we generate the errors as follows ej; = v/hi:€;, hiy = 0.1 —|—O.2Yi721_17

N(0,1). For DGPs 2h, 5h-6h, the errors are generated according to e;; = v/h; €,

and g; ~IID

hig = 0.1+0.1Y7_; +0.1X7,;, and & ~IID N(0,1).

3.5.2 Estimation: implementation and evaluation

In each DGP, we compute six estimators. We first compute the sieve estimate g (x)
and its bias-corrected version gp. (x). Then we compute the bias-corrected infea-
sible estimate g;r (x) which is obtained by treating { f,O}IT:1 as observables. We
also calculate another three estimates by pretending the regression function takes
the commonly assumed linear functional form and term them as the linear QMLE
8W (x), its bias-corrected version gl(fc) (x), and the infeasible linear estimate g§2 (x)
by treating the factors as observables, respectively. The infeasible estimates g%ﬁ (x)
and g;r (x) provide a reference for efficiency comparison in DGPs 1-2 (or 1h-2h)
and 3-6 (or 3h-6h), respectively. Compared with the sieve estimates (¢ (x) , £ (X)),
the linear estimates (3) (x), gglc) (x)) signify the bias due to functional form mis-
specification in DGPs 3-6 or 3h-6h. Although there is no conditional heteroskedas-
ticity across i, or serial correlation or heteroskedasticity across ¢ for some DGPs
(e.g., DGPs 1-6), we correct all three bias terms to obtain g, (x) and gé’g (x).

To obtain these estimates, we need to choose the bandwidth My for the bias
correction. Throughout the simulation, we use My = {Tl/ 7J . The cubic B-spline is

adopted as the sieve basis in all DGPs. The basis b; ,, of a B-spline of degree n > 1

(of order m = n—+ 1) is given recursively by

bin(x) = Qjn(x)bja1(X)+[1 =10 ()] bjr1a-1(x),

bjo(x) = 1(x€[vj,vi1)),
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X—Vj

where o, (x) = 1 (v j4n FV j) and {v j}jié is a sequence of non-decreasing

Vitn=Vj
real numbers (i.e., knots). We can approximate any smooth scalar function B (x) by

J+m—1

=g forxe [vo,vs+1]. For more details on the

a linear combination of {b; , (x)
recursive construction of B-spline basis, see Racine (2012). In DGPs 1, 3, 4, 1h, 3h,

and 4h where g (x) is a univariate function, we use the cubic B-spline basis (n = 3)

/
P ) = 663 00,600 )+ b5 0] (3.5.1)

where the superscript “(Y)” denotes its correspondence to {Y,-.,,,I } The knots
{Vyd}ji(l) are chosen as the empirical quantiles of {Y;;_1,i=1,...,.N,tr=2,...,T},
i.e., v, j denotes the j/(J+ 1)th sample quantile of {¥;,_1}. So the total number of
approximating terms in the sieve basis is given by K =J+4. In DGPs 2, 5, 6, 2h, 5h,
and 6h, we consider two choices of sieve bases depending on whether we impose
additivity on g (y,x) or not. When we impose additivity, i.e., g (y,x) = g1 (v) + g2 (x),

the basis can be chosen as follows

PX (,x) = [y ) px " ()] (3.5.2)

where py (x) = [ ( ),b%) (x),--- ,bﬁ)zj (x)]" with b%) (x) being analogously
Y)

/—\

defined as b ( ). For convenience, we adopt the same number of knots for dif-

(X)

ferent regressors. Note that we leave the last element b5 5 (x) out of p

J:3

J+3< ) to

avoid perfect multicollinearity as Zj+(3) bE 3) (x) = 1. For this case, the total number
of approximating terms is K = 2J 4 7. When we do not impose additivity, the basis

is chosen as follows

PR X)) =[P () @ p™ ()] (3.5.3)

where ® denotes the tensor product. Then the total number of approximating terms
is K = (J+4). Even for as small values as J = 3, 4, and 5, we have K = 49, 64,
and 81 terms in the sieve estimation, respectively. In all cases, to evaluate how the
estimators are sensitive to the choice of J, we consider choosing J = [C (NT) 1/ 73

forC=1,1.5,and 2.3

3Alternatively one can follow, e.g., Lee (2010), to use the leave-one-out cross-validation (CV) to
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We consider the (N, T) pairs with N, T = 20, 40, and 60. To evaluate the finite

sample performance of different estimators, we first calculate the root mean squared

error (RMSE) for each replication: RMSE(g) = ﬁ ‘)]%1 t%’l 18 (Xi) — g (Xi))* a (Xir),
where a (+) is used to trim out 2.5% tail observations ;{on; each tail of each dimen-
sion of Xj;. Then we obtain the average RMSE (ARMSE) by averaging RMSE(2)
across 2000 replications, where g is a generic estimator of g. Other evaluation
criteria like the median of RMSE, the average or median mean absolute deviation
are also considered and they tend to yield qualitatively similar behavior for vari-
ous estimators considered here. We only report the results based on the ARMSE
to conserve space. Tables 3.1-3.2 report the estimation results for homoskedastic
or heteroskedastic errors, respectively, when we do not impose additivity for the
bivariate regressions in DGPs 2, 5, 6, 2h, 5h, and 6h. Table 3.3 reports the estima-
tion results for the latter six DGPs when we impose additivity. We summarize some
important findings. First, for all DGPs, the ARMSEs for g, §,. and g;r decrease
as either N or T increases. The results for homoskedastic and heteroskedastic er-
rors are similar. Second, as expected, when the regression functions are linear in
DGPs 1, 2, 1h, and 2h, the linear estimate is more efficient than sieve estimate;
when the regression functions are nonlinear, the sieve estimates (bias-corrected or
not) outperform the linear estimates in terms ARMSE significantly, and the ARM-
SEs of the linear estimates tend to be stabilized at some large constant due to their
inconsistency in the case of misspecification of functional form. Third, the bias
correction works well for almost all DGPs and sample combinations (N, 7) under
investigation. The reduction of the percentage of ARMSE due to the bias correction
is diminishing as 7" increases, which is consistent with our asymptotic result that
the dominant first bias term is of order Op(v/K /T). Fourth, the infeasible estimates

always beat the feasible ones but the differences in ARMSE:s for different types of

estimates are shrinking as either N or T increases. Fifth, when additivity is cor-

choose K adaptively. Another possibility is to apply the Lasso-type techniques to achieve simultane-
ous variable selection and estimation; see, e.g., Tibshirani (1996) and Fan and Li (2001). We leave
these as a future research topic.
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rectly imposed for the bivariate regressions in DGPs 2, 5, 2h, and 5h, a comparison
across the three tables suggests it leads to more precise estimation and significant
reductions of ARMSEs for all estimates under investigation when compared with
the case it is not imposed. When additivity is not correctly imposed for DGPs 6 and
6h, it generally results in large ARMSEs in large samples; exceptions may occur
when there are too many sieve approximation terms that tend to result in large vari-
ance. Lastly, the above results are kind of robust for the three choices of J for both

univariate regressions and additive bivariate regressions.

3.5.3 Testing: implementation and evaluation

To conduct the specification test, we choose the same M7, J, and basis functions as
in the estimation stage. We use w (Xj;) = 1 (X;; € % ) where % is chosen to trim out
2.5% tail observations along each tail of each dimension of X;;. For the bivariate
regression function g in DGPs 2, 5, 6, 2h, 5h, and 6h, we only consider the test by
imposing additivity of g although g has nonadditive nonlinear component in DGPs
6 and 6h. For each scenario, we consider 250 replications and adopt 200 bootstrap
resamples in each replication for both the size and power studies.

Tables 3.4-3.5 report the empirical rejection frequencies of our test at 1%, 5%,
and 10% nominal levels for the case of homoskedastic and heteroskedastic errors,
respectively. We summarize some important findings from these tables. First, when
the null hypothesis of linearity holds in DGPs 1, 2, 1h, and 2h, these tables suggest
that the level of our test behaves reasonably well for almost all DGPs, sample sizes,
and all choices of J under investigation despite the fact that slight to moderate size
distortions may occur in the case of heteroskedastic errors terms. Second, the power
of our test generally increase very fast as either N or T increases, and it not very

sensitive to the choice of J.
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Table 3.1: ARMSE comparison for DGPs 1-6: homoskedastic errors

C=1 C=1.5 C=2 Linear
I 4 A 4 A 5 4 4 NOE U
DGP N T 8 8be 8IF 8 8be 8IF 8 8be 8IF & 8pe  8IF
1 20 20 0.0575 0.0559 0.0453 0.0639 0.0625 0.0520 0.0688 0.0675 0.0572 0.0304 0.0277 0.0135
40  0.0384 0.0380 0.0310 0.0408 0.0406 0.0342 0.0475 0.0474 0.0410 0.0206 0.0199 0.0105
60 0.0307 0.0303 0.0248 0.0364 0.0361 0.0309 0.0388 0.0385 0.0337 0.0157 0.0152 0.0085
40 20 0.0401 0.0384 0.0317 0.0439 0.0422 0.0358 0.0511 0.0497 0.0440 0.0240 0.0212 0.0107
40  0.0268 0.0262 0.0216  0.0319 0.0314 0.0272  0.0344 0.0339 0.0296 0.0147 0.0140 0.0072
60 0.0230 0.0227 0.0195 0.0248 0.0245 0.0215 0.0289 0.0287 0.0258 0.0117 0.0113 0.0061
60 20 0.0347 0.0322 0.0268 0.0401 0.0379 0.0331 0.0424 0.0403 0.0356 0.0209 0.0175 0.0085
40  0.0230 0.0226 0.0197  0.0253 0.0249 0.0222 0.0289 0.0285 0.0261 0.0115 0.0105 0.0059
60 0.0181 0.0178 0.0159 0.0195 0.0192 0.0174 0.0224 0.0222 0.0204 0.0088 0.0082 0.0046
2 20 20 0.1107 0.1102 0.0844 0.1312 0.1312 0.1025 0.1480 0.1472 0.1194  0.0297 0.0294 0.0251
40  0.0843 0.0841 0.0566  0.0932 0.0931 0.0675 0.1076 0.1072 0.0913  0.0187 0.0186 0.0158
60 0.0732 0.0731 0.0459 0.0772 0.0772 0.0652 0.0844 0.0842 0.0747 0.0156 0.0156 0.0133
40 20 0.0860 0.0858 0.0594  0.0960 0.0959 0.0709 0.1142 0.1128 0.0947 0.0192 0.0190 0.0170
40  0.0679 0.0679 0.0402 0.0685 0.0685 0.0572 0.0729 0.0726 0.0658 0.0127 0.0125 0.0113
60 0.0583 0.0581 0.0394 0.0630 0.0629 0.0462  0.0659 0.0657 0.0605 0.0100 0.0100 0.0094
60 20 0.0756 0.0755 0.0480 0.0828 0.0824 0.0681 0.0912 0.0904 0.0778 0.0156 0.0154 0.0141
40  0.0592 0.0591 0.0405 0.0643 0.0643 0.0477 0.0676 0.0673 0.0623 0.0110 0.0108 0.0100
60 0.0511 0.0511 0.0322 0.0544 0.0543 0.0381 0.0566 0.0566 0.0500 0.0084 0.0084 0.0077
3 20 20 0.0590 0.0576 0.0468 0.0647 0.0634 0.0523 0.0686 0.0673 0.0563  0.0963 0.0956 0.1017
40  0.0398 0.0395 0.0326 0.0426 0.0424 0.0359 0.0490 0.0488 0.0429 0.0928 0.0929 0.1036
60 0.0308 0.0305 0.0259 0.0371 0.0368 0.0321  0.0392 0.0390 0.0344 0.0923 0.0924 0.1046
40 20 0.0410 0.0397 0.0336 0.0443 0.0431 0.0371 0.0511 0.0501 0.0442  0.0934 0.0933 0.1038
40  0.0276 0.0271 0.0230 0.0317 0.0313 0.0274 0.0339 0.0336 0.0297 0.0905 0.0906 0.1033
60 0.0245 0.0243 0.0214 0.0261 0.0259 0.0231 0.0294 0.0293 0.0264 0.0912 0.0913 0.1045
60 20 0.0346 0.0326 0.0278 0.0405 0.0386 0.0340 0.0423 0.0406 0.0361  0.0902 0.0899 0.1016
40  0.0245 0.0241 0.0217 0.0264 0.0260 0.0236  0.0297 0.0293 0.0272  0.0900 0.0902 0.1035
60 0.0192 0.0190 0.0173  0.0203 0.0201 0.0183  0.0232 0.0230 0.0213 0.0895 0.0897 0.1031
4 20 20 0.0591 0.0576 0.0472 0.0645 0.0632 0.0523 0.0687 0.0674 0.0566  0.0869 0.0861 0.0892
40 0.0404 0.0401 0.0336  0.0424 0.0422 0.0360 0.0486 0.0484 0.0425 0.0831 0.0832 0.0905
80 0.0324 0.0321 0.0278 0.0373 0.0370 0.0323 0.0394 0.0391 0.0345 0.0825 0.0825 0.0912
40 20 0.0417 0.0403 0.0346  0.0445 0.0432 0.0373 0.0509 0.0498 0.0440 0.0838 0.0836 0.0905
40  0.0293 0.0288 0.0253  0.0322 0.0318 0.0280 0.0343 0.0340 0.0300 0.0808 0.0809 0.0901
60  0.0252 0.0250 0.0223  0.0263 0.0262 0.0234 0.0293 0.0291 0.0262 0.0814 0.0815 0.0911
60 20 0.0358 0.0338 0.0294 0.0405 0.0386 0.0340 0.0424 0.0406 0.0361 0.0809 0.0805 0.0888
40  0.0254 0.0250 0.0227  0.0268 0.0264 0.0241 0.0300 0.0296 0.0274  0.0804 0.0805 0.0903
60 0.0203 0.0201 0.0185 0.0209 0.0207 0.0190 0.0232 0.0230 0.0213  0.0798 0.0800 0.0898
5 20 20 0.1176 0.1132 0.0831  0.1403 0.1344 0.0990 0.1623 0.1552 0.1145 0.0893 0.0872 0.0785
40  0.0742 0.0723 0.0537 0.0893 0.0864 0.0655 0.1224 0.1182 0.0899 0.0803 0.0799 0.0768
60 0.0594 0.0586 0.0435 0.0854 0.0834 0.0628 0.0989 0.0965 0.0721 0.0787 0.0784 0.0760
40 20 0.0842 0.0786 0.0576  0.1024 0.0951 0.0688 0.1374 0.1276 0.0929  0.0825 0.0809 0.0762
40  0.0536 0.0520 0.0382 0.0783 0.0753 0.0555 0.0911 0.0877 0.0645 0.0776 0.0773 0.0755
60  0.0504 0.0493 0.0378 0.0629 0.0611 0.0449 0.0831 0.0807 0.0590 0.0780 0.0778 0.0760
60 20 0.0677 0.0638 0.0467 0.0996 0.0928 0.0668 0.1135 0.1059 0.0769  0.0798 0.0791 0.0752
40  0.0521 0.0503 0.0383  0.0655 0.0629 0.0456 0.0862 0.0827 0.0598 0.0774 0.0771 0.0753
60 0.0419 0.0410 0.0313 0.0522 0.0507 0.0372 0.0704 0.0683 0.0491 0.0773 0.0771 0.0755
6 20 20 0.1164 0.1121 0.0832 0.1400 0.1343 0.0988 0.1611 0.1542 0.1144 0.0885 0.0867 0.0792
40  0.0732 0.0713 0.0540 0.0886 0.0859 0.0660 0.1220 0.1180 0.0907  0.0802 0.0798 0.0771
60  0.0585 0.0577 0.0433 0.0850 0.0830 0.0626  0.0981 0.0957 0.0718 0.0781 0.0780 0.0761
40 20 0.0835 0.0781 0.0575 0.1010 0.0940 0.0688  0.1354 0.1260 0.0928  0.0820 0.0804 0.0765
40  0.0524 0.0510 0.0381 0.0777 0.0748 0.0555 0.0904 0.0869 0.0645 0.0776 0.0773 0.0761
60 0.0495 0.0485 0.0377 0.0619 0.0602 0.0447 0.0820 0.0797 0.0586 0.0778 0.0777 0.0765
60 20 0.0664 0.0627 0.0466  0.0983 0.0916 0.0668  0.1121 0.1048 0.0772  0.0790 0.0784 0.0755
40  0.0512 0.0496 0.0384 0.0648 0.0623 0.0456  0.0854 0.0820 0.0599 0.0771 0.0769 0.0757
60 0.0402 0.0394 0.0312 0.0510 0.0496 0.0370 0.0691 0.0671 0.0487 0.0770 0.0769 0.0761

62



Table 3.2: ARMSE comparison for DGPs 1h-6h: heteroskedastic errors

C=1 C=1.5 C=2 Linear
PP > s o P U
DGP N T 8 8bc 8IF 8 8bc 8IF 8 8bc 8IF 8 be  8IF
1Th 20 20 0.0724 0.0693 0.0531 0.0765 0.0733 0.0558 0.0802 0.0770 0.0596  0.0527 0.0488 0.0299
40  0.0488 0.0480 0.0381 0.0517 0.0510 0.0406  0.0560 0.0554 0.0449 0.0346 0.0326 0.0216
60  0.0389 0.0385 0.0314  0.0429 0.0426 0.0348 0.0446 0.0443 0.0363 0.0249 0.0235 0.0179
40 20 0.0492 0.0474 0.0384  0.0528 0.0511 0.0415 0.0575 0.0559 0.0462  0.0381 0.0333 0.0219
40  0.0334 0.0329 0.0271 0.0368 0.0365 0.0302  0.0385 0.0381 0.0317 0.0228 0.0211 0.0141
60  0.0290 0.0288 0.0242  0.0304 0.0302 0.0256  0.0327 0.0324 0.0278 0.0211 0.0203 0.0141
60 20 0.0454 0.0420 0.0329  0.0509 0.0477 0.0371 0.0525 0.0494 0.0390 0.0340 0.0288 0.0177
40  0.0299 0.0293 0.0248 0.0314 0.0308 0.0262  0.0332 0.0326 0.0280 0.0199 0.0185 0.0128
60  0.0234 0.0230 0.0194 0.0244 0.0239 0.0204 0.0261 0.0256 0.0220 0.0156 0.0150 0.0101
2h 20 20 0.1447 0.1450 0.1161 0.1685 0.1682 0.1317 0.1806 0.1791 0.1481 0.0483 0.0474 0.0453
40  0.1050 0.1053 0.0777 0.1164 0.1161 0.0890 0.1274 0.1267 0.1124  0.0345 0.0342 0.0327
60  0.0899 0.0898 0.0620  0.0928 0.0926 0.0806  0.1003 0.0997 0.0898 0.0264 0.0262 0.0245
40 20  0.1054 0.1051 0.0794 0.1161 0.1158 0.0911 0.1337 0.1320 0.1151 0.0340 0.0326 0.0310
40  0.0802 0.0802 0.0549  0.0825 0.0824 0.0720  0.0860 0.0856 0.0807 0.0230 0.0228 0.0220
60  0.0695 0.0695 0.0521 0.0755 0.0755 0.0589 0.0764 0.0761 0.0724  0.0194 0.0192 0.0180
60 20 0.0910 0.0910 0.0659  0.0976 0.0971 0.0861 0.1076 0.1062 0.0960  0.0269 0.0267 0.0253
40  0.0688 0.0686 0.0513 0.0736 0.0735 0.0580 0.0761 0.0758 0.0726  0.0195 0.0192 0.0180
60  0.0598 0.0598 0.0433 0.0630 0.0630 0.0489 0.0676 0.0676 0.0605 0.0166 0.0165 0.0159
3h 20 20 0.0813 0.0777 0.0612  0.0850 0.0815 0.0634  0.0873 0.0838 0.0660 0.1139 0.1119 0.1087
40  0.0545 0.0542 0.0461 0.0576 0.0573 0.0479 0.0613 0.0610 0.0509  0.1018 0.1023 0.1080
60  0.0453 0.0449 0.0382  0.0493 0.0490 0.0409 0.0504 0.0502 0.0417 0.1013 0.1015 0.1089
40 20  0.0566 0.0547 0.0455 0.0596 0.0576 0.0476  0.0634 0.0617 0.0511 0.1024 0.1017 0.1077
40  0.0399 0.0396 0.0347  0.0422 0.0418 0.0359 0.0430 0.0426 0.0364  0.0970 0.0975 0.1056
60  0.0356 0.0354 0.0309 0.0365 0.0362 0.0315 0.0368 0.0365 0.0317 0.0976 0.0981 0.1073
60 20  0.0520 0.0494 0.0408 0.0562 0.0534 0.0433 0.0577 0.0550 0.0444  0.0989 0.0981 0.1045
40  0.0350 0.0346 0.0307 0.0360 0.0356 0.0314 0.0375 0.0370 0.0320 0.0954 0.0963 0.1057
60  0.0299 0.0297 0.0267  0.0301 0.0298 0.0266  0.0303 0.0300 0.0263 0.0948 0.0953 0.1041
4h 20 20 0.0788 0.0754 0.0598  0.0815 0.0783 0.0611 0.0837 0.0805 0.0638 0.1023 0.1002 0.0956
40  0.0543 0.0541 0.0466  0.0559 0.0556 0.0464 0.0596 0.0592 0.0489  0.0914 0.0914 0.0940
80  0.0461 0.0458 0.0402 0.0476 0.0473 0.0396  0.0485 0.0483 0.0402  0.0899 0.0899 0.0944
40 20  0.0565 0.0548 0.0468  0.0581 0.0564 0.0470 0.0611 0.0596 0.0496  0.0921 0.0912 0.0936
40  0.0413 0.0410 0.0372  0.0403 0.0400 0.0346  0.0410 0.0407 0.0348 0.0866 0.0867 0.0915
60  0.0349 0.0347 0.0306 0.0352 0.0350 0.0307 0.0357 0.0354 0.0304 0.0866 0.0869 0.0928
60 20 0.0515 0.0490 0.0417  0.0539 0.0512 0.0414  0.0552 0.0524 0.0423 0.0888 0.0877 0.0909
40  0.0347 0.0343 0.0305 0.0350 0.0345 0.0305 0.0356 0.0351 0.0305 0.0851 0.0856 0.0915
60  0.0296 0.0294 0.0265 0.0291 0.0288 0.0257 0.0287 0.0284 0.0248 0.0841 0.0845 0.0899
5h 20 20 0.1213 0.1200 0.0889  0.1444 0.1380 0.1042  0.1627 0.1520 0.1184  0.0937 0.0915 0.0833
40  0.0777 0.0773 0.0623 0.0878 0.0876 0.0716  0.1102 0.1088 0.0924  0.0843 0.0836 0.0804
60  0.0649 0.0641 0.0499 0.0816 0.0802 0.0661 0.0939 0.0919 0.0738 0.0808 0.0806 0.0788
40 20 0.0855 0.0826 0.0615 0.0992 0.0953 0.0726  0.1293 0.1210 0.0942  0.0846 0.0826 0.0786
40  0.0548 0.0542 0.0439  0.0745 0.0728 0.0580  0.0842 0.0822 0.0663 0.0794 0.0789 0.0774
60  0.0512 0.0505 0.0407 0.0591 0.0582 0.0462 0.0773 0.0751 0.0584  0.0776 0.0774 0.0769
60 20 0.0706 0.0674 0.0506  0.1006 0.0931 0.0683 0.1129 0.1042 0.0768 0.0830 0.0815 0.0785
40  0.0514 0.0505 0.0408  0.0609 0.0587 0.0473 0.0783 0.0752 0.0596  0.0775 0.0772 0.0763
60  0.0432 0.0422 0.0338 0.0510 0.0502 0.0384 0.0670 0.0651 0.0487 0.0772 0.0770 0.0766
6h 20 20 0.1229 0.1193 0.0904  0.1423 0.1368 0.1040 0.1598 0.1526 0.1177 0.0931 0.0908 0.0846
40  0.0813 0.0796 0.0603 0.0935 0.0907 0.0711 0.1208 0.1164 0.0915 0.0825 0.0819 0.0798
60  0.0649 0.0643 0.0487 0.0853 0.0833 0.0652  0.0965 0.0941 0.0732  0.0795 0.0793 0.0776
40 20  0.0895 0.0849 0.0635 0.1048 0.0974 0.0732  0.1351 0.1250 0.0947 0.0872 0.0841 0.0796
40  0.0563 0.0552 0.0428 0.0785 0.0755 0.0575 0.0890 0.0854 0.0650  0.0790 0.0785 0.0775
60  0.0530 0.0521 0.0409 0.0618 0.0602 0.0472 0.0789 0.0767 0.0594  0.0784 0.0783 0.0774
60 20 0.0730 0.0692 0.0513 0.1005 0.0933 0.0691 0.1127 0.1048 0.0782  0.0818 0.0803 0.0776
40  0.0553 0.0539 0.0419  0.0650 0.0625 0.0478 0.0825 0.0792 0.0598 0.0781 0.0777 0.0766
60  0.0436 0.0429 0.0345 0.0507 0.0492 0.0392  0.0660 0.0639 0.0494 0.0775 0.0774 0.0767
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Table 3.3: ARMSE comparison for DGPs 2, 5, 6, 2h, 5h, and 6h: additivity is imposed

C=1 C=1.5 Cc=2 Linear

DGP N T g o o o 4 0 s g g o) g\ 50
8 8bc 8IF 8 8bc 8IF 8 8bc 8IF 8 8pe  8IF

2 20 20 0.1105 0.0933 0.0636  0.1034 0.1032 0.0715  0.1024 0.1022 0.0785  0.0297 0.0294 0.0251
40  0.0547 0.0546 0.0426  0.0668 0.0668 0.0473  0.0734 0.0734 0.0561  0.0187 0.0186 0.0158

60  0.0445 0.0444 0.0358  0.0599 0.0599 0.0430  0.0607 0.0606 0.0467  0.0156 0.0156 0.0133

40 20 0.0554 0.0553 0.0463  0.0679 0.0677 0.0514  0.0755 0.0756 0.0614  0.0192 0.0190 0.0170

40 0.0377 0.0377 0.0311  0.0523 0.0523 0.0384  0.0533 0.0533 0.0415  0.0127 0.0125 0.0113

60  0.0417 0.0417 0.0293  0.0434 0.0434 0.0324  0.0437 0.0437 0.0374  0.0100 0.0100 0.0094

60 20 0.0446 0.0445 0.0374  0.0610 0.0610 0.0451  0.0606 0.0606 0.0490  0.0156 0.0154 0.0141

40 0.0427 0.0427 0.0291  0.0434 0.0434 0.0316  0.0432 0.0432 0.0365 0.0110 0.0108 0.0100

60  0.0357 0.0357 0.0243  0.0370 0.0370 0.0263  0.0357 0.0357 0.0298  0.0084 0.0084 0.0077

5 20 20 0.0762 0.0748 0.0627  0.0853 0.0839 0.0706  0.0921 0.0909 0.0770  0.0893 0.0872 0.0785
40 0.0465 0.0460 0.0400 0.0514 0.0509 0.0455  0.0605 0.0601 0.0546  0.0803 0.0799 0.0768

60  0.0390 0.0388 0.0343  0.0469 0.0467 0.0421  0.0506 0.0505 0.0461  0.0787 0.0784 0.0760

40 20  0.0517 0.0499 0.0441  0.0567 0.0551 0.0495  0.0650 0.0634 0.0586  0.0825 0.0809 0.0762

40  0.0314 0.0311 0.0281  0.0382 0.0379 0.0347  0.0413 0.0410 0.0381  0.0776 0.0773 0.0755

60  0.0289 0.0287 0.0267  0.0320 0.0317 0.0299  0.0373 0.0371 0.0354  0.0780 0.0778 0.0760

60 20  0.0401 0.0387 0.0347  0.0481 0.0468 0.0431  0.0518 0.0505 0.0471  0.0798 0.0791 0.0752

40 0.0293 0.0289 0.0267  0.0319 0.0316 0.0295  0.0365 0.0362 0.0347  0.0774 0.0771 0.0753

60  0.0225 0.0223 0.0207  0.0248 0.0246 0.0230  0.0289 0.0288 0.0273  0.0773 0.0771 0.0755

6 20 20 0.0916 0.0900 0.0796  0.0976 0.0961 0.0853  0.1034 0.1019 0.0912  0.0885 0.0867 0.0792
40 0.0675 0.0669 0.0620  0.0708 0.0703 0.0652  0.0792 0.0787 0.0732  0.0802 0.0798 0.0771

60  0.0605 0.0604 0.0574  0.0658 0.0657 0.0625  0.0683 0.0681 0.0650  0.0781 0.0780 0.0761

40 20 0.0716 0.0697 0.0648  0.0745 0.0726 0.0677  0.0825 0.0808 0.0758  0.0820 0.0804 0.0765

40  0.0567 0.0564 0.0548  0.0611 0.0608 0.0591  0.0628 0.0626 0.0610  0.0776 0.0773 0.0761

60  0.0552 0.0551 0.0536  0.0566 0.0565 0.0550  0.0595 0.0594 0.0580  0.0778 0.0777 0.0765

60 20 0.0622 0.0613 0.0583  0.0674 0.0665 0.0636  0.0700 0.0691 0.0662  0.0790 0.0784 0.0755

40  0.0549 0.0548 0.0534  0.0564 0.0562 0.0548  0.0592 0.0591 0.0579  0.0771 0.0769 0.0757

60  0.0519 0.0518 0.0512  0.0528 0.0528 0.0520  0.0548 0.0548 0.0541  0.0770 0.0769 0.0761

2h 20 20 0.1101 0.1101 0.0920  0.1240 0.1239 0.1010  0.1324 0.1325 0.1091  0.0483 0.0474 0.0453
40  0.0715 0.0714 0.0613  0.0820 0.0820 0.0656  0.0915 0.0915 0.0760  0.0345 0.0342 0.0327

60  0.0584 0.0584 0.0503 0.0723 0.0723 0.0584  0.0752 0.0752 0.0625  0.0264 0.0262 0.0245

40 20 0.0748 0.0747 0.0644  0.0866 0.0866 0.0701  0.0952 0.0951 0.0813  0.0340 0.0326 0.0310

40 0.0496 0.0496 0.0436  0.0624 0.0623 0.0513  0.0650 0.0650 0.0552  0.0230 0.0228 0.0220

60  0.0502 0.0501 0.0393  0.0527 0.0525 0.0422  0.0542 0.0541 0.0478 0.0194 0.0192 0.0180

60 20  0.0602 0.0600 0.0534  0.0739 0.0738 0.0618  0.0770 0.0769 0.0662  0.0269 0.0267 0.0253

40 0.0525 0.0525 0.0407  0.0539 0.0538 0.0436  0.0552 0.0551 0.0485  0.0195 0.0192 0.0180

60  0.0435 0.0435 0.0326  0.0441 0.0441 0.0351  0.0459 0.0459 0.0403  0.0166 0.0165 0.0159

Sh 20 20 0.0898 0.0875 0.0723  0.0956 0.0937 0.0798  0.1018 0.1001 0.0855  0.0937 0.0915 0.0833
40  0.0567 0.0558 0.0485 0.0614 0.0606 0.0534  0.0700 0.0692 0.0622  0.0843 0.0836 0.0804

60  0.0444 0.0443 0.0386 0.0515 0.0514 0.0456  0.0551 0.0550 0.0492  0.0808 0.0806 0.0788

40 20  0.0606 0.0585 0.0505  0.0649 0.0628 0.0548  0.0731 0.0711 0.0641  0.0846 0.0826 0.0786

40 0.0377 0.0372 0.0339  0.0448 0.0442 0.0411  0.0480 0.0474 0.0444  0.0794 0.0789 0.0774

60  0.0322 0.0319 0.0297  0.0347 0.0345 0.0323  0.0393 0.0391 0.0369  0.0776 0.0774 0.0769

60 20  0.0488 0.0470 0.0418  0.0556 0.0540 0.0490  0.0589 0.0573 0.0526  0.0830 0.0815 0.0785

40 0.0338 0.0333 0.0303 0.0364 0.0359 0.0329  0.0403 0.0399 0.0372  0.0775 0.0772 0.0763

60  0.0274 0.0272 0.0254  0.0294 0.0293 0.0274  0.0332 0.0331 0.0316  0.0772 0.0770 0.0766

6h 20 20 0.1014 0.0997 0.0886  0.1065 0.1046 0.0932  0.1116 0.1099 0.0983  0.0931 0.0908 0.0846
40 0.0739 0.0732 0.0672  0.0773 0.0767 0.0702  0.0843 0.0837 0.0774  0.0825 0.0819 0.0798

60  0.0651 0.0649 0.0612  0.0705 0.0703 0.0660  0.0727 0.0725 0.0684  0.0795 0.0793 0.0776

40 20 0.0788 0.0765 0.0698  0.0821 0.0798 0.0731  0.0903 0.0881 0.0811  0.0872 0.0841 0.0796

40 0.0604 0.0599 0.0578  0.0650 0.0646 0.0619  0.0666 0.0662 0.0639  0.0790 0.0785 0.0775

60  0.0573 0.0572 0.0556  0.0587 0.0587 0.0570  0.0618 0.0617 0.0602  0.0784 0.0783 0.0774

60 20 0.0675 0.0658 0.0615  0.0728 0.0712 0.0669  0.0750 0.0735 0.0692  0.0818 0.0803 0.0776

40  0.0577 0.0574 0.0555 0.0590 0.0587 0.0569  0.0618 0.0616 0.0599  0.0781 0.0777 0.0766

60  0.0539 0.0538 0.0529  0.0548 0.0547 0.0537 0.0570 0.0569 0.0558  0.0775 0.0774 0.0767

Note: Here the additivity of functional form is imposed in the estimation, which is correct for DGPs 2, 5, 2h and 5h, but incorrect
for DGPs 6 and 6h.
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Table 3.4: Rejection frequency for DGPs 1-6

C=1 C=15 C=2

DGP N T 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 20 20 0.016 0.064 0.128 0.012  0.068 0.124 0.008  0.040  0.100
40 0.016  0.044 0.108 0.016  0.052 0.108 0.012  0.048 0.116

60 0.004  0.052  0.100 0.016  0.040 0.112 0.012  0.056  0.100

40 20 0.010  0.060  0.096 0.012  0.052 0.088 0.016  0.060 0.104

40 0.012  0.052 0.096 0.012  0.036  0.100 0.012 0.044 0.104

60 0.008 0.056  0.096 0.016  0.044 0.088 0.012  0.048 0.092

60 20 0.010 0.072 0.116 0.010  0.050  0.100 0.010  0.040 0.096

40 0.008 0.036  0.072 0.012 0.036  0.080 0.012  0.040 0.096

60 0.016 0.048 0.108 0.012  0.040 0.104 0.016 0.056 0.112

2 20 20 0.016  0.048  0.080 0.008  0.068  0.100 0.008  0.060  0.096
40 0.016  0.056  0.100 0.008  0.056  0.088 0.012  0.072 0.104

60 0.020 0.056  0.088 0.012 0.052 0.096 0.008 0.044  0.096

40 20 0.032  0.088 0.132 0.032  0.060 0.136 0.012 0.076  0.120

40 0.012 0.084 0.116 0.004 0.064 0.100 0.012 0.048 0.112

60 0.024  0.064 0.096 0.024  0.068 0.116 0.008 0.056 0.104

60 20 0.008 0.048 0.124 0.012 0.048 0.108 0.008 0.052 0.112

40 0.004  0.052 0.104 0.000  0.044  0.104 0.016  0.052  0.092

60 0.020  0.060  0.100 0.016  0.052  0.120 0.020  0.068  0.100

3 20 20 0.248 0460 0.616 0.184 0432 0.568 0.176 ~ 0.372  0.532
40 0.740  0.888 0.932 0.676  0.848  0.904 0572  0.764  0.852

60 0904 0.964 0.984 0.832 0912  0.960 0.808 0.904 0.944

40 20 0.656  0.820 0.908 0.608 0.784  0.888 0.536  0.752  0.840

40 0.984 1.000  1.000 0976  0.996  1.000 0972 0.996  1.000

60 1.000  1.000  1.000 1.000  1.000  1.000 0.996  1.000  1.000

60 20 0.848 0.948 0.984 0.748  0.876  0.940 0.716  0.864 0916

40 1.000  1.000  1.000 0.996  1.000  1.000 0.996 1.000  1.000

60 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

4 20 20 0.248  0.488  0.620 0224 0436 0.592 0.180  0.408 0.548
40 0.740  0.888  0.944 0.688 0.864 0912 0.608 0.796  0.872

60 0.908 0.976  0.988 0.848 0924 0.964 0.824 0912 0.956

40 20 0.684 0.864 0.928 0.664 0.848 0912 0.596  0.776  0.872

40 0.992  1.000  1.000 0.984  1.000  1.000 0976  1.000  1.000

60 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

60 20 0920 0972 0.988 0.852 0952 0.964 0.848 0.944  0.956

40 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

60 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

5 20 20 0.440 0.632 0.716 0.396  0.564  0.668 0352 0484 0.644
40 0.844 0924 0.968 0.796  0.908  0.940 0.696 0.872  0.924

60 0.968 0.988  0.992 0948 0.980 0.988 0932 0980 0.992

40 20 0.860  0.928  0.948 0.836  0.900 0.936 0.736  0.860  0.904

40 0.992  1.000  1.000 0.992  0.996  0.996 0.988 0.992  0.996

60 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

60 20 0972  0.992 0.992 0936 0984 0.992 0.892  0.952  0.980

40 1.000  1.000  1.000 0.996  1.000  1.000 0.988 0.992  1.000

60 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

6 20 20 0.246 0400 0.516 0.208  0.388  0.472 0.196  0.312  0.448
40 0.572 0.740  0.852 0.492  0.692 0.776 0.368 0.576  0.708

60 0.828  0.928 0972 0.744  0.880  0.920 0.728  0.872  0.900

40 20 0.580 0.752  0.848 0.488 0.712  0.804 0.440 0.628 0.712

40 0.944 0988  0.992 0912 0952 0976 0.884 0.936 0972

60 0.996  1.000  1.000 0.996  1.000  1.000 0.988  0.996  1.000

60 20 0.780  0.900  0.952 0.716  0.864 0912 0.664 0.836 0.884

40 0.988  1.000  1.000 0.984  1.000  1.000 0.980  0.996  1.000

60 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

Note: J = |C (NT)1 7'SJ,whereC =1, 1.5,and 2.
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Table 3.5:

Rejection frequency for DGPs 1h-6h

C=1 C=15 C=2

DGP N T 1% 5% 10% 1% 5% 10% 1% 5% 10%
1h 20 20 0.024  0.060 0.112 0.024  0.080  0.136 0.028 0.072 0.124
40 0.020 0.076  0.136 0.020 0.084  0.128 0.024  0.088  0.144

60 0.032  0.076  0.124 0.028 0.056  0.108 0.024  0.056 0.112

40 20 0.032  0.064 0.144 0.036 0.072  0.136 0.028  0.068  0.120

40 0.040  0.080 0.128 0.036 0.076  0.136 0.040  0.080 0.132

60 0.028 0.064 0.128 0.024  0.064 0.128 0.020 0.064 0.108

60 20 0.024  0.072 0.124 0.032  0.068 0.116 0.032 0.064 0.116

40 0.016  0.056 0.096 0.016  0.052  0.100 0.020 0.056  0.096

60 0.012  0.060 0.100 0.012  0.060 0.088 0.008  0.056  0.092

2h 20 20 0.020 0.052  0.120 0.016  0.040 0.120 0.028 0.076  0.128
40 0.024  0.060 0.136 0.016  0.056 0.136 0.032  0.076  0.120

60 0.028  0.068  0.124 0.016 0.064 0.124 0.020 0.068 0.132

40 20 0.020 0.076  0.124 0.016 0.076  0.124 0.004 0.072 0.128

40 0.012  0.064 0.108 0.016  0.056  0.100 0.012 0.044 0.104

60 0.008  0.048  0.096 0.008  0.052  0.096 0.012  0.056  0.100

60 20 0.016  0.056 0.104 0.016  0.060 0.104 0.012  0.052 0.104

40 0.008  0.044  0.096 0.012  0.036  0.092 0.016  0.056 0.104

60 0.016 0.064 0.132 0.012  0.056 0.120 0.016 0.064 0.124

3h 20 20 0.140  0.296  0.448 0.152  0.292  0.436 0.140  0.288  0.396
40 0372  0.588  0.680 0.352  0.560 0.652 0336 0472 0.612

60 0.532  0.684 0.772 0.504 0.652  0.796 0.484 0.664 0.780

40 20 0.348  0.508 0.672 0.348  0.500 0.680 0.308 0.488  0.620

40 0.616 0.816 0.872 0.620  0.828 0912 0.628 0.812  0.896

60 0.808 0.936 0.956 0.800  0.948  0.960 0.808  0.948 0.964

60 20 0.400 0.556  0.656 0.368 0.568 0.684 0.368 0.556  0.692

40 0.760  0.904 0.932 0.760 0912 0928 0.748  0.908  0.964

60 0.996 1.000  1.000 0.992  0.996  1.000 0.996 1.000  1.000

4h 20 20 0.148  0.300 0.424 0.168 0.324  0.436 0.144  0.276  0.400
40 0.380 0.600 0.672 0404 0.612 0.684 0.360 0.536  0.660

60 0.524  0.676  0.768 0.548 0.724  0.824 0.536  0.740  0.832

40 20 0.364 0.536 0.676 0.392 0572 0.724 0.348  0.520 0.672

40 0.604  0.820 0.856 0.712  0.852 0.928 0.708  0.852 0.932

60 0.876  0.972  0.988 0.868 0972  0.984 0.868  0.968  0.988

60 20 0.460 0.676  0.780 0.548 0.736  0.808 0.528 0.696  0.800

40 0.824  0.948  0.980 0.820 0948 0.976 0.808 0.944 0976

60 0.988  0.996  1.000 0984 0992  1.000 0.980 0.988  0.996

5h 20 20 0.344 0516 0.616 0316 0.504 0.616 0.284 0.484 0.592
40 0.744  0.848 0916 0.660  0.820 0.876 0.604 0.796  0.840

60 0920 0.964 0976 0.892 0940 0.972 0.864  0.940 0.960

40 20 0.756  0.880  0.896 0.716  0.848  0.900 0.620 0.784 0.832

40 0976  0.996  1.000 0956 0988  0.996 0936 0984 0.992

60 0.996 1.000  1.000 0.996  0.996  1.000 0.996 0.996  1.000

60 20 0.892 0944 0972 0.840 0924 0.944 0.804 0.896  0.944

40 0.996  1.000  1.000 0.992  0.996  1.000 0.992  0.996  1.000

60 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

6h 20 20 0.228  0.384  0.464 0.204 0336  0.456 0.188  0.296  0.408
40 0.400 0.612 0.708 0.356  0.552  0.712 0332 0476 0.588

60 0.692 0.824 0.896 0.584 0.772  0.840 0.596 0.764  0.840

40 20 0416 0.632  0.756 0416 0.584  0.688 0412  0.556  0.664

40 0.848 0.932 0972 0.800 0.896 0.948 0.772  0.892  0.940

60 0.964 0.984  0.996 0952 0976  0.992 0.944 0980 0.992

60 20 0.580 0.736  0.828 0.556  0.696  0.792 0.520 0.664 0.764

40 0.964 0.984 0.992 0948 0976 0.988 0924 0976 0.988

60 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

Note: J = |C (NT)1 7'5J,WhereC =1,1.5,and 2.
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3.6 An application to the economic growth data

The relationship between the long-run economic growth and investment in physical
capital has been studied extensively and has played a crucial role in the evaluation of
different growth theories. A positive association between the investment as a share
of gross domestic product (GDP) and per capita GDP growth rate is supported by the
early endogenous growth models such as the AK model. However, the exogenous
growth theories such as the Solow model assert that an increase in investment can
only raise the level of per capita GDP, but have no effect on the steady-state growth
rate. Many empirical studies show that there is little or no association between
the investment and the long-run growth rate; see Jones (1995) and Easterly and
Levine (2001). Recently, Bond, Leblebicioglu and Schiantarelli (2010) reassess the
relationship between these two by using a panel data of 71 countries covering 41
years (1960-2000). By estimating a dynamic panel data model with both individual
and time fixed effects they find strong evidence of a positive relationship between
the investment as a share of real GDP and the long-run growth rate of GDP per
worker.

Note that most empirical works are carried out under the linear framework and
only include additive fixed effects to control unobservable heterogeneity. In this
section, we re-investigate the problem using the following nonparametric dynamic

panel data model with interactive fixed effects
Y=g ()]i,lflalilaAIl't) + li/ft +ejr

where Y; = log(GDP;y) —log(GDP;;_1), GDP; is the real GDP per worker for
country i in year ¢, I;; is the logarithm of the investment as a share of real GDP,
Al; = Iy — I;; 1, and the multi-factor error structure 7Ll-’ ft + eir 1s used to control
for heterogeneity and capture the unobservable common shocks. Y;;_; is included
in the unknown function g (-) to partially control serial correlation; see some re-

cent empirical studies on growth such as Chambers and Guo (2009) and Meierrieks
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and Gries (2012) that consider dynamic panel data models. Su and Lu (2013) also
consider nonparametric dynamic panel growth regressions but with individual fixed
effects only.

The data set is from the Penn World Tables (PTW7.1); see Heston, Summers,
and Aten (2009). We use the same set of countries as Bond, Leblebicioglu, and
Schiantarelli (2010) but exclude Guyana which does not have observations for the
period 1960-1970 for the investment as a share of real GDP. The number of coun-
tries is 74 (N = 74) and the time period is 1960-2010 (T = 51).

We use the cubic B-spline to approximate the unknown function g. Note that g
has three variables. Without imposing any structure on g, we need to use the tensor
product of the sieve bases for each variable to approximate the unknown function.
Then the total number of sieve approximation terms is K = (J +4)3. Even for a
small number of knots J = 1, 2, or 3, we have K = 125, 216, or 343, respectively.
This is the notorious “curse of dimensionality” in nonparametric regression. For this
reason, we only allow bivariate interactions and a single trivariate interaction term
in our sieve estimation. Specifically, our sieve approximate terms are comprised
of P{/+4 (Yi,z—l) & P{+4 (Iit) ) P§+4 (Yi,t—l) ®PZF3 (Nit) ) PZH (Nit) ®P{+3 (Iit)’ and
Y; ;—11;Al;; where we have avoided perfect multicollinearity. In this case, the total
number of sieve approximating terms is (J +4)% + (J+4)(J+3)+ (J+3)2+1. To
choose the number of factors, we follow Bai and Ng (2002) and adopt the following
information criteria:

N o (N+T NT
PC] (R) = V (R,fR) +R62 (W) ln (m) N

PC,(R) = V(R.f®)+R6> (%) In[min (N, T)],

A N+T NT
ICi(R) = In[V (R f®)]+R <W) In <m> :
N+T

IC;(R) = [V (R,fR)}JrR(N—T

) In [min (N, T)] ,

N _ N 2 . N ~ N N N
where V(R, /%) = (NT) " L XL (8)7, of = Y — 8% (%) — AR R 85 (). JF

and 7LiR are estimates when R factors are used, and &2 is a consistent estimate for
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(NT)™! N YT E(e?) and is replaced by V(Rmax, fR) in applications. Here
Rmax denotes the maximum number of factors under consideration and has to be
specified before one tries to minimize any of the above information criteria. In
simulations we find that /C; and IC, work fairly well in finite samples for different
choices of knots in cubic B splines, but PC| and PC; tend to choose a larger number
of factors, which may be close to the largest upper bound sometimes. When this
occurs, we use the number of factors recommended by /C; and IC,. We follow Bai
and Ng (2006b) and set Ry,x = 8 throughout. For both estimation and testing, we
use M7 = LTl/ 7'5J for bias correction as in the simulations and consider a sequence
of knots in the cubic B-spline: J = 3,4, ...,8.

To reduce the risk of structural change, we partition the full sample (1960-2010)
into two subsamples (1960-1985 and 1986-2010. For both the full sample and two
subsamples, IC; and IC, recommend 1 «~ 2 factors both for linear estimation and
sieve estimations with different choices of J. So we set R = 2 for all samples. We
first consider the problem of estimation and report the estimation results for the two
subsamples in Figures 3.1 and 3.2, respectively. Figure 3.1 plots the estimation of
g(-,-,+) against each of its three arguments when the other two are fixed at their
sample medians. For example, Figure 3.1(a)-(c) reports the estimates of g(-,1,Al)
together with their bootstrap-based 90% pointwise confidence bands for J = 3,5,
and 7, respectively, where I and Al are the respective sample medians of I;;’s and
Al;’s in the first subsample (1960-1985). Figure 3.2 repeats the above exercises for
the second subsample (1986-2010). We summarize some important findings from
these figures. First, as expected, the fitted curves tend to be smooth for a small value
of J and rough for a large value of J. By looking at those plots along, whether
one can conclude a regressor (e.g., lagged economic growth rate) has significant
nonlinear effect on the economic growth rate simply depends on the choice of J.
This calls upon a formal test for the linear functional form. Second, Figures 3.1(a)-
(c) and 3.2(a)-(c) suggest that lagged economic growth rate is globally positively

related to the current economic growth rate when investment share and its growth
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Table 3.6: Bootstrap p-values for testing the linear economic growth model

Subsamples (/) 3 4 5 6 7 8
1960 — 1985 0.0000  0.0001  0.0001 0.0002 0.0003 0.0000
(T=26, N=74)

1986 — 2010 0.0030 0.0028 0.0022 0.0019 0.0021 0.0019
(T=25, N=74)
1960 — 2010 0.0498  0.0427 0.0390 0.0338 0.0299 0.0261
(T=51, N=74)

are fixed at their sample medians. Third, Figures 3.1(d)-(f) and 3.2(d)-(f) suggest
that investment share generally has positive effect on the economic growth rate.
Fourth, Figures 3.1(g)-(i) and 3.2(g)-(i) indicate that the effect of the change of
investment on the economic growth rate is nonlinear and non-monotone, and the
effect tends to vary across subsamples. This suggests that some sort of structural
change may occur during the full sample period.

Table 3.6 reports the bootstrap p-values for the specification test of linearity for
both subsamples and the full sample based on 10000 bootstrap resamples. The p-
values are smaller than 0.05 across all J’s for both subsamples and the full sample

as well. This suggests a strong degree of nonlinearity in the data.

3.7 Conclusion

In this chapter we consider the estimation and testing for large dimensional non-
parametric dynamic panel data models with interactive fixed effects. A sieve-based
QMLE is proposed to estimate the nonparametric function and common compo-
nents jointly. Following Moon and Weidner (2010, 2012), we derive the conver-
gence rate for the sieve estimator and establish its asymptotic distribution. The
sources of different asymptotic biases are discussed in detail and a consistent bias-
corrected estimator is provided. We also propose a consistent specification test for
the commonly used linear dynamic panel data models based on the L, distance be-
tween the linear and sieve estimators. We establish the asymptotic distributions of

the test statistic under both the null hypothesis and a sequence of Pitman local al-
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Figure 3.1: Relationship between GDP growth rate and lagged GDP growth rate,
investment share, and change of investment share(1960-1985) (solid line: estimated
function, dotted lines: 90% bootstrap confidence band)
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Figure 3.2: Relationship between GDP growth rate and lagged GDP growth rate,
investment share, and change of investment share(1986-2010) (solid line: estimated
function, dotted lines: 90% bootstrap confidence band)
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ternatives. To improve the finite sample performance of the test, we also propose
a bootstrap procedure to obtain the bootstrap p-values and justify its asymptotic
validity. Through Monte Carlo simulations, we investigate the finite sample perfor-
mance of our estimator and test statistic. We apply the model to an economic growth
data set and demonstrate that lagged economic growth rate, investment share and its

change have significant nonlinear effect on the economic growth rate.
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Chapter 4 Testing for Common Trends in Semi-

parametric Panel Data Models with
Fixed Effects

4.1 Introduction

Modeling trends in time series has a long history. Phillips (2001, 2005, 2010) pro-
vides recent overviews covering the development, challenges, and some future di-
rections of trend modeling in time series. White and Granger (2011) offer working
definitions of various kinds of trends and invite more discussion on trends in order
to facilitate development of increasingly better methods for prediction, estimation
and hypothesis testing for non-stationary time-series data. Due to the wide avail-
ability of panel data in recent years, research on trend modeling has spread to the
panel data models. Most of the literature falls into two categories depending on
whether the trends are stochastic or deterministic. But there is also work on evapo-
rating trends (Phillips, 2007) and econometric convergence testing (Phillips and Sul,
2007, 2009). For reviews on stochastic trends in panel data models, see Banerjee
(1999) and Breitung and Pesaran (2005).

Recently, some aspects of modeling deterministic time trends in nonparamet-
ric and semiparametric settings have attracted interest. Cai (2007) studies a time-
varying coefficient time series model with a time trend function and serially cor-
related errors to characterize the nonlinearity, nonstationarity, and trending phe-
nomenon. Robinson (2010) considers nonparametric trending regression in panel
data models with cross-sectional dependence. Atak, Linton, and Xiao (2011) pro-

pose a semiparametric panel data model to model climate change in the United
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Kingdom (UK hereafter), where seasonal dummies enter the model linearly with
heterogeneous coefficients and the time trend enters nonparametrically. Li, Chen,
and Gao (2010) extend the work of Cai (2007) to panel data time-varying coefficient
models. Most recently, Chen, Gao, and Li (2010, CGL hereafter) extend Robinson’s
(2010) nonparametric trending panel data models to semiparametric partially linear
panel data models with cross-sectional dependence where all individual unit share a
common time trend that enters the model nonparametrically. They propose a semi-
parametric profile likelihood approach to estimate the model.

A conventional feature of work on deterministic trending panel models is the im-
position of a common trends assumption, implying that each individual unit follows
the same time trend behavior. Such an assumption greatly simplifies the estimation
and inference process, and the proposed estimators can be efficient if there is no
heterogeneity in individual time trend functions and some other conditions are met.
Nevertheless, if the common trends assumption does not stand, the estimates based
on nonparametric or semiparametric panel data models with common trends will
be generally inefficient and statistical inference will be misleading. It is therefore
prudent to test for the common trends assumption before imposing it.

Since Stock and Watson (1988) there has been a large literature on testing for
common trends. But to our knowledge, most empirical works have focused on test-
ing for common stochastic trends. Tests for common deterministic trends are far
and few between. Vogelsang and Franses (2005) propose tests for common deter-
ministic trend slopes by assuming linear trend functions and a stationary variance
process and examining whether two or more trend-stationary time series have the
same slopes. Xu (2011) considers tests for multivariate deterministic trend coeffi-
cients in the case of nonstationary variance process. Sun (2011) develops a novel
testing procedure for hypotheses on deterministic trends in a multivariate trend sta-
tionary model where the long run variance is estimated by series method. In all
cases, the models are parametric and the asymptotic theory is established by pass-

ing the time series dimension 7 to infinity and keeping the number of cross sec-
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tional units n fixed. Empirical applications include Fomby and Vogelsang (2003)
and Bacigal (2005), who apply the Vogelsang-Franses test to temperature data and
geodetic data, respectively.

This chapter develops a test for common trends in a semiparametric panel data

model of the form

Yo =B'Xu+fit)T)+ti+&,i=1,....n,t=1,....T, 4.1.1)

where 8 is ad x 1 vector of unknown parameters, Xj; is a d x 1 vector of regressors,
fi 1s an unknown smooth time trend function for cross section unit i, the o;’s rep-
resent fixed effects that can be correlated with Xj;, and €;;’s are idiosyncratic errors.
The trend functions f;(¢/T) that appear in (4.1.1) provide for idiosyncratic trends
for each individual i. For simplicity, we will assume that (i) {g;} satisfies certain
martingale difference conditions along the time dimension but may be correlated
across individuals, and (ii) {€;} are independent of {X;, }. Note that f; and o; are
not identified in (4.1.1) without further restrictions.

Model (4.1.1) covers and extends some existing models. First, when f; = 0 for
all i, (4.1.1) becomes the traditional panel data model with fixed effects. Second,
if n =1, then model (4.1.1) reduces to the model discussed in Gao and Hawthorne
(2006). Third, when f; = f for some unknown smooth function f and all i, (4.1.1)
becomes the semiparametric trending panel data model of CGL (2010).

The main objective of this chapter is to construct a nonparametric test for com-
mon trends. Under the null hypothesis of common trends: f; = f forall i in (4.1.1),
we can pool the observations from both cross section and time dimensions to esti-
mate both the finite dimensional parameter (f3) and the infinite dimensional parame-
ter (f) under the single identification restriction .7 ; o; =0 or f (0) = 0, whichever
is convenient. Let u;; = o; + €;;. Let u;; denote the estimate of u;; based on the pooled
regression. The residuals {u;} should not contain any useful trending information
in the data. This motivates us to construct a residual-based test for the null hypoth-

esis of common trends. To be concrete, we will propose a test for common trends
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by averaging the n measures of nonparametric goodness-of-fit (Rz) from the non-
parametric time series regression of u;; on the time trend for each cross sectional
unit i. Such nonparametric R? should tend to zero under the null hypothesis of com-
mon trends and diverge from zero otherwise. We show that after being properly
centered and scaled, the average nonparametric R> is asymptotically normally dis-
tributed under the null hypothesis of common trends and a sequence of Pitman local
alternatives. We also establish the consistency of the test and propose a bootstrap
method to obtain the bootstrap p-values.!

To proceed, it is worth mentioning that (4.1.1) complements the model of Atak,
Linton, and Xiao (2011) who allow for heterogenous slopes but a single nonpara-
metric common trend across cross sections. As mentioned in the concluding re-
marks, it is also possible to allow the slope coefficients in (4.1.1) to vary across
individuals and consider a joint test for the homogeneity of the slope coefficients
and trend components. But this is beyond the scope of the current chapter.

The rest of the chapter is organized as follows. The hypotheses and the test
statistic are given in Section 2. We study the asymptotic distributions of the test
under the null and a sequence of local alternatives, establish the consistency of the
test, and propose a bootstrap procedure to obtain the bootstrap p-values in Section
3. Section 4 conducts a small simulation experiment to evaluate the finite sample
performance of our test and reports empirical applications of the test to UK climate
change data and OECD economic growth data. Section 5 concludes.

NOTATION. Throughout the chapter we adopt the following notation. For a

matrix A, its transpose is A’ and Euclidean norm is ||A| = [tr (AA’ )]1/ 2

, Where =
signifies “is defined as”. When A is a symmetric matrix, we use Amax(A) to denote
its maximum eigenvalue. For a natural number /, we use i; and I; to denote the

I x 1 vector of ones and the / x [ identity matrix, respectively. For a function f

I'To the best of our knowledge, Su and Ullah (2011) are the first to suggest applying such a
measure of nonparametric R> to conduct model specification test based on residuals from restricted
parametric, nonparametric, or semiparametric regressions, and apply this idea to test for conditional
heteroskedasticity of unknown form. Clearly, the nonparametric R? statistic can serve as a useful
tool for testing many popular hypotheses in econometrics and statistics by playing a role comparable
to the important role that R plays in the parametric setup.
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defined on the real line, we use f (@) to denote its a’th derivative whenever it is well
) e d .

defined. The operator L, denotes convergence in probability, and — convergence in

distribution. We use (n,T) — oo to denote the joint convergence of n and T when n

and T pass to the infinity simultaneously.

4.2 Basic Framework

In this section, we state the null and alternative hypotheses, introduce the estimation
of the restricted model under the null, and then propose a test statistic based on the

average of nonparametric goodness-of-fit measures.

4.2.1 Hypotheses

The main objective is to construct a test for common trends in model (4.1.1). We

are interested in the null hypothesis that
Hy: fi(t) = f(t) for T € [0, 1] and some smooth function f,i=1,...,n, (4.2.1)

i.e., all the n cross sectional units share the common trends function f. The alterna-
tive hypothesis is

H : the negation of Hy.

As mentioned in the introduction, we will propose a residual-based test for the
above null hypothesis. To do so, we need to estimate the model under the null
hypothesis and obtain the augmented residual, which estimates ¢; + €;. Then for
each i, we run the local linear regression of the augmented residuals on 7/T, and
calculate the nonparametric R%. Our test statistics is constructed by averaging these

n nonparametric R%’s.
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4.2.2 Estimation under the null

To proceed, we introduce the following notation.

Y, = (Ya,....Yr), Y=(,....1) Xi= Xa,....Xr), X = (X{,...,X)),
/

/ . .
& = (Sil,...,SiT)/, E= (8{,...,8,1) , az(az,...,oc,,)’, DE(—lnfl,Infl)/(@lT,

£ = (F/T), o i(T/T)) B = (81, 8, E=[F(/T),.... f(T/T)] .
Note that under Hy, F =i, ® f, and we can write the model (4.1.1) as
Yi =XiB+f(t/T)+ 0+ &, (42.2)
or in matrix notation as
Y=XB+i,®f+Do+e, (4.2.3)

provided we impose the identification condition )" | o; = 0.
Following Su and Ullah (2006) and CGL (2010), we estimate the model (4.2.2)
by using the profile least squares method. Let k() denote a univariate kernel func-

tion and & a bandwidth. Let kj, (-) = k(-/h) /h. For any positive integer p, let

A (1) = (L,(t/T =) [y ()T —7) W)
()= ()2 (r))', and 2 (1) = iy @2 (7).

We assume that f is (p+ 1)th order continuously differentiable a.e. Let D} f (7) =
(f (), hfWV (1), ...,hPfP) (1) /p!). Then for t/T in the neighborhood of T €
(0,1), we have by the pth order Taylor expansion that f (&) = D/ f (’c)'z}[ft] (1) +
o((£—1)"). Let kn, (t) = ky (t/T — 1), Kp, () = diag(kp,1 (1), ...,kyr (7)), and
K; (1) =1, ® K, (7). Define

s@) = (@K@ (0) 2 (2 Ki(e) and

s = (2 @' Ki()Z) (f))_lz}f] (7) K (7) = n~ i, @ 5(7).
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The profile least squares method is composed of the following three steps:
1. Let 6 = (o, B’)’. For given 6 and 7 € (0, 1), we estimate DY f () by

D} of (1) = a;rgﬂgnn(Y—Xﬁ —Da—7" (1) F)'K, (1) (Y =X B — Do —Z (1) F).
€RpH!

Noting that S (7) D = 0 by straightforward calculations, the estimator D o) (T)

is in fact free of o and its first element is given by

fp (1) =€iS (1) (Y —XB —Da) =n IZels YYi—XiB),  (4.2.4)
i=1

where e; = (1,0,...,0) isa (p+ 1) x 1 vector. Letfg = (f3 (1/T),..., f5 (T/T))’,
Sr = ([eyS(1/T)),---,[e,S(T/T))), and S, = i, ® S7. Then we have

Fp =i, @5 = Sur (Y —XB). (4.2.5)

2. We estimate (o, 3) b

(a,ﬁ) = ar%:gin (Y—Xﬁ —Da—fﬁ>/ (Y—XB —Da—fﬁ)

= argmin(Y* —X*B —Da) (Y*—X*B —Da)
a.p

where Y* = (I,; — Spr) Y and X* = (Ir — Sur) X. LetMp =1,y —D(D'D) ' D'.

Using the formula for partitioned regression, we obtain

B = (X*Mpx*)”'X*MpY*, and (4.2.6a)
a = (0,..,0n) = (D'D)" 'D/(Y* —Xx*B). (4.2.6b)
Then o can be estimated by oy = — Y, 0i;.

3. Plugging (4.2.6a) into (4.2.4), we obtain the estimator of f (7):

f(r)=¢\S(t) (Y —XB). (4.2.7)
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Let

o~ o~ —~ / —~ o~ ~
f= (f(l/T) . ,f(T/T)) and F = 8,7 <Y—XB> =i, ofF. (4.2.8)
After we obtain estimates of  and f (¢/T), we can estimate u; = ; + &; by u; =
Yy — E’Xit —f(t/T) under the null. Let &; = (@y,...,ur) and &= (@),...,u,) .

Then it is easy to verify that

i = (e—Sue)+Da+X*(B—B)+F,
0 = (&—Sre)+auir + (Xi—SrX) (B — B) + (f; — S7F),
t

T = ot [e— ¢S (1/T) €] + X — ehS(LXI(B — B) + [fi5:) — €1 S()F)

where F* = (I,7 — S,r)F.

4.2.3 A nonparametric R>-based test for common trends

The idea behind our test is simple. Under Hp, u; is a consistent estimate for
u; = o; + €;, and there is no time trend in {u,-t}thl for each cross sectional unit
i. Nevertheless, under H; u;; includes an individual-specific time trend compo-
nent f; (1/T) — f°(¢/T), where f°(t) = plim f () . This motivates us to consider a
residual-based test for common trends.

For each i, we propose to run the nonparametric regression of {@;; }/_, on {r/ T}IT:1 :

where m; (t) = fi (1) — f° (t) and 1y, = o+ &5 + (B —[3 'X:+f0(t/T)—€|S(t/T)F
is the new error term in the above regression. Clearly, under Hy we have m; (1) =0
for T € [0, 1]. Given observations {L?,-t}thl, the local linear regression of u; ont/T

is fitted by weighted least squares (WLS) as follows

min i (@5~ cio —ca (% ~7)] S0 (7) (4.2.10)

(cio,cin)eR> T

where b = b(T) is a bandwidth parameter such that b — 0 as T — oo, Wy, (7) =
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wy (/T — T)/fol wp(t/T —s)ds, wp () =w(-/b) /b, and w(-) is a probability den-
sity function (p.d.f.) that has support [—1,1]. By the proof of Lemma .0.30 in the
appendix, A7 = fol wp (t/T —s)ds =1 for t /T € [b,1 —b] and is larger than 1/2
otherwise. Therefore, Wy, (7) plays the role of a boundary kernel to ensure that
fo] Wy, (T)dt=1foranyt=1,..,T.?

Let ¢; = (cio, Ci1 )' denote the solution to the above minimization problem. Fol-
lowing Su and Ullah (2011), the normal equations for the above regression imply

the following local ANOVA decomposition of the total sum of squares (TSS)
TSS;(t) = ESS;(t)+RSS; (1) (4.2.11)

where

M=

TSSi(t) = > (ﬁit_a\i>2wb,t(f)a

ESSi(7) = Y (Go+an (t/T—c)—i,-)zwbm),
=1

RSS;(t) = Y (@ —cio—Cn (t/T —1))*Wp, (1),

N
I
—_

and ﬁ, =71 Zthl u;. A global ANOVA decomposition of 7'SS; is given by
TSS; = ESS; + RSS; 4.2.12)
where
t=1

1 T B 1
TSS; = / TSSi(t1)dt =Y (i —;)?, ESS; = / ESS; (t)d, and
0 0
1

RSS;

/O RSS; (t)d. (4.2.13)

Then one can define the nonparametric goodness-of-fit (Rz) for the above local

ZAlternatively, one can use the standard kernel weight wy, (t/T — 1) in place of Wy, (7) in
(4.2.10) and decompose T'SS;(t) analogously to the decomposition in (4.2.11). But as A7 =
[01 wy (t/T —s)ds is not identically 1 for all ¢, fol TSS;(t)d(7) in this case does not lead to the
simple expression in (4.2.13).
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linear regression as

2 _

TSS;
Under Hy, {ii; } contains no useful trending information so that the above R? should

be close to 0 for each individual ;.
Let W, (1) =diag(wp 1 (7),..., Wp 1 (7)),

-1

H(D) =W, (0)2) (1) (3] (0 W (03 (1) 4 (2 Wi (),

and H = [y H (t)d. Itis easy to show that
TSS; = u.Mu;, ESS; = u,(H — L)u;, and RSS; = u, (It — H) u;,

where M = Iy — L and L = iri%, /T. Define the average nonparametric R? as

2 1 & 1LE
K=, LK 52

Clearly 0 < R < 1 by construction. We will show that after being appropriately
centered and scaled, R’ is asymptotically normally distributed under the null and a
sequence of Pitman local alternatives.

Before proceeding further, it is worth mentioning a related test statistic that is
commonly used in the literature. Under Hp, the m; (-) function in (4.2.9) is also
common for all i and thus can be written as m(-). m(¢/T) =0 forallt =1,....,T
under Hy and we can estimate this zero function by pulling all the cross sectional
and time series observations together to obtain the estimate 71 (+) , say. Then we can
compare this estimate with the nonparametric trend regression estimate 7; (£ /T') of

m; (t/T) to obtain the following L, type of test statistic

0= X X 0/T) (/1)

Noting that the estimate 77 (z/T) has a faster convergence rate than s; (t/T) to 0
under the null, it is straightforward to show that under suitable conditions this test

statistic is asymptotically equivalent to D7 = Y7 YT /i (¢/ T)? under the null.
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Further noticing that ¥, ri; (¢/ T)? /TSS; can be regarded as a version of nonpara-
metric noncentered R*> measure for the cross sectional unit i, we can simply interpret
D,r as a weighted nonparametric noncentered R>-based test where the weight for
cross sectional unit i is given by 7'SS;. In this chapter we focus on the test based
on R” because it is scale-free and is asymptotically pivotal under the null after bias-

correction. See the remark after Theorem 4.3.1 for further discussion.

4.3 Asymptotic Distributions

In this section we first present the assumptions that are used in later analysis and
then study the asymptotic distribution of average nonparametric R> under both the
null hypothesis and a sequence of Pitman local alternatives. We then prove the
consistency of the test and propose a bootstrap procedure to obtain bootstrap p-

values.

4.3.1 Assumptions

Let Z,, (§) denote the o-field generated by (&, ..., &) for a time series {&;}. To
establish the asymptotic distribution of our test statistic, we make the following
assumptions.

Assumption Al. (i) The regressor Xj; is generated as follows:

t

T) i 43.1)

Xiz:gi<

(i) Let v; = (Vizy .., ) fort = 1,....T. {v, Fny (v)} is a stationary martingale
difference sequence (m.d.s.) of n x d random matrices.

(iil) E [||v,~,||2 | Fni-1 (v)] = O'VZJ a.s. for each i and max; <<, E ||vir|* < ¢, < oo.
There exist d x d positive definite matrices X, and X such that

)

=0 <n5/2> ,

n

1
- Z{E (virvie) = Zv,
1= 1

S | =

n

n
E (v,-tv'j,) — X, and E
=1

n
Z Vit
i=1

Lj

for some 6 > 2.
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Assumption A2. (i) Let & = (gy;,...,&y) fort =1,....T. {&,t> 1} is a sta-
tionary sequence.

(i) {&, %, (€)} is an m.d.s. such that E (€;].%, ;1 (€)) = 0 a.s. for each i.

(iii) E (si,eth%w_l (8)) = @;; for each pair (i, j). Let Giz =w;.0<c< lrg_ign 61.2,
Max i<, j<n | 0] << oo, maxi<i<, E (€F) <€ < o0, limyony X1y Yy |035] < oo,
lim;, o an Y Y X Xy | Gijksiji| < oo, and Timy, o, ,,1—2 Y 1<iy£ir<n D1 <iz#is<n
| K inizia | < o0, Where G;jx = E (€:€j1€k ) and K, iniziy = E (€i,1€iyr iyt €int) -

(iv) Let & = &7 — 0. There exists an even number A > 4 such that —- Y7 |
Yi<nn,..<rE (éin éilz"'gitx) < oo

(v) €; is independent of v, for all 7, j, 1, s.

(vi) There exists a d x d positive definite matrix X, such that as n — oo,

n n

1
— Z ZE (vilv_']-l)E (8,'18j1) — Ye.

Ly |

Assumption A3. The trend functions f; (-) and g; () have continuous derivatives

up to the (p -+ 1)th order.

Assumption A4. The kernel functions k() and w(+) are continuous and sym-

metric p.d.f.’s with compact support [—1, 1].

Assumption A5. As (n,T) — o, b — 0, h — 0, Vab~1h?/log (nT) — oo,

min(Th, nh'/?) — co, n'/2TH?P+2 — 0, and n'/>+2/A7-1 - 0.

Remark 1. Al is similar is to Assumption A2 in CGL (2010). Like CGL,
we allow for cross sectional dependence in {v; } and the degree of cross sectional
dependence is controlled by the moment conditions in Al(iii). Unlike CGL, we
allow {Xj,} to possess heterogeneous time trends {g;} in (4.3.1), and we relax their
i.i.d. assumption of v; to the m.d.s. condition. A2 specifies conditions on {g;}
and their interaction with {v; } . Note that we allow for cross sectional dependence
in {€;} but rule out serial dependence in A2(ii). To facilitate the derivation of the

asymptotic variance of our test statistic, we also impose time-invariant conditional
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correlations among all cross sectional units in A2(iii). A2(iv) is readily satisfied
under suitable mixing conditions together with moment conditions. The indepen-
dence between {g;} and {v;;} in A2(v) can be relaxed by modifying the proofs in
CGL (2010) significantly. A3 is standard for local polynomial regressions. A4 is a
mild and commonly-used condition in the nonparametrics literature. A5 specifies
conditions on the bandwidths # and b and sample sizes n and T. Note that we al-
low n/T — ¢ € [0,00] as (n,T) — oo. If we use the optimal rate of bandwidths, i.e.,
h o< (nT)~"/®P%3) in the p-th order local polynomial regression and b« T~/ in
the local linear regression, then AS requires

1 1 1 1 1
nipts n2 BB TI0 53 (nT) 253 nl/2+2/A
— o0 — o0, ———— — (0, and ——— — 0.

T ’ log (nT) nl/? T

More specifically, if we choose p = 3, then A5 implies: n’/18 /(T1/*log (nT)) — oo,
T/n*> —0,and n'/>*2/% )T — 0. If noc T%, AS requires a € (2/7,1/(0.5+2/1)).

4.3.2 Asymptotic null distribution

Let A, denote the (¢, s)th element of A. Let oy = TH;s— 1 and Q = T~ 'diag(o 1, ...,

orr). Define
_ g 08
By = Z -1TSS;
2 _ —1 -1
Qur = T2 Z ZZpU , where p;; = wj;;0; o
1<t75s<T ni= lj=
/ .
Ty = n'2T'’R*—B,; \/>" ESS1T§€SQSZ'
i

The following theorem gives the asymptotic null distribution of I',,7.

Theorem 4.3.1 Suppose Assumptions Al-AS hold. Then under Hy,
d
FnT — N (07 QO)
where Qp = lim(n7T)_)o<, Qur.

Remark 2. The proof of the above theorem is lengthy and involves several
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subsidiary propositions, which are given in Appendix A. Under the null hypothe-
sis, we first demonstrate that I’y = I'yr 1 +0p (1), where I'yr 1 = Y7 | ¢i (&) and
0 (&)= n’l/zT’lbl/z):ngsST 5€;:€is/ 07 . Then we apply the martingale central
limit theorem (CLT) to show that I',7 LA N (0,Q0). In general, Iz is not asymp-
totically pivotal as cross sectional dependence enters its asymptotic variance €.
Nevertheless, if cross sectional dependence is absent, then I';7 is an asymptotic piv-
otal test because now Qo = lim, 7y %Zlgt;ﬁng a2, which is free of nuisance

parameters. This is one advantage to base a test on the scale-free nonparametric R?

measure.
To implement the test, we need to estimate both the asymptotic bias and variance
terms. Let

. b AMOMaE; ~  2b (1S
BTE\/j Y= and Q7 = — o | — pii

1<t#s<T
where I/)\ij = (AA)Z'J'/ (8,‘6_,‘), C?),'j = T_1 ZtT:l(l/l\it —Z\i)(l/t\jt —Z\j), 81'2 = T_l Z[TZI(I//t\i; —
;)% and ; = T7! Zthl u;. We show in the proof of Corollary 4.3.2 below that

Bur = Bur + op (1) and ﬁnr = Qo+ op(1). Then we obtain a feasible test statistic

as

4.3.2)

~

' PTLVPR —By 1 \/E z",’ ESS; — @M QOMi;
-QnT ﬁnT izl

" B TSS;/T

Corollary 4.3.2 Under Assumptions AI-AS, T,y % N (0,1).

We then compare I,,r with the one-sided critical value zg, i.e., the upper oth
percentile from the standard normal distribution. We reject the null when I,z > z4

at the « significance level.
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4.3.3 Asymptotic distribution under local alternatives

To examine the asymptotic local power of our test, we consider the following se-

quence of Pitman local alternatives:
Hy (Yar) : fi (%) = f(T) + YurApi(7) forall € [0,1] andi=1,....n  (4.3.3)

where ¥, — 0 as (n,T) — o and Ay (-) is a continuous function on [0,1]. Let
Awi = (Ani (1/T) ..., Ayi (T/T)) . Define

= 1 A
0 (n;nioonTZ m/G

In the appendix we show that @y = C,, lim, _.(n 1Y%, fo .(1)dt/0?), where
Co = [1 {1+ 07 Y (u—v)] w(w)w(u—v)du [[1,w(z—v)dz]™" — 1}dv and
w = f_ll w(u)u’du.

To derive the asymptotic property of our test under the alternatives, we add the

following assumption.

Assumption A6. 1y7 o lgi (7)) = g(t)|dt=0(1) whereg(") = 137" ¢ ().

That is, the nonparametric trending functions {g;(-), 1 <i < n} that appear in
Al are asymptotically homogeneous. This assumption is needed to determine the
probability order of E — B under H| (y,r) and H;. Without A6, we can only show
that E—ﬁ = Op (Yur) under Hj (7,7) and that E— B = Op (1) under H; for y,7 that

converges to zero no faster than n~12r-1/2

. With A6, we demonstrate in Lemma
.0.35 that [/3\— B = op (Yur) under H; (%,r) and that E— B = op (1) under H;, which
are sufficient for us to establish the local power property and the global consistency
of our test respectively in Theorems 4.3.3 and 4.3.4 below.

The following theorem establishes the local power property of our test.
Theorem 4.3.3 Suppose Assumptions A1-A6 hold. Suppose that Ay (+) is a continu-
ous function such that Y} Ay; (t) =0 for T € [0, 1] and sup,»; maxi<;<, fol A2 (1)dT
< oo, Then with Y,7 = nVAT=12p=1/4 iy (4.3.3) the local power of our test satis-
fies

P (Tur > zalHi (1)) = 1 =@ <Zoc — 0o/ Qo) :
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where @ (-) is the cumulative distribution function (CDF) of the standard normal

distribution.

Remark 3. Theorem 4.3.3 implies that our test has nontrivial asymptotic power
against alternatives that diverge from the null at the rate n~ VAT -1/2p=1/4 " The
power increases with the magnitude of ®. Clearly, as either n or T increases, the
power of our test will increase but it increases faster as 7 — oo than as n — oo for

the same choice of b.

4.3.4 Consistency of the test

To study the consistency of our test, we take y,7 = 1 and A,; (t) = A; (7) in (4.3.3),
where A; (+) is a continuous function on [0, 1] such that ¢, <n~ 1Y%, fo ((1)2dT <

Cy for some 0 < ¢y < Cp < oo. Let A; = (A; (1/T),...,A; (T /T))'. Define

O4 = lim —ZA’H L) z/

(n, T)—>ool’l

where 67 = 67 + fo i(T)2dT—( fol A; (1) d7)?. The following theorem establishes

the consistency of the test.

Theorem 4.3.4 Suppose Assumptions AI-A6 hold. Under H,

I’lil/zTilbil/zf‘nT =04 —I—OP(I) .

Theorem 4.3.4 implies that under H;, P (l:nT > dnT) — 1 as (n,T) — oo for
any sequence d,r = o (nl/ 2rpt/ 2) provided ®4 > 0, thus establishing the global

consistency of the test.

4.3.5 A bootstrap version of the test

It is well known that asymptotic normal distribution of many nonparametric tests
may not approximate their finite sample distributions well in practice. Therefore we
now propose a fixed-regressor bootstrap method [e.g., Hansen (2000)] to obtain the
bootstrap approximation to the finite sample distribution of our test statistic under

the null.
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We propose to generate the bootstrap version of our test statistic I, as follows:

1. Obtain the augmented residuals u; = Y;; — f(t /T) —Xitﬁ, where f and B
are obtained by the profile least squares estimation of the restricted model.

Calculate the test statistic I,

2. Leta; =T"! Zszl iy and i, = (@1, — @y, ...., Uy — ). Obtain the bootstrap er-
ror u; by random sampling with replacement from {u;,s = 1,2,...,T}. Gen-
erate the bootstrap analog of ¥ by holding X; as fixed: ¥;f = f(t /T)+X; E +
fi+ul fori=1,..,nandt =1,...,T, where u, is the ith element in the n-

vector u;.

3. Based on the bootstrap resample {Y;;, X}, run the profile least squares es-

timation of the restricted model to obtain the bootstrap augmented residuals
{5, }-

4. Based on {&}}, compute the bootstrap test statistic [',; = (Tn'/?b!/ R -
B\;“lT) / KAZ,’;T, where I_Qz*, EZT and (AZ,’;T are defined analogously to I_QZ, Bur

and Q,r, respectively, but with uj, being replaced by u},.

5. Repeat Step 2-4 for B times and index the bootstrap statistics as {I:ZTJ}f:I.
The bootstrap p-value is calculated by p* =B~ Y2 | 1{1::;T,l > T,r}, where

1{-} is the usual indicator function.

Some facts are worth mentioning: (i) Conditionally on the original sample
W ={(Yu,Xu),i=1,...,n,t =1,...,T}, the bootstrap replicates u;, are depen-
dent among cross sectional units, and i.i.d. across time for fixed i; (ii) the regressor
Xis 1s held fixed during the bootstrap procedure; (iii) the null hypothesis of common

trends is imposed in Step 2.

4.4 Simulations and Applications

This section conducts a small set of simulations to assess the finite sample perfor-

mance of the test. We then report empirical applications of the common trend test
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to UK climate change data and OECD real GDP growth data.

4.4.1 Simulation study

Data generating processes

We generate data according to six data generating processes (DGPs), among which
DGPs 1-2 are used for the level study, and DGPs 3-6 are for the power study.
DGP 1:

0 = Xie B+ (t>3+t + 0+ €
Yit = Xit T T 1 1y

wherei=1,....n,t =1,...,T, B =2, for each i we generate x;, asi.i.d. U (a; —3,a;+3)

across ¢ with g; being i.i.d. N(0,1), o = T‘lthzlxi, fori=2,...,n, and oy =

t

2
Vit = Xir 1 Bt 4+ xis 2 B2 + {2 <?> +

t

?} + a; + €,
wherei=1,...,nt=1,...T,B1=1,B=1/2,xp1=1+sin(nt/T)+vi 1, Xii2 =
0.5t/T +vio;4, vir,1 and vj o are each i.i.d. N(0,1) and independent of each other,
o; = max(T_1 Zthlxl-,,l,T_l ):thlx,m) fori=2,..,n,and oy = =Y , ;.

DGP 3:
yir = xi B+ (1+6i1)<i>3+(1+6i2)£ + O+ €t
T T ’

wherei=1,...,n,t =1,....,T, B, xis, and ¢ are generated as in DGP 1, and &;; and
Op are each i.i.d. U (—1/2,1/2), mutually independent and independent of x;; and
o;.

DGP 4:
£\2 t
Yir = Xir,1 B1 + xie 22 + (2-1-51‘1)(?) +(1+5i2)? + 0 + &,

where i=1,...,n,t =1,...,T, B1, B2, Xit.1, Xir 2, and @; are generated as in DGP 2,
and &;; and 9 are eachi.i.d. U (—1/2,1/2), mutually independent and independent

of (xit,l s Xit 2 ;).
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DGP 5:

£\3 t
yie = Xi 3 + [(1 + Our,i1) (;) + (14 Our,i2) 7} + 0 + €ir,

where i =1,...,n,t =1,...,T, B, x;s, and ¢; are generated as in DGP 1, and 8,7,
and 8,7 ;> are each i.i.d. U (—7Y,r,7%r), mutually independent, and independent
of x;; and 0.

DGP 6:

t

t 2
Vir = Xir 1 B1 +xie 22 + {(1 + Our,i1) <7> + (14 Our,i2) 7} + o + &,

where i =1,...,n,t =1,...,T, Bi, B2, Xir,1, Xir2, and ¢; are generated as in DGP
2, and 8,71 and 0,72 are each i.i.d. U (—=7¥,r,7Y,r), mutually independent and
independent of (x; 1, X2, 0;).

Note that DGPs 5-6 are used to examine the finite sample behavior of our test
under the sequence of Pitman local alternatives. For both DGPs, we set y,7 =
nl/AT-1/2 (T—1/5> -1/

fixed through the simulations. Similarly, {&;;} and {8, } are kept fixed through the

4
by choosing b = T~'/%, and keep {871} and {872}

simulations for DGPs 3-4.

In all of the above DGPs, we generate {€;;} analogously to that in CGL (2010)
and independently of all other variables on the right hand side of each DGP. Specif-
ically, we generate & as i.i.d. n-dimensional vector of Gaussian variables with zero

mean and covariance matrix (@;;),x,. We consider two configurations for (®;;),xx :
CD () : @;; = 0.5V~ 6;6; and CD (1): ay; = 0.8V 5,5,

where i, j=1,...,n,and o; are i.i.d. U (0, 1). By construction, {&; } are independent

across ¢ and cross sectionally dependent across i.

Test results

To implement our test, we need to choose two kernel functions and two bandwidth

sequences. We choose both k and w to be the Epanechnikov kernel: k (v) =w(v) =
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0.75 (1 —v?) 1{|v| < 1}. To estimate the restricted semiparametric model, we use
the third order local polynomial regression and adopt the “leave-one-out” cross val-
idation method to select the bandwidth /. To run the local linear regression of u; on
t/T for each cross sectional unit i, we set b = c\/%T_I/S forc=0.5,1and 1.5 to
examine the sensitivity of our test to the choice of bandwidth.>

We consider n, T = 25,50,100. For each combination of n and T, we use 500
replications for both level and power study and 200 bootstrap resamples in each
replication.

Table 4.1 reports the finite sample level of our test when the nominal level is
5%. From Table 4.1, we see that the levels of our test behave reasonably well
except when n/T is big (e.g., (n,T) = (50,25) or (100,25)). In the latter case, our
test is undersized. For fixed n, as T increases, the level of our test approaches the
nominal level fairly fast. We also note that the size of our test is robust to different
choices of bandwidth.

Tables 4.2 reports the finite sample power of our test against global alternatives
at the 5% nominal level. There is no time trend in the regressor x;; in DGP 3 whereas
both regressors x;; | and x;; > contain a time trend component in DGP 4. We sum-
marize some important findings from Table 4.2. First, as either n or T increases, the
power of our test generally increases and finally reaches 1, but it increases faster as
T increases than as n increases. This is compatible with our asymptotic theory. Sec-
ondly, comparing the power behavior of our test under CD (I) and CD (II) indicates
that the degree of cross sectional dependence in the error terms has negative impact
on the power of our test. This is as expected, as stronger cross sectional dependence
implies less information in each additional cross sectional observation. Third, the
choice of the bandwidth b has some effect on the power of our test. Surprisingly, a
larger value of b is associated with a larger testing power.

Table 4.3 reports the finite sample power of our test against Pitman local alter-

natives at the 5% nominal level. From the table, we see that our test has nontrivial

3Here, the time trend regressor {t/T,t = 1,2,.... T} can be regarded as uniformly distributed on
the interval (0, 1) and thus has variance 1/12.
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Table 4.1: Finite sample rejection frequency for DGPs 1-2 (nominal level: 0.05)

CD (D CD (1)

DGP n T ¢=05 ¢c=1 c¢c=1.5 c=05 ¢c=1 ¢=15
1 25 25 0.036  0.038 0.038 0.034 0.028 0.032
50 0.038 0.044 0.036 0.032 0.038 0.030

100 0.046 0.054 0.052 0.042 0.042 0.056

50 25 0.014 0.028 0.042 0.030 0.028 0.030

50 0.034 0.056 0.054 0.038 0.044 0.044

100 0.056 0.048 0.046 0.042 0.038 0.054

100 25 0.018 0.024 0.022 0.018 0.028 0.028

50 0.038 0.030 0.024 0.048 0.052 0.048

100  0.052 0.038 0.054 0.042 0.050 0.048

2 25 25 0.048  0.050 0.050 0.036 0.022 0.038
50 0.046 0.040 0.054 0.034 0.026 0.038

100  0.056 0.064 0.072 0.030 0.038 0.062

50 25 0.026 0.024 0.036 0.018 0.026 0.042

50 0.056 0.056 0.062 0.040 0.036 0.046

100 0.056 0.066 0.054 0.044 0.044 0.058

100 25 0.014 0.016 0.016 0.020 0.022  0.036

50 0.044 0.032 0.028 0.022  0.034 0.042

100 0.042 0.046 0.058 0.032  0.040 0.040

power to detect the local alternatives at the rate n~V4T=1/2p=1/4 which confirms
the asymptotic result in Theorem 4.3.3. As either n or T increases, we observe the
alteration of the local power, which, unlike the case of global alternatives, does not

necessarily increase.

4.4.2 Applications to real data

In this subsection we apply our test to two real data sets to illustrate its power to
detect deviations from common trends, one is to UK climate change data and the

other is to OECD economic growth data.

UK climate change data

The issue of global warming has received a lot of attention recently. Atak, Lin-

ton, and Xiao (2011) develop a semiparametric model to describe the trend in UK
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Table 4.2: Finite sample rejection frequency for DGPs 3-4 (nominal level: 0.05)

CD (D CD 1I)
DGP =n T ¢c=05 ¢c=1 c¢c=1.5 c=05 ¢c=1 ¢c=15
3 25 25 0.294 0.486 0.650 0.128 0.184 0.336
50 0.502 0.710 0.840 0.182 0.326 0.454

100 0.938 0.996 0.998 0.580 0.888 0.980
50 25 0.196 0.424 0.606 0.072 0.136 0.224
50 0.700 0936 0.982 0.268 0496 0.654
100  1.000 1.000  1.000 0924 0996 1.000
100 25 0.456 0.806 0.938 0.162 0.336 0.494
50 0912 1.000 1.000 0462 0.756  0.898
100 1.000  1.000  1.000 0910 0.998 1.000

4 25 25 0.288 0.530 0.730 0.124  0.206 0.344
50 0432 0.674 0.788 0.156 0.308 0.434

100 0.790 0.948 0.988 0.348 0.656 0.816

50 25 0.352  0.732  0.900 0.142 0.282 0.424

50  0.802 0962 0.988 0.336 0.586 0.776

100 1.000 1.000  1.000 0926 0996 0.998

100 25 0.334 0.712 0.884 0.126  0.234 0.384

50 0972 0996 1.000 0.500 0.824 0.946

100 1.000  1.000  1.000 0926 0.996 1.000
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Table 4.3: Finite sample rejection frequency for DGPs 5-6 (nominal level: 0.05)

CD () CD (II)

DGP n T YaT c=05 ¢c=1 ¢=1.5 c=05 ¢c=1 ¢=15
5 25 25 0.1051 0.550 0.862 0.954 0.280 0.532 0.758
50 0.0769 0.574 0.796 0.876 0.218 0.390 0.542

100  0.0563 0.884 0.978 0.994 0.532 0.800 0916

50 25 0.0883 0436 0.774 0.928 0.200 0.344 0.530

50 0.0647 0.662 0.890 0.952 0.234 0422 0.554

100  0.0473 0.878 0.976 0.998 0.336 0.556 0.708

100 25 0.0743 0410 0.770 0.926 0.146 0.272 0416

50 0.0544 0.612 0.884 0954 0.198 0.332 0474

100  0.0398 0.664 0.892 0.960 0.212 0.346 0.516

6 25 25 0.1051 0570 0.896 0.956 0.288 0.574 0.796
50 0.0769 0494 0.764 0.876 0.192 0.354 0.538

100  0.0563 0.878 0.976 0.994 0.386 0.408 0.770

50 25 0.0883  0.488 0.836 0.936 0.178 0.366 0.544

50 0.0647 0.702 0914 0.980 0.232 0416 0.580

100 0.0473 0.886 0976 0.996 0.352  0.622 0.796

100 25 0.0743  0.350 0.702 0.902 0.130 0.276 0422

50 0.0544 0.640 0924 0976 0.282 0468 0.624

100  0.0398 0.722 0918 0.962 0.290 0472 0.662
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regional temperatures and other weather outcomes over the last century, where a sin-
gle common trend is assumed across all locations.* It is interesting to check whether
such a common trend restriction is satisfied. To conserve space, in this application
we investigate the pattern of climate change in the UK over the last 32 years. The
data set contains monthly mean maximum temperature (in Celsius degrees, Tmax
for short), mean minimum temperature (in Celsius degrees, Tmin for short), total
rainfall (in millimeters, Rain for short) from 37 stations covering the UK (available
from the UK Met Office at: www.metoce. gov.uk/climate/uk/stationdata). Accord-
ing to data availability we adopt a balanced panel data set that spans from October
1978 to July 2010 for 26 selected stations (n = 26, T = 382) to see if there exists
a single common trend among these selected stations in Tmax, Tmin, and Rain, re-
spectively. Note that the time span for our data set is much shorter than that in Atak,
Linton and Xiao (2011).

For each series we consider a model of the following form
t
i = DB+ fi () + ity i = 1,026, T=1,...,382,

where y;; is Tmax, Tmin, or Rain for station i at time t, D; € R is a 11-dimensional
vector of monthly dummy variables, ¢; is the fixed effect for station i, and the time
trend function f;(-) is unknown. We are interested in testing for f; = f for all
i=1,2,...,n.

To implement our test, the Epanechnikov kernel is used in both stages. We
choose bandwidth & by the “leave-one-out” cross validation method and consider
10 different bandwidths of the form: b = c\/gT_l/S, where ¢ = 0.6, 0.7, ..., 1.5.
10000 bootstrap resamples are used to construct the bootstrap distribution.

The results are reported in Table 4.4. From the table, we see that the p-values
are smaller than 0.05 for Tmax and Tmin and larger than 0.1 for Rain for all choices

of b. We can reject the null hypothesis of common trends at 5% level for both Tmax

4 Atak, Linton, and Xiao (2011) study a model that allows for heterogenous effects of seasonal
dummy variables and use different data sets than ours. Consequently, our result is not directly
comparable with theirs.
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Table 4.4: Bootstrap p-values for application to the U.K. climate data

Series (¢) 06 0.7 0.8 0.9 1.0 11 1.2 1.3 14 15
Tmax 00060 00101 00073 00078 00061 00074 00091 00110 00151 00235
Tmin 00142 00160 00153 00130 00097 00053 00038 00029 00024 0.0010
Rain 08726 08163 07365 06592 05915 05670 05731 05890 0.6265 0.6790

Note: bandwidth b= c\/ 1/ 1271/3 and bootstrap number B = 10000.

and Tmin but not for Rain even at 10% level.

OECD economic growth data

Economic growth has been a key issue in marcoeconomics over many decades. It is
interesting to model the source of economic growth which incorporates a time trend.
In this application we consider a model for the OECD economic growth data which
incorporates a time trend. The data set consists of four economic variables from
16 OECD countries (n = 16) : Gross domestic product (GDP), Capital Stock (K),
Labor input (L), and Human capital (H). We download GDP (at 2005 US$), Cap-
ital stock (at 2005 US$), and Labor input (Employment, at thousand persons) from
http://www.datastream.com, and Human capital (Educational Attainment for Popu-
lation Aged 25 and Over) from http://www.barrolee.com. The first three variables
are seasonally adjusted quarterly data and span from 1975Q4 to 2010Q3 (7 = 140).
For Human capital, we have only 5-years census data from the Barro-Lee dataset so
that we have to use linear interpolation to obtain the quarterly observations.

We consider the following model for growth rates

AlnGDP,-t = ﬁlAInLi, + ﬁZAanit —+ ﬁgAlnHi, + fl (I/T) + O + &,

i=1,..,16, T =1,...,140, where o; is the fixed effect, f;(-) is unknown smooth
time trends function for country i, and AlnZ; =InZ; —InZ;; | for Z = GDP, L,
K, and H. We are interested in testing for common time trends for the 16 OECD
countries.

The kernels, bandwidths, and number of bootstrap resamples are chosen as in
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Figure 4.1: Trends in OECD real GDP growth rates from 1975Q4 to 2010Q3

the previous application. In Figure 4.1 we plot the estimated common trends (where
we use the recentered trend: f(7) — fol £ (7)dr for comparison) from the restricted
semiparametric regression model together with its 90% pointwise confidence bands.
Also plotted in Figure 4.1 are three representative individual trend functions for
France, Spain, and the UK, which are estimated from the unrestricted semiparamet-
ric regression models. For the purpose of comparison, for the unconstrained model
we impose the identification condition that the integral of each individual trend
function over (0, 1) equals zero and use the Silverman rule-of-thumb to choose the
bandwidth. Clearly, Figure 4.1 suggests that the estimated common trends function
is significantly different from zero over a wide range its support. In addition, the
trend functions for the three representative individual countries are obviously differ-
ent from the estimated common trends, which implies that the widely used common
trends assumption may not be plausible at all.

Table 4.5 reports the bootstrap p-values for our test of common trends. From
the table, we can see that the p-values for all bandwidths are smaller than 0.1 for all
bandwidths under investigation. Then we can reject the null hypothesis of common

trends at the 10% level.
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Table 4.5: Bootstrap p-values for application to OECD real GDP growth rate data

Series (€) 06 07 08 09 1.0 11 1.2 1.3 14 15
AInGDP 00001 00005 00020 00063 00141 00281 00336 00536 00645 00820

Note: bandwidth b = C\/ 1/127~'/3 and bootstrap number B = 10000.

4.5 Concluding Remarks

In this chapter we propose a nonparametric test for common trends in semiparamet-
ric panel data models with fixed effects. We first estimate the restricted semipara-
metric model to obtain the augmented residuals and then run a local linear regression
of the augmented residuals on the time trend for each cross sectional unit to obtain
n nonparametric R> measures. We construct our test statistic by averaging these
individual nonparametric R?’s, and show that after being appropriately centered and
scaled, the statistic is asymptotically normally distributed under both the null hy-
pothesis of common trends and a sequence of Pitman local alternatives. We also
prove the consistency of the test and propose a bootstrap procedure to obtain the
bootstrap p-values. Monte Carlo simulations and applications to both the UK cli-
mate change data and the OECD economic growth data are reported, both of which
point to the empirical fragility of a common trend assumption.

Some extensions are possible. First, our semiparametric model in (4.1.1) only
complements that in Atak, Linton, and Xiao (2011), and it is possible to allow
the slope coefficients also to be heterogenous when we test for the null hypothe-
sis of common trends for the nonparametric component. In this case, the profile
least squares estimation of Su and Ullah (2006) and Chen, Gao, and Li (2010) and
the nonparametric-R?-based test lose much of their advantage and the heterogenous
slope coefficients can only be estimated at a slower convergence rate. It seems
straightforward to estimate the unrestricted model for each cross sectional unit to
obtain the individual trend function estimates fl(f) and propose an Lj-distance-
based test by averaging the squared L,-distance between f; (7) and fj (t) for all

i # j. It is also possible to test for the homogeneity of the slope coefficients and
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trend components jointly. Second, to derive the distribution theory of our test statis-
tic, we allow for cross sectional dependence but rule out serial dependence. It is
possible to allow the presence of both as in Bai (2009) by imposing some high-level
assumptions. Nevertheless, the asymptotic variance of the non-normalized version
of test statistic will become complicated and there seems no obvious way to estimate

it consistently in order to implement our test in practice.
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Chapter 5 Summary of Conclusions

In Chapter 2, we propose a nonparametric test for cross-sectional dependence in
large dimensional panel. Our tests can be applied to both raw data and residuals
from heterogenous nonparametric (or parametric) regressions. The requirement on
the relative magnitude of n and T is quite weak in the former case, and very strong
in the latter case in order to control the asymptotic effect of the parameter estimation
error on the test statistic. In both cases, we establish the asymptotic normality of our
test statistic under the null hypothesis of cross-sectional independence. The global
consistency of our test is also established. Monte Carlo simulations indicate our
test performs reasonably well in finite samples and has power in detecting cross-
sectional dependence when the Pesaran’s and CGL’s tests fail.

In Chapter 3 we consider the estimation and testing for large dimensional non-
parametric dynamic panel data models with interactive fixed effects. A sieve-based
QMLE is proposed to estimate the nonparametric function and common compo-
nents jointly. Following Moon and Weidner (2010, 2012), we derive the conver-
gence rate for the sieve estimator and establish its asymptotic distribution. The
sources of different asymptotic biases are discussed in detail and a consistent bias-
corrected estimator is provided. We also propose a consistent specification test for
the commonly used linear dynamic panel data models based on the L, distance be-
tween the linear and sieve estimators. We establish the asymptotic distributions of
the test statistic under both the null hypothesis and a sequence of Pitman local al-
ternatives. To improve the finite sample performance of the test, we also propose
a bootstrap procedure to obtain the bootstrap p-values and justify its asymptotic

validity. Through Monte Carlo simulations, we investigate the finite sample perfor-
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mance of our estimator and test statistic. We apply the model to an economic growth
data set and demonstrate that lagged economic growth rate, investment share and its
change have significant nonlinear effect on the economic growth rate.

In Chapter 4 we propose a nonparametric test for common trends in semipara-
metric panel data models with fixed effects. We first estimate the restricted semi-
parametric model to obtain the augmented residuals and then run a local linear re-
gression of the augmented residuals on the time trend for each cross sectional unit
to obtain 7 nonparametric R> measures. We construct our test statistic by averag-
ing these individual nonparametric R>’s, and show that after being appropriately
centered and scaled, the statistic is asymptotically normally distributed under both
the null hypothesis of common trends and a sequence of Pitman local alternatives.
We also prove the consistency of the test and propose a bootstrap procedure to ob-
tain the bootstrap p-values. Monte Carlo simulations and applications to both the
UK climate change data and the OECD economic growth data are reported, both of

which point to the empirical fragility of a common trend assumption.
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Appendix

A Proofs in Chapter 2

Throughout this appendix, we use C to signify a generic constant whose exact value may

vary from case to case. Recall PL =T!/(T —1)!and C-. =T!/[(T —1)!!] forintegers [ < T.

Proof of Theorem 2.3.1

Recall ¢, = EM —E [Em] —E; [E,},S] + E/E; [Em] where Ems = ky, (uyr —u;s) and E de-
notes expectation taken only with respect to variables indexed by time s, that is, Ej (%im) =
fEh (uir —u) f; (u)du. Let ;s = E(Qiys), and ¢ = (n— 1)71 YL cirs- We will frequently
use the fact that for ¢ # s,

i < Ch 5507 (|t —]) (0.1)

1

as by the law of iterated expectations, the triangle inequality, and Lemma .0.6, we have |c; |

. . . » . . s
= |Efkgs] —EiEslky i)l = [E{E Ky g5 i) — Es K]} < EVE Ky gluie] — Eski ]| < Ch™ 153

s

5
x o' (]t —s]). Let @ (j) = max <<, @; (j). Let m = | Llog T | (the integer part of LlogT')

]

where L is a large positive constant so that the conditions on m in Assumption A.1(i*) are
all met by Assumption A.1(i). In addition, it is obvious that Y7, & s () = O(1) under

Assumption A.1(i).
T 7
Let Zij; = (wir,uji) and Gijrrg = 6 (Zijs Zijiss Zijirs Zijig) = Kngs(Kngs + ki rg — 2Knsr)-
Let G rorg = S(Zij1,Zijs: ZijrrZijg) = 4% Y 41 Gijsrg, Where Y4, denotes summation over all

4! different permutations of (z,s,r,q). That is, is a symmetric version of G;; s, by

gijJsrq
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symmetrizing over the four time indices and it is easy to verify that

B 1 . . . . . .
gij,tsrq = E{klh,m (2k1{1,ts + 2k;z,rq - kl]ft,tr - k1]1,sr - k;l,tq - k;l.,sq)
+Fh,tr(2E;1,tr + 2Ei,qs - %;z,ts - E;l,sr - Eil,tq - %iz,rq)
+Fh,tq (ZEI{L,tq + 2E{1,sr - Eit,tr - %;z,qr - %;z,ts - E;l,sq)
+E;z.,sr(2E;z,sr + zzizyt - Z;z,st - EZ,}’Z - zil,sq - El,z,rq)
+Ez,sq (Z%iz,sq + 2’%;z,rt - %é,st - E;hqt - %;l,sr - ;;z,qr)
+Fh,rq(2Eil,rq + 2%;z,st - Eil,rt - Eil,qt - E/]’I,FS - E;l,qs) } : (02)
Then we can write T T as
~ 1 1
iy = m Z P Z Gijsrq

I<i#j<n 'T I<t#s#r#q<T
1 1 B
B m Z 4 Z Sijintsta: (.0.3)

1<i£j<n ~T 1<t1<tr<t3<t4<T

Let 0; = E\E2E3E4[G(Zij1,Zij2,Zij 3, Zija)| and Gije (21, -+ 5 2c) = Ee1 -+ Ea[G (215 - s

ZeyZije+41s-- -, Zij4)] for nonrandom zj,...,z. and ¢ = 1,2,3,4. Let 191.8-1) (z1)=Gj1(a) —

6;; and 19,-(;) (215 +52e) = Gije (2155 2e) = L1 Lie) 191.(]-]() (zt---52,) — 6;j for c = 2,3,4,
where the sum ). ) is taken over all subsets 1 <#; <--- <# < c of {1,2,...,c}. Itis easy
to verify that 6;; = 0, ﬁi(jl) (Zij;) =0, and
) - 1

ij (Zij,taZiLS) =Gij2 (Zij,taZij,s) = E(Pi7ts§0j7ts- (.0.4)

Similarly, straightforward but tedious calculations show that
3
ﬁi(j ) (Zijs>Zijss Zijr)
= Gij3(ZijurZijs Zijr) = Gij2 (ZijasZijs) — Gij2 (Zij Zijr) — Gij2 (Zijs: Zijor)

1
- _ﬁ [¢i,ts ((Pj,tr + ¢j,sr) + Oirr ((Pj,ts + (Pj,sr) + O sr ((Pj,st + QDj,rt)} (05)
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and

95 (Zij1:Zij Zij.r Zija)

= (Ziju:Zijs: Zijr Zijg) = Gij2 (Zija Zijs) = Gij2 (Zija: Zijr) = Gij2 (Zija Zijg)
~Gij2 (Zijs: Zijr) = Gij2 (Zijs Zijg) = Gij2 (Zijur: Zijq) = Gij3 (Ziju Zijs Zijir)
—Gij3 (Zije Zijs: Zijg) = Gij3 (Zijas Zijr Zijg) — Gij3 (Zijs: Zijrs Zijq)

1
= AP Pirg+ itrPsg+ PiraPias + Pisg®jur + PitgPisr+ Pisr@iag} s (06)

where (.0.5) and (.0.6) will be needed in the proofs of Propositions .0.2 and .0.3,

respectively.
k)

k
Let G = n(n_‘wzlg# jan iy O (Zijar, - Zijg,) for k=1,2,3,4, where ¥ 7
denotes summation over all Pf permutations (¢1,...,#;) of distinct integers chosen from
{1,2,..., T} (See Lee (1990), Ch 1). Then by the Hoeffding decomposition, we have
2 (
) +4G

n

3
7 +G.

n

4)

Tor = 6G. ) (0.7)

n

Let I,y = 6G£,2T)- Noting that nThE(Tr) = %Zlgi#gn&gmngE (@i1s@jss] =

B,r under Hy, we complete the proof of the theorem by showing that: (i) nTh[[,r —
E(Tur)] % N (0,062), (i) nThGY) = op (1), and (iii) nThG'Y) = op (1) These results are
established respectively in Propositions .0.1, .0.2, and .0.3 below.

Proposition .0.1 nTh [T, —E (ur)] 4N (0,03).

Proof. Let ¢}, = ¢;ss — E(@iss). Then we have Twr —E(Tur) =Tz +Tar2, where

_ 2 1
Lurp = =3 @159 45> and
" n(n—1) 19’;1'91 Ct 19;9 P
_ 1 1 . )
FnT,z = n (n o 1) Z a Z {(plctsE [(pj,ts} + (P]L',st [(pi,ts]} .

1<i#j<n ~T 1<t<s<T

We prove the proposition by showing that

— nT d 2
Th'yp1= —————W, , , .0.
" = ey N (0) o
and
nThfnsz = O0p (1) s (.0.9)

— — — —_ 4h C (nC —
where WnT = Zl§i<j§nwij7 Wij = WnT,ij = WyuT (ll,',uj) = ﬁZI§I<S§T (pl',ts(pj,tﬁ and u;, =

(i, ....,u;r)". Noting that nT /[(n — 1)(T —1)] — 1, the proof is completed by Lemmas
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.0.1-.0.2 below. m
Lemma .0.1 W,; %N (0,06¢) under Hy.
Proof. W, is a second order degenerate U-statistic that is “clean” (i.e., E [w,r (u;,u;) |u;]

=E [wyr (u;,u;) [u;] =0 fori # j) under Hy, we can apply Proposition 3.2 of de Jong (1987)
to prove (.0.8) by showing that

62 = Var(Wyr)=0%+0(1), (.0.10)
G = Y EW]=0(1), (.0.11)
1<i<j<n
Gy = Z E [wlgjwl-zk—i—w?iw?k—i—w,%iw,%j] =o(l), (.0.12)
1<i<j<k<n
Gy = Z E [wijwiewi jwi + wijwiwi jwig + wigwiw jow ji ] = 0 (1) (.0.13)

1<i<j<k<I<n

Step 1. Proof of (.0.10). First, notice that

o 161? . .
Cur = anr Z Z (pi,ts(pj,ts

1<i<j<n 1<t<s<T
16h2 C Cc C c
L) )y )y E 9716 Pirsts) E (951 e] -
1<i<j<n 1< < <T, 1<t3<t4<T
We consider three cases for the summation in the last expression: the number of distinct
indices in {t,t,,13,14} are 4, 3, and 2, respectively, and use (a), (b), and (c) to denote these
three cases in order. In cases (a)-(b), we can apply similar arguments to those used in the

proof of (.0.11) below and demonstrate the corresponding sum is o (1) . It follows that

_,  16h?
O = e

Z Z Var ((Pic,ts) Var ((p;':,ts) +o(l)= Gr%T +o(1).

1<i<j<n 1<t<s<T

Step 2. Proof of (.0.11). We prove a stronger result: G; = o(n"!) by showing that
max<izj<, Gijr = o(n=3) where Giji = E(w?,-). For i # j, we have that under Hy,

256K =

=
L ndT4

4
C (s
(PiJZIllZl] E LIT (p]'-f21112l] :
1 =1

d
1<ty <ty<T,k=1234 |I=
We consider five cases inside the summation: the number of distinct elements in {71,, ...,73}
are 8, 7, 6, 5, and 4 or less. We use (A), (B), (C), (D), and (E) to denote these five cases,
respectively, and denote the corresponding sum in G;j; as Gjjra, Giji., Gijic, Giji.p, and
Gij1E, respectively (e.g., Gjji 4 is defined as G;j; but with the time indices restricted to case

(A)).
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For case (A), we consider two different subcases: (Aa) there exists kg € {1,...,8} such
that, |t —1,| > m for all [ # ko; (Ab) all the other remaining cases. We use Gjjja, and
Gij1.ap to denote G;j; o but with the time indices restricted to subcases (Aa) and (Ab), re-
spectively. Let 1 < rj < ... <rg <T be the permutation of 71,...,f3 in ascending order.
Denote A; (r1,...,78) = [17-, @51, 1, Then itis easy to see that |[E[A; (r1,...,78)]| < C uni-

formly in j.

For subcase (Aa), without loss of generality (WLOG) we assume f, = #1. We consider
two subsubcases: (Aal) t; = ry, (Aa2) t; = ry, for Iy € {2,...,7}. In subsubcase (Aal), by
splitting variables indexed by #; from those indexed by »,...,f3, we have by Lemma .0.5
that

‘E[Al (}’1,. o7 ‘ < ’E {Etl ((pl tltz) (pl 1314(Pl tst(,(pl 1‘71‘8}{ +Ch 1+5a%( )

To bound the first term in the last expression, we apply Lemma .0.6 to obtain

En By (Ri) — E )| = [E 1B Ry) — E Ry i)

—i —i L
E Ezz(kthtz)_E(kthtz’Mi[l) <Ch" 1+5(x +5 (m). (.0.14)

‘Etl ((piCJle) ‘

IN

48 )
Consequently, we have |4; (11, ...,t3)| < Ch™ 1+ o.1+3 (m) . In subsubcase (Aa2), noting that
t» € {ri+1,...,rs} we split first variables indexed by ry,...,7;,—1 from others and then vari-

ables indexed by ry, (= t;) from {rj +1,...,r3} to obtain

EAi ()]l < E{EL iyt [Ai (11, o)} + CH 55 755 ()

< |E[E {E\.. jy—1[Ai(r1,...,18)]}]]
+armaw()+wlwa%()

A

Now we can apply Fubini theorem and (.0.14) to bound the first term in the last expres-
sion by Ch™ T qits (m). Consequently, we have |E [A; (r1,...,13)]| < Ch™ 15 qits (m) uni-
formly i in case (Aa). It follows that

Ch* T8 %5 —44 S -3
Gijtaa < 4 TSh s a Mmzo( TW%aa(Q:om), (.0.15)
’ n

where here and below o (n~?) holds uniformly in (i, j) . In case (Ab), the number of terms
in the summation for Gjj; a5 is of order O (T4m4) and each term is uniformly bounded by a

constant C. It follows that

Gijrab < %T4m4 =0 (n*h'm*) =0(n?). (.0.16)

Now, we consider case (B). WLOG we assume tg = tg and consider two subcases for
the indices {71,...,#7}: (Ba) there exist two distinct integers k;,k, € {1,...,7} such that
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|t; —tx,| > m for all [ # ks and s = 1,2 ; (Bb) all the other remaining cases. We use Gij1.Ba
and G;jy gy to denote G;j; p but with the time indices restricted to subcases (Ba) and (Bb),
respectively. In case (Ba), at least one (say f, ) of the two time indices satisfying the condi-
tion in (Ba) is not f¢ so that we can apply the same argument as used in case (Aa) to obtain
the bound for Gj g, as
Ch47_£i P S I -3
Gt <~ TTH 10 T3 (m) = O(n T3hts ot (m)> —o(n ). (017
’ n

In case (Bb), the number of terms in the summation for G;j; gy, is of order O (T4m3) and

each term is uniformly bounded by a constant C. It follows that

Ch* 4 3 —474 3 -3
G,,B,,ng =0 (n*n*'m’)=0(n7). (.0.18)

For case (C), we consider two subcases for the indices {71, ...,#3}: (Ca) there exists four
distinct integers ki,k2,k3,ks € {1,...,8} such that |t —#; | > mforalll #ksand s =1, 2, 3,
4 (note that some of the #; indices coincide here so that the total number of distinct indices
among {f1,...,13} is six); (Cb) all the other remaining cases. We use Gjjr,c, and Gjjycp to
denote Gy ¢ but with the time indices restricted to subcases (Ca) and (Cb), respectively. In
case (Ca) we can follow the same arguments as used in case (Aa) to bound G;j; c, as

2+48

4
" ron 38 @l (m) = 0 (n—“Tzhl%s ar’s (m)) —o(n).  (0.19)

Gijrca < <77
wbtd = ara

In case (Cb), the number of terms in the summation for G;j; ¢y is of order O (T4m2) and
each term is uniformly bounded by a constant Ch~2. It follows that
4

Ch
Gijicr < WT‘thh_2 =0 (n_4h2m2) =0 (n_3) . (.0.20)

For case (D), we consider two subcases for the indices {71, ...,73}: (Da) for all distinct
integers k € {1,...,8} such that |, —#;| > m for all [ # k with #; # t;; (Db) all the other
remaining cases. We use Gjj;p, and Gjj;pp to denote G;j;p but with the time indices
restricted to subcases (Da) and (Db), respectively. In case (Da) we can follow the same
arguments used in cases (Ca), (Ba), and (Aa) to bound G;j; p, as

)

Ch*
Giji,pa < T°h™ W5 o+ (m) = O (n*“Thl%sam (m)) =o(n7%). (.0.21)

T
In case (Db), the number of terms in the summation for G;;; p;, is of order O (T4m) and each
term is uniformly bounded by Ch~2. It follows that

4

" i = 0 (n*h*m) =0 (n?). (.0.22)

Giji.ob < AR
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In case (E), it is straightforward to bound G;j; £ as
. Ch* 47 —4 3,4 2,6\ _ —4 | A2y 2\ -3
G%Egj?ﬂTh +Th*+T°h %) =0 (n*+n* T %) =0(n">). (0.23)
n

In sum, combining (.0.15)-(.0.23) yields

max G =o(n?). (.0.24)

I<i#j<n

Step 3. Proof of (.0.12). By the Jensen inequality and (.0.24), Gy < ¥ i << jek<n [{E(wf])
3
<E(wi) 2 H{EWHEWh) Y2 +{EWEHE (W)} 2] < % maxi<izjen E(Wh) = 0(1).
Step 4. Proof of (.0.13). Write Gy = Y {E [wijw,-kwljwlk] +E [wijwilwkjwkl] +

1<i<j<k<I<n
_ . _ 4k
E[wig wyw w1} = Gvi + Giva + Grv3. Recalling w;; = T Y <i<s<T (pifm(p]ﬁm,

G = ) E [Wiy iy Wiy iy Wigiy Wiis
1<i <ix<iz<ig<n
256h*
- = ¢ ¢ ¢ ¢
T pATé Z Z E [(pll7tlt2(pll7t3t4] E [¢l271112(p12>f5f6]

1<i1<ip<iz<ia<n 1<ty 1<ty <T,k=12,3,4

xE [(pi27l3l4¢i?7l7ls] E [(pi(jt-,tSIﬁ (pift,lﬂs] :

Like in the analysis of G, we consider five cases inside the above summation: the number
of distinct elements in {¢,1,,...,3} are 8, 7, 6, 5, and 4 or less. We continue to use (A), (B),
(©), (D), and (E) to denote these five cases, respectively, and denote the corresponding sum
in Gyy1 as Gyvia, Givi g, Givic, Givip, and Gy g, respectively (e.g., Gyy1 4 is defined
as Gy but with the time indices restricted to case (A)). For case (A), we consider two
different subcases: (Aa) there exists ko € {1,...,8} such that, |t; —,| > m for all [ # ko;
(Ab) all the other remaining cases. We use Gy a4 and Gy 4p to denote Gy 4 but with
the time indices restricted to subcases (Aa) and (Ab), respectively. In case (Aa) we can
follow the same argument as used in case (Aa) in Step 2 to bound Gryvi a4 as Giviaa <

2(2+6)
llcé‘—};:n“Tghf12%S atts (m) =0O(T*h s oS (m))=o0(1).In case (Ab), the number of terms

in the summation for Gy 4 is of order O (T4m4) and each term is uniformly bounded by

a constant C. It follows that Gy 45 < n‘;’}t n*T*m* = 0 (W*m*) = o(1).
For case (B), we consider two different subcases: (Ba) there exists kg € {1,...,8} such
that, |t —,| > m for all [ ko with #; # 1;,,; (Bb) all the other remaining cases. For subcase

(Ba), we consider only two representative subcases: (Bal) 13 =1 or 13 =1, (Ba2) 13 =15
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or t3 =t since the other cases are analogous. For subsubcase (Bal) WLOG we assume
13 = t1. Noting that all the four time indices in each of the four expectations £ [(pfl 1P -,t3t4]’
E[Qf 110,95 sste)s EL9F, 110, P ), and E[@f , @f, | are different from each other, we can
easily get the bound for Gy p (with the restriction fg = ;) as O(T%w 051%5 (m)) =
o(1). For subsubcase (Ba2) we assume g = t5 and consider bounding the following objects:
E[(pzc] P ,t3t4]v E[(piz,tltz (pi62.1516]7 E[‘Pli,t3t4 ‘P{;,zm]’ and E[(Pii,g% (Pii,ng]' Note that the indices
in the last expectation E[¢f, .., 5 , ] are not all distinct. Despite this, since all the four
indices in each of the other three expectations are distinct, we can continue to bound Gy
(with the restriction #3 = f5) as O(T%w ar’s (m)) = o(1). For subcase (Bb), it is easy
to tell Gy is bounded by T~*h*0 (T*m*) = O (h*m®) = o(1). It follows that Gy 5 =
o(1). For case (C), analogous to the study of case (C) in Step 2, we have

nt
Gm,c——O(Tﬁh1 B s (m)+ TP ) = 0 (T*h5 s (m) +m?) = o(1).

Similarly, in case (D) we have

3+4

K
G,VID<—O<T5h1 5 155 (m )+T4mh’1):0(Th1T5a%( )+ i3m ) o(1).

In case (E), it is straightforward to bound Gy g as

4

Ch
GviEe < ATd

n (TR >+ T +T°h ) =0 (W + T 'h+T7%) =o(1).

In sum, Gyy; = o(1). Similarly we can show that Gy, =o(1) fors=2,3. =
Lemma .0.2 nThl,7, =op(1).

Proof. Letn =n—1and 7} =T — 1. Recalling that ¢; ;s = E (@;45) and ¢;5 = n]’1 Y Ciss,

we have
- 2h 1 T t—1 . .
nThUyry = n Z T, Z [(Pi,tschS + (Pj,tsCiJS]
1<j#i<n t=2s=1
n n th—l . ] ah _th—l .
= — Z Z I Z Z [(pi,tscj,ts + (P]“,zsci,ts] - Z T, Z Qi 15Cits
i=1j=1 1=25=1 m i3 1=25=1
T t—1 n T t—1
= 4hZT 122(pztcct5 ZTI IZ (Pltsclts
t=2s= i=1 t=2s=1

= 4V1nT _4V2nT7 say.

We complete the proof by showing that Vi, = op (1) and V,,7 = op (1) . We only prove the

first claim since the proof of the second one is similar.
Letv;, = 22;11 h'/ z(pi‘fmcm andv, =T, fl Zszz vi;. Then we can write Vy,r = hl/2 Yirv
Note that E (v;) = 0 and {v;}"_, are independently distributed under Hy, we have E[(V},7)?] =
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hY! ,Var(v;). For Var(v;), we have

1 T 1 T T t] 1
VaI‘ (Vl) — E F ViJ — 72 Z E [V%t 2 Z Z E vl Ril Vi 12 Vll + VZZ’ Say'
1i=2 I = T; n=3n=

For V};, we have

T t—1 T t—1s—1

2
Vii= T2 Z ZE [(pl ts] st T2 Z Z ZE [(pl s Pi tr] CtsCtr = Vll 1+Vi 2, say.
1 1=2s= 1 t=3s=2r=1

-8

By (.0.1) and Assumption A.1, |c;s| = |n] ' YL E[@iss]| < ChTHs ot s (t—s). Thus uni-

formly in i

C Ll 55 s

Viip < le IX‘ESZ}I”EO“*‘S l—5>1<1}17fs§T{hE [‘Pftzs]}
< € max max {hE [@f7,] } i i (¢ (T*Ih%).

Ti 1<i<n1<t#£s<T

For Vi, 2, we have that uniformly in i

T t—1s5— Ch]’l T t—1s—1
Vi = ZZZ}E (95:5951) | lers| lenr| < ”EZZZ %5 (1 —s) a5 (1 —r)

l t=3s5s=2r=1 —2 =1
1-8
T & = _

< @7y Y @ (5)ars (m) =0 (T 'h).
Tl T1=117=1

It follows that V}; = O(T_lhﬂig + T_]hi%g) uniformly in i.

For V,;, we have

T ti—1t1—11—1

Vai = Z Y Y Y E0fn 0] concon

111 3n=2t3=11=1
4h T t1i—1nr—1

= T2 Z Z ZE (pz l‘|t3(pl tztg Cti15C0t3

1 n1=3n=2n1=
2h T t1—1 H—1 Hh—1

T2 Z Z Z Z E [(Pl i3 (pl t214] Cllt3clzt4 - VZ! 1 +V21 2 Say’

1 1n1=30n=21n= 11‘3#[4,[2[4 1

where the first term is obtained when 13 = 14 or t; as @; ;s = ¢; ;. Following the analysis of
Vii2, we can show that |Vy; ] < CTl_lhifg Yro1Xn1 arts (11) ars (m) = O(T_lh}%)
uniformly in i. For V5; 5, we consider three cases: (a) 1 <13 <t4 <t <t;] <T;(b)1 <15 <
<< <T;()1<1yu<t<tz<t; <T,and use V224, V22, and V3; 2. to denote
the summation over these three cases of indices, respectively. In case (a), by separating
variables indexed by #3 from those indexed by #4,#,, and #; and Lemma .0.5, we have

—28

|E [(picallls(picylezt] ‘ S ‘E [EfS ((piftm) (pifl2l4] ‘ +Ch%al% <t4 _t3> =Choa % (t4 _t3)

where the equality follows from the fact that Ey(¢f,;) = EE; (Em) —E (E;,?,s) is a constant
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and that E(¢y,;) = 0 for t # s. It follows that uniformly in i

2h T t1—1th—11—1

Vaiza| < 7z Y Y XY Y |E[0f, %]

1 n1=30n=21u=11=1

48
Chhm T 1—1 Hn—1 Hh—1 5

|cl1t3’ ‘Clzf4|

< 3 Z(XT 4—1‘3 %(Zl—lg))a% ([2—t4)
Tl t1=30=213=117#t4,th 14=1
1-38
Ch™ & & «— s s s 1-38
< 76 ot ()T (T :O(T_lhﬁ>_
< T ) o (72) (73)

n=1n=117=1

By the same token, we can show that ‘V2i,2§‘ = O(T*Ihll%s) uniformly in i for & =hb,c.
Hence Voo = O(T~'h'5 ) and Vo = O(T ' 1138 ) +O(T ' 175 ) = O(T 1'% ) uniformly

in i. Consequently

VlnT =h

n
i=

(Vi + Var) = <nh (T*lhf% n T’lh%» ~-0 <nh1%§/T) —o(1).
1
Then V7 = op (1) by the Chebyshev inequality. =
Proposition .0.2 nTthfT) =op(l).

Proof. By the definition of GfT) and (.0.5), we have

—12nTh
—12nThG,(13T) = e Z Z 19~(j3) (Ziji,Zijs: Zijr)
n(n—1)Cy 1<ij<n1<t<s<r<T

Th
= 3 Z Z [(Pi,ts ®jir + GitsPjsr + DitrQjts + Ditr®j sr

nCr 1<ij<n1<t<s<r<T
+(Pi,sr(Pj,st + (Pi,sr(pj,rt]
Urnr + Usnr + Usur + Usur + Usyr + Ugpr, say,

_ Th
where, e.g., Uy,r = el Zl§i¢j3n21§z<s<r§T Qi 1sP;jr- It suffices to show that Uy, = op (1)

forr=1,2,...,6.
For Uy, 7, we have

Th Th
UlnT = 3 Z Z (Pic,ts (pjc',tr Cz Z Z Ciys (pjc',tr

MCr |\ <iTj<n1<tSser<t T 1<itj<n1<t<s<r<T
Th Th
C
3 Y, Qe 3 Y, CinCiar
MOT 1<itj<ni<t<s<r<T MOT 1<ifj<nl<t<s<r<T
Uinr,1 +Uint2 +Ulnr 3 + Uinr 4, say,

_|_

where recall ¢, = @i;s —E (@iss) and ¢y = E (@;45). We further decompose Uj,r,1 as

follows
— C C C C
Ul’lTJ - C Z Z (Pi,ts(pj,tr Z Z (pi,ts(pj,tr
MLT 1<i<j<nl<i<s<r<T T 1<j<i<n1<t<s<r<T
= Unrja+Uint1p-
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Noting that E (U},7,1,) = 0 under Hy, we have

Tzhz C (& C C

Var (UlnT,la) - 3 2 Z Z E [(Pil,tll‘Q(piz,t1t3(Pi1,t4t5 (Pl'z,t4t6:|
(I’l]CT) 1<iy<ir<n1<t; <tr<3<T
1<ty<ts<te<T

Tzhz C (& C C

= 312 Z Z E [(pihfm(pil,mfs] E [(Pi2,t1t3 (Pi27f4f6] :

(rl]CT) 1<iy<ir<n1<t; <tr<3<T
1<ty <ts<te<T

Analogously to the proof of (.0.13), we can show
CT?h?

S
(mC7)

= <T2h1+6ai5< )+T*1h2m3—|—T71> :0(1).

Var (Ui,7,14) { R2TORTE s (m) +nT3m’ + n2T3h*2}

Hence Ujr,14 = op (1) by the Chebyshev inequality. Similarly, Uj,7,1, = op (1) . It follows

that UlnT,l = Op(l) .
For UlnT,Z, write

Th & & . Th .
N 1) cj,mq,,,,?z Yt
mMlr =1 j=11<r<s<r<T MCT =1 1<i<s<r<T
n n
J— C C —
= C3 Z Z Crs @iy — Z Z Ci,ts(piJr = UlnT,Za _UlnT,Zba
T i=11<t<s<r<T =1 1<t<s<r<T

where recall ¢;; = ”fl YL cis- Noting E (Uynr24) = 0, we have

T2h2 n
Var(UlnT,Za) = T I Z Z ClllzcwsE [(Pic,tlts (pifufs]

( ) i=11<t1<tp<t3<T
1<ty <ts<tc<T

n
C C
- 312 Z Z C1112Cf415E [‘Pi,m; (Pi,mG] +0(1)
(CT) i=1 1<ti<t<t:<T,
1<ty <t5<t6<T,
t1,...,t are all distinct

< PSR T ath @t (marts w) 4ol

1 ’53:] T2:1 71:1

/T)—i—o(l):o(l).

l:
—9)
RErn

= <nh I+

So Uiyr2a = 0p(1). By the same token Uj,r25 = op(1). Thus Uj,r2 = op(1). Similarly

we can show that Uy, 3 = op (1) . For Uj,r 4, we have

Th
\Uinra] < 3 Z Z |Ci”5|‘cj”r‘

HICT 1<i#j<n1<t<s<r<T

CThhTs 25 %
< . aTs (s—1) a3 (r—1)

mCy 1<i£j<n1<t<s<r<T

)

Crhso & & s s i3
< ats ( ﬁr:O(hmT>: 1).
< . X:: Z:: (1) nhi=s / o(1)
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Consequently, U, = op (1) . Analogously we can show that U,y = op (1) forr=2,3,...,6.

This completes the proof of the proposition. W
Proposition .0.3 nThGEf;) =op(l).

Proof. By the definition of GE:‘T) and (.0.6), we have

4 6Th 4
6nThGly = oY Y ﬁi(j)(ZijJaZij,saZij,raZij,q)
mCr 1<i#j<n1<t<s<r<q<T
Th

= Z Z {(PiJs Pj.rq + DitrQj,sq + Dirg®Pjts + DisqPjer

4
nCy 1<ij<n|<t<s<r<q<T

6
+@irg®jsr+ (Pi,sr(Pj,rq} = Z Ounr, say,
I=1

where e.g., Q1,7 = % Yi<itj<n Li<i<s<r<q Piss@j.rg- 1t suffices to show Qy,r = op (1) for
1=1,2,...,6. We only show that Q1,7 = op (1) since the other cases are similar. Write

Th
C C C
i Ch )3 PiasPirg "ok ) L Gt
MCT \<ifj<nl<t<s<r<q<T MCT \<itj<ni<t<s<r<q<T
Th Th

C
ik Z Z ‘Pi,tscj,rqu? Z Z CitsCjrq
mir < mtr

i#j<n1<t<s<r<q<T 1<i#j<n1<t<s<r<q<T
= QOuwr1+Oinr2+ Quar3 + Qur 4, say.

Th
Owr =

Analogously to the determination of the probability orders of Uy,r 1, Uinr2, and Uy,r3 in
the proof of Proposition .0.2, we can show that Qy,r s = op (1) for s = 1,2,3. For Q1,74,

we have

CThh~ s

el y Y arts(s—1)ams (g—r) = O(nhis /T) = o(1).

1<i#£j<n1<t<s<r<q<T

|Q1nr.4] <

It follows that Q1,7 =op(1). ®

.0.1 Proof of Corollary 2.3.2

Given Theorem 2.3.1, it suffices to show: (i) D, = 6% — 0% =op(1), and (ii) Doyt =

~

B, — B,y = op(1). For (i), we write

o = n(n—lé)”;z(T—l) L X E[("ZJS)Z}E[("L”)Z]+"(1)

1<i#j<n1<t#s<T

=2
B n(n—4f)(Tk)(T_1) Y X /ﬁ,zs(u,u)du/fj,m(v,v)dv+o(1).

1<i#j<n1<t#s<T
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Then

b 4R k)’ 1L
DlnT n(nf 1) 1§l#z]§n?t:z] ij,— (ulhujt)
4R (k)

_n(n—l)T(T—l) Z Z /fi,ts(bl,u)du/f”s(v,v)dv—o(l)

1<i j<n 1<t#s<T
= DlnT —O0 (1) .

4R(k
where DlnT = ,W#“Zl<t#j<n21<t#s<T{kh tskh s ffi,ts (M,M) dl/lffjJs (V, V) dV} It

is easy to show that E (Dy,7) = O (h?) = 0 (1) and Var(D1,7) = o (1) . Consequently, Dy, =

op (1) .
Now we show (ii). Noting that B,; = % Yi<itj<n YL, T;:TIE (917 E [@].1,] , we have

~ 2h L T—r+1 ~ .
By —By = Z 4 Y {E[¢:.1)E[9j1]—El@i]E[9;1])
—1 1<ij<n
hT‘T—r+1 N
= m,):z — 1<§j§nE[(Pi,1r]{E[<Pj,1r]—E[(Pj,lr]}
IzTT— +1 .
Z : 1 Z {E[q’i,n] —E [(Pi,lr]}E [@1/]
I<i#j<n
szT— +1 ~ N
Z : 1 ) {E[(Pi,lr] —E [(Pi,1r]} {E [@j.1,] —E [<Pj,1r]}
1<i#j<n

2D2nT,1 +2D2,12 +2D2y7 3, say.

Recalling ¢; s = E [@i 5] and ¢, = nl_l Y| Ciss, Wehave Dy, = Yyl TT*flA Y, clr{E (@i.1/]
—E[gi]} — Lyl ALY o {E[(Pi,lr] —E [fpj,lr]} = Donr1a — Dont 1, Say. We

nj
only show that Dy,r 1, = 0p (1) as the proof that Dy, 1, = op (1) is analogous. Noting

that

T—r+1 ; .
E [(Pi,lr] —E [(Pl Ir] = -|—1 Z {kh,t,t+r71 [khttJrr l C Z {kh xS —EE [kh,ts]}7
T 1<t<s<T
(.0.25)
we have
n T a 1 T+1 . -
Dyria = hZZCIrT 1 Z {kh,t,z+r—1 *E{kh,z,ﬂrr—l]}
i=1r=2 r =1
L | - -
—h Z Z C”E Z {kh,zs — EEs [kh,ts]}
i=1r=2 T 1<t<s<T
= Donr,1a1 — Dont 102, 53Y, (.0.26)
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where ¢, =c, (T —r+1) /(T —1) and T, = T — r. Noting that E (D2,7,141) = 0, we have

Var (Dant 1a1)
n T T 1 Ty +17T,,+1
= h2 r Cov (k ,k )
l:ZIV]ZZZ ] er;Z Tn"‘l)( +1) Z Zl htt+ri—1 Yhys,s+r—1
n T T 1 T,] +1 T,2+1 . .
= h2 El E COV (%l - 7El . )
i:ZI r;Z " rzg (Trl + 1)(T1‘2 + 1) t:Zi s:l,s;ét,szaét-&-rl—rz ottt =D st
Fo(l). (.0.27)

We consider three cases for the summation in the last expression: (a) t <t+r —1 <s<
s+rm—lors<s+m—-1<t<t+r—-1,bt<s<s+rn—-1<t+ri—lors<t<
t+r—1<s+m—land(0)t<s<t+r—1<s+m—lors<t<s+rn—1<t+r —1,
and use VDo, 14, VDoy1p, and V Dy, 7. denote the summation in (.0.27) corresponding these
three cases, respectively. In case (a) we can apply the fact that ¥'/_, ¢, < Ch™T%5 and
the Davydov inequality to obtain VD5, 7, < Cnh?~ 755 /T = O(nh% /T)=o0(1).In case
(b), WLOG we assume t < s < s+ —1 <t+r; —1. Then we apply Lemma .0.5 by first
separating ¢ from (s,s +r, — 1, +r; — 1) and then separating ¢ + r; — 1 from (s,s+r, — 1)
to obtain

—i —i
‘COV (kh,t,t—i-rl—l’ kh,s7s+r2—1> ‘
—i —i —i —i
= ’E { |:kh,t,t+r171 - E(kh,t,t+rlfl):| [kh,s,ﬁ»rzfl - E(kh,s,errzfl)} } ‘
—i —i —i —i _ 25 &
‘E {Ef |:klh,t,t+r1—l - E(k;ft,t,t+r] —1 ):| |:k;1,s,s+r2—1 - E(k;L,s,s+r2—l )] } ‘ + Ch 13 1+3 (S - t)

2 5 _26 5
< Ch s (t+ry—s—ry)+Ch o1+ (s—t).

IN

Then we have

T, +1 T, +1

T
_ Clry i i
Clrl Z ( +1)( +1) Z ‘COV (khJ,lJrrl*l7kh7S7S+r271>’
n t=1 s=1s#t,s#t+r —nr
t<s<s+r—1<t+r—1

S _ CinCin {GW(HH—S—’?HO‘IT‘S(“I)}
. T )T ) & s
1<s<s+ry—1<t+r—1

IN
<
=
Z

It follows that V.Dy,7j, = 0 (1). Similarly, we have VD, = 0 (1). Hence Var(Daur,141) =

0(1) and Dy, 141 = 0p (1) by the Chebyshev inequality.
To study Do, 142 in (.0.26), let ;s = Ky, 1 — E/Eg[ky, ], and x£, = Xiss — E (Xiss)- Not-
ing that |E (¥is)| < ChTs oTes (Is—t]), we can readily show that Dy, 14,2 = anT,laz +

— —
T - 1 .
op (1), where Doyria2 =hY! Y, clrc—% Yi<ies<T xl-fm. By construction, E(D,7,122) =
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0 and

_ 2 5 n T T :
E |:<D2”T>102> :| = h Z Z Cir Z Cir, 2 Z Z E(Xic,zlzzliigm)

i=lr=2 rn=2 (CT) 1<t1<tr<T 1<t3<t4<T

I
Q
&)
=
g

~
iﬂ
I
S)

Consequently, BZnT,laZ = op (1) and Dy,11.2 = op(1). Hence Dy,r.14 = op(1). Analo-

gously Dy,r.15 = op (1) and hence Dy,r,1 = op(1).
By the same token we can show that Ds,7r2 = op(1). To show Dy,r3 = op(1), by
(.0.25) we can decompose Dy, 3 as follows

h Ty Tr n 1 T, T —i —i — / 7/
D2nT,3 = Z ? Z T2 Z (kh,t,t+r - E[khJ,t-‘rr]) (kh,s,s+r - E[kh,s,s-‘rr])
M2 g<itj<n T i=1s=1
W, (—i —i
- ki iy 1y +r — Elk, H)%j,tt,
ni I‘ZI Tl 1<l;£z‘;<n T, C% I|Zl 1<l‘2§3<T e e 22

T Z Z T C2 Z Z Xi 13 (kh ot +r [Ei,tl ,11+r]>

M N < Zi<n TCr (S <nen<t

7 T, n
2 Z Z Xi,tllzxj,l3t4

ZT]KZ

<i#j<n CT) 1<t1 <tr<T 1<t3<t4,<T

D2yt 30 — Dont 36 — Dont 3¢ + Dant 34, S2Y

It suffices to show D7 3¢ = op (1) for & = a,b,c, and d. We only sketch the proof of
Doy134 = op (1) since the other cases are simpler. First, note that Dy,r 34 = Bgnmd +op(1)

by a simple application of Lemma .0.5, where

C C
Z Z Xl}lltz%sz»M‘

11 1<i<j<n1<t<ty<T,1<t3<t4<T

R
Doyr3a = C2 — 3 Z

I’ll(

N
Second, noting that E(D 2,7 34) = 0, we can write

2
16h2 (Zr—l ;:

E [(anT.sd) 2] - (1’11) (C%) ) Z Z Z E [%ic,t,tZXic,gm] E [X]C‘,tstéxjc',mg] :

1<i<j<n 1< < <T 1<t5<t6<T,
1<t3<t4<T 1<t7<t3<T

Now, following the same arguments as used in the proof of (.0.13) and applying Lemmas

2(1-6)

.0.5 and .0.6 repeatedly, we can show that E[(anmd) |=0(h Tt (m) +h*m*) =

o(1). Hence 32,,773(1 = op(1). This completes the proof of the corollary.

.0.2  Proof of Theorem 2.3.3

It suffices to show that under Hy,(i) [y = pa +op (1), (ii) (nTh) ™' Byr = op (1), and (iii)
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62 =62 +op (1), because then (nTh) ' I,r = gz; — (”T];)’i’” P ““ > 0. Using the expres-
sion of Tz in (2.2.7), we can easily show that E[T,yr] = s +0(1) and Var(T,r) = o(1).
Then (i) follows by the Chebyshev inequality. Next, it is easy to show that (nTh) B, =
Op (T™') = op (1) and thus (ii) follows. Lastly one can show (iii) by the Chebyshev in-

equality.

.0.3  Proof of Theorem 2.4.1

Let flnr, fnr, EnT, and c~7nzT be analogously defined as f‘lnr, fnT, §nT, and 337 but with
{u;} being replaced by the residuals {u; } in their definitions. We prove the theorem by
showing that: (i) n”Th(Tyr — Lur) = op (1); (i) 62 = 62 +op (1) ; and (iii) Bur — Bur =

op (1) .
To show (1), let ZnT = f]nT — fnT and Z,,T = 1~“1 T — 1~“,,T. By straightforward but tedious
calculations, we have A, = an —l—gnm, where KHTJ =R (k) [ﬁ (I+3)— 2 Z f (u)d

and
b2 = ooy, L (-mtm+am) L B
+” (”1_ 1) 1§i§j§n (é - % " ;;) 1§z¢§;&r§Tk;Mki7"
o (nl— 1) 19;]'9, (7}4 a f;) 1<z¢§'¢q<rk2’mkirq. (029

Similarly, ZnT = an +an,2, where an, 1 and Z,,T,z are analogously defined as KnTJ and
K,ZTQ but with {u; } being replaced by {u; } in their definitions. It follows that nTh(f‘nT —
fnT) = nTh(fl,,T — lA“lnT) —nTh(FZnT’l — Knm) — nTh(ZnT’z Anr2). We prove (i) by es-
tablishing that: (i1) nTh(Tiur —Tiar) = 0p (1), (2) nTh(Aur — Aur,1) = 0p (1), and (i3)

nTh(ZnT,g — KnT,Z) = op (1), respectively in Propositions .0.4, .0.5 and .0.6 below.
For (ii), we have

— 2
~ ~ 4R (k Ly o —~
Gr%T—anT = n(n—(l)) Z Z [fijﬁt (ttie, wje) — fij,— (utie, je)

1<i#j<nt=I
— 2
4R (k - L .
= (nl)() 1) Z Z [kh(uit_uis)kh(ujt_ujs)_ ;,,Sk,Jm
1<i#j<n1<t#£s<T

(T -
= 4R (k )2 Y Y {nK K (Aug — Aug)
n(n—1)T(T—-1) 1<ij<n1<t#s<T T "

+h2K) K (A — Auig) } +0p (1),

SLLS
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where ﬁj7,, is analogously defined as ﬁj7,, with {u;} being replaced by {u;}, k;_ls =
K ((uir — uis) /h) and Auj; = t;;— uj. Then following the proof of Lemma .0.4 below, one
can readily show that the dominant term in the last expression is op (1) by the Chebyshev

inequality.
For (iii), letting £ [@:.1,] be analogously defined as E [@i 1] but with {u; } being replaced
by {u; }, we have

=~ = h L T—r+1

Bur —Bur = aZﬁ Y {E[¢i1]E[9j1,] — E i1, E 91}
r=2 1<iz j<n
h&L T—r+1 N _ R
- w7 L Elew [Elgy1]~Elgs1))
h o T—r+l - R R
+711,;ZT—1IS;Sn{E[(Pi,lr]_E[(Pi,lr]}E[(pL]r]
h o T—r+l - ~ N R
o ;ﬁ 1<§_< {Elou) ~Elgu] } {Eloia) — Eloj]}
I <i ]7”

DnT,l + DnT,Z + DnT,?n say.

Analogously to the proofs of Lemmas .0.3-.0.4 below, we can use the expression E [Qj1]) —
E [(Pj,lr] = ﬁ ZtT;lr{Eh (sir — ’/N‘i,tJrr) _El,z.ﬁ-r} - C% Zl§t<s§T{%h (i — i) _El,ts}> the Tay-

lor expansions, and the Chebyshev inequality to show that D7 = op (1) for s = 1,2,3.
Proposition .0.4 nTh(f"lnT — flnT) =op(1).

Proof. Noting that x> —y? = (x —y)* 42 (x—y)y, we have

1

n(n—1) 1<i#j<n
2

”(”‘1)19‘#9

Uiy — Ly = /Rij (u,v)? dudv

+ /R,-j (u,v) {ﬁj (u,v) — ﬁ(u) ]/‘; (v)|dudv=Tyr1 +Tur,

where R;; (u,v) = ﬁj (u,v) — fi (u) fj (v)— ﬁj (u,v) + f; () fA, (v), f; and ﬁ, are analogously
defined as f; and f;; with {u;,u;; }"_, being replaced by {u;,u; }_,. Expanding ky, (i — u) =

h~ 'k ((tt;; — u) /h) in a Taylor series around u;; — u with an integral remainder term, we have
1
kp (1 — u) = b hyy (u) + W2k, (u) Augy + b2 Ay / ki (u,A)dA, (.0.29)
0

where Auy = 1ty — uj, kig (u) =k ((wi —u) /R) K, (u) =K (i —u)/h), k; (u,A) =K ((uiy —

>t
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u+ AAuy ) /h) — ki, (1), and k" denotes the first order derivative of k. It follows that

1 &~ _
Rl-j(u,v) = ?Z[kh(ui,—u)kh(uj,—v)—kh(ui,—u)kh(ujt—v)]
t=1
1 & 8
7222 kh “ll kh Mjs )_kh(uit )kh Ujs — Z rt]
t=1s=1 =1
where
1 T T ,
Ruj(uw,v) = oz 3 ) Ui (v) = ks (v)] i () Aut,
t=1s=1
1 T T
Ryij(u,v) = sz[kﬁ () — kis ()] K (v) Au,
t=1s=1
1 T T 1
Ryj(y) = =¥ Y K (v)—kjs(v)]Au,-,/ K (u,A)dA,
t=1s=1 0
1 T T 1
Rij () = =3z ¥ 3" B () —kis ()] Auy / K (nA)dA,
r=1s=1 0
1 T T )
Rsij(u,v) = T2h4ZZk”( u) Aujg [k (v) Auje — K (v ) Aujs]
t=1s=1
1 T T
Reij () = s ¥ Y (K (0) Bty — K () A Au,t/ k- (u,A)dA,
t=1s5=1
1 T T
Ryij(u,v) = WZZ[&,( ) Ay — Ky (1) At Auﬂ/ K (wA)dA,
=1 :
T T 1
Rgij(u,v) = T2h ZZ [Aul,/ ki (u,A)dA — Au,s/ ki (u, 1) d?t} Auj,/ kjt (v,A)dA.
=15=1 0

By the C, inequality, it suffices to prove the theorem by showing that:

Th
Rt = — /Rr,j u v) dudv =op(1)forr=1,2,...,8, (.0.30)
M <izj<n
and
Th
Sy = /R,,, u,v) [ (,v) — Fi () F5 (V)] dudv = op (1) for r=1,2,....8.
m 1<i#j<n
(.0.31)
We prove (.0.30) in Lemma .0.3 below and (.0.31) in Lemma .0.4 below. ®
To proceed, let 7((X; —x) /b) be the stack of ((X; —x) /b)), 0 < |j| < p, in the lex-

icographical order such that we can write S;r (x) = %Zszl T(%)T(%)’wb (Xir —x).
Let Vir (x) = + X7, vie (x) uyr, and By (x) = + X7 vie (x) gi (Xie) — gi (x), where vy (x) =
7((Xit —x) /b) wp, (Xir —x) . By Masry (1996b), we have sup,. »- |[Bir (x) || = Op (b7"!),

sup,e ;|| Vir (x)|| = Op(T~"/?b~>\/1ogT), and sup,c 5, |[Sir (x) — f; (x)S|| = Op(b+
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T-12p=4/2,/logT), where S is defined in (2.4.2). Following Chen, Gao, and Li (2009,

Lemma A.1), we can show that

max sup |[S;i7 (x) — f; (x)S|| = op(1). (.0.32)

lgignxe%

Then by the Slutsky lemma and Assumptions A.5(ii) and A.7(i), we have

-1
max sup [Amin (Sit (x))] ' = [min min f,-(x)] [Amin (S)] ' +0p(1). (.0.33)

1§i§nx€% 1<i<nxe Z;

By the standard variance and bias decomposition, we have

wy — iy = 8 (Xu) — & (Xu) = €|[Sir (Xi)] "' Vir (Xir) + €4 [Sir (Xit)] ' Bir (Xir)]
= V;+Bj. (.0.34)
Let
Niss = €y [Sir (Xir)] ™ vis (Xit) .- (.0.35)

We frequently need to evaluate terms associated with 7; ; and B;; :

q
1 & 1
*Z 2 Z IMiss| | =0p(1), g=1,2,3, (.0.36)
ni3 1<t 5<T
1& (1 1
Yl X el =0r(1), g=12, (0.37)
ni3 1<t,50<T

and

1z !
= L [Bal | =0p (b‘I(P“)) q=12734. (.0.38)
t=1

(.0.36) and (.0.37) can be proved by using (.0.33) and the Markov inequality. For (.0.38), we
first need to apply the fact that [S;7 (X;;)]~'Sir (X;;) = Iy and expanding g; (X;,) in a Taylor

series around X;; with an integral remainder to obtain
11 a
B = €} [Sir (Xir)] ™~ T Y vie () Aig (Xir)
s=1

where Ajs (x) = g (Xis) — & (x) — Zﬁ\zl ﬁDig,- (x) (Xis —x)j = Yjjj=p+1 jl!ngi (x) (Xis —x)j
+(p+1) Ljpr1 31 Xis —x) [ [(Digi) (x+ A (Xig —x)) — Dig; (x)] (1= A)" dA. Then we
can apply (.0.33), the dominated convergence theorem, and the Markov inequality to show
that (.0.38) holds. Let X = {X;;,i = 1,...,n,t = 1,...,T} and E*(-) denote expectation con-

ditional on X.
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Lemma .0.3 R,,7 = %Zlg#jgnfan (u,v)zdudv =op(1) forr=1,2,...,8.

Proof. We only prove the lemma for the cases where r = 1, 3, 5, 6, and 8 as the other
cases can be proved analogously. By (.0.34) and the Cauchy-Schwarz inequality, we have

2
2 T
Riyr < TS Z /[ Y ki (v) —kjs (V)]G () Vi | dudy
1<i#j<n 1<t#s<T

2 T / 2
+an3hSl§i§j§n/ Y, [kie (v) =y (v)] kG () B | dudv

1<t#s<T
2 T T .
_ . /. . . . .
- n T5h3 Z Z Z Z Z K]:tl[2[4[5k i,t1t4 Witz Uit 7717[113 nl,l4l6

1<i#j<n1<t1 #6<T t3=1 1<ty #t5<T tg=1

. . . R.
n1T3h3 Z Z Z K]vtlt2t3t4klvlll3BltllB%U3

1<i#j<n1<t1#6,<T 1<t3£1,<T
= 2Ry +2R1nr2,

where k' is a two-fold convolution of &', and
sttsrq EE]’?”‘ _Ejstq _Ej,'sr—i_%j?s‘]‘ ('0'39)

Noting that Ry,r,, r = 1,2, are nonnegative, it suffices to prove Ry,r = op (1) by showing
that EX [Rinr,r] = op (1) by the conditional Markov inequality. For Rj,r i, we can easily
verify that EX[RMTJ] = ?1,1771 +op (1), where

— 1

Ry = T Z Z Z E (Kj nitrs)

1<i#£j<nt; tp,t3 are distincty,t5,t¢ are distinct

XE(Pi,tlmuim Mil‘o)ni,tlt3 Tli,t4t6' (040)

We consider two different cases for the time indices {f1,...,%} in the above summation:

(a) for at least four different k’s in {1, ...,

remaining cases. We use ?lnT,la and ?1 aT,1» 10 denote ?M,l when the summation over
the time indices are restricted to these two cases, respectively. In case (a) we can apply
Lemmas .0.5 and .0.6 repeatedly and show that either |h™'E (Kj 1 1,)| < Chiis o' (m)
or [W E (K i 4,1, iy uing)| < Chisar’s (m) must hold. It follows that

Ch™ 155 ats (m)
mT3h

—
RlnTJa <

Z Z Z mi,llls N tat6 ‘

1<i#j<ntyty,t3 are distinctty 15,6 are distinct

2
< CnTh % ats (m 1Z(T >y |77i,ts|>

1<t s<T

= Op(nTh i OCL‘S( ))ZOP(1)7

where we have used the result in (.0.36). In case (b) noting that we have O(n2 T4m2) terms in

the summation in (.0.40)and h'E (Kj.t,1y1415) and h—3E (K'; 4,1, uiry i, ) are bounded uniformly
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in all indices (as kK’ behaves like a second order kernel by Lemma .0.7), we can apply (.0.36)

s 2
and show that R 1,71, = Op (nhm*/T) = op(1).
For Ry, 2, we can show that EX Rinrp2] = ﬁlnm +op (1), where

1 _
T ) ) E (Kjnnnu) E(K ine)Bin Bir,.-

1<i#j<ntyty,t3,t4 are distinct

R
Rinrp =

We consider two cases for the time indices {71,...,#4} in the above summation: (a) for
all k’s in {1,...,4}, |ty —tx| > m for all [ # k; (b) all the other remaining cases. We use

—) _) —> . . . .
R 10724, and R 1,725 to denote R 1,7, when the summation over the time indices are re-

IN

stricted to these cases, respectively. In case (a) we can use the fact that }h_lE (%) ,2,3,4)‘
ChTi5 075 (m), the fact that h~'E(Ks;,,) < Ch? (by Lemma .0.7) and (.0.38) to obtain
?lnT.Za = OP(nThl%ébz(“’“)(xl%S (m)) = op(1). In case (b), note that E (K; 4,1,r,r,) cannot
be bounded by a term proportional to W QT (m) in the cases where one of the index-
pair {(11,13), (t1,t4), (t2,13), (t2,24)} has elements that do not fall from each other at least
m-apart. But we can apply the fact that ‘h_lE (Kj,tltztsm)’ <C, ]h_lE(Pi,tlt3)| < Ch?, and
(.0.38) to obtain ?lnT,Zb = Op(nmhb*P*+1)) = op (1). Hence we have EX[Ry,72] = op (1).
Consequently, Ry,7 = op(1).
For R3,,7, write

1
R3nT = m Z Z Z K[,Z1I2[3Z4Auill Auitg

1<i#j<n1<t1#n<T 1<t3#14<T

1 rl
><//0 /0 k;‘ (”’A‘)dllkiﬁ (1, A2) dArdu.

As argued by Hansen (2008, pp.740-741), under Assumption A.8 there exists an integrable

function k£* such that
kit (u, )| = |k ((wie — u+ AAui) [h) — kiy (u) | < ARV Auie | K ((uig —u) /h).  (0.41)

It follows that

1 _
E* (Rar) < A T30S Y Y Y E (Kinse) | EX K0y (A )? (A )}

1<i#j<n 1<t #0<T 1<t37#14<T

1 _
nm T3h> Z Z Z ‘E(K/7t1t2t3’4)‘EX{k*iJll% [Vtztlvzztg +Bzzt1Bzzt3

1<i£j<n1<t1#6,<T 1<t3 £t <T

+V; B: +B; Vi)

i3

ER3u11 +ER3,72 + ER3,73 + ER37 4,

IA

where ﬁm = k* ((wiy — uis) /h) and k* is the two-fold convolution of k*. It is easy to show
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— — 1
that ER3nT71 = ER3nT,1 +0P (1) ’ where ER3I’LT,1 = an7hi Z Z |E (Kj7t1t2t3t4)‘

1<i#j<nty,...,tg are all distinct
E(K* i 1,13 Wirs Wit Wity Witg ) Mistyos Mityts Miststr Nigstg - We consider two cases for the time indices

{t1,...,1g} in the last summation: (a) for at least 4 distinct k’s in {1,...,8}, |ty —tx| > m
for all [ # k; (b) all the other remaining cases. We use ER3,7,14, and ER3,7,1; to denote
ERs3,7,1 when the summation over the time indices are restricted to these cases, respectively.
In case (a), we have ‘h_lE(Kmfmm)’ < Chl%awﬁ ) or |h 'E(k l,multsu”ﬁulmu”g)‘ <
ChT55 15 (m), and thus by (.0.37)

)

2
CThHé‘a*a
|ER3u714] < Z{ Z |ni7[115ni7[116‘}

i=1 1<t t5,tc<T

N

IN

Op <nTh s qits (m)> = op(1).

In case (b), noting that /™! ’E Kj, ,1,2,3,4)‘ <Candh™! ’E ,,1,3ul,5u,,6u,t7u,,8)‘ < C, we have
by (.0.37)

2
3 n 1
|ER3nT,1b| < % le {T3 Z ‘nj,z]zsnj,t.%‘} =0p (nm3h*3/T2) =op(1).
]:

1<ty t5,t6<T

Consequently ER3,71 = op(1). Next, it is easy to show that ER3,7, = ﬁgnrz +op (1),

-, _
_ 1 2 m2

where ER3ur2 = s Li<itjcn Liy....ts are all distinet |E (Kjnnny )| E (K inr) B, B, . Then

we can show that

ERsur2 = Op (nTh=>" 755 15 (m) b7 4 nTh 5400 ) = 0 (1).

Hence ER3,7, = op (1) . Similarly, we can show that ER3,r, = op (1) for r = 3,4.

For Rs,,7, note that

IN

2
Rs,r 2n11Th //[ h4Zk Au,,k )Aujt] dudv

1<17$j<n
2

dudv

+2n1*1Th // [T2h4 Z K, ( Aul,k (v) Aujg
1<i#j<n 1<t s<T

= Rsur1 +Rsurp.

By (.0.36) and (.0.38) and the fact that k’ behaves like second order kernel (see Lemma .0.7),

we can show that

2

X 7 X 7
mTHhS E [k/i-,llle”illAuitz]E [k/j-,llleujllA”jlz]

1<i£j<n1<t| 1 <T

= 0p (nTh (T2 4540 0) ) —0p (1),

E* (Rsur.1)

It follows that Rs,7,; = op(1). By the same token, Rs,7» = op(1). Consequently Rs,r =
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Op(l) .

For Re,,r, write Re;j (u,v) = Th4 YL k (v) Aujp Auj fol ki (u,A)dA —ﬁ Yoy, k}s (v)
AujsAujq fo ki (u,A)dA = Re;j1 (u,v) — R6U72 (u,v) . Define Re,7,1 and Re,r2 analogously as
Renr but with Re;; (u,v) being replaced by Re;j,1 (#,v) and Re;j > (u,v) , respectively. Then

1

Rent1 = ————
6nT,1 l’llThé

Z k]mAuJ,AujsAu”Aum// ki (u, A1) d?Ll/ ki (u,22) dAadu

1<i#j<n1<t,s<T
Using (.0.36) and (.0.38), we have

1 _
EX(R6nT,1) = —0= Z Z E* [k/j,tsAszAujs}
mTh 1<ij<n1<ts<T

1 1
W EX [Au,-[Au,-s / / K (u,Ar) dy / K (u,az)dxzdu]
0 0
I
4nTH Z Z

1<iZj<n1<rs<T

= Op (nT;f3 (T*3b*3d+b6(l’“>)> = op(1).

IN

EX {4 (AuiAuig)*}

EX [Pj’tsAuthujs]

Similarly, we can show that EX (Rsnr,1) = Op (nTh_7 (T_4b_4d + bg(”+]))) =op(l). m

Lemma .04 S,,r = Z;—lh Yi<izj<n | Rrij(u,v) [ﬁj (u,v) —ﬁ(u)ﬁ (v)]dudv = op (1) for r =
1,2,....8.

Proof. We only prove the lemma for the cases where r = 1, 3, and 5 as the other cases

can be proved analogously. Decompose

Sur = o L L L[ [0k 0]y )~k )

1<i#j<n 1<t #6<T 1<t3#£t4<T

xkiy (1) kiry () Autyy, dudy

ity
1
_ . + .
T T ) ) Y Kinnnekil A

1<iZj<n 1< ZL<T 1<t 7,<T
1 T

- W Z Z Z ZKi,t1t2t3t4k$1;3uizs77541:5

1<i#j<n1<t1 #6,<T 1<t3 £, <T t5=1
+
T3n h2 Z Z Z Kj711121314ki,tlt318il1
I 1 <itj<n1<n#6<T 1<t 44<T

= S+ Sinr2,

where k;s = k" ((uir — wis) /h) = b1 [ K, () kig () dﬁ; and K; rgrq 1S deﬁned_ifl (.0.39). To
show S1,7,1 = op (1), we can first show that Sy,71 = S 1,71 +0p (1), where S j,7, is anal-
ogously defined as Sy,r,; but with all distinct time indices inside the summation. Second,

— — — —

we can decompose S 1,71 a8 S 17,11+ S 147,12 Where S 1,711 is analogously defined as
— — — —

S 1nT,1 but with only i < j terms in the summation and S InT,12 = S InT,1 — S 1nT,11- Let

. = + . c = . f— . . p— .
Cirsr = Kiygltir, €1, = €igsr — E(€igsr), and K5, 0 = Kj iy, — E(Kj o). Then we can
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N
decompose S 1,7,11 as follows

— 1
St T4 h2 Z Z Kj nitotata €iynats Miyos +0p (1)
ni 1<i#j<nty,... t5 are all distinct
1
= a5 Z Z Nists + E(€it135) Miye
T4n1h2 { j 111314 ltll‘sl‘s 115 l‘|l‘21f3l‘4 ( 113 5) 15

1<i#j<nty,...,t5 are all distinct
C
+E(Kjv’1’2’3t4)ei,fll3f5 Nints +E(Kj~,lllzlzl4)E (el}tltﬂs) niJlts} +op(1)
— — — —
= Suran+ Swrie+ Suras+ Siria+op(l).

_)
For S InT,111, WE have

— 1
EX [(Slnr,mﬂ = W Z Z Z Nityts Mitst1o

1<i<j<nty,...,t5 are all distinctfg,...,t1o are all distinct
(& C C C
xE [ei-,tltﬂSeiv%fSth] E[Kj,fllem Kj,f6f7lsf9]'
We consider two cases for the time indices {#,...,t10}: (a) for at least six different k’s,
|t — 1| > m for all [ # k; (b) all the other remaining cases. We use ES; 111, and ES| 111p
to denote the summation corresponding to these two cases, respectively. In the first case,
2, 78 % n -2 2 2178 s
ESii11a <CT hT5 o3 (m) Yy {T 7 Licrpsr [ Mias| }~ = Op(T*hT=6 a5 (m)) = op (1).

In the second case,

2
n
ESi111p <CT 'ny'm?® Z <T2 Z ]nm]> =0p (m3/T) =op(l).

i=1 1<t#s<T

It follows that ?1,[77111 =op(1). Analogously, we can show that ?1117",1 1r=op(1) forr=
— — —

2,3,4.50 S iur11 =0p(1). Also S 1,712 = op (1) by the same argument. Thus § 1,71 =

op (1) and Si,r,1 = op(1). Analogously, we can show that Sy,7> = op (1). Consequently,

SlnT = Oop (1) .
For S3,,7, we have

1

S -
3nT ni T3h4

Y XY ) ki 0] ki (0) i ()] v,

1<i#j<n1<t1 #6,<T 1<t3 £, <T

/ its ( /kll1 u,A)dAdu
1

= n1T3h3 1<Z Z Z K;, tlzztzuAMztl/kzg / k;l u,A)dAdu

i#j<n1<t1 £ <T 1<t3#1,<T

1
= m LYY Elkue] Au [ (u / Kf (u, 1) dAdu

lSt;éan 1<t1, 65, <T 1<t3,14,<T

1
o Y Y Y & / Kiry (u /km (u,A)dAdu

1<i£j<n1<t) H<T 1<t3,t4<T

S3nt,1 4+ S307 2

. —1 _ _
Noting that 2™ " K 1,150, = @j1ts — Qjitvts — Qjints + Pj o1y » W€ can decompose 83,7, = S3u7,11 —
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S3nT,r2 - S3nT,r3 + S3nT,r4a where S3nT rls SBnT r2s S3nT,r37 and S3nT,r4 are defined analOgOUSIY
as 83,7, with E [Km nsty) (for r=1) or K'] tiatata (for r = 2) being respectively replaced by
hE [Qjn1], hE [Qja1,], hE (@ 11;], and hE [@ 1, ] (for r = 1), or by RS 1115 RO 4145 NP 1
and he$ ., (for r = 2). WLOG we prove S3,7, = op (1) by showing that S3,7,1 = op (1)
for r = 1,2. For S3,7,11, noting that

'/k” /k+u7t YdAdu| <

where k', = k¥ ((uiy — uzs) /h) and k¥ (u) = [k* (u—v) |k (v)| dv, we have

Lts —

IAuitlh_1 /Ik((uis—u) /WK ((uir —u) /h) du |Aun|k1 ts?

1
2n1Th

Z |E((Pj,m) ‘ (Auy)? kim

1<i#j<n1<t,s<T

_ mlTh{ ¥y Y+Y Y }\E(wj,f.v>\<Ault> G

I<i#j<nlt—s|>m 1<i#£j<n0<|t—s|<m

1S30r 1] <

= S3r11at 837,110

By the fact that |E((pj7ts)‘ <Ch st (|t —s]) (see (.0.1)), we have

5 n T
Ssurita < Ch™'" T T ( m Y Y (
=1i=1

A
— h_l 1+5(x% OP nT( 1b +b2(p+l)>>:0p(1).

ult l LS

For S3,7,11» we can apply (.0.36) and (.0.38) and the Markov inequality to show that 3,711, =
Op(nm (T~'b~¢ + H*P+1)) = 0p (1). It follows that S3,7.11 = op (1).

For S3,721, write 83,721 = ,,IIW{):lgiqgn + 1< jci<nt Li<i i<t O 1y Min, [ ki, (1) fol
kf;l (u,A)dAdu = S3,7211 + S3u7,212. Note that EX [S3u7,211) = 0, and EX [(S3,,T7211)2] =

S3+op(1), where

1
S5 = ——5 ) ) Y E(95n )
(MTh?)" 1<i\ i< j<n1<h <T 1<t<T
x EX {Au,m/klltz / klll1 u,A) dldu]
x EX [AM1213//<12;4 / k (u, 1) dldu]
c X ko
< Z Z Z ‘E{gojc}lltz(Pj,tﬁzt}‘E [(Auiltl) kll lllz]

4(n1Th ) 1<ii#ib<j<n 1<t L <T 1<t3,4<T
X 2,4
<ES [ (B ) K|

12,1314

It is easy to show that the dominant term on the r.h.s. of the last equation is given by
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= -2
Sy = (”1 Thz) Zlgiﬁéi2<j§n Ztl,tz,t3,t4 are all distinct E((ch‘,tltz (pjc‘,zgr4> EX[(A”M] )2k:,t1t2]
XE*[(Auiy)? ki)

= ...]- We consider two cases for the time indices {r1,...,74} in the
254314

last summation: (a) there exists at least an integer k € {1,...,4}, |ty — t;| > m for all
[ # k; (b) all the other remaining cases. We use S3,, and S3;, to denote S3 when the
summation over the time indices are restricted to these cases, respectively. In case
(a), WLOG we assume that 7] lies at least m-apart from {#,#3,24} . Then by Lemma

.0.5, E{(P;7t112¢;7t3t4} S ‘E{Et[((p;J]l‘z)q);,tg,h;}

as £, (¢¢,,,,) is nonrandom.

+ Chiss i3 (m) = Chits @i’ (m)

25 5 2
— Ch1+5a1+5 1
S3a < T2 {Z Z EX{(Aum) h™ 1kl+t]t2}}

<t1#n<T

— AT Y 5ot (m) Op (T_zb_Zd +b4<1’+1>) —op(1).

In case (b), noting that the total number of terms in the summation is of order
(0] (n3T2m2) , we can easily obtain ‘§3b| =0 (nmzh_z) Op (T_zb_Zd + b4(1’+])) =

Op (nmzh_zT_zb_Zd +nm2h_2b4(1’+1))) =op(1). Consequently S3 = op (1) and
S3n7211 = op (1) by the conditional Chebyshev inequality.Next we study Ss,r. Write

Ssnr = %h (Licicjen+Xicjcicn) [ [ Rsij (u,v) [fij (w,v) = fi () f; (v)] dudv = Ssur.1 +Ssur 2
It suffices to show that Ss,7.1 = op (1) and Ss,72 = op (1). We only prove the former claim
as the latter one can be proved analogously. It is easy to show that

SSnT,] = I’l1T3h5 Z // kl/ll ( )Auiﬂ [k}tl (V) Aujﬂ - k}lz (V) Auﬁz]

1<i<j<n 1<t17£t2<T1<t37ét4<T

ijn( ) [kirs () — kiz, ()] dudv

= n1T3h5 Z Z Z (ka]zg letlm)Auifl(k]tﬂgAu/tl k}th”/tz)

1<i<j<n 1<t1#6,<T 1<t3#t,<T

= 5 sar1 +op (1),

where kI, = k¥ ((uir — uis) /h), k¥ (u) = [K (u—v)k(v)dv,

1,ts

1 ; :
n1T3h5 Z Z (ki7t1t3 klf]l4)Au”1<kjt113Auﬂl k112z3A”jt2)7

1<i<j<nt,...t4 are all distinct

SSnTl

and the op (1) terms arises when the cardinality of the set {t,,2,13,24} is 3 or 2. In partic-

ular, by the standard bias-variance decomposition (for Au;, and Au j,z) and the conditional
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Chebyshev inequality, we can show that

1
i i
nT3h5 Z Z (klt]t3 k1t1t4)Auifl(thlt3Au/tl k}tzt;A”Jtz)
1 1<i<j<n t1#t 137
#{1‘1...[4}:30r2

= Op (h‘S (T—‘ + T—3/2b—d) +nhb2<P+‘)) —op(1).

— — —
Decompose S 5,71 = S su1,11 + S 507,12, Where

1

—
— i T T
S 5nT, 11 = m T3hS Z Z (kl 113 kl 1114)Aui’1 <kj tts kj lzls)Auﬁ' , and
1 1<i<j<nty...t4 are all distinct
— 1
— i i
S 5nT 12 = W Z Z (kl 3 kl [lt4)Auit1 kj’;zg (Aujn - Al’tjtz)'

1<i<j<nty...t4 are all distinct
— . — —
We prove S 5,71 = op (1) by showing that S s,711 =o0p (1) and S 5,712 =0p(1). We only
prove the former claim as the latter can be proved analogously. Let

= ! i ¥
‘y(A7B) == W Z Z Z (k;rl‘ll‘z kl Z]I4>Aitl (kj,l‘|l‘3 _kj,lzl3> Bjt2'

1<i<j<n 1<t #6<T 1<t3#£4<T

By (.0.34), we have S 5,711 = .7 (Au,Au) = . (V, V) +.7 (B, B) +.7 (V,B) + . (B,V).

It suffices to show that each term in the last expression is op (1).
First, we consider . (V,V). It is easy to verify that

S (V,V) =8, +op(1)

where
Si= 1 ki —k k' k'
1= T5hS Z Z itit3 ity ) Wits \ Kjrts =K | Ujts Nity1s Mi ot -
nj 1<i<j<nt,...tg are distinct

i i T i T i T

Let (Pz s kl ts (kl ts) - (kz ts) + EIES(kz ts) Then k] 13 k] 1ty (PJ 1113 (pj,t|t4 +
T T _ T :

Etl (k/ 1113) Etl <kj t1t4> and k} ne ijzts - (ijlfz o (Pij + Et* (kj tlts) E’3 (kj fzf3) With

these we can decompose S as follows:

1 ¥ i f i
S = m Z Z {[(Pi,tltg o (pi,t1l4][(pj-,lll3 B (pjvfm]

1<i<j<nty...ts are distinct

[(PiTz]z; - (piTt.m] [Ets (kj t|t3) Ets (kj zzz;)] + [Etl (k:rmg) Etl( lt1t4)] [(P] 13 (P}L,tm}
[Ell (kJr ) Etl (k:rtm)][E% (kT ) Efa (kT

it Jtit 7, t2t3>]}uif5 Wijte Mity25 T ot

= Si11+S812+ 813+ 814, say, (.0.42)

where the definitions of Sy, r = 1,2,3,4, are self-evident. We further decompose S1; as
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follows:

! ool Pl s
_ _ . T
S = T3 Z Z {(Pi,tlts(pmtz Pitity ity — Pinity Py
1 1<i<j<nt,...t¢ are distinct
il T ot o .
+(pi,t1t4 (Pj,tm }"‘lts (pj,tl 3 W jtgMititsMj tate

St —=S112 —S113 +S114

L — ' . T . ; . il . T .
To analyze Syi1, letAlljl-,tzjz (tl ) --~7t10) =0 iy (pj| it Niy 1My tats Py 1615 Uinto (sz,zﬁzg Ujytio
Nis 619 M j2 11110+ Then

E* [(5111)2}
1

= — Z Z Z Z E* [Ailjl-,iZjZ (t1, s 110)]

4p5\2 A= A . .
(an h ) 1<i1<ji1<n1<ip <ja<nty...t5 are distinct ...t ¢ are distinct

1

- — Y L Y EFAijiap (fn0)]

4p5\2 .. . - -
(nl Th ) 1<i1 < j1<n,1<ip<ja<n,t;...t5 are distinct #g...t1o are distinct
i1,i2,]1,Jj2 are all distinct

1
o ) ) Y EX A (1, ti0)]

2
(nl T4h5) 1<i1<j1<n,1<ir<jp<n,t...t5 are distinct f...t1o are distinct
#{in,i2,j1,/2}=3

Z Z Z EX [Aij,ij ([1,...,[10)]

2
(nl T4h5) 1<i<j<nt,...ts are distincttg...t1o are distinct
= ESi,1+ESin2+ESi 3,

1

We prove EX[(Sm)Z] = op (1) by showing that ESy;;, = op (1) for r = 1,3 as one can
analogously show that ESyj1 2 = op(1). Write ESy;1 1 as

1

ESing = —— Z Z Z E(‘Pg,mui.m)

4p5\2 . . L -
("ll T*h ) 1<i1<j1 <n,1<ip < ja<n,t;...ts are distinctg...t1o are distinct
i1,i2,j1,Jj2 are all distinct

T . i . T ) . . . .
xXE (QD]’, Ht3 ”Jlts) E ((piz,tﬁzgutzw) E (‘sz,tétg”jzflo) Niy 1114 M i tats i 610 M 710

Let 9 = {t1,t3,14}, % = {t1,83,15}, %3 = {t6,13,00}, and 4y = {t6,13,110} . We consider
two cases: (a) there exists at least one time index that belongs to either one of these four
groups and lies at least m-apart from all other indices within the same group, (b) all the other
remaining cases. Noting that |E((PIJ1:3”i1t4)E((P;1,tlt3“j1ts) E((pi-;t(,tguizl@)E((p}-z,tﬁtgujﬂlo)| is
bounded by Ch7_l%5(x1%5 (m) in case (a) and by Ch® in case (b), and the total number of
terms in the summation is of order O (n4T4m6) in case (b), we can readily obtain ES1111 =
3.8 8 _ _
Op(n*T?*h 3" 15 a5 (m) +n>T~*mOh=2) = 0p (1). So ES1111 = op(1).
For ES1113, we have

1 .
_ T
ES“173 - Z Z Z E [(pi7t1t3uit4¢itlﬁlxuit9

475\2 bt - -
(’11 T hS) 1<i<j<nty...t5 are distinct fg...t1o are distinct

T ot . . . . .
xXE [(Pj,zm’"ﬂs (pj,tﬁlgu]tl()] Ni 114N tots Misteto M trt10

Let s = {t1,13,14,16,13,19 }, Y6 = {11,13,15,16,13,110} and 4 = 95 U%. We can consider five
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cases: the number of distinct time indices in & are 8, 7, 6, 5, and 4, respectively, and
use (a)-(e) to denote these five cases in order. Also, we use ES“1735 to denote ESy113
when the time indices in the summation are restricted to these five cases in order for & =
a,...,e. Following the arguments used in the analysis of S11,1, we can show that ES111 3, =
OP(T2h74*12TSS atss (m) + T *m°h~?) = op(1). Similarly we can show that ES} 3z =
op(1) for & = b,c,d. For ES}i1 3., noting that the sets {t1,13,4,25} and {t6,3,19,110} must
coincide, we have |ES) 11 3.| = Op (T"*h™®) =0p (1) . Hence ES1113 = op (1), and we have
shown that EX[(S111)%] = op (1), implying that S;1; = op (1). Similarly, we can show that
Si1r =o0p (1) for r =2, 3, 4. It follows that S1; = op(1).

For S, defined in (.0.42), we decompose it as follows:

1 + ]
Sip = T3 Z Z [(Pil,tm - (pZtlm]”ils [Etz (k},t1t3) Ey (kj t2t3)]”jt6 NinitsNjiate
ni 1<i<j<nt, ...t are distinct
1
_ i T i
- n TS5hS Z Z {(P, lllz[ 13 (k} m;) ] - (Pi,z1t4 [Eta <kj7tlt3) - Cj]

1<i<j<nty...ts are distinct
—o' up [En (K )=+l (KT ) = T it Migee
(pi,t1t3 s =3\ j s Jj (pi,t1t4 B3\ i3 j itsU jto i 1115 T j 1ate
S121 — 8122 — S123 + 8124,

where c; = EtES(kJ”) Analogously to the analysis of S;j1, we can show EX[(S15,)?] =
op (1) for r =1, 2, 3, 4. It follows that S;» = op (1) . By the same token, Sj;3 = op(1). For

S1147 we have

S = n]T15h5 Z Z {[Etl(kLIIIS) ][Ef?(kjtm) cj]

1<i<j<nt,...t¢ are distinct
—[Ey (K 110) — VB (k] ,0) = €51 = (B (K 1) = B (K] ) — €]
H[En (k1) = VB (K 0, ) = €31 sty 115 Mot
= Sia1—S142 — S143+ S144.

Then we can show that EX[(S14,)?] = op (1) for r =1, 2, 3, 4. Tt follows that S14 = op (1).
Hence we have shown that .7 (V,V) =S, +o0p (1) = 0p(1).

Now, we consider . (B, B). We have

1
7 (B,B) = TR )y ) {((”Zma - ‘Pitm)(q’;,nts - q’JT,tzta)
ni 1<i<j<nty...t4 are distinct

+ + + + +
+((piltlt3 (pl t1t4)Et3( jtlt3 kj t2t3) +Etl (kl 13 kl7t1t4)((pj7t1t3 - (p},tztj,)
+E11 (k' kT )Et3 (kT }EmBﬂz

1,113 1,114 jtlt3 Jt2t3)

821 + 822 + 823 + S24, say.

Write S = —5—<Y cicicn ¥ {1 ol ol —of o +of
20 = 7 2 <i<jsn L.ty are distine\ P Pt — Pins Pios = Pinity @iy T Py

X(p;,tzta}Bitl B, = S211 —S212 — 8213 + $214. It is easy to show that S>1; dominates Sy,

for r =2,3,4 and

X[(szn)z}:op( 272315 u1ts (m) +n2mPh 2+ T2h > T T4 (m ))(b“@“)):op(l).
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Hence S»11 = op (1) and S21 = op(1). Similarly, by decomposing E;, (kl ity k:m)
(En (K1) = ) = [Eq (K, — ] and By (KT, =KL ) as [En (K] ) = €] = [Ex (K] ) —
c}], we can show Sy, = op (1) for r = 2,3,4 by the conditional Chebyshev inequality.
Consequently, .7 (B,B) = op (1) . Analogously, we can show that . (V,B) = op(1) and
7 (B,V) =o0p(1). It follows that S5,7,1 =op(1). ®

Proposition .0.5 nTh(Z,,TJ — Knm) =op(1).

Proof. By the definitions of Knm and KnT’ 1, we have —nTh(ZnT’l — K,,TJ) / [ZR (%)]

Y SIF? () — f2 (u)ldu = Upyr +2Usur, where Uy = Y0, [1fi (u) — fi (u)]?du, and
Upar =Y, [1fi () — fi(u )]ﬁ( )du. Then it is straightforward to show that Uy, = op (1)
and Uy, = op (1) by arguments similar to but simpler than those used in the proof of Propo-

sition .0.4. W

Proposition .0.6 nTh(an — KnT,Z) =op(1).

Proof. Let anl, an,zg, and Knm3 denote the three terms on the right hand side of
(.0.28). Define Z,,TVZI, ZnT,ZZ; and ZHT,% analogously with the estimated residuals replacing
the unobservable error terms. Then it suffices to show that nTh(ZnT,Z, — Knmr) =op(1)
for r =1,2,3. Each of them can be proved by the use of Taylor expansions and Chebyshev

inequality. We omitted the details to save space. M

.0.4 Some technical lemmas

This appendix presents some technical lemmas that are used in proving the main results.

Lemma .0.5 Let {W,} be a strong (a-) mixing process with mixing coefficient o (t) . For
any integer | > 1 and integers (t1,...,t;) such that 1 <t} <ty < --- <1y, let 0 be a Borel

measurable function such that
/]9 Wi, W lJr‘SdF( )(wl,...,wj)dF(z) (Wigt1yeoywi) <M

for some 6 > 0 and M > 0, where F) = Fiy 4 and F? = Fij.y..y are the distribution
functions of (Wy,,....W;,) and (Wi,,,,...,W,,), respectively. Let F denote the distribution
function of (W;,,...,W,,) . Then
‘/9 Wi,..oy W dF(W], W[ /9 Wi,y [)dF(l) (W],...,Wj)dF(z) (wj+1,...,w1)
)

< 4M1/(1+5)a(tj+1 _tj)s/(1+5 _

147



Proof. See Lemma 2.1 of Sun and Chiang (1997). =

Lemma .0.6 Let {W,}, 0, 6, and M be defined as above. Let Vi = (W,,,...,.W,,) and V> =
(Wi, 1s-es o). Then E|E[0(Vi, V) [Vi] —O(V)| <4M 40t (1.1 —1/)%F0) where ©(v)
EE[Q(V],VQ)].

Proof. See Yoshihara (1989) who proved the above lemma for -mixing processes by
using an inequality in Yoshihara (1976). The analogous result holds for a-mixing processes
by using the Davydov inequality or Lemma .0.5. ®

Let k : R — R be a differentiable kernel function, and %’ be its first derivative. De-
finek(v)= [k(u)k(v—u)du, K (v)= [k (u) k' (v—u)du, and k* (v) = [k (u) k(v —u)du.
The following lemma states some properties of k, k’, and k* that are used in the proof of
our main results.

Lemma .0.7 Suppose k: R — R is a symmetric differential y-th order kernel function such
that lim, . v'k (v) = 0 for 1 = 0,1. Then

(i) [k(v)dv=1, [k(v)vidv=0forl=1,...y—1, and [k(v)v¥dv = 2Ky where ky =
Jk(u)u¥du;

(ii) [K (v)Vidv =0forl1=0,1and [k (v)v’dv=2;
(iii) [kt (v)dv =0, and [vk" (v)dv = —1.

Proof. (i) [k(v)dv= [ [k(u)k(v—u)dudv= [k(u)du [k(s)ds=1,
Jkw)dv=Y_C [k(u)wdu[k(t)!'*dt =0forl=1,...,y—1,and
Jk@)Wdv=YT_(C [k(u)wdu [k(t)t"5dt =2 [k(u)du [k(t)1"dt = 2.

(i) [K (v)dv= [ [k (u)k' (v—u)dudv= [k (u)du [K (s)ds =0,
J® (v)vdv =2 [K () udu [ K (t)dt = 0 by the fact [k (u)du =0, and
JE@)Vdv= [ [k )K () (u® +2ut +1*) dudt = 2[[ K (1) udu]* = 2.

(iti) [k (v)dv = [K () [ k(u—v)dvdu= [k (u)du =0, and

Jvkt (v)dv = [k(u)k (s)(s+u)dsdu= [k (s)sds+ [K (s)ds [uk(u)du=—1. =
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B Proofs in Chapter 3

Throughout the appendix, let C signify a generic constant whose exact value may
vary from case to case. Let Eg (-) = E (-|Z) and Varg (-) =Var(:|2). Let E( 5 5) (+)
denote expectation with respect to variables indexed by set S conditional on .
Let Gy = Umin (7LO’ A0 /N) and ¢7 = Umin ( Yl T) where Umin (A) denotes the
minimum eigenvalue of A. Let & = B — By for k = 1,...,K, & = |Ju| /v/NT and

= (VNT/ |[u]))u. Let 97 = XX &Py, dinax (A0, 1) = wl A0 0 0720,
and diin (A9, 0) = \/,uR (57 A fOfUA0). Define

0 0\ _ 4dmax (2'0 fo) 1 _ HﬁNTH 16dmax (;LO,fO)
K (A’ 7f ):< mln(lo fO) +2dmax (A’()?fo) and T = \/ﬁ drznin (A(),fO)

Below we prove the main results in Sections 3 and 4. The proofs of all technical

lemmas and Theorem 3.4.4 are given in the online Supplemental Material which is

available on the first author’s website.

0.5 Proofs of the main results in Section 3

Convergence rate of g (x)

Lemma .0.8 Suppose that Assumptions 1-4 hold. Then || — B°|| = Op(K /29 4
8ur’?).

Proof of Theorem 3.3.1. Let a;, = (f; — B )/|IB — B°|| and P =YK | P, with

|la|| = 1. By Lemma .0.8, Assumptions 1(iii), 2(iii), 3(i)-(iii), and 4, we have

P
H\%/TTH < |e||+HegH +11B - ﬁOHH all _ (5 K- Wd)—{—Op(K v/Cd) 4 5 1/2)
=op(1). By Assumptlons 1(i)- (n) ro (lo,fo) Op(1). It follows that Hﬂ_\/;\vTTTII <

ro (QLO, fo) w.p.a.l and we can apply Proposition .0.10 in the supplementary ap-

pendix to expand Ly () as follows

1 K K
Lyt (B) = NT Y ) 8k18k2L(2) (lo,fO,Pk,,sz)
k1=0ky=0
| K K K o
tNT Y Y ) e, Br (A0, f Py, Pi,, Pi,) +Op (o)
k1 =0kr—0 k3 =0
= Lyt (B°) +Lint (B) + Loant (B) + Lent (B) + Op (ayr) — Op (£7)
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where L(?) and L®) are defined in Proposition .0.10,

1 1
Lur (B) = ﬁeo (20,1020, Po) + L1V (A%, 7, Po, Py, Po) + Op (&)
K
Ll,NT (ﬁ) = i Z ngOL(Z) ()'va()?Pk?PO) + i Z gke(%LG) (A'O?f()?Pk?POaPO) s
NT & NT &

1 K K
LZ,NT(B) - N_ Z Z 8k2L(2) (A‘va()?Pk]?sz)a

and
1 K K K
LR,NT (B) = N_ Z Z Z 8kZSkB )“07.](‘0 Pk] 7Pk27Pk3)
Z Z gkl £k2 80L 7f Pkl 7Pk2 7P0)
kg 1ky=1

+0p[(||B - B° H+eo)4—86‘]

- OP(Hﬁ_ﬁOstﬁHﬁ—ﬁo\\3+\\ﬁ—ﬁ°\\63) (.0.43)

Clearly, L; 7 (B) and Ly y7 () are linear and quadratic in &, k = 1,..., K, respec-
tively, and Lg y7(B) includes the third and higher order asymptotically negligible
terms in the likelihood expansion. Noting that L© (QLO, fo Py, ,ka) is linear in

the last s arguments, we have

Lint (B) = —2(B — B (CY) +Cp) and Loy (B) = (B — B)Wwr (B — B°),

where C](Vl% and CI(VZ% are defined in Theorem 3.3.1. Then

Lyt (B) = Lar (B%) —2((B-B%'(C T+CNT) +(B— B Wyr(B —B%)
+0P{||l3—l30H280+||l3—l3°H +HB—B0H83}. (.0.44)

Noting that rank(PkCID’quou’M;Lo + Pkaoll/M;LollCI)/ + Pkaou/q)ll/Mlo) <3R
and using the trace inequality tr(A) <rank(A)||A|| for any real square matrix A,

we have CJ(VZT)k = yrtr(Pe@uM ou'My o +PeM o' M oud’ + PiM o' Pu'M;0) <
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1Pl |0 P Il [0 = Lk op (K274 4 557 . 1 follows that
1/2 1/2
K 2 K 2
@ _ 2) _ [P “2y)d | 82
HCNTH = {k; [CNT,;J} —{kg o OPKTT 8y
= op|VK (K1 837)]. (.0.45)

1 1 (1 - _ - _
For Cyyp. we have Wy Cup | =[| Wy (VT) ™ EIL Zied | Wit (VT) ™ 1L Zfey.
By Assumption 3(v), the first term is Op(Sy;K'/?/T'/?). Let €, = (€ 1r r€pn)s
= _ 7\ T A F -1 — . .. .
Z=(Zy,-,Zy) and W = (NT)"" Z'Wy, Z. Note that W is a projection matrix
. H . .o . RS
with u (W) = 1. By Assumptions 2(ii) and 3(i)-(iii), we have

< tanin (War)] ™! #u i)
< {ltmin W] +0p (1)} [ €][7./ (NT) = Op (K211 .
Then we have
(Wit | = or (8 VKT +K7114). (.0.46)
Let
vt = Wb CUL + Wiyt €2 and Ryr = B — B0 — vy (.0.47)

From (.0.45) and (.0.46) we have

Irwr | < |Wdchz || + [wad el || = or (VESZ+K774). (048)

151



Since Ly7(B) < Lyt ([30 + ry7), we can apply (.0.44) to the objects on both sides

of the last inequality to obtain

IRvrlP = (BB~ rvr) Wi Wit wa? (B~ B0~ rwr )

< [amin Wvr)] ™! (3 —ﬁo — FNT) Wnr (3 - B0 - rNT)
< [amin Wivr)] ™! [LR,NT (B®+ryr) — Lenr (B° + (B —ﬁo))}
< Op(rvrlP e+ Irwrll &g + lrvr )

—0p(||B - BP0 +11B - B°lleg +11B — B°II*) (.0.49)

We now argue that || — B°|| has the same probability order as ||ry7|| by contradic-
tion. Suppose || —B°|| = op (||ry7||) - Then by (.0.47) and (.0.49), and the fact that
& /|lrnrll = op (1), we have ||ryr|)? = Op(||Ryt||*) < op (|lrvr||?) , a contradic-
tion. Similarly, suppose [|rvr|| = op(|| — B°||). Then || — B°||* = Op(||Ryr|*) <

Op(||p — B°lleg), implying that ||B — BI| < Op (&) = or (|lrnr]) = or(|IB —

BY|]), a contradiction. It follows that
B[ = 0r (lmurl) = 0 (VRS +K74)  (050)
and
Ryr = Op(|rarl &%) = Op[(VESGE + K14 (51> +K )] (051)

because &7 /||rvr|| = Op (1) and ||ryr|| /€ = Op (1) by Assumption 4.

Now we derive the convergence rate of g (x).

[, 6@ =gl dx
= [ {FFw (3—ﬁ°)+[pK<x>’ﬁ°—g<x>}}2w<x>dx
< 2 e —pK BT wiar+2 [ [ (B-5°)] wiwax
< 26 ()~ p¥ () B o+ 2t (Qppw)HB—ﬁ li

— op (sz/d n Hﬂ _ﬁOHZ) = 0p (K*”/d +K81;;‘> :
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where Cy,1 = [, (1+ 1x12)®w (x) dx < oo, Qupw = [ PX (x) pX (x)'w (x) dx, and

(Xir) — g (Xir)]> wie

M=
[‘gﬂ

Il
—
-
Il
_

[plt (ﬁ ﬁ) ( (X it)_p;tﬁo)rwit

2 N T

[p” (ﬁ B )] Wi + 7 NT Z Z pttﬁ } Wit

i=1t=

Il
_
-
I
_

IA I

3l 5= 3-
™M=
1=

™M=
M=

I
—
-
I
—_

IN

211 (QwppNT)
+2]|g (x) — p¥ (x) B°| i ¥ (14 1x2)

=® NT &= & ! "
: 0P<uﬁ—ﬁ°u )wp (74) =on (i 7). m

Asymptotic normality of g (x)

Proof of Theorem 3.3.2. Recall that Vi (x) = pX (x) W 1QW ! pK (x) and Ayr =
(NT)2v 72 (x). Write

Avr[8(0) =g ()] = Awrp® () (B—B°) +Anr [g(x) = p* () B']
= Anrp™ (0 Wit O+ Anr () Wi O
+AnTPX (x)' Ryt + ANt [g(x)— pX (x)/ﬁo}

= IhLinr +1onr +1y7 +IlanT, say.

It suffices to show that: (l) Iin7 + KnT b ()C) i N(O, 1), (ii) Iy = —K&%bz ()C) —
kntbs (x)+op (1), (iii) Hayy = op (1), and (iv) Tyyy = op (1) . We prove (i) and
(if) in Propositions .0.7 and .0.8 below, respectively. For (iii), by Cauchy-Schwarz

inequality, (.0.51) and Assumptions 7 and 8, we have

vy < Hp )| 1Rw 71| < /(@) (W)VNT || Rur |

- (\/—5 24 k- y/d> <3 1/2+K—y/(zd>>} —op(1),

153



as Vi (x) = pK (0 W1QW =" pK (x) > 2 (W) ()| p¥ (x)| % For (iv), by As-

sumptions 3(i)-(if), and 8, we have for any fixed x € 2~

Mavr = (NT)'2v "2 () [g (x) = p* (x)' B°]
< ClpF @l VT [lg () - pF () B (14 161) "
— 0p (VNTK ") = op(1)

as infye o | [pX(x)|| >C > 0. W

Next, we state some lemmas are used in the proofs of Propositions .0.7-.0.8

below.

Lemma .0.9 Let vK =V 12 (X)W 1pX (x) and diy = V&' Z;,. Suppose that the as-

sumptions in Theorem 3.3.2 hold. Then
(i) yr L X 3 ||2@_0P(K4);

(i) NZTZZ (EL lHd Hz@ =Op (K*).

Lemma .0.10 Suppose that the assumptions in Theorem 3.3.2 hold. Then
(i) ||WNT _WHF = OP(K/\/NT);
(ii) HWNT — WNTHF = OP(K/\/NT).

Lemma .0.11 Suppose that the assumptions in Theorem 3.3.2 hold. Then
FZ 1Zz 18 {(Zis — Zin)eir — Eg|(Zi — Zir)eu] } = op (1).

Lemma .0.12 Suppose that the assumptions in Theorem 3.3.2 hold. Then
[2%f9] . = 0p(VAT:

P;LoePfoH — 0p(1);

iii) || f7€'P ) P Op(VNTK8y7);

i) ‘Pfoe = Or(VNKyr);

) ( 2P, ‘ — 0p(NVTK);

(i)
(it
(
(
(
(vi) ‘P;LoeP ||, = OP(VNTE);
(vi
(
(i
(
(
(

~.
~.
~—

vii) N\fz; 12 121 1A;L [e]tel[ Eg (ejtelt)] ZOP(\/E);

i) N | (p,s Pie) £06°I = 0r (K):

X ) 1||(NT) I/ZZt 12 [eztejt Eg (eitejt)] ||2:0P(1);
) 12[ 1 Z Btfs [ellels E@ (ellels)] = OP(\/E);

xi) Tz, el [pjt—T*le Mup§)AYGOl|* = Op (K);

xii) sz Y ||Z Y1 fY [eieis — Eg (eneis)] ||> = Op(1);

=
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/ /
where A; = vK'[Eg, (P,- —PI?L) 1f9G°/T, Pt =N"'YN | ayE (P), GO = (5!
020, . . _
< (A55) 71, b5 = pis— Eg (pis), P = ph—Eg (pﬁ),pﬁEN 'YV oijpjs, B =

_ _ !
VE'E (P, — PIYAOGON-Y, Pl =T VYT myPy, and Py = (Pl , i) -

Proposition .0.7 Suppose that the assumptions in Theorem 3.3.2 hold. Then 11y +
d
KnTbi (X) — N(O, 1).

Proof. Recall v& = V_l/ 2( )W~ pK (x). One can readily show that |[v&|| =

Op(1). Note that

N T 1/2 B N T
My = —— 3, Y vNZu; — @K@ W =Wy) =Y Y Ziuis
i=1 i

=
~
I
[

~

ILin7 1 +1TinT 2, Say.

7

We complete the proof by showing that (i) ITiy7 1 + kn7b1 (%) 4, N(0,1) and (ii)

Minr2 =o0p(1).
First, we consider (ii). By (.0.46), Lemmas .0.10(i)-(ii), and Assumption 8, we

have

Minro| < HV Y2 (x) K(X)/WIH{\/JWHWNT—WHF}|

/K K3
NT

Now, we consider (i). Using u;; = ej; + e,.;r, we decompose I1;y7 1 as follows:
g7 bl

Myt = \/;N*T YN Y K Ze + \/;N*T YN YT vEZeg i = iyt a1 + inT 12,
say. By Cauchy-Schwarz inequality and Assumptions 3(i)-(iif) and 2(ii) we have

=

1/2 . 1/2
iyt 12 < \/_{ ( ZZZ@Q) } {NTZZ%U}

llt i=1r=1

| N T 12
S MO CL IR ELS SRR

i=1t=1
= Op(vVNTK V%) =0p(1).

We are left to show ITjn7,11 + Knrb1 (%) 4N (0,1). We further decompose ITjy7. 11
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as follows
Minr a1+ xkvrby (x) = \/T VK Zeir

T
{ Z ltelt + Knrbi ( )}
N T B ~
+W§ ; e,, Eg [(Zit _Zil‘) eit} }

N7 110 + vt 116 +ThinT 1165 SQY,

||Mz
iMﬂ

12

where Z=pj; — 1%/ Z]]yzl iEg(pjtl — 1 Zs \ MisEa pis) + 57 NT Z =1 Z —10ijNisEg[pjs)-
We complete the proof by showing that: (ia) ITin7,114 4, N(0,1), (ib) ILinT 115 =

op(1), and (ic) IIin711c = op (1). (ic) follows from Lemma .0.11. We are left to

show (ia) and (ib).

Proof of (ia). Note that ITjy7 11, = ):thl % ):li VK1 Zeir = Z,Tzl Ents Where
Enrs = 7 L v Zue. Recall that 7' = 0(A°, £, {Xiy, Xi-1, €001, SANY
By Assumption 5(ii), E [§NT7,|,§56_1] = \/T*Tﬂ'v:l VvK'Z4E [e,-,|356_1} = 0. That is,
{éNTJ, 356}?:1 is a martingale difference sequence (m.d.s.). Consequently, we can
apply the martingale CLT (e.g., Pollard, 1984, p.171) to prove that ITjn7 114 4,
N (0,1) by verifying that

T T

(ial) Eny = Z éNTJL@é_I} =op (1) and (ia2) Zéj\z,T7,—1 =op(1).
Since gNT >0, we will prove (ial) by showing that E¢{Y'_| E [éﬁ‘m[ |y6*1} V=

op(1). Let diy = vK'Z;,. Noting that {(pit,ei,)}thl are independent across i condi-

. T .
tional & and {&yr,, #}},_, is an m.d.s., we have

N N N
Z Z Z E.@ [di]tdiztdi3tdi4l‘ei1teiztei3lei4l]
lis—=1i3=1is=1

d4 4 3 ZT: iE@ [d2e2:| 2
N2T2 = it€it

i=1

2
M’ﬂ
Mz

I
—_
-

=

I

Eg [ENT} = 1

t

Mz

1i

T
- N2T;
T

N2T2 ZZ{E@ dlzt 121

t=1i=

Evr (1) +3Eyr (2) — 3y (3), say.

156



By Holder inequality, Lemma .0.9(i)-(ii), and Assumption 6(i), we have

br() < e X bl il
1/2 1/2
1 [ 1 & 2 1 LY 2
< wr{w LM} (o ELal. ]
1
= NTOp(l)Op(KZ)ZOP(l),
and
. 1 T N 5 2
@) < L L ill2,
= 1=
1 T N 2 N 2
: W;{;\ @}{zneium}
= 1=

1/2

Al 2
[;Hdltum

) [(TN2K4)1/2} [ (TN?)'?

ey

1=

A
3|
H
[\S)
_—
lMﬂ

[S—

£ [Eia]
)=

I
Q

Op (K*/T) =op(1).

l\)

N2T2

Similarly, we can show that ENT (3) = Op (K*/(NT)) = op(1) by Lemma .0.9(i)
and Assumption 6(i). Then (ial) follows by conditional Markov inequality. Now,
note that Y| Eg [éﬁ,ﬁ} =VvKINT) L YN YT Eg(ZiZLe2]}vE = 1. By some
straightforward moment calculations, we can show that Eg[(Y., éNT’t —1)?] =

op(1). Thus (ia2) follows.
Proof of (ib). Noting that E(pjse;;) = 0 for s <, we have

1 N
INT Y Y vWEg (Ziex)
i=1t=1

]
§
ﬂ
Mz I

Z MisEg [V sten} N2T2 Z Z NisCiE g [V stezt]
i=11<t<s<T i=11<t<s<T

— —knrbi (x) +Op (K1/2/<NT)1/2)

= —Kn7b (x) +op (1) )

where the term Op (K 12 /(NT)Y 2) is obtained by similar arguments as used in the

proof of Lemma .0.11. So ITiy7 115 =0p(1). ®
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Proposition .0.8 Suppose that the assumptions in Theorem 3.3.2 hold. Then we

have Iy = —K&%bz ()C) —KnTbh3 (X) +op (1) .

Proof. Let VK =V 2 () Wy7 p¥ (x) and ¥, be its kth element. Let Toyr =
Vi NTV)ISC](VZ}. Then we have IIhyr = vN VKCNT + VN [V — vx } ( } = HzNT -+

op (1) where the op (1) term comes from the fact that

VNT| [ =551 el = [VNTVE (0 R W ! (Wvr = W) Wit e
< VNT Wy [ICKHIVE 2 @ |p% ) W= [ Wavr = W
— VNTOp (K'27204 4 K12832) 0(1) 0p (K/VNT )

= 0p (K24 K3R53E) — 0p (1)

by (.0.45), Lemma .0.10, and Assumption 5. Leta =vK / HVKH and P, Zk 1 i Py.

We decompose ITon7 as follows

(] — ” KH H KH / /
foyr = — s rn Tt [W'MyouM 0P, @
]
~ " [0/ My P M jou' |

= Iyt +1onrp + 1N 3, say.

We complete the proof by showing that (i) Tz, = —Ky;b2 (x) +op (1), (ii)
Monr2 = —Knrb3 (x) +op (1), and (iii) Ty 3 = op (1)

First, we consider (7). We further decompose IToy7 1 as follows

HZNTI = |\|/7|| {tr[quoll M OP( )(I)] —1tr [uu’M;LoP(a)q)} } = HZNT,II +H2NT712, say.

To show (i), it suffices to prove that: (ia) Ion7.11 = op (1) and (ib) on7,12 =

—Kypb2 (x) +0p(1).

We first consider (ia). Using Mo = Iy —P,0 and u = e+ e,, we have

K K
Movrai| < %’tr[epfoe’M 0P @]‘ ‘\‘/VX_H tr[engoe/gM,loP(a)CID]’
Al trlePpoel, My P ]| + H KH trfegPyoe/MyoP ) @]
VNT | 5T VN §

IonT 116 + oyt 116 + Hony 11 + HZNTJ 1d» Say.
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For ITonT 114, by Lemmas .0.28(i) and (v) in the supplemental appendix and Lem-

mas .0.12(i)-(ii),

TN T, 114
_ bl =l :
JNT tr [ePfoeP H—|— JNT tr [PfoeP P, )<I>eH
< % [[(fo’fo) FeP CIDefOH—i—}\l/K_H tr [P ¢PoP, )cpeH
< % ‘(fo/fo H H ;Lo%o H HfOH ||7LO'efOH HfO/ ’P H
+\/C—£R||<I>H lell ||| HPfoe'P,lo
= \/C]%OP (T7%)op(N"") Op (T'/2> Op <\/N_T> Op <\/m3NT>
+f]%op (\/]1\/_T> Op (VNT&}) 0p (VNT) 0p (1)

= Op <K1/2T_1/26];]1~ + 6&%) =0p (6]\7;) = op (1) .

For ITyy7,11p, by Lemmas .0.28(i) and (v), wehaveHZNT11b< HegH HP H |P|| =

Op (\/NTK_27’/d> = op(1). For IToN7 11, by Lemmas .0.12(i ) we have

Iont 11 < \/_ tr[?LO'efO fo’fo) foe:gMAOP(a)fO(fO/fO)_l (10%0)—1”
< r el s [ eoa” 1P led el
- 0P<K*7/d>.

For Ioyt 114, by Lemmas .0.12(ii) and (vi) we have

tr [engoe’M loP(a)QD] ‘

C
11 <
INT,11d = INT

< \/% {’tr [engoe P ] ‘ + )tr [engoe PP, )CD} ’}
< =@ [Poey, [Pl

— NT)V?0p (K”'/d> [op (W) +Op (x/ﬁﬂ

= 0p (K'271) —0p(1).

It follows that IToy7.11 = op (1).
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Now we consider (ib). Noting that u = e + e,, we rewrite IIpyr 12 as follows

K K
HZNTJZ = |\|/]V_l[tr [ee’M P( )(I)] ‘\‘/‘/‘])\C[_ﬂtl‘ [ege;MloP(a)dD]
——Hv{“(”tr [ee}, M) 0P| — I KHtf [eg€'M) 0P () D]
\/ﬁ g (a) \/ﬁ 8 (a)

= Ihwnr124 + Nt 126 + IonT 120 +ToNT 1245 SY.
First, decompose I1pn7 12, as follows

onT 120 = U/%tr[E (ee') My 0P, D] — vz K”tr{[ —Eg (ee')| M;oP(, P}

IonT, 1200 + onT 1240, SQY.

Clearly, Tlon7, 1200 = — K72 (%) and | kb2 (x)| < Ricyg |[VE|| | E (e€’ /T)|| [|[Mj0|
— -1 _ .

X |[Peay [ 1177 (£ £°) ! (AY2%) 7 A% = 0p (ky7) by Lemmas .0.28(i) and (v).

Let P = N7'YV  oyP, GO = (fUf%/T) 1 (AYA0/N)~! and A; = VN'[Eg(P))-

E(PM)] xf°GT~". Then Toy7. 1245 can be decomposed as follows

HzNT 12ab

T N N
— N1/2 ZZZAV%O ejiei —Eg (ejieis)]

j=
1 K/ ( ¢ Ac\ £0/ ~0 Y <
+N3/2T3/2 Zi Zivx <pis_pis >fs G Z ZA €it€jr — Eg (eitejt” .
1= S= j=

1r=1

The first term is Op <K1/2/N1/2) by Lemma .0.12(vii), and the second term in the

above expression is bounded by \F{ D AR <pfs - pfgc> FYGO| 212 x

{NzT Y ||Z XL 1A [enej —Eg (enejr)] || }1/2, which is of order Op(K'/2T~1/2)

by Lemma .0.12(viii) and (ix). It follows that Ty 7. 124, = Op(K'/2(N7V/2 4 T71/2)).
For Iy, 125, we have [Ty, 125 | < CR HegH [P || 1] = Op(VNTK~27/4)

= op(1). For IIn7 12, and IIon7,124, We can show that they are both bounded

from above by CR (NT) ™"/ ||eg|| le]| |[P() || @]l = Op(VNTKY/485}) = op (1).

It follows that Toy7 12 = — Ky b2 (x) +0p (1).
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Now we consider (ii). Noting that M, = Iy — Pyo, we have
K
Ll

Nty = “UNT

Ion7 21 +onT 22, SAY.

{tr [u uM P, )Cb’} —tr [u ProuM 0Py, )dD’}}

Noting that u = e+ g and ||V || = Op (1), we have

Iyt < |\|/—H tr[ 'ProeM P, <I>’] U/_HHVKH‘U[ 'p oengoP’() ’]
+Hv§H‘t[’P M oP CI)’]+H§H‘t[’P M P cp’}
\/]W T eg ;Loe fo (a) \/]W I eg ,loeg fO (a)

onT 220 +ont 206 +onT 220 + ToNT 224, SAY.

For Iyn7 224, by Lemma .0.12(i) and (v) we have

onr 220 < ‘\‘/V)IC(—H ['P oeP| QD’] ‘\‘/K_H [e’PAoePfoP/(a)QD’}
A HR )lo,el,, MOHH a0y o) hrvene)
HV HRHN I aoaey o) hrvene)
- \/(]%OP(NW)OP (N1/2> Op (N"2) Op(T ™1 Op(VNT)
+\/(]%OP(NW)OP(\/ZW)OP(NVZ)OP (N2) 0p(T~1)Op((VNT)

= 0p(K"2/(NT)"?) = 0p(1)

Similar to the study of IT;y7 12, we can show that IToy7 22 = 0p (1) for s = b, c,d.
It follows that HZNTQQ =op (1)

For Ilpn721, we have

IonT 21
= UNTT |t [Eg (¢e/n) Ml ] e e~ B (¢)] Mo, ')

—xkn7b3 (x) —IonT 2145 SQY.

It is easy to show that |ky7b3 (x)| = Op (kyr) by Lemmas .0.28 (i) and (v). For
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ITon7 214, by Lemmas .0.12(x) and (xi), we have

Nt 21 = (NT)_1/2 HVJIC{H tr{ [¢e—Eg (ee)] MfOP/(a)cD/}

L L N Y B levers— Eo (e
= —=— ifs leineis— Eg (eieis
TYNTS55
1 1 N N T

+WW Z Z Z Z Vf/ [P?z —Pﬁc] %(')IGOfSOI leireis — Eq (eneis)]

where B, = vN'[Eq (P, — P YAGON™!, P) = TV EL Py, ply = pl,— Eo(p,).

By Lemma .0.12(x), the first term is Op <K1/2/T1/2>. By Cauchy-Schwarz in-
equlaty, the second term is bounded by ﬁ{ﬁ Yo ey [PS— p;f] /IJQ’ G|[2}1/?
Az L 1 X 1Y [eweis — E (eieis)] [[7}!/2, which is Op(1/K /N) by Lem-
mas .0.12(xi)-(xii) .

Last, we consider (iii). For the first term, using &’ Pp = @' and M;o = Iy — Pyo,

we have

Movrs = — (V)2 | o [oMgo '
= (V)2 {r [P Pao P Mpow' @ | x| Prou P Mpou' @ | }

= Ihnr31 + 132, say.

By Lemma .0.12(ii), we have

IN

(NT)™V2 ||| ‘tr [Pfou’P;LoP(a)Mf{,u’cb’]

T3

IN

-1/2
R(NT) /‘Pfou/Plo [l f[]

[P [
= (V)05 (14 VNTK ) 0p (VNT ) Op (857 + K7/
= Op | (14 VNTK 1) (85} + K774) | =op(1).

By Lemma .0.12(iv), we have

}HZNT,32| < CR(NT)_l/Z <HPf0e/P(a)

+ [P el 1P ) 101
= CR(NT) 2 0p(VNK8yr +NTK "4)0p(8} + K 14) = 0p (1).

This completes the proof of the proposition. m
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Bias-corrected estimator

Lemma .0.13 Suppose that the assumptions in Theorem 3.3.3 hold. Then we have

(i) |Wir —War |, = Or {K<K—wd N a];;ﬂ ;

(ii) [|Qnr — QlF = Op [KS,;TI + (NT)V* K (82 +K77/d>} :

(iii) || Wy Qur Wy —WLQW 1| . = 0p [KS,;Tl +(NT)' A K(52 + K74
Lemma .0.14 Suppose that the assumptions in Theorem 3.3.3 hold. Then we have

N 3428) /(4426 _

(i) [1b1 = b1 = Op (VR LTy, 00472 (0) 4 My VES7):

(ii) ||ba — ba|| = Op{VK[N"V* 4 N3/8(K=7/4 4 /K8 2) + TN/}

(iii) ||b3 — b3|| = Op{VK[T Y4+ T8 (K4 +-\/KSy2) + N~ T/}

Proof of Theorem 3.3.3. We first make the following decomposition:

ANT [8be (x) — g (x)]
= {Anr[8(x) —g(x)] =Bk (x)} — [Bk (x) — Bx (x)]

+ (Anr /Ant = 1) {Anr [§ (%) = 8 ()] = Bx ()} + (Ant /ANt — 1) Bk ()

DB\ — DB, + DB + DBy, say.

Noting that DB 4N (0,1) by Theorem 3.3.2, it suffices to show that (i) DB, =
op(1); (if) DBy = op(1); and DBy = op (1).
Proof of (i). Recall that B (x) = —kyrb; (x) — kypba (x) — kyrbs (x) where

A

by (x) = Ve 7% (x) pK (x) x Wy Aby. Tt follows that

DBy, = Kyt [@1 (x) — by (X)} + K']QTI [Bz (x) —by (x)} + KnT [];3 (X) — b3 (x)}

DBy + DB; + DBy3, say.
We prove that DB, = op (1) by showing that

(il) DBy = KNT(A,;l/z(x)pK(x)/Wngzsl—v,i/z(x)pK(x)’Wflbl):opu),

(2) DBy = Kyl (V,;l/z(x)pK(x)’WN*lesz—v,i/z(x)pK(x)’W*bz)zop(l),

A

(i3) DBys = Knr (vKl/z(x)pK(x)’Wngzsg—v,i/z(x)pK(x)’W*m):0P(1).
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Note that

DBj;

Recalling that vK

vt |V 72 06) P (o) Wby = Vi () p¥ (x) W10 |

vt Vg 7 (x) pK () W (by —by)

+KNTV];1/2 (X) pK (x)’ (VAVATTI — Wﬁl) (b] — bl)
+ivrVie 2 () pK () (Wt =W 1) by
e [V 20 = Vi 2 (0] o5 () Wit

DBj14+ DB, +DB31c + DBy 4, say.

=vK (x)fl/zW’lpK (x) with ||vE|| = Op (1), by Lemma .0.14(i)

and Assumption 9 we have

IDBo1a| < kvr ||[VE||1|61 — b1]| = Op

3428

KNT\/I_(< Z OC4+28 +MT5NT>] :Op(l).

T=Mp

Lemmas .0.10 and .0.13 and Minkowski inequality, ||W-Wyr ||r=0p [K(K*V/d+51\7})].

This, in conjunction with Assumption 7, implies that ||Wy}|| = Op(1). Then by

Lemma .0.14(i) and Assumption 9, we have

|DB715|

Similarly,

DBy

IN

‘KNTV 1/2( )pK (x)/W_l (W—WNT) W]\77} (l;l —bl)‘

fovr [[vy bi = b1

kn7Op (1) Op [K (K_Y/d+51\7Tl>] Op (1)

3428
Z a4+26 _|_ MT 5NT
=Mt

><0P

Op(l).

o [[vi [ [1W = Wavr | Wz || 124

kyrOp (1) Op [K (K‘Wd n 51;;)] 0p(VK) = op(1).
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Now, we decompose DB, as follows

DBya = wvr [Vg? () /0 () = 1| Vie "2 (o) o () i by

= v [V 0 /0 @) = 1| Vi ) pF (0 Wy

v |V () /7 () = 1 vie 2 () o ) (i W) By

DBs141+DB142.

By Lemma .0.13(iii) ,

Vk(x) =Vk ()] = [p" () [Wp QvrWyr —W QW] p* (x)]

This, in conjunction with the fact that Vg (x) > H X (x) ||2 Unin(WIQW 1) >C H X (x)

implies that

v12 V1/2 - Vi (x) — Vi (x)
‘ K (x )/ (x) ) V;/z(x) [Vll/z(x)-f—V]}/z(x)}

= Op|Kdyl+(NT)' K (6];% +k 77| (0.52)

[KSyp+
(NT)1/4K(5]§T2 +K~V)]0p <K1/2> =op (1) .Similarly, we can show that DBy, |

Consequently, |DBy14,1| < Kyt ‘ 1/2( )/Vl/z( ) — 1| vE

=op(1). Then (i1) follows. Analogously, we can show (i2) and (i3) by Lemmas
.0.13 and .0.14.

_ Vi (0)—Vi (x)
0@ [0 004 0]
(NT)1/4K(6];7% +K—7/d)] =op (1) . It follows that

Proof of (ii).

= Op[KSy; +

IDB3| < |Ant /ANt — 1] |ANT [8 (x) — 8 (x)] = Bk (x)| = 0p (1) Op (1) = 0p (1).

Proof of (iii). Noting that |B[( (x)| < |KNTb1 | -|— |KNTb2 | + |KNTb3 ( )| =

Op (K’NTKI/z) +Op (Kﬁ%) +Op (KNT) , we have ’DB4| < ‘ANT/ANT — 1} |BK x) =

Op[KS}+(NT) /4 K (6];% —I—K—Y/d>][OP(KNT\/I_() +0p (Ky7) +0p (k)] =0p (1).
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.0.6 Proofs of main results for specification test

Let Wlt - NZ lalj _][+TZS 1nt9 IY_NTZ 125 lal]n[S‘XJY and Xlt EAXit_

Eg (W) Let Qeenr = 37 X0 X XaXed, Qenr = g7 X0 X X Zjed, Qe =
E@[Qxx,NT]; sz = E@[Q)?Z,NTL %}c = Wﬁ prfol, and hit,js = Z;,%ijs. Let

bgl), bg), bgl) denote d x 1 vectors whose kth elements are respectively given by

1

T
; I

B = St |Eo (o) MpX(a]. (0.53)

o _ 1 (1)
bl = PpEg (€X4)]. b5

tr [Eg (ee/) M,loXkCID} ,and

The following lemmas are needed in the proofs of the main results in Section 4.

Lemma .0.15 Suppose that the assumptions in Theorem 3.4.1 hold. Then
(D) |QwppNT = Qupp |- = Op(K/(NT)'/2);
(ii) || QuwpxnT — Qupx|| = Op(K'/? /(NT)V/2);
(iii) || DNt — D||p = Op((NT)~1/2);
() || et — el = Op(NT) 712,

Lemma .0.16 Suppose that the assumptions in Theorem 3.4.1 hold. Then ﬁbc —
BO=w-~ 1NTZ YT Ziey +Rg N7, Where HRﬁ NTH =op(WrT)-

Lemma .0.17 Suppose that the assumptions in Theorem 3.4.1 hold. Then under
H, (yvr) we have 8 — 0% = WDy Xnr + D - YN YT | Xyeir +Bo N7+ Ro T

where Rg N7 = op (Yvr) and Bg ny = =T~ D~ lbg ) —N"D~ 1bg) —T7'D~ lbg).
Proof of Theorem 3.4.1. Recall that e, ;; = g (Xir) — p},° and g(X;) — X/,6° =

WA under H; (yyr). We can decompose I'yy = NT Zl 124 1[P,thc ] Wi

as follows

1 Y Z (A 0 ]?
Tyr = N—ZZ[p,t (B;,C )—eg,iz—l-}’NTA(Xit)—Xiz(e—e) Wit

= I'nri+Tn72 +Inr3 +TN74 —20N75 — 20 NTe + 20 NT7

+2Inr8 — 2'nT9 — 20N T 10,
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where

. / . . .
Inri = (ﬁbc - ﬁ0> Qwpp NT (Bbc - .30> , Inr2=(0—0%'Qpenr (60— 069,
» 1 NI 2 g NI 2
Unts = Wryr .Z Z Wity Cnra = (NT) .Zl Zl Wit€; s
=lr= i=11=
A N N / N T
Inrs = <ﬁbc - B > Qupxnt (0 — 6°), Inre = < be — ﬁ0> NT .)_:1 ; Wit Dir€g.it
. ;' N T LN T o /ti 0
Int7 = Wr (Bbc -B ) 21 L witpihis, Unts = 57 '21 Zl wireg it X;, (6 —0°),
LN : = 1t_N T
Unro = Wr iyt .Z] Zl wirDi X}, (0 — 69), Inr10 = Wr 7 '):1 21 Witeg itAir.
1=1t= i=lt=
vl 2 d

We complete the proof by showing that under H (ywvr), (i) (NTTn71 —Bnr) /Vy
N(0,1); (ii) Yz (Tnr2 +Tnrs — 20nro) = A% +0p (1), (iii) Yy2Llnrs = op (1) for
s =4,..,8,10. We prove (i) in Proposition .0.9 below.

For (ii), by Lemma .0.17

A~ 41
6—-0° = }/NTDNTYNT +D! NT - Z ZXnen +BgnT +RoNT
i=1t=1

= WrDyrXnr + Op[Sys + (NT)_I/Z]

= WwrDyrYnr +op (Wr) (.0.54)

Then we have Yy 7T nr2=Yy7 [Wr Dy Xnr+op (Wr)] Quent [T Dy Ynr+0p (W1 )]
=YyrDyr QuexntDyr Yt +op (1), and 2737 Tnro=2Yy7 vr Lity Li—t WrwiehX;,
X [WrDytXnr +op (Wr)] = x5 L X0 wir AuX Dyt Xnr +op (1). Tt follows
that yy2 (Cyra + Tnrs — 20nre) = (NT) VXN YT wir(Ai— XDy Yyr)? =A%+
op(1).

For (iii), it is clear that yﬁ%FNm =O0p (yﬁ%K*ZW‘Q =op (1) and Yﬁ%FNTlo =
Op (leK v/d ) = op (1) by Assumption 4 and (.0.54). We complete the proof
of (iii) by showing that (iiil) Yy2Tnrs = op (1), (iii2) yy2lnre = op (1), (iii3)

Yvilnr7 = op (1), and (iii4) yy2nrs = op (1). We first show (iiil). By Lemmas
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.0.16-.0.17, we have

/ A
Y]GJ%FNTS = ’}/NT (ﬁbc ﬁ()) prx7NT(9—90)

51
YNTNT

\\Mz
Mﬂ

_|_
=
~
=
H
™=
1~ "

N
|

-
Il

—_

l/ e,;W prx NT (’YNTDNTTNT)

-y
I

1

NT Xiteil

™M=
=

>/ F7—1 -
it exW prx,NTD

—

i=1t=1

=/
e~ prxNTB9 NT

+
=
N

2|
~
™=

~ |l
—_

2ﬂ

+7N2R[3 NTQWPX nr(6— 90)

= Dwrsi +Tnrs2 +Twrss + Dvrsa + Dirss, say.

Recall that 7, = W_IQPXD_I. We further decompose I'nrs) as follows

N T
Inrsi = Yyr NlT ;;theit%xTNT
1 XL,
+yNTNT Z Zzl{teitW_Iprx7NT [D]T]]l" _D_l] YNT
i=1t=1
N
+'}/NTNT Z Z Zl/[elZW prx NT — prx] DilYNT

i=1lt=

Cnrsia+ FNTSlb +Tnrs1es say.

For I'v7514, We have

N T

1
NT Z ZZ;teltW prx

i=1lt=

[Enrsial < 7 el =0 (i (VT)~12) = 0p (1)

as |[((NT) 'Y YL Zl esW ' Q,xD~ || = Op[(NT)~'/?] by Chebyshev inequal-
ity and the factthatE9||NTZ YT Zlen || = —Ttr(QW*IQprD*2Q£Vpr*1)
<d/(NT) i (Q)pi (D) [t (W% w1 (04 px Qi) = OP((NT)_]) by Assump-
tion 11 and Lemma .0.28(vi) . By the fact that ||]%Zf\]:1 Y. enZl Wl = (\/;)
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Lemma .0.15, and Assumption 11(ii), we have

|Quprnr || || Pyr =D 7| I |

NT Z Z i

i=1lt=

‘f‘NTSIh| < Tt

- yN%OP(KW(Nn 1/2) P (VD)) 0p (1) = 0p (1)

and

Qup| 1P| 1w |

Z Z eZyW~

tlt

= yiop (KI/Z(NT)*I/Z) Op <K1/2(NT)*1/2> Op(1) = op(1).

|fNT51c’ < Yﬁ;

It follows that I'y7s; = op (1) . For I'y7352, we decompose it as follows:

™=
MH

N T
Inrsy = YNT N2T2 Z Z z/ jse]sen‘
i=1t=1 j=1s=1
2 AR ! Fr—1 1 1 N T ~/
+y]§Tﬁ Z Z weitW ™ [prx,NT - prx] D~ ]W Z ZXiteil
i=1r=1 i=lt=1
Wi R 2
~ -
- N2T2 Z Z th%xX is€ js€Cit +—= N2T2 Z Z it%xX,-tsei,
1<i#j<N1<t#s<T i=lt=1
Vi o Vo2 & L
NéVTZ Z Z leta%i;xxsezsezt + N]2VT2 Z Z {,,%’;,ij,e,-tejt
i=11<t#s<T t=11<i#j<N
’}/];]2" Y 1 1 1 N T ~
NT Z Zzl/teltW [prx NT — prx] D — NT Z ZXiIteit

im1i= i=1i=1
Tnrsoa + FNT52b +Tnvrsoe + Tvrsoa + Dvrsoe, say.

Recall that &y j = Z}, 7,,X js. Apparently, E4[[nrs52,) = 0 and

E@ [flz\/TSZa]

= W Z Z Z Z Eg [hilfl7j1316j151eiltlhiztz,jzszejzszeiztz}

1<ii#j1 <N 1<ir#jo<N 1<ll$£51 ST 1<tr#5,<T

= W Z Z E@ lt JJs ]S lli|

1<i£j<N1<t#s<T

= y’tﬂ%ﬂw I<Z<N1<zZ<Ttr A (X; Xijse ”) HpE 7 (2 ’thezt)]
i,j< s

= %TZ%,sztr[W 0pD ' QD' 0, WO, ]

= ’)/ﬁ,TI%’zTZ nul (QZZ)IJ’IZ ( ) .ul( xx).ul (prpr) ,ul HW ! ||F (K_l) .
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So I'vrs24 = op (1) by Chebyshev inequality. For I'y7s25, we have [yzsa, = %

+ ﬁtr{%x wnt — Q) } = Dvrsop1 + Tvrsa. say. For Tyrsap g, using

Lemma .0.15(v), we have

. 12 - _
Inrsap1 <V /tr(Q W1 QD)

N

< Vi [tr(QeW ' QupeD ™' QW' Q)] [ (D7)
< Vil [ (QpW ' QW 0p)] e (D7)
< Vi POV [ Qup 1952 0p (1) = 05 (K712),

where we use the fact ||Qe=||* < w1 (@) (Qsz) = Op (1) by Assumption 7 and ad-

ditional assumption that pt; (Qzz) = Op (1). For fNTszb,z, we have

IN

I/ZHW QupD || o Qe vt — Qizl o
Vit (17 19 | | Quopel| 1R 47 — Qe

— V;]I/Z (K1/2N 1/2T 1/2)_0P(1)

‘fNTSZb,2|

IA

Similarly, we can show that [y, = op (1) for s = ¢,d. For, I'y7s2., we have

’f‘NTSZe‘

T
NTZZ’ it €it
= Op(1/VNT).

1 Y&
]WZZ it€it

i=1t=1

< YNT

7| Gopmr — Qo] HD”H‘

Consequently, ['yrso = op (1).
Following the proof of I'yrs; = op (1), we can show that Tyrsz = op(1). In
addition, it is straightforward to show that I'y7s, = op (1) for s = 4, 5 by using the

rough probability bound for the remainder terms Rg y7 and Rg yr. It follows that

Yvilnrs = op(1).
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For (iii2) , by Cauchy-Schwarz inequality and Lemma .0.16, we have

Vw7 Tl
) 1 N T
= Wr|=m NT : Z( ) Wit Dit€g.it

IN

= i=1t=1

1/2 1/2
];% {]% i i <ﬁbc ) WitPitP;t (Bbc - B0> } {N_IT i i e;,it}

IN

'}’NTHﬁbc B H 11 (Quppnr)]> Op <K—y/d>
< i70r (K2 /VNT) 0 (K1) = 0 (VNTK7) =0 (1).

Similarly, ¥y 7 yTs = <yNTK v/d ) = op (1), proving (iii4).

We now show (iii3). By Assumption 10, there exists a K x 1 vector ) € RK
satisfying || B2|| < Ca <o and ||A(x) — pX (x) BY||.. 5=0 (K_Y/d> for as K — co.
Using A = p B0 + (A — pB) = P, B9+ ea, we have
_1 1 N T

NTNT Z Z (ﬁbc ) Witpitpgtﬁg

i=1t=

2
Wwrlnrr =

—H/NTNT Z Z (ﬁbc ) Dit€A,itWit

i=1t=
Tnr7a+ FNT7ba say.

Analogously to the study of ‘ }/ﬁ%FNTd , we have ‘meb‘ < Cy];T] | \[%C —BO|Op(K~Y/4)

= op(1). For ['y774, by Lemma .0.15 we have

~ 1 E& s 0
I'ntia = WNT ,ZT zzi eiZyW ™' QuppBa
1 N

Z it ~1/ w! (prp NT — prp) BA + 'YNTR[? NT Qwpp, NTﬁA
YNTN i=1t=1

T
= Z Z eitZ,{tW_l prpﬁg
i=1t=1

+740p (KA(NT)™/2) 0p (K(NT)™'/2) Op (1) + Op (13} Rp vr)

= Tnr7a1 +op(1),
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where I'n7741 = erNT YN YL enZ, W QyppBY. For Tnr7a1, we have Eg[Dyr741] =

0 and
- 1 ~ _
E@ [F]2\7T7a1} = NT’}/2 tl‘{Q.W ]prpﬁgﬁngwppW 1}
NT
1 ~ _ Y;
< Frn @ (V) du? o) 1B = 00 (BL) < ont

Then I'y7741 = op (1) by Chebyshev inequality. It follows that yﬁ%FNW =op(1).
|

Proposition .0.9 Suppose that the assumptions in Theorem 3.4.1 hold. Then

d
(NTFNTl _]BNT) /VVNT — N(O, 1)

under Hy (Ynr) -

Proof. Noting that HQWPP NT — prpH =Op( F) and ||Bbc ﬁ0|| = OP(\/;)
we have YTy = Tvrig + YNTOP(F)OP(\/i) = op(1), where Inr1,1 =
Yoz (Bye — B°) Qpp(Boe — B®). We are left to show that Jyr; = %\/TIJENT 4
N(O,1).

Let Qpp = W 1QyppW L, Hijus = Z,0,pZjs, and H;j = Z/Q,Z;. Decompose

Yﬁ%r n11,1 as follows

_ 1 _
YN%FNTI,I = 2T Z Z e/Hl]eJ + 2YN%R[3prp (Bbc B > + ’}/N%Rﬁ prpRﬁ
N-T W i= 1j=1

= Jyr +op(1), say.

For Jyr, we have

8 Byt 1 /
InT — = 5 Z e-HijeJ Ny Z Z Hii,tseiteis]
Vr N*T> Yo 1<ijen NZTZYNTI L1<t#s<T

= jNT,l + jNT,Zu say.

We complete the proof by showing that: (i) Jyr.1 <, N(0,1) and (ii) Inr2=o0p(1).

Proof of (i). We rewrite fNT’l as follows

. 1
Inti=——5 )} eHjej= ) Wy
NTV yr 1<itj<N 1<i<j<N
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where Wi; = Wy (i, u;) = 2(NT) "' V)

Yi<ss<r Hijseiejs and u; = (Z], ;).
Noting that fNT’l is a second order degenerate U-statistic which is “clean” since
EqgWnr (ui,u)] = E9[Wyr (u,u;)] = 0 a.s. for any nonrandom u), we apply Propo-
sition 3.2 in de Jong (1987) to prove the CLT for JNNTJ by showing that (i1) Varg (Jyr.1)
=1+0p(1),(2) GI = Li<icjen Ea(Wi}) = 0p (1), (i3) Gu = Li<ic jar<n Eo (Wi W}
FWEWI+WIWS) = op (1), and (i4) G = Y1 <ic j<r<i<n Eo(WijWir Wi Wi, + Wi Wi
XW, Wy + W, WyW;, W) = op (1).

For (i1), noting that E(Jyr,1) = 0 by Assumption 5(ii) and by the same as-

sumption we have

y 4 T T T T
Varg (JNT,I) = N2T2V Z Z Z Z Z Eg HileSlHiszszeiflejSleilzejn)
NT 1<i<j<Nt=ln=1s51=1s=1
4

Il
M=

e Eo e )
272 Z J lJts €it
N-T*Vyr I<icj< =1

=z
[}

T
Z tr {QPPE@ JSZ js jS) QppE@ (leZttelt) }

s=

I
=
o
~
<
=
ﬂ
n
<
A
=
1~

~
—_
—_

2 - o~ = o~ 1 . -
= V_NTU (QPPQQPPQ) T N2 Var i:thr (QpriQpri)

where Q; =T 'YL | E¢(Z;Ze2) with N1 YN | 111 (€)% < C < o0, and we use the

fact

IN

A A A a Al 11(Qpp)tr (Opp)
NV nr ; tr (QppCuQppi) { ; } NV

— 0p(1)0p (%) —op(1).

Proof of (i2). Let g, be the (ki,ko)th element of Qp,. Let ¢y = Zi reir.
Noting that H;; ;s = Zl{tQst = ZkKlzl Zsz:I Z]klk2Zl~,7kles,k2, we have

_ 16 —
Gy = NTHVE Z G ky Dk3ky Diesks Ty
1<ki.... ks<K

X Z Z E@ ((Pitl,kl ¢it3,k3 ¢it5,k5 ¢il‘7,k7) E@ ((l)jl‘z,kz ¢jt4,k4 ¢j1‘6,k6 (pjtg,kg) .

1<i<j<N1<ty,.... tg<T
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First, note that the term inside the last summation takes values 0 if either #{¢,,3,5,27}

=4 or #{1p,14,16,13} = 4. So it suffices to consider three cases according to the

number of distinct time indices in the set S = {¢,...,13} : (a) #S =6, (b) #S =5,

and (c) #S < 5. We use Gy,, Gpp, and Gy, to denote the corresponding sum-

mations when the time indices are restricted to cases (a), (b) and (c), respec-

tively. Then G; = Gy, + Gy + Gye. For Gy,, we must have #{t|,t3,t5,7} = 3 and

#{t2,14,16,13} = 3. Without loss of generality, assume that t; =13 > t5 > t; and

t) =t4 > tg > tg. By the conditional Davydov inequality (see Lemma .0.26) in the

supplementary appendix, we have

IN

IN

<

|Gla|

E@ (q)itl ki (pil‘l k3 ¢it5,k5 ¢it7,k7)

149
8 H ¢it| ,kl ¢il‘| ,k3 ¢il‘5,k5 H (8+45)/39 || (Pil7,k7 “8+457@ aéJré (t7 - t5)

145
}¢it77k7 H8+46,9 a;a (17 —15)

‘ Pirs ks H8+4679
1+6

248
2( @i by + Pty by + Piss ks + Phing k) €50 (7 —15)

8 H‘Pimkl H8+46,@ ‘¢if17k3 H8+457@

where @« = || 9k ‘;457@. Let Cio (T) = X Otg+6)/(2+8) (m). Then
é N4T644V]2VT Z |lek2 | |qk3k4 | |qk5k6 | |Cjk7k3 |
1<ky .. kg <K

N 145
X {Z Z (¢17it17k1 +¢17ill k3 +(D17i15,k5 +q)17if7,k7> aé‘Fﬁ (t7 - tS)}

i=11<t;<ts<t;1 <T

N 146
- { Z Z (q)lajt27k2 + ¢17jt27k4 + Py irg ke + q)l,jf&ks) aéﬁ (tg - t6)}

J=11<tg<tc<tr <T
64C12a(T) Z

N4T2V?
NT 1<ky,... ks <K

N T
X { Z (P ir kg + Prir ks + P ie ks +q)1,it,k7)}
=1
T
)y

IN

|‘7k1k2| |67k3k4| |67k5k6| |q_k7k3|

(Prir ey + Prit kg + Prit kg + Piirkg) }

v op (KEN1?) = 0p (K*/N?)
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Similarly, we can show that G;; = Op (K6/N2) =op(1). Tt follows that G; =
Op (K°/N?) = o0p(1).!
For (i3), we write G;; = ¥ < j<1<ny Eg (WZ%WJ.Z, +WiW; +W2Wl]> =G+

G2+ Gy 3. By Assumptions 5(ii), we have

— 16
GII,I = ]WVIZVT Z Z E.] |:e1t1 ejtzHl l]I3Hil,llI4Hjl,t2t5Hjl,1216 elt3ell4ell‘5 6116]
1§l'<j<l§N 1<ty,...tce<T

_ 192 ) 2 2
T ONTAVE, Z Z Z Eg [em ejtzHl tltSHllJltlejl,lzl(, €l ell4elt6}
1<i<j<IKN 1<t 1 <T 1<t3<ty <t <T

48 2 2
+N4T4V12V Z Z Z Eg [elll Jt2H1t1t3Hjl fzteell3elte}
1<i<j<I<N 1<)t <T 1<t3F#t<T
Gir.11 + Gpr 12, say.

For Gy;,11, we have

G < NszVz Z Z Eg {tr [61,421’,4Q_pprQppZmezd tr [Q_prQple%Z;téel%ﬁ} }

I=11<ts<ty<tc<T

Noting that Eg e, 421’14 0ppQR0,pZisers;] = 0, by the conditional Davydov inequality
we have

‘EQ {tr [elmzllm QppﬁQ_plets eld tr [QppﬁQpletszllzGelth }‘

8 | | tr [elt4zlt4 QPPQQplez3 eld

144
|tl‘ [QPPQQPPZl%thGel%] H4+25 9 2+6 (t6 - t4)

IA

+8
o (15— 11)
1+6

s s 2
< CK2 Helt4 Hg_~_45 9 (plt4,8+48 ||ell3 H8+45 9 (pltg,8+45 Helt6 Hg_~_45 @ (plt6,8+45>a@ (t6 _t4)
3
< CK* (G310 +Caty p+ Cagrge + Catts p +2C3 1160 +2C3.105.p) OC@ * (te —1a)

IN

8:“12 (QPP‘QQPP) H HelMZl/m HF Hles €lrs HF H lee HF 61216

4+26,9 4426

I'This is a rough bound but it suffices for our proof. With more complicated arguments, we can
show that G| = Op (K*/N?).
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~ ~ _ ~ ~ 8+46
where C3,lt,e = Hell ||§+46,@’ C3,lt,p = q)18t78+45’ ¢is,q =K l/q HZiqu7_@ ) and E |(Pis.,q}

< oo by Assumption 6(iii) . Then

Gl < 192CR> Z Z {ag+5)/(2+8) (t6 — 1)

N2T2V%,
=11<t3<ty<tc<T

X (C3,n4,e +C311,p+Cat3.0 + oty p+2C3 g0 +2C3 116, p)

N T
= Nz(T:TK;%W {(TCM (T)+3TC1a(T)) Y. Y (Caite +C3,iz,p)} =0p(N )

i=lt=

146

by Assumption A5(i), where Coq (T) =T 'Y 'Y, 027 (s—1) < co. Simi-

larly,

G2

48
NV Y Y Y Eo{w[Es(er ZinZi,)Oppein, Zity i, Opp)
1<i<j<I<N1<t] 5 <T 1<t3F£t<T

IN

X tr [E@(e ]ZzZﬂZ ]tz)QPPelt6Zl[6th6 Qpp} }

N2T2V2 Z Z Eg {tr [QQppelthl%Zngpp] tr [QQPPeltGZl%thﬁQPP]}
T= 1 1<t3#t,<T

N

W Y Y {E@ [tr (QQppelz@thng/g Opp)] Ez [tr (QQppelztézltszllzﬁQ_pp)}
N I=11<t3516<T

IA

IA

1+8
+ 8|t [Q0ppeiy, Zin Ziy, Opy] H4+26 2 [er [QQppeztézl%Zzzé Opp) H4+25 505" (Ite—13 |)}

2(0\u4 (0O 4 7
_ WO Sy gy [ )] £ [ 2]
NI I=11<t316<T
2004 (O N
+%Z Y|

AN 5 (g 1)
=1 1§l35£lﬁ§T

4428, ‘ s | 2| H4+26,@

= Op (ﬁ) [Op (NT?K?) +Op (NTK?)] =0p (N71).

Thus Gy7,1 = op(1). Similarly, we can show that Gi;» = op (1) and Gy3 = op (1).

It follows that G;; = op (1).
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For (i4), we write G111 = Y1 <i< j<r<i<n Ea(WijWi W jWi, + Wi Wy W, jWyy + Wi Wy W, Wi )

=YY% | G, say. By Assumptions 5(ii), we have

G
16
=  NATAVZ. Z Z [E@ (Hij,tltzeitlejtzHir,t3t4eit3ert4
T <icj<r<I<N1<ty,.3<T

X Hlj7t5t6elt5ejt6le7t7tgelt7ert8)]

_ 16 2

T ONATAVE Z Z Eg [em jtzelzsemHl] fllelrflMHlj t5t2le15t4]
NT 1 <i<j<r<I<N 1<ty t,t4,15<T

_ 16 51 2 >/

o N4T4V12V Z Z [EQ (QPP ”Z QPPZ Zs rstp]q

T \<i<j<r<I<N1<t,s,p,q<T

X ZipZt@OppZiaZha )}

= W Z tr (Qppfzi 0pp 2 0ppll Qppfzj)
N 1<igtj#rAI<N

—=— 5O OO0, OO C 1
= 50 (Cn 90500 00,)Q) + Op (W) —or (E) ,

where we use the facts that tr(0,,Q0,,Q0,,Q0,,Q) < ut (0pp) 1; (Q)r(Q) =
Op(K) and N~'YY  Q; = Q in the last line.
For (ii), we can easily show that Jyro = Op (N_1/2> = op (1) by conditional

Chebyshev inequality. The detail is omitted to save space. m

. N 1/2 3
Proof of Theorem 3.4.2. Note that Sy = YLIve—Bsr _ 5.0 <M> + Bur_Byr

vV Vyr Vnr Vnr

and Vy;. = Op (K~1), by Theorem 3.4.1 it suffices to show that (i) By — Byr =
op (K1/2> and (ii) V7 — Viyr = op (K). We first prove (i).

» ~2 5 ir—1 7—17%5 25 vir—1 57—1
Byt —Byr = (63 ZiWyrr Owpp NTWrp Zis — €4 ZisW ™ QuppW ™' Zyt)

=
1~

o [Z0W ! QuppW ™ Zis = ZyW ! QuppW ' Z]

M=
1~
QN>
SN §

3~ 3~
Il
m

‘ -
-
i
=
i
Il

T
+ Z (él% - el%) Zz{tW_leppW_IZit
T

—
—

t

=
ﬂ
I Mz

1 PPN - - - A
élzl [Zl{t (Wz\ﬁ1 vavp-,NTWI\7T1 -w! QWPPW_]) Zit}

+
3
~
M=

i=11=1
DBn7 + DByt + DB3nT, say.
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Following the proof of Lemma .0.14(i), we can readily show that DByr = op (1)
for s = 1,2 because prp —17. and Qvlv{pzp —17.. behave similarly to Z; and Zis,
respectively. Let w = W]\?T prp,NTWJ\?T and w = IQWPP ~1 Then we have

DB3y7 = tr[(w — w) Qur]. By Minkowski inequality,

W =g
< ”W (QuppNT — Qupp) W |7+ H(Wl\;Tl ~W ) Quppnr (Wyr _W_I)HF
+2 ||W_1prp,NT(W]\7]} _W_1>HF

= WINT +WoNT + 2W3NT, say.

By the matrix version of Cauchy-Schwarz inequality, the fact that tr(AB) < u; (B)tr(A)

for any symmetric matrix A and p.s.d. matrix B, and Lemma .0.15, we have

wine < {oe W (Qupp vt — Qupp) W W (Quppnt — Qupp) W] }1/2
< i (W) {oe W (QuppNT — Qupp) (Qupp Nt — Qwpp) W] }1/2
< [ul (W_l)} Hprp-,NT - QWPPHF

= 0p(1)Op(K/(NT)'?) = 0p(K/(NT)"/?).

Similarly, we can show that wyr 2 = Op(K 2(K —2v/d 4 3,\7% )) and wint 3 = Op(K(K ~v/d

+8y7)) by Lemmas .0.13 and .0.15. It follows that
|W =W = Op(K (K*V/d+6,;;)), (.0.55)

and [DBsyr| < (% =) | 19|l = Op(K (K7 + 851 ))0p(K ') = 0p(K1/2).

Thus BNT — BNT = OP(KI/Z).
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(if) Using the notation w and w, we can decompose Vnr — Vyr as follows

VNT —Vyr = 2tr (WQNTWQNT — VT/QWQ)
= 2r (WQNTW.QNT — WQWQ)

A A

+2tr [(W — W) Qur (W — W) Qur ] +4tr [(0 — W) QurwQr |

2DV, NT + 4]D)V2NT + 2DV3NT + 4DV3NT.

Observe that [DV 7| < [ (W))* ||Qnr — |12 = Op(K2/(NT)) = 0p (1), and by

(.0.55)

1/2

|DV2NT| {tl‘ [(W — VT/‘) QNTQNT (W‘ — W)] }]/2 [tl‘ (WQNTQNTW)}

IA

< (@) P I — Wl 1

Op (1) Op(K (K—Y/d + 6];}))0;) <K1/2> — op <K1/2> .

Similarly, we can show that |DV3y7|=0p(K?(K—2"/%+8y7))=0p (1) and [DV 7|
=O0p((K3* (K44 81)) =op <K1/2> . Consequently, Vy7r —Vyr =op (K1/2> —

OP(K). [ |
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C Supplementary Material on Chapter 3

.0.7 Expansion of the quasi-log-likelihood function

We extend the expansion of the (negative) quasi-log-likelihood function of Moon
and Weidner (2010) to our nonparametric framework. This expansion is the starting
point of our asymptotic analysis. Given the sieve basis {pi (x),k=1,...,K}, we
can linearize model (3.1.1) as (3.2.1). Compared with Moon and Weidner’s (2010)
linear model, the number of regressors increases as sample size (N,T) tends to
infinity in (3.2.1) and the new error term includes an extra component, i.e., the sieve
approximation error. We can modify the proof in Moon and Weidner (2010) and
still resort to the perturbation theory of operator in Kato (1980) to establish the first
order expansion of approximating quasi-log-likelihood function.

Define

CI)] = fO (fO/fO)_] (AO/AO)_] (fO/fO)_] f0/> and
A

@ = A0 () (A0 A (050

Recall that @ = fO(fV )1 (AYA0) =AY and Oyr = YK, &Py, where & = i —
[3]? fork=1,...,K, & =|ju|| /V/NT,and Py = (v/NT/ ||u||) |[u]| . Let dmax (lo,fo) ,
dmin (A%, 1), ro (A%, %), and ayr be as defined at the beginning of the Appendix.

Proposition .0.10 Suppose that || Oyt < v/NTro (A%, f°). Let 2 (B) and f (B) be

the minimizing parameters in (3.2.6). Let M; (B) = Mi(ﬁ) and M (B) = Mf(ﬁ)'
Then

(i) the profile quasi-log-likelihood function can be written as a power series in
the K + 1 parameters €. (k=0,1,....K), i.e.,

1 K K
gl\(}T(ﬁ) = N_ Z Z k]gkz A‘O’f Pk17Pk2)

NT ZOkZOkZ 8k18k28k3 )'O f Pk|7Pk27Pkg)
2 3

+0p (0gt7) (.0.57)
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where

LO (20 O ) = 1r (M,loPkleoP§<2>

1
L® (2%, O, P Py Py) = — o y tr (MyoPi, Mo P, P, )
" all 6 permutations for (ki ko k3)

(ii) the projector Mj (B) can be written as a power series in the parameters
Ex (k =0,1, ...,K), ie.,

K K K
Mi (ﬁ) :MZO_F];)EICM;I) (A‘va()?Pk) +k20k208k1 gkzMEZ) (2’07]{071)](1 7Pk2) +0P (al:\;]T)
= =0kyr—
where
MY (A0, 0P) = —MyoP®—D'PiM;

2 0 0
M (0,0, P, Py = MyoPy, ®P,®+ P} O'P) Myo — MyoPy, M 0P},
_(I)zpkszoP;quo _MAOPkl q)lp;(leo + q)/P;qM)Loszq);

(iii) the projector M 7 (B) can be written as a power series in the parameters

&(k=0,1,...K), ie.,

K K K
1 2
Mf (B) :Mf0+ Z ng](C ) (A'O?foapk) + Z Z eklgkzM} ) (2'07f07Pk17Pk2) +0P (aZ%T)
k=0 k1=0k,=0
where
MY (A0, 0P) = —MP@ —DPM
f J o Tk) = Yk kML g0
MP (A% O P P = MuP @'P @ + PP @P Mo — M P} MyoPy, @y
— @ P, MyoPy, Mo — M 0P} D2Py, My + PPy Mo Py @'

Proof. (i) The proof follows the proofs of Theorems 2.1 and 3.1 in Moon and
Weidner (2010) closely, and is composed of two steps.
Step 1. We expand the quasi-log-likelihood function into the summation of an

infinite sequence. Observe that
K
Y- Y BP=A"F" + &Py + &Py + - + &Py, (.0.58)
k=1

where we can view the last K + 1 terms as perturbations to the leading term A° %',
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Now we rewrite the profile quasi-log-likelihood function in (3.2.8) as follows:

| T K ! K 1 5
— Y — P Y- P = — ‘ 1 .0.59
NTR;IIJ ( k;ﬁk k) ( k;ﬁk k)] NTRXJ:HH[ (1] (0.59)

where .7 () = 704371 4,27,
F0= 2001 7MW = 9yr (A%FY + £O4) , and 7P = Syrder. (.0.60)

Clearly, if g, =0 fork=0,1,--- K, then the T — R smallest eigenvalues of .7 0 are
all equal to zero.

Since 7 (1) = 7%+ 7 4+ 7@ under some conditions to be specified later
(see (.0.66) and (.0.67) below), we can expand the weighted mean p) (1) of the A-
group eigenvalues (A = 0 in this case) as

o)

T
L Y w7 (1)) =0+ 1520, (.0.61)
T_RR—H g=0

A (1)

where the coefficients 4 (&) are given by

. g
i) = ﬁZ(_l)PH Z tr(S(kl)g(Vl)S(]Q)...S(kp)g(vp)S(sz-l)),
p=1 Vi+-tvp=g,
my+-+mp1=p—1
22\/]'21,}’}1]'20
(.0.62)
_ _ _ k
SO = My, S = [A° (A0 (40) T (A020) T A (.0.63)

and 70 (s = 1,2) are defined in (.0.60). Note that 2 > v; comes from the facts that
78 =0 for g=3,4,---,k; > 0 and requirement —7 +R+1 < 0. See (2.12) in p.
76, (2.18) in p. 77, and (2.22) in p. 78 in Kato (1980) for more details. Using the
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expressions in (.0.60) for .7 (1) and 7@ we have

79
R Tl
NT 7=
1 & &
= — Z Z (—1)P+1 Z tr(S(ml)y(Vl)S(mz) . -S(mp)g(VP)S(mlH-l))
NT 82117:1 V1+"‘+Vp:S
my+-+mpy1=p—1
2>v;i>1,k;j>0
1 & K K K .
= NT X X L) &, L8 (A0, £, Py, Py, ) (.0.64)
8=2k;=0k=0  k;=0

by noting that the term with g = 1 is equal to zero, and where

8) (loafoal)kl?' o 7Pkg)

1.
= — [L (lo,fo Py, ,Pkg) + all permutations of (kj,--- ,kg)] ,
g!

Z (AO fO Pk17 Pkg)
8
Z P+1 Z tr (S(m1)tqk§il)5(m2) .. .S(mp) g(l‘c’p)s(mpﬂ)) 7

p:1 V1+...+Vp:s7 - Kg
Myt =p=1,
22\)]'21,/{]'20

(.0.65)

T = 207P, 1 P fOAY, and 7 =Py P .
To ensure that .7 () can be expanded at 5« = 1 in (.0.64), we need the following

conditions:

1. The perturbation terms must be small enough so that the quasi-log-likelihood
function can be expanded. The separating distance of eigenvalue O (with mul-

tiplicity 7 — R) is defined as dy, = NTdZ,;, (A", f°). Then it requires that

Hﬂm + 70 H <22 (A0 f9). (.0.66)

2. Convergence of the expansion in eqn. (.0.64) in an infinite sequence with s =
1 requires that the convergence radius is at least 1. Define a = V/NT || On7||

2dmax (lo,fo), ¢ = || 9| [2VNT dmax (lo,fo)] 1 ltis straightforward to
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show that

=0<ac" ! fors=3,4, -

o] <

2)H < ac and Hf(s)

(.0.67)
Then by (3.51) in Kato (1980, p.95), the sum of the power series for Lyt (f3)

—1
is convergent if 1 < 24 4 ,1.e.,if
dsp

0 £0 !
[ Onr | < 1 (A0, 1) = (“cfmax(/1 S°) L ! )) . (0.68)

VNT rmn (Ao7f0) deax (2’07-](0

Step 2. Finite order truncation of the quasi-log-likelihood function. To conduct

the asymptotic analysis, we need to truncate the expansion in (.0.64) to a finite

order. Noting that HS(g)

= VT2, (2%, 1))

I)H < a, and HQ(Z)H <ac,

we have
H st ) ga) . g(hn) g7 (v) g(hpi) H
< VT (A0, 1)) 7T (23N (A°.12)) " [0 .

USing ZV1+“-+V,,=g,22VjZI 1 S 28 and Zh1+'~+hp+|:p*1, hjZO S 4]7’ we have

IN

1 y ‘tr (S<h1> Fngh) ... g(hy) 9(%)5(%1)) ‘

NT Vit Avp=g, hit+-thp 1 =p—1
22"]’217 hjZO

- g 2 0 0N\ 7
Rdgin (A1) (2”NTdmaX()“0afO)> *lowr )3 (32dmaX(?; £)>
p=[g/2] mm(l f)
(16dmax (Ao,f0)>g

dinin (A0, f°)

mln 2’07‘f‘0 H 19.NT
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16dmax (A°.1°)

for g > 3. Recalling that ayr = H\/;N—TﬁNTH 2, (00,1

, we have

1 G K K
L?\/T(ﬁ)__z Z Z 8k1"'8kgL(g) (AO,fO’Pk1’~--7Pkg)
NT g=2ki=0  kg=0

1 o0 K K
= N7 Z Z Z gkl...gkgL(g) (lo,fO,Pkla"kag)
§=G+1k=0  k,=0

i Rgoyrdni, (A°, f°) <R(G+1)O‘1§;1dfmn (’lovfo).

S = 2
g=Gt1 2 2(1—oyr)

The infinite summation is convergent given oy < 1, which is implied by ry (AO, f O) >
1. Letting G = 3, we complete the proof of (i).
(ii)-(iii) Following the proof of (i) and that of Theorems 2.1 and 3.1 in Moon

and Weidner (2010), we can prove (ii)-(iii) analogously. m

.0.8 Proofs of the technical lemmas

Convergence rate

Lemma .0.18 Suppose that Assumptions 1-4 hold. Then for any f € RT*R satisfy-
ing rank(f) = R, we have
() sup |k (B Mye) | = O (857 for any a & BX with a]| = 1
ii) sup L (P \Mre,)| = Op K—/d or any a € RX with ||a|| = 1;
fINT (@)™ f%e
(iii) sup; | rtr (A fOM )| = Op (6];; _|_K—Y/d> :
(iv) sups | yztr (wPpu’) | = Op (SJQTZ +K’27/d> .

Proof. (i) Using My = It — Py, we have

R | ) Y

1
NT + | —=tr [P(G)Pfe'}

NT
N
a NT Z Zpiteit

1
+ g rank P Pre) [ Pr | [|Peo ||l

A
By

by Assumptions 1(iii)-(iv), 2(ii), and 5, Lemmas .0.28(vi), (i), and (xi), and the

fact rank(Pr) <R.
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(if) Using My = It — Py, we have

IN

1
' ﬁtr [P(a)Mfeig]

1
ﬁtr Pl + |y P el
1/2 - 1/2 2 /
Z“Zl’ztpu e p F g Pl el

/
< W (Qpp,NT)]/2||a|| || gHF +CH (a)H || gHF — Op (K*Y/d)

IN

I [\/]2

VNT VNT ~/NT
by Assumption 2(i), Lemma .0.28(i), and the fact that
Hi INT K/021NT —2y/d
=r X Yesi < e =" 0 Bl ol K X (1 ) =0 (K271
i=1t=1 i=1r=1

by Assumptions 3(i) and 4(i).

(iii) By Lemmas .0.28 (ii) and (iv), we have

e (1) | < ik (30t AL 0 e o, (501 i)

(iv) By Lemmas .0.28 (ii) and (iv), we have += NT ‘tr (quu/) ’ grank(quu ”"H HP H
= 0p (837 +K214) = 0p(1). m

Proof of Lemma .0.8. Let P,y = Y5 | a;Py and a; = (B — Br) /|| B — B|. We

first give a lower bound for Sy7 (B,f). Since Y —-YK | BiP =AY+ YK | ([3,? — Bk) P, +

u, we have
SNT(B?f)
1 B
— Wtr{[/lofo—k];l(ﬁ,?—ﬁk)Pk—ku

= Svr (B°,f°) +Snr (B, f)

—i—itr (A2 +|B° — B|| Py | Mpu'} + Ltr{u(Pfo — Pp)u'}

K
My [AOfO/JF Y (B —Bi)Pi+u

k=1

NT
> SNT(ﬁO )+SNT(ﬁf (Hﬁo Bl) 0P<K Y/d+5 ) 0P<K7Y/d+5§Tl>

where Sy (B, £) = giptr| (A% 10+ [|B° — B[ Pay) My (A0 + [|B0 = B|| P(o)) | 1
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is obvious that
SNT(ﬁ,f) > I’D}HSNT(ﬁ,f>:HﬁO_ﬁH Z nul( ppNT>

N
[BO=BI min Y || =B =Bl

all=1.aeRX; 5%\

v

by Assumption 2(iii). It follows that Syr (B, f) > Snr (B°,£°) + b Hﬁo —BH2 —

op (||B®—B|) —or(1). Since Syr(B, f) = ming ¢Sz (B, f) < Snr (B, f0) , we

have
bHBO—BHZ <[|B°—-B| op (K‘Y/d+51;;> +O0p (K‘Y/d+6,;T‘>

Then we get ||8° — B|| = Op(K~ Y24+ 5,,4/*) = 0p(1). W

Proof of Lemma .0.9. Recall Vi (x) = pX (x) W 1QW ! p& (x) and vE = W),

Vi (%)
By Cauchy-Schwarz inequality, we have
dil = V') [pK W2
(P ' w!pk >}1/2{ W2}l ) (W) |12
B {p< W1 G- <>}”2 P )l g () 1 (W)
= i (@) 2]

Recall that Zy = pir — 5 X0=1 049 (pjr) — 7 La—1 NisEo (Pis) + 57 L)1 Lae

iMisEo (pjs) = pir + G- Note that §j; is a K x 1 P-measurable vector, and
ol SN W ([0 0Nl ST = [ 0
161 < IS 3 a7 s o)+ 1015 £ 18 s o

v Sr
A A =57 T ZZWIIHJ%HHE@(PJs)H

j=1s=1

where we use the fact that |a;;| < gy [|A?]] HA?H and |n.] < o7 M| 2] || £2|| - For

: . S 14 4 i
(i), noting that [|Zi|* < (Ilpull + 1Gl* < 2 (Ilpall* + 16l ) and 2 (@) =
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Op (1), we have

| I N 23u2 (Q) T N
o 3 M L O 35 o (AR T
w7 & 2 .0 7 X ML

< 22 (Q) {%i y EACIRERI<N } = 0p (K*),

N 8
where we use the fact that 5= Y7 Y [| G || = Op (K*). To see this, using (412¢)

< (a®+b%+c®) /3, wehave 57 XL YN 1161 < Cvr (4,0) + v (4,6) + Enr (4,¢),

where
37 T N 0 gj\_ll N 0 8
s = BT (1015 £ Wl Gl
=1i= j=
37 T N 0 Qfl T 0 8
4,b) = — P = I IE is , and
o) = B (15 121 15w )
_ V¢ 0 SN ST QT 0
s = a3 (IS 5 5 PRl s )
t=li= j=1s=1

For {yr (4,a), by Cauchy-Schwarz inequality

Gvr(4a) < 3y { Y. 1471 }{%ji\\ﬂ?\\ } %i{@@z”p”“ >}4

= Op(l)op(l)op(K4)=0P(K4).

Similarly, we can show that {yr (4,b) = Op (K4) and Cyr (4,¢) = Op (K4) )

For (ii), following the study of (i) and Jensen inequality, we have

1 T N 5112 2
ek (L1t
=

VAN
=
21
5
©
1~ 3
[\)
~N
1~
PR

IN

+Z||cn|| )2

1 4 1 Y 8
9 N; | pit| +ﬁ; [ Gt

= 0p(1)Op(K*)=0p(K*). W

IA

0

=

8 |

N5

1]

1~
TA
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Asymptotic normality for the sieve estimator

Proof of Lemma .0.10. (i) Let

1 N
Dit = _IT]]_ZI Qijpjt — Z NisPis + NT Z Z QijNisp js-

j=1s=

Then Z;; = pi; + E [pir]. We have

i i | NT o
Wy =W = W Z Z [Zitzl{z —Eg (Z”Zl{l)}
i=1t=1
= N7 Z Y [pipi —Eo (pupi)] + NT Y Y {llpi —E2 (pi)|E2 ()"}

N
I
—
-
I
—

i=11=1
1 N
"’ﬁ Z Z {E.ﬁ Pit) [plt Eg (P,t” }
i=1t=
DWinr + DWzNT + DWsnr, say.

For DW; 7, we have

. ) 1 K K N
Eoflomn ] = HYY Y

K K N
Z Z Z {Hp”JH8+48,9 Hpit7’<||8+45,9

IA

148
Wil sans [Pt sas 0 @5° 6=}

K2
o
+0p (NT)
K? K? K?
rvr) - or(r) =0 (i)
Then | DWinr||, = Op(K/V/NT) = op(1). Similarly, we can show that DWyyr =

Op (K/V/NT) for s =2,3. Then (i) follows.

(if) Noting that Z; = Zy + (pir — E9 [pir]), we can decompose Wyt — Wyt =
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NT Z 124 1242}, — Z;;Z!.] as follows

1

Wyr —Wyr = NT

T
Z pit — Eo [ pir] pzt
t=1

™M=

Dit (plt _Ej [plt]

3-
=
Mﬂ

I
—_
-
I
I
—_

i

M=
D1~ "

1
'+prﬂhﬂE9U%Kﬁh—E@U%D/
1 XL /
+—Y Y (pi —Ex [pi]) Eo [pi]
NTizltzl
1

+

(Pit — Eo [pir]) (Pis — E [pi])’

=

S
=
1~

N
I
_
-
I
_

DWinT + DWonT + DW3yT + DWanT + DWsnT, say.

Itis easy to see that HWNT — WNTHF < Zle HD‘/VSNTHF =2 ||DW1NT”F+2 ||DW3NT||F

+ || DWsyr || -

For DW |y, using the expression for p;; and by Minkowski inequality, we have

1 N N

T
7 L L X %pie (Pj— Eg[pj])
lel =1t=1

| N T T ,
T T2 Z Z Z ntspn Dis — E@ [Pis])

i=lt=l1s

|DWinT ||

IN

F

=1
N N T T /
+ N2T2 12”21210%77”17” Pjs—Eg [pjs])
i=1j=1t=1s=

= DWinr,1 +DWint 2+ DWinT 3, say.

k]

F

For DWinT,1, we have

DWINT,I = NZT Z Z i Dir [pzt —Eg (pzt)]
i=1t= F
1
+ NoT Z Z Q,jpit (Pjt —Eg [szD/
1<i#j<Ni=1 F

K K K
= Op|——= ) +0p(——=) =0p—
P(¢Nw> P(VNT) P(wNT)
by Chebyshev’s inequality. Similarly, we can show that DW;; = Op(K/+/NT) for
s =2,3. Hence ||DWn7||r = Op(K/v/NT).
Analogously, we can show that ||[DWyr||z = Op(K/v/NT) for s = 3,5. Thus
(ii) follow. W
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Proof of Lemma .0.11. Let Wy = FZ XL K7y — Zy)ey —Eg|(Zi —

Zit)eir}. Let p§, = pis — Eg (pis). We first make the following decomposition:

T A A (T C
lPNT — _ﬁi_zll_zlvx N;al}p” e
1 ») ! ! S c c
_ﬁ zzitzl ' Tsz:] Nis [Piseir — Eg (Piseir)]
L vy k) 1
—l—ﬁzfzivx Nthlz i jMes pjse,t E@(Pjseu)}
== J=1s

—W¥n1,1 — YN 2 +PNr 3, Say.

We want to show that: (i) Wyr1 = op(1), (ii) Wnr2 = op (1), and (iii) W13 =
OP(l).

First, we consider (7). Note that Eg(Wxr,1) = 0 and

) 1 N N N N T T © ' <
Ey (Phra) = w57 2 X 2 X X X % ®%pva B (Pl Pineinein) vi
ih=1i=1j1=1 jr=1t1=11=1
_ 1 iiiasz/E ( cl 2
- N3T 4= . ijVx +9 p]tp]tett)v
j=li=1t=1
il L 5 5 VTP Y
- N N2Ti=1]:1 =~ Jtejetit) || p
< CNZHVKH A9[[[]A9 , = Op(K/N
< NzTZZH 114 HZHpﬂHnge p(K/N).

l* ]*
It follows that ITiy7 121 = Op(K 1/2 /N 1/ 2) = op (1) by conditional Chebyshev in-
equality.

Next, we consider (ii). We decompose Wy 2 as follows

1
\PNT,Z = Z nlSV plsell R /— Z Z ntst [plsell Eg (pzsell)]
11<s<t<T i=11<t<s<T

= lI’NT,21 + ‘PNT,zz, say,

where we use the fact Eg (p§,eir) = Eg (piseir) = 0 for s <t in the first term. Fol-
lowing the study of Wy7 1, we can show that Wy 21 = Op (KI/Z/T1/2> =op (1) by

conditional Chebyshev inequality. We are left to show that Wy7 22 = op (1). By con-
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struction, E¢ [Wnr22] = 0. By Assumption 5(iii) and conditional Jensen inequality,

1 N
Eg[¥3rm) = Varg (¥yra) = NT3 Y Varg < Y NuEg (€izvflpis)>
i=1 1<t<s<T
1 u K/ AN ¢
C C
< NT3 Z Z Z N1, M3t4 Ve Eg(eillpitzei%piu)vx
i=11<t1 <tr<T 1<t3<t4,<T
= EWnr22 (.0.69)

There are three cases according to the number of distinct time indices in the set § =
{t1,t0,13,14} : (a) #S =4, (b) #S = 3, and (c) #S = 2. We use EW¥n7224, E¥ N7 220
and EWyr 22, to denote the summation when the time indices in (.0.69) are re-
stricted to these three cases, respectively. Then EW¥y7 22 = EWNT 200 + EWNT 205 +
EW¥nr 22, It suffices to prove Wyr 22 = op (1) by showing that EW¥n7 225 = op (1)
fors=a,b,c.

We dispense with the easiest term first. In case (¢), we must have r; =t3 and t, =
t4. By direct moment calculations, we can readily show that EWx7 2. = Op (K/T).

Now we consider EWyr 22,. There are three subcases: (al) t; <t <t3 <t4 or
<<t <ty(@h<n<th<puory<t)<ty<ty(ad)t)<tz<tg<tort3<
1 <ty <t4g. Let E¥n72241, E¥NT 2202, and EW N7 2043 denote the corresponding
summation when the time indices are are restricted to subcases (al), (a2), and (a3),
respectively, in the definition of EWy7 22,. We only prove that EWy7 2241 = op (1)
as the proof of EWn7 2242 = 0p (1) and EWn7 2243 = 0p (1) is similar. For subcase

(al), by the symmetry of (¢1,t,) < (t3,14), we have

2 Al K / K
EYNT 2201 = NT3 Z Z Nt MestsVy E (szzeitlpfmeitg) Vx

i=1 1<t <tr<t3<t4<T
Let dj = t;41 —1;, for [ = 1,2,3. Let d;, be the largest increment, i.e., f; —
fan—1 = MaXg—2 3 4 (t; — 1,1 ). We consider two subsubcases for (al): (all) lmax =
2 of Imax = 4; (al2) Imax = 3. Let EWy722411 and EIlgy14 412 denote the corre-
sponding summation when the time indices restricted to subsubcases (all) and

(al2), respectively. For subsubcase (all), without loss of generality (wlog) as-

sume Imax = 2. Let ¢f, = K-1/4 1P5ll;.5 for 0 < g < 8+448. By the conditional
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Davydov inequality (see Lemma .0.26 in the supplementary appendix) and Holder

inequality, we have

‘E@ (eit1 V)[c{/pltZell’;plCt; K) ‘
1+
S 8 ”em H8+46 HVK/plCtzethlmv H (84+46)/3, Qaéﬂs ( )
Lo
< 8K HVK” eir ||8+46 1 (Pzt2 8+48 ||€lt3||g+43 @‘P,m 8+450@ (h—11),
and
|Eg (e vy pieinpiz Vo) 12 11N A
< 8K (112 einllgas. ) (17211 96,5140 )
146
x (Hng leirs I .45 9) (IIfSH Piy, 8+46) ay” (n—t)
1+6
< ZKHVK” (Cl ity eTC ll2p+C1 it3, e+ Ci Jitg, p) OC@ (tZ _tl)
where C| j; o = Hf, H ||e,,|]8+45 g and Cy ;. p = Hf, H 0 8+45) It follows that
E‘PNTzzall
< X Z Y |Eg (e pienspiy) | I 1N A1

i=1 1<t <tr<t3<t4<T,
Imax=2 or Ijax=4

_ N 1+3
< SEEY )y (Cuinye +Clinp + Chine + Cin,p) &5 ° (2 —11)
i=11<t1<tr<t3<t4<T,lnax=2
L L /(2+9)
< 1% Z (Cllte+clztp Z (m)
i=1t=1 m=
T - 1/2 TN 1/2 TN 1/2
< NT3 Z Hft H 121 Hett”8+46 9 + Zi Zi (Pzz 8+46
=1 t=1i= t=1i=

T2

— VN0 (VT) 0r (VAT) =01 (75).
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For subsubcase (a12), we have

N

E¥yroan < ) )y AT

i=11<t1<tr<t3<t4<T, dr>d >d}3

X |E@ (el‘tl Vx pl[2ell‘3plcll4 K) |}

Z ) AT

=1 1<t <tr<t3<t4<T, dp>d3>d,
c/ K
X |E@ (elllvx pllzel[3pll4 )|}

EY¥nT 22411 (1) + E¥YNT 22411 (2), s2Y.

By the conditional Davydov inequality, Holder and Jensen inequalities, we have

Eg (e vE' pi,ein i) |
K/ %
81leir [|g 45, g ||z Pin€ins PityVs H (8+48)/3.2 %7 ]

(—1)

1+5
K
8K HV H leir, ||8+45 7 ‘Pnz 8+45 eirs Hg+45 9 %4 g+450¢g *(h—11)

and

52 eanpipeuspio) A 121 15201521
1+8

< 2K ||| (Cliy.e + Chip + Chine + Chinp) X 02 (12 —11).
It is easy to verify that Y | Y7 (Cy jr.e +Ci.i1,p) = Op (NT). It follows that

EW¥NT 22011 (1)
N 1+6

< % Z (Cl ltle+C1 lt2p+C1 lt3e+C1 tt4p)a9 (tZ_tl)
i=11<y <l‘2<l‘3<l4<T dy>d|>d3
oK T-3-t1dr—1 145 T—3-thdy—1 14§
= N_Z chltle Z ZaHé dl dl+ZClzt2p Z Za2+5
i=1 = =2 d|= =2 d|=
T—1 —1dr 1 145 —2dr—1 145
+Z 111362 Za2+6 dl d1+ZC1U4pZ Za2+5
3=3 =2d|= =2d|=
-1 1468
m CK
< {ry (1—7)ma56<m NT3ZZ (Crirp+Crice)
m=1
CK
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Similarly, we can show that EW¥x7 22411 (2) = Op (K /T) = op(1). Consequently
EW¥nNT 22411 = Op (K/T). By the same token we can show that EWy7 22412 = Op (K/T).
Thus E¥n7 2041 =0p (1) . As remarked early on, one analogously show that EWnT 2245

=op (1) for s = 2,3. Consequently, we have EWnr 22, = 0p(1).

Now we study EWyr 22, We consider two subcases: (b1) t; =t3 ortr =t4, (b2)
t1 =ty or tp = 13. Let EWWn7 2251 and EW 7 2012 denote the corresponding summa-
tion when the time indices are restricted to subcases (b1) and (52), respectively. For

subcases (b1), wlog we assume f; = f3. By the conditional Davydov inequality, we

1+6
2 Kl ¢ K 2 Kl ¢ cl K 2+8
have‘E@(ei’lvx Pin Pl Ve )| <8 €0 3Pl (3-448)/3,2 |1 P14 || 45,5 7 4= 12)
2 K1 pe el LK)« 2 K1 ¢ o K
when 74 > 1, and |Eg(ej, vy pltzpmvx) < 8|l€i, vy Piy, (8.148)/3.9 Pir,Vx 8445.2

1+6

065”5 (tp —t4) when tp > t4. If t4 > 1, by Holder and Jensen inequalities, each term

inside the summation is bounded by

1E5 (e, vE phapiy O I 120 21

1+6

2
< 8|eq Pl | s 45,0 1P g 5.0 @5 (=) (|41 1A LA
2 18 2
< 8K|K|" lein 151450 9 50459 540505 " (=) || A1 LA 172
148
< 2K ||V§H2 (2C1itye + Cliny,p + Cling,p) 005,° (ta —12) .

Similarly, each term inside the summation is bounded by

1+6

2K HVfHZ (2C17it|,e +Clinp +C17,-t4,p) X 065’5 (th —t4)
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when if t; > 14. It follows that

N
E‘PNT,22b1| < 1% Z { Z + Z } !nzlzznzssz’E@ (Pinein Pieir) V)Iﬂ

1<t1<tr<tu<T 1<t1<ty<tr<T

]
NT3 Z Z (2C1 it,e +C1 Jity,p +C1 ity p) O‘@ (t4 _t2)

i=11<t)<tp<ts<T

IA

)3

IA
&
—
1=
71~
S
——
—N
K
Spr
Sz
=
|
g
——

i=1t=1 1<t,<t4<T
N T T 148
+% Z (Cl it,p +C lt,p) Z (Xé+ (m)
i=1t=1 m=1

Similarly, we can show that EWy7 2000 = Op (K/T). Thus E¥y7 205 = Op (K/T).
In sum, we have shown that E¥y720 = Op (K /T), implying that ¥nx7.20 = 0p (1)
by Chebyshev inequality.

Using arguments as used in the study of Wy7 2,, we can show that Wy723 =

Op(l). [ |

Proof of Lemma .0.12. By straightforward moment calculations and Chebyshev
inequality, one can prove (i)-(ii) ; see also Moon and Weidner (2010, S.4 p.14).
(iii) Noting that the (r,s)th element of f”¢'P(,) is given by Y} | Y[ fleqd pis,

we have

By [P ] = [ii (zzfp)

I
M=
™=
™=
g
1=
1=

\
I
_
<
Il
—
~
Il
_
1)
I
—
-
I
_
Q
I
_

0 (0 ! !
ftrfqrE@ [a Pisd pjseitejq]

I
M=
M=

(19)° Eo [ (d'pis) €|

r=1i=11<¢ts<T
R N )
+YY Y ﬁ?qurE_@ [(a’pis) eizeiq}
r=1i=11<t#q<s<T
R T T T

+2 X L) Z Jid Bz [ pisd pjseiejg]

r=11<i#j<Ns=1t=1g=
TIint + Tont + T3nT, SAY.

2
Note that Tinr < ||a|* LY | Li<ss<r | 2] E2 [Hpm”zeﬂ = Op (NT?K) by Markov
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inequality. For Ton7 and T3yr, following the proof of Proposition .0.7 and by the

conditional Davydov and Jensen inequalities we have

Eg [(G’Pis)z €ir€iq] ‘

+6
L2112 el 5.0 93,05 el 02 (a1

[firl [farl [E2 (endpis) | [E2 (' pisesa)|

R N
el < Y Y )Y }ngfgr}
r=1i=11<t#q<s<T

N
< 16)a’KY. Y
i=11<t<q<s<T
= 0p(NT’K),
and
R
|Tsnr| < Z ) )

1<i,j<N 1<t,q<s<T

2
3 28
SN {ngzZ T 100 et lsoas o Possasaii® (s t>}

= Op (NZTK) :

It follows that || fo’e'P(a) l|F=

(iv) By (iii), we have HPfoe/P(a)

Op ((NTK)1/26NT> .

P O VS

—0p (1717)

x Op ((NTK)1/26NT> — Op(vV/NKvr).

(v) Noting that (r, j)th element of QLO’eP’( ) is given by YN YL Aleyd'pji, we

have
o [[1eriy
-R N N T 2
= Ez|Y Y, (Zzlwenamz)
r=1j=1 \i=l1=1

1 Eo (dpi)*+

=

g 02 2 (1. \2
12’1 21 (Ajr) Eg [eﬁ (@'pjr) ]
= =

r

T N T
= Y YA ES (@) @pi)+ Y LI Ex [ (@pi)’]
1<i#j<Ni=1 j=1t=1
= Op(N’TK)+O0p(NTK) = Op (N°TK)..
It follows that H?LO’eP’( )H — 0p(NVTK).
(vi) By (v), WehaveHP;LoeP’ ’ <H/'LO (A%29)~ H A% P HF:OP (N_l/z)
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% Op ((NTK)1/25NT> — Op(VNTK).
/
(vii) Noting that A; = T-WX'[E, <P,~—Pl.l> 1/°G” is a 1 x R vector and Z-

measurable, we have

Mz

2
N
ZAZA']O e]tell‘ —Eg (e]fe”)} }

1j=1

T
1
Eg {N JT Z
t=11i
2 T
2E9{N2T A)Ljoejtei,} +2E_@{N Z
=11<i#j<N t=1

= Y T PR E () Es ()

t=11<i#j<N

ST Y AR AL [ () — B () B ()]

t=1i=1

= Op(K)+Op(K/N)=O0p(K) by Assumption 6.

IA

Eﬂ@&z

HMz

Then (vii) follows by Chebyshev inequality.
2
viii) Note that = YN  Eo [ [|X7_, & ( p& — pte) 9GO ) is bounded b
NT ~i=1 s=1"x is is Ry y

2 N 2

2
L

E@

||M2

2 Li K e 9060
N \/Ts:l

T N
1 LK1 ¢ £0~0
Z Z O jVy pjsfs G
NS i3

The first term is bounded by

1NTT .
WZZZMMWWP%MWW@H

i=ls=1t=1

< 8K ZZZMHMMNm%ww“WPm Op (K)

Y e B B
by the conditional Davydov inequality. Similarly, we can show that the second term
is also Op (K). Thus (viii) follows by Markov inequality.

(ix) Using similar arguments as used in the proof of (vii), one can prove (iv) by

Markov inequality.
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(x) Note that Eg{ﬁ ?]:1 Zthl Zstl B, f¥ [eseis — Eg (eieis)] }? is bounded by
1 iiB 0/[2 E(z)} 2+2E 1 N Z BfO/ :
Egy§ —F= t € —Lg\¢ 2\ o t]s €it€is
VNT & =7 U ' NT S Zier
2 - v 0/ 0/ 2
- NTZZZZB’ Bs /s EQ[ Eg(e )Eg(eiS)}
i=11=1s5=1
4 20 4112 2 2
+377 IBAI* 11 /51 E (eieis)
i=11<t#s<T
= Op (K) + Op (K) = Op (K)
by Assumption 9. Then (x) follows by Chebyshev inequality.
(xi) Note that
2
1 u K ¢ fc ).OI 0
Eg JWZI Zlvx (P,;-W) j O
t=1||j=
2 5 2000 L 2 55 LIS e 00
< —VYE, vy Piih;'G += L Es2{ |7 MisVy Pl G
NT 5 j=1 e NT 5 L r
2 T N X 2 % 2 T 1 N T ) K K
! ¢ / c c/
Y Y E W e LY LT Y e ()
=1j=1 =117 j=1s=1
2K VK 2 7 1 N 3428
]U,Tx H Z 72 Z o) ntsntr‘l’]s 8+45(p]r8+45a%+26 (|r—sl)
=1 J=11<s#4r<T
= Op(K)+O0p(K)+Op(K)=0p(K),
where Ocj.) = 7LJQ’ G'G” ?LJQ. Then (xi) follows by Chebyshev inequality.
(xii) The proof is similar to that of (x) and thus omitted. H
Bias correction
Let 8(B) =Y — YK BiPy — 2. (B)f(B) . Following Moon and Weidner (2010,
2012), we first derive the asymptotic expansions for the projectors Mf(ﬁ) and

M;

to prove Lemmas .0.13 and .0.14.

Lemma .0.19 Under Assumptions 1-4, we have the following expansions

(i) M; (B) = Myo+ My ) + M%)+ TE (B~ Bi) My, + M, (B),
(i) M (B) = Mpo+ M)+ M) LXK (B gl M (B).
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(B), and the residual matrix &€(f3), and then establish some lemmas that are used



RO
(i) € (B) = MyouMpo + &) + T (B0 — Bi) &) + 2 (B),
where 8" = MyoPiM o, &) = —MouM jou'® — /My ouM o — Myoudud o,
the expansion coefficients of M (B) are given by

M = —Myud—du'My,,
M) = My — Py,
Mg'zl).l = Mlou(bll(p + q)/u/¢/u/MAO _ Mlolleoll/CDz o @2111‘410011/MA0

—M;Lollq)lll/Mlo + (I)/ll/Mlou(I),

and, analogously, the expansion coefficients of My (B) are given by

M) = —Mpud —ou'Mp,

M) = —MpPl — OPM o,

ME) = Mpou/®u'd + duduM po — Mo Mypud; — Su'Myou o
—Mfoll/q)zlleo + q)quoll/q)/.

For the remainder terms, we have

HM,Eme)(ﬁ)H = Op[(8yt + KT ||B0— Bl + [|B°— B + (533 + K20/,
1M B = Opl(By7 +K7)[|B° = Bl|+ B0 = B||” + (857 + K7/,
™ (B = Op{VNTI||B—BII*+ (87 +K 7|8 — | + (857 + k7)),

and rank( (rem) (B)) <R.

Proof. Since the symmetry of N < T, A < f, u <> u’, and Py < P/, the proofs
for M;(B) and M; (B) are similar. So we only consider the proof of M;(B) and
e(B).

Expansion of M (B). By Proposition .0.10 (iii) and the fact u = &Py, we have

M;(B) = Mp+M" (A% f0u) +M (lof ZskPk> + M (20,10, u,u)

k=1

K K
+ {M}Z) (;Lo’fo, Y el ) ekPk> +0p (ay7) }

k=1 k=1

>~

- Mfo—i—M(A +kZ(ﬁk Bi) M, })+M](fem) (B)
=1
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Following the proof in Proposition .0.10, we can show that

M () = Op [ (57 +K77) (|80~ B + 18~ B+ (857 + K7)].

Expansion of €(f3). By the definition of €(f) and using the expansions of

Mi and Mf, we have

eB) = Y- ZﬁkPk— (B)F(B) =

v

K
= Z B — By Pk+lof0/]
= MyouMy — || — B°|| MoP ()M o — MyouM oud’ — M oud'u'M s

—®'u'MyouM o +&"" (B).

Noting that ||M})| = Op(8yf +K~7/4), HME” | = Op(8y} +K*V/d) M) =
M| — Op(Bg3+ K21, | 2K (B BOM!)| | = 0((1B -
BOlI), and [| -, (Be—BY) Mj 1| = Op(I1B — BOll), we have

Op(Sy7+K27/4),

alrem) H _OP( NT [HB —BO|I° + (6,;; +K‘V/d> 18— B°|+ (6,;% +K‘3Wﬂ> .

Let Ag = u—Yf | (B — B°) Pr. A1 = Ag— MyoAogM o, Ay = A0 — X (B) 7 (B)
and Az = —&'" where A (B)=Pp; (B) A%and 7 (B) =P; (B) f°. Note that &™) (B) =
Aj;+Ay+Az,and rank(A) < 2R, rank(A;) < 2R, and rank(A3) < 3R. It follows that
rank (8" (B)) <7R. m

Lemma .0.20 Under Assumptions 1-4, we have

(i) [|1P; — Pyo|| = ||[M3, — Myo|| = Op(8y7 + K~1/4),
(id) ||P; = Ppol| = [|[M; — Myo|| = Op(8y7 + K7/,
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Proof. Noting that |ju /v/NT = Op (5]§Tl +K‘7’/d), HP(a)H /V/NT = 0p (1),
and Hﬁo —BH =Op <K1/25§T2 +K’7/d), we have by .0.20(ii)

(51 i)}
_ OP(S];T_FK*Y/d)+0P<572+K72Y/d)+0 (HBO_BH)

+0p[<5NT+K Wd) 18° =Bl +B°~B] +(5N +K° Wdﬂ
— Op (5]\7T_{_K—Y/d>.

IN

Joezall + sl |

[Py e o]

Similarly, we can show that ||P; — Pyo|| = Op (51;; + K*Y/d) -

Lemma .0.21 Under Assumptions 1-4, there exists an R X R matrix H = Hyt such
that

(i) ||fA—f°HH/\/_ Op(8 1\7T +KV);

(ii) [|A = A0 (H") "1 ||/ VN = Op(8y7 +K71);

(iii) VNT||® — || = Op(8y7 +K~1/4).

Proof. (i) Noting that ||[P; — Pp|| = op (1), we have rank(P;Pr0) =R, i.e.,
rank (P; %) =Ras (N,T) — oo. Write f = P; f°H with some non-singular R x R
matrix H = Hyr. It is easy to see that H = (f’PffO/T)*l(f’fA/T) = (f'f0/1)~!
and |[H-'| < T7Y|7'f°| = Op(1). Note that f = f°H + (P; —
H= (Y"1 fvf/T - (fY1°/T) ' f(P; — Po) f°H/T. Tt follows that ||H||
< 0p (1) + ||H||Op(8y4 + K~Y/4), which implies that ||H|| = Op (1). Noting that

1O H| =

Pr)f OH and

— Ppf°H, we have || — f°H]| = ||(P; — Ppo)fOH | < R|P; ~ Py
OpIVT (85} +K1/7)].
(ii) Recall that A f'f = (Y vk 1ﬁkp,{) 7. Then

A — K A A Ay A\ — —
k=1

— A0 <Pf —Pf()> 0 (fOIPffO)l (H/)fl
4204040 [(fO/Pme)l - (fO/fO)—l] )"

K

+ /;1 (ﬁl?_Bk> P +u Pff0 (fo’pff())l (H/)fl

ANT + AonT + A3y, say.
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First,

AINT

IN

T o (e (el

= Op[VN (83} +K11%)]

Noting that

we have

AonT

Now,

| Asnr ||

-1

(fo’PffO/T> - (f /1)

< o) el sy | (mrst) |

= |Pr—pp (rPps/7) H

LI || ()

= Op (5];; +K’7’/d) ,

< 20T ey - () 7 [ |
= VNOp (85} +K77).
< 7 (I8 Bl e+ o] e hron | (roesrerr) e

- op[ (H[)’O ﬁH+6 +K Y/d)] OP[\/N<5T—|—K Wd)].

Consequently, Hi —QLO(H’)AH =Op [\/]V <51;T1 +K*7’/d>] :

(iii) Noting that

“12.920(H /NH
- HN (’“— ) (et |
V&=t [ w20 v

= Op(8yt+KV4),

IA
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we have

(A /N)_] — (H'22201) " N)

S ‘

fllO/lO(H/)fl/NH HHfl)LO/;LO(H/)fl/NH

= Op (8} +K71).

Similarly,

(f7/m)~" - (['IlfO/foH/T)_1 H =0p (31\7; +K’7/d> . Combining these

results, we have

VNT||® — @||
i(ﬁvi)‘l (f’f)‘lﬁ_/ﬁ(xow)‘l <f°’f°>_1f0_’
VN \N T VT YN\ N T VT

<M>_1 <ﬁ>—l J?/ _/’LO(H/)*I H—llo%O(H/)fl -1 (H/fO/f()H>—l H,fo,
N r VT VN N T JT

Lemma .0.22 Suppose that the conditions in Theorem 3.3.3 hold. Then we have
() V) S\ L 6 (i~ 24%) = Or (K744 K357 )
.. — — 1/4 - 1/4 _
(if) (NT) ™" i:l):tzl(eiz_eiz) iZty = Op(K 8y} +(NT)'/* K82 +(NT)* K1-7/9),

Proof. (i) Note that 3 YN | Y7 | 2(ZyZ},— 24 Z})) = 5 YN\ Y1 [e3(24 2}, — 24 Z},))
—l—NTZ Yy 1[ - (ZuZ, Z,Zlft)}EAn—FA]z,say. Let By = Zi —Ziy and By j; =
€,~,Ziz~ Then

SQN

M=
M=

A = e (ZuZiy — ZuZ},)

N
Il
_
=y
I
_

Zis— Zit) Zl{tel-zt +Ziz€i2; (Ziz - Zit)/i| + €,~2t (Z’z - Zit) (Ziz - Zit)/}

~
—_
~

—

1
NT

I
2‘ —_ 2‘ —_ 2‘ —_
~ ~ ~
D1~
—

SN 2 o (@), ()
Y Y enBriB; =A\] +Aj7, say.

i=1t=1

M=
M=

(BLitBlz,it "‘BZJzB/l l,

N
|

-
I

_

Define N x T matrices By ; and B, with their (i,¢)th elements given by the kth

elements of By ;; and B, j;, respectively. Then we have Ag 1) kiky = NT tr(By , B2 & )+

Wtr(Bllel,kz)' Note that By ; = (Mi —Mlo)Pkao-l- M; Py (Mf—Mfo) and
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B4l = 0p (K74 + 81} [P For Ba g, we have

N T 1/2 N T 1/2
oo < el - LRtz {1} {EEai} —orom 4]

1t=1 i=1r=1

where Z( ) = <NT Yy ¥,z )l/ It follows that ||B, || = OP[(NT)I/Z]Z,E4),

6R

A < ~7 LB [ B ||+ [[Ba | [B14, ]
= Op < Wd“‘SNT) [ k2 '|IP, H+Zk HPzM /(NT)'2,
and
G _ v [,@
il - £ 5

where we use YX_, [2154)]4 = ﬁ Y& YN, ¥, z} = 0p(K) by Assumption 6.

For Ag[i), its (k1,k>)th element is given by

A(lli),klkz - (B 1)<B1k2)
_ —tr[(MlP M; M,loP M) (M3 PM; — MR Mo )|
< ) || (a2 P+ [ P (B -7 ]

[H P =P R+ [aard (o)

< vy (|Ipo— P+ - 1)
= o (x4 af) (o) 7] ]
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()

where B}, is an N x T matrix with its (i,7)th element given by the kth element of

eiB1 ;s and P,((e) is an N x T matrix with its (i,#)th element p; re;;. Then we have
b 12
[All,klkz]
lkr=1
4y/d 4 S 1||ple)
— — — e
K5 Y Y () HP,C1

( ki=1ky=1
2
( 2
F

i) g B
 on (5704 532)0n ) =0 (2 (74 530

i, -

1 =
i M=

ky

(A}

Op F H kz
Op

k=1

where we use the fact that YX | HP,(f)H% = Op (NTK) because YK | E]| |P,(f) 2] =
YK YN YL E (p” ken> = O(NTK) by Assumptions 6(i) and (iii). It follows
that [|A1 || = Op (Kl_Wd +1<5,;T1) —op(1).
Following the study of ||WNT — Wnr H in Lemma .0.13, we can show that [|[A 2] =
Op(K/+/NT). Consequently, ﬁ YN YL e (247! - 74 7)) HF =0p (KI’Y/d +K5];Tl>.
(i) Write

|
NT !

™M=

T . a 1 N T . a 2 N T
Z zt Z it T ]W Z Z (ét elt Z it ]\7_ Z Z ir — ejr ellthth
1t=1 i=1t=1 i=1t=1

= Ay +2Ay, say.

i

For Ay, we have Ay .k, = %tr(Mff’( )MA P( )) where Pl(< ¢) and P,(C) are N x T
matrices with their (i,7)th elements given by pj x, (eir —€;;) and pj x,eir, respec-

tively. Noting that

L 50
A2kt | < ‘M B SWHPkl FH k2

NS

2

w7
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we have

1 K 2 K 2
2 (e) (e)
lAxlF < kzl P szl e
1 KN T KN T
S N2T2 ZZZPn,ken ZZZPit,k(en eir)
k=1i=17=1 k=1i=11=1

IN
—

For A,;, we have

2 1 o e 2 2 ’ n) 1 &y 4
HA21HF—N2T2{ZZZPit,k(éit—eit) } SOP(K){]WZZ(%:—M }

Now we consider the key term NT Z IZt 1 (éir — e,-t)4. By Lemma .0.19, we

have

—€jr = (ﬁo B) Zip + elt+rll

— _ 1 vN 1 vT (1)
where €it:1—v2j:1 Oijejr+ T Yg—1 Mis€jr — NTZ 12s | Nisijejs, and ryy = (& )i +

el i < Rr|eV ‘zzop (NT (5,;;‘+K—4Y/d)>, (.0.70)
é(’em)i < OP(NTH[§—B0\|2(5]QT2+K’27/")), (.0.71)
HMfoe;,M;Loj: — op (NTK1/1), (0.72)

by Lemma .0.19, where we use the fact that rank< (rem) (B)) < 7R,

op (51;; + K‘V/d) and 832 + K274 = 0p(||f — B||) in the second line. Then

2‘H

N T

T;; ezt_ezt

(HBO B| LﬁZH Z e LYy T L
NT NT T NT

=1t=1 i

™M=

T
Y r;‘t)( 0.73)

1t=1
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NI
It is easy to see that the first term in (.0.73) is Op (HBO - B H Kz) . For the second

term, we have

=z

1 L, 9 1
NT Lk

=1 i=1t=1

ZX::ZT: { % i ZT: ntsoc,;,-ejs}

T T &
= Op(N"2)+0p(T?)+0p(N T ?)=0p(N>+T7?).

l

IA

3

=

~
M=
™~

—N—
S
™M=
8

HN/_;
_|_

N e
Z‘H
~
M=
1~

—N—

where Op (N _2) comes from Markov inequality and cross-sectional independence
across i for e;; conditional on &, and the Op (T’z) and Op (N *ZT*2) terms can be
obtained by Markov inequality and the strong mixing property of {e;,t =1,...,T}
conditional on Z. For the third term in (.0.73), we use a rough bound:
1
NT !

1

Y < NT

t=1

=
=
—
g
-1~
:?l\)
——
)

I
—_

9 . 2 O L latrem]? 2
< o (et + [+ e

27 . SOOI L llatrem|*
< o (a0 + e

_ op [NT (6]@@ +K—8Y/d)] +Op [NT (K*M’/d)}
0n{[vr (gt k-474) (st 4 x474)] )

= Op (NT&f+NTK*1/7)

by (.0.70)-(.0.72). In sum, we have

1

N T
Y Y et =0p (87 +NTOF + NTK47/). (.0.74)
i=1t=1

It follows that
|A21]| = Op (Ké,;% +(NT)'PK8% + (NT)I/ZKI_ZW">
and

|A2 || = Op (K5];T1 +(NT)V* K82+ (NT)1/4K1_7/d> ,
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Consequently, v+ ¥~ | Y7, (82 —e2) 2,2}, = Op((NT)l/“KI*Wd%—(NT)I/‘LK(SIJT2
+K8y1). m

Lemma .0.23 Suppose that the conditions in Theorem 3.3.3 hold. Then we have
|8 — €|z = Op(N'/2+T1/2).

Proof. Note that

le—el, < HPAoePfOHF +||Pyoell + HepfoHF

+|[etV ’F+ Hﬁ —ﬁOH HMAOP(Q)Mfo

A(rem) /
¢ HF + HMfoengo F

+
F

by Lemma .0.19. By Lemma .0.12(ii),

- Op (1). By Chebyshev in-
equality, one can readily show that | Pjoe||, = Op <T1/2> and HePfo HF =Op <N1/2>.

&Y < OslVNT (82 +K2114)),
\/JWH[% —ﬁOH (87 +K 7)), and HMfoe/ngoHF — O0p(VNTK 7). In view

of the fact that

By (.0.70)-(.0.72), we have

é(rem) H < OP[
F

2 1
— ‘Mlop(a)Mfo N_

N T
Z Y 22 ) = a'Wyra < g (Wyr) [lal® = 1,
i=1r=1

we have Hﬁ —BOH HM)LOP(a)Mf‘)

- =0p (\/Esi% —|—K_Y/d> Op(\/NT) :Op(\/]v—}-
VT) by (.0.50). Consequently, ||& —e|; = Op(vV/N++/T). m

Lemma .0.24 Suppose that the conditions in Theorem 3.3.3 hold. Then we have
( ) 1||E9[ /Mxoe] (A/A)truncD || — OP[TS/g(Kfy/d—i— \/E51\7%) _}_T71/4];
(i) 71| Egffe €] (88')™"” || = 0p[NS/S(K 714 VRS 2) + N~/

Proof. We only prove (i) as the proof of (ii) is analogous. Note that the (z,s)th

element of E¢ (¢/Mjoe) is given by

N 1 N
e igen) (oo i g
1= ]J=

because Eg [ejejs| =0fort # s, we have Eg (€/Mjoe) = [Eg (¢/M;0e)]"™P . Then

) . (élé> truncD

truncD A / ,\ truncD

[€M;0e —Eq (e Mjoe)]

’—I— eM;Loe—

‘(075)

< 5l I
- N N
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For the first term in (.0.75), noting the 7th diagonal element of ¢’ M;0e — E (¢/M;0e)

1sg1venby[ —Eg (¢ )] NZ " 0ij[ejrein —Eg (ejieir) ] + NZZ“ > ]2 Haij, aij,

X [ejltejzt —Eg (ejltejzt)] }, we have

]lV H [¢'M0e— Egy (¢ Mjoe)] ™"

)

IA

max
1<t<T |N

—
NMz
N

p—

M=
M=

+2 max 7.

1<e<T

aij ejiei —Eg (ejieir) ] ‘
1

._
~.
Il

1

4+ max

N
1<i<T 1]221 0ijy Uiy [€jure ot — E (€jureor) ] |

Fﬂz T
HMZ

1j

max Ci; +2 max Cy + maX C3t, say.
1<t<T 1<t<T 1<

i

Noting that E N_l/ZZN: —Eg (e 4 < oo, we have max<;<7 Ci; = op N-L2T1/4
g i <t<

by Lemma .0.27. For the second term, we have

1 N N N
1r£za§XTC2’ = 1oy m;j;a” [eirei] +lr£ta<XT N2 ;a,-,E@ i)
1 1 L0720 1 Y
< = Ly o e,
> leéltiXT ( NZZZI i ezt> ( N ) \/N; i Cit

IA
|

z

S

by the fact that E||N 12y N A%¢;,|*] < o and that E (e8) < oo. Similarly, we can
i=1"4

show that max;<;<7 C3; = op (N‘1T1/4>. Then we have

]%[ H (¢ Mj0e— Eg (¢ Mjoe)] ™"

‘ — op (N’1/2T1/4) . (.0.76)
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Write & = Mjoe— M, 0ePyo +eREM) where ¢ REM) — e+ yk (ﬁ;? - ﬁk> él(cl) +

alrem) +Mj0egM 0. Note that

é(REM)HF < et ‘F+ kfl(ﬁ;?—ﬁk> &, F+HMzoeng° P é<r€m)HF
< R[]+ 8" B |tioPiatpo |+ [proecht |+ [

= 0p (VNT (K 2114+ 8.2) ) +0p (VNT (K282 + K 714))
+0p (\/IWK—Y/") +0p (\/IW(%%\/E+K‘Y/(’)(K1/26§TZ +K—V/d)>
= Op [\/JW (K‘W"+K1/251\7T2ﬂ .

For the second term in (.0.75), we have

truncD

N~ H [€'Mjoe — ¢

_1 , truncD _1 , truncD
< N Pre'MjoePro +2N eMoePp
AN [e(REM)/ e(REM)] trunch L oN-! [e(REM)/ Myoe Pfo] trunch
truncD
oN-! [e(REM )’M,loe}

Let ¢, be the (¢,7)th element of N ’1Pfoe’ M;0ePro. We have

1% 1 & 1 XT: Al ’
Ct = - Nis€is — <7+ O jTs€ s
Ni:l TS 1 NT 1

s=1j=

N 1 I 2 5 1N | . 5
i=2:1 _Ts:z:lntseis +]WNZI WZZaﬁnmeﬁ

i= s=1j=1

IN
S|
Z| =

2 2
?sz,l + ﬁczz,z, say.
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For c;.1, we have

max ‘C[l‘ 1 ‘ - max
1<t<T 1<e<T

IA
9
[\®)
-~
2|_
ﬂ
™=
1~
11~
N

zst/fOelq> rélax {HftOHZ}

9=
= Op(l)op T1/4> =op <T1/4>

because E Hftng < co. Similar, we can show that max;<;<r ‘sz’ = 0p[(NT)1/4].

By Lemma .0.28(viii) ,

truncD 2 2 _3/4
} < max |cy| < = max {c,,1|—|—— max |c,t2|—0p< )

-1 /
N H [P MoePy 1<i<r T i< NT i

Similarly, we have

2
N_] 'M truncD < 1 il ] 1 N o
[€Mp0e] = %N Zi Y Z’la” et
== = j=
3 zi )|, 2 1§ i ia ’
max = Y ei|+ = max |— — e
T oazsr NS Nz NS\ VN =Y 7

where the first term comes from Assumption 6(i) and Lemma .0.27, and the second

term comes from

171 X ’
— ;i
|y &\ T & e

1=

—_
.
2
Il
—_

1Y, 200N/ N . !
— 121[3;(]" ﬁ]_zl)tjeﬂ <_N ) W\]J_lejeﬂ

IA
£
B
o
=
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4
because E¢ (HN —1/2 ):1}’:] A]Qe jt ) < oo, By Cauchy-Schwarz inequality, we have

. truncD
N }

{N‘1 H ¢/ Mjoe] ™" ‘}1/2 {N—l

= op (Tl/g) op (T’3/8> =op <T’1/4) .

Note that

[e'M 20 eP_ 0

IA

] truncD

}]/2

|:Pf0e/M;1’0ePf0

truncD

N—l

v (ST <5 (£ leT)

< e, <or [r (x2rr5i)

[ (REM)1 o(REM) ]

IN

By Cauchy-Schwarz inequality, we have
N-!

< {N1

= op| (KM VKEZ) T

} truncD

[ (REM)/ 71, 6Py

} truncD

}1/2

1/2 truncD
(Y S ooy

and

truncD

N-! [e(REM)/ Mo e}

< 2{N—1

= op |8 (K714 VKSE)|.

[e(REM)/e(REM)/} truncD }1/2 {N_l H [e/Mxoe} truncD

’}1/2
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Finally, we have

N ACDRCOR
— op (T*3/4) +op (T*l/“) top [T (K*zy/d +K81;;f>}

+op [(K*V/d - \/félg%) T’l/ﬂ +op [TS/S (K*V/d - \/?SI;TZH
= op [T (K4 VRS2 ) + T

Lemma .0.25 Suppose that the conditions in Theorem 3.3.3 hold. Then we have
N7Y|(@&)™"P || = 0p (T8y7).

Proof. By Lemmas .0.28(iv), (vii), and .0.23, we have

[ é/ é] truncD

N—l

lzezt

= N maxHe I <N7||Ee

‘<max
1

1A — A 2
< NI =N (Jlel + e —e]?)

- 2 A 2
< N7 (llelP +li—el?)

= 0p(T833) +N"'0p (N2 4T'2) = 0p (T87) .

Now we prove the main lemmas used in the proof of consistency of bias-corrected

estimator.

Proof of Lemma .0.13. (i) We use WNM] k, — WNT ik, to denote the (ki,k>)th

element of Wy — Wyr. Noting that

\WNT ks — WNT ki |

| 1
_ ‘ﬁtr (MiPklMAP§<2> — St (M;LoPkleoP;<2>

f
1 1
< ‘ﬁtr[(Mi—Mlo)PklePd —l—‘ﬁtr [MAOP,(l (Mf—Mfo> P}Q}
< 1My — Myl [Py [ 1P |+ e~ M 1B, [ P

- m(HMz—MaoMHMf—MfoH) P [P
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we have

< 2R (|15 — Myl |+ 115 M0

[War —Wivr |

c x ) 1/2
— [Z Z WNT,kle_WNT>k1k2)]

ki=1k=1

{21 [teatiel

= Op (K (5,\7; +K*7'/d>) by Lemma .0.20.

(ii) We decompose Qy7 — Q as follows:

Qv — O
1 N T . 5
]WZZ ltZztelt lethezt)
i=1t=1
1 NZ A oA . .
— Y Y {Z:Z;, (&5 — ei) + (ZuZis — ZuZy) e + [ZuZiey, — Eg (ZuZiyey;)] }

lfl =1
DQNT.,l +DQn1 2+ DQNT 3, SAY.

By Lemmas .0.22(i)-(ii), we have | DQu7 1 + D@7 2| » = Op(K8yp + (NT) K82+

(NT) 1/4K1_7’/d). Following the study of ||Wy7 — Wyr HF we can show that || DQyr3 ||F =

Op(K/v/NT). 1t follows that || Qyr — Qur || . = Op((NT)* K832+ (NT)/* K'-7/2
+K3y7 )

(iii) By Minkowski inequality

HWNTQNTWNT W_IQW_lHF
|(War =W 1) QurWyr ||+ W (@ — @) Wy || + (W (W =W ) ||

IT; 4+ 11, + 113, say.
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I = Wyt (Wr — W)W QurWy |
= w{W ! (Wnr —W) Wy QurWyr Wyr QurWyy (Wvr — W)W}

H
2
'ﬂ
~—
=
E.
=
N~
=
—
=
~N
|
=
"q_

<NT>1/4K51\772‘ + (NT)1/4K]_Y/d) and I3 = Op (K <51\7T1 —l—K_Y/d)) . It follows
that ||Wy A QnrWyt —W1QW || = Op(K Sy -+ (NT)V/* K8y 2 +(NT) /4 K1-7/4),

Proof of Lemma .0.14. (i) Note that b; can be rewritten as follows

by = MisEg (piseit)

3-
.
-

I
A
IA
ﬂ

I
3-
™=

1 2
{ + Z } ntsE.@ (piseit) = b(1 ) +bg ), say.
1<t<s<T,s—t>Mr 1<t<s<min(t+My,T)

[l
—

(3+28)/(4+25) (

Noting that [|Eg (piseir)|| < 8K @i 545 lleirlls 45,5 % s—1) by the

conditional Davydov inequality where @;5, = K~1/4]| ;|| q.9» We have

(1) ik y 12 5%
|| = %% Y NN E 0 s lellgas 0™ (s—1)
i=11<t<s<T,s—t>Mr
< 4€T1K1/2§: Z le: || ||f “ 4 H 4+2g _
= TNT it|8+48,7 ||/t ?; 8448 sz (s—1)
i=11<t<s<T,s—t>Mr
/ T—1 3428
< fre ZZHﬁ I* (lealsaso+ Pisias) Y ob™ (m)
i=lt= m=Mr+1
o 3428
— 0Op (Kl/z Z kb (m)> — op (K1/4>_
m=Mr+1
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Now, we decompose 131 — bgz) as follows:

- 2
by — b
| N
= ﬁ Z [Tltspiséit —MisEgy (piseit)]
i=11<r<s<min(r+M7,T)
| N
= N7 Z {(Auspiséis — Mispiseir) + Mis [Piseic — Eg (piseir) | }

i=11<t<s<min(t+Mr,T)
Db + Db, say.

For Dbz, let Ci,ts = Dis€it and Cifts = Dis€it — E@ (p,-se,-,). Then E@ (Dbz) =0 and

Eg [1Db2|P]

‘1 N
= W Z Z Z nllsl nIQSQE@ (Ci/.,llsl Ci7t252) :

i=11<r <5y Smin(zl +MT,T) 1§lz<82§mil‘l(t2+MT,T)

We consider two cases for the time indices {¢,s1,%, 52} inside the last summation:
(a) s; < 1 or 55 < t1; () all the remaining cases. Let EDb;1, and EDb,};, denote
E4[||Db>||*] when the summation is restricted to the time indices in these two cases,
respectively. Then Eg[||Db,||*] = EDby;q + EDbyy,. For case (a), the two intervals
(t1,s1) and (t,s7) are separated from each other. Wlog we assume that s; < 1,.

Then by the conditional Davydov and Jensen inequalities, we have

c/ c
‘E@( i,t151 i2JzSz)|

148
8 || l'flm H4+287@ H ichzsz H4+26,9 065’5 (

IN

th—s1)
1+6

32 ||piS1eit1 H4+257@ Hpizszeizlz ||4+267@ aéﬂs (

IN

t—s1)
%
32K @iy, 8145 |lein Hg+45,@ Pirsy 8448 |l €inty ||g+45,@ o (2 —s1).

VAN

It follows that

{E@( ic,‘tllsl lg,l‘zsz)‘ |nt151| ‘n1252|

IN

3267 2K | ANNAN I A @isy 85 lleinls s a5, Piasy 848 lleins g 5,
a2 (1))

1+6

< 867 °K (Crinj e+ Criinye +Ciisy p+ Clisy p) 057 (12— 51)
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where Cl,i&p = ||fS0 ||4 g0;4s’8+45. Then similarly to the proof of Lemma .0.11, we can

show that
|[EgDb14|
8gT*2K _ B 1+5
< NZTZ Z Z (CLit] e + C2,it27e + C17is1 N + Cl,is27p) @ (t2 - Sl)
i=11<r <s;<min(r;+M7,T)
1<t <s,<min(tr,+M7,T)
= Op(KMj/(NT)).

For case (b), it is easy to see that max (s,s) —min(¢1,7,) < 3My. Each term in
o 1/2 1/2
the summation is bounded by ﬁ Meys, | |r[t2S2|Var@/ (pl-sle,-tl)Var@/ (pis,e€ir, ), and
the number of such terms is of order O (TM3). By Markov inequality, EDb,;, =
Op (TM3K/ (NT?)) =0p (M3 sz) Consequently, Eq|[||Dba|*] = Op (M3 +M3) )
= OP( ) and ||Db;|| = Op(4/ N—TT) by Chebyshev inequality.
For Db, we have
N
Dby = NT Z Z {(ﬁts — Nrs) Piseir + NesPis (8ir — €ir)

i=11<r<s<min(r+M7,T)
+ (ﬁts - nts)pis (éit - eit)}

= Dby + Dby + Dby3, say.

For Dby, we have by Cauchy-Schwarz inequality and Lemma .0.20(ii) ,

1/2
1 X N 2
Dby < {WZ Z (Aes — Nrs) }
i=11<r<s<min(r+M7,T)

1/2
x{ii Y o n e.,||2} /
AN
NT i Z‘+MT,T)

i=1 1<r<s<min(

1/2 N 1/2
~ 2 2
) } { Z ) | pisei]| }
1<t,s<T i=11<r<s<min(r+M7,T)

VAN
—N—
N —
™
gl
>
|
=

= |[Pr=pp| 0r [(42r)"”]
< \/rank (Pf_PfO)‘Pf—Rfo Op [(MTK)I/Z]

— 0p ((6,;} +K’7’/d> W) .
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Similarly, by Cauchy-Schwarz inequality and Lemmas .0.23 and .0.20(ii) , we have

N

||Db12|| < Z ||ntspis|| |éit - eit|
i=11<t<s<min(t+Mr,T)

NT
LN 1/2
{—Tz ) niupisw}
1

<
N 1<t<s<min(t+Mr,T)
. 1/2
{]V_Z Z (éit_eit)z}
i=11<t<s<min(t+Mr,T)
My NI ) 1/2
= Op(VMrK) NTZZ(éi,—ei,)
i=1t=1
= 0p (VM) /My [(NT) &~ el = 0 (M1 VK8 ).
and
1 N
IDbi3| < — Y ) |Tles — Nes| || pis| @i — et

NT

i=11<tr<s<min(t+M7,T)

. 1/2
H}’%XHPisH {f Z mts_rlts|2}

1<tr<s<min(r+M7r,T)

[N ) 12
X{NTZ Z (eit—eit> }

i=11<t<s<min(t+Mr,T)

IN

IN

P (VD) P VK] [P =P /5 16 —ell

0
NT
= 0 |(NT)* VK| 0p (83} + K77) Op (VMr63}) = o (MrVK Sy} ).

Consequently, || Db;|| = Op(Mr+/K8y;) and

||| < 1B+ DB

= 0p (MT\/I_(SI;TI) +0p ( KM3/ (NT)) = 0p (MT\/I_(5A7T1) .

This completes the proof of (7).
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(ii) Recall that by y = T~ tr[Eg (e€') M 0Py @] and by = T~ tr [(8&') 0P, P .

Then by Lemmas .0.19, .0.20, .0.24, and .0.14, we have

by x|
= Jur|(e®)™ P mp } tr [E (e¢) MyoP @)
= | (&)™ b Py (b c1>)] + %tr [ (8)™ (M; — My) P
(éé’) g p truncD
[ ” (eroe )} MioP®
truncD
Eg(e€') —Eg <eroe/> } M,LoPkcp}

( ) truncD

+%H{
o}

—|—Ttr

IN

7 1Pl [ ][ | & — ] +|

Eg(e€')—Egy (eroe’>mmCD}

> truncD

Py, — Pyol| [®]l]

+R Mol |Pi] ||| 7

1/2
= P, {NSNTZ(KW F 8 +N VAL NI (K4 VKSR + N—}

T
_ Pl —1/4 /8 (k=74 4 \JKS2 —1a1/2
= Op {N +N <K + K5NT> +T N }

+R Mol [P || @] 7

E@ (ePfo e/

where we also use the fact that

2
truncD 1 T 1 T
/
‘EQ <ePf0e> < lrgzaé%\] TtZ]ED Tszlntsels]
— 1 I & o 2E 2 —0pl(T 1N1/2
~ g LY i () -

because E|T 2 Y| Y1 n2Ep (e3,) |* < oo. It follow that

X 1/2
b2 —bof| = {Z’i?z,k—bz,k}z}
k=1
Iy 2 v 1/4 5/8 d 2 VN
= ﬁk;HPkH OP{N_/ + Nk +\/E61\7T)+T}
= Op{VE [N VAN (k1 VREE) + TN}

(iii) The proof is analogous to that of (ii) by using Lemmas .0.20, .0.21, .0.13,
and .0.14.
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Specification test

To establish the asymptotic distribution of our test statistic, we need to study the
behavior of the linear estimator () (x) under H; (yyr). Recall Yyr is ad x 1 vector
whose kth element is given by Y7 = ]\%tr <M 20 XM foA> and Dyr is defined in

(3.4.4). Let Cl(;),T, and CZ%T be d x 1 vectors whose kth elements are respectively

given by
m /
Cinr = ot (MuXiMpoe') (.0.77)
Clri = —]%tr (XkCID’stos’M;Lo+Xkaoe’M;Lo£<1>’+Xkaoe’d>8M,1@)78)
= i+ Ciia+Cintp sa¥, (0.79)

where € is an N x T matrix whose (i,7)th element is &, = e; + WwrA(Xit). Let
6 be Moon and Weidner’s (2010, 2012) estimate for 80 without bias-correction.

Following Su, Jin, and Zhang (2012), we can show that under H; (yyr) with yyr =

O(K'/*/\/NT)
0 — 6" = yyrDyrYnr +Dyr <Cl(j\3T + Cl(i\)T) +Rr,

1/2

where Ryt = Op[(Wr + 057) (Wr + 31\7;/2)] = op((NT)~"/?). Further, we can

modify the proof of Theorem 3.3.2 to show that
VNT (6 —6° — vy Dy Ynr) — B 4 N (0,Vgo)

where B() = —p~! (KNTbgl) + Kﬁ;bg) + KNTbgl)), b(ll), bg), and bg) are all d x 1
vectors and their kth elements are defined in (.0.53), D = E¢ [Dyr], and Vjyo is
positive definite.

Our asymptotic analysis indicates it is not necessary to use the bias-corrected
linear estimator for 6. In order for this term related to B) to be asymptotically neg-
ligible under both Hy and H; (yvr), we need B = op (K 1/ 4> . Under Assumption
12, we have BY) = Op{max (KnT, KA’,})} =op <K1/4> . But if we make bias correc-

tion, B") can be corrected up to order op (1) and then the finite sample performance
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A

of our test can be improved. After obtaining 6, we obtain the estimators f(l), QL(I)
and &7 under the same identification restrictions as Bai (2009), and then use them
to obtain estimates of the three bias terms, i.e., l;(ll), Bg), and Bgl), which are anal-
ogously defined as b1, by, and b3 but with the sieve estimates of (AO, fo,e) being
replaced by Moon and Weidner’s (2010) linear estimates. Let Dyt be ad x d matrix
whose (ki,k)th element is given by Dy7 i1, = ﬁtr(Mi(,)Xk]M #0) X}, )- Define the
bias-corrected estimator 6. = 0 —|—ﬁ;,}(T_]13gl) +N_113g) + T_]Bgl)).

Proof of Lemma .0.15. The proof is similar to that of Lemma .0.13. Il

Proof of Lemma .0.16. Recall that f,. = + Wy (T by +N~'by + T 'h3) by
(3.3.16). By (.0.47) and (2?)-(3.3.4),

1
INT

T
BB =Wt 57 L X Zuwa+ Wiy e+ + | + R

“MZ

Decompose 3;,6 — B0 as follows

~ 1
Bre—B° = {WNT TZZZremL WNTbl} {WNTCI(\/T)+NWNTb2}

i=1lt=

1 N T B 3 )
i {WNTCI(VT '+ WNT b3} {NT Y ) War Ziegii+ Wy ) +RNT}
i=1r=1

= DBnt1+ BNT2+ BNT3 + BNT4s SAY.

We complete the proof by showing that (i) By, =W ! NT Z - Zt \ Zireir +op (Ywr) , and
(ii) Bnrs = op (Ynr) for s =2,3.4. We first study A7, . Note that

=

T

1
BNT1 — W™ ! ZZ it€it
i=1r=1
1 YL 1
= WNT (W WNT W_ ZZZ’t€”+{ _]}—TZZ Zi ell+TWNTb1}
l 1t i=1t=1

= Byt +Bnt12, say.
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By Lemma .0.28(iii) and Assumption 7, we have

Z Z Ziei

th

|Znrull = ([Wyr [[[W =War | [1W™

= Op (\/% %)ZOP('}/NT)-

For Bnt12, we have

é Veu—Eo [(Za—Za) ea])

”MZ

1
Btz = Wyp N_

1
{WNT

Following the proof of Lemma .0.11, we can readily show that 712, = Op < NT SNT>

2‘_

N T
1
Z Z Zirey) + WNTb1} = BNT12a + BNT126, SAY.

p (yvr) - By Lemmas .0.13, .0.14, and (.0.77), we have

| _ | RPN
= 7(WNTI_‘)‘/1\7T1>l’1+f"‘/NT1 (b1 —b1)

BNT12b =
+WNT1 N2T2 Z Z iiNisEy (plsezt)

i=11<t<s<T

- l0p<1<3'/2(6];T1+1<—Y/d>>
34268 K
+— OP <\/_ Z 064”5 +MT\/_5NT>+0P<]\\/H_.,)

=Mt

= op(Wr)

under Assumption 12. Consequently, By712 = op (Ynr) and (i) follows.

For %n77, we decompose it as follows:

1
—bs| = BN12a + BNT2D,SY.

1
BnTr = N(WNT]bz Wyrb2) + Wyt [CNT -

As in the study of Byr12p,

1
| BNr2all < N

_ ]lVOP K (K74 550) |+ zlvop (rvrk*) = 0p (1v7)

W Wz\rTH‘|l’2|hL HWNT||Hb2 b2H
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by Lemmas .0.13 and .0.14, and Assumption 12. For %y, recall that

2 1 1 1 1
C](\,Ta,z + bz k= —ﬁtr (uu’M,loP(k)CD) + —b27k + ﬁtr (quou’M,loP(k)CI>>

1 1
=~ [ee’ —Eg (ee')| MyoP(y @} — N7 (ege,M;oP () @)

1 1
T (eeyM; 0P @) —|—NTtr(

1
ot (wPpou'M; 0P @)

ege M;LOP( )@)

—Coat k — Cra2.k + Cou3 k + Coaa k + Cous i, say.

Denote C; as a K x 1 vector whose kth element is Cy 4, for s = .,J. Following
the study of ITox7 1 in Proposition .0.8 we have || Zn72|| < HWN H HCNT ﬁsz <
[War | 2321 1Caas | = Op{\/ 57 (51% +K*W> t =op (ywr) -t follows that | Zyr ||
= op (Wr) - Analogously, we can show that || Byrs|| =op (W) - Bnr12 =0p (INT)-

Now we consider Zyr4. Following the study of ITry7 3 in Theorem 3.3.2 we can
show that WNT C 1(\,T <) — NT OP(SNT +K~7/4). Noting that WNT NT Noyr, Zlegis
—0p(K~/) and Ryr=0p(||rvr||€y’*), we have Byrs = 1/ £-0p (55; + K—y/d> n
Op (K714 + 0p[(VKSGE + K14 (837" + K1) = 0p (7). @

Proof of Lemma .0.17. Let e = e+ yyrAand & = ||€|| /VNT < (|le|| + wr ||All) /VNT

= Op (85} + 7). Let Py = Dyj |Gy +Ciiv7 +Ciy + €7 . where Gy

Cﬁ\,aT), Cl(%\,bT), and Cl( NT) are defined in (.0.77)-(.0.79). Noting that

m 1
Cl,NT,k = ﬁtr<Mf0e/M7LOXk>+YNTﬁtr<MfOA/M7LOXk>

— 0p (T—1+(NT)‘1/2+yNT)
d DyhC2y = DybC2 4+ 3 4 %) = 0p (8 h
and Dy7Cyr = Dyr[Crnr +Cing +Cnrl = p (8y7 + Yar)  we have
vt || = WwrDyy Ynr + Op <T_1/251§T]> +0p (857 +1r) = Op (Wr +8y7) -

Using Proposition .0.10 and following the proof of Theorem 3.3.1, we can show
that

6 - 6° = Dy 1l + Dyt |Cl + i + Cli | + R
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~ - ~ . - = nxl/2
where Ryr = Op[(|Fwr[|” & + [|wrl| & + [ wrl) /2] = Op(7nrl|&?); see Su,
Jin, and Zhang (2012) for details. Following the proof of Lemma .0.16, with some

minor modifications? we can easily show that under H; (yyr)

A a0 o el gl &g, Lo, Lo, 1o
06 —'}/NTDNTTNT'i'D sztezt Tbl +ZT/'b2 +?b3 +R9,NT
:1:
where
N T B 1 N T B 1 1()
Ronr = DNTN ;;Xte,, D W;;xtemﬁD b
+ (Dabelig+ o ) + (ydeliy + o o0

A2
+DN}C1(,A’ICT) + Ryt

_ p (2) (3) —1(20) | 5
= Ry nr + Ry nr TRy yr +DnrCyr + Ryt say.

Clearly, Ryr = Op([|inr|| &)%) = Op[(8y2 + 1) (Syp’ >+ W)] = 0p (Y1) . Fol-
lowing the study of ITyy7 3 in Proposition .0.8 we have D;,TCZ( 1\}T) =Op{[(NT)~ 124
T~ +wr](8yp + )} = 0p (vr) - To complete the proof of the lemma, it suffices
to show that RE, )NT p(yvr) for s =1,2,3. For RSBVT, we have
(1 L vy o %
Rony = DNT]W ZT ZT {( e,, Eg [(Xif Xil) eil} }
i=1t=
1 N T 1 0
+ 4 Pnr g & 2 B (Kiei) + =Dyrby
NT i=lt=1 T
+ (D7 =Dyr) by + (Dyr = ]WZZ it€it

i=1t=1

_ plla) (1,b) (1) (1,d)
= Ry Ny + Ry Ny TRy N7+ Rp N7 S2Y-

Following the proof of Lemma .0.11, we have Rgﬁ)T = Op(8y}/v/NT). Analo-
gously to the proof of (ib) in Proposition .0.7, R(elﬁ)T = Op((NT)™"). By Lemma
0.15 (i) and the facts that 5"’ = Op (1) and 1= XN | Y7, Ryei = Op((NT) /2,

we have Rg}\c,)T = Op (N_I/ZT‘3/2> and Rélﬁ)T = 0p((NT)™"). Tt follows that

2There are two main differences. The first one is H 6— GOH = Op (VNT + 5,\772) under H; (wr),
compared with Hﬁ‘ —B° H =0p (K’V/d + \/ESZQTZ) in sieve QMLE framework; the second one is the

dimension d of unknown parameter 6 is fixed.
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Rg}w = Op(8y; /V/NT) = op (yvr). For Rézjw, we have

@ i f~2o, Lo, oot o1y (0 p2a) | p2b)
Ry Nt = Dyr (CJ,NT‘l‘ﬁbz )JFN(D —Dyr) by’ =Ry np + Ry nps 52y

)

It is easy to show that Réz}f;)T =Op (T_I/ZN_3/2> by .0.15 (iii) and the fact that

bg) = Op(1). Following the proof of (i) in Proposition .0.8, we can show that

2, _ _ _
Ry = Op((NT) 285} + o+ (NT) ™).
It follows R(ngw = op (Yvr)- Similarly, we can show RE,%;VT = op (Yvr) - The details

are omitted for saving space. Bl

Proof of Theorem 3.4.4. Let P* denote the probability measure induced by the
wild bootstrap conditional on the original sample #N7 = {(Xi,Y;) : i = 1,...,N,
t=1,...,T}. Let E* and Var* denote the expectation and variance with respect to
P*. Let Op+ (-) and op+ () denote the probability order under P*; e.g., byt = op+ (1)
if for any € > 0, P* (||bnr|| > €) = op(1). We will use the fact that byr = op (1)
implies that by = op+ (1).

Observing that Y7 = 0'X; + jti(l)/ f,(l) + ¢}, the null hypothesis is maintained
in the bootstrap world. Given #yr, e}, are independent across i and ¢, and in-
dependent of Xq, /AIJU) and fs(l) for all i, ¢, j, and s, because the latter objects
are fixed in the fixed-design bootstrap world. Let %, be the o-field generated
by {e?‘t,...,ei‘l}é\i]. For each i, {¢},,. %} is an m.d.s. such that E* (¢},|. % |) =
ég)E(vit) =0 and E*[(e})? ] = [él(t)]zE (vz) = [él(t)] These observations

greatly simplify the proofs in the bootstrap world. In particular, we can show that:
N A . K1/4

(i) B — B* = NTZ Wy IZ,,eU-i—Rﬁ ~7> Where H ﬁNTH OP*(\/I\T) and

B = (B, ..., 2*) satisfying ||6"x — pX (x)' B%||w.0=0p (K 7/‘1) ;and (ii) 6* —

_ _ _1)2
6°=D"'gr XL X Xiel, +Bj NT+R§,NT»WhereR§,NT:OP*[SNTZ+(NT) ),

By nr = —N*ID*Ibg) — T’ID*Ibgl)* and bg)*,bg)* are the bootstrap analogues
of bgl) , bgl) , respectively.

Let T}7, Byr, Vir, Bir, and V3, be the bootstrap analogues of Tz, Byr,

226



Vyr, Byr,and Vyr, respectively. Noting that v;, are IID N (0, 1), we have

By = (W Q,p,W1Q¥) and Viy = 20(W1Q,,,, W1 Q*W 10, W 1Q%),

where Q" = =YV YT E*(ZyZei?) = - YN YL {Z4Z, % [él(tl)]z}. Following
the proof of Theorem 3.4.2, we can show that V3, = Vyr +o0p(K) and By, =
Byr+op (K1/2> under Ho. Let Jj; = (NTTxy —Byr)/+/Vagr and Jip = (NTTy;
B/ M . Similar to yyr, we define ¥, = (Vi;)'/* /V/NT. Let Ty, denote
the bootstrap analogue of I'yr, for s € $* = {1,2,4,5,6,8} . Note that I'y,;,, = 0 for
s € {3,7,9,10} because the null is explicitly imposed in the bootstrap world. As in

the proof of Theorem 3.4.1, we have

Jyr = (NTTyr—Byg)/ Vir

= (NTTxNz —By7) /v Ve +Yr Tnvra + s —20Nrs — 20 yvre +20Nrs) -

We prove the theorem by showing that: (i) J3; = (NTThyy —Bir) //Var 4
N(0,1), (it) Yo Dlyp, = op- (1) for s € {2,4,5,6,8}, (i) By = Blyp+op- <K1/2> ,
and (iv) Vi = Vi +op (K).

We only outline the proof of (i) as we can follow the proofs of Theorems 3.4.1
and 3.4.2 to show (ii)-(iv). Analogously to the proof of Proposition .0.9, we can
show that Jir = Y1 <z j<ny Wi +op+ (1), where W = Wy (uf ,u5) = NT+V;‘\,T Yi<rs<T
e H, jJse;‘.s, uf = (Z;,e}), and e} is the bootstrap analogue of e;. Noting that J3; is a
second order degenerate U-statistic that is “clean” (E* [Wyy (u;,u)] = E* [Wyy (u,u})] =
0 a.s. for any nonrandom u), we can still apply Proposition 3.2 in de Jong (1987) to
prove the CLT for J3, by showing that (i1) Var*(Jy;) = 1 +o0p- (1), (i2) G; =
Yi<icjen EX[(W5)] = op (1), (i3) G = Li<icjarsn E* (Wi WP+ WPW2 +
WPW;i?) = op- (1), and (i4) Gy = Li<ic jeraizn B (W W WiWi A+ W Wi W 5w,

+WWi xWiW}) = op-(1). Note that v is IID across i and #, E*[(e})] =0,

E*[(e)?] = [e12, and E*[(e})*] = 3[e)*.

i
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For (i1), using the IID property of {v;} , we can readily show that

Var* (Jy7)
T T T T

_ 4 . s DAD) SO A
- N2T2V]’§]T Z Z Z Z Z HlJJlSlHl.I,lezeitl ejsleitzejszE (Vlflvjslvlf2VJS2)
1<i<j<Nl‘1_112_1S1_152_1
T

= N2T§V* Z ZZ lJZY )]2

1<l<j<Nl‘ 1s=

= 1= N2T2V* ZZZ l]lS )]2

NT i=1t=1s=
= 1+0p (N~ ):1+0P*(1),

where we follow the proof of Theorem 3.4.2 and show the term Op (N *1) in the
last line. For (i2), recall that gy, is the (ki,kz)th element of Qpp, and H;j ;s =
ZkKlzl Zszzl GrokyZit o Zjs jr- Lt Oy = Z; x€},. Then we have

* 16 — = = =
GI —  NATAVZ Z le ko Gisky ‘]k5k6 Qlerkg
NT 1 <ky,... kg <K

X Z Z EY <¢;;1 k1 ¢;;3 k3 (p;;s ks ¢it7 k7 ) E* ((Pj*fz,kz ¢fl47k4 ¢;67k6 ¢;'kf8 7k8>

1<i<j<N1<ty,..ts<T

First, note that the term inside the last summation takes values O if either # {t,,#3,¢5,#7}
> 2 or #{tr,14,16,13} > 2. So it suffices to consider three cases according to the
number of distinct time indices in the set S = {t1,...,13} : (a) #S =4, (b) #S =3,
and (c) #5 < 2. We use Gj,, Gj,, and Gj. to denote the corresponding sum-
mations when the time indices are restricted to cases (a), (b) and (c), respec-
tively. Then G; = Gy, + G}, + Gj.. For Gj,, we must have #{1,13,t5,t7} = 2
and #{y,14,16,18} = 2. Without loss of generality, assume that 1} =13 > 15 = 17

and 1y =14 > 1o = t3. By the IID property of vir, [E*(9y 1 Oir, k3 Pits ks Pit )| =

i3 7k3 it5 7k5 ll77k7
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~ ~ A(D1r =
Zill Ky Zit1,k3 [ez(tl)]zzilj ,kSZlZS k6[ ( )] Then

Gra|l < Iﬁi/ﬁ Y, |Gk |Gk | | Grske | | Troks |
1<ky,....kg<K

N
D\25 5 2
X {Z Z Z”laklznl kz( z(tl)) Zit57kszlfsyk7( l(ts)) }

i=11<t5<t;<T

N
H\25 ~ )\2
X { Z Z Zzt2 kQZztz k4( 1(12)) Zil@kszlté ks( z(t6)) }

j=11<te<t<T

= N4T+4V;‘VQT0P(K8N2T4) :OP <K6/N2> ZOP* <K6/N2)

Similarly, we can show that G}, = Op+ (K®/N?) = op+ (1) for s = b, c. It follows

that Gj = op+ (1). For (i3), we write Gj; = ¥i<jc jci<n E* (Wi W2 + WP W2 +

lezwl’f) = Gj;, +Gj; 5 + GJ; 3. By the IID property of v, we have

*
G
_ 16 *2 *  k x %
- NAT4V32. Z Z E* |:elfl ejtzH 1 11l3Hil,llMHjl,tztsHjl,lztseltg €11,Cl1s elt6]
1<i<j<IKN1<ty,..,t6<T
_ 16 21 (D727 4072
- W Z Z Z Hltltngtz%[ ltl] [e]tg] [elt3] [elté]

1<i<j<ISN 1<t 6 <T 1<t3#tc<T

48 AD121 A0 121 (D74
+yarayeo Z Z Z 11 1113 11213[ l(tl)] [6%] [e§t3)]
1<i<j<I<KN 1<t 1 <T 1<s<T

* *
= Gy111 1 Gy 12, say.
%
For G11,11’ we have

%
G

16 2 2
NAT4V32, Z Z Z {tr |:( z(tl)) Z111Z111QI7P[(61[)) le3le3Qpp]
T1<i [<J<ISN 1<t 1o <T 1<t3F£t<T
25 2
X tr [( ()) Zjr, mep( zt6) thezl%Qpp}}
N
8 5 (627, 1 A 5 (627 1 A
N2T2VZ, Y ) [Q*Qpp(elt3) Zlf3Zl/t3QPP} tr [Q*Qpp(eizé) ZIIGZ[/16Qpp:|
=1 1§l37él6§T

8u2(Q* )\t (0 N A
K e 7 AC Al P
NT 121 1<ty #16<T

~ = N
- 8[““QN§L§;'£$§““QP”>{Z Y2k 12+ or NT2K2>}
NT I=11<t34t6<T

= Op(N*T 2K ?)0p (NT*K*) =0p(N"") = 0p- (N ).

IN

IA

IN
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Then Gj; ;; = op+ (1). With the same method we can show that Gj; |, = op+ (1).
Thus Gj; | = op+ (1). Similarly, we can show that Gj; , = op- (1) and GJ; 3 =0p+ (1).

It follows that Gj; = op+ (1).

For (i4>’ we write G}kll =) Si<j<r<l§NE>|< (‘VSW’;VVZW’;, +M§m7wr?Wr7+ W]I*WTW;W;Z)

Z?:I Gy » say. Following the proof of Gyi11 = op (1) in Proposition .0.9, we have
* _ 16 * - * % . * %
G111,1 = NATAVL Z {E (HljJﬂzeitl e jtzHl"J3t4eit3 €rty
N 1<icj<r<I<N1<ty,..13<T
* % * %
X Hij tst6€115€ jigHirog elt7ertg) }

_ 16 x(A .9 27 5 G 27
= e Y Y {ulE (QppZiZiel OppZnsZsers Opp
NT .
1<i<j<r<I<N1<t,s,p,q<T

5 5 2A 5.5 2
X ZZPZl/pezkp QPPquZ;q }kq)]}

—_— 0 O* ) A ) Ak ) ~ 1
- 3Vzﬁrtr (Qpp " Qpp Q" 0pp Q2 0ppQ°) = Op (E) = op+ (1)
where we use the facts that

tr (QppQ2* 0pp@* 0pp 2 0,p@*) = tr (0ppQ20,p 20,y 30, Q) +0p (1)

and tr(Q0,,Q0,,Q0,,Q0,,Q) < ut (0pp) 1; (Q)r(Q) = Op (K) in the last line.
[

.0.9 Some technical lemmas

Let {&,t > 1} be a Z-strong mixing process with mixing coefficient ot (). We

will use the following lemmas frequently.

Lemma .0.26 (Conditional Davydov Inequality) Suppose that Ay and Ay are ran-
dom variables which are measurable with respect to o (&, ...,&) and 6 (Egiry -, ET),
respectively, and that both ||A+||,, , and ||Az ||, » are bounded in probability, where
p,g>land p~'+q 1 < 1. Then

1— -1_ -1
|Eg (A1A2) —Eg (A1) Eg (A2)| < 8lA1ll, 4 A2l 005 "~ (7).

Lemma .0.27 Suppose max|<,<7E |A;|? < 0. Then max;<,<7 |A;| = op (Tl/q> .
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Proof. Let & = T1/9. We have

T
Pr (max |A,|>8T) < Pr(|A,|>8T):ZE[1(|A,|>8T)]
=1

y
1<i<T P
a |Az\q s q
< YE 1A/l > er)| =&Y E[|A]71(|A| > er)]
=1 & =1
< max E[\At|q 1(JA/| > er)] — 0.

1<t<

It follows that max;<,<7 |A;| = op (Tl/q> .

Lemma .0.28 Let A be an n X m matrices, B and C be m x p matrices, and D be an
n x n matrix. Then we have

(@) Al < Al p < [|A]] /rank (A);

(ii) |AB|| < [|A[]1B];

(iii) |AB||p < [|A[[ Bz < [|[All¢ [IBllg

(iv) max {[|A[, , ||A||max} < ||All < Vnm||All, where ||A||, = max; ¥} |A;j| and
1Al = max;y.;_

v) tr(AB) < HAHF HBHF’

vi) tr (D) < rank(D) |D

5

vii) ||D|| < tr (D) for any p.s.d. diagonal matrix D;

~.

x) |[Allp = [lvec(A)l[;

x) i (A’A) =y (AA");
xi) rank(AB) < min{rank(A) ,rank(B)};

(

(

(

(viii) ||D|| < maxj<;<p |Dji| any diagonal matrix D;
(

(

(

(xii) rank(B+ C) < rank(B)+rank(C).

Proof. For the proofs of (i)-(vii), see Theorem S.3.1 in Moon and Weidner

(2010). For the proofs of (viii)-(xi), see Bernstein (2005) or Seber (2007). m

.0.10 Data appendix

Countries listed for the application of economic growth: Argentina, Australia, Aus-
tria, Bangladesh, Belgium, Benin, Bolivia, Brazil, Burkina Faso, Cameroon, Canada,
Central African Rep., Chile, China, Colombia, Congo, Rep., Costa Rica, Cote
d’Ivoire, Denmark, Dominican Republic, Ecuador, Egypt, El Salvador, Finland,
France, Ghana, Greece, Guatemala, Honduras, Hong Kong, Iceland, India, In-
donesia, Ireland, Italy, Jamaica, Japan, Kenya, Korea, Republic of, Luxemburg,

Madagascar, Malawi, Malysia, Mali, Mauritania, Mexico, Morocco, Netherlands,
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Niger, Nigeria, Norway, Pakistan, Papua New Guinea, Paraguay, Peru, Philippines,
Rwanda, Senegal, South Africa, Spain, Sri Lanka, Sweden, Switzerland, Syria,
Thailand, Trinidad and Tobago, Turkey, United Kingdom, United States of Amer-

ica, Uruguay, Zambia.
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D Proofs in Chapter 4

.0.11 Proof of Theorem 4.3.1

Noting that

(ESS; — €/ Q¢;) \/> 1 1
r = - =7 ESS — € Q¢ - —
" \/> e TVakl %)\ 755,77~ o2

= nTl"’FnTZa say,

we complete the proof by showing that (i) I,z | 4N (0,90), and (ii) I’y 2 = 0p (1).

These results are established in Propositions .0.11 and .0.12, respectively.

Proposition .0.11 I',;7; 4N (0,9Qp).

Proof. Decompose

b & ! H L € Qs
Loy = \[ \[ Ty —Tara. (0.80)
=1

Let X = X; —S7X and €' = ¢ — St€. Define

t= (F(1/T),....f(T/T))" and ¥ = - SrF, (.0.81)
where f () =n~ 'Y, fi(t). Noting that
hi=e —X'(B—B)+F +(f—1) + aiir (.0.82)

and Mir = 0, we have

Do = Z Dyri (.0.83)

%
™=
52
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where

D=yt L e (H-1)e;/o?. Dura =/ £ (01 (71 -L) (8-
Dyrs =/} X (B~ BYX;' (A -L)X; (B~ B)/0f. Durs=\/s LT (A-L)F Jo?.

Durs = —2\/%; e’ (H—L)X;(B—B)/o?, Dy = 2\/5;1 e’ (H-L)f /o?,

Dy =2/} £ (B~ BYX;'(A - L)Y /o?. Dyrs =2/} ¥ &'(A - L)(5, T

Duro==2\/% ¥ (B—BYX(11 ~ L) (;~F)/?, nm—2f z‘*’

Under Hy, D75 = 0 for s = 2,8,9,10. We complete the proof of the proposition by

showing that:

d
@nTl = DnTl - FnT,lZ — N(O,.Q.()) s and (084)

DnTs = Op(l),S:3,...,7. (085)

Step 1. We first prove (.0.84). Noting that & = & — S7€, we can decompose

Dar1 as:

D = \/Ezgi (H—ZL) Zesz,

l 1 l

! (H — L- b, ., - "
_ \[ 0)e +\/;8’S’T(H—L)STeZg
i=1

i
Z '(H— LST£

= Y11 + .@nrlz - 2%T13~

We prove (.0.84) by showing that &, 4N (0,9Q0) and Z,,715=o0p(1) fors=2,3.
The former claim follows from Lemma .0.29 below. We now prove the latter claim.

Let 2,712 =V nbe'Sh. (H — L) Sre. By Lemmas .0.31(ii) and .0.34, we have

Dur1 = \/_ZZ (¢S (t/T)e) (Hs—T7") (S (s/T)e)

t=1s=

< Vb max |¢{s(:/7) P Y Y [T

t=1s=1
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Then Z,712 = op (1) by Assumption A2(iii).
For D713, we have D713 =n"1/2b'2Y"_ e/ (H — L) Sre/0? = Dur131+ Duri132,
where

n T
Z Z attgizellS (t/T) 861'72’

i=1r=1

b
DaT131 = A\ —
n

n
-@nT132 = \/;Z Z atssitellS(s/T) 861._2’

i=11<s#t<T

and a;; = H,;, — T~ . For 9,131, write

n T
D131 = WZZZaneﬁe’ls(t/T)eijz

_— -2

e Y ) auncikns€n€jso;
n 1<i,j<n1<t,s<T

_b1/2 ii 2 2

= a[[C[[kh.llg-tG._
3/2 3 L. 1

L o
b1/2 n ,
Tn3/2 Z Z (attcts+asscst)kh7;38it£,'50'i_

W™ i1 1<i<s<T

pl/2 T

—2
+m Z Zattcttkh,tteitgjtai
1<iZj<ni=1

_|_

bl/Z i
+ Tn3/2 Z Z (arcrs + asscsz)kh,;s&té‘jsdi
n 1<i#£j<n1<r<s<T

= Dor131a+ Zur 1316 + Dnr131¢ + D314,

where i = ;[T 12/ (1/T) Ky (t/T) 5 (¢/T)] "2/ (t/T) . By Lemmas .0.31 and

.0.33(iii) and Assumption AS, we have

nl/2h
1<t<n =1

T
E|Durisia] < *O22 max Ja| (% Y w) =n2p12p o (T Y o (1) =0 (1).
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So Zur1314 = op (1) by the Markov inequality. For %, 11315, we have by Lemmas

.0.31 and .0.33(ii)

E (913T131b)
= T2n3 Zi Z’II Z - Z Tetﬁzkh,htzet3t4kh7t3t4E (eitl gitzgjt3£jf4) cyl._zcyj_z
=1y <H<Hr<T 1<t3<1u<
b & 2 U
- T2n3 Z Z (eflfzkh,tltz) E (81'11 8i128j118112> 0; 2Gj ?

1<t <tr<T

[\®}
S

~
)

S
o)

VAN

Il
LA
. ~.
M= i M:
LA

2 2 2 2\ .2 2 2
(allllctltz + alzlzclztl) Kiv 1, }E (&, € €jt, Ejry) ‘ 0; "0,

IA

~
IS

[\S]
~— |l
S| =
1=

RS

[Nl WS
N——

=
[
A
A
S
A
~

) 2 2 \2
Y (@nchn +ancin) ki

i=1j=1 1<t1<tr,<T
2b
< — - k2
— n2h (lrga<xTan ( IZI_]Z 11) <T 1<t1§;z<T tity hmz)
2b
= 0T ) 0(N)=0(n T % 'h™") =o(1),
n

where e;; = ayCr5 + agCyr, Pij = O jci_l Gj_l, and the second equality follows from
the fact that E(&;, &1,€j1,€jr;) = 0 and E (€&, €i,€j1,€j1,) = 0 when 11, 1, 13, and 14
are all distinct by Assumptions A2(ii)-(iii). It follows that Z,7131, = op (1) by the

Chebyshev inequality. For Z,7131., we have by Lemma .0.31 and Assumptions A2
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and A5

E[Ziri31c)
b T T

= 2,3 Z Z Z Z attcttkh,ttasscsskh,ssE (€i118i218i3s8i4s) Glfzcis_z

1<ii#ir<n1<iz#iy<nt=1s=1

2 2
= 7202 Z Z Z Q11 CrrAssCss Wiy i W3y Oy ~ O,
R P ;éi2<n 1<isAig<n1<t£s<T

2 _2
T2n3h2 Z [azzcn Z Z E (&1€iy1€i31Eigt) 0;, 9 ]

1<ii#ih<n1<iz#i4<n

b 1 AR ?
< —(maxaz) - Z W, 0> —Z|c|
— 2 1t 1112 Y tt
nh* \1<t<T il Zh<n : T =
b 2\ |1 2 2| (1 4
+Tnh2 1<ta<XTa” n? Z Z E (€111 Eize i) %i, i T Z
1<iy#i<n1<iz#i4<n t=

b _
= nhZO( 2b 2)0(1)0(1)+Tnh2

= O 'T2n 2 ' +n7'T b 1 2) = 0(1).

o(T*p ) o(1)o(1)

It follows that Z,7131. = op (1) by the Chebyshev inequality. Similarly, 271314 =

op (1) because

E(Dur1310)

4b
_ 2 2 2 . . . . -2 =2
T T3 Z Z Z allllctltzkh,tltzE (8t1t18l2t28l3t18t4t2)Gil 0,
1<ij#ib<n1<iz#is<n 1<t <6 <T
4b
_ 2 2 2 o o -2 -2
T T2, Z Z Z allllCfltzkh7t1f2w’l’3w’2’46i1 Gis

lgl'l#iggn l§i37éi4§n 1<t1 <, <T

2
4c2b h 1
C 2 2 72 ..
T 1111[8.<XT e | \ 72 Z CiitnKinity p Z | @iy |
1<t1<p<T 1<iy,in<n

= %O(T_zb‘z) oMo()=0(n'T*h ') =0(1).

IN

In sum, we have shown that Z,7131 = op(1).
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For 9,113, we have

bl/Z , )
D132 = By Y, )Y autacis(s/T)go;
W <ij<n 1<s£t<T
bl/Z T

-2
= T2 Z Z Zatscsrkh,sreitgjrai
W <ij<n 1<s£4t<T r=1

pl/2 B
- 3/2 Z Z arsCsrkp 51€ir €jrO; 2 +op (1)
Tn 1<i# j<n1<s#t#r<T

@nTBZa +op (1) .

Following the same arguments as used in the proof of %,r131, = op(1), we can
show that E(.@nTBza)z = o(1). Tt follows that Z,11324 = op (1) and P13 =

0p(1>.

Step 2. We now prove (.0.85). For D,r3, by Assumption A2(iii), and Lemmas
.0.32, .0.35(1) and .0.36, we have

_ ~ 2
Durs| < VB2 AL ||B- B YL 1% SrxIP
i=1

= w2 (02 i) B I - surx P

= n20(1)0p (W' T71) Op (nT) = Op (nfl/z) —op(1).

For D74, noting that max;<;<r |?(t) —e\S(t)T) F! =0 (hPH) by analysis analo-

gous to CGL (2010), by Lemma .0.32 and Assumption A5 we have

|Dyral

IN

a2 (B2~ L)) [P = n'20 (1) 0 (Th?+2)

- 0 <n1/2Th2P+2> —o(1).

Now decompose D, 75 as follows

n

\/>28HL*_2 B
i=1

Y. (Sre) (H-L)X/o;?| (B~ P)
—2(Dursi — Durs2) (B — B), say.

D,rs =

:I@
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Noting that Dyirsi = /2 X1 0 2/(H ~ L) (X; —57X) = /X2 X1 BT 0 Zeuan,
X [Xis— €S (s/T) X], by Assumption A2, the Cauchy inequality, and Lemma .0.32(ii),

E||Dyrsi |I?
b _
= - Y Y awanE{t|(Xs—eiS(s/T)X)(Xjr— €S (r/T) X))} wijoi 2o

M <ij<nl 1<f,5,r<T

1 1
< 1o, (el —isemal) (1 2 o) (5 5 oo

1<t,s,r<T

-2

= Tbo(1)0(1)0(1)=O(Th).

For D, 5, we have

n

Y Y «[(A-L)X/X; (H—L)Sree'Sy] o7 *0;2

| Dursal|® j

SIW‘

i=1j=1

(ii X'X'o;? o >(H—L)ST££’S’T(FI—L)

=1

|Q S|
—

—_

=

< (v H) bl —LI?) ISrell

— _op(Tn2 1)0p (1/(nh)) = O(T/h).

It follows that D75 = Op(T/2bV/2 1 T2~ 1/2)0p((nT) V) = 0p(n~ /2 (bV/2 +
h12)) = op(1).

For D¢, we write

Dure = 2\/;Zn: Giizgl'/(ﬁ —1L) (E_STF) o 2\/%211: Giiz (STS)/ (I:I —L) (E—STF)
i=1 =

= 2Dur61 —2Dyur62,
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where F=i, ®f =i, @funder Hy. Noting that D, 76| = n1/2pl/2 Y ZtT:] ZST:] Gi_zsi,ats

x[f (s/T)—¢yS(s/T)F], by Assumptions A2 and A5 and Lemma .0.32(ii), we have

E (DnT61>

= ) Y, woijanan [f(s/T)—e\S(s/T)F] [f(r/T)— € S(r/T)F] Gl._zcj_z

n 1<i,j<nl 1<t,s,r<T

7<%>—e’15(%)F‘2(1 y |w,~,-y> G Y |atsa;r|>

n 1<i,j<nl 1<t,s,r<T
= ThO (K**?)0(1)0(1) =0 (Tbh***?) =0(1).

< g_sz max
1<s<T

It follows that D,,;7¢; = op (1) by the Chebyshev inequality. For D,74,, we can fol-
low the proof of D,rs, and show that D,,7¢; = op (1). Consequently, D,,y6 =o0p(1).
Now write D,r7 = —21/b/n¥", 6; *(B — BYXHE +2(b/n)" > Y, 67 2(B —

B)'x: Lt = —2D,771 4+ 2D,775. By the Cauchy-Schwarz inequality, we have

b < (\2[-s['f o ||X,~*’HX,-*||> (varear )
i=1
_ [op (n*1/2> 0 (Tnl/zhl’(l’“))} o (T”zh”“> =op(1).

Similarly, we have D775 = op(1). Thus D,r7 =0p(1). m

b1/2

Lemma .0.29 92,711 = Tr

n el (H—L—0)&/0? 5 N(0,Qp).

Proof. Write ,1r11 = f Z Zutrs, Where Z,r; = w2

Zt Z?:l O‘tsal'_zgitgis
and o4y = THys — 1 = Tay. Notlng that {Z,r;, Fn; (€ )} is an m.d.s., we prove
the lemma by applying the martingale CLT. By Corollary 5.26 of White (2001) it

suffices to show that: (i) E (Zi”) < Cforall t and (n,T) for some C < o, and (ii)

T
7! zzzgm —Qp=op(1).
=
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We first prove (1). For 2 <t < T, decompose

t—1 t—1 n

ZrzzT_‘t = Z Z Z Z Oy, atszc G 28111811s18121812s2

132 111—112 1

= Z Z Z O‘sz G zgzltellsglztglzs

S lll 112 1

4b n o
-2 -2
+ﬁ Z Z Z (XZSI al‘Sz Gil Giz Siltgilsl Sizl‘gizsz

1<s1<s<t—1i1=1ir=1

4b n
2 _ 2
+_T Z Z Z Olis) Cs, O; “ Oy “Eiy1€iy sy Eint €,y
<y <si<t—lii=1ir=1
= 21+ 221 +23, say. (.0.86)

Then E <Z2T7t> = E(ay+an+z3)’ <3H{E () +E(3) +E(3)) =3{Z +
2+ 23}, say.

AT
16> 2 -2 -2 -2
- n2T? Z Z Z a[sl (thZG G 6 G E (8i1t8i2[8i3tgi4l 8i1S] gizs] 8i3S2 8i4S2)
1<s1,5<t—11<i1,ir<n 1<i3,is<n
_ 16b* 2 .2 -2 -2 -2 -2 e o o
k12 Z Z Z amatSzGil G;, 0i; Oj, Klllzl3l4E(811S181251813S281432)
1<s1,50<t—11<iy,ip<n 1<i3,i4<n
t—1
_16b? 4 -2 2 -2 2.2
- n2TZZ Z Z atSG G O- G Kiliziziy
s=11<i1,ih<n1<i3,i4<n
162 2 2 -2 -2 -2 -2
+i Z Z Z 05, Cis, Oy~ Oy, 04y~ Oy, Kiyinisiy Wiy in Wiz
lgsl#szglfl 1<i,in<n 1<i3,iy<n
2t—l t—1 5 2
< & Z(XIS—FC 2Y o) < 5H5+C<2C.
s=1
Similarly,
16b°

Py = —=— Y, Y Y Y agano040; %0, %0, %0

n?T?
1<s1 <850 <t—11<53<54<t—1 1<, <n 1<i3,i4<n
xE (eilteizt 8i3t8i4t 81‘] 51 8i282 8i3S3 8i4S4)

16b2 2 2 -2 -2 -2 -2
= 272 Z Z Z OC,SIOC,SZG Giz Gi3 Gi4 Kiyizisiy Wiy in Wiziy
1<s1<so<r—11<iy,i<n1<i3,is<n
Cb? 5 o
Z alslatS2§C7

2
T 1<s1 <2<t —1

IA
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where we have used the fact that T’le’ 1 Oc” < C uniformly in 7 and C may vary
across lines. By the same token 23, < C for all . Consequently, E (Zim) < C for
all # and some large enough constant C.

Now we prove (i1) by the Chebyshev inequality. First, by Assumption A2(ii)-
(iib),

1 & _ 2b
E\z Y2 | = TzZZ Y, o0 oty =—5 ) o ) opi
=2 L= 20 s=11<i,j<n N\ <iZs<r 1<ij<n
where p;; = w;;/(0;0;) by Assumption A2. Second, decompose
14, ? 1 & L2 5
p LAmi | | = LEGr) v X E(ZiriZirs) =P+ Lo
=2 =2 2<1<s<T

By the proof of (i), Zi,r = T 2Y_ 2E< nTl) =O0(1/T)=o0(1). For Zy,r, by
(.0.86) we have Zo,r = 2T 2 Yo os<1 E (211215 + 210225 + 210235 + 220215 + 220225 +
23+ 23205+ 23225+ 2323s) = L)1 Zoat j, 52y, Where, e.8., Zoar1 = 2T 2 Yocrc<r

E (z1:215) - For Zyu71, wWe have

32b2 t1—116—1 5
Lont1 = n2r4 Z Z Z Z Z almalz?z G G G

2<1<tr<T s1=185=11<i1,ip<n1<i3,is<n
X a)i3i4E (Silll 8i2l1 Sl'lsl €i251 8i3S2 81'4Sz)

3202 nolnl 22 2 2 2
- 214 Z Z Z Z Z aflSlatzsza Gi, Oi; Oj, 0, Wy

2<1<tr<T s1=185=11<i,ip<n 1<i3,is<n
1

+0(7)

16172 T T tHh—-1pn—-1

= am L L X X Y ) o npinpi+O(1/T)

h=1tn=1s1=1s=11<i1,i,<n1<i3,iy<n

2
= (% Y oc%ZZp,%) +0(1/T).
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Similarly, by Assumption A2 and Lemmas .0.31 and .0.32(i1)

32 S 2 2 -2 2 2
Lo = —o3 Y )Y Y Y Y {a,lsa,2sloc,2s26 o, "0, "0;,

2< < <T s=1 1<51<5,<tr— 1 1<iy,ip<n 1<i3,i4<n
X GiyisisE (€iyny 8i138i258i3518i4S2)}
-1
32b2 5]
_ 2 2522 =2 . .
= 274 Z Z Z Z Oy s Q5 Oty O iy Oiy Siaizia Wiyig Sirinis

2<t1<tr<T s=1 1<i},in<n 1<i3,is<n

H—1 1
2 2
< C(b 1<rzn72sX<Ta”> ( Z Z ‘atzsat2t1’> (ﬁ Z Z ’gizi3i4gi1i2i3‘>

2<t1 <t <T s= 1<i,ip<n1<i3,iy<n

= o(T?)o(r)o(1)=0(1),

where recall G = E (€iz8 jtek,) . Analogously we can show that Z,,7; = o(1) for

[=3,4,...,9. It follows that

and

1 &, 1L, )
Var| =) Zury | =E || 5 X Zare | |~ |E
=2 t=2

Consequently, %Z,TZZZ,Z,TJ — %Zlgz;&ng aiyr Yo pl-zj = op(1) and (ii) fol-
lows by the definition of Q. m

Proposition .0.12 ',z =o0p(1).

Proof. Let 62 = TSS;/T. By a geometric expansion, 1/6? — 1/07 = —(67 —

1

C7,~2)/<7,-4 + (6,-2 — 62)2/(6 o?). It follows that

Tira = \[ Z (ESS; — erl \/> Z (ESS; — €/ Q%)) %

= _FnT,21+FnT7227 say.

Noting that u; = & — X/ (ﬁ - B) +1 + (f; — ) + oyir and Miy = 0 where f and f
are defined in (.0.81), we have
10

=TSS;/T = w;Mu;/T =) TSSy/T, (.0.87)
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where

TSS; = &'Me}, TSSn = (B — B)X'MX: (B —B),
7SSz =f MF, TSSiy = —2"MX;7 (B — B),
TSS;s = 2¢'MF', TSSie = —28"'MX* (B — B),

TSSn =2¢'M(f; —f), TSSis= (f;—f)'M(f; 1),
TSSi=20"M(t;—f), TSSno=—2(B—B)X"M(t: D).

Under Hy, we have f; —f = 0. Thus 7'SS; = 0 for [ = 7,...,10. We want to show

that

max |T~1TSS;; — o; ‘—OP(UHT) and max T~ 'TSS; = op (v,r) for[=2,...,6,

1<i<n 1<i<n
(.0.88)
where v, = nl/AT=1/2,
For TSS;;, we have
T'7SSi — o7 = (T 'e/Me;— o) — 2T 'e{MSre + T~ (Sre) MSre. (.0.89)

We first bound the last term in (.0.89). By the idempotence of M and the Markov in-

equality, T~ (Sre) MSpe < T~'||Sre|?* = Op (n='T~Th~1). For the first term in

(.0.89), we want to show that max <<, |e/M¢;/T — 67| = Op (V,r) . Write € Me; /T =
T'YL (e —&)* =T 'Y 2 — €. Let & = €2 — 7. Then by Assumption

A2(iv) and the Chebyshev inequality, for any € > 0

A
1 T B n 1 T
P maX—Z§Z,>£vnT <e P AYE(=Y & 0<T 2/2q nT) o(1).
1<i<n T = T /=

It follows that max<j<, |7~ Zt 18 — 62| = Op(yr). Similarly, max;<;<, |€;| =
OP(D,%T) = op(Vyr). It follows that €/Me;/T = Gi2 + Op (V,r) uniformly in i.
Then by the Cauchy-Schwarz inequality, we can readily show that the second term
in (.0.89) is Op (n_l/zT_l/zh_1/2> = op (Uyr). Consequently, the first result in

(.0.88) follows and max<;<, T~ 'TSS;; = Op(1).
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For TSS;>, we have

~ 2 1
max {T~'TSS;} chﬁ —BH max {T—l ||X,-—STX||2} —0p (n—T) Op( /;—H),

1<i<n 1<i<n
where we use the fact that max;<;<, T~ | X; — S7X||* = Op(+/n/T + 1) under our
moment conditions. For T'SS;3, noting that ||f|| = |- S7F|| =0 (Tl/zhl’“), we

have T!1T8S;3 < T~! Hf— STI_TH2 =0 (th”) . By the Cauchy-Schwarz inequal-

ity, we have
max T~ [7SSi| < max (T7'788y)"* (171758,)"”
1<i<n 1<i<n
= 0p (w AT 1212 0p (vy),

max T~ 1|TSS;s| < max (T*ITSSﬂ)]/2 (T*ITSSB)]/2

1<i<n 1<i<n
= Op(h"*") =op(Vur), and

max T~ 1|TSS;] < max (T_ITSS,-Z)I/2 (T_ITSSB)I/2

: : = op (Unr).
1<i<n 1<i<n
Consequently, we have maxi <<, |6} — Gl-zl = Op (V,r). Then by Assumption A5

max|<j<p |0; — 61.2]2 pl/2 i
min<;<, 0;'6; /1 5

Uaron < |ESS; — €/ Q|

2

- 1/2
162 — 62|2 Z
Vnmax<i<p |<7, 0; | (l_) Z (ESS,' — 8,-/Q€i)2)

min; <j<, 0;'G; i

= Vi0p (v3) 0p (1) = 0p (n224771) = 0(1),

because one can easily show that %):f’:l (ESS; —¢€! Qe,-)2 =0p(1).

For I'yr 21, we have I 21 = 216:1 L7211, where
— b ¢ —4 . M. -1 . 2
Liront = (/= Y, 0; " (ESSi—€/Qs;) (T~'TSSii—07), and
i3
b n
Corony = \ﬁ Y o, * (ESSi—€/Qg;) (T7'TSSy) forl=2,...,6.
’ ni=

Following the proof of Proposition .0.11 and the above analysis for 7'SS;;, we can

show that I'721; =op(1) for/=1,...,6. m

245



.0.12 Proof of Corollary 4.3.2

Given Theorem 4.3.1, it suffices to show that: (i) EnT =B,r+op(1),and (ii) ﬁnT =

Qo +op(1). We first prove (i). By (.0.82) and the fact that Mir = 0, we have

w;Qu; =Y Byt (.0.90)
where
BnT,i] = Si*/Q_Si*a BnT,iZ = (B - B)/Xi*lQXi* (ﬁ - B);
Buriz = f*/Qf*, Buria = —Zei*’Q_Xl-*(ﬁ -B),
Burs =2€70f, Bris = —Zf*/QXi* (B—B),

Burn =280t —%)  Buris = —2(B—B)X"O(f — 1),

Burio = 2€"Q(fi 1), Buro= (fi—1)0(fi —1),
QO =MQM, and f and f are defined in (.0.81). Under Hy, we have f; — f = 0. Thus
B,ry=0forl=7,...,10. By (4.3.2) and (.0.90), it suffices to show that

b 1 -~ b ! -~ *! A A%
B = \/;Z 0, > (Bur,it —Bur) = \/;Z o’ [e,.’Qel. —gl.'le-] =op(1)
i=1 i=1
By = n 'Y 62Byra=op(1) forl =2,...,6.

Recalling € = ¢ — St€, we decompose Z,,71 as follows

Bt = n71/2b1/22{1: 3,?2 [(Si—STS)/Q(Si—STS)—SI'IQSI']
_ 71/2b1/22 8 'Og; — 8{Q€i} —2n*1/2b1/22?:1 8{28{Q_ST8
+n*1/2b1/22 2 (Sre) OSre

= Bur11 —2Pnr 12+ Bt 13-

Noting that 0 — Q = (It — L) Q(Iy — L) — Q = LQL — QL — LQ and both Q and L

are symmetric, we have

= Bur,11a — 2Pt 11p, S3Y.
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Following the proof of Proposition .0.12, we can show that %7 114 = Bur,114 +
op (1), where B,7.114 = n—1/2pl/2 Y? , 0;77€/LOLg;. Even though Q is not positive
semidefinite (p.s.d.), it can be written as the difference between two p.s.d. matri-
ces: Q= Q" — T Iy, where Q* =diag(H,1,...,Hrr). So we can write B,r 11, =
n12p12YN 62 elLQ Le; —n T PTIDY2 Y 6, %€lLLE; = Bur 1141 — Bat1142-
Noting that

n T
E|Buriiat| = n 'Y 67°E (6]LQ"Le) =T 2n 22 Y Y 0%y

i=1r=1

= o172 ) (@) =0 (17" 2 2) 0 (b7") =0 (1),

and similarly E ‘Bnmlaz’ =0 (T_lnl/zbl/z) =o0(1), wehave 1,11, =o0p (1) by
the Markov inequality. Similarly, %,r 11, = op (1) . Consequently %,r 11 =op(1).
Analogously, we can show that 2,1 1; = op (1) for [ = 2,3. It follows that %, | =
op(1).

Using the fact that |tr (AB)| < Amax (A)tr(B) for any conformable p.s.d. matrix
B and symmetric matrix A (see, e.g., Bernstein, 2005, p. 309) and that Ayax (M) =
1, we can show that ||X;/0X;||> =tw(MOMX; X' MOMX;X;") < ||X;/0X;|*. 1t

follows that
Buro = n 'Y 672(B—B)XOX; (B—B)
~ 2 R . .
< ”71/251/2“3 —B ‘ Yo 6 |xox

— nU2p120, ((nT)_l) Op (nbfl) = 0p (nfl/zT*Ib*1/2> =op (1)

where we use the fact that Y7, 6; 2 || X' QX;|| = Op (nb~") . Similarly, we have
f*/Qf,*

2
Y (Ao =17) [F@/T) =S @/T)F]|| X767
=1

n—l/zbl/ZOP (b—1h2p+2) Op (1) = Op <n1/2h2p+2b—1/2> —op(1).

BnT,3 — n—l/zbl/ZZ:l:la;zi.*/Qf*gnfl/zbl/zzlf‘l:lal;z

T

n1/2p1/2 2

By the repeated use of the Cauchy-Schwarz inequality, we can show that B,7;; =
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op(1) forl =4,5, and 6.

To show (ii), it suffices to show that DV,7 =n~ 1 Y Py 1(pl] p;‘;) =op(l).

Noting that x2 — y? = (x—y)* 42 (x— )y, we can decompose DV, as follows

Ell\)

DV,r = Z Z Pij — PzJ

n n
Z Z pz] pz] pz] —DVnT1+2DVnT2
ni= 1j= i=1j=1

Following the argument in the proof of Proposition .0.12, we can show that

DVnTl -

iMi; o\
Z Z (uﬁ\ Au] __lj) :DVnT1+0P(1)7 and

i=1j=1 0i0j 0:0;

1A & (UM, o _
DV, = - L - ”) DV, +op(1).
nT?2 ”lzijzﬁ( 66, 0.0 pij =DV ,r2+op (1)

1
n

where DV, =0~ TI X1 07 2072 (@Ml — wi)* and DV iy =0~ X0 X0
pijo; ' o; ! (Mt — 03;j).

By (.0.82) and the fact that Mir = 0, we have that under Hy, u:Mu; = 8*’M8 +
(ﬁ—ﬁ)Xi MX; (B—PB)+F'MF —(&'MX; +¢&/'MX; )(B_B)+<8i +£j> Mt -
f'm (Xl-* +X]’~‘) (E —B) = X8 DV,r,i1. We can prove that DV, = op (1) by

showing that

o 1 n n B B )

DVnTl,l = ZZZGI- ZGjZ(DVnTle—a),-j) :Op(l), and
i=1j=1

_ 1 n n ) )

DVyriy = —3). ) 0 °0; 2(DVyrij1)” =op (1) forl =2,...,6.

Similarly we can prove DV ,72 = op (1) by using the above decomposition for u/Mu;;.

The details are omitted for brevity.
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.0.13 Proof of Theorem 4.3.3

By (4.3.2) we have

— b1/2 n
QL = ; /226 (ESS; — u;Qu;)

1 1
= \/720 (ESS; — €/ Q¢€;) — ZESS £/ Q%)) (82 ?)

i

\/726 (u;Qm; — €/ Q%) + \/72 (;Qm; — 8Q81)<Ai l)

where I';71 and I'y7p are as defined in the proof of Theorem 4.3.1, and 81.2 =
TSS;/T. 1t is easy to show that Q= Qo+ op(1) under H; (y,r) with ¥ =
n=V4T=1/2p=1/4 1t suffices to show that: (i) Ty <> N (@0, Q). (ii) Tury =
op(1), (iii) Tr3 = op (1), and (iv) I';za = op(1). We complete the proof by

Propositions .0.13-.0.16 below.

Proposition .0.13 T,z % N (©, Q) under H (Yr).

Proof. Decompose 1,71 = L'yr,11 — Lur,12 where I'y7 11 and Ly 12 are de-
fined in (.0.80). Using the notation defined in the proof of Proposition .0.11, it
suffices to show: (i) Zur1 = Duri — It 12 LA N(0,9Q0), (ii) Dyr2 = ®g+o0p (1),
and (iii) D,rs = op(1) for s = 3,...,10, where ®y = lim(, )00 Onr and ©,7 =
n2p1 22 3 672N (H—L) Ay =n~ T Y% 6.7 2AL. (H — L) Ayi. (i) follows

the proof of Proposition .0.11. We are left to prove (i1) and (iii).
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For (ii), letting @, and S be as defined in the proof of Lemma .0.31, by (.0.95)

we have

n
DnT2 = T \/% Z Gi_zA:u' (H — L)Am

i=1 [Tb]+1 s=1 b
1/b 176 s—t / t / 1 t s
L e [ - @ daae| 1A () ()
+o(1)
S 0D
= =) 0/ Z /r {/ 1+ oy 'u(u—v)]w(u)w(u—v)du
i=1 t=|Tb|+1 ' Tb -1
I I 1
x[/tm w(z)dz/[m (z —v)dz’] —1 2 Aui (F) Ai (% +vb)dv+0(1)
Th 75

where C,, Efil {fil [1+ @y 'u(u— V)] w(u)w(u— vydul[',w(z—v)dz] " - l}dv.
That is, D72 = @7 = Op+o0(1).
For (ii1), following the proof of Proposition .0.11, we can show that D,r; =
op (1) under Hy(,r) for I =3, ...,7. It suffices to prove (iii) by showing that D,;; =

op (1) under Hy (y,r) for I =8, ...,10. For D, g, write

D = 22 % et -0t /02-2y/0 ¥ (srey - Lyt -1/c?
i=1 i=1

= 2Durs; 1 —2Durs2-
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It is easy to show that

Durs1 = (b/n)?0p(yr(n'PT—12b=" 40 /2T1/2))

_ OP(n71/4T71b73/4_|_n71/4b1/4) :Op(l),

and D,r32 = Op(n~'/4b'/4, /log (nT)) = op (1) . It follows that D, 75 = op (1). By

the Cauchy-Schwarz inequality, D,,7; = op (1) for [ =9,10. m

Proposition .0.14 I',7> = op (1) under Hy (Yur) .

Proof. Analogously to the proof of Proposition .0.12, we can write

~ 22
Tura = \[ Z (ESS; — sQe, \/7 Z (ESS; — €/ Q%)) %
1

i

= —Turo + [yur 22, say.
Note that Gf = 2}21 TSS;;/T by (.0.87). First, we want to show that

max |7~ 'TSS;1 — 67| = Op (Uyr) and max T~ 'TSS; = op (vur) forl=2,...,10,
1<i<n 1<i<n

(.0.92)
where v, = nl/AT=1/2, By (.0.88), it suffices to show that max;<;<, T-1TSS,; =
op (vnT), for/=7,...,10. In the sequel, we will use the fact that max <j<, Sup;¢[o 1]
}fi (1) — | = O (Yur) and [3 B = op (Yur) under H; (¥,r) by Lemma .0.35(ii).
Following the study of 7'SS;» in Proposition .0.12, we can show that max<;<, T-1TS8S

= op (Upr). For TSS;g we have

T7'TSSg = T_lyr%TA:u'MAniST_l%%THAnin
T
_ 0, t _ -
n P22 Y 2 (1) =0 (w AT = o ()
t=1

uniformly in i. By the Cauchy-Schwarz inequality, max;<;<, T~ 'TSS;; = op (Vur)
for [ = 9,10. Consequently, we have max<;<, |67 — 67| = Op (U,r). By the proof

of Proposition .0.12, %Z?:l (ESS; — S{Qsi)z = Op (1). It follows that

1/2
nl/ max1<1<n

r < b
I’lT,22 - m1n1<,<n6 G n

, 1/2
Y (ESS; - €/0¢)) ] =n!20p (V) = 0p(1).

i=1
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To analyze I';;7 21, using (.0.87) we can write

2

Dar21 = \/72 ESS; — ¢ QSZ ZFnTZIb

where Ty7.011 = (b/n)"/? 4 (ESS; — €/Q€) (T~'TSS; — 62), and Tyr o)y =
(b/n)'2Y" 674 (ESSi— e;Qs,-)T—l TSS; for [ =2, ..., 10. Following the proof of
Proposition .0.11 and the analysis for 7'SS;; in the proof of Corollary 4.3.2, we can

show that I'y721; = op (1) for I = 1,...,10. It follows that I';7 21 = op(1). m

Proposition .0.15 I',73 = op (1) under Hy (Yur).

Proof. By the proof of Corollary 4.3.2, we can write
10

b & - _
Lrs = \/; Z o; (4;Qu; — €/ Q¢;) = Z Byt
i=1

where B,z = (b/n)" > X7, 672 (Bur.1 — €/Q€:) , and B,gy = (b/n) /> Y7 67 2By
for [ = 2,...,10. Following the argument in the proof of Corollary 4.3.2, we can
readily show that B,7; = op (1) for [ = 1,2,...,6 as in the case when Hj holds. It

remains to prove that B,7; = op (1) for [ = 7,...,10 under H; (},r). Noting that

Amax (M) = 1, we have
nT10 — n = i i ni
= n'T" 1ZG_ZZA (t/T)(Hy—T" ):0(T—1b—1):o(1).

By the Cauchy-Schwarz inequality, we have B,77 = o(1) and B,rg = op (1) . De-
compose B,r9 = 2n~ 1/2b1/22" o ’elQ £ —2n1/2p/2 Yi 0% (Sre)' 0 f =
2§nT971 — 21_3,17972. By moments calculation and the Chebyshev inequality, we can
show that B0, = Op (T1/2h7+161/2) = 0p (1), and Byre2 = Op (T'2h7+151/2) =

op (1) . Consequently B,r9 = op(1). =

Proposition .0.16 I';74 = op (1) under Hy (Yur) .
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Proof. Analogously to the proof of Proposition .0.12, we can write

. 52 —0?)’
o E e o0 UL

i1

l_‘nT,4 = \/>Z uQuz 8Q(C:l

= —Tura1 +Tura2, say.

We prove the proposition by showing that I’z 4; = op (1) for I = 1,2. For 7 41,

write FnT,4l = 21121 FnT,4l (l) , Where

b & ~
Corar (1) = \/;Z o; * (Bur,n —€Qei) (67 — 07),
i=1
n
Lyt a1 () = \/;Z Gi_4BnT,il (/G\lz — 61-2) forl =2,...,10,
i=1

and B,,r ;; are defined after (.0.90). Further decompose I'y7 41 (1) = Zm (Toar a1 (1,m)
by using the decomposition 67 =Y ,°, TSSﬂ /T in (.0.87), where I';741(1,1) =
\/52?21 o, (Burin — €/08&) (T7'TSS;1 — 67) and Tyr.a1 (1,m) \[Z o+ %%
X (Buri1 — €/Q€;) form = 2,...,10. It is easy to show that I'y7 4; (1,m) = op (1) for
m=1,...,10. Consequently I',7 41 (1) = op (1) . Similarly, we can show I',7 41 (/) =
(b/n)l/2 ' 6. *B,7.4(07 —0?) for [ =2,...,10 by using the decomposition of 67
in (.0.87). It follows that I',;7 41 = op (1).

For I',7.42, we can apply the decomposition of uA’lQﬁ, in (.0.90) to demonstrate
that (b/n)" /2 X1, |70 —€!Qei] = op (n1/2) . Then Tyr.42 = 0p (nl/zugT) —op(L)=
op(1) by (.0.92). m

.0.14 Proof of Theorem 4.3.4

As in the proof of Theorem 4.3.3, we have the decomposition

~

Qan‘nT — f‘nTl - 1:nT2 - f‘;17’3 + 1:nT4; (093)

where Tz, [ = 1, 2, 3, 4, are defined analogously to I',,7; in (.0.91) with o} being
replaced by 67 = 67 + Yjo, Yio = Jo A2(t)dT — [y Ai (7) d7]?, and recall A; (1) =
f;(t) — f(t) under Hy. By (.0.87), 67 = T~'},°, T'SS;;. Under H,, by Lemma
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.0.35(iii) the results in (.0.88) become

max }T TSS;1 — 2’ =op (1) and max T-'TSS; =op(l) forl=2,...,6.
1<i<n 1<i<n

We can also show that 7~!TSS;; = op (1) uniformly in i for I = 7, 9, and 10. For
TSS;3, we have uniformly in i,

Lrss, —1i[ (t/T)— /A2 )dr— /A )dr g (1)=Tio+o(1)
T 8 — T ~ o =1,0+to ,

where A; = T 'Y A; (t/T) . It follows that uniformly in i
62 =07 +Yjp+op(1) =02 +op(1). (.0.94)

That s, G is the probability limit of 67 under H;. We prove the theorem by showing
that (i) A1 = (n'/2TbY/2) "1 Tp1 = s +0p (1), and (i) Apr = (n'/2THY/2) Ty =
op(1) forl=2,3,4.

Following the proof of Propositions .0.11 and .0.13, we can show that A, 7| =
(nl/sz1/2>lf‘nTl = Aur1 +op (1), where A, 71 = (nl/szl/Z)*anTz. Follow-

ing the analysis of D7 in the proof of Proposition .0.13, we have

n T T
Ao = i L X X (= T/ T) 800/ T) 07 = @4 (1),

where O4 is defined analogously to ®y with (07,A,;) being replaced by (G7,4;).
This proves (1). Following the proof of Propositions .0.12 and .0.14-.0.16, we can
show that A,,7; = op (1) for I =2,3,4.

.0.15 Some Useful Lemmas

In this Appendix, we present some technical lemmas that are used in the proofs of
the main results in the chapter.

Lemma .0.30 Let ;7 = fol wp (% — T) dt. Then % <minj<;<7 A1 <maxj<<7 A1 =
1.

Proof. First, write ;7 = [y w (£ — 5)d (}) = Ol/bw(u— ) du:fifﬁw(u)du.
Tb

Clearly, max|<;<7 A = 1. X Th <t < T (1—b), then Ay = [, w(u)du=1.1f
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1 <t=Te<Tbforsome € € (0,b), then

1/b—t/(Tb) 1 1 1
—/ w(s ds—/ w(u)duz/ w(u)du:§
0

t/(TDh) —&
where the last equality follows from the symmetry of w and the fact that [ (w(u)du =
1. Similarly, if T(1—b) <t =Te < T for some € € (1 —b,1), then we have
fol wp (7 —T)dT= flt/;j(_rtb/)(Tb) w(u)du= [, w(u)du> [ w(u)du= 1. This proves

the lemma. m

Lemma .0.31 max<, <7 [Hy| < C) (Tb)_1 for some constant Cy < oo where Hy
denote the (t,s)th element of H, H = [y H (t)d7t, and

-1
H() =W, (93, (5) (4 (/W (9)2) (1)) ) (2) W (5).
Proof. Let S;, (7) = T_lzg} (7)' W, (1) ZE] (1). Then
Sp(T) =S+0(1) uniformly in 7 € (0,1), (.0.95)

1 0
where S = and @, = f_ll w (u) u’du. By (.0.95), Lemma .0.30, and

0 o
Assumption A4, we have

Al = | [ rle,lmv—vb,t<r>wb,s<r>dr

Q

r / 2y (1) 715 (1)1 (1) (1) dT
[ <%—f>w <%—r>df<w-l;

o L (52) ()i
= b /Wb(%—f)dr/mc oy [T (s

oy (14 [ war) < (7 T

where A =~ B denotes A=B(1+o0(1)). m

IN

IA

Lemma .0.32 (i) Ar1 =b Y <iz<raiy=0(1), (i) Ap =T 'L L 12,_1 |assar| =
O (1), and (iii) A3 = |H - L|| = ( _1/2> , where recall a;s = Hys— T~ denotes
the (t,s)th element of H — L, and L = T irily.
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Proof. For (i) it is easy to show that A7y = A7 +O (b),, where A7 = bY\<its<T I-_Ilzs.

By (.0.95),
A7y
’ 2
~ & ¥ [ es g @miom.@ar)
1<t£s<T b
o L e . S
= % { 1+a)2 ) (0] ﬁW(T;b )W(Tjr"bt)df} Ar' At
1<t#s<T
. 1/b—t/(Tb) 1 2 )
= & { 1+a)2 (u+Tb)} Ew(u)w(u+tT'—Z)du} (AerAst)™
1<t7és<T
b v v 1 ’
_ Zb Z{ / s u(u+;_;)}zw<u)w(u+;_;)du}
=|T s=1
l/b l/b s-t !/t / -
{/0 /0 w(55-(d-45)) dz} +0 (b)
|T(1-b)] /( 1)/(Th) (/ [1 1 ( )] ( ) ( )d >2
= = +@, u(u-v)|wu)w(u-v)du
T (e Jorany St 2
1/b—t/(Tb) 1/b—t/(Tb) —2
X (/ w(z) dz/ w(Z-v) dz') dv+o(1)
—1/(Th) —1/(Th)

= /b]_b/_ll {(/_1] [1+a)2_1u(u—v)} w(u)w(u—v)du)2
X (/_1] w(z) dz/_ll w(Z-v) dz’) 2} dvdv'+o (1)
= /_11 (/_11 [1+w{1u(u-v)} w(u)w (u-v) du)2 (/_11w(z-v) dz) 2a,’v+0(1) =0

By the same token, we can show (ii). For (iii), noting that ||H — L||2 =Y 1 <rps<T dfs+
YT @ =0(b")+0(T~52), |H-L| =0 (b—1/2) asT b '=0(1). m
Lemma .0.33 Let ¢,y = €|[T7 !z [p (t/T) Ky, (t/T) L))~ zhs(t/T) Then (i)
Cr1 =T 2 Yi<iss<r |Crs|kngs = 0( )i (ii) Cro = T 2h Y <1 pger Ctsk%,ts =0(1),
(iii) Cr3 =T 'YL | |en| = O (1) (iv) Cra =T 'YL 2 = 0(1).

Proof. (i) Let S, (t) = T~'2") (¢/T) K, (t/T) 2" (¢/T) . The (j,)th element

of S, (1) is sj (1) = £ XL, (55 TT)jH 2k(%). For any 7 € (0,1), we have
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by the definition of Riemann integral that

1 L/ r N2 /7y 1/h—t/(Th)
sl?) = g r:ZI 77 ) /_T/(rh) Wk () duro(1)

L
w2k (u) du+o(1).

—

—

Thatis, S, 4 (t) =S, +o(1) forany 7 € (0,1), where

Mo M1 - Hp
S,= i M2 e Hptd 7
Mp MHpr1 -+ Hop

and u; = ['vik(v)dvfor j=0,1,...,2p. It follows that

T T
Cri = 7, L L

= Y

vt [ os—t s—t\”
61817 |:17ﬁ77(ﬁ) :|

Similarly, we can prove (iii)-(iv). =

Lemma .0.34 sup,co 1) ¢;S(7)€ = Op <\/log )/ (nTh)) .
Proof. The proof is analogous to that of (A.11) in Chen, Gao, and Li (2010, pp.
27-30). m

Lemma .0.35 Suppose Assumptions AI-A5 hold. Recall y,r = nV/AT=12p-1/2 4,
Hy (Vur). Then as (n,T) — oo,
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(i) B—B=0p (n_l/zT_l/z) under Hy;
(ii) E — B = op (Yur) under Hy (Y1) provided that A6 also holds;
(iii) B — B = op (1) under H, provided that A6 also holds.

Proof. (i) This can be done by following the proof of Theorem 3.1 in CGL
(2010). Note that CGL also proves the asymptotic normality under the indepen-
dence of {(&;,vi)} across ¢t and the assumption that g; in Assumption Al is the
same for all i (g; = g, say). One can verify that the above probability order can be
attained even if we relax their independence condition to our m.d.s. condition and
their homogenous trending assumption on g to our heterogeneous case.

(i1) Recalling that F=i,®fand S,rF = S,7F, we have

B—B = (X"MpX*) "' X*'Mp(e*+F ")+ (X*'MpX*) ' X*'Mp(F —F) =dy +ds, say.
(.0.96)

The first term also appears under Hy and thus d; = Op (n_l/zT_l/z) . The sec-

ond term vanishes under Hy and plays asymptotically non-negligible role under

H; (%) . Let dy = X*'Mp(F —F). Note that
dy =X"(F—F)—X"D(D'D)”' D(F—F). (.0.97)

Similarly to the proof in CGL (2010), we can show that the leading term on the right
hand side of the above equation is X*(F —F). Noting that X;; = g; (t/T) + v;; and

X* = (I—S,r)X, we have

(F—F)

(X —eyS(¢/T)X] [fi (¢/T) — f(¢/T)]

Il
M=

N
I
—
-
I
_

vie [fi(t)T) = f(t)T)] i; {e1S(t/T)V} [fi(t/T)—f(t/T)]

Il
M=
Mﬂ

N
I
_
-
I

_|_
- :
M=

,..
I
_
=
I
_

[8i(t/T) =3 (t/T)] [ fi(t/T) = f(t/T)]

_|_
1=

~
—_
~

e

8(t/T) =S (t/T)G] [fi(t/T) = f (t/T)]

anTl - \PnTZ + anT3 + anT4; (098)
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!/ _ —
where V = (V|y, .., Vig, oo Vi, Vir ) > () =0 YL gi(5), g = (gi(%)’,...,
gi(%)) and G = (g}, ...,g,)". Clearly ¥,r; = 0 for | = 2,4 by the definition of .

Noting that max;<j<, Supo< < | fi (7) — f(T)| = O (Yur) , we have

n n T
E|¥n|* = 2 Y Y E(ivi) [fi@/T) = F /)] [£;(t/T) = F(/T)]

N
Il
—
~.
Il
_
-
I
_

Isisno<r<y i=1j=1

2
< (max sup \fi(f)—f(f)\) (T \E(Vilvj'l)\)
] (}/,fT) O(nT)=o0(nT),

implying that W,,;71 = op(+/nT). For ¥, 13, we have
n T

(Wurs| < max sup |fi(t)—f(7)|} ) lsi(t/T)~58(t/T)

Isisno<r<i i=1i=1
- 0T ( [ et —z(@ldeo0/))

= O(Wr)o(nT)=o0(YrnT).

Consequently, we have shown that X*'(F — F) = Op(v/nT) + o (,rnT). It fol-
lows X*Mp(F —F) = Op(v/nT). Noting that (nT) ™' X*MpX* = Op (1), we have
(X*'MpX*) "' X*'Mp(F —F) = 0p (Yr). Thus B — B = op (¥r) under Hy (Yur).
(111) Using the notation above, we continue to have d; = OP(n_l/ 271/ 2) and
(nT)_1 X*MpX* = Op (1) under H;. For d,, we analyze the dominant term X* (F —
F) by using the same decomposition in (.0.98). Clearly, we still have ¥,z = 0,
W, r3 = op(nT) and W74 = 0. For W7, since max<j<, Supo< < | fi () — f (7)]

— 0(1) under H;, we have E(|¥,r1]|*) = O(nT), which implies that ¥,; =
Op(\/nT). Thus X*'(F —F) = op(nT) and B— B =op(1)under H.m

Remark. If g;(7) —g(t) =0 for all T € [0, 1], then from the proof of (ii) and
(iii) we can see that E— B =0p <n’1/2T*1/2) also holds under H; (¥,7) and H; (1)

as ¥,,r3 = 0 in this case.

Lemma .0.36 ||X —S,7X||* = Op (nT).
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Proof. Recall g; = (g;(1/T),...,g;(T/T)) and G = (g},...,g,)". Noting that

Xit

Itis easy to show that: IT,r ;=Op (nT') by the Markov inequality, IT,7 »=0p(

=gi(t/T)+vi;, we have

X = SurX|?

n T
Y Y X —eiS(t/T)X|

i=1t=1

¥ Xl =S (/70 -+ l/7) ~20/T) + [0/ )~ x5 /7))
¥ Yo+ 3 Y llens(e/mvIE+ ¥ ;||gl /Ty -2 /TP
%) ||§<z/T>—els<r/T>G||2+2l_2”21v;tels<r/r>v
+2g[év;t(g,(t/T) g(t/T)) +2;;v” g(t/T)—e1S(t/T)G)
123 Y (S 0/1)V) (@0/7) - e56/7)6)

123 Y (@S 0/T)V) (60/7) ~20/7)

#2350 1/7) -2/ (20/T) - 150/ 7)6)

3 M. say.

r=I1

nT log(nT) )
nTh

=op (nT), 73 = O (nT) by the property of Riemann integral, IT,74 = O (nTh*’*2)

= o (nT) by the Taylor expansion. For the remaining terms, it is clear that IT,7 , =0

for r = 9,10, and we can show that Z§:6 IT,7 » = Op (nT) by the Cauchy-Schwarz

inequality. m
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