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Abstract

Three Essays on Random Mechanism Design

Huaxia Zeng

This dissertation studies a standard voting formulation with randomization. For-
mally, there is a finite set of voters, a finite set of alternatives and a lottery space over
the alternative set. Each voter has a strict preference over alternatives. The domain
of preferences contains all admissible preferences. Every voter reports a prefer-
ence in the domain; a preference profile is generated; and the social lottery then is
determined by a Random Social Choice Function (or RSCF).

This dissertation focuses on RSCFs which provide every voter incentives to
truthfully reveal her preference, and hence follows the formulation of strategy-
proofness in [26] which requires that the lottery under truthtelling (first-order) stochas-
tically dominates the lottery under any misrepresentation according to every voter’s
true preference independently of others’ behaviors. Moreover, this dissertation re-
stricts attention to the class of unanimous RSCFs, that is, if the alternative is the
best for all voters in a preference profile, it receives probability one. A typical class
of unanimous and strategy-proof RSCFs is random dictatorships.

A domain is a random dictatorship domain if every unanimous and strategy-
proof RSCF is a random dictatorship. Gibbard [26] showed that the complete
domain is a random dictatorship domain. Chapter 2 studies dictatorial domains,
i.e., every unanimous and strategy-proof Deterministic Social Choice Function (or
DSCEF) is a dictatorship, and shows that a dictatorial domain is not necessarily a
random dictatorship domain. This result applies to the constrained voting model.

Moreover, this chapter shows that substantial strengthenings of Linked Domains (a



class of dictatorial domains introduced in [1]) are needed to restore random dicta-
torship and such strengthenings are‘‘almost necessary”.

Single-peaked domains are the most attractive among restricted voting domains
which can admit a large class of “well-behaved” strategy-proof RSCFs. Chapter 3
studies an inverse question: does the single-peakedness restriction naturally emerge
as a consequence of the existence of a well-behaved strategy-proof randomized vot-
ing rule? This chapter proves the following result: Every path-connected domain
that admits a unanimous, tops-only, strategy-proof RSCF satisfying a compromise
property is single-peaked on a tree. Conversely, every single-peaked domain admits
such a RSCF satistying these properties. This result provides a justification of the
salience of single-peaked preferences and evidence in favor of the Gul conjecture
(see [3]).

One important class of RSCFs is the class of tops-only RSCFs whose social
lottery under each preference profile depends only on the peaks of preferences. The
tops-only property is widely explored in DSCFs, and more importantly, is usually
implied by unanimity and strategy-proofness in DSCFs (e.g., [52], [15]). In Chapter
4, a general condition is identified on domains of preferences (the Interior Property
and the Exterior Property), which ensures that every unanimous and strategy-proof
RSCEF has the tops-only property. Moreover, this chapter provides applications of

this sufficient condition and use it to derive new results.
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Chapter 1 Introduction

Randomization is a natural resolution to many instances of conflict of interest in
economic settings. It can easily bring fairness to the ex-ante consideration of col-
lective decision making problems. As an example, consider the following economic
scenario: two agents have opposite opinions on two indivisible objects, and one ob-
ject needs to be chosen for production. Tossing a fair coin to decide the choice
appears to be the fair solution. It is also true that randomization improves incentives
for truthtelling in models with private information. The reason it does so is that
outcomes under randomization are lotteries and it is typically assumed that player’s
preferences over lotteries satisfy von-Neumann-Morgenstern expected utility hy-
pothesis. The mechanism designer can exploit this preference restrictions in order
to expand the set of mechanisms that provides agents incentives for truthtelling,
e.g., combining several dictatorships with equal weights. More importantly, the in-
jection of randomization has been recently shown to significantly enlarge the scope
for designing “well-behaved” mechanisms with nice incentive properties.

This dissertation studies randomization in the voting environment where each
voter submits an ordinal strict preference order over a finite set of alternatives;
a preference profile is generated; a “desirable” social lottery over alternatives is
accordingly chosen; and monetary compensation for voters is not feasible. Each
voter’s preference order is her private information and drawn from a set of admissi-
ble preference orders which is referred to as the domain of preferences. A Random
Social Choice Function (or RSCF), which is a map from the Cartesian product of
domains to the set of lotteries, determines the social lottery under every profile of

reported preferences. In particular, if a degenerate lottery (i.e., one alternative is



assigned probability one) is chosen under each preference profile, the RSCF is de-
generated to a Deterministic Social Choice Function (or DSCF).

Since a voter’s preference is her private information, she is not obligated to re-
port her preference sincerely, especially if she can benefit from misrepresentation.
Therefore, in the literature of mechanism design, incentives for truthfullying re-
vealing private information are prominently at the forefront. Fixing an ordinal pref-
erence and a utility function representing this preference, every voter is assumed
to evaluate lotteries according to the von-Neumann-Morgenstern expected utility
hypothesis. Accordingly, Gibbard [26] established the notion of a strategy-proof
RSCF which requires no voter can obtain a strictly higher expected utility by mis-
reporting her preference for any utility representing her sincere preference and any
beliefs regarding the reports of other voters. Equivalently, this notion of strategy-
proofness can be reformulated in terms of (first-order) stochastic dominance which
says that for each voter, the social lottery under truthtelling stochastically dominates
a lottery induced by any unilateral misrepresentation according to her true prefer-
ence independently of others’ reports. The whole dissertation follows Gibbard’s
formulation of strategy-proofness. Moreover, this dissertation restricts attention to
the class of RSCFs satisfying the mild requirement of unanimity, i.e., a unanimous
RSCEF requires an alternative to be selected with certainty under a preference profile
if it is top-ranked by all voters.

According to the classic impossibility theorem in [26], the only unanimous and
strategy-proof RSCFs are random dictatorships, provided that voters’s preferences
belong to the complete domain, and the number of alternatives is at least three.
A random dictatorship is a fixed probability distribution over dictatorial DSCFs,
and therefore is clearly more appealing than dictatorships since it introduces ex-
ante fairness and every voter may have the same probability to the chosen dictator.
Later, the random dictatorship characterization result is robustly established in dif-
ferent settings (e.g., cardinal preferences in [28]), or by different approaches (e.g.,

[21]), or under restricted ordinal preferences (e.g., [48]). A domain of preferences is



referred to as a random dictatorship domain if every unanimous and strategy-proof
RSCF is a random dictatorship. Even though a random dictatorship is strategy-
proof on arbitrary domains of preferences, it remains unsatisfactory and suffer a
significant infirmity - it assigns positive probability on an alternative only if it is
top-ranked in some voter’s preference, and hence does not admit compromise. For
instance, voters may disagree strongly on each other’s most preferred alternatives
but have a commonly second best alternative. However, this commonly second
best alternative is ignored by a random dictatorship. Essentially, this dissertation
explores the following fundamental question in different directions: When can we
escape random dictatorships?

In the set of strategy-proof RSCFs satisfying unanimity, all unanimous and
strategy-proof DSCFs are extreme points. One then would ask: Are there any other
extreme points? Accordingly, if there exists no extreme point other than unanimous
and strategy-proof DSCFs, one says the domain of preferences satisfies the extreme
point property. Evidently, on a domain satisfying the extreme point property, every
strategy-proof RSCFs satisfying unanimity must be specified by a convex combi-
nation of unanimous and strategy-proof DSCFs. The extreme point property has
been established on several voting domains, e.g., the complete domain ([26]), the
binary domain ([37]), the single-peaked domain ([24], [36], [38]) and the product
domain with lexicographically separable preferences ([16]). These results appear
to suggest that permitting randomization does not substantially expand possibilities
for design strategy-proof RSCFs. In particular, on the class of dictatorial domains
(i.e., every unanimous and strategy-proof DSCF is a dictatorship) which is pervasive
and includes much sparser domains in addition to the complete domain (linked do-
mains in [1] and circular domains in [43]), one may simply conjecture that the same

extreme point property prevails. Equivalently, the following question is proposed:
Is every dictatorial domain a random dictatorship domain?

The primary goal in Chapter 2 of this dissertation is to show that this conjecture

is false. This chapter does so in the following way. Firstly, identify a sufficient
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condition on domains, called Condition SC (Successful Compromise) that permits
the existence of unanimous and strategy-proof RSCFs which are not random dicta-
torships. These RSCFs put strictly positive probability on compromise alternatives
(second ranked alternatives) in certain cases. Condition SC then is shown to be
compatible with the linked domain condition in Aswal et al. [1] that ensures that a
domain is dictatorial. This chapter also shows that the domain satisfying Condition
SC arises naturally in a model of independent economic interest, that of constrained
voting (e.g., [6], [7], [8]).

Furthermore, Chapter 2 considers strengthenings of the linkedness condition
that ensures a dictatorial domain be a random dictatorship domain. Two conditions
are proposed in this regard. The first is Condition H (Hub), which requires the corre-
sponding connectivity graph over alternatives to have an alternative to be connected
to all other alternatives in addition to the linkedness property. For the second con-
dition, called Condition TS (Two Steps), The connectedness requirement is firstly
strengthened underlying the definition of a linked domain to obtain the notion of a
strongly linked domain; an additional condition then is imposed whic is however
weaker than the counterpart of the hub condition. The additional condition requires
the existence of a path of length at most two between any two alternatives in the cor-
responding strong connectivity graph. It is obvious that Conditions H and TS are
very significant strengthenings of the linkedness condition. However, this chapter
shows that these conditions in conjunction with a linkedness condition are “almost
necessary”’ for random dictatorship. For example, this chapter constructs linked do-
mains, where there is no hub but “almost all” alternatives are “almost hubs”, which
satisfy Condition SC and are therefore not random dictatorship domains.

The proofs of the sufficiency result rely on a ramification result that states that
a random dictatorship domain when there are two voters is in fact, a random dic-
tatorship domain when there is an arbitrary number of voters. This approach was
initiated in [30] in the context of domains that permit non-dictatorial Arrovian ag-

gregation. Corresponding results for dictatorial domains appear in [32], [47] and



[1]. The result for random dictatorship is however, significantly more difficult than
its dictatorial domains counterpart. In fact, this chapter is able to prove it only under
an additional hypothesis which is fortunately weak and is satisfied by the sufficiency

conditions.

Chapter 2 is organized as follows. Section 2.1 introduces linked domains, Sec-
tion 2.2 comprises three subsections that introduce Condition SC, shows that it can
be satisfied by some dictatorial domains and finally applies it to a model of con-
strained voting. Section 2.3 provides random dictatorship results and results on the
necessity of Conditions H and SC. The Appendix contains the Ramification Theo-
rem and the other proofs.

Single-peaked preferences are the cornerstone of several models in political
economy and social choice theory. They were proposed initially by [11] and [29].
Single-peaked preferences arise naturally in various setting. However, their main
attraction is that they allow successful preference aggregation both in the Arrovian
and the strategic sense (see [34], [3]). For instance, under each profile of single-
peaked preferences, one can adopt majority voting to induce a desirable social pref-
erence (provided odd number of voters), or generate a fair and strategy-proof social
outcome which indicates the distinction from dictatorships. Literature has widely
explored strategy-proof voting rules over single-peaked preferences (e.g., [34], [19],

[18], [24]), however, initialized in [6], an inverse question is proposed:

Does the single-peakedness restriction naturally emerge as a consequence of the

existence of a “well-behaved” strategy-proof voting rule?

The question of this nature is referred to as the Gul Conjecture (see [3]). The precise
formulation of the conjecture can take several forms, e.g., [6], [10], [35].

Chapter 3 studies the inverse question above in a randomized setting. The goal
in this chapter is to provide a result with the following flavor: any rich preference
domain that admits a suitably well-behaved randomized solution to the strategic
voting problem must be a single-peaked domain. The single-peaked domain char-

acterized in this chapter is more general than the usual one (for example, the single-
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peakedness in [34]). These preferences were introduced in [20] and [19], and are
defined on arbitrary trees.

One consequence of considering RSCFs is that the anonymity requirement (the
names of voters do not affect the social lottery) imposed on DSCFs to escape dic-
tatorships appears ineffective and must be replaced since it is always possible to
design a unanimous and strategy-proof RSCF satisfying anonymity on an arbitrary
domain, e.g., a random dictatorship where all voters are endowed with the same
weight. Therefore, a new appropriate notion of well-behavedness needs to be for-
mulated. This chapter imposes two additional axioms on RSCFs under consider-
ation. The first one, the tops-only property, is standard in the literature on voting
which implies that the social lottery under each preference profile depends only
on the peaks of preferences. The second axiom, the compromise property, is estab-
lished to deal with the infirmity of random dictatorships mentioned before. Consider
a preference profile where the set of voters are split into two (almost) equal groups
and the following conditions are satisfied: (i) all voters within a group have identical
preferences, (ii) the peaks of two groups’ preferences are different, and (iii) there
is an alternative that is second-ranked according to the preferences of both groups.
This commonly second-ranked alternative can be naturally regarded as a compro-
mise alternative and the compromise property requires that the compromise alter-
native receives strictly positive probability in the profile. This chapter then proves
the following result: Every “suitably” rich domain that admits a tops-only, strategy-
proof RSCF satisfying unanimity and the compromise property is single-peaked on
a tree. Conversely, every single-peaked domain admits a tops-only, strategy-proof
RSCEF satisfying ex-post efficiency (a stronger version of unanimity) and the com-
promise property.

A paper related to this chapter is Chatterji et al. [17]. That paper investigated
preference domains that admits well-behaved and strategy-proof DSCFs. In par-
ticular, it showed that every rich domain that admits a strategy-proof, unanimous,

anonymous and tops-only DSCF with an even number of voters, is semi-single-



peaked.! These preferences are also defined on trees but are significantly less re-
strictive than single-peaked preferences. This chapter demonstrates that two impor-
tant objectives can be met by considering RSCFs rather than DSCFs. The first is
that a characterization of single-peaked rather than semi-single-peaked preferences
can be obtained naturally. The second is that the awkward assumption regarding the
even number of voters in [17] can be removed.

Chapter 3 is organized as follows. Section 3.1 introduces the compromise prop-
erty. Section 3.2 introduces path-connected domains, while Section 3.3 contains
the characterization result for single-peaked domains and demonstrates the indis-
pensability of each axiom and the richness condition. The Appendix contains some

additional discussion and an omitted proof.

If strategy-proofness is the only concern, one can construct a constant RSCF
which ignores all information of voters’ preferences and fixes a lottery as the so-
cial outcome for every preference profile. However, such a RSCF is clearly not
desirable. On the other hand, while allowing the social lottery to vary with prefer-
ence profiles is desirable, maintaining strategy-proofness becomes correspondingly
harder as the social lottery begins to depend more Chapter 4 investigates strategy-
proof RSCFs which only use the peaks of voters’ preferences to calculate the social
lottery. This class of RSCFs is referred to as RSCFs satisfying the tops-only prop-
erty, which implies that if the peaks of each voter across two preference profiles are
identical, the social lottery remains the same.

The class of tops-only RSCFs has considerable informational and computational
advantages from the design point of view; it also reduces the degree of possible
manipulations significantly since any misrepresentation using a preference with the
same peak as the true preference does not affect the social lottery and hence is not
beneficial. More importantly, in much of the literature, the tops-only property is a

key necessary step in designing and characterizing strategy-proof RSCFs.?

'The notion of richness is exactly the same as that in this chapter.
ZFor instance, see dictatorship in [25], [45] and [4], random dictatorship in [26], voting by com-
mittees in [5], generalized median voter rule in [6], fixed-probabilistic-ballots rule in [24], voting by



However, once insisting on the tops-only property, one encounters the following

designing problem:
Is the scope for designing strategy-proof RSCF's significantly constrained?

Indeed, there may exist other intuitive RSCFs that use some non-top information
and have nice incentive properties, e.g., the point voting schemes in [2]. Chapter 4
precludes this possibility by providing a condition on preference domains on which
strategy-proofness and unanimity imply the tops-only property.® Importantly, note
that under the sufficient condition, the tops-only property emerges endogenously;
the methodology proposed in this chapter allows one to assert the tops-only prop-
erty without requiring us to explicitly characterize the class of all unanimous and
strategy-proof RSCFs.

In the literature, more precisely, in the case of DSCFs (e.g., [52] and [15]), it
is well-known that appropriate richness conditions are required on domains so that
the tops-only property can be endogenously established. This chapter identifies
a new sufficient condition on domains which ensures the tops-only property for
all unanimous and strategy-proof RSCFs. This condition requires that a particular
Interior Property and an Exterior Property, respectively, hold. The Interior Property
is a restriction applied to every subdomain of preferences that shares a common peak
while the Exterior Property is a restriction applied across subdomains with distinct
peaks.

The Interior Property is formulated in terms of adjacent connectedness proposed
by Sato [44]. Two distinct preference orders are adjacently connected if there exists
exactly one pair of alternatives with contiguous opposite relative rankings while the
ranking of every other alternative is identical across these two preferences. The In-
terior Property requires that for any two distinct preferences with an identical peak,

one can construct a sequence of adjacently connected preferences in the correspond-

issue in [35] and generalized random dictatorships in [16].

3A consequence of the ordinal version of strategy-proofness is that the primitive of this chapter
is an admissible domain of ordinal strict preferences. The principle assumptions will accordingly be
imposed on the admissible domain of preferences.



ing sub-domain connecting them.

The Exterior Property considers the relation between two preferences with dis-
tinct peaks. It is formulated in terms of isolation, i.e., a pair of alternatives is isolated
in two preferences if one can identify an integer k£ such that in both preferences, the
sets of the top-k ranked alternatives are identical, include one of these two alterna-
tives and exclude the other. Accordingly, a domain satisfies the Exterior Property
if fixing a pair of preferences with distinct peaks and a pair of alternatives x and y
such that z is ranked above y in both preferences, one can always construct a se-
quence of preferences connecting these two fixed preferences such that x and y are
isolated in every two consecutive preferences in the sequence.

The first result in this chapter states that every unanimous and strategy-proof
RSCEF defined on a domain satisfying the Interior Property and the Exterior Property
must satisfy the tops-only property. As applications, this chapter demonstrates that
prominent domains in the literature satisfy the Interior Property and the Exterior
Property, e.g., the complete domain, the single-peaked domain, the single-dipped
domain, maximal single-crossing domains and the multi-dimensional single-peaked
domain. Furthermore, to extend the study to separable preferences, a new notion
called general connectedness is introduced. Correspondingly, a modification of the
Interior Property and the Exterior Property is established which respectively uses
general connectedness to replace adjacent connectedness in the Interior Property
and imposes general connectedness on the sequence of preferences in the Exterior
Property. This chapter then shows that the tops-only property is implied by una-
nimity and strategy-proofness over a domain of separable preferences satisfying the
Modified Interior Property and the Modified Exterior Property, and moreover, the
separable domain is covered by these two modified properties.

In many political and economic settings, the restrictions of multi-dimensional
single-peakedness and separability, respectively, arise naturally. For instance, in a
political election, each candidate can be described as a combination of positions

on various political issues, e.g., expenditure on education, health, etc. Normally,



the preference of a voter over all candidates is formulated according to the cri-
teria of “closeness”, i.e., a candidate with positions “closer” to the voter’s ideal
political attitude is preferred to another candidate with “further” positions. Hence,
multi-dimensional single-peakedness is embedded in voter’s preferences. Consider
another example where a club decides to recruit £ new members from the pool of
m applicants where m > k. A possible recruitment profile can be represented as a
m-tuple of zeros and ones where if the hth coordinate of the m-tuple is zero, then
applicant h is excluded; otherwise, applicant & is included. Separable preferences
arise whenever each member of the recruitment committee has an unambiguous
attitude over the inclusion/exclusion of every applicant.

Deterministic strategy-proof voting rules are widely explored over both the multi-
dimensional single-peaked domain and the separable domain in the literature, e.g.,
voting by committee in [5] and [8], generalized median voter rules in [6] and [7],
decomposable rules in [13] and voting by issue in [35]. Since the sufficient condi-
tions in this chapter can be applied to induce the tops-only property in RSCFs over
these two domains, the results in this chapter can be used to further characterize
strategy-proof RSCFs. This chapter first shows that every ex-post efficient (an ax-
iom stronger than unanimity) and strategy-proof RSCF over the multi-dimensional
single-peaked domain is a random dictatorship. Similarly, this chapter asserts that
every unanimous and strategy-proof RSCF over the separable domain is a general-
ized random dictatorship. Both characterization results are instances of the extreme
point property studied in Chapter 2.

Furthermore, the result in this chapter allows one to study the inverse question
specified in Chapter 3 in a particular class of rich domains. This chapter strengthens
ex-post efficiency to ex-post efficiency* by assigning strictly positive probabilities
to all Pareto-undominated alternatives under every preference profile, and show that
single-peakedness (on a tree) is uniquely characterized by ex-post efficiency* and
strategy-proofness.

Chapter 4 is organized as follows. Section 4.1 presents the main result. Section

10



4.2 provides five applications while Section 4.3 summarizes the relation to the lit-
erature, and provides some discussion on the necessity of the conditions. Proofs of

lemmas and propositions are gathered in the Appendix.

Last, Chapter 5 concludes all main results established in Chapters 2, 3 and 4.

1.1 Preliminaries and the Model

Let A = {a,b,c,...} be afinite set of alternatives with |A| = m > 3. Sometimes,
the alternative set A is assumed to be labeled as A = {ay,...,a,,}. Let A(A) de-
note the lottery space induced by A. An element of A(A) is a lottery or probability
distribution over the elements of A. In particular, e, € A(A) is a degenerate lottery
where alternative a is chosen with probability one. Let / = {1,..., N} be a finite
set of voters with |I| = N > 2. Each voter i has a (strict preference) order P; over
A which is antisymmetric, complete and transitive, i.e., a linear order.* For any
a,b € A, aPb is interpreted as “a is strictly preferred to b according to P;”. Let
r,(P;) denote the kth ranked alternative in P;, k = 1,...,m. A pair of alternatives
a,b € Ais contiguousin P; if {a,b} = {ry(P;), rx+1(P;)} forsome 1 < k <m—1.
Accordingly, let aP;!b denote that a and b are contiguous in P;, and aFP;b. Given
1 <k <mand P, €D, B¥(P,) = U {r,(P,)} is the set of top-k ranked alter-
natives. Similarly, given a € A and P, € D, let B(P;,a) = {z € A|zP,a} and
W (P;,a) = {z € AlaPx} denote respectively the (strictly) upper contour set and
the (strictly) lower contour set of a in F;. Let P denote the set containing all linear
orders over A. The set of all admissible orders is a set D C P, referred to as the pref-
erence domain. In particular, P is called the complete domain. A preference profile
P=(P,P,...,Py) = (P, P.;) € DV is an N-tuple of orders. Given nonempty
subset I C I, letr(P;) = U,cj{r1(F)} denote the set of top-ranked alternatives in

P;.> For notational convenience, let D* = {P, € D|ry(P;) = a} denote the set of

4The whole dissertation only studies the strict preferences.
5Throughout the whole dissertation, C and C denote the weak and strict inclusion relations be-
tween two sets respectively.
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preferences with peak a; D*® = {P; € D|r,(P;) = a and ro(P;) = b} denote the set
of preferences with peak b and the second best b; and D¥ = {P, € D|r(P;) € S}
denote the set of preferences with peak in the subset S C A. In particular, a do-
main D is referred to be minimally rich if every alternative is top-ranked in some
preference in the domain, i.e., D* # () for all a € A.

A Random Social Choice Function (or RSCF) is a map ¢ : DV — A(A). At
every profile P € DV, (P) is referred to as the “socially desirable” lottery. For
any a € A, p,(P) is the probability with which the alternative a will be chosen
in ¢(P). Thus, ¢,(P) > 0foralla € Aand ) ,_, va(P) = 1. A Deterministic
Social Choice Function (or DSCF) is a particular RSCF where a degenerate lottery
is chosen under each preference profile, i.e., o(P) = ¢, for some a € A at profile
P. For notational convenience, a DSCF sometimes is simply written as a map
f:DVN = A.

A RSCEF satisfies unanimity if it assigns probability one to any alternative that is

ranked first by all voters.

Definition 1.1.1. A RSCF ¢ : DY — A(A) is unanimous if [ri(P;) = a for all
i €I = [pa(P)=1]foralla € Aand P € DV.

An axiom stronger than unanimity is ex-post efficiency. It requires all Pareto-

dominated outcomes to never be chosen.

Definition 1.1.2. A RSCF ¢ : DY — A(A) is ex-post efficient if for all a,b € A
and P € DV, [aP,b for all i € I] = [py(P) = 0].

If the social lottery does not depend on the “names” of voters, a RSCF is referred

to satisfy the property of anonymity.

Definition 1.1.3. A RSCF ¢ : DY — A(A) is anonymous if for every permutation
o:l—Tand P= (P,...,Py) €DV, o(P,...,Py) = O(Pr(1ys - - - Poy)-

A prominent class of RSCFs is the class of tops-only RSCFs. The social lottery

of a tops-only RSCF at every profile depends only on voters’ peaks at that profile.

12



Definition 1.1.4. A RSCF ¢ : DV — A(A) satisfies the tops-only property if
(11 (P;) = ri(P)) foralli € I] = [p(P) = o(P")| for all P, P' € DV,

Gibbard [26] proposed an ordinal formulation of strategy-proofness which re-
quires the social lottery under truthtelling (first-order) stochastically dominates any
social lottery under misrepresentation according to every voter’s true preference in-

dependently of others’ behavior.

Definition 1.1.5. A RSCF ¢ : DV — A(A) is strategy-proof if for all i € I;
P, Pl € Dand P_; € DV71,

Z% P,,P_,>ng,,t (P,P_),k=1,....,m.

This notion of strategy-proofness is equivalent to requiring a voter’s expected
utility from truthtelling to be no less than her expected utility from misrepresenta-
tion for any cardinal representation of her true preferences independently of other
voters’ behavior. We omit these details which may be found in [26].

The notions of unanimity, ex-post efficiency, anonymity, tops-onlyness and strategy-
proofness are standard axioms in the literature on mechanism design in voting envi-
ronments. An important class of RSCFs satisfying unanimity (ex-post efficiency),
the tops-only property and strategy-proofness is the class of random dictatorships.
Each voter is assigned a non-negative weight with the sum of weights across voters
being one. At any profile, the probability with which an arbitrary alternative a is
chosen is the sum of the probability weights of voters for whom a is the top-ranked

alternative.

Definition 1.1.6. A RSCF ¢ : DV — A(A) is a random dictatorship if there exists

leilier € RY with Y, ; &; = 1 such that for all a € A and P € D,

va(P) = Z Ei.
i€lir1(P)=a

In other words, a random dictatorship is a convex combination of a group of
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dictatorial DSCFs.® In particular, if the weight is % for every voter, the random

dictatorship also satisfies the property of anonymity.

Definition 1.1.7. A domain D is a random dictatorship domain, if every unanimous

and strategy-proof RSCF ¢ : DY — A(A), N > 2, is a random dictatorship.

In particular, given D and fixing N > 2, if every unanimous and strategy-proof
RSCF ¢ : DY — A(A) is a random dictatorship, I is referred to as a random dic-
tatorship domain of N voters. A fundamental result in random mechanism design
theory proved in [26] is that the complete domain [P is a random dictatorship domain
(see also [21] and [48]).

Analogously, a domain is a dictatorial domain, if every unanimous and strategy-
proof DSCF f : DV — A, N > 2, is a dictatorship. In the deterministic environ-
ment, anonymity is the polar opposite of dictatorship. According to the Gibbard-
Satterthwaite Theorem ([25] and [45]), the complete domain PP is also a dictatorial

domain (see also [41] and [47]).

%A DSCF is dictatorial if there exists a fixed voter (the dictator) whose best alternative is the
social outcome under every preference profile. Formally, a DSCF f : D — A is a dictatorship if
there exists i € I such that f(P) = r1(P;) forall P € DV.
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Chapter 2 Random Dictatorship Domains

2.1 Linked Domains

A central concern of this chapter is the relationship between dictatorial and random
dictatorship domains. It is evident that a random dictatorship domain is dictato-
rial. The question of interest is clearly the converse question. As mentioned in
Section 1.1, the complete domain is both a dictatorial domain and a random dicta-
torship domain. Does this relationship hold true generally? In order to investigate
this question, this chapter recalls the main result of Aswal et al. [1] on dictatorial
domains.

One important type of dictatorial domains is linked domains introduced by [1].
To establish the definition of linked domains, this chapter first introduces the defi-
nitions of connectedness and linkedness. Given a domain D, a pair of distinct alter-
natives a, b is connected, denoted a ~ b, if D*® # () and D*® # (). Furthermore,
Given B C Aand a € A\B, a is linked to B if there exist two distinct alternatives

b,c € Bsuchthata ~ band a ~ c.

Definition 2.1.1. The domain D is linked, if according to the labeled alternative set
A ={ay,...,an}, there exists a bijective function o : {1,...,m} — {1,...,m}

such that
() ag1) ~ ao(2);
(i) ao(j) is linked to {ay(y, ... ao(j—1)}, J =3,...,m.

The notion of a linked domain is formulated entirely in terms of alternatives that

can be ranked first and second according to preferences in the domain. Evidently, a
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linked domain is minimally rich and the minimal cardinality of a linked domain is
4m — 6.
The reader is referred to [1] for details and numerous examples on linked do-

mains. The following theorem summarizes the main result in [1].
Theorem 2.1.1. Linked domains are dictatorial domains.

A natural question is whether linked domains are also random dictatorship do-

mains. This is addressed in the following sections.

2.2 Dictatorial Domains are not Random Dictator-
ship Domains

This section provides examples of dictatorial domains that are not random dicta-
torship domains. In fact, a stronger result is shown: there exist domains which
are (deterministic) dictatorial but admit anonymous, unanimous and strategy-proof
RSCFs that are not random dictatorships.

This section proceeds as follows. A sufficient condition on domains is first
identified that ensures the existence of anonymous, unanimous and strategy-proof
RSCFs that are not random dictatorships. This section then shows that there are

linked domains that satisfy the sufficient condition.

2.2.1 A Sufficient Condition

The idea behind the condition is extremely simple. It ensures strategy-proofness

of a special RSCF that puts positive probability on the second ranked alternative

1

of a voter under special circumstances and remains to be a

random dictatorship
elsewhere.
Fix D C Pand a € A. Let S(a) denote the set of alternatives each of which

is ranked second in an admissible preference order where « is the peak, i.e., [z €

S(a)] & [z = ro(Py) for some Py, € D?].
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Definition 2.2.1. A domain D satisfies Condition SC (Successful Compromise), if

there exists a nonempty set B C A and y € A\B such that

(i) if |B| > 1, there exists an preference order whose first and second ranked

alternatives belong to B, i.e., D** # () for some a,b € B.
(i) for all P, € D7,

o if[Bl =1 [aeS(y)] = [abyl
e if|B| > 1, [r2(Py) € Banda € S(y)| = [aPyy] and

[r2(Px) ¢ B and a € S(y)] = [yFral.
(iii) for all P, € DMNBYWH [a Py for some a € S(y)] = [yPyz for all z € B).

In order to interpret Condition SC, it may be helpful to think of the set B as
the test set, the alternative y as the fest alternative and every alternative ranked
second in any preference order where y is ranked first as a compromise. The RSCF
will specify % random dictatorship except at a profile where N — 1 voters have
alternatives in the test set as their first and second ranked alternatives (in case there
is only one alternative in the test set, it has to be ranked first by N — 1 voters) and
one voter has the test alternative ranked first, then a suitably “small” probability is
transferred to the appropriate compromise alternative. The SC conditions impose
simple restrictions between the compromise alternatives, the test alternative and the
test set in various preference orders.

Condition SC has been presented for two cases: one where the cardinality of the
test set is one and another where it is greater than one. These two cases will be used

separately in Section 2.3. Condition SC is illustrated in Example 2.2.1.

Example 2.2.1. Let A = {a,b, c}. Domains D' and D? satisfy Condition SC with
respect to B = {a} and b (see Table 2.1), while domains D? and D* satisfy Condi-
tion SC with respect to B = {a, ¢} and b (see Table 2.2).
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PP P P PPy Py Py

a a b c a b b c
b c  a b c a c b
c b c a b c a a

Table 2.1: Domains D! and D?

A A

P, P, Py P P P Py P
a a b ¢ a b ¢ ¢
b ¢ ¢ a c a a b
c b a b b ¢ b a

Table 2.2: Domains D3 and D*
O

The following proposition shows that a domain satisfying Condition SC is not a

random dictatorship domain.

Proposition 2.2.1. A domain satisfying Condition SC admits an anonymous, unan-

imous and strategy-proof RSCF that is not a random dictatorship.

Proof. Let domain DD satisfy Condition SC with respect to some B C A and y €
A\ B. We consider the cases |B| = 1 and |B| > 1 separately. For each case, we
construct an anonymous, unanimous and strategy-proof RSCEF that is not a random

dictatorship.
Case A: |B| =1.
Let B = {x} and consider the RSCF ¢ below: for all P € DV,

f
1 N-1

if P, € DY for some i € [ and P; € D* forall j € I\{i}

>N En(P)s

icl

otherwise.
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where 0 < o < %

By construction ¢ is a random dictatorship with weight % on the best alternative
of every voter at all profiles except at a profile where exactly one voter has peak y
and all other voters have peak z. At such a profile, probability « is transferred from
y to the second best alternative of the voter with the peak .

Evidently, ¢ is anonymous, unanimous and not a random dictatorship. We show
that ¢ is strategy-proof by showing that any possible manipulation always makes
probabilities systematically transferred from the preferred alternatives to less pre-
ferred alternatives according to the true preference which equivalently indicates

stochastic dominance. In view of the construction of ¢, only the following two

cases need attention:

1. The profile is (P;, P;, P_y; j3) where P; € DY and P, € D* forall k € I'\{i}.
Voter j € I\{i} considers a manipulation via P; ¢ D*.
Since P; € D*, we know ry(F;)P;y by part (ii) of Condition SC. Conse-

quently, we have

zPjr1(Py)

L
N

T Pi P
@(Pza ]Dja Pf{i,j}) s %@(37 P]{7 P*{@j]’)'l

2. The profile is (F;, Pj, P_y; ;7) where P; € DY, P; ¢ D” for some j € I\{i}
and P, € D* for all k € I\{i,j}. Voter j € I\{i} considers a manipulation
via P; € D*.

If yPjry(P;), we have

T'l(Pj)P]'x PjT‘Q P;
PP Py Pgiy) = uBre ) (P, PLP_gigy).

If ro(P;) Py, then P; € DAM®%} | and furthermore, part (iii) of Condition SC

xPjr1(P})

L

,%@(H P}, P_; ;) represents that (i)

) ]7

IThe notation (P, P, P_gi 51)
N

xPjr1(Pj) and r2(P;) Py, and (i) from o(P;, Pj, P_(; j3) to o(F;, Pj, P_y; j1), probabilities +

(B
and o are transferred from  to 71 (P;), and from r2(F;) to y respectively.
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implies y P;z. Consequently, we have

r1(P;)Pjx VPira(P;), or r j)=r2(L% j L
M, 1(Pj) Pjra(Py), 1(P5) 2(P1)’ylz SO(PH‘P]/7P_{1»]})

1 _ «
N

QO(PZ'? Pj? P—{l}j})

We conclude that RSCF ¢ is strategy-proof.

Case B: |B| > 1.

Consider the following RSCF ¢': for all P € DY,

(% - a)ey + Q€ry(Py) + ) Z ) % e"'l(Pj)7
JeI\{i}

if P; € DY for some i € I, and P; € DB with ro(P;) € B forall j € I\{i};

1
Z N 67'1 (P¢)7
i€l

otherwise.

where 0 < o < 3.

Thus, ¢’ is a random dictatorship with weight % on the best alternative of every
voter at all profiles except at a profile where exactly one voter has peak y and all
other voters’ first and second ranked alternatives belong to B. At such a profile,

probability « is transferred from y to the second best alternative of the voter with

the peak y.

As before, ¢ is easily shown to be anonymous, unanimous and not a random
dictatorship. We only need to show that ¢’ is strategy-proof. Once again, only the
two cases below require attention and the arguments work in virtually the same way

as they do in Case A.

1. The profile is (P;, P;, P_; ;) where P; € DY and P, € D with ro(P;) € B
forall k € I'\{i}. Voter j € I'\{i} considers a manipulation via P; € D such

that ' (P, P, P—{ij}) = §en(p) + 2ken g NEr(Po)-

Since P; € DP and r5(P;) € B, part (ii) of Condition SC implies ro(P;) P;y.
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Consequently, we have

r1(P;)Pjr1(P!), or 1 (P;)=r1 (P! r NP,
gol(Pi,Pj,P_{i,j}) 1(P)Pjri( ])jr 1(Py)=r1(P;}) 7 %SDI(Piij{7P—{i,j})'
N

2. The profile is (P;, P;, P_; ) where P, € DY, P, € D with ro(P,) € B
for all k € I\{i,j} and P; € D such that ¢'(P;, P;,P_(; ) = ey, +
1

NEri (P T > ke\{ij} %eﬁ( p,)- Yoter j considers a manipulation via P]’ e DB

with TQ(P]/) € B.

If yPjro(F;), we have

r1(P;)Pir1(P!), or ri(P;)=r1(P! iro (P;
QD/(Pi,Pj,P_{M}) 1(Pj)Pjri( ﬂ:r 1(Pj)=r1(Pj) ,%@'(B,Q,P—{i,ﬁ)-
N

Lastly, assume therefore that 7o(P;)P;y holds. Clearly P; ¢ DY. Suppose
r1(P;) € B. Our assumption that ¢'(P;, P;, P_(; ;) = w¢€y + ~en(p) +
D ke n\fij} ~€r(p,) implies 75(P;) ¢ B. Hence, part (ii) of Condition SC im-
plies y Pjry(P;) which contradicts our initial assumption. Therefore, r;(P;) ¢

B U {y}. Consequently, part (iii) of Condition SC implies y Pjr1(P). Then,

we have
LB Pr1(PY)  p (P Piro(P)). of 11 (P )—o (P (P
w’(R,Pj,P-{m})%il, ()P z(pn,a H(Py)=ra(Py) wE) ;(PJ) A (PPl P_iy).
N (03
We conclude that RSCF ¢ is strategy-proof. [

In the next two subsections, two applications of Condition SC are presented.

2.2.2 Dictatorial Domains satisfying Condition SC

This subsection shows by means of examples that there are linked domains that
satisfy Condition SC. An immediate consequence of Theorem 2.1.1 and Proposition
2.2.1 is that there exist dictatorial domains that admit anonymous, unanimous and

strategy-proof RSCFs that are not random dictatorships.
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Py

X

a

Example 2.2.2. Let A = {z,y,a,b,c,d}. Domain D of preferences over the six

alternatives is described in Table 2.3.

P, P3s Py P B P Ps Py P Pu P2 Pi3s Pu Pis Pig Pir
x a a a b b b b c c c c d d d Y
b b c x a c d a b d Y b c y c
Y Y
Y Y Y Y Y Y
Y Y : Yy Y
¢c ¢ x ¢ ¢ T =z x T T
y d d d d

Table 2.3: Domain D 2

To check whether a domain is linked, it is convenient to associate to the domain
a graph that reflects its connectedness structure. This is done as follows. Fixing a
domain D, let G(DD) denote the connectivity graph of D where (i) the set of nodes is
A, and (ii) for all a,b € A, (a,b) is an edge if a ~ b. Correspondingly, for domain
D, the connectivity graph G (]D) is shown in Figure 2.1. It is clear that D is a linked
domain: we relabel alternatives in A as a; = x, a2 = a, a3 = b, a4 = ¢, a5 = d and
ag = y, and the one to one function o : {1,...,6} — {1,...,6} in Definition 2.1.1
is the identity function.

T b d

Figure 2.1: Connectivity Graph G(ID)

We claim that D satisfies Condition SC with respect to B = {z} and y. Ob-

serve that S(z) = {a,b} and S(y) = {c,d}. Pick P, € D* = {P;, P,}. Then,

cPyy and dP.y so that part (ii) of Condition SC is satisfied. To verify part (iii)
of Condition SC, note that if P, € DA\#%} and 2P,y for some z € S (y), then
P, € {Ps, Py, Py, Pro, P11, Pi2, P13, P14, P15, Pig}. For these preference orders, we

have y Pyx. O

2In Table 2.3, dots in a particular preference order signify that alternatives unspecified are arbi-
trarily ordered.
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The next result shows that the example can be suitably generalized.

Proposition 2.2.2. Given m > 6, there exist dictatorial domains that admit anony-

mous, unanimous and strategy-proof RSCF's that are not random dictatorships.

Proof. Pick m > 6. We construct a linked domain satisfying Condition SC in two

steps, where the cardinality of the test set is one.

Step 1: We construct a linked domain D satisfying the following connectedness
structure: the one to one function ¢ in Definition 2.1.1 is the identity function with
a; ~ a9, ar ~ ar_1 and ar ~ ag_2, 3 < k < m. Since m > 6, we know

{CL27 a3} N {am—Qa am—l} == (Z)

Step 2: Let a; = z, a,, = y and B = {z} in Condition SC. We can mimic
the preference orders in D (Example 2.2.2) thereby satisfying Condition SC, while

remaining compatible with the connectedness structure specified in Step 1. [

Remark 2.2.1. In order to construct a linked domain satisfying Condition SC, the

restriction m > 6 is necessary.’

2.2.3 Random Constrained Voting

The voting model with separable preferences was introduced in Barbera et al. [5]
(see also [13]). There is a set of voters who wish to elect a subset (possibly empty)
of candidates. The set of deterministic, unanimous and strategy-proof SCFs was
characterized in [5] and shown to be decomposable, i.e., there exist strategy-proof,
unanimous, deterministic SCFs for every candidate that determines whether she is
elected. Subsequently, several papers (e.g., [6], [7], [8], [49]) have considered vari-
ants of the model where certain subsets of candidates are not feasible. For instance,

it may be required that at least one candidate is elected and so on. The model with

3In an arbitrary linked domain over less than six alternatives, every pair of alternatives is either
connected or connected to another common alternative. However, in order to embed Condition SC
into a linked domain, there must exist a pair of alternatives “far away” from each other (in the sense
of the connectivity graph), i.e., neither connected to each other, not connected to another common
alternative.
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constrains on the set of feasible alternatives is referred to as the constrained voting
model.

This chapter studies the constrained voting model where voters’ preferences
are assumed separable. Separability induces an unambiguous preference over the
inclusion/exclusion of every candidate, precluding thereby externalities across can-
didates. Note that the constrained voting model with the accompanying separability
assumption is well-established in the literature (e.g., [1], [5], [8], [13], [49]), and is a
natural and tractable model for the purpose of this chapter. Aswal et al. [1] show that
certain kinds of constraints on the feasible set lead to linked domains and therefore
to dictatorship. This subsection shows the existence of constraints on the feasible
set which lead to linked domains but satisfy Condition SC, i.e., permit anonymous,
unanimous and strategy-proof RSCFs that are not random dictatorships.

The set of voters is I as before. There is a set of four candidates {1,2,3,4}.
The set of alternatives A is the set of all subsets of candidates and can be repre-
sented by A = {0,1} x {0,1} x {0,1} x {0, 1} (for instance, (1,0, 1,0) represents
the set consisting of only Candidates 1 and 3). The alternatives are labeled as fol-
lows: ag = (0,0,0,0); a; = (0,0,1,0), a; = (0,1,0,0), ag = (1,0,0,0), ay =
(0,0,0,1); a5 = (1,1,0,0), ag = (1,0,1,0), a7 = (1,0,0,1), ag = (0,1, 1,0),
ag = (0,1,0,1), a;p = (0,0,1,1); a3 = (1,1,1,0), a;o = (1,0,1,1), a13 =
(1,1,0,1),a14 = (0,1,1,1) and a5 = (1, 1,1, 1).

Let Dy denote the domain of all separable preferences over A.* Each voter is
endowed with the domain of preferences D specified in Table 2.4. It is true that
D C Dg.’> Note that the dots in the preference orders Table 2.4 do not imply that
the unspecified alternatives can be ranked arbitrarily. Instead, it indicates that the
unspecified alternatives can be ranked in a way that is consistent with separable

preference requirement. The rankings of these alternatives are irrelevant for our

4 Assume that the alternative set follows a Cartesian product structure, i.e., A = X ¢ pr A°, where
|M| > 2 and |A®| > 2, s € M. An alternative a € A is expressed as (a®,a™*). Accordingly, for
every s € M, A™° = x,4,A°. A preference F; is separable, if for every s € M and a*®,0° € A°,
[(a®, z=%)P;(b%, 2~ °) forsome % € A~*] = [(a®,y ®)P;(b°,y~ %) forall y—* € A~7°].

A complete argument can be found in Appendix 1.
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Py
ao
ay

a2

ais

a15

results.
PR P P P P P PR Py Po Pu Pio Pi3 Py Pis P Py
ao ao ao as ag ao ae ae as ae a5 ais ae a5 Az a5
aq a2 a2 a2 ag ag az asz a1 aix @11 aixz G2 a2 G2 Aaig
ag ai ag a11 ai az ailr a2 az as a2 ais as aii a1z an
a3 ais

a3 a3 @13 a3 a3 a3 a3 a1z a3 a13

ail; a1 ail a1
a3 a2 a2 a1 a2 a2 a4 a4y Lo
a1s a5 a5 © a5 a1s

Table 2.4: Domain D
The set of feasible alternatives is X = {ay, as, as, a1, a12,a13} C A. In other

words, the following three restrictions are imposed on the feasible set:

(i) Either only one candidate is elected, or a set of three candidates is elected.
(i1) If only one candidate is elected, it is never Candidate 4.
(ii1) If a set of three candidates is elected, Candidate 1 is always in the elected set.

A (deterministic) constrained voting SCF is amap f : DV — X. Assume that f
is an onto function. A random constrained voting SCF is a map ¢ : DV — AX(A),
where AX(A) = {\ € A(A) : A\, = 0 forall x € A\X}. Correspondingly, the
definitions of dictatorship, unanimity and random dictatorship are slightly modified
for the present context. The constrained voting SCF f : DV — X is a dictatorship
if there exists i € I such that for all P € DV, f(P) = max(P;, X).5 The random
constrained voting SCF ¢ : DY — AX(A) is unanimous if for all z € X and
P € DV, [max(P;, X) = z forall i € I] = [p,(P) = 1]. The random constrained
voting SCF ¢ : DY — A¥(A) is a random dictatorship if there exists [¢;];c; € RY

with Y, _;&; = 1 such that forall 2 € X and P € DV, ¢, (P) = Z(: | Ei-
i€l:max(P;,X)=x

The next proposition shows that the results in Theorem 2.1.1 and Proposition

2.2.1 apply to the model under consideration.

5Given P, € D, max(P;, X) is the highest ranked alternative in X according to P;.
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Proposition 2.2.3. The constrained voting SCF f : DN — X is strategy-proof
only if it is a dictatorship. However, there exists a random constrained voting SCF
¢ : DY — AX(A) which is anonymous, unanimous and strategy-proof, but not a

random dictatorship.

Proof. Standard results on strategy-proofness imply that the values of f and ¢ at
any P € DY depend only on profiles induced by P on the feasible set X.” We
denote this induced domain by D, i.e., P, € D if P, = (P, X) for some P}, € D.

The domain D is shown in Table 2.5.

P, P P, P P P Ps Py Pog Pu P P3 Pu P Pg Prir

a1 a2 a2 a2 as asz asz asz a1 a1l a1 a1 12 a12 a12 a13

as ay as a11 ai az air  a12 az as a2 a1z as a1 a3  ai
a13 : : a3
ais : : aiz @13 @13 a3 : : a3
a1z a13 : a1z a13
a1l 411 aq a1l 411 aq aq aq ai : : ai
aiz a2 12 : a2 12

Table 2.5: Domain D

The domain D is, in fact identical to domain I in Example 2.2.2 with the rela-
beling ay = z, a;3 = y, as = a, a3 = b, a;; = c and a5 = d. The result follows

immediately from this observation. [

2.3 Random Dictatorship Results

This section provides two conditions that ensure that a domain is a random dic-
tatorship domain. The first imposes restrictions on the connectedness structure of
linked domains. The second strengthens the requirement for the connectedness of
two alternatives but imposes a weaker requirement on the connectedness structure.
Finally, this section shows that the strengthened conditions are “close to” being

necessary using results developed in Section 2.2.1.

"The arguments here are routine and tedious; details can be found in Appendix 1.
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In the analysis of random dictatorship, the first step is to reduce the dimension
of the problem from an arbitrary number of voters to two voters. This chapter
establishes a Ramification Theorem (Theorem 5.1 in Appendix 5), which shows
that a random dictatorship domain with two voters, is also a random dictatorship
domain for an arbitrary number of voters, provided an additional richness condition
(Definition 3.1, Appendix 5) is satisfied. A result of this kind was first established
in [30] which showed that a domain where all Arrovian social welfare functions are
dictatorial when there are two voters also admits only dictatorial Arrovian social
welfare functions for an arbitrary number of voters. A similar property has been
shown for deterministic strategy-proof SCFs (initiated in [32], see also [47], [1]).

The property of ramification for RSCFs is interesting in its own right. In ad-
dition, it is very helpful analytically; in order to determine whether a domain is a
random dictatorship domain, it suffices to verify that every two-voter strategy-proof
RSCEF satisfying unanimity is a random dictatorship. Unfortunately, ramification
appears to be a significantly more difficult issue to resolve than its counterpart for
the deterministic case. A formal treatment is presented in Appendix 5.

Fortunately, all domains discussed in this chapter are covered by the richness
conditions in the Ramification Theorem. Consequently, the whole analysis is re-

stricted to two-voter RSCFs.

2.3.1 Linked Domains with Condition H

The following condition is imposed on the connectedness structure of domains.

Definition 2.3.1. A domain D satisfies Condition H (Hub) if there exists a € A such

thatb ~ a forallb € A\{a}.

An alternative connected to all other alternatives is referred to as a Aub. Domains

satisfying Condition SC must violate Condition H.? The following examples of five

8Condition H implies that every alternative is connected to every other alternative in at most two
steps, while in order to embed Condition SC in linked domains, there must exist two alternatives
which are neither connected to each other nor connected to some other common alternative. A
similar argument holds when the domain is not linked; details can be found in Appendix 2.1.
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connectivity graphs are presented to illustrate the relation between Condition H and

linked domains.

as as as
ai ag aq a4
(a) (b) (c)
al ar
A “
) ' ) "
ayq a9 ayq ae

(d) (e)

Figure 2.2: Connectivity Graphs and Condition H
Figure 2.2 shows various types of linked domains. The domains corresponding
to (a), (b) and (c) satisfy Condition H, while domains related to (d) and (e) violate
it. In diagram (a), any alternative is a hub; in diagram (b), it must be either a,
or ay, while in diagram (c), the only candidate for the hub is a;. Observe that in
diagrams (d) and (e), for every pair of two alternatives, they are either connected or

connected to another common alternative.

The main result in this section is that the assumption of a linked domain in
conjunction with Condition H ensures that the domain is a random dictatorship

domain.

Theorem 2.3.1. A linked domain satisfying Condition H is a random dictatorship

domain.
The proof is in Appendix 3.

Remark 2.3.1. The Free Pair at the Top domain (FPT domain) introduced in [1] in
which every two alternatives are connected, is a linked domain satisfying Condition

H (every alternative is a hub) and is consequently a random dictatorship domain.
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This addresses an open question in [48]: is the FPT domain a random dictatorship

domain for an arbitrary number of voters?

Remark 2.3.2. It is possible to construct a linked domain of minimal cardinality
satisfying Condition H . This can be done as follows: a; ~ ao; and a ~ aq,
ap ~ as, k = 3,...,m. Therefore “small” random dictatorship domains can be

found - those that grow linearly in the number of alternatives.

2.3.2 Strongly Linked Domains with Condition TS

This subsection provides another condition that guarantees random dictatorship.
The approach here is to strengthen the notion of connectedness of alternatives along

the lines initiated in [17].

Definition 2.3.2. A pair of distinct alternatives a, b is strongly connected, denoted
a = b, if there exist P, € D* and P € D" such that ry(P;) = m(P]), k =

3,...,Mm.

In other words, a and b are stongly connected if it is possible to find a preference
order in the domain where a and b are first and second ranked and it is possible to

flip @ and b while keeping the positions of all other alternatives fixed.

Definition 2.3.3. A strongly linked domain is defined in exactly the same way as a
linked domain except that the notion of connectedness is replaced by strong con-

nectedness.

A strongly linked domain has stronger restrictions embedded in it than a linked
domain. However, it is not necessarily a random dictatorship domain - a strongly

linked domain may satisfy Condition SC (see Example 2.3.1).

Example 2.3.1. Let A = {z,y, z,a, b, ¢,d}. The Domain D of preferences over the

seven alternatives is described in Table 2.6.
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Py

PZ P3 P4 P5 PG P7 PS P9 PlO Pll P12 P13 P14 P15 P16 P17 P18 P19

r T Yy Yy 2z z a a a a b b b b c c c c d

Table 2.6: Domain D

In Table 2.6, dots in a particular preference order signify that alternatives un-
specified are arbitrarily ordered. Therefore, strong connectedness can be induced.

The strong connectivity graph G (]D) is shown in Figure 2.3. It is clear that D is a

strongly linked domain.

Y

Figure 2.3: Connectivity Graph G(ID)

Furthermore, by careful specification of preferences in Table 2.6, domain ID can

satisfy Condition SC with respectto B = {x, z} and y:
(i) SetS(z) ={z,a,b},S(z) = {z,a} and S(y) = {c, d}.

(ii) For all P, € D?, [ry(P:) € B] = [Py € {Py, Ps}]. Set cPyy and dPyy;
For all P, € DP, [ry(Py) ¢ B] = [Py € { Py, Ps, Pr}]. Set yPy.c and yPyd.

(iii) For all P, € DAMV=w2}

Py

Py
d

[;kay for some 7 € S(Q)] = [Pk S {P11,P14, Pis, Pig, Pi7, Pig, Prg, Pao, P21>P22}]-

Set yPyx and y P 2.

O

Clearly additional conditions are required to make a strongly linked domain, a

random dictatorship domain. This subsection provides such a condition.
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Definition 2.3.4. A domain D satisfies Condition TS (Two Steps) if for all a,b € A,

either a = b, or a = c and b = c for some ¢ € A\{a, b}.

In other words, every alternative is strongly connected to any other alternative
in at most two steps. The counterpart of this condition for connectedness is clearly
weaker than Condition H. If diagrams (d) and (e) in Figure 2.2 are interpreted in
terms of strong connectedness, then they represent strongly linked domains sat-
isfying Condition TS. In addition, domains satisfying Condition SC must violate

Condition TS.?

Theorem 2.3.2. A strongly linked domain satisfying Condition TS is a random dic-

tatorship domain.
The proof is contained in Appendix 4.

Remark 2.3.3. Note here that in the constrained voting model, introducing more
restrictions to the feasible alternative set might lead to a violation of Condition SC
and furthermore, lead to random dictatorships. Consider the following additional
restriction on the feasible alternative set in the constrained voting model studied in
Section 2.2.3: if only one candidate is elected, it is never Candidate 3. Thus, the set
of feasible alternatives is X = {as, as,a11,a12,a13}. In Figure 2.1, when x = a;
is removed, the remaining connections are unaffected and ¢ = a;; turns to be the
hub.!” Therefore, Theorem 2.3.1 implies random dictatorships in the constrained
voting model.

One may verify that the induced domain D over X will be strongly linked for
some specification of preferences in Table 2.5. Then the strong connectedness struc-
ture of I is as specified in Figure 2.1 with alternative = a; removed, and since
every alternative in X is strongly connected to any other alternative in at most two
steps, domain D satisfies Condition TS. Therefore, one can alternatively deduce

random dictatorship by Theorem 2.3.2.

9The argument here is analogous to that in footnote 8, details can be found in Appendix 2.2.

10After removing alternative a, in every preference in Table 2.5, the set of preferences
{Py, Ps, P;,..., Pig} in the induced domain D over X indicates that D is linked and satisfies Con-
dition H where the hub is a1; = (1,1, 1,0).
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2.3.3 “Necessity”’ of Conditions H and TS

Conditions H and TS are obviously strong conditions. Are they necessary for ran-
dom dictatorship? The question appears to be extremely difficult to resolve com-
pletely. However, Examples 2.3.2 and 2.3.3 suggest that they are close fo being

necessary in an appropriate sense.

Example 2.3.2. Consider A with |A| > 6. Let z,y € A, and T, 7" C A\{z,y} be
suchthat TUT" = A\{z,y}, TNT' = Qand |T|,|T’| > 2. Construct D* satisfying

the following restrictions:
(i) forall a,b € A\{z,y}, a ~ b;
(i) foralla € T, a ~ x;
(iii) foralla’ € T", a' ~ y;
(iv) No connectedness other than those specified in parts (i), (ii) and (iii);
(v) forall P, € D*?, r,,(P) = v;
(vi) forall P, € D*A\M=9} either ry(Py) = y or r3(Py) = .

The following schematic diagram illustrates the connectedness structure of D*.

b/

Figure 2.4: Connectedness structure of domain D*
It is easy to verify that D* satisfies Condition SC with respect to B = {x} and
y (parts (ii) - (vi)) and is linked (parts (i) - (iii)). In addition, domain D* violates
Condition H but is very close to satisfying Condition H. In particular, “almost”

every alternative (those other than x and y) is “almost” a hub as we note below.
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(i) Every z € T is a hub for the sub-domain D*4\M¥}: [z € T] = [z ~ a for all

a € A\{z,y}];

(ii) Every 2/ € T is a hub for the sub-domain D*A\=}: [/ € T'] = [2/ ~ a for

alla € A\{#, z}].

Finally, since domain D* satisfies Condition SC, Proposition 2.2.1 implies that

it is not a random dictatorship domain. O

Example 2.3.3. Consider A with |A| > 7. Letx,y,z € Aand T, 7" C A\{z,y, z}
withTUT = A\{z,y,z}, TNT" =@ and |T|,|T’| > 2. Construct D** satisfying

the following restrictions:
(i) foralla,b € A\{z,y,z},a =~ b
(1) =z = z;
(ii1) foralla € T, a =~ xr and a = z;
(iv) foralld' € T', d' =~ y;

(v) No connectedness other than the connectedness induced by the strong con-

nectedness specified in parts (i), (ii) and (iii);
(vi) for all P, € D* ==} with ry(Py) € {x, 2}, rin(P) = ¥
(vii) for all P, € D** {2} with ro(Py) ¢ {z, 2}, r3(Py) = v;
(viii) for all P, € D**AMew:2} either ro(Py,) = y or r3(Py) = v.

We provide the following schematic diagram to illustrate the strong connected-

ness structure of D**.
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b/

Figure 2.5: Strong connectedness structure of domain D**
It is easy to verify that D** satisfies Condition SC with respect to B = {x, z}
and y (parts (ii) - (viii)) and is strongly linked (parts (i), (iii) and (iv)). In addition,

domain D** violates Condition TS but is very close to satisfying Condition TS:

(i) sub-domain D** A\¥} satisfies Condition TS: [a, b € A\{y}] = [either a ~ b,

ora = cand b = ¢ for some ¢ € A\{y}];

(ii) sub-domain D** A\{##} satisfies Condition TS: [a, b € A\{z, z}] = [either a ~

b,or a =~ cand b = ¢ for some ¢ € A\{z, z}].

Finally, since domain D** satisfies Condition SC, Proposition 2.2.1 implies that

it is not a random dictatorship domain. O
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Chapter 3 A Characterization of Single-Peaked
Preferences via Random Social Choice

Functions

3.1 The Compromise Property

Recall that random dictatorships satisfy anonymity (if weights are equal for all vot-
ers), unanimity (ex-post efficiency), the tops-only property and strategy-proofness.
However, they suffer from an important and well-known infirmity: they do not admit
compromise. Imagine a two-voter world with several alternatives (say, a thousand).
Consider a profile where voter 1’s first-ranked and thousandth-ranked alternatives
are a and b, respectively. Alternatively, voter 2’s first-ranked and thousandth-ranked
alternative are b and a, respectively. Suppose, in addition, that there is an alternative
say c that is highly ranked by both voters, for instance, ranked second by both. A
reasonable RSCF should put at least some probability weight on ¢, but no random
dictatorship would.

This chapter introduces a new axiom so as to deal with the difficulties associated
with random dictatorships outlined above. The axiom requires some compromise
alternatives in certain profiles to be selected by the RSCF with strictly positive prob-
ability.

Let P, P; € D be such that ry(P;) # ri(F;). Let C(P;, P;) = {a, € Ala, =
ro(P;) = r3(P;)}. Note that C(P;, P;) is either empty or contains a singleton.

Let ] C Ibea nonempty strict subset of voters. For any P, P; € D, let
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( P, .., PP, ... P ) denote the profile where all voters in I have the order P,

I N
while those not in I have P;.

Definition 3.1.1. A RSCF ¢ : DV — A(A) satisfies the compromise property if
there exists I C I with |I| = N/2if N is even and |I| = (N +1)/2 if N is odd,
such that for all P;, P; € D with r(P;) # ri1(F;) and C(P;, Pj) = {a}, we have
a( P PPy Py) >0

-~

I N

The axiom requires the existence of a subset of voters I that is approximately
half the size of the set of voters. Pick an arbitrary profile where all voters in I have
identical preferences as do voters in the complement set / \ I. Suppose the common
preferences in Iand [ \ I have distinct peaks but have a common second-ranked
alternative a,. According to the axiom, the RSCF must give a, strictly positive
probability at the profile.

This chapter believes that the axiom is both weak and natural. It is weak because
it applies to a very narrow class of profiles. It is natural because in the profile where
it applies, the alternative to which strictly positive probability is assigned according
to the axiom, is an obvious compromise between the two groups of voters.

Two remarks are made here about the set / in Definition 3.1.1. The first is that
Definition 3.1.1 merely requires the existence of one such set of voters. A stronger
but equally plausible axiom would require the property to hold for all subsets I such
that |I| = N/2if N is even, and |I| = (N +1)/2if N is odd. A weaker assumption
is made in Definition 3.1.1 because the stronger one is not required for the result.
Note however that once I is fixed, the strictly positive probability requirement on

the compromise applies to all profiles (R-, PP P )
? Ix\rf
The second remark is to point out that the choice of the cardinality of / in Defi-

nition 3.1.1, is arbitrary. As footnote 5 points out, any choice of the cardinality of I
works for our proof, provided 0 < |f | < N. One could have assumed, for instance,

|I] = 2 or |I| = N — 1. One could even have left || unspecified. However, ||

36



is chosen to be approximately half of N because it is the compelling case for the

axiom to hold.

3.2 Path-connected Domains

The goal in this chapter is to characterize preference domains that admit RSCFs
satisfying unanimity (ex-post efficiency), the tops-only property, strategy-proofness
and the compromise property. However, this chapter needs to restrict attention to
domains that satisfy a regularity condition called path-connectedness.

The path-connectedness condition was introduced in Chatterji et al. [17].! Fix
a domain . A pair of distinct alternatives a,b € A satisfies the Free Pair at the
Top (or FPT) property, if there exist P;, P/ € D such that (i) 7 (P;) = m2(P/) = a,
(ii) ro(P;) = r1(P}) = b, and (iii) 7:(P;) = r(F!), t = 3,..., m. The definition of
FPT property is identical to the definition of strong connectedness (see Definition
2.3.2 in Chapter 2). In other words, two alternatives satisfy the FPT property if
there exists a pair of admissible orders where the alternatives are at the top of both
orders and are locally switched, i.e., all alternatives other than the specified pair are
ranked in the same way in both orders. Let F'PT (D) denote the set of alternative
pairs that satisfy the FPT property. The domain DD is path-connected if for every
pair of alternatives a,b € A, there exists a sequence {z;}_;, C A, T > 2, such that
r1 =a,xp =band (v4,2441) € FPT(D),t=1,...,T — 1.

The path-connectedness assumption imposes structure on the domain. It al-
lows the construction of paths between admissible orders by switching preferences
at the top of the orders. Very similar conditions have been identified in [14] and
[44] as being critical for the purpose of identifying domains where local incentive-
compatibility ensures strategy-proofness.’

Chatterji et al. [17] provide extensive discussion of well-known domains that

ISlightly different names were used in [17] for the Free Pair at the Top property and path-
connectedness. We believe that the new names are more apposite.

2 Assume that domains are minimally rich. Then domains of ordinal preferences studied in both
[14] and [44] are path-connected.
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satisfy the path-connectedness assumption. The complete domain and the single-
peaked domain are path-connected. Maximal single-crossing domains ([42]) are
path-connected provided that every alternative is first-ranked in some order in the
domain. A generalized single-peaked domain ([35]) may or may not be path-
connected. Alternatively, the separable domain ([5] and [13]) and the multi-dimensional
single-peaked domain ([6]) are not path-connected. For details the reader is referred

to Examples 1, 2 and 3 in [17].

A domain of central importance in collective choice theory is the single-peaked
domain. It was originally introduced in [11] and [29]. Here this chapter considers a
generalization due to [20] and [19].

An undirected graph G = (V, E) is a set of vertices V' and a set of edges F.
The set E consists of pairs vertices, i.e., £ C {(u,v)|u,v € V and u # v}.
If (u,v) € E, we say that (u,v) is an edge in G.> A path in G is a sequence
{vg}i_; C V where s > 2 and (vg,vk41) € E, k= 1,...,s — 1. The graph G is
connected if there exists a path between every pair of vertices, i.e., for all u,v € V
with u # v, there exists a path {v; }{_; such that u = v; and v = v,. The connected
graph G is a tree if the path between every pair of vertices is unique. Let GG be a
tree and u, v € V' be a pair of vertices. Accordingly, (u,v) denotes the unique path
between them.*

In what follows, graphs G of the kind G = (A, F) is considered, i.e., whose

vertex set is the set of alternatives.

Definition 3.2.1. Let G = (A, E) be a tree. A preference P; is single-peaked on G
if forall a,b € A,

[a € (r(P,),0)\{b}] = [aP3b)].

Pick a preference P; and an arbitrary alternative b. Since the graph is a tree,

there is a unique path between r;(P;) and b. The order F, is single-peaked if every

3In an undirected graph, (u,v) and (v, u) represent a same edge.
“In particular, if u = v, (u,v) = {u} is a singleton set.
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alternative a on this path that is distinct from b is strictly preferred to b according to
P,

A domain D is single-peaked if there exists a tree GG such that P; € D implies P;
is single-peaked on G.

A case of special interest is the one where the graph G = (A, E) is a line.
Formally, GG is a line if according to the labeled alternative set A = {ay,...,an},
there exists a bijective function o : {1,...,m} — {1,...,m} such that £ =
{(ag(k), ag(kﬂ))}::ll. The standard definition of a single-peaked domain is one
where the underlying graph is a line. This section illustrates these notions with

Examples 3.2.1 and 3.2.2.

Example 3.2.1. Let A = {a,, as, as, a,}. The domain D is described in Table 3.1.
Pl PQ P3 P4 P5 P6 P7 Pg Pg
ap aq a9 a9 a9 as as ay ay
a9 a9 aq ay as a9 a9 a9 a9
Qy as Qy as Qy Qg aq as aq
as ay as aq aq aq ay aq as

Table 3.1: Domain D

The domain D is single-peaked on the tree G shown in Figure 3.1.

Qa4
a1 ag as

Figure 3.1: Tree GT

Note that there are orders that are single-peaked on G but not included in DD,
for instance, as Pyga; Pigas Pipay. The largest single-peaked domain on GT contains

12 orders. 0

Example 3.2.2. Let A = {ay, as, ag, as}. The domain D is described in Table 3.2.
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P P P P P B P B
aq a9 a9 a9 as as as Qy
(05} aq as as a9 a9 ay, Qs
as as ay ay ay ay a9 a9

ay a4 @1 Qa4 G4 a3 a1 Qi

Table 3.2: Domain D

The domain D is single-peaked on the line G shown in Figure 3.2.

ai az as a4

Figure 3.2: Line G*

In contrast to domain D in Example 3.2.1, domain D includes all orders that are
single-peaked on G'. Observe also that D is not single-peaked on a line; neither is
D single-peaked on G*. To verify the former claim, observe that any domain that
is single-peaked on a line must have at least two alternatives which have unique
orders where these alternatives are peaks (these are the alternatives at either end
of the line); there are no alternatives with this property in . Alternatively, the
maximal number of alternatives that can be second-ranked to a given alternative
on any domain that is single-peaked on a line, is two, whereas on domain D, the

alternative as has three distinct second-ranked alternatives a;, as and ay. O

3.3 Main Result: Single-Peakedness

The main result in this chapter characterizes single-peaked domains.

Theorem 3.3.1. Every path-connected domain that admits a unanimous, tops-only
and strategy-proof RSCF satisfying the compromise property is single-peaked. Con-
versely, every single-peaked domain admits an ex-post efficient, tops-only and strategy-

proof RSCF satisfying the compromise property.
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Proof. We first prove necessity. Assume that D is path-connected. In addition, there
exists a RSCF ¢ : DY — A(A) that is tops-only, strategy-proof and unanimous,
and satisfies the compromise property. We will show that there exists a tree GG such
that D is single-peaked on G.

The first four lemmas establish critical properties of the RSCF .

Lemma 3.3.1. Let a,b € A with (a,b) € FPT(D). Let P;, P/ € D be such
that () r1(P;) = ro(P!) = a (ii) ro(P;) = m(P!) = b, and (iii) r(P;) = r/(P)),
t=3,...,m. Then, forall P_; € DN7Y, . (P;, P_;)+pu(Bi, P_;) = wa(P!, P_;)+
@o(P;, P-i) and p.(P;, P-;) = ¢.(P}, P-;) for all ¢ € A\{a, b}.

Suppose voter ¢ switches her order from P, to P/, a move that involves the
reshuffling of the top two alternatives, say a and b, while leaving all other alterna-
tives unaffected. According to Lemma 3.3.1, the switch leaves the probabilities of
alternatives other than a and b, and the sum of probabilities of a and b, unchanged.

Lemma 3.3.1 is a special case of Lemma 2 in [26]. It is a consequence of strategy-

proofness and we omit its elementary proof.

Lemma 3.3.2. If domain D admits a unanimous, tops-only and strategy-proof RSCF
satisfying the compromise property, then it admits a two-voter unanimous, tops-only

and strategy-proof RSCF satisfying the compromise property.

Proof. Let ¢ : DY — A(A) denote a unanimous, tops-only and strategy-proof
RSCEF satisfying the compromise property. We know that there exists I C I with
II| = N/2if N is even and |I| = (N + 1)/2 if N is odd such that for all
P, P; € D with (i) r(F;) # r(P;) and (ii) a = ro(P;) = ro(P;), we have
@a(Piy..., P, Py, P) > 0.

I Vi

Construct a two-voter RSCF ¢ : D? — A(A) as ¢(Py, P) = gp( P, ....,P,P, ..., Pg)

i Py,
forall P;, P, € D. In other words, ¢ is constructed by “merging” all voters in [ and

all voters in \f in .°> Clearly, ¢ is a RSCF satisfying unanimity and the tops-only

3> Any choice of the cardinality of IAAworks for our proof, provided 0 < |f | < N. We could have
assumed, for instance that |[I| = 2or [I| = N — 1.
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property. It is also strategy-proof (see the proof of Lemma 3 in [48]). We show that
¢ satisfies the compromise property.

Let [ = {1} in the two-voter model. Let P, P, € D with (i) 1(P;) # r1(P»)
and (i) a = r5(Py) = ro(Py). Then ¢u(P1, Po) = @u( Pr, -, P, P, ..., Py) >0

I NI
where the equality follows from the construction of ¢ and the inequality follows

from the fact that ¢ satisfies the compromise property. Therefore ¢ satisfies the

compromise property. This completes the proof of the lemma. [

In view of Lemma 3.3.2, we can assume without loss of generality that the set
of voters is {1,2} and ¢ is an RSCF ¢ : D? — A(A) that is unanimous, tops-
only and strategy-proof, and satisfies the compromise property. We make a further
simplification in notation. Since ¢ is tops-only, we can represent a profile P € D?
by a pair of alternatives a and b where r1(P;) = a and r1(P,) = b. We shall also

occasionally let (a, P,) denote a preference profile (P, P;) where r1(P;) = a.

Lemma 3.3.3. Let a,b € A with (a,b) € FPT(D). There exists € [0,1] such

that p(a,b) = fe, + (1 — B)ep.

Proof. Let Py, P € D be such that (i) ry(Py) = ro( P)) = a, (i) r2(P) = r(P]) =
b and (iii) r4(Py) = r(Py), t = 3,..., m (such two preferences exist since (a,b) €

FPT(DD)). We then have

wala,b) + pp(a,b) = pu(P1,b) + vp(P1,b) (by the tops-only property)
= @a(P[,b) + ¢p(P],b) (by Lemma 3.3.1)

= @p(b,b) =1 (by unanimity).

Let ¢, (a,b) = B. Thus, ¢(a,b) = Be, + (1 — 5)e, as required. O

The next lemma considers situations that are more general than those considered
in the previous one. We illustrate it with an example. Suppose (a1, az), (az, as) €

FPT(D). We know from Lemma 3.3.3 that there exist 51, 32 € [0, 1] such that
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wlar,as) = Preq, + (1 — Pr)eq, and p(as, az) = Poeq, + (1 — B2)eq,. The next

lemma shows that 3, > 1 and (a1, as) = Bieq, + (B2 — f1)ea, + (1 — B2)eq,.

Lemma 3.34. Let {a,};_, C A s > 3, be such that (ay,ar+1) € FPT(D),
k=1,...,s =1 Let B = pu (ag,ars1), k = 1,...,s — 1. Then, the following

two conditions hold.

(1) Wehave 0 < B, < Br1 < L k=1,...,5s—2

(ii) Forall1 <i < j <s, pla,a;) = Biea, + > peivs(Br — Bro1)eay + (1 —

5j—1)€a]~-

Proof. We know from Lemma 3.3.3 that p(ag, ar1) = Br€a, + (1 — Bi)eay, s
k=1,...,s — 1. Pick k with 1 < k < s — 2. Since (a;1,ar12) € FPT(D)
and aj, ¢ {ak41, ari2}, Lemma 3.3.1 implies g, ,, (ak, Goy2) + Pap,o (A, Qi) =
Pari1 (a, ap41) + SOakJrg(ak, A1) = Pagi1 (ak,ary1) = 1 — By and @ak(aka Upy2) =
Oay (K, Gk41) = Pr. Also, since (ax,ar+1) € FPT(D), Lemma 3.3.1 implies
Pap (ks i) FPayyy (ks Ahi2) = Gap (Arr1; Qrg2) FPapsy (A1, Ghr2) = Gapyy (Arg1; Qy2) =
Bi+1. Therefore, @q, ,, (ar, Grt2) = Bit1—Pay (ks Art2) = Brs1—Br and o, ,, (ak, Gpy2) =
1 = B — Qap 1 (k, apg2) = 1 — Bypq. Therefore, @, (a, Grr2) + Pay,, (ks Grr2) +
Pagys (A, apy2) = Land p(ag, arr2) = Brea, + (Brr1 — Br)eapy + (1= Brg1)€ay s
Therefore ;.1 > (. We conclude the argument by showing that the inequality
must be strict.

Since (ax, ari1), (@gr1,ak42) € FPT(D), we have P, Py € D such that
r(Py) = ag, 11(Py) = ag2 and ro( Pf) = r2(Py) = agq1. Thus, C(Pf, Py) =
{ak41}. Then, the tops-only property and the compromise property imply [x1 —
Bre = Qapi (k, Apy2) = @a,,, (P, Py) > 0 as required. This completes the verifi-

cation of part (i) of the lemma.

Pick a;, a; in the sequence {ay};_, such that i < j. We will prove part (ii) by
induction on the value of [ = j — ¢. Observe that part (ii) has already been proved

for the cases | = 1 (Lemma 3.3.3) and [ = 2 (in the proof of part (i)). Assume
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therefore that 3 < [ < s — 1. We impose the following induction hypothesis: for all

1§g’<i§s,wehave

[l —1< l} = [‘p(%’a a]) Bzeaz + Zk z+1( ﬁk‘—l)e@k + (1 — 51—1)6%]'

We complete the proof by showing that part (ii) holds for all 7, j with 1 <17 <
j<sandj—1=1L.

Since j—i=101>3,weknowi <i+1<j—1<j. Also(j—1)—i=1-1<1
and j — (i + 1) = [ — 1 < [. The induction hypothesis can then be applied to the

profiles (a;,a;_1) and (a;41,a;). Hence

j—2
o(a;,a;—1) = PBieq + Z (Br — Br—1)€q, + (1 — Bj_2)eq;,_, and

k=i+1
j—1
P(ais1,0;) = Biptea + > (Be— Brot)ea, + (1= Bi—1)ea,-
k=i+2
Since (a;,a;_1) € FPT(D) and a;,...,a;_o are distinct from a;_; and a;,

Lemma 3.3.1 implies ¢, (@i, aj) = @q, (@i, aj_1) = B; and g, (a;, a;) = pq, (@i, aj-1) =
B — Br—1, k =1i+1,...,j— 2. Similarly, since (a;, a;+1) € FPT(D), a;_; and a;
are distinct from a; and a;,,, Lemma 3.3.1 implies ¢,,_, (a;, a;) = @a,_, (@it1,a;) =
Bj-1— -2 and %j(ai, aj) = %j(aiﬂ, aj) = 1-4;_1. Thus, i:i %k(aia @j) =1
and ¢(a;, a;) = Bieq, + Y- H—l( — Br-1)€q, + (1 — Bj_1)eq, as required. This
completes the verification of the induction hypothesis and hence part (ii) of the

lemma. L

To demonstrate that D is single-peaked, we need to construct a tree G = (A, E)
and show that P, € D implies F; is single-peaked on G.

Let G(D) = (A, FPT(D)) be a graph, i.e., a, b € A constitute an edge in G(D)
only if they satisfy the FPT property. Since D is path-connected, graph G(D) is

connected. The following lemma shows that G(DD) is a tree.

Lemma 3.3.5. The graph G(D) is a tree.

Proof. Suppose not, i.e., there exists a sequence {a;};_; C A, s > 3, such that
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(a,ar41) € FPT(D), k = 1,...,s, where as;11 = a1. Let B = @, (ak, Gri1),
k=1,...,s — 1. Since (ay,ax+1) € FPT(D), k =1,...,s — 1, Lemma 3.3.4
implies ¢ (a1, as) = Brea, + 3 p_s(Br — Br-1)ea, + (1 — Bs_1)eq, where 0 < B <
Bri1 < 1,k =1,...,s — 2. However, since (a;,a;) € FPT(D), Lemma 3.3.3

implies ¢, (a1, as) = 0 for all a;, # a1, as. We have a contradiction. O
Lemma 3.3.6. The inclusion [P; € D] = [P, is single-peaked on G(D)).

Proof. Suppose z,a,b € A are such that r1(P;) = z and a € (x,b)\{b}. Let
(x,b) = {a;}_, where a; =z, ar = band a = q; forsome 1 <[ < T. If a = =,
aP;b follows trivially. Assume therefore that a # x. Thus, T' > 3. Suppose bP;a.
Consider the profile P = (z,b) and ¢(P). According to Lemma 3.3.4, all alterna-
tives in the sequence {a;}.>," get strictly positive probability. Hence @, (z,b) > 0.
Since ¢ satisfies unanimity, ¢,(b,b) = 1. Then voter ¢ can obtain a strictly higher
probability on the set of alternatives at least as preferred to a under F; (this set
includes b by hypothesis) by putting b on top of her order. This contradicts the

strategy-proofness of (. Therefore, a P;b as required. [

This completes the verification of the necessity part of the theorem.

In order to demonstrate sufficiency, let D be a single-peaked domain on a tree
G = (A, E). We construct a RSCF ¢ : DV — A(A) that is strategy-proof, tops-
only and ex-post efficient, and satisfies the compromise property. We proceed as
follows: in the first step, we use the idea in [17] to construct a specific DSCF (see
the proof of the sufficiency part of the Theorem in [17]); in the second step, we
consider randomization over such DSCFs.

For any set B C A, let G(B) be the minimal subgraph of G that contains B
as vertices. More formally, G(B) is the unique graph that satisfies the following

properties.
1. The set of vertices in G(B) contains B.
2. Leta,b € B. Graph G(B) has an edge (a, b) only if (a,b) is an edge in G.
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3. The graph G(B) is connected.

4. We have z € G(B) if and only if 2 € (a, b) where a,b € B.

Fix a profile P € DV and an alternative a; € A. Consider the graph G(r;(P)).
Suppose a ¢ G(r1(P)). Since G is a tree and contains no cycles, there exists a
unique alternative in G(r(P)) that belongs to every path from a to any vertex in
G(r1(P)). Let this alternative be denoted by (3(a, P).® Then, define the alternative
7(a, P) as

a, ifa € G(ri(P))
m(a, P) =

B(a, P), ifa¢ G(ri(P))

Consider Example 3.2.1. Suppose I = {1,2,3}. Let a be the alternative a4
and let P be a profile such that 1 (P) = {ay, as,asz}. Then G(r,(P)) is the graph
consisting of the vertices {aq,as, a3} and the edges (a1, az) and (ag,a3). Then
7(a, P) = B(a4, P) = as. Further examples can be found in [17].

For every a € A, the DSCF ¢ : DY — Ais defined as for all P € DV, ¢*(P) =
m(a, P). Evidently, ¢* is a DSCF. Its outcome at profile P is the “projection” of a
on the minimal subgraph of GG generated by the set of the first-ranked alternatives in
P.

In the next step, we construct the RSCF ¢ : DY — A(A) as for all P € DY,
©(P) =3 ,ca A0 (P), where \* > O foralla € Aand > _, A = 1. The RSCF
is obtained by choosing over the DSCFs ¢, a € A, according to a fixed probability
distribution where the probability of choosing each such DSCEF is strictly positive.
We call RSCF ¢ a weighted projection rule. We claim that ¢ satisfies all the required

properties.’

Lemma 3.3.7. The RSCF ¢ is tops-only and strategy-proof.

®It would have been more appropriate to write 3(a, G(r1(P))) but we choose to suppress the
dependence of this alternative on G for notational convenience.
7Some further properties of weighted projection rules are discussed in Appendix 6.
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Proof. According to Proposition 1 in [17], a single-peaked domain is semi-single-
peaked where every alternative can be taken to be a threshold in the definition of
semi-single-peakedness. The sufficiency part of the Theorem in [17] shows that for
any threshold a € A, ¢ is strategy-proof, tops-only and satisfies unanimity over a
semi-single-peaked domain. Consequently, each ¢ is tops-only and strategy-proof.
Therefore, ¢ which is a convex combination of distinct tops-only and strategy-proof

RSCFs is also a tops-only and strategy-proof RSCF.? ]
Lemma 3.3.8. The RSCF ¢ is ex-post efficient.

Proof. Suppose the lemma is false, i.e., there exist P € D" and a,b € A such that
aP;bforalli € I and ¢,(P) > 0. Evidently, b ¢ 7 (P). Since  satisfies unanimity,
©p(P) > 0 implies |r1(P)| > 1. Observe that 7(z, P) € G(r1(P)) for all x € A.
Hence, by construction of ¢, if z is not included in the vertex set of G(r(P)), then
©.(P) = 0. Therefore, b belongs to the vertex set of G(r1(P)).

Let Ext(G(r1(P))) denote the set of vertices in G(r1(P)) with degree one, i.e.,
x € Ext(G(r(P))) if there exists a unique y € A such that (z,y) is an edge in
G(r1(P)). Observe that Ext(G(r1(P))) C r1(P). (Suppose z € Ext(G(r1(P)))
but z ¢ r1(P). Then x can be deleted as a vertex in G(r1(P)) contradicting the
assumption that G (r1(P)) is minimal.) In other words, the vertices at the ends of
every maximal path in G (r1(P)) must be some elements of 71 (P).

It follows from the arguments in the two previous paragraphs that
b € G(ri(P))\Exzt(G(ri(P))). Consequently, there exist i,/ € I such that
ri(B;) #ri(Py), b € (ri(F;),r1(Py)) and b # r1(P;), r1(Py). Let z be the projec-
tion of a on the interval (ry(F;),r(Py)). By assumption, x € (ri(P;),r1(Fy)).
Hence, either b € (ri(P;),z) or b € (ri(Py),z) must hold. Therefore either
b € (r(P;),a) orb € (ri(Py),a) must hold, i.e., either bP;a or bPya must hold
by single-peakedness of ). We have a contradiction to our initial hypothesis that

aP;b for all i« € I. Therefore, ¢ is ex-post efficient. ]

8These arguments are routine and therefore omitted.
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Lemma 3.3.9. The RSCF ¢ satisfies the compromise property.

Proof. Let P;, P; € D be such that a = ry(P;) # r1(P;) = band C(FP;, P;) = {c}.

Let ] C I be such that || = N/2if N iseven and |I| = (N 41)/2if N is odd. Let

P € DV be the profile (P, ..., P;, P;, ..., P; ). We will show that ¢.(P) > 0.
S— ———

I N
Since D is single-peaked on the tree G = (A, E), it follows that (a, c), (b, c) €

E. Hence ¢ € G(ry(P)) and ¢¢(P) = e.. Therefore, o.(P) > \° > 0. O

This completes the proof of the sufficiency part of the theorem. ]

3.3.1 Discussion: Indispensability of the Axioms and the Rich-

ness Condition

This subsection shows that all axioms and richness assumption are indispensable
for Theorem 3.3.1. Examples 3.3.1, 3.3.2, 3.3.3 and 3.3.4 drop, respectively, the
compromise property, tops-onlyness, unanimity and strategy-proofness in turn, and
demonstrate the existence of a non-single-peaked domain that admits RSCFs satis-
fying the remaining axioms. In addition, Example 3.3.5 shows that the separable
domain violates path-connectedness but admits a unanimous, tops-only, strategy-

proof RSCEF satisfying the compromise property.

Example 3.3.1 (Dropping the compromise property). Let A = {ay, as, as, as}. The
domain D? is described in Table 3.3.

bk P P P B B

a; ay ay as az a

as @1 az Qg G4 a3

a a4 Qa4 Q4 Qg Qg

az a3 a; a; a;

Table 3.3: Domain D?

Since (a1, as), (as,a3), (az,as) € FPT(D?), domain D? is path-connected. In

view of the path-connectivity structure, the only candidate for a graph with respect
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to which D? could be single-peaked is the line G* in Figure 3.2. However, pref-
erences P, and P, violate single-peakedness in this case. Hence D? is not single-
peaked.

The domain D? is however, semi-single-peaked ([17]) with respect to (G, ay).
Consequently, the projection rule ¢“* is unanimous, tops-only and strategy-proof.
(This can also be verified directly.)

Note that C(P;, P;) = () for all profile pairs with distinct peaks except for the
pairs (P, Py) and (Ps, Ps). Accordingly, C(Py, Py) = {as}, C(Ps, Ps) = {as};

2(Py, Py) = ¢2(Py, Pr) = 1 >0, but $32 (P, Ps) = ¢32(Fs, P3) = 0. Therefore,

RSCF ¢ violates the compromise property. O

Example 3.3.2 (Dropping the tops-only property). Let A = {aq,as, a3, a4}. The

domain D* is described in Table 3.4.

P1 P2 P3 P4 P5 Pﬁ
ai as Qg a3 as3 Q4
az a1 az Gz G4 0ag
as, a4 Qa4 G4 a1 Qaq

a3 as ap a; Gz Qg

Table 3.4: Domain D*

Once again, domain D* is path-connected since (ay,as), (as,as), (as, as) €
FPT(D*). Using the same arguments as in Example 3.3.1, it follows that D* is
not single-peaked.

Let ¢%, k = 1,2, 3, 4, denote the four projection rules on the line G* in Figure

3.2. We specify a unanimous RSCF ¢ : [D*]> — A(A) as

1 1
3 6ri(P) T 56r(P)))

it (P, Pj) € {P1, P} x {Ps, Pe} or {5, P} x {P1, P2}
SO(PHPJ) =9
%QS(“ (Pw Pj) + %¢a2(Pia Pj) + %¢a3(Pi7Pj) + %QS(M(PM Pj)a

otherwise.
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The RSCF ¢ is an equal weight random dictatorship when a preference pro-
file belongs to the subdomain {{Py, P,} x {P5, Ps}} U {{Ps, Ps} x {P1, P2} };
otherwise it is a specific weighted projection rule on the line G*. The RSCF ¢
is also strategy-proof; this can be verified by showing that in every possible ma-
nipulation, probabilities are transferred from preferred alternatives to less preferred
alternatives in the true preference while probabilities assigned to other alternatives
are unchanged. The details of the verification are found in Appendix 7.

Note that 7 (Py) = 71(Ps) = az and ., (P, Py) = ¢ # 0 = o, (P, B5).
Therefore ¢ violates the tops-only property.

Observe that C'(P;, P;) = () for all profile pairs with distinct peaks except for
pairs (P, Py) and (Ps, Ps). Accordingly, C(Py, Py) = {as}, C(P3, Bs) = {as};
Par(Pi, P) = ¢ay (P, Py) = § > 0and ¢, (Ps, Ps) = @ay(Fs, P3) = § > 0.

Hence, the compromise property is satisfied. O

Example 3.3.3 (Dropping unanimity). Consider the complete domain PP. Fix a col-
lection [A\*],c4 € RY, with )~ _, A* = 1, and construct the RSCF ¢ : PV — A(A)
as

p(P) = e, forall P € PV,

acA

The RSCF ¢ is tops-only and strategy-proof, and satisfies the compromise property.

Since it is a convex combination of all constant DSCFs, it violates unanimity. O

Example 3.3.4 (Dropping strategy-proofness). Consider the complete domain P.
Fix a collection [A\*],c4 € RT, with }° _, A* = 1, and construct the RSCF ¢ :

PN — A(A) as

€q, if r1(P) = {a} for some a € A;

p(P) =
> Ae,, otherwise.
acA

The RSCF ¢ picks alternative a for sure if a is the peak for all voters in a

profile. In all other profiles, it is a convex combination of all constant DSCFs. It
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is unanimous and tops-only, and satisfies the compromise property but not strategy-

proofnot. U

Example 3.3.5 (Dropping path-connectedness). Let A = {ay, as, az,as}. The do-

main D7 is specified in Table 3.5.

P P P P, P Fs P B
aq aq a9 a9 as as ay Qg
(05} ay aq as (05} ay Qay as
ay a9 as ay ay a9 as aq

a3 as a4 a4 a1 Qa3 Az Q2

Table 3.5: Domain D7

A convenient way to represent these preferences is to regard each alternative ay,
as comprising two components (aj,,ar). Specifically, A* = {0,1}, A* = {0,1};
a; = (0,0),as = (1,0), a3 = (1,1) and a4 = (0,1). Then domain D7 is a separable
domain ([5], [13]). Apparently, F'PT (]])7) = () and hence domain D7 is not path-
connected.

For all P, P; € D7, let ri(P) = a; = (a},a?) and r1(P;) = a; = (a},a?).

1) VR

Accordingly, D admits the following four DSCFs: for all P;, P; € D7,

¢ (P;, ;) = (min(a;, aj), min(af, a3)),  ¢™(P, Pj) = (max(a;, a;), min(a7, a3)),

¢ (P;, P;) = (max(a;, aj), max(af, a3)),  ¢™(P, P;) = (min(q;, aj), max(a;, a3)).
The DSCFs ¢, ¢, ¢*3, ¢ are unanimous, anonymous, tops-only and strategy-
proof.
Pick \* > 0, k = 1,2,3,4 with 3_;_, A% = 1, and define RSCF ¢ : [D7]? —
A(A) as
4

p(P) =Y A\*¢™(P) forall P € [D7].

k=1

Since it is a convex combination of DSCFs satisfying unanimity, anonymity,

tops-onlyness and strategy-proofness, ¢ also satisfies these properties. Finally, ob-
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serve that C'(Py, P5) = {a2}, C(Pe, Bs) = {aa}, C(Ps, P;) = {a1}, C(Py, Ps) =
{as} and C(P,;, P;) = 0 for all other pairs (P;, P;) with r(P;) # r(F;). Since
Gas(Pry P5) = 0y (Ps, ) = A2 > 0, gu,(Po, Ps) = ¢u,(Ps, P) = A4 > 0,
Par (P53, Pr) = 04, (Pr, P3) = A" > 0 and @q, (Py, Bs) = 4y (Ps, Ps) = A% > 0,

RSCF ¢ satisfies the compromise property. O
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Chapter 4 On Random Social Choice Func-

tions with the Tops-only Property

4.1 Main Result

The class of tops-only RSCFs have obvious informational and computational ad-
vantages. More importantly, the tops-only property decreases the degree of possible
manipulations. For these reasons, they (more accurately, DSCFs) have received a
great deal of attention in the literature (see [52] and [15]). This chapter studies the
tops-only property in the randomized environment.

This section introduces a condition on domains under which every unanimous
and strategy-proof RSCF satisfies the tops-only property. The condition requires
two properties which are referred to as the Interior Property and the Exterior Prop-
erty. The domain first is partitioned into sub-domains where all preferences in a
sub-domain have an identical peak. The Interior Property refers to a requirement
across any two preferences within a given sub-domain, while the Exterior Property
refers to a requirement that applies to two preferences belonging to two distinct
sub-domains. To describe the Interior Property, the notion of adjacent connected-
ness (introduced in Sato [44]) is adopted, while to describe the Exterior Property, a
more general notion called isolation is used.

A pair of distinct preferences P;, P/ € D is adjacently connected, denoted P; ~*

P/, if there exists 1 < k < m— 1 such that the following two conditions are satisfied

(1) 7%(F) = rega(F) and 71 (F) = r(F));
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(i) r(P) = r(P!) forall t # k, k + 1.

In other words, two preferences are adjacently connected if one pair of alternatives
locally switches their relative rankings. Given distinct P;, P/ € D, an AC-path
connecting P; and P! is a sequence {PF}!_, such that P! = P, P! = P/ and
PE AP =111

The Interior Property requires that given two distinct preferences with the same

peak, there is an AC-path connecting them such that every preference on the path

shares that peak.

Definition 4.1.1. Domain D satisfies the Interior Property if for all a € A and

distinct P;, P! € D° there exists an AC-path { P*}! _, C D connecting P, and P,.

The Interior Property is not enough to ensure that unanimity and strategy-proofness

imply the tops-only property (see Example 4.1.1).

Example 4.1.1. Let A = {a, b, ¢} and domain D of three preferences is specified in

Table 4.1.
P P P
a b D
c a c
b ¢ a

Table 4.1: Domain D

Evidently, domain ID satisfies the Interior Property, i.e., P, ~*4 P;. Moreover,
domain D admits a two-voter unanimous and strategy-proof DSCF: (i) f (P, P,) =
f(Py, P) = eq and f(P1,P3) = f(Ps, P1) = e, (i) f(P1,P1) = e, and (iii)
f(Pi, P;) = e, for all P, P; € {P,, P;}. Since social lotteries vary at profiles
(Py, P,) and ( Py, P3) in favour of the second voter’s preference over a and ¢, DSCF

f does not satisfy the tops-only property. O

Example 4.1.1 indicates that in addition to the Interior Property, a condition
needs to be imposed on preferences with distinct peaks, which is referred to the Ex-

terior Property. For the description of the Exterior Property, the notion of isolation
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needs to be established. Given distinct P;, P/ € D, a pair of alternatives =,y € A is

isolated in (P;, P)) if there exists 1 < k < m such that
(i) B*(P;) = B*(P)),
(i) either x € B*(P;) and y ¢ B*(P;),or x ¢ B*(P,) and y € B*(P).

In the notion of isolation, two sets of top-k ranked alternatives in P; and P/ are
identical, include one alternative in {z, y} and exclude the other. Note that if = and
y are isolated in (P;, P/), the relative rankings of = and y are identical in P, and F/,
ie., [tPy] & [zP!y]. Given distinct P;, P/ € D and z,y € A, let {P*}\_, bea
sequence of preferences (not necessarily an AC-path) such that P! = P;, P} = P/;

and x and y are isolated in (PF, PF*'), k= 1,...,1— 1. Then, { P}}{ _, is referred

to as a (x, y)-Is-path connecting P; and P).

Remark 4.1.1. The notion of isolation is independent of adjacent connectedness
since preferences in the definition of isolation are not necessarily adjacently con-
nected. Conversely, given P;, P/ € D with P; ~* P/, a pair of alternatives 7,y € A
is isolated in (P;, P!) if and only if the relative rankings of = and y are identical in

P; and P/

The Exterior Property says that fixing a pair of preferences with distinct peaks
and a pair of alternatives with the same relative ranking across these two prefer-
ences, one can construct a sequence of preferences connecting these two fixed pref-
erences such that the fixed pair of alternatives is isolated in every two consecutive

preferences of the sequence.

Definition 4.1.2. Domain D satisfies the Exterior Property if given P;, P! € D with
r(P;) # ri(P!) and x,y € A with Py and x Py, there exists a (x,y)-Is-path

connecting P; and P).

Note that in the definition of the Exterior Property, x is preferred to y in every
preference of the (z, y)-Is-path connecting P; and P;. With a small modification of

Example 4.1.1, an new example (Example 4.1.1 [continued]) is provided to illustrate
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how the terminology of isolation in the Exterior Property, in conjunction with the
Interior Property, drives a two-voter unanimous and strategy-proof RSCF to satisfy
the tops-only property. A general argument can be easily deduced from this example
to verify the sufficiency of the Interior Property and the Exterior Property for the

tops-only property.

Example. 4.1.1 [continued] Replace preference P, in Example 4.1.1 by P;: aP,bP;c,
and let D = {P;, P,, P;}. Observe that a and c are not isolated in (P, P,) in Ex-
ample 4.1.1, but isolated in (P, ), i.e., B3(P,) = B*(P) = {a,b} includes a
and excludes c. Correspondingly, domain D in Example 4.1.1 violates the Exterior
Property, i.e., there exists no (a, c)-Is-path in D connecting P; and P, while it is
easy to verify that domain D) satisfies both the Interior Property and the Exterior
Property. Consequently, for every two-voter unanimous and strategy-proof RSCF

¢ :D? — A(A), we have

SDC(PIMPQ) = 1-— Z SOJ:(PlaP2)

x€{a,b}=B2(P,)

= 1- Z @ (P, Py) by strategy-proofness on isolation B*(P;) = B?(P,) = {a,b}
z€{a,b}=B2(Ps)

= 1- > ©z(Ps, P3) by unanimity, 7 (P;) = r1(Ps) = b
z€{a,b}=B2(Ps)

= 1- Z @ (Py, P3) by strategy-proofness on isolation B*(P;) = B*(P,) = {a,b}
z€{a,b}=B2(P;)

= (P, P3)

Therefore, it must be the case that o(Py, P,) = (P, P3) and moreover, ¢ satisfies

the tops-only property. O
Now, state the main result.

Theorem 4.1.1. Let domain D satisfy the Interior Property and the Exterior Prop-

erty. Every unanimous and strategy-proof RSCF satisfies the tops-only property.

Proof. We first provide a lemma which is repeatedly applied in the proof of Theo-

rem 4.1.1. Let ¢ : DY — A(A), N > 2, be a strategy-proof RSCF.

Lemma 4.1.1. Given P;, P, € D with P, ~* P!, assume xP,'y and yP]'z. Given
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P;, P; € D, if x and y are isolated in (P;, P)), then for all P_y; j; € DV72,

[e(Py, P, P_iijy) = o(P}, P, P_iiy)] = [¢(Bi, P}, P_iiy) = ¢(P, P}, P_i jy)].

The proof of Lemma 4.1.1 is available in Appendix 8.

Now, we prove Theorem 4.1.1. Let domain D satisfy the Interior Property and
the Exterior Property. If N = 1, unanimity implies the tops-only property. Now, we

provide an induction argument on the number of voters.

Induction hypothesis: Given N > 2, for all 1 < n < N, every unanimous and

strategy-proof RSCF ¢ : D" — A(A) satisfies the tops-only property.

Given an unanimous and strategy-proof RSCF ¢ : DY — A(A), we will show
that ¢ satisfies the tops-only property. It is easy to verify that ¢ satisfies the tops-
only property if for all i € I; P;, P/ € D with ry(P;) = ry(P/) and P_; € DV,
o(P;, P_;) = (P!, P_;). Given distinct P;, P/ € D with r(P;) = r(P/) = a, the
Interior Property implies that there exists an AC-path {P*},_, C D” connecting
P; and P/. Then, it suffices to show that foreach 1 < k < [ — 1, p(PF, P_;) =
(PF P_y) for all P_; € D!, Equivalently, we will show that for all i € I;
P, P! € D with r(P) = r(P/) and P, ~* P/, and P_; € DV, p(P;, P_;) =
(P, P-;).

Fixing two voters 7,j € I, we induce a function ¢/ : D¥~! — A(A) such that
V(P P_gijy) = (P, Py, P_y; jy) forall P, € D and P_g; j; € DV=2. Evidently, ¢
is a well-defined RSCEF satisfying unanimity and strategy-proofness (please refer to
Lemma 3 in [48]). Hence, induction hypothesis implies that ¢/ satisfies the tops-only
property. Accordingly, for all P;, P! € D with ry(FP;) = r1(P/) and P_; j, € DN 72,
(P, Py, Py jy) = o(F, P, P_i jy)-

Fixing P;, P/ € D with 7, (P) = r(P/) and P, ~* P/, we assume x P!y and
yP/lz. Given P; € D and P_y; ;; € DV~2, we will prove that o(P;, Pj, P_g; 1) =
p(P, Py, P_gijy).

Claim 1: If r1(P;) = r(P;), then ¢(P;, P;, P_{i,j}) = (P, P}, P_{i,j}).
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Firstly, by strategy-proofness, we have that forallt =1,...,m,

> e PP Poap) < Y @a(PLPLP) <Y (B P Pogigy),

CCEBt(Pi) Z‘EBt(Pi) Q?EBt(P/L')
Y PP Poipy) < Y @ulPLPL P S Y (P PL Py
z€B(P!) z€B(P!) z€B(P!)

Moreover, since r1(F;) = r1(F) = ri(F;), ¢(F;, P, Pijy) = ¥(P, Pgigy) =
O(Bs, Pgigy) = @(Pi, Py Pgigy) and o(Py, Py, Pgijy) = (P, Prgigy) = (B, Pogijy) =
@(P;, P, P_{i j1). Consequently, forallt = 1,....m, > pipy @u(Di, Py P—ijy) =
Z:peBt(Pi) ¢a(Fi, P, P_y; 5y) and erBt(P;) 0a(F, Py, P_iy) = erBt(P;) (P, P, P_gijy)-
Hence, (P, P}, P jy) = @(Pi, Py, P-gigy) and o(P/, Py, P—i jy) = o(P), P, P-gi j3).
Then, we have (P, P, Py jy) = (P, Pi, P—ijy) = (P, Poijy) = (P, P-jijy) =
©(P/, P/, P_i; y) = @(P/, P;, P_y; jy). This completes the verification of the claim.

Next, assume r1(FP;) # 71(F;). Evidently, either zP;y or yP;z. We assume
x Pjy. The argument related to y P;x is symmetric and we hence omit it. Since x Py
and x P;y, the Exterior Property implies that there exists a (z, y)-Is-path { P/ }_, C
D connecting P; and P;. Firstly, since P} = P;, Claim 1 implies ¢(P;, P}, P_; j3) =
(P, P, P_iijy) = @(P},Pi,P_iijy) = (P}, P}, P_{ijy). Next, following the
sequences {PF}_,, since P, ~* P/; xPly, yP/lz; and x and y are isolated in
(Pf, Pf“), k=1,...,1—1, we can repeatedly applying Lemma 4.1.1 step by step
which eventually implies ¢(P;, P;, P_(; 3) = @(P/, P;, P_; j3). This completes

the verification of the induction hypothesis and hence Theorem 4.1.1. [

4.2 Applications

This section first studies two important classes of restricted domains in the liter-
ature: connected domains ([44]) and the multi-dimensional single-peaked domain
([6]). Both two classes of domains are shown to satisty the Interior Property and the
Exterior Property.

Next, this section slightly modifies both the Interior Property and the Exterior
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Property to accord with the Cartesian product setting on the alternative set, and
show that unanimity and strategy-proofness imply the tops-only property over the
separable domain ([5] and [13]).

After establishing the tops-only property for all unanimous and strategy-proof
RSCFs over the multi-dimensional single-peaked domain and the separable domain,
this section further characterizes strategy-proof RSCFs over these two domains. The
first characterization result generalizes Theorem 4 in [5] to a randomized setting
by showing that every ex-post efficient and strategy-proof RSCF over the multi-
dimensional single-peaked domain is a random dictatorship. In the second char-
acterization result, every unanimous and strategy-proof RSCF over the separable
domain is a generalized random dictatorship. This is a direct extension of Theorem
3in[16].

Last, this section strengthens the axiom of ex-post efficiency to ex-post effi-
ciency* by enlarging the support of the social lottery under every preference profile
and studies a domain implication problem: what must a domain, which admits an
ex-post efficient™ and strategy-proof RSCF, look like? It is established that in the
class of connected domains with minimal richness, single-peakedness is implied by

the admission of an ex-post efficient™ and strategy-proof RSCF.

4.2.1 Connected Domains

Sato [44] introduces the notion of weak connectedness which is a necessary con-
dition (not sufficient) for the equivalence of adjacent manipulation-proofness (or

AM-proofness) and strategy-proofness in DSCFs.!

Definition 4.2.1. Domain D is weakly connected if given distinct P;, P! € D and

x,y € A, there exists an AC-path { PF},._, C D connecting P, and P] such that

[wPly and yP{ ' for some 1 < k < 1—1] = [¢Fly, 1 <t < k and yPx,

'A RSCF ¢ : DV — A(A) is AM-proof if for all i € I; P;, P! € D with P, ~* P! and
P,i S DN_l, ZzGBt(Pi) Soz(Pi; P,i) > ZCL‘GBt(Pi) (paj(R/7 P,i), t = 1, e, [53] revisits
Sato’s work and shows that in conjunction with the Interior Property which is also necessary for the
equivalence of AM-proofness and strategy-proofness, weak connectedness is sufficient for enhanc-
ing AM-proofness to strategy-proofness in the class of unanimous DSCFs.
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kE+1<t <l

Evidently, weak connectedness implies the Exterior Property. However, the in-
verse argument does not hold since the Exterior Property only considers two prefer-
ences with distinct peaks, and the Is-path in the description of the Exterior Property
may not be an AC-path.

In this chapter, a domain satisfying the Interior Property and weak connected-
ness is referred to as a connected domain. Therefore, by Theorem 4.1.1, every unan-

imous and strategy-proof RSCF over a connected domain must satisfy the tops-only

property.

Proposition 4.2.1. Every unanimous and strategy-proof RSCF over a connected

domain satisfies the tops-only property.

Remark 4.2.1. The complete domain, the single-peaked domain ([34] and [20]), the
single-dipped domain ([9]) and maximal single-crossing domains ([42] and [14]) are
all connected domains. Therefore, the tops-only property is endogenized in every

unanimous and strategy-proof RSCF defined on these domains.

Remark 4.2.2. Every unanimous and AM-proof RSCF over a connected domain
also satisfies the tops-only property.? Therefore, in a domain satisfying the equiva-
lence of AM-proofness and strategy-proofness, the tops-only property is implied by

unanimity and AM-proofness.

4.2.2 The Multi-Dimensional Single-Peaked Domain

In this subsection, a Cartesian product structure is imposed on the alternative set,
ie., A = XgepA® where M is finite, |[M| > 2; and A® is finite and |A®| > 2 for

each s € M. An alternative can be written as a = (a®,a~%) = (a®,a™°) where

>The verification is similar to the proof of Theorem 4.1.1 which makes the following four
changes: (i) change strategy-proofness to AM-proofness, (ii) change the sentence “Given P, PJ’- €
D” in Lemma 4.1.1 to “Given P;, P; € D with P; ~A P;”, (iii) change the hypothesis “r1(FP;) =
r1(F;)”in Claim 1 to “P; = P,”, and (iv) change the first sentence of the last paragraph in the proof
of Theorem 4.1.1 to “Next, assume P; # F;.”.
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S C M is not empty. For notational convenience, given s € M and a®* € A®, let
(a®, A7%) = {z € Al|z® = a’}.

Moreover, for each s € M, assume that all elements in A® are located on a tree,
denoted G(A?®). Thus, a product of trees X ¢ s G(A®) is generated. For each s € M,
let (a®, b®) denote the unique path between a® and b° in G(A®). Given a,b € A, let
(a,by = {x € Alz® € (a®,b*) for each s € M} denote the minimal box containing

all alternatives located between a and b in each dimension.

Definition 4.2.2. Given a product of trees X ;)G (A®), a preference P; is multi-

dimensional single-peaked on X ¢y G(A®) if for all a,b € A,
[a € (ri(P),\{B}] = [aP

Given a product of trees X ¢ G(A®), let Dy 5p denote the multi-dimensional

single-peaked domain on X 4¢;G(A®) containing all admissible preferences.

Remark 4.2.3. The formulation of multi-dimensional single-peakedness in this
subsection is the one where all elements in each component set are located on a
tree. This generalizes the earlier notion introduced by [6] where all elements in

each component set must be arranged on a line.

The multi-dimensional single-peaked domain satisfies both the Interior Prop-
erty and the Exterior Property. A simple example is first provided to illustrate (see

Example 4.2.1).

Example 4.2.1. Let A = A' x A?2 = {0, 1} x {0, 1}. The product of lines G(A") x

G(A?) and domain Dy;gp are specified in Figure 4.1 and Table 4.2, respectively.

(0,1) (1,1)

(0,0) (1,0)

Figure 4.1: The product of lines G(A') x G(A?)
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(0,0) (0,0) (1,0) (1,0) (0,1) (0,1) (1,1) (1,1)
(1,0) (0,1) (0,0) (1,1) (0,0) (1,1) (1,0) (0,1)
(0,1) (1,0) (1,1) (0,0) (1,1) (0,0) (0,1) (1,0)
(1,1) (1,1) (0,1) (0,1) (1,0) (1,0) (0,0) (0,0)

Table 4.2: Domain Dy;sp

The Interior Property is satisfied since P, ~* P,, Py ~4 P, P; ~4 Py
and P ~* P;. An instance is used here to illustrate how the requirement of
the Exterior Property is met. Note that (1,0)P;(0,1) and (1,0)P7(0,1). Cor-
respondingly, {P1, Ps, Py, P;} is a ((1,0), (0,1))-Is-path connecting P; and P,
ie. BAP) = BXPy) = {(0,0),(1,0)}, B\(Py) = B'(Py) = {(1,0)} and
B*(Py) = B*(Pr) = {(1,0), (1, 1)}. O

Now, state the formal result.

Proposition 4.2.2. Domain D,;sp satisfies the Interior Property and the Exterior
Property. Therefore, every unanimous and strategy-proof RSCF over D ;s p satisfies

the tops-only property.
The proof of Proposition 4.2.2 is available in Appendix 9.

Remark 4.2.4. Any sub-domain of D,,¢p satisfying Lemmas 9.1 - 9.5 in Appendix

9 meets both the Interior Property and the Exterior Property.

4.2.3 Separable Domains

This subsection follows the same Cartesian product setting on the alternative set in

Section 4.2.2.

Definition 4.2.3. A preference P; is separable if for all s € M and o®,b° € A®,

[(a®, z7*)P,(b°, x°) for some x=° € A™°] = [(a®,y °)P,(b°,y~°) forall y > € A~*].
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Let Dg denote the separable domain containing all separable preferences. For
more details and examples, please refer to [5], [13] and [40].

In particular, when |A°| = 2 for all s € M, Dg = Dygp. Then, Proposi-
tion 4.2.2 implies that every unanimous and strategy-proof RSCF over Dg satis-
fies the tops-only property. However, if one component set contains more than
two elements, Proposition 4.2.2 fails to show the tops-only result over Dg due to
the violation of the Interior Property. For instance, assume {a®, b*,¢°} C A® for
some s € M. Given ¢ € A and P, P/ € D¢, assume (a®,z %) P;(b°, 27°) and
(b%, z=*)P!(a®,z~*) for all z=* € A~*. Transforming P, to P! through a sequence
of separable preferences, the relative rankings of (a®,27°) and (b°, 2~*) for all
275 € A™* need to be switched simultaneously at some point of the sequence. This
indicates the violation of adjacent connectedness in the Interior Property. Therefore,

a new notion of connectedness needs to be formulated.

Formally, a pair of distinct preferences P;, P! is multiple-adjacently connected,

denoted P; ~™4 P/ if there exist s € M and a®,b° € A® such that

(i) forevery z=° € A%, (a®, 2 %) = 1(P;) = rp1(P)) and (b°, 27°) = rp1(B) =

ri(P/) forsome 1 < k < m;
(i) foreveryz ¢ (a®, A*)U(b°, A™*), x = r(P;) = ri(P/) for some 1 < k < m.

In other words, in a pair of multiple-adjacently connected preferences, one can
identify a component s € M and two elements a®,b® € A® such that every pair of
alternatives (a®, 2~°) and (b°,27*), z=° € A~*, is contiguous in both preferences
with opposite relative rankings, while all other alternatives are ranked identically
in both preferences. For instance, in Example 4.2.1, P, ~MA PPy AMA P

P4NMAP7aHdP6NMAP8.

Remark 4.2.5. The notion of multiple-adjacent connectedness is independent of the
restriction of separable preferences, and is established to accord with the Cartesian

product setting. Similar to Remark 4.1.1, a pair of alternatives is isolated in two
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multiple-adjacently connected preferences if and only if they share the same relative

ranking in these two preferences.

Now, a pair of preferences P;, P/ € D is referred to be generally connected,
denoted P, ~ P/, if either P, ~* P!, or P, ~™4 P!. Given distinct P;, P! € D,
a sequence { PF}L_, is referred to as a GC-path connecting P; and P/ if P! = P,
P! = P/ and P* ~ PF*', k = 1,...,1 — 1. More restrictively, given distinct
P, P/ e Dandx,y € A, asequence { PF}!_, is referred to as a (z, y)-Is-GC-path
connecting P; and P/ if it is both a (z, y)-Is-path and a GC-path.

With the notion of general connectedness, the Interior Property and the Exterior
Property can be modified. First, Modified Interior Property weakens the notion of
AC-path in the Interior Property to the GC-path. Similarly, to formulate Modified

Exterior Property, the Is-path in the Exterior Property is replaced by the Is-GC-path.

Definition 4.2.4. Domain D satisfies the Modified Interior Property if for all a € A
and distinct P;, P! € D°, there exists a GC-path { PF}._, C D® connecting P; and

P!

)

Definition 4.2.5. Domain D satisfies the Modified Exterior Property if given P;, P! €
D with r(P;) # r(P}), and x,y € A with x P;y and x P}y, there exists a (z,y)-Is-

GC-path connecting P; and P,.

Remark 4.2.6. The combination of the Modified Interior Property and the Mod-
ified Exterior Property is not a sufficient condition for the tops-only property in
general. However, once embedding them in the separable preference context, they

are sufficient (see Proposition 4.2.3).

Example 4.2.2 is used to illustrate the Modified Interior Property and the Modi-

fied Exterior Property in the separable domain.

Example 4.2.2. Let A = {1,2,3} x {1,2}. Six separable preferences are high-
lighted in Table 4.3, and specify the corresponding general connectedness relations

in Figure 4.2.

64



1

(L,1) (1,1) (1,2) (1,2) (1,2) (1,2)
(1,2) (1,2) (1,1) (1,1) (1,1) (1,1)
(2,1) (2,1) (2,2) (2,2) (3,2) (3,2)
(3,1) (2,2) (2,1) (3,2) (2,2) (3,1)
(2,2) (3,1) (3,2) (2,1) (3,1) (2,2)
(3,2) (3,2) (3,1) (3,1) (2,1) (2,1)

Table 4.3: Six separable preferences

[(3,1),(2,2)] [(1,1),(1,2)], [(2,1),(2,2)] [(2,1),(3,2)] [(2,2),(3,2)] [(2,2),(3,1)]
Py 3 Py 5
[(3,1),(3,2)] [(2,1),(3,1)]

Figure 4.2: General connectedness relations®

According to Figure 4.2, the requirement of the Modified Interior Property is
satisfied in sub-domains {P;, P,} C ]D)g’l) and {Ps, Py, Ps, Py} C ]ng) respec-
tively.

Observe that P, and P;5 share the same peak; but there exists no AC-path in Dg
connecting P, and Ps.* Therefore, the Interior Property fails in Dg.

An instance is used to illustrate how the requirement of the Modified Exterior
Property is satisfied. Observe that (1,2)F;(2,2) for all 1 < k < 6. Thus, the se-
quence {P;}¢_, isa ((1,2), (2,2))-Is-GC-path connecting P; and Pg. To just meet
the requirement of the Exterior Property with respect to (P;, Ps) and ((1,2), (2,2)),
one can refer to a shorter sequence { Py, Ps, Ps}, where P, and P; is not generally

connected.’

3For instance, P,_[3:D.22] P, denotes P; ~* Py; (3,1)P;1(2,2) and (2,2)P!(3,1). Sim-
ilarly, P;;%Ps denotes Py ~MA Ps; (2,2)P41(3,2), (3,2)P5!(2,2); (2,1)P4!(3,1) and
(3,1)Ps5!(2,1).

“Suppose that there exists an AC-path {PF}l_, C
(2,2)P4(3,2) and (3,2)P5(2,2), there must exist 1 < k
(3,2)PF*1(2,2). Then, separability implies (2,1)PF(3,1)
the hypothesis PF ~4 PF+1,

SNote that B2(P;) = B%(Ps) = {(1,1),(1,2)} and B*(Ps) = B1(Ps) = {(1,2)}.

Dg connecting P, and P5. Since
< 1 — 1 such that (2,2)PF(3,2) and
and (3,1)P"1(2,1) which contradicts
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Although there is no ((3, 1), (2,2))-Is-GC-path connecting P, and Pg in Table
4.3. one can identify a ((3,1), (2,2))-Is-GC-path in Dg connecting P; and P ac-

cording to Proposition 4.2.4. O
Now, here is the result in the restricted environment of separable preferences.

Proposition 4.2.3. Let domain D C Dg satisfy the Modified Interior Property and
the Modified Exterior Property. Every unanimous and strategy-proof RSCF over D

satisfies the tops-only property.

Proof. We first provide a lemma which is repeatedly applied in the proof of Propo-
sition 4.2.3.

Lemma 4.2.1. Given P;, P, € D with P; ~™4 P!, assume that

() for every z7° € A% (2%,27°) = r(P;) = e (P)) and (y°,27°) =

Tri1(B;) = ri(P)) for some 1 < k < m;
(ii) foreveryz ¢ (z°, A=5)U(y*, A=), 2 = r4(B;) = ri,(P!) for some 1 < k < m.

Given P;, Pj’ € D with P; ~ PJ(, assume that for all z=° € A™*, (2°,27°) and

(y°, 27%) are isolated in (P;, P)). Then, for all P_; j; € DV72,

[@(Pi’ Pjﬂ P-{M}) = SO(Pilv Pja P—{Lj})] = [@(Piv ij P—{l}j}) = (p(Pz'la P;v P—{i,j})}'

The proof of Lemma 4.2.1 is available in Appendix 10. Note that Lemma 4.2.1
holds without restricting preferences to be separable.

Similar to the verification of Theorem 4.1.1, we apply a induction argument to
show Proposition 4.2.3. If N = 1, unanimity implies the tops-only property. Now,

we provide an induction hypothesis on the number of voters.

Induction hypothesis: Given N > 2, for all 1 < n < N, every unanimous and

strategy-proof RSCF ¢ : D" — A(A) satisfies the tops-only property.

Given an unanimous and strategy-proof RSCF ¢ : DV — A(A), we will show

that ¢ satisfies the tops-only property. Similarly to the proof of Theorem 4.1.1, we
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will show that for all i € I; P, P/ € D with ri(P;) = r(P/) and P, ~ P/ and
P_; € DN (P, P_;) = ¢(P/, P_;).

Fixing two voters i, j € I, we induce a function ¢ : DV~! — A(A) such that
U(P;, P_gijy) = ¢(P;, P, P_gi jy) forall P, € D and P_g; ;, € DV~2. Evidently,
1 is a well-defined RSCF satisfying unanimity and strategy-proofness. Therefore,
induction hypothesis implies that v satisfies the tops-only property. Accordingly,
for all P;, P/ € D with r1(P;) = ri(P]) and P_g; 5 € DV2, (P, P, P_i jy) =
V(P Pgigy) = V(P Poipy) = o(B, Pl P_gi jy)-

Fix P;, P/ € D with r{(P;) = r(P/) and P, ~ P/. Given P; € D and P_; j; €
DN=2, we will show that p(P;, P;, P_; 1) = @(P}, P, P_gi jy)-

By a similar argument as Claim 1 in the proof of Theorem 4.1.1, we know that
if 11(P;) = ri(F), then o(F;, Py, P_ijy) = o(F, Py, P-qi ).

Henceforth, we assume 7, (P;) # 7,(P;). Since P, ~ P/, either P, ~* P/ or
P, ~MA PlLTE P ~4 P!, assume xPly and yP/!z. Evidently, either z Py or
yP;x. Assume xPjy. The verification related to yP;x is symmetric and we hence
omit it. According to the Modified Exterior Property, we have a (x, y)-Is-GC-path
{P}—1 € D connecting P; and P;. Since ¢(P;, P}, P_y; ) = (P, Pi, Py jy) =
(P, P, P_ii ) = ¢(P], P}, P_y; jy), following { P}'}}_, and repeatedly applying
Lemma 4.1.1 step by step, we have p(F;, Pj, P_f; jy) = ¢(F;, P, P_ij1)-

Next, we assume P; ~M4 P!, i.e., there exist s € M and x*,y®* € A~* such that

(i) for every z7° € A™®, (2°,27%) = r(P) = ri(P)) and (y°,27°) =

Tr+1(P;) = ri(P/) for some 1 < k < m;
(ii) forevery 2 gé (xsv A_S)U(yS,A—s), z = 7’k<Pz) = Tk(PZ-,) forsome 1 < k < m.

Separability implies either (z°, ) P;(y®, 2~°) forall z7° € A~%, or (y°, 2~%) P;(x*, 27°)
for all z=* € A™*. We assume (z°, 2 %) P;(y®, 2~°) for all 27* € A~°. The argu-
ment related to the other case is symmetric and we hence omit it. Given z7° € A™%,
since (2%, 27°) P;(y®, 2~°) and (2°, 2~°) P;(y®, 2~°), by the Modified Exterior Prop-

erty, there exists a ((z*,27%), (y*,2~*))-Is-GC-path {PF};_, C D connecting P,
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and P;. Evidently, (z*,27%)Pf(y*, z7%) forall 1 < k < I. Then, separability im-
plies that for all z7° € A~%, (a:s,z_s)Pf(ys,z_s), k =1,...,1. Consequently, by
Remarks 4.1.1 and 4.2.5, for each 27° € A™°, (2, 2~*) and (y°, 2~*) are isolated in
(P}, Pf*), k= 1,...,1 = 1. Now, since ¢(P;, P}, P_(; y) = ¢(Pi, P, P_gi jy) =
(P, P, P_ii ) = @(P/, P}, P_y; ), following {PF}}_, and repeatedly apply-
ing Lemma 4.2.1 step by step, we have (P, P;, P_;i ;1) = @(P), P;, P_{i 1)
This completes the verification of the induction hypothesis and hence Proposition

4.2.3. []

In Proposition 4.2.3, the Modified Interior Property and the Modified Exterior
Property are assumed exogenously to be embedded on separable domains. However,
the compatibility of these two properties and separability remains to be established.
Proposition 4.2.4 shows that the separable domain satisfies both the Modified Inte-

rior Property and the Modified Exterior Property.

Proposition 4.2.4. Domain Dy satisfies the Modified Interior Property and the

Modified Exterior Property.
The proof of Proposition 4.2.4 is available in Appendix 11.

Remark 4.2.7. Any sub-domain of Dg satisfying Lemmas 11.1 - 11.5 in Appendix

11 meets both the Modified Interior Property and the Modified Exterior Property.

Remark 4.2.8. According to the proof of Proposition 4.2.2, the multi-dimensional
single-peaked domain D,,;sp also satisfies the Modified Interior Property and the
Modified Exterior Property. However, Proposition 4.2.3 cannot be simply adapted
for the context of multi-dimensional single-peaked preferences due to the violation
of separability. An example is provided to illustrate. Let A = A' x A% = {1,2,3} x
{0,1}. Both graphs G(A') and G(A?) are lines following the natural number or-
der. Three multi-dimensional single-peaked preferences over G(A!) x G(A?) are

highlighted below.
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P P! P;

Y

(2,0) (2,0) (2,1)
(2,1) (2,1) (2,0)
(1,0) (3,0) (1,1)
(3,0) (1,0) (3,1)
(1,1) (3,1) (3,0)
(3,1) (1,1) (1,0)
(1,0)

Note that P; ~™4 P! where (i) (1,0)P;!(3,0) and (1, 1) P;!(3, 1), and (ii) (3, 0) P/!(1,0)
and (3,1)P/!(1,1). However, since P; is not separable, e.g., (3,0)F;(1,0) and
(1,1)P;(3,1), P; disagrees with P; on the relative ranking of (1,0) and (3,0), and
disagrees with P/ on the relative ranking of (1,1) and (3,1). Consequently, the

argument in the last paragraph of the proof of Proposition 4.2.3 fails here.

Remark 4.2.9. The lexicographically separable domain (see Definition 1.1 in Ap-
pendix 11), where each component set contains at least three elements, violates
both the Modified Interior Property and the Modified Exterior Property.® However,
Chatterji et al. [16] show that the tops-only property is implied by unanimity and

strategy-proofness over the lexicographically separable domain.

4.2.4 Characterization of Strategy-proof RSCFs

In characterizing strategy-proof DSCFs and RSCFs, the tops-only property is al-
ways established in advance which simplifies the rest of characterization signif-
icantly. This subsection provides two characterization results on strategy-proof
RSCFs over the multi-dimensional single-peaked domain and the separable domain,
respectively.

Theorem 4 in Barbera et al. [5] implies that there exists no efficient, strategy-

proof and non-dictatorial DSCF over Dy;sp where |M| > 3 and |A®| = 2 for

®First, the lexicographically separable domain never includes a pair of adjacently connected pref-
erences. Second, between a pair of lexicographically separable preferences which are multiple-
adjacently connected, the lexicographic orders are identical. Consequently, there exists no GC-path
in the lexicographically separable domain connecting two lexicographically separable preferences
with distinct lexicographic orders.
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every s € M. With the tops-only property established in Proposition 4.2.2, their

impossibility result can be pushed to the randomized setting.

Proposition 4.2.5. Assume |M| > 3. An ex-post efficient RSCF over Dysp is

strategy-proof if and only if it is a random dictatorship.

The proof of Proposition 4.2.5 is available in Appendix 12.

The verification of Proposition 4.2.5 relies heavily on the tops-only property.
For instance, given a preference profile P = (P, P») € D?,5p where the peaks of
two preferences disagree on at least two components, and an arbitrary alternative
a distinct from two peaks, one can always construct a tops-equivalent preference
profile P = (P, P,) € D3,gp,ie., 1 (P) = r1(P;) and r1(P) = r1(P,), such that
a is Pareto dominated. Then, ex-post efficiency ensures that a gets probability zero
under profile P, and hence the tops-only property implies that a gets probability

zero under profile P.

Next, Chatterji et al. [16] show that every unanimous and strategy-proof RSCF
over the lexicographically separable domain with |A*| > 3 for all s € M (recall
Definition 1.1 in Appendix 1), which is a strict subset of the separable domain, is
a generalized random dictatorship. Establishing the tops-only property (by Propo-
sitions 4.2.3 and 4.2.4) allows one to directly extend their characterization result to
the separable domain.

The formal definition of generalized random dictatorship is first presented here.
According to the Cartesian product setting, let i = (i*),cps € 11! denote a |M]-
tuple of voters. A |M]|-tuple i can be viewed as a combination of |M| dictators
where for each s € M, voter ¢® is the dictator over A*. For each ¢ € [ M| g
positive real number (i) € R, is associated, and let ), (i) = 1. Given
P e DVandi e 1Ml according to voter i* and her peak r;(P;:), one identifies
the component r;(P;s)®. Then, combine all identified components and assemble
an alternative (rl(Bs)s)se 4+ In a generalized random dictatorship, the probability
assigned to alternative a equals to the sum of weights (i) where the assembling of

the alternative according to i leads to alternative a. Formally, a RSCF ¢ : DV —
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A(A) is a generalized random dictatorship if there exists a sequence [y(7)];csim €

R with > e Y(2) = 1 such that for every P € DY and a € 4,

WP =Y a0
1€I|M|: (Tl(PiS)S)se]w:a
Proposition 4.2.6. Let |A°| > 3 for all s € M. An unanimous RSCF over Dyg is

strategy-proof if and only if it is a generalized random dictatorship.

Remark 4.2.10. Both characterization results in Propositions 4.2.5 and 4.2.6 are
instances of the extreme point property, i.e., every ex-post efficient (unanimous re-
spectively) and strategy-proof RSCF is a convex combination of the counterpart
DSCFs. One may conjecture that the extreme point property remains valid over
the multi-dimensional single-peaked domain when ex-post efficiency is weakened

to unanimity.

4.2.5 A Domain Implication Problem

A random dictatorship obviously satisfies ex-post efficiency since only peaks of
preferences receive positive probabilities. However, recall the infirmity of a ran-
dom dictatorship mentioned in Chapter 3, it is also reasonable to put some positive
weight on some (Pareto) undominated alternative which is not a peak of any voter,
but is “highly ranked” by all voters. To increase the flexibility of the social lot-
tery, all undominated alternatives under a preference profile are allowed to receive
strictly positive probabilities. This strengthens ex-post efficiency to a new axiom
ex-post efficiency*.

Given P € DY, let Q(P) denote the set of undominated alternatives, i.e.,
a € Q(P) if there exists no z € A such that zP,a for all i € I. Given a lottery
a € A(A), the support of the lottery « is a set of alternatives with strictly positive
probabilities, i.e., suppa = {a € Ala, > 0}. The axiom of ex-post efficiency
implies supp o(P) C Q(P) for all P € DV, while ex-post efficiency* requires
supp o(P) = Q(P) for all P € DYV,
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Definition 4.2.6. A RSCF o : DV — A(A) is ex-post efficient* if for every P € DV,

supp o(P) = Q(P).

According to the random dictatorship result in [26], and Propositions 4.2.5 and
4.2.6, ex-post efficiency* and strategy-proofness are not compatible on the com-
plete domain, the multi-dimensional single-peaked domain and the separable do-
main. A natural question arises: on what domains, if any, are ex-post efficiency*
and strategy-proofness compatible? This subsection shows that in the class of con-
nected domains with minimal richness, single-peakedness (on a tree) is uniquely
characterized by the admission of an ex-post efficient* and strategy-proof RSCF.

Here is the domain implication result.

Proposition 4.2.7. Let domain 1D be minimally rich and connected. If it admits
an ex-post efficient® and strategy-proof RSCF, it is single-peaked. Conversely, a

single-peaked domain admits an ex-post efficient™ and strategy-proof RSCF.
The proof of Proposition 4.2.7 is available in Appendix 13.

Remark 4.2.11. Chapter 3 studies a similar domain implication problem, and shows
that on a path-connected domain, the admission of an unanimous, tops-only and
strategy-proof RSCF satisfying the compromise property (see Definition 3.1.1) im-
plies single-peakedness. The axiom of ex-post efficiency* implies unanimity and
the compromise property. More importantly, the domain condition of connected-
ness strengthens the richness condition of path-connectedness and helps endogenize
the tops-only property so that Theorem 3.3.1 can be adopted to verify Proposition
4.2.7. Moreover, the exogenous combination of the compromise property and the
tops-only property might cause inefficiency in some social lottery, e.g., a Pareto
dominated alternative is assigned with strictly positive probability. This possibility
of inefficiency is precluded here by requiring the RSCF to be ex-post efficient and

endogenizing the tops-only property.
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4.3 Discussion

This section discusses related literature, and comments on the necessity of the suf-

ficient condition.

4.3.1 Relation to the Literature

Since tops-onlyness imposes an important well-behaved property on social choice
functions, it has attracted considerable attention in the literature, especially in the
characterization of strategy-proof DSCFs and RSCFs.” The model studied in this
chapter uses an ordinal formulation of strategy-proofness introduced by [26]. There
is an alternative formulation of strategy-proofness which uses cardinal information
on preferences (e.g., [28], [21] and [23]). Here too the tops-only property plays an
important role in characterizing randomized strategy-proof voting rules. One may
conjecture that a version of our richness condition would allow to endogenize the
tops-only property in these cardinal models. This is left for future work.

Earlier work has studied the tops-only property for DSCFs. In particular, Wey-
mark [52] initiated the study of the tops-only property in single-peaked preferences
on a real line and continuous preferences on a metric space. Subsequent work fo-
cuses on the case of finite alternatives and strict preferences. Lemma 3.1 in Nehring
and Puppe [35] show that every unanimous and strategy-proof DSCFs over a gener-
alized single-peaked domain satisfying two particular richness conditions must be
tops-only, while Chatterji and Sen [15] introduce two conditions: Property T and
Property T*, which are sufficient for the tops-only property in DSCFs for the case
of two voters and the case of arbitrary number of voters, respectively.® However,
the sufficient conditions mentioned above imply that the domain must be minimally

rich. The sufficient condition in this chapter is independent of minimal richness.

Remark 4.3.1. [15] also study two non-minimally rich domains: the domain of

7See for instance [34], [6], [18], [52], [42], [33], [39], [28], [21], [22], [24], [23], [16] and [38].
8Property T* implies Property T, and covers generalized single-peaked domains.
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in-between preferences ([27]) and Kelly’s domain ([31]), and show that the tops-
only property is satisfied by every unanimous and strategy-proof DSCFE. These two
domains do not satisfy the sufficient condition in this chapter directly. However,
observe that for instance, in the domain of in-between preferences, the alternative
which is never the peak of any preference is not included in the range of any unani-
mous and strategy-proof DSCF (a similar argument holds in Kelly’s domain).® Ac-
cordingly, inducing new preferences by removing alternatives excluded from the
ranges of all unanimous and strategy-proof DSCFs, the new domains satisfy the

Interior Property and the Exterior Property.

Even with minimal richness, there is an example of a domain which meets a
sufficient condition in this chapter but violates Property T* (see Example 4.3.1).
Moreover, Property T is not sufficient for endogenizing the tops-only property in a

randomized environment (see Example 4.3.2).

Example 4.3.1. Let A = {ay, as, ag, a,}. Domain D of seven preferences is speci-

fied in Table 4.4.

P1 P2 P3 P4 P5 P6 P7
a, GGy QG Qg a3 Az Q4
a ap as a3 Gz Q4 Qs
as as aq ay ay ag as

ags a4 a4 a1 a1 Q1 Qa1

Table 4.4: Domain D
Indeed, domain DD is a maximal single-crossing domain with respect to linear
orders a; > as > az > asand P, > P, = Py >~ Py = Ps = Py = P;. Itis easy to
verify that domain D is connected and hence satisfies the Interior Property and the
Exterior Property. However, domain [D violates Property T*, e.g., (1) asPaq4; (i1)
for every P, € D = {P,}, a; P;ag, but (iii) there exists no preference P/ € D% =

{P5, P6} such that G1Pi’a4. -

°Given a DSCF f : DY — A, Range(f) = {z € A|f(P) = x for some P € DV},
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Example 4.3.2. Let A = {a1, as, as, a4, as}. Domain D of fourteen preferences is

specified in Table 4.5.

Pl P2 P3 P4 P5 P6 P7 P8 P9 PlO Pll P12 P13 P14
aq (053] aq Q9 (45} a9 as as as Qy ay Qy as as
a9 as Qs ay as ay aq a9 ay a9 as as aq ay
as (05} as as aq as (05} aq (05} as (05} as Qy aq
as as ay, Qs as as ay, Qs aq as as (45} a9 a9

ay ay a9 ay ay ay Qs ay Qas aq aq aq as as

Table 4.5: Domain D
It is easy to verify that domain I satisfies Property T. Therefore, every two-voter
unanimous and strategy-proof DSCF satisfies the tops-only property. More specifi-
cally, domain D is linked (recall Definition 2.1.1), and hence every unanimous and
strategy-proof DSCF is a dictatorship. However, domain D admits the following

unanimous and strategy-proof RSCF which violates the tops-only property:

%erl(pi) + %eﬁ(pj), if either P, ¢ D or P; ¢ D";
o(P;, Py) = ie% + }le@ + %e%, if P, = P and P; € D%;

Leas + 2€a, + 2eq, +te,,, i P€ {P;, Py} and P; € D%.

The verification of strategy-proofness is put in Appendix 14. O

4.3.2 Necessity

It is easy to observe that the Interior Property and the Exterior Property is not nec-
essary for the tops-only property. This is not altogether surprising as every random
dictatorship domain (recall Definition 1.1.7) ensures the tops-only property.'® While
the complete domain is an instance of a random dictatorship domain that satisfies
the Interior Property and the Exterior Property, one can construct a random dicta-

torship domain (using Theorem 2.3.1) violating both the Interior Property and the

10 Characterizing the necessary and sufficient conditions for random dictatorship domains is an
important open question in the literature.
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Exterior Property, where the tops-only property prevails via a random dictatorship

characterization result (see Example 4.3.3).

Example 4.3.3. Let A = {a4, as, as, ay}. Domain D of ten preferences is specified

in Table 4.6.

aq aq a9 a9 a9 as as as ay ay
2 asz ap az a4 a1 Az G4 Ag as
as az az ap ax az ay dazx ap ag

ay ay ay ay as ay ay aq as a9

Table 4.6: Domain D
First, domain DD violates the Interior Property, e.g., D*2 = { P, P, Ps}, but Ps is
not adjacently connected to either P; or P,. Second, domain D violates the Exterior
Property, e.g., there exists no (ay, az)-Is-path connecting Ps and P,.!'! However,
domain D is linked (see Definition 2.1.1) and satisfies Condition H (see Definition
2.3.1) which implies that every unanimous and strategy-proof RSCF is a random

dictatorship by Theorem 2.3.1, and hence satisfies the tops-only property. O

This chapter is unable to identify a necessary and sufficient condition for the
tops-only property in a general setting. Weakening the sufficient condition is one
approach to push it closer to necessity. Fortunately, the Exterior Property can be
weakened by eliminating some redundant Is-paths in the domain, and keeps its
sufficiency for the tops-only property in conjunction with the Interior Property. This
weakening is referred to as the Exterior Property*. Moreover, this chapter asserts
that in some particular circumstance, the combination of the Interior Property and

the Exterior Property* is necessary and sufficient for endogenizing the tops-only

property.

""Note that a; is ranked above a3 in all preferences {P;, P>, Ps, Ps, Py}, while a3 is preferred
to a7 in all rest of preferences. One cannot form a (ap,as)-Is-path connecting Ps and Py in
{P1, Py, P, Ps, Py}.
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Definition 4.3.1. A domain D satisfies the Exterior Property* if given P;, P/ € D

and x,y € A satisfying the following two conditions
(i) there exists P; € D such that r1(P;) = r1(P;); P; ~* P, xP\y and yP;!x,
(ii) r1(P;) # r(P!) and x P}y,

there exists a (x,y)-Is-path connecting P; and P).

In Definition 4.3.1, preference P, can be viewed as a bench-mark which tests
whether P; and (z,y) are critical (refer to condition (i) in Definition 4.3.1). Once
the criticality is verified, if P, and P! disagree on peaks but coincide on the relative
ranking of x and y (refer to condition (ii) in Definition 4.3.1), the Exterior Property*
requires the existence of a (z,y)-Is-path connecting P; and P/. Example 4.3.4 is

provided to illustrate the Exterior Property*.

Example 4.3.4. Let A = {a4, as, as, as}. Domain D of five preferences is specified
in Table 4.7.

P1 P2 P3 P4 P5

aq a9 a9 as ay

(05} as as (05} as

as aq ay ay a9

Qg Qg aq aq ay

Table 4.7: Domain D

Domain D satisfies the Interior Property, i.e., P» ~“ Py; but violates the Exte-
rior Property, i.e., there exists no (as, a3)-Is-path connecting P; and P,. However,
since P, and (as, ag) are not critical, there is no need to construct a (as, az)-Is-path
connecting P, and P;. In domain D, for instance, P, and (ay, a4) are critical. Cor-
respondingly, sequence { P», P, } is a (a1, as)-Is-path connecting P, and P;. Indeed,

domain D satisfies the Exterior Property*. O

The following corollary shows that the combination of the Interior Property and

the Exterior Property* is sufficient for the tops-only property.
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Corollary 4.3.1. Let domain D satisfy the Interior Property and the Exterior Prop-

erty*. Every unanimous and strategy-proof RSCF satisfies the tops-only property.

Proof. The verification of Corollary 4.3.1 follows from a slight modification of the
proof Theorem 4.1.1: replacing the fifth sentence of the last paragraph in the proof
of Theorem 4.1.1 by the following sentence: Since (i) 71(FP;) = r1(P}); P, ~4 P,
xRy, yP!lz; (i) r(P;) # ri1(FP;) and xP;y, the Exterior Property* implies that

there exists a (x, y)-Is-path { P }}_, C D connecting P, and P;. O

The Exterior Property* is not necessary for the tops-only property either. For
instance, in Example 4.3.3, (i) 71 () = 71(P) = as; Py ~* P,, a1 Pslaz and
azPylay, (i) 71 (Py) = a4 # as and ay Pyas, but (iii) there exists no (ay, az)-Is-path
connecting P5 and Fy. In particular, if restrict attention to multi-dimensional single-
peaked domains studied in Example 4.2.1, one can show that the Interior Property
and the Exterior Property* is a necessary and sufficient condition for the tops-only
property, provided a mild richness condition holds.

A multi-dimensional single-peaked domain D C Dy, gp is significantly rich if
foralla € AwithD® # (), D* = D%, p. In other words, in a significantly rich multi-
dimensional single-peaked domain, if an alternative is the peak of some preference,
then the domain must include every multi-dimensional single-peaked preference

whose peak is that alternative.

Proposition 4.3.1. Let A = {0,1} x {0,1} and D C Dyssp be significantly rich.
Every unanimous and strategy-proof RSCF over D satisfies the tops-only property

if and only if D satisfies the Interior Property and the Exterior Property*.

The proof of Proposition 4.3.1 is available in Appendix 15.

Moreover, observe that the Exterior Property* arises naturally in single-peaked
domains (on a line), provided the satisfaction of the Interior Property and the Left-
Right Extreme condition introduced by [36].

Given a graph of line, let D be a single-peaked domain on the line. For notational

convenience, write the line as a; < ay < --- < a,. A single-peaked domain
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D (on the line) satisfies the Left-Right Extreme condition if forall 1 < £ < m
with D £ (), there exist P;, P/ € D% such that the following two conditions are

satisfied:

Left-extreme condition: all alternatives at the left side of a;, are preferred to all al-

ternatives at the right side of a in P, i.e., [s < k < t| = [asPiay].

Right-extreme condition: all alternatives at the right side of a; are preferred to all

alternatives at the left side of a;, in P/, i.e., [s < k < t] = [a;P/ag].

Proposition 4.3.2. Given a single-peaked domain on a line, if it satisfies the Interior

Property and the Left-Right extreme condition, it satisfies the Exterior Property*.

The proof of Proposition 4.3.2 is available in Appendix 16.
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Chapter 5 Summary of Conclusions

Chapter 2 has shown that dictatorial domains are not necessarily random dictator-
ship domains. In fact, dictatorial domains may admit “well-behaved” strategy-proof
random social choice functions. Chapter 2 has provided additional conditions on a
class of dictatorial domains to ensure that they are random dictatorship domains.
These additional conditions are quite restrictive, but examples suggest that these
conditions are “close” to being necessary.

Chapter 3 has characterized domains of single-peaked preferences as the only
domains that admit “well-behaved” strategy-proof random social choice functions.
This result provides a justification of the salience of single-peaked preferences and
evidence in favor of the Gul conjecture.

Chapter 4 has identified a sufficient condition on domains which ensures that
every unanimous and strategy-proof RSCF has the tops-only property. Moreover,

Chapter 4 has also provided some applications of this sufficient condition.
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Appendix

1 Some Verifications in Section 2.2.3

This appendix verifies that domain D in Section 2.2.3 is a subset of the separable
domain Dg. Next, we provide the details of the proof of Proposition 2.2.3. We first
introduce a particular separable domain: the lexicographic separable domain ([13]

and [16]).

Given a separable preference P, € Dg, one can induce a marginal preference

[P;]* on each component set A®, s € M.

Definition 1.1. A preference P, is lexicographically separable if there exists a linear

order ~ over M such that for all x,y € A,
[2°[P]*y® and 7 = y" forall T € M with T = s] = [zPyy].

Accordingly, let D¢ denote the lexicographically separable domain containing
all admissible preferences. Evidently, D;¢ C Dg. The linear order > in Definition
1.1 is referred to as the lexicographic order. For more details and examples on
lexicographically separable preferences, please refer to [16]. We will show that
every preference in D in Section 2.2.3 is either separable or lexicographic separable.

We partition the alternative set A into five parts: Ay = {ao}, A1 = {a1, as, a3, a4},
Ay = {as, aq, a7, a8, a9, aro}, As = {a11,a12,a13,a14} and Ay = {a15}. Accord-
ingly, Ag, k =0, ..., 4, includes all alternatives that k candidates are elected. More-

over, we recall two properties on separable preferences.
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Ascending property: Let Py be a linear order satisfying the following two restric-
tions: (i) r1(Px) = (0,0,0,0) = ag, m6(Px) = (1,1,1,1) = ay5; and (ii)

xPyyPyz forall z € A,y € Ay and z € As. Then, P, € Dg.

Descending property: Let P be a linear order satisfying the following two restric-
tions: (i) r1(Px) = (1,1,1,1) = a5, r16(Px) = (0,0,0,0) = aop; and (ii)

rPyyPz forall x € Az, y € Ay and z € Ay. Then, P, € Dg.

Now, we verify that D C Dg.

1. Let P, € Dy satisfy the ascending property, ro(P;) = (0,0,1,0) = ay,
7’3(131) = (O, 1, 0, 0) = A2 and 7"15(P1) = (1, 1, 0, 1) = a13.

2. Let P, € Dy satisfy the ascending property, r2(FP) = (0,0,1,0) = ay,
7’3(P2) = (]., 0, 07 0) = as and T15(P2) = (]., ]_, 0, 1) = a13.

3. Let P; € Dg satisfy the ascending property, r(P;) = (0,1,0,0) = ax,
T’g(Pg) = (0,0,1,0) = ai, a13 = (1,1,0,1)P3(1,1,1,0) = a11 and aiz =
(17 17 07 ]-)P3<17 07 ]-7 1) = a12.

4. Let P, € Dy satisfy the ascending property, mo(FP;) = (0,1,0,0) = ao,
7’3(134) = (1,0,0, O) = asg, a13 = (1,1,0,1)P4(1,1,1,0) = a11 and aiz =
(17 ]-7 07 ]-)P4(]-7 Oa ]-7 1) = a12.

5. Let P; € Dg satisfy the ascending property, r2(FPs) = (1,0,0,0) = as,
T3(P6) = (070’ 170) = ai, 13 = (17 1707 1)P6(1717 170) = an and a13 =
(17 17 Oa ]-)Pﬁ(lu O, ]-7 1) = aj2.

6. Let P, € Dg satisfy the ascending property, ro(FP7) = (1,0,0,0) = as,
r3(P7) = (0,1,0,0) = ag, a13 = (1,1,0,1)P;(1,1,1,0) = ay; and a;3 =
(17 1,0, ]-)P'?(la 0,1, 1) = Q2.

7. Let P; € Dpg with r(Ps) = (1,1,0,0) = a5 and the lexicographic order
2>=4>3=1. Then, TQ(Pg,) = (0,1,0,0) = CLQ,T’g(Pg,) = (1,1,1,0) = a1
and a1z = (1, 1,0, 1)P5(0,0, ]_,0) = ag.
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10.

11.

12.

13.

. Let Py € Dpg with r(Ps) = (1,0,1,0) = ag and the lexicographic order

1>=4%2%3. Then, T’Q(Pg) = (1,0,0,0) = as, 7’3(Pg> = (1, 1, 1,0) = Q11
and a3 = (1,1,0,1)P5(0,0,1,0) = a4.

. Let Py € Dpg with r(Py) = (1,0,1,0) = ag and the lexicographic order

1>2%4%3. Then, T’Q(Pg) = (170,0,0> = as, Tg(Pg) = (1,0, ]_, 1) = a2
and ais = (1, 1,0, 1)P9(0,0, 1,0) = aj.

Let Py € Dpg with r(Pyp) = (1,1,0,0) = a5 and the lexicographic order
2 - 4 > 1 - 3 Then, TQ(PIO) = (1, 1, 1,0) = a11, Tg(Plo) = (0, 1,0,0) =
a and a1z = (1, 1, 0, ].)Plo(o, 07 1, O) = az.

Let Py € Dpg with r1(Py1) = (1,0,1,0) = ag and the lexicographic order
1 >4 3> 2. Then, T’Q(PH) = (1,1, 1,0) = a1, 7”3(P11) = (1,0,0,0) =
as and aiz = (1, 1, O, 1)P11(O, 0, 1, O) =a.

Let Py € Dpg with r1(Py4) = (1,0,1,0) = ag and the lexicographic order
1 - 2 b 3 - 4 Then, TQ(P14) = (]_,07 1, 1) = ai2, 7"3(P14) = (1,0,0,0) =
as and a1z = (1, 1, 0, 1)P14(O, 0, 1, O) = az.

For any P, € {Pi2, P13, P15, Pig, P17, Pis}, let P, € Dg satisfy the descend-

ing property and a;3 = (1,1,0,1) € {ra2(Py), r3(Px), r4(Pr) }.

The detail proof of Proposition 2.2.3.

Proof. Since domain ID satisfies Condition SC, according to Proposition 2.2.1, let

¢ : DV — A(X), N > 2, be an anonymous, unanimous and strategy-proof RSCF

that is not a random dictatorship.

In particular, for all P € DV, let P € DV denote the induced profile of pref-

erences by P over X, i.e., P = (P;, X), i € I. Next, we construct a function

¢ : DV — AX(A) such that for all P € DV, ¢,(P) = $,(P) forall x € X and

@y (P) = 0forall y € A\X. Evidently, ¢ is a random constraint voting SCF which

is anonymous, unanimous and not a random dictatorship.
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We need to verify strategy-proofness of ¢. Suppose that ¢ is not strategy-proof.
Then, there existi € I; P, P/ € Dand P_; € DV~ !suchthat 3", _, ¢, p) (P, Pi) <
S ey Prapy (P, P-y) forsome 1 <t < m. LetT = {ry(P)},_,and T =T N X.
Evidently, T # (). Furthermore, we can assume 7 = {r(P)},_, for some

1 <t < 6. Then, by construction of ¢, we have

Z Sork P) ) Z @rk(pi)(pilv P—l)
= Zsox (Pi, P_s) Z% P)

zeT z€T

= [ e+ Y P = [ Y e PP+ Y ey(PL P
z€T yeT\T z€T yeT\T

= ZSOAPDP%’) - Z%px(P/ P

zeT zeT

t
= Z OrPy (P Poi) = > pr(py (Pl P-y)
k=1
< 0
which contradicts strategy-proofness of . O]

2 Condition SC v.s. Conditions H and TS

Fix a domain D satisfying Condition SC with respect to B and y in Definition 2.2.1.

2.1 Condition H

Suppose that D satisfies Condition H. Let a be a hub.

Assume a = y. Then, y ~ z for all z € A\{y}, which implies S(y) = A\{y}.
Given = € B, since x ~ y, there exists P, € D™¥. Now, if | B| = 1, then y P,z for
all z € A\{z,y} C S(y), which contradicts part (ii) of Condition SC. If |B| > 1,
then ro(FPy) = y ¢ B, x € S(y) and x Py, which contradicts part (ii) of Condition
SC.

Assume a € B. Now, a ~ y and hence a € S(y). If | B| = 1, consider some
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z € A\{a,y} = A\[B U {y}] (recall |[A] > 3). Then a ~ z and there exists

P, € D*“, which contradicts part (iii) of Condition SC. If |B| > 1, we consider

a ~ y. Hence, there exists P, € D*Y, which contradicts part (ii) of Condition SC.
Assume that a € A\[BU{y}|. Fixingxz € B, weknow y ~ a and z ~ a. Hence,

a € S(y) and there exists P, € D™®, which contradicts part (iii) of Condition SC.

2.2 Condition TS

Suppose that ID satisfies Condition TS.

Assume B = {z}. Since |A| > 3, we pick z € A\[B U {y}]. Now, between
x and 2z, there are three cases to consider: (i) + =~ z, (ii) ¢ = a and z =~ a for
some a € A\{x,y, z}, and (iii) * ~ y and z ~ y. According to case (i), we know
that there exist P, € D™* and P] € D*” such that r,(Py) = r(P]), t = 3,...,m.
Firstly, by part (iii) of Condition SC, since P, € D? and =P}y, it must be the case
that y P,a for all a € S(y). Consequently, y Py.a for all a € S(y), which contradicts
part (ii) of Condition SC. In case (ii), it is evident that a € A\[B U {y}|. Since
x &~ a, we know that there exist P, € D** and P € D** such that r,(Py) = r(FPy),
t = 3,...,m. By part (iii) of Condition SC, since P, € D* and xP/y, it must be
the case that yP/b for all b € S(y). Consequently, yP;b for all b € S(y), which
contradicts part (ii) of Condition SC. Lastly, in case (iii), since z ~ y and z ~ y,
we know that there exist P, € D™Y and z € S(y), which contradicts part (ii) of

Condition SC.

Assume |B| > 1. Fixing = € B, there are three cases to consider: (i) z ~ y,
(ii) z =~ z and y ~ z for some z € A\{x,y} where z € B, and (iii) * ~ z and
y ~ z for some z € A\{x,y} where z ¢ B. According to case (i), we know that
x € S(y) and there exists P, € D*¥, which contradicts part (ii) of Condition SC.
According to case (ii), we know that z € S(y) and there exists P, € D*Y, which
contradicts part (ii) of Condition SC. In case (iii), we know that z € S(y) and there

exists P, € D**, which contradicts part (iii) of Condition SC.
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3 Proof of Theorem 2.3.1

Proof. To prove Theorem 2.3.1 we use a Ramification theorem (Theorem 5.1 in
Appendix 5) which ensures that if a domain is a random dictatorship domain for
two voters, it is also a random dictatorship domain for arbitrary number of voters.
In addition to the minimal richness condition, the Ramification theorem requires
another richness condition which we specify below.

Given P, € Dand a € A, let B(FP;, a) denote the set of alternatives that are better
than a according to P, i.e., [v € B(FP;,a)] = [z Pal, while W (P, a) denotes the set

of alternatives that are worse than a according to P, i.e., [x € W (FP;,a)] = [aPx].

Definition 3.1. A domain D satisfies Condition « if there exist three distinct alter-

natives a,b,c € A; P, € D% P, € D’ and P; € D¢ such that
(1) bPic, cPya and aPsb;

(ii) W(P.,b) UW (Ps,c) UW (P, a) = Al

' Therefore,

Every linked domain is minimally rich and satisfies Condition «.
to verify Theorem 2.3.1, it suffices to show that every strategy-proof RSCF of two
voters satisfying unanimity is a random dictatorship. Assume I = {i,j}. We first

provide an independent lemma which is repeatedly applied in the following proof.

Lemma 3.1. Consider a domain D and a,b,¢c € A such that a ~ b, b ~ ¢ and
c~a. Ifo:D?* — Ais unanimous and strategy-proof, then there exists € € [0, 1]

such that f(P;, Pj) = e, (p,) + (1 — €)ep (p, for all P;, P; € D* UD" UD".
Proof. This lemma follows from Theorem 2 in [48]. O]

Now, let D be a linked domain satisfying Condition H and ¢ : D? — A be a

unanimous and strategy-proof RSCF. For simplicity, we assume that the one to one

Let D be linked. We know that there exist a,b,c € A suchthat a ~ b, b ~ c and ¢ ~ a.
Therefore, there exist P, € D*?, P, € D% and Py € D% which immediately imply (i) bP;c, cPsa
and aPsb; and (ii) W (Py,b) U W (P2, ¢) U W (Ps,a) = A. Thus linked domains satisfy Condition
«. Another dictatorial domain is the circular domain studied in [43]. By a similar argument, one can
verify that circular domains satisfy Condition a.
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function o in Definition 2.1.1 is the identity function and moreover, a; is a hub.
Hence, a; ~ xz for all z € A\{a;}. Next, let S, = {ay,...,q;}, 1 = 3,...,m.
Clearly, a; € S;, 3 <1 < m. Our proof consists in establishing two steps.

Step 1. There exists ¢ € [0, 1] such that for all P;, P; € D%, (P, P;) = € e,y(p,) +
(1 —&)er,(p).-

Step 2. If for all P, P; € D=1, 1 > 3, o(P;, P;) = ceqypy + (1 — €)eyy(py), then
forall P, P; € D%, o(P;, P;) = c e, py + (1 —€)ery(p)).

The following lemma establishes Step 1.

Lemma 3.2. There exists ¢ € [0,1] such that for all P, P; € D%, o(P;, P;) =

Eer(p) T (1 - 5)er1(pj).
Proof. Since a; ~ as, as ~ as and a3 ~ a1, Lemma 3.1 applies. L]

To verify Step 2, we use the following induction hypothesis: for all /7, P; €
D=1, 1 > 3, (P, P;) = cepypy + (1 — €)ep(py). We will show that for all
P, P; € D%, o(P;, P;) = ceqypy + (1 — €)ep,(p. Note that ¢ is fixed in the
induction hypothesis. Since D is linked and a, is a hub, we know that there exists
ap € S;_1 such that a; ~ ay, ap ~ a; and a; ~ a;. The next 3 lemmas explain the

verification of Step 2.

[

Lemma 3.3. Forall P;, P; € D" UD™ UDY, o(P;, P;) = € ey (p) + (1 —€)er (p)).

Proof. Since a; ~ ag, a ~ a; and a; ~ a;, Lemma 3.1 implies that there exists 5 €
[0, 1] such that (P;, P;) = B e, )+ (1—B)e, (py) forall B, P; € D UD™»uD*,
Meanwhile, by the induction hypothesis, we know ¢(P;, P;) = ce,p) + (1 —
g)e,, (py) for all P;, P; € D* UD%. Therefore, e = 3. O

For the next lemma, pick any a; € S;_;\{a1, a; }. Condition H implies a; ~ a.
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Lemma 3.4. Forall P; € D** and P; € DY, ¢, (P}, P}) = cand p,, (P}, P}) =

1—e

Proof. We consider two situations.

Firstly, suppose o, (P}, P}) = 3 and ¢,, (P, P;) = 1 — (3. Since there exists
P! € D% (recall a; ~ ), strategy-proofness and the induction hypothesis imply
B = ea (P} F}) = o, (B, P}) + 0a, (B], F]) = o, (B, F) + ¢a, (P, P) =
Pa, (B, P}) =€

Secondly, suppose o, (P}, P;)+¢a,; (P, P;) < 1. Since there exist P} € D"
and P; € D% (by Condition H), strategy-proofness, the induction hypothesis and
Lemma 3.3 imply o, (P}, P}') + o, (B, P}) = 9o, (B, P}) + ¢a, (P, P}) =
and o, (P, PF) + ¢a, (P, P) = @0, (P, Pj) + ¢a, (P}, Pj) = 1 — ¢. Therefore,
it must be the case that o, (P, P;) > 0. Assume g, (P}, Pf) = a > 0. Then,
eul P PY) = £ = 0,00 (P P) = 1—2—aand T g oy @ (P PY) =
This implies that there exists a; € A\{a1,a;, a;} such that o, (P}, P;) > 0.

By Condition H, there exists P, € D*%. Let s, s’ be such that a; = r4(Py) and
a; = ry(P;). We need to consider two cases.
Case 1: s < ¢,

Let P, = P,. By the induction hypothesis, ¢(P;, Pf) = ceq, + (1 — €)eq,.
Then, Y3, ¢ro) (P P) = € < @un(P1PY) + 60 (PELP) + 0, (P, PY) <
> he1 o) (P, Pr). Therefore, voter i manipulates at (P;, PF) via Py
Case2: s > ¢,

Let P; = P,. By Lemma 3.3, we have ¢(P;, P;) = ce, + (1 — €)eq,. Then,
S i Erpy (P B) = 1= & < a, (P, PY) + 0, (P, PY) + 0, (P Pf) <
Zk | @ri(By) (P75 Py). Therefore, voter j manipulates at (P}, P;) via P

Hence, both cases cannot occur. This establishes the lemma. ]
Lemma 3.5. The following two statements hold.
(i) Forall P, € D" and P; € D%, p(P;, P;) = €q, + (1 — €)ey,(p)).
(ii) Forall P, € D% and P; e D, (P, Pj) = ey py + (1 — €)eg,.
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Proof. We verify part (i) first. Let a; € S;_1\{a1, ar}, P; € D%, P € D*% and
P; € D%, Strategy-proofness and Lemma 3.4 imply ¢, (P}, P;) = ¢a, (P, P}) =
l—eand 1 —& = ¢o, (P, P}) +9a, (B, P}) 2 9o, (F, ) +@a, (P, F;). There-
fore, ., (P, P;) = 0.

Next, consider P, € D* and P/ € D*%. By strategy-proofness and the in-
duction hypothesis, @o,(F;, ;) = o, (P Fj) = @0, (E7, Pj) + ¢a, (7, Pj) =
Pa (P}, Bj) + @a, (P}, Pj) = pa, (P, ) = €.

Similarly, for all P; € D, we have @, (P, P}) = 0. Let P; € D% Strategy-
proofness and Lemma 3.3 imply @, (P, P;) = ¢4, (P, P) = @a; (P, P} )+¢a, (P, P}) =
Pa;(Pi, P}) + @ay (Pi, P)) = @ay (P, P)) =1 — €.

Therefore, p(P;, Pj) = ceq, + (1 — €)e,; for all P; € D* and P; € D% where
a; € Si—1\{a1, a;}. By unanimity and Lemma 3.3, we conclude that p(P;, P;) =
€eq + (1 —€)ey (p, forall P, € D* and P; € D,

The proof of part (i1) is symmetric to that of part (i) and is therefore omitted. [

Therefore, by the induction hypothesis, we have proved that o(P;, P;) = € e, (p,)+
(1 — €)eyy(p, for all P, P; € D. This completes the verification of Step 2 and

hence the proof of the theorem. [

4 Proof of Theorem 2.3.2

Proof. In the view of the Ramification Theorem (Theorem 5.1 in Appendix 5), it
once again suffices to show that every strategy-proof and unanimous RSCF of two
voters is a random dictatorship. Let D be a strongly linked domain satisfying Con-
dition TS and I = {4, j}. For notational simplicity, we assume that the function o
in Definition 2.3.3 is the identity function. Let S; = {ay,a9,...,a;}, 1 =3,...,m.
Our proof proceeds by establishing the same two steps as those in the proof of The-

orem 2.3.1.

Step 1. There exists ¢ € [0, 1] such that for all P, P; € D%, o(P;, P;) = € €,,(p) +

(1 — 5)6,,1(pj).
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Step 2. If for all P;, P; € D=1, 1 > 3, o(P;, P;) = c ey p,y + (1 — €)er, (py), then

for all P;, P; € D%, o(P;, P;) = c ey py + (1 — €)ery(p))-
The following lemma establishes Step 1.

Lemma 4.1. There exists ¢ € [0,1] such that for all P, P; € D%, o(P;, P;) =

€Cr (P;) + (1 - E)eTI(Pj)‘

Proof. Since a; ~ as, ay ~ az and ag ~ ay (strong connectedness implies the

connectedness), Lemma 3.1 applies. ]

To verify Step 2, we use the following induction hypothesis.

Level 1 Induction Hypothesis: for all P;, P; € D=1, 1 > 3, (P, P;) = €er (P +
(1 —¢)er,(py)-

We will show that for all P;, P; € D%, p(P;, P;) = € €,,(p,) + (1 — €)er (p)).-

Fix [ > 3 and a € S;_;. We say that q, is strongly connected to a by a chain of
length t located in S, if there exists a sequence {y;};5 C S; of length ¢ + 2 such
that a; = y1, a = Yo and yp = ypr1, k = 1,...,t + 1. We let Ty(ay, S;) denote
the set of the alternatives a € S;_; satisfying the following two properties: (i) a is
strongly connected to a; by a chain of length ¢ located in .S; and (ii) there does not
exist a chain of length strictly less than ¢ located in .S; connecting a; and a.

It is evident that T,(a;, S;) N Ty (a;, S;) = 0 whenever s # s'. Moreover,
it also follows that (i) Ti(a;,S;) = (0 implies Ty (a;, S;) = 0 for all " > s,
(ii) UpoTi(a, S;) = Si—1 and (ii) if a € Ts(a;, S;) with s > 0, there exists

b € Ts_1(a;, S;) such that b ~ a. The next lemma considers Tg(a;, S;).

Lemma 4.2. The following two statements hold.

(i) Forall P, € D" and P; € D50, (P, Pj) = e e, + (1 — €)eyy (p)).

2We use an example to explain the chain. Let Figure 2.2(d) denote a strong connectivity graph of
a strongly linked domain. Let the one to one function o be the identity function. Considering a; and
as, then {as, as, as, as, a1}, {as, as, as, a1} and {as, ag, a1 } are chains of length 3, 2 and 1 located
in S respectively. Meanwhile, Ty(as, S5) = {as,as}, T1(as, S5) = {a1,a2} and Ty(as, S5) = 0
forallt > 2.
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(i) Forall P, € DT@:5) and Py € D%, (P, P;) = € e,y(py) + (1 — €)eq,

Proof. We show part (i) first. Let a5 € Ty(a;, S;). Since a; ~ ag (recall that [a; ~
as] = [a; ~ as]), there must exist 5 € [0, 1] such that for all P, € D™ and P; € D%,
¢(P,, Pj)) = Bey + (1 — B)ea,. Now, pick a; € Ty(a, S)\{as}: P € D,
Py € D and P; € D%. Strategy-proofness and Level 1 induction hypothesis
imply 3 = o, (Pi, Pj) = ¢a,(Pis Pj) + @ai(Piy Py) = 00, (PF, Py) + @a (P, ) =

¢4, (P7, P;) = . By symmetric arguments, part (ii) also holds. O

To exhaust all alternatives in S;_;, we provide another induction hypothesis.

Level 2 Induction Hypothesis: Fix [ < m. Suppose that for all 0 < ¢’ < ¢ and either
P, € D% and P; € DUicoTe@S); or P, € DVYimTe(@S) and P; € D, we have
p(Fs, By) = e ey + (1= €)erpy)-

We will show that for all P; € D% and P; € DTS or P, € DTH@5) and
Py e D%, o(Fy, Py) = e ey + (1= €)erypy)-

Lemma 4.3. The following two statements hold.
(i) Forall P; € D" and P; € D5 (P, P;) = e eq, + (1 — €)ery(py)-

(i) For all P; € DT+(@.5) gng P; e D, (P, P;) = €epp) + (1 — €)eq,.

Proof. Pick a; € Ty(a;,S;) with ¢t > 0. According to Condition TS, there exists
a; € A such that a; = q; and a; ~ a;. There are two cases to consider: a; € S;_;
and a; ¢ S;_1.°> The proof of Lemma 4.3 follows the following 6 claims. We verify

part (i) first. Claim 1 below consider a; € S;_1.

Claim 1:
(i) For all P, € D* UDD% and P; € D%, p(P;, P;) = e, (py + (1 — €)eg,.

We provide an example to show both cases of a; € S;_1 and a; ¢ S;_1. Let Figure 2.2(e) denote
the strong connectivity graph of a strongly linked domain. Then, the domain satisfies Condition TS.
Furthermore, it is true that for every one to one function o : {1,...,7} — {1,...,7} satisfied by
a domain in Definition 2.3.3, a; = aq (7). Let function o be the identity function. We first consider
a1, as and Sy. We know a1 = ag, ag =~ a5 and a3 € S4. Next, considering a1, ag and S5, we know
a] =~ ar, a7y = Qg and ay ¢ 55.
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(ii) For all P; € D% and P; € D% UD%, o(F;, Pj) = €eq, + (1 — €)er (p))-

Since a; € S;_1, it must be the case that a; € Ty(a;,S;) and a; € T1(a;, S)).
The claim then follows from Lemma 4.2 and the Level 1 induction hypothesis. This

completes the verification of Claim 1.

Next, we will show that the same conclusions hold when a; ¢ S;_;. Now,
it must be the case that a; € Ti(a;,.S;) where t > 1. Since a; ¢ S;_;, we can
assume a; ~ as, where a, € Ty(a;, S;) (by Definition 2.3.3) and a; ~ aj, where
ar € Ty_1(ay,S;), t > 1 (by property (iii) of T}(a;, S;) above). Since t > 1, it is

evident that a5 # ay. The next three claims assume a; ¢ S;_;.

Claim 2:
(i) For some P; € D% and P; € D%, p(P;, Pj) = € eq, + (1 — €)ey,.

(ii) For some P; € D% and P; € D%, p(P;, Pj) = £ €q, + (1 — €)eq,.

We first consider part (i). By strong connectedness, we can assume that there
exist P} € D% and P; € D*% such that r,(P)) = r,(P;) and r,(P}) = r,(P;),
v = 3,...,m. Now, since as,a; € S;_;, by strategy-proofness and the Level 1 in-
duction hypothesis, we have ¢, (P, P;)+¢a,(Pi, P;) = @a, (P!, P))+¢a. (P, P;) =
¢a.(P!, P;) = e. Similarly, since ax € T;_1(a;,S;), by strategy-proofness and the
Level 2 induction hypothesis, o, (Pi, P;)+¢a, (Bi, Pj) = ¢a, (P, P})+@a, (Pi; Pj) =
©a, (P, P;) = 1 — ¢. Therefore, for all a ¢ {a;, a;, as, ar.}, va(P;, Pj) = 0.

Suppose . (P;, Pj) = o > 0. Then, @, (P;, P;) = € — . Assume a; = 1y, (P))
and a, = ry,(P;). Then, a; = 1y, (P]) and a, = 4, (P]). We have two cases.

Case 1: k1 < k.

Fix P; € D*. By unanimity, ¢, (P, P;) = 1. Hence, 3. | ©r, (P )(R,P)
20y (P Py) + 0 (B Py) + 9u(Pu B) = 1= a < S5, 5 (B, ). Then,
voter j would manipulate at (P, P;) via P;.

Case 2: ky > ks.
By the Level 2 induction hypothesis, > ¢, (p (P, P)) = ¢u(Bi, P)) =

Ll—e <l-eta = ¢q, (P, ) +¢u. (P, B))+0a (P B) = 300 ore) (P Fy).
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Then, voter j would manipulate at (P;, P}) via P;.

Now, ¢, (P, P;) = 0. Next, suppose ¢, (P;, P;) = o > 0. Then, @, (P;, Pj) =
1 —¢— . Assume a; = 1y (P) and aj, = r,(P;). Then, a; = 7, (P/) and

ar = 11, (P!). We have two cases.

Case 1: t; < to.
Fix P, € D%. By unanimity, ¢, (P, P;) = 1. Hence, 0", @r 5y (Piy Pj) =
Ga (P By) + 60 (P By) + 90y (P By) = 1= 0 < S 5, py(P By). Then,

voter i would manipulate at (P;, P;) via P;.

Case 2: t; > t».

By the Level 1 induction hypothesis, > | ¢, (P, P)) = pa, (P, P}) =
e <eta =y (B, P)+¢a, (P, P)+¢a. (P, P) = 371 @r,(p) (P, P;). Then,
voter i would manipulate at (P!, P;) via P;.

Then, ¢, (P;, P;) = 0. Therefore, p(P;, P;) = € €q, + (1 — €)eq,.

By symmetric arguments, part (ii) also holds. This completes the verification of

Claim 2.

Claim 3:
(i) For all P, € D% and P; € D%, o(P;, Pj) = ceq + (1 — €)e,,.
(ii) For all P, € D% and P; € D™, p(P;, Pj) = ceq, + (1 — €)eg,.

We first consider part (i). Since a; ~ a; (recall [a; =~ a;] = [a; ~ a;]), there must
exist € [0, 1] such thatforall P, € D* and P; € D%, o(P;, P;) = [ eq,+(1—PB)e,.

Next, fix P, € D%, PJ € D% %, where profile (R, Pj) satisfies Claim 2(1),
Py € D% and P; € D%, Since as,a; € S;-1, by strategy-proofness and the
Level 1 induction hypothesis, we have ¢q, (P;, P}) + ¢a, (P, P;) = ¢q,(P;, PF) +
Ya. (P}, P}) = wa (P}, P}) = c. Meanwhile, by strategy-proofness and Claim
2(i), goaj(Pi,P;‘) = goaj(Pi,Pj) = 1 — &. Therefore, gpai(Pi,Pj*) = 0. Now, fix
Pr e D*“%. Strategy-proofness implies 1 — 8 = @, (P, P;) = ¢4, (P, P;) +
a,(Pi Pf) = ¢a,(Pr, P}) + 0, (P;, Pf) = 0, (P;, P}) = 1 —¢. Therefore, § = c.

In conclusion, for all P, € D* and P; € D%, p(FP;, Pj) = ceq, + (1 — €)e,,.
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By symmetric arguments, we have that for all P, € D% and P; € D%, p(P;, P;) =

€ eq, + (1 — €)e,,. This completes the verification of Claim 3.

Claim 4:
() For all P; € D% and P; € D%, p(P;, Pj) = ceq; + (1 — €)eq
(ii) For all P; € D% and P; € D%, o(P;, P;) = € €q;, + (1 — €)e,.

This Claim is similar to Claim 3 but its proof follows from Claim 2 and the
Level 2 induction hypothesis, while the proof for Claim 3 follows from Claim 2 and

the Level 1 induction hypothesis. This completes the verification of Claim 4.

We have shown that irrespective of whether a; € S;_; ora; ¢ Si_1, (P, Pj) =
ey (p) + (1 —€)ep (p,) holds for all P; € D* UD® and P; € D%, or P; € D% and
P; e D" UD%.

Claim 5: For all P} € D% and P; € D%%, o(P}, Pf) = ceq, + (1 — €)eq;.

Suppose that the Claim is false. Similar to Lemma 3.4, we can assume @, (P}, P}) =
a > 0. Since @; =~ a; and a; ~ a;, we can assume that there exist PZ* € D%% and
Pf € D% such that rk(P]*) = r(P}), k = 3,...,m. Since Claims 1, 3(i) and
A(ii) imply o, (P, PY) + o, (P, Pf) = 1—cand oo, (P, Pf) +@o, (P, P) = €
by strategy-proofness, we have ¢, (P}, Pf) =1 —¢ —aand ¢, (P, P}) = ¢ —a.
Assume a; = r4(P}). It is evident that s > 3. Then, strong connectedness im-
plies a; = r,(P}). According to Claims 1 and 3(i), >_;_} | Pri(Pr o(Pr, Pr) =
1 — e. Next, by strong connectedness, we have {ry(P7)}i_} = {ri(P}) P
Hence, by strategy-proofness, > i} ¢y, ( P (PF, Pf) = St Prpn) (B Pr) =
L —e. Therefore, 333, ¢r(p) (B, Bf) = 300y e (B P)) + g (P PY) =
1 — a. Now, fix P; € D%. By unanimity, 7, _, ¢ pr)(F, P)) = 1 —a <
1 = (P P) =5, Pry(P?) (P7, P;). Consequently, voter j manipulates at

(P, P}) via P;. This completes the verification of Claim 5.
Claim 6: For all P, € D™ and P; € D%, we have ¢(P;, Pj) = ceq + (1 —¢€)e,

The proof of the claim follows from a symmetric argument in Lemma 3.5.
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By symmetric arguments, it follows that o(F;, P;) = ce,, + (1 — €)e,, for all

P; € D% and P; € D*. This completes the proof of Lemma 4.3. ]

We can now complete the proof of the Theorem. We have shown that under
the Level 1 induction hypothesis, the Level 2 induction hypothesis is established.
With unanimity, this implies that for all P; € D* and P; € D%, or P, € D and

P; € D%, (P, Pj) = € epy(p) + (1 —€)e, (p,) as required, to complete Step 2. [

5 Ramification Theorem

Theorem 5.1. Let D be minimally rich and satisfy Condition o. The following two

statements are equivalent:

(a) ¢ :D? — A(A) is unanimous and strategy-proof

= @ is a random dictatorship.

(b) ¢ : DN — A(A), N > 2, is unanimous and strategy-proof

= @ is a random dictatorship.

Technically, we construct the following definition which serves as a critical

bridge in the proof of Theorem 5.1.

Definition 5.1. A unanimous and strategy-proof RSCF ¢ : DY — A(A) is a quasi-

random dictatorship, if there exists [e;];c; € RY with Y, ; e; = 1 such that for all

el

a € Aand P € DY with P, = P; for some distinct i, j € I, p,(P) = > €k
kel:ri(Py)=a

The random dictatorship is stronger than quasi-random dictatorship, for quasi-
random dictatorship only considers those profiles of preferences with at least two
voters sharing a same preference order and the outcome under such a profile of
preferences is a convex combination of /N (deterministic) dictatorial social choice

functions with respect to an N-dimensional sequence [&;];c;.
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We first provide the outline of the proof of Theorem 5.1. The proof of (b) = (a)
in Theorem 5.1 is trivial. We focus on showing (a) = (b). The proof consists in

establishing following three steps.

Step 1. Let domain D satisfy minimal richness condition and Condition «v. Every
unanimous and strategy-proof RSCF ¢ : D? — A(A) is a random dictatorship =
every unanimous and strategy-proof RSCF ¢ : D3 — A(A) is a quasi-random

dictatorship. This is shown in Proposition 5.1. O

Step 2. Let domain D satisfy minimal richness condition. Every unanimous and
strategy-proof RSCF ¢g : DV=! — A(A), N > 3, is a random dictatorship =
every unanimous and strategy-proof RSCF ¢ : DV — A(A) is a quasi-random

dictatorship. This is shown in Proposition 5.2. O

Step 3. Let domain D satisfy minimal richness condition. Suppose for all 2 <
t < N, every unanimous and strategy-proof RSCF g : D — A(A), is a random
dictatorship. A unanimous and strategy-proof RSCF ¢ : D¥ — A(A) is a quasi-
random dictatorship = ¢ 1s a random dictatorship. This is shown in Proposition

5.3. O

Note that the three steps above are independent and Condition « is only used in
extending the random dictatorship result from the case of two voters to the case of
three voters.* Thus, the three steps together solve the ramification problem in the

way shown by the arrows in the diagram below.

Number of voters 2 3 4 | e N -1 N

Quasi—Random Dictatorship
U e A
Random Dictatorship / / /

4As stated in Steps 2 and 3, the Ramification theorem remains valid from the case of three voters
to the case of N > 3 voters without Condition ««. When m = 3, the ramification theorem holds
without Condition «v. Let |A| = 3 and the minimally rich domain D satisfy part (a) in Theorem 5.1.
Suppose that D violates Condition «.. Then, it is true that [D*| = 1 for some 2 € A. Consequently,
domain DD satisfies the unique seconds property in [1], and hence is not a random dictatorship domain
two voters. Contradiction! We conjecture the Ramification theorem is true without Condition o
when the cardinality of the set of alternatives is greater than three.
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Now, we start the proof. We first introduce some new notation that we shall
be using throughout the proof. Given P, € D and a nonempty subset S C A,
let max(F;, .S) and min(F;, S) denote the most and worst preferred alternatives re-
spectively in S according to P;. Giveni € [ and P € DV, let max(P;, 7, (P_;))
denote the most preferred alternative in r;(P_;) according to P;. Given P € DV
with |r1(P)] = N, let W(P) = Uje;W (P, max(P;, r1(P-;))). Additionally, for
all a,b € A, let I(a,b) be the indicator function, where I(a,b) = 1if a = b; and

I(a,b) =0if a #b.

Proposition 5.1. Let D be minimally rich and satisfy Condition o. Suppose that ev-
ery unanimous and strategy-proof RSCF g : D? — A(A) is a random dictatorship.
Then every unanimous and strategy-proof RSCF o : D* — A(A) is a quasi-random

dictatorship.

Proof. Define three RSCFs as follows: g% (Py, Py) = (P, Py, P3), 49 (P, Py) =
©(Py, Py, P) and g2 (P, Py) = @(Py, Py, P3) for all P, P, Py € D. It is easy
to verify that g%, g13) and ¢"?) are unanimous and strategy-proof (see Lemma
3 in [48]). Hence, the hypothesis of Proposition 5.1 implies that ¢(>, ¢(*3) and

(1,2)

g are random dictatorships. Then, there exist €1, €5, €5 > 0 such that for all

P17P27P3€D7

QO(Pl, P, P2) = &16r(p) T+ (1 - 51)€r1(P2)7
(P, Py, PY) = (1—¢e2)er(p) + 26 py),

(P, P, P3) = (1—e3)er(p) + 3650, (P3)-

To establish that ¢ is a quasi-random dictatorship, it suffices to show that ; +
€9 + €3 = 1. Since D satisfies Condition «, we can fix a profile P* = (Pf, Py, P}),
where 71 (P}) = a, 1 (P5) = b, r1(P5) = ¢; bP} ¢, cPya and aP;b; and W (P, b) U
W(Ps,c) UW(P§,a) = A. Hence, W(P*) = A and r(P*) C W(P*). Fur-

thermore, we assume b = r4(P) and ¢ = ry(Pf). Hence, 1 < s < s'. By
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strategy-proofness, we know >, _, Orpr)(Ps, Py, Py) < Sy Orpy(P*) <

S et @rnpy (Pr, Py, Py) for all t > 1. Since (Py, Py, Py) = g2 (P;, Py) and
o(P7, Py P}) = 909 (P ) wehave S5, g2 (P ) < S0, o (PY) <
S O (PF, P5) forall £ > 1.

(1,2)

Next, since g% is a random dictatorship with respect to {1 — e3, 3}, we have

s —1

S o (P Py) = Z U (B P5) = g Py, Py) =1~ e,

k=1 k=

S

* * 12 * * * *
Zgﬁk(m (P, Ps) Z ) Plvp)_ng)(PlvPS):l_e?n

k=1 k=

S G Py P5) = g (B3 By + gUP(Py By = 1,
k=1

S g (PrLPy) = g Py Py) + gD (P, Py) = 1.
k=1
Therefore, > ;_, Orp(pry(P*) = ZI__ll Orp(pr)(P*) = 1—e3and 22/21 Propr)(P*) =

L Hence, po(P*) = Y3, ey (P) = 5] @ne) (P7) = ea and 25 ) (PF)+
©.(P*) = 1. Then, we know that for all x € W (P;,b)\{c}, ¢.(P*) = 0. Sym-
metrically, we can obtain ¢,(P*) = €1, p,(P*) = 0 forall z € W(Py,c)\{a};
and @,(P*) = €9, p,(P*) = 0 for all z € W(P5,a)\{b}. In conclusion, for all
x € W(P*)\{a,b,c}, p,(P*) = 0. Furthermore, since W (P*) = A, we have 1 =
D wen Pu(P) =2 cimpey Pa(P7) = 0a(PY) + @p(P*) + pc(P*) = €1 + &2 + &3

This completes the verification of Proposition 5.1. [

Proposition 5.2. Let D be a minimally rich domain. Suppose that every unanimous
and strategy-proof RSCF g : DN=' — L(A) is a random dictatorship for N >
3. Then every unanimous and strategy-proof RSCF ¢ : DV — A(A) is a quasi-

random dictatorship.

Proof. This proposition holds when m = 3, since a domain with exactly three

alternatives is a random dictatorship domain of N — 1 voters iff it is the complete
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domain.> We therefore consider m > 4. The proof of the Proposition follows from
Lemmas 5.1 - 5.4.

Let ¢ : DY — A(A) be a unanimous and strategy-proof RSCF. Pick two arbi-
trary voters, say 4 and j. Define a RSCF ¢(*7) as for all P, € D and Py € DVN72,
9" (P, P_gigy) = o(Bi, B, P_gijy).

Lemma 5.1. The RSCF ¢'"“9) is a random dictatorship for alli,j € I.

Proof. Unanimity and strategy-proofness of ¢ imply that ¢*/) is unanimous and
strategy-proof (see Lemma 3 in [48]). Then by the hypothesis of Proposition 5.2,

g(m ) is a random dictatorship. U

Fix i, j € I. It follows from Lemma 5.1 above that there exist (%), £/ > 0 for
all k # 4, j such that ) + ", Y 5,(5”' ) = 1 and satisfying the following property:
PP Py Pogiy) = (P, Ppijy) = €@ e py + i o0 enmy for all
PieDand P_; 5 € DN=2, The next lemma shows that we can split the probability
£(7) appropriately into two parts and together with all 5,(j’j ), k # 1,j, construct a

new N-dimensional sequence of probabilities, which are able to be applied to all

profiles of preferences where voter ¢ and j share a same preference order.

Vv

Lemma 5.2. Picki,j € I. Forall P € DY with P; = P; there exists [\ "N
0 with S, oz,(j’j;s’t) = 1, where s,t € I\{i,j} and s # t, such that p(P) =

N (2,45 8,t)
> he1 €ry(Py)-

Proof. Now, i, j, s, t are mutually distinct. For every [ # 1, j, s, t, we consider a pro-
file PO = (P, P, Py, Py, P, P_yi jsany) Where r1(B;) = a, 71 (Ps) = b, r(B) = ¢
and 7 (P_g;js10y) N {a,b,c} = 0 (recall that m > 4).% Standard properties of
g imply @, (PW) = ), o, (PV) = gD 4 aﬁ”’ and @ (PY) = 5l(i’j). Mean-

while, by ¢, ¢, (PY) = 5§5’t) + 6§s’t), op(PY) = 6 and ¢ (PV) = 5§S’t).

5The sufficiency part is shown in [26], [21] and [48]. The unique seconds property in [1] implies
the necessity. Let a domain satisfy the unique seconds property. Then this domain is not dictatorial
and hence not a random dictatorship domain. Furthermore, when m = 3, every domain other than
the universal domain satisfies the unique seconds property.

°If N = 4,let P = (P;, P;, P,, P,) where r1(P;) = a and r (P,) = b.
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Therefore, £t = ggs’t) + 5§S’t), clot) — B0 eti’j) and el(i’j) = 51(3 ) for all

1 #14,74,s,t. Since e 4+ > ket Ek ™) = 1 and bt + Zk#ts,(:’) = 1, we have

e ey e = tand e 4 e 43 e = 1,
Settlng Oégihj;&t) — 858775), ‘517] St) (S t) O[gihj;&t) — 8g17j), O{(ivj;svt) — 8(17]) and
ozl(i’j;s’t) = 5l(s’t) = 5(i’j) for all [ # 1, j, s,t, we have a( B >0 k=1,...,N,

and SN (o0 — 1,

Fix P = (Pz, Pj, P—{i,j}) with P, = Pj € DD and P—{z‘,j} € DV-2. It follows
from properties of ¢/ that ¢,,(p,)(P) = @) + D kti sg’j) I(ri(P),m(FP)) =
SNl D [(py(P),r1(B;)) and for all z € A\{r1(P,)},

0o(P) = Sy et I (Po), o) = Sy a7 I(ry(P), ). O

Note that [« (’J’St)]ff:l = [a,ﬁs’t;i’j)]{f:l, where i, j, 5,t are distinct. The next

lemma shows that sequence [oy, (g s, )]

I\{i,j} and s # t.

w_ is independent of {s, ¢} whenever s, €

Lemma 5.3. Fixi,j € I. Forall s,t,5,t € I\{i,j}, where s # t and 5 # t, we

have [ )L = [y L

Proof. According to Lemma 5.2, a(i’j 9t 6(8’t), ozj(-i’j 9t Eg-s’t), sgs’t) + 6§-S’t) =
e7) and a( biist) (m for all k # i, j. Meanwhile, a( Gi5t) 525’5), a‘gi’j;g’ﬂ =
5§.§’f), 5§§’£)+5§.§’£) = gli9) anda Bit) 5,(;’]) for all k # 14, j. Therefore, agi’j;s’t)jt
albfiet) = o (05358) | ay’];s’t) and a7 = oz,(j’j;g’f) for all k # 1, .

Next, given a profile P = (P;, P_;) where 1 (P;) = a and for all k£, € I\{:i},
P, = P, ¢ D? then by both g and ¢(*) respectively, we have ¢, (P) = 6§s’t) and
0a(P) = ™) Then, e = ") and hence o{"*") = /"% Consequently,

6,75 85t Ji 5t
Qi)  QiiED) 0

Fix i,j € I. We have the following: for all P € DV with P, = P}, there
exists [0V > 0 with 1N ol = 1 such that p(P) = 32N ("9 €ry(Py)-
In addition, [a{"”]Y_ | = [aP)]Y_ = We next show that the sequence [a!"7]Y| is

independent of {i, j}.
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Lemma 5.4. Foralli,j,s,t € I, wherei # jand s # t, [N, = [a{™")N_|

Proof. Tt is evident that |{i, 5} N {s,t}| = 0,1 or 2. If |[{¢,5} N {s,t}| = 0, then

[ (.7)] (ivj;svt)]N _ [ (Svt;ivj)]N

1,7, s,t are mutually distinct. Hence, ey = |0y, 1 = Oy, ] =
[N Next, if |{i,j} N {s,t}| = 2, then {i,j} = {s,t}, which implies

s,t
PN = a1y

o}

Now, we consider |{7,j} N {s,t}| = 1, We can therefore assume without loss
of generality that ¢ = s. Since N > 3, there exists another voter: voter 5 and
s¢{i,jt}

For every k ¢ {i, j,t}, we consider a profile P*) = (P,, P_;) where P, € D®
and for all I,n € I\{k}, P, = P, ¢ D° By Lemma 5.3, it follows that ¢, (P®*)) =
ol and ,(P®) = o!"". Therefore, o\ = o\" forall k ¢ {i, j,t}.

From the case where |{7, j} N {s,t}| = 0, we have ag-i’j) = ozf’”. Consider a
profile P = (P;, P_;) where P; € D® and for all [,n € I\{j}, P, = P, ¢ D"
By Lemma 5.3, it follows that p,(P) = ozég’t) and ¢, (P) = ay’t). Therefore,

al™ = " Then, a(»i’j ) = ag-i’t). Similarly, a,ﬁ” ) = agi’t).

j j
Finally, it is evident that a Zk# =1-=2 s oz,(;’t) = agi’t). We
therefore conclude that [a{]Y_| = [oz,gs’t)]kN:]_. O
In conclusion, there exists ¢, € [0,1], & = 1,..., N, with Zivzl e = 1

such that for all P € DY with P, = P; for some distinct 7,5 € I, p(P) =
Zszl €k €r(P,)- Therefore, ¢ is a quasi-random dictatorship. This completes the

verification of Proposition 5.2. ]

Proposition 5.3. Let D be a minimally rich domain. Suppose that for all 2 <
t < N, every unanimous and strategy-proof RSCF g : D' — A(A) is a random
dictatorship. If a unanimous and strategy-proof RSCF ¢ : DY — A(A) is a quasi-

random dictatorship, then  is a random dictatorship.

Proof. The proof proceeds in a sequence of lemmas. Let [g5]_, > 0 with Y0 | &5 =

1 be the sequence for the quasi-random dictatorship that ¢ satisfies.
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Lemma 5.5. For all P € DV, if there exist i,j € I such that r1(P;) = r1(P;), then

N
©(P) = 4—1 ¢k Cri(Py)-

Proof. Fix P = (P, P;, P_(; j1). Assume 11 (F;) = 1 (P;) = xo. I ri(P_gij1)\{z0} =
(), then 71 (P) = {x¢} and unanimity gives the result. We complete the proof by
considering r1(P_g; j3)\{zo} # 0. Now, assume ri(P_g j3)\{zo} = {@}i_s,

1 <1 < N — 2 and all elements in {;},_, are distinct. By strategy-proofness
and quasi-random dictatorship, we have ¢, (P) = g, (F;, P, P_ijy) = €+ +
Sk &x L1 (Pr), w0) = 5y ek I (r1(Py), o).

Next, for the relative rankings of all elements in {z;}!_, in P,, we assume with-
out loss of generality that z; = 7y, (P;), t = 1,...,land k; < ko < --- < k;. By
strategy-proofness, forall s > 2, %" o, (p)(Pj, Pj, P_gijy) < >0 or ) (P) <
2ot Prop) (P Py P gy)-

Next, according to quasi-random dictatorship, we have that fort = 1,... [,

ki—1 ki—1

> ne) (P PPy = > niry(P Py Pgigy)
v=1 v=1

= €i+€j+ ng[zl(rl(Pk)7$S) )

k#i,j 5=0
kt kt
> one) (P P Poy) = Y @npy(Pr P Pogigy)
v=1 v=1
t
= g +¢&+ Z £k [ZI(rl(Pk),xs)} .
k#i,j 5=0

Consequently, 32, @r, () (P) = & + &) + Y e [Z;f) I (n(Pk),xs)}
and Y200, @, (p)(P) = €0+ €5+ D e [Zizo I(r(Py), :cs)] fort =1,...,1.
Hence, ¢;,(P) = 32,5, ¢, (p) (P)= 3205 @r(p)(P) = > ki €6 L(r1(Py), o) =
SN en I(ri(Py),my) fort =1,... 1.

Therefore, >, ., (p) ¢=(P) = Zizo @e,(P) = SN &, = 1. Then, for all
x ¢ 1(P), p.(P) = 0. In conclusion, p(P) = S~ | EkCry (Py)- O

If [A| = m < N, then for all P € DV, there always exist at least two voters who
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share a common maximal alternative. Then, Lemma 5.5 implies that ¢ is a random
dictatorship. We complete the proof by considering |A| = m > N. Given a profile

P € DY with |ri(P)| = N, recall W (P) = Up_ W ( Py, max(Py, r1(P-y))).
Lemma 5.6. For all P € DY with |r,(P)| = N, we have |ri(P)NW (P)| > N —1.

Proof. This lemma asserts that for every profile P € DV with |ri(P)| = N, ri(P)
and W (P) have at least N — 1 alternatives in common.

Suppose not. Then there exists P € DV with |r{(P)| = N such that |ry(P) N
W (P)| < N — 1. Hence, there exist a,b € r;(P)\W (P). Since |r;(P)| = N and
N > 3, we know that there exists P, € D¢ for some ¢ € I such that ¢ ¢ {a,b}. Let
max (P, r(P_;)) = z. If ¢ ¢ {a,b}, we know {a,b} C W(P;, x) which implies
{a,b} C W(P). If x = a, then b € W (P;, z) which implies b € W(P). If z = b,

then a € W (P, z) which implies a € W (P). We have a contradiction. O

Lemma 5.7. For all P € DV with |r\(P)| = N and x € W(P), we have ¢,(P) =

Yicr e L(r(Pe), ).

Proof. Fix i € I. Assume without loss of generality that 7, (P_;) = {x;}5,
Ty = ka,(Pi)’ t = 1,...,N— 1, ]{?1 < ]{?2 < - < kN—l and z; = T’l(Pj) for
some j € I\{i}. By strategy-proofness, we have > " _, ¢, (p) (P}, Pj, P_ij1) <

dove1 Py (P) <300 () (P, Piy Py jy) forall s > k.

According to quasi-random dictatorship, we have the following:

k1 kl
Z SOTV(Pi)<Pj7 Pja P—{Z,j}) = Z QOTU(PZ-)(P% F)ia P—{Z,]}) =&+ €j7
v=1 v=1
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andfort=2,..., N — 1,

ki—1 ke—1

> (P Py Ppiyy) = Z% ) (B Bi, Pgigy)
v=1

t—1
= €i+€j+28k[21 ’r‘1 Pk

k#i,j 5=2

k¢

t
> ene) (P P Pogiy) = Y @npy (P Py Pgigy)
v=1 v=1

= & +t¢g+ ng[zl(ﬁ(Pk)?xS)

k#i,j 5=2

Then, similar to the proof of Lemma 5.5, we have 251:1 Or,p)(P) = € + €5
and ¢,,(P) = S0 ex I(r1(Py), ), fort = 2,...,N — 1. Since |r(P)| = N
and 71 (P_gijy) = {z:}s', we know ¢, (p)(P) = &, for all k # i,7. Then,
Zﬁlzl Cro(P)(P) + Dt Ori(py) (P) = 2521 er = 1. Therefore, for all x €
W (P, z1)\{z:}X5", 0.(P) = 0. In conclusion, for all z € W (P}, x1), 0. (P) =
S I(ri(Pe), ).

Applying the same argument to all other voters, we have ¢, (P) = E;f:l e I(r1(Pg), x)

for all z € W(P). O

From Lemma 5.7, we can infer that for all P € DV with |r{(P)| = N, if
r(P) C W(P), then ¢(P) = YN | e e,,(py- By Lemmas 5.6 and 5.7, we know
that for every P € DV with |r,(P)| = N, the probabilities over at least N — 1
elements of r;(P) in p(P) are revealed.

In the next lemma, we will identify properties that a profile P and ¢(P) must
satisfy if o(P) # Zk | €k €, (py)- Given a profile P € DV with |ri(P)| = N, let
B;(P) = B(P;,max(P;,m(P-)))\{r1(P)}, i € I and B(P) = M B;(P).

Lemma 5.8. Given P € DV, if o(P) # Z]kvz1 Ek €ry(P,)» the following conditions

are satisfied:

(i) [r1(P)] = N.
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(ii) There exists i € I such that ¢, p,)(P) < & and ¢, (p,)(P) = & for all

(iii) r1(P;) = max(Py,m1(P_x)) for all k # i.

(V) () (P) + 2 cnp) P (P) = &i

(v) B(P) # (). Furthermore, there exists x € B(P) such that p,(P) > 0.

Proof. (i) Since p(P) # S, cx ey, (py)> Lemma 5.5 implies |r1(P)| = N

(ii) According to Lemmas 5.6 and 5.7 and the hypothesis ¢(P) # Zszl €k Ery(Py)>
it must be true that |r;(P) N W(P)| = N — 1. Assume without loss of generality
that 71 (P;) ¢ W (P). Then, by Lemma 5.7, we have ¢, (p,)(P) = ¢ for all k # i.
Consequently, ¢, (p)(P) < 1 =37, ¢r (p) () = &;. This implies ¢, (p,)(P) <

g;, otherwise ¢(P) = 25:1 EkCry (Py)-

(iii) The proof of statement (ii) shows that 71 (P;) ¢ W (P), which implies r;(P;) =
max (P, r (P_y)) for all k # i.

(iv) Assume without loss of generality that max(P;,r(P-;)) = r(P;) for some
j € I\{i} and let 7 (P;) = rs(F;). Then, as we showed in the proof of Lemma
57,6+ & = Yt @) (P) = 021 0r(p (P) + 9r(p) (P) = @ri(py (P) +
> ven,(p) Px(P) + ¢r (py)(P). Furthermore, statement (ii) implies ¢, (p,)(P) = ¢;.
Hence, ¢y, (p,)(P) + 3_ e p,(p) P=(P) = €i. Next, since B;(P)\B(P) c W(P) and
B(P) C B;(P), we have ¢,(P) = 0 for all z € B;(P)\B(P) by Lemma 5.7 and
Prip)(P) + 2pep(p) vu(P) = &is

(v) By statements (ii) and (iv), we know ) gox(P) > 0, which implies

z€B(P

B(P) # () and furthermore, there exists z € B(P) such that . (P) > 0. O

The voter ¢ specified in statement (ii) of Lemma 5.8 is called the special voter
of P. As we showed in the proof of statement (ii) of Lemma 5.8, we know that
the peak of the special voter of P does not belong to W (P). It is evident that in a

profile P with p(P) # Zszl €ker (P,)» there exists a unique special voter.
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We next show what property the sequence [g;]5_, must satisfy, when there exists

a profile P* such that o(P*) # S EkCry(PY)-

Lemma 5.9. If there exists P* € DV such that o(P*) # chvzl Ek Ery(Py), then

O<en<lLk=1,... N.

Proof. Suppose there exists 5, = 0. Fix P (the k¢, element of P*). Define a RSCF:
g(P_y) = @(P;, P_y) forall P_;, € DV~ Strategy-proofness of ¢ implies that g is
strategy-proof. Next, Lemma 5.5 implies that g is unanimous. Furthermore, accord-
ing to Lemma 5.8(v), we know that there exists « ¢ r1(P*) such that ¢, (P*) > 0.
Therefore, g.(P*,) = ¢.(P;, P*,) > 0 where « ¢ ri(P*,), which implies that
RSCF g is not a random dictatorship. This is a contradiction to the hypothesis of
Proposition 5.3.

Next, suppose €;, = 1 for some k € I. Then, there exists j # k such thate; = 0,

which would lead to the same contradiction. ]

In the next lemma, we show it is true that for all P € DV with |r;(P)| = N,
p(P) = fo:l €xér,(p,) by contradiction. Suppose ¢ is not a random dictatorship.
Then we construct a RSCF / : D?* — A(A) and show it is unanimous and strategy-
proof and not a random dictatorship, which hence contradicts the hypothesis of

Proposition 5.3.

Lemma 5.10. For all P € DN with |r,(P)| = N, we have o(P) = Y1 &) Cry(Py)-

Proof. Suppose RSCF ¢ is not a random dictatorship with respect to [e;|_,. Then,
there exists P* € D such that p(P*) # Zszl Exery(pPy)- By Lemma 5.8(ii) and (v),
we know that there exist a special voter of P* and y ¢ 71 (P*) such that ¢, (P*) > 0.
Assume without loss of generality that voter 1 be the special voter of P*. Next,
pick arbitrarily another voter, i.e., voter 2 and fix P* (12} (elements in P* other

than P and P;). By Lemma 5.9, we can construct the following function: for all
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P, P, e D,

€1
e1teg

er(P) T 56 (P))

it () (Pr, P, Py 5y) = €1, and @y (py) (Pr, P2, PTyy 5y) 2> €9
h(Py, Py) = v
o |9(Pr, Py, PPy ) — gg%erl(zﬂg)}

otherwise.

Note that Lemma 5.8(i1) implies that it is impossible that ¢, (p,) (P, Py, P* {1’2}) <
e1and ., (py) (Py, P, P* {172}) < &9 simultaneously. Therefore, given P = (P, P, P* {172}),
by Lemma 5.8(ii) and (iv), when either ¢, (p)(P) < €1 or ¢, (p,)(P) < &2,

h( Py, P») must be specified as below:

if ¢, (p)(P) < €1, then

h(Py, Py) =

[nen(Phenmy+ D walP)esterenm| 6D
Gt e z€B(P)

where ()OTl(Pl)(P) + erB(P) SOI(P) = ¢1; and
if o, (p)(P) < €2, then

h(Plv PQ) = [51 Cry(Py) T SDrl(Pz)(P) Cri(Py) T Z (,Dm(P) 64 (5.2)

g1t €2 2€B(P)

where . (p,)(P) + erB(P) 0o(P) = es.
Next, we will show that i is a unanimous and strategy-proof RSCF. Further-

more, to complete the proof of Lemma 5.10, we also show that / is not a random

dictatorship which contradicts the hypothesis of Proposition 5.3.
Claim 1: Function h is a RSCF.

Firstly, if gprl(pl)(Pl,Pg,Pj{m}) > ¢ and @, (p,) (P1, Ps, Pj{m}) > gy, it is
evident that i, (P, P,) > Oforallz € A,and ) _, ho(P1, P>) = 1. Secondly, if
either ¢, (p,)(P1, Ps, Pj{m}) < €101 O () (P, P, Pj{m}) < &y, either Equation
(1) or (2) above implies h, (P, P;) > Oforallz € Aand ) _, h.(P1, P) = 1.

113



This completes the verification of Claim 1.

Claim 2: RSCF h is unanimous.
Letri(P;) = r1(P,) = a. Then, by Lemma 5.5, we know that ¢, (P, P, Pj{1,2}) =
51+52+Zg:3 exl(a,r1(Py)). Hence, @, (p)(P1, Pa, Pj{LQ}) = 0o (P, Ps, Pf{m}) >

erand r, (p,) (P1, P, Pyy o)) = a(Pr, Po, P7yy 5y) 2> 2. Consequently, ho(Pr, Po) =

o _— . . . .
75 t 77 = 1. This completes the verification of Claim 2.

Claim 3: RSCF h is not a random dictatorship.

Since we have assumed that voter 1 is the special voter of P*, it is true that
@ (pr)(P*) < €1 by Lemma 5.8(ii). Consequently, i(Py, Py) follows from Equa-
tion (1). Next, since we have assumed that ¢, (P*) > 0 where y ¢ r(P*) in the
beginning proof of Lemma 5.10, we have h, (P, Py) > 0 and y ¢ (P, FP;),
which implies that / is not a random dictatorship. This completes the verification

of Claim 3.

Claim 4: RSCF h is strategy-proof.

Recall that to verify strategy-proofness of a RSCEF, it is equivalent to show that a
voter’s expected utility from truthtelling to be no less than her expected utility from
misrepresentation for any cardinal representation of her true preferences indepen-
dent of other voters’ behaviors. Given P; € D, let U(P;) denote the set of utility
functions that represent P;. Accordingly, given a lottery A € A(A) and u; € U(F)),
Y aca Aai(@) represents voter i’s expected utility. To verify this claim, we adopt
this approach, instead of directly showing stochastic dominance.

We consider the possible manipulation of voter 1 in h. Firstly, it is evident

that the manipulation only occurs at (P, P») via P where either h(P;, P») =

£ £ %« N
S5 6 (P) T o Cn () and h(P|, P,) = — |:('Q(P1/7P27P_{172})_Zk:3 EkEry(Pr) |»

e1tez
or h(Py, Po) = ——[o(P, Po, P* ) — OV, gkem(p:)} and

WP, Py) = S35enp + 575 6mm)-

Secondly, if (P, P, Pj{m}) = €1€r(Py) T €260 (Py) T Ziv:?) Ekery (Pr)> then
X N
h(Ph PQ) = ;Tlgzem(Pl)+glaT252€n(Pz) = ﬁ [90(131, P, P—{1,2}>_Zk:3 EkCri(Py) |»

which implies that there exists no manipulation at (P, P») via P] or at (P}, P») via
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P.

Therefore, given two profiles P = (P, P, P* ,)) and P’ = (P[, P, P*(, )
such that o(P) # e1e,,(py) + €260, () + Z;ivzg Exery(pp) and (P') # €1, (p) +
€260, (Py) t Zfﬂv:?) Ek€r,(Py), the manipulation at (Py, P») via P{ may occur in follow-

ing 4 cases.’
Case 1: (i) ¢, (p)(P) > €1 and @, (p,)(P) > €2, and (ii) gom(p{)(P’) < &1.

Now, h(P], P,) follows from Equation (1). Then, given u; € U(P;), the loss
from misrepresentation in his ) 4 u1(2) 0. (P, P2) — Y, c w1 (@) (P, P2) =

== e (r(Pr) = oy (P (11 (P))) = Y ,epepry 0 (Pur ()] > 0. This

completes the verification of Case 1.
Case 2: (i) ¢, (p)(P) 2 €1 and @, (p,)(P) > €2, and (ii) @r, () (P') < €2.

We first claim that this case only occurs when N = 3. Suppose not, i.e., N > 4.
Since ¢y, (p)(P) 2> €1 and ¢, (p,)(P) > €2, by Lemma 5.8(ii), we assume without
loss of generality that voter ¢, where i € {3, ..., N}, is the special voter of P. Next,
since N > 4, there must exist another voter, i.e., voter j such that j ¢ {1,2,i}.
Furthermore, applying Lemma 5.8(iii) to P, we know ry(P;) P; 71(P2). On the other
hand, ¢, (p,)(P’) < €, indicates that voter 2 is the special voter of P’. Therefore,

applying Lemma 5.8(iii) to ', we have 11 () P; r1(F;). Contradiction!

Now, by Lemma 5.8(i), to simplify the notation, we assume r1(P;) = a, 1 (F2)
b, r1(P5) = cand r (P]) = d, where a, b, ¢ are mutually distinct and d, b, ¢ are mu-
tually distinct (it is possible that a = d). Furthermore, h(P], P») follows from

Equation (2). Therefore, given u; € U(P;), the loss from misrepresentation in A is

Zul 9096 PI;PQ Zul ()Ozv P1/7P2)

z€EA €A

= [em(@) + e ) — i (d) — p(PYn ()~ Y pa(Pua(a)

€1+te —
L= v€B(P)

"Since p(P) # €1, () + €260, () + Zszs €ker, (Py) and o(P") # €16, (P t €260 (Py) T
Zszg Eker, (Py), We can apply Lemma 5.8 to P and P’ in the analysis of the following 4 cases.
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where g5 = p(P') + erg(p/) oz (P).

To show that ), u1(2)p.(P1, Pa) — Y, cqi(2)pz(P, P) > 0, We will
consider the following 2 situations: dP;b and bP;d.

Firstly, we claim thatif dPb, Y 4 u1(2) 0 (Pr, Po) =Y c 4 u1(2) o (P, Py) >
0. Since either a = d or aPyd, to verify the claim, we only need to show that b
for all z € B(P') with ¢, (P') > 0. Suppose not, i.e., there exists * € B(P')
such that @,«(P’") > 0 and z* P;b. In profile P, since ¢, (P) > &1, ¢p(P) > €5 and
N = 3, by Lemma 5.8(ii) and (iii), we know that voter 3 is the special voter of P
and cP;b. Let 2/ = min(Py, {z*,d,c}). Hence 2’ Pib. Assume =’ = r,(P;). As
we showed in the proof of Lemma 5.7, 7 _, ¢y (p)(P) = €1 + £3. Meanwhile,
Lemma 5.8(ii) implies @q(P') = ¢; and ¢.(P') = 3. Then, @,«(P') > 0 im-
plies that 375 _, ¢r, () (P) < &1+ €3+ e (P) = @a(P') + c(P') + o (P') <
> r—q Prp(pr)(P'). Therefore, voter 1 manipulates at P via P in ¢ - a contradiction.

Next, we claim thatif 0P d, then ), u1(2) @z (Pr, Po) = cp U1 (2)@z(Py, P2) >
0. Now, it is evident that a # d. Since b ¢ B(P'), we separate B(P') into
two parts S and T: for all x € S, xPib, and for all z € T, bPz. If S = (),
then for all z € B(P’), bPiz. Therefore, it is true that > _, u1(z)p,(P1, P2) —
S entn(@)ea(Pl Py) = =2—fur(a) — ()] + == 5, @a(P)a(b) —
uy(z)] > 0.

Next, consider S # (). Let * = max(P;, S). It is true that (i) either aP;x* or
a = z*, (ii) z* Pb, (iii) bP,d and (iv) bP,z for all z € T (if T' # ()). Furthermore,
Y owea () oa(Pr, Po) — > c 4 w1 () (P}, P,) can be modified as

Z Ul(x)WI(P17P2) - Z ul(l‘)(pw(Pll,Pg)

T€EA r€A
= 3 Jlr@ [€1U1(CL) +e2ur(b) — erua(d) — (P ur (b) — Z pa (P ur(z) — Z @z(P/)Ul(Z)}
zeS zeT
> o iez [81u1(a) + equq (b) — e1ur (d) — pp(P")ur(b) — ug (z*) %%(P’) - ZGZT%(P’)ul(z)}
o E1— 2 pu(P) > 0 (P)[ur(b) — ui(2)]
_ 51[“‘1(0’) — U1 (IE )} + zeS [Ul(.’E*) _ Ul(b)] + El[ul(b) — Ui (d)] + z€T
€1+ e2 €1+ &2 €1+ €2 €1+ &2
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Therefore, according to the relative rankings in P; specified above, to show that
Yowea (@) pa(Pr, Po) — > caui(2)pL(Pf, P2) > 0, it suffices to show ¢; >
D ves Pa(P).

Assume min(P;, S) = y* and let 2* = min(Py, {c,y*}). Assume z* = r4(P}).
Hence, {ri(P1)};_, = B(P1,2*) U {z*}. In profile P, since ¢, (P) > €1, pp(P) >
g9 and N = 3, by Lemma 5.8(ii) and (iii), we know that voter 3 is the special voter
of P and cPb. Hence, z*P;b. Therefore, as we showed in the proof of Lemma
5.7, we have > 7 _, ¢, (p)(P) = €1 + e3. Next, in profile P/, by Lemma 5.8(ii)
and (iv), we know that for all z ¢ {d,b,c} U B(P'), ¢.(P') = 0. Furthermore,
since [B(Py, 2*) U{z*}]N{d,b,c} = {c} and [B(Py, 2*) U{z*}]N B(P') = S, we
have that 5, @m0 (P') = cpmioyoor) 9o (P) = 0ol PN+ Y cs pulP') =
€3+ .cs Pz(P') (by Lemma 5.8(ii), ¢.(P') = €3). Then, strategy-proofness of ¢

implies £; > > _¢ @, (P’). This completes the verification of Case 2.
Case 3: (i) ¢y, (p)(P) < €1, and (ii) @, (pr)(P') > €1 and @, (p,)(P') > 2.

Now, h(P;, P,) follows from Equation (1). Then, given u; € U(P;), the loss

from misrepresentation in A is

ZU1 SOxPhPQ Zlh SOxPpPQ)

T€EA T€A

S [@n(Pl)(P)Ul(Tl(Pl))JF D eu(Phu(@) — erun (ra(P))

1t 2 z€B(P)

where or, (p)(P) + 3 ,cpip) pa(P) = €1.

Firstly, since ¢, (p)(P) < €1 and @, (p)(P’') > &1, strategy-proofness im-
plies that ry(P;) # r1(P]). It is evident that 1 (P;) P, 7 (P}). Therefore, to show
Y owea (@) pa(Pr, Po) = Y caui(x)pL (P, Py) > 0, it suffices to show that for
all z € B(P) with ,(P) > 0and z # r(P]), 2 Pir(P)).

Now, suppose there exists 2’ € B(P) such that ¢./(P) > 0 and r(P])P,2".
Firstly, B(P) C B;(P) implies 2’ € B;(P). Let s, and s, be such that 7, (P]) =

rs,(P1) and 2/ = 7., (P;). Hence, 1 < s; < s3. As we showed in the proof
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of Lemma 5.8(iv), ¢r,(py)(P) + X ,cp,(p) ¥=(P) = €1. Then, ¢.(P) > 0 and
2 € Bl<P) imply 22:1 QDTk(Pl)( ) < Z}g:l ngk(Pl)(P) <6 = (prl(P{)(P/> <
> iy () (P'). Therefore, voter 1 manipulates at P via P in ¢ - a contradiction.

This complete the verification of Case 3.
Case 4: (i) ¢y, (py)(P) < €9, and (ii) @, (p1)(P') > €1 and @, (p,)(P') > 2.

As in Case 2, we can claim that this case only occur when N = 3. Now,
h(Py, P,) follows from Equation (2). Since ¢, (p,)(P) < €2, we know that voter 2
is the special voter of P by Lemma 5.8(ii). Hence, for all x € B(P), zPir(P,)

by Lemma 5.8(iii). Then, given u; € U(P), the loss from manipulation in A is

D wea (@) pa(Pr, Po) =32 a1 (@)pa (P, P2) = S5 [un(ri(Pr)) —ua (r () ]+

> wen(p) Pa(P)[ui(z) — ui(ri(F,))] = 0. This completes the verification of

-1
€1+e2
Case 4.

Finally, using symmetric arguments for voter 2, we conclude that h is strategy-

proof. This completes the verification of Claim 4 and the proof of Lemma 5.10. [
This concludes the proof of Proposition 5.3. ]

Finally, Proposition 5.1, 5.2 and 5.3 conclude the proof of Theorem 5.1.

6 The Weighted Projection Rule

In the verification of the sufficiency part of Theorem 3.3.1, we constructed a weighted
projection rule. Here, we briefly describe some important features of such rules.

A projection rule is a DSCF that is strategy-proof, efficient (deterministic coun-
terpart of ex-post efficiency), tops-only and anonymous. A weighted projection rule
is a convex combination of all projection rules and inherits all the properties of pro-
jection rules mentioned above and satisfies the compromise property. If the weights

are chosen to be 1/|A|, a weighted projection rule also satisfies neutrality.®

8ARSCF ¢ : DY — A(A) is neutral if for every permutation o : A — A and P, P’ € DV with
[aP;b] < [o(a)P{o(b)] foralli € I and a,b € A, we have 0o (P) = 0q(q)(P’) foralla € A.
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Weighted projection rules are not the only RSCFs that satisty the required prop-
erties in Theorem 3.3.1 on single-peaked domains on a tree. One way to see this
is to note that a projection rule on a line is a particular case of a phantom voter
rule (see [34], [12] and [46]) where all phantom voters have the same peak.9 Con-
sider the single-peaked domain on a line (see Example 3.2.2), and let the RSCF
Y DN — A(A), N > 3, be a convex combination of all phantom voter rules on
the line where every phantom voter rule has strictly positive weight. It is easy to
show that ¢ is ex-post efficient, anonymous, tops-only and strategy-proof, and sat-
isfies the compromise property. However, RSCF ¢ is not a weighted projection rule
since it includes some phantom voter rules with distinct peaks of phantom voters.
In the case of two voters, efficiency reduces the number of phantom voters to one.
However even in this case, there exist strategy-proof, ex-post efficient and tops-
only RSCFs satisfying the compromise property that are not weighted projection

rules (see Example 6.1).

Example 6.1. Consider domain DD in Example 3.2.1. Note that for all P, P; € D
with ry (B;) # r1(P;), either C(P;, P;) = {ay} or C(P,;, P;) = (. Domain D admits
the RSCF ¢ : D? — A(A) specified in Table 1. It is easy to verify that ¢ is ex-post

efficient, anonymous and tops-only and satisfies the compromise property.

S D
B Tl(Pi):(h Tl(Pi):a2 T1(Pi):a3 Tl(Pi):(M
Pj eD
_ 1 2 1 1 1 1 1 1
rl(Pj) =m €a, 3€a + 3€as 3€ay + 3€ay + 3€as 3€a; + 6Caz + 5€ay
_ 1 2 2 1 1 1
r1(P;) = a2 3€a, + 5€a, Cas $€a, + 3Ca; 3€ay + 3€a,
_ 1 1 1 2 1 1 1 1
ri(Pj) = as 3€a; + 3€ay + 5€a5 | 5€as T 3€as €as 5€as T 3€as T 5€a,
_ 1 1 1 1 1 1 1 1
ri(P;) = as 5€a; + GCas T 5€as | 3€ay T 5€as | §Caz T 3€as T 5€as €a,

Table 1: RSCF ¢ : D? — A(A)
There are three maximal paths in G*: {ay, a, as}, {a1, as, a4} and {as, as, as}.

Accordingly, we have three subdomains: D; = {H € ]1_)>|r1(B) € {al,ag,ag}},

9[50] and [51] show that the family of projection rules is uniquely characterized by Pareto opti-
mality and the axiom of replacement dominance over the single-peaked domain.
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D, = {P, € ]D{Tl ) € {a1,as,a4}} and Dy = {P; € D|r(F;) € {as,a2,a4}}.
Observe that for every P € D?, there exists k € {1,2,3} (not necessarily unique)
such that P € D210

The RSCF ¢ is defined by considering a separate weighted projection rule for

each of the subdomains D, D, and Ds. Specifically, for all P* € D2, P2 € D2 and

P? D2,
1 - 1 al 1 a2 1 1@3 1
G(PY) = Z0"(PY)+50°(P') + 30m(P),
]' al 1 as 1a4

1 1 1
PIPY) = G0 (P + 50 (P + 567 (PY).
Note that if P € D? and P € D?,, where k # k/, (P) is identically induced by
the two corresponding distinct weighted projection rules. For instance, (P, P) €
D? and (Py, P») € D3. According to Dy, p(Py, P2) = 3€4, + 2€q4,, while according

to Dy, we also have (P, Py) = 5€q, + 2€q,.

Similar to the verification of strategy-proofness in Example 3.3.2, we fix voter ¢
and check all possible manipulations: (P, P;) <> (P!, P;). It follows from standard
arguments that manipulation never occurs within any of the subdomains D;, I,
and Ds, i.e., if the true preference and the misrepresentation lie within the same
subdomain. We will consider every misrepresentation which leads to an outcome
according to a different weighted projection rule relative to truth-telling. It covers
three situations and we specify the changes of probabilities in each situation which
indicate that probabilities are always transferred from the preferred alternatives to

less preferred alternatives according to the true preference.

1. In (P, a3) <> (P!, a3) where r1(P;) = ay and r1(P/) = a4, we have

a1 Pias a2P;aq

) asPla1  a4Plaz
s — 5
13 7 1/6

QD(Plva?)) SO(P/ Gg) and (p(Pilaai% 1/3 ) 1/6

SD(Pha?))'

2. In (P, a4) <> (P!, ay) where ri(P;) = ay and r1(P/) = a3, we have

10For instance, (P, P,) € D? and (P, P») € D3.
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P(Plyar) and (P}, a0) = o( P aa).

a1 P;a
P(Fiyaa) =
3. In (P, a1) <> (P/,ay) where r1(P;) = a3 and r;(P/) = a4, we have

azPias  azPjay
)—> =

asPlaz  asPlaz
, ) ——
1/3 1/6

/ /

90(Pi7a1)'

Y

In conclusion, RSCF ¢ is strategy-proof.

Last, we verify that ¢ is not a weighted projection rule. Suppose it is not true.
Then, there exists A% > 0, k = 1,2, 3,4 with Zi:l A% = 1 such that p(P) =
ST _  A%¢@ (P) for all P € D2 We must then have (i) A = @, (a1,a2) =
3, (i) A = @g,(ag,a2) = 3, and (i) A = ¢,,(as,a2) = 5. Consequently,

A% 4+ A% 4+ X% > 1 which is a contradiction. Hence, ¢ is not a weighted projection

rule. O

7 Strategy-proofness in Example 3.3.2

To verify that RSCF ¢ in Example 3.3.2 is strategy-proof, it suffices to show that
in every possible manipulation, probabilities are transferred from preferred alterna-
tives to less preferred alternatives in the true preference while probabilities assigned
to other alternatives are unchanged. Note that since RSCF ¢ is anonymous, we can
fix a voter, say voter ¢, and consider all possible manipulations (P;, P;) <> (F/, P;).

According to the construction of ¢, it is evident that manipulation can never
occur if both truth-telling and misrepresentation result in a random dictatorship out-
come.

Next, voter © would consider a misrepresentation which makes RSCF ¢ change
from random dictatorship to the weighted projection rule or vice versa. Given
P, € {P, P}, P; € {P5, P} and P/ € {Ps, Py, P5, Ps}, we specify the changes
of probabilities in all possible manipulations which indicate that probabilities are
always transferred from the preferred alternatives to less preferred alternatives in

the true preference.

1. In (P, Ps) <> (Ps, P5), we have
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10.

11.

a1P1a2 azP3a1
(P, Ps) —— v ©(Ps, Ps) and o(Ps, Ps) /3 o(P1, Ps).

In (P, Ps) <> (Py, Ps) or (Ps, P5), we have

a1 Pira
(P, Ps) /1590(P47P5)OY<P(P5aP5)
azPiaq a3 Psaq
PPy, Ps) =57 @(Py, Bs) and o(Ps, Pr) = = (P, Ps).

. In (Py, P5) <> (Ps, Ps), we have

Py, Py) 0k, P, o (p Py and Py, Py) S0, | o,

1/6 1/3 1/6 1/3

In (P, Ps) <> (P, P5), the lottery does not change.
In (P, Ps) <> (P4, Ps) or (Ps, Ps), we have

asPoa
©(Py, Ps) =="2@(Py, Ps) or ¢(Ps, Ps),

1/2
azPyas azPsaz
90(P47P5) 3/ SO(PQ,Ps) and 90(P5,P5) 3/5 <P(P2,P5)-

In (P, Ps) <> (FPs, Ps), we have

a3P6a2 asPsaz
1/6 7 1/3

a2P2a3 azPray

SO(P2>P5) 16 0 173 SO(PGaPS)andSO<P67P5)

In (P, Ps) <> (Ps3, Ps), we have

P(Pu, Po) A% 05, (P, Py) and (P, Py) 2, 22020,

1/6

1/2 1/6

In (P17P6) < (P4,P6) or (P5,P6),WehaVe

¢14P1 ag

a1 Pra
(PI’PG) l 1a3 1/

(P47P6) or QO(P57P6)

o(Py, Ps) = ZaTho, ; aaaas, ©(Py, Ps) and o(Ps5, Ps) —— “3P5°’1 7 asPsas

1/2 1/6 1/6

In (P17P6) — (P67 PG), we have

a1Pra aqPga
o(Py, Fy) 1/1 % o(Pg, Ps) and (P, Pp) 4/6 > (P, F).

In (PQ, P@) < (Pg, Pﬁ), we have

a4P2a a Pa4
P(Po, Ps) =0 = ¢(Ps, Ps) and (P, Po) = = (P, ).

In (Py, Ps) <> (P4, Ps) or (Ps, Ps), we have

a2 Pzas asPras
5

SD(P%PG) 1/2 ) 1/6

90(P4, Pﬁ) or SO(P5, Pﬁ),
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SO(P% P5)'

(P, Fs).

QO(P17P5>'



azPya a3z Pya a3z Psa azPsa
(’O(P4,P6)31f422>, %’@(PQ,PG) and gO(Pg),PG)%’ %}@(P%P(g).

12. In (P, B) <> (Ps, Ps), we have

asPsa aqPsa
(P, PG)%WO(P& Fs) and ¢(Fs, P6)%>90(P27 Fs).

By a symmetric argument, we know that voter ¢ would neither manipulate at
(Pi, Pj) € {P5, Pﬁ}X{Pl, P2} via P,L-, € {Ph PQ, P3, P4}, normanipulate at (Pz, Pj) €
{Pl,PQ,Pg,P4} X {P17P2} viaPi’ S {P5,P6}.

Last, we show that no manipulation occurs within the weighted projection rule.
Accordingly, we consider all possible manipulations (P;, P;) <> (P/, P;) in the

following three jointly exhaustive cases:
(i) P, P, P € {P, P, Ps, P,}.
(i) P, P;, P! € {Ps, Py, P5, Fs}.
(iii) P, € {P1, P2}, P € {P3, P} and P] € {Ps, Fg}.

Note that in case (i), @q, (P, P;) = 0 and ¢, (P}, P;) = 0. Since preferences
Py, Py, P3, P, are single-peaked on the sub-line {a;, as, as}, possible manipulations
via any of the preferences P, P, P3, P, are not beneficial. Case (ii) is symmetric to
case (i)."" In case (iii), note that ¢( Py, P;) = ¢(Ps, P;) and ¢(Ps, P;) = ¢(Py, F}).
Then, in case (iii), a manipulation of voter ¢ via P, or P; is identical to a manip-
ulation via P; or Pj respectively, and hence is nonprofitable according to cases (i)
and (i1) respectively. Now, we specify the changes of probabilities in the rest of the
possible manipulations in case (ii1) which also indicate that probabilities are always
transferred from the preferred alternatives to less preferred alternatives in the true

preference.

1. In (P, Pj) > (P, P;), we have

a1 Pra asPra a4 Psa aszPia
SO(Pth)%7 %}w(P&PJ) and @(P67Pj>%>7 31/162 @(Plapj)

"In case (i), pa, (Pi, Pj) = 0, @q, (P!, P;) = 0; and preferences Ps, Py, Ps, Ps are single-
peaked on the sub-line {as, ag, a4}.
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azPa asPray
2. In (P, P;) — (Fs, Pj), we have gp(PQJDj)T;k’ 7

(10(P67 P])

3. In (Ps, P;) — (P1, P;), we have (P, P;) 2202, 2afbas,

137 1/6 PPy, B).

In conclusion, RSCF ¢ is strategy-proof.

8 Proof of Lemma 4.1.1

Since P; ~* P/, x P!y and y P}z, strategy-proofness implies that for all P_g5y € DN=2,

Statement (1) ¢.(P;, P}, Py jy) = .(P/, P}, P_y; jy) forall z ¢ {x,y}."

Therefore, to verify (P, P}, P_y; j3) = o(F}, P}, P_; ), it suffices to show either
u(Piy Pj, Pgigy) = (P, P, P_gi jy) ot oy (B, Py Pyijy) = @y (B, Py Py )

Next, since x and y are isolated in P; and P/, there exists 1 < ¢ < m—1 such that
either v € B'(P;) = BY(Pj) andy ¢ B'(P;) = B'(P]), or x ¢ B'(P;) = B*(P))
and y € B'(P;) = B'(Pj). We assume v € B'(P;) = B'(Pj) andy ¢ B(F;) =
B*(Pj). The verification related to the other case is symmetric and we hence omit

it. Consequently, strategy-proofness implies that for all P_g; ;, € D=2,

Statement (2) ZzeBt(p]{) ©0.(P, Py, P_ijy) = ZZeBt(p]() ¢ (P, P, P_tijy);

Statement (3) 3= cpe(pry 2=(F), Pjy P-tiy) = Xcppy 0=(F) P Pigy).

Finally, we have

= Z QOZ(P“PJ/,P,{Z’J})_ Z gpz(Pi7P]{7P7{i,j})
2€B!(P)) z€B!(P))\{z}

= > @PyPP )~ Y. @u(Pi,P},P_;;;) (by Statement (2))
z€Bt(P)) z€B!(P))\{z}

_ Z 0-(P}, Pj, P_t; 3y) — Z ©.(P;, Pj,P_y; j;) (by the hypothesis of the lemma)
z€Bt(P)) z€B'(P))\{z}

= > @(PLPP_uj)— Y. @(P/,P,,P_(i;) (by Statement (1))
2€Bt(P)) z€B!(P))\{z}

= D wAPLPLPp)— ) puPLPPyy) (bySttement (3))
2€B(P)) z€B(P))\{=z}

= Yz leapjlvp—{t,]})

12For the detail of verification, please refer to the proof of Lemma 3 in [26].

124



Therefore, o (P, P;, P—{i,j}) = (P}, Pf; P—{i,j})'

9 Proof of Proposition 4.2.2

The proof of Proposition 4.2.2 consists of three steps.
Step 1 includes Lemmas 9.1 - 9.5. Each lemma shows the existence of some
multi-dimensional single-peaked preference satisfying some particular properties.

Step 1 serves as a preparation for the verifications in Steps 2 and 3.

Step 2 includes Lemmas 9.6 and 9.7. Lemma 9.6 shows that when two distinct
multi-dimensional single-peaked preferences P, and P/ share the same peak, there
exists an AC-path connecting them such that for every pair of alternatives with the
same relative rankings across P, and P/, the relative ranking of them is fixed along
the whole AC-path. The proof of Lemma 9.6 is a repeated application of Lemma
9.1. We provide a simple example to illustrate before Lemma 9.6. Lemma 9.7 shows
that when two multi-dimensional single-peaked preferences P; and P/ disagree on
peaks in exactly one component, and agree on the relative rankings on some pair
of alternatives x,y € A, there exists a (z,y)-Is-path connecting them. The con-
struction of the (x,y)-Is-path in the proof of Lemma 9.7 relies completely on the
existence of some particular multi-dimensional single-peaked preferences specified

in Lemmas 9.3 and 9.4, and the AC-path constructed in Lemma 9.6.

Step 3 shows that D, 5p satisfies the Interior Property and the Exterior Property.

Now, we start Step 1.

Lemma 9.1. Given P;, P! € D%,4p, assume vP;ly and yP!z. There exists P' €
D¢, sp such that P' ~* P; and yP!"!x.

Proof. Since r1(P;) = r(P!) = a, it is evident that a ¢ {z,y}. Let P be a
preference induced by locally switching = and y in P;. Thus, r(P}') = a, P/ ~* P,
and y P/"lz. We will show that P” € Dy,5p.

Suppose not, i.e., there exist 2’, ¢’ € A such that 2’ € (a,y’) and y' P'z’. Since

7' € {a,y'), we know 2’ P,y/. Since P; ~* P!, xP,ly and y P!, it must be the case
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that © = x and y/ = y. Consequently, x € (a,y) and hence x P/y. Contradiction!

Therefore, P € Dyssp. O

Lemma 9.2. Given P, € D$,4p, s € M and ¢* € A® with (a®,c®) = {a®, c*}, there

exists P € D%, ¢p satisfying the following two conditions:
() forall z,y & (¢*, A™), [tPy] < [z F]y);
(2) forall z—° € A%, (a®, z7°)P!!(c°, 2~%).

Proof. We first construct a preference P! satisfying conditions (1) and (2) by the
following method. First, we remove all alternatives in (¢*, A~°) from P;, and thus
have an induced preference (P;, A\(c*, A~*)). Next, we construct preference P
over A by plugging all alternatives in (¢®, A=) back into the induced preference
(P, A\(c*, A7) in a particular way: for all z=* € A%, (a*,z7*)P/!(c*,27%).

Evidently, 1 (P/) = a. In the rest of the proof, we show P/ € Dy;5p.

Given z,y € A with z € (a,y)\{y}, we will show that zP/y. Note that 2P,y
and (a®, 27%)P;(c®, z~*) for all z=* € A~*. We consider four cases: (i) x,y ¢
(c*, A™%), (i) x ¢ (¢, A *)and y € (¢*, A%), (iii) z € (¢*, A~*)and y ¢ (c°, A™%)
and (iv) z,y € (c®, A™%).

In case (i), z P,y implies x P!y by condition (1).

In case (i), y = (¢®,y®). Since z € (a,y) = (a,(c’,y*)) and (a®,¢’) =
{a*,c’}, weknow z° € {a®,c°} and % € (a™®,y*). Moreover, z ¢ (c®, A=) im-
plies z° = a®. Hence = € (a, (a®,y~*)). Now, either x = (a®,y~*) or zP;(a’, y~*).
If z = (a®,y*), then 2Py by condition (2). If zP;(a®,y*), condition (1) first
implies x P/(a®, y~*). Next, since (a®, y~*) P/y by condition (2), we have x P/y.

In case (iii), x = (c¢*,2~*). Evidently, since (a°, x~°) P,z and x Py, we have
(a®, 2~%) Pyy. Then, by condition (1), (a®, z~*) P/y. Furthermore, since (a®, 2~%) P/lx
by condition (2), it must be the case that x P/y.

In case (iv), z = (¢*,z~*) and y = (¢®,y~°) where x~° # y~°. Since = € (a, y),

it is true that =° € (a~*,y*) and hence (a*, 27*) € (a, (a®,y~*)). Consequently,
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(a®,x~°)P;(a®,y~*). Then, condition (1) implies (a®, x~°)P!(a®, y~*). Further-
more, since (a®,x~*)P/lz and (a®,y~*)P/ly by condition (2), we have zP/y. In

conclusion, P/ € Dy 5p. O

Lemma 9.3. Given P, € D$,4p, s € M and ¢ € A®, assume (a®, z=°)B!(c*, 27°)

forall z=° € A, There exists P € Dysp satisfying the following two conditions

(1) forevery z=% € A™%,
[re(Pi) = (a*,27%) and ry1(P;) = (¢*, 27°)]

= [Tk(PD = (c*,z7%) and ri,1(P}) = (a®, Z—s)};
@) forall z ¢ (a*, A=) U (¢, A™), [x = r(P)] = [z = ri(P))]

Proof. We first construct a preference P! satisfying conditions (1) and (2) by flip-
ping the relative ranking of (a®, z7%) and (¢*, 2~*) in P; for each z=* € A~*, and
keeping the rankings of all other alternatives fixed. In the rest of the proof, we
show P! € Dygp. Note that since 7 (P;) = a and aP,!(c®,a™*), it is true that

ro(P;) = (¢®,a™*) and hence ri(P/) = (¢*,a™*).

Suppose P/ ¢ Dysp. Then, there exist x,y € A such that x € ((¢®,a"*),y)
and y P/x. We know either 2P,y or yP;z. If x Py, then y P/x implies z = (a®, 27°)
and y = (¢, 27°) for some z~* € A~° by conditions (1) and (2). Consequently,
x=(a*2"%) ¢ ((c*,a™®),(c*, 27%)) = ((¢*,a*), y). Contradiction!

Next, assume yP;x. Then, it is true that z ¢ (a,y). Since z € ((¢*,a™%),y),
we know z° € (¢*,y®) and v~ * € (a® y~*). Furthermore, = ¢ (a,y) implies z° ¢
(a® y®). Since a = r1(P;) and (c*,a™*) = ro(F;), it is true that (a®, ¢*) = {a®, c*}.
Since z° € (c*,y®), (a®,¢®) = {a’,c°} and 2* ¢ (a®,y®), it must be the case that
a® € (c*,y*) and z® = ¢*. Thus, x = (¢*,2~*). Since 2% € (a™*,y~*), we have
(a®,27%) € (a,y). Thus, either (a®, 2=%) Py or (a®,x~°) = y. If (a®, 27%) Py, then
(a®,x~°)P;lx implies xP,y. Contradiction! Therefore, (a®,27*) = y and hence
yP;lz. Consequently, zP/!y by condition (1). Contradiction to the hypothesis!

Therefore, P/ € Dysgp. O]
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Lemma 9.4. Given P, € D},qp and P! € DE&SS’%;S) with a® # b°, assume xP;y and

xPly. There exists P]' € DS, p satisfying the following two conditions:

(1) forevery z=* € A%, (a®,27°)P'l(c*, z~*) where ¢* € (a®,b°) and
<CL8,C8> — {(ZS,CS},'
(2) xP!'y.

Proof. We consider two situations: (i) y ¢ (¢®, A=%) and (ii) y € (¢*, A™*).
Assume that situation (i) occurs. Let P/ € D}, ¢ be a preference induced by P,
satisfying conditions (1) and (2) in Lemma 9.2. Hence, condition (1) of this lemma
is satisfied. Evidently, either x ¢ (¢®, A=%) orx € (¢*, A~®%). If x ¢ (¢, A~*), by
condition (1), z P,y implies z P/"y. Next, if z € (¢®, A~*), then z = (¢*, 2~ *). Since
(a®,27°) € (a,z) and z Py, we have (a®,z~*) P,z and hence (a®, 2z~ *)P,y. Then,
condition (1) in Lemma 9.2 implies (a®, z~*) P/"y. Furthermore, since (a®, z~*) P/'lx
by condition (1) of this Lemma, it must be the case that P"y. This completes the

verification of situation (i).

Next, assume that situation (ii) occurs. Thus, y = (¢®,y~*). Evidently, either
x € (¢, A*)orx ¢ (¢, A~®). First, assume = € (¢*, A~*). Thus, z = (¢*,z7°).
Since x Py, it is true that (¢*,y~°) = y ¢ (a,x) = {(a, (c*,2~*%)). Consequently,
y=* ¢ (a=*,27°) and hence (a®,y~*) ¢& (a,(a®,7°)). Then, there exists P; €
D¢, p such that (a*, z7%)P;(a®, y~*). Let P!" € D%,4p be a preference induced by
P; satisfying conditions (1) and (2) in Lemma 9.2. Hence, condition (1) of this
lemma is satisfied. Since (a®, 27%)P;(a®,y~*), condition (1) in Lemma 9.2 implies

(a®,z=%)P!(a®,y~*). Since (a*,z~%)P/lx and (a*,y~*)P!ly by condition (1) of

this Lemma, we have x P/"y.

Lastly, assume = ¢ (¢®, A~*). We claim that (a®,y*) ¢ (a,x). Suppose not,
ie., (a®,y~®) € (a,x). Thus, y=* € (a=%,27°). Since ¢® € (a®b®), it is true
that either ¢* € (a®,z®) or ¢ € (b%,2%). Consequently, either y = (¢*,y~*) €

((a%,a7), (z%,27%)) = (a,2),0ory = (c¢*,y™*) € ((0%,a7%), (2*,277)) = ((b°,a7"), 2),
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and hence either yP;x or yP/x. Contradiction! Therefore, (a®,y~*) ¢ (a,z). Ac-
cordingly, there exists P; € Dyssp such that 2 P;(a®, y=*). Now, let P! € D%,5p
be a preference induced by P; satisfying conditions (1) and (2) in Lemma 9.2.
Hence, condition (1) of this lemma is satisfied. By condition (1) in Lemma 9.2,
xP;(a®,y~*) implies 2P/ (a*,y~*). Next, since (a*,y~*)P/'ly by condition (1) of
this lemma, we have xP/y. This completes the verification of situation (ii) and

hence the lemma. ]

Lemma 9.5. Given P, € D%,4p and P € Db, sp, assume a® # b° forall s € S
where S C M and |S| > 2, and a™° = b=°. Given x,y € A, assume xPy and

xPly. There exist s € S and P, € DY) such that zPyy.
i MSP

Proof. Suppose that it is not true. Then, for all s € S and P; € Dg\ljé‘?)

, yPx.
Consequently, for every s € S,y € ((b°,a™*), x). Thus, y* € (b, 2°) forall s € S,
and y=° € (a=,27°). Consequently, y € {(b°,a™),z) = (b, z), and hence y P/x.

Contradiction! OJ

This completes the verification of Step 1. We turn to Step 2.
We first provide a simple example to illustrate Lemma 9.6 below. Given P;, P/ €
D4,sp specified below, we will construct a particular AC-path connecting P; and

/ 3 a
Py in Dfgp.

P a=b=c-y=xo=-x1 =2~ ---

P': ax=b=c=x= - —y =

)

Observe that P; and P/ agree on the top-three alternatives and disagree on the forth-
ranked alternatives. There are exactly alternatives x5 and x; ranked between y and

x in P;. Then, by Lemma 9.1, we can identify the following three preferences
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F)ia -FA)’U pl E D?MSP:

. a>=b>=c=y=To=-x =T~ -

>

A a>=b=c=y=x =291 >~ -

P: as=bs=csaT>y>=1To>T1 >

where (i) P, ~A P;; 21 Plx and 2P\zy; (i) P, ~* P 2Pz and xPlzs; and
(iii) ]3Z ~A P ypi!x and xsz'y Now, P is “closer” to P! than P, since P, and
P! agree on the top-four ranked alternatives. Next, we identify another pair of

2

distinct alternatives in the same ranking position of P; and P! such that P; and P!

agree on all alternatives ranked above, i.e., ri(P;) # ri(P/) for some k > 4 and
r(B;) = 1 (P)) forall 1 < k' < k. Then, applying the same argument, we can
construct another sequence of adjacently connected preferences in D$,qp starting

from P; and reaching some preference P, “closer” to P!. Eventually, we will have

an AC-path in D¢, ¢, connecting P, and F.

Lemma 9.6. Given distinct P, P! € Dygp, assume ri(P;) = r(P!) = a. There
exists an AC-path { PF}\_, C D%, 4p connecting P; and P! such that for all x,y €

A, [Py and xPly] = [xPFy,1 < k <.

Proof. Following the algorithm below, we generate an AC-path in D, ¢p connect-

ing P, and F.
Algorithm:

Step 1 : Identify the minimal k € {1, ..., m} such that r,(P;) # r(P!) (evidently,
k > 1). For notational convenience, let 7,(P/) = x. Assume x = r5(F;)
(evidently, k > k). Moreover, for notational convenience, let r,(P) = Zj_y»
k < v < k—1. By Lemma 9.1, we construct a sequence {Pi(l’y) h

D4, sp, Where [; = k — k, such that

prrh A pan) oy PO g and 2P Nwy,, v =1, ..., 1y, where PMY = P

7 (2 ) K3
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t—1,lt—1)

Stept > 2 : According to Pf generated in Step ¢ — 1, identify the minimal

k € {1,...,m} such that rk(Pi(t_l’lt‘l)) # r(P!). For notational conve-
nience, let r,(P/) = x. Assume x = r,;(]ji(t_l’lt’l)) (evidently, k > k).
Moreover, for notational convenience, let 7, ( Pi(tfl’li‘l)) =5,k <v<

n

k — 1. By Lemma 9.1, we construct a sequence {Pi(t’”) vy € D%;gp, Where

I, = k — k, such that
plr= A P g pE e and 2P Ng,, v =1, ..., where P*Y = pihien)

If rk(]%(t_l’lt*)) = rx(P/), k = 1,...,m, (in other words, Pi(t_l’l“l) = P,

the algorithm terminates.

Evidently, this algorithm will terminate in finite steps. Assume that the algo-
rithm terminates at Step ¢ + 1. Then, we have sequences of preferences {P,},

(PN (P Combining these sequences, we have an AC-path

v=1" 14

{Pik}ngl = {PM Pi(171)7 ) P‘(Lll); S P'(t71)7 R Pz’(t’lt)} C D?\LJSP

3 K3

connecting P, and P.

Next, given x,y € A with 2P,y and z P!y, we will show that zPFy, 1 < k < .
Suppose not, i.e., there exists 1 < k < [ such that yPFz. Assume w.l.o.g. that
fo/y forall 1 < k&’ < k. Thus, xPZ-k_l!y and y P*lz. Moreover, we can assume that
PF is generated in Step s of the algorithm, i.e., P¥ = P\*") and PF~ = pl>"~Y
for some 1 < s < t and some 1 < v < [,. Thus, B(S’”_l) ~A Pi(s’”), xPi(s"’_l)!y
and yPi(S’V)!x. Then, according to the algorithm, it must be the case that yP/x.

Contradiction! ]

Note that according to Remark 4.1.1, in Lemma 9.6, for all z,y € A with 2Py
and z Py, the AC-path { P*}._, is also a (, y)-Is-path connecting P; and P.
Lemma 9.7. Given P;, P! € Dysp, assume r1(P;) = a and r1(P]) = (b°,a™)

where b° # a® for some s € M. Given x,y € A, assume vPy and xP]y. There
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exists a (x,y)-Is-path in Dy sp connecting P; and P.

Proof. Assume (a®,b°) = {aj}._, where t > 2, a5 = a®, a} = V°, and a €

(ai,aj,q), k=1,...,t — 1. Accordingly, aj_, € (a},a;), k=1,...,t = 1.

Claim 1: Forevery z=* € A%and 1 <k <t—1,{x,y} # {(a},27%), (a1, 27°)}.

Givenz™* € A" and 1 < k < t—1,since (a3, 27%) € ((aj,a™"), (aj,,,27%)) =
(a, (y, ) and (ay,2~) € {(af, ), (af =) = (¥, @), (af, =), it
is true that (aj, 2~°)Pi(aj, ,,27°) and (aj_,2°)P/(a}, z~*). Consequently, x Py
and z P}y imply {z,y} # {(a},27°), (aj,,,2"°)}. This completes the verification

of the claim.

Now, we identify ¢ — 1 pairs of multi-dimensional single-peaked preferences

{(PF, PA’I’“) '—! specified below by repeated application of Lemmas 9.4 and 9.3:

P (a5,a %) ==y e

P! (a3,a7%) = (a5,a ) = -+ = (a},27%) = (a5, 27%) = ---  withzPly

p': (a5,a™°) = (a5,a™) = - > (a5, 27%) = (a5,27%) = ---  with 2P}y

pik : (a27a_s) - (CLZ—H’CL_S) e (aZa Z_S) - (GZ-H) Z_S) = -+ with :Upiky

P . (apy1,a” ") = (ag,a” ) = - = (aj,1,2 %) = (ag, 2" %) = ---  with xPFy
Pitil : (afflvais) ~ (a;ais) IR (affhzis) - (CL?, Zﬁs) =+ with xpitily
Pitil : (ai?a’is) - (afflvais) o (afwzis) - (afflazis) =+ with xpitily

Pi/: (af’a_s)>...>x>...>y>...

According to Lemma 9.4, 7, (P}) = r((P,) = a, (a3, 2=*) P}(a3, 2~*) for every
2% € A~*, and zP}y. Next, according to Lemma 9.3, we can induce P} from P!

by flipping the relative ranking of (a5, 2~*) and (a3, =) in P! forevery 2= € A~%,
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and keeping the ranking of every other alternative fixed. Moreover, by Claim 1 and
conditions (1) and (2) in Lemma 9.3, Py implies 2-Py. Then, it is easy to verify
that - and y are isolated in (P!, P!). By a similar argument, forall k = 2, ... ¢t —1,
we have the pair of multi-dimensional single-peaked preferences P and Pf , where

r(P¥Y) = ry(PF), £PFy, £PFy, x and y are isolated in PF and PF.

For notational convenience, let FA’iO = P, and Pf = P/. Forevery 1 < k <t,
since 71 (PF™Y) = 1 (P¥) = (a3,a™*), P* 'y and Py, Lemma 9.8 implies that
there exists a (z, y)-Is-path in D;¢p connecting jf’ik_l and PF. Combining all these
t (x,y)-Is-paths, we eventually have a (z,y)-Is-path in D,;sp connecting P; and

P! U

7

This completes the verification of Step 2. Now, we turn to Step 3.
Lemma 9.8. Domain D ,;sp satisfies the Interior Property.
Proof. This lemma follows from Lemma 9.6. [
Lemma 9.9. Domain D,;sp satisfies the Exterior Property.

Proof. We fix P;, P, € Dygp with 7 (FP;) # r(P!) and z,y € A with xP;y and
xPly. We consider two situations: (i) m(F;) and r1(P/) disagree on exactly one
component, and (ii) 71 (P;) and 71 (P/) disagree on at least two components.

In situation (1), the requirement of the Exterior Property follows from Lemma
9.7.

In situation (ii), we assume r(P;) = a and r1(P!) = (b°,a~°) where a*® # b*
foralls € S,S C M and | S| > 2. Repeatedly applying Lemma 9.5 step by step, we
canrelabel S = {1,..., s} such that forall 1 < k < s— 1, there exists P* € Dy;5p
such that 71 (PF) = (b',...,b% a**1 ... a®,a=7) and z PFy.

Let P? = Py and P = P!. Thus, (i) for all 0 < k < s, 2 PFy; and (ii) for all
0<k<s—1r(PF)and 7"1(]5;‘”“) disagree on exactly one component. Now, for
each(0 < k < s—1, by Lemma 9.7, there exists a (x, y)-Is-path in D, p connecting
PF and P, Finally, combining these (x,%)-Is-paths, we have a (z,y)-Is-path in

Drsp connecting P; and P. O
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This completes the verification of Step 3 and hence Proposition 4.2.2.

10 Proof of Lemma 4.2.1

Fixing P_y; 4 € DV2, we have o(P;, Pj, P_y; ;) = ©(P/, Pj, P_; jy). Evidently,

strategy-proofness implies the following two statements:

Statement (1) Forall z7° € A™%,

L4 @(zs,z*5)<Pia ]Dj{a P—{i,j}) + @(yS,Z*S)(Pi: P]{, P—{i,j})

= Plas =) (P} P}, P_ijy) + Py o) (P, Pl Pogijy);
® Vo) (Piy Pl Pgijy) 2 Pas =) (P, P, P jy);
® Oy (B i Pgigy) < @y e (B Pl Pogiy)-

Statement (2) Forall z ¢ (z°, A=*)U(y*, A™°), 0.(Fi, P}, P_gi jy) = w=(P), P}, P_gi jy)-
According to the first item in Statement (1) and Statement (2), to show

(P, Pj, P_gijy) = p(P;, Pi, P_; j1), it suffices to show that for every 27* € A7%,

there exists ¢® € {z°,y°} such that 9 (cs . (P, P}, P—(ij}) = P(cs ) (P, P, P jy)-
Similarly, since P; ~ PJ{, either P; ~A Pj’ or P ~MA Pj’ I P ~A ij, assume

aPjlband bP]la. Thus, 0. (P, Pj, P_tij1) = (B, P, P_gigy) and . (P, Py, P_gi jy) =

¢.(P, P}, P_y; 1) for all z ¢ {a,b} by strategy-proofness. Given 27° € A7,

since (2,27 *)P;\(y®, 2~%) and (y°, 2~ *)P/!(z° 2~°), the hypothesis implies that

(z°,27°) and (y*, 2~°) are isolated in (P}, P}). Moreover, by Remark 4.1.1, it is true

that either (z°, 27°) P;(y®, 2~°) and (2°, 27°) P{(y®, 27°), or (y°, 27°) Pj(x*, 2~°) and

(y°,27°) Pj(2*, 2~*) which implies { (z*, 27°), (y*, 27°) } # {a, b}. Hence, there ex-

ists ¢* € {z°,y°} such that Qe .-y (Pi, P, P_fijy) = P(es,o—o)(Pi, Py, P_gijy) =

Ples ) (s Py Piigy) = $ies a0 (B, P Pt y)-

Next, we assume P; ~MA PJ(, i.e., there exist 7 € M and z7, y” € A" such that

(i) for every 277 € AT, (27,277) = () = rpa(P)) and (§7,277) =

Ter1(Py) = rk(PJ’) forsome 1 < k < m;
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(ii) forevery z ¢ (27, A=°)U(y", A™%), z = ri(P;) = ry(P;) for some 1 < k < m.

Evidently, strategy-proofness implies the following two statements:

Statement (3) Forall 27" € A™7,
® o )P, Py, P_gijy) + @@ ) (i, Py, P_fijy)
= SO(:ET’Z—T)<PL.7 P]/, P_{%]}) + @(gT’Z—T)<-Pi; P]/, P—{z,j});
® Yar.—) (B Py Pogigy) + oo (B By Pygigy)
= ‘;O(i"",z*T)(Pz‘/7 ]Dj{a Pf{i,j}) + QD(QT,Z*T)<P1'/7 P]{7 Pf{i,j})‘
Statement (4) Forall z ¢ (27, A"")U (g™, A™"),
i sz(]DiaP]WPf{i,j}) = QOZ(Pi?P]{a Pf{i,j});

L4 SOZ(P{a Pj, P—{i,j}) = Sﬁz(Pila Pfy P—{i,j})-

Firstly, we consider the situation 7 = s. Given z~* € A~%, since (2, 2~*) P! (y®, 27%)
and (y*, 27°) P/l(2*, 27°), (z°,27°) and (y*, 27°) are isolated in (P, Pj) by the hy-
pothesis. Then, P; ~M4 P/ implies {(z*, 27%), (y°, 27%)} # {(z°,27°), (°,2~*)}.
Hence, there exists ¢® € {z°, y°} such that
SO(CS,Z*S)(PZH P]{7 Pf{i,j}) - So(cs,zfs)(Pia Pj> Pf{i,j}) = 90(0572*5)(3/7 Pja Pf{i,j}) =
P(es,=—) (P}, P}, P_gi jy) where the first and the third equality follow from Statement
(4) and the second equality follows from the hypothesis.

Secondly, assume 7 # s. Given z=° € A~°, we know either (z°,27°) ¢
(z7, ATT)U(y", A7), or (y*, 277) & (27, ATT)U(yT, A77); or {(2%, 27%), (y°, 27°)} ©
(T, A"T)U (y7, A" 7). If either (2°,27°) ¢ (Z7,A"")U (g7, A7), or (y°,27°) ¢
(7, A7")U(y", A7), by statement (4) and the hypothesis, there exists ¢ € {x*, y*}
such that (- .-« (Pi, P}, P—(ij}) = @(eeo=) (B Bjy Pgijy) = (o= (B, By Pyijy) =
Pl (B By Pgijy).

If {(*,27°),(y°,27°)} C (&",A"") U (y", A7), it must be the case that ei-
ther (z°,27°) = (2%, 77, 2~ and (y%,27°) = (v*, 27,2757}, or (2%, 27°) =

(x%, 97, z*{“}) and (y°,27%) = (v*, 97, z*{s’f}). Assume (z°,27%) = (2,77, z*{s’T})
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and (y°,27%) = (y*, 2", z~{>7}), and identify another alternative (z°, ", z~{57}).13
The verification related to the other case is symmetric and we hence omit it.!* Then,

we have

Plas g o~y (Pis Py P—gijy) + P gr s—tsrny (Piy Py Pgi jy)

= Plasm ot (Fi Pjy Pgijy) + @(gs gr o151y (B, Py, P—gi ) (by Statement (3))

— ()0(],‘575707727{5’7—}) (P{, Pj, P—{’L,]}) _'_ (p(IS,QT,Zi{S’T})<P’L,7 Pj, P—{Z,j}) (by hypOtheSIS)

= Sp(xs7i7—7zf{s,r}) (Pil7 PJ{, P—{Z,j}) + (p(xsyg‘ryzf{s,f})(Pi/, P]{, P—{l,_]}) (by Statement (3))

Meanwhile, according to the second item in Statement (2), since

(p($s7jr7zf{s T} (P Pf{l]} > gp(xs 7,2~ {s, T})(PZ‘/7 P;, Pf{zd}) al’ld

Plas gm0 (i P Pt jy

i )
s gra—tom)y (P Py Pogijy) 2 Qs gr o—tsony (P, Pj, P 1), it is true that
s ) = xsjﬁf{s,f})(P{,P;,P,{m-}). Equivalently, we
) (B, ) =

have gO z5,2—5 P P—{i,]} QO x5z~ s)(PZ-I, P](, P—{i7j})'
In conclusion, for each =% € A~ there exists ¢* € {z*,y*} such that
(p(c57z75)(Pi) P]{7 Pf{l,]}) == @(65,275)(Pi/7 P]{, P,{Z'J}). Therefore, ()O(PU P]{, Pf{lv‘]}) =

(P}, P}, P_gijy)-

11 Proof of Proposition 4.2.4

We provide some new notion for the proof of Proposition 4.2.4. Given P; € Dg and
s € M, let [P;]* denote the marginal preference over A® induced by P,. Moreover,
recall lexicographically separable preferences (see Definition 1.1 in Appendix 1)

which are repeatedly used in the proof.

The verification of Proposition 4.2.4 consists of three steps (Lemmas 11.1 -
11.9).

Step 1 includes Lemmas 11.1 - 11.5. Each lemma shows the existence of some

BSince A = x e A®, alternative (z°, 57, z*{S’T}) exists.
VI (2%, 27%) = (2,77, 2~ ™) and (v°, 27%) = (v%,97, 2~ {57}), we identify the alternative
(LL'S, z7, Z—{S,T})'
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separable preference satisfying some particular properties. Note that Lemmas 11.1
- 11.5 are analogous to Lemmas 9.1 - 9.5 respectively. Step 1 serves as a preparation

for the verifications in Steps 2 and 3.

Step 2 includes Lemmas 11.6 and 11.7 which provide the construction of GC-
path in Dg connecting two fixed preferences in two distinct situations: (i) the two
fixed preferences share the same marginal preferences and (ii) the two fixed pref-
erences have two adjacently connected marginal preferences over some component
set and share the same marginal preference over every other component set. Lem-
mas 11.6 and 11.7 are analogous to Lemmas 9.6 and 9.7 respectively which actually
construct GC-path in D), 5p connecting two fixed preferences in two analogous sit-
uations: (i) the two fixed preferences share the same peak and (ii) the two fixed
preferences have distinct peaks which differ in exactly one component. The veri-
fication of Lemma 11.6 is identical to the proof of Lemma 9.6, while the proof of

Lemma 11.7 is an application of Lemmas 11.4 and Lemma 11.6.

Step 3 includes Lemmas 11.8 and 11.9 which show that Dg satisfies the Modi-
fied Interior Property and the Modified Exterior Property respectively. In the proof
of both Lemmas 11.8 and 11.9, the construction of proper GC-path relies entirely
on the existence of separable preferences specified in Lemma 11.5 and the GC-path

established in Lemma 11.7.

Now, we start Step 1.

Lemma 11.1 below is analogous to Lemma 9.1.

Lemma 11.1. Given P,, P! € Dg and x,y € A, assume [P,|° = [P/]® forall s € M,

1 Ply and yP/x. There exists P!' € Dg such that P’ ~* P, and yP/'\x.

Proof. Evidently, x* # y* for some s € M. We first show that there exists 7 # s
such that 27 # y”. Suppose not, i.e., y = (y*, 2~ *). Consequently, 2P,y and yP/x
imply 2°[P;]*y® and y°[ P/]*x® which contradicts [P;]° = [P/]°.

Now, we induce preference P” by locally switching z and y in P;. Thus, P/’ ~4

P; and yP"lz. We will show P! € Dg. Givenw € M, a¥, 0¥ € AY and 27%,27% €
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A~ assume (a*, z*) P/ (0¥, 27%). We will show (a“,z"¢)P/(b*,27%). Since
a* #y anda” £y, {(a”, 27¥), (07, 27)} # {z, y}and {(a”,27), (0¥, 27%)} #
{x,y}. Consequently, P/ ~* P, implies (a*, 2~%)P;(b*, 2~*). By separability, we
have (a¥, 27%)P;(b*, z~*). Then, P; ~* P! implies (a*, z=*)P/"(b*,27%). O

Lemma 11.2 is analogous to Lemma 9.2.

Lemma 11.2. Given P; € Dg, s € M and z°,y* € A® with x°[P;|*!y®, there exists

P! € Dg satisfying the following three conditions:
() forall a,b ¢ (y°, A=%), [aP;b] < [aP!b];
(ii) forall z—5 € A%, (x°,27°)P/|(y~°,27%);

(iii) [P = [P!]" forall T € M.

Proof. We first construct a preference P/ satisfying conditions (i) and (ii) by the
following method. First, we remove all alternatives in (y*, A~*) from P;, and
thus have an induced preference (P, A\(y*, A~*)). Next, we create a new pref-
erence P! by plugging all alternatives in (y*, A~*) back into the induced preference
(P;, A\(y*, A™*)) in a particular way: for all z=* € A%, (2%, 27*) P/!(y*, 2~*). We

will show P/ € Dg.

Given a™,b" € AT and 277,277 € A7, assume (a”, 2" ") P/(b7,277). We will
show (a”, 2z 7)P/(b7,2"7). Suppose not, i.e., (b",z"7)P/(a",z"7). We consider
five cases: (i) 7 # sand 2° # y*, (ii) T # sand 2° #£ y°, (i) 7 #£ s, 2° = 2° = 9%,

(iv) 7 = sand b* = y*, and (v) 7 = s and b° # y°.

Incase (i), (a”,277), (b7,277) ¢ (y®, A~*). By condition (i), (a™, 2~ ) P/(b7, 277)
implies (a”, z~7) P;(b™, z~7) . Then, separability implies (a”, z°, z~{7*H) B (b7, 2%, 2~ {ms})
and (a”, z77) P,(b7, 277). Applying condition (i) again, (a7, %, 2~ {7H) P/(b7, 2%, 2~ {75},
Moreover, since (a”, 2" 7)FP;(b",277) and (b7,2"7)P!/(a™,277), it must be the case
that 2° = %° by condition (i). Since (a”, 2°, 2~ {"*H) P/1(a™, y*, 2~ 1*}) and

(b7, 2%, 2~ 1) PII(b7, y*, 2~ {7%}) by condition (ii), (a”, z°, 2~ 1) P/ (b7, 2, 2~ 17°})
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implies (a”, y*, z {7 P/(b7, y*, z~{™}). Equivalently, (a", z~") P/(b7,2"). Con-
tradiction! A similar contradiction occurs in case (ii).

In case (iii), since (a7, 2%, 2 {"*HP/I(a™,277) and (b7, 2°, 2 {>sH) P/1(b7, 277)
by condition (ii), (a™, z=7)P/(b", z~7) implies (a”, z°, 2~ {75 P/ (b7, 2%, —{™5}). Then,
by condition (i), (a™,z%, z~™*)P;(b", 2%, 2z~ ™*) . Hence, a”[P;]b" by separability.
On the other hand, since (b7, %, 2z {7 P/1(b7, 2=") and (a”, 2°, 2~ {11 P!/l(a”, 277)
by condition (ii), (b7, 2~ 7) P/(a”™, z~7) implies (b7, z°, 2= ") P!(a”, 2, 2~ ™*). Then,
(b7, 2% 2z "*)P;(a”, 2%, z~ ™) by condition (i), and hence b”[P;]"a” by separability.
Contradiction!

In case (iv), since (z°, ) P/(y®, z—*) by condition (ii), and (y*, z~*) P/(a®, z~°),
we know a® # x® and (z°, 27°) P/(a®, z*). Then, condition (i) implies (z°, 2~*) P;(a®, z7°).
Moreover, separability implies (z°, 2~*) P;(a®, z—*). Hence, (z*, 2~%) P!(a®, z~%) by
condition (i). Lastly, since (x*, z—*) P/!(y*®, z~*) by condition (ii), (*, z=%) P/(a®, 27°)
implies (y°, 27°) P/(a®, 2~*). Equivalently, (b°, 2=°) P/(a®, 2~*). Contradiction!

In case (v), we first claim a® = y*. Otherwise, by condition (i), (a®, z=*) P/(b*, z~)
and (b°, z7°)P!(a®, z=%) imply (a®, 2~*)P;(b%, 27°) and (b°, 2~°) P;(a®, z~°) respec-
tively which contradict separability. Since (z°, z7*)P/!(y*, 2~*) by condition (ii)
and (y°, z=*)P!/(b%, z7%), (%, z=%) P/(b°, 2~*). Then, (x*, z—*) P;(b°, z~*) by condi-
tion (i), and hence, (z°, 27°)P;(b%, z~°) by separability. Then, (z*, z=°) P/ (b, 2~°)
by condition (i). Lastly, since (z*, z=%) P/!(y®, z~*) by condition (ii), (z*, z~°) P/(b*, 2~*)
implies (y°, z~*)P!/(b%, z~°). Equivalently, (a®, z~°)P/(b°, 2~*). Contradiction! In
conclusion, P/ € Dg.

Lastly, we show [P,]” = [P/]” for all 7 € M. Given 7 € M\{s}, suppose
a”[P]7b" and b7 [P/]"a” forsome a”, b” € A”. Thus, (a7, x%, 2~ {75 B (b7, 2%, 2~ 175})
and (b7, 2%, 2~ 1"*Y)P!(a™, 2*, 2~{7*}) which contradict condition (i). Therefore,
[P]” = [P!]” for all 7 € M\{s}. Next, we show [P;]®* = [P/]*. Suppose not,
i.e., a®[P;]°b® and b°[ P/]*a® for some a®,b* € A®. Since x°[P;|*y*® and x*[P/]*y* by
condition (ii) and separability, it must be the case that {a®,b°} # {z°,y*}. Fur-

thermore, we claim that y* € {a® b°}. Otherwise, given z7° € A~*, we have
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(a®, z=%)P;(b%, 27°) and (b°, 2~*) P/(a®, z—*) which contradict condition (i). There-

fore y* € {a®,0°}. If «® = 9*, then b° ¢ {2° y°}. Given z27° € A", since
(x®, z=%) P!!(a®, z~®) by condition (ii), (b°, 2~°) P!(a®, z—*) implies (b°, z~°) P! (z*®, 2~°).
Then, (b, z27°)P;(z*, 2~*) by condition (i). Since (x*,z~*)P;(a®, z~*), we have
(b°,27°)P;(a®, z*), and hence b°[P;]°a®. Contradiction! If b° = y°, then a® ¢
{z*,y°}. Given z—* € A~*, since (z°, z~*) P/!(b*, 2~*) by condition (ii), (b°, z~*) P/(a®, z
implies (z°, z7%)P/(a®,27*). Then, (z°,27*)P;(a®, z2~*) by condition (i). Since

(a®, 27°)P,(y®, 2~ %), (x%, 27°) Pi(a®, 2~°) P;(y®, 2—°), and hence z°[ P;|*a®| P;]*y® which
contradicts x*[P;]*!y®. Therefore, [P;]* = [P/]°. This completes the verification of

condition (iii) and hence the lemma. O
Lemma 11.3 below is analogous to Lemma 9.3.

Lemma 11.3. Given P; € Dg, s € M and a®,b° € A®, assume (a®, z~°) B1(b%, 2%)
forall z=% € A™. There exists P| € Dg such that P} ~™4 P, and (b%, 2=*) P!!(a®, 27%)

forall z=% € A™%.

Proof. We first induce preference P/ by switching (a®, z=®) and (b°, 2~*) in P; for
each z27° € A~ and keeping the ranking of every other alternative fixed in F;. Thus,
P! ~MA Prand (b5, 27%) P!!(a®, 2~%) for all 7% € A~*. We will show P/ € Dyg.

GivenT € M,2",y" € ATand 277,277 € A", assume (27,2 7)P/(y", 27 7).
We will show (27,27 7)P/(y™, 2z~ 7). We know
either {(27,277), (y7,27 ")} = {(a®,27%), (b°, 27*) } for some 27% € A~%,
or {(x7,277), (y", 27 ")} # {(a® 27%),(b%,27%)} forall Z7° € A%,

If {(27,277),(y", 2" ")} = {(a*,27°),(b°, 27°)} for some 27° € A~°, then
T =s,2° =b°and y* = a®. Since (y",z"")P!(x7,277), the construction of P/
implies (27,27 ")P/(y",z77).

If{(z7,277), (y", 277} # {(a*, 27%), (b%, 27°) } forall 27* € A%, then P, ~M4
Pland (27,2~ 7)P!(y", 2~ ") imply that (7, 2~ ") P,(y", 2~ 7). Then, (", 2" ") P;,(y", 2™ ")

by separability. We claim that {(z7,z77), (y", 27 7)} # {(a®, 27%), (b°, 27°)} for all

z7% € A™*. Otherwise, {(z",z77),(y",27 ")} = {(a*,27%),(b%, 27%)} for some
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z27° € A™° Then, (27,2 7)Pi(y",277) and (a®, 27°)P;(b°, 27°) imply 7 = s,
27 = a® and y7 = b°. Since (b7,277)P/(a”,z7") by the construction of P/,
(y™, 2" 7)P!(x7,277). Contradiction! Now, since {(z",z77), (y", 2 7)} # {(a®,27°), (b%,27%)}
forall 275 € A%, P/ ~MA Prand (27, 2 ")P(y", 2 ") imply (27, 2 ") P/(y", 27 7).
In conclusion, P} € Dg. O

Lemma 11.4 below is analogous to Lemma 9.4.
Lemma 11.4. Given P, P! € Dg, s € M and a*,b° € A%, assume [P,]* ~4 [P]]?,
a®[P)*1b°, b°[P!)*la®, and [P)]™ = [P!]|” for all T # s. Given x,y € A, assume xPyy
and x Py. There exist P;, P! € Dg satisfying the following five conditions:
() (a®, z=*)B\(b®,27°) forall 275 € A%,
(i) [P]” = [P]" forall T € M,
(iii) =Py,
(iv) P, ~MA Pland (b%, 2=%)P/\(a®, 2°) forall 275 € A%,
(v) zPy.

Proof. We assume y = (y°, =) where 2™ # y" forall7 € S, S C M and S # 0.
Since = Py, there must exist w € S such that z*[P;]“y“. To verify the lemma, we

consider the following three jointly exhaustive situations:

@ [S|=1

*

(i) |S| > 2 and there exists 7* € S such that 7* # s and 27 [P]” y" ;
(i) |S| > 2,s € S, 2°[P]°y® and y7 [ P;]"2" for all T € S\{s}.

In situation (i), we assume y = (y7, 2z~ ") and 7 # y” (either 7 = s, or 7 # $).
Since x Py and z Py, we know 27[P;|"y™ and 27 [P/]"y". Let P;, P/ € D5 be such
that (1) both lexicographic orders in P, and }5{ are identical, (2) component s is
lexicographically dominated, i.e., w = s for all w # s, and (3) [P]* = [P;]“ and

[P/]® = [P/]* for all w € M. Since component s is lexicographically dominated,
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a®[P;]*1b* and b*[ P;]*!a®, it is easy to verify that conditions (i) and (iv) are satisfied.
Condition (ii) is satisfied by construction. By lexicographic separability, we know

1Py and x P/y (conditions (iii) and (v) are met).

In situation (ii), let P;, P{ € DDys be such that (1) both lexicographic orders
in P, and P/ are identical, (2) component 7* is lexicographically dominant (i.e.,
7% > w for all w # 7*), and component s is lexicographically dominated, and (3)

[P) = [P]” and [P/]® = [P/]* for all w € M. Then, by a similar argument in the

verification of situation (i), we know that conditions (i) - (v) are satisfied.

In situation (iii), we first claim x*[P/]*y®. Suppose not, i.e., y*[FP/]*z®. Thus,
y"[P!]7«7 for all T € S, and hence y P!z by separability. Contradiction! Therefore,
x*[P!]*y*. Now, it must be the case that {z*,y°} # {a®, b*}. To verify this lemma,

we consider two cases: (1) y* # b® and (2) y® = b°.
Case (1): y* #£ b°.

According to P, let P, € Dy satisfying conditions (i) - (iii) in Lemma 11.2.
Thus, conditions (i) and (ii) in Lemma 11.4 are satisfied. Suppose yP;z. We claim
x® = b°. Suppose that it is not true. Thus, x,y ¢ (b%, A~*). Then, by condition
(i) in Lemma 11.2, x Py implies  P;y. Contradiction! Since (a*, 77%) P;(b*, 27%) =
x and z Py, we have (a°,x~°)P;y. Then, condition (i) in Lemma 11.2 implies
(a®, 2~%) Pyy. Moreover, since (a®, v=*) P;!(b*, 2=) = z by condition (ii) in Lemma
11.2, (a*, 2~%) Py implies = P;y. Contradiction! Therefore, Py (condition (iii) in
Lemma 11.4 is satisfied).

Furthermore, according to P, by Lemma 11.3, we have ]5{ € Dg such that
P, ~MA Pland (b%,27%)P!!(a®, 27%) for all 2* € A~*. Thus, condition (iv) in
Lemma 11.4 is satisfied. If y°* = a®, then a°[P;]*b° and z°[P;|*y® imply z* ¢
{a®,b*}. Consequently, P, ~M4 P! and xPy imply zPy. If y* # a®, then
y* ¢ {a®,b°}. Symmetrically, P, ~*4 P/ and 2Py imply xP/y. Thus, condi-

tion (v) in Lemma 11.4 is satisfied.

Case (2): y* =b°.
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In this case, {z*,y*} # {a®, b} implies z* ¢ {a®, b°}. Consequently, a®[P;]*!b*®
and z°[P]*y® = b® imply z°[P]*a®. We first identify P, € Dy such that (i)
[P]” = [P)]" for all 7 € M and (ii) component s is lexicographically dominant.
Thus, zP,(a®,y*)P;(b*,y~*) = y by lexicographic separability. Furthermore,
according to P, there exists P, € Dg satisfying conditions (i) - (iii) in Lemma
11.2. Evidently, condition (i) in Lemma 11.4 is satisfied. Next, by condition (iii)
of Lemma 11.2, we have [P]” = [P,]” = [P,)] for all 7 € M (condition (ii) in
Lemma 11.4 is met). Next, we show xPy. Suppose not, i.e., (b°,y~*) = yPz.
Since (a*,y~*)P;!(b*,5~*) by condition (ii) of Lemma 11.2, we have (a*,y~*)P;z.
Then, (a®, y‘S)Pi:c by condition (i) of Lemma 11.2. Contradiction to lexicographic
separability! Therefore, x P,y (condition (iii) in Lemma 11.4 is met).

Furthermore, according to P, by Lemma 11.3, we have ]5{ € Dg such that
P, ~MA Pland (b%,27%)P!!(a®, 27*) for all 2= € A~*. Thus, condition (iv) in
Lemma 11.4 is satisfied. Since 2° ¢ {a®,b%}, P, ~M4 P! and x Py imply xP/y.
Thus, condition (v) in Lemma 11.4 is satisfied. This completes the verification of

situation (iii) and hence the lemma. O
Lemma 11.5 below is analogous to Lemma 9.5.

Lemma 11.5. Given P, P! € Dg, assume [P;]° # [P!]° for all s € S, where
S C MandS # 0. Given z,y € A, assume xP;y and xP!y. There exists P!’ € Dg

satisfying the following three conditions:
() [P!)® ~A [P for some s € S, and [P]']” = By forall T # s;
(i) [a*[P]10° and b*[P')*la*] = [b°[P]]*a®];
(iii) z=Py.

Proof. Assume y = (y', 27 7)andy™ # 2" forall 7 € T where T’ C M and T # 0.

Ty, T

Since x Py, there must exist 7 € T" such that 27 [P;]7y".
We consider two cases: (i) there exists 7 € T" such that 27 [P;|"y™ and 2" [P/|7y",
and (ii) forall 7 € T, [27[P]"y"] = [y"[P/]"27].

1
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In case (i), we know either 7 € Sor T ¢ S. If 7 € S, there exists a marginal
preference [P;]™ such that (1) [Pf]” ~4 [R]7, and (2) a7[B]"7, b7[P;]"!a™ and
b7[P!]"a”. Thus, {a",b"} # {27, y" }, and hence 27 [ P;]"y” implies 27 [ P;"]"y". Now,
let P/ € Dpg be such that [P]” = [Pf]", [P/]* = [P]* for all w # T; and
component 7 is lexicographically dominant. Thus, conditions (i) - (iii) are satisfied
by P/. If 7 ¢ S, there exist s € S and a marginal preference [F;]* such that (1)
[Pr]* ~A [R5, and (2) a®[P]*1b*, b°[Pf]*!a® and b*[P!]"a®. Then, let P" € Dg
be such that [P/]® = [Pf)%, [P]¥ = [P]* for all w # s; and component T is
lexicographically dominant. Since [P/]” = [B]", "[P;|"y" implies z"[P/]7y".

Thus, conditions (i) - (iii) are satisfied by P/. This completes the verification of

case (1).

Next, we consider case (ii). Since x Py, there must exist s € 7 such that
x*[P!]*y®. Then, in case (ii), it must be the case that y°[P;]°z®. Now, we have
7,s € T such that z"[P)]"y", y"[P/|"x"; y°|P;]*x® and x*[P/]*y®. Thus, 7,s € S.
Now, we construct a marginal preference [P;]* such that (1) [Pf]* ~4 [P]%, and (2)
a®[P;)*1b°%, b°[PF]°la® and b°[ P/]*a®. Then, let P’ € D5 be such that [P/']® = [P}]*,
[P/']7 = [P;]? for all ¢ # s; and component 7 is lexicographically dominant. Since
[P = [P]", 7 [P;]"y" implies " [P!"]"y". Thus, conditions (i) - (iii) are satisfied

by P!. This completes the verification of case (ii) and hence the lemma. [

Note that from the aspect of marginal preferences, in Lemma 11.5, we push P,
one step “closer” to P/ through P! while still keeping = ranked above y in P;”.

This completes the verification in Step 1. We turn to Step 2.

Lemma 11.6. Given P;, P! € Dg with [P;]° = [P/]® for all s € M, there exists an
AC-path { PF}! _, C Dg connecting P; and P! such that for all x,y € A, [x Py and

rPly] = [xPFy, 1 < k <.

Proof. The construction of the AC-path {P*}! _, C Dg connecting P, and P/ is a
repeated application of Lemma 11.1, and is symmetric to the verification of Lemma

9.6. [l
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Note that according to Remark 4.2.5, in Lemma 11.6, for all z,y € A with z P,y

and z Py, the AC-path { PF}!_, is also a («, y)-Is-GC-path connecting P; and P/,

Lemma 11.7. Given P,, P! € Dg, assume [P,]* ~* [P!]* for some s € M and
|[P,]” = [P!]" for all T # s. Given x,y € A, assume xP;y and xPy. There exists a

(x,y)-Is-GC-path in Dg connecting P; and P;.

Proof. According to P; and P/, we have P, PZ-’ € Dg satisfying conditions (i) - (v)
in Lemma 11.4. Since Py and Z‘PZ-/ y by conditions (ii1) and (v) in Lemma 11.4,
P, ~M4 P!'implies that x and y are isolated in (P, P!) by Remark 4.2.5. Second,
since [P]” = [Py for all 7 € M, 2P,y and x Py, Lemma 11.6 implies that there
exists a (x,y)-Is-GC-path in Dg connecting P; and F;. Next, by conditions (i) and
(iv) in Lemma 11.4, since [P;]* ~* [P/]* and [P)]” = [P/]” for all 7 # s, it is true
that [P/]” = [P/]" for all 7 € M. Since 2 P!y and 2 P!y, Lemma 11.6 implies that
there exists a (z, y)-Is-GC-path in Dg in Dg connecting P/ and P;. Combining both

paths, we have a (z, y)-Is-GC-path in Dg connecting P; and P;. O
This completes the verification in Step 2. We then turn to Step 3.
Lemma 11.8. Domain Dg satisfies the Modified Interior Property.

Proof. Fix a € A and distinct P, P/ € D%. If [P,]° = [P!]°, this lemma follows
from Lemma 11.6. Next, we assume [FP;]* # [P/]® for all s € S, where S C M and
S # 0, and [P,]” = [P]]” forall 7 € M\S. Note that r1([P;]™) = r1([P]]") = a” for
all7 € M.

Fixing = € A\{a}, we know aP;x and aP/x. Then, by repeated application of

Lemma 11.5, we have a sequence { P*}_, C Dg such that
(i) P! = P, and P} = P/;

(ii) forevery 1 < k < t — 1, [PF]* ~4 [PF™) for some s € S, and [PF]” =

[]51-’““]7 forall 7 # s;

(i) aPrz,k=1,... t.
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Moreover, by condition (ii) of Lemma 11.5, since 1 ([P;]") = r1([P/]") = a” for all
T € M, itis true that 7, (PF) = aforall 1 < k < t.

Forevery 1 < k <t — 1, Lemma 11.7 implies that there exists a (a, z)-Is-GC-
path in Dg connecting P¥ and PikH. Moreover, according to the construction of
(a, z)-Is-GC-path connecting P* and P" in the proof of Lemma 11.7, it is easy

to verify that the peak of every preference in the (a, z)-Is-GC-path is a. Combining

all these paths, we have a GC-path in D¢ connecting P, and F. ]
Lemma 11.9. Domain Dg satisfies the Modified Exterior Property.

Proof. Fix P;, P! € Dg with r1(P;) # r(F/), and x,y € A with xP;y and = Py.
Evidently, there exists s € M such that [P;]® # [P/]°. We assume [P;|* # [P/]* for
all s € S, where S C M and S # (), and [P,]” = [P/]” for all 7 € M\S. Then, by

repeated application of Lemma 11.5, we have a sequence { PF}! _, C Dg such that
(i) P! = Pand P! = P};

(ii) forevery 1 < k < t — 1, [PF]* ~4 [P*)* for some s € S, and [PF]” =

[PFHT™ for all 7 # s;
(i) xPFy, k=1,...,t.

For every 1 < k < t — 1, Lemma 11.7 implies that there exists a (z,y)-Is-
GC-path in Dg connecting P and P*™. Combining all these paths, we have a

(x,y)-Is-GC-path in Dg connecting P; and F;. O

We have completed the verification of Step 3 and hence Proposition 4.2.4.

12 Proof of Proposition 4.2.5

It is evident that a random dictatorship is ex-post efficient and strategy-proof since
itis a convex combination of dictatorial DSCFs. We focus on showing the necessity

part of Proposition 4.2.5. We first show that every two-voter ex-post efficient and
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strategy-proof RSCF ¢ : D%,5, — A(A) is a random dictatorship.!*> Proposition

4.2.2 implies that ¢ satisfies the tops-only property.
Lemma 12.1. Forall a,b € Awitha # b, p.(a,b) + vp(a,b) = 1.

Proof. Claim I: Given a,b € A with a # b, and x ¢ (a, b), p.(a,b) = 0.

Since = ¢ (a, b), there exists unique =’ € (a, b) such that (a, x)N (b, x) = (2', x).
Accordingly, there exist P, € D%,4p and P, € DY, ¢p such that 2’ Pz and 7' Pyx.
Hence, x ¢ Q(Py, P») and © ¢ supp (P, P2) by ex-post efficiency. By tops-
onlyness, we have @, (a,b) = ¢, (P, P,) = 0. This completes the verification of

the claim.

Claim 2: Given a,b € A, assume a® # b° and a” # b” for some s, 7 € M. Given
x € {(a,b)\{a, b}, p.(a,b) = 0.

Since a and b disagree on at least two components, and x € (a,b)\{a, b}, it
is true that (a,b)\[(a,x) U (b,x)] # 0. Fixing =’ € (a,b)\[{a,z) U (b, )], we
know z ¢ (a,2’) and = ¢ (b,2’). Accordingly, there exist P, € D$,¢p and P, €
DY, 5p such that 2/ Pix and 2’ Pyx. Then, by tops-onlyness and ex-post efficiency,

vz(a,b) = @, (P1, Py) = 0. This completes the verification of the claim.

According to Claims 1 and 2, we know that for all a,b € A with a® # 0°,

a” # b7 and a= 57 = b={57} for some 5,7 € M, p4(a,b) + py(a,b) = 1.

Claim 3: Given a,b € A, assume a® # b° and a=® = b~* for some s € M. Given
x € (a,b)\{a, b}, p.(a,b) =0.

We assume a = (a®,27°), b = (b*,27°) and x = (z°,27°) where z° €
(a*,b*)\{a*,b*}. We identify two other alternatives b = (b°,y",27%7) and T =
(z°,y",27*7) where (z7,y") is an edge in G(A7)."® Since a® # b* = b° and
a” = 27 # y~ = b7, Claims 1 and 2 imply ¢,(a,b) = 0 and ¢z(a,b) = 0.

According to b and b, we have P, € Db, ¢, and P} € D, ¢, such that P, ~MA4

5In the case of two voters, we do not impose the restriction |M| > 3.
16 Alternatives b and 7 exist since A = XgemA?and [M| > 2.
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Py (27,27 ") PN (y", 27 7) and (y7, 27 ") Py!(27,277) for all 277 € A™". By tops-
onlyness and strategy-proofness, ¢, (a,b) + pz(a,b) = p.(a, P) + ¢z(a, P2) =
v.(a, Py) + pz(a, Py) = pu(a,b) + pz(a,b) = 0. Hence, p,(a,b) = 0. This

completes the verification of the claim.

According to Claims 1 and 3, we know that for all a,b € A with a® # b° and
a=* =b"*forsome s € M, p,(a,b) + pp(a,b) = 1. Therefore, by Claims 1, 2 and
3, wa(a,b) + @p(a,b) = 1 forall a,b € A with a # b. O

Lemma 12.2. Given a,b;x,y € Awitha # band x # vy, pa(a,b) = v.(x,y).

Proof. Assume ¢,(a,b) = A. We consider two cases: (i) either x ¢ {a,b} or
y ¢ {a,b}, and (ii) x € {a,b} and y € {a, b}.

In case (i), we assume w.l.o.g. that x ¢ {a,b}. The verification related to
y ¢ {a,b} is symmetric and we hence omit it. Since |M| > 2, there exists
a sequence {ay}t_, C A such that a; = a, a; = x, (ag,agy1) is an edge in
XeemG(A%), k =1,...;t —1,and b ¢ {a;}i_,."" According to a; and a3, we
have P, € D} ¢p and P € D} p such that 7o (P;) = ag and r5(P;) = a;. By tops-
onlyness and strategy-proofness, ¢, (a1, 0)+@a,(a1,0) = @u, (P1,b)+ e, (P1,b) =
Vay (P, 0) + @ay(P],b) = ¢q,(a2,b) + @4,(az,b). Then, Lemma 12.1 implies
©ay(a2,b) = g, (ar,b) = . Following the sequence {ay}}_, and repeatedly ap-
plying the symmetric argument step by step, we have . (x,b) = ¢, (a;,b) = .
Hence, pp(x,b) = 1 — A by Lemma 12.1. If y = b, the verification is completed. We
assume y # b. Then, there exists a sequence {b,}_, C A such that b, = b, by = v,
(b, bpy1) is an edge in X e/ G(A®), k=1,...,¢' —1,and z ¢ {b;}}_,. Following
the sequence {b; }%_,, by a symmetric argument, we have o, (7,y) = 1 — \. Then,
by Lemma 12.1, ¢,.(x,y) = A = @.(a, b).

In case (ii), since x # y, it must be either (z,y) = (a,b) or (z,y) = (b, a).
The lemma holds evidently if (z,y) = (a,b). Assume (z,y) = (b,a). Fix 2’ ¢

{a,b}. Between (a,b) and (z’,b), since =’ ¢ {a,b}, the verification of case (i)

17A pair of alternatives ¢,d € A forms an edge in x sc s G(A®), if c™* = d~% and (c®, d®) is an
edge in G(A?) for some s € M.
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implies ¢,/(z',b) = A. Similarly, between (b, a) and (2’,b), since 2’ ¢ {b,a}, the
verification of case (i) implies (b, a) = (2, b) = A. Thus, p.(a,b) = vu(b, a).

This completes the verification of the lemma. [

Fixing arbitrary a,b € A with a # b, let p,(a,b) = X\. We will show that for all
z,y € A, ¢(z,y) = Xex + (1 — Ney. If x = y, it holds evidently. If = # y, it holds

by Lemmas 12.1 and 12.2. Therefore, ¢ is a random dictatorship.

Next, we modify the Ramification Theorem in Appendix 5 so that the random
dictatorship result over D,sp (henceforth, assume |M| > 3) can be extended to
the case of arbitrary number of voters. We first introduce the primary induction

hypothesis.

The Primary Induction Hypothesis: Given N > 2, for all 2 < n < N, we have

[ : DY, gp — A(A) is ex-post efficient and strategy-proof] = [ is a random dictatorship].

Fixing an ex-post efficient and strategy-proof RSCF ¢ : D3sp — A(A), we
will show that ¢ is a random dictatorship. By Proposition 4.2.2, RSCF ¢ satisfies

the tops-only property.

Lemma 12.3. RSCF ¢ is a quasi random dictatorship (recall Definition 5.1 in Ap-

pendix 5).

Proof. We consider two cases: N > 3and N = 3. If N > 3, the verification is ex-
actly identical to the verification of Proposition 5.2 by simply changing “unanimity”
to “ex-post efficiency”. Thus, we focus on the case N = 3.1

According to RSCF ¢ : D® — A(A), we define three RSCFs: ¢ (P, P;) =
(P, Py, Py), g9 (P, Py) = @(P1, Py, P1) and g2 (P, P3) = @(Py, Pi, Ps)
for all P, P,, P; € D. Evidently, ¢@?%, g% and ¢(1'?) are ex-post efficient and

strategy-proof. Then, g(>%), (%) and g™"?) are random dictatorships by the primary

18The proof of Proposition 5.1 relies on Condition « (see Definition 3.1). However, Dp;sp vio-
lates Condition «. Instead, the proof of Lemma 12.3 relies on the restriction of multi-dimensional
single-peakedness and the tops-only property.
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induction hypothesis. Thus, there exist €1, €5, €3 > 0 such that for all P, P», P5 €

D,

W(Pla P, P2) = 9(2’3)(P17 PQ) =E&16n(P) T (1 - <€1)‘37“1(132)7
o(Py, Py, P) = 9(1’3)(131, P) = (1- 82)€r1(P1) + €260 (Py),

@(Pla Py, PB) = 9(1’2)(P17 P3) - (1 - g3>67"1(Pl) T+ E3€r(py)-

To establish that ¢ is a quasi random dictatorship, it suffices to show €1 +e5+¢c35 = 1.
Fixing {1,2,3} C M;{z%,y°} C A® where (2°,y°) isanedge in G(A%),s = 1,2, 3,

and 2z~ {123} ¢ A={1.23} e identify the following eight alternatives (see Figure 1):

a= (o a? 0% 02 b= (o7 0t 0, e = (o a2 P, 20,

a= (:v y 3 , 2 {123}) b= (yl,yQ,y3,z_{172’3}), . (a:l,xQ,y?’,z‘{l’Q’?’});

(y x2 33 ,z {123}) yz(xl,yQ,y3,z_{1’2’3}).
b, . U
|
c : c
e ;
T a a

Figure 1: The geometric relations among a, b, ¢, @, b, ¢, T and ¢
Now, we can construct two preference profiles: P = (Py, P>, P3) € D3,4p and

P' = (P}, P}, P}) € D3,4p such that the following five conditions are satisfied
) ri(P) =ri(P]) = a,r(P) =ri(Py) =band ri(P3) =ri(P}) = ¢
(i) ro(Py) = Z,r3(P1) = aand ry(Py) = b;

(iii) ro(P) = 7, 73(P) = band ry(P,) = c;
(iv) mo(P3) = 7, r3(P3) = cand r4(P3) = a;
(v) yP/z,1=1,2,3
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By a similar argument in the proof of Proposition 5.1, we first have ¢, (P) = €1,
op(P) = €9, p.(P) = €3 and p,(P) = 0 for all = ¢ {a,b, c,z}. Moreover, since
vz(P) = pz(P’") = 0 by tops-onlyness and ex-post efficiency, we have e1+ey+e3 =

©a(P) + @o(P) + pc(P) = >4 9(P) = 1 as required. 0

Furthermore, by a same argument of Lemma 5.5, we know that for all P &
DY gp With 71 (P;) = r1(P;) forsome i, j € I, (P) = Y, ; €€ (p,). Therefore, to
complete the verification of the Primary induction hypothesis, we show in Lemmas
12.4 and 12.5 below that for all P € DV with r{(P;) # ri(P;) forall 4,5 € I,
P(P) = icr €ien (P

We first recall one notation used in Appendix 5. Given P € DV with |r(P)| =

N, 1et W(P) = Uie;W (P, max(P;, 71 (P_;))).

Lemma 12.4. For all P € DY, gp with |r1(P)| = N and x € W(P), ¢.(P) =
Z Eie

i€lir (P)=x

Proof. This lemma follows from Lemma 5.7. [
Lemma 12.5. For all P € DY gp with |r1(P)| = N, o(P) = > ,c; €i€r (P)-

Proof. Fix P € DY ¢p with |r1(P)] = N. For notational convenience, let a; =
r1(F;) for all i € I. We can identify two voters ¢, j € I such that the minimal box
between a; and a; contains no other voter’s peak, i.e., (a;, a;) Nri(P-g; ) = 0.
We construct a sequence {zy},_, C (a;,a;) such that z; = a;, &, = a;; v €
(r1,xpy1) and (xg, Tg11) is an edge in X ey G(A®), k = 1,...,¢t — 1. Evidently,

we know that forall 1 < k' < k <'¢,
(1) (zp, zr) Nr(Pogijy) = 0

(i1) [k‘/ < k" < k‘} = [ZEk// € <JZ}€/,CL’]€>}, and [k‘” < k' or k" > k)] = [{L‘k// ¢

<;Ekl, SL’k>] .

Note that given 1 < k' < k < ¢, there exist R(k/’k) € D}¥sp and Pj(k’k/) € Diigp

such that all alternatives in (xy/, xj) are ranked above all alternatives out of (z/, zx),
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1.e.,

2 € (awoan) and y ¢ (w,2i)] = [P0y and o Py,

Hence, for all [ # i, j, xk3<k’vk>al and $kfpj(k’k/)az.

We will show o(P) = (21, 24, Pyi jy) = €i€sy + €j€y, + D1y j €164, Firstly,
by quasi random dictatorship and tops-onlyness, we know ¢ (z1, x1, P_g; ;1) = (€i+

€j)€x, + D14 €1€q,- Next, we provide an induction argument.

Induction Hypothesis: Given1 < k < t,forall1 <k <k <k, p(wg, 2, P_ijy) =
€i€ay + Ej€anp + D1k E1Car-
We will show that for all 1 < k < k < k, (xk, x5, P_(ij}) = Ei€s, + €j€a, +

Zl;éi,j €i1€a;-

Given 1 < k < k < k, if k < k, the induction hypothesis gives the result.
Next, assume k = k. If £ = k, then quasi random dictatorship and tops-onlyness
imply @(zx, vk, P-{ij}) = (€i+€j)€x, + 14 j €164, Moreover, we provide another

induction argument.

The Secondary Induction Hypothesis: Given 1 < k < k forall k < k < k,
QO($E, T, P,{m-}) = Eilxy, + EjCqy + Zl;ﬁi,j €1€q;-
We will show (7, Tk, P jy) = €is, + €j€uy + D1z i €1€as-

Claim 1: For all | # 14, j, 0o, (%}, 2, P_gi jy) = 1.

Given preferences R(k’k), ]53.(’“”%), since (x, xx) N ri(Pog ) = 0,
|r1(f’i(k’k), f_’i(k’ic), P_ijy)| = N. Fixing | # 1, j, since xkpi(l%’k)al, it is true that a; €
W (PR max (PER (PR Py 1)) € W(PER PED P, ). Then, by

tops-onlyness and Lemma 12.4, we have ¢, (2, T4, P 1) = @a, (R(k’k), 13].(k’k), P )=

g;. This completes the verification of the claim.
Claim 2: ¢, (Tp—1, %k, P_gijy) = € and @, (Tp—1, T, P_fijy) = €;.

Since (zj_1,71) is an edge in X ,cprG(A®), we have P, € Djfsp and P! €
D3k sp such that ro(P;) = x4 and 79(P!) = x5_;. Firstly, by quasi random dic-

tatorship and tops-onlyness, gpxk_l(f)i’, T, P_{Z-J}) = 0 and cpxk(f_’i’, Tk, P_{i,j}) =
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€; + €;. Next, by tops-onlyness and strategy-proofness, we have
Oupy (Th—1, T, P—{i,j})-i-%k (Th—1, T, P—{z‘,j}) = <P:pk,1(pi, Tk, P—{i,j})—i-%ck(pi, T, P—{i,j}) =
(Pl Pogiy) + 0ap (Pl wi, Pogijy) = i + €5
Given P; € Djjsp and P; € Ditp, itis evident that |r (P, P, P_g; j3)] = N.
Fixing [ # 1, j, since either x;_1 Pz, or x Pjxy_q, we have
either z, € W (P, max (P, r1(P;, Pj, P ;1)) € W(P;, P}, P_i 1),
or xy_1 € W(P, max(P, (P, P, P_i ;1)) € W(P;, Pj, P_{; ;). Then, by tops-
onlyness and Lemma 12.4, we have either ¢, (vx—1, Tk, P—(i jy) = 02, (B, Py, Pogijy) =
€508 (1, 2, Poify) = O, (P, Pj, P_yi jy) = €i. Consequently, we have
Oap 1 (Tr—1, Tk, P_gijy) = & and g, (¥k—1, Tk, P_g; j3) = €;. This completes the

verification of the claim.

Claim 3: If k < k — 1, the following two equalities hold:

go%(a:,;,xk,P_{m})—i—gomA (v, op, P_ijy) = € and

k1

Pay, (T Ty Pfigy) + oy (T s Pgigy) = €5

T

Since (xj,x;,,) is an edge in X ,epG(A®), we have P, € D)igp and P €
D555 such that ro(P) = ay,, and ro(P}) = ;. Firstly, the secondary induction
hypothesis implies (prc(Pi’, vy, P_g;57) = 0 and go%H(Pi’, Ty, P_i ;1) = €i. Then,
by tops-onlyness and strategy-proofness, ¢, (x1, x, P_{i’j}>+gpxk+1

()OSC,; (Pza L, Pf{i,j})_‘_soxfcﬂ (]517 Lk, Pf{z,]}) = 90131; (R,a Lk Pf{i,j})+90x,;+l (Pz'/7 L Pf{l,j}) =

(g T, Pijy) =

€.

Since (w4, zx—1) is an edge in X e G(A®), we have P; € Djjgp and P €
Djjsp such that r5(P;) = xj_y and r5(P]) = x4. Firstly, induction hypothesis
implies <ka(13;;,Pf,P—{i,j}) = 0 and gpmkfl(x,;,]%,P_{i,j}) = ¢;. Then, by tops-
onlyness and strategy-proofness, it is true that o, (z, T, P,{M})—i—goxkfl (x, 2, P,{i’j}) =
o (@4 Py P-(i ) T 1 (03 Py Poiy) = (@4, Py Pgi )+, (03, Py Pogigy) =
€;. This completes the verification of the claim.

Claim4: Itk < k — 1, P, (w4, p, P_gijy) = € and g, (2, 21, P_(i5y) = €5
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Fixing | # i, j, we know that either one of the following three cases occurs: (i)
x;, € (ay, xy), (1) x € (@, x;) and (iii) z; & (@, vx) and x5, & (a;, z3).

In case (i), since z;,, € (xj, ), it must be the case that z; € (a;, ;).
Thus, z; Pxy and 23 Pxj, . Given P, € Dyigp and P; € Dikgp, it is evident
that |r(P;, P, P_iijy)| = N. Moreover, x;, Pix; , and x; Pixy imply @, 7 €
W (P, max(P, r(P;, Pj, P—; ;;))) € W(P;, Pj, P ;). Consequently, by tops-
onlyness and Lemma 12.4, we have Py (g, g, Pgijy) = Py (P, P, P_ij) =
0 and ¢y, (2, Tk, Pogify) = @ (P Py, P_gijy) = ;. Furthermore, by Claim 3,
Py (ﬁfg,fk, Pf{i,j}) = &;.

In case (ii), since x,_1 € (zj,xy), it must be the case that z;, € (a;, Tp—_1).
Thus, 2 Px; and 2, Pvy_y. Given P, € Dikg, and P; € Dk, it is evident
that |ri(P;, Pj, P—g; jy)] = N. Moreover, x; Pz and z, Pixy_q imply z, 2,1 €
W(B,max(Pl,rl(P,;,]%,P_i,j,l))) C W(E7Pj,P_{m}). Consequently, by tops-
onlyness and Lemma 12.4, we have goxfc(x,;, Tp, P_gijy) = 9093,;(152-, P;, P_ijy) =
g; and ¢, (zg, 2% Pogijy) = 0w (P, Pj,P_ijy) = 0. Then, by Claim 3,
Oy (T, T, P_ijy) = €5

In case (iii), we have P, P, € DY, such that zP; and z;Pay. Given
Py € Diigp and P; € Dk, it is evident that |ry (P, Pj, P, P_; ;)| = N and
r1(P;, P, B, P_;;1)| = N. Moreover, :L’kplxk and xk]%xk imply
z;, € W (P, max(P,r (P, Pj, P_; ;))) € W(F;, P;, P, P, ;;) and
T € W(ﬁl, max(ﬁl,rl(Pi, P;, P_m,l))) CW(P, P, B, P_; ;1) respectively. Hence,
by tops-onlyness and Lemma 12.4, we have o, (v, 2k, P_j;jy) = %I;(Pm = B, P =
g; and @y, (v4, o5, P_gijy) = apxk(PZ-, Pj, Pl, P_; ;1) = €;. This completes the veri-
fication of the claim.

In conclusion, according to Claims 1, 2 and 4, p(z;, zr, P_gi5y) = Ei€y, +
€j€xy, T D14 ; €1€q,- This completes the verification of the secondary induction hy-
pothesis. Then, forall 1 < k < k, (2, T, P—{ij}) = €i€ay, + €j€a;, + Zlﬁ’j E1€q,-
This completes the verification of induction hypothesis. Therefore, for all 1 <

k <k <t, oz, o5, P_(ij}) = €i€ey, + Ej€0; + Z#m g1eq,. Therefore, o(P) =
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QD(ZL'l, L, P—{i,j}) = €i€z, T €j€x, + Zl;&i,j €1€q; = Zle] E1€ri(P))- u

13 Proof of Proposition 4.2.7

We first show the necessity part of Proposition 4.2.7. Let ¢ : DV — A(A) be
an ex-post efficient* and strategy-proof RSCF. First, since ID is minimally rich and
connected, it is easy to verify that D is path-connected (recall Section 3.2 in Chapter
3). Since ex-post efficiency* implies unanimity, Proposition 4.2.1 implies that ¢

satisfies the tops-only property.
Claim I: RSCF g satisfies the compromise property (recall Definition 3.1.1).

We simply let I = {1,...,% if N is even, and ] = {1,...,%} if N is
odd. Given P, P; € D with r(P;) = x # y = r1(F;) and ry(F;) = r2(P;) = a,

it is evident that Q( P, ...,P,P,....P ) = {x,y,a}. Then, ex-post efficiency*

-~

I NI
implies ¢, (B, ..., P, P;,...,P;) > 0. This completes the verification of the

claim.

Now, domain I is path-connected; and ¢ satisfies unanimity, the tops-only prop-
erty, strategy-proofness and the compromise property. Then, Theorem 3.3.1 implies

that D is single-peaked. This completes the verification of necessity part.

Now, we move to the verification of the sufficiency part. Let D be a single-
peaked domain on a tree G. We the RSCF ¢ : DV — A(A) constructed in the
verification of the sufficiency part of Theorem 3.3.1. Then, we know that ¢ is
strategy-proof, and moreover, supp p(P) = G(r(P)) for all P € DV, Therefore,
to show that ¢ is ex-post efficient*, it suffices to show Q(P) = G(ri(P)) for all

P € DV. Evidently, If |r1(P)| = 1, then Q(P) = G(r1(P)).
Claim 2: Given P € DV with |r(P)| > 1, Q(P) C G(r(P)).

Suppose that there exists a € Q(P)\G(r1(P)). Thus, there exists an unique

b € G(r1(P)) such that for all i € I, b € (ri(F;),a). Then, single-peakedness
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implies bP;a for all i € I. Hence, a ¢ 2(P). Contradiction! This completes the

verification of the claim.
Claim 3: Given P € DV with |r{(P)| > 1, Q(P) 2 G(r(P)).

Suppose that there exists a € G(r1(P))\2(P). Thus, there exists b € A such
that bP;a for all ¢ € I. Evidently, a ¢ r1(P). Since a € G(r;(P)) and a ¢ r1(P),
there exist ¢, j € I suchthat r(P;) =z # y = ri(P;) and a € (z,y)\{z, y}. Since
G is a tree, it is true that either a € (x,b) or a € (y,b). Consequently, either aP;b

or aP;b. Contradiction! This completes the verification of the claim.

In conclusion, Q(P) = G(r1(P)) for all P € DV. Hence, supp p(P) = Q(P)
for all P € DV, and ¢ is ex-post efficient*. This completes the verification of the

sufficiency part.

14 Strategy-proofness in Example 4.3.2

RSCEF ¢ follows three distinct function forms according to preference profiles. Ev-
idently, if both voters share the same peak of preferences, no one has the incentive
to deviate. Next, it is easy to show that if two social lotteries, which are induced by
truthtelling and misrepresentation of some voter, are generated by the same function
form, the one under truthtelling always stochastically dominates the one under mis-
representation according to the true preference. Therefore, we only need to consider
the possible manipulation where the corresponding social lotteries are generated by
distinct function forms. In these possible manipulations (16 situations specified
below), we assert that probabilities are always transferred systematically from the
preferred alternatives to less preferred alternatives according to the true preference

which equivalently indicates stochastic dominance.

1. In (P, P;) + (P!, P;), where P, € D, P! € {P;, Py} and P; € D%, we
have

(P, Py) 0, @D, o pr Py and (P, ;)

1/4 1/4

azPla1  a4Plas
s — 5

1/4 1/4

90<PZ7PJ)

Y
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2. In (P, P;)

(P!, Pj), where P, € D* = {Py, P5, s}, P/ € {P;, Py} and

P; € D, we have

a2Piaz  a2Pja1 asPiag

SO(R?PJ> 14 7 14 7 1/4 @(F)ilaf)j)a lfpl € {P47P5}'
as P;a asP;ays  asPjai .
SO(PH-Pj) 21/437 21/4 ) 51/4 SO(Pi/7Pj)7 lf-Pi:-Pﬁ-
asPa a1Pla asPla .
QO(Pz/wP]) 31/142 ) 11/142 ) 41/145 QO(-PM-P])a if ]Di/ = P7.
f a3Plaz  aqPlaz  a1Plas . ;
o ) lles, wlles 0l op B, HP=R,
3. In (P, P;) < (P, P;), where P, € D, P/ € {P;, P} and P; € D%, we
have
asP;a asP;a1 a3Play a1Plas
(R=P> /43 ’ 517> (R/>F)j)= and SO(P/ P)T? 790<‘P27PJ)
4. In (P, Pj) < (P, Pj), where P; € {P7, Py}, P; € D" and P} € D%, we
have
. . a1Pja5 anga4 ] , / aSP ai a4P as
SO(PM-P]> 1/4 77%0(3,}9), and (-PHP) 1/4 71—/4> (-PHP)
5. In (P, Pj) < (P, Pj), where P; € {P;, Py}, P; € D™ and P} € D, we
have
‘ ‘ a2Pjai  azPjas  a3Pjas ‘ , ‘ , a5PJfa3 alPJ’.az a4PJfa2
6. In (P, P;) < (P, Pj), where P; € {P;, Py}, P; € D™ and P} € D%, we
have
a4P as angal ] / ’ a5P a4 CL]_P as
QD(P“PJ) 1/4 vl—M>90(Pz7Pj>7 andSD(PZ’P]) 14 71—/4>90(PZ’P)
7. In (P, P;) < (P/, P;) where P, € D* UD™, P/ = Py and P; € D%, we
have
r1(P;)Pias  m1(P;)Pa2 , , A a3P/ri(P;) a2P!r1(F;)
p(P, Py) 2E0Pes, 0P by ), and (P, By) SR, 2P
8. In (P, P;) <> (P!, P;) where P, € D, P/ = Py and P; € D%, we have
a2Pa3 / / azPjas
PP P) = o), and o(P. P) % (P, P,
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9. In (P, P;)) +

D?, we have

(P, Pj) where P, = Py, P; € D" = {P,, 5, Ps} and P €

a1Pjas  aszPjas

a1 Pjaz .
(R7P> 1/4 ’ 1/4 ’ 1/4 ()0<‘P’L?P]/), 1ij:P1.
(R,P)allz;;s,% (P, P), if P, € {P,, P3}.
a5P a1 agP’ag
('PL?P) 1/2 71—/4> (R?P)

10. In (P, P}) <

(Pi, P;) where P; = Py, P; € D* and Pj € D%, we have

asPlas a5P as

azPjas  azPjas . / ’ i
(P17P> 1/4 77%0<‘P7,7P])7 and (PHP) 1/4 71—/4> (H?P)
11. In (Pz,P]) e (P,L,P]/) where PL = Pg, PJ e D™ = {P107P117P12} and

P]{ € D%, we have

a4 Pjas azPjas

a4 Pjaz .
B B) =0 = e )i E = P
asPja a3z Pja; .
(P P) =5 = e(Pu P, i Py € {Pu, Pra}.
, a5Pa4 a2P;a3 ' '
12. In (P, Pj) <> (P!, P;) where P, € {P;, Py}, P/ = Py and P; € D%, we have

3. In (P, P) —

have (P, P;

14. In (P, P;) —

(P, P;) 2l

15.

have (P, P;

1/4

In (P, P}) —

a1P as

a4 P;a .
SO(P“ ‘P]) 1/4 Y 41/45 SD(Pi/7Pj)7 lf‘P'L = P7'
ayq Pja a1 Pja .
SO(P’HPJ) 41/42 ) 11/45 (p(Pz‘/7Pj)v if P, = Dy.
azPla1  asPla
o(P, ) 200 T o ).

(P!, P;) where P, € {P;, Py}, P/ € D% and P; € D%, we

a3z P;as
1/4

asP;as
1/4

a1 P;as
1/4

) SO(Pi/?Pj)'

Y Y

(P!, P;) where P, = P, P/ € D% and P, € D%, we have
aszP;as

1/4

as

7 P (B, P))-

(P, Pj) where P; € {P7, Py}, P; € D% and Pj

a1 Pjas
1/4

c D%, we
)a5Pja3
1/4

asPjas
1/4

Y ?

(b, P;).
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16. In (P, P;) — (P, P}) where P, = Py, P; € D% and P; € D*, we have

‘ ‘ asPjaz  a2Pjas ' /
o(F; PJ)W? TW(PMP]'>'

15 Proof of Proposition 4.3.1

The sufficiency part is implied by Theorem 4.1.1. We focus on the necessity part.
Since A = {0,1} x {0, 1}, the multi-dimensional single-peaked domain D,,sp is
specified in Table 4.2 of Example 4.2.1. Since D is significantly rich, it is evidently
that D satisfies the Interior Property. Now, suppose that D violates the Exterior
Property*. Accordingly, we have P;, P;, P! € D satisfying the following three con-

ditions:
(i) ri(P) = r(P); B ~* P, Py and y P,lz;
(i) ri(F/) # ri(F;) and 2 Py;
(iii) there exists no (x, y)-Is-path connecting P; and P,.

According to Table 4.2, condition (i) implies {P;, P;} = {Ps, Pi;1} for some
k € {1,3,5,7}. We assume w.l.o.g. that P, = P, and P, = P,. Consequently,
x = (1,0) and y = (0,1). Since (1,0)P/(0,1) in condition (ii), we know P ¢
{Py, Py, Ps, Ps, Ps}. Thus, either P/ € {Ps, P,} or P/ = P;. Furthermore, if
P! € {Ps, P,}, significant richness condition implies { P, P;} C D. Consequently,
{Py, Ps} is a (x,y)-Is-path connecting P, and P/ if P/ = P;, or {Py, P5, P} is
a (z,y)-Is-path connecting P; and P/ if P/ = P,. This contradicts condition (iii)
above. Therefore, P/ = P;. Then significant richness condition implies { P, Py} C
D. Thus, { P, P, P;, Ps} C . We show that P3, Py ¢ D. Suppose not, i.e., either
P; € D or P, € D. Then, significant richness implies Ps, P, € D. Consequently,
{Py, P3, Py, P;} is a (z, y)-Is-path connecting P; and P/. Contradiction! Therefore,
either D = { Py, P, P;, Py} or D = { Py, P, P5, P, Pr, Ps}.

Assume D = { Py, P, Ps, Ps, P, Ps}. We will show domain DD admits an unan-
imous and strategy-proof RSCF violating the tops-only property. We first provide
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four unanimous and strategy-proof DSCFs below: for all P, P; € DD, assuming

ri(P;) = aand r(P;) = b,

f(o’o)(Pi7Pj) = (med(al,bl,O),med(a27b2,O)), f(l’o)(Pi,Pj) = (med(al,bl, 1),77166[(@2,b270))7

f(o’l)(Pi,Pj) = (med(al,bl,O),med(OLQ,1727 1)), f(l’l)(Pi,Pj) = (med(al,bl, 1), med(a?,b?, 1))

According to [6], all four DSCFs above are unanimous and strategy-proof. Next,

we specify two RSCFs.
_ 1
p(P ) = 4 (O, Py) + fUO(B, By) + fOD (P, By) + fEU (P, P)]

for all 7, P; € .

1 fOO(P, Py) + 5 fRO(R, Py) + 1 f V(P Py),
if (PMP]) = (P17P7);

QD(PHPJ) = 3

@(Plvf)j)a

Otherwise.

RSCF ¢ follows from a convex combination of all four DSCFs above. There-
fore, ¢ is unanimous and strategy-proof. Observe that RSCF ¢ is identical to ¢ if the
preference profile is not (P, P;), and otherwise follows from a convex combination
of three DSCFs, where (%1 is removed and corresponding the weight is transferred
to f(:0), Evidently, RSCF ¢ is unanimous and violates the tops-only property, e.g.,
p(P1, Pr) = feo) + 3600 T 1601 # €00 + 1€00) T 1601 T 1601 =
©(Py, Pg). We claim that ¢ is strategy-proof. There are following four possible

manipulations:
L. (P, Pr) — (P}, P;) where P) # Py, and (Py, P7) — (P, P}) where P} # P,
2. (B,P7) — (P17P7) wherePZ- 7é Pl.

3. (Pl,PJ)—> (Pl,P7) Wherer#P7.
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In situation 1, we first observe that

1,0)P1(0,1) _ 1,0)Pr(0,1) _
%w(ﬂ,ﬂ), and @(Plapﬂw’@(}jhpﬁ

(P, Pr) 4

Therefore, ¢(P;, P;) stochastically dominates ¢(P;, P;) according to P, and P
respectively. Next, since ¢ is strategy-proof, we know that (P, P;) stochasti-
cally dominates (P}, P7) = @(F/, Pr) and ¢( Py, Pj) = p(Py, P;) according to P,
and P; respectively. Therefore, ¢(P;, Pr) stochastically dominates p(P/, P;) and
¢(P1, Pj) according to P, and P; respectively.

In situation 2, we have

0,1)P;(1,0 .
o(P )PS0 G (PL Py, i P = B
90(P17P7) 1/4 5 1/4 ) 1/4 QD(P17P7)7 lfPi_PS'
(1,0)P;(0,1)  (0,0)P;(1,1) . .
90(P17P7) 1/2 ) 1/4 QD(P17P7)7 if P =F.
1,1)P;(1,0 1,1)P;(0,0 .
90(P17P7)( )1/2( )7 ( )1/4( )QP(P17P7)7 lfljie{P7>P8}'

Therefore, p(P;, P;) stochastically dominates ¢( Py, Pr) according to P; € {P», Ps, Ps, P7, Py}
respectively. By a symmetric argument, in situation 3, ¢(P, P;) stochastically
dominates ¢(Py, P;) according to P; € {Py, P, P5, P, Ps} respectively. There-
fore, ¢ is strategy-proof.

Lastly, assume D = {P,, P, P;, Ps}. Since D C {P,, P, Ps, P, Pr, P3} and
Py, P;, Py € D,  specified above is also unanimous, strategy-proof and violates the
tops-only property under domain ID. This contradicts the hypothesis of the proposi-

tion. Therefore, domain D must satisfy the Exterior Property*.

16 Proof of Proposition 4.3.2

Lemma 16.1. Given distinct P;, P, € D, assume r1(P;) = r1(P}) = ax, asP;a; and

asPlay, where k # s. There exists a (as, ay)-Is-path connecting P; and P.
Proof. By the Interior Property, we have an AC-path {P!/}X, C D® connecting P,
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and P/. If a,Pla; for all 1 < [ < K, it is evident that { P!} is a (as, a)-Is-
path connecting P; and P!. For the rest of the proof, we assume a;Pa, for some
1 <l < K. Since a,P!a; and atPilas, it must be the case that either s < k < ¢,
ort < k < s. Weassume s < k < t. The verification related to ¢t < k < s
is symmetric and we hence omit it. Evidently, if a, is ranked above a; in two
consecutive preferences of the path {P'}X |, then a, and a; are isolated in these
two preferences by Remark 4.1.1. Furthermore, according to Claim 1 below, we
can show that after removing all preferences in the path { P!}/ where a; is ranked
above ag, the rest of preferences in the path construct a (as, a;)-Is-path connecting

P, and P.

Claim 1. Assume asPZ-llat, asPiZQat and atPilas forall [y < | < l,. Thus, a, and a;

are isolated in (P!*, P/).

Since P ~4 Pi* 4 Pha, and a, P ay, we know a, P la,. Symmetrically,
aSPZ-lQ!at. Given a, € A with aqPillas, we have aqPillat and moreover, single-
peakedness implies s < ¢ < t. Thus, {a, € Ala,Pa;} C {a},, ;. Con-
versely, given s < ¢ < t, itis either s < ¢ < k, or k > ¢ > t. Correspond-
ingly, single-peakedness implies either aqPZ-llaS or aqPillat. Furthermore, since
a,P*lay, it is true that a, P a,. Therefore, {a, € Ala,P/*a,} 2 {a,}\=},,. Thus,
{a, € Ala P as} = {ag},_} . Symmetrically, {a, € Ala,Pa,} = {a }\_}, .
Now, since {a, € Ala,P"a,} = {a, € Ala,Pas}, a,P'a, and a,P?a, imply
that a, and a, are isolated in (P/*, P*). This completes the verification of the claim

and hence the lemma. [
Lemma 16.2. Domain D satisfies the Exterior Property*.
Proof. Given P;, P! € D satisfying the following two conditions:

(i) there exists P € D such that r\(P;) = r(P,) = a; P, ~* P, a,Pla, and

arPlag;

(ii) r1(P/}) # ay and asP]a,.
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we will show that there exists a (as, a;)-Is-path connecting P; and P,.

Since 71 (P;) = r1(P;) = ax, asP;la; and a, P;las, it is true that either s < k < t,
ort < k < s. Weassume s < k < t. The verification related to t < k£ < s is
symmetric and hence we omit it. We assume 7,(P/) = a,. Since D* # () and
D% # (), let P; € D* and P, € D™ be two preferences satisfying the left-extreme
condition. Accordingly, asPiay.

We first assume ¢ > k. Since asP/ay, it must be the case k£ < ¢ < t. Hence,
a.Pa, by left-extreme condition. Moreover, since BY(FP;) = {ay, ..., as, . .. gt =
Bq(pi), as and a, are isolated in (P, ]51) Next, assume ¢ < k. If ¢ < s, single-
peakedness implies asﬁiat. If s < g, left-extreme condition implies aspl-at. Now,
since B¥(P)) = {ay,...,a,...,a,} = B*(P), a, and a, are isolated in (P;, P).

Lastly, by Lemma 16.1, we have a (a,, a;)-Is-path { P!}}* | connecting P, and P;,
and a (a,, a;)-Is-path { P'}2, connecting P, and P/. Combining these two paths, the

sequence {P!, ..., P": P! ... P2}isa(a,,a)-Is-path connecting P,and P/. [J
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