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Abstract

Three Essays on Random Mechanism Design

Huaxia Zeng

This dissertation studies a standard voting formulation with randomization. For-

mally, there is a finite set of voters, a finite set of alternatives and a lottery space over

the alternative set. Each voter has a strict preference over alternatives. The domain

of preferences contains all admissible preferences. Every voter reports a prefer-

ence in the domain; a preference profile is generated; and the social lottery then is

determined by a Random Social Choice Function (or RSCF).

This dissertation focuses on RSCFs which provide every voter incentives to

truthfully reveal her preference, and hence follows the formulation of strategy-

proofness in [26] which requires that the lottery under truthtelling (first-order) stochas-

tically dominates the lottery under any misrepresentation according to every voter’s

true preference independently of others’ behaviors. Moreover, this dissertation re-

stricts attention to the class of unanimous RSCFs, that is, if the alternative is the

best for all voters in a preference profile, it receives probability one. A typical class

of unanimous and strategy-proof RSCFs is random dictatorships.

A domain is a random dictatorship domain if every unanimous and strategy-

proof RSCF is a random dictatorship. Gibbard [26] showed that the complete

domain is a random dictatorship domain. Chapter 2 studies dictatorial domains,

i.e., every unanimous and strategy-proof Deterministic Social Choice Function (or

DSCF) is a dictatorship, and shows that a dictatorial domain is not necessarily a

random dictatorship domain. This result applies to the constrained voting model.

Moreover, this chapter shows that substantial strengthenings of Linked Domains (a



class of dictatorial domains introduced in [1]) are needed to restore random dicta-

torship and such strengthenings are“almost necessary”.

Single-peaked domains are the most attractive among restricted voting domains

which can admit a large class of “well-behaved” strategy-proof RSCFs. Chapter 3

studies an inverse question: does the single-peakedness restriction naturally emerge

as a consequence of the existence of a well-behaved strategy-proof randomized vot-

ing rule? This chapter proves the following result: Every path-connected domain

that admits a unanimous, tops-only, strategy-proof RSCF satisfying a compromise

property is single-peaked on a tree. Conversely, every single-peaked domain admits

such a RSCF satisfying these properties. This result provides a justification of the

salience of single-peaked preferences and evidence in favor of the Gul conjecture

(see [3]).

One important class of RSCFs is the class of tops-only RSCFs whose social

lottery under each preference profile depends only on the peaks of preferences. The

tops-only property is widely explored in DSCFs, and more importantly, is usually

implied by unanimity and strategy-proofness in DSCFs (e.g., [52], [15]). In Chapter

4, a general condition is identified on domains of preferences (the Interior Property

and the Exterior Property), which ensures that every unanimous and strategy-proof

RSCF has the tops-only property. Moreover, this chapter provides applications of

this sufficient condition and use it to derive new results.



Table of Contents

1 Introduction 1

1.1 Preliminaries and the Model . . . . . . . . . . . . . . . . . . . . . 11

2 Random Dictatorship Domains 15

2.1 Linked Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Dictatorial Domains are not Random Dictatorship Domains . . . . . 16

2.2.1 A Sufficient Condition . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Dictatorial Domains satisfying Condition SC . . . . . . . . 21

2.2.3 Random Constrained Voting . . . . . . . . . . . . . . . . . 23

2.3 Random Dictatorship Results . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Linked Domains with Condition H . . . . . . . . . . . . . . 27

2.3.2 Strongly Linked Domains with Condition TS . . . . . . . . 29

2.3.3 “Necessity” of Conditions H and TS . . . . . . . . . . . . . 32

3 A Characterization of Single-Peaked Preferences via Random Social

Choice Functions 35

3.1 The Compromise Property . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Path-connected Domains . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Main Result: Single-Peakedness . . . . . . . . . . . . . . . . . . . 40

3.3.1 Discussion: Indispensability of the Axioms and the Rich-

ness Condition . . . . . . . . . . . . . . . . . . . . . . . . 48

4 On Random Social Choice Functions with the Tops-only Property 53

4.1 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

i



4.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Connected Domains . . . . . . . . . . . . . . . . . . . . . 59

4.2.2 The Multi-Dimensional Single-Peaked Domain . . . . . . . 60

4.2.3 Separable Domains . . . . . . . . . . . . . . . . . . . . . . 62

4.2.4 Characterization of Strategy-proof RSCFs . . . . . . . . . . 69

4.2.5 A Domain Implication Problem . . . . . . . . . . . . . . . 71

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.1 Relation to the Literature . . . . . . . . . . . . . . . . . . . 73

4.3.2 Necessity . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Summary of Conclusions 80

References 81

Appendix 87

1 Some Verifications in Section 2.2.3 . . . . . . . . . . . . . . . . . . 87

2 Condition SC v.s. Conditions H and TS . . . . . . . . . . . . . . . 90

2.1 Condition H . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.2 Condition TS . . . . . . . . . . . . . . . . . . . . . . . . . 91

3 Proof of Theorem 2.3.1 . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Proof of Theorem 2.3.2 . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Ramification Theorem . . . . . . . . . . . . . . . . . . . . . . . . 101

6 The Weighted Projection Rule . . . . . . . . . . . . . . . . . . . . 118

7 Strategy-proofness in Example 3.3.2 . . . . . . . . . . . . . . . . . 121

8 Proof of Lemma 4.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . 124

9 Proof of Proposition 4.2.2 . . . . . . . . . . . . . . . . . . . . . . . 125

10 Proof of Lemma 4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . 134

11 Proof of Proposition 4.2.4 . . . . . . . . . . . . . . . . . . . . . . . 136

12 Proof of Proposition 4.2.5 . . . . . . . . . . . . . . . . . . . . . . . 146

13 Proof of Proposition 4.2.7 . . . . . . . . . . . . . . . . . . . . . . . 155

14 Strategy-proofness in Example 4.3.2 . . . . . . . . . . . . . . . . . 156

ii



15 Proof of Proposition 4.3.1 . . . . . . . . . . . . . . . . . . . . . . . 159

16 Proof of Proposition 4.3.2 . . . . . . . . . . . . . . . . . . . . . . . 161

iii



Acknowledgements

I would like to express my special appreciation and thanks to my advisor Professor

Shurojit Chatterji, you have been a tremendous mentor for me in the whole master

and Ph.D. years. I would like to thank you for discussing research topics with

me, for guiding my research process and for developing my academic career. I

still remember your description on economics research in the very beginning which

indeed encouraged me to enroll the Ph.D. program: Doing research is like finding a

door to get out of a black room. Then, I should say that your advice sheds light on

my path and guides me to find the “door” for the completion of this dissertation.

I would also like to thank Professor Arunava Sen. The mini course you gave in

Singapore Management University in 2010 raised my interest in research on mecha-

nism design. I am very grateful to have several joint work with you, and I appreciate

very much several valuable discussions in Singapore, Boston and Delhi.

I am very thankful to my committee members Professor Takashi Kunimoto and

Professor Jingyi Xue for their valuable advice and constructive suggestions. In

addition, I am particularly grateful to Professor Jingyi Xue, Professor Atsushi Ka-
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Chapter 1 Introduction

Randomization is a natural resolution to many instances of conflict of interest in

economic settings. It can easily bring fairness to the ex-ante consideration of col-

lective decision making problems. As an example, consider the following economic

scenario: two agents have opposite opinions on two indivisible objects, and one ob-

ject needs to be chosen for production. Tossing a fair coin to decide the choice

appears to be the fair solution. It is also true that randomization improves incentives

for truthtelling in models with private information. The reason it does so is that

outcomes under randomization are lotteries and it is typically assumed that player’s

preferences over lotteries satisfy von-Neumann-Morgenstern expected utility hy-

pothesis. The mechanism designer can exploit this preference restrictions in order

to expand the set of mechanisms that provides agents incentives for truthtelling,

e.g., combining several dictatorships with equal weights. More importantly, the in-

jection of randomization has been recently shown to significantly enlarge the scope

for designing “well-behaved” mechanisms with nice incentive properties.

This dissertation studies randomization in the voting environment where each

voter submits an ordinal strict preference order over a finite set of alternatives;

a preference profile is generated; a “desirable” social lottery over alternatives is

accordingly chosen; and monetary compensation for voters is not feasible. Each

voter’s preference order is her private information and drawn from a set of admissi-

ble preference orders which is referred to as the domain of preferences. A Random

Social Choice Function (or RSCF), which is a map from the Cartesian product of

domains to the set of lotteries, determines the social lottery under every profile of

reported preferences. In particular, if a degenerate lottery (i.e., one alternative is
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assigned probability one) is chosen under each preference profile, the RSCF is de-

generated to a Deterministic Social Choice Function (or DSCF).

Since a voter’s preference is her private information, she is not obligated to re-

port her preference sincerely, especially if she can benefit from misrepresentation.

Therefore, in the literature of mechanism design, incentives for truthfullying re-

vealing private information are prominently at the forefront. Fixing an ordinal pref-

erence and a utility function representing this preference, every voter is assumed

to evaluate lotteries according to the von-Neumann-Morgenstern expected utility

hypothesis. Accordingly, Gibbard [26] established the notion of a strategy-proof

RSCF which requires no voter can obtain a strictly higher expected utility by mis-

reporting her preference for any utility representing her sincere preference and any

beliefs regarding the reports of other voters. Equivalently, this notion of strategy-

proofness can be reformulated in terms of (first-order) stochastic dominance which

says that for each voter, the social lottery under truthtelling stochastically dominates

a lottery induced by any unilateral misrepresentation according to her true prefer-

ence independently of others’ reports. The whole dissertation follows Gibbard’s

formulation of strategy-proofness. Moreover, this dissertation restricts attention to

the class of RSCFs satisfying the mild requirement of unanimity, i.e., a unanimous

RSCF requires an alternative to be selected with certainty under a preference profile

if it is top-ranked by all voters.

According to the classic impossibility theorem in [26], the only unanimous and

strategy-proof RSCFs are random dictatorships, provided that voters’s preferences

belong to the complete domain, and the number of alternatives is at least three.

A random dictatorship is a fixed probability distribution over dictatorial DSCFs,

and therefore is clearly more appealing than dictatorships since it introduces ex-

ante fairness and every voter may have the same probability to the chosen dictator.

Later, the random dictatorship characterization result is robustly established in dif-

ferent settings (e.g., cardinal preferences in [28]), or by different approaches (e.g.,

[21]), or under restricted ordinal preferences (e.g., [48]). A domain of preferences is
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referred to as a random dictatorship domain if every unanimous and strategy-proof

RSCF is a random dictatorship. Even though a random dictatorship is strategy-

proof on arbitrary domains of preferences, it remains unsatisfactory and suffer a

significant infirmity - it assigns positive probability on an alternative only if it is

top-ranked in some voter’s preference, and hence does not admit compromise. For

instance, voters may disagree strongly on each other’s most preferred alternatives

but have a commonly second best alternative. However, this commonly second

best alternative is ignored by a random dictatorship. Essentially, this dissertation

explores the following fundamental question in different directions: When can we

escape random dictatorships?

In the set of strategy-proof RSCFs satisfying unanimity, all unanimous and

strategy-proof DSCFs are extreme points. One then would ask: Are there any other

extreme points? Accordingly, if there exists no extreme point other than unanimous

and strategy-proof DSCFs, one says the domain of preferences satisfies the extreme

point property. Evidently, on a domain satisfying the extreme point property, every

strategy-proof RSCFs satisfying unanimity must be specified by a convex combi-

nation of unanimous and strategy-proof DSCFs. The extreme point property has

been established on several voting domains, e.g., the complete domain ([26]), the

binary domain ([37]), the single-peaked domain ([24], [36], [38]) and the product

domain with lexicographically separable preferences ([16]). These results appear

to suggest that permitting randomization does not substantially expand possibilities

for design strategy-proof RSCFs. In particular, on the class of dictatorial domains

(i.e., every unanimous and strategy-proof DSCF is a dictatorship) which is pervasive

and includes much sparser domains in addition to the complete domain (linked do-

mains in [1] and circular domains in [43]), one may simply conjecture that the same

extreme point property prevails. Equivalently, the following question is proposed:

Is every dictatorial domain a random dictatorship domain?

The primary goal in Chapter 2 of this dissertation is to show that this conjecture

is false. This chapter does so in the following way. Firstly, identify a sufficient

3



condition on domains, called Condition SC (Successful Compromise) that permits

the existence of unanimous and strategy-proof RSCFs which are not random dicta-

torships. These RSCFs put strictly positive probability on compromise alternatives

(second ranked alternatives) in certain cases. Condition SC then is shown to be

compatible with the linked domain condition in Aswal et al. [1] that ensures that a

domain is dictatorial. This chapter also shows that the domain satisfying Condition

SC arises naturally in a model of independent economic interest, that of constrained

voting (e.g., [6], [7], [8]).

Furthermore, Chapter 2 considers strengthenings of the linkedness condition

that ensures a dictatorial domain be a random dictatorship domain. Two conditions

are proposed in this regard. The first is Condition H (Hub), which requires the corre-

sponding connectivity graph over alternatives to have an alternative to be connected

to all other alternatives in addition to the linkedness property. For the second con-

dition, called Condition TS (Two Steps), The connectedness requirement is firstly

strengthened underlying the definition of a linked domain to obtain the notion of a

strongly linked domain; an additional condition then is imposed whic is however

weaker than the counterpart of the hub condition. The additional condition requires

the existence of a path of length at most two between any two alternatives in the cor-

responding strong connectivity graph. It is obvious that Conditions H and TS are

very significant strengthenings of the linkedness condition. However, this chapter

shows that these conditions in conjunction with a linkedness condition are “almost

necessary” for random dictatorship. For example, this chapter constructs linked do-

mains, where there is no hub but “almost all” alternatives are “almost hubs”, which

satisfy Condition SC and are therefore not random dictatorship domains.

The proofs of the sufficiency result rely on a ramification result that states that

a random dictatorship domain when there are two voters is in fact, a random dic-

tatorship domain when there is an arbitrary number of voters. This approach was

initiated in [30] in the context of domains that permit non-dictatorial Arrovian ag-

gregation. Corresponding results for dictatorial domains appear in [32], [47] and

4



[1]. The result for random dictatorship is however, significantly more difficult than

its dictatorial domains counterpart. In fact, this chapter is able to prove it only under

an additional hypothesis which is fortunately weak and is satisfied by the sufficiency

conditions.

Chapter 2 is organized as follows. Section 2.1 introduces linked domains, Sec-

tion 2.2 comprises three subsections that introduce Condition SC, shows that it can

be satisfied by some dictatorial domains and finally applies it to a model of con-

strained voting. Section 2.3 provides random dictatorship results and results on the

necessity of Conditions H and SC. The Appendix contains the Ramification Theo-

rem and the other proofs.

Single-peaked preferences are the cornerstone of several models in political

economy and social choice theory. They were proposed initially by [11] and [29].

Single-peaked preferences arise naturally in various setting. However, their main

attraction is that they allow successful preference aggregation both in the Arrovian

and the strategic sense (see [34], [3]). For instance, under each profile of single-

peaked preferences, one can adopt majority voting to induce a desirable social pref-

erence (provided odd number of voters), or generate a fair and strategy-proof social

outcome which indicates the distinction from dictatorships. Literature has widely

explored strategy-proof voting rules over single-peaked preferences (e.g., [34], [19],

[18], [24]), however, initialized in [6], an inverse question is proposed:

Does the single-peakedness restriction naturally emerge as a consequence of the

existence of a “well-behaved” strategy-proof voting rule?

The question of this nature is referred to as the Gul Conjecture (see [3]). The precise

formulation of the conjecture can take several forms, e.g., [6], [10], [35].

Chapter 3 studies the inverse question above in a randomized setting. The goal

in this chapter is to provide a result with the following flavor: any rich preference

domain that admits a suitably well-behaved randomized solution to the strategic

voting problem must be a single-peaked domain. The single-peaked domain char-

acterized in this chapter is more general than the usual one (for example, the single-
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peakedness in [34]). These preferences were introduced in [20] and [19], and are

defined on arbitrary trees.

One consequence of considering RSCFs is that the anonymity requirement (the

names of voters do not affect the social lottery) imposed on DSCFs to escape dic-

tatorships appears ineffective and must be replaced since it is always possible to

design a unanimous and strategy-proof RSCF satisfying anonymity on an arbitrary

domain, e.g., a random dictatorship where all voters are endowed with the same

weight. Therefore, a new appropriate notion of well-behavedness needs to be for-

mulated. This chapter imposes two additional axioms on RSCFs under consider-

ation. The first one, the tops-only property, is standard in the literature on voting

which implies that the social lottery under each preference profile depends only

on the peaks of preferences. The second axiom, the compromise property, is estab-

lished to deal with the infirmity of random dictatorships mentioned before. Consider

a preference profile where the set of voters are split into two (almost) equal groups

and the following conditions are satisfied: (i) all voters within a group have identical

preferences, (ii) the peaks of two groups’ preferences are different, and (iii) there

is an alternative that is second-ranked according to the preferences of both groups.

This commonly second-ranked alternative can be naturally regarded as a compro-

mise alternative and the compromise property requires that the compromise alter-

native receives strictly positive probability in the profile. This chapter then proves

the following result: Every “suitably” rich domain that admits a tops-only, strategy-

proof RSCF satisfying unanimity and the compromise property is single-peaked on

a tree. Conversely, every single-peaked domain admits a tops-only, strategy-proof

RSCF satisfying ex-post efficiency (a stronger version of unanimity) and the com-

promise property.

A paper related to this chapter is Chatterji et al. [17]. That paper investigated

preference domains that admits well-behaved and strategy-proof DSCFs. In par-

ticular, it showed that every rich domain that admits a strategy-proof, unanimous,

anonymous and tops-only DSCF with an even number of voters, is semi-single-
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peaked.1 These preferences are also defined on trees but are significantly less re-

strictive than single-peaked preferences. This chapter demonstrates that two impor-

tant objectives can be met by considering RSCFs rather than DSCFs. The first is

that a characterization of single-peaked rather than semi-single-peaked preferences

can be obtained naturally. The second is that the awkward assumption regarding the

even number of voters in [17] can be removed.

Chapter 3 is organized as follows. Section 3.1 introduces the compromise prop-

erty. Section 3.2 introduces path-connected domains, while Section 3.3 contains

the characterization result for single-peaked domains and demonstrates the indis-

pensability of each axiom and the richness condition. The Appendix contains some

additional discussion and an omitted proof.

If strategy-proofness is the only concern, one can construct a constant RSCF

which ignores all information of voters’ preferences and fixes a lottery as the so-

cial outcome for every preference profile. However, such a RSCF is clearly not

desirable. On the other hand, while allowing the social lottery to vary with prefer-

ence profiles is desirable, maintaining strategy-proofness becomes correspondingly

harder as the social lottery begins to depend more Chapter 4 investigates strategy-

proof RSCFs which only use the peaks of voters’ preferences to calculate the social

lottery. This class of RSCFs is referred to as RSCFs satisfying the tops-only prop-

erty, which implies that if the peaks of each voter across two preference profiles are

identical, the social lottery remains the same.

The class of tops-only RSCFs has considerable informational and computational

advantages from the design point of view; it also reduces the degree of possible

manipulations significantly since any misrepresentation using a preference with the

same peak as the true preference does not affect the social lottery and hence is not

beneficial. More importantly, in much of the literature, the tops-only property is a

key necessary step in designing and characterizing strategy-proof RSCFs.2

1The notion of richness is exactly the same as that in this chapter.
2For instance, see dictatorship in [25], [45] and [4], random dictatorship in [26], voting by com-

mittees in [5], generalized median voter rule in [6], fixed-probabilistic-ballots rule in [24], voting by
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However, once insisting on the tops-only property, one encounters the following

designing problem:

Is the scope for designing strategy-proof RSCFs significantly constrained?

Indeed, there may exist other intuitive RSCFs that use some non-top information

and have nice incentive properties, e.g., the point voting schemes in [2]. Chapter 4

precludes this possibility by providing a condition on preference domains on which

strategy-proofness and unanimity imply the tops-only property.3 Importantly, note

that under the sufficient condition, the tops-only property emerges endogenously;

the methodology proposed in this chapter allows one to assert the tops-only prop-

erty without requiring us to explicitly characterize the class of all unanimous and

strategy-proof RSCFs.

In the literature, more precisely, in the case of DSCFs (e.g., [52] and [15]), it

is well-known that appropriate richness conditions are required on domains so that

the tops-only property can be endogenously established. This chapter identifies

a new sufficient condition on domains which ensures the tops-only property for

all unanimous and strategy-proof RSCFs. This condition requires that a particular

Interior Property and an Exterior Property, respectively, hold. The Interior Property

is a restriction applied to every subdomain of preferences that shares a common peak

while the Exterior Property is a restriction applied across subdomains with distinct

peaks.

The Interior Property is formulated in terms of adjacent connectedness proposed

by Sato [44]. Two distinct preference orders are adjacently connected if there exists

exactly one pair of alternatives with contiguous opposite relative rankings while the

ranking of every other alternative is identical across these two preferences. The In-

terior Property requires that for any two distinct preferences with an identical peak,

one can construct a sequence of adjacently connected preferences in the correspond-

issue in [35] and generalized random dictatorships in [16].
3A consequence of the ordinal version of strategy-proofness is that the primitive of this chapter

is an admissible domain of ordinal strict preferences. The principle assumptions will accordingly be
imposed on the admissible domain of preferences.
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ing sub-domain connecting them.

The Exterior Property considers the relation between two preferences with dis-

tinct peaks. It is formulated in terms of isolation, i.e., a pair of alternatives is isolated

in two preferences if one can identify an integer k such that in both preferences, the

sets of the top-k ranked alternatives are identical, include one of these two alterna-

tives and exclude the other. Accordingly, a domain satisfies the Exterior Property

if fixing a pair of preferences with distinct peaks and a pair of alternatives x and y

such that x is ranked above y in both preferences, one can always construct a se-

quence of preferences connecting these two fixed preferences such that x and y are

isolated in every two consecutive preferences in the sequence.

The first result in this chapter states that every unanimous and strategy-proof

RSCF defined on a domain satisfying the Interior Property and the Exterior Property

must satisfy the tops-only property. As applications, this chapter demonstrates that

prominent domains in the literature satisfy the Interior Property and the Exterior

Property, e.g., the complete domain, the single-peaked domain, the single-dipped

domain, maximal single-crossing domains and the multi-dimensional single-peaked

domain. Furthermore, to extend the study to separable preferences, a new notion

called general connectedness is introduced. Correspondingly, a modification of the

Interior Property and the Exterior Property is established which respectively uses

general connectedness to replace adjacent connectedness in the Interior Property

and imposes general connectedness on the sequence of preferences in the Exterior

Property. This chapter then shows that the tops-only property is implied by una-

nimity and strategy-proofness over a domain of separable preferences satisfying the

Modified Interior Property and the Modified Exterior Property, and moreover, the

separable domain is covered by these two modified properties.

In many political and economic settings, the restrictions of multi-dimensional

single-peakedness and separability, respectively, arise naturally. For instance, in a

political election, each candidate can be described as a combination of positions

on various political issues, e.g., expenditure on education, health, etc. Normally,
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the preference of a voter over all candidates is formulated according to the cri-

teria of “closeness”, i.e., a candidate with positions “closer” to the voter’s ideal

political attitude is preferred to another candidate with “further” positions. Hence,

multi-dimensional single-peakedness is embedded in voter’s preferences. Consider

another example where a club decides to recruit k new members from the pool of

m applicants where m ≥ k. A possible recruitment profile can be represented as a

m-tuple of zeros and ones where if the hth coordinate of the m-tuple is zero, then

applicant h is excluded; otherwise, applicant h is included. Separable preferences

arise whenever each member of the recruitment committee has an unambiguous

attitude over the inclusion/exclusion of every applicant.

Deterministic strategy-proof voting rules are widely explored over both the multi-

dimensional single-peaked domain and the separable domain in the literature, e.g.,

voting by committee in [5] and [8], generalized median voter rules in [6] and [7],

decomposable rules in [13] and voting by issue in [35]. Since the sufficient condi-

tions in this chapter can be applied to induce the tops-only property in RSCFs over

these two domains, the results in this chapter can be used to further characterize

strategy-proof RSCFs. This chapter first shows that every ex-post efficient (an ax-

iom stronger than unanimity) and strategy-proof RSCF over the multi-dimensional

single-peaked domain is a random dictatorship. Similarly, this chapter asserts that

every unanimous and strategy-proof RSCF over the separable domain is a general-

ized random dictatorship. Both characterization results are instances of the extreme

point property studied in Chapter 2.

Furthermore, the result in this chapter allows one to study the inverse question

specified in Chapter 3 in a particular class of rich domains. This chapter strengthens

ex-post efficiency to ex-post efficiency* by assigning strictly positive probabilities

to all Pareto-undominated alternatives under every preference profile, and show that

single-peakedness (on a tree) is uniquely characterized by ex-post efficiency* and

strategy-proofness.

Chapter 4 is organized as follows. Section 4.1 presents the main result. Section
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4.2 provides five applications while Section 4.3 summarizes the relation to the lit-

erature, and provides some discussion on the necessity of the conditions. Proofs of

lemmas and propositions are gathered in the Appendix.

Last, Chapter 5 concludes all main results established in Chapters 2, 3 and 4.

1.1 Preliminaries and the Model

Let A = {a, b, c, . . . } be a finite set of alternatives with |A| = m ≥ 3. Sometimes,

the alternative set A is assumed to be labeled as A = {a1, . . . , am}. Let ∆(A) de-

note the lottery space induced by A. An element of ∆(A) is a lottery or probability

distribution over the elements of A. In particular, ea ∈ ∆(A) is a degenerate lottery

where alternative a is chosen with probability one. Let I = {1, . . . , N} be a finite

set of voters with |I| = N ≥ 2. Each voter i has a (strict preference) order Pi over

A which is antisymmetric, complete and transitive, i.e., a linear order.4 For any

a, b ∈ A, aPib is interpreted as “a is strictly preferred to b according to Pi”. Let

rk(Pi) denote the kth ranked alternative in Pi, k = 1, . . . ,m. A pair of alternatives

a, b ∈ A is contiguous in Pi if {a, b} = {rk(Pi), rk+1(Pi)} for some 1 ≤ k ≤ m−1.

Accordingly, let aPi!b denote that a and b are contiguous in Pi, and aPib. Given

1 ≤ k ≤ m and Pi ∈ D, Bk(Pi) = ∪kt=1{rt(Pi)} is the set of top-k ranked alter-

natives. Similarly, given a ∈ A and Pi ∈ D, let B(Pi, a) = {x ∈ A|xPia} and

W (Pi, a) = {x ∈ A|aPix} denote respectively the (strictly) upper contour set and

the (strictly) lower contour set of a in Pi. Let P denote the set containing all linear

orders overA. The set of all admissible orders is a set D ⊆ P, referred to as the pref-

erence domain. In particular, P is called the complete domain. A preference profile

P ≡ (P1, P2, . . . , PN) ≡ (Pi, P−i) ∈ DN is an N -tuple of orders. Given nonempty

subset Î ⊆ I , let r1(PÎ) = ∪i∈Î{r1(Pi)} denote the set of top-ranked alternatives in

PÎ .
5 For notational convenience, let Da = {Pi ∈ D|r1(Pi) = a} denote the set of

4The whole dissertation only studies the strict preferences.
5Throughout the whole dissertation, ⊆ and ⊂ denote the weak and strict inclusion relations be-

tween two sets respectively.
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preferences with peak a; Da,b = {Pi ∈ D|r1(Pi) = a and r2(Pi) = b} denote the set

of preferences with peak b and the second best b; and DS = {Pi ∈ D|r1(Pi) ∈ S}

denote the set of preferences with peak in the subset S ⊆ A. In particular, a do-

main D is referred to be minimally rich if every alternative is top-ranked in some

preference in the domain, i.e., Da 6= ∅ for all a ∈ A.

A Random Social Choice Function (or RSCF) is a map ϕ : DN → ∆(A). At

every profile P ∈ DN , ϕ(P ) is referred to as the “socially desirable” lottery. For

any a ∈ A, ϕa(P ) is the probability with which the alternative a will be chosen

in ϕ(P ). Thus, ϕa(P ) ≥ 0 for all a ∈ A and
∑

a∈A ϕa(P ) = 1. A Deterministic

Social Choice Function (or DSCF) is a particular RSCF where a degenerate lottery

is chosen under each preference profile, i.e., ϕ(P ) = ea for some a ∈ A at profile

P . For notational convenience, a DSCF sometimes is simply written as a map

f : DN → A.

A RSCF satisfies unanimity if it assigns probability one to any alternative that is

ranked first by all voters.

Definition 1.1.1. A RSCF ϕ : DN → ∆(A) is unanimous if [r1(Pi) = a for all

i ∈ I]⇒ [ϕa(P ) = 1] for all a ∈ A and P ∈ DN .

An axiom stronger than unanimity is ex-post efficiency. It requires all Pareto-

dominated outcomes to never be chosen.

Definition 1.1.2. A RSCF ϕ : DN → ∆(A) is ex-post efficient if for all a, b ∈ A

and P ∈ DN , [aPib for all i ∈ I]⇒ [ϕb(P ) = 0].

If the social lottery does not depend on the “names” of voters, a RSCF is referred

to satisfy the property of anonymity.

Definition 1.1.3. A RSCF ϕ : DN → ∆(A) is anonymous if for every permutation

σ : I → I and P = (P1, . . . , PN) ∈ DN , ϕ(P1, . . . , PN) = ϕ(Pσ(1), . . . , Pσ(N)).

A prominent class of RSCFs is the class of tops-only RSCFs. The social lottery

of a tops-only RSCF at every profile depends only on voters’ peaks at that profile.
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Definition 1.1.4. A RSCF ϕ : DN → ∆(A) satisfies the tops-only property if

[r1(Pi) = r1(P ′i ) for all i ∈ I]⇒ [ϕ(P ) = ϕ(P ′)] for all P, P ′ ∈ DN .

Gibbard [26] proposed an ordinal formulation of strategy-proofness which re-

quires the social lottery under truthtelling (first-order) stochastically dominates any

social lottery under misrepresentation according to every voter’s true preference in-

dependently of others’ behavior.

Definition 1.1.5. A RSCF ϕ : DN → ∆(A) is strategy-proof if for all i ∈ I;

Pi, P
′
i ∈ D and P−i ∈ DN−1,

k∑
t=1

ϕrt(Pi)(Pi, P−i) ≥
k∑
t=1

ϕrt(Pi)(P
′
i , P−i), k = 1, . . . ,m.

This notion of strategy-proofness is equivalent to requiring a voter’s expected

utility from truthtelling to be no less than her expected utility from misrepresenta-

tion for any cardinal representation of her true preferences independently of other

voters’ behavior. We omit these details which may be found in [26].

The notions of unanimity, ex-post efficiency, anonymity, tops-onlyness and strategy-

proofness are standard axioms in the literature on mechanism design in voting envi-

ronments. An important class of RSCFs satisfying unanimity (ex-post efficiency),

the tops-only property and strategy-proofness is the class of random dictatorships.

Each voter is assigned a non-negative weight with the sum of weights across voters

being one. At any profile, the probability with which an arbitrary alternative a is

chosen is the sum of the probability weights of voters for whom a is the top-ranked

alternative.

Definition 1.1.6. A RSCF ϕ : DN → ∆(A) is a random dictatorship if there exists

[εi]i∈I ∈ RN
+ with

∑
i∈I εi = 1 such that for all a ∈ A and P ∈ DN ,

ϕa(P ) =
∑

i∈I:r1(Pi)=a

εi.

In other words, a random dictatorship is a convex combination of a group of
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dictatorial DSCFs.6 In particular, if the weight is 1
N

for every voter, the random

dictatorship also satisfies the property of anonymity.

Definition 1.1.7. A domain D is a random dictatorship domain, if every unanimous

and strategy-proof RSCF ϕ : DN → ∆(A), N ≥ 2, is a random dictatorship.

In particular, given D and fixing N ≥ 2, if every unanimous and strategy-proof

RSCF ϕ : DN → ∆(A) is a random dictatorship, D is referred to as a random dic-

tatorship domain of N voters. A fundamental result in random mechanism design

theory proved in [26] is that the complete domain P is a random dictatorship domain

(see also [21] and [48]).

Analogously, a domain is a dictatorial domain, if every unanimous and strategy-

proof DSCF f : DN → A, N ≥ 2, is a dictatorship. In the deterministic environ-

ment, anonymity is the polar opposite of dictatorship. According to the Gibbard-

Satterthwaite Theorem ([25] and [45]), the complete domain P is also a dictatorial

domain (see also [41] and [47]).

6A DSCF is dictatorial if there exists a fixed voter (the dictator) whose best alternative is the
social outcome under every preference profile. Formally, a DSCF f : D → A is a dictatorship if
there exists i ∈ I such that f(P ) = r1(Pi) for all P ∈ DN .
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Chapter 2 Random Dictatorship Domains

2.1 Linked Domains

A central concern of this chapter is the relationship between dictatorial and random

dictatorship domains. It is evident that a random dictatorship domain is dictato-

rial. The question of interest is clearly the converse question. As mentioned in

Section 1.1, the complete domain is both a dictatorial domain and a random dicta-

torship domain. Does this relationship hold true generally? In order to investigate

this question, this chapter recalls the main result of Aswal et al. [1] on dictatorial

domains.

One important type of dictatorial domains is linked domains introduced by [1].

To establish the definition of linked domains, this chapter first introduces the defi-

nitions of connectedness and linkedness. Given a domain D, a pair of distinct alter-

natives a, b is connected, denoted a ∼ b, if Da,b 6= ∅ and Db,a 6= ∅. Furthermore,

Given B ⊂ A and a ∈ A\B, a is linked to B if there exist two distinct alternatives

b, c ∈ B such that a ∼ b and a ∼ c.

Definition 2.1.1. The domain D is linked, if according to the labeled alternative set

A = {a1, . . . , am}, there exists a bijective function σ : {1, . . . ,m} → {1, . . . ,m}

such that

(i) aσ(1) ∼ aσ(2);

(ii) aσ(j) is linked to {aσ(1), . . . aσ(j−1)}, j = 3, . . . ,m.

The notion of a linked domain is formulated entirely in terms of alternatives that

can be ranked first and second according to preferences in the domain. Evidently, a
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linked domain is minimally rich and the minimal cardinality of a linked domain is

4m− 6.

The reader is referred to [1] for details and numerous examples on linked do-

mains. The following theorem summarizes the main result in [1].

Theorem 2.1.1. Linked domains are dictatorial domains.

A natural question is whether linked domains are also random dictatorship do-

mains. This is addressed in the following sections.

2.2 Dictatorial Domains are not Random Dictator-

ship Domains

This section provides examples of dictatorial domains that are not random dicta-

torship domains. In fact, a stronger result is shown: there exist domains which

are (deterministic) dictatorial but admit anonymous, unanimous and strategy-proof

RSCFs that are not random dictatorships.

This section proceeds as follows. A sufficient condition on domains is first

identified that ensures the existence of anonymous, unanimous and strategy-proof

RSCFs that are not random dictatorships. This section then shows that there are

linked domains that satisfy the sufficient condition.

2.2.1 A Sufficient Condition

The idea behind the condition is extremely simple. It ensures strategy-proofness

of a special RSCF that puts positive probability on the second ranked alternative

of a voter under special circumstances and remains to be a 1
N

random dictatorship

elsewhere.

Fix D ⊆ P and a ∈ A. Let S(a) denote the set of alternatives each of which

is ranked second in an admissible preference order where a is the peak, i.e., [x ∈

S(a)]⇔ [x = r2(Pk) for some Pk ∈ Da].
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Definition 2.2.1. A domain D satisfies Condition SC (Successful Compromise), if

there exists a nonempty set B ⊂ A and y ∈ A\B such that

(i) if |B| > 1, there exists an preference order whose first and second ranked

alternatives belong to B, i.e., Da,b 6= ∅ for some a, b ∈ B.

(ii) for all Pk ∈ DB,

• if |B| = 1, [a ∈ S(y)]⇒ [aPky].

• if |B| > 1, [r2(Pk) ∈ B and a ∈ S(y)]⇒ [aPky] and

[r2(Pk) /∈ B and a ∈ S(y)]⇒ [yPka].

(iii) for all Pk ∈ DA\[B∪{y}], [aPky for some a ∈ S(y)]⇒ [yPkz for all z ∈ B].

In order to interpret Condition SC, it may be helpful to think of the set B as

the test set, the alternative y as the test alternative and every alternative ranked

second in any preference order where y is ranked first as a compromise. The RSCF

will specify 1
N

random dictatorship except at a profile where N − 1 voters have

alternatives in the test set as their first and second ranked alternatives (in case there

is only one alternative in the test set, it has to be ranked first by N − 1 voters) and

one voter has the test alternative ranked first, then a suitably “small” probability is

transferred to the appropriate compromise alternative. The SC conditions impose

simple restrictions between the compromise alternatives, the test alternative and the

test set in various preference orders.

Condition SC has been presented for two cases: one where the cardinality of the

test set is one and another where it is greater than one. These two cases will be used

separately in Section 2.3. Condition SC is illustrated in Example 2.2.1.

Example 2.2.1. Let A = {a, b, c}. Domains D1 and D2 satisfy Condition SC with

respect to B = {a} and b (see Table 2.1), while domains D3 and D4 satisfy Condi-

tion SC with respect to B = {a, c} and b (see Table 2.2).
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P1 P2 P3 P4 P ′1 P ′2 P ′3 P ′4

a a b c a b b c

b c a b c a c b

c b c a b c a a

Table 2.1: Domains D1 and D2

P̄1 P̄2 P̄3 P̄4 P̂1 P̂2 P̂3 P̂4

a a b c a b c c

b c c a c a a b

c b a b b c b a

Table 2.2: Domains D3 and D4

2

The following proposition shows that a domain satisfying Condition SC is not a

random dictatorship domain.

Proposition 2.2.1. A domain satisfying Condition SC admits an anonymous, unan-

imous and strategy-proof RSCF that is not a random dictatorship.

Proof. Let domain D satisfy Condition SC with respect to some B ⊂ A and y ∈

A\B. We consider the cases |B| = 1 and |B| > 1 separately. For each case, we

construct an anonymous, unanimous and strategy-proof RSCF that is not a random

dictatorship.

Case A: |B| = 1.

Let B = {x} and consider the RSCF ϕ below: for all P ∈ DN ,

ϕ(P ) =



( 1
N
− α)ey + α er2(Pi) + N−1

N
ex,

if Pi ∈ Dy for some i ∈ I and Pj ∈ Dx for all j ∈ I\{i}∑
i∈I

1
N
er1(Pi),

otherwise.
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where 0 < α ≤ 1
N

.

By construction ϕ is a random dictatorship with weight 1
N

on the best alternative

of every voter at all profiles except at a profile where exactly one voter has peak y

and all other voters have peak x. At such a profile, probability α is transferred from

y to the second best alternative of the voter with the peak y.

Evidently, ϕ is anonymous, unanimous and not a random dictatorship. We show

that ϕ is strategy-proof by showing that any possible manipulation always makes

probabilities systematically transferred from the preferred alternatives to less pre-

ferred alternatives according to the true preference which equivalently indicates

stochastic dominance. In view of the construction of ϕ, only the following two

cases need attention:

1. The profile is (Pi, Pj, P−{i,j}) where Pi ∈ Dy and Pk ∈ Dx for all k ∈ I\{i}.

Voter j ∈ I\{i} considers a manipulation via P ′j /∈ Dx.

Since Pj ∈ Dx, we know r2(Pi)Pjy by part (ii) of Condition SC. Conse-

quently, we have

ϕ(Pi, Pj, P−{i,j})
xPjr1(P ′j)
−−−−−−−−→

1
N

,
r2(Pi)Pjy
−−−−−−−→

α
ϕ(Pi, P

′
j , P−{i,j}).

1

2. The profile is (Pi, Pj, P−{i,j}) where Pi ∈ Dy, Pj /∈ Dx for some j ∈ I\{i}

and Pk ∈ Dx for all k ∈ I\{i, j}. Voter j ∈ I\{i} considers a manipulation

via P ′j ∈ Dx.

If yPjr2(Pi), we have

ϕ(Pi, Pj, P−{i,j})
r1(Pj)Pjx
−−−−−−−−→

1
N

,
yPjr2(Pi)
−−−−−−−→

α
ϕ(Pi, P

′
j , P−{i,j}).

If r2(Pi)Pjy, then Pj ∈ DA\{x,y}, and furthermore, part (iii) of Condition SC

1The notation ϕ(Pi, Pj , P−{i,j})
xPjr1(P ′j)
−−−−−−−−→

1
N

,
r2(Pi)Pjy
−−−−−−−→

α
ϕ(Pi, P

′
j , P−{i,j}) represents that (i)

xPjr1(P ′j) and r2(Pi)Pjy, and (ii) from ϕ(Pi, Pj , P−{i,j}) to ϕ(Pi, P
′
j , P−{i,j}), probabilities 1

N
and α are transferred from x to r1(P ′j), and from r2(Pi) to y respectively.
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implies yPjx. Consequently, we have

ϕ(Pi, Pj, P−{i,j})
r1(Pj)Pjx
−−−−−−−−→

1
N
−α

,
r1(Pj)Pjr2(Pi), or r1(Pj)=r2(Pi)
−−−−−−−−−−−−−−−−−−−−−−−−−→

α
,
yPjx
−−−→
α
ϕ(Pi, P

′
j , P−{i,j}).

We conclude that RSCF ϕ is strategy-proof.

Case B: |B| > 1.

Consider the following RSCF ϕ′: for all P ∈ DN ,

ϕ′(P ) =



( 1
N − α)ey + α er2(Pi) +

∑
j∈I\{i}

1
N er1(Pj),

if Pi ∈ Dy for some i ∈ I, and Pj ∈ DB with r2(Pj) ∈ B for all j ∈ I\{i};∑
i∈I

1
N er1(Pi),

otherwise.

where 0 < α ≤ 1
N

.

Thus, ϕ′ is a random dictatorship with weight 1
N

on the best alternative of every

voter at all profiles except at a profile where exactly one voter has peak y and all

other voters’ first and second ranked alternatives belong to B. At such a profile,

probability α is transferred from y to the second best alternative of the voter with

the peak y.

As before, ϕ′ is easily shown to be anonymous, unanimous and not a random

dictatorship. We only need to show that ϕ′ is strategy-proof. Once again, only the

two cases below require attention and the arguments work in virtually the same way

as they do in Case A.

1. The profile is (Pi, Pj, P−{i,j}) where Pi ∈ Dy and Pk ∈ DB with r2(Pk) ∈ B

for all k ∈ I\{i}. Voter j ∈ I\{i} considers a manipulation via P ′j ∈ D such

that ϕ′(Pi, P ′j , P−{i,j}) = 1
N
er1(P ′j)

+
∑

k∈I\{j}
1
N
er1(Pk).

Since Pj ∈ DB and r2(Pj) ∈ B, part (ii) of Condition SC implies r2(Pi)Pjy.
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Consequently, we have

ϕ′(Pi, Pj, P−{i,j})
r1(Pj)Pjr1(P ′j), or r1(Pj)=r1(P ′j)
−−−−−−−−−−−−−−−−−−−−−−−−−−→

1
N

,
r2(Pi)Pjy
−−−−−−−→

α
ϕ′(Pi, P

′
j , P−{i,j}).

2. The profile is (Pi, Pj, P−{i,j}) where Pi ∈ Dy, Pk ∈ DB with r2(Pk) ∈ B

for all k ∈ I\{i, j} and Pj ∈ D such that ϕ′(Pi, Pj, P−{i,j}) = 1
N
ey +

1
N
er1(Pj) +

∑
k∈I\{i,j}

1
N
er1(Pk). Voter j considers a manipulation via P ′j ∈ DB

with r2(P ′j) ∈ B.

If yPjr2(Pi), we have

ϕ′(Pi, Pj, P−{i,j})
r1(Pj)Pjr1(P ′j), or r1(Pj)=r1(P ′j)
−−−−−−−−−−−−−−−−−−−−−−−−−−→

1
N

,
yPjr2(Pj)
−−−−−−−→

α
ϕ′(Pi, P

′
j , P−{i,j}).

Lastly, assume therefore that r2(Pi)Pjy holds. Clearly Pj /∈ Dy. Suppose

r1(Pj) ∈ B. Our assumption that ϕ′(Pi, Pj, P−{i,j}) = 1
N
ey + 1

N
er1(Pj) +∑

k∈I\{i,j}
1
N
er1(Pk) implies r2(Pj) /∈ B. Hence, part (ii) of Condition SC im-

plies yPjr2(Pi) which contradicts our initial assumption. Therefore, r1(Pj) /∈

B ∪ {y}. Consequently, part (iii) of Condition SC implies yPjr1(P ′j). Then,

we have

ϕ′(Pi, Pj, P−{i,j})
r1(Pj)Pjr1(P ′j)
−−−−−−−−−−−−→

1
N
−α

,
r1(Pj)Pjr2(Pi), or r1(Pj)=r2(Pi)
−−−−−−−−−−−−−−−−−−−−−−−−−→

α
,
yPjr1(P ′j)
−−−−−−−→

α
ϕ′(Pi, P

′
j , P−{i,j}).

We conclude that RSCF ϕ′ is strategy-proof.

In the next two subsections, two applications of Condition SC are presented.

2.2.2 Dictatorial Domains satisfying Condition SC

This subsection shows by means of examples that there are linked domains that

satisfy Condition SC. An immediate consequence of Theorem 2.1.1 and Proposition

2.2.1 is that there exist dictatorial domains that admit anonymous, unanimous and

strategy-proof RSCFs that are not random dictatorships.
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Example 2.2.2. Let A = {x, y, a, b, c, d}. Domain D̂ of preferences over the six

alternatives is described in Table 2.3.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18

x x a a a b b b b c c c c d d d y y

a b x b c x a c d a b d y b c y c d

· · · · · · · · · · · y · · y · · ·

· · · · y · · y y y y · · y · · · ·

· · y y · y y · · · · · · · · · · ·

· · c c x c c x x x x · · x · · · ·

y y d d · d d · · · · · · · · · · ·

Table 2.3: Domain D̂ 2

To check whether a domain is linked, it is convenient to associate to the domain

a graph that reflects its connectedness structure. This is done as follows. Fixing a

domain D, let G(D) denote the connectivity graph of D where (i) the set of nodes is

A, and (ii) for all a, b ∈ A, (a, b) is an edge if a ∼ b. Correspondingly, for domain

D̂, the connectivity graph G(D̂) is shown in Figure 2.1. It is clear that D̂ is a linked

domain: we relabel alternatives in A as a1 = x, a2 = a, a3 = b, a4 = c, a5 = d and

a6 = y, and the one to one function σ : {1, . . . , 6} → {1, . . . , 6} in Definition 2.1.1

is the identity function.

r r
r

r
r rc

c
c

#
#
#

c
c
c�
�
�

c
c
c

x b

a c

d

y

Figure 2.1: Connectivity Graph G(D̂)

We claim that D̂ satisfies Condition SC with respect to B = {x} and y. Ob-

serve that S(x) = {a, b} and S(y) = {c, d}. Pick Pk ∈ D̂x = {P1, P2}. Then,

cPky and dPky so that part (ii) of Condition SC is satisfied. To verify part (iii)

of Condition SC, note that if Pk ∈ D̂A\{x,y} and zPky for some z ∈ S(y), then

Pk ∈ {P5, P8, P9, P10, P11, P12, P13, P14, P15, P16}. For these preference orders, we

have yPkx. 2

2In Table 2.3, dots in a particular preference order signify that alternatives unspecified are arbi-
trarily ordered.

22



The next result shows that the example can be suitably generalized.

Proposition 2.2.2. Given m ≥ 6, there exist dictatorial domains that admit anony-

mous, unanimous and strategy-proof RSCFs that are not random dictatorships.

Proof. Pick m ≥ 6. We construct a linked domain satisfying Condition SC in two

steps, where the cardinality of the test set is one.

Step 1: We construct a linked domain D satisfying the following connectedness

structure: the one to one function σ in Definition 2.1.1 is the identity function with

a1 ∼ a2; ak ∼ ak−1 and ak ∼ ak−2, 3 ≤ k ≤ m. Since m ≥ 6, we know

{a2, a3} ∩ {am−2, am−1} = ∅.

Step 2: Let a1 = x, am = y and B = {x} in Condition SC. We can mimic

the preference orders in D̂ (Example 2.2.2) thereby satisfying Condition SC, while

remaining compatible with the connectedness structure specified in Step 1.

Remark 2.2.1. In order to construct a linked domain satisfying Condition SC, the

restriction m ≥ 6 is necessary.3

2.2.3 Random Constrained Voting

The voting model with separable preferences was introduced in Barberà et al. [5]

(see also [13]). There is a set of voters who wish to elect a subset (possibly empty)

of candidates. The set of deterministic, unanimous and strategy-proof SCFs was

characterized in [5] and shown to be decomposable, i.e., there exist strategy-proof,

unanimous, deterministic SCFs for every candidate that determines whether she is

elected. Subsequently, several papers (e.g., [6], [7], [8], [49]) have considered vari-

ants of the model where certain subsets of candidates are not feasible. For instance,

it may be required that at least one candidate is elected and so on. The model with

3In an arbitrary linked domain over less than six alternatives, every pair of alternatives is either
connected or connected to another common alternative. However, in order to embed Condition SC
into a linked domain, there must exist a pair of alternatives “far away” from each other (in the sense
of the connectivity graph), i.e., neither connected to each other, not connected to another common
alternative.
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constrains on the set of feasible alternatives is referred to as the constrained voting

model.

This chapter studies the constrained voting model where voters’ preferences

are assumed separable. Separability induces an unambiguous preference over the

inclusion/exclusion of every candidate, precluding thereby externalities across can-

didates. Note that the constrained voting model with the accompanying separability

assumption is well-established in the literature (e.g., [1], [5], [8], [13], [49]), and is a

natural and tractable model for the purpose of this chapter. Aswal et al. [1] show that

certain kinds of constraints on the feasible set lead to linked domains and therefore

to dictatorship. This subsection shows the existence of constraints on the feasible

set which lead to linked domains but satisfy Condition SC, i.e., permit anonymous,

unanimous and strategy-proof RSCFs that are not random dictatorships.

The set of voters is I as before. There is a set of four candidates {1, 2, 3, 4}.

The set of alternatives A is the set of all subsets of candidates and can be repre-

sented by A = {0, 1}× {0, 1}× {0, 1}× {0, 1} (for instance, (1, 0, 1, 0) represents

the set consisting of only Candidates 1 and 3). The alternatives are labeled as fol-

lows: a0 = (0, 0, 0, 0); a1 = (0, 0, 1, 0), a2 = (0, 1, 0, 0), a3 = (1, 0, 0, 0), a4 =

(0, 0, 0, 1); a5 = (1, 1, 0, 0), a6 = (1, 0, 1, 0), a7 = (1, 0, 0, 1), a8 = (0, 1, 1, 0),

a9 = (0, 1, 0, 1), a10 = (0, 0, 1, 1); a11 = (1, 1, 1, 0), a12 = (1, 0, 1, 1), a13 =

(1, 1, 0, 1), a14 = (0, 1, 1, 1) and a15 = (1, 1, 1, 1).

Let DS denote the domain of all separable preferences over A.4 Each voter is

endowed with the domain of preferences D specified in Table 2.4. It is true that

D ⊂ DS .5 Note that the dots in the preference orders Table 2.4 do not imply that

the unspecified alternatives can be ranked arbitrarily. Instead, it indicates that the

unspecified alternatives can be ranked in a way that is consistent with separable

preference requirement. The rankings of these alternatives are irrelevant for our

4Assume that the alternative set follows a Cartesian product structure, i.e., A = ×s∈MAs, where
|M | ≥ 2 and |As| ≥ 2, s ∈ M . An alternative a ∈ A is expressed as (as, a−s). Accordingly, for
every s ∈ M , A−s = ×τ 6=sAs. A preference Pi is separable, if for every s ∈ M and as, bs ∈ As,
[(as, x−s)Pi(b

s, x−s) for some x−s ∈ A−s]⇒ [(as, y−s)Pi(b
s, y−s) for all y−s ∈ A−s].

5A complete argument can be found in Appendix 1.
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results.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18

a0 a0 a0 a0 a5 a0 a0 a6 a6 a5 a6 a15 a15 a6 a15 a15 a15 a15

a1 a1 a2 a2 a2 a3 a3 a3 a3 a11 a11 a11 a11 a12 a12 a12 a13 a13

a2 a3 a1 a3 a11 a1 a2 a11 a12 a2 a3 a12 a13 a3 a11 a13 a11 a12

...
...

...
...

...
...

...
...

...
...

... a13

...
... a13

...
...

...
...

... a13 a13 a13 a13 a13 a13 a13 a13 a13

...
... a13

...
...

...
...

...
... a11 a11

... a11 a11

...
...

...
...

...
...

...
...

...
...

...

a13 a13 a12 a12 a1 a12 a12 a1 a1 a1 a1

...
... a1

...
...

...
...

a15 a15 a15 a15

... a15 a15

...
...

...
...

...
...

...
...

...
...

...

Table 2.4: Domain D

The set of feasible alternatives is X = {a1, a2, a3, a11, a12, a13} ⊂ A. In other

words, the following three restrictions are imposed on the feasible set:

(i) Either only one candidate is elected, or a set of three candidates is elected.

(ii) If only one candidate is elected, it is never Candidate 4.

(iii) If a set of three candidates is elected, Candidate 1 is always in the elected set.

A (deterministic) constrained voting SCF is a map f : DN → X . Assume that f

is an onto function. A random constrained voting SCF is a map ϕ : DN → ∆X(A),

where ∆X(A) = {λ ∈ ∆(A) : λx = 0 for all x ∈ A\X}. Correspondingly, the

definitions of dictatorship, unanimity and random dictatorship are slightly modified

for the present context. The constrained voting SCF f : DN → X is a dictatorship

if there exists i ∈ I such that for all P ∈ DN , f(P ) = max(Pi, X).6 The random

constrained voting SCF ϕ : DN → ∆X(A) is unanimous if for all x ∈ X and

P ∈ DN , [max(Pi, X) = x for all i ∈ I]⇒ [ϕx(P ) = 1]. The random constrained

voting SCF ϕ : DN → ∆X(A) is a random dictatorship if there exists [εi]i∈I ∈ RN
+

with
∑

i∈I εi = 1 such that for all x ∈ X and P ∈ DN , ϕx(P ) =
∑

i∈I:max(Pi,X)=x

εi.

The next proposition shows that the results in Theorem 2.1.1 and Proposition

2.2.1 apply to the model under consideration.
6Given Pi ∈ D, max(Pi, X) is the highest ranked alternative in X according to Pi.
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Proposition 2.2.3. The constrained voting SCF f : DN → X is strategy-proof

only if it is a dictatorship. However, there exists a random constrained voting SCF

ϕ : DN → ∆X(A) which is anonymous, unanimous and strategy-proof, but not a

random dictatorship.

Proof. Standard results on strategy-proofness imply that the values of f and ϕ at

any P ∈ DN depend only on profiles induced by P on the feasible set X .7 We

denote this induced domain by D̄, i.e., P̄k ∈ D̄ if P̄k = (Pk, X) for some Pk ∈ D.

The domain D̄ is shown in Table 2.5.

P̄1 P̄2 P̄3 P̄4 P̄5 P̄6 P̄7 P̄8 P̄9 P̄10 P̄11 P̄12 P̄13 P̄14 P̄15 P̄16 P̄17 P̄18

a1 a1 a2 a2 a2 a3 a3 a3 a3 a11 a11 a11 a11 a12 a12 a12 a13 a13

a2 a3 a1 a3 a11 a1 a2 a11 a12 a2 a3 a12 a13 a3 a11 a13 a11 a12

· · · · · · · · · · · a13 · · a13 · · ·

· · · · a13 · · a13 a13 a13 a13 · · a13 · · · ·

· · a13 a13 · a13 a13 · · · · · · · · · · ·

· · a11 a11 a1 a11 a11 a1 a1 a1 a1 · · a1 · · · ·

a13 a13 a12 a12 · a12 a12 · · · · · · · · · · ·

Table 2.5: Domain D̄

The domain D̄ is, in fact identical to domain D̂ in Example 2.2.2 with the rela-

beling a1 = x, a13 = y, a2 = a, a3 = b, a11 = c and a12 = d. The result follows

immediately from this observation.

2.3 Random Dictatorship Results

This section provides two conditions that ensure that a domain is a random dic-

tatorship domain. The first imposes restrictions on the connectedness structure of

linked domains. The second strengthens the requirement for the connectedness of

two alternatives but imposes a weaker requirement on the connectedness structure.

Finally, this section shows that the strengthened conditions are “close to” being

necessary using results developed in Section 2.2.1.

7The arguments here are routine and tedious; details can be found in Appendix 1.
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In the analysis of random dictatorship, the first step is to reduce the dimension

of the problem from an arbitrary number of voters to two voters. This chapter

establishes a Ramification Theorem (Theorem 5.1 in Appendix 5), which shows

that a random dictatorship domain with two voters, is also a random dictatorship

domain for an arbitrary number of voters, provided an additional richness condition

(Definition 3.1, Appendix 5) is satisfied. A result of this kind was first established

in [30] which showed that a domain where all Arrovian social welfare functions are

dictatorial when there are two voters also admits only dictatorial Arrovian social

welfare functions for an arbitrary number of voters. A similar property has been

shown for deterministic strategy-proof SCFs (initiated in [32], see also [47], [1]).

The property of ramification for RSCFs is interesting in its own right. In ad-

dition, it is very helpful analytically; in order to determine whether a domain is a

random dictatorship domain, it suffices to verify that every two-voter strategy-proof

RSCF satisfying unanimity is a random dictatorship. Unfortunately, ramification

appears to be a significantly more difficult issue to resolve than its counterpart for

the deterministic case. A formal treatment is presented in Appendix 5.

Fortunately, all domains discussed in this chapter are covered by the richness

conditions in the Ramification Theorem. Consequently, the whole analysis is re-

stricted to two-voter RSCFs.

2.3.1 Linked Domains with Condition H

The following condition is imposed on the connectedness structure of domains.

Definition 2.3.1. A domain D satisfies Condition H (Hub) if there exists a ∈ A such

that b ∼ a for all b ∈ A\{a}.

An alternative connected to all other alternatives is referred to as a hub. Domains

satisfying Condition SC must violate Condition H.8 The following examples of five

8Condition H implies that every alternative is connected to every other alternative in at most two
steps, while in order to embed Condition SC in linked domains, there must exist two alternatives
which are neither connected to each other nor connected to some other common alternative. A
similar argument holds when the domain is not linked; details can be found in Appendix 2.1.
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connectivity graphs are presented to illustrate the relation between Condition H and

linked domains.
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Figure 2.2: Connectivity Graphs and Condition H

Figure 2.2 shows various types of linked domains. The domains corresponding

to (a), (b) and (c) satisfy Condition H, while domains related to (d) and (e) violate

it. In diagram (a), any alternative is a hub; in diagram (b), it must be either a1

or a2, while in diagram (c), the only candidate for the hub is a2. Observe that in

diagrams (d) and (e), for every pair of two alternatives, they are either connected or

connected to another common alternative.

The main result in this section is that the assumption of a linked domain in

conjunction with Condition H ensures that the domain is a random dictatorship

domain.

Theorem 2.3.1. A linked domain satisfying Condition H is a random dictatorship

domain.

The proof is in Appendix 3.

Remark 2.3.1. The Free Pair at the Top domain (FPT domain) introduced in [1] in

which every two alternatives are connected, is a linked domain satisfying Condition

H (every alternative is a hub) and is consequently a random dictatorship domain.
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This addresses an open question in [48]: is the FPT domain a random dictatorship

domain for an arbitrary number of voters?

Remark 2.3.2. It is possible to construct a linked domain of minimal cardinality

satisfying Condition H . This can be done as follows: a1 ∼ a2; and ak ∼ a1,

ak ∼ a2, k = 3, . . . ,m. Therefore “small” random dictatorship domains can be

found - those that grow linearly in the number of alternatives.

2.3.2 Strongly Linked Domains with Condition TS

This subsection provides another condition that guarantees random dictatorship.

The approach here is to strengthen the notion of connectedness of alternatives along

the lines initiated in [17].

Definition 2.3.2. A pair of distinct alternatives a, b is strongly connected, denoted

a ≈ b, if there exist Pi ∈ Da,b and P ′i ∈ Db,a such that rk(Pi) = rk(P
′
i ), k =

3, . . . ,m.

In other words, a and b are stongly connected if it is possible to find a preference

order in the domain where a and b are first and second ranked and it is possible to

flip a and b while keeping the positions of all other alternatives fixed.

Definition 2.3.3. A strongly linked domain is defined in exactly the same way as a

linked domain except that the notion of connectedness is replaced by strong con-

nectedness.

A strongly linked domain has stronger restrictions embedded in it than a linked

domain. However, it is not necessarily a random dictatorship domain - a strongly

linked domain may satisfy Condition SC (see Example 2.3.1).

Example 2.3.1. Let A = {x, y, z, a, b, c, d}. The Domain Ď of preferences over the

seven alternatives is described in Table 2.6.
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22

x x x y y z z a a a a b b b b c c c c d d d

z a b d c x a x z b c x a d c y a b d y b c

· y y · · · y y y y y y y y y · y y y · y y

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

y · · · · y · · · · · · · · · · · · · · · ·

Table 2.6: Domain Ď

In Table 2.6, dots in a particular preference order signify that alternatives un-

specified are arbitrarily ordered. Therefore, strong connectedness can be induced.

The strong connectivity graph G(Ď) is shown in Figure 2.3. It is clear that Ď is a

strongly linked domain.
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Figure 2.3: Connectivity Graph G(Ď)

Furthermore, by careful specification of preferences in Table 2.6, domain Ď can

satisfy Condition SC with respect to B = {x, z} and y:

(i) Set S(x) = {z, a, b}, S(z) = {x, a} and S(y) = {c, d}.

(ii) For all Pk ∈ ĎB, [r2(Pk) ∈ B]⇒ [Pk ∈ {P1, P6}]. Set cPky and dPky;

For all Pk ∈ ĎB, [r2(Pk) /∈ B]⇒ [Pk ∈ {P2, P3, P7}]. Set yPkc and yPkd.

(iii) For all Pk ∈ ĎA\{x,y,z},

[x̄Pky for some x̄ ∈ S(y)]⇒ [Pk ∈ {P11, P14, P15, P16, P17, P18, P19, P20, P21, P22}].

Set yPkx and yPkz.

2

Clearly additional conditions are required to make a strongly linked domain, a

random dictatorship domain. This subsection provides such a condition.
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Definition 2.3.4. A domain D satisfies Condition TS (Two Steps) if for all a, b ∈ A,

either a ≈ b, or a ≈ c and b ≈ c for some c ∈ A\{a, b}.

In other words, every alternative is strongly connected to any other alternative

in at most two steps. The counterpart of this condition for connectedness is clearly

weaker than Condition H. If diagrams (d) and (e) in Figure 2.2 are interpreted in

terms of strong connectedness, then they represent strongly linked domains sat-

isfying Condition TS. In addition, domains satisfying Condition SC must violate

Condition TS.9

Theorem 2.3.2. A strongly linked domain satisfying Condition TS is a random dic-

tatorship domain.

The proof is contained in Appendix 4.

Remark 2.3.3. Note here that in the constrained voting model, introducing more

restrictions to the feasible alternative set might lead to a violation of Condition SC

and furthermore, lead to random dictatorships. Consider the following additional

restriction on the feasible alternative set in the constrained voting model studied in

Section 2.2.3: if only one candidate is elected, it is never Candidate 3. Thus, the set

of feasible alternatives is X̃ = {a2, a3, a11, a12, a13}. In Figure 2.1, when x = a1

is removed, the remaining connections are unaffected and c = a11 turns to be the

hub.10 Therefore, Theorem 2.3.1 implies random dictatorships in the constrained

voting model.

One may verify that the induced domain D̃ over X̃ will be strongly linked for

some specification of preferences in Table 2.5. Then the strong connectedness struc-

ture of D̃ is as specified in Figure 2.1 with alternative x = a1 removed, and since

every alternative in X̃ is strongly connected to any other alternative in at most two

steps, domain D̃ satisfies Condition TS. Therefore, one can alternatively deduce

random dictatorship by Theorem 2.3.2.
9The argument here is analogous to that in footnote 8, details can be found in Appendix 2.2.

10After removing alternative a1 in every preference in Table 2.5, the set of preferences
{P̄4, P̄5, P̄7, . . . , P̄18} in the induced domain D̃ over X̃ indicates that D̃ is linked and satisfies Con-
dition H where the hub is a11 = (1, 1, 1, 0).
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2.3.3 “Necessity” of Conditions H and TS

Conditions H and TS are obviously strong conditions. Are they necessary for ran-

dom dictatorship? The question appears to be extremely difficult to resolve com-

pletely. However, Examples 2.3.2 and 2.3.3 suggest that they are close to being

necessary in an appropriate sense.

Example 2.3.2. Consider A with |A| ≥ 6. Let x, y ∈ A, and T, T ′ ⊆ A\{x, y} be

such that T ∪T ′ = A\{x, y}, T ∩T ′ = ∅ and |T |, |T ′| ≥ 2. Construct D∗ satisfying

the following restrictions:

(i) for all a, b ∈ A\{x, y}, a ∼ b;

(ii) for all a ∈ T , a ∼ x;

(iii) for all a′ ∈ T ′, a′ ∼ y;

(iv) No connectedness other than those specified in parts (i), (ii) and (iii);

(v) for all Pk ∈ D∗x, rm(Pk) = y;

(vi) for all Pk ∈ D∗A\{x,y}, either r2(Pk) = y or r3(Pk) = y.

The following schematic diagram illustrates the connectedness structure of D∗.
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Figure 2.4: Connectedness structure of domain D∗

It is easy to verify that D∗ satisfies Condition SC with respect to B = {x} and

y (parts (ii) - (vi)) and is linked (parts (i) - (iii)). In addition, domain D∗ violates

Condition H but is very close to satisfying Condition H. In particular, “almost”

every alternative (those other than x and y) is “almost” a hub as we note below.
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(i) Every z ∈ T is a hub for the sub-domain D∗A\{y}: [z ∈ T ] ⇒ [z ∼ a for all

a ∈ A\{z, y}];

(ii) Every z′ ∈ T ′ is a hub for the sub-domain D∗A\{x}: [z′ ∈ T ′] ⇒ [z′ ∼ a for

all a ∈ A\{z′, x}].

Finally, since domain D∗ satisfies Condition SC, Proposition 2.2.1 implies that

it is not a random dictatorship domain. 2

Example 2.3.3. Consider A with |A| ≥ 7. Let x, y, z ∈ A and T, T ′ ⊆ A\{x, y, z}

with T ∪ T ′ = A\{x, y, z}, T ∩ T ′ = ∅ and |T |, |T ′| ≥ 2. Construct D∗∗ satisfying

the following restrictions:

(i) for all a, b ∈ A\{x, y, z}, a ≈ b;

(ii) x ≈ z;

(iii) for all a ∈ T , a ≈ x and a ≈ z;

(iv) for all a′ ∈ T ′, a′ ≈ y;

(v) No connectedness other than the connectedness induced by the strong con-

nectedness specified in parts (i), (ii) and (iii);

(vi) for all Pk ∈ D∗∗ {x,z} with r2(Pk) ∈ {x, z}, rm(Pk) = y;

(vii) for all Pk ∈ D∗∗ {x,z} with r2(Pk) /∈ {x, z}, r3(Pk) = y;

(viii) for all Pk ∈ D∗∗A\{x,y,z}, either r2(Pk) = y or r3(Pk) = y.

We provide the following schematic diagram to illustrate the strong connected-

ness structure of D∗∗.
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Figure 2.5: Strong connectedness structure of domain D∗∗

It is easy to verify that D∗∗ satisfies Condition SC with respect to B = {x, z}

and y (parts (ii) - (viii)) and is strongly linked (parts (i), (iii) and (iv)). In addition,

domain D∗∗ violates Condition TS but is very close to satisfying Condition TS:

(i) sub-domain D∗∗ A\{y} satisfies Condition TS: [a, b ∈ A\{y}]⇒ [either a ≈ b,

or a ≈ c and b ≈ c for some c ∈ A\{y}];

(ii) sub-domain D∗∗ A\{x,z} satisfies Condition TS: [a, b ∈ A\{x, z}]⇒ [either a ≈

b, or a ≈ c and b ≈ c for some c ∈ A\{x, z}].

Finally, since domain D∗∗ satisfies Condition SC, Proposition 2.2.1 implies that

it is not a random dictatorship domain. 2
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Chapter 3 A Characterization of Single-Peaked

Preferences via Random Social Choice

Functions

3.1 The Compromise Property

Recall that random dictatorships satisfy anonymity (if weights are equal for all vot-

ers), unanimity (ex-post efficiency), the tops-only property and strategy-proofness.

However, they suffer from an important and well-known infirmity: they do not admit

compromise. Imagine a two-voter world with several alternatives (say, a thousand).

Consider a profile where voter 1’s first-ranked and thousandth-ranked alternatives

are a and b, respectively. Alternatively, voter 2’s first-ranked and thousandth-ranked

alternative are b and a, respectively. Suppose, in addition, that there is an alternative

say c that is highly ranked by both voters, for instance, ranked second by both. A

reasonable RSCF should put at least some probability weight on c, but no random

dictatorship would.

This chapter introduces a new axiom so as to deal with the difficulties associated

with random dictatorships outlined above. The axiom requires some compromise

alternatives in certain profiles to be selected by the RSCF with strictly positive prob-

ability.

Let Pi, Pj ∈ D be such that r1(Pi) 6= r1(Pj). Let C(Pi, Pj) = {ar ∈ A|ar =

r2(Pi) = r2(Pj)}. Note that C(Pi, Pj) is either empty or contains a singleton.

Let Î ⊂ I be a nonempty strict subset of voters. For any Pi, Pj ∈ D, let
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(
Pi, . . . , Pi︸ ︷︷ ︸

Î

, Pj, . . . , Pj︸ ︷︷ ︸
I\Î

)
denote the profile where all voters in Î have the order Pi

while those not in Î have Pj .

Definition 3.1.1. A RSCF ϕ : DN → ∆(A) satisfies the compromise property if

there exists Î ⊆ I with |Î| = N/2 if N is even and |Î| = (N + 1)/2 if N is odd,

such that for all Pi, Pj ∈ D with r1(Pi) 6= r1(Pj) and C(Pi, Pj) ≡ {a}, we have

ϕa
(
Pi, . . . , Pi︸ ︷︷ ︸

Î

, Pj, . . . , Pj︸ ︷︷ ︸
I\Î

)
> 0.

The axiom requires the existence of a subset of voters Î that is approximately

half the size of the set of voters. Pick an arbitrary profile where all voters in Î have

identical preferences as do voters in the complement set I \ Î . Suppose the common

preferences in Î and I \ Î have distinct peaks but have a common second-ranked

alternative ar. According to the axiom, the RSCF must give ar strictly positive

probability at the profile.

This chapter believes that the axiom is both weak and natural. It is weak because

it applies to a very narrow class of profiles. It is natural because in the profile where

it applies, the alternative to which strictly positive probability is assigned according

to the axiom, is an obvious compromise between the two groups of voters.

Two remarks are made here about the set Î in Definition 3.1.1. The first is that

Definition 3.1.1 merely requires the existence of one such set of voters. A stronger

but equally plausible axiom would require the property to hold for all subsets Î such

that |Î| = N/2 if N is even, and |Î| = (N +1)/2 if N is odd. A weaker assumption

is made in Definition 3.1.1 because the stronger one is not required for the result.

Note however that once Î is fixed, the strictly positive probability requirement on

the compromise applies to all profiles
(
Pi, . . . , Pi︸ ︷︷ ︸

Î

, Pj, . . . , Pj︸ ︷︷ ︸
I\Î

)
.

The second remark is to point out that the choice of the cardinality of Î in Defi-

nition 3.1.1, is arbitrary. As footnote 5 points out, any choice of the cardinality of Î

works for our proof, provided 0 < |Î| < N . One could have assumed, for instance,

|Î| = 2 or |Î| = N − 1. One could even have left |Î| unspecified. However, |Î|
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is chosen to be approximately half of N because it is the compelling case for the

axiom to hold.

3.2 Path-connected Domains

The goal in this chapter is to characterize preference domains that admit RSCFs

satisfying unanimity (ex-post efficiency), the tops-only property, strategy-proofness

and the compromise property. However, this chapter needs to restrict attention to

domains that satisfy a regularity condition called path-connectedness.

The path-connectedness condition was introduced in Chatterji et al. [17].1 Fix

a domain D. A pair of distinct alternatives a, b ∈ A satisfies the Free Pair at the

Top (or FPT) property, if there exist Pi, P ′i ∈ D such that (i) r1(Pi) = r2(P ′i ) = a,

(ii) r2(Pi) = r1(P ′i ) = b, and (iii) rt(Pi) = rt(P
′
i ), t = 3, . . . ,m. The definition of

FPT property is identical to the definition of strong connectedness (see Definition

2.3.2 in Chapter 2). In other words, two alternatives satisfy the FPT property if

there exists a pair of admissible orders where the alternatives are at the top of both

orders and are locally switched, i.e., all alternatives other than the specified pair are

ranked in the same way in both orders. Let FPT (D) denote the set of alternative

pairs that satisfy the FPT property. The domain D is path-connected if for every

pair of alternatives a, b ∈ A, there exists a sequence {xt}Tt=1 ⊆ A, T ≥ 2, such that

x1 = a, xT = b and (xt, xt+1) ∈ FPT (D), t = 1, . . . , T − 1.

The path-connectedness assumption imposes structure on the domain. It al-

lows the construction of paths between admissible orders by switching preferences

at the top of the orders. Very similar conditions have been identified in [14] and

[44] as being critical for the purpose of identifying domains where local incentive-

compatibility ensures strategy-proofness.2

Chatterji et al. [17] provide extensive discussion of well-known domains that

1Slightly different names were used in [17] for the Free Pair at the Top property and path-
connectedness. We believe that the new names are more apposite.

2Assume that domains are minimally rich. Then domains of ordinal preferences studied in both
[14] and [44] are path-connected.
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satisfy the path-connectedness assumption. The complete domain and the single-

peaked domain are path-connected. Maximal single-crossing domains ([42]) are

path-connected provided that every alternative is first-ranked in some order in the

domain. A generalized single-peaked domain ([35]) may or may not be path-

connected. Alternatively, the separable domain ([5] and [13]) and the multi-dimensional

single-peaked domain ([6]) are not path-connected. For details the reader is referred

to Examples 1, 2 and 3 in [17].

A domain of central importance in collective choice theory is the single-peaked

domain. It was originally introduced in [11] and [29]. Here this chapter considers a

generalization due to [20] and [19].

An undirected graph G = 〈V,E〉 is a set of vertices V and a set of edges E.

The set E consists of pairs vertices, i.e., E ⊆ {(u, v)|u, v ∈ V and u 6= v}.

If (u, v) ∈ E, we say that (u, v) is an edge in G.3 A path in G is a sequence

{vk}sk=1 ⊆ V where s ≥ 2 and (vk, vk+1) ∈ E, k = 1, . . . , s − 1. The graph G is

connected if there exists a path between every pair of vertices, i.e., for all u, v ∈ V

with u 6= v, there exists a path {vk}sk=1 such that u = v1 and v = vs. The connected

graph G is a tree if the path between every pair of vertices is unique. Let G be a

tree and u, v ∈ V be a pair of vertices. Accordingly, 〈u, v〉 denotes the unique path

between them.4

In what follows, graphs G of the kind G = 〈A,E〉 is considered, i.e., whose

vertex set is the set of alternatives.

Definition 3.2.1. Let G = 〈A,E〉 be a tree. A preference Pi is single-peaked on G

if for all a, b ∈ A,

[
a ∈ 〈r1(Pi), b〉\{b}

]
⇒ [aPib].

Pick a preference Pi and an arbitrary alternative b. Since the graph is a tree,

there is a unique path between r1(Pi) and b. The order Pi is single-peaked if every

3In an undirected graph, (u, v) and (v, u) represent a same edge.
4In particular, if u = v, 〈u, v〉 = {u} is a singleton set.
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alternative a on this path that is distinct from b is strictly preferred to b according to

Pi.

A domain D is single-peaked if there exists a tree G such that Pi ∈ D implies Pi

is single-peaked on G.

A case of special interest is the one where the graph G = 〈A,E〉 is a line.

Formally, G is a line if according to the labeled alternative set A = {a1, . . . , am},

there exists a bijective function σ : {1, . . . ,m} → {1, . . . ,m} such that E ={
(aσ(k), aσ(k+1))

}m−1

k=1
. The standard definition of a single-peaked domain is one

where the underlying graph is a line. This section illustrates these notions with

Examples 3.2.1 and 3.2.2.

Example 3.2.1. Let A = {a1, a2, a3, a4}. The domain D̄ is described in Table 3.1.

P1 P2 P3 P4 P5 P6 P7 P8 P9

a1 a1 a2 a2 a2 a3 a3 a4 a4

a2 a2 a1 a4 a3 a2 a2 a2 a2

a4 a3 a4 a3 a4 a4 a1 a3 a1

a3 a4 a3 a1 a1 a1 a4 a1 a3

Table 3.1: Domain D̄

The domain D̄ is single-peaked on the tree GT shown in Figure 3.1.

r r r
r

a1 a2 a3

a4

Figure 3.1: Tree GT

Note that there are orders that are single-peaked on GT but not included in D̄,

for instance, a2P10a1P10a3P10a4. The largest single-peaked domain on GT contains

12 orders. 2

Example 3.2.2. Let A = {a1, a2, a3, a4}. The domain D̂ is described in Table 3.2.
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P1 P2 P3 P4 P5 P6 P7 P8

a1 a2 a2 a2 a3 a3 a3 a4

a2 a1 a3 a3 a2 a2 a4 a3

a3 a3 a4 a1 a1 a4 a2 a2

a4 a4 a1 a4 a4 a1 a1 a1

Table 3.2: Domain D̂

The domain D̂ is single-peaked on the line GL shown in Figure 3.2.

r r r r
a1 a2 a3 a4

Figure 3.2: Line GL

In contrast to domain D̄ in Example 3.2.1, domain D̂ includes all orders that are

single-peaked on GL. Observe also that D̄ is not single-peaked on a line; neither is

D̂ single-peaked on GT . To verify the former claim, observe that any domain that

is single-peaked on a line must have at least two alternatives which have unique

orders where these alternatives are peaks (these are the alternatives at either end

of the line); there are no alternatives with this property in D̄. Alternatively, the

maximal number of alternatives that can be second-ranked to a given alternative

on any domain that is single-peaked on a line, is two, whereas on domain D̄, the

alternative a2 has three distinct second-ranked alternatives a1, a3 and a4. 2

3.3 Main Result: Single-Peakedness

The main result in this chapter characterizes single-peaked domains.

Theorem 3.3.1. Every path-connected domain that admits a unanimous, tops-only

and strategy-proof RSCF satisfying the compromise property is single-peaked. Con-

versely, every single-peaked domain admits an ex-post efficient, tops-only and strategy-

proof RSCF satisfying the compromise property.
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Proof. We first prove necessity. Assume that D is path-connected. In addition, there

exists a RSCF ϕ : DN → ∆(A) that is tops-only, strategy-proof and unanimous,

and satisfies the compromise property. We will show that there exists a tree G such

that D is single-peaked on G.

The first four lemmas establish critical properties of the RSCF ϕ.

Lemma 3.3.1. Let a, b ∈ A with (a, b) ∈ FPT (D). Let Pi, P ′i ∈ D be such

that (i) r1(Pi) = r2(P ′i ) = a (ii) r2(Pi) = r1(P ′i ) = b, and (iii) rt(Pi) = rt(P
′
i ),

t = 3, . . . ,m. Then, for all P−i ∈ DN−1, ϕa(Pi, P−i)+ϕb(Pi, P−i) = ϕa(P
′
i , P−i)+

ϕb(P
′
i , P−i) and ϕc(Pi, P−i) = ϕc(P

′
i , P−i) for all c ∈ A\{a, b}.

Suppose voter i switches her order from Pi to P ′i , a move that involves the

reshuffling of the top two alternatives, say a and b, while leaving all other alterna-

tives unaffected. According to Lemma 3.3.1, the switch leaves the probabilities of

alternatives other than a and b, and the sum of probabilities of a and b, unchanged.

Lemma 3.3.1 is a special case of Lemma 2 in [26]. It is a consequence of strategy-

proofness and we omit its elementary proof.

Lemma 3.3.2. If domain D admits a unanimous, tops-only and strategy-proof RSCF

satisfying the compromise property, then it admits a two-voter unanimous, tops-only

and strategy-proof RSCF satisfying the compromise property.

Proof. Let ϕ : DN → ∆(A) denote a unanimous, tops-only and strategy-proof

RSCF satisfying the compromise property. We know that there exists Î ⊆ I with

|Î| = N/2 if N is even and |Î| = (N + 1)/2 if N is odd such that for all

Pi, Pj ∈ D with (i) r1(Pi) 6= r1(Pj) and (ii) a ≡ r2(Pi) = r2(Pj), we have

ϕa
(
Pi, . . . , Pi︸ ︷︷ ︸

Î

, Pj, . . . , Pj︸ ︷︷ ︸
I\Î

)
> 0.

Construct a two-voter RSCF φ : D2 → ∆(A) as φ(P1, P2) = ϕ
(
P1, . . . , P1︸ ︷︷ ︸

Î

, P2, . . . , P2︸ ︷︷ ︸
I\Î

)
for all P1, P2 ∈ D. In other words, φ is constructed by “merging” all voters in Î and

all voters in I\Î in ϕ.5 Clearly, φ is a RSCF satisfying unanimity and the tops-only

5Any choice of the cardinality of Î works for our proof, provided 0 < |Î| < N . We could have
assumed, for instance that |Î| = 2 or |Î| = N − 1.
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property. It is also strategy-proof (see the proof of Lemma 3 in [48]). We show that

φ satisfies the compromise property.

Let Ī = {1} in the two-voter model. Let P1, P2 ∈ D with (i) r1(P1) 6= r1(P2)

and (ii) a ≡ r2(P1) = r2(P2). Then φa(P1, P2) = ϕa
(
P1, . . . , P1︸ ︷︷ ︸

Î

, P2, . . . , P2︸ ︷︷ ︸
I\Î

)
> 0

where the equality follows from the construction of φ and the inequality follows

from the fact that ϕ satisfies the compromise property. Therefore φ satisfies the

compromise property. This completes the proof of the lemma.

In view of Lemma 3.3.2, we can assume without loss of generality that the set

of voters is {1, 2} and ϕ is an RSCF ϕ : D2 → ∆(A) that is unanimous, tops-

only and strategy-proof, and satisfies the compromise property. We make a further

simplification in notation. Since ϕ is tops-only, we can represent a profile P ∈ D2

by a pair of alternatives a and b where r1(P1) = a and r1(P2) = b. We shall also

occasionally let (a, P2) denote a preference profile (P1, P2) where r1(P1) = a.

Lemma 3.3.3. Let a, b ∈ A with (a, b) ∈ FPT (D). There exists β ∈ [0, 1] such

that ϕ(a, b) = βea + (1− β)eb.

Proof. Let P1, P
′
1 ∈ D be such that (i) r1(P1) = r2(P ′1) = a, (ii) r2(P1) = r1(P ′1) =

b and (iii) rt(P1) = rt(P
′
1), t = 3, . . . ,m (such two preferences exist since (a, b) ∈

FPT (D)). We then have

ϕa(a, b) + ϕb(a, b) = ϕa(P1, b) + ϕb(P1, b) (by the tops-only property)

= ϕa(P
′
1, b) + ϕb(P

′
1, b) (by Lemma 3.3.1)

= ϕb(b, b) = 1 (by unanimity).

Let ϕa(a, b) = β. Thus, ϕ(a, b) = βea + (1− β)eb as required.

The next lemma considers situations that are more general than those considered

in the previous one. We illustrate it with an example. Suppose (a1, a2), (a2, a3) ∈

FPT (D). We know from Lemma 3.3.3 that there exist β1, β2 ∈ [0, 1] such that
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ϕ(a1, a2) = β1ea1 + (1 − β1)ea2 and ϕ(a2, a3) = β2ea2 + (1 − β2)ea3 . The next

lemma shows that β2 > β1 and ϕ(a1, a3) = β1ea1 + (β2 − β1)ea2 + (1− β2)ea3 .

Lemma 3.3.4. Let {ak}sk=1 ⊆ A, s ≥ 3, be such that (ak, ak+1) ∈ FPT (D),

k = 1, . . . , s − 1. Let βk = ϕak(ak, ak+1), k = 1, . . . , s − 1. Then, the following

two conditions hold.

(i) We have 0 ≤ βk < βk+1 ≤ 1, k = 1, . . . , s− 2.

(ii) For all 1 ≤ i < j ≤ s, ϕ(ai, aj) = βieai +
∑j−1

k=i+1(βk − βk−1)eak + (1 −

βj−1)eaj .

Proof. We know from Lemma 3.3.3 that ϕ(ak, ak+1) = βkeak + (1 − βk)eak+1
,

k = 1, . . . , s − 1. Pick k with 1 ≤ k ≤ s − 2. Since (ak+1, ak+2) ∈ FPT (D)

and ak /∈ {ak+1, ak+2}, Lemma 3.3.1 implies ϕak+1
(ak, ak+2) + ϕak+2

(ak, ak+2) =

ϕak+1
(ak, ak+1) +ϕak+2

(ak, ak+1) = ϕak+1
(ak, ak+1) = 1−βk and ϕak(ak, ak+2) =

ϕak(ak, ak+1) = βk. Also, since (ak, ak+1) ∈ FPT (D), Lemma 3.3.1 implies

ϕak(ak, ak+2)+ϕak+1
(ak, ak+2) = ϕak(ak+1, ak+2)+ϕak+1

(ak+1, ak+2) = ϕak+1
(ak+1, ak+2) =

βk+1. Therefore, ϕak+1
(ak, ak+2) = βk+1−ϕak(ak, ak+2) = βk+1−βk andϕak+2

(ak, ak+2) =

1−βk−ϕak+1
(ak, ak+2) = 1−βk+1. Therefore, ϕak(ak, ak+2) +ϕak+1

(ak, ak+2) +

ϕak+2
(ak, ak+2) = 1 and ϕ(ak, ak+2) = βkeak +(βk+1−βk)eak+1

+(1−βk+1)eak+2
.

Therefore βk+1 ≥ βk. We conclude the argument by showing that the inequality

must be strict.

Since (ak, ak+1), (ak+1, ak+2) ∈ FPT (D), we have P ∗1 , P
∗
2 ∈ D such that

r1(P ∗1 ) = ak, r1(P ∗2 ) = ak+2 and r2(P ∗1 ) = r2(P ∗2 ) = ak+1. Thus, C(P ∗1 , P
∗
2 ) =

{ak+1}. Then, the tops-only property and the compromise property imply βk+1 −

βk = ϕak+1
(ak, ak+2) = ϕak+1

(P ∗1 , P
∗
2 ) > 0 as required. This completes the verifi-

cation of part (i) of the lemma.

Pick ai, aj in the sequence {ak}sk=1 such that i < j. We will prove part (ii) by

induction on the value of l = j − i. Observe that part (ii) has already been proved

for the cases l = 1 (Lemma 3.3.3) and l = 2 (in the proof of part (i)). Assume
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therefore that 3 ≤ l ≤ s− 1. We impose the following induction hypothesis: for all

1 ≤ i < j ≤ s, we have[
j − i < l

]
⇒
[
ϕ(ai, aj) = βieai +

∑j−1

k=i+1(βk − βk−1)eak + (1− βj−1)eaj
]
.

We complete the proof by showing that part (ii) holds for all i, j with 1 ≤ i <

j ≤ s and j − i = l.

Since j−i = l ≥ 3, we know i < i+1 < j−1 < j. Also (j−1)−i = l−1 < l

and j − (i + 1) = l − 1 < l. The induction hypothesis can then be applied to the

profiles (ai, aj−1) and (ai+1, aj). Hence

ϕ(ai, aj−1) = βieai +

j−2∑
k=i+1

(βk − βk−1)eak + (1− βj−2)eaj−1
and

ϕ(ai+1, aj) = βi+1eai+1
+

j−1∑
k=i+2

(βk − βk−1)eak + (1− βj−1)eaj .

Since (aj, aj−1) ∈ FPT (D) and ai, . . . , aj−2 are distinct from aj−1 and aj ,

Lemma 3.3.1 impliesϕai(ai, aj) = ϕai(ai, aj−1) = βi andϕak(ai, aj) = ϕak(ai, aj−1) =

βk− βk−1, k = i+ 1, . . . , j− 2. Similarly, since (ai, ai+1) ∈ FPT (D), aj−1 and aj

are distinct from ai and ai+1, Lemma 3.3.1 impliesϕaj−1
(ai, aj) = ϕaj−1

(ai+1, aj) =

βj−1−βj−2 and ϕaj(ai, aj) = ϕaj(ai+1, aj) = 1−βj−1. Thus,
∑j

k=i ϕak(ai, aj) = 1

and ϕ(ai, aj) = βieai +
∑j−1

k=i+1(βk − βk−1)eak + (1 − βj−1)eaj as required. This

completes the verification of the induction hypothesis and hence part (ii) of the

lemma.

To demonstrate that D is single-peaked, we need to construct a tree G = 〈A,E〉

and show that Pi ∈ D implies Pi is single-peaked on G.

Let G(D) = 〈A,FPT (D)〉 be a graph, i.e., a, b ∈ A constitute an edge in G(D)

only if they satisfy the FPT property. Since D is path-connected, graph G(D) is

connected. The following lemma shows that G(D) is a tree.

Lemma 3.3.5. The graph G(D) is a tree.

Proof. Suppose not, i.e., there exists a sequence {ak}sk=1 ⊆ A, s ≥ 3, such that
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(ak, ak+1) ∈ FPT (D), k = 1, . . . , s, where as+1 = a1. Let βk = ϕak(ak, ak+1),

k = 1, . . . , s − 1. Since (ak, ak+1) ∈ FPT (D), k = 1, . . . , s − 1, Lemma 3.3.4

implies ϕ(a1, as) = β1ea1 +
∑s−1

k=2(βk − βk−1)eak + (1− βs−1)eas where 0 ≤ βk <

βk+1 ≤ 1, k = 1, . . . , s − 2. However, since (a1, as) ∈ FPT (D), Lemma 3.3.3

implies ϕak(a1, as) = 0 for all ak 6= a1, as. We have a contradiction.

Lemma 3.3.6. The inclusion [Pi ∈ D]⇒ [Pi is single-peaked on G(D)].

Proof. Suppose x, a, b ∈ A are such that r1(Pi) = x and a ∈ 〈x, b〉\{b}. Let

〈x, b〉 = {at}Tt=1 where a1 = x, aT = b and a = al for some 1 ≤ l < T . If a = x,

aPib follows trivially. Assume therefore that a 6= x. Thus, T ≥ 3. Suppose bPia.

Consider the profile P = (x, b) and ϕ(P ). According to Lemma 3.3.4, all alterna-

tives in the sequence {at}T−1
t=2 get strictly positive probability. Hence ϕa(x, b) > 0.

Since ϕ satisfies unanimity, ϕb(b, b) = 1. Then voter i can obtain a strictly higher

probability on the set of alternatives at least as preferred to a under Pi (this set

includes b by hypothesis) by putting b on top of her order. This contradicts the

strategy-proofness of ϕ. Therefore, aPib as required.

This completes the verification of the necessity part of the theorem.

In order to demonstrate sufficiency, let D be a single-peaked domain on a tree

G = 〈A,E〉. We construct a RSCF ϕ : DN → ∆(A) that is strategy-proof, tops-

only and ex-post efficient, and satisfies the compromise property. We proceed as

follows: in the first step, we use the idea in [17] to construct a specific DSCF (see

the proof of the sufficiency part of the Theorem in [17]); in the second step, we

consider randomization over such DSCFs.

For any set B ⊆ A, let G(B) be the minimal subgraph of G that contains B

as vertices. More formally, G(B) is the unique graph that satisfies the following

properties.

1. The set of vertices in G(B) contains B.

2. Let a, b ∈ B. Graph G(B) has an edge (a, b) only if (a, b) is an edge in G.
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3. The graph G(B) is connected.

4. We have x ∈ G(B) if and only if x ∈ 〈a, b〉 where a, b ∈ B.

Fix a profile P ∈ DN and an alternative ak ∈ A. Consider the graph G(r1(P )).

Suppose a /∈ G(r1(P )). Since G is a tree and contains no cycles, there exists a

unique alternative in G(r1(P )) that belongs to every path from a to any vertex in

G(r1(P )). Let this alternative be denoted by β(a, P ).6 Then, define the alternative

π(a, P ) as

π(a, P ) =


a, if a ∈ G(r1(P ))

β(a, P ), if a /∈ G(r1(P ))

Consider Example 3.2.1. Suppose I = {1, 2, 3}. Let a be the alternative a4

and let P be a profile such that r1(P ) = {a1, a2, a3}. Then G(r1(P )) is the graph

consisting of the vertices {a1, a2, a3} and the edges (a1, a2) and (a2, a3). Then

π(a, P ) = β(a4, P ) = a2. Further examples can be found in [17].

For every a ∈ A, the DSCF φa : DN → A is defined as for all P ∈ DN , φa(P ) =

π(a, P ). Evidently, φa is a DSCF. Its outcome at profile P is the “projection” of a

on the minimal subgraph of G generated by the set of the first-ranked alternatives in

P .

In the next step, we construct the RSCF ϕ : DN → ∆(A) as for all P ∈ DN ,

ϕ(P ) =
∑

a∈A λ
aφa(P ), where λa > 0 for all a ∈ A and

∑
a∈A λ

a = 1. The RSCF

is obtained by choosing over the DSCFs φa, a ∈ A, according to a fixed probability

distribution where the probability of choosing each such DSCF is strictly positive.

We call RSCF ϕ a weighted projection rule. We claim that ϕ satisfies all the required

properties.7

Lemma 3.3.7. The RSCF ϕ is tops-only and strategy-proof.

6It would have been more appropriate to write β(a,G(r1(P ))) but we choose to suppress the
dependence of this alternative on G for notational convenience.

7Some further properties of weighted projection rules are discussed in Appendix 6.
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Proof. According to Proposition 1 in [17], a single-peaked domain is semi-single-

peaked where every alternative can be taken to be a threshold in the definition of

semi-single-peakedness. The sufficiency part of the Theorem in [17] shows that for

any threshold a ∈ A, φa is strategy-proof, tops-only and satisfies unanimity over a

semi-single-peaked domain. Consequently, each φa is tops-only and strategy-proof.

Therefore, ϕwhich is a convex combination of distinct tops-only and strategy-proof

RSCFs is also a tops-only and strategy-proof RSCF.8

Lemma 3.3.8. The RSCF ϕ is ex-post efficient.

Proof. Suppose the lemma is false, i.e., there exist P ∈ DN and a, b ∈ A such that

aPib for all i ∈ I and ϕb(P ) > 0. Evidently, b /∈ r1(P ). Since ϕ satisfies unanimity,

ϕb(P ) > 0 implies |r1(P )| > 1. Observe that π(x, P ) ∈ G(r1(P )) for all x ∈ A.

Hence, by construction of ϕ, if z is not included in the vertex set of G(r1(P )), then

ϕz(P ) = 0. Therefore, b belongs to the vertex set of G(r1(P )).

Let Ext
(
G(r1(P ))

)
denote the set of vertices in G(r1(P )) with degree one, i.e.,

x ∈ Ext
(
G(r1(P ))

)
if there exists a unique y ∈ A such that (x, y) is an edge in

G(r1(P )). Observe that Ext
(
G(r1(P ))

)
⊆ r1(P ). (Suppose x ∈ Ext

(
G(r1(P ))

)
but x /∈ r1(P ). Then x can be deleted as a vertex in G(r1(P )) contradicting the

assumption that G(r1(P )) is minimal.) In other words, the vertices at the ends of

every maximal path in G(r1(P )) must be some elements of r1(P ).

It follows from the arguments in the two previous paragraphs that

b ∈ G(r1(P ))\Ext
(
G(r1(P ))

)
. Consequently, there exist i, i′ ∈ I such that

r1(Pi) 6= r1(Pi′), b ∈ 〈r1(Pi), r1(Pi′)〉 and b 6= r1(Pi), r1(Pi′). Let x be the projec-

tion of a on the interval 〈r1(Pi), r1(Pi′)〉. By assumption, x ∈ 〈r1(Pi), r1(Pi′)〉.

Hence, either b ∈ 〈r1(Pi), x〉 or b ∈ 〈r1(Pi′), x〉 must hold. Therefore either

b ∈ 〈r1(Pi), a〉 or b ∈ 〈r1(Pi′), a〉 must hold, i.e., either bPia or bPi′a must hold

by single-peakedness of D. We have a contradiction to our initial hypothesis that

aPib for all i ∈ I . Therefore, ϕ is ex-post efficient.

8These arguments are routine and therefore omitted.
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Lemma 3.3.9. The RSCF ϕ satisfies the compromise property.

Proof. Let Pi, Pj ∈ D be such that a = r1(Pi) 6= r1(Pj) = b and C(Pi, Pj) = {c}.

Let Î ⊂ I be such that |Î| = N/2 if N is even and |Î| = (N + 1)/2 if N is odd. Let

P̄ ∈ DN be the profile
(
Pi, . . . , Pi︸ ︷︷ ︸

Î

, Pj, . . . , Pj︸ ︷︷ ︸
I\Î

)
. We will show that ϕc(P̄ ) > 0.

Since D is single-peaked on the tree G = 〈A,E〉, it follows that (a, c), (b, c) ∈

E. Hence c ∈ G(r1(P̄ )) and φc(P̄ ) = ec. Therefore, ϕc(P̄ ) ≥ λc > 0.

This completes the proof of the sufficiency part of the theorem.

3.3.1 Discussion: Indispensability of the Axioms and the Rich-

ness Condition

This subsection shows that all axioms and richness assumption are indispensable

for Theorem 3.3.1. Examples 3.3.1, 3.3.2, 3.3.3 and 3.3.4 drop, respectively, the

compromise property, tops-onlyness, unanimity and strategy-proofness in turn, and

demonstrate the existence of a non-single-peaked domain that admits RSCFs satis-

fying the remaining axioms. In addition, Example 3.3.5 shows that the separable

domain violates path-connectedness but admits a unanimous, tops-only, strategy-

proof RSCF satisfying the compromise property.

Example 3.3.1 (Dropping the compromise property). Let A = {a1, a2, a3, a4}. The

domain D3 is described in Table 3.3.

P1 P2 P3 P4 P5 P6

a1 a2 a2 a3 a3 a4

a2 a1 a3 a2 a4 a3

a4 a4 a4 a4 a2 a2

a3 a3 a1 a1 a1 a1

Table 3.3: Domain D3

Since (a1, a2), (a2, a3), (a3, a4) ∈ FPT (D3), domain D3 is path-connected. In

view of the path-connectivity structure, the only candidate for a graph with respect
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to which D3 could be single-peaked is the line GL in Figure 3.2. However, pref-

erences P1 and P2 violate single-peakedness in this case. Hence D3 is not single-

peaked.

The domain D3 is however, semi-single-peaked ([17]) with respect to (GL, a2).

Consequently, the projection rule φa2 is unanimous, tops-only and strategy-proof.

(This can also be verified directly.)

Note that C(Pi, Pj) = ∅ for all profile pairs with distinct peaks except for the

pairs (P1, P4) and (P3, P6). Accordingly, C(P1, P4) = {a2}, C(P3, P6) = {a3};

φa2
a2

(P1, P4) = φa2
a2

(P4, P1) = 1 > 0, but φa2
a3

(P3, P6) = φa2
a3

(P6, P3) = 0. Therefore,

RSCF φa2 violates the compromise property. 2

Example 3.3.2 (Dropping the tops-only property). Let A = {a1, a2, a3, a4}. The

domain D4 is described in Table 3.4.

P1 P2 P3 P4 P5 P6

a1 a2 a2 a3 a3 a4

a2 a1 a3 a2 a4 a3

a4 a4 a4 a4 a1 a1

a3 a3 a1 a1 a2 a2

Table 3.4: Domain D4

Once again, domain D4 is path-connected since (a1, a2), (a2, a3), (a3, a4) ∈

FPT (D4). Using the same arguments as in Example 3.3.1, it follows that D4 is

not single-peaked.

Let φak , k = 1, 2, 3, 4, denote the four projection rules on the line GL in Figure

3.2. We specify a unanimous RSCF ϕ : [D4]2 → ∆(A) as

ϕ(Pi, Pj) =



1
2
er1(Pi) + 1

2
er1(Pj),

if (Pi, Pj) ∈ {P1, P2} × {P5, P6} or {P5, P6} × {P1, P2};

1
3
φa1(Pi, Pj) + 1

6
φa2(Pi, Pj) + 1

6
φa3(Pi, Pj) + 1

3
φa4(Pi, Pj),

otherwise.
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The RSCF ϕ is an equal weight random dictatorship when a preference pro-

file belongs to the subdomain
{
{P1, P2} × {P5, P6}

}
∪
{
{P5, P6} × {P1, P2}

}
;

otherwise it is a specific weighted projection rule on the line GL. The RSCF ϕ

is also strategy-proof; this can be verified by showing that in every possible ma-

nipulation, probabilities are transferred from preferred alternatives to less preferred

alternatives in the true preference while probabilities assigned to other alternatives

are unchanged. The details of the verification are found in Appendix 7.

Note that r1(P4) = r1(P5) = a3 and ϕa2(P1, P4) = 1
6
6= 0 = ϕa2(P1, P5).

Therefore ϕ violates the tops-only property.

Observe that C(Pi, Pj) = ∅ for all profile pairs with distinct peaks except for

pairs (P1, P4) and (P3, P6). Accordingly, C(P1, P4) = {a2}, C(P3, P6) = {a3};

ϕa2(P4, P1) = ϕa2(P1, P4) = 1
6
> 0 and ϕa3(P3, P6) = ϕa3(P6, P3) = 1

6
> 0.

Hence, the compromise property is satisfied. 2

Example 3.3.3 (Dropping unanimity). Consider the complete domain P. Fix a col-

lection [λa]a∈A ∈ Rm
++ with

∑
a∈A λ

a = 1, and construct the RSCF ϕ : PN → ∆(A)

as

ϕ(P ) =
∑
a∈A

λaea for all P ∈ PN .

The RSCF ϕ is tops-only and strategy-proof, and satisfies the compromise property.

Since it is a convex combination of all constant DSCFs, it violates unanimity. 2

Example 3.3.4 (Dropping strategy-proofness). Consider the complete domain P.

Fix a collection [λa]a∈A ∈ Rm
++ with

∑
a∈A λ

a = 1, and construct the RSCF ϕ :

PN → ∆(A) as

ϕ(P ) =


ea, if r1(P ) = {a} for some a ∈ A;∑

a∈A
λaea, otherwise.

The RSCF ϕ picks alternative a for sure if a is the peak for all voters in a

profile. In all other profiles, it is a convex combination of all constant DSCFs. It
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is unanimous and tops-only, and satisfies the compromise property but not strategy-

proofnot. 2

Example 3.3.5 (Dropping path-connectedness). Let A = {a1, a2, a3, a4}. The do-

main D7 is specified in Table 3.5.

P1 P2 P3 P4 P5 P6 P7 P8

a1 a1 a2 a2 a3 a3 a4 a4

a2 a4 a1 a3 a2 a4 a1 a3

a4 a2 a3 a1 a4 a2 a3 a1

a3 a3 a4 a4 a1 a1 a2 a2

Table 3.5: Domain D7

A convenient way to represent these preferences is to regard each alternative ak,

as comprising two components (a1
k, a

2
k). Specifically, A1 = {0, 1}, A2 = {0, 1};

a1 = (0, 0), a2 = (1, 0), a3 = (1, 1) and a4 = (0, 1). Then domain D7 is a separable

domain ([5], [13]). Apparently, FPT (D7) = ∅ and hence domain D7 is not path-

connected.

For all Pi, Pj ∈ D7, let r1(Pi) = ai ≡ (a1
i , a

2
i ) and r1(Pj) = aj ≡ (a1

j , a
2
j).

Accordingly, D7 admits the following four DSCFs: for all Pi, Pj ∈ D7,

φa1(Pi, Pj) = (min(a1
i , a

1
j),min(a2

i , a
2
j)), φa2(Pi, Pj) = (max(a1

i , a
1
j),min(a2

i , a
2
j)),

φa3(Pi, Pj) = (max(a1
i , a

1
j),max(a2

i , a
2
j)), φa4(Pi, Pj) = (min(a1

i , a
1
j),max(a2

i , a
2
j)).

The DSCFs φa1 , φa2 , φa3 , φa4 are unanimous, anonymous, tops-only and strategy-

proof.

Pick λak > 0, k = 1, 2, 3, 4 with
∑4

k=1 λ
ak = 1, and define RSCF ϕ : [D7]2 →

∆(A) as

ϕ(P ) =
4∑

k=1

λakφak(P ) for all P ∈ [D7]2.

Since it is a convex combination of DSCFs satisfying unanimity, anonymity,

tops-onlyness and strategy-proofness, ϕ also satisfies these properties. Finally, ob-
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serve that C(P1, P5) = {a2}, C(P2, P6) = {a4}, C(P3, P7) = {a1}, C(P4, P8) =

{a3} and C(Pi, Pj) = ∅ for all other pairs (Pi, Pj) with r1(Pi) 6= r1(Pj). Since

ϕa2(P1, P5) = ϕa2(P5, P1) = λa2 > 0, ϕa4(P2, P6) = ϕa4(P6, P2) = λa4 > 0,

ϕa1(P3, P7) = ϕa1(P7, P3) = λa1 > 0 and ϕa3(P4, P8) = ϕa3(P8, P4) = λa3 > 0,

RSCF ϕ satisfies the compromise property. 2
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Chapter 4 On Random Social Choice Func-

tions with the Tops-only Property

4.1 Main Result

The class of tops-only RSCFs have obvious informational and computational ad-

vantages. More importantly, the tops-only property decreases the degree of possible

manipulations. For these reasons, they (more accurately, DSCFs) have received a

great deal of attention in the literature (see [52] and [15]). This chapter studies the

tops-only property in the randomized environment.

This section introduces a condition on domains under which every unanimous

and strategy-proof RSCF satisfies the tops-only property. The condition requires

two properties which are referred to as the Interior Property and the Exterior Prop-

erty. The domain first is partitioned into sub-domains where all preferences in a

sub-domain have an identical peak. The Interior Property refers to a requirement

across any two preferences within a given sub-domain, while the Exterior Property

refers to a requirement that applies to two preferences belonging to two distinct

sub-domains. To describe the Interior Property, the notion of adjacent connected-

ness (introduced in Sato [44]) is adopted, while to describe the Exterior Property, a

more general notion called isolation is used.

A pair of distinct preferences Pi, P ′i ∈ D is adjacently connected, denoted Pi ∼A

P ′i , if there exists 1 ≤ k ≤ m−1 such that the following two conditions are satisfied

(i) rk(Pi) = rk+1(P ′i ) and rk+1(Pi) = rk(P
′
i );
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(ii) rt(Pi) = rt(P
′
i ) for all t 6= k, k + 1.

In other words, two preferences are adjacently connected if one pair of alternatives

locally switches their relative rankings. Given distinct Pi, P ′i ∈ D, an AC-path

connecting Pi and P ′i is a sequence {P k
i }lk=1 such that P 1

i = Pi, P l
i = P ′i and

P k
i ∼A P k+1

i , k = 1, . . . , l − 1.

The Interior Property requires that given two distinct preferences with the same

peak, there is an AC-path connecting them such that every preference on the path

shares that peak.

Definition 4.1.1. Domain D satisfies the Interior Property if for all a ∈ A and

distinct Pi, P ′i ∈ Da, there exists an AC-path {P k
i }lk=1 ⊆ Da connecting Pi and P ′i .

The Interior Property is not enough to ensure that unanimity and strategy-proofness

imply the tops-only property (see Example 4.1.1).

Example 4.1.1. Let A = {a, b, c} and domain D of three preferences is specified in

Table 4.1.

P1 P2 P3

a b b

c a c

b c a

Table 4.1: Domain D

Evidently, domain D satisfies the Interior Property, i.e., P2 ∼A P3. Moreover,

domain D admits a two-voter unanimous and strategy-proof DSCF: (i) f(P1, P2) =

f(P2, P1) = ea and f(P1, P3) = f(P3, P1) = ec, (ii) f(P1, P1) = ea and (iii)

f(Pi, Pj) = eb, for all Pi, Pj ∈ {P2, P3}. Since social lotteries vary at profiles

(P1, P2) and (P1, P3) in favour of the second voter’s preference over a and c, DSCF

f does not satisfy the tops-only property. 2

Example 4.1.1 indicates that in addition to the Interior Property, a condition

needs to be imposed on preferences with distinct peaks, which is referred to the Ex-

terior Property. For the description of the Exterior Property, the notion of isolation
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needs to be established. Given distinct Pi, P ′i ∈ D, a pair of alternatives x, y ∈ A is

isolated in (Pi, P
′
i ) if there exists 1 ≤ k ≤ m such that

(i) Bk(Pi) = Bk(P ′i ),

(ii) either x ∈ Bk(Pi) and y /∈ Bk(Pi), or x /∈ Bk(Pi) and y ∈ Bk(Pi).

In the notion of isolation, two sets of top-k ranked alternatives in Pi and P ′i are

identical, include one alternative in {x, y} and exclude the other. Note that if x and

y are isolated in (Pi, P
′
i ), the relative rankings of x and y are identical in Pi and P ′i ,

i.e., [xPiy] ⇔ [xP ′iy]. Given distinct Pi, P ′i ∈ D and x, y ∈ A, let {P k
i }lk=1 be a

sequence of preferences (not necessarily an AC-path) such that P 1
i = Pi, P l

i = P ′i ;

and x and y are isolated in (P k
i , P

k+1
i ), k = 1, . . . , l− 1. Then, {P k

i }lk=1 is referred

to as a (x, y)-Is-path connecting Pi and P ′i .

Remark 4.1.1. The notion of isolation is independent of adjacent connectedness

since preferences in the definition of isolation are not necessarily adjacently con-

nected. Conversely, given Pi, P ′i ∈ D with Pi ∼A P ′i , a pair of alternatives x, y ∈ A

is isolated in (Pi, P
′
i ) if and only if the relative rankings of x and y are identical in

Pi and P ′i .

The Exterior Property says that fixing a pair of preferences with distinct peaks

and a pair of alternatives with the same relative ranking across these two prefer-

ences, one can construct a sequence of preferences connecting these two fixed pref-

erences such that the fixed pair of alternatives is isolated in every two consecutive

preferences of the sequence.

Definition 4.1.2. Domain D satisfies the Exterior Property if given Pi, P ′i ∈ D with

r1(Pi) 6= r1(P ′i ) and x, y ∈ A with xPiy and xP ′iy, there exists a (x, y)-Is-path

connecting Pi and P ′i .

Note that in the definition of the Exterior Property, x is preferred to y in every

preference of the (x, y)-Is-path connecting Pi and P ′i . With a small modification of

Example 4.1.1, an new example (Example 4.1.1 [continued]) is provided to illustrate
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how the terminology of isolation in the Exterior Property, in conjunction with the

Interior Property, drives a two-voter unanimous and strategy-proof RSCF to satisfy

the tops-only property. A general argument can be easily deduced from this example

to verify the sufficiency of the Interior Property and the Exterior Property for the

tops-only property.

Example. 4.1.1 [continued] Replace preference P1 in Example 4.1.1 by P̄1: aP̄1bP̄1c,

and let D̄ = {P̄1, P2, P3}. Observe that a and c are not isolated in (P1, P2) in Ex-

ample 4.1.1, but isolated in (P̄1, P2), i.e., B2(P̄1) = B2(P2) = {a, b} includes a

and excludes c. Correspondingly, domain D in Example 4.1.1 violates the Exterior

Property, i.e., there exists no (a, c)-Is-path in D connecting P1 and P2, while it is

easy to verify that domain D̄ satisfies both the Interior Property and the Exterior

Property. Consequently, for every two-voter unanimous and strategy-proof RSCF

ϕ : D̄2 → ∆(A), we have

ϕc(P̄1, P2) = 1−
∑

x∈{a,b}=B2(P̄1)

ϕx(P̄1, P2)

= 1−
∑

x∈{a,b}=B2(P2)

ϕx(P2, P2) by strategy-proofness on isolation B2(P̄1) = B2(P2) = {a, b}

= 1−
∑

x∈{a,b}=B2(P2)

ϕx(P2, P3) by unanimity, r1(P2) = r1(P3) = b

= 1−
∑

x∈{a,b}=B2(P̄1)

ϕx(P̄1, P3) by strategy-proofness on isolation B2(P̄1) = B2(P2) = {a, b}

= ϕc(P̄1, P3)

Therefore, it must be the case that ϕ(P̄1, P2) = ϕ(P̄1, P3) and moreover, ϕ satisfies

the tops-only property. 2

Now, state the main result.

Theorem 4.1.1. Let domain D satisfy the Interior Property and the Exterior Prop-

erty. Every unanimous and strategy-proof RSCF satisfies the tops-only property.

Proof. We first provide a lemma which is repeatedly applied in the proof of Theo-

rem 4.1.1. Let ϕ : DN → ∆(A), N ≥ 2, be a strategy-proof RSCF.

Lemma 4.1.1. Given Pi, P ′i ∈ D with Pi ∼A P ′i , assume xPi!y and yP ′i !x. Given
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Pj, P
′
j ∈ D, if x and y are isolated in (Pj, P

′
j), then for all P−{i,j} ∈ DN−2,

[
ϕ(Pi, Pj, P−{i,j}) = ϕ(P ′i , Pj, P−{i,j})

]
⇒
[
ϕ(Pi, P

′
j , P−{i,j}) = ϕ(P ′i , P

′
j , P−{i,j})

]
.

The proof of Lemma 4.1.1 is available in Appendix 8.

Now, we prove Theorem 4.1.1. Let domain D satisfy the Interior Property and

the Exterior Property. If N = 1, unanimity implies the tops-only property. Now, we

provide an induction argument on the number of voters.

Induction hypothesis: Given N ≥ 2, for all 1 ≤ n < N , every unanimous and

strategy-proof RSCF ϕ : Dn → ∆(A) satisfies the tops-only property.

Given an unanimous and strategy-proof RSCF ϕ : DN → ∆(A), we will show

that ϕ satisfies the tops-only property. It is easy to verify that ϕ satisfies the tops-

only property if for all i ∈ I; Pi, P ′i ∈ D with r1(Pi) = r1(P ′i ) and P−i ∈ DN−1,

ϕ(Pi, P−i) = ϕ(P ′i , P−i). Given distinct Pi, P ′i ∈ D with r1(Pi) = r1(P ′i ) ≡ a, the

Interior Property implies that there exists an AC-path {P k
i }lk=1 ⊆ Da connecting

Pi and P ′i . Then, it suffices to show that for each 1 ≤ k ≤ l − 1, ϕ(P k
i , P−i) =

ϕ(P k+1
i , P−i) for all P−i ∈ DN−1. Equivalently, we will show that for all i ∈ I;

Pi, P
′
i ∈ D with r1(Pi) = r1(P ′i ) and Pi ∼A P ′i , and P−i ∈ DN−1, ϕ(Pi, P−i) =

ϕ(P ′i , P−i).

Fixing two voters i, j ∈ I , we induce a function ψ : DN−1 → ∆(A) such that

ψ(Pi, P−{i,j}) = ϕ(Pi, Pi, P−{i,j}) for all Pi ∈ D and P−{i,j} ∈ DN−2. Evidently, ψ

is a well-defined RSCF satisfying unanimity and strategy-proofness (please refer to

Lemma 3 in [48]). Hence, induction hypothesis implies that ψ satisfies the tops-only

property. Accordingly, for all Pi, P ′i ∈ D with r1(Pi) = r1(P ′i ) and P−{i,j} ∈ DN−2,

ϕ(Pi, Pi, P−{i,j}) = ϕ(P ′i , P
′
i , P−{i,j}).

Fixing Pi, P ′i ∈ D with r1(Pi) = r1(P ′i ) and Pi ∼A P ′i , we assume xPi!y and

yP ′i !x. Given Pj ∈ D and P−{i,j} ∈ DN−2, we will prove that ϕ(Pi, Pj, P−{i,j}) =

ϕ(P ′i , Pj, P−{i,j}).

Claim 1: If r1(Pj) = r1(Pi), then ϕ(Pi, Pj, P−{i,j}) = ϕ(P ′i , Pj, P−{i,j}).

57



Firstly, by strategy-proofness, we have that for all t = 1, . . . ,m,

∑
x∈Bt(Pi)

ϕx(Pj, Pj, P−{i,j}) ≤
∑

x∈Bt(Pi)

ϕx(Pi, Pj, P−{i,j}) ≤
∑

x∈Bt(Pi)

ϕx(Pi, Pi, P−{i,j}),

∑
x∈Bt(P ′i )

ϕx(Pj, Pj, P−{i,j}) ≤
∑

x∈Bt(P ′i )

ϕx(P
′
i , Pj, P−{i,j}) ≤

∑
x∈Bt(P ′i )

ϕx(P
′
i , P

′
i , P−{i,j}).

Moreover, since r1(Pj) = r1(Pi) = r1(P ′i ), ϕ(Pj, Pj, P−{i,j}) = ψ(Pj, P−{i,j}) =

ψ(Pi, P−{i,j}) = ϕ(Pi, Pi, P−{i,j}) andϕ(Pj, Pj, P−{i,j}) = ψ(Pj, P−{i,j}) = ψ(P ′i , P−{i,j}) =

ϕ(P ′i , P
′
i , P−{i,j}). Consequently, for all t = 1, . . . ,m,

∑
x∈Bt(Pi) ϕx(Pi, Pj, P−{i,j}) =∑

x∈Bt(Pi) ϕx(Pi, Pi, P−{i,j}) and
∑

x∈Bt(P ′i )
ϕx(P

′
i , Pj, P−{i,j}) =

∑
x∈Bt(P ′i )

ϕx(P
′
i , P

′
i , P−{i,j}).

Hence, ϕ(Pi, Pj, P−{i,j}) = ϕ(Pi, Pi, P−{i,j}) andϕ(P ′i , Pj, P−{i,j}) = ϕ(P ′i , P
′
i , P−{i,j}).

Then, we haveϕ(Pi, Pj, P−{i,j}) = ϕ(Pi, Pi, P−{i,j}) = ψ(Pi, P−{i,j}) = ψ(P ′i , P−{i,j}) =

ϕ(P ′i , P
′
i , P−{i,j}) = ϕ(P ′i , Pj, P−{i,j}). This completes the verification of the claim.

Next, assume r1(Pj) 6= r1(Pi). Evidently, either xPjy or yPjx. We assume

xPjy. The argument related to yPjx is symmetric and we hence omit it. Since xPiy

and xPjy, the Exterior Property implies that there exists a (x, y)-Is-path {P k
j }lk=1 ⊆

D connecting Pi and Pj . Firstly, since P 1
j = Pi, Claim 1 impliesϕ(Pi, P

1
j , P−{i,j}) =

ϕ(Pi, Pi, P−{i,j}) = ϕ(P ′i , Pi, P−{i,j}) = ϕ(P ′i , P
1
j , P−{i,j}). Next, following the

sequences {P k
j }lk=1, since Pi ∼A P ′i ; xPi!y, yP ′i !x; and x and y are isolated in

(P k
j , P

k+1
j ), k = 1, . . . , l− 1, we can repeatedly applying Lemma 4.1.1 step by step

which eventually implies ϕ(Pi, Pj, P−{i,j}) = ϕ(P ′i , Pj, P−{i,j}). This completes

the verification of the induction hypothesis and hence Theorem 4.1.1.

4.2 Applications

This section first studies two important classes of restricted domains in the liter-

ature: connected domains ([44]) and the multi-dimensional single-peaked domain

([6]). Both two classes of domains are shown to satisfy the Interior Property and the

Exterior Property.

Next, this section slightly modifies both the Interior Property and the Exterior
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Property to accord with the Cartesian product setting on the alternative set, and

show that unanimity and strategy-proofness imply the tops-only property over the

separable domain ([5] and [13]).

After establishing the tops-only property for all unanimous and strategy-proof

RSCFs over the multi-dimensional single-peaked domain and the separable domain,

this section further characterizes strategy-proof RSCFs over these two domains. The

first characterization result generalizes Theorem 4 in [5] to a randomized setting

by showing that every ex-post efficient and strategy-proof RSCF over the multi-

dimensional single-peaked domain is a random dictatorship. In the second char-

acterization result, every unanimous and strategy-proof RSCF over the separable

domain is a generalized random dictatorship. This is a direct extension of Theorem

3 in [16].

Last, this section strengthens the axiom of ex-post efficiency to ex-post effi-

ciency* by enlarging the support of the social lottery under every preference profile

and studies a domain implication problem: what must a domain, which admits an

ex-post efficient* and strategy-proof RSCF, look like? It is established that in the

class of connected domains with minimal richness, single-peakedness is implied by

the admission of an ex-post efficient* and strategy-proof RSCF.

4.2.1 Connected Domains

Sato [44] introduces the notion of weak connectedness which is a necessary con-

dition (not sufficient) for the equivalence of adjacent manipulation-proofness (or

AM-proofness) and strategy-proofness in DSCFs.1

Definition 4.2.1. Domain D is weakly connected if given distinct Pi, P ′i ∈ D and

x, y ∈ A, there exists an AC-path {P k
i }lk=1 ⊆ D connecting Pi and P ′i such that

[xP k
i y and yP k+1

i x for some 1 ≤ k ≤ l − 1] ⇒ [xP t
i y, 1 ≤ t ≤ k, and yP t′

i x,
1A RSCF ϕ : DN → ∆(A) is AM-proof if for all i ∈ I; Pi, P ′i ∈ D with Pi ∼A P ′i and

P−i ∈ DN−1,
∑
x∈Bt(Pi)

ϕx(Pi, P−i) ≥
∑
x∈Bt(Pi)

ϕx(P ′i , P−i), t = 1, . . . ,m. [53] revisits
Sato’s work and shows that in conjunction with the Interior Property which is also necessary for the
equivalence of AM-proofness and strategy-proofness, weak connectedness is sufficient for enhanc-
ing AM-proofness to strategy-proofness in the class of unanimous DSCFs.
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k + 1 ≤ t′ ≤ l].

Evidently, weak connectedness implies the Exterior Property. However, the in-

verse argument does not hold since the Exterior Property only considers two prefer-

ences with distinct peaks, and the Is-path in the description of the Exterior Property

may not be an AC-path.

In this chapter, a domain satisfying the Interior Property and weak connected-

ness is referred to as a connected domain. Therefore, by Theorem 4.1.1, every unan-

imous and strategy-proof RSCF over a connected domain must satisfy the tops-only

property.

Proposition 4.2.1. Every unanimous and strategy-proof RSCF over a connected

domain satisfies the tops-only property.

Remark 4.2.1. The complete domain, the single-peaked domain ([34] and [20]), the

single-dipped domain ([9]) and maximal single-crossing domains ([42] and [14]) are

all connected domains. Therefore, the tops-only property is endogenized in every

unanimous and strategy-proof RSCF defined on these domains.

Remark 4.2.2. Every unanimous and AM-proof RSCF over a connected domain

also satisfies the tops-only property.2 Therefore, in a domain satisfying the equiva-

lence of AM-proofness and strategy-proofness, the tops-only property is implied by

unanimity and AM-proofness.

4.2.2 The Multi-Dimensional Single-Peaked Domain

In this subsection, a Cartesian product structure is imposed on the alternative set,

i.e., A = ×s∈MAs where M is finite, |M | ≥ 2; and As is finite and |As| ≥ 2 for

each s ∈ M . An alternative can be written as a = (as, a−s) = (aS, a−S) where

2The verification is similar to the proof of Theorem 4.1.1 which makes the following four
changes: (i) change strategy-proofness to AM-proofness, (ii) change the sentence “Given Pj , P ′j ∈
D” in Lemma 4.1.1 to “Given Pj , P ′j ∈ D with Pj ∼A P ′j”, (iii) change the hypothesis “r1(Pj) =
r1(Pi)” in Claim 1 to “Pj = Pi”, and (iv) change the first sentence of the last paragraph in the proof
of Theorem 4.1.1 to “Next, assume Pj 6= Pi.”.
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S ⊆ M is not empty. For notational convenience, given s ∈ M and as ∈ As, let

(as, A−s) = {x ∈ A|xs = as}.

Moreover, for each s ∈M , assume that all elements in As are located on a tree,

denotedG(As). Thus, a product of trees×s∈MG(As) is generated. For each s ∈M ,

let 〈as, bs〉 denote the unique path between as and bs in G(As). Given a, b ∈ A, let

〈a, b〉 = {x ∈ A|xs ∈ 〈as, bs〉 for each s ∈ M} denote the minimal box containing

all alternatives located between a and b in each dimension.

Definition 4.2.2. Given a product of trees ×s∈MG(As), a preference Pi is multi-

dimensional single-peaked on ×s∈MG(As) if for all a, b ∈ A,

[
a ∈ 〈r1(Pi), b〉\{b}

]
⇒ [aPib].

Given a product of trees ×s∈MG(As), let DMSP denote the multi-dimensional

single-peaked domain on ×s∈MG(As) containing all admissible preferences.

Remark 4.2.3. The formulation of multi-dimensional single-peakedness in this

subsection is the one where all elements in each component set are located on a

tree. This generalizes the earlier notion introduced by [6] where all elements in

each component set must be arranged on a line.

The multi-dimensional single-peaked domain satisfies both the Interior Prop-

erty and the Exterior Property. A simple example is first provided to illustrate (see

Example 4.2.1).

Example 4.2.1. Let A ≡ A1×A2 = {0, 1}×{0, 1}. The product of lines G(A1)×

G(A2) and domain DMSP are specified in Figure 4.1 and Table 4.2, respectively.

r r
r r

(0, 1) (1, 1)

(0, 0) (1, 0)

Figure 4.1: The product of lines G(A1)×G(A2)
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P1 P2 P3 P4 P5 P6 P7 P8

(0, 0) (0, 0) (1, 0) (1, 0) (0, 1) (0, 1) (1, 1) (1, 1)

(1, 0) (0, 1) (0, 0) (1, 1) (0, 0) (1, 1) (1, 0) (0, 1)

(0, 1) (1, 0) (1, 1) (0, 0) (1, 1) (0, 0) (0, 1) (1, 0)

(1, 1) (1, 1) (0, 1) (0, 1) (1, 0) (1, 0) (0, 0) (0, 0)

Table 4.2: Domain DMSP

The Interior Property is satisfied since P1 ∼A P2, P3 ∼A P4, P5 ∼A P6

and P7 ∼A P8. An instance is used here to illustrate how the requirement of

the Exterior Property is met. Note that (1, 0)P1(0, 1) and (1, 0)P7(0, 1). Cor-

respondingly, {P1, P3, P4, P7} is a
(
(1, 0), (0, 1)

)
-Is-path connecting P1 and P7,

i.e., B2(P1) = B2(P3) = {(0, 0), (1, 0)}, B1(P3) = B1(P4) = {(1, 0)} and

B2(P4) = B2(P7) = {(1, 0), (1, 1)}. 2

Now, state the formal result.

Proposition 4.2.2. Domain DMSP satisfies the Interior Property and the Exterior

Property. Therefore, every unanimous and strategy-proof RSCF over DMSP satisfies

the tops-only property.

The proof of Proposition 4.2.2 is available in Appendix 9.

Remark 4.2.4. Any sub-domain of DMSP satisfying Lemmas 9.1 - 9.5 in Appendix

9 meets both the Interior Property and the Exterior Property.

4.2.3 Separable Domains

This subsection follows the same Cartesian product setting on the alternative set in

Section 4.2.2.

Definition 4.2.3. A preference Pi is separable if for all s ∈M and as, bs ∈ As,

[
(as, x−s)Pi(b

s, x−s) for some x−s ∈ A−s
]
⇒
[
(as, y−s)Pi(b

s, y−s) for all y−s ∈ A−s
]
.
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Let DS denote the separable domain containing all separable preferences. For

more details and examples, please refer to [5], [13] and [40].

In particular, when |As| = 2 for all s ∈ M , DS = DMSP . Then, Proposi-

tion 4.2.2 implies that every unanimous and strategy-proof RSCF over DS satis-

fies the tops-only property. However, if one component set contains more than

two elements, Proposition 4.2.2 fails to show the tops-only result over DS due to

the violation of the Interior Property. For instance, assume {as, bs, cs} ⊆ As for

some s ∈ M . Given c ∈ A and Pi, P
′
i ∈ Dc

S , assume (as, z−s)Pi(b
s, z−s) and

(bs, z−s)P ′i (a
s, z−s) for all z−s ∈ A−s. Transforming Pi to P ′i through a sequence

of separable preferences, the relative rankings of (as, z−s) and (bs, z−s) for all

z−s ∈ A−s need to be switched simultaneously at some point of the sequence. This

indicates the violation of adjacent connectedness in the Interior Property. Therefore,

a new notion of connectedness needs to be formulated.

Formally, a pair of distinct preferences Pi, P ′i is multiple-adjacently connected,

denoted Pi ∼MA P ′i , if there exist s ∈M and as, bs ∈ As such that

(i) for every z−s ∈ A−s, (as, z−s) = rk(Pi) = rk+1(P ′i ) and (bs, z−s) = rk+1(Pi) =

rk(P
′
i ) for some 1 ≤ k ≤ m;

(ii) for every x /∈ (as, A−s)∪(bs, A−s), x = rk(Pi) = rk(P
′
i ) for some 1 ≤ k ≤ m.

In other words, in a pair of multiple-adjacently connected preferences, one can

identify a component s ∈ M and two elements as, bs ∈ As such that every pair of

alternatives (as, z−s) and (bs, z−s), z−s ∈ A−s, is contiguous in both preferences

with opposite relative rankings, while all other alternatives are ranked identically

in both preferences. For instance, in Example 4.2.1, P1 ∼MA P3, P2 ∼MA P5,

P4 ∼MA P7 and P6 ∼MA P8.

Remark 4.2.5. The notion of multiple-adjacent connectedness is independent of the

restriction of separable preferences, and is established to accord with the Cartesian

product setting. Similar to Remark 4.1.1, a pair of alternatives is isolated in two
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multiple-adjacently connected preferences if and only if they share the same relative

ranking in these two preferences.

Now, a pair of preferences Pi, P ′i ∈ D is referred to be generally connected,

denoted Pi ∼ P ′i , if either Pi ∼A P ′i , or Pi ∼MA P ′i . Given distinct Pi, P ′i ∈ D,

a sequence {P k
i }lk=1 is referred to as a GC-path connecting Pi and P ′i if P 1

i = Pi,

P l
i = P ′i and P k

i ∼ P k+1
i , k = 1, . . . , l − 1. More restrictively, given distinct

Pi, P
′
i ∈ D and x, y ∈ A, a sequence {P k

i }lk=1 is referred to as a (x, y)-Is-GC-path

connecting Pi and P ′i if it is both a (x, y)-Is-path and a GC-path.

With the notion of general connectedness, the Interior Property and the Exterior

Property can be modified. First, Modified Interior Property weakens the notion of

AC-path in the Interior Property to the GC-path. Similarly, to formulate Modified

Exterior Property, the Is-path in the Exterior Property is replaced by the Is-GC-path.

Definition 4.2.4. Domain D satisfies the Modified Interior Property if for all a ∈ A

and distinct Pi, P ′i ∈ Da, there exists a GC-path {P k
i }lk=1 ⊆ Da connecting Pi and

P ′i .

Definition 4.2.5. Domain D satisfies the Modified Exterior Property if given Pi, P ′i ∈

D with r1(Pi) 6= r1(P ′i ), and x, y ∈ A with xPiy and xP ′iy, there exists a (x, y)-Is-

GC-path connecting Pi and P ′i .

Remark 4.2.6. The combination of the Modified Interior Property and the Mod-

ified Exterior Property is not a sufficient condition for the tops-only property in

general. However, once embedding them in the separable preference context, they

are sufficient (see Proposition 4.2.3).

Example 4.2.2 is used to illustrate the Modified Interior Property and the Modi-

fied Exterior Property in the separable domain.

Example 4.2.2. Let A = {1, 2, 3} × {1, 2}. Six separable preferences are high-

lighted in Table 4.3, and specify the corresponding general connectedness relations

in Figure 4.2.
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P1 P2 P3 P4 P5 P6

(1, 1) (1, 1) (1, 2) (1, 2) (1, 2) (1, 2)

(1, 2) (1, 2) (1, 1) (1, 1) (1, 1) (1, 1)

(2, 1) (2, 1) (2, 2) (2, 2) (3, 2) (3, 2)

(3, 1) (2, 2) (2, 1) (3, 2) (2, 2) (3, 1)

(2, 2) (3, 1) (3, 2) (2, 1) (3, 1) (2, 2)

(3, 2) (3, 2) (3, 1) (3, 1) (2, 1) (2, 1)

Table 4.3: Six separable preferences

P1 P2

[
(3, 1), (2, 2)

]
P3

[
(1, 1), (1, 2)

]
,
[
(2, 1), (2, 2)

]
[
(3, 1), (3, 2)

] P4

[
(2, 1), (3, 2)

]
P5

[
(2, 2), (3, 2)

]
[
(2, 1), (3, 1)

] P6

[
(2, 2), (3, 1)

]

Figure 4.2: General connectedness relations3

According to Figure 4.2, the requirement of the Modified Interior Property is

satisfied in sub-domains {P1, P2} ⊆ D(1,1)
S and {P3, P4, P5, P6} ⊆ D(1,2)

S respec-

tively.

Observe that P4 and P5 share the same peak; but there exists no AC-path in DS

connecting P4 and P5.4 Therefore, the Interior Property fails in DS .

An instance is used to illustrate how the requirement of the Modified Exterior

Property is satisfied. Observe that (1, 2)Pk(2, 2) for all 1 ≤ k ≤ 6. Thus, the se-

quence {Pk}6
k=1 is a

(
(1, 2), (2, 2)

)
-Is-GC-path connecting P1 and P6. To just meet

the requirement of the Exterior Property with respect to (P1, P6) and
(
(1, 2), (2, 2)

)
,

one can refer to a shorter sequence {P1, P5, P6}, where P1 and P5 is not generally

connected.5

3For instance, P1
[(3,1),(2,2)] P2 denotes P1 ∼A P2; (3, 1)P1!(2, 2) and (2, 2)P2!(3, 1). Sim-

ilarly, P4
[(2,2),(3,2)]
[(2,1),(3,1)] P5 denotes P4 ∼MA P5; (2, 2)P4!(3, 2), (3, 2)P5!(2, 2); (2, 1)P4!(3, 1) and

(3, 1)P5!(2, 1).
4Suppose that there exists an AC-path {P̄ ki }lk=1 ⊆ DS connecting P4 and P5. Since

(2, 2)P4(3, 2) and (3, 2)P5(2, 2), there must exist 1 ≤ k ≤ l − 1 such that (2, 2)P̄ ki (3, 2) and
(3, 2)P̄ k+1

i (2, 2). Then, separability implies (2, 1)P̄ ki (3, 1) and (3, 1)P̄ k+1
i (2, 1) which contradicts

the hypothesis P̄ ki ∼A P̄
k+1
i .

5Note that B2(P1) = B2(P5) = {(1, 1), (1, 2)} and B1(P5) = B1(P6) = {(1, 2)}.
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Although there is no
(
(3, 1), (2, 2)

)
-Is-GC-path connecting P1 and P6 in Table

4.3. one can identify a
(
(3, 1), (2, 2)

)
-Is-GC-path in DS connecting P1 and P6 ac-

cording to Proposition 4.2.4. 2

Now, here is the result in the restricted environment of separable preferences.

Proposition 4.2.3. Let domain D ⊆ DS satisfy the Modified Interior Property and

the Modified Exterior Property. Every unanimous and strategy-proof RSCF over D

satisfies the tops-only property.

Proof. We first provide a lemma which is repeatedly applied in the proof of Propo-

sition 4.2.3.

Lemma 4.2.1. Given Pi, P ′i ∈ D with Pi ∼MA P ′i , assume that

(i) for every z−s ∈ A−s, (xs, z−s) = rk(Pi) = rk+1(P ′i ) and (ys, z−s) =

rk+1(Pi) = rk(P
′
i ) for some 1 ≤ k ≤ m;

(ii) for every z /∈ (xs, A−s)∪(ys, A−s), z = rk(Pi) = rk(P
′
i ) for some 1 ≤ k ≤ m.

Given Pj, P
′
j ∈ D with Pj ∼ P ′j , assume that for all z−s ∈ A−s, (xs, z−s) and

(ys, z−s) are isolated in (Pj, P
′
j). Then, for all P−{i,j} ∈ DN−2,

[
ϕ(Pi, Pj, P−{i,j}) = ϕ(P ′i , Pj, P−{i,j})

]
⇒
[
ϕ(Pi, P

′
j , P−{i,j}) = ϕ(P ′i , P

′
j , P−{i,j})

]
.

The proof of Lemma 4.2.1 is available in Appendix 10. Note that Lemma 4.2.1

holds without restricting preferences to be separable.

Similar to the verification of Theorem 4.1.1, we apply a induction argument to

show Proposition 4.2.3. If N = 1, unanimity implies the tops-only property. Now,

we provide an induction hypothesis on the number of voters.

Induction hypothesis: Given N ≥ 2, for all 1 ≤ n < N , every unanimous and

strategy-proof RSCF ϕ : Dn → ∆(A) satisfies the tops-only property.

Given an unanimous and strategy-proof RSCF ϕ : DN → ∆(A), we will show

that ϕ satisfies the tops-only property. Similarly to the proof of Theorem 4.1.1, we
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will show that for all i ∈ I; Pi, P ′i ∈ D with r1(Pi) = r1(P ′i ) and Pi ∼ P ′i and

P−i ∈ DN−1, ϕ(Pi, P−i) = ϕ(P ′i , P−i).

Fixing two voters i, j ∈ I , we induce a function ψ : DN−1 → ∆(A) such that

ψ(Pi, P−{i,j}) = ϕ(Pi, Pi, P−{i,j}) for all Pi ∈ D and P−{i,j} ∈ DN−2. Evidently,

ψ is a well-defined RSCF satisfying unanimity and strategy-proofness. Therefore,

induction hypothesis implies that ψ satisfies the tops-only property. Accordingly,

for all Pi, P ′i ∈ D with r1(Pi) = r1(P ′i ) and P−{i,j} ∈ DN−2, ϕ(Pi, Pi, P−{i,j}) =

ψ(Pi, P−{i,j}) = ψ(P ′i , P−{i,j}) = ϕ(P ′i , P
′
i , P−{i,j}).

Fix Pi, P ′i ∈ D with r1(Pi) = r1(P ′i ) and Pi ∼ P ′i . Given Pj ∈ D and P−{i,j} ∈

DN−2, we will show that ϕ(Pi, Pj, P−{i,j}) = ϕ(P ′i , Pj, P−{i,j}).

By a similar argument as Claim 1 in the proof of Theorem 4.1.1, we know that

if r1(Pj) = r1(Pi), then ϕ(Pi, Pj, P−{i,j}) = ϕ(P ′i , Pj, P−{i,j}).

Henceforth, we assume r1(Pj) 6= r1(Pi). Since Pi ∼ P ′i , either Pi ∼A P ′i or

Pi ∼MA P ′i . If Pi ∼A P ′i , assume xPi!y and yP ′i !x. Evidently, either xPjy or

yPjx. Assume xPjy. The verification related to yPjx is symmetric and we hence

omit it. According to the Modified Exterior Property, we have a (x, y)-Is-GC-path

{P k
j }lk=1 ⊆ D connecting Pi and Pj . Sinceϕ(Pi, P

1
j , P−{i,j}) = ϕ(Pi, Pi, P−{i,j}) =

ϕ(P ′i , Pi, P−{i,j}) = ϕ(P ′i , P
1
j , P−{i,j}), following {P k

j }lk=1 and repeatedly applying

Lemma 4.1.1 step by step, we have ϕ(Pi, Pj, P−{i,j}) = ϕ(P ′i , Pj, P−{i,j}).

Next, we assume Pi ∼MA P ′i , i.e., there exist s ∈M and xs, ys ∈ A−s such that

(i) for every z−s ∈ A−s, (xs, z−s) = rk(Pi) = rk+1(P ′i ) and (ys, z−s) =

rk+1(Pi) = rk(P
′
i ) for some 1 ≤ k ≤ m;

(ii) for every z /∈ (xs, A−s)∪(ys, A−s), z = rk(Pi) = rk(P
′
i ) for some 1 ≤ k ≤ m.

Separability implies either (xs, z−s)Pj(y
s, z−s) for all z−s ∈ A−s, or (ys, z−s)Pj(x

s, z−s)

for all z−s ∈ A−s. We assume (xs, z−s)Pj(y
s, z−s) for all z−s ∈ A−s. The argu-

ment related to the other case is symmetric and we hence omit it. Given z−s ∈ A−s,

since (xs, z−s)Pi(y
s, z−s) and (xs, z−s)Pj(y

s, z−s), by the Modified Exterior Prop-

erty, there exists a
(
(xs, z−s), (ys, z−s)

)
-Is-GC-path {P k

j }lk=1 ⊆ D connecting Pi
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and Pj . Evidently, (xs, z−s)P k
j (ys, z−s) for all 1 ≤ k ≤ l. Then, separability im-

plies that for all z−s ∈ A−s, (xs, z−s)P k
j (ys, z−s), k = 1, . . . , l. Consequently, by

Remarks 4.1.1 and 4.2.5, for each z−s ∈ A−s, (xs, z−s) and (ys, z−s) are isolated in

(P k
i , P

k+1
i ), k = 1, . . . , l − 1. Now, since ϕ(Pi, P

1
j , P−{i,j}) = ϕ(Pi, Pi, P−{i,j}) =

ϕ(P ′i , Pi, P−{i,j}) = ϕ(P ′i , P
1
j , P−{i,j}), following {P k

j }lk=1 and repeatedly apply-

ing Lemma 4.2.1 step by step, we have ϕ(Pi, Pj, P−{i,j}) = ϕ(P ′i , Pj, P−{i,j}).

This completes the verification of the induction hypothesis and hence Proposition

4.2.3.

In Proposition 4.2.3, the Modified Interior Property and the Modified Exterior

Property are assumed exogenously to be embedded on separable domains. However,

the compatibility of these two properties and separability remains to be established.

Proposition 4.2.4 shows that the separable domain satisfies both the Modified Inte-

rior Property and the Modified Exterior Property.

Proposition 4.2.4. Domain DS satisfies the Modified Interior Property and the

Modified Exterior Property.

The proof of Proposition 4.2.4 is available in Appendix 11.

Remark 4.2.7. Any sub-domain of DS satisfying Lemmas 11.1 - 11.5 in Appendix

11 meets both the Modified Interior Property and the Modified Exterior Property.

Remark 4.2.8. According to the proof of Proposition 4.2.2, the multi-dimensional

single-peaked domain DMSP also satisfies the Modified Interior Property and the

Modified Exterior Property. However, Proposition 4.2.3 cannot be simply adapted

for the context of multi-dimensional single-peaked preferences due to the violation

of separability. An example is provided to illustrate. LetA ≡ A1×A2 = {1, 2, 3}×

{0, 1}. Both graphs G(A1) and G(A2) are lines following the natural number or-

der. Three multi-dimensional single-peaked preferences over G(A1) × G(A2) are

highlighted below.
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Pi P ′i Pj

(2, 0) (2, 0) (2, 1)

(2, 1) (2, 1) (2, 0)

(1, 0) (3, 0) (1, 1)

(3, 0) (1, 0) (3, 1)

(1, 1) (3, 1) (3, 0)

(3, 1) (1, 1) (1, 0)

Note that Pi ∼MA P ′i where (i) (1, 0)Pi!(3, 0) and (1, 1)Pi!(3, 1), and (ii) (3, 0)P ′i !(1, 0)

and (3, 1)P ′i !(1, 1). However, since Pj is not separable, e.g., (3, 0)Pj(1, 0) and

(1, 1)Pj(3, 1), Pj disagrees with Pi on the relative ranking of (1, 0) and (3, 0), and

disagrees with P ′i on the relative ranking of (1, 1) and (3, 1). Consequently, the

argument in the last paragraph of the proof of Proposition 4.2.3 fails here.

Remark 4.2.9. The lexicographically separable domain (see Definition 1.1 in Ap-

pendix 11), where each component set contains at least three elements, violates

both the Modified Interior Property and the Modified Exterior Property.6 However,

Chatterji et al. [16] show that the tops-only property is implied by unanimity and

strategy-proofness over the lexicographically separable domain.

4.2.4 Characterization of Strategy-proof RSCFs

In characterizing strategy-proof DSCFs and RSCFs, the tops-only property is al-

ways established in advance which simplifies the rest of characterization signif-

icantly. This subsection provides two characterization results on strategy-proof

RSCFs over the multi-dimensional single-peaked domain and the separable domain,

respectively.

Theorem 4 in Barberà et al. [5] implies that there exists no efficient, strategy-

proof and non-dictatorial DSCF over DMSP where |M | ≥ 3 and |As| = 2 for
6First, the lexicographically separable domain never includes a pair of adjacently connected pref-

erences. Second, between a pair of lexicographically separable preferences which are multiple-
adjacently connected, the lexicographic orders are identical. Consequently, there exists no GC-path
in the lexicographically separable domain connecting two lexicographically separable preferences
with distinct lexicographic orders.
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every s ∈ M . With the tops-only property established in Proposition 4.2.2, their

impossibility result can be pushed to the randomized setting.

Proposition 4.2.5. Assume |M | ≥ 3. An ex-post efficient RSCF over DMSP is

strategy-proof if and only if it is a random dictatorship.

The proof of Proposition 4.2.5 is available in Appendix 12.

The verification of Proposition 4.2.5 relies heavily on the tops-only property.

For instance, given a preference profile P ≡ (P1, P2) ∈ D2
MSP where the peaks of

two preferences disagree on at least two components, and an arbitrary alternative

a distinct from two peaks, one can always construct a tops-equivalent preference

profile P̄ ≡ (P̄1, P̄2) ∈ D2
MSP , i.e., r1(P̄1) = r1(P1) and r1(P̄2) = r1(P2), such that

a is Pareto dominated. Then, ex-post efficiency ensures that a gets probability zero

under profile P̄ , and hence the tops-only property implies that a gets probability

zero under profile P .

Next, Chatterji et al. [16] show that every unanimous and strategy-proof RSCF

over the lexicographically separable domain with |As| ≥ 3 for all s ∈ M (recall

Definition 1.1 in Appendix 1), which is a strict subset of the separable domain, is

a generalized random dictatorship. Establishing the tops-only property (by Propo-

sitions 4.2.3 and 4.2.4) allows one to directly extend their characterization result to

the separable domain.

The formal definition of generalized random dictatorship is first presented here.

According to the Cartesian product setting, let i = (is)s∈M ∈ I |M | denote a |M |-

tuple of voters. A |M |-tuple i can be viewed as a combination of |M | dictators

where for each s ∈ M , voter is is the dictator over As. For each i ∈ I |M |, a

positive real number γ(i) ∈ R+ is associated, and let
∑

i∈I|M| γ(i) = 1. Given

P ∈ DN and i ∈ I |M |, according to voter is and her peak r1(Pis), one identifies

the component r1(Pis)
s. Then, combine all identified components and assemble

an alternative
(
r1(Pis)

s
)
s∈M . In a generalized random dictatorship, the probability

assigned to alternative a equals to the sum of weights γ(i) where the assembling of

the alternative according to i leads to alternative a. Formally, a RSCF ϕ : DN →
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∆(A) is a generalized random dictatorship if there exists a sequence [γ(i)]i∈I|M| ∈

RN |M|
+ with

∑
i∈I|M| γ(i) = 1 such that for every P ∈ DN and a ∈ A,

ϕa(P ) =
∑

i∈I|M|: (r1(Pis )s)s∈M=a

γ(i).

Proposition 4.2.6. Let |As| ≥ 3 for all s ∈ M . An unanimous RSCF over DS is

strategy-proof if and only if it is a generalized random dictatorship.

Remark 4.2.10. Both characterization results in Propositions 4.2.5 and 4.2.6 are

instances of the extreme point property, i.e., every ex-post efficient (unanimous re-

spectively) and strategy-proof RSCF is a convex combination of the counterpart

DSCFs. One may conjecture that the extreme point property remains valid over

the multi-dimensional single-peaked domain when ex-post efficiency is weakened

to unanimity.

4.2.5 A Domain Implication Problem

A random dictatorship obviously satisfies ex-post efficiency since only peaks of

preferences receive positive probabilities. However, recall the infirmity of a ran-

dom dictatorship mentioned in Chapter 3, it is also reasonable to put some positive

weight on some (Pareto) undominated alternative which is not a peak of any voter,

but is “highly ranked” by all voters. To increase the flexibility of the social lot-

tery, all undominated alternatives under a preference profile are allowed to receive

strictly positive probabilities. This strengthens ex-post efficiency to a new axiom

ex-post efficiency*.

Given P ∈ DN , let Ω(P ) denote the set of undominated alternatives, i.e.,

a ∈ Ω(P ) if there exists no x ∈ A such that xPia for all i ∈ I . Given a lottery

α ∈ ∆(A), the support of the lottery α is a set of alternatives with strictly positive

probabilities, i.e., suppα = {a ∈ A|αa > 0}. The axiom of ex-post efficiency

implies suppϕ(P ) ⊆ Ω(P ) for all P ∈ DN , while ex-post efficiency* requires

suppϕ(P ) = Ω(P ) for all P ∈ DN .
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Definition 4.2.6. A RSCF ϕ : DN → ∆(A) is ex-post efficient* if for every P ∈ DN ,

suppϕ(P ) = Ω(P ).

According to the random dictatorship result in [26], and Propositions 4.2.5 and

4.2.6, ex-post efficiency* and strategy-proofness are not compatible on the com-

plete domain, the multi-dimensional single-peaked domain and the separable do-

main. A natural question arises: on what domains, if any, are ex-post efficiency*

and strategy-proofness compatible? This subsection shows that in the class of con-

nected domains with minimal richness, single-peakedness (on a tree) is uniquely

characterized by the admission of an ex-post efficient* and strategy-proof RSCF.

Here is the domain implication result.

Proposition 4.2.7. Let domain D be minimally rich and connected. If it admits

an ex-post efficient* and strategy-proof RSCF, it is single-peaked. Conversely, a

single-peaked domain admits an ex-post efficient* and strategy-proof RSCF.

The proof of Proposition 4.2.7 is available in Appendix 13.

Remark 4.2.11. Chapter 3 studies a similar domain implication problem, and shows

that on a path-connected domain, the admission of an unanimous, tops-only and

strategy-proof RSCF satisfying the compromise property (see Definition 3.1.1) im-

plies single-peakedness. The axiom of ex-post efficiency* implies unanimity and

the compromise property. More importantly, the domain condition of connected-

ness strengthens the richness condition of path-connectedness and helps endogenize

the tops-only property so that Theorem 3.3.1 can be adopted to verify Proposition

4.2.7. Moreover, the exogenous combination of the compromise property and the

tops-only property might cause inefficiency in some social lottery, e.g., a Pareto

dominated alternative is assigned with strictly positive probability. This possibility

of inefficiency is precluded here by requiring the RSCF to be ex-post efficient and

endogenizing the tops-only property.
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4.3 Discussion

This section discusses related literature, and comments on the necessity of the suf-

ficient condition.

4.3.1 Relation to the Literature

Since tops-onlyness imposes an important well-behaved property on social choice

functions, it has attracted considerable attention in the literature, especially in the

characterization of strategy-proof DSCFs and RSCFs.7 The model studied in this

chapter uses an ordinal formulation of strategy-proofness introduced by [26]. There

is an alternative formulation of strategy-proofness which uses cardinal information

on preferences (e.g., [28], [21] and [23]). Here too the tops-only property plays an

important role in characterizing randomized strategy-proof voting rules. One may

conjecture that a version of our richness condition would allow to endogenize the

tops-only property in these cardinal models. This is left for future work.

Earlier work has studied the tops-only property for DSCFs. In particular, Wey-

mark [52] initiated the study of the tops-only property in single-peaked preferences

on a real line and continuous preferences on a metric space. Subsequent work fo-

cuses on the case of finite alternatives and strict preferences. Lemma 3.1 in Nehring

and Puppe [35] show that every unanimous and strategy-proof DSCFs over a gener-

alized single-peaked domain satisfying two particular richness conditions must be

tops-only, while Chatterji and Sen [15] introduce two conditions: Property T and

Property T*, which are sufficient for the tops-only property in DSCFs for the case

of two voters and the case of arbitrary number of voters, respectively.8 However,

the sufficient conditions mentioned above imply that the domain must be minimally

rich. The sufficient condition in this chapter is independent of minimal richness.

Remark 4.3.1. [15] also study two non-minimally rich domains: the domain of

7See for instance [34], [6], [18], [52], [42], [33], [39], [28], [21], [22], [24], [23], [16] and [38].
8Property T* implies Property T, and covers generalized single-peaked domains.
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in-between preferences ([27]) and Kelly’s domain ([31]), and show that the tops-

only property is satisfied by every unanimous and strategy-proof DSCF. These two

domains do not satisfy the sufficient condition in this chapter directly. However,

observe that for instance, in the domain of in-between preferences, the alternative

which is never the peak of any preference is not included in the range of any unani-

mous and strategy-proof DSCF (a similar argument holds in Kelly’s domain).9 Ac-

cordingly, inducing new preferences by removing alternatives excluded from the

ranges of all unanimous and strategy-proof DSCFs, the new domains satisfy the

Interior Property and the Exterior Property.

Even with minimal richness, there is an example of a domain which meets a

sufficient condition in this chapter but violates Property T* (see Example 4.3.1).

Moreover, Property T is not sufficient for endogenizing the tops-only property in a

randomized environment (see Example 4.3.2).

Example 4.3.1. Let A = {a1, a2, a3, a4}. Domain D of seven preferences is speci-

fied in Table 4.4.

P1 P2 P3 P4 P5 P6 P7

a1 a2 a2 a2 a3 a3 a4

a2 a1 a3 a3 a2 a4 a3

a3 a3 a1 a4 a4 a2 a2

a4 a4 a4 a1 a1 a1 a1

Table 4.4: Domain D

Indeed, domain D is a maximal single-crossing domain with respect to linear

orders a1 > a2 > a3 > a4 and P1 � P2 � P3 � P4 � P5 � P6 � P7. It is easy to

verify that domain D is connected and hence satisfies the Interior Property and the

Exterior Property. However, domain D violates Property T*, e.g., (i) a3P1a4; (ii)

for every Pi ∈ Da1 = {P1}, a1Pia3, but (iii) there exists no preference P ′i ∈ Da3 =

{P5, P6} such that a1P
′
ia4. 2

9Given a DSCF f : DN → A, Range(f) = {x ∈ A|f(P ) = x for some P ∈ DN}.
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Example 4.3.2. Let A = {a1, a2, a3, a4, a5}. Domain D of fourteen preferences is

specified in Table 4.5.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

a1 a1 a1 a2 a2 a2 a3 a3 a3 a4 a4 a4 a5 a5

a2 a3 a5 a1 a3 a4 a1 a2 a4 a2 a3 a5 a1 a4

a3 a2 a3 a3 a1 a3 a2 a1 a2 a3 a2 a3 a4 a1

a5 a5 a4 a5 a5 a5 a4 a5 a1 a5 a5 a2 a2 a2

a4 a4 a2 a4 a4 a1 a5 a4 a5 a1 a1 a1 a3 a3

Table 4.5: Domain D

It is easy to verify that domain D satisfies Property T. Therefore, every two-voter

unanimous and strategy-proof DSCF satisfies the tops-only property. More specifi-

cally, domain D is linked (recall Definition 2.1.1), and hence every unanimous and

strategy-proof DSCF is a dictatorship. However, domain D admits the following

unanimous and strategy-proof RSCF which violates the tops-only property:

ϕ(Pi, Pj) =


1
2
er1(Pi) + 1

2
er1(Pj), if either Pi /∈ Da3 or Pj /∈ Da5 ;

1
4
ea3 + 1

4
ea2 + 1

2
ea5 , if Pi = P8 and Pj ∈ Da5 ;

1
4
ea3 + 1

4
ea1 + 1

4
ea4 + 1

4
ea5 , if Pi ∈ {P7, P9} and Pj ∈ Da5 .

The verification of strategy-proofness is put in Appendix 14. 2

4.3.2 Necessity

It is easy to observe that the Interior Property and the Exterior Property is not nec-

essary for the tops-only property. This is not altogether surprising as every random

dictatorship domain (recall Definition 1.1.7) ensures the tops-only property.10 While

the complete domain is an instance of a random dictatorship domain that satisfies

the Interior Property and the Exterior Property, one can construct a random dicta-

torship domain (using Theorem 2.3.1) violating both the Interior Property and the
10 Characterizing the necessary and sufficient conditions for random dictatorship domains is an

important open question in the literature.
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Exterior Property, where the tops-only property prevails via a random dictatorship

characterization result (see Example 4.3.3).

Example 4.3.3. Let A = {a1, a2, a3, a4}. Domain D of ten preferences is specified

in Table 4.6.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

a1 a1 a2 a2 a2 a3 a3 a3 a4 a4

a2 a3 a1 a3 a4 a1 a2 a4 a2 a3

a3 a2 a3 a1 a1 a2 a1 a2 a1 a1

a4 a4 a4 a4 a3 a4 a4 a1 a3 a2

Table 4.6: Domain D

First, domain D violates the Interior Property, e.g., Da2 = {P3, P4, P5}, but P5 is

not adjacently connected to either P3 or P4. Second, domain D violates the Exterior

Property, e.g., there exists no (a1, a3)-Is-path connecting P3 and P9.11 However,

domain D is linked (see Definition 2.1.1) and satisfies Condition H (see Definition

2.3.1) which implies that every unanimous and strategy-proof RSCF is a random

dictatorship by Theorem 2.3.1, and hence satisfies the tops-only property. 2

This chapter is unable to identify a necessary and sufficient condition for the

tops-only property in a general setting. Weakening the sufficient condition is one

approach to push it closer to necessity. Fortunately, the Exterior Property can be

weakened by eliminating some redundant Is-paths in the domain, and keeps its

sufficiency for the tops-only property in conjunction with the Interior Property. This

weakening is referred to as the Exterior Property*. Moreover, this chapter asserts

that in some particular circumstance, the combination of the Interior Property and

the Exterior Property* is necessary and sufficient for endogenizing the tops-only

property.

11Note that a1 is ranked above a3 in all preferences {P1, P2, P3, P5, P9}, while a3 is preferred
to a1 in all rest of preferences. One cannot form a (a1, a3)-Is-path connecting P3 and P9 in
{P1, P2, P3, P5, P9}.
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Definition 4.3.1. A domain D satisfies the Exterior Property* if given Pi, P ′i ∈ D

and x, y ∈ A satisfying the following two conditions

(i) there exists P̄i ∈ D such that r1(Pi) = r1(P̄i); Pi ∼A P̄i, xPi!y and yP̄i!x,

(ii) r1(Pi) 6= r1(P ′i ) and xP ′iy,

there exists a (x, y)-Is-path connecting Pi and P ′i .

In Definition 4.3.1, preference P̄i can be viewed as a bench-mark which tests

whether Pi and (x, y) are critical (refer to condition (i) in Definition 4.3.1). Once

the criticality is verified, if Pi and P ′i disagree on peaks but coincide on the relative

ranking of x and y (refer to condition (ii) in Definition 4.3.1), the Exterior Property*

requires the existence of a (x, y)-Is-path connecting Pi and P ′i . Example 4.3.4 is

provided to illustrate the Exterior Property*.

Example 4.3.4. Let A = {a1, a2, a3, a4}. Domain D of five preferences is specified

in Table 4.7.

P1 P2 P3 P4 P5

a1 a2 a2 a3 a4

a2 a3 a3 a2 a3

a3 a1 a4 a4 a2

a4 a4 a1 a1 a1

Table 4.7: Domain D

Domain D satisfies the Interior Property, i.e., P2 ∼A P3; but violates the Exte-

rior Property, i.e., there exists no (a2, a3)-Is-path connecting P1 and P2. However,

since P2 and (a2, a3) are not critical, there is no need to construct a (a2, a3)-Is-path

connecting P2 and P1. In domain D, for instance, P2 and (a1, a4) are critical. Cor-

respondingly, sequence {P2, P1} is a (a1, a4)-Is-path connecting P2 and P1. Indeed,

domain D satisfies the Exterior Property*. 2

The following corollary shows that the combination of the Interior Property and

the Exterior Property* is sufficient for the tops-only property.
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Corollary 4.3.1. Let domain D satisfy the Interior Property and the Exterior Prop-

erty*. Every unanimous and strategy-proof RSCF satisfies the tops-only property.

Proof. The verification of Corollary 4.3.1 follows from a slight modification of the

proof Theorem 4.1.1: replacing the fifth sentence of the last paragraph in the proof

of Theorem 4.1.1 by the following sentence: Since (i) r1(Pi) = r1(P ′i ); Pi ∼A P ′i ,

xPi!y, yP ′i !x; (ii) r1(Pi) 6= r1(Pj) and xPjy, the Exterior Property* implies that

there exists a (x, y)-Is-path {P k
j }lk=1 ⊆ D connecting Pi and Pj .

The Exterior Property* is not necessary for the tops-only property either. For

instance, in Example 4.3.3, (i) r1(P3) = r1(P4) = a2; P3 ∼A P4, a1P3!a3 and

a3P4!a1, (ii) r1(P9) = a4 6= a2 and a1P9a3, but (iii) there exists no (a1, a3)-Is-path

connecting P3 and P9. In particular, if restrict attention to multi-dimensional single-

peaked domains studied in Example 4.2.1, one can show that the Interior Property

and the Exterior Property* is a necessary and sufficient condition for the tops-only

property, provided a mild richness condition holds.

A multi-dimensional single-peaked domain D ⊆ DMSP is significantly rich if

for all a ∈ Awith Da 6= ∅, Da = Da
MSP . In other words, in a significantly rich multi-

dimensional single-peaked domain, if an alternative is the peak of some preference,

then the domain must include every multi-dimensional single-peaked preference

whose peak is that alternative.

Proposition 4.3.1. Let A = {0, 1} × {0, 1} and D ⊆ DMSP be significantly rich.

Every unanimous and strategy-proof RSCF over D satisfies the tops-only property

if and only if D satisfies the Interior Property and the Exterior Property*.

The proof of Proposition 4.3.1 is available in Appendix 15.

Moreover, observe that the Exterior Property* arises naturally in single-peaked

domains (on a line), provided the satisfaction of the Interior Property and the Left-

Right Extreme condition introduced by [36].

Given a graph of line, let D be a single-peaked domain on the line. For notational

convenience, write the line as a1 < a2 < · · · < am. A single-peaked domain
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D (on the line) satisfies the Left-Right Extreme condition if for all 1 ≤ k ≤ m

with Dak 6= ∅, there exist Pi, P ′i ∈ Dak such that the following two conditions are

satisfied:

Left-extreme condition: all alternatives at the left side of ak are preferred to all al-

ternatives at the right side of ak in Pi, i.e., [s < k < t]⇒ [asPiat].

Right-extreme condition: all alternatives at the right side of ak are preferred to all

alternatives at the left side of ak in P ′i , i.e., [s < k < t]⇒ [atP
′
ias].

Proposition 4.3.2. Given a single-peaked domain on a line, if it satisfies the Interior

Property and the Left-Right extreme condition, it satisfies the Exterior Property*.

The proof of Proposition 4.3.2 is available in Appendix 16.
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Chapter 5 Summary of Conclusions

Chapter 2 has shown that dictatorial domains are not necessarily random dictator-

ship domains. In fact, dictatorial domains may admit “well-behaved” strategy-proof

random social choice functions. Chapter 2 has provided additional conditions on a

class of dictatorial domains to ensure that they are random dictatorship domains.

These additional conditions are quite restrictive, but examples suggest that these

conditions are “close” to being necessary.

Chapter 3 has characterized domains of single-peaked preferences as the only

domains that admit “well-behaved” strategy-proof random social choice functions.

This result provides a justification of the salience of single-peaked preferences and

evidence in favor of the Gul conjecture.

Chapter 4 has identified a sufficient condition on domains which ensures that

every unanimous and strategy-proof RSCF has the tops-only property. Moreover,

Chapter 4 has also provided some applications of this sufficient condition.
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[6] S. Barberà, F. Gul, and E. Stacchetti. Generalized median voter schemes and

committees. Journal of Economic Theory, 61(2):262–289, 1993.
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Appendix

1 Some Verifications in Section 2.2.3

This appendix verifies that domain D in Section 2.2.3 is a subset of the separable

domain DS . Next, we provide the details of the proof of Proposition 2.2.3. We first

introduce a particular separable domain: the lexicographic separable domain ([13]

and [16]).

Given a separable preference Pi ∈ DS , one can induce a marginal preference

[Pi]
s on each component set As, s ∈M .

Definition 1.1. A preference Pi is lexicographically separable if there exists a linear

order � over M such that for all x, y ∈ A,

[
xs[Pi]

sys and xτ = yτ for all τ ∈M with τ � s
]
⇒ [xPiy].

Accordingly, let DLS denote the lexicographically separable domain containing

all admissible preferences. Evidently, DLS ⊂ DS . The linear order � in Definition

1.1 is referred to as the lexicographic order. For more details and examples on

lexicographically separable preferences, please refer to [16]. We will show that

every preference in D in Section 2.2.3 is either separable or lexicographic separable.

We partition the alternative setA into five parts: A0 = {a0},A1 = {a1, a2, a3, a4},

A2 = {a5, a6, a7, a8, a9, a10}, A3 = {a11, a12, a13, a14} and A4 = {a15}. Accord-

ingly,Ak, k = 0, . . . , 4, includes all alternatives that k candidates are elected. More-

over, we recall two properties on separable preferences.
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Ascending property: Let Pk be a linear order satisfying the following two restric-

tions: (i) r1(Pk) = (0, 0, 0, 0) = a0, r16(Pk) = (1, 1, 1, 1) = a15; and (ii)

xPkyPkz for all x ∈ A1, y ∈ A2 and z ∈ A3. Then, Pk ∈ DS .

Descending property: Let Pk be a linear order satisfying the following two restric-

tions: (i) r1(Pk) = (1, 1, 1, 1) = a15, r16(Pk) = (0, 0, 0, 0) = a0; and (ii)

xPkyPkz for all x ∈ A3, y ∈ A2 and z ∈ A1. Then, Pk ∈ DS .

Now, we verify that D ⊂ DS .

1. Let P1 ∈ DS satisfy the ascending property, r2(P1) = (0, 0, 1, 0) = a1,

r3(P1) = (0, 1, 0, 0) = a2 and r15(P1) = (1, 1, 0, 1) = a13.

2. Let P2 ∈ DS satisfy the ascending property, r2(P2) = (0, 0, 1, 0) = a1,

r3(P2) = (1, 0, 0, 0) = a3 and r15(P2) = (1, 1, 0, 1) = a13.

3. Let P3 ∈ DS satisfy the ascending property, r2(P3) = (0, 1, 0, 0) = a2,

r3(P3) = (0, 0, 1, 0) = a1, a13 = (1, 1, 0, 1)P3(1, 1, 1, 0) = a11 and a13 =

(1, 1, 0, 1)P3(1, 0, 1, 1) = a12.

4. Let P4 ∈ DS satisfy the ascending property, r2(P4) = (0, 1, 0, 0) = a2,

r3(P4) = (1, 0, 0, 0) = a3, a13 = (1, 1, 0, 1)P4(1, 1, 1, 0) = a11 and a13 =

(1, 1, 0, 1)P4(1, 0, 1, 1) = a12.

5. Let P6 ∈ DS satisfy the ascending property, r2(P6) = (1, 0, 0, 0) = a3,

r3(P6) = (0, 0, 1, 0) = a1, a13 = (1, 1, 0, 1)P6(1, 1, 1, 0) = a11 and a13 =

(1, 1, 0, 1)P6(1, 0, 1, 1) = a12.

6. Let P7 ∈ DS satisfy the ascending property, r2(P7) = (1, 0, 0, 0) = a3,

r3(P7) = (0, 1, 0, 0) = a2, a13 = (1, 1, 0, 1)P7(1, 1, 1, 0) = a11 and a13 =

(1, 1, 0, 1)P7(1, 0, 1, 1) = a12.

7. Let P5 ∈ DLS with r1(P5) = (1, 1, 0, 0) = a5 and the lexicographic order

2 � 4 � 3 � 1. Then, r2(P5) = (0, 1, 0, 0) = a2, r3(P5) = (1, 1, 1, 0) = a11

and a13 = (1, 1, 0, 1)P5(0, 0, 1, 0) = a1.
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8. Let P8 ∈ DLS with r1(P8) = (1, 0, 1, 0) = a6 and the lexicographic order

1 � 4 � 2 � 3. Then, r2(P8) = (1, 0, 0, 0) = a3, r3(P8) = (1, 1, 1, 0) = a11

and a13 = (1, 1, 0, 1)P8(0, 0, 1, 0) = a1.

9. Let P9 ∈ DLS with r1(P9) = (1, 0, 1, 0) = a6 and the lexicographic order

1 � 2 � 4 � 3. Then, r2(P9) = (1, 0, 0, 0) = a3, r3(P9) = (1, 0, 1, 1) = a12

and a13 = (1, 1, 0, 1)P9(0, 0, 1, 0) = a1.

10. Let P10 ∈ DLS with r1(P10) = (1, 1, 0, 0) = a5 and the lexicographic order

2 � 4 � 1 � 3. Then, r2(P10) = (1, 1, 1, 0) = a11, r3(P10) = (0, 1, 0, 0) =

a2 and a13 = (1, 1, 0, 1)P10(0, 0, 1, 0) = a1.

11. Let P11 ∈ DLS with r1(P11) = (1, 0, 1, 0) = a6 and the lexicographic order

1 � 4 � 3 � 2. Then, r2(P11) = (1, 1, 1, 0) = a11, r3(P11) = (1, 0, 0, 0) =

a3 and a13 = (1, 1, 0, 1)P11(0, 0, 1, 0) = a1.

12. Let P14 ∈ DLS with r1(P14) = (1, 0, 1, 0) = a6 and the lexicographic order

1 � 2 � 3 � 4. Then, r2(P14) = (1, 0, 1, 1) = a12, r3(P14) = (1, 0, 0, 0) =

a3 and a13 = (1, 1, 0, 1)P14(0, 0, 1, 0) = a1.

13. For any Pk ∈ {P12, P13, P15, P16, P17, P18}, let Pk ∈ DS satisfy the descend-

ing property and a13 = (1, 1, 0, 1) ∈ {r2(Pk), r3(Pk), r4(Pk)}.

The detail proof of Proposition 2.2.3.

Proof. Since domain D̄ satisfies Condition SC, according to Proposition 2.2.1, let

ϕ̄ : D̄N → ∆(X), N ≥ 2, be an anonymous, unanimous and strategy-proof RSCF

that is not a random dictatorship.

In particular, for all P ∈ DN , let P̄ ∈ D̄N denote the induced profile of pref-

erences by P over X , i.e., P̄i = (Pi, X), i ∈ I . Next, we construct a function

ϕ : DN → ∆X(A) such that for all P ∈ DN , ϕx(P ) = ϕ̄x(P̄ ) for all x ∈ X and

ϕy(P ) = 0 for all y ∈ A\X . Evidently, ϕ is a random constraint voting SCF which

is anonymous, unanimous and not a random dictatorship.
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We need to verify strategy-proofness of ϕ. Suppose that ϕ is not strategy-proof.

Then, there exist i ∈ I; Pi, P ′i ∈ D and P−i ∈ DN−1 such that
∑t

k=1 ϕrt(Pi)(Pi, P−i) <∑t
k=1 ϕrt(Pi)(P

′
i , P−i) for some 1 ≤ t ≤ m. Let T = {rk(Pi)}tk=1 and T̄ = T ∩X .

Evidently, T̄ 6= ∅. Furthermore, we can assume T̄ = {rk(P̄i)}t̄k=1 for some

1 ≤ t̄ ≤ 6. Then, by construction of ϕ, we have

t̄∑
k=1

ϕ̄rk(P̄i)(P̄i, P̄−i)−
t̄∑

k=1

ϕ̄rk(P̄i)(P̄
′
i , P̄−i)

=
∑
x∈T̄

ϕx(Pi, P−i)−
∑
x∈T̄

ϕx(P
′
i , P−i)

=
[∑
x∈T̄

ϕx(Pi, P−i) +
∑
y∈T\T̄

ϕy(Pi, P−i)
]
−
[∑
x∈T̄

ϕx(P
′
i , P−i) +

∑
y∈T\T̄

ϕy(P
′
i , P−i)

]
=

∑
x∈T

ϕx(Pi, P−i)−
∑
x∈T

ϕx(P
′
i , P−i)

=
t∑

k=1

ϕrk(Pi)(Pi, P−i)−
t∑

k=1

ϕrk(Pi)(P
′
i , P−i)

< 0

which contradicts strategy-proofness of ϕ̄.

2 Condition SC v.s. Conditions H and TS

Fix a domain D satisfying Condition SC with respect to B and y in Definition 2.2.1.

2.1 Condition H

Suppose that D satisfies Condition H. Let a be a hub.

Assume a = y. Then, y ∼ z for all z ∈ A\{y}, which implies S(y) = A\{y}.

Given x ∈ B, since x ∼ y, there exists Pk ∈ Dx,y. Now, if |B| = 1, then yPkz for

all z ∈ A\{x, y} ⊂ S(y), which contradicts part (ii) of Condition SC. If |B| > 1,

then r2(Pk) = y /∈ B, x ∈ S(y) and xPky, which contradicts part (ii) of Condition

SC.

Assume a ∈ B. Now, a ∼ y and hence a ∈ S(y). If |B| = 1, consider some
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z ∈ A\{a, y} = A\[B ∪ {y}] (recall |A| ≥ 3). Then a ∼ z and there exists

Pk ∈ Dz,a, which contradicts part (iii) of Condition SC. If |B| > 1, we consider

a ∼ y. Hence, there exists Pk ∈ Da,y, which contradicts part (ii) of Condition SC.

Assume that a ∈ A\[B∪{y}]. Fixing x ∈ B, we know y ∼ a and x ∼ a. Hence,

a ∈ S(y) and there exists Pk ∈ Dx,a, which contradicts part (iii) of Condition SC.

2.2 Condition TS

Suppose that D satisfies Condition TS.

Assume B = {x}. Since |A| ≥ 3, we pick z ∈ A\[B ∪ {y}]. Now, between

x and z, there are three cases to consider: (i) x ≈ z, (ii) x ≈ a and z ≈ a for

some a ∈ A\{x, y, z}, and (iii) x ≈ y and z ≈ y. According to case (i), we know

that there exist Pk ∈ Dx,z and P ′k ∈ Dz,x such that rt(Pk) = rt(P
′
k), t = 3, . . . ,m.

Firstly, by part (iii) of Condition SC, since P ′k ∈ Dz and xP ′ky, it must be the case

that yP ′ka for all a ∈ S(y). Consequently, yPka for all a ∈ S(y), which contradicts

part (ii) of Condition SC. In case (ii), it is evident that a ∈ A\[B ∪ {y}]. Since

x ≈ a, we know that there exist Pk ∈ Dx,a and P ′k ∈ Da,x such that rt(Pk) = rt(P
′
k),

t = 3, . . . ,m. By part (iii) of Condition SC, since P ′k ∈ Da and xP ′ky, it must be

the case that yP ′kb for all b ∈ S(y). Consequently, yPkb for all b ∈ S(y), which

contradicts part (ii) of Condition SC. Lastly, in case (iii), since x ≈ y and z ≈ y,

we know that there exist Pk ∈ Dx,y and z ∈ S(y), which contradicts part (ii) of

Condition SC.

Assume |B| > 1. Fixing x ∈ B, there are three cases to consider: (i) x ≈ y,

(ii) x ≈ z and y ≈ z for some z ∈ A\{x, y} where z ∈ B, and (iii) x ≈ z and

y ≈ z for some z ∈ A\{x, y} where z /∈ B. According to case (i), we know that

x ∈ S(y) and there exists Pk ∈ Dx,y, which contradicts part (ii) of Condition SC.

According to case (ii), we know that z ∈ S(y) and there exists Pk ∈ Dz,y, which

contradicts part (ii) of Condition SC. In case (iii), we know that z ∈ S(y) and there

exists Pk ∈ Dz,x, which contradicts part (iii) of Condition SC.
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3 Proof of Theorem 2.3.1

Proof. To prove Theorem 2.3.1 we use a Ramification theorem (Theorem 5.1 in

Appendix 5) which ensures that if a domain is a random dictatorship domain for

two voters, it is also a random dictatorship domain for arbitrary number of voters.

In addition to the minimal richness condition, the Ramification theorem requires

another richness condition which we specify below.

Given Pi ∈ D and a ∈ A, letB(Pi, a) denote the set of alternatives that are better

than a according to Pi, i.e., [x ∈ B(Pi, a)]⇒ [xPia], whileW (Pi, a) denotes the set

of alternatives that are worse than a according to Pi, i.e., [x ∈ W (Pi, a)]⇒ [aPix].

Definition 3.1. A domain D satisfies Condition α if there exist three distinct alter-

natives a, b, c ∈ A; P1 ∈ Da, P2 ∈ Db and P3 ∈ Dc such that

(i) bP1c, cP2a and aP3b;

(ii) W (P1, b) ∪W (P2, c) ∪W (P3, a) = A.

Every linked domain is minimally rich and satisfies Condition α.1 Therefore,

to verify Theorem 2.3.1, it suffices to show that every strategy-proof RSCF of two

voters satisfying unanimity is a random dictatorship. Assume I = {i, j}. We first

provide an independent lemma which is repeatedly applied in the following proof.

Lemma 3.1. Consider a domain D and a, b, c ∈ A such that a ∼ b, b ∼ c and

c ∼ a. If ϕ : D2 → A is unanimous and strategy-proof, then there exists ε ∈ [0, 1]

such that f(Pi, Pj) = εer1(Pi) + (1− ε)er1(Pj) for all Pi, Pj ∈ Da ∪ Db ∪ Dc.

Proof. This lemma follows from Theorem 2 in [48].

Now, let D be a linked domain satisfying Condition H and ϕ : D2 → A be a

unanimous and strategy-proof RSCF. For simplicity, we assume that the one to one

1Let D be linked. We know that there exist a, b, c ∈ A such that a ∼ b, b ∼ c and c ∼ a.
Therefore, there exist P1 ∈ Da,b, P2 ∈ Db,c and P3 ∈ Dc,a which immediately imply (i) bP1c, cP2a
and aP3b; and (ii) W (P1, b) ∪W (P2, c) ∪W (P3, a) = A. Thus linked domains satisfy Condition
α. Another dictatorial domain is the circular domain studied in [43]. By a similar argument, one can
verify that circular domains satisfy Condition α.
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function σ in Definition 2.1.1 is the identity function and moreover, a1 is a hub.

Hence, a1 ∼ x for all x ∈ A\{a1}. Next, let Sl = {a1, . . . , al}, l = 3, . . . ,m.

Clearly, a1 ∈ Sl, 3 ≤ l ≤ m. Our proof consists in establishing two steps.

Step 1. There exists ε ∈ [0, 1] such that for all Pi, Pj ∈ DS3 , ϕ(Pi, Pj) = ε er1(Pi) +

(1− ε)er1(Pj).

Step 2. If for all Pi, Pj ∈ DSl−1 , l > 3, ϕ(Pi, Pj) = ε er1(Pi) + (1 − ε)er1(Pj), then

for all Pi, Pj ∈ DSl , ϕ(Pi, Pj) = ε er1(Pi) + (1− ε)er1(Pj).

The following lemma establishes Step 1.

Lemma 3.2. There exists ε ∈ [0, 1] such that for all Pi, Pj ∈ DS3 , ϕ(Pi, Pj) =

ε er1(Pi) + (1− ε)er1(Pj).

Proof. Since a1 ∼ a2, a2 ∼ a3 and a3 ∼ a1, Lemma 3.1 applies.

To verify Step 2, we use the following induction hypothesis: for all Pi, Pj ∈

DSl−1 , l > 3, ϕ(Pi, Pj) = ε er1(Pi) + (1 − ε)er1(Pj). We will show that for all

Pi, Pj ∈ DSl , ϕ(Pi, Pj) = ε er1(Pi) + (1 − ε)er1(Pj). Note that ε is fixed in the

induction hypothesis. Since D is linked and a1 is a hub, we know that there exists

ak ∈ Sl−1 such that al ∼ ak, ak ∼ a1 and al ∼ a1. The next 3 lemmas explain the

verification of Step 2.

Lemma 3.3. For all Pi, Pj ∈ Da1 ∪Dak ∪Dal , ϕ(Pi, Pj) = ε er1(Pi) +(1−ε)er1(Pj).

Proof. Since al ∼ ak, ak ∼ a1 and al ∼ a1, Lemma 3.1 implies that there exists β ∈

[0, 1] such that ϕ(Pi, Pj) = β er1(Pi) +(1−β)er1(Pj) for all Pi, Pj ∈ Da1∪Dak∪Dal .

Meanwhile, by the induction hypothesis, we know ϕ(Pi, Pj) = ε er1(Pi) + (1 −

ε)er1(Pj) for all Pi, Pj ∈ Da1 ∪ Dak . Therefore, ε = β.

For the next lemma, pick any aj ∈ Sl−1\{a1, ak}. Condition H implies aj ∼ a1.
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Lemma 3.4. For all P ∗i ∈ Dal,a1 and P ∗j ∈ Daj ,a1 , ϕal(P
∗
i , P

∗
j ) = ε andϕaj(P

∗
i , P

∗
j ) =

1− ε.

Proof. We consider two situations.

Firstly, suppose ϕal(P
∗
i , P

∗
j ) = β and ϕaj(P

∗
i , P

∗
j ) = 1 − β. Since there exists

P ′i ∈ Da1,al (recall a1 ∼ al), strategy-proofness and the induction hypothesis imply

β = ϕal(P
∗
i , P

∗
j ) = ϕal(P

∗
i , P

∗
j ) + ϕa1(P ∗i , P

∗
j ) = ϕal(P

′
i , P

∗
j ) + ϕa1(P ′i , P

∗
j ) =

ϕa1(P ′i , P
∗
j ) = ε.

Secondly, suppose ϕal(P
∗
i , P

∗
j )+ϕaj(P

∗
i , P

∗
j ) < 1. Since there exist P ′i ∈ Da1,al

and P ′j ∈ Da1,aj (by Condition H), strategy-proofness, the induction hypothesis and

Lemma 3.3 imply ϕal(P
∗
i , P

∗
j ) + ϕa1(P ∗i , P

∗
j ) = ϕal(P

′
i , P

∗
j ) + ϕa1(P ′i , P

∗
j ) = ε

and ϕaj(P
∗
i , P

∗
j ) + ϕa1(P ∗i , P

∗
j ) = ϕaj(P

∗
i , P

′
j) + ϕa1(P ∗i , P

′
j) = 1− ε. Therefore,

it must be the case that ϕa1(P ∗i , P
∗
j ) > 0. Assume ϕa1(P ∗i , P

∗
j ) = α > 0. Then,

ϕal(P
∗
i , P

∗
j ) = ε−α, ϕaj(P

∗
i , P

∗
j ) = 1− ε−α and

∑
at /∈{a1,aj ,al} ϕat(P

∗
i , P

∗
j ) = α.

This implies that there exists ai ∈ A\{a1, aj, al} such that ϕai(P
∗
i , P

∗
j ) > 0.

By Condition H, there exists Pk ∈ Da1,ai . Let s, s′ be such that al = rs(Pk) and

aj = rs′(Pk). We need to consider two cases.

Case 1: s < s′.

Let P̄i = Pk. By the induction hypothesis, ϕ(P̄i, P
∗
j ) = ε ea1 + (1 − ε)eaj .

Then,
∑s

k=1 ϕrk(P̄i)(P̄i, P
∗
j ) = ε < ϕa1(P ∗i , P

∗
j ) + ϕal(P

∗
i , P

∗
j ) + ϕai(P

∗
i , P

∗
j ) ≤∑s

k=1 ϕrk(P̄i)(P
∗
i , P

∗
j ). Therefore, voter i manipulates at (P̄i, P

∗
j ) via P ∗i .

Case 2: s > s′.

Let P̄j = Pk. By Lemma 3.3, we have ϕ(P ∗i , P̄j) = ε eal + (1 − ε)ea1 . Then,∑s′

k=1 ϕrk(P̄j)(P
∗
i , P̄j) = 1 − ε < ϕa1(P ∗i , P

∗
j ) + ϕaj(P

∗
i , P

∗
j ) + ϕai(P

∗
i , P

∗
j ) ≤∑s′

k=1 ϕrk(P̄j)(P
∗
i , P

∗
j ). Therefore, voter j manipulates at (P ∗i , P̄j) via P ∗j .

Hence, both cases cannot occur. This establishes the lemma.

Lemma 3.5. The following two statements hold.

(i) For all Pi ∈ Dal and Pj ∈ DSl , ϕ(Pi, Pj) = ε eal + (1− ε)er1(Pj).

(ii) For all Pi ∈ DSl and Pj ∈ Dal , ϕ(Pi, Pj) = ε er1(Pi) + (1− ε)eal .
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Proof. We verify part (i) first. Let aj ∈ Sl−1\{a1, ak}, Pj ∈ Daj , P ∗i ∈ Dal,a1 and

P ∗j ∈ Daj ,a1 . Strategy-proofness and Lemma 3.4 implyϕaj(P
∗
i , Pj) = ϕaj(P

∗
i , P

∗
j ) =

1− ε and 1− ε = ϕaj(P
∗
i , P

∗
j ) +ϕa1(P ∗i , P

∗
j ) ≥ ϕaj(P

∗
i , Pj) +ϕa1(P ∗i , Pj). There-

fore, ϕa1(P ∗i , Pj) = 0.

Next, consider Pi ∈ Dal and P ′i ∈ Da1,al . By strategy-proofness and the in-

duction hypothesis, ϕal(Pi, Pj) = ϕal(P
∗
i , Pj) = ϕal(P

∗
i , Pj) + ϕa1(P ∗i , Pj) =

ϕal(P
′
i , Pj) + ϕa1(P ′i , Pj) = ϕa1(P ′i , Pj) = ε.

Similarly, for all Pi ∈ Dal , we have ϕa1(Pi, P
∗
j ) = 0. Let P ′j ∈ Da1,aj . Strategy-

proofness and Lemma 3.3 implyϕaj(Pi, Pj) = ϕaj(Pi, P
∗
j ) = ϕaj(Pi, P

∗
j )+ϕa1(Pi, P

∗
j ) =

ϕaj(Pi, P
′
j) + ϕa1(Pi, P

′
j) = ϕa1(Pi, P

′
j) = 1− ε.

Therefore, ϕ(Pi, Pj) = εeal + (1 − ε)eaj for all Pi ∈ Dal and Pj ∈ Daj where

aj ∈ Sl−1\{a1, ak}. By unanimity and Lemma 3.3, we conclude that ϕ(Pi, Pj) =

ε eal + (1− ε)er1(Pj) for all Pi ∈ Dal and Pj ∈ DSl .

The proof of part (ii) is symmetric to that of part (i) and is therefore omitted.

Therefore, by the induction hypothesis, we have proved thatϕ(Pi, Pj) = ε er1(Pi)+

(1 − ε)er1(Pj) for all Pi, Pj ∈ DSl . This completes the verification of Step 2 and

hence the proof of the theorem.

4 Proof of Theorem 2.3.2

Proof. In the view of the Ramification Theorem (Theorem 5.1 in Appendix 5), it

once again suffices to show that every strategy-proof and unanimous RSCF of two

voters is a random dictatorship. Let D be a strongly linked domain satisfying Con-

dition TS and I = {i, j}. For notational simplicity, we assume that the function σ

in Definition 2.3.3 is the identity function. Let Sl = {a1, a2, . . . , al}, l = 3, . . . ,m.

Our proof proceeds by establishing the same two steps as those in the proof of The-

orem 2.3.1.

Step 1. There exists ε ∈ [0, 1] such that for all Pi, Pj ∈ DS3 , ϕ(Pi, Pj) = ε er1(Pi) +

(1− ε)er1(Pj).
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Step 2. If for all Pi, Pj ∈ DSl−1 , l > 3, ϕ(Pi, Pj) = ε er1(Pi) + (1 − ε)er1(Pj), then

for all Pi, Pj ∈ DSl , ϕ(Pi, Pj) = ε er1(Pi) + (1− ε)er1(Pj).

The following lemma establishes Step 1.

Lemma 4.1. There exists ε ∈ [0, 1] such that for all Pi, Pj ∈ DS3 , ϕ(Pi, Pj) =

ε er1(Pi) + (1− ε)er1(Pj).

Proof. Since a1 ∼ a2, a2 ∼ a3 and a3 ∼ a1 (strong connectedness implies the

connectedness), Lemma 3.1 applies.

To verify Step 2, we use the following induction hypothesis.

Level 1 Induction Hypothesis: for all Pi, Pj ∈ DSl−1 , l > 3, ϕ(Pi, Pj) = ε er1(Pi) +

(1− ε)er1(Pj).

We will show that for all Pi, Pj ∈ DSl , ϕ(Pi, Pj) = ε er1(Pi) + (1− ε)er1(Pj).

Fix l > 3 and a ∈ Sl−1. We say that al is strongly connected to a by a chain of

length t located in Sl if there exists a sequence {yk}t+2
k=1 ⊂ Sl of length t + 2 such

that al = y1, a = yt+2 and yk ≈ yk+1, k = 1, . . . , t + 1. We let Tt(al, Sl) denote

the set of the alternatives a ∈ Sl−1 satisfying the following two properties: (i) a is

strongly connected to al by a chain of length t located in Sl and (ii) there does not

exist a chain of length strictly less than t located in Sl connecting al and a.2

It is evident that Ts(al, Sl) ∩ Ts′(al, Sl) = ∅ whenever s 6= s′. Moreover,

it also follows that (i) Ts(al, Sl) = ∅ implies Ts′(al, Sl) = ∅ for all s′ > s,

(ii) ∪t≥0Tt(al, Sl) = Sl−1 and (iii) if a ∈ Ts(al, Sl) with s > 0, there exists

b ∈ Ts−1(al, Sl) such that b ≈ a. The next lemma considers T0(al, Sl).

Lemma 4.2. The following two statements hold.

(i) For all Pi ∈ Dal and Pj ∈ DT0(al,Sl), ϕ(Pi, Pj) = ε eal + (1− ε)er1(Pj).

2We use an example to explain the chain. Let Figure 2.2(d) denote a strong connectivity graph of
a strongly linked domain. Let the one to one function σ be the identity function. Considering a1 and
a5, then {a5, a3, a2, a4, a1}, {a5, a3, a2, a1} and {a5, a3, a1} are chains of length 3, 2 and 1 located
in S5 respectively. Meanwhile, T0(a5, S5) = {a3, a4}, T1(a5, S5) = {a1, a2} and Tt(a5, S5) = ∅
for all t ≥ 2.
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(ii) For all Pi ∈ DT0(al,Sl) and Pj ∈ Dal , ϕ(Pi, Pj) = ε er1(Pi) + (1− ε)eal .

Proof. We show part (i) first. Let as ∈ T0(al, Sl). Since al ∼ as (recall that [al ≈

as]⇒ [al ∼ as]), there must exist β ∈ [0, 1] such that for all Pi ∈ Dal and Pj ∈ Das ,

ϕ(Pi, Pj) = β eal + (1 − β)eas . Now, pick at ∈ T0(al, Sl)\{as};P̄i ∈ Dal,at ,

P̄ ∗i ∈ Dat,al and Pj ∈ Das . Strategy-proofness and Level 1 induction hypothesis

imply β = ϕal(P̄i, Pj) = ϕal(P̄i, Pj) + ϕat(P̄i, Pj) = ϕal(P̄
∗
i , Pj) + ϕat(P̄

∗
i , Pj) =

ϕat(P̄
∗
i , Pj) = ε. By symmetric arguments, part (ii) also holds.

To exhaust all alternatives in Sl−1, we provide another induction hypothesis.

Level 2 Induction Hypothesis: Fix l ≤ m. Suppose that for all 0 ≤ t′ < t and either

Pi ∈ Dal and Pj ∈ D∪t
′
k=0Tk(al,Sl); or Pi ∈ D∪t

′
k=0Tk(al,Sl) and Pj ∈ Dal , we have

ϕ(Pi, Pj) = ε er1(Pi) + (1− ε)er1(Pj).

We will show that for all Pi ∈ Dal and Pj ∈ DTt(al,Sl), or Pi ∈ DTt(al,Sl) and

Pj ∈ Dal , ϕ(Pi, Pj) = ε er1(Pi) + (1− ε)er1(Pj).

Lemma 4.3. The following two statements hold.

(i) For all Pi ∈ Dal and Pj ∈ DTt(al,Sl), ϕ(Pi, Pj) = ε eal + (1− ε)er1(Pj).

(ii) For all Pi ∈ DTt(al,Sl) and Pj ∈ Dal , ϕ(Pi, Pj) = ε er1(Pi) + (1− ε)eal .

Proof. Pick aj ∈ Tt(al, Sl) with t > 0. According to Condition TS, there exists

ai ∈ A such that ai ≈ al and ai ≈ aj . There are two cases to consider: ai ∈ Sl−1

and ai /∈ Sl−1.3 The proof of Lemma 4.3 follows the following 6 claims. We verify

part (i) first. Claim 1 below consider ai ∈ Sl−1.

Claim 1:

(i) For all Pi ∈ Dal ∪ Daj and Pj ∈ Dai , ϕ(Pi, Pj) = ε er1(Pi) + (1− ε)eai .
3We provide an example to show both cases of ai ∈ Sl−1 and ai /∈ Sl−1. Let Figure 2.2(e) denote

the strong connectivity graph of a strongly linked domain. Then, the domain satisfies Condition TS.
Furthermore, it is true that for every one to one function σ : {1, . . . , 7} → {1, . . . , 7} satisfied by
a domain in Definition 2.3.3, a7 = aσ(7). Let function σ be the identity function. We first consider
a1, a5 and S4. We know a1 ≈ a3, a3 ≈ a5 and a3 ∈ S4. Next, considering a1, a6 and S5, we know
a1 ≈ a7, a7 ≈ a6 and a7 /∈ S5.
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(ii) For all Pi ∈ Dai and Pj ∈ Dal ∪ Daj , ϕ(Pi, Pj) = ε eai + (1− ε)er1(Pj).

Since ai ∈ Sl−1, it must be the case that ai ∈ T0(al, Sl) and aj ∈ T1(al, Sl).

The claim then follows from Lemma 4.2 and the Level 1 induction hypothesis. This

completes the verification of Claim 1.

Next, we will show that the same conclusions hold when ai /∈ Sl−1. Now,

it must be the case that aj ∈ Tt(al, Sl) where t > 1. Since ai /∈ Sl−1, we can

assume al ≈ as, where as ∈ T0(al, Sl) (by Definition 2.3.3) and aj ≈ ak, where

ak ∈ Tt−1(al, Sl), t > 1 (by property (iii) of Tt(al, Sl) above). Since t > 1, it is

evident that as 6= ak. The next three claims assume ai /∈ Sl−1.

Claim 2:

(i) For some P̄i ∈ Dal,as and P̄j ∈ Daj ,ak , ϕ(P̄i, P̄j) = ε eal + (1− ε)eaj .

(ii) For some P̄i ∈ Daj ,ak and P̄j ∈ Dal,as , ϕ(P̄i, P̄j) = ε eaj + (1− ε)eal .

We first consider part (i). By strong connectedness, we can assume that there

exist P ′i ∈ Das,al and P ′j ∈ Dak,aj such that rν(P ′i ) = rν(P̄i) and rν(P ′j) = rν(P̄j),

ν = 3, . . . ,m. Now, since as, aj ∈ Sl−1, by strategy-proofness and the Level 1 in-

duction hypothesis, we haveϕal(P̄i, P̄j)+ϕas(P̄i, P̄j) = ϕal(P
′
i , P̄j)+ϕas(P

′
i , P̄j) =

ϕas(P
′
i , P̄j) = ε. Similarly, since ak ∈ Tt−1(al, Sl), by strategy-proofness and the

Level 2 induction hypothesis, ϕaj(P̄i, P̄j)+ϕak(P̄i, P̄j) = ϕaj(P̄i, P
′
j)+ϕak(P̄i, P

′
j) =

ϕaj(P̄i, P
′
j) = 1− ε. Therefore, for all a /∈ {al, aj, as, ak}, ϕa(P̄i, P̄j) = 0.

Suppose ϕas(P̄i, P̄j) = α > 0. Then, ϕal(P̄i, P̄j) = ε−α. Assume al = rk1(P̄j)

and as = rk2(P̄j). Then, al = rk1(P ′j) and as = rk2(P ′j). We have two cases.

Case 1: k1 < k2.

Fix Pj ∈ Dal . By unanimity, ϕal(P̄i, Pj) = 1. Hence,
∑k1

ν=1 ϕrν(P̄j)(P̄i, P̄j) =

ϕaj(P̄i, P̄j) + ϕak(P̄i, P̄j) + ϕal(P̄i, P̄j) = 1 − α <
∑k1

ν=1 ϕrν(P̄j)(P̄i, Pj). Then,

voter j would manipulate at (P̄i, P̄j) via Pj .

Case 2: k1 > k2.

By the Level 2 induction hypothesis,
∑k2

ν=1 ϕrν(P ′j)
(P̄i, P

′
j) = ϕak(P̄i, P

′
j) =

1−ε < 1−ε+α = ϕaj(P̄i, P̄j)+ϕak(P̄i, P̄j)+ϕas(P̄i, P̄j) =
∑k2

ν=1 ϕrν(P ′j)
(P̄i, P̄j).
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Then, voter j would manipulate at (P̄i, P
′
j) via P̄j .

Now, ϕas(P̄i, P̄j) = 0. Next, supposeϕak(P̄i, P̄j) = α > 0. Then, ϕaj(P̄i, P̄j) =

1 − ε − α. Assume aj = rt1(P̄i) and ak = rt2(P̄i). Then, aj = rt1(P ′i ) and

ak = rt2(P ′i ). We have two cases.

Case 1: t1 < t2.

Fix Pi ∈ Daj . By unanimity, ϕaj(Pi, P̄j) = 1. Hence,
∑t1

ν=1 ϕrν(P̄i)(P̄i, P̄j) =

ϕal(P̄i, P̄j) + ϕas(P̄i, P̄j) + ϕaj(P̄i, P̄j) = 1 − α <
∑t1

ν=1 ϕrν(P̄i)(Pi, P̄j). Then,

voter i would manipulate at (P̄i, P̄j) via Pi.

Case 2: t1 > t2.

By the Level 1 induction hypothesis,
∑t2

ν=1 ϕrν(P ′i )
(P ′i , P̄j) = ϕas(P

′
i , P̄j) =

ε < ε+α = ϕal(P̄i, P̄j)+ϕas(P̄i, P̄j)+ϕak(P̄i, P̄j) =
∑t2

ν=1 ϕrν(P ′i )
(P̄i, P̄j). Then,

voter i would manipulate at (P ′i , P̄j) via P̄i.

Then, ϕak(P̄i, P̄j) = 0. Therefore, ϕ(P̄i, P̄j) = ε eal + (1− ε)eaj .

By symmetric arguments, part (ii) also holds. This completes the verification of

Claim 2.

Claim 3:

(i) For all Pi ∈ Dal and Pj ∈ Dai , ϕ(Pi, Pj) = ε eal + (1− ε)eai .

(ii) For all Pi ∈ Dai and Pj ∈ Dal , ϕ(Pi, Pj) = ε eai + (1− ε)eal .

We first consider part (i). Since al ∼ ai (recall [al ≈ ai]⇒ [al ∼ ai]), there must

exist β ∈ [0, 1] such that for all Pi ∈ Dal and Pj ∈ Dai , ϕ(Pi, Pj) = β eal+(1−β)e
i
.

Next, fix P̄i ∈ Dal,as , P̄j ∈ Daj ,ak , where profile (P̄i, P̄j) satisfies Claim 2(i),

P ∗i ∈ Das,al and P ∗j ∈ Daj ,ai . Since as, aj ∈ Sl−1, by strategy-proofness and the

Level 1 induction hypothesis, we have ϕal(P̄i, P
∗
j ) + ϕas(P̄i, P

∗
j ) = ϕal(P

∗
i , P

∗
j ) +

ϕas(P
∗
i , P

∗
j ) = ϕas(P

∗
i , P

∗
j ) = ε. Meanwhile, by strategy-proofness and Claim

2(i), ϕaj(P̄i, P
∗
j ) = ϕaj(P̄i, P̄j) = 1 − ε. Therefore, ϕai(P̄i, P

∗
j ) = 0. Now, fix

P̄ ∗j ∈ Dai,aj . Strategy-proofness implies 1 − β = ϕai(P̄i, P̄
∗
j ) = ϕai(P̄i, P̄

∗
j ) +

ϕaj(P̄i, P̄
∗
j ) = ϕai(P̄i, P

∗
j ) +ϕaj(P̄i, P

∗
j ) = ϕaj(P̄i, P

∗
j ) = 1− ε. Therefore, β = ε.

In conclusion, for all Pi ∈ Dal and Pj ∈ Dai , ϕ(Pi, Pj) = ε eal + (1− ε)eai .
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By symmetric arguments, we have that for all Pi ∈ Dai and Pj ∈ Dal , ϕ(Pi, Pj) =

ε eai + (1− ε)eal . This completes the verification of Claim 3.

Claim 4:

(i) For all Pi ∈ Daj and Pj ∈ Dai , ϕ(Pi, Pj) = ε eaj + (1− ε)eai .

(ii) For all Pi ∈ Dai and Pj ∈ Daj , ϕ(Pi, Pj) = ε eai + (1− ε)eaj .

This Claim is similar to Claim 3 but its proof follows from Claim 2 and the

Level 2 induction hypothesis, while the proof for Claim 3 follows from Claim 2 and

the Level 1 induction hypothesis. This completes the verification of Claim 4.

We have shown that irrespective of whether ai ∈ Sl−1 or ai /∈ Sl−1, ϕ(Pi, Pj) =

ε er1(Pi) + (1− ε)er1(Pj) holds for all Pi ∈ Dal ∪Daj and Pj ∈ Dai , or Pi ∈ Dai and

Pj ∈ Dal ∪ Daj .

Claim 5: For all P ∗i ∈ Dal,ai and P ∗j ∈ Daj ,ai , ϕ(P ∗i , P
∗
j ) = ε eal + (1− ε)eaj .

Suppose that the Claim is false. Similar to Lemma 3.4, we can assumeϕai(P
∗
i , P

∗
j ) =

α > 0. Since al ≈ ai and aj ≈ ai, we can assume that there exist P̄ ∗i ∈ Dai,al and

P̄ ∗j ∈ Dai,aj such that rk(P̄ ∗j ) = rk(P
∗
j ), k = 3, . . . ,m. Since Claims 1, 3(i) and

4(ii) imply ϕai(P
∗
i , P̄

∗
j )+ϕaj(P

∗
i , P̄

∗
j ) = 1−ε and ϕai(P̄

∗
i , P

∗
j )+ϕal(P̄

∗
i , P

∗
j ) = ε,

by strategy-proofness, we have ϕaj(P
∗
i , P

∗
j ) = 1− ε−α and ϕal(P

∗
i , P

∗
j ) = ε−α.

Assume al = rs(P
∗
j ). It is evident that s ≥ 3. Then, strong connectedness im-

plies al = rs(P̄
∗
j ). According to Claims 1 and 3(i),

∑s−1
k=1 ϕrk(P̄ ∗j )(P

∗
i , P̄

∗
j ) =

1 − ε. Next, by strong connectedness, we have {rk(P ∗j )}s−1
k=1 = {rk(P̄ ∗j )}s−1

k=1.

Hence, by strategy-proofness,
∑s−1

k=1 ϕrk(P ∗j )(P
∗
i , P

∗
j ) =

∑s−1
k=1 ϕrk(P̄ ∗j )(P

∗
i , P̄

∗
j ) =

1− ε. Therefore,
∑s

k=1 ϕrk(P ∗j )(P
∗
i , P

∗
j ) =

∑s−1
k=1 ϕrk(P ∗j )(P

∗
i , P

∗
j ) +ϕal(P

∗
i , P

∗
j ) =

1 − α. Now, fix Pj ∈ Dal . By unanimity,
∑s

k=1 ϕrk(P ∗j )(P
∗
i , P

∗
j ) = 1 − α <

1 = ϕal(P
∗
i , Pj) =

∑s
k=1 ϕrk(P ∗j )(P

∗
i , Pj). Consequently, voter j manipulates at

(P ∗i , P
∗
j ) via Pj . This completes the verification of Claim 5.

Claim 6: For all Pi ∈ Dal and Pj ∈ Daj , we have ϕ(Pi, Pj) = ε eal + (1− ε)eaj .

The proof of the claim follows from a symmetric argument in Lemma 3.5.
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By symmetric arguments, it follows that ϕ(Pi, Pj) = ε eaj + (1 − ε)eal for all

Pi ∈ Daj and Pj ∈ Dal . This completes the proof of Lemma 4.3.

We can now complete the proof of the Theorem. We have shown that under

the Level 1 induction hypothesis, the Level 2 induction hypothesis is established.

With unanimity, this implies that for all Pi ∈ Dal and Pj ∈ DSl , or Pi ∈ DSl and

Pj ∈ Dal , ϕ(Pi, Pj) = ε er1(Pi) + (1− ε)er1(Pj) as required, to complete Step 2.

5 Ramification Theorem

Theorem 5.1. Let D be minimally rich and satisfy Condition α. The following two

statements are equivalent:

(a) ϕ : D2 → ∆(A) is unanimous and strategy-proof

⇒ ϕ is a random dictatorship.

(b) ϕ : DN → ∆(A), N ≥ 2, is unanimous and strategy-proof

⇒ ϕ is a random dictatorship.

Technically, we construct the following definition which serves as a critical

bridge in the proof of Theorem 5.1.

Definition 5.1. A unanimous and strategy-proof RSCF ϕ : DN → ∆(A) is a quasi-

random dictatorship, if there exists [εi]i∈I ∈ RN
+ with

∑
i∈I εi = 1 such that for all

a ∈ A and P ∈ DN with Pi = Pj for some distinct i, j ∈ I , ϕa(P ) =
∑

k∈I:r1(Pk)=a

εk.

The random dictatorship is stronger than quasi-random dictatorship, for quasi-

random dictatorship only considers those profiles of preferences with at least two

voters sharing a same preference order and the outcome under such a profile of

preferences is a convex combination of N (deterministic) dictatorial social choice

functions with respect to an N -dimensional sequence [εi]i∈I .
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We first provide the outline of the proof of Theorem 5.1. The proof of (b)⇒ (a)

in Theorem 5.1 is trivial. We focus on showing (a) ⇒ (b). The proof consists in

establishing following three steps.

Step 1. Let domain D satisfy minimal richness condition and Condition α. Every

unanimous and strategy-proof RSCF g : D2 → ∆(A) is a random dictatorship ⇒

every unanimous and strategy-proof RSCF ϕ : D3 → ∆(A) is a quasi-random

dictatorship. This is shown in Proposition 5.1. 2

Step 2. Let domain D satisfy minimal richness condition. Every unanimous and

strategy-proof RSCF g : DN−1 → ∆(A), N > 3, is a random dictatorship ⇒

every unanimous and strategy-proof RSCF ϕ : DN → ∆(A) is a quasi-random

dictatorship. This is shown in Proposition 5.2. 2

Step 3. Let domain D satisfy minimal richness condition. Suppose for all 2 ≤

t < N , every unanimous and strategy-proof RSCF g : Dt → ∆(A), is a random

dictatorship. A unanimous and strategy-proof RSCF ϕ : DN → ∆(A) is a quasi-

random dictatorship ⇒ ϕ is a random dictatorship. This is shown in Proposition

5.3. 2

Note that the three steps above are independent and Condition α is only used in

extending the random dictatorship result from the case of two voters to the case of

three voters.4 Thus, the three steps together solve the ramification problem in the

way shown by the arrows in the diagram below.

Number of voters 2 3 4 . . . . . .

. . . . . .

. . .N − 1 N

Quasi−Random Dictatorship

RandomDictatorship q
q
q

q
q

q
q

q
q

q
q

q
�
�
��>

?�
�
��>

?�
�
��> 3 3 3

? ?

4As stated in Steps 2 and 3, the Ramification theorem remains valid from the case of three voters
to the case of N ≥ 3 voters without Condition α. When m = 3, the ramification theorem holds
without Condition α. Let |A| = 3 and the minimally rich domain D satisfy part (a) in Theorem 5.1.
Suppose that D violates Condition α. Then, it is true that |Dx| = 1 for some x ∈ A. Consequently,
domain D satisfies the unique seconds property in [1], and hence is not a random dictatorship domain
two voters. Contradiction! We conjecture the Ramification theorem is true without Condition α
when the cardinality of the set of alternatives is greater than three.
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Now, we start the proof. We first introduce some new notation that we shall

be using throughout the proof. Given Pi ∈ D and a nonempty subset S ⊆ A,

let max(Pi, S) and min(Pi, S) denote the most and worst preferred alternatives re-

spectively in S according to Pi. Given i ∈ I and P ∈ DN , let max(Pi, r1(P−i))

denote the most preferred alternative in r1(P−i) according to Pi. Given P ∈ DN

with |r1(P )| = N , let W (P ) = ∪i∈IW
(
Pi,max(Pi, r1(P−i))

)
. Additionally, for

all a, b ∈ A, let I(a, b) be the indicator function, where I(a, b) = 1 if a = b; and

I(a, b) = 0 if a 6= b.

Proposition 5.1. Let D be minimally rich and satisfy Condition α. Suppose that ev-

ery unanimous and strategy-proof RSCF g : D2 → ∆(A) is a random dictatorship.

Then every unanimous and strategy-proof RSCF ϕ : D3 → ∆(A) is a quasi-random

dictatorship.

Proof. Define three RSCFs as follows: g(2,3)(P1, P2) = ϕ(P1, P2, P2), g(1,3)(P1, P2) =

ϕ(P1, P2, P1) and g(1,2)(P1, P3) = ϕ(P1, P1, P3) for all P1, P2, P3 ∈ D. It is easy

to verify that g(2,3), g(1,3) and g(1,2) are unanimous and strategy-proof (see Lemma

3 in [48]). Hence, the hypothesis of Proposition 5.1 implies that g(2,3), g(1,3) and

g(1,2) are random dictatorships. Then, there exist ε1, ε2, ε3 ≥ 0 such that for all

P1, P2, P3 ∈ D,

ϕ(P1, P2, P2) = ε1 er1(P1) + (1− ε1)er1(P2),

ϕ(P1, P2, P1) = (1− ε2)er1(P1) + ε2 er1(P2),

ϕ(P1, P1, P3) = (1− ε3)er1(P1) + ε3 eb(r1(P3)).

To establish that ϕ is a quasi-random dictatorship, it suffices to show that ε1 +

ε2 + ε3 = 1. Since D satisfies Condition α, we can fix a profile P ∗ = (P ∗1 , P
∗
2 , P

∗
3 ),

where r1(P ∗1 ) = a, r1(P ∗2 ) = b, r1(P ∗3 ) = c; bP ∗1 c, cP
∗
2 a and aP ∗3 b; and W (P ∗1 , b)∪

W (P ∗2 , c) ∪ W (P ∗3 , a) = A. Hence, W (P ∗) = A and r1(P ∗) ⊂ W (P ∗). Fur-

thermore, we assume b = rs(P
∗
1 ) and c = rs′(P

∗
1 ). Hence, 1 < s < s′. By
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strategy-proofness, we know
∑t

k=1 ϕrk(P ∗1 )(P
∗
2 , P

∗
2 , P

∗
3 ) ≤

∑t
k=1 ϕrk(P ∗1 )(P

∗) ≤∑t
k=1 ϕrk(P ∗1 )(P

∗
1 , P

∗
1 , P

∗
3 ) for all t ≥ 1. Since ϕ(P ∗2 , P

∗
2 , P

∗
3 ) = g(1,2)(P ∗2 , P

∗
3 ) and

ϕ(P ∗1 , P
∗
1 , P

∗
3 ) = g(1,2)(P ∗1 , P

∗
3 ), we have

∑t
k=1 g

(1,2)
rk(P ∗1 )(P

∗
2 , P

∗
3 ) ≤

∑t
k=1 ϕrk(P ∗1 )(P

∗) ≤∑t
k=1 g

(1,2)
rk(P ∗1 )(P

∗
1 , P

∗
3 ) for all t ≥ 1.

Next, since g(1,2) is a random dictatorship with respect to {1− ε3, ε3}, we have

s∑
k=1

g
(1,2)
rk(P ∗1 )(P

∗
2 , P

∗
3 ) =

s′−1∑
k=1

g
(1,2)
rk(P ∗1 )(P

∗
2 , P

∗
3 ) = g

(1,2)
b (P ∗2 , P

∗
3 ) = 1− ε3,

s∑
k=1

g
(1,2)
rk(P ∗1 )(P

∗
1 , P

∗
3 ) =

s′−1∑
k=1

g
(1,2)
rk(P ∗1 )(P

∗
1 , P

∗
3 ) = g(1,2)

a (P ∗1 , P
∗
3 ) = 1− ε3,

s′∑
k=1

g
(1,2)
rk(P ∗1 )(P

∗
2 , P

∗
3 ) = g

(1,2)
b (P ∗2 , P

∗
3 ) + g(1,2)

c (P ∗2 , P
∗
3 ) = 1,

s′∑
k=1

g
(1,2)
rk(P ∗1 )(P

∗
1 , P

∗
3 ) = g(1,2)

a (P ∗1 , P
∗
3 ) + g(1,2)

c (P ∗1 , P
∗
3 ) = 1.

Therefore,
∑s

k=1 ϕrk(P ∗1 )(P
∗) =

∑s′−1
k=1 ϕrk(P ∗1 )(P

∗) = 1−ε3 and
∑s′

k=1 ϕrk(P ∗1 )(P
∗) =

1. Hence, ϕc(P ∗) =
∑s′

k=1 ϕrk(P ∗1 )(P
∗)−
∑s′−1

k=1 ϕrk(P ∗1 )(P
∗) = ε3 and

∑s
k=1 ϕrk(P ∗1 )(P

∗)+

ϕc(P
∗) = 1. Then, we know that for all x ∈ W (P ∗1 , b)\{c}, ϕx(P ∗) = 0. Sym-

metrically, we can obtain ϕa(P ∗) = ε1, ϕx(P ∗) = 0 for all x ∈ W (P ∗2 , c)\{a};

and ϕb(P ∗) = ε2, ϕx(P ∗) = 0 for all x ∈ W (P ∗3 , a)\{b}. In conclusion, for all

x ∈ W (P ∗)\{a, b, c}, ϕx(P ∗) = 0. Furthermore, since W (P ∗) = A, we have 1 =∑
x∈A ϕx(P

∗) =
∑

x∈W (P ∗) ϕx(P
∗) = ϕa(P

∗) + ϕb(P
∗) + ϕc(P

∗) = ε1 + ε2 + ε3.

This completes the verification of Proposition 5.1.

Proposition 5.2. Let D be a minimally rich domain. Suppose that every unanimous

and strategy-proof RSCF g : DN−1 → L(A) is a random dictatorship for N >

3. Then every unanimous and strategy-proof RSCF ϕ : DN → ∆(A) is a quasi-

random dictatorship.

Proof. This proposition holds when m = 3, since a domain with exactly three

alternatives is a random dictatorship domain of N − 1 voters iff it is the complete
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domain.5 We therefore consider m ≥ 4. The proof of the Proposition follows from

Lemmas 5.1 - 5.4.

Let ϕ : DN → ∆(A) be a unanimous and strategy-proof RSCF. Pick two arbi-

trary voters, say i and j. Define a RSCF g(i,j) as for all Pi ∈ D and P−{i,j} ∈ DN−2,

g(i,j)(Pi, P−{i,j}) = ϕ(Pi, Pi, P−{i,j}).

Lemma 5.1. The RSCF g(i,j) is a random dictatorship for all i, j ∈ I .

Proof. Unanimity and strategy-proofness of ϕ imply that g(i,j) is unanimous and

strategy-proof (see Lemma 3 in [48]). Then by the hypothesis of Proposition 5.2,

g(i,j) is a random dictatorship.

Fix i, j ∈ I . It follows from Lemma 5.1 above that there exist ε(i,j), ε(i,j)
k ≥ 0 for

all k 6= i, j such that ε(i,j) +
∑

k 6=i,j ε
(i,j)
k = 1 and satisfying the following property:

ϕ(Pi, Pi, P−{i,j}) = g(i,j)(Pi, P−{i,j}) = ε(i,j) er1(Pi) +
∑

k 6=i,j ε
(i,j)
k er1(Pk) for all

Pi ∈ D and P−{i,j} ∈ DN−2. The next lemma shows that we can split the probability

ε(i,j) appropriately into two parts and together with all ε(i,j)
k , k 6= i, j, construct a

new N -dimensional sequence of probabilities, which are able to be applied to all

profiles of preferences where voter i and j share a same preference order.

Lemma 5.2. Pick i, j ∈ I . For all P ∈ DN with Pi = Pj there exists [α
(i,j; s,t)
k ]Nk=1 ≥

0 with
∑N

k=1 α
(i,j; s,t)
k = 1, where s, t ∈ I\{i, j} and s 6= t, such that ϕ(P ) =∑N

k=1 α
(i,j; s,t)
k er1(Pk).

Proof. Now, i, j, s, t are mutually distinct. For every l 6= i, j, s, t, we consider a pro-

file P (l) = (Pi, Pi, Ps, Ps, Pl, P−{i,j,s,t,l}) where r1(Pi) = a, r1(Ps) = b, r1(Pl) = c

and r1(P−{i,j,s,t,l}) ∩ {a, b, c} = ∅ (recall that m ≥ 4).6 Standard properties of

g(i,j) imply ϕa(P (l)) = ε(i,j), ϕb(P (l)) = ε
(i,j)
s + ε

(i,j)
t and ϕc(P (l)) = ε

(i,j)
l . Mean-

while, by g(s,t), ϕa(P (l)) = ε
(s,t)
i + ε

(s,t)
j , ϕb(P (l)) = ε(s,t) and ϕc(P (l)) = ε

(s,t)
l .

5The sufficiency part is shown in [26], [21] and [48]. The unique seconds property in [1] implies
the necessity. Let a domain satisfy the unique seconds property. Then this domain is not dictatorial
and hence not a random dictatorship domain. Furthermore, when m = 3, every domain other than
the universal domain satisfies the unique seconds property.

6If N = 4, let P = (Pi, Pi, Ps, Ps) where r1(Pi) = a and r1(Ps) = b.
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Therefore, ε(i,j) = ε
(s,t)
i + ε

(s,t)
j , ε(s,t) = ε

(i,j)
s + ε

(i,j)
t and ε

(i,j)
l = ε

(s,t)
l for all

l 6= i, j, s, t. Since ε(i,j) +
∑

k 6=i,j ε
(i,j)
k = 1 and ε(s,t) +

∑
k 6=s,t ε

(s,t)
k = 1, we have

ε
(s,t)
i + ε

(s,t)
j +

∑
k 6=i,j ε

(i,j)
k = 1 and ε(i,j)

s + ε
(i,j)
t +

∑
k 6=s,t ε

(s,t)
k = 1.

Setting α(i,j; s,t)
i = ε

(s,t)
i , α(i,j; s,t)

j = ε
(s,t)
j , α(i,j; s,t)

s = ε
(i,j)
s , α(i,j; s,t)

t = ε
(i,j)
t and

α
(i,j; s,t)
l = ε

(s,t)
l = ε

(i,j)
l for all l 6= i, j, s, t, we have α(i,j; s,t)

k ≥ 0, k = 1, . . . , N ,

and
∑N

k=1 α
(i,j; s,t)
k = 1.

Fix P = (Pi, Pj, P−{i,j}) with Pi = Pj ∈ D and P−{i,j} ∈ DN−2. It follows

from properties of g(i,j) that ϕr1(Pi)(P ) = ε(i,j) +
∑

k 6=i,j ε
(i,j)
k I(r1(Pk), r1(Pi)) =∑N

k=1 α
(i,j; s,t)
k I(r1(Pk), r1(Pi)) and for all x ∈ A\{r1(Pi)},

ϕx(P ) =
∑

k 6=i,j ε
(i,j)
k I(r1(Pk), x) =

∑N
k=1 α

(i,j; s,t)
k I(r1(Pk), x).

Note that [α
(i,j; s,t)
k ]Nk=1 = [α

(s,t; i,j)
k ]Nk=1, where i, j, s, t are distinct. The next

lemma shows that sequence [α
(i,j; s,t)
k ]Nk=1 is independent of {s, t} whenever s, t ∈

I\{i, j} and s 6= t.

Lemma 5.3. Fix i, j ∈ I . For all s, t, s̄, t̄ ∈ I\{i, j}, where s 6= t and s̄ 6= t̄, we

have [α
(i,j; s,t)
k ]Nk=1 = [α

(i,j; s̄,t̄ )
k ]Nk=1.

Proof. According to Lemma 5.2, α(i,j; s,t)
i = ε

(s,t)
i , α(i,j; s,t)

j = ε
(s,t)
j , ε(s,t)

i + ε
(s,t)
j =

ε(i,j) and α(i,j; s,t)
k = ε

(i,j)
k for all k 6= i, j. Meanwhile, α(i,j; s̄,t̄ )

i = ε
(s̄,t̄ )
i , α(i,j; s̄,t̄ )

j =

ε
(s̄,t̄ )
j , ε(s̄,t̄ )

i +ε
(s̄,t̄ )
j = ε(i,j) and α(i,j; s̄,t̄ )

k = ε
(i,j)
k for all k 6= i, j. Therefore, α(i,j; s,t)

i +

α
(i,j; s,t)
j = α

(i,j; s̄,t̄ )
i + α

(i,j; s̄,t̄ )
j and α(i,j; s,t)

k = α
(i,j; s̄,t̄ )
k for all k 6= i, j.

Next, given a profile P = (Pi, P−i) where r1(Pi) = a and for all k, l ∈ I\{i},

Pk = Pl /∈ Da, then by both g(s,t) and g(s̄,t̄ ) respectively, we have ϕa(P ) = ε
(s,t)
i and

ϕa(P ) = ε
(s̄,t̄ )
i . Then, ε(s,t)

i = ε
(s̄,t̄ )
i and hence α(i,j; s,t)

i = α
(i,j; s̄,t̄ )
i . Consequently,

α
(i,j; s,t)
j = α

(i,j; s̄,t̄ )
j .

Fix i, j ∈ I . We have the following: for all P ∈ DN with Pi = Pj , there

exists [α
(i,j)
k ]Nk=1 ≥ 0 with

∑N
k=1 α

(i,j)
k = 1 such that ϕ(P ) =

∑N
k=1 α

(i,j)
k er1(Pk).

In addition, [α
(i,j)
k ]Nk=1 = [α

(j,i)
k ]Nk=1. We next show that the sequence [α

(i,j)
k ]Nk=1 is

independent of {i, j}.
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Lemma 5.4. For all i, j, s, t ∈ I , where i 6= j and s 6= t, [α
(i,j)
k ]Nk=1 = [α

(s,t)
k ]Nk=1.

Proof. It is evident that |{i, j} ∩ {s, t}| = 0, 1 or 2. If |{i, j} ∩ {s, t}| = 0, then

i, j, s, t are mutually distinct. Hence, [α
(i,j)
k ]Nk=1 = [α

(i,j; s,t)
k ]Nk=1 = [α

(s,t; i,j)
k ]Nk=1 =

[α
(s,t)
k ]Nk=1. Next, if |{i, j} ∩ {s, t}| = 2, then {i, j} = {s, t}, which implies

[α
(i,j)
k ]Nk=1 = [α

(s,t)
k ]Nk=1.

Now, we consider |{i, j} ∩ {s, t}| = 1, We can therefore assume without loss

of generality that i = s. Since N > 3, there exists another voter: voter s̄ and

s̄ /∈ {i, j, t}.

For every k /∈ {i, j, t}, we consider a profile P (k) = (Pk, P−k) where Pk ∈ Da

and for all l, n ∈ I\{k}, Pl = Pn /∈ Da. By Lemma 5.3, it follows that ϕa(P (k)) =

α
(i,j)
k and ϕa(P (k)) = α

(i,t)
k . Therefore, α(i,j)

k = α
(i,t)
k for all k /∈ {i, j, t}.

From the case where |{i, j} ∩ {s̄, t}| = 0, we have α(i,j)
j = α

(s̄,t)
j . Consider a

profile P = (Pj, P−j) where Pj ∈ Da and for all l, n ∈ I\{j}, Pl = Pn /∈ Da.

By Lemma 5.3, it follows that ϕa(P ) = α
(s̄,t)
j and ϕa(P ) = α

(i,t)
j . Therefore,

α
(s̄,t)
j = α

(i,t)
j . Then, α(i,j)

j = α
(i,t)
j . Similarly, α(i,j)

t = α
(i,t)
t .

Finally, it is evident that α(i,j)
i = 1−

∑
k 6=i α

(i,j)
k = 1−

∑
k 6=i α

(i,t)
k = α

(i,t)
i . We

therefore conclude that [α
(i,j)
k ]Nk=1 = [α

(s,t)
k ]Nk=1.

In conclusion, there exists εk ∈ [0, 1], k = 1, . . . , N , with
∑N

k=1 εk = 1

such that for all P ∈ DN with Pi = Pj for some distinct i, j ∈ I , ϕ(P ) =∑N
k=1 εk er1(Pk). Therefore, ϕ is a quasi-random dictatorship. This completes the

verification of Proposition 5.2.

Proposition 5.3. Let D be a minimally rich domain. Suppose that for all 2 ≤

t < N , every unanimous and strategy-proof RSCF g : Dt → ∆(A) is a random

dictatorship. If a unanimous and strategy-proof RSCF ϕ : DN → ∆(A) is a quasi-

random dictatorship, then ϕ is a random dictatorship.

Proof. The proof proceeds in a sequence of lemmas. Let [εk]
N
k=1 ≥ 0 with

∑N
k=1 εk =

1 be the sequence for the quasi-random dictatorship that ϕ satisfies.
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Lemma 5.5. For all P ∈ DN , if there exist i, j ∈ I such that r1(Pi) = r1(Pj), then

ϕ(P ) =
∑N

k=1 εk er1(Pk).

Proof. Fix P = (Pi, Pj, P−{i,j}). Assume r1(Pi) = r1(Pj) = x0. If r1(P−{i,j})\{x0} =

∅, then r1(P ) = {x0} and unanimity gives the result. We complete the proof by

considering r1(P−{i,j})\{x0} 6= ∅. Now, assume r1(P−{i,j})\{x0} = {xk}lk=1,

1 ≤ l ≤ N − 2 and all elements in {xk}lk=1 are distinct. By strategy-proofness

and quasi-random dictatorship, we have ϕx0(P ) = ϕx0(Pi, Pi, P−{i,j}) = εi + εj +∑
k 6=i,j εk I(r1(Pk), x0) =

∑N
k=1 εk I(r1(Pk), x0).

Next, for the relative rankings of all elements in {xk}lk=1 in Pi, we assume with-

out loss of generality that xt = rkt(Pi), t = 1, . . . , l and k1 < k2 < · · · < kl. By

strategy-proofness, for all s ≥ 2,
∑s

ν=1 ϕrν(Pi)(Pj, Pj, P−{i,j}) ≤
∑s

ν=1 ϕrν(Pi)(P ) ≤∑s
ν=1 ϕrν(Pi)(Pi, Pi, P−{i,j}).

Next, according to quasi-random dictatorship, we have that for t = 1, . . . , l,

kt−1∑
ν=1

ϕrν(Pi)(Pj, Pj, P−{i,j}) =
kt−1∑
ν=1

ϕrν(Pi)(Pi, Pi, P−{i,j})

= εi + εj +
∑
k 6=i,j

εk

[ t−1∑
s=0

I(r1(Pk), xs)
]
,

kt∑
ν=1

ϕrν(Pi)(Pj, Pj, P−{i,j}) =
kt∑
ν=1

ϕrν(Pi)(Pi, Pi, P−{i,j})

= εi + εj +
∑
k 6=i,j

εk

[ t∑
s=0

I(r1(Pk), xs)
]
.

Consequently,
∑kt−1

ν=1 ϕrν(Pi)(P ) = εi + εj +
∑

k 6=i,j εk

[∑t−1
s=0 I(r1(Pk), xs)

]
and

∑kt
ν=1 ϕrν(Pi)(P ) = εi + εj +

∑
k 6=i,j εk

[∑t
s=0 I(r1(Pk), xs)

]
for t = 1, . . . , l.

Hence, ϕxt(P ) =
∑kt

ν=1 ϕrν(Pi)(P )−
∑kt−1

ν=1 ϕrν(Pi)(P ) =
∑

k 6=i,j εk I(r1(Pk), xt) =∑N
k=1 εk I(r1(Pk), xt) for t = 1, . . . , l.

Therefore,
∑

x∈r1(P ) ϕx(P ) ≡
∑l

i=0 ϕxi(P ) =
∑N

k=1 εk = 1. Then, for all

x /∈ r1(P ), ϕx(P ) = 0. In conclusion, ϕ(P ) =
∑N

k=1 εker1(Pk).

If |A| = m < N , then for all P ∈ DN , there always exist at least two voters who
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share a common maximal alternative. Then, Lemma 5.5 implies that ϕ is a random

dictatorship. We complete the proof by considering |A| = m ≥ N . Given a profile

P ∈ DN with |r1(P )| = N , recall W (P ) = ∪Nk=1W
(
Pk,max(Pk, r1(P−k))

)
.

Lemma 5.6. For all P ∈ DN with |r1(P )| = N , we have |r1(P )∩W (P )| ≥ N−1.

Proof. This lemma asserts that for every profile P ∈ DN with |r1(P )| = N , r1(P )

and W (P ) have at least N − 1 alternatives in common.

Suppose not. Then there exists P ∈ DN with |r1(P )| = N such that |r1(P ) ∩

W (P )| < N − 1. Hence, there exist a, b ∈ r1(P )\W (P ). Since |r1(P )| = N and

N ≥ 3, we know that there exists Pi ∈ Dc for some i ∈ I such that c /∈ {a, b}. Let

max(Pi, r1(P−i)) = x. If x /∈ {a, b}, we know {a, b} ⊆ W (Pi, x) which implies

{a, b} ⊆ W (P ). If x = a, then b ∈ W (Pi, x) which implies b ∈ W (P ). If x = b,

then a ∈ W (Pi, x) which implies a ∈ W (P ). We have a contradiction.

Lemma 5.7. For all P ∈ DN with |r1(P )| = N and x ∈ W (P ), we have ϕx(P ) =∑N
k=1 εk I(r1(Pk), x).

Proof. Fix i ∈ I . Assume without loss of generality that r1(P−i) = {xk}N−1
k=1 ,

xt = rkt(Pi), t = 1, . . . , N − 1, k1 < k2 < · · · < kN−1 and x1 = r1(Pj) for

some j ∈ I\{i}. By strategy-proofness, we have
∑s

ν=1 ϕrν(Pi)(Pj, Pj, P−{i,j}) ≤∑s
ν=1 ϕrν(Pi)(P ) ≤

∑s
ν=1 ϕrν(Pi)(Pi, Pi, P−{i,j}) for all s ≥ k1.

According to quasi-random dictatorship, we have the following:

k1∑
ν=1

ϕrν(Pi)(Pj, Pj, P−{i,j}) =

k1∑
ν=1

ϕrν(Pi)(Pi, Pi, P−{i,j}) = εi + εj,
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and for t = 2, . . . , N − 1,

kt−1∑
ν=1

ϕrν(Pi)(Pj, Pj, P−{i,j}) =
kt−1∑
ν=1

ϕrν(Pi)(Pi, Pi, P−{i,j})

= εi + εj +
∑
k 6=i,j

εk

[ t−1∑
s=2

I(r1(Pk), xs)
]
,

kt∑
ν=1

ϕrν(Pi)(Pj, Pj, P−{i,j}) =
kt∑
ν=1

ϕrν(Pi)(Pi, Pi, P−{i,j})

= εi + εj +
∑
k 6=i,j

εk

[ t∑
s=2

I(r1(Pk), xs)
]
.

Then, similar to the proof of Lemma 5.5, we have
∑k1

ν=1 ϕrν(Pi)(P ) = εi + εj

and ϕxt(P ) =
∑N

k=1 εk I(r1(Pk), xt), for t = 2, . . . , N − 1. Since |r1(P )| = N

and r1(P−{i,j}) = {xt}N−1
t=2 , we know ϕr1(Pk)(P ) = εk for all k 6= i, j. Then,∑k1

ν=1 ϕrν(Pi)(P ) +
∑

k 6=i,j ϕr1(Pk)(P ) =
∑N

k=1 εk = 1. Therefore, for all x ∈

W (Pi, x1)\{xt}N−1
t=2 , ϕx(P ) = 0. In conclusion, for all x ∈ W (Pi, x1), ϕx(P ) =∑N

k=1 εk I(r1(Pk), x).

Applying the same argument to all other voters, we haveϕx(P ) =
∑N

k=1 εk I(r1(Pk), x)

for all x ∈ W (P ).

From Lemma 5.7, we can infer that for all P ∈ DN with |r1(P )| = N , if

r1(P ) ⊆ W (P ), then ϕ(P ) =
∑N

k=1 εk er1(Pk). By Lemmas 5.6 and 5.7, we know

that for every P ∈ DN with |r1(P )| = N , the probabilities over at least N − 1

elements of r1(P ) in ϕ(P ) are revealed.

In the next lemma, we will identify properties that a profile P and ϕ(P ) must

satisfy if ϕ(P ) 6=
∑N

k=1 εk er1(Pk). Given a profile P ∈ DN with |r1(P )| = N , let

B̄i(P ) = B
(
Pi,max(Pi, r1(P−i))

)∖
{r1(Pi)}, i ∈ I and B̄(P ) = ∩i∈IB̄i(P ).

Lemma 5.8. Given P ∈ DN , if ϕ(P ) 6=
∑N

k=1 εk er1(Pk), the following conditions

are satisfied:

(i) |r1(P )| = N .
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(ii) There exists i ∈ I such that ϕr1(Pi)(P ) < εi and ϕr1(Pk)(P ) = εk for all

k 6= i.

(iii) r1(Pi) = max(Pk, r1(P−k)) for all k 6= i.

(iv) ϕr1(Pi)(P ) +
∑

x∈B̄(P ) ϕx(P ) = εi.

(v) B̄(P ) 6= ∅. Furthermore, there exists x ∈ B̄(P ) such that ϕx(P ) > 0.

Proof. (i) Since ϕ(P ) 6=
∑N

k=1 εk er1(Pk), Lemma 5.5 implies |r1(P )| = N .

(ii) According to Lemmas 5.6 and 5.7 and the hypothesis ϕ(P ) 6=
∑N

k=1 εk er1(Pk),

it must be true that |r1(P ) ∩W (P )| = N − 1. Assume without loss of generality

that r1(Pi) /∈ W (P ). Then, by Lemma 5.7, we have ϕr1(Pk)(P ) = εk for all k 6= i.

Consequently, ϕr1(Pi)(P ) ≤ 1 −
∑

k 6=i ϕr1(Pk)(P ) = εi. This implies ϕr1(Pi)(P ) <

εi, otherwise ϕ(P ) =
∑N

k=1 εker1(Pk).

(iii) The proof of statement (ii) shows that r1(Pi) /∈ W (P ), which implies r1(Pi) =

max(Pk, r1(P−k)) for all k 6= i.

(iv) Assume without loss of generality that max(Pi, r1(P−i)) = r1(Pj) for some

j ∈ I\{i} and let r1(Pj) = rs(Pi). Then, as we showed in the proof of Lemma

5.7, εi + εj =
∑s

k=1 ϕrk(Pi)(P ) =
∑s−1

k=1 ϕrk(Pi)(P ) + ϕr1(Pj)(P ) = ϕr1(Pi)(P ) +∑
x∈B̄i(P ) ϕx(P ) +ϕr1(Pj)(P ). Furthermore, statement (ii) implies ϕr1(Pj)(P ) = εj .

Hence, ϕr1(Pi)(P ) +
∑

x∈B̄i(P ) ϕx(P ) = εi. Next, since B̄i(P )\B̄(P ) ⊂ W (P ) and

B̄(P ) ⊆ B̄i(P ), we have ϕx(P ) = 0 for all x ∈ B̄i(P )\B̄(P ) by Lemma 5.7 and

ϕr1(Pi)(P ) +
∑

x∈B̄(P ) ϕx(P ) = εi.

(v) By statements (ii) and (iv), we know
∑

x∈B̄(P ) ϕx(P ) > 0, which implies

B̄(P ) 6= ∅ and furthermore, there exists x ∈ B̄(P ) such that ϕx(P ) > 0.

The voter i specified in statement (ii) of Lemma 5.8 is called the special voter

of P . As we showed in the proof of statement (ii) of Lemma 5.8, we know that

the peak of the special voter of P does not belong to W (P ). It is evident that in a

profile P with ϕ(P ) 6=
∑N

k=1 εker1(Pk), there exists a unique special voter.
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We next show what property the sequence [εk]
N
k=1 must satisfy, when there exists

a profile P ∗ such that ϕ(P ∗) 6=
∑N

k=1 εker1(P ∗k ).

Lemma 5.9. If there exists P ∗ ∈ DN such that ϕ(P ∗) 6=
∑N

k=1 εk er1(P ∗k ), then

0 < εk < 1, k = 1, . . . , N .

Proof. Suppose there exists εk = 0. Fix P ∗k (the kth element of P ∗). Define a RSCF:

g(P−k) = ϕ(P ∗k , P−k) for all P−k ∈ DN−1. Strategy-proofness of ϕ implies that g is

strategy-proof. Next, Lemma 5.5 implies that g is unanimous. Furthermore, accord-

ing to Lemma 5.8(v), we know that there exists x /∈ r1(P ∗) such that ϕx(P ∗) > 0.

Therefore, gx(P ∗−k) = ϕx(P
∗
k , P

∗
−k) > 0 where x /∈ r1(P ∗−k), which implies that

RSCF g is not a random dictatorship. This is a contradiction to the hypothesis of

Proposition 5.3.

Next, suppose εk = 1 for some k ∈ I . Then, there exists j 6= k such that εj = 0,

which would lead to the same contradiction.

In the next lemma, we show it is true that for all P ∈ DN with |r1(P )| = N ,

ϕ(P ) =
∑N

k=1 εker1(Pk) by contradiction. Suppose ϕ is not a random dictatorship.

Then we construct a RSCF h : D2 → ∆(A) and show it is unanimous and strategy-

proof and not a random dictatorship, which hence contradicts the hypothesis of

Proposition 5.3.

Lemma 5.10. For all P ∈ DN with |r1(P )| = N , we have ϕ(P ) =
∑N

k=1 εk er1(Pk).

Proof. Suppose RSCF ϕ is not a random dictatorship with respect to [εk]
N
k=1. Then,

there exists P ∗ ∈ DN such that ϕ(P ∗) 6=
∑N

k=1 εker1(P ∗k ). By Lemma 5.8(ii) and (v),

we know that there exist a special voter of P ∗ and y /∈ r1(P ∗) such that ϕy(P ∗) > 0.

Assume without loss of generality that voter 1 be the special voter of P ∗. Next,

pick arbitrarily another voter, i.e., voter 2 and fix P ∗−{1,2} (elements in P ∗ other

than P ∗1 and P ∗2 ). By Lemma 5.9, we can construct the following function: for all
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P1, P2 ∈ D,

h(P1, P2) =



ε1
ε1+ε2

er1(P1) + ε2
ε1+ε2

er1(P2),

if ϕr1(P1)(P1, P2, P
∗
−{1,2}) ≥ ε1, and ϕr1(P2)(P1, P2, P

∗
−{1,2}) ≥ ε2;

1
ε1+ε2

[
ϕ(P1, P2, P

∗
−{1,2})−

N∑
k=3

εker1(P ∗k )

]
,

otherwise.

Note that Lemma 5.8(ii) implies that it is impossible thatϕr1(P1)(P1, P2, P
∗
−{1,2}) <

ε1 andϕr1(P2)(P1, P2, P
∗
−{1,2}) < ε2 simultaneously. Therefore, given P = (P1, P2, P

∗
−{1,2}),

by Lemma 5.8(ii) and (iv), when either ϕr1(P1)(P ) < ε1 or ϕr1(P2)(P ) < ε2,

h(P1, P2) must be specified as below:

if ϕr1(P1)(P ) < ε1, then

h(P1, P2) =
1

ε1 + ε2

[
ϕr1(P1)(P ) er1(P1) +

∑
x∈B̄(P )

ϕx(P ) ex + ε2 er1(P2)

]
(5.1)

where ϕr1(P1)(P ) +
∑

x∈B̄(P ) ϕx(P ) = ε1; and

if ϕr1(P2)(P ) < ε2, then

h(P1, P2) =
1

ε1 + ε2

[
ε1 er1(P1) + ϕr1(P2)(P ) er1(P2) +

∑
x∈B̄(P )

ϕx(P ) ex

]
(5.2)

where ϕr1(P2)(P ) +
∑

x∈B̄(P ) ϕx(P ) = ε2.

Next, we will show that h is a unanimous and strategy-proof RSCF. Further-

more, to complete the proof of Lemma 5.10, we also show that h is not a random

dictatorship which contradicts the hypothesis of Proposition 5.3.

Claim 1: Function h is a RSCF.

Firstly, if ϕr1(P1)(P1, P2, P
∗
−{1,2}) ≥ ε1 and ϕr1(P2)(P1, P2, P

∗
−{1,2}) ≥ ε2, it is

evident that hx(P1, P2) ≥ 0 for all x ∈ A, and
∑

x∈A hx(P1, P2) = 1. Secondly, if

either ϕr1(P1)(P1, P2, P
∗
−{1,2}) < ε1 or ϕr1(P2)(P1, P2, P

∗
−{1,2}) < ε2, either Equation

(1) or (2) above implies hx(P1, P2) ≥ 0 for all x ∈ A and
∑

x∈A hx(P1, P2) = 1.
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This completes the verification of Claim 1.

Claim 2: RSCF h is unanimous.

Let r1(P1) = r1(P2) = a. Then, by Lemma 5.5, we know thatϕa(P1, P2, P
∗
−{1,2}) =

ε1+ε2+
∑N

k=3 εkI(a, r1(P ∗k )). Hence, ϕr1(P1)(P1, P2, P
∗
−{1,2}) = ϕa(P1, P2, P

∗
−{1,2}) ≥

ε1 andϕr1(P2)(P1, P2, P
∗
−{1,2}) = ϕa(P1, P2, P

∗
−{1,2}) ≥ ε2. Consequently, ha(P1, P2) =

ε1
ε1+ε2

+ ε2
ε1+ε2

= 1. This completes the verification of Claim 2.

Claim 3: RSCF h is not a random dictatorship.

Since we have assumed that voter 1 is the special voter of P ∗, it is true that

ϕr1(P ∗1 )(P
∗) < ε1 by Lemma 5.8(ii). Consequently, h(P ∗1 , P

∗
2 ) follows from Equa-

tion (1). Next, since we have assumed that ϕy(P ∗) > 0 where y /∈ r1(P ∗) in the

beginning proof of Lemma 5.10, we have hy(P ∗1 , P
∗
2 ) > 0 and y /∈ r1(P ∗1 , P

∗
2 ),

which implies that h is not a random dictatorship. This completes the verification

of Claim 3.

Claim 4: RSCF h is strategy-proof.

Recall that to verify strategy-proofness of a RSCF, it is equivalent to show that a

voter’s expected utility from truthtelling to be no less than her expected utility from

misrepresentation for any cardinal representation of her true preferences indepen-

dent of other voters’ behaviors. Given Pi ∈ D, let U(Pi) denote the set of utility

functions that represent Pi. Accordingly, given a lottery λ ∈ ∆(A) and ui ∈ U(Pi),∑
a∈A λaui(a) represents voter i’s expected utility. To verify this claim, we adopt

this approach, instead of directly showing stochastic dominance.

We consider the possible manipulation of voter 1 in h. Firstly, it is evident

that the manipulation only occurs at (P1, P2) via P ′1 where either h(P1, P2) =

ε1
ε1+ε2

er1(P1)+
ε2

ε1+ε2
er1(P2) and h(P ′1, P2) = 1

ε1+ε2

[
ϕ(P ′1, P2, P

∗
−{1,2})−

∑N
k=3 εker1(P ∗k )

]
,

or h(P1, P2) = 1
ε1+ε2

[
ϕ(P1, P2, P

∗
−{1,2})−

∑N
k=3 εker1(P ∗k )

]
and

h(P ′1, P2) = ε1
ε1+ε2

er1(P ′1) + ε2
ε1+ε2

er1(P2).

Secondly, if ϕ(P1, P2, P
∗
−{1,2}) = ε1er1(P1) + ε2er1(P2) +

∑N
k=3 εker1(P ∗k ), then

h(P1, P2) = ε1
ε1+ε2

er1(P1)+
ε2

ε1+ε2
er1(P2) = 1

ε1+ε2

[
ϕ(P1, P2, P

∗
−{1,2})−

∑N
k=3 εker1(P ∗k )

]
,

which implies that there exists no manipulation at (P1, P2) via P ′1 or at (P ′1, P2) via
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P1.

Therefore, given two profiles P = (P1, P2, P
∗
−{1,2}) and P ′ = (P ′1, P2, P

∗
−{1,2})

such that ϕ(P ) 6= ε1er1(P1) + ε2er1(P2) +
∑N

k=3 εker1(P ∗k ) and ϕ(P ′) 6= ε1er1(P ′1) +

ε2er1(P2) +
∑N

k=3 εker1(P ∗k ), the manipulation at (P1, P2) via P ′1 may occur in follow-

ing 4 cases.7

Case 1: (i) ϕr1(P1)(P ) ≥ ε1 and ϕr1(P2)(P ) ≥ ε2, and (ii) ϕr1(P ′1)(P
′) < ε1.

Now, h(P ′1, P2) follows from Equation (1). Then, given u1 ∈ U(P1), the loss

from misrepresentation in h is
∑

x∈A u1(x)ϕx(P1, P2)−
∑

x∈A u1(x)ϕx(P
′
1, P2) =

1
ε1+ε2

[
ε1u1(r1(P1)) − ϕr1(P ′1)(P

′)u1(r1(P ′1)) −
∑

x∈B̄(P ′) ϕx(P
′)u1(x)

]
≥ 0. This

completes the verification of Case 1.

Case 2: (i) ϕr1(P1)(P ) ≥ ε1 and ϕr1(P2)(P ) ≥ ε2, and (ii) ϕr1(P2)(P
′) < ε2.

We first claim that this case only occurs when N = 3. Suppose not, i.e., N ≥ 4.

Since ϕr1(P1)(P ) ≥ ε1 and ϕr1(P2)(P ) ≥ ε2, by Lemma 5.8(ii), we assume without

loss of generality that voter i, where i ∈ {3, . . . , N}, is the special voter of P . Next,

since N ≥ 4, there must exist another voter, i.e., voter j such that j /∈ {1, 2, i}.

Furthermore, applying Lemma 5.8(iii) to P , we know r1(Pi)Pj r1(P2). On the other

hand, ϕr1(P2)(P
′) < ε2 indicates that voter 2 is the special voter of P ′. Therefore,

applying Lemma 5.8(iii) to P ′, we have r1(P2)Pj r1(Pi). Contradiction!

Now, by Lemma 5.8(i), to simplify the notation, we assume r1(P1) = a, r1(P2) =

b, r1(P ∗3 ) = c and r1(P ′1) = d, where a, b, c are mutually distinct and d, b, c are mu-

tually distinct (it is possible that a = d). Furthermore, h(P ′1, P2) follows from

Equation (2). Therefore, given u1 ∈ U(P1), the loss from misrepresentation in h is

∑
x∈A

u1(x)ϕx(P1, P2)−
∑
x∈A

u1(x)ϕx(P
′
1, P2)

=
1

ε1 + ε2

[
ε1u1(a) + ε2u1(b)− ε1u1(d)− ϕb(P ′)u1(b)−

∑
x∈B̄(P ′)

ϕx(P
′)u1(x)

]
7Since ϕ(P ) 6= ε1er1(P1) + ε2er1(P2) +

∑N
k=3 εker1(P∗k ) and ϕ(P ′) 6= ε1er1(P ′1) + ε2er1(P2) +∑N

k=3 εker1(P∗k ), we can apply Lemma 5.8 to P and P ′ in the analysis of the following 4 cases.
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where ε2 = ϕb(P
′) +

∑
x∈B̄(P ′) ϕx(P

′).

To show that
∑

x∈A u1(x)ϕx(P1, P2) −
∑

x∈A u1(x)ϕx(P
′
1, P2) ≥ 0, We will

consider the following 2 situations: dP1b and bP1d.

Firstly, we claim that if dP1b,
∑

x∈A u1(x)ϕx(P1, P2)−
∑

x∈A u1(x)ϕx(P
′
1, P2) ≥

0. Since either a = d or aP1d, to verify the claim, we only need to show that bP1x

for all x ∈ B̄(P ′) with ϕx(P ′) > 0. Suppose not, i.e., there exists x∗ ∈ B̄(P ′)

such that ϕx∗(P ′) > 0 and x∗P1b. In profile P , since ϕa(P ) ≥ ε1, ϕb(P ) ≥ ε2 and

N = 3, by Lemma 5.8(ii) and (iii), we know that voter 3 is the special voter of P

and cP1b. Let x′ = min(P1, {x∗, d, c}). Hence x′P1b. Assume x′ = rs(P1). As

we showed in the proof of Lemma 5.7,
∑s

k=1 ϕrk(P1)(P ) = ε1 + ε3. Meanwhile,

Lemma 5.8(ii) implies ϕd(P ′) = ε1 and ϕc(P
′) = ε3. Then, ϕx∗(P ′) > 0 im-

plies that
∑s

k=1 ϕrk(P1)(P ) < ε1 + ε3 + ϕx∗(P
′) = ϕd(P

′) + ϕc(P
′) + ϕx∗(P

′) ≤∑s
k=1 ϕrk(P1)(P

′). Therefore, voter 1 manipulates at P via P ′1 in ϕ - a contradiction.

Next, we claim that if bP1d, then
∑

x∈A u1(x)ϕx(P1, P2)−
∑

x∈A u1(x)ϕx(P
′
1, P2) ≥

0. Now, it is evident that a 6= d. Since b /∈ B̄(P ′), we separate B̄(P ′) into

two parts S and T : for all x ∈ S, xP1b, and for all z ∈ T , bP1z. If S = ∅,

then for all x ∈ B̄(P ′), bP1x. Therefore, it is true that
∑

x∈A u1(x)ϕx(P1, P2) −∑
x∈A u1(x)ϕx(P

′
1, P2) = ε1

ε1+ε2
[u1(a) − u1(d)] + 1

ε1+ε2

∑
x∈B̄(P ′) ϕx(P

′)[u1(b) −

u1(x)] ≥ 0.

Next, consider S 6= ∅. Let x∗ = max(P1, S). It is true that (i) either aP1x
∗ or

a = x∗, (ii) x∗P1b, (iii) bP1d and (iv) bP1z for all z ∈ T (if T 6= ∅). Furthermore,∑
x∈A u1(x)ϕx(P1, P2)−

∑
x∈A u1(x)ϕx(P

′
1, P2) can be modified as

∑
x∈A

u1(x)ϕx(P1, P2)−
∑
x∈A

u1(x)ϕx(P ′1, P2)

=
1

ε1 + ε2

[
ε1u1(a) + ε2u1(b)− ε1u1(d)− ϕb(P ′)u1(b)−

∑
x∈S

ϕx(P ′)u1(x)−
∑
z∈T

ϕz(P
′)u1(z)

]

≥ 1

ε1 + ε2

[
ε1u1(a) + ε2u1(b)− ε1u1(d)− ϕb(P ′)u1(b)− u1(x∗)

∑
x∈S

ϕx(P ′)−
∑
z∈T

ϕz(P
′)u1(z)

]

=
ε1[u1(a)− u1(x∗)]

ε1 + ε2
+

ε1 −
∑
x∈S

ϕx(P ′)

ε1 + ε2
[u1(x∗)− u1(b)] +

ε1[u1(b)− u1(d)]

ε1 + ε2
+

∑
z∈T

ϕz(P
′)[u1(b)− u1(z)]

ε1 + ε2
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Therefore, according to the relative rankings in P1 specified above, to show that∑
x∈A u1(x)ϕx(P1, P2) −

∑
x∈A u1(x)ϕx(P

′
1, P2) ≥ 0, it suffices to show ε1 ≥∑

x∈S ϕx(P
′).

Assume min(P1, S) = y∗ and let z∗ = min(P1, {c, y∗}). Assume z∗ = rs(P1).

Hence, {rk(P1)}sk=1 = B(P1, z
∗) ∪ {z∗}. In profile P , since ϕa(P ) ≥ ε1, ϕb(P ) ≥

ε2 and N = 3, by Lemma 5.8(ii) and (iii), we know that voter 3 is the special voter

of P and cP1b. Hence, z∗P1b. Therefore, as we showed in the proof of Lemma

5.7, we have
∑s

k=1 ϕrk(P1)(P ) = ε1 + ε3. Next, in profile P ′, by Lemma 5.8(ii)

and (iv), we know that for all z /∈ {d, b, c} ∪ B̄(P ′), ϕz(P ′) = 0. Furthermore,

since [B(P1, z
∗)∪ {z∗}]∩ {d, b, c} = {c} and [B(P1, z

∗)∪ {z∗}]∩ B̄(P ′) = S, we

have that
∑s

k=1 ϕrk(P1)(P
′) ≡

∑
x∈B(P1,z∗)∪{z∗} ϕx(P

′) = ϕc(P
′)+
∑

x∈S ϕx(P
′) =

ε3 +
∑

x∈S ϕx(P
′) (by Lemma 5.8(ii), ϕc(P ′) = ε3). Then, strategy-proofness of ϕ

implies ε1 ≥
∑

x∈S ϕx(P
′). This completes the verification of Case 2.

Case 3: (i) ϕr1(P1)(P ) < ε1, and (ii) ϕr1(P ′1)(P
′) ≥ ε1 and ϕr1(P2)(P

′) ≥ ε2.

Now, h(P1, P2) follows from Equation (1). Then, given u1 ∈ U(P1), the loss

from misrepresentation in h is

∑
x∈A

u1(x)ϕx(P1, P2)−
∑
x∈A

u1(x)ϕx(P
′
1, P2)

=
1

ε1 + ε2

[
ϕr1(P1)(P )u1(r1(P1)) +

∑
x∈B̄(P )

ϕx(P )u1(x)− ε1u1(r1(P ′1))
]

where ϕr1(P1)(P ) +
∑

x∈B̄(P ) ϕx(P ) = ε1.

Firstly, since ϕr1(P1)(P ) < ε1 and ϕr1(P ′1)(P
′) ≥ ε1, strategy-proofness im-

plies that r1(P1) 6= r1(P ′1). It is evident that r1(P1)P1 r1(P ′1). Therefore, to show∑
x∈A u1(x)ϕx(P1, P2) −

∑
x∈A u1(x)ϕx(P

′
1, P2) ≥ 0, it suffices to show that for

all x ∈ B̄(P ) with ϕx(P ) > 0 and x 6= r1(P ′1), xP1r1(P ′1).

Now, suppose there exists z′ ∈ B̄(P ) such that ϕz′(P ) > 0 and r1(P ′1)P1z
′.

Firstly, B̄(P ) ⊆ B̄1(P ) implies z′ ∈ B̄1(P ). Let s1 and s2 be such that r1(P ′1) =

rs1(P1) and z′ = rs2(P1). Hence, 1 < s1 < s2. As we showed in the proof
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of Lemma 5.8(iv), ϕr1(P1)(P ) +
∑

x∈B̄1(P ) ϕx(P ) = ε1. Then, ϕz′(P ) > 0 and

z′ ∈ B̄1(P ) imply
∑s1

k=1 ϕrk(P1)(P ) <
∑s2

k=1 ϕrk(P1)(P ) ≤ ε1 = ϕr1(P ′1)(P
′) ≤∑s1

k=1 ϕrk(P1)(P
′). Therefore, voter 1 manipulates at P via P ′1 in ϕ - a contradiction.

This complete the verification of Case 3.

Case 4: (i) ϕr1(P2)(P ) < ε2, and (ii) ϕr1(P ′1)(P
′) ≥ ε1 and ϕr1(P2)(P

′) ≥ ε2.

As in Case 2, we can claim that this case only occur when N = 3. Now,

h(P1, P2) follows from Equation (2). Since ϕr1(P2)(P ) < ε2, we know that voter 2

is the special voter of P by Lemma 5.8(ii). Hence, for all x ∈ B̄(P ), xP1r1(P2)

by Lemma 5.8(iii). Then, given u1 ∈ U(P1), the loss from manipulation in h is∑
x∈A u1(x)ϕx(P1, P2)−

∑
x∈A u1(x)ϕx(P

′
1, P2) = ε1

ε1+ε2
[u1(r1(P1))−u1(r1(P ′1))]+

1
ε1+ε2

∑
x∈B̄(P ) ϕx(P )[u1(x) − u1(r1(P2))] ≥ 0. This completes the verification of

Case 4.

Finally, using symmetric arguments for voter 2, we conclude that h is strategy-

proof. This completes the verification of Claim 4 and the proof of Lemma 5.10.

This concludes the proof of Proposition 5.3.

Finally, Proposition 5.1, 5.2 and 5.3 conclude the proof of Theorem 5.1.

6 The Weighted Projection Rule

In the verification of the sufficiency part of Theorem 3.3.1, we constructed a weighted

projection rule. Here, we briefly describe some important features of such rules.

A projection rule is a DSCF that is strategy-proof, efficient (deterministic coun-

terpart of ex-post efficiency), tops-only and anonymous. A weighted projection rule

is a convex combination of all projection rules and inherits all the properties of pro-

jection rules mentioned above and satisfies the compromise property. If the weights

are chosen to be 1/|A|, a weighted projection rule also satisfies neutrality.8

8A RSCF ϕ : DN → ∆(A) is neutral if for every permutation σ : A→ A and P, P ′ ∈ DN with
[aPib]⇔ [σ(a)P ′iσ(b)] for all i ∈ I and a, b ∈ A, we have ϕa(P ) = ϕσ(a)(P

′) for all a ∈ A.

118



Weighted projection rules are not the only RSCFs that satisfy the required prop-

erties in Theorem 3.3.1 on single-peaked domains on a tree. One way to see this

is to note that a projection rule on a line is a particular case of a phantom voter

rule (see [34], [12] and [46]) where all phantom voters have the same peak.9 Con-

sider the single-peaked domain on a line (see Example 3.2.2), and let the RSCF

ϕ : DN → ∆(A), N ≥ 3, be a convex combination of all phantom voter rules on

the line where every phantom voter rule has strictly positive weight. It is easy to

show that ϕ is ex-post efficient, anonymous, tops-only and strategy-proof, and sat-

isfies the compromise property. However, RSCF ϕ is not a weighted projection rule

since it includes some phantom voter rules with distinct peaks of phantom voters.

In the case of two voters, efficiency reduces the number of phantom voters to one.

However even in this case, there exist strategy-proof, ex-post efficient and tops-

only RSCFs satisfying the compromise property that are not weighted projection

rules (see Example 6.1).

Example 6.1. Consider domain D̄ in Example 3.2.1. Note that for all Pi, Pj ∈ D̄

with r1(Pi) 6= r1(Pj), either C(Pi, Pj) = {a2} or C(Pi, Pj) = ∅. Domain D̄ admits

the RSCF ϕ : D̄2 → ∆(A) specified in Table 1. It is easy to verify that ϕ is ex-post

efficient, anonymous and tops-only and satisfies the compromise property.

PPPPPPPPPPPP
Pj ∈ D̄

Pi ∈ D̄
r1(Pi) = a1 r1(Pi) = a2 r1(Pi) = a3 r1(Pi) = a4

r1(Pj) = a1 ea1
1
3ea1 + 2

3ea2
1
3ea1 + 1

3ea2 + 1
3ea3

1
3ea1 + 1

6ea2 + 1
2ea4

r1(Pj) = a2
1
3ea1 + 2

3ea2 ea2
2
3ea2 + 1

3ea3
1
2ea2 + 1

2ea4

r1(Pj) = a3
1
3ea1 + 1

3ea2 + 1
3ea3

2
3ea2 + 1

3ea3 ea3
1
6ea2 + 1

3ea3 + 1
2ea4

r1(Pj) = a4
1
3ea1 + 1

6ea2 + 1
2ea4

1
2ea2 + 1

2ea4
1
6ea2 + 1

3ea3 + 1
2ea4 ea4

Table 1: RSCF ϕ : D̄2 → ∆(A)

There are three maximal paths in GT : {a1, a2, a3}, {a1, a2, a4} and {a3, a2, a4}.

Accordingly, we have three subdomains: D̄1 =
{
Pi ∈ D̄

∣∣r1(Pi) ∈ {a1, a2, a3}
}

,

9[50] and [51] show that the family of projection rules is uniquely characterized by Pareto opti-
mality and the axiom of replacement dominance over the single-peaked domain.

119



D̄2 =
{
Pi ∈ D̄

∣∣r1(Pi) ∈ {a1, a2, a4}
}

and D̄3 =
{
Pi ∈ D̄

∣∣r1(Pi) ∈ {a3, a2, a4}
}

.

Observe that for every P ∈ D̄2, there exists k ∈ {1, 2, 3} (not necessarily unique)

such that P ∈ D̄2
k.10

The RSCF ϕ is defined by considering a separate weighted projection rule for

each of the subdomains D̄1, D̄2 and D̄3. Specifically, for all P 1 ∈ D̄2
1, P 2 ∈ D̄2

2 and

P 3 ∈ D̄2
3,

ϕ(P 1) =
1

3
φa1(P 1) +

1

3
φa2(P 1) +

1

3
φa3(P 1),

ϕ(P 2) =
1

3
φa1(P 2) +

1

6
φa2(P 2) +

1

2
φa4(P 2),

ϕ(P 3) =
1

3
φa3(P 3) +

1

6
φa2(P 3) +

1

2
φa4(P 3).

Note that if P ∈ D̄2
k and P ∈ D̄2

k′ , where k 6= k′, ϕ(P ) is identically induced by

the two corresponding distinct weighted projection rules. For instance, (P1, P2) ∈

D̄2
1 and (P1, P2) ∈ D̄2

2. According to D̄1, ϕ(P1, P2) = 1
3
ea1 + 2

3
ea2 , while according

to D̄2, we also have ϕ(P1, P2) = 1
3
ea1 + 2

3
ea2 .

Similar to the verification of strategy-proofness in Example 3.3.2, we fix voter i

and check all possible manipulations: (Pi, Pj)↔ (P ′i , Pj). It follows from standard

arguments that manipulation never occurs within any of the subdomains D̄1, D̄2

and D̄3, i.e., if the true preference and the misrepresentation lie within the same

subdomain. We will consider every misrepresentation which leads to an outcome

according to a different weighted projection rule relative to truth-telling. It covers

three situations and we specify the changes of probabilities in each situation which

indicate that probabilities are always transferred from the preferred alternatives to

less preferred alternatives according to the true preference.

1. In (Pi, a3)↔ (P ′i , a3) where r1(Pi) = a1 and r1(P ′i ) = a4, we have

ϕ(Pi, a3)
a1Pia4−−−−−→

1/3
,
a2Pia4−−−−−→

1/6
ϕ(P ′i , a3) and ϕ(P ′i , a3)

a4P ′ia1
−−−−−→

1/3
,
a4P ′ia2
−−−−−→

1/6
ϕ(Pi, a3).

2. In (Pi, a4)↔ (P ′i , a4) where r1(Pi) = a1 and r1(P ′i ) = a3, we have

10For instance, (P1, P2) ∈ D̄2
1 and (P1, P2) ∈ D̄2

2.
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ϕ(Pi, a4)
a1Pia3−−−−−→

1/3
ϕ(P ′i , a4) and ϕ(P ′i , a4)

a3P ′ia1
−−−−−→

1/3
ϕ(Pi, a4).

3. In (Pi, a1)↔ (P ′i , a1) where r1(Pi) = a3 and r1(P ′i ) = a4, we have

ϕ(Pi, a1)
a3Pia4−−−−−→

1/3
,
a2Pia4−−−−−→

1/6
ϕ(P ′i , a1) and ϕ(P ′i , a1)

a4P ′ia3
−−−−−→

1/3
,
a4P ′ia2
−−−−−→

1/6
ϕ(Pi, a1).

In conclusion, RSCF ϕ is strategy-proof.

Last, we verify that ϕ is not a weighted projection rule. Suppose it is not true.

Then, there exists λak ≥ 0, k = 1, 2, 3, 4 with
∑4

k=1 λ
ak = 1 such that ϕ(P ) =∑4

k=1 λ
akφak(P ) for all P ∈ D̄2. We must then have (i) λa1 = ϕa1(a1, a2) =

1
3
, (ii) λa3 = ϕa3(a3, a2) = 1

3
, and (iii) λa4 = ϕa4(a4, a2) = 1

2
. Consequently,

λa1 +λa3 +λa4 > 1 which is a contradiction. Hence, ϕ is not a weighted projection

rule. 2

7 Strategy-proofness in Example 3.3.2

To verify that RSCF ϕ in Example 3.3.2 is strategy-proof, it suffices to show that

in every possible manipulation, probabilities are transferred from preferred alterna-

tives to less preferred alternatives in the true preference while probabilities assigned

to other alternatives are unchanged. Note that since RSCF ϕ is anonymous, we can

fix a voter, say voter i, and consider all possible manipulations (Pi, Pj)↔ (P ′i , Pj).

According to the construction of ϕ, it is evident that manipulation can never

occur if both truth-telling and misrepresentation result in a random dictatorship out-

come.

Next, voter i would consider a misrepresentation which makes RSCF ϕ change

from random dictatorship to the weighted projection rule or vice versa. Given

Pi ∈ {P1, P2}, Pj ∈ {P5, P6} and P ′i ∈ {P3, P4, P5, P6}, we specify the changes

of probabilities in all possible manipulations which indicate that probabilities are

always transferred from the preferred alternatives to less preferred alternatives in

the true preference.

1. In (P1, P5)↔ (P3, P5), we have
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ϕ(P1, P5)
a1P1a2−−−−−→

1/2
ϕ(P3, P5) and ϕ(P3, P5)

a2P3a1−−−−−→
1/2

ϕ(P1, P5).

2. In (P1, P5)↔ (P4, P5) or (P5, P5), we have

ϕ(P1, P5)
a1P1a3−−−−−→

1/2
ϕ(P4, P5) or ϕ(P5, P5),

ϕ(P4, P5)
a3P4a1−−−−−→

1/2
ϕ(P1, P5) and ϕ(P5, P5)

a3P5a1−−−−−→
1/2

ϕ(P1, P5).

3. In (P1, P5)↔ (P6, P5), we have

ϕ(P1, P5)
a1P1a3−−−−−→

1/6
,
a1P1a4−−−−−→

1/3
ϕ(P6, P5) and ϕ(P6, P5)

a3P6a1−−−−−→
1/6

,
a4P6a1−−−−−→

1/3
ϕ(P1, P5).

4. In (P2, P5)↔ (P3, P5), the lottery does not change.

5. In (P2, P5)↔ (P4, P5) or (P5, P5), we have

ϕ(P2, P5)
a2P2a3−−−−−→

1/2
ϕ(P4, P5) or ϕ(P5, P5),

ϕ(P4, P5)
a3P4a2−−−−−→

1/2
ϕ(P2, P5) and ϕ(P5, P5)

a3P5a2−−−−−→
1/2

ϕ(P2, P5).

6. In (P2, P5)↔ (P6, P5), we have

ϕ(P2, P5)
a2P2a3−−−−−→

1/6
,
a2P2a4−−−−−→

1/3
ϕ(P6, P5) and ϕ(P6, P5)

a3P6a2−−−−−→
1/6

,
a4P6a2−−−−−→

1/3
ϕ(P2, P5).

7. In (P1, P6)↔ (P3, P6), we have

ϕ(P1, P6)
a1P1a2−−−−−→

1/2
,
a4P1a3−−−−−→

1/6
ϕ(P3, P6) and ϕ(P3, P6)

a2P3a1−−−−−→
1/2

,
a3P3a4−−−−−→

1/6
ϕ(P1, P6).

8. In (P1, P6)↔ (P4, P6) or (P5, P6), we have

ϕ(P1, P6)
a1P1a3−−−−−→

1/2
,
a4P1a3−−−−−→

1/6
ϕ(P4, P6) or ϕ(P5, P6),

ϕ(P4, P6)
a3P4a1−−−−−→

1/2
,
a3P4a4−−−−−→

1/6
ϕ(P1, P6) and ϕ(P5, P5)

a3P5a1−−−−−→
1/2

,
a3P5a4−−−−−→

1/6
ϕ(P1, P5).

9. In (P1, P6)↔ (P6, P6), we have

ϕ(P1, P6)
a1P1a4−−−−−→

1/2
ϕ(P6, P6) and ϕ(P6, P6)

a4P6a1−−−−−→
1/2

ϕ(P1, P6).

10. In (P2, P6)↔ (P3, P6), we have

ϕ(P2, P6)
a4P2a3−−−−−→

1/6
ϕ(P3, P6) and ϕ(P3, P6)

a3P3a4−−−−−→
1/6

ϕ(P2, P6).

11. In (P2, P6)↔ (P4, P6) or (P5, P6), we have

ϕ(P2, P6)
a2P2a3−−−−−→

1/2
,
a4P2a3−−−−−→

1/6
ϕ(P4, P6) or ϕ(P5, P6),
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ϕ(P4, P6)
a3P4a2−−−−−→

1/2
,
a3P4a4−−−−−→

1/6
ϕ(P2, P6) and ϕ(P5, P6)

a3P5a2−−−−−→
1/2

,
a3P5a4−−−−−→

1/6
ϕ(P2, P6).

12. In (P2, P6)↔ (P6, P6), we have

ϕ(P2, P6)
a2P2a4−−−−−→

1/2
ϕ(P6, P6) and ϕ(P6, P6)

a4P6a2−−−−−→
1/2

ϕ(P2, P6).

By a symmetric argument, we know that voter i would neither manipulate at

(Pi, Pj) ∈ {P5, P6}×{P1, P2} via P ′i ∈ {P1, P2, P3, P4}, nor manipulate at (Pi, Pj) ∈

{P1, P2, P3, P4} × {P1, P2} via P ′i ∈ {P5, P6}.

Last, we show that no manipulation occurs within the weighted projection rule.

Accordingly, we consider all possible manipulations (Pi, Pj) ↔ (P ′i , Pj) in the

following three jointly exhaustive cases:

(i) Pi, Pj, P ′i ∈ {P1, P2, P3, P4}.

(ii) Pi, Pj, P ′i ∈ {P3, P4, P5, P6}.

(iii) Pi ∈ {P1, P2}, Pj ∈ {P3, P4} and P ′i ∈ {P5, P6}.

Note that in case (i), ϕa4(Pi, Pj) = 0 and ϕa4(P ′i , Pj) = 0. Since preferences

P1, P2, P3, P4 are single-peaked on the sub-line {a1, a2, a3}, possible manipulations

via any of the preferences P1, P2, P3, P4 are not beneficial. Case (ii) is symmetric to

case (i).11 In case (iii), note that ϕ(P2, Pj) = ϕ(P3, Pj) and ϕ(P5, Pj) = ϕ(P4, Pj).

Then, in case (iii), a manipulation of voter i via P2 or P5 is identical to a manip-

ulation via P3 or P4 respectively, and hence is nonprofitable according to cases (i)

and (ii) respectively. Now, we specify the changes of probabilities in the rest of the

possible manipulations in case (iii) which also indicate that probabilities are always

transferred from the preferred alternatives to less preferred alternatives in the true

preference.

1. In (P1, Pj)↔ (P6, Pj), we have

ϕ(P1, Pj)
a1P1a4−−−−−→

1/3
,
a2P1a3−−−−−→

1/6
ϕ(P6, Pj) and ϕ(P6, Pj)

a4P6a1−−−−−→
1/3

,
a3P1a2−−−−−→

1/6
ϕ(P1, Pj).

11In case (ii), ϕa1(Pi, Pj) = 0, ϕa1(P ′i , Pj) = 0; and preferences P3, P4, P5, P6 are single-
peaked on the sub-line {a2, a3, a4}.
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2. In (P2, Pj)→ (P6, Pj), we have ϕ(P2, Pj)
a2P2a3−−−−−→

1/6
,
a2P2a4−−−−−→

1/3
ϕ(P6, Pj).

3. In (P5, Pj)→ (P1, Pj), we have ϕ(P5, Pj)
a3P5a1−−−−−→

1/3
,
a3P5a2−−−−−→

1/6
ϕ(P1, Pj).

In conclusion, RSCF ϕ is strategy-proof.

8 Proof of Lemma 4.1.1

Since Pi ∼A P ′i , xPi!y and yP ′i !x, strategy-proofness implies that for all P−{i,j} ∈ DN−2,

Statement (1) ϕz(Pi, P
′
j , P−{i,j}) = ϕz(P

′
i , P

′
j , P−{i,j}) for all z /∈ {x, y}.12

Therefore, to verify ϕ(Pi, P
′
j , P−{i,j}) = ϕ(P ′i , P

′
j , P−{i,j}), it suffices to show either

ϕx(Pi, P
′
j , P−{i,j}) = ϕx(P

′
i , P

′
j , P−{i,j}) orϕy(Pi, P ′j , P−{i,j}) = ϕy(P

′
i , P

′
j , P−{i,j}).

Next, since x and y are isolated in Pj and P ′j , there exists 1 ≤ t ≤ m−1 such that

either x ∈ Bt(Pj) = Bt(P ′j) and y /∈ Bt(Pj) = Bt(P ′j), or x /∈ Bt(Pj) = Bt(P ′j)

and y ∈ Bt(Pj) = Bt(P ′j). We assume x ∈ Bt(Pj) = Bt(P ′j) and y /∈ Bt(Pj) =

Bt(P ′j). The verification related to the other case is symmetric and we hence omit

it. Consequently, strategy-proofness implies that for all P−{i,j} ∈ DN−2,

Statement (2)
∑

z∈Bt(P ′j)
ϕz(Pi, Pj, P−{i,j}) =

∑
z∈Bt(P ′j)

ϕz(Pi, P
′
j , P−{i,j});

Statement (3)
∑

z∈Bt(P ′j)
ϕz(P

′
i , Pj, P−{i,j}) =

∑
z∈Bt(P ′j)

ϕz(P
′
i , P

′
j , P−{i,j}).

Finally, we have

ϕx(Pi, P
′
j , P−{i,j})

=
∑

z∈Bt(P ′j)

ϕz(Pi, P
′
j , P−{i,j})−

∑
z∈Bt(P ′j)\{x}

ϕz(Pi, P
′
j , P−{i,j})

=
∑

z∈Bt(Pj)

ϕz(Pi, Pj , P−{i,j})−
∑

z∈Bt(P ′j)\{x}

ϕz(Pi, P
′
j , P−{i,j}) (by Statement (2))

=
∑

z∈Bt(Pj)

ϕz(P
′
i , Pj , P−{i,j})−

∑
z∈Bt(P ′j)\{x}

ϕz(Pi, P
′
j , P−{i,j}) (by the hypothesis of the lemma)

=
∑

z∈Bt(Pj)

ϕz(P
′
i , Pj , P−{i,j})−

∑
z∈Bt(P ′j)\{x}

ϕz(P
′
i , P

′
j , P−{i,j}) (by Statement (1))

=
∑

z∈Bt(P ′j)

ϕz(P
′
i , P

′
j , P−{i,j})−

∑
z∈Bt(P ′j)\{x}

ϕz(P
′
i , P

′
j , P−{i,j}) (by Statement (3))

= ϕx(P ′i , P
′
j , P−{i,j}).

12For the detail of verification, please refer to the proof of Lemma 3 in [26].
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Therefore, ϕ(Pi, P
′
j , P−{i,j}) = ϕ(P ′i , P

′
j , P−{i,j}).

9 Proof of Proposition 4.2.2

The proof of Proposition 4.2.2 consists of three steps.

Step 1 includes Lemmas 9.1 - 9.5. Each lemma shows the existence of some

multi-dimensional single-peaked preference satisfying some particular properties.

Step 1 serves as a preparation for the verifications in Steps 2 and 3.

Step 2 includes Lemmas 9.6 and 9.7. Lemma 9.6 shows that when two distinct

multi-dimensional single-peaked preferences Pi and P ′i share the same peak, there

exists an AC-path connecting them such that for every pair of alternatives with the

same relative rankings across Pi and P ′i , the relative ranking of them is fixed along

the whole AC-path. The proof of Lemma 9.6 is a repeated application of Lemma

9.1. We provide a simple example to illustrate before Lemma 9.6. Lemma 9.7 shows

that when two multi-dimensional single-peaked preferences Pi and P ′i disagree on

peaks in exactly one component, and agree on the relative rankings on some pair

of alternatives x, y ∈ A, there exists a (x, y)-Is-path connecting them. The con-

struction of the (x, y)-Is-path in the proof of Lemma 9.7 relies completely on the

existence of some particular multi-dimensional single-peaked preferences specified

in Lemmas 9.3 and 9.4, and the AC-path constructed in Lemma 9.6.

Step 3 shows that DMSP satisfies the Interior Property and the Exterior Property.

Now, we start Step 1.

Lemma 9.1. Given Pi, P ′i ∈ Da
MSP , assume xPi!y and yP ′ix. There exists P ′′i ∈

Da
MSP such that P ′′i ∼A Pi and yP ′′i !x.

Proof. Since r1(Pi) = r1(P ′i ) = a, it is evident that a /∈ {x, y}. Let P ′′i be a

preference induced by locally switching x and y in Pi. Thus, r1(P ′′i ) = a, P ′′i ∼A Pi

and yP ′′i !x. We will show that P ′′i ∈ DMSP .

Suppose not, i.e., there exist x′, y′ ∈ A such that x′ ∈ 〈a, y′〉 and y′P ′′i x
′. Since

x′ ∈ 〈a, y′〉, we know x′Piy
′. Since Pi ∼A P ′′i , xPi!y and yP ′′i !x, it must be the case
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that x′ = x and y′ = y. Consequently, x ∈ 〈a, y〉 and hence xP ′iy. Contradiction!

Therefore, P ′′i ∈ DMSP .

Lemma 9.2. Given Pi ∈ Da
MSP , s ∈M and cs ∈ As with 〈as, cs〉 = {as, cs}, there

exists P ′i ∈ Da
MSP satisfying the following two conditions:

(1) for all x, y /∈ (cs, A−s), [xPiy]⇔ [xP ′iy];

(2) for all z−s ∈ A−s, (as, z−s)P ′i !(c
s, z−s).

Proof. We first construct a preference P ′i satisfying conditions (1) and (2) by the

following method. First, we remove all alternatives in (cs, A−s) from Pi, and thus

have an induced preference
(
Pi, A\(cs, A−s)

)
. Next, we construct preference P ′i

over A by plugging all alternatives in (cs, A−s) back into the induced preference(
Pi, A\(cs, A−s)

)
in a particular way: for all z−s ∈ A−s, (as, z−s)P ′i !(c

s, z−s).

Evidently, r1(P ′i ) = a. In the rest of the proof, we show P ′i ∈ DMSP .

Given x, y ∈ A with x ∈ 〈a, y〉\{y}, we will show that xP ′iy. Note that xPiy

and (as, z−s)Pi(c
s, z−s) for all z−s ∈ A−s. We consider four cases: (i) x, y /∈

(cs, A−s), (ii) x /∈ (cs, A−s) and y ∈ (cs, A−s), (iii) x ∈ (cs, A−s) and y /∈ (cs, A−s)

and (iv) x, y ∈ (cs, A−s).

In case (i), xPiy implies xP ′iy by condition (1).

In case (ii), y = (cs, y−s). Since x ∈ 〈a, y〉 = 〈a, (cs, y−s)〉 and 〈as, cs〉 =

{as, cs}, we know xs ∈ {as, cs} and x−s ∈ 〈a−s, y−s〉. Moreover, x /∈ (cs, A−s) im-

plies xs = as. Hence x ∈ 〈a, (as, y−s)〉. Now, either x = (as, y−s) or xPi(as, y−s).

If x = (as, y−s), then xP ′iy by condition (2). If xPi(as, y−s), condition (1) first

implies xP ′i (a
s, y−s). Next, since (as, y−s)P ′iy by condition (2), we have xP ′iy.

In case (iii), x = (cs, x−s). Evidently, since (as, x−s)Pix and xPiy, we have

(as, x−s)Piy. Then, by condition (1), (as, x−s)P ′iy. Furthermore, since (as, x−s)P ′i !x

by condition (2), it must be the case that xP ′iy.

In case (iv), x = (cs, x−s) and y = (cs, y−s) where x−s 6= y−s. Since x ∈ 〈a, y〉,

it is true that x−s ∈ 〈a−s, y−s〉 and hence (as, x−s) ∈ 〈a, (as, y−s)〉. Consequently,
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(as, x−s)Pi(a
s, y−s). Then, condition (1) implies (as, x−s)P ′i (a

s, y−s). Further-

more, since (as, x−s)P ′i !x and (as, y−s)P ′i !y by condition (2), we have xP ′iy. In

conclusion, P ′i ∈ DMSP .

Lemma 9.3. Given Pi ∈ Da
MSP , s ∈ M and cs ∈ As, assume (as, z−s)Pi!(c

s, z−s)

for all z−s ∈ A−s. There exists P ′i ∈ DMSP satisfying the following two conditions

(1) for every z−s ∈ A−s,[
rk(Pi) = (as, z−s) and rk+1(Pi) = (cs, z−s)

]
⇒
[
rk(P

′
i ) = (cs, z−s) and rk+1(P ′i ) = (as, z−s)

]
;

(2) for all x /∈ (as, A−s) ∪ (cs, A−s), [x = rk(Pi)]⇒ [x = rk(P
′
i )].

Proof. We first construct a preference P ′i satisfying conditions (1) and (2) by flip-

ping the relative ranking of (as, z−s) and (cs, z−s) in Pi for each z−s ∈ A−s, and

keeping the rankings of all other alternatives fixed. In the rest of the proof, we

show P ′i ∈ DMSP . Note that since r1(Pi) = a and aPi!(c
s, a−s), it is true that

r2(Pi) = (cs, a−s) and hence r1(P ′i ) = (cs, a−s).

Suppose P ′i /∈ DMSP . Then, there exist x, y ∈ A such that x ∈ 〈(cs, a−s), y〉

and yP ′ix. We know either xPiy or yPix. If xPiy, then yP ′ix implies x = (as, z−s)

and y = (cs, z−s) for some z−s ∈ A−s by conditions (1) and (2). Consequently,

x = (as, z−s) /∈ 〈(cs, a−s), (cs, z−s)〉 = 〈(cs, a−s), y〉. Contradiction!

Next, assume yPix. Then, it is true that x /∈ 〈a, y〉. Since x ∈ 〈(cs, a−s), y〉,

we know xs ∈ 〈cs, ys〉 and x−s ∈ 〈a−s, y−s〉. Furthermore, x /∈ 〈a, y〉 implies xs /∈

〈as, ys〉. Since a = r1(Pi) and (cs, a−s) = r2(Pi), it is true that 〈as, cs〉 = {as, cs}.

Since xs ∈ 〈cs, ys〉, 〈as, cs〉 = {as, cs} and xs /∈ 〈as, ys〉, it must be the case that

as ∈ 〈cs, ys〉 and xs = cs. Thus, x = (cs, x−s). Since x−s ∈ 〈a−s, y−s〉, we have

(as, x−s) ∈ 〈a, y〉. Thus, either (as, x−s)Piy or (as, x−s) = y. If (as, x−s)Piy, then

(as, x−s)Pi!x implies xPiy. Contradiction! Therefore, (as, x−s) = y and hence

yPi!x. Consequently, xP ′i !y by condition (1). Contradiction to the hypothesis!

Therefore, P ′i ∈ DMSP .
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Lemma 9.4. Given Pi ∈ Da
MSP and P ′i ∈ D(bs,a−s)

MSP with as 6= bs, assume xPiy and

xP ′iy. There exists P ′′i ∈ Da
MSP satisfying the following two conditions:

(1) for every z−s ∈ A−s, (as, z−s)P ′′i !(cs, z−s) where cs ∈ 〈as, bs〉 and

〈as, cs〉 = {as, cs};

(2) xP ′′i y.

Proof. We consider two situations: (i) y /∈ (cs, A−s) and (ii) y ∈ (cs, A−s).

Assume that situation (i) occurs. Let P ′′i ∈ Da
MSP be a preference induced by Pi

satisfying conditions (1) and (2) in Lemma 9.2. Hence, condition (1) of this lemma

is satisfied. Evidently, either x /∈ (cs, A−s) or x ∈ (cs, A−s). If x /∈ (cs, A−s), by

condition (1), xPiy implies xP ′′i y. Next, if x ∈ (cs, A−s), then x = (cs, x−s). Since

(as, x−s) ∈ 〈a, x〉 and xPiy, we have (as, x−s)Pix and hence (as, x−s)Piy. Then,

condition (1) in Lemma 9.2 implies (as, x−s)P ′′i y. Furthermore, since (as, x−s)P ′′i !x

by condition (1) of this Lemma, it must be the case that xP ′′i y. This completes the

verification of situation (i).

Next, assume that situation (ii) occurs. Thus, y = (cs, y−s). Evidently, either

x ∈ (cs, A−s) or x /∈ (cs, A−s). First, assume x ∈ (cs, A−s). Thus, x = (cs, x−s).

Since xPiy, it is true that (cs, y−s) = y /∈ 〈a, x〉 = 〈a, (cs, x−s)〉. Consequently,

y−s /∈ 〈a−s, x−s〉 and hence (as, y−s) /∈ 〈a, (as, x−s)〉. Then, there exists P̄i ∈

Da
MSP such that (as, x−s)P̄i(a

s, y−s). Let P ′′i ∈ Da
MSP be a preference induced by

P̄i satisfying conditions (1) and (2) in Lemma 9.2. Hence, condition (1) of this

lemma is satisfied. Since (as, x−s)P̄i(a
s, y−s), condition (1) in Lemma 9.2 implies

(as, x−s)P ′′i (as, y−s). Since (as, x−s)P ′′i !x and (as, y−s)P ′′i !y by condition (1) of

this Lemma, we have xP ′′i y.

Lastly, assume x /∈ (cs, A−s). We claim that (as, y−s) /∈ 〈a, x〉. Suppose not,

i.e., (as, y−s) ∈ 〈a, x〉. Thus, y−s ∈ 〈a−s, x−s〉. Since cs ∈ 〈as, bs〉, it is true

that either cs ∈ 〈as, xs〉 or cs ∈ 〈bs, xs〉. Consequently, either y = (cs, y−s) ∈

〈(as, a−s), (xs, x−s)〉 = 〈a, x〉, or y = (cs, y−s) ∈ 〈(bs, a−s), (xs, x−s)〉 = 〈(bs, a−s), x〉,
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and hence either yPix or yP ′ix. Contradiction! Therefore, (as, y−s) /∈ 〈a, x〉. Ac-

cordingly, there exists P̄i ∈ DMSP such that xP̄i(as, y−s). Now, let P ′′i ∈ Da
MSP

be a preference induced by P̄i satisfying conditions (1) and (2) in Lemma 9.2.

Hence, condition (1) of this lemma is satisfied. By condition (1) in Lemma 9.2,

xP̄i(a
s, y−s) implies xP ′′i (as, y−s). Next, since (as, y−s)P ′′i !y by condition (1) of

this lemma, we have xP ′′i y. This completes the verification of situation (ii) and

hence the lemma.

Lemma 9.5. Given Pi ∈ Da
MSP and P ′i ∈ Db

MSP , assume as 6= bs for all s ∈ S

where S ⊆ M and |S| ≥ 2, and a−S = b−S . Given x, y ∈ A, assume xPiy and

xP ′iy. There exist s ∈ S and P̄i ∈ D(bs,a−s)
MSP such that xP̄iy.

Proof. Suppose that it is not true. Then, for all s ∈ S and P̄i ∈ D(bs,a−s)
MSP , yP̄ix.

Consequently, for every s ∈ S, y ∈ 〈(bs, a−s), x〉. Thus, ys ∈ 〈bs, xs〉 for all s ∈ S,

and y−S ∈ 〈a−S, x−S〉. Consequently, y ∈ 〈(bS, a−S), x〉 = 〈b, x〉, and hence yP ′ix.

Contradiction!

This completes the verification of Step 1. We turn to Step 2.

We first provide a simple example to illustrate Lemma 9.6 below. Given Pi, P ′i ∈

Da
MSP specified below, we will construct a particular AC-path connecting Pi and

P ′i in Da
MSP .

Pi : a � b � c � y � x2 � x1 � x � · · ·

P ′i : a � b � c � x � · · · · · · � y � · · ·

Observe that Pi and P ′i agree on the top-three alternatives and disagree on the forth-

ranked alternatives. There are exactly alternatives x2 and x1 ranked between y and

x in Pi. Then, by Lemma 9.1, we can identify the following three preferences
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P̄i, P̂i, P̃i ∈ Da
MSP :

P̄i : a � b � c � y � x2 � x � x1 � · · ·

P̂i : a � b � c � y � x � x2 � x1 � · · ·

P̃i : a � b � c � x � y � x2 � x1 � · · ·

where (i) Pi ∼A P̄i; x1Pi!x and xP̄i!x1; (ii) P̄i ∼A P̂i; x2P̄i!x and xP̂i!x2; and

(iii) P̂i ∼A P̃i; yP̂i!x and xP̃i!y. Now, P̃i is “closer” to P ′i than Pi, since P̃i and

P ′i agree on the top-four ranked alternatives. Next, we identify another pair of

distinct alternatives in the same ranking position of P̃i and P ′i such that P̃i and P ′i

agree on all alternatives ranked above, i.e., rk(P̃i) 6= rk(P
′
i ) for some k > 4 and

rk′(P̃i) = rk′(P
′
i ) for all 1 ≤ k′ < k. Then, applying the same argument, we can

construct another sequence of adjacently connected preferences in Da
MSP starting

from P̃i and reaching some preference P ′′i “closer” to P ′i . Eventually, we will have

an AC-path in Da
MSP connecting Pi and P ′i .

Lemma 9.6. Given distinct Pi, P ′i ∈ DMSP , assume r1(Pi) = r1(P ′i ) ≡ a. There

exists an AC-path {P k
i }lk=1 ⊆ Da

MSP connecting Pi and P ′i such that for all x, y ∈

A, [xPiy and xP ′iy]⇒ [xP k
i y, 1 < k < l].

Proof. Following the algorithm below, we generate an AC-path in Da
MSP connect-

ing Pi and P ′i .

Algorithm:

Step 1 : Identify the minimal k ∈ {1, . . . ,m} such that rk(Pi) 6= rk(P
′
i ) (evidently,

k > 1). For notational convenience, let rk(P ′i ) = x. Assume x = rk̄(Pi)

(evidently, k̄ > k). Moreover, for notational convenience, let rν(Pi) = xk̄−ν ,

k ≤ ν ≤ k̄ − 1. By Lemma 9.1, we construct a sequence {P (1,ν)
i }l1ν=1 ⊆

Da
MSP , where l1 = k̄ − k, such that

P
(1,ν−1)
i ∼A P (1,ν)

i , xνP
(1,ν−1)
i !x and xP (1,ν)

i !xν , ν = 1, . . . , l1, where P (1,0)
i = Pi.
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Step t ≥ 2 : According to P (t−1,lt−1)
i generated in Step t − 1, identify the minimal

k ∈ {1, . . . ,m} such that rk(P
(t−1,lt−1)
i ) 6= rk(P

′
i ). For notational conve-

nience, let rk(P ′i ) = x. Assume x = rk̄(P
(t−1,lt−1)
i ) (evidently, k̄ > k).

Moreover, for notational convenience, let rν(P
(t−1,lt−1)
i ) = xk̄−ν , k ≤ ν ≤

k̄ − 1. By Lemma 9.1, we construct a sequence {P (t,ν)
i }ltν=1 ⊆ Da

MSP , where

lt = k̄ − k, such that

P
(t,ν−1)
i ∼A P (t,ν)

i , xνP
(t,ν−1)
i !x and xP (t,ν)

i !xν , ν = 1, . . . , lt, where P (t,0)
i = P

(t−1,lt−1)
i .

If rk(P
(t−1,lt−1)
i ) = rk(P

′
i ), k = 1, . . . ,m, (in other words, P (t−1,lt−1)

i = P ′i ),

the algorithm terminates.

Evidently, this algorithm will terminate in finite steps. Assume that the algo-

rithm terminates at Step t + 1. Then, we have sequences of preferences {Pi},

{P (1,ν)
i }l1ν=1, . . . , {P (t,ν)

i }ltν=1. Combining these sequences, we have an AC-path

{P k
i }lk=1 ≡ {Pi;P

(1,1)
i , . . . , P

(1,l1)
i ; . . . ;P

(t,1)
i , . . . , P

(t,lt)
i } ⊆ Da

MSP

connecting Pi and P ′i .

Next, given x, y ∈ A with xPiy and xP ′iy, we will show that xP k
i y, 1 < k < l.

Suppose not, i.e., there exists 1 < k < l such that yP k
i x. Assume w.l.o.g. that

xP k′
i y for all 1 ≤ k′ < k. Thus, xP k−1

i !y and yP k
i !x. Moreover, we can assume that

P k
i is generated in Step s of the algorithm, i.e., P k

i = P
(s,ν)
i and P k−1

i = P
(s,ν−1)
i

for some 1 ≤ s ≤ t and some 1 ≤ ν ≤ ls. Thus, P (s,ν−1)
i ∼A P

(s,ν)
i , xP (s,ν−1)

i !y

and yP
(s,ν)
i !x. Then, according to the algorithm, it must be the case that yP ′ix.

Contradiction!

Note that according to Remark 4.1.1, in Lemma 9.6, for all x, y ∈ A with xPiy

and xP ′iy, the AC-path {P k
i }lk=1 is also a (x, y)-Is-path connecting Pi and P ′i .

Lemma 9.7. Given Pi, P ′i ∈ DMSP , assume r1(Pi) = a and r1(P ′i ) = (bs, a−s)

where bs 6= as for some s ∈ M . Given x, y ∈ A, assume xPiy and xP ′iy. There
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exists a (x, y)-Is-path in DMSP connecting Pi and P ′i .

Proof. Assume 〈as, bs〉 = {ask}tk=1 where t ≥ 2, as1 = as, ast = bs, and ask ∈

〈as1, ask+1〉, k = 1, . . . , t− 1. Accordingly, ask+1 ∈ 〈ask, ast〉, k = 1, . . . , t− 1.

Claim 1: For every z−s ∈ A−s and 1 ≤ k ≤ t−1, {x, y} 6= {(ask, z−s), (ask+1, z
−s)}.

Given z−s ∈ A−s and 1 ≤ k ≤ t−1, since (ask, z
−s) ∈ 〈(as1, a−s), (ask+1, z

−s)〉 =

〈a, (ask+1, z
−s)〉 and (ask+1, z

−s) ∈ 〈(ast , a−s), (ask, z−s)〉 = 〈(bs, a−s), (ask, z−s)〉, it

is true that (ask, z
−s)Pi(a

s
k+1, z

−s) and (ask+1, z
−s)P ′i (a

s
k, z
−s). Consequently, xPiy

and xP ′iy imply {x, y} 6= {(ask, z−s), (ask+1, z
−s)}. This completes the verification

of the claim.

Now, we identify t − 1 pairs of multi-dimensional single-peaked preferences

{(P̄ k
i , P̂

k
i )}t−1

k=1 specified below by repeated application of Lemmas 9.4 and 9.3:

Pi : (as1, a
−s) � · · · � x � · · · � y � · · ·

...

P̄ 1
i : (as1, a

−s) � (as2, a
−s) � · · · � (as1, z

−s) � (as2, z
−s) � · · · with xP̄ 1

i y

P̂ 1
i : (as2, a

−s) � (as1, a
−s) � · · · � (as2, z

−s) � (as1, z
−s) � · · · with xP̂ 1

i y

...

P̄ k
i : (ask, a

−s) � (ask+1, a
−s) � · · · � (ask, z

−s) � (ask+1, z
−s) � · · · with xP̄ k

i y

P̂ k
i : (ask+1, a

−s) � (ask, a
−s) � · · · � (ask+1, z

−s) � (ask, z
−s) � · · · with xP̂ k

i y

...

P̄ t−1
i : (ast−1, a

−s) � (ast , a
−s) � · · · � (ast−1, z

−s) � (ast , z
−s) � · · · with xP̄ t−1

i y

P̂ t−1
i : (ast , a

−s) � (ast−1, a
−s) � · · · � (ast , z

−s) � (ast−1, z
−s) � · · · with xP̂ t−1

i y

...

P ′i : (ast , a
−s) � · · · � x � · · · � y � · · ·

According to Lemma 9.4, r1(P̄ 1
i ) = r1(Pi) = a, (as1, z

−s)P̄ 1
i !(as2, z

−s) for every

z−s ∈ A−s, and xP̄ 1
i y. Next, according to Lemma 9.3, we can induce P̂ 1

i from P̄ 1
i

by flipping the relative ranking of (as1, z
−s) and (as2, z

−s) in P̄ 1
i for every z−s ∈ A−s,
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and keeping the ranking of every other alternative fixed. Moreover, by Claim 1 and

conditions (1) and (2) in Lemma 9.3, xP̄ 1
i y implies xP̂ 1

i y. Then, it is easy to verify

that x and y are isolated in (P̄ 1
i , P̂

1
i ). By a similar argument, for all k = 2, . . . , t−1,

we have the pair of multi-dimensional single-peaked preferences P̄ k
i and P̂ k

i , where

r1(P̂ k−1
i ) = r1(P̄ k

i ), xP̄ k
i y, xP̂ k

i y, x and y are isolated in P̄ k
i and P̂ k

i .

For notational convenience, let P̂ 0
i = Pi and P̄ t

i = P ′i . For every 1 ≤ k ≤ t,

since r1(P̂ k−1
i ) = r1(P̄ k

i ) = (ask, a
−s), xP̂ k−1

i y and xP̄ k
i y, Lemma 9.8 implies that

there exists a (x, y)-Is-path in DMSP connecting P̂ k−1
i and P̄ k

i . Combining all these

t (x, y)-Is-paths, we eventually have a (x, y)-Is-path in DMSP connecting Pi and

P ′i .

This completes the verification of Step 2. Now, we turn to Step 3.

Lemma 9.8. Domain DMSP satisfies the Interior Property.

Proof. This lemma follows from Lemma 9.6.

Lemma 9.9. Domain DMSP satisfies the Exterior Property.

Proof. We fix Pi, Pi ∈ DMSP with r1(Pi) 6= r1(P ′i ) and x, y ∈ A with xPiy and

xP ′iy. We consider two situations: (i) r1(Pi) and r1(P ′i ) disagree on exactly one

component, and (ii) r1(Pi) and r1(P ′i ) disagree on at least two components.

In situation (i), the requirement of the Exterior Property follows from Lemma

9.7.

In situation (ii), we assume r1(Pi) = a and r1(P ′i ) = (bS, a−S) where as 6= bs

for all s ∈ S, S ⊆M and |S| ≥ 2. Repeatedly applying Lemma 9.5 step by step, we

can relabel S = {1, . . . , s} such that for all 1 ≤ k ≤ s− 1, there exists P̄ k
i ∈ DMSP

such that r1(P̄ k
i ) = (b1, . . . , bk, ak+1, . . . , as, a−S) and xP̄ k

i y.

Let P̄ 0
i = Pi and P̄ s

i = P ′i . Thus, (i) for all 0 ≤ k ≤ s, xP̄ k
i y; and (ii) for all

0 ≤ k ≤ s− 1, r1(P̄ k
i ) and r1(P̄ k+1

i ) disagree on exactly one component. Now, for

each 0 ≤ k ≤ s−1, by Lemma 9.7, there exists a (x, y)-Is-path in DMSP connecting

P̄ k
i and P̄ k+1

i . Finally, combining these (x, y)-Is-paths, we have a (x, y)-Is-path in

DMSP connecting Pi and P ′i .
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This completes the verification of Step 3 and hence Proposition 4.2.2.

10 Proof of Lemma 4.2.1

Fixing P−{i,j} ∈ DN−2, we have ϕ(Pi, Pj, P−{i,j}) = ϕ(P ′i , Pj, P−{i,j}). Evidently,

strategy-proofness implies the following two statements:

Statement (1) For all z−s ∈ A−s,

• ϕ(xs,z−s)(Pi, P
′
j , P−{i,j}) + ϕ(ys,z−s)(Pi, P

′
j , P−{i,j})

= ϕ(xs,z−s)(P
′
i , P

′
j , P−{i,j}) + ϕ(ys,z−s)(P

′
i , P

′
j , P−{i,j});

• ϕ(xs,z−s)(Pi, P
′
j , P−{i,j}) ≥ ϕ(xs,z−s)(P

′
i , P

′
j , P−{i,j});

• ϕ(ys,z−s)(Pi, P
′
j , P−{i,j}) ≤ ϕ(ys,z−s)(P

′
i , P

′
j , P−{i,j}).

Statement (2) For all z /∈ (xs, A−s)∪(ys, A−s), ϕz(Pi, P ′j , P−{i,j}) = ϕz(P
′
i , P

′
j , P−{i,j}).

According to the first item in Statement (1) and Statement (2), to show

ϕ(Pi, P
′
j , P−{i,j}) = ϕ(P ′i , P

′
j , P−{i,j}), it suffices to show that for every z−s ∈ A−s,

there exists cs ∈ {xs, ys} such thatϕ(cs,z−s)(Pi, P
′
j , P−{i,j}) = ϕ(cs,z−s)(P

′
i , P

′
j , P−{i,j}).

Similarly, since Pj ∼ P ′j , either Pj ∼A P ′j or Pj ∼MA P ′j . If Pj ∼A P ′j , assume

aPj!b and bP ′j !a. Thus, ϕz(Pi, Pj, P−{i,j}) = ϕz(Pi, P
′
j , P−{i,j}) andϕz(P ′i , Pj, P−{i,j}) =

ϕz(P
′
i , P

′
j , P−{i,j}) for all z /∈ {a, b} by strategy-proofness. Given z−s ∈ A−s,

since (xs, z−s)Pi!(y
s, z−s) and (ys, z−s)P ′i !(x

s, z−s), the hypothesis implies that

(xs, z−s) and (ys, z−s) are isolated in (Pj, P
′
j). Moreover, by Remark 4.1.1, it is true

that either (xs, z−s)Pj(y
s, z−s) and (xs, z−s)P ′j(y

s, z−s), or (ys, z−s)Pj(x
s, z−s) and

(ys, z−s)P ′j(x
s, z−s) which implies {(xs, z−s), (ys, z−s)} 6= {a, b}. Hence, there ex-

ists cs ∈ {xs, ys} such that ϕ(cs,z−s)(Pi, P
′
j , P−{i,j}) = ϕ(cs,z−s)(Pi, Pj, P−{i,j}) =

ϕ(cs,z−s)(P
′
i , Pj, P−{i,j}) = ϕ(cs,z−s)(P

′
i , P

′
j , P−{i,j}).

Next, we assume Pj ∼MA P ′j , i.e., there exist τ ∈M and x̄τ , ȳτ ∈ Aτ such that

(i) for every z−τ ∈ A−τ , (x̄τ , z−τ ) = rk(Pj) = rk+1(P ′j) and (ȳτ , z−τ ) =

rk+1(Pj) = rk(P
′
j) for some 1 ≤ k ≤ m;
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(ii) for every z /∈ (x̄τ , A−s)∪(ȳτ , A−s), z = rk(Pj) = rk(P
′
j) for some 1 ≤ k ≤ m.

Evidently, strategy-proofness implies the following two statements:

Statement (3) For all z−τ ∈ A−τ ,

• ϕ(x̄τ ,z−τ )(Pi, Pj, P−{i,j}) + ϕ(ȳτ ,z−τ )(Pi, Pj, P−{i,j})

= ϕ(x̄τ ,z−τ )(Pi, P
′
j , P−{i,j}) + ϕ(ȳτ ,z−τ )(Pi, P

′
j , P−{i,j});

• ϕ(x̄τ ,z−τ )(P
′
i , Pj, P−{i,j}) + ϕ(ȳτ ,z−τ )(P

′
i , Pj, P−{i,j})

= ϕ(x̄τ ,z−τ )(P
′
i , P

′
j , P−{i,j}) + ϕ(ȳτ ,z−τ )(P

′
i , P

′
j , P−{i,j}).

Statement (4) For all z /∈ (x̄τ , A−τ ) ∪ (ȳτ , A−τ ),

• ϕz(Pi, Pj, P−{i,j}) = ϕz(Pi, P
′
j , P−{i,j});

• ϕz(P ′i , Pj, P−{i,j}) = ϕz(P
′
i , P

′
j , P−{i,j}).

Firstly, we consider the situation τ = s. Given z−s ∈ A−s, since (xs, z−s)Pi!(y
s, z−s)

and (ys, z−s)P ′i !(x
s, z−s), (xs, z−s) and (ys, z−s) are isolated in (Pj, P

′
j) by the hy-

pothesis. Then, Pj ∼MA P ′j implies {(xs, z−s), (ys, z−s)} 6= {(x̄s, z−s), (ȳs, z−s)}.

Hence, there exists cs ∈ {xs, ys} such that

ϕ(cs,z−s)(Pi, P
′
j , P−{i,j}) = ϕ(cs,z−s)(Pi, Pj, P−{i,j}) = ϕ(cs,z−s)(P

′
i , Pj, P−{i,j}) =

ϕ(cs,z−s)(P
′
i , P

′
j , P−{i,j}) where the first and the third equality follow from Statement

(4) and the second equality follows from the hypothesis.

Secondly, assume τ 6= s. Given z−s ∈ A−s, we know either (xs, z−s) /∈

(x̄τ , A−τ )∪(ȳτ , A−τ ), or (ys, z−s) /∈ (x̄τ , A−τ )∪(ȳτ , A−τ ); or {(xs, z−s), (ys, z−s)} ⊆

(x̄τ , A−τ ) ∪ (ȳτ , A−τ ). If either (xs, z−s) /∈ (x̄τ , A−τ ) ∪ (ȳτ , A−τ ), or (ys, z−s) /∈

(x̄τ , A−τ )∪(ȳτ , A−τ ), by statement (4) and the hypothesis, there exists cs ∈ {xs, ys}

such thatϕ(cs,z−s)(Pi, P
′
j , P−{i,j}) = ϕ(cs,z−s)(Pi, Pj, P−{i,j}) = ϕ(cs,z−s)(P

′
i , Pj, P−{i,j}) =

ϕ(cs,z−s)(P
′
i , P

′
j , P−{i,j}).

If {(xs, z−s), (ys, z−s)} ⊆ (x̄τ , A−τ ) ∪ (ȳτ , A−τ ), it must be the case that ei-

ther (xs, z−s) = (xs, x̄τ , z−{s,τ}) and (ys, z−s) = (ys, x̄τ , z−{s,τ}), or (xs, z−s) =

(xs, ȳτ , z−{s,τ}) and (ys, z−s) = (ys, ȳτ , z−{s,τ}). Assume (xs, z−s) = (xs, x̄τ , z−{s,τ})
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and (ys, z−s) = (ys, x̄τ , z−{s,τ}), and identify another alternative (xs, ȳτ , z−{s,τ}).13

The verification related to the other case is symmetric and we hence omit it.14 Then,

we have

ϕ(xs,x̄τ ,z−{s,τ})(Pi, P
′
j , P−{i,j}) + ϕ(xs,ȳτ ,z−{s,τ})(Pi, P

′
j , P−{i,j})

= ϕ(xs,x̄τ ,z−{s,τ})(Pi, Pj, P−{i,j}) + ϕ(xs,ȳτ ,z−{s,τ})(Pi, Pj, P−{i,j}) (by Statement (3))

= ϕ(xs,x̄τ ,z−{s,τ})(P
′
i , Pj, P−{i,j}) + ϕ(xs,ȳτ ,z−{s,τ})(P

′
i , Pj, P−{i,j}) (by hypothesis)

= ϕ(xs,x̄τ ,z−{s,τ})(P
′
i , P

′
j , P−{i,j}) + ϕ(xs,ȳτ ,z−{s,τ})(P

′
i , P

′
j , P−{i,j}) (by Statement (3)).

Meanwhile, according to the second item in Statement (2), since

ϕ(xs,x̄τ ,z−{s,τ})(Pi, P
′
j , P−{i,j}) ≥ ϕ(xs,x̄τ ,z−{s,τ})(P

′
i , P

′
j , P−{i,j}) and

ϕ(xs,ȳτ ,z−{s,τ})(Pi, P
′
j , P−{i,j}) ≥ ϕ(xs,ȳτ ,z−{s,τ})(P

′
i , P

′
j , P−{i,j}), it is true that

ϕ(xs,x̄τ ,x−{s,τ})(Pi, P
′
j , P−{i,j}) = ϕ(xs,x̄τ ,x−{s,τ})(P

′
i , P

′
j , P−{i,j}). Equivalently, we

have ϕ(xs,z−s)(Pi, P
′
j , P−{i,j}) = ϕ(xs,z−s)(P

′
i , P

′
j , P−{i,j}).

In conclusion, for each z−s ∈ A−s, there exists cs ∈ {xs, ys} such that

ϕ(cs,z−s)(Pi, P
′
j , P−{i,j}) = ϕ(cs,z−s)(P

′
i , P

′
j , P−{i,j}). Therefore, ϕ(Pi, P

′
j , P−{i,j}) =

ϕ(P ′i , P
′
j , P−{i,j}).

11 Proof of Proposition 4.2.4

We provide some new notion for the proof of Proposition 4.2.4. Given Pi ∈ DS and

s ∈ M , let [Pi]
s denote the marginal preference over As induced by Pi. Moreover,

recall lexicographically separable preferences (see Definition 1.1 in Appendix 1)

which are repeatedly used in the proof.

The verification of Proposition 4.2.4 consists of three steps (Lemmas 11.1 -

11.9).

Step 1 includes Lemmas 11.1 - 11.5. Each lemma shows the existence of some

13Since A = ×s∈MAs, alternative (xs, ȳτ , z−{s,τ}) exists.
14If (xs, z−s) = (xs, ȳτ , z−{s,τ}) and (ys, z−s) = (ys, ȳτ , z−{s,τ}), we identify the alternative

(xs, x̄τ , z−{s,τ}).
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separable preference satisfying some particular properties. Note that Lemmas 11.1

- 11.5 are analogous to Lemmas 9.1 - 9.5 respectively. Step 1 serves as a preparation

for the verifications in Steps 2 and 3.

Step 2 includes Lemmas 11.6 and 11.7 which provide the construction of GC-

path in DS connecting two fixed preferences in two distinct situations: (i) the two

fixed preferences share the same marginal preferences and (ii) the two fixed pref-

erences have two adjacently connected marginal preferences over some component

set and share the same marginal preference over every other component set. Lem-

mas 11.6 and 11.7 are analogous to Lemmas 9.6 and 9.7 respectively which actually

construct GC-path in DMSP connecting two fixed preferences in two analogous sit-

uations: (i) the two fixed preferences share the same peak and (ii) the two fixed

preferences have distinct peaks which differ in exactly one component. The veri-

fication of Lemma 11.6 is identical to the proof of Lemma 9.6, while the proof of

Lemma 11.7 is an application of Lemmas 11.4 and Lemma 11.6.

Step 3 includes Lemmas 11.8 and 11.9 which show that DS satisfies the Modi-

fied Interior Property and the Modified Exterior Property respectively. In the proof

of both Lemmas 11.8 and 11.9, the construction of proper GC-path relies entirely

on the existence of separable preferences specified in Lemma 11.5 and the GC-path

established in Lemma 11.7.

Now, we start Step 1.

Lemma 11.1 below is analogous to Lemma 9.1.

Lemma 11.1. Given Pi, P ′i ∈ DS and x, y ∈ A, assume [Pi]
s = [P ′i ]

s for all s ∈M ,

xPi!y and yP ′ix. There exists P ′′i ∈ DS such that P ′′i ∼A Pi and yP ′′i !x.

Proof. Evidently, xs 6= ys for some s ∈ M . We first show that there exists τ 6= s

such that xτ 6= yτ . Suppose not, i.e., y = (ys, x−s). Consequently, xPiy and yP ′ix

imply xs[Pi]sys and ys[P ′i ]
sxs which contradicts [Pi]

s = [P ′i ]
s.

Now, we induce preference P ′′i by locally switching x and y in Pi. Thus, P ′′i ∼A

Pi and yP ′′i !x. We will show P ′′i ∈ DS . Given ω ∈M , aω, bω ∈ Aω and z−ω, z−ω ∈
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A−ω, assume (aω, z−ω)P ′′i (bω, z−ω). We will show (aω, z−ω)P ′′i (bω, z−ω). Since

xs 6= ys and xτ 6= yτ , {(aω, z−ω), (bω, z−ω)} 6= {x, y} and {(aω, z−ω), (bω, z−ω)} 6=

{x, y}. Consequently, P ′′i ∼A Pi implies (aω, z−ω)Pi(b
ω, z−ω). By separability, we

have (aω, z−ω)Pi(b
ω, z−s). Then, Pi ∼A P ′′i implies (aω, z−ω)P ′′i (bω, z−ω).

Lemma 11.2 is analogous to Lemma 9.2.

Lemma 11.2. Given Pi ∈ DS , s ∈ M and xs, ys ∈ As with xs[Pi]s!ys, there exists

P ′i ∈ DS satisfying the following three conditions:

(i) for all a, b /∈ (ys, A−s), [aPib]⇔ [aP ′i b];

(ii) for all z−s ∈ A−s, (xs, z−s)P ′i !(y
−s, z−s);

(iii) [Pi]
τ = [P ′i ]

τ for all τ ∈M .

Proof. We first construct a preference P ′i satisfying conditions (i) and (ii) by the

following method. First, we remove all alternatives in (ys, A−s) from Pi, and

thus have an induced preference
(
Pi, A\(ys, A−s)

)
. Next, we create a new pref-

erence P ′i by plugging all alternatives in (ys, A−s) back into the induced preference(
Pi, A\(ys, A−s)

)
in a particular way: for all z−s ∈ A−s, (xs, z−s)P ′i !(y

s, z−s). We

will show P ′i ∈ DS .

Given aτ , bτ ∈ Aτ and z−τ , z−τ ∈ A−τ , assume (aτ , z−τ )P ′i (b
τ , z−τ ). We will

show (aτ , z−τ )P ′i (b
τ , z−τ ). Suppose not, i.e., (bτ , z−τ )P ′i (a

τ , z−τ ). We consider

five cases: (i) τ 6= s and zs 6= ys, (ii) τ 6= s and zs 6= ys, (iii) τ 6= s, zs = zs = ys,

(iv) τ = s and bs = ys, and (v) τ = s and bs 6= ys.

In case (i), (aτ , z−τ ), (bτ , z−τ ) /∈ (ys, A−s). By condition (i), (aτ , z−τ )P ′i (b
τ , z−τ )

implies (aτ , z−τ )Pi(b
τ , z−τ ) . Then, separability implies (aτ , xs, z−{τ,s})Pi(b

τ , xs, z−{τ,s})

and (aτ , z−τ )Pi(b
τ , z−τ ). Applying condition (i) again, (aτ , xs, z−{τ,s})P ′i (b

τ , xs, z−{τ,s}).

Moreover, since (aτ , z−τ )Pi(b
τ , z−τ ) and (bτ , z−τ )P ′i (a

τ , z−τ ), it must be the case

that zs = ys by condition (i). Since (aτ , xs, z−{τ,s})P ′i !(a
τ , ys, z−{τ,s}) and

(bτ , xs, z−{τ,s})P ′i !(b
τ , ys, z−{τ,s}) by condition (ii), (aτ , xs, z−{τ,s})P ′i (b

τ , xs, z−{τ,s})
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implies (aτ , ys, z−{τ,s})P ′i (b
τ , ys, z−{τ,s}). Equivalently, (aτ , z−τ )P ′i (b

τ , z−τ ). Con-

tradiction! A similar contradiction occurs in case (ii).

In case (iii), since (aτ , xs, z−{τ,s})P ′i !(a
τ , z−τ ) and (bτ , xs, z−{τ,s})P ′i !(b

τ , z−τ )

by condition (ii), (aτ , z−τ )P ′i (b
τ , z−τ ) implies (aτ , xs, z−{τ,s})P ′i (b

τ , xs, z−{τ,s}). Then,

by condition (i), (aτ , xs, z−τ,s)Pi(b
τ , xs, z−τ,s) . Hence, aτ [Pi]τbτ by separability.

On the other hand, since (bτ , xs, z−{τ,s})P ′i !(b
τ , z−τ ) and (aτ , xs, z−{τ,s})P ′i !(a

τ , z−τ )

by condition (ii), (bτ , z−τ )P ′i (a
τ , z−τ ) implies (bτ , xs, z−τ,s)P ′i (a

τ , xs, z−τ,s). Then,

(bτ , xs, z−τ,s)Pi(a
τ , xs, z−τ,s) by condition (i), and hence bτ [Pi]τaτ by separability.

Contradiction!

In case (iv), since (xs, z−s)P ′i (y
s, z−s) by condition (ii), and (ys, z−s)P ′i (a

s, z−s),

we know as 6= xs and (xs, z−s)P ′i (a
s, z−s). Then, condition (i) implies (xs, z−s)Pi(a

s, z−s).

Moreover, separability implies (xs, z−s)Pi(a
s, z−s). Hence, (xs, z−s)P ′i (a

s, z−s) by

condition (i). Lastly, since (xs, z−s)P ′i !(y
s, z−s) by condition (ii), (xs, z−s)P ′i (a

s, z−s)

implies (ys, z−s)P ′i (a
s, z−s). Equivalently, (bs, z−s)P ′i (a

s, z−s). Contradiction!

In case (v), we first claim as = ys. Otherwise, by condition (i), (as, z−s)P ′i (b
s, z−s)

and (bs, z−s)P ′i (a
s, z−s) imply (as, z−s)Pi(b

s, z−s) and (bs, z−s)Pi(a
s, z−s) respec-

tively which contradict separability. Since (xs, z−s)P ′i !(y
s, z−s) by condition (ii)

and (ys, z−s)P ′i (b
s, z−s), (xs, z−s)P ′i (b

s, z−s). Then, (xs, z−s)Pi(b
s, z−s) by condi-

tion (i), and hence, (xs, z−s)Pi(b
s, z−s) by separability. Then, (xs, z−s)P ′i (b

s, z−s)

by condition (i). Lastly, since (xs, z−s)P ′i !(y
s, z−s) by condition (ii), (xs, z−s)P ′i (b

s, z−s)

implies (ys, z−s)P ′i (b
s, z−s). Equivalently, (as, z−s)P ′i (b

s, z−s). Contradiction! In

conclusion, P ′i ∈ DS .

Lastly, we show [Pi]
τ = [P ′i ]

τ for all τ ∈ M . Given τ ∈ M\{s}, suppose

aτ [Pi]
τbτ and bτ [P ′i ]

τaτ for some aτ , bτ ∈ Aτ . Thus, (aτ , xs, z−{τ,s})Pi(b
τ , xs, z−{τ,s})

and (bτ , xs, z−{τ,s})P ′i (a
τ , xs, z−{τ,s}) which contradict condition (i). Therefore,

[Pi]
τ = [P ′i ]

τ for all τ ∈ M\{s}. Next, we show [Pi]
s = [P ′i ]

s. Suppose not,

i.e., as[Pi]sbs and bs[P ′i ]
sas for some as, bs ∈ As. Since xs[Pi]sys and xs[P ′i ]

sys by

condition (ii) and separability, it must be the case that {as, bs} 6= {xs, ys}. Fur-

thermore, we claim that ys ∈ {as, bs}. Otherwise, given z−s ∈ A−s, we have
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(as, z−s)Pi(b
s, z−s) and (bs, z−s)P ′i (a

s, z−s) which contradict condition (i). There-

fore ys ∈ {as, bs}. If as = ys, then bs /∈ {xs, ys}. Given z−s ∈ A−s, since

(xs, z−s)P ′i !(a
s, z−s) by condition (ii), (bs, z−s)P ′i (a

s, z−s) implies (bs, z−s)P ′i (x
s, z−s).

Then, (bs, z−s)Pi(x
s, z−s) by condition (i). Since (xs, z−s)Pi(a

s, z−s), we have

(bs, z−s)Pi(a
s, z−s), and hence bs[Pi]sas. Contradiction! If bs = ys, then as /∈

{xs, ys}. Given z−s ∈ A−s, since (xs, z−s)P ′i !(b
s, z−s) by condition (ii), (bs, z−s)P ′i (a

s, z−s)

implies (xs, z−s)P ′i (a
s, z−s). Then, (xs, z−s)Pi(a

s, z−s) by condition (i). Since

(as, z−s)Pi(y
s, z−s), (xs, z−s)Pi(a

s, z−s)Pi(y
s, z−s), and hence xs[Pi]sas[Pi]sys which

contradicts xs[Pi]s!ys. Therefore, [Pi]
s = [P ′i ]

s. This completes the verification of

condition (iii) and hence the lemma.

Lemma 11.3 below is analogous to Lemma 9.3.

Lemma 11.3. Given Pi ∈ DS , s ∈M and as, bs ∈ As, assume (as, z−s)Pi!(b
s, z−s)

for all z−s ∈ A−s. There exists P ′i ∈ DS such that P ′i ∼MA Pi and (bs, z−s)P ′i !(a
s, z−s)

for all z−s ∈ A−s.

Proof. We first induce preference P ′i by switching (as, z−s) and (bs, z−s) in Pi for

each z−s ∈ A−s and keeping the ranking of every other alternative fixed in Pi. Thus,

P ′i ∼MA Pi and (bs, z−s)P ′i !(a
s, z−s) for all z−s ∈ A−s. We will show P ′i ∈ DS .

Given τ ∈ M , xτ , yτ ∈ Aτ and z−τ , z−τ ∈ A−τ , assume (xτ , z−τ )P ′i (y
τ , z−τ ).

We will show (xτ , z−τ )P ′i (y
τ , z−τ ). We know

either {(xτ , z−τ ), (yτ , z−τ )} = {(as, ẑ−s), (bs, ẑ−s)} for some ẑ−s ∈ A−s,

or {(xτ , z−τ ), (yτ , z−τ )} 6= {(as, ẑ−s), (bs, ẑ−s)} for all ẑ−s ∈ A−s.

If {(xτ , z−τ ), (yτ , z−τ )} = {(as, ẑ−s), (bs, ẑ−s)} for some ẑ−s ∈ A−s, then

τ = s, xs = bs and ys = as. Since (yτ , z−τ )Pi!(x
τ , z−τ ), the construction of P ′i

implies (xτ , z−τ )P ′i (y
τ , z−τ ).

If {(xτ , z−τ ), (yτ , z−τ )} 6= {(as, ẑ−s), (bs, ẑ−s)} for all ẑ−s ∈ A−s, then Pi ∼MA

P ′i and (xτ , z−τ )P ′i (y
τ , z−τ ) imply that (xτ , z−τ )Pi(y

τ , z−τ ). Then, (xτ , z−τ )Pi(y
τ , z−τ )

by separability. We claim that {(xτ , z−τ ), (yτ , z−τ )} 6= {(as, ẑ−s), (bs, ẑ−s)} for all

ẑ−s ∈ A−s. Otherwise, {(xτ , z−τ ), (yτ , z−τ )} = {(as, ẑ−s), (bs, ẑ−s)} for some
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ẑ−s ∈ A−s. Then, (xτ , z−τ )Pi(y
τ , z−τ ) and (as, ẑ−s)Pi(b

s, ẑ−s) imply τ = s,

xτ = as and yτ = bs. Since (bτ , z−τ )P ′i (a
τ , z−τ ) by the construction of P ′i ,

(yτ , z−τ )P ′i (x
τ , z−τ ). Contradiction! Now, since {(xτ , z−τ ), (yτ , z−τ )} 6= {(as, ẑ−s), (bs, ẑ−s)}

for all ẑ−s ∈ A−s, P ′i ∼MA Pi and (xτ , z−τ )Pi(y
τ , z−τ ) imply (xτ , z−τ )P ′i (y

τ , z−τ ).

In conclusion, P ′i ∈ DS .

Lemma 11.4 below is analogous to Lemma 9.4.

Lemma 11.4. Given Pi, P ′i ∈ DS , s ∈ M and as, bs ∈ As, assume [Pi]
s ∼A [P ′i ]

s,

as[Pi]
s!bs, bs[P ′i ]

s!as, and [Pi]
τ = [P ′i ]

τ for all τ 6= s. Given x, y ∈ A, assume xPiy

and xP ′iy. There exist P̄i, P̄ ′i ∈ DS satisfying the following five conditions:

(i) (as, z−s)P̄i!(b
s, z−s) for all z−s ∈ A−s,

(ii) [Pi]
τ = [P̄i]

τ for all τ ∈M ,

(iii) xP̄iy,

(iv) P̄i ∼MA P̄ ′i and (bs, z−s)P̄ ′i !(a
s, z−s) for all z−s ∈ A−s,

(v) xP̄ ′iy.

Proof. We assume y = (yS, x−S) where xτ 6= yτ for all τ ∈ S, S ⊆M and S 6= ∅.

Since xPiy, there must exist ω ∈ S such that xω[Pi]
ωyω. To verify the lemma, we

consider the following three jointly exhaustive situations:

(i) |S| = 1;

(ii) |S| ≥ 2 and there exists τ ∗ ∈ S such that τ ∗ 6= s and xτ∗ [Pi]τ
∗
yτ
∗;

(iii) |S| ≥ 2, s ∈ S, xs[Pi]sys and yτ [Pi]τxτ for all τ ∈ S\{s}.

In situation (i), we assume y = (yτ , x−τ ) and xτ 6= yτ (either τ = s, or τ 6= s).

Since xPiy and xP ′iy, we know xτ [Pi]
τyτ and xτ [P ′i ]

τyτ . Let P̄i, P̄ ′i ∈ DLS be such

that (1) both lexicographic orders in P̄i and P̄ ′i are identical, (2) component s is

lexicographically dominated, i.e., ω � s for all ω 6= s, and (3) [P̄i]
ω = [Pi]

ω and

[P̄ ′i ]
ω = [P ′i ]

ω for all ω ∈ M . Since component s is lexicographically dominated,
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as[P̄i]
s!bs and bs[P̄i]s!as, it is easy to verify that conditions (i) and (iv) are satisfied.

Condition (ii) is satisfied by construction. By lexicographic separability, we know

xP̄iy and xP̄ ′iy (conditions (iii) and (v) are met).

In situation (ii), let P̄i, P̄ ′i ∈ DLS be such that (1) both lexicographic orders

in P̄i and P̄ ′i are identical, (2) component τ ∗ is lexicographically dominant (i.e.,

τ ∗ � ω for all ω 6= τ ∗), and component s is lexicographically dominated, and (3)

[P̄i]
ω = [Pi]

ω and [P̄ ′i ]
ω = [P ′i ]

ω for all ω ∈ M . Then, by a similar argument in the

verification of situation (i), we know that conditions (i) - (v) are satisfied.

In situation (iii), we first claim xs[P ′i ]
sys. Suppose not, i.e., ys[P ′i ]

sxs. Thus,

yτ [P ′i ]
τxτ for all τ ∈ S, and hence yP ′ix by separability. Contradiction! Therefore,

xs[P ′i ]
sys. Now, it must be the case that {xs, ys} 6= {as, bs}. To verify this lemma,

we consider two cases: (1) ys 6= bs and (2) ys = bs.

Case (1): ys 6= bs.

According to Pi, let P̄i ∈ DS satisfying conditions (i) - (iii) in Lemma 11.2.

Thus, conditions (i) and (ii) in Lemma 11.4 are satisfied. Suppose yP̄ix. We claim

xs = bs. Suppose that it is not true. Thus, x, y /∈ (bs, A−s). Then, by condition

(i) in Lemma 11.2, xPiy implies xP̄iy. Contradiction! Since (as, x−s)Pi(b
s, x−s) =

x and xPiy, we have (as, x−s)Piy. Then, condition (i) in Lemma 11.2 implies

(as, x−s)P̄iy. Moreover, since (as, x−s)P̄i!(b
s, x−s) = x by condition (ii) in Lemma

11.2, (as, x−s)Piy implies xP̄iy. Contradiction! Therefore, xP̄iy (condition (iii) in

Lemma 11.4 is satisfied).

Furthermore, according to P̄i, by Lemma 11.3, we have P̄ ′i ∈ DS such that

P̄i ∼MA P̄ ′i and (bs, z−s)P̄ ′i !(a
s, z−s) for all z−s ∈ A−s. Thus, condition (iv) in

Lemma 11.4 is satisfied. If ys = as, then as[Pi]
sbs and xs[Pi]

sys imply xs /∈

{as, bs}. Consequently, P̄i ∼MA P̄ ′i and xP̄iy imply xP̄ ′iy. If ys 6= as, then

ys /∈ {as, bs}. Symmetrically, P̄i ∼MA P̄ ′i and xP̄iy imply xP̄ ′iy. Thus, condi-

tion (v) in Lemma 11.4 is satisfied.

Case (2): ys = bs.
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In this case, {xs, ys} 6= {as, bs} implies xs /∈ {as, bs}. Consequently, as[Pi]s!bs

and xs[Pi]
sys = bs imply xs[Pi]

sas. We first identify P̂i ∈ DLS such that (i)

[P̂i]
τ = [Pi]

τ for all τ ∈ M and (ii) component s is lexicographically dominant.

Thus, xP̂i(as, y−s)P̂i(bs, y−s) = y by lexicographic separability. Furthermore,

according to P̂i, there exists P̄i ∈ DS satisfying conditions (i) - (iii) in Lemma

11.2. Evidently, condition (i) in Lemma 11.4 is satisfied. Next, by condition (iii)

of Lemma 11.2, we have [P̄i]
τ = [P̂i]

τ = [Pi]
τ for all τ ∈ M (condition (ii) in

Lemma 11.4 is met). Next, we show xP̄iy. Suppose not, i.e., (bs, y−s) = yP̄ix.

Since (as, y−s)P̄i!(b
s, y−s) by condition (ii) of Lemma 11.2, we have (as, y−s)P̄ix.

Then, (as, y−s)P̂ix by condition (i) of Lemma 11.2. Contradiction to lexicographic

separability! Therefore, xP̄iy (condition (iii) in Lemma 11.4 is met).

Furthermore, according to P̄i, by Lemma 11.3, we have P̄ ′i ∈ DS such that

P̄i ∼MA P̄ ′i and (bs, z−s)P̄ ′i !(a
s, z−s) for all z−s ∈ A−s. Thus, condition (iv) in

Lemma 11.4 is satisfied. Since xs /∈ {as, bs}, P̄i ∼MA P̄ ′i and xP̄iy imply xP̄ ′iy.

Thus, condition (v) in Lemma 11.4 is satisfied. This completes the verification of

situation (iii) and hence the lemma.

Lemma 11.5 below is analogous to Lemma 9.5.

Lemma 11.5. Given Pi, P
′
i ∈ DS , assume [Pi]

s 6= [P ′i ]
s for all s ∈ S, where

S ⊆M and S 6= ∅. Given x, y ∈ A, assume xPiy and xP ′iy. There exists P ′′i ∈ DS

satisfying the following three conditions:

(i) [P ′′i ]s ∼A [Pi]
s for some s ∈ S, and [P ′′i ]τ = [Pi]

τ for all τ 6= s;

(ii)
[
as[Pi]

s!bs and bs[P ′′i ]s!as
]
⇒
[
bs[P ′i ]

sas
]
;

(iii) xP ′′i y.

Proof. Assume y = (yT , x−T ) and yτ 6= xτ for all τ ∈ T where T ⊆M and T 6= ∅.

Since xPiy, there must exist τ ∈ T such that xτ [Pi]τyτ .

We consider two cases: (i) there exists τ ∈ T such that xτ [Pi]τyτ and xτ [P ′i ]
τyτ ,

and (ii) for all τ ∈ T ,
[
xτ [Pi]

τyτ
]
⇒
[
yτ [P ′i ]

τxτ
]
.
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In case (i), we know either τ ∈ S or τ /∈ S. If τ ∈ S, there exists a marginal

preference [P ∗i ]τ such that (1) [P ∗i ]τ ∼A [Pi]
τ , and (2) aτ [Pi]τ !bτ , bτ [P ∗i ]τ !aτ and

bτ [P ′i ]
τaτ . Thus, {aτ , bτ} 6= {xτ , yτ}, and hence xτ [Pi]τyτ implies xτ [P ∗i ]τyτ . Now,

let P ′′i ∈ DLS be such that [P ′′i ]τ = [P ∗i ]τ , [P ′′i ]ω = [Pi]
ω for all ω 6= τ ; and

component τ is lexicographically dominant. Thus, conditions (i) - (iii) are satisfied

by P ′′i . If τ /∈ S, there exist s ∈ S and a marginal preference [P ∗i ]s such that (1)

[P ∗i ]s ∼A [Pi]
s, and (2) as[Pi]s!bs, bs[P ∗i ]s!as and bs[P ′i ]

τas. Then, let P ′′i ∈ DLS

be such that [P ′′i ]s = [P ∗i ]s, [P ′′i ]ω = [Pi]
ω for all ω 6= s; and component τ is

lexicographically dominant. Since [P ′′i ]τ = [Pi]
τ , xτ [Pi]τyτ implies xτ [P ′′i ]τyτ .

Thus, conditions (i) - (iii) are satisfied by P ′′i . This completes the verification of

case (i).

Next, we consider case (ii). Since xP ′iy, there must exist s ∈ T such that

xs[P ′i ]
sys. Then, in case (ii), it must be the case that ys[Pi]sxs. Now, we have

τ, s ∈ T such that xτ [Pi]τyτ , yτ [P ′i ]
τxτ ; ys[Pi]sxs and xs[P ′i ]

sys. Thus, τ, s ∈ S.

Now, we construct a marginal preference [P ∗i ]s such that (1) [P ∗i ]s ∼A [Pi]
s, and (2)

as[Pi]
s!bs, bs[P ∗i ]s!as and bs[P ′i ]

sas. Then, let P ′′i ∈ DLS be such that [P ′′i ]s = [P ∗i ]s,

[P ′′i ]q = [Pi]
q for all q 6= s; and component τ is lexicographically dominant. Since

[P ′′i ]τ = [Pi]
τ , xτ [Pi]τyτ implies xτ [P ′′i ]τyτ . Thus, conditions (i) - (iii) are satisfied

by P ′′i . This completes the verification of case (ii) and hence the lemma.

Note that from the aspect of marginal preferences, in Lemma 11.5, we push Pi

one step “closer” to P ′i through P ′′i while still keeping x ranked above y in P ′′i .

This completes the verification in Step 1. We turn to Step 2.

Lemma 11.6. Given Pi, P ′i ∈ DS with [Pi]
s = [P ′i ]

s for all s ∈ M , there exists an

AC-path {P k
i }lk=1 ⊆ DS connecting Pi and P ′i such that for all x, y ∈ A, [xPiy and

xP ′iy]⇒ [xP k
i y, 1 < k < l].

Proof. The construction of the AC-path {P k
i }lk=1 ⊆ DS connecting Pi and P ′i is a

repeated application of Lemma 11.1, and is symmetric to the verification of Lemma

9.6.
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Note that according to Remark 4.2.5, in Lemma 11.6, for all x, y ∈ A with xPiy

and xP ′iy, the AC-path {P k
i }lk=1 is also a (x, y)-Is-GC-path connecting Pi and P ′i .

Lemma 11.7. Given Pi, P ′i ∈ DS , assume [Pi]
s ∼A [P ′i ]

s for some s ∈ M and

[Pi]
τ = [P ′i ]

τ for all τ 6= s. Given x, y ∈ A, assume xPiy and xP ′iy. There exists a

(x, y)-Is-GC-path in DS connecting Pi and P ′i .

Proof. According to Pi and P ′i , we have P̄i, P̄ ′i ∈ DS satisfying conditions (i) - (v)

in Lemma 11.4. Since xP̄iy and xP̄ ′iy by conditions (iii) and (v) in Lemma 11.4,

P̄i ∼MA P̄ ′i implies that x and y are isolated in (P̄i, P̄
′
i ) by Remark 4.2.5. Second,

since [Pi]
τ = [P̄i]

τ for all τ ∈ M , xPiy and xP̄iy, Lemma 11.6 implies that there

exists a (x, y)-Is-GC-path in DS connecting Pi and P̄i. Next, by conditions (i) and

(iv) in Lemma 11.4, since [Pi]
s ∼A [P ′i ]

s and [Pi]
τ = [P ′i ]

τ for all τ 6= s, it is true

that [P̄ ′i ]
τ = [P ′i ]

τ for all τ ∈ M . Since xP̄ ′iy and xP ′iy, Lemma 11.6 implies that

there exists a (x, y)-Is-GC-path in DS in DS connecting P̄ ′i and P ′i . Combining both

paths, we have a (x, y)-Is-GC-path in DS connecting Pi and P ′i .

This completes the verification in Step 2. We then turn to Step 3.

Lemma 11.8. Domain DS satisfies the Modified Interior Property.

Proof. Fix a ∈ A and distinct Pi, P ′i ∈ Da
S . If [Pi]

s = [P ′i ]
s, this lemma follows

from Lemma 11.6. Next, we assume [Pi]
s 6= [P ′i ]

s for all s ∈ S, where S ⊆ M and

S 6= ∅, and [Pi]
τ = [P ′i ]

τ for all τ ∈M\S. Note that r1([Pi]
τ ) = r1([P ′i ]

τ ) = aτ for

all τ ∈M .

Fixing x ∈ A\{a}, we know aPix and aP ′ix. Then, by repeated application of

Lemma 11.5, we have a sequence {P̄ k
i }tk=1 ⊆ DS such that

(i) P̄ 1
i = Pi and P̄ t

i = P ′i ;

(ii) for every 1 ≤ k ≤ t − 1, [P̄ k
i ]s ∼A [P̄ k+1

i ]s for some s ∈ S, and [P̄ k
i ]τ =

[P̄ k+1
i ]τ for all τ 6= s;

(iii) aP̄ k
i x, k = 1, . . . , t.
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Moreover, by condition (ii) of Lemma 11.5, since r1([Pi]
τ ) = r1([P ′i ]

τ ) = aτ for all

τ ∈M , it is true that r1(P̄ k
1 ) = a for all 1 < k < t.

For every 1 ≤ k ≤ t − 1, Lemma 11.7 implies that there exists a (a, x)-Is-GC-

path in DS connecting P̄ k
i and P̄ k+1

i . Moreover, according to the construction of

(a, x)-Is-GC-path connecting P̄ k
i and P̄ k+1

i in the proof of Lemma 11.7, it is easy

to verify that the peak of every preference in the (a, x)-Is-GC-path is a. Combining

all these paths, we have a GC-path in Da
S connecting Pi and P ′i .

Lemma 11.9. Domain DS satisfies the Modified Exterior Property.

Proof. Fix Pi, P ′i ∈ DS with r1(Pi) 6= r1(P ′i ), and x, y ∈ A with xPiy and xP ′iy.

Evidently, there exists s ∈ M such that [Pi]
s 6= [P ′i ]

s. We assume [Pi]
s 6= [P ′i ]

s for

all s ∈ S, where S ⊆ M and S 6= ∅, and [Pi]
τ = [P ′i ]

τ for all τ ∈ M\S. Then, by

repeated application of Lemma 11.5, we have a sequence {P̄ k
i }tk=1 ⊆ DS such that

(i) P̄ 1
i = Pi and P̄ t

i = P ′i ;

(ii) for every 1 ≤ k ≤ t − 1, [P̄ k
i ]s ∼A [P̄ k+1

i ]s for some s ∈ S, and [P̄ k
i ]τ =

[P̄ k+1
i ]τ for all τ 6= s;

(iii) xP̄ k
i y, k = 1, . . . , t.

For every 1 ≤ k ≤ t − 1, Lemma 11.7 implies that there exists a (x, y)-Is-

GC-path in DS connecting P̄ k
i and P̄ k+1

i . Combining all these paths, we have a

(x, y)-Is-GC-path in DS connecting Pi and P ′i .

We have completed the verification of Step 3 and hence Proposition 4.2.4.

12 Proof of Proposition 4.2.5

It is evident that a random dictatorship is ex-post efficient and strategy-proof since

it is a convex combination of dictatorial DSCFs. We focus on showing the necessity

part of Proposition 4.2.5. We first show that every two-voter ex-post efficient and
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strategy-proof RSCF ϕ : D2
MSP → ∆(A) is a random dictatorship.15 Proposition

4.2.2 implies that ϕ satisfies the tops-only property.

Lemma 12.1. For all a, b ∈ A with a 6= b, ϕa(a, b) + ϕb(a, b) = 1.

Proof. Claim 1: Given a, b ∈ A with a 6= b, and x /∈ 〈a, b〉, ϕx(a, b) = 0.

Since x /∈ 〈a, b〉, there exists unique x′ ∈ 〈a, b〉 such that 〈a, x〉∩〈b, x〉 = 〈x′, x〉.

Accordingly, there exist P1 ∈ Da
MSP and P2 ∈ Db

MSP such that x′P1x and x′P2x.

Hence, x /∈ Ω(P1, P2) and x /∈ suppϕ(P1, P2) by ex-post efficiency. By tops-

onlyness, we have ϕx(a, b) = ϕx(P1, P2) = 0. This completes the verification of

the claim.

Claim 2: Given a, b ∈ A, assume as 6= bs and aτ 6= bτ for some s, τ ∈ M . Given

x ∈ 〈a, b〉\{a, b}, ϕx(a, b) = 0.

Since a and b disagree on at least two components, and x ∈ 〈a, b〉\{a, b}, it

is true that 〈a, b〉\[〈a, x〉 ∪ 〈b, x〉] 6= ∅. Fixing x′ ∈ 〈a, b〉\[〈a, x〉 ∪ 〈b, x〉], we

know x /∈ 〈a, x′〉 and x /∈ 〈b, x′〉. Accordingly, there exist P1 ∈ Da
MSP and P2 ∈

Db
MSP such that x′P1x and x′P2x. Then, by tops-onlyness and ex-post efficiency,

ϕx(a, b) = ϕx(P1, P2) = 0. This completes the verification of the claim.

According to Claims 1 and 2, we know that for all a, b ∈ A with as 6= bs,

aτ 6= bτ and a−{s,τ} = b−{s,τ} for some s, τ ∈M , ϕa(a, b) + ϕb(a, b) = 1.

Claim 3: Given a, b ∈ A, assume as 6= bs and a−s = b−s for some s ∈ M . Given

x ∈ 〈a, b〉\{a, b}, ϕx(a, b) = 0.

We assume a = (as, x−s), b = (bs, x−s) and x = (xs, x−s) where xs ∈

〈as, bs〉\{as, bs}. We identify two other alternatives b̄ = (bs, yτ , x−s,τ ) and x̄ =

(xs, yτ , x−s,τ ) where (xτ , yτ ) is an edge in G(Aτ ).16 Since as 6= bs = b̄s and

aτ = xτ 6= yτ = b̄τ , Claims 1 and 2 imply ϕx(a, b̄) = 0 and ϕx̄(a, b̄) = 0.

According to b and b̄, we have P2 ∈ Db
MSP and P ′2 ∈ Db̄

MSP such that P2 ∼MA

15In the case of two voters, we do not impose the restriction |M | ≥ 3.
16Alternatives b̄ and x̄ exist since A = ×q∈MAq and |M | ≥ 2.
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P ′2; (xτ , z−τ )P2!(yτ , z−τ ) and (yτ , z−τ )P ′2!(xτ , z−τ ) for all z−τ ∈ A−τ . By tops-

onlyness and strategy-proofness, ϕx(a, b) + ϕx̄(a, b) = ϕx(a, P2) + ϕx̄(a, P2) =

ϕx(a, P
′
2) + ϕx̄(a, P

′
2) = ϕx(a, b̄) + ϕx̄(a, b̄) = 0. Hence, ϕx(a, b) = 0. This

completes the verification of the claim.

According to Claims 1 and 3, we know that for all a, b ∈ A with as 6= bs and

a−s = b−s for some s ∈M , ϕa(a, b) + ϕb(a, b) = 1. Therefore, by Claims 1, 2 and

3, ϕa(a, b) + ϕb(a, b) = 1 for all a, b ∈ A with a 6= b.

Lemma 12.2. Given a, b;x, y ∈ A with a 6= b and x 6= y, ϕa(a, b) = ϕx(x, y).

Proof. Assume ϕa(a, b) = λ. We consider two cases: (i) either x /∈ {a, b} or

y /∈ {a, b}, and (ii) x ∈ {a, b} and y ∈ {a, b}.

In case (i), we assume w.l.o.g. that x /∈ {a, b}. The verification related to

y /∈ {a, b} is symmetric and we hence omit it. Since |M | ≥ 2, there exists

a sequence {ak}tk=1 ⊆ A such that a1 = a, at = x, (ak, ak+1) is an edge in

×s∈MG(As), k = 1, . . . , t − 1, and b /∈ {ak}tk=1.17 According to a1 and a2, we

have P1 ∈ Da1
MSP and P ′1 ∈ Da2

MSP such that r2(P1) = a2 and r2(P ′1) = a1. By tops-

onlyness and strategy-proofness, ϕa1(a1, b)+ϕa2(a1, b) = ϕa1(P1, b)+ϕa2(P1, b) =

ϕa1(P ′1, b) + ϕa2(P ′1, b) = ϕa1(a2, b) + ϕa2(a2, b). Then, Lemma 12.1 implies

ϕa2(a2, b) = ϕa1(a1, b) = λ. Following the sequence {ak}tk=1 and repeatedly ap-

plying the symmetric argument step by step, we have ϕx(x, b) = ϕat(at, b) = λ.

Hence, ϕb(x, b) = 1−λ by Lemma 12.1. If y = b, the verification is completed. We

assume y 6= b. Then, there exists a sequence {bk}t
′

k=1 ⊆ A such that b1 = b, bt′ = y,

(bk, bk+1) is an edge in ×s∈MG(As), k = 1, . . . , t′− 1, and x /∈ {bk}t
′

k=1. Following

the sequence {bk}t
′

k=1, by a symmetric argument, we have ϕy(x, y) = 1− λ. Then,

by Lemma 12.1, ϕx(x, y) = λ = ϕa(a, b).

In case (ii), since x 6= y, it must be either (x, y) = (a, b) or (x, y) = (b, a).

The lemma holds evidently if (x, y) = (a, b). Assume (x, y) = (b, a). Fix x′ /∈

{a, b}. Between (a, b) and (x′, b), since x′ /∈ {a, b}, the verification of case (i)

17A pair of alternatives c, d ∈ A forms an edge in ×s∈MG(As), if c−s = d−s and (cs, ds) is an
edge in G(As) for some s ∈M .
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implies ϕx′(x′, b) = λ. Similarly, between (b, a) and (x′, b), since x′ /∈ {b, a}, the

verification of case (i) implies ϕb(b, a) = ϕx′(x
′, b) = λ. Thus, ϕa(a, b) = ϕb(b, a).

This completes the verification of the lemma.

Fixing arbitrary a, b ∈ A with a 6= b, let ϕa(a, b) = λ. We will show that for all

x, y ∈ A, ϕ(x, y) = λex + (1− λ)ey. If x = y, it holds evidently. If x 6= y, it holds

by Lemmas 12.1 and 12.2. Therefore, ϕ is a random dictatorship.

Next, we modify the Ramification Theorem in Appendix 5 so that the random

dictatorship result over DMSP (henceforth, assume |M | ≥ 3) can be extended to

the case of arbitrary number of voters. We first introduce the primary induction

hypothesis.

The Primary Induction Hypothesis: Given N > 2, for all 2 ≤ n < N , we have

[ϕ : Dn
MSP → ∆(A) is ex-post efficient and strategy-proof]⇒ [ϕ is a random dictatorship].

Fixing an ex-post efficient and strategy-proof RSCF ϕ : DN
MSP → ∆(A), we

will show that ϕ is a random dictatorship. By Proposition 4.2.2, RSCF ϕ satisfies

the tops-only property.

Lemma 12.3. RSCF ϕ is a quasi random dictatorship (recall Definition 5.1 in Ap-

pendix 5).

Proof. We consider two cases: N > 3 and N = 3. If N > 3, the verification is ex-

actly identical to the verification of Proposition 5.2 by simply changing “unanimity”

to “ex-post efficiency”. Thus, we focus on the case N = 3.18

According to RSCF ϕ : D3 → ∆(A), we define three RSCFs: g(2,3)(P1, P2) =

ϕ(P1, P2, P2), g(1,3)(P1, P2) = ϕ(P1, P2, P1) and g(1,2)(P1, P3) = ϕ(P1, P1, P3)

for all P1, P2, P3 ∈ D. Evidently, g(2,3), g(1,3) and g(1,2) are ex-post efficient and

strategy-proof. Then, g(2,3), g(1,3) and g(1,2) are random dictatorships by the primary

18The proof of Proposition 5.1 relies on Condition α (see Definition 3.1). However, DMSP vio-
lates Condition α. Instead, the proof of Lemma 12.3 relies on the restriction of multi-dimensional
single-peakedness and the tops-only property.
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induction hypothesis. Thus, there exist ε1, ε2, ε3 ≥ 0 such that for all P1, P2, P3 ∈

D,

ϕ(P1, P2, P2) = g(2,3)(P1, P2) = ε1 er1(P1) + (1− ε1)er1(P2),

ϕ(P1, P2, P1) = g(1,3)(P1, P2) = (1− ε2)er1(P1) + ε2 er1(P2),

ϕ(P1, P1, P3) = g(1,2)(P1, P3) = (1− ε3)er1(P1) + ε3 er1(P3).

To establish that ϕ is a quasi random dictatorship, it suffices to show ε1+ε2+ε3 = 1.

Fixing {1, 2, 3} ⊆M ; {xs, ys} ⊆ As where (xs, ys) is an edge inG(As), s = 1, 2, 3,

and z−{1,2,3} ∈ A−{1,2,3}, we identify the following eight alternatives (see Figure 1):

a = (x1, x2, x3, z−{1,2,3}), b = (y1, y2, x3, z−{1,2,3}), c = (y1, x2, y3, z−{1,2,3});

ā = (x1, y2, x3, z−{1,2,3}), b̄ = (y1, y2, y3, z−{1,2,3}), c̄ = (x1, x2, y3, z−{1,2,3});

x̄ = (y1, x2, x3, z−{1,2,3}), ȳ = (x1, y2, y3, z−{1,2,3}).

r r
r r

r r
r r

c c̄

x̄ a

ā

ȳ

b

b̄

��
�
��

��
�
��

�
��

�
�

Figure 1: The geometric relations among a, b, c, ā, b̄, c̄, x̄ and ȳ

Now, we can construct two preference profiles: P = (P1, P2, P3) ∈ D3
MSP and

P ′ = (P ′1, P
′
2, P

′
3) ∈ D3

MSP such that the following five conditions are satisfied

(i) r1(P1) = r1(P ′1) = a, r1(P2) = r1(P ′2) = b and r1(P3) = r1(P ′3) = c;

(ii) r2(P1) = x̄, r3(P1) = ā and r4(P1) = b;

(iii) r2(P2) = x̄, r3(P2) = b̄ and r4(P2) = c;

(iv) r2(P3) = x̄, r3(P3) = c̄ and r4(P3) = a;

(v) ȳP ′i x̄, i = 1, 2, 3
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By a similar argument in the proof of Proposition 5.1, we first have ϕa(P ) = ε1,

ϕb(P ) = ε2, ϕc(P ) = ε3 and ϕx(P ) = 0 for all x /∈ {a, b, c, x̄}. Moreover, since

ϕx̄(P ) = ϕx̄(P
′) = 0 by tops-onlyness and ex-post efficiency, we have ε1+ε2+ε3 =

ϕa(P ) + ϕb(P ) + ϕc(P ) =
∑

x∈A ϕx(P ) = 1 as required.

Furthermore, by a same argument of Lemma 5.5, we know that for all P ∈

DN
MSP with r1(Pi) = r1(Pj) for some i, j ∈ I , ϕ(P ) =

∑
i∈I εier1(Pi). Therefore, to

complete the verification of the Primary induction hypothesis, we show in Lemmas

12.4 and 12.5 below that for all P ∈ DN with r1(Pi) 6= r1(Pj) for all i, j ∈ I ,

ϕ(P ) =
∑

i∈I εier1(Pi).

We first recall one notation used in Appendix 5. Given P ∈ DN with |r(P )| =

N , let W (P ) = ∪i∈IW
(
Pi,max(Pi, r1(P−i))

)
.

Lemma 12.4. For all P ∈ DN
MSP with |r1(P )| = N and x ∈ W (P ), ϕx(P ) =∑

i∈I:r1(Pi)=x

εi.

Proof. This lemma follows from Lemma 5.7.

Lemma 12.5. For all P ∈ DN
MSP with |r1(P )| = N , ϕ(P ) =

∑
i∈I εier1(Pi).

Proof. Fix P ∈ DN
MSP with |r1(P )| = N . For notational convenience, let ai =

r1(Pi) for all i ∈ I . We can identify two voters i, j ∈ I such that the minimal box

between ai and aj contains no other voter’s peak, i.e., 〈ai, aj〉 ∩ r1(P−{i,j}) = ∅.

We construct a sequence {xk}tk=1 ⊆ 〈ai, aj〉 such that x1 = ai, xt = aj; xk ∈

〈x1, xk+1〉 and (xk, xk+1) is an edge in ×s∈MG(As), k = 1, . . . , t − 1. Evidently,

we know that for all 1 ≤ k′ ≤ k ≤ t,

(i) 〈xk′ , xk〉 ∩ r1(P−{i,j}) = ∅;

(ii)
[
k′ ≤ k′′ ≤ k

]
⇒
[
xk′′ ∈ 〈xk′ , xk〉

]
, and

[
k′′ < k′ or k′′ > k

]
⇒
[
xk′′ /∈

〈xk′ , xk〉
]
.

Note that given 1 ≤ k′ ≤ k ≤ t, there exist P̄ (k′,k)
i ∈ Dxk′

MSP and P̄ (k,k′)
j ∈ Dxk

MSP

such that all alternatives in 〈xk′ , xk〉 are ranked above all alternatives out of 〈xk′ , xk〉,
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i.e., [
x ∈ 〈xk′ , xk〉 and y /∈ 〈xk′ , xk〉

]
⇒
[
xP̄

(k′,k)
i y and xP̄ (k,k′)

j y
]
.

Hence, for all l 6= i, j, xkP̄
(k′,k)
i al and xk′P̄

(k,k′)
j al.

We will show ϕ(P ) = ϕ(x1, xt, P−{i,j}) = εiex1 + εjext +
∑

l 6=i,j εleal . Firstly,

by quasi random dictatorship and tops-onlyness, we know ϕ(x1, x1, P−{i,j}) = (εi+

εj)ex1 +
∑

l 6=i,j εleal . Next, we provide an induction argument.

Induction Hypothesis: Given 1 < k ≤ t, for all 1 ≤ k ≤ k̄ < k, ϕ(xk, xk̄, P−{i,j}) =

εiexk + εjexk̄ +
∑

l 6=i,j εleal .

We will show that for all 1 ≤ k ≤ k̄ ≤ k, ϕ(xk, xk̄, P−{i,j}) = εiexk + εjexk̄ +∑
l 6=i,j εleal .

Given 1 ≤ k ≤ k̄ ≤ k, if k̄ < k, the induction hypothesis gives the result.

Next, assume k̄ = k. If k = k, then quasi random dictatorship and tops-onlyness

imply ϕ(xk, xk, P−{i,j}) = (εi+εj)exk+
∑

l 6=i,j εleal . Moreover, we provide another

induction argument.

The Secondary Induction Hypothesis: Given 1 ≤ k̂ < k, for all k̂ < k ≤ k,

ϕ(xk, xk, P−{i,j}) = εiexk + εjexk +
∑

l 6=i,j εleal .

We will show ϕ(xk̂, xk, P−{i,j}) = εiexk̂ + εjexk +
∑

l 6=i,j εleal .

Claim 1: For all l 6= i, j, ϕal(xk̂, xk, P−{i,j}) = εl.

Given preferences P̄ (k̂,k)
i , P̄ (k,k̂)

j , since 〈xk̂, xk〉 ∩ r1(P−{i,j}) = ∅,

|r1(P̄
(k̂,k)
i , P̄

(k,k̂)
i , P−{i,j})| = N . Fixing l 6= i, j, since xkP̄

(k̂,k)
i al, it is true that al ∈

W
(
P̄

(k̂,k)
i ,max

(
P̄

(k̂,k)
i , r1(P̄

(k,k̂)
j , P−{i,j})

))
⊆ W (P̄

(k̂,k)
i , P̄

(k,k̂)
j , P−{i,j}). Then, by

tops-onlyness and Lemma 12.4, we haveϕal(xk̂, xk, P−{i,j}) = ϕal(P̄
(k̂,k)
i , P̄

(k,k̂)
j , P−{i,j}) =

εl. This completes the verification of the claim.

Claim 2: ϕxk−1
(xk−1, xk, P−{i,j}) = εi and ϕxk(xk−1, xk, P−{i,j}) = εj .

Since (xk−1, xk) is an edge in ×s∈MG(As), we have P̄i ∈ Dxk−1

MSP and P̄ ′i ∈

Dxk
MSP such that r2(P̄i) = xk and r2(P̄ ′i ) = xk−1. Firstly, by quasi random dic-

tatorship and tops-onlyness, ϕxk−1
(P̄ ′i , xk, P−{i,j}) = 0 and ϕxk(P̄

′
i , xk, P−{i,j}) =
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εi + εj . Next, by tops-onlyness and strategy-proofness, we have

ϕxk−1
(xk−1, xk, P−{i,j})+ϕxk(xk−1, xk, P−{i,j}) = ϕxk−1

(P̄i, xk, P−{i,j})+ϕxk(P̄i, xk, P−{i,j}) =

ϕxk−1
(P̄ ′i , xk, P−{i,j}) + ϕxk(P̄

′
i , xk, P−{i,j}) = εi + εj .

Given P̄i ∈ Dxk−1

MSP and P̄j ∈ Dxk
MSP , it is evident that |r1(P̄i, P̄j, P−{i,j})| = N .

Fixing l 6= i, j, since either xk−1Plxk or xkPlxk−1, we have

either xk ∈ W
(
Pl,max(Pl, r1(P̄i, P̄j, P−i,j,l))

)
⊆ W (P̄i, P̄j, P−{i,j}),

or xk−1 ∈ W
(
Pl,max(Pl, r1(P̄i, P̄j, P−i,j,l))

)
⊆ W (P̄i, P̄j, P−{i,j}). Then, by tops-

onlyness and Lemma 12.4, we have eitherϕxk(xk−1, xk, P−{i,j}) = ϕxk(P̄i, P̄j, P−{i,j}) =

εj or ϕxk−1
(xk−1, xk, P−{i,j}) = ϕxk−1

(P̄i, P̄j, P−{i,j}) = εi. Consequently, we have

ϕxk−1
(xk−1, xk, P−{i,j}) = εi and ϕxk(xk−1, xk, P−{i,j}) = εj . This completes the

verification of the claim.

Claim 3: If k̂ < k − 1, the following two equalities hold:

ϕxk̂(xk̂, xk, P−{i,j}) + ϕxk̂+1
(xk̂, xk, P−{i,j}) = εi and

ϕxk(xk̂, xk, P−{i,j}) + ϕxk−1
(xk̂, xk, P−{i,j}) = εj.

Since (xk̂, xk̂+1) is an edge in ×s∈MG(As), we have P̄i ∈ Dxk̂
MSP and P̄ ′i ∈

Dxk̂+1

MSP such that r2(P̄i) = xk̂+1 and r2(P̄ ′i ) = xk̂. Firstly, the secondary induction

hypothesis implies ϕxk̂(P̄
′
i , xk, P−{i,j}) = 0 and ϕxk̂+1

(P̄ ′i , xk, P−{i,j}) = εi. Then,

by tops-onlyness and strategy-proofness, ϕxk̂(xk̂, xk, P−{i,j})+ϕxk̂+1
(xk̂, xk, P−{i,j}) =

ϕxk̂(P̄i, xk, P−{i,j})+ϕxk̂+1
(P̄i, xk, P−{i,j}) = ϕxk̂(P̄

′
i , xk, P−{i,j})+ϕxk̂+1

(P̄ ′i , xk, P−{i,j}) =

εi.

Since (xk, xk−1) is an edge in ×s∈MG(As), we have P̄j ∈ Dxk
MSP and P̄ ′j ∈

Dxk−1

MSP such that r2(P̄j) = xk−1 and r2(P̄ ′j) = xk. Firstly, induction hypothesis

implies ϕxk(xk̂, P̄
′
j , P−{i,j}) = 0 and ϕxk−1

(xk̂, P̄
′
j , P−{i,j}) = εj . Then, by tops-

onlyness and strategy-proofness, it is true thatϕxk(xk̂, xk, P−{i,j})+ϕxk−1
(xk̂, xk, P−{i,j}) =

ϕxk(xk̂, P̄j, P−{i,j})+ϕxk−1
(xk̂, P̄j, P−{i,j}) = ϕxk(xk̂, P̄

′
j , P−{i,j})+ϕxk−1

(xk̂, P̄
′
j , P−{i,j}) =

εj . This completes the verification of the claim.

Claim 4: If k̂ < k − 1, ϕxk̂(xk̂, xk, P−{i,j}) = εi and ϕxk(xk̂, xk, P−{i,j}) = εj .
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Fixing l 6= i, j, we know that either one of the following three cases occurs: (i)

xk̂ ∈ 〈al, xk〉, (ii) xk ∈ 〈al, xk̂〉 and (iii) xk̂ /∈ 〈al, xk〉 and xk /∈ 〈al, xk̂〉.

In case (i), since xk̂+1 ∈ 〈xk̂, xk〉, it must be the case that xk̂ ∈ 〈al, xk̂+1〉.

Thus, xk̂Plxk and xk̂Plxk̂+1. Given P̄i ∈ Dxk̂
MSP and P̄j ∈ Dxk

MSP , it is evident

that |r1(P̄i, P̄j, P−{i,j})| = N . Moreover, xk̂Plxk̂+1 and xk̂Plxk imply xk̂+1, xk ∈

W
(
Pl,max(Pl, r1(P̄i, P̄j, P−i,j,l))

)
⊆ W (P̄i, P̄j, P−{i,j}). Consequently, by tops-

onlyness and Lemma 12.4, we haveϕxk̂+1
(xk̂, xk, P−{i,j}) = ϕxk̂+1

(P̄i, P̄j, P−{i,j}) =

0 and ϕxk(xk̂, xk, P−{i,j}) = ϕxk(P̄i, P̄j, P−{i,j}) = εj . Furthermore, by Claim 3,

ϕxk̂(xk̂, xk, P−{i,j}) = εi.

In case (ii), since xk−1 ∈ 〈xk̂, xk〉, it must be the case that xk ∈ 〈al, xk−1〉.

Thus, xkPlxk̂ and xkPlxk−1. Given P̄i ∈ Dxk̂
MSP and P̄j ∈ Dxk

MSP , it is evident

that |r1(P̄i, P̄j, P−{i,j})| = N . Moreover, xkPlxk̂ and xkPlxk−1 imply xk̂, xk−1 ∈

W
(
Pl,max(Pl, r1(P̄i, P̄j, P−i,j,l))

)
⊆ W (P̄i, P̄j, P−{i,j}). Consequently, by tops-

onlyness and Lemma 12.4, we have ϕxk̂(xk̂, xk, P−{i,j}) = ϕxk̂(P̄i, P̄j, P−{i,j}) =

εi and ϕxk−1
(xk̂, xk, P−{i,j}) = ϕxk−1

(P̄i, P̄j, P−{i,j}) = 0. Then, by Claim 3,

ϕxk(xk̂, xk, P−{i,j}) = εj .

In case (iii), we have P̄l, P̂l ∈ Dal
MSP such that xkP̄lxk̂ and xk̂P̂lxk. Given

P̄i ∈ Dxk̂
MSP and P̄j ∈ Dxk

MSP , it is evident that |r1(P̄i, P̄j, P̄l, P−i,j,l)| = N and

|r1(P̄i, P̄j, P̂l, P−i,j,l)| = N . Moreover, xkP̄lxk̂ and xk̂P̂lxk imply

xk̂ ∈ W
(
P̄l,max(P̄l, r1(P̄i, P̄j, P−i,j,l))

)
⊆ W (P̄i, P̄j, P̄l, P−i,j,l) and

xk ∈ W
(
P̂l,max(P̂l, r1(P̄i, P̄j, P−i,j,l))

)
⊆ W (P̄i, P̄j, P̂l, P−i,j,l) respectively. Hence,

by tops-onlyness and Lemma 12.4, we haveϕxk̂(xk̂, xk, P−{i,j}) = ϕxk̂(P̄i, P̄j, P̂l, P−i,j,l) =

εi and ϕxk(xk̂, xk, P−{i,j}) = ϕxk(P̄i, P̄j, P̂l, P−i,j,l) = εj . This completes the veri-

fication of the claim.

In conclusion, according to Claims 1, 2 and 4, ϕ(xk̂, xk, P−{i,j}) = εiexk̂ +

εjexk +
∑

l 6=i,j εleal . This completes the verification of the secondary induction hy-

pothesis. Then, for all 1 ≤ k ≤ k, ϕ(xk, xk, P−{i,j}) = εiexk + εjexk +
∑

l 6=i,j εleal .

This completes the verification of induction hypothesis. Therefore, for all 1 ≤

k ≤ k̄ ≤ t, ϕ(xk, xk̄, P−{i,j}) = εiexk + εjexk̄ +
∑

l 6=i,j εleal . Therefore, ϕ(P ) =
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ϕ(x1, xt, P−{i,j}) = εiex1 + εjext +
∑

l 6=i,j εleal =
∑

l∈I εler1(Pl).

13 Proof of Proposition 4.2.7

We first show the necessity part of Proposition 4.2.7. Let ϕ : DN → ∆(A) be

an ex-post efficient* and strategy-proof RSCF. First, since D is minimally rich and

connected, it is easy to verify that D is path-connected (recall Section 3.2 in Chapter

3). Since ex-post efficiency* implies unanimity, Proposition 4.2.1 implies that ϕ

satisfies the tops-only property.

Claim 1: RSCF ϕ satisfies the compromise property (recall Definition 3.1.1).

We simply let Î = {1, . . . , N
2
} if N is even, and Î = {1, . . . , N+1

2
} if N is

odd. Given Pi, Pj ∈ D with r1(Pi) ≡ x 6= y ≡ r1(Pj) and r2(Pi) = r2(Pj) ≡ a,

it is evident that Ω
(
Pi, . . . , Pi︸ ︷︷ ︸

Î

, Pj, . . . , Pj︸ ︷︷ ︸
I\Î

)
= {x, y, a}. Then, ex-post efficiency*

implies ϕa
(
Pi, . . . , Pi︸ ︷︷ ︸

Î

, Pj, . . . , Pj︸ ︷︷ ︸
I\Î

)
> 0. This completes the verification of the

claim.

Now, domain D is path-connected; and ϕ satisfies unanimity, the tops-only prop-

erty, strategy-proofness and the compromise property. Then, Theorem 3.3.1 implies

that D is single-peaked. This completes the verification of necessity part.

Now, we move to the verification of the sufficiency part. Let D be a single-

peaked domain on a tree G. We the RSCF ϕ : DN → ∆(A) constructed in the

verification of the sufficiency part of Theorem 3.3.1. Then, we know that ϕ is

strategy-proof, and moreover, suppϕ(P ) = G(r1(P )) for all P ∈ DN . Therefore,

to show that ϕ is ex-post efficient*, it suffices to show Ω(P ) = G(r1(P )) for all

P ∈ DN . Evidently, If |r1(P )| = 1, then Ω(P ) = G(r1(P )).

Claim 2: Given P ∈ DN with |r1(P )| > 1, Ω(P ) ⊆ G(r1(P )).

Suppose that there exists a ∈ Ω(P )\G(r1(P )). Thus, there exists an unique

b ∈ G(r1(P )) such that for all i ∈ I , b ∈ 〈r1(Pi), a〉. Then, single-peakedness
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implies bPia for all i ∈ I . Hence, a /∈ Ω(P ). Contradiction! This completes the

verification of the claim.

Claim 3: Given P ∈ DN with |r1(P )| > 1, Ω(P ) ⊇ G(r1(P )).

Suppose that there exists a ∈ G(r1(P ))\Ω(P ). Thus, there exists b ∈ A such

that bPia for all i ∈ I . Evidently, a /∈ r1(P ). Since a ∈ G(r1(P )) and a /∈ r1(P ),

there exist i, j ∈ I such that r1(Pi) ≡ x 6= y ≡ r1(Pj) and a ∈ 〈x, y〉\{x, y}. Since

G is a tree, it is true that either a ∈ 〈x, b〉 or a ∈ 〈y, b〉. Consequently, either aPib

or aPjb. Contradiction! This completes the verification of the claim.

In conclusion, Ω(P ) = G(r1(P )) for all P ∈ DN . Hence, suppϕ(P ) = Ω(P )

for all P ∈ DN , and ϕ is ex-post efficient*. This completes the verification of the

sufficiency part.

14 Strategy-proofness in Example 4.3.2

RSCF ϕ follows three distinct function forms according to preference profiles. Ev-

idently, if both voters share the same peak of preferences, no one has the incentive

to deviate. Next, it is easy to show that if two social lotteries, which are induced by

truthtelling and misrepresentation of some voter, are generated by the same function

form, the one under truthtelling always stochastically dominates the one under mis-

representation according to the true preference. Therefore, we only need to consider

the possible manipulation where the corresponding social lotteries are generated by

distinct function forms. In these possible manipulations (16 situations specified

below), we assert that probabilities are always transferred systematically from the

preferred alternatives to less preferred alternatives according to the true preference

which equivalently indicates stochastic dominance.

1. In (Pi, Pj) ↔ (P ′i , Pj), where Pi ∈ Da1 , P ′i ∈ {P7, P9} and Pj ∈ Da5 , we

have

ϕ(Pi, Pj)
a1Pia3−−−−−→

1/4
,
a5Pia4−−−−−→

1/4
ϕ(P ′i , Pj), and ϕ(P ′i , Pj)

a3P ′ia1
−−−−−→

1/4
,
a4P ′ia5
−−−−−→

1/4
ϕ(Pi, Pj).
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2. In (Pi, Pj) ↔ (P ′i , Pj), where Pi ∈ Da2 = {P4, P5, P6}, P ′i ∈ {P7, P9} and

Pj ∈ Da5 , we have

ϕ(Pi, Pj)
a2Pia3−−−−−→

1/4
,
a2Pia1−−−−−→

1/4
,
a5Pia4−−−−−→

1/4
ϕ(P ′i , Pj), if Pi ∈ {P4, P5}.

ϕ(Pi, Pj)
a2Pia3−−−−−→

1/4
,
a2Pia4−−−−−→

1/4
,
a5Pia1−−−−−→

1/4
ϕ(P ′i , Pj), if Pi = P6.

ϕ(P ′i , Pj)
a3P ′ia2
−−−−−→

1/4
,
a1P ′ia2
−−−−−→

1/4
,
a4P ′ia5
−−−−−→

1/4
ϕ(Pi, Pj), if P ′i = P7.

ϕ(P ′i , Pj)
a3P ′ia2
−−−−−→

1/4
,
a4P ′ia2
−−−−−→

1/4
,
a1P ′ia5
−−−−−→

1/4
ϕ(Pi, Pj), if P ′i = P9.

3. In (Pi, Pj) ↔ (P ′i , Pj), where Pi ∈ Da4 , P ′i ∈ {P7, P9} and Pj ∈ Da5 , we

have

ϕ(Pi, Pj)
a4Pia3−−−−−→

1/4
,
a5Pia1−−−−−→

1/4
ϕ(P ′i , Pj), and ϕ(P ′i , Pj)

a3P ′ia4
−−−−−→

1/4
,
a1P ′ia5
−−−−−→

1/4
ϕ(Pi, Pj).

4. In (Pi, Pj) ↔ (Pi, P
′
j), where Pi ∈ {P7, P9}, Pj ∈ Da1 and P ′j ∈ Da5 , we

have

ϕ(Pi, Pj)
a1Pja5
−−−−−→

1/4
,
a3Pja4
−−−−−→

1/4
ϕ(Pi, P

′
j), and ϕ(Pi, P

′
j)
a5P ′ja1
−−−−−→

1/4
,
a4P ′ja3
−−−−−→

1/4
ϕ(Pi, Pj).

5. In (Pi, Pj) ↔ (Pi, P
′
j), where Pi ∈ {P7, P9}, Pj ∈ Da2 and P ′j ∈ Da5 , we

have

ϕ(Pi, Pj)
a2Pja1
−−−−−→

1/4
,
a2Pja4
−−−−−→

1/4
,
a3Pja5
−−−−−→

1/4
ϕ(Pi, P

′
j), and ϕ(Pi, P

′
j)
a5P ′ja3
−−−−−→

1/4
,
a1P ′ja2
−−−−−→

1/4
,
a4P ′ja2
−−−−−→

1/4
ϕ(Pi, Pj).

6. In (Pi, Pj) ↔ (Pi, P
′
j), where Pi ∈ {P7, P9}, Pj ∈ Da4 and P ′j ∈ Da5 , we

have

ϕ(Pi, Pj)
a4Pja5
−−−−−→

1/4
,
a3Pja1
−−−−−→

1/4
ϕ(Pi, P

′
j), and ϕ(Pi, P

′
j)
a5P ′ja4
−−−−−→

1/4
,
a1P ′ja3
−−−−−→

1/4
ϕ(Pi, Pj).

7. In (Pi, Pj) ↔ (P ′i , Pj) where Pi ∈ Da1 ∪ Da4 , P ′i = P8 and Pj ∈ Da5 , we

have

ϕ(Pi, Pj)
r1(Pi)Pia3−−−−−−−−→

1/4
,
r1(Pi)Pia2−−−−−−−−→

1/4
ϕ(P ′i , Pj), and ϕ(P ′i , Pj)

a3P ′i r1(Pi)
−−−−−−−−→

1/4
,
a2P ′i r1(Pi)
−−−−−−−−→

1/4
ϕ(Pi, Pj).

8. In (Pi, Pj)↔ (P ′i , Pj) where Pi ∈ Da2 , P ′i = P8 and Pj ∈ Da5 , we have

ϕ(Pi, Pj)
a2Pia3−−−−−→

1/4
ϕ(P ′i , Pj), and ϕ(P ′i , Pj)

a3P ′ia2
−−−−−→

1/4
ϕ(Pi, Pj).
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9. In (Pi, Pj) ↔ (Pi, P
′
j) where Pi = P8, Pj ∈ Da1 = {P1, P2, P3} and P ′j ∈

Da5 , we have

ϕ(Pi, Pj)
a1Pja2
−−−−−→

1/4
,
a1Pja5
−−−−−→

1/4
,
a3Pja5
−−−−−→

1/4
ϕ(Pi, P

′
j), if Pj = P1.

ϕ(Pi, Pj)
a1Pja5
−−−−−→

1/2
,
a3Pja2
−−−−−→

1/4
ϕ(Pi, P

′
j), if Pj ∈ {P2, P3}.

ϕ(Pi, P
′
j)

a5P ′ja1
−−−−−→

1/2
,
a2P ′ja3
−−−−−→

1/4
ϕ(Pi, Pj).

10. In (Pi, Pj)↔ (Pi, P
′
j) where Pi = P8, Pj ∈ Da2 and P ′j ∈ Da5 , we have

ϕ(Pi, Pj)
a2Pja5
−−−−−→

1/4
,
a3Pja5
−−−−−→

1/4
ϕ(Pi, P

′
j), and ϕ(Pi, P

′
j)

a5P ′ja2
−−−−−→

1/4
,
a5P ′ja3
−−−−−→

1/4
ϕ(Pi, Pj).

11. In (Pi, Pj) ↔ (Pi, P
′
j) where Pi = P8, Pj ∈ Da4 = {P10, P11, P12} and

P ′j ∈ Da5 , we have

ϕ(Pi, Pj)
a4Pja2
−−−−−→

1/4
,
a4Pja5
−−−−−→

1/4
,
a3Pja5
−−−−−→

1/4
ϕ(Pi, P

′
j), if Pj = P10.

ϕ(Pi, Pj)
a4Pja5
−−−−−→

1/2
,
a3Pja2
−−−−−→

1/4
ϕ(Pi, P

′
j), if Pj ∈ {P11, P12}.

ϕ(Pi, P
′
j)

a5P ′ja4
−−−−−→

1/2
,
a2P ′ja3
−−−−−→

1/4
ϕ(Pi, Pj).

12. In (Pi, Pj)↔ (P ′i , Pj) where Pi ∈ {P7, P9}, P ′i = P8 and Pj ∈ Da5 , we have

ϕ(Pi, Pj)
a1Pia2−−−−−→

1/4
,
a4Pia5−−−−−→

1/4
ϕ(P ′i , Pj), if Pi = P7.

ϕ(Pi, Pj)
a4Pia2−−−−−→

1/4
,
a1Pia5−−−−−→

1/4
ϕ(P ′i , Pj), if Pi = P9.

ϕ(P ′i , Pj)
a2P ′ia1
−−−−−→

1/4
,
a5P ′ia4
−−−−−→

1/4
ϕ(Pi, Pj).

13. In (Pi, Pj) → (P ′i , Pj) where Pi ∈ {P7, P9}, P ′i ∈ Da5 and Pj ∈ Da5 , we

have ϕ(Pi, Pj)
a3Pia5−−−−−→

1/4
,
a1Pia5−−−−−→

1/4
,
a4Pia5−−−−−→

1/4
ϕ(P ′i , Pj).

14. In (Pi, Pj) → (P ′i , Pj) where Pi = P8, P ′i ∈ Da5 and Pj ∈ Da5 , we have

ϕ(Pi, Pj)
a3Pia5−−−−−→

1/4
,
a3Pia5−−−−−→

1/4
ϕ(P ′i , Pj).

15. In (Pi, Pj) → (Pi, P
′
j) where Pi ∈ {P7, P9}, Pj ∈ Da5 and P ′j ∈ Da3 , we

have ϕ(Pi, Pj)
a5Pja3
−−−−−→

1/4
,
a1Pja3
−−−−−→

1/4
,
a4Pja3
−−−−−→

1/4
ϕ(Pi, P

′
j).
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16. In (Pi, Pj) → (Pi, P
′
j) where Pi = P8, Pj ∈ Da5 and P ′j ∈ Da3 , we have

ϕ(Pi, Pj)
a5Pja3
−−−−−→

1/2
,
a2Pja3
−−−−−→

1/4
ϕ(Pi, P

′
j).

15 Proof of Proposition 4.3.1

The sufficiency part is implied by Theorem 4.1.1. We focus on the necessity part.

Since A = {0, 1} × {0, 1}, the multi-dimensional single-peaked domain DMSP is

specified in Table 4.2 of Example 4.2.1. Since D is significantly rich, it is evidently

that D satisfies the Interior Property. Now, suppose that D violates the Exterior

Property*. Accordingly, we have Pi, P̄i, P ′i ∈ D satisfying the following three con-

ditions:

(i) r1(Pi) = r1(P̄i); Pi ∼A P̄i, xPi!y and yP̄i!x;

(ii) r1(P ′i ) 6= r1(Pi) and xP ′iy;

(iii) there exists no (x, y)-Is-path connecting Pi and P ′i .

According to Table 4.2, condition (i) implies {Pi, P̄i} = {Pk, Pk+1} for some

k ∈ {1, 3, 5, 7}. We assume w.l.o.g. that Pi = P1 and P̄i = P2. Consequently,

x = (1, 0) and y = (0, 1). Since (1, 0)P ′i (0, 1) in condition (ii), we know P ′i /∈

{P1, P2, P5, P6, P8}. Thus, either P ′i ∈ {P3, P4} or P ′i = P7. Furthermore, if

P ′i ∈ {P3, P4}, significant richness condition implies {P3, P4} ⊆ D. Consequently,

{P1, P3} is a (x, y)-Is-path connecting Pi and P ′i if P ′i = P3, or {P1, P3, P4} is

a (x, y)-Is-path connecting Pi and P ′i if P ′i = P4. This contradicts condition (iii)

above. Therefore, P ′i = P7. Then significant richness condition implies {P7, P8} ⊆

D. Thus, {P1, P2, P7, P8} ⊆ D. We show that P3, P4 /∈ D. Suppose not, i.e., either

P3 ∈ D or P4 ∈ D. Then, significant richness implies P3, P4 ∈ D. Consequently,

{P1, P3, P4, P7} is a (x, y)-Is-path connecting Pi and P ′i . Contradiction! Therefore,

either D = {P1, P2, P7, P8} or D = {P1, P2, P5, P6, P7, P8}.

Assume D = {P1, P2, P5, P6, P7, P8}. We will show domain D admits an unan-

imous and strategy-proof RSCF violating the tops-only property. We first provide
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four unanimous and strategy-proof DSCFs below: for all Pi, Pj ∈ D, assuming

r1(Pi) = a and r1(Pj) = b,

f (0,0)(Pi, Pj) =
(
med(a1, b1, 0),med(a2, b2, 0)

)
, f (1,0)(Pi, Pj) =

(
med(a1, b1, 1),med(a2, b2, 0)

)
,

f (0,1)(Pi, Pj) =
(
med(a1, b1, 0),med(a2, b2, 1)

)
, f (1,1)(Pi, Pj) =

(
med(a1, b1, 1),med(a2, b2, 1)

)
.

According to [6], all four DSCFs above are unanimous and strategy-proof. Next,

we specify two RSCFs.

ϕ̄(Pi, Pj) =
1

4

[
f (0,0)(Pi, Pj) + f (1,0)(Pi, Pj) + f (0,1)(Pi, Pj) + f (1,1)(Pi, Pj)

]
for all Pi, Pj ∈ D.

ϕ(Pi, Pj) =



1
4
f (0,0)(Pi, Pj) + 1

2
f (1,0)(Pi, Pj) + 1

4
f (1,1)(Pi, Pj),

if (Pi, Pj) = (P1, P7);

ϕ̄(Pi, Pj),

Otherwise.

RSCF ϕ̄ follows from a convex combination of all four DSCFs above. There-

fore, ϕ̄ is unanimous and strategy-proof. Observe that RSCF ϕ is identical to ϕ̄ if the

preference profile is not (P1, P7), and otherwise follows from a convex combination

of three DSCFs, where f (0,1) is removed and corresponding the weight is transferred

to f (1,0). Evidently, RSCF ϕ is unanimous and violates the tops-only property, e.g.,

ϕ(P1, P7) = 1
4
e(0,0) + 1

2
e(1,0) + 1

4
e(1,1) 6= 1

4
e(0,0) + 1

4
e(1,0) + 1

4
e(0,1) + 1

4
e(1,1) =

ϕ(P1, P8). We claim that ϕ is strategy-proof. There are following four possible

manipulations:

1. (P1, P7)→ (P ′i , P7) where P ′i 6= P1, and (P1, P7)→ (P1, P
′
j) where P ′j 6= P7.

2. (Pi, P7)→ (P1, P7) where Pi 6= P1.

3. (P1, Pj)→ (P1, P7) where Pj 6= P7.
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In situation 1, we first observe that

ϕ(P1, P7)
(1,0)P1(0,1)
−−−−−−−−−→

1/4
ϕ̄(P1, P7), and ϕ(P1, P7)

(1,0)P7(0,1)
−−−−−−−−−→

1/4
ϕ̄(P1, P7)

Therefore, ϕ(P1, P7) stochastically dominates ϕ̄(P1, P7) according to P1 and P7

respectively. Next, since ϕ̄ is strategy-proof, we know that ϕ̄(P1, P7) stochasti-

cally dominates ϕ̄(P ′i , P7) = ϕ(P ′i , P7) and ϕ̄(P1, P
′
j) = ϕ(P1, P

′
j) according to P1

and P7 respectively. Therefore, ϕ(P1, P7) stochastically dominates ϕ(P ′i , P7) and

ϕ(P1, P
′
j) according to P1 and P7 respectively.

In situation 2, we have

ϕ(Pi, P7)
(0,1)Pi(1,0)
−−−−−−−−−→

1/4
ϕ(P1, P7), if Pi = P2.

ϕ(Pi, P7)
(0,0)Pi(0,1)
−−−−−−−−−→

1/4
,

(1,0)Pi(0,1)
−−−−−−−−−→

1/4
,

(1,0)Pi(1,1)
−−−−−−−−−→

1/4
ϕ(P1, P7), if Pi = P5.

ϕ(Pi, P7)
(1,0)Pi(0,1)
−−−−−−−−−→

1/2
,

(0,0)Pi(1,1)
−−−−−−−−−→

1/4
ϕ(P1, P7), if Pi = P6.

ϕ(Pi, P7)
(1,1)Pi(1,0)
−−−−−−−−−→

1/2
,

(1,1)Pi(0,0)
−−−−−−−−−→

1/4
ϕ(P1, P7), if Pi ∈ {P7, P8}.

Therefore, ϕ(Pi, P7) stochastically dominatesϕ(P1, P7) according to Pi ∈ {P2, P5, P6, P7, P8}

respectively. By a symmetric argument, in situation 3, ϕ(P1, Pj) stochastically

dominates ϕ(P1, P7) according to Pj ∈ {P1, P2, P5, P6, P8} respectively. There-

fore, ϕ is strategy-proof.

Lastly, assume D = {P1, P2, P7, P8}. Since D ⊆ {P1, P2, P5, P6, P7, P8} and

P1, P7, P8 ∈ D, ϕ specified above is also unanimous, strategy-proof and violates the

tops-only property under domain D. This contradicts the hypothesis of the proposi-

tion. Therefore, domain D must satisfy the Exterior Property*.

16 Proof of Proposition 4.3.2

Lemma 16.1. Given distinct Pi, P ′i ∈ D, assume r1(Pi) = r1(P ′i ) = ak, asPiat and

asP
′
iat, where k 6= s. There exists a (as, at)-Is-path connecting Pi and P ′i .

Proof. By the Interior Property, we have an AC-path {P l
i }Kl=1 ⊆ Da connecting Pi
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and P ′i . If asP l
i at for all 1 ≤ l ≤ K, it is evident that {P l

i }Kl=1 is a (as, at)-Is-

path connecting Pi and P ′i . For the rest of the proof, we assume atP l
i as for some

1 < l < K. Since asP 1
i at and atP l

i as, it must be the case that either s < k < t,

or t < k < s. We assume s < k < t. The verification related to t < k < s

is symmetric and we hence omit it. Evidently, if as is ranked above at in two

consecutive preferences of the path {P l
i }Kl=1, then as and at are isolated in these

two preferences by Remark 4.1.1. Furthermore, according to Claim 1 below, we

can show that after removing all preferences in the path {P l
i }Kl=1 where at is ranked

above as, the rest of preferences in the path construct a (as, at)-Is-path connecting

Pi and P ′i .

Claim 1: Assume asP l1
i at, asP

l2
i at and atP l

i as for all l1 < l < l2. Thus, as and at

are isolated in (P l1
i , P

l2
i ).

Since P l1
i ∼A P

l1+1
i , asP l1

i at and atP l1+1
i as, we know asP

l1
i !at. Symmetrically,

asP
l2
i !at. Given aq ∈ A with aqP

l1
i as, we have aqP l1

i at and moreover, single-

peakedness implies s < q < t. Thus, {aq ∈ A|aqP l1
i as} ⊆ {aq}t−1

q=s+1. Con-

versely, given s < q < t, it is either s < q ≤ k, or k ≥ q > t. Correspond-

ingly, single-peakedness implies either aqP l1
i as or aqP l1

i at. Furthermore, since

asP
l1
i !at, it is true that aqP l1

i as. Therefore, {aq ∈ A|aqP l1
i as} ⊇ {aq}t−1

q=s+1. Thus,

{aq ∈ A|aqP l1
i as} = {aq}t−1

q=s+1. Symmetrically, {aq ∈ A|aqP l2
i as} = {aq}t−1

q=s+1.

Now, since {aq ∈ A|aqP l1
i as} = {aq ∈ A|aqP l2

i as}, asP
l1
i !at and asP l2

i !at imply

that as and at are isolated in (P l1
i , P

l2
i ). This completes the verification of the claim

and hence the lemma.

Lemma 16.2. Domain D satisfies the Exterior Property*.

Proof. Given Pi, P ′i ∈ D satisfying the following two conditions:

(i) there exists P̄i ∈ D such that r1(Pi) = r1(P̄i) ≡ ak; Pi ∼A P̄i, asPi!at and

atP̄i!as;

(ii) r1(P ′i ) 6= ak and asP ′iat.
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we will show that there exists a (as, at)-Is-path connecting Pi and P ′i .

Since r1(Pi) = r1(P̄i) = ak, asPi!at and atP̄i!as, it is true that either s < k < t,

or t < k < s. We assume s < k < t. The verification related to t < k < s is

symmetric and hence we omit it. We assume r1(P ′i ) = aq. Since Dak 6= ∅ and

Daq 6= ∅, let P̄i ∈ Dak and P̂i ∈ Daq be two preferences satisfying the left-extreme

condition. Accordingly, asP̄iat.

We first assume q > k. Since asP ′iat, it must be the case k < q < t. Hence,

asP̂iat by left-extreme condition. Moreover, sinceBq(P̄i) = {a1, . . . , as, . . . , aq} =

Bq(P̂i), as and at are isolated in (P̄i, P̂i). Next, assume q < k. If q ≤ s, single-

peakedness implies asP̂iat. If s < q, left-extreme condition implies asP̂iat. Now,

since Bk(P̄i) = {a1, . . . , as, . . . , ak} = Bk(P̂i), as and at are isolated in (P̄i, P̂i).

Lastly, by Lemma 16.1, we have a (as, at)-Is-path {P̄ l
i }
l1
l=1 connecting Pi and P̄i,

and a (as, at)-Is-path {P̂ l
i }
l2
l=1 connecting P̂i and P ′i . Combining these two paths, the

sequence {P̄ 1
i , . . . , P̄

l1
i ; P̂ 1

i , . . . , P̂
l2
i } is a (as, at)-Is-path connecting Pi and P ′i .
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